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Abstract

Abstract

The goal of this study was to evaluate the energy consumption of battery electric vehicles in

order to create a tool for estimating the maximum driving range. In the first part, a general

model of a battery electric vehicle was implemented as C++ code using the parameters of

the Mitsubishi i-MiEV for validation. Functions for the propulsion system, the battery, the

facilities for driving assistance and comfort and the behaviour of the driver were established,

describing the most important influences on the energy consumption, and hence the range

of the vehicle. The impacts of two different battery models on the energy consumption were

examined to justify the application of the simpler one in the remaining part of the work.

The outcome of the consumption estimation was then used for calculating cost functions to

find an energy-optimised route for the vehicle. In the second part, where a graph model

was developed for routing battery electric vehicles, these cost functions were assigned to the

graph. For the purpose of routing, a graph algorithm has been implemented in the third part,

which was adjusted to exploit the qualities of the developed energy-consumption model.

As final outcome, the developed program issues most energy-efficient paths from given start

points to any destination in the graph. This is an advantage in relation to common navigation

systems computing shortest distance paths. Moreover, the investigation of the results shows

how different features of vehicle and driver affect the range. Thus, the user can assess

the energy consumption of his driving style and the electronic devices of the vehicle when

switched on.

Kurzfassung

Das Ziel dieser Arbeit war es, den Energieverbrauch von batteriebetriebenen Elektrofahrzeu-

gen zu evaluieren und damit ein Werkzeug zur Abschätzung der verbleibenden Reichweite

zu schaffen. Im ersten Teil wurde ein allgemeines Modell für ein batteriebetriebenes Elek-

trofahrzeug als C++ Code implementiert. Zur Validierung wurden die Parameter eines
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Mitsubishi i-MiEV ausgewertet. Es wurden Funktionen zur Beschreibung des Antriebssys-

tems, der Batterie, der Fahrassistenz- und -komforteinrichtungen und des Fahrers erstellt,

welche sich als die wichtigsten Faktoren zur Reichweitenbestimmung herauskristallisiert hat-

ten. Die jeweiligen Einflüsse zweier verschiedener Batteriemodelle auf den Energieverbrauch

wurden untersucht, um die Verwendung des einfacheren Modells im weiteren Verlauf der

Arbeit zu rechtfertigen.

Im zweiten Teil der Arbeit wurde ein zur Routenberechnung für batteriebetriebene Elek-

trofahrzeuge geeignetes Graphenmodell aufgestellt, dem mittels der zuvor implementierten

Funktionen Kostenfunktionen für die Wegabschnitte zugeteilt wurden. Um eine energieop-

timierte Reiseroute zu finden, wurde im dritten Teil ein Graphenalgorithmus implementiert,

der dem entwickelten Energieverbrauchsmodell so angepasst wurde, dass er all dessen Ergeb-

nisse berücksichtigen kann.

Letztendlich gibt das entworfene Programm die energieeffizientesten Routen von gegebe-

nen Startpunkten zu jedem gewünschten Ziel, das innerhalb des betrachteten Graphen

liegt, aus. Damit hat es einen Vorteil gegenüber herkömmlichen Navigationssystemen, die

meist lediglich die Routen mit kürzester Distanz berechnen. Zusätzlich kann anhand der

Ergebnisse der Arbeit darauf geschlossen werden, wie sich die verschiedenen Einflüsse von

Fahrzeugkomponenten und Fahrer auf die Reichweite auswirken. Damit kann der Anwen-

der den durch seinen Fahrstil und eingeschaltete elektronische Einrichtungen verursachten

Energieverbrauch bewerten.
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Chapter 1

Introduction

One of the most frequent subjects of discussion in the 21st century is the transition from

fossil fuels to alternative energy sources. This is motivated by the climate change, the

advancing environmental awareness of the human population and national governments and

the effort of import countries to become independent from the main oil-producing countries.

Concerning cars the usage of the Battery Electric Vehicle (BEV) has restricted popularity

due to limited range and long battery-charging time, but the concept will be trendsetting

once these problems can be mastered. Under these circumstances and involving the fact

that there is still a lack of battery-charging infrastructure there is the demand to be able

to assess which places are reachable considering the current charge level. Also assistance

for economic driving integrated in cars is useful since people may try to save electricity by

optimising their driving attitudes. For example, the most energy-efficient route can be chosen

instead of taking the shortest way to a particular destination, or the acceleration and braking

behaviour can be enhanced. This is, by the way, an important environmental aspect as well.

Hence, the challenge is to predict energy consumption under real-world driving conditions

and to combine a good forecasting with an algorithm that provides routes with low predicted

energy consumption, based on the consumption model. With modifiable parameters such a

simulation could be customised and the user might be assisted in saving energy.

In this thesis the goal was to establish a realistic model of the energy consumption for

the Mitsubishi innovative Electric Vehicle, based on Mitsubishi i (i-MiEV), and to show

how to combine it with a routing algorithm that is able find most energy-efficient paths

exploiting consumption characteristics of the BEV. By changing the parameters accordingly

the resulting tool should be able to simulate other BEVs too. The concerning program codes

were written in C++. Related skills can be gained from [50]. The thesis can be structured

into three parts. These are the estimation of the energy consumption for a general input of

driving cycles, the development of a graph model for routing BEVs and its assignment with

the cost functions using the consumption model of the first part and the implementation of
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1.1 Related Works

a graph algorithm to do the final routing. The maximum driving range shall be indicated

by the coordinates of the traffic point where the battery runs out of charge.

An endless number of phenomenons affect the driving range but only a few of them can be

modelled for evaluating the energy consumption within reasonable time and effort. A further

objective of this work was to filter out the most essential ones while keeping the model as

realistic as possible. Finally, a sensitivity analysis of how a driver can affect the driving

range is given.

1.1 Related Works

Generally speaking, there exist various types of vehicles that use electricity for propulsion,

such as fuel-cell vehicles or plug-in-hybrid electric vehicles. Therefore, the term Electric

Vehicle (EV) will be used in more universal issues.

Many models of BEVs and their energy consumption already exist. For this work, those

are relevant that can be applied to construct cost functions for road sections. Most of the

studies consider the basic driving resistances, such as air drag, rolling resistance, slope of

the road and inertial resistance, to model the cost functions of a street map as can be seen

in [12]. In that work, the cost functions were kept simple because of the high number of

vehicles incorporated in a scenario describing BEVs moving in a road network and performing

charging operations arbitrarily without deciding for a specific energy-efficient path. Some

studies also include the impact of air conditioning. In [37] resistant forces and a lithium-ion

battery are modelled to determine the remaining driving range. Further contributions to

the energy consumption in [37] are only included using efficiency factors, so there is a lack

of more exact models of rotating parts and gear transmissions for example. The driving

profile in [37] is predicted using a stochastic approach instead of data from a street map

and simulating a driving style and an energy-consumption behaviour of a user. The tool

presented in [32] additionally incorporates rotating parts to the model of the BEV, but still

lacks of a model for the driver and additional energy consumption due to facilities for driving

assistance and comfort. It is tested for constant velocities and driving cycles, but no most

energy-efficient path query is carried out. In [52] again only driving resistances and some

power losses along the power train described by an efficiency factor are regarded. The force

generated by the electric machine is established using a simplified equation for the motor

torque, which is obtained from a motor characteristic in the present work. The simulation

package Janus presented in [14] is able to evaluate the change in the State Of Charge (SOC)

of a BEV, but does not consider as many influences as shall be included here, for example

a driver model and the energy consumption of heating, air conditioning, ventilation and

exterior lighting. Additionally, Janus accepts driving cycles as input and is not able to build

cost functions for a graph. Also [48] only works with single driving cycles as input without
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1.1 Related Works

considering a driver model. Both of the lastly addressed papers are outdated and still model

lead-acid batteries instead of lithium-ion batteries now being state of the art. In [6] an

existing model for the energy loss adopting the power-train components as “black boxes”

is used to calculate a cost function in order to compare route choices of different vehicle

types. In [8] a sensitivity analysis on various effects on energy demand is done without using

any graph algorithm building a route. For this, slope, rolling resistance and air drag were

modelled and some efficiency coefficients were implemented.

A key plank of routing BEVs is the graph model. Energy can be stored in the battery when

braking the BEV. Thus, turn costs play a central role because the vehicle has to slow down

when turning at a junction. Such turn costs are taken into account for example in [51],

where the creation of a pseudo-dual graph is explained. The described graph was used with

a modified structure in this thesis.

The goal of the present thesis was to implement a suitable routing algorithm for the realistic

BEV model. A lot of research on energy-efficient routing for EVs has already been done.

In [7] the challenges being posed particularly for routing BEVs are well defined. Lots of

special phenomenons emerging only for such vehicles are addressed, some of the concepts

noted in that work could further enhance the tool presented here. However, the main focus

in the present thesis was on employing the developed energy-consumption model for the

graph algorithm. Thus, the latter was customised for the routing of the designed vehicle and

further special algorithms described in [7] were omitted. An algorithm called A∗ search is

introduced in [40], forgoing preprocessing techniques in order to be able to ask for specific

parameters such as weight at query time. The graph models of the two lastly addressed

papers do not consider turn costs.

There are also works that consider both energy consumption and routing of EVs. In [11] only

the four resistant forces already mentioned are used to determine the energy consumption

along a path and regenerative braking is not considered. That is because the used algorithm

cannot predict brake events. Such events shall be regarded here, namely when a stop sign

or a traffic light is expected at a junction. Another example for simple cost functions is

given by [18], where a graph algorithm is developed regarding only the slope of a street

and finite capacity of the battery. In [10] an existing model regarding driving resistances

and transmission losses based on measurements is used. However, to make a really good

approach for a cost function more than just general forces acting on an EV should be taken

into account, so as to describe the attitudes of a vehicle type. As far as possible, “black

boxes” should be avoided. Several factors may be overestimated and can be neglected, but

others may show unexpected effects on the battery’s SOC. Environmental conditions, road

and vehicle characteristics are considered in [9], but the recovery of energy when braking is

not regarded. Regenerative braking is seen as one of the most remarkable features of BEVs

6



1.2 Contribution and Outline

and so its installation into the model played an important role in the present thesis.

Many existing search algorithms are listed in [16] and [41], but none of them regards the

specific requirements on routing BEVs. The question of how far one is still able to get with a

certain charge level is not referred to in the cited papers, except for [37]. The tool presented

in this thesis shall give a feedback about that.

1.2 Contribution and Outline

Objective and Contribution

The aim of this study was to create a tool for estimating the range of a BEV for a given

initial SOC and to find specific routes that minimise the energy consumption of the vehicle.

Special attention was paid on the implementation of the vehicle model required to calculate

the SOC considering various influences on its value over time. It was tried to keep the model

of the vehicle as realistic as possible to close the gap in the state of the art. Doing so, the

most significant contribution is the calculation of realistic edge weights describing the energy

costs of road sections.

It was no objective to forgo preprocessing techniques or to be able to ask for specific param-

eters at query time, since a useful graph had to be composed during the preprocessing time.

By contrast, an essential issue was the consideration of BEV-specific features like regener-

ative braking using turn costs. The added value to the state of the art concerning routing

mechanisms is the development of an algorithm being applicable to a realistic consumption

model. Graphs of large scale have not been considered in this work, the pre-existing graph

used comprises the street map of Vienna. For large graphs containing several cities it would

be useful to implement special techniques like introducing highway hierarchies as described

in [41]. In future works such concepts could be brought in as well.

The significance of the study lies in the fact that a potential user of a BEV may have the fear

of ending up somewhere on the way with a battery run out of charge. Regarding the lack of

battery-charging sites, this anxiety is justified. The tool created shall address this problem

and help to motivate people to employ BEVs. Moreover, answers to customer questions

such as how the driver can affect the energy consumption and consequently the SOC by his

driving style can be derived from the output of the tool.

Structure of the Thesis

The present thesis is basically structured in three main parts. As a first self-contained part

of the work a vehicle model is implemented using driving cycles as input and issuing the

SOC over the time as output. This is described in Chapter 3.
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In the second part described by Chapter 4 a graph model for routing tasks on BEVs is

developed. The difficulty is that the graph should be able to hold the costs for road sections

and turn costs as well. Also the common graph algorithms should be able to work with the

graph such that as few things as possible have to be changed on them. The functions and

classes implemented in the first part are used to assign the costs to the graph.

Chapter 5 describes the third part, where a graph algorithm is implemented to do the final

routing. Doing so, it uses the graph created in the second part as input and issues shortest

paths and related SOC values. Some graph-theoretic preliminaries are stated in Chapter 2.

The results are presented in Chapter 6 and Chapter 7 gives some concluding remarks.

1.3 Methodological Approach

The three self-contained parts were implemented as C++ code and the programs of part

two and three were put together to form a tool that can find most energy-efficient paths and

issue driving range and SOC of a BEV using the graph of a street map as input. The tool

should work on any system including a C++ compiler. Representing an ordinary BEV the

i-MiEV was selected to be the first object to provide specific parameters for the evaluation

of the program. Since there is such a model at the company location used as business car,

additionally depicting the attitudes of the i-MiEV has the benefit that the output can be

verified easily. Measurement data of the business car was the most relevant reference to test

the functionality. Other BEVs can be simulated with the tool by changing the parameters

accordingly.

The input data and structures of the three parts are depicted in Figure 1.1. The blue boxes

represent the classes implemented in the program code and the arrows outline the data flow.

The latter describes which class uses information or functions provided by other classes.

Sheet symbols signal the possibility of parameter entries by the user. The dashed arrows

mark the data flow of the self-contained program for reading driving cycles and issuing

the SOC described by the first part of this thesis. Thus, data is input from a class for

reading the driving cycle (DrivingCycle), then the data is being prepared by a class providing

functions for numerical mathematics (NumericalMathematics) and sent to a class describing

the behaviour of the driver (Driver) which can be configured to describe the user-specific

driving style. Parameters for the energy consumption of facilities for driving assistance and

comfort and for the battery are accepted by a class describing the battery model (Battery).

A file containing open-circuit voltage data is interpolated by NumericalMathematics before

the data is used by Battery . Vehicle parameters can be changed in a class describing the

mechanical model of the vehicle (Propulsion). Battery uses the information of Propulsion

to calculate the SOC.
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1.3 Methodological Approach

Figure 1.1: Structure of the particular programs of the three different self-contained parts
in the thesis

The data flow of the tool for finding the most energy-efficient path and the actual SOC

of the BEV consisting of part two and three of this thesis is highlighted by solid arrows.

The tool partly uses the program structure of the first part and complements it with new

classes. Consequently, the data of a graph in a specific format, which will be explained

in the following sections, is read in by a class for reading graph data and generating a

pseudo-dual graph (PseudoDualGraph). Then the classes Driver and Propulsion process

the data and hand over their evaluations to a class linking all program files to compute

the costs of road sections (Cost). The class Battery is instantiated within Cost to create

functions for determining the current SOC. These are called in a class performing all routing

tasks (GraphAlgorithm) to compute and visualise the most energy-efficient path using the

intermediate results of Cost. The intermediate results contain the pseudo-dual graph and

the belonging calculated energy-consumption data. These are also the results of the self-
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contained program for creating the graph, described by the second part of this thesis. The

graph algorithm finding the path forms the third part of this thesis and will be addressed in

Chapter 5. Functions of NumericalMathematics are used for numeric calculations in Battery

and Cost.
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Chapter 2

Graph-Theoretic Preliminaries

This chapter may be skipped by the reader who is familiar with the concepts of graphs,

pseudo-dual graphs and graph algorithms. The basic ideas and pseudo codes for graphs and

graph algorithms are discussed in [33] and will also be briefly summarised here. A definition

of the pseudo-dual graph can be found in [51].

2.1 Graphs and Graph Models for Specific Routing Tasks

A graph G consists of a set V of vertices and a set E of edges. Each edge connects two ver-

tices. From a mathematical point of view, a graph is a pair of a vertex set V = {v1, v2, ..., vn}
and an edge set E = {e1, e2, ..., em},

G = (V ,E). (2.1)

In this context vi are single vertices and ej are single edges in the Graph. The total number

of vertices in V is denoted by n and the total number of edges in E is denoted by m. A

graph can be stated as a set of vertices and a set of edges, for instance

G =
(
{v0, v1, v2, v3, v4}, {(v0, v1), (v1, v2), (v2, v3), (v3, v4)}

)
. (2.2)

In a directed graph an edge e ∈ E connects two vertices {u, v} ∈ V such that one of them is

the source vertex and the other is the target vertex,

e = (u, v). (2.3)

Working with undirected graphs it is understood that an edge (u, v) ∈ G consisting of two

vertices {u, v} also considers the reverse edge (v, u) without explicitly indicating this. It

is also possible to assign a weight or a cost c : E −→ R to an edge, such as the distance

between the two vertices it connects.
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2.1 Graphs and Graph Models for Specific Routing Tasks

The indegree of a vertex v is the number of edges (u, v) linking a vertex u to vertex v,

indegree(v) = |{(u, v) ∈ E}|, (2.4)

whereas the outdegree of v is defined as the number of edges (v, u) leaving v,

outdegree(v) = |{(v, u) ∈ E}|. (2.5)

A path is a sequence of consecutive vertices of a graph G that are connected in pairs by

edges. That is for example

〈v0, v1, v2〉 = 〈(v0, v1), (v1, v2)〉 (2.6)

with the vertices {v0, v1, v2} ∈ G. The vertex where a path starts is called the source s and

the vertex where it ends is called the target t. The path is simple if its vertices are pairwise

distinct except for s and t, which can also be the same. If the latter is the case, the path

is called a cycle. A cycle is called a negative cycle if the cost for travelling once around

it is negative. A directed graph G is said to be strongly connected if there always exists a

path connecting any two vertices of G. The graph of a street map should always be strongly

connected, such that the case of a vertex not being reachable from another vertex does not

have to be considered. A path is a shortest path if the cost to get from s to t is minimal.

