B Informatics

Analyse einer dynamischen
Sammlung von Zeitungsartikeln
mit inhaltsbasierten Methoden

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Wirtschaftsinformatik
eingereicht von

Markus Neumeyer, BSc.
Matrikelnummer 1225172

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Hannes Werthner
Mitwirkung: Univ.Ass. Mag.rer.nat. Dr.techn. Julia Neidhardt
Univ.Ass. Dipl.-Ing. Mete Sertkan, BSc

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Wien, 12. Oktober 2020

Markus Neumeyer Hannes Werthner

@ Sibliothek,
Your knowledge hub

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

B Informatics

Analysis of a dynamic collection
of news articles with
content-based methods

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Business Informatics
by

Markus Neumeyer, BSc.
Registration Number 1225172

to the Faculty of Informatics
at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Hannes Werthner
Assistance: Univ.Ass. Mag.rer.nat. Dr.techn. Julia Neidhardt
Univ.Ass. Dipl.-Ing. Mete Sertkan, BSc

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Vienna, 12" October, 2020

Markus Neumeyer Hannes Werthner

@ Sibliothek,
Your knowledge hub

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Markus Neumeyer, BSc.

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. Oktober 2020

Markus Neumeyer

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Danksagung

Ich mo6chte mich bei all jenen bedanken, die mir wiahrend der Erstellung dieser Arbeit un-
terstiitzend zur Seite gestanden sind. Allen voran meiner Betreuern Frau Julia Neidhardt
und Herrn Mete Sertkan, welche mich bei fachlichen wie auch bei technischen Fragen
stets mit Rat unterstiitzten und mir viele wertvolle Stunden Threr Zeit schenkten. Vielen
Dank fiir die Zusammenarbeit.

Ein herzliches Dank gilt auch dem Team von Der Falter, welche Ihren Datensatz mit
Artikeln bereitstellten, um die Versuche in dieser Arbeit erst zu ermoglichen.

Danken mochte ich aber auch meiner Familie, meinen Freunden, wie auch meinem
Arbeitgeber, welche alle Riicksicht auf den erh6hten Zeitaufwand von Studium und Arbeit
nahmen und mir immer wieder unter die Arme griffen.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

Acknowledgements

I want to thank everyone that was supportive throughout the creation of this thesis.
First and foremost my supervisors Julia Neidhardt and Mete Sertkan, who guided me
both scientifically as well as technically through the whole work and spent much of their
precious time for me. Thank you very much for your cooperation.

My gratitude goes also out for the team of Der Falter, who provided the test dataset
with articles, that was needed to enable the work done in this thesis.

Finally I want to thank my family and friends as well as my employer, who all showed
their consideration for the time consumption of studying and working and who assisted
me many times.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Kurzfassung

Die Art und Weise wie man geschriebene Zeitungsartikel liest hat sich tiber die letzten
Jahrzehnte drastisch verdndert, durch das Internet ist eine riesige Menge an Artikeln
jederzeit verfiigbar. Die Leser und Leserinnen kénnen nicht mehr alle Artikel lesen sondern
sind auf Empfehlungen angewiesen. Dies hat zur Entwicklung von “News Recommender
Systems” gefiihrt.

Die Empfehlungen dieser Systeme basieren auf verschiedensten Methoden. Ein Typ dieser
Methoden sind inhaltsbasierte Methoden, welche ausschlieSlich den textuellen Inhalt eines
Artikels, sowie deren Titel, dazu verwenden, dhnliche Artikel zu finden. Im Gegensatz
zu “Collaborative Filtering Methods”, welche auch demographische Daten und bereits
gesammelte Interessen der Leser verwenden.

In dieser Arbeit vergleichen wir state-of-the-art Methoden fiir text-basierte Empfehlungen
von Zeitungsartikeln.

Der Fokus wird dabei auf zwei Punkte gelegt. Einerseits die Fahigkeit einen dynamischen
Datensatz zu analysieren. Dies umfasst sowohl die Méglichkeit, neue Artikel in ein bereits
berechnetes Modell einzuarbeiten, sowie die Fahigkeit Trends von Schlagworten oder
Themen innerhalb der Artikel zu finden. Andererseits die Vielfalt und Serendipitét
der Empfehlungen. Meist befassen sich Vergleiche von Recommender Systems mit der
Genauigkeit der Empfehlungen. Diese Arbeit widmet sich stattdessen der Vielfalt und
der Serendipitdt der Empfehlungen, um diese noch weiter zu verbessern.

Das Fazit des Vergleichs ist, dass jede der verglichenen Methoden Stédrken und Schwéchen
hat. Es konnte keine Methode identifiziert werden, welche den anderen Methoden in allen
betrachteten Aspekten {iberlegen war.

Xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Abstract

The consumption of news changed throughout the last decades, a huge amount of articles
is available at any time in the internet. Consumers therefore need help to find articles
that might be relevant for them, as they are not able to scan through all offered articles
themselves. This led to the emergence of news recommender systems.

The way in which these systems choose articles that might be relevant varies vastly. One
kind of methods are the content-based methods, which use only the written content of
news articles and build relations between articles for the recommendations based on
it. In contrast to collaborative filtering methods, which also use demographic data and
previously gathered interests of users.

In this work we analyze and compare current state of the art methods for content-based
recommendations of news articles.

The focus of the comparison will be on two main points. On the one hand is the ability
to analyze a dynamic corpus. This includes both the possibility to include new articles
to an existing model, as well as finding trends within the found topics or keywords of a
model. On the other hand comes the diversity and serendipity of recommendations. Most
comparisons of recommender systems put the focus on the accuracy of recommendations,
instead this thesis will put the focus on diversity and serendipity to further improve the
quality of recommendations.

The conclusion of this comparison is that every method has its strengths and weaknesses.
No method could be found that exceeds all other methods in all aspects that were
considered.

Xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Kurzfassung xi
Abstract xiii
Contents XV
1 Introduction 1
1.1 Motivation & Problem Statement! 1
1.2 Research Questions|. o 2
1.3 Aimofthe Workl, 2

1.4 Methodological Approach 3

2 State of the art 7
3 Methods 11
3.1 TF-IDF Scores| 13
3.2 TextRank Algorithm 15
3.3 RAKE Algorithm|. o 17
3.4 Wordcloud Comparison 18
3.5 Stylometryl 20
3.6 Dynamic Topic Modelling| 23
3.7 Word Embeddings oo o 26
3.8 Excluded Methods 28

4 Data 31
4.1 Raw Datasetl 31
4.2 Pre-Processing oo 32

5 Data Analysis 39
5.1 TE-IDEl o e 39
5.2 TextRank Algorithm| 0., 44
5.3 RAKE Algorithm|. 45
5.4 Wordcloud Comparison| 48
5.5 Stylometry| Lo 51

XV

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.6 Dynamic Topic Modelling|
5.7 Word Embeddings| o

6 Comparison & Evaluation
6.1 Finding Keywords/Topics
6.2 Finding Trends|o
6.3 Processing of a Dynamic Corpus|
6.4 Characteristics of Article Recommendations/

7 Conclusion

7.1 Research Questions,
7.2 Strengths and Weaknesses of All Methods|
7.3 Practical Implications| o oL

7.4 Future work
List of Figures
List of Tables
List of Algorithms

Bibliography

56
61

67
67
68
70
71

77
7
79
84
84

87

89

91

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

1.1 DMotivation & Problem Statement

Throughout the last few years, the way in which news are consumed has changed
drastically. The growth of digitalization and the accessibility of the World Wide Web
granted access to a wider spectrum of and therefore also a significantly bigger amount
of news. This increase in supply has led to a surplus of information for the consumer.
That, in combination with the wish to be offered interesting information as well as being
surprised by new topics to discover, resulted in the emergence of recommender systems,
or more specifically, news recommender systems as a support to prefilter content for the
interests of consumers.

The way in which these recommender systems choose potentially relevant information
varies widely and is also dependent on the type of data that is processed and that shall
be presented. While some methods are looking to find more specific and focused items,
others might be able to offer more diverse and serendipitous items.

Another important factor, when talking about news article recommendation, would be
time. Consumers of news articles obviously are less interested in older articles than they
are in articles which have been written in the last few hours or days. But not only in this
sense time is important, changes in common topics or occurrences of linked keywords are
also vital in the consideration of what the reader is recommended. When talking about
news article recommendation systems, there are multiple levels in which those can be
analyzed and compared. Some of those are: document level, topic level, and author level.
The document level looks at each document on itself to enable a comparison between
them. Topic level on the other hand views sets of articles to find common topics. On the
author level, sets of articles are views as well, although the focus does not lie on what
the text is about but more on how the text is written to distinguish between authors and
their styles [SNW19].

While specific types of methods for data preparation for recommendation systems have

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

already been analyzed extensively, there are not a lot of comparisons of them. Especially
the inclusion of time as a factor for interpretation and comparison has not been considered
in great detail in previous research. Also, most of the already existing analyses are carried
out with English and American daily newspapers, not with Austrian or more specific
Viennese publications/media outlets.

1.2 Research Questions

The lack of the above-mentioned analyses leads to the following research questions

1. What methods, concepts or algorithms represent suitable mechanisms for the con-

tinuous analysis and subsequent classification and clustering of news articles based
on general topics or specific keywords?
In comparison to previous research, in this thesis we will focus on the analysis of
not only a specific point in time of the news article database, but also a continuous
investigation of it. This aim also leads to another sub-question: “Which methods
allow to recognize short or long term changes of e.g. key word clusters or topic
correlations and which are not really suited to analyze changes at all?”.

2. What methods build close relations between news articles yielding results in a more

focused way and what methods lead to a broader spectrum of relations generating
serendipitous connections?
Although it might be easier to build focused connections between news articles
which seem reasonable at first sight, one motivation for this thesis is also to draw
attention to connections which look arbitrary at first but might be legitimate on
further inspection. Thus, the analysis of these data will also reveal the interesting
insights on whether these methods can be fused to achieve the advantages of both
approaches simultaneously.

1.3 Aim of the Work

The main objective of this work is the comparison and analysis of different content-based
methods or algorithms to find similar news articles as a means for publishers to analyze
their articles and trends as well as to build a fundament for a news recommender system,
the latter one will not be implemented and is out of scope of this thesis. Therefore,
the focus lies on the data preprocessing, preparation, analysis and relation building of
newspaper articles with content-based methods and the inclusion of the factor time to
these methods for the recognition of appearing trends through the time. After a literature
research of the current state of the art of these methods for finding similar or relevant
news articles with any kind of relation, a set of methods will be chosen to include time-
related analysis and to be tested against a given dataset. Hence, multiple pipeline-models
consisting of various methods will be implemented, combined and evaluated to compare
them.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.4. Methodological Approach

To finally test and evaluate these methods, a dataset of newspaper articles of a Viennese
weekly newspaper of all articles from 1998 until 2019 is available, from which a subset will
be drawn. Based on this it is given that conclusions drawn from these experiments will
be influenced by the language and would have led to different results with e.g. datasets
from English daily newspapers.

The evaluation and comparison of the different methods will be done in a quantitative
manner, but not all aspects will be possible to be evaluated quantitatively. Therefore
additionally, a qualitative review will be undertaken to further analyze the results in
regards to their abilities, where a quantitative measurement would not be suitable.

1.4 Methodological Approach

1. Literature research

To find a variety of current state of the art methods to compare news articles with
each other and find keywords and topics, a literature research was done. After
this step, not only were the methods to be analyzed and compared be identified,
but background knowledge about them, like their strengths and weaknesses or
what libraries are available for the implementation was acquired afterwards. This
step built the foundation of all further steps and needs thorough attention. As
the literature research is only a part of this thesis, a full sophisticated systematic
literature review is not required to be able to gather all the needed information,
but a few parts of it will be used. Kitchenham et al. [KBBT09] describes in detail,
how an extensive systematic literature review in software engineering is done. The
steps, which were used for this literature research are:

e Research Questions
These had to be defined before starting the research.

e Inclusion criteria
No strict date or minimum year, where literature has to be younger than, was
set. But as the goal is to identify state of the art methods, literature from
recent years was preferred.

e Documentation of identified papers
Both literature, that was defined as useful, as well as literature that can not be
further used for this thesis, was documented. An example for a more extensive
literature review, where the focus was put on the same three steps, can be
found in Hall et al. [HBB™11].

2. Data analysis and preparation
As working in data and text mining requires, the data which is used for later
experiments and to test the models on had to be thoroughly analyzed and prepared
to be useable. This step can be seen as the beginning of the data analysis itself,
for which multiple well-developed methodologies have been created. One example
would be the CRISP-DM method, which is described by Wirth et al. [WHO00]. It

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

describes the two steps Data Understanding and Data Preparation, which come
before the actual model building. Another model, that describes steps of a data
analysis process, is the KDD model as described in Fayyad et al. [FPSS96], where
the Preprocessing and the Data Transformation come before the actual data mining.
A comparison of these methods can be found in Azavedo et al. [AS08], where it is
concluded that CRISP-DM is a more detailed kind of implementation of the KDD
model, so this thesis mainly relies on the descriptions of CRISP-DM. According to
it, for the data understanding a thorough data exploration is needed. The aim is
to get familiar with the data, find quality problems within the data and find first
insights. The data preparation part was secluded into steps that are important
for all methods to be implemented, like tokenization of the articles, part of speech
tagging and named-entity recognition, and the method specific preparation that is
needed for the algorithm that implements the method.

. Design of models to compare

Based on the knowledge and identified methods acquired in step 1, different models
were designed for the analysis of the articles as well as for the inclusion of the
analysis over time. Examples for methods would be key-word-clustering via TF-
IDF, dynamic topic modeling or multi-attribute networks. As this thesis was built
upon the CRISP-DM framework, this step can be seen as the first half of the
modelling phase described in CRSP-DM. It describes the selection of the modeling
technique, which in our case was the selection of libraries, frameworks or algorithms
to implement the chosen methods, as well as a selection of important parameters,
that have to be used for the chosen algorithms.

. Implementation of models and execution

The models designed in step 3 had to be implemented as well as executed and the
results and various statistics of the execution needed to be saved. In this step it is
vital to implement models in a way which allows the analysis and comparison not
only of the final result, but of intermediate calculations and data manipulations as
well. These models were iteratively refined, which lead to an indistinction of steps
3 and 4. This step was the realization of the second half of the modeling phase of
CRISP-DM. This part of the phase is described as the building of the model itself,
with its concrete implementation, parameter tuning and testing of it. What is also
important here is the assessment of the model, if the results are meaningful and
realistic, so they can be used for further evaluation and comparison of the models.

. Evaluation and comparison of the models

Both the final results and the interim results of the developed models were analyzed
and compared. On the one hand, this process was carried out in a mathematical
manner, i.e. with various measures, on the other hand, this step also involved a
qualitative review of the results together with authors of a Viennese newspaper.
Measuring variety or surprise of the results has been done with metrices, the
quality of each method in regard to their ability to include new articles and find

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.4. Methodological Approach

trends was done qualitatively. As well as steps 2 to 4, this step was the realization
of a CRISP-DM phase, namely the evaluation phase. According to CRISP-DM,
not only the mathematical evaluation of the models is important, but also their
interpretation and if it has meaning and can be used for the actual business domain.
The last step of CRISP-DM, the deployment, would describe how to deploy and
present to actual customers. The deployment of the implemented model was out of
scope for this thesis. The presentation of the implementations of the methods on
the other hand was important, as domain experts were also conducted to evaluate
the implemented methods in a qualitative way. This was done to compare some
specific attributes of the methods, that can not be analyzed in a mathematical way.
These would be the following:

e How well the method can find trends within keywords/topics
Methods that were implemented should not only be able to identify keywords
and topics, but also find trends within these keywords. This information is
very important for news article recommender systems, as not all topics and
keywords represent current trends, may it be in an ascending or descending
way.

e Possibility to graphically present trends, keywords or topics
Not only should the results of each method be used for the recommender
system itself to recommend articles, but also the authors and publishers of the
newspaper, along with news agencies or platforms, are interested in current
trends and want to analyze them.

e Capabilities to include new articles into the existing model
As a corpus of news articles is dynamic and changes every day, some methods
might be better suited for a stable representation of keywords or topics, if not
the whole model has to be recomputed for every new article. Another factor
here was the time it takes to either include new articles to the existing model
or recompute the whole model.

To compare the models regarding these factors, that can not easily be answered in a
mathematical quantitative way, a qualitative review was required. This qualitative
evaluation was done by the author of this thesis together with domain experts.
Furthermore, the evaluation was not able to be done on the whole dataset, as
this would have require too much computational effort and therefore time, which
lead to the requirement of a sampling method. The method that was used was
Stratified Random Sampling as described in Araya et al. [APSN13|. To differentiate
sub-groups, or strata as they are called, the so called ressorts of the news articles
were used, which is given as metadata for every article in the chosen dataset.

The rest of the thesis is organized as follows. In chapter 2, the current state of the art of
methods, that are used for news article recommender systems will be discussed. Chapter
3 will give a theoretical background of all used methods and describes a few methods

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.

INTRODUCTION

that seemed promising but were excluded from this work. In chapter 4 the dataset that
is used for this thesis as well a the general pre-processing steps of the given dataset are
described. Chapter 5 gives insights in how the methods were implemented. Chapter 6
shows the result of the data analysis, with a comparison of all methods. Chapter 7 finally
concludes this thesis with answering the given research questions as well as summarizing
the strengths and weaknesses of all implemented methods.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

State of the art

Recommender systems in general are already well established in various application areas
like e-market websites, social media platforms or as in this case newspaper websites.
Various approaches of these systems have already been analyzed in a scientific environment.
Especially for news recommender systems, Kirshenbaum et al. [KED12], for example,
compare multiple methods of news article comparison for recommendations as well, but
include the popularity of news articles and previous knowledge about the reader over a
longer span of time, like what topics the consumer was previously interested in, not only
the currently read article. This research includes a live experiment with different methods
on a newspaper website to measure click-through rates and concludes that the Bayesian
adjusted term frequency in combination with an item-item collaborative filtering led to
the highest click-through rates. In contrast, our work will not include further previously
read articles, but only the current one, but nonetheless approaches from this work can
be taken as a starting point.

A great overview of challenges and their current approaches of overcoming them is elabo-
rated in Karimia et al. [KJJI8] The authors analyzed recently published articles about
news recommendation methods, approaches and comparisons and basically summarized
the challenges like

e cold-start-problem - starting a new recommender system without previous knowledge
about the users, only relevant for collaborative filtering methods

e data sparsity issues - transforming articles into vectors or matrices, as described
in the following chapters, often leads to sparseness, which might influence the
mathematical methods used on these

e diversity - creating multiple recommendations might tend to offer very similar
articles

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

STATE OF THE ART

The authors gathered current approaches to overcome these challenges, which will also
be interesting for this work. Afterwards, they discussed ways to test and benchmark
recommender systems and suggested metrices for evaluation, some news article specific,
some general. Furthermore, open source frameworks to measure these metrices are
presented and discussed. Conclusions from their research suggest that hybrid methods of
content-based and collaborative filtering are the current go-to method for news recom-
mendation, while information retrieval and click-through-rates are currently the most
prevalent factors for measuring the success of recommendations.

In contrast, stylistic analysis is not very well investigated as a tool for article recommen-
dation. Argamon et al. [AWCT07| present insights into the methods of stylistic text
analysis, with the mentioning of classification for author identity, gender or nationality,
yet its possible usefulness for article recommendation has not been considered. We will
try to include this possibility into our work.

