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Kurzfassung

In dieser Masterarbeit behandeln wir das Markov-Prinzip, eine Aussage, die ihren Ursprung in
der russischen Schule der konstruktiven Mathematik hat und ursprünglich besagt, dass “falls
es unmöglich ist, dass ein Algorithmus nicht terminiert, er terminiert”. Dieses Prinzip wurde
auf viele unterschiedliche Kontexte angepasst, und insbesondere interessiert uns seine am wei-
testen verbreitete Version in der Arithmetik, die wie folgt formuliert werden kann: “gegeben
eine total rekursive Funktion f , falls es unmöglich ist, dass es kein n gibt für das f(n) = 0 gilt,
dann existiert ein n, so dass f(n) = 0 gilt”. Dies ist eine im Allgemeinen nicht akzeptierte kon-
struktivistische Aussage, da es für eine existenzielle Aussage möglich sein muss ein Beispiel
anzugeben. Hier gibt es keine Möglichkeit ein solches n zu wählen.

Wir besprechen die konstruktive Mathematik im Detail aus verschiedenen Blickwinkeln,
und wir verdeutlichen ihre Beziehung zum Markov-Prinzip. Insbesondere stellen wir mehrere
Realisierbarkeitssemantiken vor, welche Interpretationen logischer Systeme durch verschiede-
ne Berechnungskonzepte bereitstellen (vor allem, rekursive Funktionen und Lambda-Kalküle).
Dieses Forschungsfeld stellt den Ausgangspunkt für ein bekanntes Paradigma dar, welches oft
Curry-Howard Isomorphismus genannt wird, oder auch ammiersprachen.

Durch die Untersuchung des Curry-Howard Isomorphismus mit modernen Forschungs-
methoden entwickeln wir eine verfeinerte Interpretation des Markov-Prinzips. Wir benutzen
diese Resultate im Anschlußum logische Eigenschaften von Systemen mit Bezug zum Markov-
Prinzip zu untersuchen.
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Abstract

In this thesis we are concerned with Markov’s principle, a statement that originated in the
Russian school of Constructive Mathematics and stated originally that “if it is impossible that
an algorithm does not terminate, then it will terminate”. This principle has been adapted to
many di�erent contexts, and in particular we are interested in its most common version for
arithmetic, which can be stated as “given a total recursive function f , if it is impossible that a
there is no n for which f(n) = 0, then there exists an n such that f(n) = 0”. This is in general
not accepted in constructivism, where stating an existential statement requires one to be able
to show at request a witness for the statement: here there is no clear way to choose such an n.

We introduce more in detail the context of constructive mathematics from di�erent points
of view, and we show how they are related to Markov’s principle. In particular, several realiz-
ability semantics are presented, which provide interpretations of logical systems by means of
di�erent computational concepts (mainly, recursive functions and lambda calculi). This �eld of
research gave origin to the well known paradigm often called Curry-Howard isomorphism, or
also propositions as types, that states a correspondence between proofs in logic and programs
in computer science. Thanks to this the �eld of proof theory, that is the metamathematical
investigations of proofs as mathematical objects, became of interest for computer science and
in particular for the study of programming languages.

By using modern research on the Curry-Howard isomorphism, we will obtain a more re-
�ned interpretation of Markov’s principle. We will then use this results to investigate the
logical properties of systems related to the principle.
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CHAPTER 1
Introduction

De�ning a proper notion of constructive mathematics and building a constructive foundation of
mathematics were two central concerns of mathematical logic in the past century. Starting with
Hilbert’s program, and continuing through other traditions such as Brouwer’s intuitionism,
numerous attempts have been made, often ending up in harsh contrasts - the most famous
being the one between the two just mentioned schools.

The Russian constructive school pursued the program of Constructive Recursive Mathe-
matics, led by the intuitions of A. A. Markov who was the �rst in trying to put the notion of
algorithm at the heart of a foundation of mathematics.

Although ultimately less successful in the �eld of constructivism, some of the ideas of
Markov proved later to be fundamental in understanding proofs in �elds of mathematics such
as analysis.

In order to present a more modern explanation of Markov’s standpoint, we will �rst need
to present a more general overview of the context of constructive mathematics.

1.1 The formalist approach

The birth itself of the modern conception of proof theory is often associated with Hilbert’s fa-
mous program. As it was stated in the Grundlagen der Geometrie the program posed four major
problems that should be addressed in order to develop a reliable foundation for a mathematical
theory:

• The formalization of the theory, including a choice of its basic objects, relations, and
axioms.

• The proof of the consistency of the axioms.
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1. Introduction

• The question of the mutual independence and completeness of the axioms.

• The decision problem: is there an automatic method for deciding truth of statements in
the theory?

In this thesis, we are mainly concerned with the �rst two points. These underline the two
main characteristics of Hilbert’s thought: formalism and �nitism. The Hilbertian formalism
requires the elements of the theory to be expressed as certain statements in a formal language;
the mathematical practice thus could be viewed as a manipulation of these statements, in ac-
cordance to some rules. This attracted criticism from other philosophical schools, �rst and
foremost the intuitionist school, in that it seemed like it was removing the concept of math-

ematical truth, in favour of giving rise to a mere mechanical game of symbols. However, the
second main aspect of the Hilbertian standpoint further clari�es the approach also in relation
to this criticism: the main feature of the axiomatic system that was to be sought was its con-
sistency, i.e. the inability of deriving a contradiction from the axioms; in the original plan, this
crucial feature had to be proved by �nitistic means. Hilbert meant with this word that they
should rely on inspectable1 evidence. Such a consistency proof was seen as something that
nobody could doubt of.

Hilbert’s program is tightly linked to Gödel’s famous incompleteness results. We will not
enter in the debate of what incompleteness meant for the development of the program; how-
ever, it is interesting to mention that Gödel clearly speci�ed his views with respect to the
Hilbertian �nitism in his Yale lectures [Göd41]. There, he states that he regards a system as
�nitist if it satis�es the following points:

• All functions and relations that are primitive in the system are respectively computable
and decidable.

• The existential quanti�er is not primitive in the system. That is, existential quanti�ca-
tions are only an abbreviation for an explicit construction of a witness.

• Universal quanti�cations can be negated only in the sense that there exists a counterex-
ample in the sense here de�ned, that is an explicit construction of a counterexample.

In particular, we will draw inspiration from the second point for our notion of constructive
system:

De�nition 1 (Constructive system). We call a logical system constructive if it satis�es the
following two properties:

Disjunctive property Whenever A ∨ B is provable in the system, then either A is provable
or B is provable.

Existential property Whenever ∃xA(x) is provable in the system, then there exists a term t
such that A(t) is provable.

1In German anschaulich
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1.2. Intuitionitic logic and realizability semantics

1.2 Intuitionitic logic and realizability semantics

The intuitionistic school of L.E.J. Brouwer was probably the main opponent of the formalist
approach. We mentioned before that the intuitionists accused Hilbert of reducing the mathe-
matical practice to a game of symbol manipulation without a real meaning. Indeed, the intu-
itionists appealed to a much more sophisticated notion of mathematics, conceiving essentially
mathematical objects as free creations of the mind of the mathematicians. The mathematical
practice is then a matter of human communication. Therefore, an object exists only in the
moment a mathematician can mentally construct it: how can one accept an indirect argument
as a mental construction? Clearly, if we can prove the impossibility of the non existence of an
object, we have no way to obtain a construction we can communicate.

The BHK explanation of intuitionistic truth

The refusal of formalism made by Brouwer also prevented him from really accepting any for-
malization of an “intuitionistic logic”. An explanation of the usual logical connectives from the
intuitionistic point of view, and the beginning of the development of an intuitionistic logical
system are due to Brouwer’s student Arend Heyting; this is usually known as the Brouwer-
Heyting-Kolmogorov interpretation, and provides an informal notion of an intuitionistic truth:

• There is no construction of ⊥.

• A construction of A ∧B consists of a construction of A and a construction of B

• A construction of A ∨B consists of a construction of A or a construction of B

• A construction ofA→ B is a construction which transforms any construction ofA into
a construction of B

• A construction of ∃xA(x) consists of an element d of the domain and a construction of
A(d)

• A construction of ∀xA(x) is a method which transforms every element d of the domain
into a construction of A(d).

Negation is then interpreted as ¬A := A → ⊥. We can already see from this that the
principle of excluded middle A ∨ ¬A is not justi�ed under this interpretation: it expands to
A ∨ (A→ ⊥), and asks for either a proof of A, or a method to transform proofs of A into the
absurdity; but clearly we have no way to do this in general. The underivability of the excluded
middle as a rule proved to be the common feature of di�erent systems of constructive logic,
and thus intuitionistic logic quickly became interesting per se, regardless of the intuitionistic
standpoint in mathematics.
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1. Introduction

Realizability semantics

The BHK semantics we have de�ned in the previous paragraph allows us to draw some con-
clusions and obtain some initial results about systems of intuitionistic logic, such as the simple
argument we have used to show that the excluded middle is not justi�able. However, one im-
mediately notices how this semantics is voluntarily informal: the notions of construction and
method that are mentioned, are left unspeci�ed. Realizability semantics are a family of seman-
tics that can be thought of as concrete versions of the BHK semantics, whenever we consider
a speci�c intuitionistic theory. Historically, the �rst such example was the original number

realizability of Kleene for the intuitionistic system of arithmetic HA [Kle45] that used objects
of recursion theory in order to give concrete meaning to the concepts of construction and al-

gorithm we used previously. More formally, it states when a number e realizes a formula E by
induction on the shape of the formula:

• e realizes (r = t), if (r = t) is true.

• e realizes (A ∧B), if e codes a pair (f, g) such that f realizes A and g realizes B.

• e realizes A∨B, if e codes a pair (f, g) such that if f = 0 then g realizes A, and if f > 0
then g realizes B.

• e realizes A → B, if, whenever f realizes A, then the e-th partial recursive function is
de�ned at f and its value realizes B.

• e realizes ¬A, if no f realizes A.

• e realizes ∀xA(x), if, for every n, the e-th partial recursive function is de�ned at n and
its value realizes A(n).

• e realizes ∃xA(x), if e codes a pair (n, g) and g realizes A(n).

Since the objects of the domain of interpretation are numbers, we can internalize the notion
we have just de�ned by formalizing it inside the same theory of arithmetic we are interpreting.
A formalized realizability semantics together with a semantic soundness theorem (which is
often called adequacy in this framework) allows a �ner analysis of intuitionistic systems. For
example, given the adequacy of Kleene semantics for a system of intuitionistic arithmetic we
could conclude about constructivity of the system according to our de�nition 1: whenever
A∨B is provable then by adequacy it is realizable, and therefore we will have a realizer coding
either a realizer of A or one of B; similarly whenever ∃xA(x) is provable, then by adequacy it
is realizable and the realizer codes some n and a realizer of A(n).

Moreover, realizability is able to tell more about the computational content of intuitionistic
systems. Kleene realizers are understood as codes for a Gödel numbering of the recursive func-
tions, and thus can represent something that we can use in order to compute. Going further in
this direction, Kreisel’s modi�ed realizability [Kre59] de�nes realizers as elements of a system

4
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of typed λ-calculus: these can be in turn very similar to statements of a modern functional pro-
gramming language. We can think therefore of realizability interpretations as the link between
constructive systems and computational systems.

1.3 Constructive Recursive Mathematics and the controversy

about Markov’s principle

Constructive recursive mathematics was developed by the Russian school of constructivism
starting from the 1940s. Its main contributor was A.A. Markov [MN54], and most of the re-
search developments in this �eld happened until the 1970s.

In a fashion similar to the �nitistic approach, the focus in CRM is on the fact that mathe-
matical objects should be �nitely representable. In particular, they should be representable by
means of suitably de�ned algorithms.

The main points of the approach of CRM are, as found in [TD88]

• The objects of mathematics are algorithms. Algorithms are meant in a mathematically
precise sense in the sense that they should be presented as “words” in some �nite alpha-
bet of symbols.

• Limitations due to �nite memory capacity are disregarded, the length of symbol strings
is unbounded (though always �nite).

• Logically compound statements not involving ∃, ∨ are understood in a direct way, but
existential statements and disjunctions always have to be made explicit.

• If it is impossible that an algorithmic computation does not terminate, we may assume
that it does terminate.

The last of these points is what is commonly referred to as “Markov’s principle”, and was
the main point of controversy between the intuitionists and the Russian school. Indeed, all
the points that were listed �t naturally in classical recursion theory; if we think at Markov’s
principle in this context, it represents unbounded search: it is certain that the algorithm will
halt at some point, but there is no guarantee that this will happen before the end of the universe.
This was �rmly disagreed by intuitionists and indeed we will see that it cannot be proven from
intuitionistic logic.

1.4 Natural deduction and the Curry-Howard isomorphism

In section 1.2 we highlighted how realizability sets a correspondence between constructive
systems and models of computation. An even deeper link was noted by Haskell Curry: the
rules for implication introduction and elimination of natural deduction ( �g. 1.1) can be put in
correspondence with the rules for abstraction and application of Church’s simply typed lambda
calculus.

5



1. Introduction

Even though it was known from the 1940s, this correspondence was not further explored
until some decades later. A reason for this delay could be found in the similar lack of success of
the proof system of Natural Deduction. Introduced by Gentzen together with the immediately
more popular Sequent Calculus, Natural Deduction presents inference rules in couples of in-
troduction and elimination rules for every logical connective. Its other feature is that proofs are
dependent on assumptions that can be made and then discharged (represented by bracketing),
thus rendering the proof independent of the previously made assumption. A system of natural
deduction for intuitionstic logic is presented in �g. 1.1.