Figure 2.1 shows a small example graph with weights, also a negative one. The graph is

Figure 2.1: Small graph with weights

directed, that means it is only possible to travel in direction of the arrows. The vertices

are numbered from zero to four, the edge weights are indicated as real numbers above the

edges. In a street graph most of the vertices are connected such that it is feasible to get to

the other from each of two linked vertices, unless the edge is a one-way street.

Within this thesis another type of graph is used, namely the pseudo-dual graph. Its definition

is taken from [51] and is formulated in this thesis as follows. The graph D(V D, ED) is the

complete pseudo-dual graph of the primal graph G(V ,E) if three conditions are met. First,

if f̄ is a bijective function that converts an edge e to a vertex of the pseudo-dual graph D,

for each edge ei ∈ G there has to be a vertex νi = f̄(ei) and f̄−1(νi) = ei must apply. So,

12



2.1 Graphs and Graph Models for Specific Routing Tasks

the edges of the primal graph are the new vertices of the pseudo-dual graph and the number

of vertices nD in the pseudo-dual graph equals m.

Second, for each pair of consecutive edges (ei, ej) ∈ G there has to be a pseudo-dual edge

ε ∈ ED connecting the vertices νi = f̄(ei), νj = f̄(ej) such that νi is the source vertex and

νj is the target vertex. Thus, the edges of the pseudo-dual graph connect two consecutive

edges of the primal graph and the number of edges in the pseudo-dual graph mD equals the

sum of all pseudo-dual edges εi produced in this way.

Third, there has to be a cost function cε : ED −→ R. This function describes the costs

for all edges of E of the primal graph and the costs it takes to pass from ei to ej for each

consecutive pair of edges (ei, ej) ∈ G.

A restricted pseudo-dual graph R is a complete pseudo-dual graph D which has no edges

connecting edges of the primal graph that link the same vertices of the primal graph in two

directions. Doing so, turning on edges of the primal graph without passing the end vertices

is prohibited.

The procedure to create a restricted pseudo-dual graph from a given primal graph is illus-

trated in Figure 2.2. Therein the primal graph is depicted as a junction of directed edges indi-

Figure 2.2: Primal graph with edge numbers (grey digits) and the related restricted pseudo-
dual graph with vertex numbers (black digits)

cated by grey arrows and dots. The edges are labelled using grey digits. The related pseudo-

dual graph connects consecutive edges as the pairs of edges {(1, 2), (1, 3), (1, 5), (4, 2), (4, 3)}.
These are the edges of the pseudo-dual graph, which is indicated by black arrows and dots.
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2.2 Shortest Path Algorithms

The edges of the primal graph are used as vertices of the pseudo-dual graph, which are

labelled using black digits. Since the pseudo-dual graph is restricted, the primal edges 4 and

5 are not connected to a pseudo-dual edge. Thus, nD = 5 and mD = 5 hold.

2.2 Shortest Path Algorithms

As already stated before the cost of a shortest path from s to t determined by the cost

function c is minimal. Since there may exist several paths with the same minimal cost,

it is spoken of a shortest path and not of the shortest path. The distance of a vertex u

is defined as the cost it takes to get there from the source s. A shortest path algorithm

is a graph algorithm that finds shortest paths from a source s to a target t. Several of

them yet have been established, the most famous are the Bellman-Ford algorithm from [13]

and [19] and Dijkstra’s algorithm from [17]. The pseudo codes to describe the algorithms

are taken from [33] because clear versions of them are stated there. Accordingly, algorithm

instructions are written bold, parameters are listed in parentheses and return or assigned

values are stated after a colon. In this context, a function returns a certain value whereas a

procedure has no return value.

Both algorithms use the so-called edge-relaxation procedure named relax within this thesis.

The pseudo code for relax accepting an edge e as parameter is given in Figure 2.3. If d[u] is

Procedure relax (e = (u, v) : Edge)
if d[u] + c(e) < d[v] then d[v] := d[u] + c(e); parent[v] := u

Figure 2.3: Pseudo code for the edge-relaxation procedure

the distance from s to u and c((u, v)) is the cost of an edge coming out of u, the procedure

works as follows. The distance of a vertex v consecutive to u is updated to the distance d[u]

plus the cost to get from u to v if the distance of v up to this time is larger than that. Doing

so, the distance of v will be decreased as long as edges (u, v) with lower cost can be found.

Additionally, a parent vector can be created to store the predecessors of v in the shortest

path, in this case parent[v] = u. To relax an edge means applying the procedure relax to

the edge.

The complete algorithm of Dijkstra is given in Figure 2.4. In Dijkstra’s algorithm the distance

vector d is declared and initialised with infinity on each position in d. The parent vector is

declared and can be initialised with undefined values ⊥. The parent of s is set as s. Then, an

addressable priority queue for vertices is declared. An addressable priority queue is a data

structure whose elements are assigned with keys that determine the processing sequence

of the elements. The procedure decreaseKey supplied by the data structure removes the

element just processed, decreases its key or increases its priority and reinserts the element.
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2.2 Shortest Path Algorithms

Function Dijkstra (s : VertexId) : VertexArray× VertexArray
d = 〈∞, ...,∞〉 : VertexArray of R ∪ {∞}
parent = 〈⊥, ...,⊥〉 : VertexArray of VertexId
parent[s] := s
Q : VertexPriorityQueue
d[s] := 0; Q.insert(s)
while Q 6= 0 do

u := Q.deleteMin
foreach e = (u, v) ∈ E do

if d[u] + c(e) < d[v] then
d[v] := d[u] + c(e)
parent[v] := u
if ν ∈ Q then Q.decreaseKey(ν)
else Q.insert(ν)

return (d, parent)

Figure 2.4: Pseudo code for Dijkstra’s algorithm

The procedure insert inserts an element into the priority queue and the procedure deleteMin

returns the element with the minimal key and deletes it from the priority queue. In the

algorithm all reached vertices the edges of which are not all relaxed yet are stored in the

adressable priority queue. Doing so, their tentative distance values are used as keys. Thus,

the distance of s is set as zero and s is inserted into the addressable priority queue. While

there are still vertices in the priority queue, the edges going out of the vertex with the

minimal key are relaxed. If the distance of a vertex v is updated, the decreaseKey operation

changes the key of v accordingly if it is an element of the priority queue already. Else if d[v]

is updated but is not an element of the priority queue yet, v will be inserted. The function

returns the distance and the parent vector. In this way the shortest path is found quickly

by considering the currently most promising path only. The algorithm can be stopped as

soon as the element taken from the top of the priority queue is the target t. This technique

is called early stopping.

The complete Bellman-Ford algorithm is given in Figure 2.5. In the Bellman-Ford algorithm

Function BellmanFord (s : VertexId) : VertexArray× VertexArray
d = 〈∞, ...,∞〉 : VertexArray of R ∪ {−∞,∞}
parent = 〈⊥, ...,⊥〉 : VertexArray of VertexId
d[s] := 0; parent[s] := s
for i := 1 to n− 1 do

forall e = (u, v) ∈ E do relax(e)
return (d, parent)

Figure 2.5: Pseudo code for the Bellman-Ford algorithm

the vectors or arrays are declared and initialised in the same way as in Dijkstra’s algorithm.
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2.2 Shortest Path Algorithms

The edge-relaxation procedure is carried out for every edge n−1 times. Doing so, in the first

step all shortest paths including at most one edge are calculated, in the second all shortest

paths with at most two edges are calculated and so on until all shortest paths including n−1

edges are found. A simple path in G has at most n − 1 edges, so the algorithm guarantees

the correct solution if there are no negative cycles in G. If there is at least one negative

cycle in the graph, the distance to the destination can be decreased by going around the

negative cycle repeatedly, such that the algorithm will find a shorter path after each further

iteration. It is unlikely that there exist negative cycles in the graph of a street map because

the cost functions usually describe non-negative distances, slopes or energy consumption and

negative cycles are physically impossible then.

The two presented algorithms pursue the same target, but each has its advantages and

disadvantages. An important criterion is the runtime. Asymptotic growth rates of the

runtimes of algorithms are usually stated with a capitalised O followed by a formula in

parentheses, containing numbers of characteristic input parameters. For a more detailed

explanation see [33]. If there are m edges and n vertices, the runtime of Dijkstra’s algorithm

grows with O((m+ n) · log n), while the runtime of the Bellman-Ford algorithm grows with

O(m · n). Thus, Dijkstra’s algorithm is faster.

Unfortunately, it is not possible to apply Dijkstra’s algorithm if there are negative weights in

a graph. This can be seen as follows. Using the pseudo code of Figure 2.4, the shortest path

from s = 0 to t = 2 in the graph of Figure 2.1 is sought. It is determined as 0→ 1→ 2 with

the total cost of 3.5 even before travelling along 0 → 3 is considered. In fact, the shortest

path is 0 → 3 → 2 with the total cost of 3.4 though. The Bellman-Ford algorithm iterates

shortest paths from paths including at most one edge to paths with at most n − 1 edges.

Doing so, it has no problems to process a graph with negative weights, but takes more time

than Dijkstra’s algorithm.

Weighted graphs can be edited such that all negative costs disappear applying a modified

Bellman-Ford algorithm. Then, Dijkstra’s algorithm can be applied to find shortest paths.

This is called the Johnson’s algorithm or sometimes potential shifting. The benefit is that

the slower Bellman-Ford algorithm has to be applied on the graph only once to shift the

weights. Then, for any shortest path query the fast algorithm of Dijkstra can be applied.

The detailed procedure of Johnson’s algorithm is as follows. A new vertex w is added to the

considered directed Graph G = (V,E) and edges from w to all other vertices in G are created

and weighted with zero. Then, the Bellman-Ford algorithm is applied to the resulting graph

G′ = (V ′, E ′) using the vertex w as source s. Doing so, the distances from s to all vertices

are determined. The distance d[u] of a vertex u ∈ V ′ is now defined as the vertex potential

pot(u) of u. With that, the weights of the original graph can be shifted. For an edge e(u, v)
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the inequality

pot(v) ≤ pot(u) + c(e) (2.7)

holds, since the potential pot(u) is the cost of the shortest path to the according vertex u

and therefore the distance to v can not be larger than the distance of u plus the cost it takes

to get from u to v. That leads to

0 ≤ pot(u) + c(e)− pot(v) (2.8)

and therefore the shifted costs have to be greater or equal to zero if they are defined as

c̄(e) = pot(u) + c(e)− pot(v). (2.9)

Now the added vertex w is deleted again and Dijkstra’s algorithm can be applied to the

graph with shifted costs. It remains to be proven that the shortest path with respect to the

shifted costs stays the same as the shortest path with respect to the original costs. Therefore,

let p and q be paths from u to v. Then, the shortest paths determined using c̄ are the same

as those determined using c if

c̄(p) = pot(u) + c(p)− pot(v). (2.10)

and

c̄(q) = pot(u) + c(q)− pot(v). (2.11)

hold. If p is a sequence of edges p = 〈e0, ..., ek−1〉 and for each edge ei = (vi, vi+1) holds and

if u = v0 and v = vk hold, then also

c̄(p) =
k−1∑
i=0

c̄(ei) =
k−1∑
i=0

(pot(vi) + c(ei)− pot(vi+1))

= pot(v0) +
k−1∑
i=0

c(ei)− pot(vk) = pot(v0) + c(p)− pot(vk)

(2.12)

holds, and hence the Equations (2.10) and (2.11) are valid. This proof was taken from [33].

The ideas for Johnson’s algorithm or potential shifting are noted in [33] and [3].

Johnson’s algorithm shall be illustrated using the weighted example graph depicted in Fig-

ure 2.6 with solid arrows as edges and dots as vertices. The vertices are numbered from one

to four and the edge weights are stated as black digits below the edges. A new vertex with

ID zero is added and edges from zero to all other vertices are created and weighted with

zero, indicated by dashed arrows. The vertex potentials after applying the Bellman-Ford

algorithm with s = 0 are as listed in Table 2.1.
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Table 2.1: Vertex potentials for the example graph from Figure 2.6

Vertex vi Potential pot(vi)

1 0

2 0

3 −0.5

4 0

By applying Equation (2.9) on the vertex potentials the shifted costs are found. They are

indicated as red digits above the edges in Figure 2.6. For example, the shifted weight for

the edge (2, 3) according to Equation (2.9) results in

c̄(2, 3) = 0 + 2.5− (−0.5) = 3. (2.13)

Figure 2.6: Small graph with edge weights (black digits) and shifted edge weights (red digits)
found when applying Johnson’s algorithm
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Chapter 3

The Vehicle Model

As the first self-contained part of this thesis, this chapter describes the functionality of the

classes for a program, implemented in C++, that aims to calculate the SOC of the i-MiEV

over time using driving cycles as input. Figure 3.1 depicts the components of a BEV that

were considered. These components were modelled within the presented classes. Most of the

functions and procedures were generated as inline functions for a faster access.

Figure 3.1: Considered components of a BEV and the belonging efficiency factors η, including
control elements and signals (green), lithium-ion battery and direct electricity consumers
(orange), lead-acid battery and direct electricity consumers (blue) and mechanic components
(black)

A driver model was established in the class Driver by a controller that regulates the positions
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of the accelerator and the brake pedal and with that the torque of the electric motor and

the brakes. Related components in Figure 3.1 are coloured green.

Power is requested from the motor when the vehicle is in use and has to be transferred over

the differential with the efficiency factor ηdiff and the gear with the efficiency factor ηgear.

The electric motor itself also has an efficiency factor ηmotor. Together with the external

resistance forces and the forces of the mechanical brakes, these aspects were implemented in

the class Propulsion. According modules are coloured black in Figure 3.1.

The power for the electric motor is provided by a lithium-ion battery with the usual voltage

of 360V . This battery provides Direct Current (DC) and the electric machine works with

Alternating Current (AC). So, if the motor takes power from the lithium-ion battery, the

voltage is converted from DC to AC voltage in the inverter with the efficiency factor ηinv.

The lithium-ion battery also directly supplies the air-conditioning system and the heating,

composed to Heating and Air Conditioning (HAC). It has the efficiency factor η360V . All the

direct electricity consumers and the battery itself are indicated as orange elements in Fig-

ure 3.1. If the BEV brakes, energy is stored in the lithium-ion battery due to a regenerative

braking system. The surplus of energy in the motor is transferred to the battery via the

inverter converting AC voltage to DC voltage this time. These procedures are implemented

in the class Battery .

In this thesis, auxiliaries are defined as all electricity consumers except for the motor, the

exterior lighting, the air-conditioning system and the heating. Hence, some remaining con-

sumers are the interior lighting and the ventilation for example. The power for these auxil-

iaries and the exterior lighting is taken from a lead-acid battery, which usually has a voltage

of 12V , with the efficiency factor η12V . It is charged by the lithium-ion battery and a DC-

DC converter with the efficiency factor ηcon reducing the voltage of the lithium-ion battery.

The lead-acid battery and its direct electricity consumers are indicated as blue elements in

Figure 3.1. The energy consumption of the exterior lighting, the air-conditioning system,

the heating and the auxiliaries is specified in the class Driver since it is the driver who

determines whether these facilities are turned on or off.

3.1 Driving Cycles as First Input Data

A class DrivingCycle was created to read in data of driving cycles. The according files

contain specifications for the position in meters and the velocity in km
h

for a certain time

reading in seconds in tabular form. A variable for the slope was introduced, expecting a

specification in percent. Since the cycles are tested on flat terrain, it was set to zero. The

velocity was converted to m
s

to get consistent Système International d’unités (SI) units. The

memory for the data was dynamically allocated. For the processing of multiple cycles in a
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row, the row number of the appropriate matrix was multiplied with the number of cycles to

be processed acting as new size for the matrix where the concatenated data was saved.

3.2 Functions for Numerical Mathematics

All basic data used to reproduce a driving cycle or a route is given as vectors of discrete values.

This implies that numerical mathematics have to be used to calculate motion quantities.

3.2.1 Preliminaries

In [31] an introduction to numerical mathematics is given. These lecture notes contain all

structures used within this thesis. Generally, the difference quotient

f(xi)− f(xi−1)

xi − xi−1

(3.1)

is used to evaluate derivatives of a function f with respect to x at xi. To evaluate numeric

integrals, the trapezoidal rule∫ xi

xi−1

f(x) · dx ≈ (xi − xi−1) · f(xi) + f(xi−1)

2
(3.2)

has been used.

For the interpolation of data the formula

f(xinter) = f(xi−1) +
f(xi)− f(xi−1)

xi − xi−1

· (xinter − xi−1) (3.3)

has been used, where xinter is between xi and xi−1. Hence, linear interpolation between the

reference points has been used.

3.2.2 Implementation

The presented classes were instantiated and the object files were linked using a function

called in the main file. In this function the desired sample time T as the interval between

two sample values is defined. Since the data comes with a time vector without fixed intervals,

it seemed to be reasonable to interpolate this data in order to get a fixed sample rate. The

new number of elements arising from such an interpolation is the full duration of the driving

cycle divided by the desired sample time and of course it has to be multiplied with the

number of cycles to be processed as mentioned in Section 3.1. The new time vector was

created multiplying the sample time with the progressing index of a loop being increased by

one in every loop run until the final size of the vector is reached. All remaining data, which

was extended for processing multiple cycles, was interpolated at the appropriate values of the
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new time vector using Formula (3.3). Consequently, the time vector is the sample vector and

contains the times for which functional values are requested by interpolation. To find the

correct index i referring to the value that is the first one following the desired sample value,

in this case this would be the point in time ensuing the time to be interpolated, interpolation

variables were introduced for each data vector. Such a variable is increased with unity steps

as long as the sample value is greater than or equal to the variable and is used as index i in

Formula (3.3). As an example, it is assumed that the functional value f(x) at x = 2.5 has

to be determined when the functional values are given as f(1), f(2), f(3) and so on. Then

if the interpolation variable var starts at 1 it is increased by one until var = 3, such that

2.5 lies between var and var − 1.