Another way to compare different methods of building relations between news articles
would be the predictability of the recommendations. While some methods might lead to
very foreseeable classifications, others might result in what appears to be a serendipity.
Ge et al. |[GDBJI10] discuss this issue with methods of how to measure serendipity in
multiple ways, but their research does not continue to take the next step to actually
compare methods of recommendations in this regard, therefore we are going to include
serendipity into our measurements of article recommendations.

Apart from content-based filtering, other methods like collaborative filtering or demo-
graphic analysis can also be used to recommend news articles to the reader. The research
carried out by Thorat et al. [TGB15] presents an overview and comparison of collabora-
tive filtering methods, demographic filtering methods, content-based filtering methods as
well as hybrid methods of these. Hence it is demonstrated that content-based filtering
methods easily allow initial classification, provide user-independence and are transparent
to the user and the provider in comparison to the other methods. However, these methods
might also be regarded as limited because they do not include user feedback and tend to
stay very focused on the same topics. Despite the advantages of collaborative filtering
and demographic filtering discussed, these methods will not be employed in this thesis,
and the sole focus will be on content-based analysis only. Reason for this choice is that
this thesis will not only focus on the recommendation of articles, but on the analysis of
trends etc. for the publishers of the articles as well.

One specific approach that mainly uses content-based filtering for recommendations is
described in Kompan et. al. [KB10] Here a combination of term frequency, occurrence
of names and places in articles, keywords and a category for every article are combined
to compute the similarity between articles. The research centers on the computation
performance, as this work aims primarily for very big online news portals. This is one
specific method created with rapidity in mind, which can be used as a comparison for
other methods analyzed in this thesis.

A further method which applies content-based methods only is the approach of multi-
attribute networks as a means for filtering as described in Son et al. [SK17]. The
approach could be summarized by acquiring attributes of items, calculating similarities

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

between them, building a multi-attribute network of the items and build clusters to
classify new articles into. Here recommendations are built by items of the same cluster.
The research mentioned above concludes that content-based filtering via multi-attribute
networks achieves higher precisions when tested against real user preferences than other
methods such as feature weighting or pure content-based filtering and therefore will be
highly considered for this thesis.

One specific way for keyword extraction is described in Lee et al. [LKO08], which uses
the TF-IDF model. TF-IDF is an acronym for term-frequency and inverse document
frequency, which combines the frequency of a term in one article with the ratio of articles
which include this term in order to compute the relevance of a term for an article in a
set of articles. In the mentioned work, six different variants of TF-IDF are defined and
tested against real news articles. The extracted key words are evaluated manually in
a qualitative way and it is concluded that combined with cross-domain comparison to
remove ‘meaningless’ words (not critical for the domain), this way appears to be highly
effective for topic detection and opinion mining, and therefore will be used in this work.
An overview of topic modeling as a means to extract topics from bulks of unstructured
data, in this case news articles in natural text form, is provided in Uys et al. [UDPUOQS].
This research outlines various different ways of topic modeling, such as Latent Dirichlet
Allocation [BN.J03], to find underlying topics of document collections. Also, “dynamic
topic modeling” is discussed as a tool to analyze changes in topics of a dynamic
corpus of documents, such as the article archive of a newspaper. This approach results
in a hierarchical model of topics of a sequential document collection and therefore it
functions as an adequate approach for this thesis.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Methods

In this chapter, all methods that were identified, analyzed and eventually implemented
are described.

The identification of current state of the art methods for keyword extraction, topic
modelling or other methods that could be useful for news recommender systems was
done via a literature review. Starting point for this review was a publication by Karimi
et al. from 2018 [MK18], in which an extensive overview of recent developments and
achievements in the topic of news recommender systems is listed and analyzed. This
summary of current developments combined with an overview of general text mining
methods for online news articles from 2019, which, like this thesis, focuses on going
beyond accuracy of article recommendations and tries to analyze diversity and serendipity
as well [SNWT9]. All the sources that are cited in both aforementioned articles served as
a helpful starting point for further literature review.

As this thesis is focused solely on content-based methods, other methods that use col-
laborative filtering techniques, or any kind of required preceding demographic data or
preferences of users, were excluded from further examination. Also the computational
cost had to be within a realistic scope, as the experiments had to be done on a specific
computer and were not allowed to be uploaded to some bigger scope computational
system. Another important aspect of the consideration of methods was their feasibility
to be implemented with reasonable workload. Which means that methods, that are only
theoretically described with no suggested way of implementation or the like were also
not included for further investigation.

To summarize this, methods that were chosen for a detailed review had to fulfill the
following prerequisites:

1. Content-Based filtering only

2. Computational cost within realistic scope

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

METHODS

12

3. Feasible effort for implementation

After an extensive review of literature on these methods, and a selection of methods
and models to be implemented, it became clear that the methods could be separated:
methods that solely calculate an importance value for keywords in a given corpus of
documents, i.e. keyword based methods, and other methods, that work in different and
so to say more complex ways. The following methods were chosen to be implemented
and therefore further analyzed:

1. Keyword based models

1.1. TF-IDF Scores
1.2. TextRank Algorithm
1.3. RAKE Algorithm

2. Wordcloud Comparison
3. Stylometry

4. Dynamic Topic Modelling
5. Word Embeddings

5.1. Pre-Trained Model
5.2. Self-Trained Model

Further methods and models were identified, that might be interesting for further research
in this topic, but did not fit the previously defined prerequisites for analysis within this
thesis.

Examples for this would be Dynamic Embedded Topic Model, LDA2vec, Support Vector
Machines or Stylochronometry. A more detailed description of these methods and why
they were excluded can be found after the listing of the implemented methods.

As already described above, the first three models focus solely on extracting keywords.
Keywords, which can be defined as single words, as well as a sequence of words with
one or more words, provide a compact and condensed summary of the essential content
of a document or a corpus of documents. Keywords are widely used in many different
application areas like natural language processing, information retrieval and enrichment
of documents with metadata [RECC10].

Methods that commonly find their application in different setups are TF-IDF Scores, the
TextRank Algorithm and the RAKE Algorithm. While TF-IDF calculates the importance
values, that are used to rank the importance of extracted keywords, for every single word
in every article separately, both TextRank and RAKE calculate their importance values
not only for single words but also for word groups with a predefined length and for the
whole corpus.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.1. TF-IDF Scores

3.1 TF-IDF Scores

One of the, if not the most well known method for calculating an importance value for
keywords in documents is the so called TF-IDF method, which stands for “term frequency,
inverse document frequency”. And as the name states, the formula combines the term
frequency of a word within one document with its frequency throughout all documents
within the corpus to calculate a specific value. Even though TF-IDF is a relatively old
and rather simple weighting scheme, it is still very effective in finding keywords, which
makes it a popular starting point for keyword extraction [SB8S].

Given a document corpus D, a single word w, and an individual document d € D, the
TF-IDF score wy for every word gets calculated via

wq = fuw,d-10g(|D| fu,p) (3.1)

where f,, 4 is the number of times the word w appears in d, | D| is the number of documents
in the corpus D and f,, p is the number of documents where the word w appears in
[RT03].

This algorithm calculates an importance value for every occurring word within a document,
which means that the same word usually has two different TF-IDF scores for two different
documents in the same corpus.

According to this formula, one can see that a word that receives a high score has to
have both a high frequency within the document f,, 4 as well as a rather less common
appearance through all documents f,, p. This assures that only words that appear
frequently within one document but not throughout all documents will receive high
scores.

As an illustrative example, the word Jesus will appear very often in the New Testament,
while not very often through other books in a library, and therefore will get a very high
TF-IDF score for the New Testament. While words like articles or pronouns will not get
a high TF-IDF score, as the second part of the formula punishes their frequency through
close to all books within a library, even though they have a high term frequency in a
specific book [RT03].

The next step, after calculating the TF-IDF scores for all words within the corpus, is
to calculate a distance between articles that are close to each other according to their
TF-IDF scores. The first step here is to bring the news articles into a vector form. For
this, the document-term matrix of all documents and all words within the corpus with
their TF-IDF scores is built, where every row is a sparse vector of the TF-IDF values of all

words. If a word does not occur in a document, the value 0 is filled into the word column.

An example for this can be seen in Table[3.1, where each line represents a document vector.

One popular method to build a similarity measure between texts, after representing them
in a vector form, is the cosine similarity of the representative vectors. In this case, the
similarity between the articles corresponds to the correlation between the vectors.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

METHODS

14

TF —IDF ich Baum | das Boot Stadt klein
Article A 0,24 0,80 0,11 0,00 0,00 0,41
Article B 0,52 0,00 0,19 1,84 0,00 2,11
Article C 0,47 0,00 0,09 0,00 0,66 1,01

Table 3.1: Document-Term Matrix

Given two articles in their vector representation t, and tp, their cosine similarity is
ta -ty

SIM¢(ta,ty) = 1G]
a

(3.2)

With this definition, the cosine similarity STM¢ can be between 0 (no similarities at all)
and 1 (all words appear in both articles) [Hua08].

This similarity is calculated for every document pair in the corpus and can now be seen
as the similarity between two articles, the higher the cosine similarity, the closer or more
related the articles are.

As the TF-IDF method basically only gives keywords with their importance factors as a
result, finding trends has to be done manually afterwards. For this, multiple possibilities
exist.

The most obvious, or maybe most appropriate way to do so would simply be to to look
for the occurrences of the keywords throughout the time of publication of the articles.
Keywords that appear more often in a specific period of time then would suggest a trend
for this keyword in that period. A visualization of this can be created with a density
diagram of the occurrences of a word, as it can be seen in Figure [3.1. Here the two names
“Haupl” and “Strache” were compared for their frequency throughout the year 2018 and
the first half of 2019.

Another option to find trends within the keywords would be to calculate the values of
the keywords for different timespans. For example the TF-IDF value for a specific word
can be calculated for the last 3 months (“short term”), as well as for the last 12 months
(“long term”). Depending on if the value for the specific keyword stays the same or
changes, this could be interpreted in various ways:

e short term value = long term value
In this case, the importance of the keyword basically stays the same. If the value is
high, than the keyword is important for both short- and long-term, if it is low, it is
rather not an important keyword.

e short term value > long term value
The keyword has a high value for short-term, but a rather low value for long term.
This could mean that the keyword appears as a trend in the short-term, and was not
important in the long-term, but it could also mean that the keyword appeared more

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.2. TextRank Algorithm

Haupl Strache

0.004
|
0.0030
| |

Density

Density

0.0015
|

0.002
|

0.000
|
0.0000
1

2018-01
2018-05 —
2018-09 —
2019-01
2019-05 —
2018-01 —
2018-05 —
2018-09 —
2019-01
2019-05

Figure 3.1: Keyword density

regularly throughout all documents in the long-term, and only in a few documents
in the short-term.

e short term value < long term value
Here the keywords seems to be very important through the long-term, but not as
important in the short-term. This could mean that the keyword appeared more
often in the past 12 to 9 months, but not so often anymore in the last 3 months.

When using this method to look out for trends within keywords, it is important to mention
that the different cases can be interpreted in multiple ways. Therefore knowledge about
the way the keyword values are calculated is very important when using this method,
and even than the interpretation needs to be made with considering all possibilities and
being very careful about their meaning.

3.2 TextRank Algorithm

The TextRank Algorithm was introduced by Mihalcea and Tarau in 2004 as a graph-based
ranking model for text processing, that can be used for keyword and sentence extraction
in natural language applications [MT04]. Like the well known PageRank algorithm, that
is used by Google for the analysis of the link-structure of the World Wide Web, the
TextRank Algorithm, as a graph-based ranking algorithm, is a method to decide on the
importance of a vertex within a graph, by taking global information of the graph into
account and recursively including it to rank the vertices, instead of only using the local
information of the vertex for its importance [BP98§].

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

METHODS

16

The basic idea of a graph-based ranking model is to decide on the importance of a vertex
via “voting” or “recommendation”. One vertex linking to another vortex in this context
means a “vote” for the vertex, the higher the number of votes, or rather links from and
to a vortex, the higher the importance of the vertex is. Furthermore, the higher the
importance of a vertex that gives the vote for another vertex, the more important the
vote itself is. So not only the amount of links from and to any vertex, but also the
importance of the other vertices that these links lead to, are used for calculating the
importance. Let G = (V, E) be a directed graph with the vertices V' and the edges F,
where FE is a subset of V' x V. For any given vertex V;, let In(V;) be the set of vertices
that point to it (called its predecessors), and let Out(V;) be the set of vertices that the
vertex V; points to (called its successors). The score of a vertex S(V;) is then defined as
[BP9S]:
1

SV =(1-d)+d- Y SV (33)
e 0ut(V)

where d is the damping factor that can be set between 0 and 1, which has the role of
integrating the probability of jumping from one vertex to another random vertex within
the graph. In the homepage context, this implements the so called “random surfer model”,
where a human browsing through the World Wide Web clicks on links at random with
a probability d, and jumps to a new page with the probability 1 — d. This factor d is
usually set to 0.85 [BP9S].

Starting then from arbitrary numbers which get assigned to each vertex in the graph,
the values are computed iteratively until convergence below a given threshold is achieved.
This final score associated with a vertex represents the “importance” of the vertex within
the given graph [MT04].

To finally use this graph-based ranking model for natural language processing, a graph
that represents the text and interconnects the words or sentences with meaningful
relations has to be built. To do this, the following main steps have to be done [MT04]:

1. Identify units of the text to use as vertices in the graph, e.g. words or sentences.

2. Identify relations between these units and use them as undirected edges between
the vertices in the graph, e.g. words written next to each other.

3. Iterate the graph-based ranking algorithm until convergence.

4. Sort the vertices based on their final score to receive the most important ones.

In this thesis, the units described in step 1 were words within the text, which results
in a keyword extraction model. For the relation between these units, n-grams with the
length of 5 of the text were chosen and the relation were co-occurring words. This means
that a co-occurrence of the words is given, when words appear within a text window
of maximum n words. Furthermore this was done not with only single words, but with
groups of words of length 2 and 3.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.3. RAKE Algorithm

To finally find similar articles for recommendations, a distance has to be calculated. As
with TF-IDF scores, building a document-term matrix with the previously calculated
values of every single word can be used to calculate these distances and find similar articles.
A possibility would also be to not only include single words with their score, but n-grams
with lengths 2 or 3 of the texts and their scores as columns into the document-term
matrix, to consider them with their scores as well.

But this was not done in this thesis, as this requires way more computational resources
like memory or processing speed, which were not available.

As this method is keyword based, finding trends can be done in the same way as it is
described in the TF-IDF method chapter.

3.3 RAKE Algorithm

The RAKE method was developed by Stuart Rose, Dave Engel, Nick Cramer and Wendy
Cowley in 2010, where the authors describe it as an unsupervised, domain-independent
and language independent method for keyword extraction from text documents. They also
mention that RAKE is computationally more efficient while achieving similar precision
and recall scores for keyword extraction as the already described TextRank Algorithm
does. The main goal of RAKE is being efficient, operating on individual documents
and being easily applied to new domains while working independent from grammar and
language [RECCI0].

To achieve all this, RAKE functions in multiple steps, that are processed for every
document independently [RECC10]:

1. Identify the candidate keywords
Based on the observation, that keywords rarely contain any stopwords like and, the,
and of, RAKE not only does not include these stopwords from keyword candidates,
but it uses theses stopwords, together with punctuational signs, to split the content
bearing words into candidate words or groups of words with a predefined maximum
length. If a keyword candidate would exceed the predefined maximum length, all

possible n-grams, where n being the maximum length, are extracted as candidates.
This results in keyword candidates with varying lengths up to the maximum length.

2. Counting co-occurrences
A graph of co-occurrences of all single words within the extracted keyword candidates
is built. Every single word in this graph counts as co-occurring with itself, so if the
maximum length for keyword candidates would be zero, this graph only counts the
occurrences of the words, otherwise co-occurrences of other words are included as
well.

3. Calculating keyword scores
RAKE calculates three different scores for every single word within the keyword

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

METHODS

18

candidates and afterwords combines them for candidates consisting of more than
one word.

o freq(w)
The absolute frequency of this word within the document

o deg(w)
The word degree, which is the frequency added to the co-occurrences of the
word with other keyword candidates

o deg(w)/ freq(w)
The ratio of the degree to the frequency

deg(w) favors words that occur often in longer keyword candidates, freq(w) ob-
viously favors words that occur frequently with no consideration to the length of
longer keywords candidates and deg(w)/ freq(w) favors candidates that predomi-
nantly occur in longer keyword candidates [RECC10]. The implementation of this
method, as described later in this thesis, used the third option.

Again, as described in the TextRank Algorithm chapter, the final step will be to find
similar articles, which can be done via building the document-term matrix with the
calculated scores and calculating the cosine similarity between every pair of articles.

As this method is keyword based, finding trends can be done in the same way as it is
described in the TF-IDF method chapter.

3.4 Wordcloud Comparison

A wordcloud, or tag cloud, is a visual representation of a set of words, typically of key
words, in which various attributes of the the text, such as size, weight or color can be
used to represent features of the associated terms, examples would be the frequency or
the importance of these words [HK07]. Based on this, all three previous methods for
keyword extraction can be used to calculate the importance for keywords and afterwards
graphically represent them with wordclouds.

An example of such a wordcloud can be seen in Figure 3.2, the textual input for this
wordcloud comes from a small sample of the given test data.

But not only can wordclouds be used to visualize extracted keywords from a text corpus,
they also give the possibility to compare different texts with each other. This has been
done for various text analysis purposes, for example Pyle et al. [PBMI13] describe a
method to find similar or distinctive wordclouds through building intersections of two
word clouds, that represent two different text documents and compare them based on
their representations. For this thesis, the representation of each article as a wordcloud
and the following comparison would not be fitting, as the number of articles is too big,
but still the comparison of wordclouds can be used to compare different time intervals to
find keywords that appear more frequently in one period and not so frequently in other

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.4. Wordcloud Comparison

leben
euro
kind
prozent
stadt

Figure 3.2: Wordcloud example

periods, thus representing a trending keyword.

The R-package wordcloud gives the possibility for the representation of wordcloud
comparisons. The underlying algorithm compares multiple texts with each other. To
achieve our goal of comparing time periods with each other, the documents of one
period have to be merged together and given to the algorithm as “one document”. The
comparison.cloud method of the wordcloud R-package than calculates the importance,
which is represented as the size of a keyword in the cloud, based on its exclusivity in
one document, or rather time period in comparison to the others [Fell8]. Formally
speaking, let p; ; be the rate at which a word 4 occurs in document or time period j, and
n the number of documents or time periods considered, p; is the average rate across all
documents 1¢:

Di,j
pj = Z TJ (3.4)

The size of each word is than mapped to the maximum deviation of the value p; ; to
the average p; (max;(p;; — p;)), and the angular position and color is defined by the
document or time period 4, to which the value p; ; belongs [Fell8]. An example for this,
which is created by using all articles from the years 2015 until 2019 of the given test data
set, can be seen in Figure 3.3.

