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Kurzfassung

Der stetige Anstieg an Größe und Komplexität von Produktionssystemen macht den
Einsatz von automatischen Planungssystemen beinahe zu einer Notwendigkeit. Die Wahl
des Algorithmuses ist hier ein wichtiger Faktor für die Qualität der Lösung, was wieder-
um einen direkten Einfluss auf die Effizienz des Systems hat. Es ist daher unerlässlich,
dass diese Entscheidung eine informierte ist, die idealerweise von einem automatisierten
System getroffen werden kann. Der Fokus dieser Arbeit liegt auf dem Job Shop Sche-
duling Problem, welches bekanntermaßen NP-schwer ist und in der Literatur bereits
vielfach behandelt wurde. Dennoch gibt es bisher relativ wenig Arbeit um ein besseres
Verständnis der Landschaft der Instanzen zu schaffen, was sich in der unsystematisch
zusammengestellten Sammlung an Testinstanzen niederschlägt. Da diese Instanzen häufig
verwendet werden um Algorithmen zu evaluieren, kann ein Bias hier zu falschen Schlüssen
und somit schlechteren Ergebnissen führen.

Diese Diplomarbeit enthält eine systematische Analyse des Instanzraums des Job Shop
Scheduling Problems mit dem Ziel unser Verständnis des Problems zu verbessern und
eine bessere Grundlage für weitere Arbeit zu schaffen. Um dies zu erreichen wurden die
in der Literatur verwendeten Testinstanzen analysiert und um neu generierte Instanzen
verschiedener Größen und mit Bearbeitungszeiten aus verschiedenen Wahrscheinlich-
keitsverteilungen erweitert. Auf Basis dieser Instanzen wurden verschiedene Algorithmen
evaluiert, um ihre Verhaltensmuster zu analysieren und Unterschiede zu den existierend
Testinstanzen aufzuzeigen. Aufgrund dieser Analyse wurde festgestellt, dass die existie-
renden Instanzen einen wesentlich kleineren Bereich abdecken als die generierten und zu
abweichenden Schlussfolgerungen hinsichtlich der Qualität der Algorithmen führten.

Auf der erweiterte Menge von Instanzen wurden zwei exakte Methoden (CP Optimizer
und OR-Tools) und eine Metaheuristik (Tabu-Suche) als die besten Algorithmen ermit-
telt, wobei jeder in einem anderen Teilbereich hervorstach. Die Metaheuristiken erzielten
schlechtere Ergebnisse für Instanzen basierend auf einer konstanten Verteilung oder
einer negativen Binomialverteilung, was darauf hinweist, dass die verwendete Nachbar-
schaftsfunktion für diese Instanzen schlecht geeignet ist. Umgekehrt zeigten die exakten
Methoden eine Verschlechterung der Lösungsqualität bei Instanzen mit uniform oder
binomial verteilten Bearbeitungszeiten. Auf Basis dieser Eigenschaften wurden Machine
Learning Modelle erstellt, welche den besten Algorithmus für eine Instanz vorherzusagen.
Das auf dem besten Modell, einem Random Forest, basierende Lösungsverfahren erreichte
für 90% der Instanzen die beste Lösung, während der beste individuelle Algorithmus
diese nur für 64% erreichte.
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Abstract

The continuous increase in size and complexity of production systems makes the use of
automated scheduling systems almost a necessity. The choice of algorithm is of course a
major factor in the quality of the schedule, which in turn can have a very real impact on
the efficiency of the system. It is therefore imperative that this choice is an informed
one that can, ideally, be made by an automated system instead of relying on human
expertise. The focus of this thesis lies on the job shop scheduling problem, a well-known,
NP-hard problem that has been extensively studied in the literature, for which, despite
its age and popularity, there has been relatively little work done towards understanding
the landscape of instances, which is reflected in the rather haphazard set of commonly
used benchmark instances. Since these instances are commonly used to evaluate and
compare the performance of algorithms, bias in the benchmark instances may lead to
incorrect conclusions about an algorithm’s strengths and weaknesses and thus result in a
worse solution.

This thesis provides a systematic analysis of the instance space of the job shop scheduling
problem with the goal of furthering our understanding of the problem and creating an im-
proved foundation for further work. For this purpose, the benchmark instances commonly
used in the literature were analyzed and extended by a set of newly generated instances
of various sizes with processing times drawn from different probability distributions. A
number of different algorithms were evaluated on the extended instance set to analyze
their performance patterns and highlight the differences to the current set of benchmark
instances. It was found that the existing instances cover a significantly smaller area than
the newly generated ones and did in fact result in different conclusions regarding the
algorithms’ performances.

On the extended instance set two exact methods (CP Optimizer and OR-Tools) and
one metaheuristic (tabu search) were determined to be the best algorithms, however
each excelled on a distinct subset of instances. The metaheuristics in particular showed
significantly worse performance on instances with processing times drawn from a constant
or negative binomial distribution, indicating the neighborhood is ill-suited for this kind
of instances. Conversely the exact methods displayed inferior performance on instances
with uniformly or binomially distributed processing times. The difference in algorithm
performance was utilized to train machine learning models to predict the best algorithm
for a given instance. The solver based on the best model, a Random Forest, was able to
obtain the best solution for 90% of the instances, whereas the best individual algorithm
only obtained the best solution for 64%.
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CHAPTER 1
Introduction

As production systems all around the world increase in size, complexity and level of
automation, the need for automated scheduling systems also increases. Since the vast
majority of underlying problems are NP-hard, one cannot expect to obtain an optimal
solution within a reasonable amount of time for larger problem instances. However the
quality of the schedule can have a significant impact on the productivity of the overall
system, which in turn can lead to massive cost savings. It follows that the choice of
scheduling algorithm is a major factor in this process and while there usually exist a
wide variety of approaches for any given problem, they vary wildly in the quality of their
solutions. It is therefore imperative to choose the right algorithm for any given subset of
problem instance and that this choice is an informed one backed by data. Ideally this
choice would not have to be made by humans, but rather by a specialized algorithm that
is able to determine the ideal approach for any given instance.

However the quality of this choice depends significantly on having correct and representa-
tive data regarding the performance of various algorithms on different kinds of instances,
i.e. the benchmark instances should paint an accurate picture of the instance space.
Historically the data sets used to evaluate the performance of algorithms for a given
problem have largely been chosen without an explicit process to ensure they properly
cover the space of all possible instances. While it is understandable from a pragmatic
standpoint why this path was taken, one can also easily see how this might unfairly bias
the results in favor of or against some algorithms, which in turn might lead to incorrect
conclusions about the performance of the evaluated algorithm.

In recent years, however, there has been an increased uptake in work towards alleviating
this problem, such as the instance space analysis framework proposed by Smith-Miles
et al. [SM+14]. The process requires multiple steps: First, one must understand how
well the existing benchmark instances cover the instance space. Then the gaps in the
instance space can be filled by generating new benchmark instances to ensure proper
coverage. Based on these benchmark instances, the performance of various algorithms

1
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1. Introduction

can be evaluated and their strengths and weaknesses can be determined, which provides
the information necessary to make an informed decision regarding the algorithm to use.

This thesis concerns itself particularly with one of the oldest and best-known scheduling
problems – the classical job shop scheduling problem (JSSP) [FP09]. Despite it being
a widely known problem, there has been relatively little work done towards a more
representative set of test data – an issue that has recently also been raised by Weber
et al. [Web+19]. The impact of this issue is magnified by the relatively broad spectrum
of solution approaches for the JSSP, including constraint programming [Vil+15], tabu
search [Zha+08; NS05; Tai94], simulate annealing [LA87], genetic algorithms [YN92],
and numerous others. However, no clear best has yet emerged, indicating that the choice
of algorithm can have a significant impact on the quality of the solution.

1.1 Aims of the Thesis

The primary aim of this thesis is to further our understanding of the job shop scheduling
instance landscape and to build an improved foundation on which to evaluate the
performance of existing and future solution approaches.

In particular, this is achieved by:

• Analyzing the existing benchmark instances found in the literature and generating
novel benchmark instances to fill any gaps.

• Defining a set of features used to characterize the instances.

• Gathering performance data from a diverse set of algorithms on which, combined
with the feature data, the instance space analysis shall be based.

• Creating and evaluating machine learning models with regard to their suitability
for automatically selecting the optimal algorithm for a given instance, with the
goal of improving upon the performance of any individual algorithm.

1.2 Contributions

This thesis offers a broad exploration of the job shop scheduling problem, with its main
contributions being:

• A novel set of benchmark instances covering a wider range of variations than the
ones commonly found in the literature, as well as evidence of their necessity.

• The definition of probing and graph features that have so far not been used as
well as a systematic analysis of various instance features, their distribution, their
predictive power and importance, but also their similarities.

2
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1.3. Structure of the Thesis

• The identification of areas of the instance space in which one algorithm outperforms
the others and an analysis of the aforementioned areas, as well as an analysis of
the algorithms’ performance patterns that provides insights into their respective
strengths and weaknesses.

• The creation of algorithm-portfolio-based solver by means of automated algorithm
selection using various machine learning models, each of which is able to consistently
obtain better results than any individual algorithm.

1.3 Structure of the Thesis

The core of this thesis is split into three major chapters as follows:

First up, chapter 2 provides an introduction to the instance space analysis methodology
as well as a definition of the job shop scheduling problem. Furthermore, it contains a
short survey depicting the state of the art related to instance space analysis for the job
shop scheduling problem.

Chapter 3 offers an overview of how the instance space analysis methodology is applied
in this thesis. This includes the algorithms used, the instances on which the analysis
was performed, the features used to describe the instances, and the experiment setup. A
discussion regarding different performance measurements that could be used to evaluate an
algorithm’s performance and their respective advantages and drawbacks is also included.

Finally chapter 4 presents the experimental results as well as their analysis. The analysis
starts with a high-level view of the various algorithms’ performance, followed by an
in-depth investigation into the shape of the instance space, the feature distribution
and the performance characteristics. Finally the data obtained from the instance space
analysis is used to build machine learning models with the goal of predicting the best
algorithm for a given instance.

3
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CHAPTER 2
State of the Art

2.1 Problem Definition

While the family of problems related to job shop scheduling is vast, this thesis is limited
to the basic job shop scheduling problem with the makespan objective function, i.e.
J ||Cmax in α|β|γ notation [Gra+79]. There exist various slightly different definitions
(e.g. some permitting the repetition of machines [FP09]), however the following, based
on [AC91], is the one most commonly used in the literature.

Given a finite set J of jobs and a finite set M of machines, let n = |J | be the number
of jobs and m = |M | be the number of machines. The processing order of each job j is
given by a permutation (oj,1, . . . , oj,m) of M . Additionally each job j and machine k is
associated with a non-negative, integer-valued processing time pj,k. The steps a job has
to complete on different machines shall be referred to as operations and oj,i shall be read
as ‘the machine of operation i of job j’, while pj,oj,i shall be read as ‘the processing time
of operation i of job j’. Furthermore the notation n×m is used to describe an instance
with n jobs and m machines.

A schedule is then given by assigning each operation a start time sj,k for all j ∈ J , k ∈M .
In order for a schedule to be feasible, it has to satisfy the following conditions:

• All start times must be positive.

sj,k ≥ 0 for all j ∈ J , k ∈M .

• The operations of a job must be processed sequentially.

sj,oj,i + pj,oj,i ≤ sj,oj,i+1 for all j ∈ J , 1 ≤ i < |M |.

• There is no overlap between operations processed on the same machine.

sj,k ≥ si,k + pi,k ∨ si,k ≥ sj,k + pj,k for all i, j ∈ J , k ∈M , i 6= j.

5
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2. State of the Art

The makespan Cmax, that is the time of completion of the last job is given as Cmax =
max({sj,k + pj,k | j ∈ J, k ∈ M}). The goal then is to find a feasible schedule that
minimizes Cmax, the makespan of which shall be referred to as C∗

max.

A schedule is called semi-active if no operation can be rescheduled to finish earlier without
changing the order of operations per machine or violating the constraints. Furthermore
a schedule is referred to as active if it is not possible to reschedule an operation, even
permitting changes in the order of operations per machine, so that some operation
completes earlier. Clearly every active schedule must also be semi-active and there exists
an equivalent active schedule for every feasible schedule [GT60]. It also follows that there
must be at least one active schedule that is optimal. Furthermore, the makespan of all
semi-active schedules on a given instance must be bounded by the makespan of a trivial
sequential schedule Cseq

max =
∑

j,k pj,k. From this point on, unless explicitly specified
otherwise, only semi-active schedules will be considered. While there of course exist
infinitely many schedules that can be arbitrarily worse (by introducing superfluous idle
times between operations), they can trivially be improved and are therefore of no real
relevance.

A simple example definition of a problem instance with 3 jobs and 2 machines, as well
as a valid schedule for the given instance, can be seen in listing 2.1. Additionally the
schedule from listing 2.1 is visualized as a Gantt chart in figure 2.1.

Another way of modeling a JSSP instance is the disjunctive graph G = (V, C ∪D), where
V is the set of vertices with a weight wv assigned to each vertex v, C the set of conjunctive
arcs, and D the set of disjunctive arcs. V corresponds to the set of all operations as well
as a start node s and an end node t, i.e. V = {vj,k | j ∈ J, k ∈M} ∪ {s, t}. The weight
of a vertex is equivalent to the corresponding operation’s processing time wvj,k

= pj,k,

J = {1, 2, 3}
M = {0, 1}







o1,1 o1,2

o2,1 o2,2

o3,1 o3,2






=







0 1
1 0
1 0













p1,0 p1,1

p2,0 p2,1

p3,0 p3,1






=







2 3
3 2
1 4













s1,0 s1,1

s2,0 s2,1

s3,0 s3,1






=







0 6
2 0
6 2







Listing 2.1: Sample JSSP instance and schedule
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2.1. Problem Definition

1 2 3 4 5 6 7 8 9

Machine 0 1 2 3

Machine 1 12 3

Figure 2.1: Gantt chart for the schedule given in listing 2.1

ws = wt = 0. C contains an arc for every precedence relation in a job and additionally
the arcs connecting s to the first operation and t to the last operation of each job. Thus
C = {(vj,oj,k

, vj,oj,k+1
) | j ∈ J, 1 ≤ k < |M |} ∪ {(s, vj,oj,1) | j ∈ J} ∪ {(vj,oj,|M|

, t) | j ∈ J}.
Finally D contains an undirected edge, expressed as two inverse arcs, between each
pair of operations on the same machine, i.e. D = {(vi,k, vj,k)|i, j ∈ J, k ∈ M, i 6= j}.
An orientation D′ of the disjunctive edges is given by choosing one of the two possible
arcs for all pairs of nodes on the same machine. Formally let D′ ⊆ D so that for all
(v1, v2) ∈ D it holds that (v1, v2) ∈ D′ ↔ (v2, v1) 6∈ D′. An example of such an oriented
disjunctive graph corresponding to the schedule from listing 2.1 can be seen in figure 2.2.
A feasible schedule can be derived from the disjunctive graph by finding an orientation
of all disjunctive edges so that the resulting graph is acyclic.1 Conversely, every feasible
schedule defines an orientation that produces an acyclic disjunctive graph. The makespan
is then given by the length of the critical path(s), that is the longest path(s) by node
weight from s to t, in the oriented conflict graph.

s

v1,0 v1,1

v2,0v2,1

v3,0v3,1

t

Figure 2.2: Oriented disjunctive graph for the instance and schedule given in listing 2.1
with C in black, D′ in blue

1Strictly speaking an orientation allows for an infinite set of schedules, however one can always derive
a semi-active schedule by topologically sorting the oriented graph and scheduling each operation in this
order at the earliest time possible.
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2. State of the Art

2.2 State of the Art

2.2.1 Job Shop Scheduling

The JSSP is one of the oldest, best-known NP-complete problems [Len+77]. It is
also known to be among the more difficult problems to solve, having earned the adjec-
tives “extremely hard” [Gra+79], “notoriously difficult” [AC91; JM98] and “notoriously
intractable” [Zha+08] – an assessment which rings all too true, given that popular
benchmark instances as small as 20×15 do not have a proven optimal solution yet [vHo18].
Due to its age and relative popularity, it has been extensively studied in the literature
and there exists a wealth of resources for it. In particular [ÇB15; Vae+96; JM98] provide
an overview of the different approaches that have been used. Van Hoorn [vHo18] gives a
reasonably up-to-date compilation of relevant benchmark instances for the JSSP, known
lower and upper bounds for these instances as well as an overview of state of the art
algorithms for the JSSP. In particular constraint programming [Bec+11; Vil+15] as well
as metaheuristics [NS05; Zha+08] have both achieved very good solutions.