Another interpolation procedure has been implemented for a sample vector holding decreas-

ing values with increasing index i. Doing so, while the sample value is smaller than the

introduced interpolation variable starting as the last index number minus one, the variable

is decreased by one and after that used as index i in Formula (3.3) again. It is supposed

that f(1.5) is searched when the functional values are given as f(0), f(1), f(2) and f(3). If

the interpolation variable var starts at 3 it is decreased by one until var = 2 such that 1.5

lies between var and var − 1. This procedure was used to interpolate the function of the

open-circuit voltage, see Section 3.5.

The introduced procedures and the numerical integral realised with the trapezoidal rule

corresponding to Equation (3.2) have been implemented in the class NumericalMathematics.

An implementation of a function for the difference quotient according to Equation (3.1) in

NumericalMathematics did not prove useful since it would only enlarge the source code

without having any impact on transparency.

3.3 Simulation of the Behaviour of a Human Driver

The driver of a car usually tries to follow an imposed velocity. That means he or she

compares his actual velocity with the limit on a street or the velocity over time imposed by

a driving cycle and corrects the difference by accelerating or decelerating. That complies

with a controller regulating the positions of the accelerator and the brake pedal of the car

to minimise the control error, which is the difference between the imposed and the actual

velocity.

3.3.1 Preliminaries

The Equation for the continuous control signal u(t)

u(t) = KP ·
[
e(t) +

1

TN
·
∫ t

0

e(τ) · dτ + TV ·
de(t)

dt

]
(3.4)
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describes the output of a continuous-time PID-controller with the controller-gain constant

KP , the continuous system deviation or control error e(t), the reset time TN and the deriva-

tive time TV . Using the trapezoidal rule (3.2) for integration, for the control signal u(kT ) of

a discrete-time PID-controller

u(kT ) = KP ·
[
e(kT ) +

T

TN
·

k∑
h=1

e((h− 1)T ) + e(hT )

2
+
TV
T
· (e(kT )− e((k − 1)T ))

]
(3.5)

holds [27], where T is the sampling interval and k is a counter. Here, the system deviation

e(kT ) is given as discrete value. Formula (3.5) can be modified to

u(kT ) = u((k − 1)T ) +KP ·
[
(e(kT )− e((k − 1)T )) +

T

TN
· e((k − 1)T )) + e(kT )

2

+
TV
T
·
(
e(kT )− 2 · e((k − 1)T ) + e((k − 2)T )

)] (3.6)

by subtracting u((k − 1)T ) from u(kT ) calculated with Equation (3.5). Equation (3.6) is

known as the position algorithm for a PID-controller using the trapezoidal rule. Within

this thesis it is assumed that the controller generates the control signal as the input of an

actuator. This actuator affects the variable to be controlled, the control variable y(t). For

example, if the liquid level in a container has to be controlled, the control variable is the

liquid level and the control signal manipulates the position of a valve to adjust the liquid

level. More information about digital control can be found in [27].

Furthermore the windup effect and countermeasures remain to be discussed. In practical

applications the control signal u(t) is limited due to limitation of the available controller-

output power or due to input limitations of the system to be controlled. The limitation of

the control signal u(t) can be modelled by limiting u(t) to upper and lower limits ±usat,max
by means of a limiter function. This means, that if the control signal u(t) ranges in the

saturation region the saturated value +usat,max or −usat,max is forwarded to the system to

be controlled. This leads for feedback systems with an integral term in the controller to the

effect, that the control error is continually integrated and the absolute value of the output

of the integrator ui(t) increases as can be seen in Figure 3.2. This is called the windup

effect. When the control error changes its sign, ui(t) decreases and if it is small enough to

be inside the restriction bounds, the control loop works in the desired way again. During

the time when u(t) is limited, the windup effect leads to an unwanted over- or undershoot

of the control variable y(t). As a countermeasure, the windup is counteracted proportional

to (u(t)− usat(t)), where usat(t) is the output of the limiter function, depicted in Figure 3.2.

This leads to the equation

dui
dt

=
KP

TN
· e(t)− 1

Ta
· (u(t)− usat(t)) (3.7)

for the change of ui(t) using the tracking time constant Ta as proportional factor. [25]

23



3.3 Simulation of the Behaviour of a Human Driver

Figure 3.2 shows the part of a control loop with the controller and the discussed anti-windup

measure. The auxiliary functions

Figure 3.2: PID-controller and anti-windup measure

g(t) :=
1

Ta
· (u(t)− usat(t)) (3.8)

and

f(t) :=
KP

TN
· e(t)− g(t) (3.9)

are used to describe the intermediate steps in Section 3.3.2. The operating principle of a

continuous PID-controller as described by Equation (3.4) is also illustrated in Figure 3.2.

From the top down there are three branches describing the P-, D- and I-part of the controller.

The branch for the anti-windup measure is only considered in the I-part of the controller. The

figure can also be consulted for a discrete PID-controller if the variable t for the continuous

time is replaced by kT .

3.3.2 Implementation

In the class Driver a function for the control error and another one for the controller returning

the limited control signal usat(kT ) manipulating the positions of the accelerator pedal and the

brake pedal have been implemented. The positions of the pedals take the part of an actuator

adjusting the actual propulsion force and therefore the velocity of the car, as discussed in

Section 3.4. Thus, the velocity of the car is the control variable. The controller was realised
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3.3 Simulation of the Behaviour of a Human Driver

as a PID-controller with anti-windup measures as explained in Section 3.3.1. Figure 3.2

also holds for the implemented controller, only the continuous time t has to be replaced by

discrete steps kT . Initially g(kT ) and f(kT ) are zero and from then on

g(kT ) =
u(kT )− usat(kT )

Ta
(3.10)

and

f(kT ) =
KP

TN
· e(kT )− g(kT ) (3.11)

hold. According to Equation (3.6) the control signal before being saturated is

u(kT ) = u((k − 1)T ) +KP · (e(kT )− e((k − 1)T )) + T · f((k − 1)T ) + f(kT )

2

+KP ·
TV
T
·
(
e(kT )− 2 · e((k − 1)T )) + e((k − 2)T ))

)
.

(3.12)

In a saturation block the control signal was set as usat(kT ) = 1 if greater and as usat(kT ) =

−1 if smaller, else it just kept the value of usat(kT ) = u(kT ). The values 1 and −1 were

defined as the end positions of the accelerator pedal and the brake pedal. The controller-

gain constant KP was set as 0.4, the reset time TN as 0.4667 s, the derivative time TV as

0 s and the tracking time constant Ta as 0.1 s. This configuration was set empirically by

assessing the behaviour of a typical driver. Doing so, the method of the cumulative time

constant described in [25] was used to get first estimates for the controller settings for a

stable control. This method uses empirical tuning rules for a controller looking at the step

response of the system to be controlled, meaning that the reaction of the system to a sudden

change of the variable to be controlled has to be evaluated. In the prevailing circumstances

the desired step response to a change of speed limits on roads of the system is a constant

acceleration of the vehicle from the current velocity to the changed speed limit. As maximal

acceleration and deceleration values found in the Worldwide harmonized Light-Duty vehicles

Test Procedure (WLTP) the acceleration aap assumed for an acceleration process was set

as 1.5 m
s2

and the deceleration adp assumed for a braking process was set as 2 m
s2

. Figure 3.3

depicts the desired acceleration process of the vehicle for a speed change from 0 to 10 km
h

and the system parameters used for the method of the cumulative time constant. Thus,

the system parameter KS is the gain of the control variable in the step response. The

cumulative time constant TΣ can be defined as half the time it takes to reach KS with

constant acceleration or deceleration in these circumstances. Table 3.1 lists the formulas

for setting either a PI- or a PID-controller. The first column states the different options

for controller selection. Columns two to four give the empirical formulas for KP , TN and

TV . After calculating the controller parameters for a fast PI-controller the settings were

experimentally fine tuned.
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3.3 Simulation of the Behaviour of a Human Driver

Table 3.1: control parameter settings according to the method of the cumulative time con-

stant

setting options KP TN TV

“normal” settings for PI-controllers 1
2·KS

0.5 · TΣ -

“normal” settings for PID-controllers 1
KS

0.66 · TΣ 0.167 · TΣ

“fast” settings for PI-controllers 1
KS

0.7 · TΣ -

“fast” settings for PID-controllers 2
KS

0.8 · TΣ 0.194 · TΣ

Figure 3.3: Desired step response of the system to a speed change from 0 to 10 km
h

and
system parameters KS and TΣ

Additionally, the class Driver contains constants for the power consumption of exterior light-

ing, heating, air conditioning and auxiliaries defined as the remaining consumers besides the

electric motor. These constants are added to the power consumption from the battery dis-

cussed in Section 3.5 if the according facilities are turned on, considering the appropriate

efficiency factors. They were set up in this class, since it is the driver who decides whether

these facilities are turned on. The consumption of the facilities just mentioned was eval-

uated experimentally for the i-MiEV at the AIT Austrian Institute of Technology GmbH

(AIT) at the batteries. Figure 3.4 exemplary shows the measurements of the power con-

sumption of heating and air conditioning from the lithium-ion battery if the air-conditioning

system is turned on. As can be seen, the power consumption shows large fluctuations. Us-

ing MATLABr the mean values of measurements such as the one depicted in Figure 3.4
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3.3 Simulation of the Behaviour of a Human Driver

Figure 3.4: Power-consumption measurement of heating and air conditioning from the
lithium-ion battery when turned on

were calculated and used for modelling the power consumption of the facilities. If the air-

conditioning system is turned off, the auxiliaries consume Paux = 140W from the lead-acid

battery on average. If the air-conditioning system is turned on, ventilation is assumed to be

turned on too such that the average consume of the auxiliaries from the lead-acid battery

increases to Paux = 450W . Heating and air conditioning on average consume PHAC = 550W

directly from the lithium-ion battery when turned on. Since the lead-acid battery is supplied

with power by the lithium-ion battery and the DC-DC converter, the power consumption

Paux,360V of the auxiliaries from the lithium-ion battery is

Paux,360V =
Paux

η12V · ηcon
. (3.13)

The efficiency factor of the inverter is used only for the power consumption of the motor and

the efficiency factor of the lithium-ion battery is considered in the class Battery . Battery

configurations have been created as general as possible such that the tool remains applicable

to other vehicles. Efficiency factors have been estimated to η12V = 0.85 for charging and

discharging the lead-acid battery according to [45] and ηcon = 0.95 since the efficiencies of

DC-DC converters are in the range of 90 %−95 %, as can be found in literature such as [49].

If the traditional exterior lighting system for night-time driving is turned on, the power

consumption of the exterior lighting Plight from the lithium-ion battery is determined by

Plight =
2 · Plow + 2 · Ptail

η12V · ηcon
, (3.14)

with the power consumption Plow of a low beam and Ptail of a tail lamp. Since the power for

the exterior lighting is provided by the lead-acid battery, the same efficiency factors as for the
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3.4 Model of the Propulsion and the Resistances

auxiliaries have been considered in Equation (3.14). The variables were set as Plow = 56.2W

and Ptail = 7.2W according to [43]. All the variable assignments are listed in Table 3.2 in

Section 3.6 again.

3.4 Model of the Propulsion and the Resistances

This section describes the implementation of the generation of the propulsion force and the

driving resistances. Additionally, the transfer of power via the power train is modelled.

3.4.1 Preliminaries

Mechanical forces acting against the motion of the vehicle are described by driving resis-

tances. These are air drag, slope resistance, rolling resistance and inertial drag, occurring

when moving in a fluid, driving on uneven terrain, rolling on a ground with friction and

accelerating a mass. The corresponding formulas are listed in Section 3.4.2.

To understand characteristics of electrical motors it is helpful to understand the simplest

example of the DC machine. For the induced voltage in a DC machine

Ui = z · p
b
· Φ · n = k1 · Φ · n (3.15)

applies, where z is the number of conductors, p is the number of pole pairs and b the number

of current branches of a winding layer on the circumference of the armature. The symbol

Φ describes the magnetic flux and n are the rotations per second of the armature, k1 is a

machine constant. Using

ωm = 2 · π · n (3.16)

for the angular velocity ωm of the machine,

Ui =
k1

2 · π
· Φ · ωm = k2 · Φ · ωm (3.17)

can be deduced. For the generated torque Mi

Mi = k2 · Φ · IA (3.18)

with the armature current IA can be applied consequently. The mechanical power of the

machine results in

Pm = k2 · Φ · IA · ωm. (3.19)

[42]

Due to the high mechanical wear in DC machines, three-phase machines such as the Perma-

nently excited Synchronous Machine (PSM) are used in EVs instead. For a PSM a controller
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3.4 Model of the Propulsion and the Resistances

demands a torque to be applied by the machine. The current is set to flow perpendicular to

the magnetic flux, so that for an observer situated on the rotor of the machine the conditions

are equivalent to the ones of a DC machine. [44]

Instead of modelling a motor for an EV directly, using equations like the ones above, it can

be described by its characteristic that is based on those equations. In a simulation this

saves execution time since data is read from the characteristic instead of being calculated. A

typical characteristic of a synchronous motor is illustrated in Figure 3.5. The characteristic

Figure 3.5: Characteristic curve of the motor torque and maximum available power depen-
dent on the angular velocity of the motor

in Figure 3.5 applies to the motor of the i-MiEV and was generated at the AIT, described

by the equations

Mi = Mmax for ωm < ωnom (3.20)

and

Mi = Mmax ·
ωnom
|ωm|

for ωm > ωnom (3.21)

respectively. Pursuant to Equation (3.17) the induced voltage increases and the arma-

ture current stays constant while ωm is increased until the nominal angular velocity ωnom

is reached. The maximum motor power Pmax is reached at this point such that the ar-

mature current and thus the torque of the machine decrease for higher ωm according to

Equations (3.18) and (3.19) respectively, while Pm remains constant. Detailed discussions

of three-phase machines can be found in [42] and [44].
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Recuperation is subject to both electrics and mechanics, since mechanical energy is trans-

formed into electrical energy which can be stored in a battery. In this study it is counted

to mechanics, considering the mechanical power that can be stored. Therefore, the motor’s

characteristic curve is regarded as a limitation and serial recuperation is assumed as it is

described in [24]. Accordingly, a generator converts mechanical energy into electrical en-

ergy while braking until the brake demand exceeds the generator’s torque pursuant to its

characteristic curve. Then a friction brake helps to meet the full demand. Another strategy

is called parallel recuperation where the brake demand is divided to the friction and the

generator brake in a specific relation [24].

3.4.2 Implementation

The class Propulsion is the most important part to provide input for a graph algorithm as

cost functions since it comprises the phenomenons with the biggest impact on the EV. As

external forces acting on the EV the air drag

ρ · A · cd
2

· v2, (3.22)

the slope resistance arising whenever there is a gradient

mtot · g · sinα, (3.23)

the rolling resistance

mtot · g · crr · cosα (3.24)

and the inertial drag as the force needed to accelerate the total mass mtot

mtot · a (3.25)

have been implemented. Apart from the natural gravitational constant g = 9.81 m
s2

, the air

density assumed as ρ = 1.25 kg
m3 and some measurands that usually are not indicated by

manufacturers, the factors of the formulas above originate from [4]. The frontal surface area

A was assessed by

A = h · w − hc · w + 2 · wt · hc, (3.26)

slightly overestimating the value in order to be sure that the tool does not give too optimistic

predictions of driving range. The height h = 1.61m, width w = 1.475m, ground clearance

hc = 0.15m and tyre width wt = 0.145m were sourced from [4] as well as the curb weight

mchassis = 1085 kg of the car, the frontal surface area resulted in A = 2.2m2 after rounding

up the outcome of Equation (3.26). The total mass mtot results from

mtot = mchassis +mload, (3.27)
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where mload is the additional mass of occupants and cargo set to 85 kg, such that mtot =

1170 kg applies. The value for the load was set empirically, considering a driver with average

weight and some additional cargo. It was assumed that usually some luggage is carried.

Moreover, for measurement runs instruments have to be transported that have a certain

weight. Referring to [36] the drag coefficient cd was set to 0.35. Pursuant to literature, the

rolling-resistance coefficient crr for car tyres on asphalt can adopt values from 0.013 to 0.015.

As proposed in [53] crr = 0.015 was set, which is a conservative estimate.

To further take into account what happens in the EV the inertial losses of rotating parts

were considered as well. Therefore, the angular velocity of the tyres ωt is determined as the

ratio of the increase of the actual velocity dv and the sampling interval T ,

ωt =
dv

T
. (3.28)

In doing so, dv has been specified in the main function as the difference of the actual velocity

at the current loop index i and the preceding v at i− 1. As a reminder it is noted that the

passed time is identified by i · T . The angular acceleration ω̇t was established as

ω̇t =
dωt
T
. (3.29)

Inertial losses result in forces that arise when the torques of inner rotating parts are converted

to the angular velocity of the tyres by transmission ratios and divided by the radius of a

tyre rt. The torque due to inertia of an inner rotating part is determined by its moment of

inertia J , defined as the resistance of a rigid body to changing its rotational motion. The

torques due to inertia recognised in this thesis are the torque of the motor Mm due to its

inertia

Mm = Jm · ω̇t · kgear, (3.30)

the torque of the gear Mg due to its inertia

Mg = (Jg,t + Jg,m · kgear) · ω̇t (3.31)

and the torque of the tyres Mt due to their inertia

Mt = 4 · Jt · ω̇t. (3.32)

The transmission ratio kgear describes the ratio of the angular velocity of the motor and the

angular velocity of the tyres. So here

kgear =
ωm
ωt

(3.33)

applies. A torque produced by a moment of inertia is calculated by the multiplication of the

moment of inertia with the related angular velocity. Hence, according to Equation (3.33),
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the moment of inertia of the machine Jm has to be multiplied with kgear and ωt as it is done

in Equation (3.30). In most EVs there is only one gear. The gear has the moments of inertia

Jg,m at the shaft of the motor and Jg,t at the shaft of the wheels and tyres. In Equation (3.31)

Jg,m is multiplied with kgear again because its angular velocity is ωm. There are four tyres,

so in Equation (3.32) the moment of inertia of a tyre is multiplied by four. Since the force

is transferred to the road at the tyres, the torques of Equations (3.30) – (3.33) were added

up and divided by rt, as a torque is the vector product of a radius and a force. For the

i-MiEV the parameters are rt = 0.285m and kgear = 7.065 according to [4], Jm = 0.02 kg m2,

Jg,m = 0.015 kg m2, Jg,t = 0.015 kg m2 and Jt = 1.23 kg m2 based on measurements at the

AIT. The tyre designation of [4] indicates the tyre width in mm, the ratio of height to width

in percent and the inner diameter in inches. Therefore the diameter can be calculated by

converting the inner diameter to meters by multiplying with 0.0254 and then adding twice

the width in meters times the aspect ratio divided by 100. To get the radius, the diameter

has to be divided by two. In this case there were two different tyre types, one for the front

part and one for the rear part of the vehicle, but since the radii did not differ much the same

value has been chosen for both of them.