This algorithm, which is used for calculating the size of every word can also be used in a
non-graphical way to calculate the importance of every word as well, where the resulting
value for every word is just stored, as it is done with TF-IDF, textrank and RAKE, in a
document-term matrix with the importance values, which can be built to finally calculate
the closeness of articles via the cosine similarity of every article pair.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

3. METHODS
~year 2016
prasident %
kandidat K X~
norlpeizlrltion n\q/\;aansgr.len:henIand
Sgtégsetriwacporef::amspietije”éei)trgi;lrllti?cnhen steiermark
einkotr;’lljr!g%n wahl eha?slgn grpagiv;nda
ngiere e VAN hofer ™ graz geithe
parteimitte p||2 ﬂ U'C htl N g 5 loslégldpaum
persongrune W I ere[]hte!c.)rr‘\lr -_E QEben
a"rbeit ku 'z fra u Ricki gaktuel[
prél - prozent trache auch
§ regierung fC‘IOO e
5 polanyi ésggrreicsﬁh%l;drme“
PepLbik politisch ke
telefon
identitaren
groBbritannien
~year 2018
Figure 3.3: Wordcloud Comparison example
3.5 Stylometry
The base idea of stylometry is to analyze the writing style of the author of a text to
compare it with other texts. First applications of stylometry used the frequency of word
lengths for the suggestion of an authorship of texts and dates back all the way to 1851 to
Augustus de Morgan [Hol9§|. Through the years more modern and computer assisted
ways of stylometry emerged, especially through the emergence of digital technologies,
machine learning and other natural language processing methods. Nowadays stylometry
is used for various tasks like plagiarism detection, authorship recognition or distance
creation between texts based on their style [NSF*17].
Latter one will be the focus for this thesis, to use stylometry for recommendation of news
articles based on their similarity in writing style.
For all these tasks, stylometry calculates a number of features for every text, which then
will be used for further analysis. The most prominent feature is the MFW-feature, which
describes the most frequent words of every article, and is used as the basis for further
multidimensional analysis. But it is also useful to consider n-grams of words or characters
for every text. N-grams can be seen as a sliding window over the text with the length n.
For example the sentence This is a test separated into 2-grams of words would be split
into {(This is),(is a),(a test)} and into the 2-grams of characters {(Th),(hi),(is),(s),(
a),...} and so on. It has been shown, that using not only the frequent words, but also
the n-grams in combination with the frequent word lists, results in a way more robust
20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.5. Stylometry

analysis when dealing with natural language texts, especially when the written text might
include dialect terms [Edel3].

Choosing the size of the n-grams can lead to different results of the stylometric analysis.
The ideal size can depend an various factors, most importantly the language, but varies
also from corpus to corpus [ERII]. Additionally, other parameters have to be chosen
for the analysis of the corpus that may have an influence on the stylistic analysis. This
includes the following parameters:

o Words or characters
Using either whole words or only characters, that are chosen for the n-grams.

o N-gram size
The size of the sliding windows over words or characters. Choosing 1 for n results in
only considering single words or characters with only their frequency. When using
words, naturally a higher number for n can lead to more variety in the n-grams,
meaning less repetitiveness, which then leads to poorer statistics due to higher
sparseness.

e Preserve case
Preserving lower / upper case for letters, it might be useful to preserve the case,
especially in the German language, as the same word written in upper or lower
case might have different meanings.

o Minimum word frequency
The minimum amount of the most frequent words or character-groups of the whole
corpus that will be included into the relevant attribute list.

Stylometry, or more specific the stylometric analysis implemented in the stylo R-package
includes multiple unsupervised methods, like principle component analysis of extracted
stylistic attributes, like often used words or the length of sentences, or multidimensional
scaling, that can be visualized with graphs and will need human interpretation for a
detailed analysis of the results [ME19]. An example for these graphs would be the
visualization of the principle component analysis of all articles written by three different
authors in the year 2018, as can be seen in Figure 3.4. This graphic can be used to
compare the writing styles of different authors, which are represented in different colors,

with each other or to compare the articles of one author regarding their writing style.

Conclusions that could be drawn would be for example if an author has a big variety
in their writing style, if some articles are outliers for one author compared to his or her
other articles, or if different authors have a comparable writing style.

Another way to analyze the dataset and visualize the results via stylometric analysis
is the cluster analysis of the articles as shown in Figure [3.5| with the same articles and
authors as in the example for the principle component analysis. This representation gives
insights in what articles are similar to each other based on stylistic attributes, what can
later be used for the recommendations of articles to a given article.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

METHODS

22

PC2 (8.2%)

Principal Components Analysis

TR BT ER SO T AP A2 48F

1 ,{%?J_Lﬁ*c%m%“%&feﬁ

_llenberg_RAdIBER 263 S0kOH /AT

tothaATERER029930289B6BEAGEACG
goldenb&NERAHERR-93802281079332643

téth_FALTER_201904104EE6734C03
h bty G4 UTER £X0 220 3089RZORICERTDE 1
aczek FA 201

el 1
goldenberg
goldenberg_FALTER_20190508ECE2FD0925

goldenberg FALTER 20190227F283A0AB7C
| FALTER_2019032073E8BCIFF7 |

goldenberg FALTER_ 20190313948049()904

I I |
-5 o] 5
PC1 (10.1%)

Figure 3.4: Stylometry PCA

geldeners &

orac, ?AL
N SsTenery-

Figure 3.5: Stylometry Cluster-Analysis

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.6. Dynamic Topic Modelling

3.6 Dynamic Topic Modelling

The term Dynamic Topic Modelling already describes that this method is not only
reduced to topic modelling in itself, which focuses on extracting underlying topics within
all documents of a corpus, but also includes a dynamic aspect of the topics. Meaning
that this method tries to extract topics and correlate these topics with a time component,
to find trends within the topics.

To achieve this goal, structural topic modelling (STM) was used in this work to build
a dynamic topic model. STM, like many other topic modelling methods, is a model
based on generative word counts. Which means that a data generating process is defined
first to extract information in the form of words from the documents and then to use
this information to find the most likely words for every topic. A topic in this model is
defined as a mixture of words, where every word within the topic has a probability of
belonging to the topic, and a document can then be described as a mixture of various
topics through its containing words and their respective probabilities of belonging to
these topics. This means that every document can contain various topics [RST™14].
Unfortunately, STM requires the number of topics within all documents, to be “known’
in advance, so this number is needed as a parameter for the model. There are multiple
ways to find suggestions for the number of topics depending on different attributes of the
corpus. The creators of the stm R-package for example write in their manual that there
is no right or wrong number of topics, but that a lower numbers leads to more general
topics, while a higher number results in more specific topics on the one hand, but on
the other hand can lead to less precise estimations of the topics. They also give basic
suggestions like 60-100 topics for a corpus with 100 000 documents or more, which would
fit our given corpus. But there are also algorithms that try to optimize this number of
topics for a specific corpus.

Mimno & Lee [ML14] for example describe an algorithm that can be used to optimize the
number of topics by maximizing the semantic coherence of a resulting topic model with k
topics. Semantic coherence in this context describes the meaningfulness of the extracted
topics. The result of their algorithm again cannot be seen as the true number of topics,
but it can be used as a starting point for manual optimization, if needed. Figure 3.6
shows an example for the resulting semantic coherence with different numbers of topics k,
in this case, k = 20 topics would result in an ideal topic model according to the semantic
coherence.

)

The result of the topic modelling process of STM finally are topics with their associated
words. These topics of course are not labelled yet, which means they manually have to be
analyzed and given a label for further usage. In Figure 3.7, an example for the resulting
topics and their three most prominent words is given. Additionally, further words for
every topic can be viewed to help understanding and labelling the topics. Four different
types of words are given for every topic:

1. Highest probability words
Words that have the highest probability to occur within this topic

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

METHODS

24

Semantic Coherence

-36

Semantic Coherence
-38
]

-42

T T T T T
10 20 30 40 50

Number of Topics (K)

Figure 3.6: Optimizing semantic coherence

2. FREX words
Words weighted by their overall frequency and their exclusivity to this topic

3. Lift words
Words with a high frequency in this topic divided by their appearances in other
topics

4. Score words
Similar to Lift, Score takes the logarithm of the word frequency in this topic and
divides by the logarithm of their appearances in other topics.

An example for these words can be seen in Figure [3.8| for one specific topic.

The last step, to get from basic topic modelling to dynamic topic modelling, is to include
the time component. In STM this can be done with metadata that can be added to each
document, more specifically we add the publishing date of each article as metadata. STM
then can calculate a correlation between this metadata and each topic and it enables
us to visualize this correlation. An example of this correlation between already labelled
topics and their appearances through a corpus can be seen in Figure 3.9. It is important
to add to this graphic that a topic proportion of less than 0 is not possible, values in the
graph that reach a proportion less than 0 are only a result of the smoothing of the graph.
This means that only upwards peaks can be interpreted as trends for the respective
topic. For example one can see that the topic labeled as “germania liederbuch” was very
prevalent in January, while hardly appearing through the rest of 2018.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

3.6. Dynamic Topic Modelling

Top Topics

Topic 1: prozent, pesendorfer, dsterreich
Topic 12: fpd, strache, évp
Topic 16: grinen, prozent, europa
Topic 13: euro, 6vp, regierung
Topic 10: identitaren, sellner, bewegung
Topic 18: euro, regierung, schuler
Topic 6: frauen, dsterreich, prozent
Topic 14: soner, vorarlberg, fall
Topic 5: politischen, islam, putin
Topic 2: misstrauen, demokratie, welt
Topic 19: spo, ludwig, fpo
Topic 17: euro, daten, behdrden
Topic 4: fpd, kolm, institut
Topic 9: zeitung, strache, soner
Topic 15: strache, gudenus, dsterreich
Topic 7: Ikw, israel, dsterreich
Topic 8: roten, karl, rote
Topic 11: kind, eltern, mutter
——— Topic 3: stadt, christian, fpo
—— Topic 20: mitterlehner, demokratie, dvp

T T T T T I T I
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Expected Topic Proportions

Figure 3.7: Topic proportions

Topic 8 Top Words:
Highest Prob: roten, karl, rote, polanyi, stadt, mutter, linke
FREX: breitner, polanyi, schlepper, karl, roten, rote, marx
Lift: architekten, gleichsam, looc, neurath, renner, reumann, alain
Score: polanyi, karl, roten, fassade, rote, schlepper, breitner

Figure 3.8: Topic words

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

METHODS

26

0.5

0.0
|

Expected Topic Proportion

-0.5

—— homosex. | !
—— antisem. WA
germania liederbuch el

—— asyl
T \ 1 T 1 T T T T 1
February April May June July September November

Time (2018)

Figure 3.9: Topic trends

The final step is to find articles to recommend to a given article. In STM it is possible to
receive the topic or topics that correlate the strongest for every given article. We decided
to get the topic with the strongest correlation to the given article and find other articles,
that have a strong correlation to the same topic, as the recommended articles.

Another possibility would be to build a correlation matrix for all articles with all topics,
and again calculate the cosine similarity for the articles based on this matrix. We did
not use this method, mainly because receiving the correlation to every topic for every
article is computationally very extensive and takes unreasonably long in the given test
environment.

3.7 Word Embeddings

A rather new method, that is used for natural language processing and text recommen-
dations is the usage of word embeddings. A big drawback of most other methods that
are described in this thesis is, that they focus on the words themselves instead of the
semantic meaning of these words. For example two sentences like “The dog likes to eat

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.7. Word Embeddings

7. King

% Queen

King - Man Man
rd %
/ ——
—— Woman

Figure 3.10: Word Embeddings example [wep]

meat” and “The puppy prefers to chew on sausages” have no words in common after
removing the stopwords like the and to, but still have a very similar meaning. Methods
like TF-IDF, which only use full words, would not find any similarity between these
sentences. This means that most other methods don’t include the distance or similarity
between single words or word pairs of the documents, like dog and puppy, which, while
being different words, still contain a very similar information.

An approach to overcome this problem is the word2vec model . This model
creates word embeddings, which means it calculates a representative vector for every word
within a corpus of documents. Naturally, the quality of the calculated embeddings scales
with the size of the given corpus that is used for creating the word vectors. The authors
of this model demonstrate the capabilities of these word embeddings with examples like
the following:

When vec(w) describes the vector that represents the word w, than for example vec(Berlin)—

vec(Germany) + vec(France) results to a vector that is very close to vec(Paris), so the
difference between vec(Berlin) and vec(Germany) could be seen as the representation of
is capital of. Another example would be vec(King) — vec(Man) + vec(Woman) is close
to vec(Queen), where the difference between vec(King) and vec(Man) or vec(Queen)
and vec(Woman) would describe a neutral form of ruler. A graphical representation of
this can be seen in Figure |3.10 [wep].

Using not the words themselves for further processing but their embeddings would help
to overcome the before mentioned problem, and help seeing different words with similar
meanings not as completely different, but rather similar words.

Different methods for calculating these word embeddings have been developed since the
emergence of word embeddings. For this thesis, two different models of word embeddings
have been used for a comparison of these. On the one hand, a pre-trained model, that
was calculated via the continuous bag-of-words method with position-weights and that

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

METHODS

28

was trained on german Wikipedia articles with 300 dimensional vectors was used [fas]
[BGJM17]. On the other hand an own model was trained on the given test-dataset of
newspaper articles using the R-package texrt2vec and a GloVe-model to calculate word
vectors with 150 dimensions [DS18§].

The next step, after creating the word vectors themselves, is to build a model to compare
documents with each other. One method that can be found in multiple sources is to
build document vectors for every document within the corpus [LSI8] [MWHLI7]. This
method combines the importance of a word within a single document with its vector
representation, which is done via multiplying the TF-IDF Score of each word with its
word-vector. All the resulting vectors for every word within a document than get summed
up to build the document vector. Mathematically speaking, let ¢ fidf (w, d) be the TF-IDF
score of word w within document d, vec(w) be the representing vector of word w, the
document vector vec(d) for document d can be calculated via [LS18]:

vec(d) = Z vec(w) - tfidf (w, d) (3.5)

wind

The similarity of these document vectors can then be calculated by the cosine similarity.
It is described as a final step to afterwards divide the resulting document vector by the
sum of all TF-IDF scores of the respective document to normalize the length of the
document vector, but this has no impact for this thesis, as we are only interested in the
cosine similarity, where the length of each vector has no influence.

To summarize the word embeddings method:

1. Word vectors
Word vectors have to either be trained on the dataset or taken from a pre-trained
model

2. TF-IDF Scores
The TF-IDF Scores for every document have to be calculated for weighting the
word vectors

3. Document vectors
Combining word vectors with TF-IDF scores and summarize for each document

4. Similarity
Calculate similarities of documents via cosine similarity of document vectors

3.8 Excluded Methods

This chapter summarizes methods and models that were identified during the literature
review of news recommendation methods, but did not fit the defined prerequisites for
this thesis. The methods, a quick summary of how they work and a description of why
they were excluded is given in this chapter.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.8. Excluded Methods

3.8.1 Support Vector Machines

In machine learning, the term support vector machine describes a concept for supervised
machine learning models with the base idea of creating one or more hyperplanes in a
space defined by attributes of the data points, to seperate the data points into subsets
for classification or regression purposes. How these hyperplanes are calculated depends
on the specific model, for example it could be described by having the largest possible
distance to its nearest data points [HTF09].

One specific method, to use these models for news article recommendation was described
by Gershman et al. |[GWECII]. In this specific method, first some content-based
attributes, like TF-IDF Scores with document vectors and their cosine distances, as
described in the TF-IDF chapter in this work, were calculated. Then some further
attributes that are based on user preferences were not only initially, but also continually
added to the data set. The resulting hyperplanes devide the corpus into articles that are
relevant for the user and articles that are not relevant to the user.

The main reason why this method was not implemented in this thesis was that we could
not find an application of support vector machines for news article, or more generally for
text recommendation as well, that only used content-based attributes. While some works
included them, the main focus was always put on the user preferences for the machine
learning algorithms.

3.8.2 Dynamic Embedded Topic Model

The Dynamic Embedded Topic Model can be seen as somehow similar to the Dynamic
Topic Model, that was implemented in this thesis. But with the main difference of
not using the words itself, or n-grams of words of the articles, but rather using word
embeddings. Dieng et all. [DRB19] described it as a combination of the dynamic topic
model that uses the dynamic LDA algorithm, with the embedded topic model, that uses
a continuous representation of the words or bags of words. So the dynamic embedded
topic model is based on word embeddings, topic models and dynamic topic models.
According to the authors, this combination helps to overcome weak points of the single
elements that are combined in this method, e.g. improving the stability of the found
underlying topics. It is concluded that the dynamic embedded topic model outperforms
the dynamic topic model both in terms of predictive performance and topic quality while
requiring significantly less time to fit.

At the time of the creation of this thesis, no R-package or Python script or repository of
the authors was available to use. The effort to create this algorithm from scratch would
exceed the limits of this thesis. Therefore this model was excluded.

3.8.3 Stylochronometry

The idea of stylochronometry is to find timely changes in styles of a text corpus. Very
similar to how the dynamic topic model, that was used and described within this thesis
stands to the basic topic model, stylochronometry tries to include the creation date of a

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.

METHODS

30

news article via regression of it to the resulting style attributes of the stylometric analysis
[KV15]. The cited work shows that stylochronometry can be used to find changes of the
style of famous authors like Henry James and Mark Twain, which can be attributed to
their changing lifestyles.

While the basic idea of finding changes in the used style of the news articles sounds
promising for this thesis, its main purpose and strength lies within finding changes of
the style of one specific author through the time. When executing this model on a
dataset of articles from various authors, the amount of articles that are written by each
author would have more influence on the results than the changing style of single authors.
Additionally, finding changes in the style of specific authors was not included in the scope
of this thesis, therefore this method was excluded from the used models.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Data

In this chapter the received dataset is described along with some general findings of the
articles within it, as well as the general preprocessing steps that were done to prepare the
dataset for all further methods and models. Model specific preparation steps of the data
are described along with the implementation of the models themselves in the following
chapter, here only preprocessing steps for general data sanitation and data understanding
are described.

4.1 Raw Dataset

The dataset in use is provided by Der Falter. Der Fulter is a Viennese newspaper that is
published weekly. It was founded in 1977, has no political affiliation, and is described
as reporting from a left-liberal perspective. The main topics that are covered consist of
politics, media, culture and life in Vienna [Tra07].

The given dataset contains a full data extract of the article database for the timespan
beginning at 5.8.1998 until 22.5.2019. The full dataset contains 99.286 articles that were
published throughout these 21 years. The structure of this dataset can be seen in table
4.11

Some results from the explorative data analysis include the following:

e The whole corpus contains 99.286 articles including their metadata.

e 7.502 different authors are included.
This does not mean, that there are 7.502 different real persons. Every combination
of authors that co-wrote an article is seen an author as well.
Furthermore, there are 45.230 articles where no author is existing in the dataset.
These articles can for example not be used for author comparison. The distribution

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

Data

32

Raw Dataset Structure

Column Datatype | Description Example

article_id || String Unique ID of Article | FALTER_ 201905226CF056D225

dachzeile String Header line of Article | Menschen und Tiere
subtitle String Article subtitle Biicher, kurz besprochen

authors String Article authors Nina Horaczek
ressort String Department of Article | Politik

issuenr Integer Issue nr. where article | 201921

String Article title Ein ehrlicher Zirkus, Manege frei!

date-time | Publishing date 2019-05-22T00:00:00.000+00:00

Wahrend bereits der Politzirkus
um das Ibiza-Video ...

String Article Text

was published in

Table 4.1: Structure of the raw dataset

of the authors with the most articles and their number of written articles can be
seen in Figure 4.1.

The dataset contains articles from 239 different ressorts. The ressorts with the
most articles are:

Stadtleben - 18.012 articles

Lexikon - 16.344 articles

Politik - 14.303 articles

Only a total of 972 articles is not labeled with any ressort at all.

1.042 different issues are included in the dataset, with an average of 95,28 written
articles per issue. But this number changed throughout the years that are included.
This change is depicted in Figure 4.2.