However, as has recently been recognized by Weber et al. [Web+19], the state of test data
for the JSSP is far from optimal, with the set of commonly used benchmark instances
being an ad-hoc aggregation of various authors’ generated test data. This in turn makes
a systematic analysis of the JSSP and the various algorithms’ performance characteristics
difficult if not downright impossible.

2.2.2 Instance Space Analysis

The aim of the instance space analysis is to alleviate the aforementioned problem and
gain a better insight into the various characteristics of the problem and the algorithms’
performance patterns. Most of the work has been done by Smith-Miles et al. [SM+09;
SM+09; SML12; SM+14] who propose a methodological framework, the high-level process
of which is visualized in figure 2.3. It is based on the well-known algorithm selection
framework introduced by Rice [Ric76], which has been extended in the following two
major ways.

Firstly, by introducing an explicit differentiation between the entire problem space P
and the subset of instances I for which computational results exist. This distinction is
only natural since it is usually not possible to cover the set of all possible instances –
particularly since it is not finite for most cases. However, if one obtains a set of instances
I that is representative of P as a whole, this set can still be used according to Rice’s
algorithm selection framework. Based on the results on I in the performance space Y,
one can then estimate the algorithm’s performance on the entire space P.

Secondly, instead of solely relying on a high dimensional feature space F , the features
are projected into R

2 for ease of visualization. This projection has the practical benefit
of being easier to visualize and thus analyze than high-dimensional spaces.

With regard to the JSSP, there has been relatively little work done in this direction. There
has been some recent work on predicting the optimal makespan of a given JSSP instance
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2.2. State of the Art

Figure 2.3: Instance space analysis framework from [SM+14]

by Mirshekarian and Šormaz [MŠ16], who introduce a novel performance measure as
well as a number of features for JSSP instances, both of which shall be incorporated and
evaluated in this thesis. Streeter and Smith [SS06] have also shown that an instance’s
job to machine ratio has a significant impact on the problem difficulty while Watson
et al. [Wat+03; Wat+06] have investigated how different features affect tabu search
performance. Corne and Reynolds [CR10] have applied instance space analysis to the
single machine job shop scheduling problem and Ingimundardottir and Runarsson [IR12]
have performed a basic analysis of the JSSP instance space based on a single dispatching
rule heuristic. However there has so far been no systematic, in-depth exploration of the
JSSP instance space.

Likewise, while the basic process for algorithm selection has been outlined by Rice [Ric76]
and algorithm selection has been applied to a wide variety of problems [Kot16], the results
for the JSSP are rather sparse. There has been work on very simple, low knowledge
algorithm selection for the JSSP [BF04] as well as on the use of hyperheuristics [HS16;
SH14], however there appears to have been no in-depth research on applying algorithm
selection to the JSSP.
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CHAPTER 3
Instance Space Analysis for the

JSSP

This chapter aims to outline the core framework on which this thesis is based and thereby
set the stage for the experimental evaluation in chapter 4. Section 3.1 defines the basic
statistical methodology and terminology used in this thesis. In section 3.2 the process of
collecting existing and generating novel benchmark instances is outlined. Section 3.3 lists
the solution approaches used to generate the performance data as described in section 3.4.
Along with the features defined in section 3.5, the performance data is analyzed according
to the methodology given in section 3.6 in order to obtain a better understanding of
the instance space. Finally the methodology used for the algorithm selection is given in
section 3.7.

3.1 Statistical Methodology

Unless otherwise specified, statistical tests are performed using the Wilcoxon signed-rank
test. Zero-differences are handled by including them but dropping their ranks according
to Pratt and Gibbons [PG81]. Furthermore, the level of significance is set at 0.01, i.e. a
result is considered statistically significant if p ≤ 0.01. Where applicable, a visualization
of p-values is given in form of a 2D heatmap with the actual numerical p-values included in
the cells. For the value pi,j of any cell in such a heatmap one reads: pi,j is the probability
of the observed (or more extreme) differences between the values of ai and bj , assuming
the median difference is ≥ 0 (when testing whether ai is less than bi), ≤ 0 (when testing
whether ai is greater than bi) or 0 (when testing whether ai is different from bi).

With regard to correlation, the Pearson correlation coefficient ρ is used unless otherwise
specified. It ranges from −1 (a perfect negative linear correlation) over 0 (no linear
correlation) up to +1 (a perfect positive linear correlation).
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3. Instance Space Analysis for the JSSP

3.2 Problem Instances

In order to properly analyze the instance space, a sufficiently large set of benchmark
instances that are representative of the instance space as a whole is required to obtain
an accurate picture. This is achieved by first collecting the benchmark instances that
have commonly been used in the literature and, based on these instances, generating
new instances to expand upon the existing ones and fill in potential gaps. In practice,
this is an iterative process requiring constant reevaluation and addition/removal of the
generated instances, as more gaps in the instance space are found.

3.2.1 Existing Instances

The existing benchmark instances used are taken from the set of instances collected by
Van Hoorn [vHo18], which contains all benchmark instances that are commonly used
in the literature (242 in total). The instance sizes range from as low as 6×6 (ft06) up
to 100×20 (ta71-80). The different subsets of instances, their sources, the number of
instances included as well as the number of jobs and machines used are listed in table 3.1.
The distribution of the instances by the number of jobs and machines can be seen in
figure 3.1a.

Abbr. Source #Inst. n m

ft Fisher and Thompson [FT63] 3 6,10,20 5,6,10
la Lawrence [Law84] 40 10,15,20,30 5,10,15
abz Adams et al. [Ada+88] 5 10,20 10,15
orb Applegate and Cook [AC91] 10 10 10
swv Storer et al. [Sto+92] 20 20,50 10,15
yn Yamada and Nakano [YN92] 4 20 20
ta Taillard [Tai93] 80 15,20,30,50,100 15,20
dmu Demirkol et al. [Dem+98] 80 20,30,40,50 15,20

Table 3.1: Existing sets of benchmark instances
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3.2. Problem Instances

3.2.2 Generated Instances

As can be seen in figure 3.1a, even if one only considers the number of jobs and machines,
the existing benchmark instances cover only a small portion of all possible configurations.
This does not necessarily imply a problem with the benchmark instances – they may
very well still be a representative sample – but it does certainly suggest that there are
not enough instances to draw conclusions about the shape and properties of the instance
space. To remedy this problem, additional instances are generated according to the
algorithm given in listing 3.1. The complete set of all generated instances, as well as the
source code for the generator, is made available on GitHub and mirrored to Zenodo. 1

The parameters used are:

• Seed: 42

• Jobs n: [1, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100]

• Machines m: [1, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100]

• Probability distributions:

– The constant distribution with value 1. The set of instances derived from this
distribution are referred to as gen-const. Note that these instances actually
correspond to a variant of the JSSP with unit processing times J |pj,k = 1|Cmax,
which is nonetheless NP-hard [LRK79].

– The uniform discrete distribution with values in [1, 99]. The set of instances
derived from this distribution are referred to as gen-uniform-99.

– The uniform discrete distribution with values in [1, 200]. The set of instances
derived from this distribution are referred to as gen-uniform-200.

– The binomial distribution with n = 98 and p = 0.5, shifted up by 1. The set
of instances derived from this distribution are referred to as gen-binom.

– The negative binomial distribution with r = 1 and p = 0.5, shifted up by
1. The set of instances derived from this distribution are referred to as
gen-nbinom.

• Instances per configuration: 5

In total this results in a set of 4225 instances, however, to ensure a uniform distribution
of n and m the instances with n ∈ {5, 15} or m ∈ {5, 15} are removed, leaving 3025
instances on which to perform the analysis. Even though the instances are not used in this
analysis, they are included in the instance set due to their usefulness for implementing or
analyzing algorithms. Among these 3025 instances are 475 instances with n = 1 or m = 1,
which shall be referred to as trivial instances since they only permit trivial sequential

1https://doi.org/10.5281/zenodo.4081658
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3. Instance Space Analysis for the JSSP
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Figure 3.1: Number of instances by jobs and machines

solutions. All algorithms are thus expected to be able to solve these instances optimally,
but they are included so as to provide a more complete picture of the instance space.

Subsequently the set of generated instances shall be referred to as the gen instance set, the
set of existing instances from the literature as the lit instance set and the union of both
as the all instance set. The subsets of instances induced by the probability distribution
in gen are named according to their source probability distribution, with the union of
gen-uniform-99 and gen-uniform-200 being referred to simply as gen-uniform.
Similarly the subsets of instances from lit are named after their source. The instances
from gen are numbered consecutively with gen0001-0845 being from gen-const,
gen0846-1690 from gen-uniform-99, gen1691-2535 from gen-uniform-200,
gen2536-3380 from gen-binom and gen3381-4225 from gen-nbinom.
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3.3. Solution Approaches

1 def generate(seed, jobs, machines,

2 probability_distributions, instances_per_configuration):

3 instances = []

4 for d in probability_distributions:

5 for j in jobs:

6 for m in machines:

7 for i in range(0, instances_per_configuration):

8 inst_seed = seed + len(instances)

9 instance = gen_inst(seed=inst_seed, dist=d, jobs=j, machines=m)

10 instances.append(instance)

11 return instances

12

13 def gen_inst(seed, dist, jobs, machines):

14 rand = Random(seed=seed)

15 order_rand = Random(seed=rand.randint(0, 9999))

16 duration_rand = Random(seed=rand.randint(0, 99999))

17

18 instance = []

19 for j in range(0, jobs):

20 ops = []

21 for m in range(0, machines):

22 ops.append(m, dist.sample(duration_rand))

23 ops.shuffle(random=order_rand)

24 instance.append(ops)

25 return instance

Listing 3.1: Instance generator (Python-like pseudocode)

3.3 Solution Approaches

The algorithms used can roughly be divided into three major categories: Exact methods,
heuristic methods and metaheuristic methods. Each of these categories contains a number
of exemplary algorithms that are implemented for the purpose of this thesis. Unless
explicitly noted otherwise, the implementation of these algorithms is kept as basic as
possible and no particular consideration is given to optimizing any particular algorithm.

3.3.1 Exact Methods

The exact methods used are all based on modeling the problem as a constrained-
optimization problem, that is a constraint-satisfaction problem with an objective function.
A solver is then applied to the model with the goal of finding a solution that satisfies
the constraints and minimizes the objective function. One of the main advantages of
exact methods is their ability to find a provably optimal solution, i.e. given enough time
the solver will find the optimal solution and prove that no better solution exists. It is
worth noting, however, that ‘given enough time’ may very well turn out to be a lot more
time than one is willing to invest, in particular for larger instances. Besides the ability to
prove optimality, they also benefit from a relative simplicity in implementation and ease
of extensibility since additional constraints can simply be added to the model.
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3. Instance Space Analysis for the JSSP

CP Optimizer [IBM20b] (cpo)

CP Optimizer, a part of the IBM ILOG CPLEX Optimization Studio, is a constrained-
optimization solver with a deliberate focus on scheduling problems, thereby making
it uniquely suited for this kind of problem. It has been successfully used by Vilím
et al. [Vil+15] to find optimal solutions and lower bounds for previously unsolved JSSP
benchmark instances.

Version used: 12.10.0

Model used: Listing 3.2

OR-Tools [Goo20] (ort)

OR-Tools is an open-source optimization software suite by Google, which has won the
annual MiniZinc challenge [Stu+14] on several occasions.

Version used: 7.7.7810

Model used: Listing 3.3

Chuffed [chu_chuffed_2014] (chu)

Chuffed is a constraint programming solver based on lazy clause generation – a combina-
tion of SAT solving and finite domain propagation. The model was written in MiniZinc,
compiled to FlatZinc and ultimately solved using Chuffed.

Version used: MiniZinc [Net+07] 2.4.2, Chuffed 0.10.4

Model used: Listing 3.4

CPLEX [IBM20a] (cpl)

CPLEX Optimizer too is part of the IBM ILOG CPLEX Optimization Studio. While
CP Optimizer is deliberately targeted at optimization and scheduling problems, CPLEX
is a general-purpose solver for linear, mixed-integer and quadratic programming. As for
Chuffed, the model was written in MiniZinc, compiled to FlatZinc and finally solved
using CPLEX.