The torque of the motor Mi(ωm) available at a certain value of the the angular velocity

was determined by the characteristic curve of the motor presented in Section 3.4.1. In [4]

the maximum torque and the maximum power of the electric motor are quoted as Mmax =

196N m and Pmax = 49 kW such that ωnom = 250 rad
s

can be calculated from the formula

Pmax = Mmax · ωnom. (3.34)

The angular velocity of the machine was determined by the formula

ωm =
v

rt
· kmech, (3.35)

where the total transmission ratio kmech is usually specified by the manufacturer. According

to [4] kmech is 7.065. Within this thesis it is assumed that the total transmission ratio kmech

can be calculated by the formula

kmech = kgear · kdiff (3.36)

where for the transmission ratio of the differential kdiff = 1 holds. The equations for the

characteristic curve and ωm were implemented in a function using v as parameter.

Another torque to be considered is the mechanical brake torque. Figure 3.6 illustrates the

working principle of the mechanical brake. A function was introduced to get the maximum

brake torque Mb determined by the equation

Mb = 4 · FN · µ · rm · f, (3.37)
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Figure 3.6: Sketch of the mechanical brake with the maximum normal force FN applied on
the brake disc from the block pads

where FN = 5 kN is the maximum normal force from the block pads on a brake disc and

µ = 0.3 is the friction coefficient for brake disc and block pads. The number of friction faces

f for such a brake is 2. Equation (3.37) arises from the fact that the friction force applies

continuously at places with different distances to the rotation axis. Thus, the force per area

has to be integrated over the total area of the brake disc according to the formula

Mb =

∫ 2·π

0

∫ re

ri

µ · FN
(re2 − ri2) · π

· r2dr · dϕ, (3.38)

where ri = 0.08m is the internal and re = 0.12m the external brake-disc radius. In the

integral of Equation (3.38) the symbols r and ϕ have been used as integral variables for the

radius of the disc and the rotation angle respectively. The mean radius of a brake disc rm

appearing in Equation (3.37) was then defined as

rm =
2

3
· re

3 − ri3

re2 − ri3
. (3.39)

Data for the brake system such as maximum normal force, friction coefficient and brake-disc

radii were already present at the AIT.

In the main function of the program the actual propulsion force F available from the motor

is calculated using the currently present torques, projected by the accelerator pedal position

usat of the last step times Mi if accelerating or usat times the sum of Mi and Mb if decelerating,

and the SOC of the last step as input parameters. In this way, the force for accelerating

or decelerating the BEV is described by its motor characteristic and the driver pressing the

accelerator or the brake pedal. Since usat is negative when decelerating, no algebraic sign

has to be added in any constellation described above. The function for the computation

of F was implemented in the class Propulsion. If the SOC is smaller or equal to zero this

function returns zero, else it determines F with the formula

F =
ηmech · kmech ·M

rt
, (3.40)

where the symbol M describes the torque passed to the function as a parameter. The

mechanical efficiency factor ηmech is the product of the efficiency factors ηmotor of the motor,
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ηgear of the gear and ηdiff of the differential,

ηmech = ηmotor · ηgear · ηdiff . (3.41)

The efficiencies ηmotor and ηgear were set as 0.95 and 0.97 as proposed in [23] as general

values for modern BEVs. The efficiency factor ηdiff was set as 0.97 according to [54], where

a value for the efficiency of a differential was calculated exemplary. This calculated value

was adopted, rounding off the result in order to stay conservative. Since in real vehicles

there are power losses from the motor to the tyres, the power at the tyres is ηmech · Pm. For

rotating parts the power is the product of the torque and the angular velocity, so that the

torque at the tyres is ηmech · kmech ·M . To get the according propulsion force the torque at

the tyres is divided by rt.

With the actual propulsion force of the previous time step obtained in this way, the slope of

the previous time step, the velocity increase of the previous time step and the sample time,

the actual velocity of the vehicle is determined. Doing so, the velocity of the current time

step is calculated as the preceding velocity plus the product of T and the acceleration, which

results in the difference of the propulsion force and all the external forces acting on the EV

described by the Equations (3.22) – (3.25), divided by mtot. Moreover, it is specified that

the actual velocity can’t be negative and that the slope and rolling resistance are zero if the

velocity is zero. After that, the velocity difference dv is computed as the current velocity

minus the velocity of the last time step and the acceleration is

a =
dv

T
. (3.42)

The control error and usat are calculated as described in Section 3.3. In this way, the

controller sets the position of the accelerator pedal and the force required to follow the

imposed velocity of the driving cycle. As potential cost function of an edge in a graph and

also as a transition value to the class Battery the mechanical power is determined using the

actual force and the actual velocity and the maximum possible motor torque as parameters.

The maximum power to be recuperated Pre,max for the according value of ωm was specified

as

Pre,max(ωm) = |ωm| ·Mi(ωm), (3.43)

according to Figure 3.5. The mechanical power is then computed as the product of the

actual force and the actual velocity. If the result is greater than or equal to zero, mechanical

power is needed to follow the imposed velocity and so the power withdrawn from the electric

motor is set as the quotient of the mechanical power and ηmech,

Pm =
F · v
ηmech

, (3.44)

since losses occur on the way from the motor to the tyres. Else if it is smaller than zero,

mechanical power is gained and multiplied with ηmech to get the recuperated power Pre,

Pre = F · v · ηmech, (3.45)
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as there is power lost on the way to the motor. The power to be recuperated was also defined

to be greater than the maximum recuperated power Pre,max multiplied with −1 times ηmotor,

because it still has to be transferred over the motor to the battery. In this way, the motor

only recuperates as long as it can receive power, which is limited by its characteristic curve.

In each of the stated cases the value of the appropriate formula is returned as the demand

for mechanical power Pmech.

3.5 Model of the Battery and the Power Consumption

The power needed to move the BEV is provided by a rechargeable lithium-ion battery. Fur-

thermore, all electronic components assisting the driver are supplied by it. In this section the

implementation of a battery model and the power consumption of all electronic components

and the electric motor from the battery is described.

3.5.1 Preliminaries

The principles of electronics used for the battery circuit can be acquired from [20]. The

lithium-ion-battery circuit itself was designed using a common electrical equivalent circuit

describing a simplified model of a circuit. According to [28] the voltage drops due to ohmic

losses, described by the ohmic resistance Rs and the voltage Us, and the double-layer capaci-

tance and relaxation effects, described by the ohmic resistances Rp1 and Rp2, the capacitances

Cp1 and Cp2 and the voltages Up1 and Up2, were considered as illustrated in Figure 3.7. In its

idle state when no electricity consumer is connected to the battery, its open-circuit voltage

is U0. Ubat describes the pin voltage of the battery, which is the electric potential difference

between its pins. The related differential equations are discussed in Section 3.5.2.

Figure 3.7: Electrical equivalent circuit of a lithium-ion battery
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3.5.2 Implementation

To finally identify the SOC the demand for mechanical power Pmech established in the last

section was used to calculate the power taken from or stored in the battery. When this was

done, the current to or from the battery could be obtained so that after all, the SOC could

be stated. The management of these tasks was put up into the class Battery that models

a typical lithium-ion battery of modern BEVs. Also, the inverter between the lithium-ion

battery and the electric motor is considered. The lead-acid battery supplying the auxiliaries

and the exterior lighting and the DC-DC converter between the batteries are discussed in

Section 3.3. In Battery the battery power Pbat is extrapolated from Pmech by applying either

Pbat =
Pmech

ηinv · η360V

+
PHAC + Plight + Paux,360V

η360V

(3.46)

if the power demand of the motor Pmech is greater than or equal to zero or

Pbat = Pmech · ηinv · η360V +
PHAC + Plight + Paux,360V

η360V

(3.47)

if Pmech is smaller than zero. For a positive power demand of the motor from the battery,

power has to be provided and the efficiency factors of the inverter ηinv and lithium-ion battery

η360V have to be considered. If energy is stored in the lithium-ion battery, the recuperated

power, which is the surplus of power in the electric machine, narrows on the way to the

battery which is described by a multiplication with the according efficiency factors. These

are ηinv for the inverter where the AC voltage of the motor is converted to DC voltage when

the battery is charged by the motor and η360V for the efficiency of the lithium-ion battery.

The power consumption of heating, air conditioning, exterior lighting and the auxiliaries

are always positive, only Pmech can be negative and therefore supply power for charging the

battery. Thus the power demand of the facilities for driving assistance and comfort from

the battery is always positive and the efficiency factor of the battery has to be considered

accordingly. Since the facilities get their power directly from the lithium-ion battery, the

efficiency factor of the inverter is not used to describe their power consumption. Pursuant

to [28] the efficiency of the lithium-ion battery was set as η360V = 0.95. Similarly to [8] the

efficiency factor of the inverter ηinv was set as 0.98.

The battery current Ibat is found by dividing Pbat by the battery voltage Ubat using the fact

that electric, or battery power respectively, is defined by

Pbat = Ubat · Ibat. (3.48)

The open-circuit voltage U0 of a battery is defined as the difference of the electric potential

measurable between the two pins of the battery before being connected to any electricity

consumer. Initially, the open-circuit voltage U0 of the entire lithium-ion battery is interpo-

lated from the battery characteristic shown in Figure 3.8 for the initial SOC using the class
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Figure 3.8: Open-circuit voltage of the entire battery pack of the i-MiEV for different SOC
values

NumericalMathematics as explained in Section 3.2. As can be seen, U0 varies for different

values of the battery’s SOC. Originally, Figure 3.8 is a plot of the characteristic of the open-

circuit voltage for different SOC values constructed at the AIT for the GS Yuasa LEV50

battery cell. The original data table contains the voltage according to each SOC value at the

inflexion points of the curve. A description of the LEV50 cell and its related battery module

LEV50-4 with four LEV50 cells can be found in [30]. Figure 3.9 depicts the battery pack

of the i-MiEV and its installed position, taken from [34]. It is put together of 22 LEV50-4

Figure 3.9: Battery pack of the i-MiEV and its installed position, taken from [34]

battery modules connected in series, so it contains 88 LEV50 cells connected in series, as

stated in [34]. As can be seen there are two 4-cell modules installed vertically at the centre

of the pack and ten more 8-cell modules, each of them put together of two 4-cell modules,

placed around.
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3.5 Model of the Battery and the Power Consumption

To work out the state of charge, the charge loss is determined by integrating the current

over time using T as interval. It is then divided by the battery capacity Cbat and subtracted

from the initial SOC. Moreover, the values the SOC can take are limited by zero and an

upper limit SOClim = 0.995 given by the AIT as charge-capacity ratio as a precaution such

that the battery may not to be overcharged. According to [30] Cbat was set as 50Ah.

The battery voltage Ubat is calculated in compliance with Figure 3.7. With the current SOC

U0 is interpolated from the data of Figure 3.8. The voltage drop due to ohmic losses at

metallic arresters, which conduct the electricity to the end poles when discharging, active

material and electrolyte was described by Ohm’s law

Us = Rs · Ibat. (3.49)

The voltage drops Up due to the double-layer capacitance are described by an ohmic resis-

tance and a capacitance connected in parallel. Double-layer capacitance occurs during the

charge transfer between the active material of an electrode and the electrolyte due to carriers

of different polarisation [28]. For such an RC element the differential equation

Ibat =
Up
Rp

+ Cp ·
dUp
dt

, (3.50)

or
dUp
dt

=
Ibat
Cp
− Up
Rp · Cp

(3.51)

respectively, holds. The two differential equations for the two RC elements modelled were

solved numerically using the formulas

Up1[i] = Up1[i− 1] +

(
Ibat[i− 1]

Cp1

− Up1[i− 1]

Rp1 · Cp1

)
· T (3.52)

and

Up2[i] = Up2[i− 1] +

(
Ibat[i− 1]

Cp2

− Up2[i− 1]

Rp2 · Cp2

)
· T . (3.53)

This is because of the numeric formula

Up[i] = Up[i− 1] + U̇p[i− 1] · T . (3.54)

In the end, the battery voltage results in

Ubat[i] = U0[i]− Us[i]− Up1[i]− Up2[i]. (3.55)

Measurements at the AIT revealedRs = 92.59838mΩ, Rp1 = 54.85377mΩ, Rp2 = 108.11338mΩ,

Cp1 = 84.917F and Cp2 = 1205.695F .
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3.6 Parameter Assignments

In this section a list of parameters and their assignments used for modelling the i-MiEV

within this thesis is given in tabular form. The columns of the corresponding Table 3.2 hold

the partitions to which the parameters can be assigned, the parameters, their assignments

and the reference where the values are taken from. Only the basic parameters are listed, by

which other variables stated in this thesis are calculated in the program. For example, the

power consumption of the auxiliaries at the lithium-ion battery Paux,360V can be found with

the parameters Paux, η12V and ηcon and therefore it is not listed in this section. By contrast,

parameters, by which variables used directly by the program were calculated, are stated.

For example, the geometric parameters describing the frontal surface area A are listed. This

was done in order to let the user keep an overview of the parameters he needs to describe

his vehicle and driving style.

Table 3.2: Parameter assignments, meanings of parameter symbols are grouped in Section 8.1

Partition Parameter Assignment Reference

chassis rt 0.285m [4]

h 1.61m [4]

w 1.475m [4]

hc 0.15m [4]

wt 0.145m [4]

A 2.2m2 (3.26)

cd 0.35 [36]

crr 0.015 [53]

mchassis 1085 kg [4]

moments of Jm 0.02 kg m2 AIT measurements

inertia Jg,m 0.015 kg m2 AIT measurements

Jg,t 0.015 kg m2 AIT measurements

Jt 1.23 kg m2 AIT measurements

transmission kgear 7.065 [4]

ratios kdiff 1 empirical

motor Mmax 196N m [4]

parameters ωnom 250 rad
s

[4]

mechanical FN 5 kN AIT data

brake µ 0.3 AIT data

parameters f 2 AIT data

ri 0.08m AIT data
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re 0.12m AIT data

battery SOClim 0.995 AIT measurements

parameters Cbat 50Ah [30]

U0 interpolated AIT measurements

Rs 92.59838mΩ AIT measurements

Rp1 54.85377mΩ AIT measurements

Rp2 108.11338mΩ AIT measurements

Cp1 84.917F AIT measurements

Cp2 1205.695F AIT measurements

driver mload 85 kg empirical

parameters aap 1.5 m
s2

empirical from WLTC

adp 2 m
s2

empirical from WLTC

T 0.1 s empirical

KP 0.4 empirical

TN 0.4667 s empirical

TV 0 s empirical

Ta 0.1 s empirical

further Paux 140W if air AIT measurements

power conditioning is

consumers turned off or

450W if turned on

PHAC 550W AIT measurements

Plow 56.2W [43]

Ptail 7.2W [43]

efficiency ηmotor 0.95 [23]

factors ηgear 0.97 [23]

ηdiff 0.97 [54]

η12V 0.85 [45]

ηcon 0.95 [49]

ηinv 0.98 [8]

η360V 0.95 [28]

nature ρ 1.25 kg
m3 nature constant

constants g 9.81 m
s2

nature constant
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Chapter 4

A Graph Model for Routing BEVs

The task in the second part of this thesis was to apply the program of the first part to

road sections instead of single driving cycles and to produce edge weights for these sections.

It is obvious that a driving cycle can be created for every kind of road section that can

be followed by the already created driver model to calculate the costs for the BEV. The

estimation of costs on road sections is more complicated than it seems to be at first glance.

Due to regenerative braking energy is stored in the battery when decelerating the BEV.

This makes it important to model the costs it takes to get from one road section to another,

whereby the vehicle may get slower or even has to stop. The cost function assigned to the

graph is the energy consumption of the BEV on different road sections, represented by edges.

4.1 General Specification of the Graph Model

Compared to a usual graph of a street map, a graph that shall be suitable for BEVs must

meet special conditions. Since energy can be recovered by regenerative braking, turn costs

defined as the costs it takes to get from one road section to another are an important feature

that has to be considered. Therefore, conditions have to be specified that mark different

ways to traverse a junction. This was achieved by the generation of a pseudo-dual graph

from the primal graph. Figure 2.2 illustrates the procedure to create a restricted pseudo-dual

graph from a given primal graph. The procedure is also described in Chapter 2. The primal

graph represented by grey arrows and dots is replaced by the pseudo-dual graph represented

by black arrows and dots. Doing so, the edges of the pseudo-dual graph store the costs of

the edges of the primal graph and the turn costs. As already stated in Chapter 2 turning on

road sections without reaching their end vertices was prohibited. For the implementation of

turn costs the connection of two primal edges at a junction like the one depicted in Figure 2.2

has to be classified. That means that it has to be declared whether the vehicle has to slow

down or even has to stop at the junction. This can be done by comparing the functional
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road classes of the according edges. Functional road classes describe the importance of edges

for long-distance traffic.

Of course other predicates have to be regarded as well. The graph should be able to describe

the terrain that is driven on, that is it must contain gradient data. A velocity profile has to

be determined, so it is required to contain maximum allowed speed limits. For the output

of the routing and visualisation tasks it has to comprise labels for the edges such as street

names and coordinates. To estimate the costs, the lengths of the edges have to be known,

the street length is also the usual edge-weight value a graph should include. It should also

be marked if the edge is a one-way street or not.