On average, an article consists of 530 words or 3.127 characters. The shortest
article has only 2 words or 26 characters, while the longest article contains 82.906
words or 314.915 characters. The article that contained only 2 words was a joking
article about a politician.

The most used words can be found in Table |4.2, on the left side are the most used
words in general, on the right side are the most used words after filtering out so
called stopwords of the German language.

4.2 Pre-Processing

In this chapter we describe our general data preprocessing steps. Model dependent
preprocessing steps are described in upcoming chapters along with the corresponding
models.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

iothek,

3ibl

ANl Your knowledge hub

T

4.2. Pre-Processing

number of articles

Figure 4.1: Authors with most written number of articles

number of articles per issue

1500

1000

500

40 60 80 100 120

20

Author Distribution

authors

Articles per issue per year

1998 2001 2004 2007 2010 2013 2016

year

Figure 4.2: Articles per Issue per Year

2019

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. DaAta
All words No Stopwords
Word Count Word Count
die 1.390.005 leben 31.126
der 1.279.479 WWW 29.437
und 1.078.593 Euro 28.442
das 590.967 Stadt 26.482
den 452.463 Welt 25.784
ist 445.489 Prozent 23.343
mit 410.719 lassen 22.954
von 381.404 Frau 22.576
nicht 372.477 Musik 21.919
ein 370.513 einfach 21.032
sich 340.866 Woche 19.979
auch 289.647 sehen 19.596
auf 289.547 Kinder 19.488
sie 288.719 Geschichte 19.364
eine 281.684 Letzten 19.278
Table 4.2: Most used words
The dataset was given to us in the .xml format. This format is already very versatile
and user friendly, but has the downside of a slow reading and writing speed. Therefore
in the very first step, the full dataset was imported from the .xml file via the R-package
XML |CT20] into a R-Dataframe and stored again as a .csv file, for much quicker read
and writing times.
The preprocessing than included multiple steps, which were the following:
1. Separation of text and metadata
The text data, which is held in the text column of the raw dataset, was split from
the metadata of each article into its own table, that only contains the article_id
and the text column, therefore the article id column functions as a kind of foreign
key.
. Tokenization of text
The text was tokenized into single words, so for every single word, one row in
the text-table exists now. This was done with the help of the R-package tidytext
[GDQ20).
To further ease up the computational effort and memory usage, the tokenized data
was also separated into one file for every calendar year, that is included in the
data. So i.e. one file exists, that only consists of all words for all articles that
were published in the year 2018. By doing this, subsets of the data for smaller
34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.2. Pre-Processing

experiments could easily and quickly be accessed.

3. Sanitation of words

To not separate between words in upper and lower case, all letters in all words
were changed to lower case. This helps to not differentiate between the same word
once used i.e. at the beginning of a sentence and the same word in the middle of a
sentence. Special characters, especially the Umlauts &, 6 & ii, as well as 3, which
are used very frequently in the German language, are kept in the general dataset.
Noteworthy here is that stopwords, as well as punctuation, which usually are
excluded from the dataset very early on in text mining operations, are still kept
within the data on purpose. The reason is that some methods, especially Stylom-
etry, are not only using, but heavily relying on both stopwords and punctuation.
Those methods that excluded stopwords used the stopwords-iso list of German
stopwords[Dia20]. Which methods did this is mentioned in each methods respective
chapter in this work.

4. Extract further metadata for text
Further metadata to the articles, or rather for every word, was extracted via the R-
package spacyr, which is a wrapper for the spacy python library [KB19]. Following
data was extracted via this R-package:

e Lemmatization - The lemma, which is the base form of every word, was
extracted. An example would be the german words toben, tobte, tobt, getobt,
they all have the same lemma toben. For the lemmatization, the hash_lemmas
list of the R-package lexicon was used [eal9].

e Part of Speech Tagging - For every word, the type of word that this word
belongs to, was extracted via the spacy R-package. Politzirkus for example is
a noun, or tobte is a verb.

e Named Entity Recognition - All words, that are a real world object, or part of
the name of a real world object, are marked as a named entity. The spacy
R-package distinguishes for the german language between locations, persons,
organisations and miscellaneous.

A shortform of the used algorithm for the preprocessing can be found in algorithm 4.1.

An example, what the dataset has looked like before the preprocessing can be seen in
Figure 4.3. What the dataset after the preprocessing looked like, including the data
model, can be seen in |4.4.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

4. DATA
Algorithm 4.1: Preprocessing
1 xmldata <- fread("./falter_data_full.csv")
2 text_data_full <- select (xmldata,article_id, text)
3 text_data_full <- unnest_tokens(text_data_full,word, text)
4 fwrite (text_data_full,
5 "./falter_data_full_token.csv",
6 row.names = FALSE)
7 article_data_full <- xmldatal[,-8]
8 fwrite (article_data_full,"./falter data_full_notext.csv",
9 row.names = FALSE)
10 article_data_full <- fread("./falter_data_full_notext.csv")
11 text_data_full <- fread("./falter_data_full_token.csv")
12 for(i in c¢(1998:2019)) {
13 article_data <-
14 article_data_full[article_data_fullSyear == 1i]
15 text_data <-
16 text_data_full[text_data_full$article_id %in%
17 article_dataS$Sarticle_id]
18 name <- paste("./falter_data_token_",i,".csv",sep="")
19 fwrite (text_data, name, row.names = FALSE)
20 }
21 for(i in c(1998:2019)) {
22 name <- paste("./falter_data_token_",i,".csv",sep="")
23 data <- fread (name)
24 data$lemma <- lemmatize_strings (data$word)
25 data$stem <- text_tokens (dataSword, stemmer="de")
26 fwrite (data, file = name)
27
36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

4.2. Pre-Processing

article_id title dachzeile subtitle date authors ressort text issuenr vyear
Wahrend bereits der Politzirkus um
Ein das Iniza-Video tobte, feierte
ehrlicher 201805 Necais o vergangenen Freilag der
5 athalie Kolumnen psterreichische Circus Louis Knie
FALTER_201905226CF056D225 Mzairrll'::gse. Menschen 22T00:00:00.000+00:00 Grossschad! 8200 jun in der Leopoidstadt Premiere, 201921 2019
freil Auf dem schmucklosen Areal beim
Parkhaus Donaumarina hat der
Figure 4.3: Before preprocessing
article_id titte dachzeile subtitle date authors ressort issuenr year
Ein Zirkus, 2019-05- nathalie kolumnen &
FALTER_201905226CF056D225 freil 22T00-00:00.000+00-00 grossschadl 200 201921 2018
doc_id token lemma pos entity
FALTER_201905226CF056D225 Wahrend wahrend SCONJ A.Hids Data Text_Data
FALTER_201905226CF0560225 bereits bereits ADV “article_id String > article_id String
“title String “token String
FALTER_201805226CF056D225 der der DET °dachzeile String 1 exma String
FALTER_201905226CF0560225 Politzirus Polilzickus NOUN “subtitle String “POS POS_Tag
o o . .
FALTER_201905226CF0560225 um um ADP asce dare Loty Frotey |
authors String
FALTER_201905226CF056D225 das der DET “ressort String
FALTER_201905226CF0560225 Ibiza-Video Ibiza-Video NOUN MISC_B st i::
FALTER_201905226CF056D225 loble toben VERB

Figure 4.4: After preprocessing and data modell

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Data Analysis

In this chapter we show how we employ the methods introduced in [chapter 3| onto the
news dataset (see section 4.1). Furthermore, we analyze and discuss the results of each
method.

5.1 TF-IDF

The TF-IDF method, as it is described in |chapter 3, only uses words as tokens and weighs
them for their importance within a given corpus. Therefore, we first exclude stopwords
using the german iso-stopwords list. The explorative data analysis showed that some
words within the corpus of news articles do appear as often as, or sometimes even more
often than many stopwords, for example “Wien”, “Wiener”, “Stadt” or “Prozent”. There
are no noticeable differences in the results of the TF-IDF analysis with or without the
filtering of these words. Which is due to the way TF-IDF works, as words that appear
regularly throughout the corpus get punished with a lower score.

After this step, our corpus now consists of only non-stopwords. To calculate the TF-IDF
scores of every word, first the occurrences of every word within their article have to be
counted

article_words <- count (data, article_id, words, sort = TRUE)

With data being the dataset of words, and article_id and words being the names of the
columns with the article id and the word itself.
Next, the number of occurrences of every word within the whole corpus has to be counted

total_words <- article_words %$>% group_by (article_id) %>%
summarize (total = sum(n))

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

5. DATA ANALYSIS

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

By joining these two results together, finally the TF-IDF scores can be calculated with
the help of the tidytext R-package [GDQ20]

article_words <- left_join(article_words, total_words,
by="article_id")
article_words <- article_words %>%
bind_tf_ idf (words, article_id, n) %>%
select (-total) %>% arrange (desc(tf_idf))

Finally, one can list top scoring words as following;:
top_n(article_words, 15,tf_idf)

and will look like the table seen in Figure 5.1, in this example all words from the corpus
of the years 2018 and 2019 have been used.

article_id words n tf idf tf_idf
FALTER_201803217BEC110170 manner 5 0.09433962 6587550 06214670
FALTER_20190417EOC1598AEC maschek 5 008820690 6587550 05873922
FALTER_20181212A0A32CE599 nikolc 5 0.07692308 6587550 05067346
FALTER_201812120ACD2F8AGE gusgaben 10 013888389 3.643111 0.5059876

FALTER_201801103900401664 schikaneder & 0.07407407 6.587550 0.4379667

FALTER_201811143459B4E4CF rolex 14 0.07329343 6587550 0.4323571
FALTER_20180425792AEAFESS steinz 3 0.07142857 6587550 0.4705393
FALTER_20180314D2B047T91FA liessmann 4 0.07343137 5894403 04523061
FALTER_20130411054DD99D34 popper 10 0.07812500 5894403 0.4605002
FALTER_20120314D4405093C9 jafar 35 0.07216495 5894403 0.4253893
FALTER_201809266151B91E3F sam 9 0.06870220 5894403 0.4049590

FALTER_201806136BA13FC488 gedenkdienst 7 0.06140351 6587550 0.4044887
8

FALTER_20151219009A7931BA ochs 0.06106870 6587550 0.4022931
FALTER_201302283CT4AC4T1T progll 5 0.09090809 4390325 03991205
FALTER_20150322C5151C564D erntenelfer 7 0.06666667 5594403 03920602

FALTER_201901238C61CABOSF freiwilligenarpeit 3 0.06666667 5894403 03520602

Figure 5.1: TF-IDF example

Note, that the same word can have different TF-IDF scores in different articles. There
are different ways to handle this issue, two of these would be the following:

thele

(]
lio
nowledge

b

i
r

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.1.

TF-IDF

1. Highest Score - Using the highest score of every word within the corpus

2. Average Score - Using the average score of every word within the corpus

In this thesis we chose the second option, as this seemed to be the more appropriate way
for our later goals, like finding trends.

With these average TF-IDF scores we can now do some further experiments. One of
those would be trying to find out if a word with a high TF-IDF score represents a long-
or short-term trend. To do this, we chose to compare the TF-IDF score of words for
different subsets of the dataset, selected by their publishing dates. The TF-IDF score
for the word “Ungarn” for example is very high, when considering all articles that were
published between January and March of 2019, but has a rather low TF-IDF score when
looking at the timeframe from May 2018 until May 2019.

To graphically display these short- or long-term trends, we chose to compare these two
timeframes with each other:

e Short-term: 01.01.2019 - 22.05.2019

e Long-term: 01.01.2018 - 22.05.2019

With 22.05.2019 being the publishing date of the latest articles contained in the dataset,
so this date can be seen as “now”.

We selected the top ten highest scoring words for both the short-term and long-term
timeframe. On the left hand side the score for the short-term timeframe is marked, on

the right side the score for the long-term timeframe. The result can be seen in Figure [5.2.

Some things that can be interpreted from this graphic are:

1. “Orban” has by far the highest average TF-IDF score for both short- and long-term

2. Most words appear to have a higher TF-IDF score with the short-term timeframe,
most likely due to the TF-IDF algorithm punishing the score with more articles in
the corpus

3. “Budapest” is the only word within this list with a higher TF-IDF score for the
long-term, so it not only is a trend in the short-term, but it seems to be even more
outstanding in the long-term

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

5. DATA ANALYSIS
0.06-
keyword
- orban
— orbans
— ungarn
— €eu
%)
T::; = N I —— ungarischen
= 0.04- T —— pressekonferenz
— fidesz
———‘_,“_____1_____ budapest
T reisen
—— ungarische
0.02-
Figure 5.2: TF-IDF trends, short-term on left hand side, long-term on right hand side
Finally, to use this method not only for finding trends but also to recommend articles,
the article-similarities between all articles within the considered dataset are calculated.
To do this, a document-term matrix with all different words in the corpus and their
respective TF-IDF score for the article is built. This results in a vector of TF-IDF scores
of all words for all articles within the corpus. This vector form now allows us to calculate
the cosine similarity between all articles, resulting in a similarity value between every
pair of articles within the corpus.
To do this, first a function to calculate the cosine similarity was defined
cos_sim = function (matrix) {
numerator = matrix %x% t (matrix)
A = sgrt (apply (matrix”2, 1, sum))
denumerator = A %$*x% t (A)
return (numerator / denumerator)
}
42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.1. TF-IDF

The creation of the document-term matrix was done with the help of the tidytext
R-package

dtm = cast_dtm(data=article_words, term=token,
document=doc_id, value=tf_idf)

Using the self defined cosine similarity function on this document-term matrix results in
the similarity matrix. By finding the highest values for every line, we can now build the
recommendations based on one article that can be seen as the currently read article.

The full implementation of this method can be seen in algorithm |5.1.

Algorithm 5.1: TF-IDF Scores

1 data <- fread("./falter_data_tok_2019.csv")

2 stops <- stopwords ("de", source = "stopwords—iso")

3 stops <- append(stops, c("s","_",""))

4 ’%notin%’ <- Negate (’%in%’)

5 data <- datal[dataS$token %notin% stops,]

6 article_data <- fread("./falter data_full notext.csv")

7 article_data <- article_datalarticle_dataSyear==2019]

8 data <- merge(data, article_datal[,c("article_id", "date")],
9 by.x="doc_id", by.y="article_id")

10 article_words <- count (data,doc_id, token, sort = TRUE)

11 #calculating the TF-IDF Scores

12 total_words <- article_words %>%

13 group_by (doc_id) %>%

14 summarize (total = sum(n))

15 article_words <- left_join(article_words, total_words,by="doc_id")
16

17 +#adding TF-IDF Scores to the dataset and sort

18 article_words <- article_words %>%

19 bind_tf_ idf (token, doc_id, n) %>%

20 select (-total) %>%

21 arrange (desc (tf_idf))

22

23 #calculating the cosine similarity

24 dtm = cast_dtm(data=article_words, term=token, document=doc_id,
25 value=tf_idf)

26 dtm_matrix = as.matrix (dtm)

27 articleSim = cos_sim(dtm_matrix)

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5. DATA ANALYSIS
5.2 TextRank Algorithm
Like in TF-IDF, the TextRank algorithm also calculates a score for every word in the
corpus. But it is usually used to calculate a score for not only single words, but also for
so-called n-grams, which are wordgroups with the length of n words.
The details of how the scores are calculated are described in isection 3.2. We used the
textrank R-package for the calculation [Wij19a].
This method allows to vary the length of the n-grams by simply giving this length to the
calculation function of the R-package. An example of this call would be
stats <- textrank_keywords (dataS$token,
relevant = dataS$pos %$in%
c ("NOUN", "ADJ", "VERB", "PROPN") & data$Sentity != "",
ngram _max = 3, sep =" ")
The “relevant” variable allows to filter for various aspects. In this example we made
use of the metadata for every word by only considering nouns, adjectives, verbs and
propositions as relevant, in combination with only including named entities. Furthermore
the maximum length of the n-grams was set to 3 and the separator for the words within
one n-gram was set to a space, which is only for display purposes.
This call for all articles published in the year 2018 with only considering articles from
the political ressort results in the 10 n-grams with the highest score as can be seen in
Figure 5.3
keyword ngram freq

107 Sebastian Kurz 2 134

164 Millionen Euro 2 04

273 Heinz-Christian Strache 2 70

287 5. € 2 63

334 Falter Herr Pesendorfer 3 62

349 Jahre alt 2 G0

381 Herr Pesendorfer 2 56

Jo4 Konrad Pesendorfer 2 54

405 Statistik Austria Konrad 3 53

406 Austria Konrad Pesendorfer 3 53

Figure 5.3: TextRank results
44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.3. RAKE Algorithm

Noteworthy here is that the filtering via the “relevant” variable, as described, only has
to fit for one part of the n-gram. For example in the n-gram “Jahre alt”, only the word
“Jahre” is a named entity. So common phrases, that only include one named entity are
very frequent within the top results.

It can also be seen that the TextRank algorithm usually prefers n-grams that lean more
towards the maximum number of words allowed for n-grams. This is also described in
the methods chapter, as the benefit of combining multiple words is usually higher than
the punishment for doing so.

Finding trends can be done in the same way as in TF-IDF scores, by calculating scores
for the same n-grams for different periods of time, to see if they stay the same, improve
or worsen over different lengths of time periods or to look at them for not overlapping
time periods like for different months of a year.

To finally create article recommendations, we use the cosine similarity. But with TextRank,
we have two possibilities. TextRank calculates a score for every n-gram in the corpus,
but simultaniously calculates a score for every single word, as these are also n-grams but
with the length of one.

We can now decide to either use the score of the single words and use single words for the
document-term matrix, or use all n-grams, in the example with 3 being the maximum
for n, we would have all occurring 1-, 2- and 3-grams that appear in the corpus. The
big downside of the latter option is the vast increase of computational resources needed,
as the document-term matrix is far bigger here. Thus, the higher the maximum n (for
n-grams) is set, the more resources are needed to represent a document, i.e. an article.
Due to limited resources, we only used a higher number of n for a small subset of the
dataset, for example for all articles of the political ressort of one month. But eventually
we had to use uni-grams for bigger subsets. How this was done can be seen in algorithm
5.2 in the lines 15-21, where the words with their scores have to be extracted as a vector
of the TextRank results and merged with the dataset of all words, before finally creating
the document-term matrix.

Following the creation of this document-term matrix, we again can calculate the cosine
similarity with the same self defined function as seen in the TF-IDF scores to find the
most similar articles based on the TextRank scores.

The full implementation of this method using the R-package textrank can be found in
Algorithm 5.2 [Wij19a].

5.3 RAKE Algorithm

This method is very similar to the TextRank algorithm. Again, scores for words are
created based on the algorithm, which is further described in [section 3.3.

An implementation of this algorithm can be found in the R-package udpipe, where the
function keywords_ rake calculates the RAKE scores [Wij19b].