...
A1

...
A2 ∧-I

A1 ∧A2

...
A1 ∧A2 ∧-E1A1

...
A1 ∧A2 ∧-E2A2

[A]
B →-I

A→ B

...
A→ B

...
A →-E

B

...
A ∨-I1A ∨B

...
B ∨-I2A ∨B

...
A ∨B

[A]
C

[B]
C ∨-E

C

...
A ∀-I (x not free in the assumptions)∀xA

...
∀xA ∀-E
A[t/x]

...
A[t/x]

∃-I∃xA

...
∃xA

[A]
C ∃-E (x not free in C and in the assumptions)

C

⊥ ⊥-E
A

Figure 1.1: Natural deduction for intuitionistic logic

Sequent calculus provided a more technically convenient presentation of classical logic;
moreover, Gentzen introduced it with the speci�c aim of proving its consistency, by means of
what became to be known as Gentzen’s Hauptsatz, or cut-elimination theorem. Since we are
not interested in sequent calculus, we will not talk about this theorem further. We are however
interested in a somehow corresponding notion in the framework of natural deduction, which

6
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[A]
...
B ∀-I

A→ B

...
A ∀-E

B

;

...
A
...
B

Figure 1.2: Normalization of a non-normal proof

is proof normalization. A normal proof is one where no detours appear; formally, a detour is a
con�guration in which an introduction rule is immediately followed by an elimination of the
same connective that was introduced. Given that the two kinds of rules are one the inverse of
the other, such an inference can be removed in order to make the proof more direct: an example
of such procedure is shown in �g. 1.2.

Normalization then is the process of removing detours from a proof, with the aim of obtain-
ing a normal one. As we mentioned, the unavailability of a normalization theorem 2, stating
that every proof could be normalized, meant that sequent calculus became the system of choice
for a long period, until Dag Prawitz �nally crafted a direct normalization proof for natural de-
duction in 1965.

In his work (see for example [Pra06]), Prawitz further clari�ed a key feature of the rules of
natural deduction: the introduction rules can be thought of as de�nitional rules that describe
when one is allowed to assert a certain connective, and thus its meaning; in the same way,
elimination rules can be seen as operational rules that describe how one can use a formula
depending on its main connective 3.

As natural deduction started gathering more interest, William Howard studied more in
depth the relationship between deduction rules of natural deduction and typing rules of typed
lambda calculus, and presented what came to be known as the Curry-Howard isomorphism
[How69]. Under this isomorphism, formulas are put in correspondence with types, hence
the title of Howards’s work The formulae as types notion of construction; the correspondence
stretches even further, and takes di�erent names according to the di�erent traditions that orig-
inated from the original work. We borrow the terminology of Wadler [Wad15] and state the
full framework as:

• Propositions as types, the original intuition of Howard
2In his thesis Gentzen had actually included a set of detour conversions and a proof of normalization for in-

tuitionistic natural deduction. However this remained unknown until 2005, when a manuscript of the thesis was
found. For more details see [PG08]

3This idea was already expressed by Gentzen: The introductions constitute, as it were, the “de�nitions” of the
symbols concerned, and the eliminations are, in the �nal analysis, only consequences of this, which may be expressed

something like this: At the elimination of a symbol, the formula with whose outermost symbol we are dealing may be

used only “in respect of what it means according to the introduction of that symbol”. ([Gen35])

7



1. Introduction

• Proofs as programs: since every proof tree can be made to correspond with a type deriva-
tion, we have a lambda term corresponding to the proof.

• Simpli�cation of proofs as evaluation of programs: the process of detour removal is noth-
ing but a computation, where a complex term gets reduced in order to obtain a result of
the computation.

1.5 Contents of the thesis

Modern research in the Curry-Howard tradition draws heavily from all the standpoints we
brie�y discussed. It stems from constructivism, and intuitionistic systems are the base for
most Curry-Howard systems; it is formalist in the sense that proofs are the main object of
the investigation; it is �nitist in the sense that, in addition to the requirement that objects of
computation should be �nite, it tries to make sense of classical reasoning by these means.

We will sit in this tradition, and therefore although the main object of the discussion will be
a mathematical principle, we will be interested in its computational and metalogical properties.
As it was already mentioned, Markov’s principle was already controversial in the debate about
constructivism and foundations in the �rst half of the XX century: chapter 2 will be devoted to
a more in-depth accounting of the birth of realizability semantics and of the status of Markov’s
principle in each of them.

After that we will introduce some results in the more modern line of research of realizability
and Curry Howard systems for classical logic. In chapter 3, we shall introduce a Curry Howard
system able to provide a realizability semantics for the semi-classical system of arithmetic with
limited excluded middle (HA+EM1). In chapter 4 we will prove some additional results on the
computational and constructive properties of HA + EM1, and we will use them to give a new
computational interpretation of Markov’s principle.

Based on the intuitions of chapter 4, chapter 5 will introduce a Curry Howard system for
a system of full classical arithmetic and a corresponding restricted version that will be shown
constructive thanks to Markov’s principle.

8



CHAPTER 2
Intuitionistic realizability and

Markov’s principle

Intuitionistic logic proved to be the underlying logic for many kinds of constructive mathemat-
ics. Therefore it is often referred to as the constructive logic. The idea of realizability semantics
originated in the context of intuitionistic systems, and so where the �rst Curry-Howard sys-
tems: indeed it was long believed that these were the only systems that allowed a computational
interpretation.

After introducing the basic ideas of intuitionistic arithmetic needed to develop the theory
of realizability, this chapter will present some classical realizability results and their relation to
Markov’s principle.

2.1 Heyting Arithmetic and Markov’s principle

Throughout the introduction we made continuous references to Arithmetic. By this name we
mean, in its broadest sense, the theory of natural numbers with the usual operations of sum
and product. From the point of view of logic, although a complete axiomatization cannot exist
because of Gödel’s theorems, the most common axiom system for this theory is known as
Peano Arithmetic, PA. It takes the name from Giuseppe Peano, and in its modern presentation
it consists of a classical theory over the language with constant terms 0, s,+ and the predicate
=, with the axioms

• ∀x(x = x)

• ∀x∀y(x = y → y = x)

• ∀x∀y∀z(x = y → y = z → x = z)

9



2. Intuitionistic realizability and Markov’s principle

• ∀x∀y(x = y → sx = sy)

• ∀x∀y(sx = sy → x = y)

• ∀x(sx = 0→ ⊥)

• ∀x(x+ 0 = x)

• ∀x∀y(x+ sy = s(a+ b))

• ∀x(x · 0 = 0)

• ∀x∀y(x · sy = (x · y) + x)

• ∀x(ϕ(x)→ ϕ(sx))→ ϕ(0)→ ∀xϕ(x), for all formulas ϕ

The �rst four axioms de�ne our notion of equality as an equivalence relation preserved by the
successor operation. Then the following two state that the successor is a bijection between the
naturals and naturals greater than zero. After them we have the de�nitions for addition and
multiplication, and �nally the induction axiom scheme.

By Heyting Arithmetic, HA, we mean the intuitionistic theory of the same axioms. In this
context, we formulate Markov’s principle as the statement

¬¬∃xA(x)→ ∃xA(x)

where A is a quanti�er-free formula. Alternatively, we can also use the following form, which
is equivalent under the axioms of HA:

¬∀xA(x)→ ∃x¬A(x)

It was mentioned in the introduction that the intuitionists did not accept Markov’s principle.
In line with this, neither of the formulas we just presented can be proved in the system of
Heyting’s intuitionistic arithmetic; however as we are going to see realizability interpretation
provide mixed answer on this.

2.2 Gödel’s Dialectica interpretation

Although not usually included under the category of realizability interpretations, the functional
interpretation of intuitionistic arithmetic introduced by Gödel, commonly referred to as the
Dialectica interpretation [Göd58], is probably the �rst step into this line of research. As is
made explicit in the title of the series of lectures where he �rst introduced his ideas, In what

sense is intuitionistic logic constructive [Göd41], Gödel aimed at making clearer the constructive
meaning of the intuitionistic logical constants. In order to do this, he proposed a system of
typed recursive functionals where to interpret intuitionistic theories; this approach was in his
opinion �nitist, as we noted in the introduction, and therefore more suitable to develop an
analysis of constructivity and consistency.

10



2.2. Gödel’s Dialectica interpretation

Formally, the Dialectica interpretation assigns to every formula F of HA a formula FD in a
system of typed functionals that we will call T; FD is of the form ∃y∀zA(y, z, x), where x, y, z
are list of variables of arbitrary type and A is quanti�er free. The de�nition is by induction on
the structure of the formula: for A atomic, AD = A (identifying the symbols of the languages
HA and T); if FD = ∃x∀yA(x, y) and GD = ∃u∀vB(u, v), then

• (F ∧G)D = ∃x, u∀y, v(A(x, y) ∧B(u, v))

• (F ∨G)D = ∃t, x, u∀y, v(t = 0→ A(x, y) ∧ t = 1→ B(u, v))

• (∀zF )D = ∃X∀z, yA(X(z), y, z)

• (∃zF )D = ∃z, x∀yA(x, y, z)

• (F → G)D = ∃U, Y ∀x, vA(x, Y (x, v))→ B(U(x), v)

• (¬F )D = ∃Y ∀x¬A(x, Y (x))

Note that 6 follows from 5 when de�ning ¬A = A → ⊥. If we compare this with the
usual BHK semantics, which also forms the basis of other realizability semantics, we can see
that it is substantially di�erent in particular in the de�nition of the implication: here we �nd
no mention of a method to transform “any proof” as we had in BHK.1

If one thinks of the Dialectica as a Game Semantics, its peculiarity becomes clearer: con-
sider a game between two players, where we win if we �nd a term u such that there is no t for
which AD(u, t) holds; then we have a winning strategy if we can state ∃x∀y AD(x, y). The
cases for the connectives di�erent from→ is quite intuitive in this framework:

• In the case of A ∧B, we need to �nd winning strategies x for A and u for B

• In the case ofA∨B, we declare (depending on t) whether we are going to give a winning
strategy x for A or u for B

• In the case of ∀x A, we need to give a winning strategyX(z) forA(z) for every numeral
z the opponent might give

• In the case of ∃x A, we need to give a numeral z, together with a winning straregy for
A(z).

1With regard to this, Gödel noted: “[the fact that one does not need to quantify over all proofs] shows that the
interpretation of intuitionistic logic, in terms of computable functions, in no way presupposes Heyting’s and that,
moreover, it is constructive and evident in a higher degree than Heyting’s. For it is exactly the elimination of such
vast generalities as “any proof” which makes for greater evidence and constructivity.” [Göd72]
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2. Intuitionistic realizability and Markov’s principle

The case of implication requires more explanation. Here, the opponent gives us a strategy
x for A: note that it need not be a winning one. In order to win, we need either to provide
a winning strategy for B, or to show that the strategy he gave us was actually not winning.
From this comes the shape of the interpretation of the implication: we need to give a method
U to obtain a strategy for B such that, whenever v is a strategy that wins against U(x), we
can build a strategy Y (x, v) that wins against x.

Markov’s principle and the Dialectica

The di�erence between the BHK semantics and the Dialectica interpretation goes in fact much
farther than this, and although one can easily check that all formulas that are provable in HA
are provable in T, the converse is not the case. It turns out that Markov’s principle is precisely
one of the formulas that obtain a justi�cation in T but are not provable in HA. If we consider
the second form of Markov’s principle introduced in the previous section, we have that

(∀xA)D = ∀xA(x)
(¬∀xA)D = ∃x ¬A(x)

(¬A)D = ¬A
(∃x¬A)D = ∃x ¬A(x)

(¬∀xA→ ∃x¬A)D = ∃U∀x(¬A(x)→ ¬A(U(x)))

Since ∃x¬A(x) is already in the required form, it is not touched by the Dialectica. In
the case of ¬∀x A, the Dialectica interpretation of the negation states that there should be
a counterexample, and asks for a functional that maps witnesses of ∀x A (which are void in
the interpretation) to counterexamples of A; this means that the interpretation is once again
∃x¬A(x). Therefore, since both formulas get the same interpretation, Markov’s principle can
be trivially interpreted.

It is interesting to note that Gödel was aware of this result and viewed it as yet another
example of the fact that intuitionistic logic was not well suited as a basic constructive logic,
and the system T was on the other side behaving much better2

One might now wonder how such an interpretation can be used in practice. Consider the
case where we have an interpretation of the premise ¬∀xA, and we want to use modus ponens
together with Markov’s principle to get the conclusion. We can easily see that the Dialectica
interpretation validates modus ponens, as shown for example in [Koh08]: assume we have the
two formulas in T

2“The higher degree of constructivity also appears in other facts, e.g., that Markov’s principle ¬∀xA(x) →
∃x¬A(x) (see [Kle60], page 157, footnote) is trivially provable for any primitive recursive A and, in a more general
setting, for any decidable property o of any objects x. This, incidentally, gives an interest to this interpretation of
intuitionistic logic (no matter whether in terms of computable functions of higher types or of Turing functions)
even if Heyting’s logic is presupposed.” [Göd72]
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2.3. Kleene’s realizability

∀y AD(t1, y)
∀x, v (AD(x, t2(x, v))→ BD(t3(x), v))

Then we can take t1 for x in the second formula, and t2(t1, v) for y in the �rst. This results in

AD(t1, t2(t1, v))
AD(t1, t2(t1, v))→ BD(t3(t1), v)

Therefore we haveBD(t3(t1), v) for all v, and thus the functional assigned toB is t3(t1). Thus,
we can view modus ponens as functional application. In our case we have

¬A(t1)
∀y(¬A(y)→ ¬A(U(y)))

And therefore applying modus ponens results in the application U(t1) = t1, since U = λx.x.

2.3 Kleene’s realizability

Kleene was the �rst to investigate the notion of realizability, and indeed he was the one to intro-
duce the word itself3. Upon developing the system of recursive functions, he aimed at making
the system of intuitionistic arithmetic “more precise”, and he planned to do so by employing
the system of recursive functions he contributed to formalize. More precisely, the objects of
the domain of the interpretation (i.e. the realizers) are the Gödel numbers of the recursive
functions: thus Kleene’s realizability is often referred to as number realizability.