In the primal graph the edges have a direction with which they are defined, that is they

have a start vertex and an end vertex. For each primal edge a Boolean value exists that

indicates whether the edge is directed or not. If it is an undirected edge, the Boolean value

is false and to get the appropriate directed edges, such an edge was split into two edges. The

start vertex of one of the resulting directed edges is the end vertex of the other one and vice

versa. Else if the edge is directed, it is a one-way street and the Boolean value, which also is

a specifier of one-way streets, is true. All further edges created in this work are directed, so

that one-way streets did not have to be indicated as such any more in the final graph model.

The edges of the primal graph contain street names, coordinates, lengths, speed limits, slope

data, one-way-street specifications and functional road classes of all edges. Table 4.1 lists

the attributes of an edge in the primal graph and gives brief explanations of their meanings.

These attributes are essential for an input graph of the presented tool.

Table 4.1: Attributes of the edges of the primal graph and their meanings

Attribute Meaning

street name official name of the street which the edge belongs to

geographic coordinates geographic coordinates of some reference points on a road

section given in degrees

functional road class categorisation of streets by means of their significance

for long-distance journeys, given by numbers starting with

0 for the most important category and ending with 10

for the least important category

one-way street specification Boolean value marking a road section as one-way street if

set as true

speed limit maximum speed allowed on the edge given in km
h

length length of the edge given in m

ascent altitude difference to be ascended when travelling along

the edge into the direction the edge is defined with,
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given as a positive value of m

descent altitude difference to be descended when travelling along

the edge into the direction the edge is defined with,

given as a negative value of m

The pseudo-dual edges connect two primal edges considering the turn costs also. The final

pseudo-dual graph generated in this work contains the weights used to determine a shortest

path, lengths of edges and the time it takes to travel along them as well as the belonging

street names and coordinates.

4.2 Generation of Driving Cycles on Road Sections

The class PseudoDualGraph was introduced to read in all data of the primal graph, which

is the basic input of the presented tool together with the source vertex s and the target

vertex t, issuing a shortest path from s to t and the current SOC of the BEV. Moreover,

four different procedures describing the transition from one edge to another for creating the

pseudo-dual graph were implemented in this class. Instead of reading in a cycle from a

file, an artificial cycle for each pseudo-dual edge was constructed assuming that an average

acceleration process takes the constant acceleration aap and an average braking process

takes the constant deceleration adp. These parameters have already been introduced in

Section 3.3.2. Using the mentioned procedures, four different kinds of cycles were created.

Doing so, a cycle for stopping the vehicle and then accelerating it to the speed limit of

the consecutive edge was developed. This simulates a situation in which the vehicle has

to traverse a junction with a stop sign or a traffic light for example. Another cycle for

accelerating from a certain velocity to a higher velocity describes a change of the speed limit

on a road. This is usually indicated by a transition from an edge with a certain velocity to

an edge with an other velocity. A cycle for decelerating from a certain velocity to a lower

velocity also describes a change of the speed limit on a road. One more cycle for driving

on with constant velocity describes junctions that can be passed without a stop because the

driver travels along a priority road for example.

In the cycle for crossing a junction with constant velocity the prescribed velocity of the car

is set as the speed limit of the according edge. In every run of an inner loop creating the

cycle, the variable for time is increased by T . The distance covered on the according street

is determined by the integral of the constant velocity over time, resulting in the product of

the actual time elapsed while driving on the street and the constant velocity.

The difficulty is exacerbated for the cycles describing an acceleration or a deceleration.

The velocity is described by the integral of the constant acceleration a over time with the
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initial condition, that the velocity at the beginning is the speed limit of the source edge,

v(t = 0) = v1. This results in

v(t) =

∫
a · dt = v1 + a · t. (4.1)

Integrating the velocity considering the initial condition s(t = 0) = 0 yields the distance s(t)

covered on the actual edge

s(t) =

∫
v(t) = v1 · t+

a · t2

2
. (4.2)

The acceleration or deceleration process will last until the new speed limit v2 is reached,

that is until

t(v = v2) =
v2 − v1

a
. (4.3)

When the time is greater than the result of Equation (4.3), the prescribed velocity stays

constant with the value v2. The distance then has to be computed with the formula

s(t) = s(v = v2) + v2 · (t− t(v = v2)). (4.4)

The time is increased by T again after each iteration. For the concrete case of accelerating

from a lower to a higher velocity, a was replaced by aap in Equations (4.1) – (4.4). For the

case of decelerating from a higher to a lower velocity a was replaced by −adp in Equation (4.1)

and analogous to the Equations (4.2) – (4.4) further cycle data was derived.

Stopping at a junction requires to decelerate from v1 to zero. The according cycle data is

computed analogously to the Equations (4.1) – (4.4) when v2 is zero.

4.3 Account of the Slope

The class Cost was introduced to generate a cost function using the classes implemented

in Chapter 3. Moreover, it contains a function determining the slope of an edge accepting

the ascent, descent and length attributes of an edge as parameters. As already stated

in Table 4.1 the ascent attribute is given as a positive height difference dyasc in m and the

descent attribute is given as a negative height difference dydesc in m. These height differences

are to be ascended or descended when travelling along an edge into the direction it is defined.

It is not known for how long the road section is ascending or descending. Thus, the problem

arises that the lengths of the ascending and the descending part of the road section may

be assigned disadvantageously. For example, if the half of the length of the road section is

defined to be ascending and the other half of the length is defined to be descending, road

sections that ascend for a large part in reality may become too steep for a car when using

this approach, because the ratio of ascent to length is bigger. Accordingly, a procedure to

divide the lengths of the ascending and descending part has to be found, for which ascents
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Figure 4.1: Division of the length l of an edge into an ascending and a descending part using
the ascent ratio q

or descents do not become too steep. Figure 4.1 illustrates the approach used to resolve

this issue and to determine the slope. An auxiliary coordinate system is used to draw in

the height differences dy, the length l of the road section and the values dx for the adjacent

legs of the resulting gradient triangles. The segments were divided using the ratio for the

ascending part

q =
dyasc

dyasc − dydesc
. (4.5)

The minus in Equation (4.5) comes from the negative sign of the value of dydesc. The ratio

of the descending part is 1− q. The length of the ascending or descending part was specified

as the product of the total section length l and the ratio of the ascending or the descending

part. With the Pythagorean theorem the adjacent leg dx of the gradient triangle can be

found as

dxasc =
√

(l · q)2 − dy2
asc (4.6)

for the ascending part and

dxdesc =
√

(l · (1− q))2 − dy2
desc (4.7)

for the descending part. Finally, the slope is established as the tangent of the pitch angle β

for each case,

tan β =
dy

dx
. (4.8)

Using this approach a reasonable division of the ascending and descending part of a road

section is likely to be found, since the length of a part grows with its related height difference

value.

There were three cases considered for a road section. First, the section can have an ascending

and a descending part. Then, there is a Boolean value that is set as true and that changes

to false as soon as the distance covered on the section so far is greater than the product of

the length of the road section and the ascent ratio l · q. In the preceding time span the slope
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is regulated as ascending, afterwards as descending. Second, the section is ascending only.

The slope is set as ascending the whole time in this case. Last, the section is descending only

and the slope is set as descending the whole time. If the result of Equation (4.8) is greater

than 0.3, the cost of the according edge is set as infinity. A tangent of 0.3 corresponds to

a gradient of about 16.7◦ which is just too much for the simulated i-MiEV to follow the

prescribed velocity profile.

4.4 Implementation of the Graph Model

Specifically for BEVs it is important to consider the energy costs when crossing a junction. It

is distinguished whether it is possible to pass without braking or not or if it is even necessary

to stop. A general BEV recuperates energy while braking as described and implemented in

Propulsion. In order to take turn costs at junctions into account in a most possible realistic

way, the original graph was converted to a pseudo-dual graph. This was realised by the

class PseudoDualGraph generating driving cycles on edges as described in Section 4.2. The

cycles constructed in PseudoDualGraph are handled equally to the read in cycles in the

program of the first part of the thesis, meaning that the driver model still has to follow the

prescribed velocity. In PseudoDualGraph, arrays for every edge variable of the graph data

are allocated and filled with the data of the primal graph. The speed limits are converted

from km
h

to m
s

again. The whole graph is then stored in an adjacency list of tuples with all

the edge characteristics. An adjacency list holds a row with all vertices and each vertex holds

a pointer to a linked list of all its associated or adjacent vertices inclusive of the attributes of

an edge. It can for example be implemented using the class list from the Standard Template

Library (STL). Figure 4.2 exemplary shows a small graph with edge weights, stated as real

numbers above the edges representing edge attributes, and the according adjacency list. The

list holds all vertices adjacent to any vertex of the edge and the according weight representing

the attributes of an edge. Every time an edge is added to the adjacency list, an edge counter

Figure 4.2: Small graph with edge weights and the related adjacency list holding adjacent
vertices for each vertex of the graph and the according edge weights
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is increased by one. The value of the counter starting with one and counting all edges is set as

a new edge ID of each added edge. Additionally, a Boolean value was defined to determine

whether an edge as connection from one vertex to another is incoming or outgoing for a

certain vertex. In the adjacency list each edge is visible at two vertices, the source and the

target vertex. So for its source vertex the edge is outgoing and the Boolean value is false,

whereas for its target vertex the edge is incoming and the Boolean value is true. An array is

defined that holds the total number of edges approaching or leaving the vertex ID, also called

degree of the vertex, at the according index. That means the number of streets meeting at

vertex i is stored at position i in the array. If an edge is no one-way street, another edge is

created and is stored at the former source vertex as incoming and as outgoing at the former

target vertex. So, if an edge of the primal graph is not a one-way street, it is split into

two edges. Furthermore, the values for ascent and descent are swapped and multiplied by

minus one since the descent is given as negative value initially. In a loop over the vertices of

the primal graph the incoming and outgoing edges are stored in separated vectors for each

vertex. Each incoming edge is connected with all outgoing edges that can be travelled along

theoretically at this point. A turn that leads back to the source vertex of the incoming edge

is restricted.

Now the conditions for whether the junction can be passed without stopping are laid down.

Doing so, the functional road classes and the degrees of the vertices are used. This is

somewhat artificial, since it is unknown if there is a traffic light, a stop sign or something

comparable in reality. Anyway, the situations described by traffic lights and stop signs are

considered in this work and if there was detailed data about which junctions are regulated

by traffic lights or stop signs, the model would be easily adaptable. The functional road

classes categorising the streets by means of their significance for long-distance journeys used

in this thesis are stated in Table 4.2. The classes are described by numbers starting with 0

for the most important category and ending with 10 for the least important category. They

are listed in the first column, the second holds the road types belonging to the classes.

Table 4.2: Functional road classes and the belonging road types

Class Road Type

0 Motorway

1 Trunk Road

2 Primary Road

3 Secondary Road

4 Tertiary Road

5 Unclassified Road

6 Residential Road

7 Track
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8 Pedestrian Ways or Shared Spaces

9 Pedestrian Ways and Cycle Paths

10 Stairs

The junction is assumed to be passed when the degree of the according vertex is smaller than

three, meaning that the vertex is no junction at all but just a point where the speed limit

changes for example. Moreover, it was defined to be passed when the degree is smaller than

four and the incoming edge has a more important functional road class than the according

outgoing edge. From and to Motorways and Trunk Roads the BEV is also dictated to drive

on without stopping. From functional road class two or three respectively to classes greater

than three or four respectively and from functional road class four or five respectively to

classes greater than four or five respectively the BEV is regulated not to stop either. If the

BEV does not stop at a junction, it either holds its current velocity, decelerates to a lower

or accelerates to a higher velocity, depending on the speed limits of the edges.

Obviously the pseudo-dual graph D(V D, ED) uses the edges of the primal graph as new

vertices, the new vertex number nD of the set V D is found by the edge counter described

above, that is increased by one every time an edge is added to its source and target vertex.

The formation of V D and ED can also be observed in Figure 2.2. The new edge number mD

of the set ED is determined by the size of the vectors that are used to store tuples with the

data of the new edges after declaring the conditions for passing a junction. This information

is also stored in these vectors as a Boolean value which is false if the junction can be passed

and true if the vehicle has to stop. There is a vector holding all the source edges and another

vector holding all the target edges. Together they contain all relevant data.

For future use the primal vertices are stored in a text file together with the IDs of all their

incoming and outgoing edges and the belonging data. Each of the resulting weighted pseudo-

dual edges contains the cost for traversing a junction and travelling along the following street.

In this way, the costs of a route can be described completely, except for the energy used for

accelerating from a certain starting point and stopping at the destination. The vertices and

their in- and outdegrees are used in the graph algorithm for this purpose later on.

In Cost all presented classes are instantiated in the constructor. In a specific procedure

the implemented functions are applied to compute the costs similar to the main function

of the energy-consumption model, with the exception that only the energy consumption on

the road segments is calculated and not the SOC. Doing so, the same strategy as in the

former model of the BEV is used up to the calculation of the mechanical power, that is then

multiplied with T to obtain the energy consumption. It is computed separately for each way

of crossing a junction. In addition, the slope is determined with the according data.

Before calculating the cost for an edge the variables of the controller are reset and the
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initial velocity is fixed as the speed limit of the source edge or as zero, contingent on the

distinguished ways for crossing a junction. Doing so, the auxiliary functions f(0) and g(0)

as well as the control error were set as zero. The initial accelerator position was found

using the accessible torque of the motor at the current velocity and the current resistance

force applying on the i-MiEV consisting of air drag, slope resistance and rolling resistance.

The actual motor torque M is determined by the multiplication of the position usat of the

accelerator pedal represented by a value between 0 and 1 and the accessible torque of the

motor Mi at the current speed. Thus, according to Equation (3.40) the pedal position can

be found as

usat =
F · rt

ηmech · kmech ·Mi

. (4.9)

The conditions for the controller have changed compared to the program of the first part

of this thesis following the velocity profile of a single driving cycle. Now it can be better

adapted to the situations the BEV has to deal with. An attentive driver was modelled

with different controller settings for accelerating, braking and driving with constant velocity.

The according parameters are listed in Table 4.3. The first column states the procedures

modelled by the settings, the following columns give the numerical values of the controller

parameters. The parameters were found with the approach already used and explained in

Section 3.3.2.

Table 4.3: Controller settings for energy-efficient driving

Procedure KP TN TV Ta

acceleration 0.65 0.5 s 0.1 s 0.1 s

braking 0.15 0.3 s 0.2 s 0.1 s

constant velocity 0.5 0.4 s 0 s 0.1 s

Depending on the occurring situations for crossing a junction and covering ascending and

descending parts of the edge, the computation procedure for the mechanical energy and with

that the cost of the edge is executed for the appropriate driving cycle. In the procedure for

calculating the costs there is a loop over all edges of the graph. Inside, each edge is evaluated

whether the belonging junction is assumed to be passed or the vehicle has to stop. In the

latter case three procedures are used for determining the weight. These will be described

next.

First, the model of the driver follows the cycle for decelerating to zero with the slope and

velocity data of the source edge in the according inner loop, that is the BEV stops before the

next road section begins. This usually leads to negative costs for a long deceleration phase.

If the braking distance exceeds the length of the edge, formerly computed analogously to

Equation (4.2) at t = t(v = 0), it is assumed that the mechanical brake is used and therefore
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there is no recuperation of energy. Correspondingly, the cost is fixed as zero.

Second, if the cost for stopping was not set to zero, that is if the length of the source edge

is greater than the distance needed to stop, for this distance the cost for driving with the

constant velocity of the speed limit of the source edge is calculated in the according inner loop

where the cycle is created and subtracted from the total edge cost. This is done because

usually, only costs for the junction and the following street are considered, but here the

stopping procedure is counted to the preceding road section and the energy consumption yet

calculated for this edge is corrected. Therefore, the drive with constant velocity at the end

of the road section, already assigned to the preceding edge, is replaced by the deceleration

costs. The controller was not activated since it was assumed that the driver is able to

drive with constant velocity after the acceleration process, and also to stay conservative in

the consumption estimation. Furthermore, using the functions of Driver would take more

runtime for the program.

Third, the cost for following the presented cycle for accelerating from a velocity of 0 km
h

to

the speed limit of the succeeding street are calculated in the according inner loop and added

to the total edge cost.

Figure 4.3 shows the velocity profiles of the constructed cycles in comparison to the actual

velocity of the BEV according to the described procedure for an edge. The cost for driving

the cycle of Figure 4.3c is subtracted from the cost for driving the cycle of Figure 4.3a and

the cost for driving the cycle of Figure 4.3d is added. The cycle of Figure 4.3d is driven on

the second edge of the two consecutive primal edges the pseudo-dual edge describes. It has

a length of 85.68m. The cycles of Figures 4.3a – 4.3c are driven on the first edge. As can be

seen in Figure 4.3a the actual distance needed to decelerate to zero is a little bigger than the

calculated distance to stop. This is because the controller regulates the velocity over time

and not over the distance. Since only the costs and not the actual position of the BEV are

affected, there is no great problem with that. In Figure 4.3b the velocities are depicted over

time to show that the controller works well.

A similar procedure is carried out without considering the preceding edge if the junction can

be passed and the speed limit of the preceding street is lower than the speed limit of the

succeeding one. While the actual distance is smaller than the total length l of the edge, the

driver model follows the cycle for accelerating from the lower to the higher velocity again

using an inner loop, causing an energy loss that is computed as already described. The

length of the edge is extended to the distance needed to accelerate to the speed limit on the

street if l is smaller than this distance. There would be a velocity jump between some streets

without doing so, because the succeeding edge starts with the speed limit of the actual street

that would never have been reached then. If this exception occurs, the slope is set as zero

when the actual distance is greater than l if the actual slope is negative. Else, if the actual
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(a) prescribed cycle and actual velocity for stop-
ping

(b) prescribed cycle and actual velocity for stop-
ping over time

(c) prescribed cycle and actual velocity for driv-
ing the length needed to stop with constant ve-
locity on the edge where the stopping procedure
is performed

(d) prescribed cycle and actual velocity for ac-
celerating

Figure 4.3: Different velocity profiles established for a BEV crossing a junction with a traffic
light or a stop sign

slope is positive, its value stays the same. This is also a measure to stay conservative. Up

to here, some exception handling had to be done using the given graph. In Section 6.2 some

numbers are given for how often such exceptions occur. Lots of them could be avoided if the

related problems were considered when making up a graph for routing in subsequent works.