As well as in TextRank, a “relevant” parameter exists, with which a filtering of the

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5. DATA ANALYSIS
Algorithm 5.2: TextRank Algorithm
1 data <- fread("./falter_data_tok_2019.csv")
2 article_data <- fread("./falter_data_full notext.csv")
3 article_data <- article_datalarticle_data$Syear==2019]
4 data <- merge (data, article_datal,c("article_id", "date")],
5 by.x="doc_id", by.y="article_id", all=FALSE)
6 ’%notin%’ <- Negate (’%in%’)
7 data2 <- data[dataS$Spos %notin% c("","PUNCT", "SPACE","X"),]
8
9 #calculating textrank scores with ngram size = 3
10 #only including nouns, adjectives, verbs and propositions
11 stats <- textrank_keywords (data2$token,
12 relevant = data2S$pos %in%
13 c ("NOUN", "ADJ", "VERB", "PROPN"),
14 ngram_max = 3, sep = "_")
15 wvals <- data.frame (t (data.frame (as.list (stats$Spagerank$vector))))
16 valsS$Stoken <- row.names (vals)
17 names (vals) <- c("textrank", "token")
18 data2 <- merge(data2, vals, by.x="token", by.y="token", all=FALSE)
19
20 #calculating the cosine similarity
21 dtm = cast_dtm(data=data2, term=token, document=doc_id, value=textrank)
22 dtm matrix = as.matrix (dtm)
23 articleSim = cos_sim(dtm_matrix)
dataset can be done, to take only those n-grams into consideration that contain at least
one word that meets the given requirements. To compare the results of the methods, we
used the same requirements as before, so one word has to be either a noun, adjective,
verb or proposition and has to be a named entity. The maximum length of the n-grams
was chosen with 3 as well.
So in a very similar way to TextRank, the function to calculate the RAKE scores can be
called
stats <- keywords_rake (x = data,
term = "lemma", group = c("doc_id"),
relevant = dataSpos %$in%
c ("NOUN", "ADJ","VERB","PROPN") & data$entity != "",
ngram_max = 3)
46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5.3. RAKE Algorithm

Executing this code on the same test subset as done for the TextRank algorithm, so for
all articles published in 2018, the n-grams with the highest score can be seen in Figure
a.4.

keyword ngram freq rake

Marine Le Fen 3 4 B.68934N1

Central European University 3 g 8107071
The Great Transformation 3 4 Th97222
Verteidigungsminister Mario Kunaselk 3 4 7041991
Hans Peter Doskozil 3 4 T.016833

not Climate Change 3 3 6992063

20 _ Jahrhundert 3 13 68622238

19 . Jahrhundert 3 & 6.852106

21 _ Jahrhundert 3 T 6811241

Justizminister Josef Moser 3 4 B.784465
Verkehrsminister Norbert Hofer 3 12 6.556923

Figure 5.4: RAKE results

Like TextRank, the RAKE algorithm also tends to prefer n-grams that lean to the
maximum number of words defined for the n-grams. In comparison to the TextRank
algorithm the name “Pesendorfer” does not appear at all.

Furthermore, the RAKE algorithm is very resource-friendly. Thus, it was applicable
with maximum n (of n-grams) set to 3 to the whole corpus in a reasonable time. The
runtime for the same dataset as used for TextRank is only a fraction of the runtime of
the TextRank algorithm.

Finding trends and building recommendations both work exactly the same as for TextRank.

Which means there is no out of the box option for finding trends, but like with TF-IDF
and TextRank, different time periods can be analyzed to find differences.

Calculating close articles can be done by creating a document-term matrix with single
words or with all n-grams and their RAKE score. Finally calculating the cosine similarity,
which is described in the TF-IDF score section of this chapter, for all pairs of articles
results in the recommendations.

The full implementation of this method using the R-package udpipe can be found in
algorithm 5.3 [Wij19b].

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

DATA ANALYSIS

W
o

Algorithm 5.3: RAKE Algorithm

data <- fread("./falter_data_tok_2019.csv")

article_data <- fread("./falter_data_full_ notext.csv")

article_data <- article_datalarticle_data$Syear==2019]

data <- merge(data, article_datal,c("article_id", "date")],
by.x="doc_id", by.y="article_id", all=FALSE)

#calculating rake scores with ngram size = 3

#only including nouns, adjectives, verbs and propositions

© 00 N O U W NN =

stats <- keywords_rake (x = data,

—
o

term = "lemma", group = c("doc_id"),
relevant = data$pos %in% c ("NOUN", "ADJ",
"VERB", "PROPN") & data$lemma != "',

— =
W N =

ngram_max = 3,n_min=1)

—_
=

data2 <- merge (data, stats[stats$ngram < 2,], by.x="token",
by.y="keyword", all=FALSE)

—_ = =
N O Ot

#calculating the cosine similarity

—
oo

dtm = cast_dtm(data=data2, term=token, document=doc_id, value=rake)

—_
Ne}

dtm_matrix = as.matrix (dtm)

DO
e

articleSim = cos_sim(dtm_matrix)

5.4 Wordcloud Comparison

Wordclouds are commonly used to find keywords within any kind of text corpora. There
are libraries that easily allow the user to create basic wordclouds. But not only finding
keywords within the corpus is of relevancy for this thesis, but also finding trends within
these keywords. Therefore the first idea was to just create multiple wordclouds for
different periods of time and compare them side by side.

For wordclouds especially, removing stopwords from the dataset was important, otherwise
the wordclouds would only be filled with these. Additionally to the stopwords from the
German stopword-iso list, we removed words that appeared very frequent through the
whole dataset with frequencies similar to stopwords, like “wien”,“wiener”,“oesterreich”
and “falter”.

A comparison of wordclouds for the first two quarters of all published articles in 2018
can be seen in Figure 5.5l One can see here that the word “kind”, for children, appears
frequently in both timespans, while for example “euro” is more common in the first
quarter than the second.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

5.4. Wordcloud Comparison

e
‘Zeuro Kind
prozent

Figure 5.5: Wordclouds for 1. and 2. quarter of 2018

These wordclouds were simply created by splitting the data into the subsets for the 1.
and 2. quarter of 2018 and executing the wordcloud function of the R-package wordcloud,
which can be done like the following example [Fell8]:

wordcloud (names (data), data, scale=c(3,.3),
random.order = FALSE, max.words=50,
colors=brewer.pal (6, "Spectral"))

But finding differences between multiple wordclouds in this way can be very tedious. This
is where the so-called wordcloud comparison function has its strengths. This function is
usually used to compare different texts, like books, with each other. But in our case we
used it to compare different subsets of the corpus for different time periods with each
other.

As an example, we split all articles published in the year 2018 into four quarters, so
January until March, April until June, July until September and October until December.
For the wordcloud comparison function, a frequency matrix has to be built. Every line
in it stands for a word in the corpus and every column for one of the subsets that are to
be compared. The number of occurrences of the word in the subset is entered into the
matrix. After building this frequency matrix, the creation of the comparison wordcloud
can be done like this

comparison.cloud(as.matrix (freq mat),max.words=75,
colors=brewer.pal (8, "Dark2"),title.size=2,
title.bg.colors=brewer.pal (8, "Dark2"))

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.

DATA ANALYSIS

50

This example, as mentioned, with the 4 quarters of the year 2018, results in the comparison
wordcloud that can be seen in Figure 5.6, where freql - freq4 stands for quarter 1 -
quarter 4.

antisemitismus

pokorn
maif{ath - kaup g ngr;schenschaft

deutsch & iz &
hasler datenﬁ P spoe Oer[,m
fuBball gjuni kogler
lorenz festival"g.u : maerz
haeup! hiv EE mal fe?g‘-éaerbo-%‘ﬁ'cfff
henisch ST bluemel
sagen — philipp fpoe Stra(r‘@e strolz

- polanyi::
= O
fake park stralle ka I’| pO'EIﬂYiS sozialen
Wasser impulstanz transformation
donau wungarn

\ messer
europa oktober
stadt juli nitsch plaschg
sommer |evitt november
wirtschaft politik
e

orten

oev

o)
september buch freiheit
heimat gesellschaft 4. .owatie

roy republik purger

kic

Figure 5.6: Comparison Wordcloud

The name “Karl Polanyi”, who was an Austro-Hungarian economist and sociologist, is
the most obvious keyword that can be seen here. This is the result of multiple published
issues of Der Falter with a focus topic to “Karl Polanyi” in October 2018. As these
words are very rare or don’t even exist in all other quarters, they get more highlighted
in the comparison wordcloud. The calculation of the size of words can be seen in the
methods chapter.

This display of words that appear frequently in one timeframe but not in others can be
used to find trends within keywords. The variation of the length of the time periods also
allows to distinguish between long and short term trends. Words that do not appear more
highlighted when comparing longer timeframes, but do appear on shorter timeframes for

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.5. Stylometry

example could be seen as a short term trend. On the other hand a word that appears on
longer timeframes but not when comparing subsets of the specific longer timeframe with
each other can be seen as a long term trend, as these words are evenly spread throughout
the longer timeframe.

Finding recommendations with this method can be done in a very similar way to TF-IDF,
TextRank and RAKE, as the wordcloud comparison algorithm computes an importance
score, described in [Equation 3.4], for every word in the background and uses this score
to calculate the size of the word in the wordcloud. When manually calculating these
scores for all words, again, a document-term matrix with the scores for every word in
every document can be built and via the cosine similarity, articles that are similar to
each other can be found.

The full implementation of this, in a non-graphical way for article recommendation, can
be found in algorithm 5.4, where all articles published in 2019 are used.

5.5 Stylometry

The implementation of the Stylometry method was done with the help of the stylo R-
package [ME19]. The authors of this package also wrote a guide for stylometric analysis
with this package, which was used as a reference for this work [ERKT6].

The first step of preparing the dataset for the stylometry analysis was removing pronouns
from the corpus, like “ich”, “mir”, “mein” or “mich”. This was mentioned in the guide
of the authors of the R-package to heavily improve the results. Usually they are too
strongly correlated with a specific topic or genre, which is an unwanted artefact for a
text corpus with various topics and genres [Penll]. Creating a list of all tokens without
the pronouns was done with the help of a German pronoun list provided by the stylo

R-package itself.

txt_tok_list <— 1list ()
doc_ids <- unique (dataSdoc_id)

for(i in 1:length (doc_ids)) {
txt_tok_1list[[doc_ids[i]]] <-
data[data$doc_id==doc_ids[i],]$lemma %>%
delete.stop.words (
stop.words =
stylo.pronouns (language="German")

As it is described in section 3.5| in this method we use word n-grams as well as character
n-grams. These features can also be extracted from the corpus with a function of the

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

5. DATA ANALYSIS

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

ki

i
r

Algorithm 5.4: Wordcloud comparison algorithm

"$notin%’ <- Negate (’%in%’) #define notin function
#build stopword list

stops <- stopwords ("de", source = "stopwords—-iso")
datal9 <- fread("./falter_data_tok_2019.csv")

1

2

3

4

5 datal9 <- datal9[datal9S$lemma %notin% stops] fexclude stopwords

6 datal9 <- datal9[-grep (' "\\d+$’, datal9$lemma),]

7 article_data <- fread("./falter_ data_full notext.csv")

8 article_data <- article_datalarticle_data$Syear==2019]

9 datal9 <- merge(datal9, article_datal[,c("article_id", "date")], by.x=
"doc_id", by.y="article_id")

10 datal9Smonth <- substr (datal9S$date, 6, 7)

11 #count word per month

12 counts <- summarise (group_by (datal9,month, lemma), count=n())

13 fregs <- data.frame() #define empty df to be filled with counts

14 for (m in unique (countsS$month)) {

15 #df is initial -> add word and first count column

16 if (dim(fregs) [1] == 0) {

17 fregs <- counts[countsSmonth==m,c ("lemma", "count")]
18 colnames (fregs) <- c("lemma",paste ("count",m,sep=""))
19 #df is not initial anymore —-> add new count column

20 }else(

21 new_dat <- counts[countsSmonth==m,c("lemma", "count")]
22 fregs <- merge (fregs,new_dat,by="lemma", all=TRUE)

23 colnames (fregs) [ncol (fregs)] <- paste("count",m, sep="")
24 }

25 '}

26 #substitute NAs for non-existing words in months with 0
27 fregs[is.na(fregs)] <- 0
28

29 {fcalculate score that is used for comparison.cloud

30 dist <- fregs[,6] - rowMeans (freqgs[,-1])
31 fregs$dist <- dist
32

33 data2 <- merge(datal9, fregs[c(l,7)], by.x="lemma", by.y="lemma", all
=FALSE, sort=FALSE)

34

35 f#calculate cosine similarity

36 dtm = cast_dtm(data=data2, term=token,document=doc_id, value=dist)

37 dtm_matrix = as.matrix (dtm)

592 38 articleSim = cos_sim(dtm_matrix)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.5. Stylometry

stylo package, in this example with the n-gram size of three, and the paramter “features”

[Pl

chosen as “c” meaning characters are used for building the n-grams.

feats <- txt.to.features (txt_tok_list,
ngram.size = 3,
features = "c¢c")

These extracted features, the n-grams of characters, now have to be converted to a table
with the frequency of every feature for every document. Additionally, only the most
frequent 5000 features are used in this example, to reduce the processing time and the
needed computing resources.

freqg feats <-
make.frequency.list (txt_tok_list,

head=5000)
fregs <-
make.table.of.frequencies (txt_tok_list,
features = freqg_feats)

Finally, this frequency table can be used for a stylometric analysis of the corpus. Calling
the stylo function of the same-named R-package does not only compute the stylometric
analysis, but can also create various graphical presentations of the result.

In this example, we used the PCR analysis type, which stands for the principal components
of all extracted attributes. The parameter “gui” gives the option for a graphical user
interface, where further parameters could be set.

stylo (frequencies=freqgs,
analysis.type=’'PCR’,
gui=FALSE)

For example, Figure 5.7 shows the reduction of the extracted stylometric features to 2
principal components. These are based on all published articles of the years 2018 and
2019 from the political ressort. Every article is represented by its article id. Stylistic
outliers can be found, like the ones on the top right corner, that are further away from
the big cluster. These articles are stylistically written differently, for example the article
in the top right corner is a satirically written made up interview.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

5. DATA ANALYSIS

Principal Components Analysis

FALTER_20181121BBE52F7D4

o FALTER_20180905CB229

FALTER_201806278E18F8CEE1

FALTER! 2 0 FifER DRhItsASAR e o4
FALTER 2019022024EE5A248F

PC2 (4.3%)
2
]

07C23
o —
FALTER 2018 (ARI7Y
20180425 Bl s, 2F586
r}l —
7 ‘- 5 : “‘-.Ii. N -‘. P
FALTER_201903139AB049D904
QI' —
| I I I
-10 -5] 5
PC1 (7.2%)

74 MFW Culled @ 0%
Correlation matrix

Figure 5.7: Stylometry - Principal Components example

Stylometry also offers a few more possibilities, like the comparison of the articles written
by different authors, as it can be seen in Figure 3.4 in the methods chapter, or for cluster
analysis as seen in Figure 3.5. But none of the possible options here allow for finding
trends within the styles used by the authors.

But what can also be done with Stylometry is calculating a distance between every pair of
articles to find possible recommendations. By combining the extracted stylistic attributes
into a vector for every document, the distance is calculated via the Manhatten Distance
of these vectors [Bur(2]. These distances can easily be extracted from the result of the
analysis and simply searching for the lowest distances between the articles leads to the
most similar ones.

stylo_result <- stylo(frequencies=freqgs,gui=FALSE)
dist_table <- stylo_result$distance.table

The full algorithm for this method can be seen in Algorithm [5.5.

thele

(]
lio
nowledge

b

i
r

o4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.5. Stylometry

Algorithm 5.5: Stylometry algorithm

w

© 0 N O U

10
11

12

13
14

15
16

17
18
19
20
21

data <- fread("./falter_data_tok_2019.csv")

article_data <- fread("./falter_data_full notext.csv")

data <- merge(data, article_datal,c("article_id", "date")],by.x="doc_
id", by.y="article_id", all=FALSE)

txt_tok_list <- list ()

doc_ids <- unique (data$doc_id)

for(i in 1l:length (doc_ids)) {
txt_tok_list[[doc_ids[i]]] <-

data[data$Sdoc_id==doc_ids[i],]Slemma %>% delete.stop.words (
stop.words=stylo.pronouns (language="German"))

}

#possibly use n-grams as features to be analyzed (3-gram: moped ->
mop ope ped)

feats <- txt.to.features (txt_tok_list, ngram.size = 3, features = "c"
)

#only view most frequent features

freq_feats <- make.frequency.list (txt_tok_list,head=1000) #or use
feats instead of txt_tok

#build frequency table of features

fregs <- make.table.of.frequencies (txt_tok_list, features = freq_
feats)

#reducing the fregs to only top %$age of features

fregs <- perform.culling(fregs, culling.level = 50)

stylo_result <- stylo(frequencies=freqgs,gui=FALSE)
dist_table <- stylo_result$distance.table

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

DATA ANALYSIS

56

5.6 Dynamic Topic Modelling

Before starting with the Dynamic Topic Modelling itself, a very important preparation
step is to find a suitable amount of topics that appear within the corpus. The R-package
stm not only offers the possibility for the Dynamic Topic Modelling, but also to find a
suitable number of topics.

“Suitable” would be a number, where the found topics are not too broad so they don’t
overlap too much. But at the same time they should not be too specific, to still describe
a topic, and not only a few co-occurring words.

First, to later include the dynamic part of this method, the publishing date of the article
needs to be added to the dataset from the previously splitted data. But not only the date
itself, but rather the timely distance from the first published article in the corpus has to
be calculated. In the following example, we used all articles published in the year 2018.
Therefore, we used the 1st of January as the starting date and calculated the distance to
this date for every article in days.

startdate <- as.Date("20180101","%Y%m%d")
data$Sdays <- as.numeric (dataSdate - startdate)

This needs to be done first, as the R-package stm does some preparation of the corpus
itself and already needs the metadata to all documents added. The preparation steps
include things like removing punctuation or removing numbers as well as other things.
But the details can be chosen through parameters, and as most of these are already done
in our general preprocessing, they are not activated here.

meta <- data.frame (data$days)
processed <- textProcessor (datas$text,
stem=FALSE,
removestopwords=FALSE,
lowercase=FALSE,
language="de",
metadata=meta)
out <- prepDocuments (processed$documents,
processeds$vocab,
processedSmeta)

After these preparation steps, the number of topics that will be chosen has to be found.
With the “searchK” function of the stm package, the optimal number of topics can be
determined by optimizing semantic coherence. We compared the semantic coherence
for the number of topics K for 10, 20, 30, 40 and 50. A graphical representation of this
comparison can be seen in Figure 5.8, and a more detailed description can be found
in section 3.6. Here we want to choose a number of topics K for which the semantic

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

5.6. Dynamic Topic Modelling

coherence is high while the number of topics is still rather low. In this example the
number of topics is set to 40.

ntopics <- searchK (out$documents,

out$vocab,
K = ¢(10,20,30,40,50))

Semantic Coherence

Semantic Coherence
-85 -B0O -75
| |

-90
|

1 1 T 1 I
10 20 30 40 50

Number of Topics (K)

Figure 5.8: Semantic Coherence

With the number of topics defined, we can now do the topic modelling with the help of
the stm package as well. For this we use the stm function, which results in the topic
model. The topic model than looks like the example as shown in the methods chapter,
Figure 3.7.

fit <- stm(out$documents,

out$vocab,

K = 40,

max.em.its = 30,

data = out$meta,
init.type = "Spectral")

What needs to be done now is the inclusion of the previously added meta-data, so the
publishing date of the articles, to find trends within the topics. This can be done with
the “estimateEffect” function.

o7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.

DATA ANALYSIS

58

prep = estimateEffect (1:40 ~ days, fit, meta = outSmeta,
uncertainty = "Global")

Plotting the result now leads to graphical representation of the topics and their trends.
For example Figure [5.9 shows the two topics with the steepest decreasing and increasing
slopes. One can see for example that the topic “germania liederbuch” was decreasing
throughout the year, while “asyl” became more prevalent. But these trends can also be
shown in a non-linear way, as shown in Figure 3.9, which can be used to find both short
and long term trends within the found topics.