Version used: MiniZinc [Net+07] 2.4.2, CPLEX 12.10.0

Model used: Listing 3.4
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3.3. Solution Approaches

1 def solve(instance):

2 mdl = CpoModel()

3 machines = [[instance[j][o].machine

4 for o in range(0, instance.m)] for j in range(0, instance.n)]

5 duration = [[instance[j][o].duration

6 for o in range(0, instance.m)] for j in range(0, instance.n)]

7 job_operations = [

8 [

9 mdl.interval_var(size=duration[j][o], name=f'{j}-{o}')

10 for o in range(0, instance.m)

11 ]

12 for j in range(0, instance.n)

13 ]

14

15 for j in range(0, instance.n):

16 for o in range(1, instance.m):

17 mdl.add(mdl.end_before_start(

18 job_operations[j][o - 1], job_operations[j][o]))

19

20 machine_operations = [[] for m in range(0, instance.m)]

21 for j in range(0, instance.n):

22 for o in range(0, instance.m):

23 machine_operations[machines[j][o]].append(job_operations[j][o])

24 for machine_ops in machine_operations:

25 if len(machine_ops) > 0:

26 mdl.add(mdl.no_overlap(machine_ops))

27 cmax = mdl.max([

28 mdl.end_of(job_operations[j][instance.m - 1])

29 for j in range(0, instance.n)

30 ])

31 mdl.add(mdl.minimize(cmax))

32

33 return mdl.solve()

Listing 3.2: CP Optimizer model (Python) based on [IBM20b]
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3. Instance Space Analysis for the JSSP

1 def solve(instance):

2 model = CpModel()

3 all_machines = list(range(0, instance.m))

4 horizon = sum(op.duration for job in instance for op in job)

5 op_type = collections.namedtuple('op_type', ['start', 'end', 'interval'])

6

7 all_ops = {}

8 machine_to_intervals = collections.defaultdict(list)

9 for j, job in enumerate(instance):

10 for o, op in enumerate(job):

11 suffix = f'-{j}-{o}'

12 start_var = model.NewIntVar(0, horizon, 'start' + suffix)

13 end_var = model.NewIntVar(0, horizon, 'end' + suffix)

14 interval_var = model.NewIntervalVar(start_var, op.duration, end_var,

15 'interval' + suffix)

16 all_ops[j, o] = op_type(

17 start=start_var, end=end_var, interval=interval_var)

18 machine_to_intervals[op.machine].append(interval_var)

19

20 for machine in all_machines:

21 model.AddNoOverlap(machine_to_intervals[machine])

22

23 for j, job in enumerate(instance):

24 for o in range(0, len(job)-1):

25 model.Add(all_ops[j, o+1].start >= all_ops[j, o].end)

26

27 obj_var = model.NewIntVar(0, horizon, 'makespan')

28 model.AddMaxEquality(obj_var, [

29 all_ops[j, len(job)-1].end

30 for j, job in enumerate(instance)

31 ])

32 model.Minimize(obj_var)

33

34 status = CpSolver().Solve(model)

Listing 3.3: OR-Tools model (Python) based on [Goo20]
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3.3. Solution Approaches

1 include "globals.mzn";

2 int: n;

3 int: m;

4 int: span;

5 array [1..n, 1..2*m] of int: job;

6 array [1..n, 1..m] of var 0..span: t;

7 array [1..n] of int: one = [ 1 | i in 1..n];

8 var 0..span: objective;

9

10 constraint forall(i in 1..n, j in 1..m-1) ( t[i,j] + job[i, 2*j] <= t[i, j+1] );

11

12 constraint

13 forall(k in 1..m) (

14 let {

15 array[1..n] of int: d =

16 [ job[i, 2*j] | i in 1..n, j in 1..m where job[i,2*j-1] = k-1],

17 array[1..n] of var 0..span: s =

18 [ t[i,j] | i in 1..n, j in 1..m where job[i,2*j-1] = k-1]

19 }

20 in

21 cumulative(s, d, one, 1)

22 );

23

24 constraint maximum(objective, [ t[i, m] + job[i, 2*m] | i in 1..n]);

25

26 solve ::

27 int_search([t[i,j] | i in 1..n, j in 1..m], smallest, indomain_min, complete)

28 minimize objective;

29

30 output [

31 "t = ", show(t), "\n",

32 "objective = ", show(objective), "\n"

33 ];

Listing 3.4: MiniZinc model based on the jobshop2 model from [Stu+14]
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3. Instance Space Analysis for the JSSP

3.3.2 Heuristics

Whereas exact methods aim to find an optimal solution, heuristics focus on finding a
good enough solution, usually with a fraction of the computational effort required. They
are generally tailor-made for a specific problem, but might also be applicable to related
problems.

Dispatching rules

Dispatching rule-based heuristics are among the simplest heuristics available for the
JSSP. They work by simply scheduling one operation after another and determining the
next operation to schedule by some dispatching rule. They are often preferred over other,
more complicated approaches due to their ease of implementation and flexibility. The
dispatching rules listed in table 3.2 below use the algorithm given in listing 3.5, which is
based on the algorithm by Nguyen et al. [Ngu+13] – a variation of the classic algorithm
by Giffler and Thompson [GT60].

Abbr. Name Description
spt Shortest Processing Time Choose oj,i minimizing pj,oj,i

lpt Longest Processing Time Choose oj,i maximizing pj,oj,i

sps Shortest Processing Sequence Choose oj,i minimizing
∑m

l=i 1
lps Longest Processing Sequence Choose oj,i maximizing

∑m
l=i

lwr Least Work Remaining Choose oj,i minimizing
∑m

l=i pj,oj,l

mwr Most Work Remaining Choose oj,i maximizing
∑m

l=i pj,oj,l

Table 3.2: Dispatching rules

Shifting bottleneck heuristic

The shifting bottleneck heuristic [Ada+88], along with its numerous variations, is generally
regarded as one of the best heuristic methods available for the JSSP. Its core mechanic is
iteratively creating schedules for each of the machines and combining those into a global
schedule. The next machine to be scheduled is chosen by constructing and solving a
single machine subproblem 1|rj |Lmax, which is itself NP-hard, for each of the potential
candidates and identifying the one with the largest optimal value of Lmax – the so-called
bottleneck machine. This machine is then scheduled according to the optimal schedule
for the single machine subproblem, after which all of the already scheduled machines’
schedules are adjusted based on the newly introduced machine.

The implementation used is based on one of the variations by Demirkol et al. [Dem+97]
and includes six final reoptimization iterations after all machines have been scheduled
but incorporates no delayed precedence constraints. The single machine subproblems are
solved to optimality using CP Optimizer.
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3.3. Solution Approaches

1 def solve(instance, rule):

2 ready = []

3 for j in range(0, instance.n):

4 ready.append(instance[j][0])

5

6 job_to_next_release = dict()

7 machine_to_next_release = dict()

8

9 def release(op):

10 return max(job_to_next_release[op.job], machine_to_next_release[op.machine])

11 def completion(op):

12 return release(op) + op.duration

13

14 release_times = dict()

15 while len(ready) > 0:

16 earliest_completed = min(ready, key=completion)

17 candidates = [op for op in ready

18 if op.machine == earliest_completed.machine

19 and release(op) < completion(earliest_completed)]

20

21 chosen_op = next_by_rule(candidates, rule)

22 ready.remove(chosen_op)

23 release_times[op] = release(chosen_op)

24 job_to_next_release[op.job] = completion(chosen_op)

25 machine_to_next_release[op.machine] = completion(chosen_op)

26

27 if chosen_op.order < instance.m - 1:

28 ready.append(instance[chosen_op.job][chosen_op.order + 1])

29

30 return release_times

Listing 3.5: Generic algorithm for dispatching rule-based scheduling (Python-like pseu-
docode) based on [Ngu+13; GT60]

3.3.3 Local Search Metaheuristics

While heuristics are generally able to find a reasonable solution relatively fast, there
is usually no guarantee that they will ever arrive at an optimal solution, even given
enough time. Local search metaheuristics (from this point on referred to simply as
metaheuristics) aim to remedy this by systematically exploring the search space of all
possible solutions. Since exhaustive enumeration is usually not feasible, the exploration
is done by repeatedly moving from a solution to one of its neighbors as defined by some
neighborhood function.

For each algorithm, a detailed description in Python-like pseudocode is presented in order
to provide as little ambiguity as possible in regard to the implementation. Nevertheless,
there will always be implementation details not covered by the pseudocode. The actual
implementation written in Rust and compiled with rustc 1.44.1 (c7087fe00 2020-06-17)
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3. Instance Space Analysis for the JSSP

and LLVM 9.0 in release mode can be found on GitHub and mirrored to Zenodo.2

All metaheuristics use the neighborhood provided by Van Laarhoven et al. [vLa+92],
referred to as N1 by Vaessens et al. [Vae+96]. The basic idea behind this neighborhood
is outlined in algorithm 3.1. The moves are generated by swapping two consecutive
operations on the same machine along the critical path of the oriented disjunctive graph.
This kind of swap will always result in a feasible schedule and that an optimal solution
can always eventually be reached. The actual implementation of the neighborhood is
slightly more complex in order to provide adequate performance.

Algorithm 3.1: Neighborhood N1 for metaheuristics [vLa+92]

Input: G′ = (V, C ∪D′
red) the disjunctive graph with oriented disjunctive edges

with D′
red being the transitive reduction of the oriented edges D′

Output: A set of pairs of vertices along the critical path that may be swapped
to obtain new solutions

1 P ← the set of all longest paths from s to t in G′;
2 N ← ∅;
3 for p ∈ P do
4 for (u, v) ∈ p do
5 if (u, v) ∈ D′

red then
6 N ← N ∪ {(u, v)};
7 end

8 end

9 end
10 return N

Random-restart hill climbing (ran)

Random-restart hill climbing may quite possibly be one of the simplest metaheuristics. It
generates a random solution and improves it by means of a simple hill climbing algorithm,
i.e. by repeatedly selecting the neighbor with the best target value. Once the hill climbing
gets stuck in a local optimum, the process is restarted from a new random solution.

The high-level layout of random-restart hill climbing algorithm used in this thesis can be
seen in listing 3.6.

2https://doi.org/10.5281/zenodo.4081660
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3.3. Solution Approaches

1 def solve(instance):

2 current = random_solution(instance)

3 best = current

4

5 def find_best(moves):

6 best_move = None

7 for move in moves:

8 if best_move is None or move.cmax < best_move.cmax:

9 best_move = move

10 return best_move

11

12 while elapsed_time() < timeout:

13 move = find_best(neighbor_moves(current))

14 if move is not None and move.cmax < current.cmax:

15 current = move.solution

16 else:

17 current = random_solution()

18

19 if current.cmax < best.cmax:

20 best = current

21

22 return best

Listing 3.6: Random-restart hill climbing metaheuristic (Python-like pseudocode)

Tabu search (tab)

At the core of tabu search is the idea of continuously exploring the search space without
visiting formerly explored areas. This is achieved by allowing moves that degrade the
current solution and ‘blocking the way back’, so to speak, by storing the previously made
moves and prohibiting their inverse moves in the so-called tabu list.

The tabu search implementation given in listing 3.7 is a slight variation of the one given
by Taillard [Tai94]. Its tabu list is implemented by storing the last time a node was
swapped with its predecessor in the critical path. It also features a long-term memory
mechanism, which penalizes moves that would push a node further towards the end
of the critical path, depending on how often the node has already been pushed to the
front. The main difference is that resets are permitted (similar to the random-restart
hill climbing algorithm) if the tabu search is not able to find any valid move, thereby
ensuring the search will continue for the entire allotted time.
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3. Instance Space Analysis for the JSSP

1 def solve(instance):

2 n, m, N = instance.n, instance.m, instance.n * instance.m

3

4 current = random_solution(instance)

5 best = current

6

7 tabu_duration = (n + m/2) ∗ e−n/5m + N/2 ∗ e−5m/n

8 last_swap = [-inf for op in range(0, N)]

9 push_back_count = [0 for op in range(0, N)]

10 max_delta = 0

11

12 iteration = 0

13

14 def find_best_permitted(moves):

15 penalty_factor = 0.5 ∗ max_delta ∗
√
N

16 best_move = None

17 for move in moves:

18 tabu_until = last_swap[move.a] + tabu_duration

19 if iteration < tabu_until and move.cmax >= best.cmax: continue

20

21 if best_move is None:

22 best_move = move

23 continue

24

25 pb_total = sum(push_back_count)

26 penalty = penalty_factor * push_back_count[move.b] / pb_total

27 best_penalty = penalty_factor * push_back_count[best_move.b] / pb_total

28

29 if move.cmax + penalty < best_move.cmax + best_penalty:

30 best_move = move

31 return best_move

32

33 while elapsed_time() < timeout:

34 move = find_best_permitted(neighbor_moves(current))

35 if move is not None:

36 max_delta = max(min(move.cmax - current.cmax, 0), max_delta)

37 last_swap[move.b] = iteration

38 push_back_count[move.b] += 1

39 current = move.solution

40 else:

41 max_delta = 0

42 last_swap = [-inf for op in range(0, N)]

43 push_back_count = [0 for op in range(0, N)]

44 current = random_solution()

45

46 if current.cmax < best.cmax:

47 best = current

48

49 return best

Listing 3.7: Tabu search metaheuristic (Python-like pseudocode) based on [Tai94]
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3.3. Solution Approaches

Simulated annealing (sim)

Simulated annealing is a probabilistic local search technique mimicking the physical
process of annealing, i.e. the cooling of metals. The idea is to diversify the search early
on by probabilistically accepting worsening moves and decreasing this probability as the
search continues and the algorithm converges. To achieve this, a temperature parameter is
decreased throughout the search. This temperature parameter and the amount by which
a move improves/worsens the current solution are then used to determine the probability
of accepting the move. The major factors in any simulated annealing implementation
are the cooling schedule (how the temperature is decreased), the acceptance function
(determining the probability of accepting a move), the initial temperature and the
termination criterion (when to stop the search). The implementation is based on the one
given by Van Laarhoven et al. [vLa+92] and can be seen in listing 3.8. The variation used
in this thesis depends on only two parameters: The initial ratio of accepted solutions χ0,
which is used to estimate the initial temperature and the parameter δ determining the
cooling rate. In place of a more elaborate stopping criterion, the search is restarted with
a new initial solution once the standard deviation of the accepted moves’ costs reaches 0.

Unlike the aforementioned methods, simulated annealing strongly depends on the param-
eter values used, which usually have to be adjusted for the specific problem instances it
is applied to. For this purpose SMAC [Hut+11] is utilized to find a fitting parameter
configuration for all. 64 parallel SMAC runs with a maximum of 128 evaluations each
are performed on the instances from all with a 80/20 train/test split. The results
confirm the suitability of the parameter values χ0 = 0.95 and δ = 0.001, which have
already been used by Van Laarhoven et al. [vLa+92] and will also be used in this thesis.
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3. Instance Space Analysis for the JSSP

1 def solve(instance, timeout, χ0, ǫs, δ):
2 global_best = random_solution(instance)

3 while elapsed_time() < timeout:

4 solution = sa(instance, timeout, χ0, ǫs, δ):
5 if solution.cmax < global_best.cmax:

6 global_best = solution

7 return global_best

8

9 def sa(instance, timeout, χ0, ǫs, δ):
10 n, m, N = instance.n, instance.m, instance.n * instance.m

11 L = max(N − n, 1)
12

13 current = best = random_solution(instance)

14 T = estimate_initial_temperature(instance, initial_acceptance_ratio)

15 while elapsed_time() < timeout:

16 move_costs = [current.cmax]

17 for iteration in range(0, L):
18 if elapsed_time() >= timeout: break

19 move = select_random(neighbor_moves(current))

20 if move is None: break

21

22 ∆C = move.cmax - current.cmax

23 acceptance_threshold = 1 if ∆C ≤ 0 else min(1, e−∆C/T )
24 if rand(0,1) < acceptance_threshold:

25 current = move.solution

26 move_costs.append(current.cmax)

27

28 if current.cmax < best.cmax:

29 best = current

30

31 σC = std_dev(move_costs)

32 if σC > 0:

33 T = T
1+ln(T ∗(1+∆C)/3σC

34 else:

35 return best

36 return best

37

38 def estimate_initial_temperature(instance, χ0)

39 deltas = []

40 for _ in range(0, 30):

41 solution = random_solution(instance)

42 move = select_random(neighbor_moves(solution))

43 if move is not None: deltas.append(move.cmax - solution.cmax)

44

45 m1 = len([delta for delta in deltas if delta <= 0])

46 m2 = len([delta for delta in deltas if delta > 0])

47 ∆C = mean([delta for delta in deltas if delta > 0])

48 return ∆C · (ln( m2

m2·χ0−(1−χ0)·m1)
)−1

Listing 3.8: Simulated annealing metaheuristic (Python-like pseudocode) based on
[vLa+92]
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3.4. Performance Data Generation

3.4 Performance Data Generation

In order to obtain the performance data that the analysis is based on, the algorithms
described in section 3.3 are applied to each of the instances from section 3.2. However
due to the difference in instance sizes and processing time values, the values of Cmax

are vastly different between instances. To alleviate this problem a suitable performance
measure must first be found, for the purpose of which various measures are evaluated in
section 3.4.1. The methodology used to run the experiments and clean up the resulting
data is given in section 3.4.2.