Consider the standard model of arithmetic N and a standard pairing function 〈−,−〉 :
N2 → N, together with its corresponding projection functions π1, π2 such that πi(〈n1, n2〉) =
ni. By {n}m we represent the result of the computation of the n-th partial recursive function
onm, in a suitable model of the partial recursive functions; by nwe mean the numeral (in HA)
representing n. In the classic de�nition of Kleene, any number n is a realizer of a formula F
under the following cirmunstances:

n r s = t if s = t

n rA ∧B if π1(n) rA and π2(n) rB

n rA→ B if for all m such that m rA, {n}m is a terminating computation and {n}m rB

n rA ∨B if π1(n) = 0 and π2(n) rA, or if π1(n) = 1 and π2(n) rB

n r ∀xA(x) if for all m, {n}m is a terminating computation and {n}m rA(m)

n r ∃xA(x) if π1(n) rA( π2(n) )
3As mentioned in [Kle45], the initial development of the system is actually due to Kleene’s �rst student David

Nelson.
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2. Intuitionistic realizability and Markov’s principle

We can build a realizer for Markov’s principle according to this de�nition. Consider the
number n such that {n}m = 〈0, µi.A(i)〉; here, µ denotes the usual minimization operation
from the theory of partial recursive functions. This is a realizer of ¬¬∃xA(x) → ∃xA(x)
only if whenever m is a realizer of ¬¬∃xA(x), {n}m is a realizer of ∃xA(x). Unraveling
the de�nitions, we need 〈0, µi.A(i)〉 to be a realizer of ∃xA(x), i.e. 0 rA( µi.A(i) ). If one
assumes that µi.A(i) does not correspond to a terminating computation, then this would mean
that ∃xA(x) is not realizabile; in turn, if there is no realizer of ∃xA(x) then any number is a
realizer of ∃xA(x)→ ⊥ ≡ ¬∃xA(x); �nally, since we have a realizer for ¬∃xA(x)→ ⊥, this
would give us a realizer of ⊥, and thus a contradiction. This ensures the termination of the
computation, and therefore we have A( µi.A(i) ) ≡ >, and any number is a realizer of >.

We can easily see the catch here: the termination of the computation is ensured by classical
reasoning, and what we have done is a simple shift of the classical reasoning contained in
Markov’s principle to the metalevel, in this case the theory of partial recursive functions. This
is of course not satisfying at all from a strictly constructive point of view.

2.4 Kreisel’s modi�ed realzability

A big step forward in the �eld of realizability in the direction of computer science was done
by Georg Kreisel with his system of modi�ed realizability [Kre59]. Kreisel’s realizability di�er-
entiates itself from Kleene’s by using a typed lambda calculus as the domain of interpretation.
Types here are put in correspondence with formulas of HA, somehow predating Howard’s
idea of completely identifying them by some years; moreover, the use of lambda calculus and
the subsequent success of lambda calculus as the foundation for functional programming lan-
guages laid the foundation for the link between computer science and proof theory.

We begin the presentation of modi�ed realizability by presenting the system of lambda
calculus. First we need to introduce the types we are going to use:

• N is a type (intuitively, the type of naturals)

• If σ, τ are types, then σ → τ , σ × τ , σ + τ are types

Then, we introduce the typed terms of the system:

• For every type σ, a countable set of variables xσ, yσ, . . .

• 0 : N, s : N→ N

• For all types σ, Rσ : σ → (N→ σ → σ)→ N→ σ

• For all types σ, τ , projections πσ,τ1 : σ × τ → σ, πσ,τ2 : σ × τ → τ and pairing 〈−,−〉 :
σ → τ → σ × τ

• If t : τ , then λxσ.f : σ → τ

14



2.4. Kreisel’s modi�ed realzability

• If s : σ → τ , t : σ, then st : τ

And third, the set of reduction rules:

• (λx.t)s 7→ t[s/x]

• π1(〈s, t〉) 7→ s, π2(〈s, t〉) 7→ t

• Rxy0 7→ x, Rxy(sz) 7→ yzRxyz

We are now ready to de�ne the realizability interpretation. We will not treat directly the
case of∨, but we will assume thatA∨B is a shorthand for ∃x((x = 0→ A)∧(¬(x = 0)→ B))
We do so by �rst assigning a type tp(A) to every formula A:

tp(⊥) = tp(s = t) = N tp(A ∧B) = tp(A)× tp(B) tp(A→ B) = tp(A)→ tp(B)
tp(∀xA) = N→ tp(A) tp(∃xA) = N× tp(A)

Finally, we can state

tmr s = t if s = t

tmrA ∧B if π1(t) mrA and π2(t) mrB

tmrA→ B if for all s : tp(A), tsmrB

tmr∀xA(x) if for all m : N, tmmrA(m)

tmr∃xA(x) if π1(t) mrA( π2(t) )

The term calculus comes with some important properties, the main one being strong nor-
malization. This means that every term will reduce to a normal form after a �nite number of
reduction steps.

If we analyze modi�ed realizability from a game semantical point of view as we did with
the Dialectica, we will notice that it only di�ers in the de�nition of the implication. Indeed,
here we go back to a de�nition in the style of the BHK. Game semantically, here we are only
talking about winning strategies: this means that when playing on the formula A → B, the
opponent will always give us a winning strategy for A, to which we should answer with a
winning strategy for B. However, winning strategies cannot be e�ectively recognized, so the
correctness of moves cannot be checked: this is why, when it comes to game semantics, the
Dialectica represents a clearer interpretation.

The fact that Markov’s principle cannot be interpreted by means of the modi�ed realizabil-
ity was already shown by Kreisel [Kre62], and was indeed presented as one of the main points
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2. Intuitionistic realizability and Markov’s principle

of his system. One can argue like this: assume that Markov’s principle is realizable. Then in
particular, for every value of n one could realize ¬∀xT⊥(n, n, x)→ ∃xT(n, n, x), where T is
Kleene’s predicate and is interpreted as saying “the Turing machine φn terminates the compu-
tation after x steps on input n” (this is known to be primitive recursive and thus representable
in HA). Let then n be �xed, and since we have that tp(¬∀xT⊥(n, n, x)) = (N → N) → N,
consider the dummy term d := λxNyN.0 : (N → N) → N. By applying the realizer of Markov’s
principle to this dummy term, we will get a term of type tp(∃xT) = N× N; this last term will
then normalize to a term of the form 〈m, t〉, such that m is a numeral. Distinguish two cases:

1. If T(n, n,m) holds, then we have found that the nth Turing machine will halt on input
n after m steps

2. If T(n, n,m) does not hold, we claim that the nth Turing machine does not halt on input
n. Suppose that it halts, then we would have that ∀x T⊥(n, n, x) is false and thus not
realizable; this in turn means that ¬∀x T⊥(n, n, x) is trivially realizable by any term,
and in particular by the dummy term d; by the de�nition of realizability, the realizer
for Markov’s principle applied to d gives a realizer for ∃xT(n, n, x). We have already
denoted the normal form of this term as 〈m, t〉, and since it is a realizer of ∃xT(n, n, x)
it must be the case that t is a realizer of T(n, n,m). This means that T(n, n,m) holds,
which is a contradiction.

Since the term calculus is strongly normalizing, we would have described a procedure that,
given anym, decides in �nite time whether the nth Turing machine will halt on input n, which
is well known to be an undecidable problem.
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CHAPTER 3
Realizability and classical systems

The previous chapter showed how realizability can be employed as a tool to analyze the con-
structivity of deductive systems, and to extract computational content from proofs in these
systems. Given the constructive nature of realizability semantics and the inherent non con-
structivity of classical logic, it would seem impossible to obtain such a semantics for systems
based on classical logic. This was widely believed until the nineties, when a correspondence
between control operators in programming languages and classical reasoning in proofs was
discovered. In this chapter, after a brief history of this idea, we will present a related idea
for realizability interpretations called Interactive realizability. Finally, we will introduce the
Curry-Howard system HA + EM1 for intuitionistic arithmetic with classical reasoning limited
to formulas of the form ∃xP with P atomic, together with its realizability interpretation.

3.1 Exceptions and classical logic

Though successful in establishing links between intuitionistic theories and computational mech-
anisms, the Curry-Howard correspondence was for a long time regarded as incompatible with
classical theories. Indeed, if we try to extend to classical logic the system of natural deduction
we have introduced in chapter 1, we need to add a rule either for the excluded middle or for
the double negation elimination (i.e. reductio ad absurdum). In the �rst case, we need to do a
disjunction elimination without having any possibility of knowing which of the two disjuncts
actually holds; in the second, we assert a formula and all we know is that its negation leads to
an absurdum. It looks like we have no possibilities of recovering any computational construct.

However, we have also mentioned that classical systems of natural deduction too are equipped
with a normalization theorem. It was exactly in this observation that the solution to the rid-
dle laid undiscovered for many years1. Let’s take a look at the rules that Prawitz gave for the

1The link between Prawitz’s reductions and typing of the C operator was established only a posteriori, for
example in [Gro01]
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3. Realizability and classical systems

[¬(α→ β)]
Π1
⊥ ⊥cα→ β

;

[¬β](1)

[α→ β](2) [α](3)

β

⊥ →-I(2)¬(α→ β)
Π1
⊥ ⊥c(1)
β →-I(3)

α→ β

Figure 3.1: Prawitz’s normalization step for reductio ad absurdum on an implication

normalization of the double negation elimination in �g. 3.1: the aim is to apply the rule ⊥c
to a formula of lower complexity, and so one assumes the negation of the conclusion together
with the entire implication and the antecedent; classical reasoning is then only applied to the
negated assumption. Similar rules were given for the other logical connectives. This reduction
looks very similar to the one that Felleisen gave for his C operator:

C(λk.M)→ λn.C(λk.M [k := λf.k(fn)])

Presented in [Fel88], this operator introduced the notion of continuation, and was the ba-
sis for the introduction of such constructs in programming languages (an example being the
construct call/cc available in Scheme). It was Gri�n then, who in [Gri89] proposed to type
Felleisen’s operator as ¬¬A → A. The idea that sequential control operators could provide
a computational correspondent to classical reasoning (as opposed to pure functional �ow of
computation and intuitionistic reasoning) proved to be very successful, and breathed new life
into the propositions as types paradigm. Starting from ideas similar to Gri�n’s several other
systems were developed, such as the ones from Parigot [Par92] and Krivine [Kri09]. General-
izing to other control operators, de Groote [Gro95] showed that mechanisms of exceptions can
be put in correspondence with uses of the excluded middle.

The approach of enriching systems of lambda calculus with imperative constructs provided
also a new way to approach semi-classical principle, by extending Kreisel’s modi�ed realizabil-
ity with delimited control operators. Using this method, Hugo Herbelin introduced in [Her10]
a system of intuitionistic logic with the addition of two logical rules crafted in order to corre-
spond to catch and throw instructions for a system of delimited exceptions.

3.2 Interactive realizability

The possibilities opened by new Curry-Howard correspondences for classical logic did not, on
the other side, provoke a similar number of new systems in the �eld of realizability semantics.
The �rst and major example remains the work of Krivine [Kri10], who recently applied ideas
of classical realizability to set theory in order to obtain a technique alternative to forcing.
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Interactive realizability is a new realizability semantics for classical systems introduced by
Aschieri and Berardi [AB12; ABB13] based on the concept of learning: the main idea is that
realizers are programs that make hypotheses, test them and learn by refuting the incorrect ones.
This is obtained by means of systems of lambda calculus with exceptions mechanisms: a pro-
gram will continue to execute under some assumptions, and whenever it uses an instance of an
assumption, the instance gets tested; if the assumption is discovered to be false an exception is
raised, and the program can continue to run using the new knowledge gained from the coun-
terexample. Di�erent systems of interactive realizability have been put forward for various
systems such as Heyting Arithmetic with limited classical principles, or more recently full �rst
order logic and non-classical logics.

3.3 The system HA + EM1

Following the terminology of [Aka+04], we will now consider the semi-classical principle EM1,
that is excluded middle restricted to formulas of the form ∃αP with P an atomic predicate2.
System HA + EM1, introduced in [ABB13], applies the idea of interactive realizability to an
intuitionistic logic extended with this principle. We could view this as adding the axiom
∀αNP ∨ ∃αN¬P for every atomic P; this however carries no useful computational meaning.
The new principle is therefore treated as a disjunction elimination, where the main premise is
the classical axiom and gets cut.

If we try to �t this in a Curry-Howard system, we have now two proof terms representing
a construction of the same conclusion, corresponding to the two proof branches where the �rst
and then the second disjunct are assumed. By looking at the shape of the two assumptions, we
can see that in the �rst case we need a condition to hold for all values, while in the second we
are looking for a counterexample. The idea is that we should create a new proof term where we
include both possible computations, and during the computation itself we might switch from
the �rst to the second. Hence the em1 rule that we add to the system has the following form:

Γ, a : ∀αNP ` u : C Γ, a : ∃αN¬P ` v : C
Γ ` u ‖a v : C

Here a represents a communication channel between the two possible computations. The
hypothesis ∀αNP is computationally void: it only serves as a certi�cate for the correctness of
u; conversely, the branch where we assume ∃αN¬P might ask for an actual witness in order to
proceed. Informally, what we want to accomplish with the reduction rules is that we should
reduce inside u and check for all the used instances of the universal hypothesis whether P[n/α]
is actually true. Whenever one such instance is refuted, we have found a witness for ¬P, and
we can employ it for the execution of v. This is obtained by new terms that we should use
when we introduce assumptions that are to be eliminated via classical reasoning: we introduce
the two typing rules

Γ, a : ∀αNP ` H∀αP
a : ∀αNP

2This class of formulas corresponds with the class of Σ0
1 formulas of the arithmetical hierarchy
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3. Realizability and classical systems

Γ, a : ∃αN¬P ` W∃α¬P
a : ∃αN¬P

In the �rst case, we introduce a term that makes the hypothesis that P holds for all values
of α; in the second, the proof term waits for a witness for which P does not hold. From an
operational point of view, terms of the form H∀αP are the ones who can raise an exception, and
terms of the form W∃α¬P

a are those who will catch it.