0.2

Expected Topic Proportion
0.0

L
e 1 — homosex.

antisem.

germania liederbuch
— asyl

T T T T T | T 1 T |
February April May June July September November

Time (2018)

Figure 5.9: Topic trends

After finding both topics and trends within the topics, we want to find a way to utilize
this method to find similar articles. For this task we used the functionality of the stm
package to fit a new document into the already calculated model. By doing so, the already
calculated model of topics will not be changed, but for this one article, the correlation
to all topics can be extracted. The following code shows an example where one random
article from the dataset was chosen and the correlation to each topic was extracted

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.6. Dynamic Topic Modelling

ran_art <- sample (xmldata$Sdoc_id, 1)

post_proc <- textProcessor (
xmldata[xmldata$Sdoc_id==ran_art,]Stext_, stem=FALSE,
removestopwords=FALSE, lowercase=FALSE, language="de",
metadata=meta[metaStext_==
xmldata[xmldata$doc_id==ran_art,]Stext_,])
post_out <- prepDocuments (post_procS$Sdocuments,
post_procS$Svocab,
post_procSmeta,
lower.thresh=0)
post <- fitNewDocuments (model=fit,
documents=post_outS$documents,
newData=post_out$meta,
origData=outSmeta)

The variable post$theta now contains a vector with the correlation value of this random
article to each topic. We now build a matrix like the document-term matrix for previous
methods, but this time not with terms but with topics. Therefore a document topic
matrix, with the correlation value of the article to every topic. By doing so, we can again
view each document as a vector and calculate the cosine similarity between every pair of
articles to find similar ones.

But including articles into an existing model takes a lot of time to compute. Another
possibility to create recommendations is to use the topics with the highest correlations to
the current article. By using those articles, that have the highest correlation to the same
topics, one can build recommendations way faster. The stm function has no possibility
to extract all correlations between topics and articles besides the tedious way described
above. But it offers a function (i.e. “topThoughts”) to retrieve the top n articles with
the highest correlation to one topic. In the following example, the top 5 articles with the
highest correlation to topic number 1 are extracted, which returns the article id of these
articles.

top_thoughts <- findThoughts (fit, texts=dataStext,
n=5, topics=1)

The implementation of this method, with the help of the R-package stm can be seen in
multiple algorithms ﬂm The full preparation of the data can be seen in Algorithm
5.6. Finding the ideal number of topics as well as plotting the result of the topic model
have been shown above.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

5. DATA ANALYSIS
Algorithm 5.6: DTM preparation algorithm

1 #prepare words to be eliminated

2 stops <- stopwords ("de", source = "stopwords-iso")

3 # add falter-specific stopwords to the list

4 stops <- append(stops, c("wien","wiener","ocesterreich","falter","the"
))

5 # with already tokenized data

6 xmldata <- fread("./falter_data_tok_2019.csv")

7 data <- xmldata

8 art_data <- fread("./falter_data_full_notext.csv")

9 art_data <- art_datalart_dataSyear==2019]

10 xmldata <- xmldata[xmldata$doc_id %$in% art_data$article_id,]

11 # for every article_id in art_data, collect the tokens into a vector
and lemmatize_strings () them

12 xmldata = xmldata %>% group_by (doc_id) %>% summarise (text=paste (token
, collapse="_"))

13 startdate <- as.Date("20190101","%Y%m%d")

14 xmldata <- merge(xmldata, art_datal[,c("article_id","date")], by.x="
doc_id",by.y="article_id", all = TRUE)

15 xmldata$date <- paste (substr (xmldata$date,0,4),substr (xmldata$date, 6,
7) ,substr (xmldata$date, 9,10),sep="")

16 xmldata$date2 <- as.Date(xmldata$date, "$Y%m%d")

17 xmldata$days <- as.numeric (xmldata$date2 - startdate)

18 corp <- VCorpus (VectorSource (xmldata$Stext))

19 corp <- tm_map(corp, content_transformer (tolower))

20 corp <- tm_map (corp, removeWords, stops)

21 corp <- tm_map (corp, removeNumbers)

22 svec <- convert.tm.to.character (corp)

23 svec <- lemmatize_strings (svec)

24 xmldataS$text_ = svec

25 meta <- data.frame (xmldata$days, xmldataStext_)

26 colnames (meta) <- c("days","text_")

27 meta <- transform(meta, text_ = as.character (text_))

28 processed <- textProcessor (xmldata$Stext_, stem=FALSE, removestopwords=
FALSE, lowercase=FALSE, language="de", metadata=meta)

29 out <- prepDocuments (processed$documents, processed$vocab, processed$
meta)

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.7. 'Word Embeddings

5.7 Word Embeddings

The Word Embeddings method can either be done with an already pre-trained model of
word vectors or with an own model, that has to be trained on the given dataset.

So to use both methods, we first have to train our own model. This was done with the
help of the R-package text2vec [DS1§].

The first steps for this are to convert the list of words into a usable format for this package
and to define the vocabulary that will be used. Because of our limited computational
resources, only words with a minimum of three occurrences in the dataset were used for
the training of the model.

it <- itoken(tokens, progressbar = FALSE)

vocab <- create_vocabulary (it)

vocab <- prune_vocabulary (vocab, term count_min = 3L)
vectorizer <- vocab_vectorizer (vocab)

This already concludes the necessary steps to train the model and create the word vectors.
Details to this algorithm are given in |section 3.7. We chose the skip-grams-window size
for the Glove model to be 5, the resulting size of the word vectors to have 150 dimensions
and to stop training the model after 30 iterations.

tcm <- create_tcm(it, vectorizer, skip_grams_window = 5L)
glove = GloVe$new (word_vectors_size = 150,
vocabulary = vocab,
xX_max = 5)
gloveS$Sfit_transform(tcm, n_iter = 30)
word_vectors = glove$Scomponents

The “word__vectors” variable now contains a list of all words within the defined vocabulary
and their representing vectors. For some initial testing, we can now build similarities
between all single words. Again, the cosine similarity can be used here. For example we
took the word "Theater" from the vocabulary and calculated the 10 most similar words
according to this calculated model, which can be seen in Figure 5.10, where of course the
word itself has the similarity 1.

words <— word_vectors([, "Theater", drop = F]
cos_sim = sim2 (x = t (word_vectors),

y = t(words),

method = "cosine",

norm = "12")
head (sort (cos_sim[, 1], decreasing = TRUE), 10)

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5. DATA ANALYSIS

Theater 1
Kino 0.390119025825336
Merkwiirdig 0.355187378868066
Fr 0.355028376050836
Kunst 0.354652927493261
Internet 0.346856151583394
Musik 0.342586058324334
ebenfalls 0.340551661200409
Lokal 0.336717600374626
Land 0.3327989072695823

Figure 5.10: Similar words - Word Embeddings

The next step is to not only calculate similarities between words, but between articles as
well. From this step on, both methods, using the self-trained as well as the pre-trained
model, work similarly. The vectors of all words that occur in an article will be combined,
via weighing them by their importance within an article with the help of the TF-IDF
score and simply adding them up.

So first we have to calculate the TF-IDF score for every word in every article and also
the sum of all TF-IDF scores for one article.

data2 <- data2[removePunctuation (data2$lemma) !'="" ¢&
data2$lemma!=" "]
article_words <- count (data2, doc_id, lemma, sort = TRUE)

total_words <- article_words %>
group_by (doc_id)
summarize (total = sum(n))

article_words <- left_join(article_words,

total_words, by="doc_id")

article_words <- article_words %>%
bind_tf_idf (lemma, doc_id, n) %>%
select (-total) %>%
arrange (desc (tf_idf))

%
o o
5>%

sums <- aggregate (tf_idf~doc_id, sum, data=article_words)
names (sums) <—- c("doc_id", "sum_tf idf")

After calculating both the TF-IDF scores and the sum of all TF-IDF scores, we calculate
the importance value by dividing the TF-IDF score through the sum of TF-IDF scores
for every article.

article_words <- merge (article_words, sums, by="doc_id")

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5.7. 'Word Embeddings

article_wordsS$Simportance <-
article_wordsS$Stf_idf / article_wordsS$Ssum tf_ idf

And finally we want to create a vector for every article, therefore we multiply each
word-vector with its importance value for the article and then sum up all these weighted
vectors of one article.

word_vectors_t <- word _vectors %>% t () %>%
data.table (keep.rownames = TRUE)

vector_cols <- pasteO("V", seqg(l, 150))

scaled_vector_cols <- pasteO("X", seqg(l, 150))

weighted_vectors <- merge (article_words, word_vectors_t,
by.x="lemma", by.y="rn",
all.x = TRUE)

weighted_vectors|[, scaled_vector_cols] <-

weighted_vectors|[, vector_cols] x weighted_vectorsS$Simportance

article_sum_vectors <- weighted_vectors %>%
group_by (doc_id) %>%
summarise_at (scaled_vector_cols, sum, na.rm = TRUE) %>%
data.table

With these article vectors we can now build similarities to create recommendations using
the cosine similarity between the article vectors. For example calculating the most similar
articles for one random article can look like this.

ran_art <- sample (meta$article_id, 1)
doc <- article_sum_vectors[ran_art,]

cos_sim = sim2 (x = data.matrix(article_sum_vectors),
y = data.matrix (doc),
method = "cosine", norm = "12")

cos_sim df <- as.data.frame (cos_sim)
cos_sim_df <- cos_sim_df[order (-cos_sim _df[ran_art]), , drop

The full algorithm, with first calculating the word vectors, which only has to be done
for the self-trained model, and then calculating document vectors as well as building
similarities between those articles can be seen in Algorithm [5.7| and Algorithm [5.8.

FALSE]

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

5. DATA ANALYSIS
Algorithm 5.7: Word Vector calculation
1 data <- fread("./falter_data_tok_2019.csv")
2 # collect lemmas of an article back together
3 datap <- aggregate (lemma ~ doc_id, data=data, paste, collapse="_")
4 # tokenize die items
5 tokens <- space_tokenizer (datap$lemma %$>% removePunctuation())
6
7 # define relevant vocabulary and vectorize it
8 1t <- itoken(tokens, progressbar = FALSE)
9 vocab <- create_vocabulary (it)
10 vocab <- prune_vocabulary (vocab, term_count_min = 3L)
11 vectorizer <- vocab_vectorizer (vocab)
12
13 # train model and create word vectors
14 tcm <- create_tcm(it, vectorizer, skip_grams_window = 5L)
15 glove = GloVe$new (word_vectors_size = 150, vocabulary = vocab, x_max
= 5)
16 gloveS$fit_transform(tcm, n_iter = 30)
17 word_vectors = glove$components
18
19 # build similarity between single words
20 words <- word_vectors[, "Theater", drop = F]
21 cos_sim = sim2(x = t(word_vectors), y = t(words), method = "cosine",
norm = "12")
64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

5.7. 'Word Embeddings

Algorithm 5.8: Document Vector calculation

© 0 N O U W N

e e e e e
S U R W N = O

17
18

19
20

21
22
23

24
25

26

27
28
29
30
31
32
33

fcalculate tf-idf for every word in every article
data2 <- fread("./falter_data_tok_2019.csv")
data2 <- data2[removePunctuation (data2$lemma) !="" & data2$lemma!="_"]
article_words <- count (data2, doc_id, lemma, sort = TRUE)
total_words <- article_words %>%
group_by (doc_id) %>%
summarize (total = sum(n))
article_words <- left_join(article_words, total_words,by="doc_id")
article_words <- article_words %>%
bind_tf_ idf (lemma, doc_id, n) %>%
select (-total) %>%
arrange (desc (tf_idf))
fcalculate the sum of all tf-idf values per article
sums <- aggregate (tf_idf~doc_id, sum, data=article_words)
names (sums) <— c("doc_id","sum_tf_idf")
fcalculate the ’'importance’ (percentage) of a word in the article: tf
-idf of word / sum of all tf-idfs in article
article_words <- merge (article_words, sums, by="doc_id")
article_words$importance <- article_words$tf_idf / article_wordsS$Ssum_
tf_idf
transform word-vectors and build data-table
word_vectors_t <- word_vectors %$>% t() %>% data.table(keep.rownames =
TRUE)
word vector columns (word-vector has 150 dimensions)
vector_cols <- pasteO("V", seqg(l, 150))
new word vector columns (multiply every word-vector with its
importance in the article)
scaled_vector_cols <- pasteO("X", seqg(l, 150))
weighted_vectors <- merge (article_words, word_vectors_t, by.x="lemma"
, by.y="rn", all.x = TRUE)
weighted_vectors|[, scaled_vector_cols] <- weighted_vectors[, vector_
cols] * weighted_vectors$importance
grouping and summing scaled vectors to build article-vectors
article_sum_vectors <- weighted_vectors %>%
group_by (doc_id) %>%
summarise_at (scaled_vector_cols, sum, na.rm = TRUE) %>%
data.table
#make doc_id to row_name

article_sum_vectors <- data.frame(article_sum_vectors, row.names=1)

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Comparison & Evaluation

In this chapter we compare the described and implemented methods. The comparison
was based on the research questions, and therefore it focused on four main points:

1. Finding Keywords/Topics
The ability of each method to find underlying keywords or topics within the corpus.

2. Finding Trends
The ability to find trends through the time span of the corpus for keywords or
topics.

3. Processing of a Dynamic Corpus
The ability of each method to process a corpus that changes continuously.

4. Characteristics of Article Recommendations
The ability to find similar articles for article recommendation and the attributes of
these recommended articles for one specific article.

While the results of the first three points are validated mainly in a qualitative way
together in workshops with domain experts from Der Falter, point four was evaluated
quantitatively.

6.1 Finding Keywords/Topics

The ability of a method to find relevant keywords within the corpus is not only important
for the subsequent recommendation of similar articles, but can also yield value for the
publishers of the newspaper or authors of articles. They could for example find some
keywords or topics, which subjectively spoken, are not used or discussed regularly but
suddenly appear more often. Other keywords or topics, while being important for the

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

COMPARISON & EVALUATION

68

authors and publishers, might not be used very commonly. For this purpose, the ability
of every implemented and analyzed method to not only find and extract keywords, but
also to present them in a human readable way was investigated.

Naturally, the mainly keyword based methods are very well suited for this task. This
includes TF-IDF Scores, TextRank Algorithm and RAKE Algorithm, which all give the
found keywords of the corpus with their importance value as a result. With these, the
user afterwards has many possibilities to further process the keywords and analyze them
in various ways. Wordcloud Comparison, which gives keywords with importance values
as a result as well, not only returns these importance values for further processing. The
library also includes a graphical output for a comparison of different sub-corpora, for
example for the comparison of different timeframes or different issues of the newspaper.
Dynamic Topic Modelling is very well suited for this task as well. Instead of keywords,
this method gives topics as a result with their corresponding keywords. So keywords are
not weighted for their importance, but are clustered together to topics, which afterwards
are weighted for their importance within the corpus. What can be seen as a con for this
method is the fact that topics are not automatically labeled by the algorithm itself. With
the help of the corresponding keywords, they have to be labeled manually. It is also
suggested to analyze the found topics manually through these corresponding keywords to
find out if the topic actually represents a fitting cluster of keywords that would be seen
as a topic by humans as well.

The methods Stylometry and Word Embeddings on the other hand are not very well
suited for the extraction of keywords or topics. Even though they both use keywords in
one way or another within the algorithm, both give no way to find important keywords
on themselves. For example, Stylometry gives the possibility to find articles that have
a strong correlation to some words or wordclusters, but these words or wordclusters
are most often not keywords but rather stopwords, that have many occurrences and
therefore have influence on the style of the article. Word Embeddings results in a vector
for every word of the corpus, which may be useful for example in combination with outlier
detection methods to find special words. But doing so is not established or commonly
used in the NLP context, therefore it was not included in this work.

An overview of which method is suited for this task can be seen in Table [6.1.

6.2 Finding Trends

Besides finding important keywords and topics within the given corpus of newspaper
articles, publishers and authors are heavily interested in occurring trends of keywords and
topics. This information can be used by authors and publishers for example to analyze
occurring topics and keywords over the years. Or to have more insight in how far any
event that has happened, like elections or other events, has been handled by the issues
that were published around that timeframe.

But not only for qualitative analysis can trend information be used, it might also be
included for news article recommendation. While it comes naturally that more recent
articles should be preferred for recommendations, articles that deal with topics or keywords

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.2. Finding Trends

Finding Keywords or Topics

Well-suited Unsuited
TF-IDF Scores Stylometry
TextRank Algorithm Word Embeddings

RAKE Algorithm
Wordcloud Comparison

Dynamic Topic Modelling

Table 6.1: Method-comparison for finding keywords/topics

that appear to be currently trending might also be preferred as these topics could be
more interesting for potential readers. Additionally, trends that have been found in the
past could also be used for recommendations, like preferring articles that include topics
and keywords which have been trending while the article was published, instead of only
looking at articles with keywords and topics that have a high correlation to the article.

For this task, Wordcloud Comparison can be seen as very suitable for more than one
reason. First, the algorithm for calculating the importance values of the keywords is based
on comparing different sub-corpora of the whole corpus with each other and weighting
the keywords based on how important a keyword is in one sub-corpus compared to all the
others. When interpreting these sub-corpora as different timeframes, the used algorithm
basically compares these with each other and finds keywords that are important in one
timeframe relatively seen in comparison to the others. Second, the wordcloud comparison
package in R, which was used for this paper, automatically comes with a graphical output
for the keywords and their importance values, which can be interpreted very easily. An
example for a comparison wordcloud is shown in Figure 3.3, where the years 2015 to
2019 were taken as the timeframes to be compared with each other.

Other than Wordcloud Comparison, the Dynamic Topic Modelling is very well suited
for finding trends, which appears obvious, as finding trends within topics was the main
motivation for the transition from Topic Modelling to Dynamic Topic Modelling. This
method, when using the R-package stm, as it was done for this work, comes with a
graphical presentation for the trends of the topics, which can easily be interpreted and
used by the authors and publishers for analysis purposes. The trends can also be extracted
for further processing to include them in recommendations as well.

The keyword based methods, other than Wordcloud Comparison, namely TF-IDF Scores,
TextRank Algorithm and RAKE Algorithm, are only mediocre for finding trends. The
algorithms themselves do not come with any kind of trend analysis, but as it was already
stated in their respective chapters, some possibilities to find trends and combine the
resulting keyword importance values with them do exist and can be used. Therefore we

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

COMPARISON & EVALUATION

70

classified them in the middle between well-suited and unsuited.

As with finding keywords and topics, the two methods Stylometry and Word Embeddings
both are not suited for finding trends within the corpus. Even though for Stylometry a
method called Stylochronometry exists, which analyses stylistic changes of texts through-
out the time, this method is still not suited for finding trends for a newspaper. It is
mainly used for comparing texts of only one author and the stylistic changes of this
specific author throughout the time. Therefore, it would give results that cannot be
interpreted when used for multiple authors, because changes in the style could be an
outcome of changing authors and the amount of written articles per author.

An overview of which method is suited for this task can be seen in Table 6.2l

Finding Trends

Well-suited Partly suited Unsuited
Wordcloud Comparison TF-IDF Scores Stylometry
Dynamic Topic Modelling TextRank Algorithm Word Embeddings

RAKE Algorithm

Table 6.2: Method-comparison for finding trends

6.3 Processing of a Dynamic Corpus

Another factor that is relevant for a newspaper that continuously publishes new articles
is the capability of every method to handle the addition of new articles to the existing
corpus. The way, in which every method is able to handle new articles can have influence
on different aspects of the analysis of the corpus and the recommendation of articles.