Another procedure was established for decelerating from a higher to a lower velocity without

stopping at a junction, following the cycle for passing a junction without stopping in an inner

loop. Here, no exception handling for too short edge lengths is done, because it was assumed

that the mechanical brake has to be used in such a case, so that energy is not recovered in
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form of negative costs.

If the speed limits of two connected edges are equal, the junction can be passed without a

halt. Since the accelerator pedal is adjusted accordingly at the beginning of such an edge,

the control error will only be different from zero when the slope changes somewhere in the

middle of the edge. If this is the case, the velocity will slightly increase or decrease depending

on the sign of the slope and then return to the speed limit of the edge again.

For the shortest path algorithm a text file was created containing the number of edges and

vertices and the edge IDs of the connected edges as well as the energy-consumption values

for travelling on the pseudo-dual edges. Additionally, the original length l of the second

primal edge visited when travelling along a pseudo-dual edge, the time spent for driving on

this primal edge, the street name and the geographic coordinates of this primal edge were

stored for each pseudo-dual edge. The creation of a text file takes time but is also useful

for structuring, since the included data does not have to be computed again. The user can

be asked whether the data shall be recomputed with different parameters or the already

existing data shall be used to find the most energy-efficient route.
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Chapter 5

The Shortest Path Algorithm

A shortest path algorithm usually takes a graph, a source vertex s and a target vertex t as

input and searches for a shortest path from s to t. As stated in Chapter 2 the shortest path

is the path with minimal cost to get from s to t, so a shortest path may be a path that

minimises distance, energy consumption, road tolls that have to be paid or other criteria

depending on the definition of the cost function c. Dynamic graph algorithms that update

the graph they get as input exist, but since there were no compelling reasons for using such an

algorithm, none was implemented for this would go beyond the scope of this work. Instead,

a graph algorithm was implemented that routes the BEV model defined in Chapter 3 on the

graph created in Chapter 4.

5.1 Concepts Used in the Shortest Path Algorithm

The general concepts of Dijkstra’s, Johnson’s and the Bellman-Ford algorithm are discussed

in Section 2.2. Applying the Bellman-Ford algorithm to a graph, negative cycles can be

found by extending the algorithm with a loop over all edges of the graph, after the actual

process for finding the shortest path is completed. Inside the loop it is searched for a path

that is shorter than the path just found with the same method as in the original Bellman-

Ford algorithm. If a shorter path is found, then there is a negative cycle in the graph. The

Bellman-Ford algorithm implemented in this thesis computes shortest paths with at most n

edges in the nth step. In a simple path without cycles there are maximum n edges, so if in

a (n+ 1)th step there is a shorter path found, the graph contains a negative cycle. The idea

for such a loop is noted in [1] and [26]. As proposed in [26] additionally, the predecessor

vertices of the vertex for which the first shorter path was found are added to a string until

one of the vertices is visited the second time and thus marking a negative cycle. Then the

string is written to a text file listing the negative cycle. The vertices are marked as visited or

not using an array with the vertex IDs as indices filled with Boolean values. A true Boolean
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value at the ith index marks vertex ID i as visited.

When adding vertices to a graph with shifted costs and connecting it with edges, the costs

of these edges can be shifted retrospectively in certain circumstances, such that the shifted

costs of the other edges are still valid. As long as the connection edge of an added source

vertex is weighted positively and there is no edge leading to the source vertex, the vertex

potentials of all other vertices remain unchanged. This was suggested by the fact that the

potential of such an added vertex is zero, such that a positive weighted connection to another

vertex cannot create the unique shortest path to this vertex. An acceleration from zero to

a certain positive velocity practically never causes a negative cost. The case of an initial

acceleration causing a negative cost can be prevented by setting the cost as zero if it is

actually smaller than zero. When adding a destination vertex where no edges outgoing to

other vertices exist, the potentials of all other vertices remain the same.

5.2 Implementation of the Shortest Path Algorithm

Since edges can have negative values for the energy consumption used as weight, Dijkstra’s

algorithm cannot directly be applied to the graph generated in Section 4.4. The Bellman-

Ford algorithm could be used, but its runtime is just too long for a rooting program to

work out shortest paths, applying it to the pseudo-dual graph of Vienna. Thus, Johnson’s

algorithm, which is introduced in Section 2.2, was implemented. The draft shall be explained

in detail here. The implemented algorithms were inspired by [5], [1], [3] and [33] for a large

part, they were improved by own ideas and concepts from [33] and [26].

All corresponding procedures were implemented in GraphAlgorithm. In the first place, a

Bellman-Ford algorithm was used to shift the costs such that no negative value was left as

illustrated in Section 2.2. To store the graph a simple structure was used holding the edge

IDs of the pseudo-dual graph, which correspond to the order in which they were written to

the text file. Each pseudo-dual edge stores its source-edge ID as source vertex, its target-

edge ID as target vertex and its weight. These variables are read in using a procedure for

potential shifting, generating a graph with n vertices and m edges. Even though a pseudo-

dual graph is considered, the notions used for general graphs are taken to describe the used

graph, because the algorithm can be used for any graph and the notation is easier. The

values for n and m stem from the read in text file. The shortest path from a newly defined

vertex with ID zero to all other vertices is worked out using the Bellman-Ford algorithm.

This algorithm is implemented as a procedure that takes an array of size n+ 1 as parameter

to store the total weight of every shortest path from the source vertex to each existing vertex.

These weights are used as vertex potentials to shift the costs.

Another task of the Bellman-Ford algorithm was to detect negative cycles. The sum of the
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edge weights of a negative cycle is negative, meaning that it would be possible to completely

recharge the battery of the BEV when driving around the cycle repeatedly. Apart from the

fact that this is violating fundamental physical laws, the Bellman-Ford algorithm does not

assess the correct result if this is the case. Thus, the graph was scanned for negative cycles

using the approach described in Section 5.1. With the resulting text file negative cycles and

with them mistakes in the algorithms could be found and corrected without tedious error

search. Once all errors in the graph and the shortest path algorithm had been eliminated

there was no negative cycle found in the final version of the program.

The positive costs are calculated according to Equation (2.9) and together with the vertex

potentials found with this procedure they are stored in a text file, such that the following

algorithm of Dijkstra can be run separately. Depending on the user request the calculation

of the costs and the potential shifting can be performed or not. The potential shifting is

executed within a procedure for all the routing tasks if the user decides to recalculate the

edge costs. This emphasises the purpose of Johnson’s algorithm to apply Dijkstra’s algorithm

for routing tasks without changing vehicle and driver parameters.

To succeed with the routing applying Dijkstra’s algorithm the graph with all the belonging

data including the shifted costs is read in. The IDs of the source s and target t are passed

to the procedure for the routing tasks as parameters. Moreover, the degrees of the primal

vertices are read in together with the newly defined edge IDs of the primal graph and the

corresponding names, speed limits, lengths, ascents, descents and coordinates. This data is

stored in a list array for the primal vertex IDs, such that at the index i the list holds all

incoming and outgoing primal edges with the related data in tuples. Now, virtual edges are

added to complete the route with the ways to the source and target vertices. This has to be

done because the routing on a pseudo-dual graph results in a path that goes from a certain

primal edge to another primal edge. The actual source and target vertices then have to be

connected to these edges. As input parameters the procedure knows the IDs of s and t. So

the original weights for all edges going out of s and all incoming edges at t can be calculated

with the read in data. On all edges outgoing from s the cycle for accelerating according to

Equations (4.1) – (4.4) with v1 = 0 km
h

is followed by the driver model and the emerging costs

are calculated. The resulting costs were assumed to be positive or negligibly small according

to amount, since an acceleration from 0 km
h

to a positive velocity usually produces a positive

power consumption. To invalidate this assumption, larger gradients than these occurring

in the considered graph would be required. Thus, for reasons described in Section 5.1 the

cost is set as zero if it is actually smaller than zero as an assurance that the cost of the

first edge is positive. On all edges incoming at t the already described cycle for stopping

is used for the evaluation of the energy consumption. Since the last edge of a route leads

to t by nature, the negative cost for stopping the vehicle is added to the cost of each edge

that may be the last one. As a correction the cost for driving the distance needed to stop

55



5.2 Implementation of the Shortest Path Algorithm

with constant velocity is subtracted analogously to the processes presented in Section 4.4.

The just calculated weights are shifted according to Equation (2.9). The justification for

this approach is defended in Section 5.1. Since the potentials for the added vertices are

not known yet, they still have to be determined. Up to here, the IDs of the vertices start

counting from one. The source vertex gets the ID zero and the target vertex the ID n + 1.

As already mentioned, the potential of the vertex zero is zero. The potential of the added

target vertex was found as the minimum of the sums of the potentials of the different vertices

that have a connection to the added target vertex and their weights.

At this time, the final graph of n+ 2 vertices can be passed to Dijkstra’s algorithm finding

the shortest path from vertex zero to vertex n+1. Dijkstra’s algorithm is implemented using

early stopping as described in Section 2.2. Analogously to the parent vector for storing the

predecessors in the shortest path to a vertex, vectors for the distance covered, the original

energy consumption and the shifted weights, time spent on the individual edges, street names

and coordinates are introduced and handled. For the output of the result a recursive function

was implemented that starts with the vertex ID of t and calls itself recursively with the ID

of the predecessor vertex in the shortest path until the street name of the vertex is the name

of the source vertex. Then the function returns all data of the shortest path from s to t that

was stored on the function stack during the recursive calls. The idea for such a recursive

function is noted in [21] and [15]. Also the SOC after each traversed street is computed in this

function using the original, not shifted weight and the time spent on the appropriate edge

as parameters for a procedure designed for this purpose in Cost. The procedure applies the

functions of the now used class Battery . Pbat is computed according to the Formulas (3.46)

and (3.47) using the quotient of the edge weight and the time spent on the edge instead of

Pmech. The energy consumption on an edge is obtained by multiplying Pbat with the time

spent on it. For being able to state the total energy consumption of a route, the energy

consumption values of each edge travelled along when driving the path are summed. In the

program of the first part of this thesis Pmech has a different value on every sample point

of the driving cycle. Now, Pmech as the ratio of the edge weight to the time spent on the

edge represents the power consumption for the whole driving cycle on the according edge.

Since in Battery Pbat and with that Ibat also are calculated using Pmech as input parameter,

Ibat has a constant value on an edge. Thus, instead of computing the charge-loss integral

using the trapezoidal rule, the charge loss is now determined as the product of the battery

current and the time spent on the according edge, because an integral method using more

grid points would be useless in this case. Using this assumption, the current can no longer

be seen as a discretisation of a continuous function and so the model for calculating the

battery voltage according to Equations (3.55) and (3.51) makes no sense any more. Instead,

the voltage drops Up at the RC elements are neglected in the model and the battery voltage
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is now determined as

Ubat[i] = U0[i]− Us[i]. (5.1)

Everything else in the usage of Battery remains the same. A Boolean value was introduced

to check if the SOC gets less than zero somewhere along the path. If this is the case the

algorithm returns the information that the desired destination can’t be reached with the

current SOC. The output format of the final result is presented in Section 6.3.
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Chapter 6

Results and Discussion

The results are divided into the outcomes of the different parts of this thesis described by the

previous chapters. The result of the second part is the pseudo-dual graph and was already

discussed as input for the third part. Generating the graph it was shown how the outcomes of

the realistic consumption model can be used as cost functions for its edges. Some statements

about the primal graph as input for the tool routing the i-MiEV are given in Section 6.2.

Hence, the outcomes of the evaluation of the energy consumption of the i-MiEV and the

findings of the implemented shortest path algorithm remain to be discussed. Doing so, the

model of the BEV, which claims to be as complete as reasonable, is discussed separately from

the graph algorithm. The latter was introduced to show which criteria routing algorithms

for a BEV have to meet. Several extensions of the graph algorithm would be conceivable,

some of them are addressed in Chapter 7.

6.1 Validation of the Energy-Consumption Model

As the main contribution to the current literature, the energy consumption model of the

BEV should generate more realistic results. To attest them, all parameters of the BEV have

been adjusted to the i-MiEV according to the cited sources as described in the preceding

chapters.

Measurement runs with the i-MiEV imitating different driving cycles performed by the AIT

on a roller-test bench have been plotted together with the results of the presented tool.

Doing so, text files describing a Worldwide harmonized Light-Duty vehicles Test Procedure

(WLTP) and a New European Driving Cycle (NEDC) were used. These cycles were designed

to assess fuel consumption and CO2 emission of passenger cars with internal combustion

engines. The cycles are also used to determine the range of conventional vehicles and BEVs.

The according files were provided by the AIT.

The definition of the NEDC and its test procedure can be found in [47]. Accordingly,
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33.6 km have to be covered in 1180 s at 20− 30 ◦C. There are two phases in the NEDC, the

first phase reflects urban driving and consists of four so called Urban Driving Cycles, each

lasting 195 s for covering a distance of 994.03m. The second phase shall simulate driving

modes with higher speed outside the urban area. The total cycle is supposed to reflect the

typical behaviour of drivers in Europe with modern cars. However, it was often criticised

for being artificial and giving unreal results. For example, in [35] it is described as not being

able to represent real-live driving conditions, considering low accelerations, constant speed

cruises and idling events for the most part. Also in [29] the NEDC is criticised for its low

accelerations and for not being able to represent real-live driving conditions.

As successor of the NEDC the WLTP shall correct the defects of the NEDC. The definition

of the WLTP can be found in [46]. It contains three different cycles modelling different

classes of vehicles with differing accelerations and speed curves. The Worldwide harmonized

Light-Duty vehicles Test Cycle (WLTC) for vehicles of Class 1 was constructed for low power

vehicles with a power-weight ratio smaller than or equal to 22 kW
t

, the WLTC for vehicles of

Class 2 for medium power vehicles with a power-weight ratio smaller than or equal to 34 kW
t

but greater than 22 kW
t

and the WLTC for vehicles of Class 3 for high power vehicles with a

power-weight ratio greater than 34 kW
t

. Since in [4] for the i-MiEV the maximum power of

the electric motor is stated as Pmax = 49 kW and the weight is stated as mchassis = 1.085 t,

the WLTC for vehicles of Class 3 was the cycle to choose. The WLTC for vehicles of Class

3 consists of four parts for low, medium, high and extra high speed. The maximum speed

in this cycle is 131.3 km
h

, the total cylce lasts 1800 s and covers a distance of 23.262 km.

Figure 6.1 shows the velocity over time, prescribed by the file data of the NEDC and the

actual velocity of the car according to the C++ program. From the extract of the NEDC

shown in Figure 6.2 it is easier to see the deviations of the actual from the prescribed velocity.

The section that is zoomed in is also framed in Figure 6.1. It can be seen that the actual

velocity controlled by the driver is not as edgy as the original data of the NEDC, but the

driver is able to follow the prescribed velocity well.

Besides the comparison of NEDC passes, also a WLTC for vehicles of Class 3 has been run.

The associated velocity over time of file data and driver model is shown in Figure 6.3. Again,

an extract of the cycle framed in Figure 6.3 is shown in Figure 6.4 for a better observation

of the deviations. The original data of the WLTC for vehicles of Class 3 seems to be more

realistic than the data for the NEDC, since it is not as edgy. There are no long phases of

constant speed any more and the accelerations are not as low. Again, the simulated driver

is able to follow the prescribed velocity well.

Regarding the calculations only, that means neglecting the times for reading from files,

declaring and initialising variables and writing to files, the presented tool needs 31ms for

processing two consecutive NEDCs with a total duration of 2360 s and a sample-time interval
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Figure 6.1: The NEDC and the implemented driver model trying to follow its prescribed
velocity over time

Figure 6.2: Extract of the NEDC and the implemented driver model trying to follow its
prescribed velocity over time

of 0.1 s running on a computer with an Intelr CoreTM i3 CPU with 2.20GHz. The C++

program takes 2.75 s in total, issuing a file with all data to plot. Time measurements were

taken within a Windowsr 10 Home system. The employed C++ compiler was the Microsoftr

C/C++ optimising compiler version 18.00.31101 for x86. The runtimes of the preprocessing

become important when a dynamical graph algorithm is used to do routing tasks using a

graph varying in time.

The Figures 6.5 – 6.9 contrast the plots of the tool outputs and the data from the measure-

ment run for driving two consecutive NEDCs when the air-conditioning system is turned
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Figure 6.3: The WLTC for vehicles of Class 3 and the implemented driver model trying to
follow its prescribed velocity over time

Figure 6.4: Extract of the WLTC for vehicles of Class 3 and the implemented driver model
trying to follow its prescribed velocity over time

on and the exterior lighting is turned off. In Figure 6.5 the battery voltage over the time

needed to complete two consecutive NEDCs is depicted. Since it is difficult to distinguish

the voltages of the measurements and the output of the C++ program, Figure 6.6 shows

the voltage deviations of the program output from the measurements at the appropriate

times. For the most part, the deviations are low. Though, there are some spots where the

deviations show large fluctuations up to about ±10V . Discretisation errors may play a role

for the deviations. At the places of the large deviations, the velocity profiles of the program

output and the measurements show some striking differences, which probably is the reason
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Figure 6.5: Comparison of the battery voltage over time between the C++ program and
NEDC-measurements

Figure 6.6: Voltage deviation of the output of the C++ program from the NEDC-
measurements

for the large voltage deviation at these positions. On the one hand, the controller simulating

the driver could not be set perfectly such that it reflects the behaviour of a real driver on

highest level of detail. On the other hand, the measurements have noteworthy deviations

from the original NEDC data. Figure 6.7 illustrates this issue. As can be seen, the driver

modelled in the C++ program can follow the prescribed velocity more precisely than the

real driver. Thus, voltage deviations were caused due to this fact, which does not mean

that the battery model is invalid. Figure 6.8 shows the two different velocity profiles of the

output of the C++ program and the measurements in a time interval where there are large
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(a) real driver following the velocity over time
prescribed by the NEDC performing measure-
ments

(b) driver model implemented in the presented
program following the velocity over time pre-
scribed by the NEDC

Figure 6.7: Velocity profiles resulting when the simulated and the real driver follow the
velocity prescribed by the NEDC

fluctuations in the voltage deviation depicted in Figure 6.6. It can be seen that there are

Figure 6.8: Extract of the velocity profiles of the output of the C++ program and the
NEDC-measurements

noteworthy differences in the profiles that can explain the high voltage deviations. When

decelerating, the simulated driver following the prescribed velocity has low variations in its

velocity that probably produce the fluctuations in the voltage deviation.