In �g. 3.2, we de�ne a system of natural deduction for HA + EM1 together with a term as-
signment in the spirit of Curry-Howard correspondence for classical logic; for a general treat-
ment of this kind of systems, one could refer to textbooks such as [SU06]. LetL be the language
of HA, three distinct classes of variables appear in the proof terms: one for proof terms, de-
noted usually as x, y, . . .; one for quanti�ed variables of L, denoted usually as α, β, . . .; one
for hypotheses bound by EM1, denoted usually as a, b, . . .. Atomic predicates are denoted by
P,P0,P1, . . .; moreover, by P⊥ we denote the complement predicate of P, and since atomic
predicates are decidable in HA we have that P⊥ ≡ ¬P. In the term u ‖a v all the occurrences
of a in u and v are bound. We assume the usual capture-avoiding substitution for the lambda
calculus, and in addition to this we add a new kind of substitution:

De�nition 2 (Witness substitution). Let v be any term and n a closed term of L. Then

v[a := n]

is the term obtained replacing every occurrence of W∃αP⊥
a in v by (n, True) if P[n/α] ≡ False,

and by (n, H∀αα=0
a S0) otherwise

Note that the reduction rules for the system in �g. 3.3 make it clear that the second case
will never actually happen; however it is needed in order to prove the normalization of the
system.

3.4 Realizability interpretation of HA + EM1

As we anticipated, this system can be equipped with a realizability interpretation based on the
ideas of interactive realizability. In order to do this, we �rst need to de�ne some classes of
terms:

De�nition 3 (Terms in normal form).

• SN is the set of strongly normalizing untyped proof terms

• NF is the set of normal untyped proof terms

• PNF is the set of the Post normal forms (intuitively, normal terms representing closed
proof trees made only of Post rules whose leaves are universal hypothesis followed by
an elimination rule), that is: True ∈ PNF; for every closed term n of L, if H∀αP

a n ∈ NF,
then H∀αP

a n ∈ PNF; if t1, . . . , tn ∈ PNF, then rt1 . . . tn ∈ PNF.
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3.4. Realizability interpretation of HA + EM1

De�nition 4 (Quasi-Closed terms). If t is an untyped proof term which contains as free vari-
ables only EM1-hypothesis variables a1, . . . , an, such that each occurrence of them is of the
form H∀αPi

ai
for some Pi, then t is said to be quasi-closed.

We can now give the de�nition of realizers for HA + EM1. Realizers will be quasi closed
terms, and the de�nition will be by induction on the formula to be realized; the cases for ∧,→
and ∀ are the same as the ones for intuitionistic realizability we are already familiar with. The
case for atomic formulas will need to be extended to take into account the case were we have
open universal assumptions (since realizers are quasi-closed). Finally, the realizers for ∨ and ∃
will need a di�erent kind of de�nition, with induction done also on the shape of the term.

De�nition 5 (Realizability for HA + EM1). Assume t is a quasi-closed term in the grammar of
untyped proof terms of HA + EM1 and C is a closed formula. We de�ne the relation t 
 C by
induction on C .

1. t 
 P if and only if one of the following holds:

i) t ∈ PNF and P ≡ False implies t contains a subterm H∀αQ
a nwith Q[n/α] ≡ False;

ii) t /∈ NF and for all t′, t 7→ t′ implies t′ 
 P

2. t 
 A ∧B if and only if π0t 
 A and π1t 
 B

3. t 
 A→ B if and only if for all u, if u 
 A, then tu 
 B

4. t 
 A ∨B if and only if one of the following holds:

i) t = ι0(u) and u 
 A or t = ι1(u) and u 
 B;

ii) t = u ‖a v and u 
 A ∨B and v[a := m] 
 A ∨B for every numeral m;

iii) t /∈ NF is neutral and for all t′, t 7→ t′ implies t′ 
 A ∨B.

5. t 
 ∀αNA if and only if for every closed term n of L, tn 
 A[n/α]

6. t 
 ∃αNA if and only if one of the following holds:

i) t = (n, u) for some numeral n and u 
 A[n/α];
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3. Realizability and classical systems

ii) t = u ‖a v and u 
 ∃αNA and v[a := m] 
 ∃αNA for every numeral m;

iii) t /∈ NF is neutral and for all t′, t 7→ t′ implies t′ 
 ∃αNA.

As we said, realizers are quasi closed terms: this means that in general realizers could
contain open universal assumptions, and thus their correctness depends on them. The base
cases of the de�nition of the realizers for the disjunction and existential quanti�ers are again
the same as the ones for modi�ed realizability; however, we add a second clause that takes into
account the situation where the realizer has used some assumptions; in these cases, we ask that
both parts of a term of the shape u ‖a v are realizers of the formula in their turn. In a realizer
with such a shape, u will then be a realizer with a new open assumption in the form of a term
H∀αP
a , as the ones just described; v, on the opposite, needs a witness in order to compute and

therefore we need to substitute a witness in it in order to obtain a realizer. What this means is
that these realizers will still contain a realizer in the usual shape of the clauses (i), but in the
form of a prediction, as we will see in proposition 2.

We conclude the section by giving some properties of the system, as they are found in the
original paper [ABB13], that will be employed in the rest of the thesis. First of all, we de�ne a
version of the properties of reducibility candidates in the style of Girard [GTL89]

De�nition 6. Let t be a realizer of a formula A, de�ne the following properties for t, plus an
inhabitation property (CR5) for A:

(CR1) If t 
 A, then t ∈ SN.

(CR2) If t 
 A and t 7→∗ t′, then t′ 
 A.

(CR3) If t /∈ NF is neutral and for every t′, t 7→ t′ implies t′ 
 A, then t 
 A.

(CR4) If t = u ‖a v, u 
 A and v[a := m] 
 A for every numeral m, then t 
 A.

(CR5) There is a u such that u 
 A.

Proposition 1. Every term t has the properties (CR1), (CR2), (CR3), (CR4) and the inhabitation
property (CR5) holds.

Proof. By induction on C .

• C = P is atomic.

(CR1). By induction on the de�nition of t 
 P. If t ∈ PNF, then t ∈ SN. If t /∈ NF is
neutral, then t 7→ t′ implies t 
 P and thus by induction hypothesis t′ ∈ SN; so t ∈ SN.
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3.4. Realizability interpretation of HA + EM1

Suppose then t = u ‖a v. Since u 
 P and for all numerals n, v[a := n] 
 P, we have
by induction hypothesis u ∈ SN and for all numerals n, v[a := n] ∈ SN; but these last
two conditions are easily seen to imply u ‖a v ∈ SN.

(CR2). Suppose t 
 P. It su�ces to assume that t 7→ t′ and show that t′ 
 P. We pro-
ceed by induction on the number of the occurrences of the symbol ‖ in t. If t is neutral,
since it is not the case that t ∈ PNF, by de�nition of t 
 P we obtain t′ 
 P. There-
fore, assume t is not neutral and thus t = u ‖a v, with u 
 P and for all numerals n,
v[a := n] 
 P. If t′ = u or t′ = v[a := m] for some numeral m, we obtain the thesis. If
t′ = u′ ‖a v, with u 7→ u′, then by induction hypothesis, u′ 
 P. So u′ ‖a v 
 P by def-
inition. If t′ = u ‖a v′, with v 7→ v′, then for every numeral n, v[a := n] 7→ v′[a := n],
and thus by induction hypothesis v′[a := n] 
 P. So u ‖a v′ 
 P by de�nition.

(CR3) and (CR4) are trivially true by de�nition of t 
 P.

(CR5). We have that H∀αα=0
a S0 
 P.

• C = A→ B.

(CR1). Suppose t 
 A → B. By induction hypothesis (CR5), there is an u such that
u 
 A; therefore, tu 
 B. By induction hypothesis (CR1), tu ∈ SN and thus t ∈ SN.

(CR2) and (CR3) are proved as in [GTL89].

(CR4). (⇒) Suppose u ‖a v 
 A → B and let t 
 A. Then (u ‖a v)t 
 B and by
(CR2), ut ‖a vt 
 B. By (CR4), ut 
 B and for all numerals n, v[a := n]t = vt[a :=
n] 
 B. We conclude that u 
 A→ B and v[a := n] 
 A→ B.
(⇐). Suppose u 
 A → B and v[a := n] 
 A → B for every numeral n. Let t 
 A.
We show by induction on the sum of the height of the reduction trees of u, v, t (they are
all in SN by (CR1)) that (u ‖a v)t 
 B. By induction hypothesis (CR3), it is enough
to assume (u ‖a v)t 7→ z and show z 
 B. If z = ut or v[a := n]t, we are done. If
z = (u′ ‖a v)t or z = (u ‖a v′)t or (u ‖a v)t′, with u 7→ u′, v 7→ v′ and t 7→ t′, we obtain
z 
 B by (CR2) and induction hypothesis. If z = (ut ‖a vt), by induction hypothesis
(CR4), z 
 B.

(CR5). By induction hypothesis (CR5), there is a term u such that u 
 B. We want
to show that λ_.u 
 A → B. Suppose t 
 A: we have to show that (λ_.u)t 
 B.
We proceed by induction on the sum of the height of the reduction trees of u and t (by
(CR1), u, t ∈ SN). By induction hypothesis (CR3), it is enough to assume (λ_.u)t 7→ z
and show z 
 B. If z = u, we are done. If z = (λ_.u′)t or z = (λ_.u)t′, with
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u 7→ u′ 
 B (by (CR3)) and t 7→ t′ 
 B (by (CR3)), we obtain z 
 B by induction
hypothesis.

• C = ∀αNA or C = A ∧B. Similar to the case C = A→ B.

• C = A0 ∨A1.

(CR1) By induction on the de�nition of t 
 A0 ∨A1. If t = ιi(u), then u 
 Ai, and by
induction hypothesis (CR1), u ∈ SN; therefore, t ∈ SN. If t /∈ NF is neutral, then t 7→ t′

implies t′ 
 A0∨A1 and thus t′ ∈ SN by induction hypothesis; therefore, t ∈ SN. Sup-
pose then t = u ‖a v. Since u 
 A0 ∨A1 and for all numerals n, v[a := n] 
 A0 ∨A1,
we have by induction hypothesis u ∈ SN and for all numerals n, v[a := n] ∈ SN. We
conclude as in the case C = P that t ∈ SN.

(CR2). Suppose t 
 A0 ∨ A1. It su�ces to assume that t 7→ t′ and show that t′ 

A0 ∨ A1. We proceed by induction on the de�nition of t 
 A0 ∨ A1. If t = ιi(u), then
t′ = ιi(u′), with u 7→ u′. By de�nition of t 
 A0 ∨ A1, we have u 
 Ai. By induction
hypothesis (CR2), u′ 
 Ai and thus t′ 
 A0 ∨ A1. If t /∈ NF is neutral, by de�nition
of t 
 A0 ∨ A1, we obtain that t′ 
 A0 ∨ A1. If t = u ‖a v, with u 
 A0 ∨ A1
and for all numerals n, v[a := n] 
 A0 ∨ A1. If t′ = u or t′ = v[a := m], we are
done. If t′ = u′ ‖a v, with u 7→ u′, then by induction hypothesis, u′ 
 A0 ∨ A1. So
u′ ‖a v 
 A0 ∨ A1 by de�nition. If t′ = u ‖a v′, with v 7→ v′, then for every numeral
n, v[a := n] 7→ v′[a := n] and thus by induction hypothesis v′[a := n] 
 A0 ∨ A1. So
u ‖a v′ 
 A0 ∨A1 by de�nition.

(CR3) and (CR4) are trivial.

(CR5). By induction hypothesis (CR5), there is a term u such that u 
 A0. Thus
ι0(u) 
 A0 ∨A1.

• C = ∃αNA. Similar to the case t = A0 ∨A1.

This �rst property can be used in order to state a �rst result on the meaning of realizers: if we
denote by EM[u] a term of the form ((u ‖ v1) ‖ v2) . . .) ‖ vn for any n ≥ 0, then

Proposition 2 (Weak Disjunction and Numerical Existence Properties).

1. Suppose t 
 A ∨ B. Then either t 7→∗ EM[ι0(u)] and u 
 A or t 7→∗ EM[ι1(u)] and
u 
 B.
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3.4. Realizability interpretation of HA + EM1

2. Suppose t 
 ∃αNA. Then t 7→∗ EM[(n, u)] for some numeral n such that u 
 A[n/α].

Proof.

1. Since t ∈ SN by (CR1), let t′ be such that t 7→∗ t′ ∈ NF. By (CR2), t′ 
 A ∨ B. If
t′ = ι0(u), we are done. The only possibility left is that t′ = v ‖ v1 ‖ v2 . . . ‖ vn, with v
not of the form w0 ‖ w1. By de�nition 5.4.(ii) we have v 
 A∨B, and since v is normal
and not of the form w0 ‖ w1, by de�nition 5.4.(i) we have either v = ι0(u), with u 
 A,
or v = ι1(u), with u 
 B.

2. Similar to 1.

Informally, this means that a realizer of a disjunction “contains” a realizer of one of the
disjuncts, and a realizer of an existential statement similarly contains a witness. However,
these realizers might rely on universal assumptions. We can specialize this theorem in the case
of simpler existential formulas:

Theorem 1 (Existential Witness Extraction). Suppose t is closed, t 
 ∃αNP and t 7→∗ t′ ∈ NF.
Then t′ = (n, u) for some numeral n such that P[n/α] ≡ True.

Proof. By proposition 2, there is some numeral n such that t′ = EM[(n, u)] and u 
 P[n/α].
So

t′ = (n, u) ‖a1 v1 ‖a2 v2 . . . ‖am vm

Since t′ is closed, u is quasi-closed and all its free variables are among a1, a2, . . . , am. We
observe that umust be closed. Otherwise, by de�nition 5.1.(i) and u 
 P[n/α] we deduce that
u ∈ PNF, and thus u should contain a subterm H∀αQ

ai
n; moreover, Q[n/α] ≡ False otherwise

u would not be normal; but then we would have either m 6= 0 and t′ /∈ NF because t′ 7→
v1[a1 := n] ‖a2 v2 . . . ‖am vm, or m = 0 and t′ non-closed. Since u is closed, we obtain t′ =
(n, u), for otherwise t′ 7→ (n, u) ‖a2 v2 . . . ‖am vm and t′ /∈ NF. Since u 
 P[n/α], by
de�nition 5.1.(i) it must be P[n/α] ≡ True.