3.4.1 Performance Measures

The actual value of Cmax is of little use for comparing results across instances, since it
varies wildly depending on instance size and processing time values. The truly interesting
metric is how far the result is from the optimal solution C∗

max, i.e. the ratio R∗ = Cmax
C∗

max
.

Unfortunately C∗
max is not known for all instances and cannot be obtained within an

acceptable amount of time for larger instances. Therefore a reasonable approximation of
R∗ will have to suffice.

Intuitively the chosen performance measure P should satisfy the following criteria:

1. It should be invariant with respect to scale of processing times p, that is multiplying
all processing times by a constant factor should have no effect on M .

2. It should be strongly correlated with R∗.

3. It should not be unduly biased towards or against certain types of instances.

For any performance measure P the Pearson correlation coefficient ρP,R∗ is calculated
on the set of all existing benchmark instances with known optimal solutions, using the
performance data given in chapter 4. The exact set of instances can be found in table A.2.
Instances for which the solver did not find a solution in time were excluded to avoid
tainting the data. The results can be seen in figure 3.2. Note however that the selection
of instances alone already introduces a bias since there are no optimal solutions available
for harder instances and lit does not contain any instances with n < m. Nonetheless it
should at least provide a decent estimate of how strongly P is correlated with R∗.

The following performance measures P1 to P6 shall therefore be considered and evaluated
regarding their suitability. Note that the biases have only been tested empirically on
the aforementioned set of instances, but have not been formally verified. One should
therefore only consider them to be indicators of the true biases a certain performance
measure may have.

1. P1 = Cmax. The makespan is the obvious first choice since it is the objective
function. For any given instance P1 is bounded by [0, Cseq

max] and for the general
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3. Instance Space Analysis for the JSSP

case it is bounded by [0, +∞[. However it is not scale-invariant, is affected by both
n and m and therefore also strongly biased against larger instances.

2. P2 = Cmax

C
seq
max

. Considering Cmax relative to the trivial upper bound Cseq
max results in a

performance measure which is always nicely contained in [0, 1]. Additionally it is,
per its very definition, scale-invariant.

Unfortunately the bounds given above are slightly misleading since the true lower
bound is different for each instance and can be anything between 0 and 1. For
example, the optimal solution for a trivial instance obtains the worst possible score
of P2 = 1 since C∗

max = Cseq
max. In general, P2 is biased against instances where

C∗
max ≈ Cseq

max.

3. P3 = Cmaxm
C

seq
max

. This measure was proposed by Mirshekarian and Šormaz [MŠ16],
who refer to it as the scheduling efficiency C ′. One can clearly see that its value
must be bounded by [1, m] for a given instance and thus by [1, +∞[ globally.

Like P2 it is scale-invariant but also accounts for the fact that a high ratio n
m

tends to increase the value of C∗
max. It does however fail to account for the fact

that a particularly low ratio n
m

can produce the same phenomenon. Additionally
it introduces some undesirable asymmetries in regard to the number of jobs and
machines. Take for example a sequential schedule for an instance I1 where n1 =
1, m1 = 2, pj,k = 1∀j, k. Obviously I1 permits only sequential schedules and
therefore C∗

max(I1) = Cseq
max(I1) = p1,1 + p1,2 = 2. Exchanging the values n and m

produces another instance I2 where n2 = 2, m2 = 1, pj,k = 1∀j, k. Again I2 permits
only sequential schedules and therefore C∗

max(I2) = Cseq
max(I2) = p1,1 + p2,1 = 2.

However, when calculating P3 one obtains P3(I1, s) = 2m1
2 = m1 = 2 for I1 and

P3(I2, S) = 2m2
2 = m2 = 1 for I2. Since I1 and I2 are effectively the same instances,

one must conclude that P3 is biased against instances with a particularly low job
to machine ratio.

4. P4 = Cmaxnm
C

seq
max

. P4 can be derived by dividing the makespan by the average processing
time. It is therefore scale-invariant and fixes the asymmetry prevalent in P3 by
removing the obvious machine bias. Similarly to P3 it is bounded globally by
[1, +∞[ and by [1, nm] for a given instance since:

Cmaxnm

Cseq
max

≤ Cseq
maxnm

Cseq
max

The bounds already give an indication as to what this measure might be biased
against. Consider for example two sequential instances I1 and I2 with n1 = n2 = 1
and m1 = 2 whereas m2 = 3. Since the instances permit only sequential solutions
P4(I1) = n1m1 = 2 and P4(I2) = n2m2 = 3, thereby indicating a bias against
instance with larger values nm.

5. P5 = Cmax

max(maxj(
∑

k
pj,k),maxk(

∑

j
pj,k))

. P5 considers the makespan relative to the

lower bound given by Taillard [Tai93]. The lower bound is simply the maximum of
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3.4. Performance Data Generation

two distinct lower bounds, one of them being the machine with the longest total
processing time and the other being the job with the longest total processing time.

P5 is bounded by [1, max(n, m)]. The lower bound is trivial since Cmax can never
be lower than the job or machine with the longest processing time. The upper
bound can be derived as follows:

Per the definition of P5:

P5 =
Cmax

max(maxj(
∑

k pj,k), maxk(
∑

j pj,k))

It follows that:

P5 = min(
Cmax

maxj(
∑

k pj,k)
,

Cmax

maxk(
∑

j pj,k)
)

Considering only one the first fraction it can be deduced:

Cmax

maxj(
∑

k pj,k)
≤

∑

j,k pj,k

maxj(
∑

k pj,k)
≤ n maxj(

∑

k pj,k)
maxj(

∑

k pj,k)
= n

The other fraction follows analogously and therefore:

P5 ≤ max(n, m)

An unfortunate property of P5 is that the upper bound is dependent on the size of
the problem instance and the lower bound of 1 can only be obtained for some very
particular instances. Taillard [Tai93] conjectures that the lower bound becomes
tight as n

m
goes to ∞. Streeter and Smith [SS06] have shown this to be true both

empirically and, to some extent, formally for n
m
→∞ and n

m
→ 0. Unfortunately

this in turn implies that P5 is biased against instances with n
m
≈ 1. On the upside,

it does not suffer the same biases as P2 or P3 and is scale-invariant.

6. P6 = Cmax

Cbest
max

where Cbest
max is the makespan of the best algorithm on the given

instance. This measure is closely related to the relative error, however it avoids
the unergonomic situation of having a best score of 0 while still retaining all
other benefits. It works well for comparing algorithms and, to a lesser extent, for
comparing instances and is of course bounded by

[

1, C
seq
max

C∗
max

]

for a given instance,
since at best the result will be as good as the best algorithm, but it might be
arbitrarily worse. On the upside it is not directly affected by the size of the
problem and is also scale-invariant, as long as one assumes that the algorithms too
are scale-invariant. However it may be biased in favor of harder instances since
all instances will appear to have a good result as long as all algorithms perform
similarly (even if they all perform badly). Additionally it is highly dependent on
the exact set of algorithms used (and their implementations), making it hard to
reproduce. Strictly speaking, in order to truly reproduce P6 one would have to
include exactly the same algorithms with the same experimental setup. However,
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3. Instance Space Analysis for the JSSP

there are some redeeming qualities that may lessen the impact of this in practice.
For one, it is most likely not necessary to implement all algorithms but rather only
a small subset of particularly good algorithms since the weak algorithms will only
have a small impact (if any at all). Furthermore, the quality of the approximation
can only be improved as more and better algorithms are added to the portfolio,
whereas other performance measures are essentially fixed and do not allow for any
improvement.

The correlation between the performance measures and R∗ can be seen in figure 3.2.
Their relevant properties are summarized in table 3.3. P1 is quite simply not comparable
across instances due to it lacking scale invariance and both P2 and P3 suffer from some
very obvious and unfortunate biases. While P4 looks interesting on paper, its correlation
with R∗ is rather poor compared to the other performance measures. P5 presents a decent
choice, being easy to implement and having a reasonable correlation with R∗. However
the bias against instances with particularly high or low values of n

m
make it problematic

in practice – an issue that is also evident when comparing it to R∗. This leaves only P6

which has the major drawback of being dependent on the algorithms used and is, at least
to some extent, biased against easy instances.

Unfortunately none of the aforementioned performance measures completely statisfy all
criteria posed above – certain tradeoffs are therefore required. In this case, P6 was chosen
as the performance measure best suited for the purpose of this thesis. The bias against
easy instances does not seem to be much of a problem in practice, or, at the very least,
it is significantly less biased than the other performance measures.

Measure Inst. bounds Global bounds Scale inv. ρP,R∗ Bias against
P1 [0, Cseq

max] [0, +∞] no 0.3101 high m, n, pj,k

P2 [0, 1] [0, 1] yes 0.2825 C∗
max ≈ Cseq

max

P3 [1, m] [1, +∞] yes 0.7638 low n
m

P4 [1, nm] [1, +∞] yes 0.3151 high nm
P5 [1, max(n, m)] [1, +∞] yes 0.8544 n

m
≈ 1

P6

[

1, C
seq
max

C∗
max

]

[1, +∞] yes 0.9988 easy instances

Table 3.3: Relevant properties of performance measures
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3.4. Performance Data Generation
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(e) P5
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(f) P6

Figure 3.2: R∗ versus performance measure for results of all algorithms on instances with
known optimum

3.4.2 Experiment Methodology

Each run is performed on a single Intel Xeon E5-2650 v4 core with a set wall-clock time
limit of 5 minutes. Since the algorithms check the elapsed time internally, most runs end
up taking slightly longer than the given time limit. However the effect is negligible for
the most part with the difference in mean runtime being ≤ 2s for all algorithms. The
results the analysis in chapter 4 is based on (minus the excluded algorithms), as well as
the features for each instance, can be found on GitHub and Zenodo.3

All metaheuristics are run 5 times with different seeds (41, 42, 43, 44, 45) so as to control
for random factors, from which the median result (by makespan) is chosen for evaluation.
The mean absolute percentage error when comparing all results on a given instance to the
median result is 0.48% for sim, 0.59% for ran and 0.5% for tab. Exact methods and
heuristics are run a single time until the time limit is reached. CPLEX is excluded due
to it being unable to solve 1854 (∼57%) instances from all, making it unsuitable for
further analysis. The same goes for the shifting bottleneck heuristic since, even though it
generally produces good results, its runtime scales exceedingly poorly to larger instances
and it exceeds the time limit on 2177 (∼67%) instances, thereby disqualifying it. It is
worth noting however that it does provide decent solutions on the instances it manages to
solve within the time limit. Furthermore, the data for Chuffed requires minor corrections
due to it being unable to produce a feasible schedule for orb07. This is most likely
caused by a bug in the solver or model triggered by orb07 containing an operation with
a processing time of 0. Since this is a singular issue, it is remedied by assigning Chuffed
the worst Cmax of all algorithms for orb07 only.

3https://doi.org/10.5281/zenodo.4081662
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3. Instance Space Analysis for the JSSP

3.5 Features

To characterize the instances and determine their location in the instance space, a number
of features are derived from each instance. While some features per definition consist of
only a single value, most require some kind of aggregation over a set of values. For these,
the set of statistical key figures given in table 3.4 is calculated.

Figure Description
min Minimum value
max Maximum value
range max−min
mean Mean value
q1 First quartile
median Median (second quartile)
q3 Third quartile
std-dev Standard deviation
gini Gini coefficient

Table 3.4: Statistical key figures

Apart from the basic features (jobs, machines, operations, job-machine-ratio), the feature
set also includes the lower bound from [Tai94] maxlb, the makespan of a sequential
schedule seq-cmax and the skewness, i.e. max( n

m
, m

n
). A number of features related to

operation slots and machine load are taken from [MŠ16]. Furthermore additional probing
features and features based on the disjunctive graph of the problem instance are proposed,
which will be described below in more detail.

3.5.1 Probing Features

The probing features are calculated by running each of the algorithms selected for
analysis (see section 3.3, section 3.4) a single time with a time limit of 1 second on the
same hardware as is used for the full experiments. The shifting bottleneck heuristic
had to be excluded due to it almost never obtaining a solution within the time limit.
The makespan of the solution (or Cseq

max if none was found) is obtained and the other
performance measures P2−5 are derived from it. P6 is intentionally left out due to it being
too dependent on the exact set of algorithms used. Furthermore for each performance
measure statistical key figures are calculated on the subset of all heuristics, the subset of
all metaheuristics, the subset of all exact methods, and finally the entire set of algorithms.

3.5.2 Graph Features

The graph features are based on the undirected disjunctive graph of the problem instance,
which is derived from the directed graph by replacing each directed arc (u, v) with an
undirected edge {u, v}. The following features are extracted from the graph.
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3.5. Features

• density: The density of the graph dens(G) = 2|E|
|V |(|V |−1) .

• vertex-degree: The number of edges that are incident to v, i.e. d(v) = |{e ∈ E : v ∈
e}|.

• betweenness-centrality: The shortest path betweenness centrality measures how
often a vertex v occurs as a bridge on the shortest path between two other vertices.
No node weights (or edge weights) are considered for this measure and the shortest
path is thus always the path with the fewest edges.

Formally it is given by bc(v) =
∑

s 6=t∈V \{v}
σ(s,t|v)
σ(s,t) where σ(s, t|v) is the number of

shortest paths from s to t passing through v, and σ(s, t) is the number of shortest
paths from s to t. The actual value used is the betweenness centrality normalized
by the number of vertex pairs (|V |−1)(|V |−2)

2 .

• clustering-coefficient: The clustering coefficient of a vertex v is the normalized
number of triangles passing through v. Formally cc(v) = 2T (v)

d(v)(d(v)−1) where T (v) is
the number of triangles passing through v.

Ultimately this results in a total of 604 features per instance, which are listed in table 3.5.
It should be noted however that some carry no information (e.g. the mean of a set of
values that is already normalized by the mean) or are strongly correlated with some other
features. Nonetheless, all features are included for the sake of consistency and the task
of determining their usefulness is left to the feature selection.