Figure 6.9 shows the SOC over time issued by the C++ program and the measured SOC

over time for two consecutive NEDCs. As can be seen, the presented tool estimates the SOC
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Figure 6.9: Comparison of the SOC over time between the C++ program and NEDC-
measurements

in a realistic way, slightly underestimating it as intended.

The Figures 6.10 – 6.13 contrast the plots of the tool outputs and the data from the mea-

surement run for driving a WLTC for vehicles of Class 3 when the air-conditioning system

is turned on and the exterior lighting is turned off. In Figure 6.10 the battery voltage is

depicted over the time needed for the run of a WLTC for vehicles of Class 3. Again, a look

Figure 6.10: Comparison of the battery voltage over time between the C++ program and
WLTC-measurements for vehicles of Class 3

at the voltage deviations over time depicted in Figure 6.11 gives more transparency. It looks

similar to Figure 6.6. A representative area for the voltage deviation is located in the time
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Figure 6.11: Voltage deviation of the output of the C++ program from the WLTC-
measurements for vehicles of Class 3

interval from 950 s to 990 s, where the real driver is able to follow the prescribed velocity

well without drifting far off course. Figure 6.12 shows the velocity profiles of the output

of the C++ program and of the real driver performing the measurement run compared to

the original data of the WLTC for vehicles of Class 3 in this interval. As can be seen, the

(a) real driver following the velocity over time
prescribed by the WLTC for vehicles of Class 3
performing measurements

(b) driver model implemented in the presented
program following the velocity over time pre-
scribed by the WLTC for vehicles of Class 3

Figure 6.12: Extract of the velocity profiles resulting when the simulated and the real driver
follow the velocity prescribed by the WLTC for vehicles of Class 3

difference between the velocity profile of the real driver and the original WLTC for vehicles

of Class 3 is higher than that between the driver implemented in the C++ program and the
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original cycle, which can explain the voltage deviation at this time. Again, voltage fluctu-

ations may be caused by the small oscillations in the velocity of the simulated driver when

decelerating.

Figure 6.13 shows the SOC over time issued by the C++ program and the measured SOC

over time for a WLTC for vehicles of Class 3. Although there are deviations of the battery

Figure 6.13: Comparison of the SOC over time between the C++ program and WLTC-
measurements for vehicles of Class 3

voltage of the program output from the measured battery voltage, the values for the SOC

match well. This may come from the fact that the deviations are small variations fluctuating

around zero for a large part.

Generally, the tool was designed such that the SOC is always slightly underestimated. In

this way it should be avoided that the user gets stranded due to inaccuracies in calculations

or research data. In return, some phenomenons that may influence the SOC of a BEV were

neglected. For example, ambient temperature, wind conditions and road conditions have not

been considered. In comparison to the modelled phenomenons these factors were assumed

to have rather small impacts on the SOC, unless there are extreme conditions like sub-zero

temperatures in winter or high wind speeds above 60 km
h

. Such conditions are also difficult

to model since they are hardly predictable.

In the tool routing the i-MiEV, the battery model of Figure 3.7 was simplified to a model

that just considers the voltage drops due to the ohmic resistance Rs of arresters, active

material and electrolyte, as explained in Section 5.2. Thus, in what follows the results

of the energy consumption model using the simplified battery model are discussed. In the

Figures 6.14 and 6.15 the results of the presented program using the simplified battery model

are compared to the measurements for two consecutive NEDCs when the air-conditioning
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system is turned on and the exterior lighting is turned off. Figure 6.14 depicts the battery

voltage over the time needed to complete two consecutive NEDCs. Since the deviations of

Figure 6.14: Comparison of the battery voltage over time between the C++ program using
the simplified battery model and NEDC-measurements

the voltage of the modelled battery from the voltage of the measurements is apparent, it is

not depicted in an extra figure. The voltage of the modelled battery is appreciably higher,

because the voltage drops due to the double-layer capacitance and relaxation effects are

neglected.

Figure 6.15 shows the SOC over time. The values for the SOC seem to match even better

Figure 6.15: Comparison of the SOC over time between the C++ program using the simpli-
fied battery model and NEDC-measurements
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than before. What really happens is that a part of the intended underestimation of the SOC

gets lost when using the simplified battery model. For long distances the SOC is still slightly

underestimated, such that this fact was accepted. The difference in the SOC between the

two battery models is small but it is clearly identifiable.

In the Figures 6.16 and 6.17 the results of the presented program using the simplified battery

model are compared to the measurements for a WLTC for vehicles of Class 3 when the air-

conditioning system is turned on and the exterior lighting is turned off. Figure 6.16 depicts

the battery voltage over the time needed to complete a WLTC for vehicles of Class 3. As in

Figure 6.16: Comparison of the battery voltage over time between the C++ program using
the simplified battery model and WLTC-measurements for vehicles of Class 3

Figure 6.14 the voltage of the modelled battery is higher because the voltage drops due to

the double-layer capacitance and relaxation effects are neglected.

Figure 6.17 shows the SOC over time. Also for this figure, the same statements as for

Figure 6.15 hold.
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Figure 6.17: Comparison of the SOC over time between the C++ program using the simpli-
fied battery model and the WLTC-measurements for vehicles of Class 3

6.2 Input Graph for the Routing Tool

Besides the dependency of the results of the shortest path algorithm on the energy-consumption

model there is a great reliance on the graph. All data used for the graph had already been

aggregated by the AIT. This data contains the road network of Vienna only. Most of the

data originally sources from OpenStreetMap [38]. That is vertex IDs, street IDs and the

belonging names and coordinates. Since the AIT data is used for own researches, there

are special link IDs for the edges, dividing OpenStreetMap edges into more edges. These

AIT-link IDs were aggregated in a table together with vertex IDs for the vertices at the ends

of an edge, street names, speed limits in km
h

, lengths of the edges in m, altitude differences

to be ascended and altitude differences to be descended when travelling along an edge into

the direction it is defined with given in m, specifications of one-way streets as Boolean val-

ues, functional road classes and multiple geographic coordinate values for each edge given in

degrees.

The vertex IDs originate from [38], but they were redefined for this work. This was done,

because the implemented graph algorithm works with vertices continuously numbered from

zero to the ID of the last vertex. Edges which are inaccessible for cars and the according

vertices had already been marked as such in the used data set and were crossed out with

the consequence that the numbering was not consistent any more. Therefore, all unique

vertex IDs remaining were stored ordered ascending in a vector within MATLABr and an

unordered matrix with all utilised data was created. The vertex IDs of the matrix were

compared with those of the ordered vector and when a value accorded with the ith entry of
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the vector the new vertex ID was set as i − 1 since in MATLABr the counter for vectors

and matrices starts with one, but the IDs should begin with zero. A text file containing the

vertex IDs after filtering out the edges inaccessible for cars, ordered ascending in a column,

was created in order to find a new ID, given its ID from OpenStreetMap. The line number

where the ID is found minus one is the ID used in the presented algorithms. While sorting

a matrix with all edges by link IDs, missing speed limits were added. Since the lack of

data came up only for residential and insignificant roads, all added velocities were set as

20 km
h

. For the processing with C++, umlauts and delimiters between words were replaced

by appropriate vowels and underscores. The numbers of vertices and edges in the graph were

stored in a text file together with the complete table for the graph data as input for the tool

routing the i-MiEV.

There are three more or less serious inconveniences of the graph that are dealt with in the

consumption model. Of 329446 edges there are only 51 edges for which the gradient is to

steep for the i-MiEV, most of them are mountain paths. So this problem is quite harmless.

There are 30715 edges whose lengths are too short for recuperating when braking and 46781

edges whose lengths are too short to accelerate to the speed limit. So, for about every

seventh edge there is a positive mistake due to too short lengths for reaching the speed limit

and a positive mistake due to too short lengths for recuperating for about every tenth edge.

On these edges, the program overestimates the energy consumption of the vehicle and thus

underestimates its SOC. These problems could be considered when composing a new graph

for the presented tool in future works.

6.3 Results of the Shortest Path Algorithm

Basing on the energy-consumption model the shortest path algorithm should deliver the

result that is actually interesting for the user of the presented tool. Knowing his start point

and the desired destination the driver of a BEV may want to know if he can reach it with

the initial SOC or if he has to recharge the battery first or even has to make an intermediate

stop to recharge the battery on the way. The algorithm determines the shortest path from

the given source vertex s to the also given target vertex t and tells whether the destination

can be reached on this path or not. It is also possible to find the place where the battery

runs out of charge.

The final outcome of the tool is determined in the recursive function presented in Section 5.2.

The program displays a list of the street names of all passed road sections sorted from s to

t and the SOC at the end of each road section. The shortest path, defined as the path

minimising a certain cost function, is visualised using an Application Programming Inter-

face (API) for Google Maps from [22]. Therefore, a Hypertext Markup Language (HTML)

document is created and the coordinates of the streets is pasted together with the according
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code from [22] in the correct order. All the shortest path queries were performed within the

presented graph of the city of Vienna. Unless otherwise stated, the facilities for heating, air

conditioning, ventilation and exterior lighting are considered to be turned off.

In Figure 6.18 the most energy-efficient path from a garage in Seestadt Aspern to a parking

space in Ottakring computed by the presented program is visualised. It was found by using

Figure 6.18: Most energy-efficient path from a garage in Seestadt Aspern to a parking space
in Ottakring, visualised using [22]

the presented calculation of the energy consumption for a pseudo-dual edge as cost function

in the shortest path algorithm. The initial SOC was chosen to be 70 % of the battery’s

capacity. Table 6.1 indicates the beginning and the end of the related list with street names

of road sections.

Table 6.1: Beginning and end of a list of street names of the road sections in the most

energy-efficient path from a garage in Seestadt Aspern to a parking space in Ottakring

Street Names Distance Covered SOC

Start Point 0m 70 %

- 29.2261m 69.9684 %

Ilse-Arlt-Strasse 75.8334m 69.8558 %

Maria-Tusch-Strasse 208.775m 69.7826 %

An den alten Schanzen 220.372m 69.8141 %

An den alten Schanzen 223.871m 69.8101 %

. . .

. . .
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. . .

Erdbrustgasse 24983.3m 48.9487 %

Erdbrustgasse 25062.7m 48.9529 %

Erdbrustgasse 25066.5m 48.9487 %

Target Point 25066.5m 48.955 %

In the columns from left to right the street names, the distance covered so far and the SOC

in percent of the battery’s capacity are stated. The penultimate line gives values for reaching

the destination without braking. These are the name of the street where the destination is

located, the distance to it and the SOC when passing the destination. The last line gives the

SOC when the vehicle has stopped and performed regenerative braking. Additionally, the

program confirms that the destination can be reached with the current SOC. This path has a

total length of 25.0665 km and the total energy consumption for covering it with the i-MiEV

calculated by the presented program is 13.0925MJ . That corresponds to 0.145 kWh
km

. The

results of an Allgemeiner Deutscher Automobil-Club (ADAC) test [39] state that the i-MiEV

requires about 0.113 kWh
km

in town, 0.1503 kWh
km

out of town and 0.257 kWh
km

on a motorway. As

mean value 0.177 kWh
km

is stated in [39]. The route depicted in Figure 6.18 is seen as a

town route, although there is a short motorway section in it. Starting the route after the

motorway section, marked with a square in Figure 6.18, the i-MiEV requires 0.177 kWh
km

for

driving in town according to the C++ program, which is a higher value than before. This

may come from the fact that from this point on, the i-MiEV has more stop-and-go phases

which produces higher energy costs. Moreover, there are several trunk-road sections, where

the vehicle has to accelerate to higher velocities as it is usual for urban driving conditions.

From the garage in Seestadt Aspern to the start of the motorway, marked with a circle in

Figure 6.18, there are no trunk road sections and the i-MiEV requires 0.108 kWh
km

according

to the C++ program. This value matches well with the energy consumption when driving

in town stated in [39]. On the motorway section the i-MiEV requires 0.152 kWh
km

according to

the C++ program, whereas in [39] the according energy consumption is given by 0.257 kWh
km

.

The value of the simulation deviates from the measured one, because with 5.572 km length

the section for simulating driving on a motorway may just be too short to be representative.

To simulate driving on a motorway or driving out of town, an other graph than the one of

Vienna should be considered. The comparison of simulation with measured data shows good

correspondence considering the fact that road networks in towns differ from each other in

terms of speed limits, road gradients and lengths, just to give a few examples.

Figure 6.19 depicts the elevation profile of the discussed path based on data provided by [2].

It shall just give an idea of the change in height along the route and was pointwise determined

at six positions. On the way to the beginning of the motorway located around 6 km away

from the start point and on the motorway that is travelled along for about 5.5 km there is
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Figure 6.19: Meters above sea level given for six positions on the most energy-efficient path
from a garage in Seestadt Aspern to a parking space in Ottakring

no significant height change. In the second half of the way, there is a height change of about

65m. The larger gradient after the motorway section also contributes to the high energy

consumption on the remaining distance to the destination.

The shortest path algorithm was run one more time with the same source and target as in

the beginning, but starting with an initial SOC of 15 % to see what is the output of the

program if the battery runs out of charge on the way. Table 6.2 indicates the beginning and

the end of the program-output list of the road sections passed.

Table 6.2: Beginning and end of a list of street names of the road sections when the battery

runs out of charge on the way from a garage in Seestadt Aspern to a parking space in

Ottakring

Street Names Distance Covered SOC

Start Point 0m 15 %

- 29.2261m 14.9684 %

Ilse-Arlt-Strasse 75.8334m 14.8482 %

Maria-Tusch-Strasse 208.775m 14.7699 %

An den alten Schanzen 220.372m 14.8035 %

An den alten Schanzen 223.871m 14.7993 %

. . .

. . .

. . .

Guertelbruecke 17037.9m 0.401613 %
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Guertelbruecke 17110.3m 0.359768 %

Guertelbruecke 17146.9m 0.36729 %

Guertelbruecke 17482.1m 0 %

The algorithm stops outputting the road sections once the battery runs out of charge and

issues that the destination can not be reached with the current SOC. According to Table 6.2

with the initial SOC of 15 % the i-MiEV can cover about 17.48 km of the most efficient route

from a garage in Seestadt Aspern to a parking space in Ottakring. On Figure 6.18 the place

where the battery runs out of charge is marked with a triangle.

The calculation of the just presented path was performed when the costs of the graph were

already computed and shifted. Thus, the graph had to be read in and Dijkstra’s algorithm

had to be executed. The process for reading the graph took 387.243 s and Dijkstra’s algo-

rithm took 106.439 s, including the time to store the results. Some more time is needed to

call the destructors of own classes and classes from the STL. The conditions of the hardware

and software for these measurements were the same as mentioned in Section 6.1.

The added value of the presented tool to finding most efficient paths is the realistic energy-

consumption model. Compared to traditional navigation systems searching for the shortest

path minimising the distance between s and t the presented tool is more advantageous for

the user who wants to save energy. This is illustrated using Figure 6.20 depicting the path

with the least distance as a blue curve and the most energy-efficient path as a red curve

from the company location of the AIT to Am Cobenzl. The difference in the altitude that

Figure 6.20: Most energy-efficient path (red curve) and path with the least distance (blue
curve) from the AIT courtyard to Am Cobenzl, visualised using [22]
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has to be climbed is 220m, since according to [2] the AIT courtyard is situated 162.1m

and Am Cobenzl is situated 382.1m above sea level. The distance from the start point

to the destination is 13.246 km using the most energy-efficient path and 11.3303 km using

the path with the least distance. Starting with an initial SOC of 70 %, the i-MiEV has a

SOC of 53.7979 % at Am Cobenzl when taking the most energy-efficient path and 50.2651 %

when taking the path with the least distance. The total energy consumption is 10.0858MJ

on the most energy-efficient path and 12.2449MJ on the path with the shortest distance.

Thus, 2.1591MJ can be saved when taking the energy-efficient path instead of the short

path. The energy-consumption-distance ratio is 0.212 kWh
km

for the energy-efficient path and

0.3 kWh
km

for the short path. These values are higher than the average one given by [39] since

the considered path is quite steep.

Another feature of the presented tool is that it can compare energy consumptions for different

driving styles. To show this, three drivers with differing controller settings were simulated

travelling along the most energy-efficient path from the Vienna airport to the Wolfersberg

with an initial SOC of 90 %. The driver models are referred to as Driver A, Driver B and

Driver C. There are different controller settings for accelerating, braking and driving with

constant velocity. The settings for the different drivers are listed in Tables 6.3 – 6.5.

Table 6.3: controller settings for Driver A

Procedure KP TN TV Ta

acceleration 0.65 0.5 s 0.1 s 0.1 s

braking 0.15 0.3 s 0.2 s 0.1 s

constant velocity 0.5 0.4 s 0 s 0.1 s

Table 6.4: controller settings for Driver B

Procedure KP TN TV Ta

acceleration 0.5 0.4 s 0 s 0.1 s

braking 0.14 0.6 s 0 s 0.1 s

constant velocity 0.5 0.4 s 0 s 0.1 s

Table 6.5: controller settings for Driver C

Procedure KP TN TV Ta

acceleration 0.1389 0.6 s 0 s 0.1 s

braking 0.1389 0.6 s 0 s 0.1 s
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constant velocity 0.5 0.4 s 0 s 0.1 s

In Figure 6.21 it is shown how the Drivers A – C act when accelerating from a certain velocity

to a higher one. Figure 6.21b exemplary illustrates the deceleration behaviour of Driver A.