We now come to the main theorem, the soundness of the realizability semantics:

Theorem 2 (Adequacy Theorem). Suppose that Γ ` w : A in the system HA + EM1, with

Γ = x1 : A1, . . . , xn : An, a1 : ∃αN
1P⊥1 , . . . , am : ∃αN

mP⊥m, b1 : ∀αN
1Q1, . . . , bl : ∀αN

lQl

and that the free variables of the formulas occurring in Γ and A are among α1, . . . , αk. For all
closed terms r1, . . . , rk of L, if there are terms t1, . . . , tn such that

for i = 1, . . . , n, ti 
 Ai[r1/α1 · · · rk/αk]
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3. Realizability and classical systems

then

w[t1/x1 · · · tn/xn r1/α1 · · · rk/αk a1 := i1 · · · am := im] 
 A[r1/α1 · · · rk/αk]

for every numerals i1, . . . , im.

Before proving this theorem, we need an auxiliary lemma

Lemma 1.

1. If for every t 
 A, u[t/x] 
 B, then λxu 
 A→ B.

2. If for every closed term m of L, u[m/α] 
 B[m/α], then λαu 
 ∀αNB.

3. If u 
 A0 and v 
 A1, then πi〈u, v〉 
 Ai.

4. If w0[x0.u0, x1.u1] 
 C and for all numerals n, w1[x0.u0, x1.u1][a := n] 
 C , then
(w0 ‖a w1)[x0.u0, x1.u1] 
 C .

5. If t 
 A0∨A1 and for every ti 
 Ai it holds ui[ti/xi] 
 C , then t[x0.u0, x1.u1] 
 C .

6. If t 
 ∃αNA and for every term n of L and v 
 A[n/α] it holds u[n/α][v/x] 
 C ,
then t[(α, x).u] 
 C .

Proof of lemma 1.

1. As in [GTL89].

2. As in [GTL89].

3. As in [GTL89].

4. We may assume a does not occur in u0, u1. By hypothesis, w0[x0.u0, x1.u1] 
 C
and for every numeral n, w1[x0.u0, x1.u1][a := n] 
 C . By (CR1), in order to show
w0 ‖a w1[x0.u0, x1.u1] 
 C , we may proceed by induction on the sum of the sizes of the
reduction trees ofw0, w1, u0, u1. By (CR3), it then su�ces to assume thatw0 ‖a w1[x0.u0, x1.u1] 7→
z and show z 
 C . If z = w0[x0.u0, x1.u1] or w1[a := n][x0.u0, x1.u1] for some nu-
meral n, we are done. If z = w′0 ‖a w1[x0.u0, x1.u1] or z = w0 ‖a w′1[x0.u0, x1.u1] or
z = w0 ‖a w1[x0.u

′
0, x1.u1] or z = w0 ‖a w1[x0.u0, x1.u

′
1], with wi 7→ w′i and ui 7→ u′i,

then by (CR2) we can apply the induction hypothesis and obtain z 
 C . If

z = (w0[x0.u0, x1.u1]) ‖a (w1[x0.u0, x1.u1])

then z 
 C by (CR4).
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5. Suppose t 
 A0 ∨ A1 and for every ti 
 Ai it holds ui[ti/xi] 
 C . In order to show
t[x0.u0, x1.u1] 
 C , we reason by induction of the de�nition of t 
 A0 ∨A1. Since by
(CR5) there are v0, v1 such that vi 
 Ai, we have ui[vi/xi] 
 Ai, and thus by (CR1),
ui[vi/xi] ∈ SN and t ∈ SN. We have three cases:

• t = ιi(u). Thenu 
 Ai. We want to show that for everyu′ 
 Ai, ι0(u′)[x0.u0, x1.u1] 

C . By (CR3), it su�ces to assume that ι0(u)[x0.u0, x1.u1] 7→ z and show z 
 C .
We reason by induction on the sum of the sizes of the reduction trees of u, u0, u1. If
z = ιi(u′)[x0.u0, x1.u1] or z = t[x0.u

′
0, x1.u1] or z = t[x0.u0, x1.u

′
1], with u 7→ u′

and ui 7→ u′i, then by (CR2) we can apply the induction hypothesis and obtain
z 
 C . If z = ui[u/xi], since u 
 Ai, we obtain z 
 C .

• t = w0 ‖a w1. By induction hypothesisw0[x0.u0, x1.u1] 
 C and for all numerals
n, w1[a := n][x0.u0, x1.u1] 
 C . By 4., w0 ‖a w1[x0.u0, x1.u1] 
 C .

• t /∈ NF is neutral. We reason by induction on the sum of the sizes of the reduc-
tion trees of u0, u1. By (CR3), it su�ces to assume that t[x0.u0, x1.u1] 7→ z and
show z 
 C . If z = t′[x0.u0, x1.u1], we apply the (main) induction hypothesis
and obtain z 
 C . If z = t[x0.u

′
0, x1.u1] or z = t[x0.u0, x1.u

′
1], with u 7→ u′ and

ui 7→ u′i, then by (CR2) we can apply the induction hypothesis and obtain z 
 C .

6. Analogous to 5.

Proof. Proof of the Adequacy Theorem

Notation: for any term v and formula B, we denote

v[t1/x1 · · · tn/xn r1/α1 · · · rk/αk a1 := i1 · · · am := im]

with v and
B[r1/α1 · · · rk/αk]

with B. We proceed by induction on w . Consider the last rule in the derivation of Γ ` w : A:

1. If it is the rule Γ ` H∀αjPj
bj

: ∀αN
jPj , then w = H∀αjPj

bj
andA = ∀αN

jPj . So w = H∀αjPj
bj

. Let

n be any closed term of L. We must show that wn 
 Pj [n/αj ]. We have H∀αjPj
bj

n ∈ SN;

moreover, if H∀αjPj
bj

n 7→ z, then z is True and Pj [n/αj ] ≡ True, and thus z 
 Pj [n/αj ];

if H∀αjPjn ∈ NF, then Pj [n/αj ] ≡ False. We conclude H∀αjPj
bj


 ∀αN
jPj = A.
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2. If it is the rule Γ ` W∃αjPj
⊥

aj : ∃αN
jP⊥j , then w = W∃αjPj

⊥

aj and A = ∃αN
jP⊥j . We

have two possibilities. i) w = (ij , True) and Pj [ij/αj ] ≡ False. But this means that
w 
 ∃αN

jPj
⊥. ii) w = (ij , H∀αα=0

aj
S0). Again, w 
 ∃αN

jPj
⊥.

3. If it is a ∨-I rule, say left (the other case is symmetric), then w = ι0(u), A = B ∨ C
and Γ ` u : B. So, w = ι0(u). By induction hypothesis u 
 B and thus u ∈ SN. We
conclude ι0(u) 
 B ∨ C = A.

4. If it is a ∨-E rule, then
w = u[x.w1, y.w2]

and Γ ` u : B ∨C , Γ, x : B ` w1 : D, Γ, y : C ` w2 : D, A = D. By induction hypoth-
esis, we have u 
 B ∨ C ; moreover, for every t 
 B, we have w1[t/x] 
 B and for
every t 
 C , we have w2[t/y] 
 C . By lemma 1, we obtain w = u[x.w1, y.w2] 
 D.

5. The cases ∃-I and ∃-E are similar respectively to ∨-I and ∨-E.

6. If it is the ∀-E rule, then w = ut, A = B[t/α] and Γ ` u : ∀αNB. So, w = ut. By
inductive hypothesis u 
 ∀αNB and so ut 
 B[t/α].

7. If it is the ∀-I rule, then w = λαu, A = ∀αNB and Γ ` u : B (with α not occurring
free in the formulas of Γ). So, w = λαu, since we may assume α 6= α1, . . . , αk. Let t be
any closed term of L; by lemma 1), it is enough to prove that u[t/α] 
 B[t/α], which
amounts to show that the induction hypothesis can be applied to u. For this purpose, we
observe that, since α 6= α1, . . . , αk, for i = 1, . . . , n we have

ti 
 Ai = Ai[t/α]

8. If it is the induction rule, then w = Ruvt, A = B(t), Γ ` u : B(0) and Γ ` v :
∀αN.B(α)→ B(S(α)). So, w = Ruvl, for some numeral l = t.
We prove that for all numerals n, Ruvn 
 B(n). By (CR3), it is enough to suppose
that Ruvn 7→ w and show that w 
 B(n). By induction hypothesis u 
 B(0) and
vm 
 B(m) → B(S(m)) for all closed terms m of L. So by (CR1), we can reason
by induction on the sum of the sizes of reduction trees of u and v and the size of m. If
n = 0 and w = u, then we are done. If n = S(m) and w = vm(Ruvm), by induction
hypothesis Ruvm 
 B(m); therefore, w 
 B(Sm). If w = Ru′vm, with u 7→ u′, by
induction hypothesis w 
 B(m). We conclude the same if w = Ruv′m, with v 7→ v′.
We thus obtain that w 
 B(l) = B(t).
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9. If it is the EM1 rule, then w = u ‖a v, Γ, a : ∀αNP ` u : C and Γ, a : ∃αNP⊥ ` v : C
and A = C . By induction hypothesis, u 
 C and for all numerals m, v[a := m] 
 C .
By (CR4), we conclude w = u ‖a v 
 C .

10. If it is a Post rule, the case w is True is trivial, so we may assume w = rt1 . . . tn, A = P
and Γ ` t1 : P1, . . . ,Γ ` tn : Pn. By induction hypothesis, for i = 1, . . . , n, we have
ti 
 Pi. By (CR1), we can argue by induction on the size of the reduction tree of w.
We have two cases. i) w ∈ NF. For i = 1, . . . , n, by theorem 1, we obtain ti ∈ PNF.
Therefore, also w ∈ PNF. Assume now P ≡ False. Then, for some i, Pi ≡ False.
Therefore, ti contains a subterm [a]H∀αQn with Q[n/α] ≡ False and thus also w. We
conclude w 
 P. ii) w /∈ NF. By (CR3), it is enough to suppose w 7→ z and show
z 
 P. We have z = rt1 . . . t′i . . . tn, with ti 7→ t

′
i, and by (CR2), t′i 
 Pi. By induction

hypothesis, z 
 P.

As an easy corollary, we get strong normalization of the system

Corollary (Strong Normalization of HA + EM1). All terms of HA + EM1 are strongly normal-

izing.
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Grammar of Untyped Terms

t, u, v ::= c |x | tu | tm |λxu |λαu | 〈t, u〉 |π0u |π1u | ι0(u) | ι1(u) | (m, t) |t[x.u, y.v] | t[(α, x).u]

| u ‖a v | H∀αP
a | W∃αP⊥

a | True | Ruvm | rt1 . . . tn
wherem ranges over terms of L, x over variables of the lambda calculus and a over EM1
hypothesis variables. Moreover, in terms of the form u ‖a v there is a P such that all the
free occurrences of a in u are of the form H∀αP

a and those in v are of the form W∃αP⊥
a .

Contexts With Γ we denote contexts of the form e1 : A1, . . . , en : An, where ei is either a
proof-term variable x, y, z . . . or a EM1 hypothesis variable a, b, . . .

Axioms Γ, x : A ` x : A Γ, a : ∀αNP ` H∀αP
a : ∀αNP Γ, a : ∃αNP⊥ ` W∃αP⊥

a : ∃αNP⊥

Conjunction

Γ ` u : A Γ ` t : B
Γ ` 〈u, t〉 : A ∧B

Γ ` u : A ∧B
Γ ` π0u : A

Γ ` u : A ∧B
Γ ` π1u : B

Implication

Γ ` t : A→ B Γ ` u : A
Γ ` tu : B

Γ, x : A ` u : B
Γ ` λxu : A→ B

Disjunction Intro.

Γ ` u : A
Γ ` ι0(u) : A ∨B

Γ ` u : B
Γ ` ι1(u) : A ∨B

Disjunction Elim.

Γ ` u : A ∨B Γ, x : A ` w1 : C Γ, x : B ` w2 : C
Γ ` u[x.w1, x.w2] : C

Universal Quanti�cation

Γ ` u : ∀αNA

Γ ` ut : A[t/α]
Γ ` u : A

Γ ` λαu : ∀αNA
where t is a term of the languageL and α does not occur free in any formulaB occurring
in Γ.

Existential Quanti�cation

Γ ` u : A[t/α]
Γ ` (t, u) : ∃αN.A

Γ ` u : ∃αNA Γ, x : A ` t : C
Γ ` u[(α, x).t] : C

where α is not free in C nor in any formula B occurring in Γ.

Induction

Γ ` u : A(0) Γ ` v : ∀αN.A(α)→ A(S(α))
Γ ` λαNRuvα : ∀αNA

Post Rules

Γ ` u1 : A1 Γ ` u2 : A2 · · · Γ ` un : An
Γ ` u : A

whereA1, A2, . . . , An, A are atomic formulas of HA and the rule is a Post rule for equal-
ity, for a Peano axiom or for a classical propositional tautology or for booleans and if
n > 0, u = ru1 . . . un, otherwise u = True.