Group Feature(s) Description

Overall jobs number of jobs n

machines number of machines m

operations number of operations nm

job-machine-
ratio

job to machine ratio n
m

skewness Maximum of job to machine ratio and machine to
job ratio max( n

m
, m

n
)

seq-cmax makespan of the sequential schedule Cseq
max

maxlb lower bound from [Tai93]

Operations operation-pt statistical key figures regarding the processing time
of all operations

Jobs job-pt statistical key figures regarding the total process-
ing time per job (relativ to mean, mean operation
processing time)
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3. Instance Space Analysis for the JSSP

Group Feature(s) Description

Machines machine-pt statistical key figures regarding the total processing
time per machine (relative to mean, mean operation
processing time)

Operation
slots

os-pt statistical key figures regarding the total process-
ing time per operation slot (relative to mean, mean
operation processing time)

os-mm statistical key figures regarding the number of miss-
ing machines per operation slot (relative to mean,
number of machines)

os-rm statistical key figures regarding the number of re-
peated machines per operation slot (relative to mean,
number of machines)

os-rma statistical key figures regarding the number of re-
peated machines per operation slot (amplified) (rela-
tive to mean, number of machines, mean operation
processing time)

os-rma-pt statistical key figures regarding the number of re-
peated machines (amplified) multiplied by the av-
erage operation processing time per operation slot
(relative to mean, number of machines, mean opera-
tion processing time)

Machine
load

mlu statistical key figures regarding the machine load
uniformity (relative to mean, number of machines)

mlv statistical key figures regarding the machine load
voids (relative to mean, number of machines)

mlva statistical key figures regarding the machine load
voids (amplified) (relative to mean, number of ma-
chines)

Probing priority-spt P1−5 for shortest processing time dispatching rule
heuristic

priority-lpt P1−5 for longest processing time dispatching rule
heuristic

priority-sps P1−5 for shortest processing sequence dispatching
rule heuristic

priority-lps P1−5 for longest processing sequence dispatching rule
heuristic

priority-lwr P1−5 for least work remaining dispatching rule heuris-
tic

priority-mwr P1−5 for most work remaining dispatching rule heuris-
tic
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3.5. Features

Group Feature(s) Description

tab P1−5 for tabu search metaheuristic

ran P1−5 for random restart hill-climbing metaheuristic

sim P1−5 for simulated annealing metaheuristic

cpo P1−5 for CP Optimizer

ort P1−5 for OR-Tools

chu P1−5 for Chuffed

cpl P1−5 for CPlex

heuristic statistical key figures regarding P1−5 for all heuristics

metaheuristic statistical key figures regarding P1−5 for all meta-
heuristics

exact statistical key figures regarding P1−5 for all exact
methods

all statistical key figures regarding P1−5 for all algo-
rithms

Graph density density of the undirected disjunctive graph

vertex-degree statistical key figures regarding the degree of all
vertices in the undirected disjunctive graph

betweenness-
centrality

statistical key figures regarding the normalized be-
tweenness centrality of all vertices in the undirected
disjunctive graph

clustering-
coefficient

statistical key figures regarding the clustering coef-
ficient of all vertices in the undirected disjunctive
graph

Table 3.5: Instance features

3.5.3 Feature Selection

The following methodology for selecting features so as to obtain an optimal instance space
projection is based on the work of Muñoz [Muñ20] on the excellent MATILDA [oMe20]
toolkit provided by the University of Melbourne, of which a slightly customized version
is used for selection and projection of the features. The feature values are preprocessed
by bounding outliers to the median plus/minus five times the interquartile range and
normalizing the feature values to be close to normally distributed by applying a box-cox
transformation [BC64] and a Z-score standardization. Based on the preprocessed features,
an optimal subset is selected to be used for further analysis. First, the top 6 features
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3. Instance Space Analysis for the JSSP

by Pearson correlation between feature and algorithm performance are selected for each
algorithm. All selected features are clustered by applying k-means clustering (max. 1000
iterations, 100 repeats, max. 6 clusters), based on the pairwise Pearson correlation
coefficient. The goal then is to select a single feature from each cluster so as to achieve
an optimal visualization later on. To estimate the suitability of a feature set, the features
are projected into R using principal component analysis. On this projection, a Random
Forest with 100 trees is applied to predict whether an instance is easy or not for each
algorithm. A genetic algorithm is then used to search for the subset of features that
results in the most accurate Random Forest predictions. The selected features are finally
projected into R

2 using the method described in [Muñ+18] for visualization purposes.

To better understand the relations between features, a clustering of all features is per-
formed using agglomerative clustering with 55 clusters (chosen using silhouette analysis),
1−ρ as the distance metric and the average distance between each observation as the
linkage criterion. Constant features, that is features with a standard deviation of 0
(plus/minus floating-point errors), do not carry any information and are dropped before
clustering. A complete list of all clusters and their respective features is included in
table A.1.

3.6 Performance Data Analysis

When analyzing the algorithms’ performances, this thesis will primarily focus on the
performance measure P6 for the reasons given in section 3.4.1. Sometimes, however, it is
useful to obtain a binary view of an algorithm’s performance, for which two additional
measures inspired by [SM+14] are used. Firstly, an algorithm shall be considered ǫ-good
on a given instance if its performance is less than or equal to (1 + ǫ)-times the best
performance on that instance. Under the chosen performance measure P6 this works out
to P6 ≤ 1+ǫ since the best algorithm always obtains a score of 1. If an algorithm is ǫ-good
for ǫ = 0.05, it will be referred to as good and bad otherwise. Secondly, an algorithm will
be considered a winner for a given instance if it is among the best algorithms for that
instance, i.e. it is ǫ-good with ǫ = 0 (or, in terms of P6, P6 = 1). An algorithm that is
not only a winner on an instance, but even the only winner, shall then be referred to as
the unique winner.

To visualize the performance, the projection of the selected features into R
2, as given in

section 3.5, is chosen as the primary tool, besides the usual commonly used plots and
visualization methods. It is worth noting that all other feature visualizations use the raw
feature values, whereas only the projection itself is based on the preprocessed features.
Further insights into the shape of the instance space are obtained by analyzing trained
machine learning models (see section 3.7) with regard to the impact a feature has on the
quality of the models’ predictions. The predictive strength of the feature is estimated
via its so-called permutation importance. To calculate the permutation importance of a
given feature, a Random Forest classifier is fitted on the dataset and then evaluated on
the same dataset, providing a baseline performance value for the classifier. In the next
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3.7. Algorithm Selection

step, the entire feature column is shuffled and the classifier’s performance is reevaluated
on the modified dataset, thereby breaking the relationship between the feature and the
target. The difference to the baseline thus gives an estimate for the importance of the
feature in the classifier. The performance measure used is the MCC (see section 3.7) and
the process is repeated 30 times per feature.

3.7 Algorithm Selection

A number of different machine learning models are evaluated with the goal of predicting
the optimal algorithm, that is the algorithm with the minimal makespan, for any given
instance, based on a subset of the features from section 3.5. The problem is modeled as a
multiclass classification problem, with the classes being the previously listed algorithms
and the ground truth being the algorithm with the minimal makespan on the instance.
Ties are broken in favor of the contender with the largest number of won instances over
the entire dataset. It is worth noting that this way of breaking ties does introduce a minor
bias against algorithms that perform well but are seldomly the best. The performance
of the different machine learning models is evaluated using 20-times iterated stratified
10-fold cross-validation, with the primary performance measure being the multiclass
generalization of the Matthews Correlation Coefficient (MCC) [Mat75; Gor04; Jur+12].
The value of the multiclass MCC ranges from somewhere between −1 and 0 (depending on
the class distribution) up to 1 with 0 being essentially random and 1 a perfect prediction.
As a secondary performance measure, the actual performance of the solver based on the
model is calculated. This secondary measure is not included in the training of the models
in any way and is only calculated on the validation set.

All of the following models are implemented using scikit-learn (0.23.2) and the default
values are used for all parameters not mentioned.

• Most Frequent (MF), a model that always predicts the most frequent class, thereby
serving as a trivial baseline predictor.

• K-Nearest-Neighbors (KNN) with k neighbors, uniform weights and euclidean dis-
tance. The value of k is set to 3, which was determined to be optimal by searching
all values from 1 to 100 and choosing the one with the best mean MCC over 10
cross-validation splits.

• Decision Tree (DT) with Gini impurity as the split criterion.

• Random Forest (RF) with n trees, Gini impurity as the split criterion and the
maximum number of features to consider for a split set to

√
k, where k is the

total number of features. The value of n is set to 170, which was found by the
aforementioned search method, with values from 10 to 1000 and a step width of 10.

• Multilayer Perceptron (MLP) with n hidden nodes and a rectified linear unit (ReLu)
activation function. The value of n is set to 80, which was found by searching all
values from 10 to 200 with a step width of 10.
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CHAPTER 4
Experimental Evaluation

This chapter starts out with a general overview of the overall performance of different
algorithms and the basic shape of the instance space to provide a foundation for the
more in-depth parts of the analysis. Next up is an analysis of the selected features,
their distribution across the instance space as well as their importance and similarities.
This is followed by a more detailed discussion regarding the individual performance
characteristics of the evaluated algorithms. Finally the information obtained in the
previous steps is used to build machine learning models, which aim to select the best
algorithm for a given instance and thereby create a portfolio solver that improves over
the performance of any individual algorithm. Woven through the entire chapter is a
comparison between lit and gen to provide a general insight into how well the existing
benchmark instances already cover the space.

4.1 Overall Performance

Before considering more fine-grained performance measures, it is worth taking a high-level
look at the number of instances from all where a given algorithm was the (unique)
winner in table 4.1. From this basic analysis alone one can already infer that three
algorithms (cpo, ort and tab) are likely to be serious contenders since they are the
algorithms with the highest number of wins and the only algorithms that manage to be
the unique winner on at least one instance. All other algorithms do find the optimal
solution in some cases, however most heuristics (spt, lpt, lps, lwr) only obtain a
winning solution for the trivial instances, with the exception of sps and mwr, which
manage to win an additional 31 and 15 instances respectively.

This assessment is mostly in agreement with the aggregated performance of all algorithms
across all. However, there are some new insights to be found too. Consider the results
of the Wilcoxon signed-rank test in figure 4.3c and the statistical key figures in table 4.2.
When comparing only the mean P6, cpo is actually the best followed by tab and then
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4. Experimental Evaluation

Algorithm #Wins #Unique wins
cpo 1528 293
ort 1742 633
chu 835
ran 556
tab 2079 1069
sim 620
spt 525
lpt 525
sps 556
lps 525
lwr 525
mwr 540

Table 4.1: Number of (unique) wins by algorithm on instances from all

chu/ort, both of which are roughly tied for third place. The dispatching rule-based
heuristics generally do not exhibit spectacular performance, except for sps and mwr. In
particular mwr stands out by achieving impressively good results, considering its relative
simplicity, and beating even ran, sim as well as all other heuristics. Of course both ran

and sim could easily close this gap by using mwr as the initial construction heuristic.

However the mean P6 does not tell the whole story – in fact comparing the paired
differences with the Wilcoxon signed-rank test determines tab to be better than all
other algorithms, followed by cpo, ort and then chu. The reason for this can already
be glimpsed in figure 4.1 in which tab shows a far wider range of outliers, which skew
the mean but leave the results of the Wilcoxon tests largely unaffected. Furthermore,
when considering the standard deviation and maximum values, exact methods, with the
exception of ort, show a lower standard deviation and a lower maximum value than
metaheuristics, suggesting a more consistent performance; an assessment that is also in
line with the distribution in figure 4.1.
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4.1. Overall Performance

Algorithm Mean Std Dev Minimum Q1 Median Q3 Maximum
cpo 1.0203 0.0259 1.0000 1.0000 1.0046 1.0390 1.1094
ort 1.1086 0.1656 1.0000 1.0000 1.0000 1.1969 1.5728
chu 1.1065 0.0935 1.0000 1.0000 1.0955 1.1803 1.7834
ran 1.2651 0.1957 1.0000 1.0638 1.2991 1.3972 2.0000
tab 1.0697 0.1837 1.0000 1.0000 1.0000 1.0126 1.9935
sim 1.2158 0.1851 1.0000 1.0352 1.2330 1.3092 2.1346
spt 1.4894 0.2866 1.0000 1.3259 1.5282 1.6905 2.2707
lpt 1.3440 0.1943 1.0000 1.2318 1.3862 1.4855 1.8792
sps 1.1516 0.1011 1.0000 1.0812 1.1643 1.2164 1.6525
lps 1.5413 0.2900 1.0000 1.3751 1.6370 1.7550 2.1618
lwr 1.5736 0.3064 1.0000 1.4092 1.6761 1.8018 2.3000
mwr 1.1458 0.0963 1.0000 1.0681 1.1584 1.2096 1.5090

Table 4.2: Statistical key figures for aggregated P6 by algorithm over instances from all

cpo ort chu ran tab sim spt lpt sps lps lwr mwr

1

1.2

1.4

1.6

1.8

2

2.2

Algorithm

Figure 4.1: P6 by algorithm for instances from all
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4. Experimental Evaluation

When comparing the results from the gen and lit dataset in figure 4.2, one finds the
general trends to be the same: tab and cpo are the best algorithms, ort and chu

are right behind, and the dispatching rule-based heuristics also show similar behavior.
However there are also some notable differences: For one, the gen dataset generally
results in a larger range of values, as is to be expected due to it containing both very
easy (e.g. 1×m or n×1) as well as very hard problems (e.g. 100×100). The inclusion
of trivial instances may also explain why the dispatching rule-based heuristics perform
better on the gen dataset. The exact methods appear to be less affected by this but
they too suffer from decreased performance on the harder instances.

Another interesting fact to note is the difference in performance between chu, ort and
sim according to the Wilcoxon test, as can be seen in figure 4.3. While chu shows no
significantly better performance than ort and better performance than sim on gen,
it actually falls behind both on lit. Likewise ran exhibits a statistically significant
improvement in performance over sps and mwr on lit but not on gen. Furthermore
the difference in performance between tab and cpo is not statistically significant on
lit while it is on gen.

cpo ort chu ran tab sim spt lpt sps lps lwr mwr

1

1.2

1.4

1.6

1.8

2

2.2

Instance set
lit
gen

Algorithm

Figure 4.2: P6 by algorithm for instances from lit and gen
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4.2. Shape of the Instance Space

cpo ort chu ran tab sim spt lpt sps lps lwr mwr

mwr  

lwr  

lps  

sps  

lpt  

spt  

sim  

tab  

ran  

chu  

ort  

cpo  

b

a

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 0.4284 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 0.5716 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0

1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

(a) gen

cpo ort chu ran tab sim spt lpt sps lps lwr mwr

mwr  

lwr  

lps  

sps  

lpt  

spt  

sim  

tab  

ran  

chu  

ort  

cpo  

b

a

0.0 0.0 0.0 0.7677 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 1.0 0.0342 0.0 0.0 0.0 0.0 0.0 0.0

0.2323 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 0.9658 1.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0921 0.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.9996

1.0 1.0 1.0 1.0 1.0 1.0 0.9079 1.0 1.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 0.0004 0.0 0.0

(b) lit

cpo ort chu ran tab sim spt lpt sps lps lwr mwr

mwr  

lwr  

lps  

sps  

lpt  

spt  

sim  

tab  

ran  

chu  

ort  

cpo  

b

a

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0

1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

(c) all

Figure 4.3: p-values comparing P6 of algorithms | one-sided, less

4.2 Shape of the Instance Space

The instances are projected to R
2 by calculating the coordinates Z1 and Z2 as a linear

combination of the selected features according to section 3.5, the results of which can be
seen in figure 4.4. The selected features themselves will be further discussed in section 4.3.