One important issue is the stability of the already existing analysis. Even though new
articles get added, the analysis results of the articles from the past should still have
relevancy for further analysis. This means that even when the important keywords or
topics of the current time period of course will be influenced by new articles, the already
calculated values or the results of past analysis runs should not change drastically and
completely lose their meaning.

Another issue is the computational effort it takes to rebuild or update the calculated
model. When adding new articles only once per month or week, this factor may not
be as relevant as the stability, but if articles will be added in a more regular manner,
it could become unrealistic to always completely rebuild the model, especially if the
computational effort for the model is already very high demanding.

Interestingly, this point is where the two methods, that had their weakness with the
previously discussed points, show their strength. Both Stylometry and Dynamic Topic

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.4. Characteristics of Article Recommendations

Modelling are very well suited for processing a regularly changing corpus. The Stylometry
library, that was used within this thesis, easily allows for the addition of new articles to
the corpus and also to the already calculated model. For the new articles, the stylistic
attributes will be computed and based on their results, the articles will be classified and
categorized into the existing model. This takes very little computational effort and has
no influence on the existing model for the already calculated articles at all.

Dynamic Topic Modelling offers the ability to include new articles into the already
calculated topic model as well, which also takes very little computational effort. The
new articles will then be fitted into the already calculated topics and their corresponding
keywords and the relations of the new article to all existing topics will be built. This
process has the advantage that the already calculated topics will be stable and therefore
can still be analyzed from the past and their current trends, through the addition of
new articles, can always be monitored. But exactly this stability of topics is also the
biggest downside of the process, as through doing so, newly emerging topics will never be
recognised by the topic model. For the acquisition of new topics, the whole topic model
has to be calculated again, through which of course the stability of topics would get lost.
So this could be seen as a kind of two-edged sword.

When it comes to Word Embeddings, for the aspect of processing a dynamic corpus
we have to differentiate between the pre-trained and the self-trained model. While
the self-trained model is not suited for this task, as all word vectors would have to be
recalculated, the pre-trained model is very well suited here. As the pre-trained model is
calculated on a sufficiently sized set of texts, so that the word vectors can be seen as final,
the new articles would only have to be translated into the word vectors and afterwards
into document vectors, which takes only very little computational effort and would have
no influence on the already built relationships of the existing articles.

All other methods do not offer the ability to reasonably add new articles into the corpus
without recalculating the whole model. But we still did divide the models into partially
suited and not suited, as the RAKE Algorithm, even though it has to recalculate all
importance values for every keyword, still is able to do this calculations for the full corpus
with the size of the given test dataset (in our case with about 100.000 articles) in an in
our opinion acceptable time, which in this case was well under 10 minutes. Every other
method, namely TF-IDF Scores, TextRank Algorithm and Wordcloud Comparison takes
way more computational effort and therefore was ranked as not suited for this task.

An overview of which method is suited for this task can be seen in Table 6.3l

6.4 Characteristics of Article Recommendations

Finally, we evaluated the ability to recommend other newspaper articles based on one
specific given article. The hypothetical situation was given, that a consumer reads a
newspaper article on an online platform and based on this currently read article only,
without including any potential previously gathered demographical or preference in-
formation about the user, other articles should be recommended. As a sophisticated

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

COMPARISON & EVALUATION

72

Processing dynamic corpus

Well-suited Partly suited Unsuited

Stylometry RAKE Algorithm Word Embeddings self
Dynamic Topic Modelling TF-IDF Scores
Word Embeddings pre TextRank Algorithm

Wordcloud Comparison

Table 6.3: Method-comparison for processing a dynamic corpus

survey is beyond the scope of this thesis, content-based measurements were used here.
Measurements, that became more and more popular with evaluating news recommender
systems, are serendipity and diversity of recommended articles. Therefore, we put our
focus on these measurements.

An overview of measurements is given by Kaminskas et al., where various measure-
ments, including content-based only measurements, are described [KB16]. Following
measurements were chosen for the comparison of the recommendations of all methods:

1. Content-based Diversity
This measurement was chosen to measure how similar or diverse the list of recom-
mended articles is.

2. Content-based Surprise
With this measurement in combination with the diversity, the serendipity was tried
to be measured as well. If the recommendations are surprising but still relevant,
they can be seen as a serendipitous recommendation.

6.4.1 Content-based Diversity

The content-based diversity is defined with the help of using content-labels of articles.
The named entities of an article were used as labels for the comparison. The diversity is
described as the distance between two articles ¢ and j, where a higher distance means
more diversity:

L;N Lj
- L, U Lj ’
where L; and Lj are the sets of labels describing the articles ¢ and j, respectively [KB16].
To finally calculate the diversity of all recommendations to one article, the so-called
average intra-list diversity was calculated, where the diversity distance is calculated for
every possible pair of articles within the list of recommended articles, and the average
over all these distances finally is calculated. So the contend-based diversity, as the average

dist(i,j) =1 (6.1)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.4. Characteristics of Article Recommendations

intra-list pairwise distance, is defined as:

Y jer 2ker\{j} dist(d, k)
IR|(|R] —1) ’

Diversity®™™ (i) = (6.2)

with the definition of the distance dist from equation 6.1, where i is the currently read
article and R is the set of recommended articles to 7 [KB16].

Based on this definition, the range for the content-based diversity is 0 to 1, where a lower
value describes a very low diversity within the recommended articles and a higher value
describes a higher diversity.

6.4.2 Content-based Surprise

The content-based surprise tries to describe how obvious, or rather how not-obvious the
recommended articles are in comparison to one specific article. As the content-based
diversity, it is defined by Kaminskas et al. [KB16] and is based on the complement of
the Jaccard similarity as well. With the same definition of the distance, in our case
using named entities as labels, as in Equation [6.1, the content-based surprise of the
recommended articles is defined as:

cont
surprise

(1) = min dist(i, j), (6.3)

obj
J JjER

where i is the currently read article and R are all recommended articles [KB16].

Based on this definition, the range for the content-based surprise is 0 to 1. A higher
value means that recommended articles appear as more surprising to the reader, while a
lower value means that the recommendations are rather predictable for the reader.

6.4.3 Results

To finally receive results for the above defined measurements, a subset of the full test data
set was taken, as the computation over the full test data set is not possible because of
computational limitations. The chosen subset contained all articles that were published
in 2019, which resulted in 2020 articles. From this subset, a set of 100 articles was
randomly chosen, which was stored and used for the evaluation of all methods, so the
used articles to create recommendations were always the same. These articles have
nearly the same distribution of ressorts as the whole dataset, to utilize stratified random
sampling [APSN13|. For every article out of these 100, with every method, the closest 10
articles according to each method, were calculated and the article itself together with
these 10 recommendations were evaluated with the measurements defined above.

To give an example, how these recommendations look like, the top two recommendations
for a small test sample of two articles for every chosen method were generated and can
be seen in Table 6.4l

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.

COMPARISON & EVALUATION

74

Base Article

Method

Recomm. Article

Sebastian Kurz ist
schuld, sagt es allen!

TF-IDF

Ein Kanzler macht Schluss

Der Kronzeuge der Kurz-
Revolution

Textrank

Schon wieder neue Plédne fiir Vice
Austria

Dolchmorde - die Geschichte
zweier Stadte

Rake

Kaum Frauen: Weibliche Beute
im Meer der Grafiken

I|BOSE"

DTM

Der Horror im Haus der
Barmbherzigkeit

Stichhaltige Fakten

Stylometry

"Bf)SQ"

n Gut n

Word Embeddings

Wir sollten den Druck gemeinsam
erhohen

Ich brauche in der Politik keine
Romanze

Wordcloud Comparison

Es graust Kurz kurz - es kostet
uns lang

Warum ist jetzt genug?

formen, sollst du sie
im Ofen schmoren

Kannst du keine Knodel

TF-IDF

Herrscht im Neuen Jahr die Not,
gibt’s Bohneneintopf mit Brot

Steht in jeder Kiichenbibel: Heif}e
Suppe aus der Zwiebel

Textrank

Eintritt frei: Die neunte Nacht
der Programmbkinos

Podcast

Rake

Steht in jeder Kiichenbibel: Heif}e
Suppe aus der Zwiebel

I|BOSEH

DTM

Der Horror im Haus der
Barmbherzigkeit

Stichhaltige Fakten

Stylometry

I|Bé‘)se"

n Gut "

Word Embeddings

Vom Gliick, Schwein zu haben

Tu Milch in deine Hendlsofl und
mach sie mit Zitrone grofl

Wordcloud Comparison

Dem Masterplan entlang: Rap,
Karaoke mit Maschek und Ar-
chitekturtage

Elektropop bis zum fidelen Freak-
out

Table 6.4: Recommendation Examples

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.4. Characteristics of Article Recommendations

Method Diversity Surprise

TF-IDF 0.9665154 0.9108813
TEXTRANK 0.9771817 0.9392942
RAKE 0.9792527 0.9044800
Wordcloud Comparison 0.9862475 0.9587793
Dynamic Topic Modelling 0.9690465 0.9723538
Stylometry 0.9983222 0.9840161
Word Embeddings - selftr. 0.9703393 0.9433950
Word Embeddings - pretr. 0.9694106 0.9320432

Table 6.5: Recommendation Evaluation

The exact results for these measurements can be seen in Table [6.5. A graphical represen-
tation of the results can be seen in Figure 6.1

The results of these evaluations do correspond with the expected results in multiple ways.
Most importantly, both the diversity and the surprise of the recommendations seem to
be lower, the more a method is based directly on the occurring words of the articles
themselves. For example the keyword-based methods TF-IDF, TextRank and RAKE,
together with word embeddings, appear to have to lowest values for both measurements.
Wordcloud Comparison, even though being a keyword-based method as well, has higher
values, which can be explained by the fact that the timeframe of the occurring words has
a high influence on the method as well, instead of only looking at the words themselves.
Stylometry has the highest value for both measurements, which fits the expectations as
well, as this method, in comparison to the other methods, focuses more on stopwords like
articles, while other methods mostly ignore these words. Because the recommendations
are built up on the style of the article, the diversity and surprise, which both are more
based on the content of the articles, not the style, are higher than for other methods.
The fact that the pretrained word embeddings model has a lower diversity and lower
surprise than the selftrained model was expected as well, because the pretrained model
was expected to have more fitting word vectors and therefore create closer relations
between the documents. What comes as a surprise is how little the difference in the
results is, even though the pretrained model used millions of wikipedia articles, while the
selftrained model only used about 2000 articles.

Interestingly, Dynamic Topic Modelling is the only method, where the content-based
surprise exceeds the content-based diversity. This could only mean that the diversity
between the recommended articles is rather low, while the diversity between the rec-
ommended article and the currently read article seems to be rather high. Then again,
this can be explained by the chosen way of finding recommendations through using the
highest correlating topic of the article and then using multiple highest correlating articles
to this topic.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

COMPARISON & EVALUATION

6.

Comparison of Methods

i

B Diversity
[Surprise

I

1121d - sbuippaquwig piopn

114195 - sbuippagquig piop

A1jawolAls

Buijjapopn d1dol d1weulg

uosiiedwos pnodpIopm

AV

JINVHLX31

Figure 6.1: Comparison Results

4di-41

1.00

T T 1

Tg] o n

)] o 0

(=] o =
anjea

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

Nej
N~

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusion

With this thesis we give new insights into the strengths and weaknesses of content-based
methods with attention to a dynamic corpus, as well as an evaluation of content-based
recommendations other than accuracy.

To further conclude this work, a summary of the answers to the research questions, a
quick overview of found strengths and weaknesses of methods and an outlook for possible
future work is given in this chapter.

7.1 Research Questions

In the first chapter of this thesis, research questions were stated. The following chapter
summarizes the findings of this work and how the research questions are answered by
those.

7.1.1 What methods, concepts or algorithms represent suitable
mechanisms for the continuous analysis and subsequent
classification and clustering of news articles based on general
topics or specific keywords?

This question was partly answered by the literature research and partly by the imple-
mentation and evaluation of the methods.

The literature research concluded in the methods that are analyzed in this work, through-
out the analysis of related literature, only those methods were finally chosen for further
analysis, that were already successfully used by others for similar tasks. Therefore
all analyzed methods are suitable for the analysis of news articles. Classification and
clustering were analyzed through finding similar articles, or articles that are “close to
each other”.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. CONCLUSION

78

As described in the comparison & evaluation chapter, all keyword based methods, which
includes TF-IDF, TextRank, RAKE, but also Wordcloud Comparison, can be used to
find important keywords. Dynamic Topic Modelling does not focus on single keywords,
or groups of words, but rather finds important topics within the corpus.

Stylometry and Word Embeddings on the other hand are not very suitable for finding
keywords or topics. While both have possibilities to find outstanding words, they can
not be used to find specific keywords or topics that are important throughout a corpus
of news articles. But they still can be used for classification and clustering of articles.
Especially Stylometry, which has a very different approach than all other methods, by
using mostly those words that are ignored by the other methods, is very suiatable for
clustering and classification, the R-package that implements this methods even comes
with an out of the box function for both these tasks.

But this question also asks for the continuous analysis, meaning the possibility to include
further articles into an already calculated model.

For this task, the keyword based models are all not optimal, they all would have to
recalculate the whole model after adding a single article, otherwise the calculated values
would not fit the corpus anymore. Dynamic Topic Modelling is a double edged sword
when it comes to this. While it is possible to easily include new articles into an existing
model, by doing this for a longer period of time new topics that might have emerged will
never be found, but new articles will only be fitted into the existing topics. With Word
Embeddings it is important to differentiate between the self- and pre-trained model. The
self-trained model would have to be completely recalculated with every new article, but
the pre-trained model does not need any recalculation and together with Stylometry,
which also can flawlessly include new articles, appear to be the best choices for this.

7.1.2 Which methods allow to recognize short or long term changes
of e.g. key word clusters or topic correlations and which are
not really suited to analyze changes at all?

Both methods, that are best suited for the continuous analysis of a corpus, i.e. Stylometry
and Word Embeddings, appear to be the worst choices when it comes to finding trends.
While both methods have variations that might be able to do this, as mentioned in the
excluded methods chapter, their base methods, which are analyzed in this thesis, are
unsuited for this task.

The keyword based methods, TF-IDF, TextRank and RAKE, all are moderately suitable
for finding trends. As it has been shown throughout this thesis, they can be used to
find trends within the keywords, as well as distinguishing between short- and long-term
trends. But these options have to be fully self implemented and are not established at all.
Both Wordcloud Comparison and Dynamic Topic Modelling are very suited for finding
trends, as both methods are basically created for finding trends, and both can easily be
used to also differentiate between short- and long-term trends. With the only difference
that Wordcloud Comparison analyses keywords while Dynamic Topic Modelling analyses
topics.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.2. Strengths and Weaknesses of All Methods

7.1.3 What methods build close relations between news articles
yielding results in a more focused way and what methods lead
to a broader spectrum of relations generating serendipitous
connections?

To answer this question, the content-based diversity and the content-based surprise were
used as characteristics of article recommendations. The final result of a comparison done
with the same subset of articles can be seen in Figure 6.1.

Based on this analysis, it can be said that the keyword based methods result in the least
surprise of recommendations, but when it comes to the diversity, they are at a similar level
as Wordcloud Comparison, Dynamic Topic Modelling and Word Embeddings. Stylometry
results in both the highest diversity as well as the highest surprise of recommendations.
Interestingly, Dynamic Topic Modelling resulted in second place when it comes to surprise,
only beaten by Stylometry, but on the other hand it comes in last place regarding the
diversity of a set of recommendations.

7.2 Strengths and Weaknesses of All Methods

To conclude this comparison, it can be said that every method has its strengths and
weaknesses. No method could be found that exceeds all other methods in all aspects that
we considered.

A conclusion of strengths and weaknesses of all methods is given in the Tables|7.1/ to |7.7.

TF-IDF Scores

Pros Cons
Finding keywords Prefers rare words if they appear in only
Widely established for finding keywords one document
Rather fast Inclusion of new articles not possible

Possible variations (named entities only, Finding trends possible but not easy

average values, etc.) Little diversity and surprise in recommen-

Very easy to implement dations
Fitting, close recommendations

Possibility to find trends

Table 7.1: Pros and cons of TF-IDF Scores

The TF-IDF scores method, as a keyword based method, obviously has its strength in
finding keywords. It is a very well established method, that is also easy to implement. It

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. CONCLUSION

80

is also versatile when it comes to further processing the resulting scores, for example for
finding trends within the scores. The resulting recommendations of articles based on the

TF-IDF scores can be seen as rather close.

TextRank Algorithm

Pros

Cons

Finding keywords
Finding keyword groups

Established algorithm to find relations/-
connections

Easy to use frameworks exist

Possibility to find trends

Parameter optimization needed to fit ex-
pectations

Inclusion of new articles not possible
Finding trends possible but not easy

Little diversity and surprise in recommen-
dations

Table 7.2: Pros and cons of TextRank Algorithm

The TextRank algorithm can not only be used to find keywords, but also to find key-
phrases or important groups of words, therefore finding keywords/groups is one of its
main strengths. Easy to use frameworks exist that can be used to calculate the scores.
It gives the possibility to find trends, but not out of the box, so while it is possible,
it has to be done manually. Recommendations based on the TextRank algorithm can
be seen as rather close, with little surprise in the recommendations. The parameters
for this method, like types of words to include and exclude as well as the length of the
wordgroups have to be optimized to meet the expectations.

RAKE Algorithm

Pros

Cons

Finding keywords
Finding keyword groups

Established algorithm to find relations/-
connections

Easy to use frameworks exist
Possibility to find trends
Very fast

Parameter optimization needed to fit ex-
pectations

Inclusion of new articles not possible
Finding trends possible but not easy

Little diversity and surprise in recommen-
dations

Table 7.3: Pros and cons of RAKE Algorithm

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.2. Strengths and Weaknesses of All Methods

The major strength of RAKE, which can be used to find keywords and phrases, is its
computational speed. It is very fast, even for big datasets, and yields in comparable results

regarding the quality of the extracted keywords in comparison to TF-IDF and TextRank.

Recommendations can also be seen as rather close, same as for the other keyword based
methods. Again, frameworks that can easily be used exist, so no implementation of the
algorithm is needed. The possibility to find trends with the method exists, but is not
established and has to be done manually. Same as with TextRank, the parameters for
this method have to be optimized to meet the expectations.

Wordcloud Comparison

Pros Cons

Finding keywords Inclusion of new articles not possible

Visual representation Rather slight connections between arti-

Intuitively understandable through rep- cles

resentation Little parameters to optimize results

Easy to find temporally trends Quality of found keywords lower than

Easy to use frameworks exist other keyword-based methods

Fast Keywords focus more on temporal differ-
ence in occurrences than keyword impor-
tance

Table 7.4: Pros and cons of Wordcloud Comparison

Wordcloud Comparison is very well suited for finding keywords, it also comes with a
graphical representation of both the found keywords as well as a comparison of keywords
for different subsets of the data, which are easily understandable and already widely
used. Finding trends can be done via the Wordcloud Comparison method, for which
frameworks exist. It is also a very fast method, even with big datasets. The resulting
recommendations based on this method are also rather close, with little surprise in the
recommended articles. A downside of the found keywords is that they don’t focus on the
importance of the corpus itself, but rather on the differences between the subsets that
are compared, but to overcome this issue, simple wordclouds, without the comparison
algorithm, could be used.