EM1

Γ, a : ∀αNP ` w1 : C Γ, a : ∃αNP⊥ ` w2 : C
Γ ` w1 ‖a w2 : C

Figure 3.2: Term Assignment Rules for HA + EM130
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Reduction Rules for HA

(λx.u)t 7→ u[t/x] (λα.u)t 7→ u[t/α]

πi〈u0, u1〉 7→ ui, for i=0,1

ιi(u)[x1.t1, x2.t2] 7→ ti[u/xi], for i=0,1

(n, u)[(α, x).v] 7→ v[n/α][u/x], for each numeral n

Ruv0 7→ u

Ruv(Sn) 7→ vn(Ruvn), for each numeral n

Permutation Rules for em1
(u ‖a v)w 7→ uw ‖a vw

πi(u ‖a v) 7→ πiu ‖a πiv

(u ‖a v)[x.w1, y.w2] 7→ u[x.w1, y.w2] ‖a v[x.w1, y.w2]

(u ‖a v)[(α, x).w] 7→ u[(α, x).w] ‖a v[(α, x).w]

Reduction Rules for em1

u ‖a v 7→ u, if a does not occur free in u

u ‖a v 7→ v[a := n], if H∀αP
a n occurs in u and P[n/α] is closed and P[n/α] = False

(H∀αP
a )n 7→ True if P[n/α] is closed and P[n/α] ≡ True

Figure 3.3: Reduction Rules for HA + EM1
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CHAPTER 4
Markov’s principle in HA + EM1

In the previous chapters we have developed the basic tools for understanding Curry-Howard
systems and realizability semantics. In this chapter, we will perform a deeper analysis of the
system HA+EM1, and propose a restricted version (that we will call HA+EM−1 ) that gains more
properties. In particular, we will prove a subject reduction theorem and then use it in order
to show that the restricted system satis�es the requirements of constructive logic: whenever
we prove a disjunction we are able to prove one of the disjuncts, and whenever we prove
a simply existential statement, we are able to exhibit a witness. Finally, we will show that
Markov’s principle is provable in this restricted system and that it has a realizer that exhibits
its computational content; moreover, we will show that Markov’s principle is equivalent to the
restricted form of excluded middle we have introduced.

Consider the system HA + EM1 of [ABB13] presented in section 3.3. We modify the rule
em1 by restricting it to the case where the conclusion is of the form ∃xC with C an atomic
formula:

Γ, ∀xP ` ∃xC Γ,∃xP⊥ ` ∃xC em−1Γ ` ∃xC

We call this new rule em−1 .

4.1 Subject reduction for HA + EM−1
The subject reduction property asserts that whenever a proof term has a certain type, and it
gets reduced a certain number of times, the reduced term will have the same type. When types
are taken to correspond to formulas, subject reduction gives us two very important facts:
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4. Markov’s principle in HA + EM1

• From the paradigmatic point of view, it connects the concepts of proof normalization and
computation. Reduction rules for the proof terms are usually direct simulations of proof
normalization steps. If the system does enjoy the subject reduction property, we can
e�ectively identify these two notions.

• From a proof-theoretic point of view, when it is added to an adequate realizability inter-
pretation it enables one to draw conclusions on the logical system based on the behaviour
of the proof terms. A crucial example of this is given in section 4.2.

More formally, we can write

De�nition 7 (Subject reduction). A system enjoys subject reduction if whenever Γ ` M : τ
and M 7→∗ N , then also Γ ` N : τ

In [ABB13] it is mentioned that system HA + EM1 has the subject reduction property,
however the result is not proved. Moreover, classic textbooks such as [SU06] only o�er a full
proof for simply typed systems (i.e. where the only set of rules is→-I and→-E). We shall now
give a detailed proof for the system HA + EM−1 .

We �rst need two preliminary lemmas, similar to the ones presented in [SU06] but extended
for our new rules. The main one is the Generation Lemma, that given a typed term will allow us
to talk about the terms and types used in its type derivation. Then we will need to make sure
that substitutions (both ordinary and the witness substitution we have previously de�ned) do
not a�ect typing of a term.

Lemma 2 (Generation Lemma). Suppose Γ ` t : τ .

(i) If t is of the form λx.u and x 6∈ dom(Γ), then τ = τ1 → τ2 and Γ, x : τ1 ` u : τ2

(ii) If t is of the form uv, then Γ ` u : σ → τ and Γ ` v : σ for some σ

(iii) If t is of the form λα.u and α is not free in Γ then τ = ∀αNσ and Γ ` u : σ

(iv) If t is of the form um, where m is a term in L, then τ = σ[m/α], and Γ ` u : ∀αNσ.

(v) If t is of the form u[x.w1, x.w2], then there are τ1,τ2 such that Γ ` u : τ1 ∨ τ2, Γ, x : τ1 `
w1 : τ , Γ, x : τ2 ` w2 : τ

(vi) If t is of the form ιi(u), then τ = τ1 ∨ τ2 and Γ ` u : τi

(vii) If t is of the form 〈u, v〉, then τ = τ1 ∧ τ2 and Γ ` u : τ1, Γ ` v : τ2

(viii) If t is of the form πi(u), then Γ ` u : τ ∧ σ or Γ ` u : σ ∧ τ (resp. if i = 1 or 2)

(ix) If t is of the form u[(α, x).v], where α is not free in τ and Γ, then there is σ such that
Γ, x : σ ` v : τ and Γ ` u : ∃αN.σ

(x) If t is of the form (m,u), then τ = ∃αN.τ1 and Γ ` u : τ1[m/α]
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4.1. Subject reduction for HA + EM−1

(xi) If t is of the form Ruvm, then τ = σ(m), Γ ` u : σ(0), Γ ` v : ∀αN.σ(α)→ σ(Sα)

(xii) If t is of the form [a]H∀αP, then Γ ` [a]H∀αP : ∀αNP and Γ ` a : ∀αNP

(xiii) If t is of the form u ‖a v, then Γ, a : ∀αNP ` u : τ and Γ, a : ∃αNP⊥ ` v : τ . Moreover,
τ = ∃αP.

Proof. Consider for example the case of t = λx.u. Then since the term has a type, the type
derivation must end with the →-introduction rule. Then it follows that τ = τ1 → τ2 and
Γ, x : τ1 ` u : τ2. The other cases are similar.

Lemma 3 (Substitution preserves types).

(i) If Γ ` u : τ and Γ(x) = Γ′(x) for all x free in u, then Γ′ ` u : τ

(ii) If Γ, x : σ ` u : τ and Γ ` t : σ, then Γ ` u[t/x] : τ

(iii) If Γ ` u : τ , m ∈ L, then Γ[m/α] ` u[m/α] : τ [m/α]

Proof.

(i) By induction on the structure of u. The base case is straightforward.
Consider u of the form λyv. We can rename variable y in a way such that it is not free
in Γ ∪ Γ′. Then, τ = τ1 → τ2 by lemma 2 and Γ, y : τ1 ` v : τ2. From the induction
hypothesis, Γ′, y : τ1 ` v : τ2 and using an implication introduction Γ′ ` v : τ . Other
cases are analogous.

(ii) By induction on the structure of u.

• Base case: assume u = y is a variable. Then if y = x, τ = σ and u[t/x] = t; if
y 6= x, then the thesis follows from the �rst point.
If u is a em−1 hypothesis, the thesis follows from the �rst point.

• If u = λyv, then we can assume, by (i), that y 6= x and y does not occur in Γ. By
the generation lemma we have τ = τ1 → τ2 and Γ, x : σ, y : τ1 ` v : τ2. By the
induction hypothesis Γ, y : τ1 ` v[t/x] : τ2 and applying implication introduction
Γ ` λyv[t/x] : τ1 → τ2 = τ

• If u = vw, then by the generation lemma Γ ` v : σ → τ and Γ ` w : σ for some
σ. Then by the induction hypothesis Γ ` v[t/x] : σ → τ and Γ ` w[t/x] : σ and
applying the implication elimination rule Γ ` v[t/x]w[t/x] : τ . By the de�nition of
substitution this also means Γ ` vw[t/x] : τ .

• If u = ιi(v), then by lemma 2 τ = τ1∨τ2 and Γ ` v : τi. By the induction hypothesis,
Γ ` v[t/x] : τi and using the disjunction introduction rule Γ ` ιi(v[t/x]) : τi. By
de�nition of substitution this also means Γ ` ιi(v)[t/x] : τi
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4. Markov’s principle in HA + EM1

• If u = v[y.w1, y.w2], then by lemma 2 there are τ1,τ2 such that Γ, x : σ ` v : τ1∨τ2,
Γ, x : σ, y : τ1 ` w1 : τ , Γ, x : σ, y : τ2 ` w2 : τ . We can apply the induction
hypothesis on all these terms and get Γ ` v[t/x] : τ1 ∨ τ2, Γ, y : τ1 ` w1[t/x] : τ ,
Γ, y : τ2 ` w2[t/x] : τ . Then, using the disjunction elimination rule we obtain
Γ ` v[t/x][y.w1[t/x], y.w2[t/x]] : τ1 ∨ τ2, which by de�nition of substitution is the
same as Γ ` (v[y.w1, y.w2])[t/x] : τ1 ∨ τ2

The other cases are similar.

(iii) Again by induction on the structure of u.

• Base case: if u = x is a variable, if judgement x : τ is in Γ we have the judgement
x : τ [m/α] in Γ[m/α]. Similarly for the cases of H∀αP

a and W∃αP⊥
a

• If u = vn, then by lemma 2 τ = σ[n/β] and Γ ` v : ∀βNσ. By induction hy-
pothesis Γ[m/α] ` v[m/α] : ∀βNσ[m/α]. If α = β, then ∀βNσ[m/α] = ∀αNσ; by
using universal elimination we have Γ[m/α] ` v[m/α](n[m/α]) : σ[n[m/α]/α] =
σ[n/α][m/α]
If α 6= β, then note that ∀βNσ[m/α] = ∀βN(σ[m/α]), and again using universal
elimination Γ[m/α] ` v[m/α](n[m/α]) : σ[n[m/α]/β] = σ[n/β][m/α].

• If u = λβv then by lemma 2 β is not free in Γ, τ = ∀βNσ and Γ ` v : σ.
Consider �rst α 6= β. By induction hypothesis, Γ[m/α] ` v[m/α] : σ[m/α]. Us-
ing universal introduction (since by renaming of bound variable β is never free in
Γ[m/α]) then Γ[m/α] ` λβv[m/α] : σ[m/α][n/β], andσ[m/α][n/β] = σ[n/β][m/α]
since α 6= β.
Otherwise, if α = β, since β is not free in Γ, v and σ the result holds vacuosly.

The other cases are similar.

Lemma 4 (Witness substitution preserves type). If Γ ` u : τ , then Γ ` u[a := n] : τ

Proof. Direct consequence of lemma 3 (ii)

We are now ready to state the main result for this section:

Theorem 3. HA + EM−1 has the subject reduction property

Proof. Assume Γ ` t : τ and t 7→β t
′. Proceed by structural induction on the beta reduction.

Reduction rules for HA:

• t = (λx.u)v : τ and t 7→ u[v/x]. By the generation lemma, Γ ` (λx.u) : σ → τ and
Γ ` v : σ for some σ. Again by generation lemma, Γ, x : σ ` u : τ . Therefore by
lemma 3, Γ ` u[v/x] : τ .
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4.1. Subject reduction for HA + EM−1

• t = (λα.u)v and t 7→ u[v/α]. By the generation lemma, τ = τ1[v/α], and Γ ` u : ∀αNτ1.
Again by Generation, Γ ` u : τ1, and by lemma 3, Γ ` u[v/α] : τ1[v/α]

• t = πi〈u0, u1〉 and t 7→ ui. Then by lemma 2 Γ ` 〈u0, u1〉 : τi ∧ τ1−i (with τ0 = τ ),
and again by lemma 2 Γ ` u0 : τi and Γ ` u1 : τ1−i. Then for i = 0, 1 we have
Γ ` ui : τ0 = τ

• t = ιi(u)[x1.t1, x2.t2] and t 7→ ti[u/xi]. By lemma 2 there are τ1 and τ2 such that
Γ ` ιi(u) : τ1 ∨ τ2, Γ, x : τ1 ` t1 : τ and Γ, x : τ2 ` t2 : τ . Again by lemma 2, Γ ` u : τi,
and by lemma 3 Γ ` ti[u/xi] : τ

• t = (n, u)[(α, x).v] and t 7→ v[n/α][u/x], where α is not free in Γ ∪ {t : τ}. By
lemma 2, there is a σ such that Γ, x : σ ` v : τ and Γ ` (n, u) : ∃αN.σ. Again by
lemma 2, Γ ` u : σ[n/α]. Using lemma 3 and the fact that α is not free in Γ and τ , we
can write Γ, x : σ[n/α] ` v[n/α] : τ ; �nally, again by lemma 3, Γ ` v[n/α][u/x] : τ

Rules for induction

• t = Ruv0 and t 7→ u. By lemma 2, τ = σ(0) and Γ ` u : σ(0).

• t = Ruv(Sn) and t 7→ vn(Ruvn). By lemma 2, τ = σ(Sn), Γ ` u : σ(0) and Γ ` v :
∀αN.σ(α) → σ(Sα). In addition, by generation lemma on the term Ruvn we have Γ `
Ruvn : σ1(n) and Γ ` u : σ1(0). Therefore σ1 = σ. Using the universal quanti�cation
rule on v we get Γ ` vn : σ(n)→ σ(Sn). Using the implication elimination rule on this
and Ruvn, we get Γ ` vn(Ruvn) : σ(Sn)

Reduction rules for em−1 (there is no di�erence with the case of em1 ):

• Γ ` ([a]H∀αP)n : τ and ([a]H∀αP)n 7→ True. By the generation lemma, Γ ` [a]H∀αP :
∀αNP and also Γ ` [a]H∀αP : ∀αNτ1 and τ = τ1[m/α]. Therefore P = τ1, and by the
condition of the rewrite rule τ = P[m/α] = True.

• Γ ` u ‖a v : τ and u ‖a v 7→ u. Then by the generation lemma we have Γ, a : ∀αNP `
u : τ . But a is not free in u by de�nition of the reduction rule, and so Γ ` u : τ

• Γ ` u ‖a v : τ and u ‖a v 7→ v[a := n]. From lemma 2 Γ, a : ∃αN¬P ` v : τ . From
lemma 4, Γ, a : ∃αN¬P ` v[a := n] : τ . Since there are no free occurences of a in
v[a := n], Γ ` v[a := n] : τ .