Considering figures 4.4a to 4.4d reveals a highly distinct cluster of trivial instances
around Z1 ≈ −2.5. One can also identify an approximately linear relationship between
the skewness and Z1. Instances with a high number of jobs are generally found on the
right side of the chart (Z1 ' 0.5), except for two anomalous clusters near Z1 ≈ −1. These
clusters also stand out as having a low number of machines and therefore an unusually
high job to machine ratio.

When breaking down the instances from gen by their respective source (figure 4.5a),
one can clearly see that instances based on different probability distributions occupy
different areas in the instance space, although they do have some overlap. Particularly
gen-uniform and gen-binom seem to occupy similar areas which are quite distinct
from gen-nbinom and gen-const. Considering the distribution of instances from
lit (figure 4.5b) reveals that the instances from lit are mostly concentrated around
the center of the space and do not cover some areas at all. This can, to some extent,
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4. Experimental Evaluation

be explained by lack of extreme job to machine ratios and the lack of large numbers of
jobs and/or machines in lit. However, almost no instances from lit are to be found
in the area covered by gen-const and very few in the area covered by gen-nbinom,
suggesting the difference goes beyond instance size.
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Figure 4.5: Source of projected instances from all
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4.3. Features

4.3 Features

The selected features and the coefficients for projection into R
2 are listed in table 4.3,

which result in an explained variance of 0.4936. From 6 selected features, a full 3 of them
are probing features. The other features are related to the graph clustering coefficient and
operation slot missing machines. Their distribution over all is visualized in figure 4.8.

Due to the large number of features generated, there will inevitably be some overlap
between them, i.e. there exist certain groups of features which basically carry the same, or
at least very similar, information – patterns that can be revealed by a clustering analysis.
A complete list of all clusters and their respective features is included in table A.1,
whereas a high-level visualization of the correlation between features, sorted and labelled
by their respective clusters, can be seen in figure 4.9. Due to this there are also a wide
range of feature combinations that produce a similar result with only minor variations,
making the feature selection highly susceptible to minor changes in the input data.

Feature Cluster Z1 Z2

graph-clustering-coefficient-range 1 0.5462 0.2915
mlv-rel-m-std-dev 24 0.4127 0.0334
operation-pt-mean 9 0.2374 −0.209
probing-exact-p1-median 2 0.0598 −1.0038
probing-heuristic-p5-std-dev 1 −0.0143 0.4773
probing-sim-p5 11 0.519 0.1715

Table 4.3: Selected features with cluster number and projection coefficients

When ranking the selected features by their permutation importance, as can be seen in
figure 4.6, it becomes clear that some features have a significantly higher impact on the
model’s performance than others. The importance scores may of course vary for different
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Figure 4.6: Mean and standard deviation of
permutation importance of selected features
for 30 repetitions
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Figure 4.7: Pearson correlation coefficient
for pairs of selected features
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4. Experimental Evaluation

models, however they serve as a basic indicator of a feature’s predictive strength. When
taking a closer look at the selected features one finds the following.

1. graph-clustering-coefficient-range: The range of the clustering coefficients for each
vertex in the merged disjunctive graph achieves a permutation importance score
of 0.39. Based on visual comparison, the clustering coefficient seems to follow a
similar pattern as the job to machine ratio, while nicely separating the cluster of
trivial instances from the others.

It is contained in cluster #1, which incidentally also includes probing-heuristic-p5-
std-dev, as well as several other probing features, all of them either the standard
deviation, range or Gini coefficient. The only other non-probing features included
are mlu-range and mlu-std-dev.

2. mlv-rel-m-std-dev: The standard deviation of the machine load voids relative to the
total number of machines achieves a score of 0.1 and shows an interesting pattern.
It is relatively uniformly distributed, with larger values for instances with a job to
machine ratio close to 1. However it also shows some very curious outliers with
particularly high values near the center of the instance space.

Cluster #24 is a rather small cluster containing only 6 features. These features
are the range/standard deviation of mlv-rel-m, os-mm-rel-m and os-rm-rel-m
respectively.

3. operation-pt-mean: The mean pj,k value achieves a score of 0.44, thereby making it
the most important feature by a narrow margin. When viewing the distribution
of this feature in figure 4.8c one finds that it, unsurprisingly, has the highest
values among instances from gen-uniform-200, followed by gen-uniform-99

and gen-binom, whereas gen-const and gen-nbinom show significantly lower
values. Considering its correlation to other selected features in figure 4.7 shows it
only being correlated with probing-exact-p1-median – an observation that can easily
be explained by the fact that none of the other features incorporate the processing
times to a similar extent.

Its cluster, cluster #9, is relatively small and contains only key figures related to
operation-pt.

4. probing-exact-p1-median: The median P1 of all exact methods achieves a score
of 0.24. Following the same logic as the previous feature, this one appears to be
useful for identifying instances that are easy/hard for exact methods. However, it
is notable that the makespan was chosen, which is dependent on n, m as well as
the values of pj,k in place of a metric that is to some extent normalized by problem
size. This results in a very clear cluster of high values for the large instances in
gen-uniform-200.

This feature is contained in cluster #2, with the majority of features being somehow
influenced by the values of pj,k such as seq-cmax, maxlb, jop-pt, machine-pt, os-
operation-pt, os-rm-pt and a variety of probing features based on P1.
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4.3. Features

5. probing-heuristic-p5-std-dev: This feature is contained in the same cluster as graph-
clustering-coefficient-range and follows an analogous pattern, even if it might not
be immediately obvious when comparing their visualizations.

They do however show a strong correlation as can be seen in figure 4.7. Unsurpris-
ingly it has a relatively low importance of 0.09.

6. probing-sim-p5 : The value of P5 for sim achieves an importance of 0.27. Loosely
speaking, one might say that this feature serves to separate instances by meta-
heuristic performance.

It is contained in cluster #11, which is made up entirely of probing features based
on P5 of heuristics and metaheuristics.

The presence of non-probing features, henceforth referred to as simple features, in the
clusters of the selected features’ clusters as well as the superficially similar distribution
of probing and simple features suggests that the probing features may carry relatively
little additional information – a hypothesis that will be further explored in section 4.5.
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Figure 4.8: Feature values of projected instances from all
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4.3. Features

4.3.1 Comparison Between Existing and Generated Instances

Comparing the distribution of feature values in figure 4.10 adds further evidence to the
hypothesis that lit is not a sufficient representation of the instance space as a whole.
Broadly speaking they all follow the same general trend of gen covering a wider range of
values than lit. However, there are four features that stand out and deserve particular
consideration:

• graph-clustering-coefficient-range (figure 4.10a): The distributions appear to be
reasonably similar, except for gen showing a very distinct second peak near 0. This
peak is the result of the inclusion of trivial instances in gen, which are not present
in lit and can, in a similar form, also be observed in figures 4.10b, 4.10e and 4.10f.

• mlv-rel-m-std-dev (figure 4.10b): The distribution provides an interesting contrast
to the general trend, with lit actually having a wider range of values than gen.
Its distribution over the projected instance space (figure 4.8b) also stands out as
being relatively uniform, with only a few outliers having a value ≥ 0.1. Furthermore,
all instances with a value ≥ 0.15 are from lit, specifically from la, orb and ft.
Unfortunately the information as to how exactly these instances were generated
appears to have been lost in time. One may however speculate that these instances
were most likely generated by a fundamentally different kind of algorithm and thus
contain a particularly unbalanced distribution of machines across operation slots.

• operation-pt-mean (figure 4.10c): There are two pronounced peaks for the mean
processing time in lit with some outliers around them. The peaks correspond
exactly to a mean processing time of 50 and 100.5 – the mean processing times for
the instances from ta and dmu. For gen one can find a third peak corresponding
to the instances from gen-const and gen-nbinom with significantly lower mean
processing times. Furthermore, gen includes a larger number of outliers around
the peaks due to simply including a larger number of instances.

• probing-exact-p1-median (figure 4.10d): For this feature, the dominance of gen
over lit is most pronounced, with gen showing a vastly larger range of values,
and a much flatter distribution, although with a heavy tail. The main reason for
this discrepancy is, once more, the inclusion of larger instances in gen, which, by
their very nature, are harder to solve, whereas the heavy tail can be explained by
gen-const and gen-nbinom.
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Figure 4.10: Comparison of feature value distribution over instances from lit and gen

4.4 Performance Across the Instance Space

Before diving into the specifics of the individual algorithms, it is useful to first obtain a
high-level picture of how the difficulty is distributed across the instance space. For this
purpose, the number of good and best algorithms per instance is shown in figure 4.11a
and figure 4.11b respectively. To obtain a better visualization, the trivial instances have
been excluded since every algorithm is expected to, and in fact does, obtain the optimal
solution on those instances, as one can see in figure 4.12. The distributions are relatively
similar to the skewness as on would expect given the results of Streeter and Smith [SS06].
One can also clearly identify the areas in which (almost) all algorithms obtain good
results around Z1 ≈ −1.5 and the two clusters that seem to be particularly difficult
around Z1 ≈ 1.5, Z2 ≈ −1 and Z1 ≈ 1, Z2 ≈ 2.

The performance of all individual algorithms is visualized in figure 4.12 with a global
color scale showing P6. Figure 4.13 shows the same data, but with an adjusted color
scale for each algorithm so as to better highlight the performance profile of individual
algorithms. In consideration of the exact methods, it is striking that they all exhibit
a similar pattern. They show consistently good performance, except for the previously
identified cluster around Z1 ≈ 1.5, Z2 ≈ −1 where their performance is slightly degraded.
This cluster consists primarily of instances from gen-uniform and gen-binom with a
job to machine ratio close to 1, as can be seen in figure 4.4. Particularly the performance
of ort is strongly degraded in this cluster, while chu performs only slightly worse. cpo
on the other hand actually performs impressively well over pretty much all instances,
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4.4. Performance Across the Instance Space
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Figure 4.11: Instance difficulty for projected instances from all (excluding trivial
instances)

except for a minor degradation in the aforementioned area. When comparing the
performance distribution of metaheuristics, they all show a very distinct cluster with
degraded performance near Z1 ≈ 1, Z2 ≈ 2. This cluster is firmly within gen-const

and has a job to machine ratio near 1.

Figure 4.14 shows the instances on which a given algorithm is the (unique) winner. As
shown earlier in table 4.1, only cpo, ort and tab are the unique winners on distinct
subsets of all. While chu is not the unique winner on any instance and does not have a
lot of ties either, it makes up for this by performing decently on all instances, as can be
seen in figure 4.12. ort on the other hand displays the opposite behavior – it performs
very well on a fairly large subset of instances, more than cpo in fact, and usually wins
on instances from gen-const or gen-nbinom, but performs significantly worse on the
cluster identified earlier. Conversely tab clearly dominates the aforementioned cluster of
instances from gen-uniform and gen-binom, but struggles with the instances from
gen-const and gen-nbinom. sim achieves a few non-trivial ties, as does ran, and
even sps and mwr manage to squeeze out some ties on the easier instances, although this
can probably be attributed to chance. It is however notable that sps and mwr actually
manage to each solve one of the benchmark instances from lit optimally (la06 and la10
respectively).

The binary view of instances where a given algorithm is good as shown in figure 4.15 further
emphasizes trends that have, to some extent, already been pointed out in figure 4.12. ort
is good on most of the dataset except for the one very distinct cluster. cpo stands out
as showing good performance over almost all instances, while tab shows some weakness
on the instances from gen-const.
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4. Experimental Evaluation
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Figure 4.12: P6 of algorithms on projected instances from all (global color scale)
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4.4. Performance Across the Instance Space
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Figure 4.13: P6 of algorithms on projected instances from all (individual color scale)
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4. Experimental Evaluation
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Figure 4.14: Projected instances on which each algorithm is the (unique) winner from
all
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4.4. Performance Across the Instance Space
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Figure 4.15: Projected instances on which each algorithm is good from all
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4. Experimental Evaluation

The analysis of individual algorithms’ results suggests there is a difference in algorithm
performance depending on the probability distribution the processing times are drawn
from. This hypothesis is confirmed when considering the algorithms’ performances
for each subset of instances generated based on a different probability distribution in
figure 4.16.
The exact methods all show better performance on gen-const and gen-nbinom with
the effects being most pronounced for ort and cpo being least affected. Metaheuristics
on the other hand struggle most with gen-const – most likely due to the neighborhood
being ill-suited for this kind of problem. This suggests one of two possible reasons: Either
the constant processing times change the topology of the search space in a way that
makes it harder to find good solutions, or they make it easier for exact methods to find
good solutions. One should also note that the cluster stands out particularly for tab,
which shows impressively good performance on almost all other instances. Among the
dispatching rule-based heuristics, most seem to suffer the inverse effects as the exact
methods showing worse performance on gen-const and gen-nbinom, with the curious
exception of sps and mwr, whose performance is mostly stable across all subsets.

cpo ort chu ran tab sim spt lpt sps lps lwr mwr

1

1.2

1.4

1.6
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Figure 4.16: P6 by algorithm on instances from subsets of gen
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4.5. Algorithm Selection

4.5 Algorithm Selection

All models are able to improve upon the prediction of the MF model (i.e. always predicting
tab) to a significant extent, as can be seen in figures 4.17 and 4.18. The best model
by both metrics turns out to be RF, with a median MCC of 0.7759 and a median P6 of
1.0012. It should be noted that, even though the differences in model performance are
statistically significant, the P6 of the solver is near perfect for all machine learning models
with the overall worst result being 1.0038 for MLP, whereas the best P6 for MF is 1.0564.
The statistical significance levels of the differences in MCC or solver P6 over the 20×10
cross-validation splits can be seen in figure 4.19. For the most part, they simply confirm
what one would expect based on the previous analysis: All machine learning models
achieve a statistically significant improvement over the most frequent prediction of tab
with the best being RF, which shows a statistically significant difference in performance
to all other models in both MCC and P6.
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Figure 4.17: MCC of machine learning models predicting the best algorithm for 20×10
cross-validation splits
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Figure 4.18: P6 of solver induced by machine learning models predicting the best algorithm
for 20×10 cross-validation splits
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4. Experimental Evaluation
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Figure 4.19: p-values comparing performance measures of machine learning models
predicting the best algorithm for 20×10 cross-validation splits

To compare the predictions with the actual algorithms’ performances, the models are
fitted on a stratified training set containing 50% of all instances and applied to generate
predictions for the remaining 50% of instances. A comparison of the predictions’ quality
and the best algorithms’ performances is displayed in figure 4.20. For both the number
of wins (figure 4.20a) and the mean P6 (figure 4.20b), the portfolio solvers show a clear
improvement over any individual algorithm. The best solver by both measures (RF) is
able to predict the best algorithm for 90% of the instances and thereby achieves a mean
P6 of 1.0016. Compared to the best individual algorithm by mean P6 (cpo), the solver
is able to obtain a 1.9% improvement in mean P6.