From A to C the energy efficiencies of the driving styles decrease. Thus, it is expected that

(a) acceleration behaviour of Driver A (b) deceleration behaviour of Driver A

(c) acceleration behaviour of Driver B (d) acceleration behaviour of Driver C

Figure 6.21: Simulated Drivers A, B and C trying to follow a prescribed velocity profile

from A to C the final SOC for each driver on a certain route decreases. Figure 6.22 gives

the results of the shortest path algorithm for the costs calculated using the different driver

models. The path courses alter slightly, because the different routes have their advantages

for each driving style. Table 6.6 gives the route lengths, the energy consumption and the

final SOC values for the different drivers.
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Figure 6.22: Most energy-efficient paths from the Vienna airport to the Wolfsberg for Driver
A (red curve), Driver B (blue curve) and Driver C (green curve) and related intermediate
SOC values, visualised using [22]

Table 6.6: Characteristic values for different driver models travelling along their most energy-

efficient paths from the Vienna airport to the Wolfsberg

Driver Model Route Length Total Energy Consumption Final SOC

Driver A 38.903 km 17.7949MJ 61.9586 %

Driver B 39.3971 km 18.0264MJ 61.5829 %

Driver C 39.1835 km 18.7707MJ 60.3822 %

Comparing the drivers in terms of their energy consumption gives similar results. This

implies that the driving style of a user has only limited impact. In contrast, the program

output indicates that the additional consumption of facilities for driving assistance and

comfort have a large influence on the SOC. This is shown in Figure 6.23. It depicts the most

energy-efficient path for Driver A when the facilities for heating, air conditioning, ventilation

and exterior lighting are considered to be turned on. Additionally, intermediate SOC values

are given. The route is exactly the same as the route for Driver A in Figure 6.22, but the

SOC decreases even faster than for the least energy-efficient driving style of Driver C when

the facilities are turned off. The according total energy consumption is 24.6218MJ and the

SOC at the destination is 50.9589 %.

To simulate different drivers, the costs for the graph had to be recalculated several times.

The average times required to perform the different tasks are stated in Table 6.7. The

conditions of the hardware and software for these measurements again were the same as

mentioned in Section 6.1.
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Figure 6.23: Most energy-efficient path from the Vienna airport to the Wolfsberg for Driver
A when facilities for heating, air conditioning, ventilation and exterior lighting are turned on
and related intermediate SOC values evaluated at the positions marked with the red circles,
visualised using [22]

Table 6.7: Average times required for the different program tasks

Task Average Time

read in primal graph data 36 s

create the pseudo-dual graph 128 s

calculate edge costs 630 s

intermediate Input/Output (I/O) operations 250 s

Bellman-Ford algorithm 1460 s

(potential shifting)

intermediate I/O operations 435 s

Dijkstra’s algorithm 115 s

(including output operations)
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Chapter 7

Conclusion and Outlook

In this thesis a realistic power-consumption model of a BEV that slightly overestimates

its energy consumption to prevent inaccuracies has been introduced. Doing so, exterior

forces resisting an acceleration, inertial forces of inner rotating parts, losses along the power

train and energy consumptions of facilities for driving assistance and comfort have been

considered. Detailed models of the battery, the electric motor and the chassis and its drag

were created and put together to a model of a BEV. Its parameters were set in a way that

the resulting program describes the energy consumption of the i-MiEV. First, the energy

consumption and the SOC of the i-MiEV over time were evaluated for driving cycles. Then,

a graph model suitable for routing a BEV taking into account its characteristic features was

generated. The energy-consumption model was combined with a graph algorithm using the

created static graph for finding paths with least energy consumption of the i-MiEV.

There are countless influences on a BEV that can be considered when simulating real-life-

driving conditions. Most of them have a small impact and are rather difficult to describe.

The final model of the i-MiEV established in this thesis is assumed to be realistic with-

out regarding all possible influences on the battery’s SOC. The power consumptions of the

modelled phenomenons were estimated little higher than in reality to compensate the not

simulated factors. For instance, the resistance coefficients were assigned with values of the

upper boundary of a given range found in literature. Examples of neglected influences on

the energy consumption are ambient air temperature, wind and road conditions. These are

generally small, but can get notably higher at extreme conditions such as high wind speeds

of 60km
h

and higher, sub-zero temperatures or snow-covered roads. Moreover, environmental

conditions like the ones just mentioned are often regional and hardly predictable. For being

able to give reasonable results in such situations the tool has to be adapted accordingly.

In normal circumstances, the energy consumption issues realistic results, as shown in Sec-

tion 6.1. The implemented vehicle model is more detailed than the ones commonly used

for energy consumption evaluations. All components for which data is usually given by the
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manufacturer are simulated. Additionally, the driving behaviour of different users can be

reflected and used to adopt the values for the energy consumption.

A common graph is not able to hold costs that come up when passing from one edge to

another. Therefore, the primal input graph has been converted to its pseudo-dual graph

that can be assigned with the costs of the primal graph and additionally with the turn costs

it takes for crossing or making a turn on junctions for example. The primal graph used in

this thesis contains lots of very short road sections as edges. It is difficult to assign costs to

such edges, because it is not possible to generate a complete driving cycle for accelerating or

decelerating to the according speed limit with the maximum acceleration or deceleration rate

of the vehicle since there is just not enough space to do so. In order not to underestimate

the energy consumption on such edges when calculating the costs, the lengths of these edges

have been extended or regenerative braking was not considered. The number of such short

edges occurring in the graph is considerably high, it is stated in Section 6.2. This defect

could be eliminated when creating further graphs that can be used as input for the tool.

Moreover, a program getting geographical data and generating the primal graph of a street

map automatically would be useful.

The implemented graph algorithm is able to exploit most of the potential of the energy

consumption model. It includes turn costs since the pseudo-dual graph is used for the

shortest path query. Routes can be found for any start point and destination applying

Dijkstra’s algorithm when the costs are shifted yet or a combination of the Bellman-Ford

and Dijkstra’s algorithm for the first path query when changes of the cost function are

considered. Thus, the parameters can be varied such that different vehicle or driver models

can be evaluated. The battery model of the original vehicle model had to be simplified,

because as the cost of a certain edge the energy consumption is a constant value for the

related road section, such that the battery current was considered to be constant there.

However, the vehicle model was proved to still issue realistic results when using the simplified

battery model in Section 6.1.

More sophisticated graph algorithms yet exist in literature, but implementing them would

lead too far for this thesis and moreover it would not close any gap of knowledge any more.

Nevertheless, some ideas of the appropriate scientific works given below would improve the

presented tool and could be realised in future projects. For example, as a considerable

improvement the algorithm could be dynamised, such that it would accept changes of the

costs of the graph in time. Then, edge costs would be determined while driving along the

belonging road section and the according energy consumption would not be a constant value

any more. Thus, the original battery model could be used since the differential equations

describing the double-layer capacitance and relaxation effects could be applied rationally.

Furthermore, changing traffic conditions could be taken into account. In [7] an algorithm
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for the prefix-bounded shortest path problem is suggested, where a recursive function absorp

accepts the charge level of the battery as a parameter at each vertex to set constraints for

choosing a path. If further data would be available, the proposal of [51] to regard turn

restrictions at junctions could be realised as well. Data for the exact positions of traffic

lights or stop signs in the street map of a city could further enhance the results. Since the

procedure for stopping at a junction is implemented in the presented tool, it could be easily

adopted to consider this additional data and even evaluate average stoppage times.

Unlike common navigation systems, the presented tool indicates how a user can affect the

driving range of the i-MiEV. According to Figure 6.20 the shortest path is not always the

best way to choose if the driver wants minimise battery-charging intervals. So he or she

may consider to accept a longer journey time and save energy in return. The results of this

thesis reveal that the user can extend the driving range by improving his personal driving

style. Figure 6.22 implies that this gets apparent only when covering a larger distance.

The program output further indicates that the impact of the power consume of facilities for

driving assistance and comfort on the SOC is even bigger. Thus, the user should switch on

facilities only if necessary.
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Appendix

8.1 Formula Symbols

α number of current branches of a winding layer on the circumference of the armature of a

DC machine

β pitch angle of a road segment

ε edge of the pseudo-dual graph D, ε ∈ ED

η12V efficiency factor of the low voltage lead-acid battery for charging and discharging

ηcon efficiency factor of the DC-DC converter

ηdiff efficiency factor of the differential

η360V efficiency factor of the lithium-ion battery

ηgear efficiency factor of the gear

ηinv efficiency factor of the inverter

ηmech total efficiency factor of all considered mechanical parts, ηmech = ηgear · ηdiff · ηmotor

ηmotor efficiency factor of the motor

µ friction coefficient for brake disc and block pads

ν vertex of the pseudo-dual graph D, ν ∈ V D

ρ air density

Φ magnetic flux
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ωnom nominal angular velocity of the machine

ωt angular velocity of a tyre

ωm angular velocity of the machine

A frontal surface area of the vehicle

aap constant acceleration assumed for an acceleration process

a acceleration

adp constant deceleration assumed for a braking process

b number of current branches of a winding layer on the circumference of the armature of a

DC machine

c cost of a weighted edge, c(u, v) is the weight of the edge (u, v)

c̄ shifted cost of a weighted edge, c̄(u, v) is the shifted weight of the edge (u, v)

Cbat battery capacity

cd drag coefficient

Cp capacitance due to double-layer capacitance

crr rolling-resistance coefficient

D pseudo-dual graph consisting of nD vertices and mD edges

d vector for path costs, d[u] is the cost of a path from the source vertex to vertex u

dx adjacent leg in the gradient triangle

dy height difference on road segments and opposite leg in the gradient triangle

E edge set of a graph

e edge of a graph G, e ∈ E

e(kT ) discrete system deviation with sampling interval T and and counter k

e(t) continuous system deviation

F actual propulsion force on the vehicle

f number of friction faces of a brake disc

f̄ bijective function that converts an edge ei to a vertex νi of the pseudo-dual graph D
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FN maximum normal force on a brake disc from block pads

f(t) auxiliary function to describe intermediate steps

f(xi) function f evaluated at xi

G Graph consisting of n vertices and m edges

g gravitational constant

g(t) auxiliary function to describe intermediate steps

h overall height of the BEV

hc ground clearance of the BEV

i index of a loop, array, vector or matrix

IA armature current or effective value of alternating armature current

Ibat battery current

J moment of inertia

Jg,t moment of inertia of the gear at the shaft of the tyres

Jg,m moment of inertia of the gear at the shaft of the motor

Jm moment of inertia of the motor

Jt moment of inertia of a tyre

k1 machine constant k1 = z p
a

k2 machine constant k2 = k1
2π

kdiff transmission ratio of the differential

kmech total transmission ratio kmech = kgear · kdiff

kgear transmission ratio of the gear

KP controller-gain constant

KS gain of the control variable in the step response of a system to be controlled

l length of a road section

m total number of edges in an edge set E
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Mb maximum brake torque

mchassis curb weight of the BEV

Mg torque of the gear due to its inertia

Mi generated torque of the DC machine

mload mass of occupants and cargo

Mmax maximum torque of the machine

Mm torque of the motor due to its inertia

mtot total mass of the vehicle including curb weight and load

Mt torque on the tyres due to their inertia

n rotations per second or total number of vertices in a vertex set V

p number of pole pairs on the circumference of the armature of a DC machine or path in a

graph G

parent vector to store the predecessors of a vertex in the shortest path to it

Paux power demand of auxiliaries at the lead-acid battery

Paux,360V power demand of auxiliaries at the lithium-ion battery

Ptail power demand of a tail lamp

Pbat power demand at the lithium-ion battery

PHAC power demand of heating and air conditioning

Plight power demand of exterior lighting

Plow power demand of a low beam

Pm power of the electric motor

Pmax maximum power of the electric motor

Pmech demand for mechanical power

pot vertex potential

Pre recuperated power

Pre,max maximum recuperated power
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q division ratio for the ascending part of a road segment or path in a graph G

R restricted pseudo-dual graph

re external brake-disc radius

ri internal brake-disc radius

rm mean radius of a brake disc rm = 2
3
· re3−ri3
re2−ri3

Rp ohmic resistance due to double-layer capacitance

Rs ohmic resistance due to resistances in the battery

rt radius of a tyre

SOClim upper limit of the SOC given as charge-capacity ratio of the battery

s distance covered on a road segment or the source vertex of a path

T sampling interval

t variable for time or the target vertex of a path

Ta tracking time constant, anti-windup constant

TN reset time

TΣ cumulative time constant

TV derivative time

u vertex in a graph G, u ∈ V

U0 open-circuit voltage of the lithium-ion battery

Ui induced voltage or effective value of alternating induced voltage

ui output of the integrator in a controller

u(kT ) discrete control signal with sampling interval T and counter k

Up voltage drop due to double-layer capacitance

Us voltage drop due to ohmic losses

usat value of u(t) or u(kT ) upon application of a saturation function

usat,max saturation value of the control signal u(t) or u(kT )
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u(t) continuous control signal with time t

Ubat total voltage of the lithium-ion battery

V vertex set of a graph

v velocity or vertex in a graph G, v ∈ V

w width of the car body or vertex in a graph G, w ∈ V

wt width of the tyres

xi discrete value of a vector with index i

y(t) control variable

z number of conductors on the circumference of the armature of a DC machine

8.2 Acronyms

Battery a class describing the battery model

Cost a class linking all program files to compute the costs of road sections

Driver a class describing the behaviour of the driver

DrivingCycle a class for reading the driving cycle

GraphAlgorithm a class performing all routing tasks

NumericalMathematics a class providing functions for numerical mathematics

Propulsion a class describing the mechanical model of the vehicle

PseudoDualGraph a class for reading graph data and generating a pseudo-dual graph

AC Alternating Current

ADAC Allgemeiner Deutscher Automobil-Club

AIT AIT Austrian Institute of Technology GmbH

API Application Programming Interface

BEV Battery Electric Vehicle

DC Direct Current

EV Electric Vehicle
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HAC Heating and Air Conditioning

HTML Hypertext Markup Language

i-MiEV Mitsubishi innovative Electric Vehicle, based on Mitsubishi i

I/O Input/Output

NEDC New European Driving Cycle

PSM Permanently excited Synchronous Machine

SI Système International d’unités

SOC State Of Charge

STL Standard Template Library

WLTC Worldwide harmonized Light-Duty vehicles Test Cycle

WLTP Worldwide harmonized Light-Duty vehicles Test Procedure
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[9] J. Barco, A. Guerra, L. Muñoz, and N. Quijano. Optimal routing and scheduling of

charge for electric vehicles: Case study. arXiv preprint arXiv:1310.0145, 2013.

89



BIBLIOGRAPHY

[10] M. Baum, J. Dibbelt, T. Pajor, and D. Wagner. Energy-optimal routes for electric

vehicles. In Proceedings of the 21st ACM SIGSPATIAL international conference on

advances in geographic information systems, pages 54–63. ACM Press, 2013.

[11] L. Bedogni, L. Bononi, A. D’Elia, M. Di Felice, M. Di Nicola, and T. S. Cinotti. Driving

without anxiety: A route planner service with range prediction for the electric vehicles.

In 2014 International Conference on Connected Vehicles and Expo (ICCVE), pages

199–206. IEEE, 2014.

[12] L. Bedogni, L. Bononi, M. Di Felice, A. D’Elia, R. Mock, F. Morandi, S. Rondelli, T. S.

Cinotti, and F. Vergari. An Integrated Simulation Framework to Model Electric Vehicles

Operations and Services. IEEE Transactions on Vehicular Technology, 65(8):5900–5917.

IEEE, 2015.

[13] R. Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–90,

1958.

[14] J. R. Bumby, P. H. Clarke, and I. Forster. Computer modelling of the automotive energy

requirements for internal combustion engine and battery electric-powered vehicles. IEE

Proceedings A (Physical Science, Measurement and Instrumentation, Management and

Education, Reviews), 132(5):265–279, 1985.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.

MIT Press, Cambridge, Mass., 3. edition, 2009.

[16] D. Delling, P. Sanders, D. Schultes, and D. Wagner. Engineering route planning algo-

rithms. In Algorithmics of large and complex networks, volume 5515 of LNCS, pages

117–139. Springer Berlin Heidelberg, 2009.

[17] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Math-

ematik, 1(1):269–271. Springer, 1959.

[18] J. Eisner, S. Funke, and S. Storandt. Optimal Route Planning for Electric Vehicles in

Large Networks. In Proceedings of the 25th AAAI Conference on Artificial Integligence,

pages 1108–1113. AAAI, 2011.

[19] L. R. Ford Jr. Network flow theory. No. P-923. RAND CORP SANTA MONICA CA,

1956.

[20] H. Frohne and F. Moeller. Moeller Grundlagen der Elektrotechnik: Mit 36 Tabellen und

182 Beispielen. Vieweg + Teubner, Wiesbaden, 22. edition, 2011.

[21] A. Goel. Printing Paths in Dijkstra’s Shortest Path Algorithm retrieved

from http://www.geeksforgeeks.org/printing-paths-dijkstras-shortest-path-algorithm/,

20/03/2017.

90



BIBLIOGRAPHY

[22] Google developers. Google Maps APIs. Retrieved from https://developers.google.com,

2016.

[23] J. G. Hayes, R. P. R. de Oliveira, S. Vaughan, and M. G. Egan. Simplified electric

vehicle power train models and range estimation. In Vehicle Power and Propulsion

Conference (VPPC), pages 1–5. IEEE, 2011.

[24] P. Hofmann. Hybridfahrzeuge. Springer-Verlag Vienna, Vienna, 2010.

[25] M. Horn. Regelungstechnik. Lecture Notes, TU Graz, 2015.

[26] X. Huang. Negative-Weight Cycle Algorithms. In Proceedings of the 2006 International

Conference on Foundations of Computer Science, pages 109–115. CSREA Press, 2006.

[27] S. Jakubek. Digital Control. Lecture Notes, TU Wien, 2012.

[28] A. Jossen and W. Weydanz. Moderne Akkumulatoren richtig einsetzen: 36 Tabellen.
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