Permutation rules for em−1 :

• t = (u ‖a v)w and t 7→ uw ‖a vw, where a does not occur free inw. From the generation
lemma, Γ ` u ‖a v : σ → τ and Γ ` w : σ for some σ. Again by generation, Γ, a :
∀αNP ` u : σ → τ and Γ, a : ∃αNP⊥ ` v : σ → τ . Applying implication elimination
rule to both terms, and then em−1 , we get Γ ` uw ‖a vw : τ
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4. Markov’s principle in HA + EM1

• t = (u ‖a v)[x.w1, y.w2] and t 7→ u[x.w1, y.w2] ‖a v[x.w1, y.w2] . From lemma 2 there
are τ1, τ2 s.t Γ ` u ‖a v : τ1∨ τ2 and Γ, x : τ1 ` w1 : τ , Γ, x : τ2 ` w2 : τ . From lemma 2
again, Γ, a : ∀αNP ` u : τ1 ∨ τ2 and Γ, a : ∃αNP⊥ ` v : τ1 ∨ τ2. Using disjunction
elimination on both terms, followed by em−1 , we get Γ ` u[x.w1, y.w2] ‖a v[x.w1, y.w2] :
τ .

• Cases πi(u ‖a v) 7→ πiu ‖a πiv and (u ‖a v)[(α, x).w] 7→ u[(α, x).w] ‖a v[(α, x).w] are
similar to the previous points.

4.2 Disjunction and existential properties

The subject reduction theorem we have just proved ensures that, whenever we reduce a proof
term with one of the reduction rules, we will obtain another proof term of the same type.
This, combined with theorem 2 (the adequacy theorem), allows us to draw conclusions on the
behaviour of the logical system based on the behaviour of the proof terms. Such tools will be
employed now to prove two important constructive properties of the system HA + EM−1 .

Let’s �rst recall the two main theorems we have seen in section 3.4 (the proofs can easily
adapted to the new system HA + EM−1 .)

Theorem 1 (Existential Witness Extraction). Suppose t is closed, t 
 ∃αNP and t 7→∗ t′ ∈ NF.
Then t′ = (n, u) for some numeral n such that P[n/α] ≡ True.

Although this theorem only talks about Σ0
1 formulas, this is enough for the purpose of

proving the constructivity of HA + EM−1 . Indeed, this is the only kind of existential statement
that we are allowed to prove with our rule. In order to use the properties of the realizers to talk
about the logic system, we will need the adequacy theorem:

Theorem 2 (Adequacy Theorem). Suppose that Γ ` w : A in the system HA + EM1, with

Γ = x1 : A1, . . . , xn : An, a1 : ∃αN
1P⊥1 , . . . , am : ∃αN

mP⊥m, b1 : ∀αN
1Q1, . . . , bl : ∀αN

lQl

and that the free variables of the formulas occurring in Γ and A are among α1, . . . , αk. For all
closed terms r1, . . . , rk of L, if there are terms t1, . . . , tn such that

for i = 1, . . . , n, ti 
 Ai[r1/α1 · · · rk/αk]

then

w[t1/x1 · · · tn/xn r1/α1 · · · rk/αk a1 := i1 · · · am := im] 
 A[r1/α1 · · · rk/αk]

for every numerals i1, . . . , im.

Combining these theorems with the new subject reduction theorem, we can now state

38
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Theorem 4 (Disjunction property). Suppose ` t : A∨B in the system HA + EM−1 where t and
A ∨B are closed. Then there exists a term u s.t. ` u : A or a term v s.t. ` v : A

Proof. If t is not in normal form take t′ such that t 7→∗ t′, and t′ is in normal form. By theorem 3,
` t′ : A∨B, and then by the adequacy theorem t′ 
 A∨B. Consider now the possible cases
by the de�nition of realizer:

• If t′ = ιi(u), from lemma 2 we have that ` u : A or ` u : B resp. when i = 0, 1.

• If t′ = u ‖a v, then by lemma 2 we would have ` t′ : ∃αP for some atomic P, but this
contradicts the fact that ` t′ : A ∨B; so this case cannot be possible.

• Since t′ is already in normal form, the third case cannot be possible.

With a very similar argument, we have also

Theorem 5 (Existential property). Suppose ` t : ∃αA in the system HA + EM−1 where t and
∃αA are closed. Then there exists a numeral n and a term u s.t. ` u : A[n/α]

Proof. By the adequacy theorem, t 
 ∃αA. Distinguish cases on the de�nition of the realiz-
ability relation:

• If t = (n, u), then by the generation lemma ` u : A[n/α]

• If t = u ‖a v, then by lemma 2 A is atomic. Let t′ be such that t 7→∗ t′ ∈ NF; then,
by theorem 1, t = (n, t′). By theorem 3 ` (n, t′) : ∃αA, and by lemma 2 we have
` t′ : A[n/α].

4.3 Rule em
−
1 is equivalent to Markov’s principle

The fundamental reason behind the constructive analysis of the system HA + EM−1 was its
resemblance with Markov’s principle. The discussion we have done so far does not depend
directly on this; however, the fact that our system is indeed constructive (in the broader sense
we have used so far) provides even stronger evidence that the em−1 rule should be equivalent
to Markov’s principle.

Consider the usual system HA + EM−1 , and state Markov’s principle as the axiom mrk:
¬∀αP → ∃αP⊥. This gives a proof of the axiom:
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4. Markov’s principle in HA + EM1

[¬∀αP](1) [∀αP]em−1
⊥
∃αP⊥ [∃αP⊥]em−1 em−1∃αP⊥ (1)

¬∀αP → ∃αP⊥

Conversely, consider the system HA plus the axiommrk. We can obtain rule em−1 as follows:

assuming we have proofs
∀αP

...
∃αC

and
∃αP⊥

...
∃αC

build this proof of ∃αC :

[∀αC⊥](1)

[∀αP](2)

...
∃αC

D1
⊥ (2)¬∀αP

[∀αC⊥](1)

[∃αP⊥](3)

...
∃αC

D1
⊥ (3)

¬∃αP⊥
D2
∀αP

⊥ (1)
¬∀αC⊥

mrk
¬∀αC⊥ → ∃αC

∃αC

Where D1 is given by

∀αC⊥
C⊥(α) [C(α)]∃

⊥ ∃αC(α)
∃⊥

And D2 is given by
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P(α) ∨ P⊥(α) [P(α)]∨-E

¬∃αP⊥(α)
[P⊥(α)](1)

∃αP⊥(α)
⊥ (1)

¬P⊥(α) [P⊥(α)]∨-E
⊥

P(α)
∨-EP(α)

∀αP(α)

Note that in the last proof we used the axiom P(α)∨P⊥(α) since P is atomic and thus decidable
in HA.

4.4 A realizer for Markov’s principle

Now that we have a proof tree for Markov’s principle in HA + EM−1 , we can decorate it in
order to get a realizer of the principle:

[x : ¬∀αB](2) [H∀αB
a : ∀αB]em−1

xH∀αB
a : ⊥

rxH∀αB
a : B⊥[0/α]

(0, rxH∀αB
a ) : ∃αB⊥ [W∃αB⊥

a : ∃αB⊥]em−1 em−1(0, rxH∀αB
a ) ‖a W∃αB⊥

a : ∃αB⊥
(1)

λx.((0, rxH∀αB
a ) ‖a W∃αB⊥

a ) : ¬∀αB → ∃αB⊥

The extracted term fully exploits the properties of the system in order to get a more precise
computational meaning for Markov’s principle. When a realizer for¬∀αB is given, it is applied
to the hypotetical term. Thus, the computation can proceed by using this assumption and
reducing inside the left hand side of the proof term. At some point however, we are guaranteed
that the program will use the hypotesis on a term m for which B[m/α] does not hold. At this
point, an exception is raised and we gets the witness we were waiting for.
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CHAPTER 5
Further generalizations

In the previous section it was shown that Markov’s principle is equivalent to the excluded
middle restricted to Σ0

1 formulas and Σ0
1 conclusions. However when taking a closer look at

the formal proof we gave, it can be noticed that the crucial use of Markov’s principle in proving
this form of the excluded middle is only done on the conclusion. The assumptions are only used
in order to obtain a contradiction and then do an ex falso reasoning. On the other side, we need
Σ0

1 assumptions in order to be able to prove Markov’s principle.

Starting from this observation, we will prove that Markov’s principle is equivalent to a rule
allowing arbitrary excluded middle with Σ0

1 conclusions. After introducing this new rule, we
will try to use it in order to get a direct translation from proofs of classical arithmetic. We will
�rst introduce the well established tool of negative translations and show how they succeed
in embedding classical reasoning inside intuitionistic systems. Then we will introduce a new
translation that, although missing the usual properties of negative translations, will be useful
for our scope when coupled with a set of proof transformation rules. Thanks to these two tools,
we will provide a way to transform classical proofs of simply existential formulas into proofs
in HA + EM−1 .

We will consider again the system HA of natural deduction for intuitionistic arithmetic,
and the HA + EM−1 extension we have already studied. When referring to classical proofs, or
proofs in Peano Arithmetic PA, we mean proofs in HA + EM where we add to HA the rule of
full excluded middle:

Γ, A ` C Γ,¬A ` C emΓ ` C

5.1 Full excluded middle with restricted conclusions

Consider a system of natural deduction for intuitionistic arithmetic, to which we add restricted
classical reasoning in the form of rule em− :
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5. Further generalizations

Γ, A ` ∃xP Γ,¬A ` ∃xP
em−Γ ` ∃xP

That is, we allow to eliminate instances of the excluded middle for arbitrary formulas A,
but only if the conclusion is a Σ0

1 formula.

This deduction, similar to the one of the previous chapter, gives a proof of Markov’s prin-
ciple by using the excluded middle rule on the formula ∃αP⊥

[∃αP⊥]em−

[¬∀αP](1)

[¬∃αP⊥]em−
D
∀αP

⊥
∃αP⊥

em−
∃αP⊥ (1)

¬∀αP → ∃αP⊥

Where D is, as in the previous section,

P(α) ∨ P⊥(α) [P(α)]∨-E

¬∃αP⊥(α)
[P⊥(α)](1)

∃αP⊥(α)
⊥ (1)

¬P⊥(α) [P⊥(α)]∨-E
⊥

P(α)
∨-EP(α)

∀αP(α)

Conversely, given a system of intuitionistic arithmetic HA with Markov’s principle as ax-

iom mrk: ¬∀αP → ∃αP⊥ we can obtain rule em− as follows: assuming we have proofs
A
...
∃αP

and
¬A

...
∃αP

build this proof of ∃αP:
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[∀αP⊥](1)

[¬A](2)

...
∃αP

D
⊥ (2)¬¬A

[∀αP⊥](1)

[A](3)

...
∃αP

D
⊥ (3)¬A

⊥ (1)
¬∀αP⊥

mrk
¬∀αP⊥ → ∃αP

∃αP

Where D is given by

∃αP(α)

∀αP⊥

P⊥(α) [P(α)]∃
⊥
∃⊥

We have now a more general result than the one we had in the previous chapter: Markov’s
principle is equivalent to allowing instances of the excluded middle to be used as axioms if and
only if the conclusion of the ∨-elimination rule is a Σ0

1 formula. In one sense this tells us that
when conclusions are restricted to be Σ0

1, allowing premises of arbitrary complexity does not
allow us to prove more than what we could prove already with simply existential premises.

5.2 A new negative translation

Negative translations

Negative translations have been known for long time as a tool to embed classical reasoning into
intuitionistic logic. Essentially, they consist in a method to transform every formula provable
in a classical theory in another formula that is equivalent in classical logic and that, although it
is not intuitionistically equivalent, is provable from the translated theory. The most prominent
example is probably the so called Gödel-Gentzen translation [Göd33], or also double negation

translation. It assigns to every formula F a formula FN de�ned by induction on its structure:

• If F is atomic, FN = ¬¬ F

• (F1 ∧ F2)N is FN1 ∧ FN2

• (F1 ∨ F2)N is ¬(¬FN1 ∧ ¬FN2 )

• (F1 → F2)N is FN1 → FN2
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5. Further generalizations

• (¬F )N is ¬FN

• (∀x F )N is ∀x FN

• (∃x F )N is ¬∀x ¬ FN

The following theorem states the result we anticipated informally:

Theorem6 (Gödel-Gentzen translation). LetΓ = A0, . . . An be a set of formulas. ThenA1, . . . An `
A0 is classically derivable if and only if AN1 , . . . A

N
n ` AN0 is intuitionistically derivable.

For a complete discussion and a proof of this result, one may refer to [Tro73]. The transla-
tion proves especially useful in the case of arithmetic, thanks to the following theorem

Theorem 7. For any formula A in the language of arithmetic, if PA ` A then HA ` AN

Proof. Thanks to theorem 6, we already know that PA ` A if and only if HAN ` AN . What
we need to show is that if HAN ` AN , then HA ` AN . In order to do so, we need to prove the
translated axioms in HA. We know that HA ` ((s = t) → ¬¬(s = t)) ∧ (¬¬(s = t) → (s =
t)), and therefore since the axioms for equality only use ∀ and →, their translation is easily
equivalent to the original axiom.

Consider the translation of an instance of the induction axiom:

(∀x(F (x)→ F (sx))→ F (0)→ ∀xF (x))N = ∀x(FN (x)→ FN (sx))→ FN (0)→ ∀xFN (x)

Since the second formula is just the instance of the axiom of induction for the formula FN , it
is provable in HA. Therefore, we can conclude that HA ` HAN , and thus HA ` AN

The negative translation allows to embed all of classical arithmetic inside intuitionistic
arithmetic. However, the resulting statements often do not provide a clear computational in-
terpretation: consider for example the translation of an existential statement: we obtain some-
thing of the form ¬∀x ¬F , and it is not clear how one could exctract a witness. For addressing
this issues, one needs another translation such as the A-translation of Friedman [Fri78]. Es-
sentially, it consists in replacing every atomic predicate P with P ∨A for an arbitrary formula
A. When we combine it with the Gödel translation, we obtain the following de�nition: given
formulas F1, F2, A, where no free variable of A is quanti�ed in F1 or F2

• ¬AF1 = F1 → A, ⊥A = A

• FA1 = ¬A¬AF1 if F1 is atomic

• (F1 ∧ F2)A = FA1 ∧ FA2

• (F1 ∨ F2)A = ¬A(¬AFA1 ∧ ¬AFA2 )
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5.2. A new negative translation

• (F1 → F2)A = FA1 → FA2

• (∀x F1)A = ∀x FA1

• (∃x F1)A = ¬A∀x ¬AFA1

We can see that it behaves very similarly to the usual Gödel-Gentzen translation, but with
the addition that negation is parametrized by the formula A. With thechniques very similar
to those of theorem 6 and 7 we have that if Γ ` F in PA, then ΓA ` FA in HA. However,
the new translation also allows for a major result for the constructive interpretation of some
statements of classical arithmetic:

Theorem 8 (Friedman). Let P be an atomic predicate. Then PA ` ∃x P(x) if and only if

HA ` ∃x P(x)

Proof. Suppose PA ` ∃x P(x); then HA ` (∃x P(x))A, i.e. HA ` (∀x ¬A¬A¬AP(x)) →
A. Since it can be seen that ¬A¬A¬AF a` ¬AF in HA for all F , HA ` (∀x ¬AP(x)) →
A. Now, since we can use any formula for A, we use ∃x P(x): in this way we get HA `
∀x (P(x) → ∃x P(x)) → ∃x P(x). Since the antecedent of the formula is provable, we get
HA ` ∃x P(x).