For visualization purposes, the prediction of a RF model on 50% of all is shown in
figure 4.21. Comparing the predictions to the areas where the various algorithms perform
best (figure 4.14) shows the general trends found in the instance space analysis reflected
in the predictions, i.e. tab dominates the bottom-right cluster, except for the very
right where cpo shows better performance. The top-right area is firmly in the hands of
ort and the center area, for which all algorithms show similar performance, is split up
between tab and ort, while cpo is sprinkled all over the place. Trivial instances fall to
tab as is to be expected since ties are broken in its favor.
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4.5. Algorithm Selection
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Figure 4.21: Predicted best algorithm by RF on 50% of all
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4. Experimental Evaluation

4.5.1 Impact of Selected Features

The hypothesis that the selected probing features can be substituted by simpler features
without excessive loss of information has already been posed in section 4.3. To test it,
two alternate sets of features are generated:

• simple: This set of features is generated by iteratively selecting the non-probing
feature with the highest correlation from the same cluster for each of the selected
features listed in section 4.3. If no non-probing feature is present in the cluster, the
feature with the highest correlation over the entire dataset is selected. Features
that have already been added to the new feature set are not considered again.

Ultimately this produces the following set of features: graph-clustering-coefficient-
range, mlv-rel-m-std-dev, operation-length-mean, seq-cmax, mlu-range and mlu-q1.

• minimal: This set is generated by the same process, however only features from
the Overall group are permitted.

The features are: operations, seq-cmax, maxlb, jobs, machines and job-machine-ratio.

The same machine learning models are trained on the alternate sets of features (after
feature normalization) and evaluated on the same 20×10 cross-validation splits as for the
original set of features, which shall be referred to as selected. The results can be seen in
figure 4.22 and are very much in accordance with the initial hypothesis: The simplification
of features does generally degrade performance, however the effect is relatively minor
when considering the absolute differences and only pronounced for RF. Nonetheless the
differences in both MCC and P6 by selected over simple and minimal are, to a large part,
statistically significant – in particular for RF as confirmed by the p-values in table 4.4
Conversely for the KNN and DT models the minimal feature set actually results in better
performance than selected. Another curious observation is that the models based on
minimal generally perform better than those using simple, although this effect may be
explained by an unfortunate selection of features. It may thus be worth including probing
features if one aims to obtain the best possible results, but they may be left out as long
as a minor decrease in prediction quality is acceptable. However, the probing features
are to be left out, one might as well remove the moderately more complicated features
too and go straight for the simplest features possible, while still retaining very decent
performance.
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4.5. Algorithm Selection
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Figure 4.22: Performance of machine learning models by feature set for 20×10 cross-
validation splits

Model P6 simple P6 minimal MCC simple MCC minimal

DT 0.0009 1 0 1
KNN 0 1 0 1
MLP 0 1 0 0.0558
RF 0 0.0002 0 0

Table 4.4: p-values for difference in MCC (one-sided, greater) and P6 (one-sided, less) of
selected versus other feature sets for 20×10 cross-validation splits
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CHAPTER 5
Conclusion

This thesis presents a broad analysis of the instance space of the job shop scheduling
problem to further the current understanding of the problem, pave the way towards
a better setting for comparing the performance of algorithms and show the usefulness
of automated algorithm selection. The following can be considered to be the main
contributions:

• Based on an analysis of the existing instances in the literature, a novel set of
benchmark instances has been created. The generated instance set contains 4225
instances of various sizes and processing time distributions, from which 3025 were
included for this analysis. They are uniformly distributed with regard to the
number of jobs and the number of machines and cover a significantly larger range
of variations than the existing benchmark instances. Of particular note are the
sets with processing times drawn from a constant or negative binomial distribution,
which have so far not been found in the literature. However, even if one were to
limit oneself to uniformly distributed processing times, as has commonly been the
case in the literature, the new instances still cover a far wider range of instance sizes.
While there can be no certainty as to whether any set of instances truly covers all
possibilities, this extended set of instances is a step towards benchmarking data
that is more representative of the instance space as a whole.

• To characterize the instances, a set of features, 604 in total, was created, which
includes features found in the literature as well as additional probing and graph-
based features, which were proposed in this thesis. Among these features, several
clusters of highly similar features could be identified. An analysis of the features’
importance showed probing features to be among the most useful, with their
inclusion resulting in a statistically significant improvement in algorithm selection
performance over similar sets of simpler features. It has also been shown that
the probing features could be replaced by very simple features with only a mild

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. Conclusion

degradation in performance – a sacrifice one may very well be willing to make in
practice.

• In general, the results by Streeter and Smith [SS06] have been confirmed insofar
that the difficulty of JSSP instances is, apart from the obvious factor of instance
size, strongly influenced by the job to machine ratio. However the analysis also
shows clear differences in algorithm performance on specific areas of the instance
space. In particular the best-performing algorithms (CP Optimizer, tabu search
and OR-Tools) each have their own distinct subset of instances on which they
excel. Overall CP Optimizer achieved the best mean and worst-case performance
while tabu search took the lead with regard to the number of instances for which it
achieved the best solution.

This result might come as a surprise since one would generally expect the per-
formance of exact methods to degrade on larger instances, while metaheuristics
are usually less affected. No such patterns were observed for instances up to
100×100, however no statements can be made about the behavior on even larger
instances. There did however emerge one major difference between exact methods
and metaheuristics with regard to the distribution of processing times: While exact
methods perform better on instances with processing times drawn from a constant
or negative binomial distribution, the metaheuristics perform rather poorly on
those instances, instead excelling on instances with processing times drawn from
uniform or binomial distributions. Particularly for constant processing times this
effect is present for all metaheuristics, suggesting the neighborhood is ill-suited for
this kind of problem.

• Predicting the best algorithm for any given instance using machine learning models
resulted in a statistically significant improvement of performance over any individual
algorithm’s performance. When trained on 50% of the instances and evaluated on
the remaining 50%, the solver based on the best model, a Random Forest, was able
to obtain the best solution for 90% of the instances, whereas the best individual
algorithm only obtained the best solution on 64%.

Besides the aforementioned contributions, the comparison of different performance mea-
sures and their respective advantages and drawbacks is also worth mentioning and may
prove useful for similar experiments, although a systematic analysis with a larger set of
instances would be preferable before making any definite statements.

The work done in this thesis also opens up a wide variety of avenues for further exploration.
This includes extending the set of benchmark instances even further with real-world
instances, instances with processing times drawn from different probability distributions,
or instances using biased shuffle algorithms. There is also a significant amount of work
to be done with regard to understanding why algorithms exhibit certain performance
patterns and how they could be improved. It is to be hoped that this thesis will serve as
a solid foundation for further research in this direction.
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Appendix A

Cluster Features

0 mlu-max, mlu-mean, mlu-median, mlu-min, mlu-q1, mlu-q3, mlv-range, mlv-std-dev, opera-

tions, os-mm-range, os-mm-std-dev, os-rm-range, os-rm-std-dev, probing-all-p4-max, probing-all-

p4-mean, probing-all-p4-median, probing-all-p4-min, probing-all-p4-q1, probing-all-p4-q3, probing-

all-p4-range, probing-all-p4-std-dev, probing-all-p5-max, probing-all-p5-mean, probing-all-p5-q3,

probing-all-p5-range, probing-all-p5-std-dev, probing-chu-p4, probing-chu-p5, probing-cpl-p4, probing-

cpl-p5, probing-cpo-p4, probing-cpo-p5, probing-exact-p4-max, probing-exact-p4-mean, probing-

exact-p4-median, probing-exact-p4-min, probing-exact-p4-q1, probing-exact-p4-q3, probing-exact-

p5-max, probing-exact-p5-mean, probing-exact-p5-median, probing-exact-p5-min, probing-exact-p5-

q1, probing-exact-p5-q3, probing-heuristic-p4-max, probing-heuristic-p4-mean, probing-heuristic-p4-

median, probing-heuristic-p4-min, probing-heuristic-p4-q1, probing-heuristic-p4-q3, probing-heuristic-

p4-range, probing-heuristic-p4-std-dev, probing-metaheuristic-p4-max, probing-metaheuristic-p4-

mean, probing-metaheuristic-p4-median, probing-metaheuristic-p4-min, probing-metaheuristic-p4-

q1, probing-metaheuristic-p4-q3, probing-metaheuristic-p4-range, probing-metaheuristic-p4-std-dev,

probing-ort-p4, probing-ort-p5, probing-priority-lps-p4, probing-priority-lpt-p4, probing-priority-lwr-

p4, probing-priority-mwr-p4, probing-priority-sps-p4, probing-priority-spt-p4, probing-ran-p4, probing-

sim-p4, probing-tab-p4

1 graph-clustering-coefficient-range, mlu-range, mlu-std-dev, probing-all-p1-gini, probing-all-p2-gini,

probing-all-p2-range, probing-all-p2-std-dev, probing-all-p3-gini, probing-all-p4-gini, probing-all-p5-

gini, probing-heuristic-p1-gini, probing-heuristic-p2-gini, probing-heuristic-p3-gini, probing-heuristic-

p4-gini, probing-heuristic-p5-gini, probing-heuristic-p5-range, probing-heuristic-p5-std-dev

2 job-pt-max, job-pt-mean, job-pt-median, job-pt-min, job-pt-q1, job-pt-q3, job-pt-range, job-pt-

std-dev, machine-pt-range, machine-pt-std-dev, maxlb, operation-slot-operation-pt-range, operation-

slot-operation-pt-std-dev, os-rm-pt-range, os-rm-pt-std-dev, probing-all-p1-max, probing-all-p1-

mean, probing-all-p1-median, probing-all-p1-min, probing-all-p1-q1, probing-all-p1-q3, probing-all-

p1-range, probing-all-p1-std-dev, probing-chu-p1, probing-cpl-p1, probing-cpo-p1, probing-exact-

p1-max, probing-exact-p1-mean, probing-exact-p1-median, probing-exact-p1-min, probing-exact-p1-

q1, probing-exact-p1-q3, probing-heuristic-p1-max, probing-heuristic-p1-mean, probing-heuristic-p1-

median, probing-heuristic-p1-min, probing-heuristic-p1-q1, probing-heuristic-p1-q3, probing-heuristic-

p1-range, probing-heuristic-p1-std-dev, probing-metaheuristic-p1-max, probing-metaheuristic-p1-

mean, probing-metaheuristic-p1-median, probing-metaheuristic-p1-min, probing-metaheuristic-p1-

q1, probing-metaheuristic-p1-q3, probing-metaheuristic-p1-range, probing-metaheuristic-p1-std-dev,

probing-ort-p1, probing-priority-lps-p1, probing-priority-lpt-p1, probing-priority-lwr-p1, probing-

priority-mwr-p1, probing-priority-sps-p1, probing-priority-spt-p1, probing-ran-p1, probing-sim-p1,

probing-tab-p1, seq-p1

3 graph-clustering-coefficient-min, graph-density, job-machine-ratio, os-rm-max, os-rm-mean, os-rm-

median, os-rm-min, os-rm-pt-rel-m-op-mean-max, os-rm-pt-rel-m-op-mean-mean, os-rm-pt-rel-m-op-

mean-median, os-rm-pt-rel-m-op-mean-min, os-rm-pt-rel-m-op-mean-q1, os-rm-pt-rel-m-op-mean-q3,

os-rm-q1, os-rm-q3, os-rm-rel-m-max, os-rm-rel-m-max, os-rm-rel-m-mean, os-rm-rel-m-mean, os-rm-

rel-m-median, os-rm-rel-m-median, os-rm-rel-m-min, os-rm-rel-m-min, os-rm-rel-m-q1, os-rm-rel-m-

q1, os-rm-rel-m-q3, os-rm-rel-m-q3, os-rma-pt-rel-m-op-mean-max, os-rma-pt-rel-m-op-mean-mean, os-

rma-pt-rel-m-op-mean-median, os-rma-pt-rel-m-op-mean-min, os-rma-pt-rel-m-op-mean-q1, os-rma-pt-

rel-m-op-mean-q3

4 mlv-rel-mean-q3, mlva-rel-mean-q3, os-mm-rel-mean-q3

5 os-rm-gini, os-rm-gini, os-rm-pt-gini, os-rm-pt-rel-m-gini, os-rm-pt-rel-m-op-mean-gini, os-rm-pt-rel-

mean-gini, os-rm-pt-rel-mean-max, os-rm-pt-rel-mean-q3, os-rm-pt-rel-mean-range, os-rm-pt-rel-mean-

std-dev, os-rm-rel-m-gini, os-rm-rel-m-gini, os-rm-rel-mean-gini, os-rm-rel-mean-gini, os-rm-rel-mean-

max, os-rm-rel-mean-max, os-rm-rel-mean-q3, os-rm-rel-mean-q3, os-rm-rel-mean-range, os-rm-rel-

mean-range, os-rm-rel-mean-std-dev, os-rm-rel-mean-std-dev, os-rma-pt-gini, os-rma-pt-rel-m-gini, os-

rma-pt-rel-m-op-mean-gini, os-rma-pt-rel-mean-gini, os-rma-pt-rel-mean-max, os-rma-pt-rel-mean-q3,

os-rma-pt-rel-mean-range, os-rma-pt-rel-mean-std-dev

6 mlu-rel-m-max, mlu-rel-m-mean, mlu-rel-m-median, mlu-rel-m-min, mlu-rel-m-q1, mlu-rel-m-q3, mlu-

rel-m-range, mlu-rel-m-std-dev, os-rm-range, os-rm-std-dev
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Cluster Features