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. CONCLUSION

82

Dynamic Topic Modelling

Pros

Cons

Finding topics and corresp. keywords

Finding correlations between documents
and topics

Based on established topic modelling al-
gorithm

Frameworks to use exist
Inclusion of new articles

Visualization of temporal trends

Computational intensive / slow

Complex to use, even though frameworks
exist

Tweaking of parameters takes effort and
know-how

Number of topics is fixed

Recalculation of topics computationally
very expensive

Table 7.5: Pros and cons of Dynamic Topic Modelling

The Dynamic Topic Modelling method has its major strength in not finding only keywords,
but whole topics within the corpus. Because of existing frameworks, it is also easy to use,
with little self implementation needed. The framework also comes with the possibility to
build correlations between topics and articles, as well as with a way to find trends within
the topics and a graphical representation of these trends.

On the other hand, this method is rather slow and needs a lot of computational resources.
It is also not very easy to find the ideal number of topics within a corpus, and adding
new articles to a calculated model can only be done by fitting it into the already found
topics, with no regard to possibly new emerging topics.

Stylometry

Pros

Cons

Comparing styles of authors
High diversity and surprise in recomm.
Correlating most used words to authors
Inclusion of new articles easily possible
Different approach than other methods
Easy to use frameworks exist

Visual representations

Finding topics or keywords not possible

Computationally extensive to initially
calculate model

Recommendations might appear as ran-
om

Not an established method for text rec-
ommendation

Table 7.6: Pros and cons of Stylometry

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.2. Strengths and Weaknesses of All Methods

While Stylometry can not be used to find keywords, topics or trends, it still can be used
to compare articles, or subsets of articles, with each other. Its strength comes from its
different approach for finding similar articles, not based on important keywords, but
based on the style of the author. Therefore, the recommendations based on this method
are rather diverse and surprising compared to the other methods. Easy to use frameworks
do exist, that also come with a graphical representation of the results.

The high diversity and surprise of the recommendations can also be seen as a downside,
because they might appear as random to the reader. Stylometry also is not an established
method for text recommendation.

Word Embeddings

Pros Cons

Using self-trained or pre-trained model Computationally very expensive

possible for different results Training of own model takes very long

Close connections between recommended and vast amounts of memory

articles Results not humanely interpret able - vec-

Very different approach compared to tors seem arbitrary

other methods No parameters for optimizing results

Very easy to include new articles with

i Frameworks exist, but still need know-
pre-trained model

how to use
Possibility to experiment with results of
self-trained model

Current state of the art for text analyses

Table 7.7: Pros and cons of Word Embeddings

For the Word Embeddings, both a self- and a pre-trained model can be used, which both
have different strengths and weaknesses. While the self-trained model might result in
more diverse and surprising results of recommendations, the pre-trained model can be
used continuosly with very little computational effort to include new articles. It is also
seen as one of the current state of the art methods for text analyses with various new
developments, which might allow for finding trends in the near future as well.

One big downside is the very high computational demand of the method. Calculating the
word-vectors for the self-trained model takes quite some time and big amounts of memory,
but also calculating recommendations with he pre-trained model uses high amounts of
memory, when using high-dimensional word vectors.

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. CONCLUSION

84

7.3 Practical Implications

Based on our findings, we recommend newspapers like Der Fulter, that are planning to
implement a recommender system, to keep the following in mind:

For finding trends, both Wordcloud Comparison and Dynamic Topic Modelling can be
used to find trends. They both enable the user to include the trends into recommendations
as well as visualizing them in an intuitive way. But these methods both come with the
drawback that they are practically unable to include new articles into the model for a
longer period of time.

To overcome this, both of these methods would have to be not used alone for finding
trends and building recommendations, but to combine them with other methods that
are able to include new articles. For example using Word Embeddings for building
recommendations and combining those with the trends from the Dynamic Topic Model.
This would lead to a more stable model with lasting recommendations that is also able
to find trends and include those into the recommendations.

7.4 Future work

The main focus of this thesis was to find and compare content-based methods for
recommendation, keyword extraction, and trend detection in the domain of online news.
It was concluded that all methods have its strengths and weaknesses in different aspects.
Future work mainly concerns the deeper analysis of the tested methods with more diverse
datasets, the inclusion of methods which were not included into this analysis due to
various reasons like no existing implementation guides or frameworks, the combination of
different methods to maybe compensate their downsides, or the implementation of a full
recommender system with the inclusion of one or more methods described in this thesis.

e Deeper analysis with more diverse dataset
The results from this work are all based on one test dataset, which is written in
German, or sometimes even with bits of Viennese dialect. Using different datasets,
for example in other languages, or with a different type of text might yield different
results.

e Inclusion of other methods
Some methods that might have been promising for this thesis have been excluded
for different reasons like no existing frameworks during the selection process of the
methods. This might already have changed since then.
New methods for text analysis and news recommendation might emerge throughout
the next years, which prompts further analysis of these new methods and comparing
them against older and already established methods.

e Combination of different methods
One way to continue this work would be the further combination of different
methods for trying to combine the strengths of methods. On a very small scale this

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

7.4. Future work

was already done in this thesis, for example when combining the Word Embeddings

with TF-IDF scores to create meaningful document vectors out of the word vectors.

But the possibilities of combining these methods goes way further and might result
in better results than each of the analyzed methods in this thesis have achieved.
Especially the combination of methods to improve the compared abilities within this
thesis, like combining Stylometry for diverse and serendipitous recommendations
with Dynamic Topic Modelling for finding trends while still allow for an easy
continuous analysis of the corpus, for example might be interesting to further look
into.

Implementation of a recommender system

Another obvious next step would be using the methods analyzed in this thesis,
maybe with combining multiple methods, and implementing a news recommender
system. This would also suggest further analysis with real people to examine and
verify the the recommendations.

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Figures

3.1 Keyword density| L
3.2 Wordcloud example, o
3.3 Wordcloud Comparison example,
3.4 Stylometry PCA|
3.5 Stylometry Cluster-Analysis
3.6 Optimizing semantic coherence| o L
3.7 Topic proportionso e
3.8 Topic wordso
3.9 Topictrends|
3.10 Word Embeddings example [wep|
4.1 Authors with most written number of articles
4.2 Articles per Issue per Year|. o
4.3 Before preprocessing
4.4 After preprocessing and data modell]o oo
5.1 TF-IDF example

5.2 TF-IDF trends, short-term on left hand side, long-term on right hand side
5.3 TextRank results

5.4 RAKE results
5.5 Wordclouds for 1. and 2. quarter of 2018
5.6 Comparison Wordcloud
5.7 Stylometry - Principal Components example/.
5.8 Semantic Coherencel
5.9 Topictrends
5.10 Similar words - Word Embeddings L.
6.1 Comparison Results|,

15
19
20
22
22
24
25
25
26
27

33
33
37
37

40
42
44
47
49
50
54
57
o8
62

76

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.1

4.1
4.2

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Document-Term Matrix

Structure of the raw dataset
Most used words

List of Tables

Method-comparison for finding keywords/topics/.
Method-comparison for finding trends,
Method-comparison for processing a dynamic corpus

Recommendation Examples
Recommendation Evaluation/ . . .

Pros and cons of TF-IDFE Scores .

Pros and cons of TextRank Algorithm/

Pros and cons of RAKE Algorithm

Pros and cons of Wordcloud Comparison
Pros and cons of Dynamic Topic Modelling

Pros and cons of Stylometry|. . . .
Pros and cons of Word Embeddings

14

32
34

69
70
72
74
75

79
80
80
81
82
82
83

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.1

5.1
0.2
0.3
5.4
9.5
0.6
5.7
0.8

Preprocessing/.

TF-IDF Scores
TextRank Algorithm|.
RAKE Algorithm|

List of Algorithms

Wordcloud comparison algorithm/.

Stylometry algorithm
DTM preparation algorithm
Word Vector calculation/. . .

Document Vector calculation

36

43
46
48
52
95
60
64
65

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[APSN13]

[AS08]

[AWCT07]

[BGIM17]

[BLOG]

[BNJO3]

[BP9S]

[Bur02]

[CT20]

[Dia20]

[DRB19]

Bibliography

Anita S Acharya, Anupam Prakash, Pikee Saxena, and Aruna Nigam. Sam-
pling: Why and how of it. Indian Journal of Medical Specialties, 4(2):330-333,
2013.

Ana Isabel Rojao Lourengo Azevedo and Manuel Filipe Santos. Kdd, semma
and crisp-dm: a parallel overview. IADS-DM, 2008.

Shlomo Argamon, Casey Whitelaw, Paul Chase, Sobhan Raj Hota, Navendu
Garg, and Shlomo Levitan. Stylistic text classification using functional

lexical features. Journal of the American Society for Information Science
and Technology, 58(6):802-822, 2007.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information. Transactions of the
Association for Computational Linguistics, 5:135-146, 2017.

David M Blei and John D Lafferty. Dynamic topic models. In Proceedings of
the 23rd international conference on Machine learning, pages 113-120, 2006.

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
Journal of machine Learning research, 3(Jan):993-1022, 2003.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. Computer networks and ISDN systems, 30(1-7):107-117,
1998.

John Burrows. ‘delta’: a measure of stylistic difference and a guide to likely
authorship. Literary and linguistic computing, 17(3):267-287, 2002.

Tomas Kalibera CRAN Team, Duncan Temple Lang. XML: Tools for Parsing
and Generating XML Within R and S-Plus, 2020. R package version 3.99.

Gene Diaz. Stopwords iso. https://github.com/stopwords—iso)
2020.

Adji B Dieng, Francisco JR Ruiz, and David M Blei. The dynamic embedded
topic model. arXiv preprint arXiv:1907.05545, 2019.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/stopwords-iso

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[DS18]

[eal9]

[Edel3]

[ER11]

[ERK16]

[fas]

[Fel18]

[FPSS96]

[GDBJ10]

[GDQ20]

[GWFC11]

[HBB*11]

[HKO7]

[Hol9g]

94

Qing Wang Dmitriy Selivanov. textZvec: Modern Text Mining Framework
for R, 2018. R package version 0.5.1.

Tyler Rinker et al. lexicon: Lexicons for Text Analysis, 2019. R package
version 1.2.1.

Maciej Eder. Mind your corpus: systematic errors in authorship attribution.
Literary and Linguistic Computing, 28(4):603-614, 2013.

Maciej Eder and Jan Rybicki. Stylometry with r. In DH, pages 308-310,
2011.

M Eder, J Rybicki, and M Kestemont. Stylometry with r: a package for
computational text analysis. r journal 8 (1): 107-21, 2016.

Wiki word vectors. https://fasttext.cc/docs/en/
pretrained-vectors.htmll Accessed: 2019-10-29.

Tan Fellows. wordcloud, 2018. R package version 2.6.

Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. The kdd
process for extracting useful knowledge from volumes of data. Communica-
tions of the ACM, 39(11):27-34, 1996.

Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. Beyond ac-
curacy: evaluating recommender systems by coverage and serendipity. In
Proceedings of the fourth ACM conference on Recommender systems, pages
257-260, 2010.

Emil Hvitfeldt Os Keyes Kanishka Misra Tim Mastny Jeff Erickson David
Robinson Julia Silge Gabriela De Queiroz, Colin Fay. tidytext: Text Mining
using “dplyr’, “ggplot2’, and Other Tidy Tools, 2020. R package version 0.2.5.

Anatole Gershman, Travis Wolfe, Eugene Fink, and Jaime G Carbonell.
News personalization using support vector machines. 2011.

Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell.
A systematic literature review on fault prediction performance in software
engineering. IEEE Transactions on Software Engineering, 38(6):1276-1304,
2011.

Martin J Halvey and Mark T Keane. An assessment of tag presentation
techniques. In Proceedings of the 16th international conference on World
Wide Web, pages 1313-1314. ACM, 2007.

David I Holmes. The evolution of stylometry in humanities scholarship.
Literary and linguistic computing, 13(3):111-117, 1998.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[HTF09)]

[Hua08]

[KB10]

[KB16]

[KB19]

[KBBT09]

[KFD12]

[KJJ18]

[KV15]

[LKO8]

[LS18]

[ME19]

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements
of statistical learning: data mining, inference, and prediction, page 134.
Springer Science & Business Media, 2009.

Anna Huang. Similarity measures for text document clustering. In Proceed-
ings of the sixth new zealand computer science research student conference
(NZCSRSC2008), Christchurch, New Zealand, volume 4, pages 9-56, 2008.

Michal Kompan and Maéria Bielikova. Content-based news recommendation.
In International conference on electronic commerce and web technologies,
pages 61-72. Springer, 2010.

Marius Kaminskas and Derek Bridge. Diversity, serendipity, novelty, and
coverage: a survey and empirical analysis of beyond-accuracy objectives in
recommender systems. ACM Transactions on Interactive Intelligent Systems
(TiiS), 7(1):1-42, 2016.

Akitaka Matsuo Kenneth Benoit. spacyr: Wrapper to the ’spaCy’ NLP’
Library, 2019. R package version 1.2.

Barbara Kitchenham, O Pearl Brereton, David Budgen, Mark Turner, John
Bailey, and Stephen Linkman. Systematic literature reviews in software
engineering—a systematic literature review. Information and software tech-
nology, 51(1):7-15, 2009.

Evan Kirshenbaum, George Forman, and Michael Dugan. A live comparison
of methods for personalized article recommendation at forbes. com. In Joint
FEuropean Conference on Machine Learning and Knowledge Discovery in
Databases, pages 51-66. Springer, 2012.

Mozhgan Karimi, Dietmar Jannach, and Michael Jugovac. News recom-
mender systems—survey and roads ahead. Information Processing & Man-
agement, 54(6):1203-1227, 2018.

Carmen Klaussner and Carl Vogel. Stylochronometry: Timeline prediction in
stylometric analysis. In International Conference on Innovative Techniques
and Applications of Artificial Intelligence, pages 91-106. Springer, 2015.

Sungjick Lee and Han-joon Kim. Automatic keyword extraction from news
articles using tf-idf model. Networked Computing and Advanced Information
Management, 2, 2008.

Hao Li and Yuan Sun. English education text recommendation technology
based on word embedding. In 2018 International Conference on Big Data
and Artificial Intelligence (BDAI), pages 82-86. IEEE, 2018.

Mike Kestemont Steffen Pielstroem Maciej Eder, Jan Rybicki. stylo: Stylo-
metric Multivariate Analyses, 2019. R package version 0.7.1.

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[MK18]

[ML14]

[MSCT13]

[MT04]

[MWHL17]

[NSF*17]

[PBM13]

[Penll]

[R*03]

[RECC10]

[RST*14]

96

Michael Jugovac Mozhgan Karimi, Dietmar Jannach. News recommender
systems - survey and roads ahead. Information Processing Management,
54:pp. 1203-1227, 2018.

David Mimno and Moontae Lee. Low-dimensional embeddings for inter-
pretable anchor-based topic inference. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages
1319-1328, 2014.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems, pages 3111-3119,
2013.

Rada Mihalcea and Paul Tarau. Textrank: Bringing order into text. In
Proceedings of the 2004 conference on empirical methods in natural language
processing, pages 404-411, 2004.

Hualong Ma, Xiande Wang, Jianfeng Hou, and Yunjun Lu. Course recommen-
dation based on semantic similarity analysis. In 2017 8rd IEEFE International
Conference on Control Science and Systems Engineering (ICCSSE), pages
638—-641. IEEE, 2017.

Tempestt Neal, Kalaivani Sundararajan, Aneez Fatima, Yiming Yan, Yingfei
Xiang, and Damon Woodard. Surveying stylometry techniques and applica-
tions. ACM Computing Surveys (CSUR), 50(6):1-36, 2017.

Joshua T Pyle, Nicholas W Barrett, and Christopher Markley. Textual
document analysis using word cloud comparison, March 19 2013. US Patent
8,402,030.

James W Pennebaker. The secret life of pronouns. New Scientist,
211(2828):42-45, 2011.

Juan Ramos et al. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine
learning, volume 242, pages 133-142. Piscataway, NJ, 2003.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. Automatic
keyword extraction from individual documents. Text mining: applications
and theory, 1:1-20, 2010.

Margaret E Roberts, Brandon M Stewart, Dustin Tingley, et al. stm: R
package for structural topic models. Journal of Statistical Software, 10(2):1-
40, 2014.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[SBSS]

[SK17]

[SNW19]

[TGB15]

[Tra07]

[UDPUO0S]

[wep]

[WHO0]

[Wij19a]

[Wij19b)

Gerard Salton and Christopher Buckley. Term-weighting approaches in
automatic text retrieval. Information processing € management, 24(5):513—
523, 1988.

Jieun Son and Seoung Bum Kim. Content-based filtering for recommendation
systems using multiattribute networks. Expert Systems with Applications,
89:404-412, 2017.

Mete Sertkan, Julia Neidhardt, and Hannes Werthner. Documents, topics,
and authors: Text mining of online news. In 2019 IEEFE 21st Conference on
Business Informatics (CBI), volume 1, pages 405-413. IEEE, 2019.

Poonam B Thorat, RM Goudar, and Sunita Barve. Survey on collabora-
tive filtering, content-based filtering and hybrid recommendation system.
International Journal of Computer Applications, 110(4):31-36, 2015.

Josef Trappel. The austrian media landscape. Furopean media governance.
National and regional dimensions, pages 63-72, 2007.

JW Uys, ND Du Preez, and EW Uys. Leveraging unstructured information
using topic modelling. In PICMET’08-2008 Portland International Confer-
ence on Management of Engineering € Technology, pages 955-961. IEEE,
2008.

Corola-based word-embeddings. https://wwwl.ids-mannheim.de/
fileadmin/k1l/CoRoLa_based Word_Embeddings.pdfl Accessed:
2020-01-30.

Ridiger Wirth and Jochen Hipp. Crisp-dm: Towards a standard process
model for data mining. In Proceedings of the 4th international conference
on the practical applications of knowledge discovery and data mining, pages
29-39. Springer-Verlag London, UK, 2000.

Jan Wijffels. textrank: Summarize Text by Ranking Sentences and Finding
Keywords, 2019. R package version 0.3.

Jan Wijffels. udpipe: Tokenization, Parts of Speech Tagging, Lemmatization
and Dependency Parsing with the "UDPipe’ "NLP’ Toolkit, 2019. R package
version 0.8.3.

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www1.ids-mannheim.de/fileadmin/kl/CoRoLa_based_Word_Embeddings.pdf
https://www1.ids-mannheim.de/fileadmin/kl/CoRoLa_based_Word_Embeddings.pdf

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation & Problem Statement
	Research Questions
	Aim of the Work
	Methodological Approach

	State of the art
	Methods
	TF-IDF Scores
	TextRank Algorithm
	RAKE Algorithm
	Wordcloud Comparison
	Stylometry
	Dynamic Topic Modelling
	Word Embeddings
	Excluded Methods

	Data
	Raw Dataset
	Pre-Processing

	Data Analysis
	TF-IDF
	TextRank Algorithm
	RAKE Algorithm
	Wordcloud Comparison
	Stylometry
	Dynamic Topic Modelling
	Word Embeddings

	Comparison & Evaluation
	Finding Keywords/Topics
	Finding Trends
	Processing of a Dynamic Corpus
	Characteristics of Article Recommendations

	Conclusion
	Research Questions
	Strengths and Weaknesses of All Methods
	Practical Implications
	Future work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