7 probing-all-p2-q3, probing-chu-p2, probing-exact-p2-q1, probing-exact-p3ean, probing-exact-p3edian,

probing-exact-p3in, probing-ort-p2

8 graph-vertex-degree-std-dev, probing-all-p2-q1, probing-all-p3ean, probing-all-p3edian, probing-all-

p3in, probing-heuristic-p2-q1, probing-heuristic-p2-q3, probing-heuristic-p3ax, probing-heuristic-

p3ean, probing-heuristic-p3edian, probing-heuristic-p3in, probing-metaheuristic-p2-q1, probing-

metaheuristic-p2-q3, probing-metaheuristic-p3ax, probing-metaheuristic-p3ean, probing-metaheuristic-

p3edian, probing-metaheuristic-p3in, probing-priority-lps-p2, probing-priority-lpt-p2, probing-priority-

lwr-p2, probing-priority-mwr-p2, probing-priority-sps-p2, probing-priority-spt-p2, probing-ran-p2,

probing-sim-p2, probing-tab-p2, skewness

9 operation-pt-max, operation-pt-mean, operation-pt-median, operation-pt-q1, operation-pt-q3,

operation-pt-range, operation-pt-std-dev

10 job-pt-rel-op-mean-max, job-pt-rel-op-mean-mean, job-pt-rel-op-mean-median, job-pt-rel-op-mean-

min, job-pt-rel-op-mean-q1, job-pt-rel-op-mean-q3, machines, probing-all-p3-max, probing-all-p3-

range, probing-all-p3-std-dev, probing-cpl-p3, probing-cpo-p3, probing-exact-p3-max, probing-exact-

p3-q3

11 probing-all-p5-median, probing-all-p5-min, probing-all-p5-q1, probing-heuristic-p5-max, probing-

heuristic-p5-mean, probing-heuristic-p5-median, probing-heuristic-p5-min, probing-heuristic-p5-q1,

probing-heuristic-p5-q3, probing-metaheuristic-p5-max, probing-metaheuristic-p5-mean, probing-

metaheuristic-p5-median, probing-metaheuristic-p5-min, probing-metaheuristic-p5-q1, probing-

metaheuristic-p5-q3, probing-priority-lps-p5, probing-priority-lpt-p5, probing-priority-lwr-p5, probing-

priority-mwr-p5, probing-priority-sps-p5, probing-priority-spt-p5, probing-ran-p5, probing-sim-p5,

probing-tab-p5

12 probing-all-p3-q3, probing-chu-p3, probing-exact-p3-mean, probing-exact-p3-median, probing-exact-

p3-min, probing-exact-p3-q1, probing-ort-p3

13 job-pt-gini, job-pt-rel-mean-gini, job-pt-rel-mean-max, job-pt-rel-mean-q3, job-pt-rel-mean-range, job-

pt-rel-mean-std-dev, job-pt-rel-op-mean-gini

14 job-pt-rel-op-mean-range, job-pt-rel-op-mean-std-dev, machine-pt-rel-op-mean-range, machine-pt-rel-

op-mean-std-dev, operation-slot-operation-pt-rel-op-mean-range, operation-slot-operation-pt-rel-op-

mean-std-dev
15 graph-vertex-degree-max, graph-vertex-degree-mean, graph-vertex-degree-median, graph-vertex-

degree-min, graph-vertex-degree-q1, graph-vertex-degree-q3, jobs, machine-pt-rel-op-mean-max,

machine-pt-rel-op-mean-mean, machine-pt-rel-op-mean-median, machine-pt-rel-op-mean-min,

machine-pt-rel-op-mean-q1, machine-pt-rel-op-mean-q3, operation-slot-operation-pt-rel-op-mean-

max, operation-slot-operation-pt-rel-op-mean-mean, operation-slot-operation-pt-rel-op-mean-median,

operation-slot-operation-pt-rel-op-mean-min, operation-slot-operation-pt-rel-op-mean-q1, operation-

slot-operation-pt-rel-op-mean-q3, os-rm-max, os-rm-mean, os-rm-median, os-rm-min, os-rm-q1,

os-rm-q3

16 mlv-rel-mean-min, mlv-rel-mean-q1, mlva-rel-mean-min, mlva-rel-mean-q1, os-mm-rel-mean-min, os-

mm-rel-mean-q1

17 mlv-max, mlv-mean, mlv-median, mlv-min, mlv-q1, mlv-q3, mlv-rel-m-max, mlv-rel-m-mean, mlv-

rel-m-median, mlv-rel-m-min, mlv-rel-m-q1, mlv-rel-m-q3, os-mm-max, os-mm-mean, os-mm-median,

os-mm-min, os-mm-q1, os-mm-q3, os-mm-rel-m-max, os-mm-rel-m-mean, os-mm-rel-m-median, os-mm-

rel-m-min, os-mm-rel-m-q1, os-mm-rel-m-q3

18 os-rm-pt-rel-mean-min, os-rm-pt-rel-mean-q1, os-rm-rel-mean-min, os-rm-rel-mean-min, os-rm-rel-

mean-q1, os-rm-rel-mean-q1, os-rma-pt-rel-mean-min, os-rma-pt-rel-mean-q1

19 mlu-gini, mlu-rel-m-gini, mlu-rel-mean-gini, mlu-rel-mean-max, mlu-rel-mean-q3, mlu-rel-mean-range,

mlu-rel-mean-std-dev
20 mlva-max, mlva-mean, mlva-median, mlva-min, mlva-q1, mlva-q3, mlva-range, mlva-rel-m-max, mlva-

rel-m-mean, mlva-rel-m-median, mlva-rel-m-min, mlva-rel-m-q1, mlva-rel-m-q3, mlva-rel-m-range,

mlva-rel-m-std-dev, mlva-std-dev, probing-all-p3-mean, probing-all-p3-median, probing-all-p3-min,

probing-all-p3-q1, probing-heuristic-p3-max, probing-heuristic-p3-mean, probing-heuristic-p3-median,

probing-heuristic-p3-min, probing-heuristic-p3-q1, probing-heuristic-p3-q3, probing-metaheuristic-p3-

max, probing-metaheuristic-p3-mean, probing-metaheuristic-p3-median, probing-metaheuristic-p3-

min, probing-metaheuristic-p3-q1, probing-metaheuristic-p3-q3, probing-priority-lps-p3, probing-

priority-lpt-p3, probing-priority-lwr-p3, probing-priority-mwr-p3, probing-priority-sps-p3, probing-

priority-spt-p3, probing-ran-p3, probing-sim-p3, probing-tab-p3

21 job-pt-rel-mean-min, job-pt-rel-mean-q1

22 machine-pt-max, machine-pt-mean, machine-pt-median, machine-pt-min, machine-pt-q1, machine-

pt-q3, operation-slot-operation-pt-max, operation-slot-operation-pt-mean, operation-slot-operation-pt-

median, operation-slot-operation-pt-min, operation-slot-operation-pt-q1, operation-slot-operation-pt-

q3, os-rm-pt-max, os-rm-pt-mean, os-rm-pt-median, os-rm-pt-min, os-rm-pt-q1, os-rm-pt-q3

23 machine-pt-rel-mean-min, machine-pt-rel-mean-q1, operation-slot-operation-pt-rel-mean-min,

operation-slot-operation-pt-rel-mean-q1

24 mlv-rel-m-range, mlv-rel-m-std-dev, os-mm-rel-m-range, os-mm-rel-m-std-dev, os-rm-rel-m-range, os-

rm-rel-m-std-dev
25 probing-cpo-p2, probing-exact-p2-q3

26 graph-betweenness-centrality-max, graph-betweenness-centrality-mean, graph-betweenness-centrality-

median, graph-betweenness-centrality-q1, graph-betweenness-centrality-q3, graph-betweenness-

centrality-range
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Cluster Features

27 probing-exact-p1-range, probing-exact-p1-std-dev

28 probing-exact-p4-range, probing-exact-p4-std-dev, probing-exact-p5-range, probing-exact-p5-std-dev

29 os-rm-pt-rel-mean-median, os-rm-rel-mean-median, os-rm-rel-mean-median, os-rma-pt-rel-mean-

median
30 probing-metaheuristic-p1-gini, probing-metaheuristic-p2-gini, probing-metaheuristic-p3-gini, probing-

metaheuristic-p4-gini, probing-metaheuristic-p5-gini, probing-metaheuristic-p5-range, probing-

metaheuristic-p5-std-dev

31 job-pt-rel-mean-median

32 os-rm-pt-rel-m-range, os-rm-pt-rel-m-std-dev, os-rma-pt-range, os-rma-pt-rel-m-range, os-rma-pt-rel-

m-std-dev, os-rma-pt-std-dev

33 machine-pt-gini, machine-pt-rel-mean-gini, machine-pt-rel-mean-max, machine-pt-rel-mean-q3,

machine-pt-rel-mean-range, machine-pt-rel-mean-std-dev, machine-pt-rel-op-mean-gini, operation-

slot-operation-pt-gini, operation-slot-operation-pt-rel-mean-gini, operation-slot-operation-pt-rel-

mean-max, operation-slot-operation-pt-rel-mean-q3, operation-slot-operation-pt-rel-mean-range,

operation-slot-operation-pt-rel-mean-std-dev, operation-slot-operation-pt-rel-op-mean-gini

34 mlu-rel-mean-q1

35 operation-pt-min

36 mlv-rel-mean-median, mlva-rel-mean-median, os-mm-rel-mean-median

37 graph-betweenness-centrality-gini

38 graph-clustering-coefficient-max, graph-clustering-coefficient-mean, graph-clustering-coefficient-

median, graph-clustering-coefficient-q1, graph-clustering-coefficient-q3

39 machine-pt-rel-mean-median, operation-slot-operation-pt-rel-mean-median

40 graph-betweenness-centrality-min, graph-clustering-coefficient-gini, graph-clustering-coefficient-std-

dev, probing-heuristic-p2-range, probing-heuristic-p2-std-dev

41 mlv-gini, mlv-rel-m-gini, mlv-rel-mean-gini, mlv-rel-mean-max, mlv-rel-mean-range, mlv-rel-mean-std-

dev, mlva-gini, mlva-rel-m-gini, mlva-rel-mean-gini, mlva-rel-mean-max, mlva-rel-mean-range, mlva-

rel-mean-std-dev, os-mm-gini, os-mm-rel-m-gini, os-mm-rel-mean-gini, os-mm-rel-mean-max, os-mm-

rel-mean-range, os-mm-rel-mean-std-dev

42 probing-metaheuristic-p3-range, probing-metaheuristic-p3-std-dev

43 probing-metaheuristic-p2-range, probing-metaheuristic-p2-std-dev

44 probing-exact-p1-gini, probing-exact-p2-gini, probing-exact-p2-range, probing-exact-p2-std-dev,

probing-exact-p3-gini, probing-exact-p4-gini, probing-exact-p5-gini

45 mlu-rel-mean-min

46 os-rm-pt-rel-m-op-mean-range, os-rm-pt-rel-m-op-mean-std-dev

47 operation-pt-gini

48 graph-betweenness-centrality-std-dev, graph-vertex-degree-gini

49 os-rm-pt-rel-m-max, os-rm-pt-rel-m-mean, os-rm-pt-rel-m-median, os-rm-pt-rel-m-min, os-rm-pt-rel-m-

q1, os-rm-pt-rel-m-q3, os-rma-pt-max, os-rma-pt-mean, os-rma-pt-median, os-rma-pt-min, os-rma-pt-

q1, os-rma-pt-q3, os-rma-pt-rel-m-max, os-rma-pt-rel-m-mean, os-rma-pt-rel-m-median, os-rma-pt-rel-

m-min, os-rma-pt-rel-m-q1, os-rma-pt-rel-m-q3

50 probing-heuristic-p3-range, probing-heuristic-p3-std-dev

51 mlu-rel-mean-median

52 probing-exact-p3-range, probing-exact-p3-std-dev

53 probing-all-p3ax, probing-cpl-p2, probing-exact-p3ax

54 os-rm-rel-m-range, os-rm-rel-m-std-dev, os-rma-pt-rel-m-op-mean-range, os-rma-pt-rel-m-op-mean-std-

dev

Table A.1: Feature clusters
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Instance n m C∗

max

abz5 10 10 1,234

abz6 10 10 943

abz7 20 15 656

abz9 20 15 678

dmu03 20 15 2,731

dmu05 20 15 2,749

dmu13 30 15 3,681

dmu14 30 15 3,394

dmu15 30 15 3,343

dmu18 30 20 3,844

dmu21 40 15 4,380

dmu22 40 15 4,725

dmu23 40 15 4,668

dmu24 40 15 4,648

dmu25 40 15 4,164

dmu26 40 20 4,647

dmu27 40 20 4,848

dmu28 40 20 4,692

dmu29 40 20 4,691

dmu30 40 20 4,732

dmu31 50 15 5,640

dmu32 50 15 5,927

dmu33 50 15 5,728

dmu34 50 15 5,385

dmu35 50 15 5,635

dmu36 50 20 5,621

dmu37 50 20 5,851

dmu38 50 20 5,713

dmu39 50 20 5,747

dmu40 50 20 5,577

ft06 6 6 55

ft10 10 10 930

ft20 20 5 1,165

la01 10 5 666

la02 10 5 655

la03 10 5 597

la04 10 5 590

la05 10 5 593

la06 15 5 926

la07 15 5 890

la08 15 5 863

la09 15 5 951

la10 15 5 958

la11 20 5 1,222

la12 20 5 1,039

la13 20 5 1,150

la14 20 5 1,292

la15 20 5 1,207

la16 10 10 945

la17 10 10 784

la18 10 10 848

la19 10 10 842

Instance n m C∗

max

la20 10 10 902

la21 15 10 1,046

la22 15 10 927

la23 15 10 1,032

la24 15 10 935

la25 15 10 977

la26 20 10 1,218

la27 20 10 1,235

la28 20 10 1,216

la29 20 10 1,152

la30 20 10 1,355

la31 30 10 1,784

la32 30 10 1,850

la33 30 10 1,719

la34 30 10 1,721

la35 30 10 1,888

la36 15 15 1,268

la37 15 15 1,397

la38 15 15 1,196

la39 15 15 1,233

la40 15 15 1,222

orb01 10 10 1,059

orb02 10 10 888

orb03 10 10 1,005

orb04 10 10 1,005

orb05 10 10 887

orb06 10 10 1,010

orb07 10 10 397

orb08 10 10 899

orb09 10 10 934

orb10 10 10 944

swv01 20 10 1,407

swv02 20 10 1,475

swv03 20 10 1,398

swv04 20 10 1,464

swv05 20 10 1,424

swv11 50 10 2,983

swv13 50 10 3,104

swv14 50 10 2,968

swv15 50 10 2,885

swv16 50 10 2,924

swv17 50 10 2,794

swv18 50 10 2,852

swv19 50 10 2,843

swv20 50 10 2,823

ta01 15 15 1,231

ta02 15 15 1,244

ta03 15 15 1,218

ta04 15 15 1,175

ta05 15 15 1,224

ta06 15 15 1,238

ta07 15 15 1,227

Instance n m C∗

max

ta08 15 15 1,217

ta09 15 15 1,274

ta10 15 15 1,241

ta11 20 15 1,357

ta12 20 15 1,367

ta13 20 15 1,342

ta14 20 15 1,345

ta15 20 15 1,339

ta16 20 15 1,360

ta17 20 15 1,462

ta19 20 15 1,332

ta20 20 15 1,348

ta21 20 20 1,642

ta24 20 20 1,644

ta28 20 20 1,603

ta31 30 15 1,764

ta35 30 15 2,007

ta36 30 15 1,819

ta37 30 15 1,771

ta38 30 15 1,673

ta39 30 15 1,795

ta51 50 15 2,760

ta52 50 15 2,756

ta53 50 15 2,717

ta54 50 15 2,839

ta55 50 15 2,679

ta56 50 15 2,781

ta57 50 15 2,943

ta58 50 15 2,885

ta59 50 15 2,655

ta60 50 15 2,723

ta61 50 20 2,868

ta62 50 20 2,869

ta63 50 20 2,755

ta64 50 20 2,702

ta65 50 20 2,725

ta66 50 20 2,845

ta67 50 20 2,825

ta68 50 20 2,784

ta69 50 20 3,071

ta70 50 20 2,995

ta71 100 20 5,464

ta72 100 20 5,181

ta73 100 20 5,568

ta74 100 20 5,339

ta75 100 20 5,392

ta76 100 20 5,342

ta77 100 20 5,436

ta78 100 20 5,394

ta79 100 20 5,358

ta80 100 20 5,183

yn01 20 20 884

Table A.2: Instances from lit with known optimal solution
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