The ∃-translation

We will now introduce a new translation and consider it for statements of arithmetic. Like the
usual negative translations, it will have the property that translated formulas are classically
equivalent to the original ones, and that the translated axioms of arithmetic are intuitionis-
tically provable in HA. However, we will not immediately present a result linking classical
provability and intuitionistic provability as we did before; indeed, the synctactic translation
method presented here will be used in the next section together with a more proof-theoretic
technique in order to provide a new interpretation of the simply existential statements of clas-
sical arithmetic.

Our translation is particularly simple when compared with the usual ones. It leaves all
logical connectives untouched, except for the case of ∀, which is substituted by ¬∃¬. Formally,
we de�ne the translation ·∃ by induction on the structure of the formula:

• If F is atomic, F ∃ = F

• (F1 ∧ F2)∃ is F ∃1 ∧ F ∃2

• (F1 ∨ F2)∃ is F ∃1 ∨ F ∃2

• (F1 → F2)∃ is F ∃1 → F ∃2

• (∀x F )∃ is ¬∃x ¬F ∃
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5. Further generalizations

• (∃x F )∃ is ∃x F ∃

We know that ∀x A(x) is classically equivalent to ¬∃x ¬A(x) regardless of A, and thus
we can easily state that PA ` PA∃ and PA∃ ` PA. So it is also easy to see

Proposition 3. PA ` F if and only if PA∃ ` F ∃

Proof. By a straightforward induction on the derivation.

The question is a bit more complicated for intuitionistic arithmetic: in general, the trans-
lated formula is not intuitionistically equivalent to the original one. Nevertheless, we have the
following result:

Theorem 9. HA ` HA∃. So, every formula provable in HA∃ is provable in HA

Proof. The axioms for equality and the de�nition of the successor are left untouched by the
translation. Consider now the translation of the axiom for induction for an arbitrary formula
P :

(Ind)∃ = (P (0) ∧ (∀α (P (α)→ P (α+ 1)))→ ∀α P (α))∃ =

P (0) ∧ (¬∃α. ¬(P (α)→ P (α+ 1)))→ ¬∃α¬P (α)

The formal derivation in section 5.2 gives a proof of this formula in HA. Therefore, we have
that HA ` HA∃, and so also whenever HA∃ ` F HA ` F

5.3 Embedding classical proofs in HA + EM−

We go back now to the system HA + EM− de�ned in section 5.1. Since in this new system
instances of the excluded middle are allowed on arbitrary formulas, we might be tempted to
investigate more on how much of a classical proof we can reconstruct in it. A �rst approach
can be the following: in the case the statement to be proved is itself simply existential, we could
allow occurrences of the excluded middle rule whenever we are sure they are the lowermost
infecences. More formally, we introduce the notation

D1
∃αP

D2
∃αP . . .

Dn
∃αP

em−∃αP

to indicate that D1, D2 . . .Dn are proofs of ∃αP not using em− , possibly with open as-
sumptions, and the conclusion is obtained by repeated usage of the em− rule on them (note
that em− is indeed used only on a Σ0

1 formula). Similarly de�ne the same notation for em .
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5. Further generalizations

Then clearly the new construct for em− can be directly replaced by instances of Markov’s
principle using the proof tree from section 5.1. Our task for this section is thus to show that
any proof (in PA, i.e. HA + EM) of a simply existential statement can be rewritten into a proof
in HA + EM− of the above form.

In order to do so, we employ new permutation rules extending the ones de�ned in [AZ16] to
move the use of classical reasoning below purely intuitionistic proofs. In general, we could have
an unrestricted use of the excluded middle, in the form of the rule em. For every intuitionistic
rule, one needs to move the classical rule below it:

→-introduction:
[A] [B](1)

...
C

[¬A] [B](1)

...
C em

C (1)
B → C

;

[A] [B](1)

...
C (1)

B → C

[¬A] [B](2)

...
C (2)

B → C em
B → C

→-elimination/1:
[A]

...
B → C

[¬A]
...

B → C em
B → C

...
B

C

;

[A]
...

B → C

...
B

C

[¬A]
...

B → C

...
B

C em
C

→-elimination/2:

...
B → C

[A]
...
B

[¬A]
...
B em

B
C

;

...
B → C

[A]
...
B

C

...
B → C

[¬A]
...
B

C em
C

∧-introduction/1:
[A]

...
B

[¬A]
...
B em

B

...
C

B ∧ C

;

[A]
...
B

...
C

B ∧ C

[¬A]
...
B

...
C

B ∧ C em
B ∧ C

∧-introduction/2:

...
B

[A]
...
C

[¬A]
...
C em

C
B ∧ C

;

...
B

[A]
...
C

B ∧ C

...
B

[¬A]
...
C

B ∧ C em
B ∧ C
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5.3. Embedding classical proofs in HA + EM−

∧-elimination/1, ∧-elimination/2:

[A]
...

A1 ∧A2

[¬A]
...

A1 ∧A2 em
A1 ∧A2
Ai

;

[A]
...

A1 ∧A2
Ai

[¬A]
...

A1 ∧A2
Ai em

Ai

And similarly for ∨-introduction, ∨-elimination.

∃-introduction:

[A]
...

B[m/α]

[¬A]
...

B[m/α] em
B[m/α]
∃αB

;

[A]
...

B[m/α]
∃αB

[¬A]
...

B[m/α]
∃αB em∃αB

∃-elimination/1:

[A]
...
∃αB

[¬A]
...
∃αB em∃αB

[B]
...
C

C

;

[A]
...
∃αB

[B]
...
C

C

[¬A]
...
∃αB

[B]
...
C

C em
C

∃-elimination/2:

...
∃αB

[A] [B]
...
C

[¬A] [B]
...
C em

C
C

;

...
∃αB

[A] [B]
...
C

C

...
∃αB

[¬A] [B]
...
C

C em
C

Now, we would like to de�ne a permutation for the case of the universal quanti�er. How-
ever, it turns out that this is not possible: for the case of ∀-I we have no general way of de�ning
one. Consider for example the proof

[P (x)]em
(P (x) ∨ ¬P (x))

[¬P (x)]em
(P (x) ∨ ¬P (x)) em

(P (x) ∨ ¬P (x))
∀-I∀x (P (x) ∨ ¬P (x))

51



5. Further generalizations

Here clearly we have no way of moving the the excluded middle below universal introduction,
since the variable x is free before em lets us discharge the assumptions. This is where the trans-
lation from section 5.2 comes to the rescue: clearly, proofs in PA∃ will not contain applications
of rules for the universal quanti�er, and are thus suitable for our transformations. Therefore,
the last rule for which we should give a permutation is the translated rule of induction (Ind)∃
for PA∃:

Γ ` A(0) Γ ` ¬∃α¬ (A(α)→ A(S(α)))
Ind∃Γ ` ¬∃α ¬A(α)

The permutations for Ind∃ will be:

...
B(0)

[A]
...

¬∃α ¬B((α)→ B(S(α)))

[¬A]
...

¬∃α ¬(B(α)→ B(S(α))) em
¬∃α ¬(B(α)→ B(S(α)))

¬∃α ¬B

converts to:

...
B(0)

[A]
...

¬∃α ¬(B(α)→ B(S(α)))
¬∃α ¬B

...
B(0)

[¬A]
...

¬∃α ¬(B(α)→ B(S(α)))
¬∃α ¬B em¬∃α ¬B

and

[A]
...

B(0)

[¬A]
...

B(0) em
B(0)

...
¬∃α ¬(B(α)→ B(S(α)))
¬∃α ¬B

converts to:

[A]
...

B(0)

...
¬∃α ¬(B(α)→ B(S(α)))
¬∃α ¬B

[¬A]
...

B(0)

...
¬∃α ¬(B(α)→ B(S(α)))
¬∃α ¬B em¬∃α ¬B

52



5.3. Embedding classical proofs in HA + EM−

By employing the just de�ned permutation rules, we can state

Proposition 4. Every proof of a formula F in PA∃ can be transformed into a proof

D1
F

D2
F . . .

Dn
F

em

F

Where D1,D2 . . .Dn are purely intuitionistic proofs.

Proof. Proceed by induction on the structure of the proof. The base case where the proof only
containts axioms and a single rule is vacuous. Otherwise, assume there is at least one use of
em (if not the thesis holds vacuosly) and consider the lowermost rule application:

• If it is em , then the induction hypothesis can be applied to the subtrees corresponding
to the two premises of the rule, yelding the thesis.

• As an example to the case of unary rules, consider ∃-introduction; then the proof has the

shape
...

F ′[m/α]
∃-I∃αF ′

Applying the induction hypothesis to the subproof corresponding to the premise, by our
assumption we get a proof of the form

D1
F ′[m/α]

D2
F ′[m/α] . . .

Dn
F ′[m/α]

em
F ′[m/α]

Substitute this in the original proof: by applying the permutation rule for ∃-introduction
n− 1 times, we move the exist introduction right below the intuitionistic part; the proof
then becomes

D1
F ′[m/α]
∃αF ′

D2
F ′[m/α]
∃αF ′ . . .

Dn
F ′[m/α]
∃αF ′ em

∃αF ′

Which satis�es the thesis.

The cases of the other unary rules are analogous.
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5. Further generalizations

• As an example for the case of binary rules, consider→-elimination; then the proof has

the shape
...

G→ F

...
G →-E

F
Applying the induction hypothesis to the subproofs corresponding to the premises, by
our assumption we get two proofs where in at least one of the two the last used rule is
em : we select one where this is the case.
Say we chose the proof of the �rst premise (the other case is symmetric), then from the
induction hypothesis we have obtained a proof of the shape

D1
G→ F

D2
G→ F . . .

Dn
G→ F em

G→ F

After substitutig this in the original proof, we can employ the permutation for→-elimination
n− 1 times and obtain the proof

D1
G→ F

...
G

F

D2
G→ F

...
G

F . . .

Dn
G→ F

...
G

F em
F

If the proof of G is intuitionistic we have the thesis, so assume it is not. Just as before,
we can use the induction hypothesis on it, and obtain:

D1
G→ F

E1
G . . .

Em
G em

G
F . . .

Dn
G→ F

E1
G . . .

Em
G em

G
F em

F

After applying m− 1 times the second permutation for→-elimination, we obtain

D1
G→ F

E1
G

F . . .

D1
G→ F

Em
G

F em
F . . .

Dn
G→ F

E1
G

F . . .

Dn
G→ F

Em
G

F em
F em

F

Which satis�es the thesis. The cases of the other binary rules are analogous.
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5.3. Embedding classical proofs in HA + EM−

After these transformations we are using the excluded middle only with the statement to
prove as a conclusion. A similar result was obtained by Seldin [Sel89], but with a rule for
reduction ad absurdum in place of the excluded middle and without induction.

This means that if the statement we are proving is of a certain complexity, we do not need
classical reasoning on formulas of higher complexity.

Proposition 5. Every proof in PA∃ of a Σ0
1 statement can be transformed into a proof in HA∃ +

EM−1

Proof. By the proposition 4 we know we can transform any proof in PA∃ of a statement ∃αP
into a proof of the form

D1
∃αP

D2
∃αP . . .

Dn
∃αP em

∃αP

Since every application of em happens on a simply existential statement, we can directly
replace them with em− . Moreover, from section 5.1 we know that em− is equivalent to em−1 ,
and thus we obtain a proof in HA∃ + EM−1 as desired.

Finally, we can conclude the section with the main theorem

Theorem 10. If PA ` ∃x P with P atomic, then HA + EM−1 ` ∃x P

Proof. Given a proof of ∃x P in PA, by proposition 3 we can apply the ∃-translation and obtain
a proof of (∃x P)∃ = ∃x P in PA∃. Then, by proposition 5, we can transform this in a proof in
HA∃ + EM−1 . Finally, thanks to theorem 9, we know that HA + EM−1 ` ∃x P.
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CHAPTER 6
Conclusions

We have seen how the interpretation of Markov’s principle in constructive settings has been
an historically controversial matter. Kreisel showed by means of the modi�ed realizability that
it could not be validated by intuitionistic logic, while Kleene’s realizability semantics, although
successful in interpreting it, reduced it to a mere unbounded search and thus brought it back to
non-constructivity. However, we noted how a much more re�ned interpretation of Markov’s
principle was already present in Gödel’s work; W.W. Tait, in a more recent analysis of Gödel’s
position on intuitionism, notices how in more modern terms we could state that “if one is
looking for methods of proof which automatically yield algorithms for computing a witness
for existential theorems, intuitionistic logic is too narrow” [Tai06].

Following more recent lines of research, we introduced the logic HA + EM1, a related
term calculus following the propositions as types paradigm, and a realizability interpretation
of the former into the latter. We saw how the term system of HA + EM1 provides a tool to
investigate the computational content of Markov’s principle, and we interpreted the principle
as learning program that gets a witness for the conclusion supposing the assumption does not
hold and repeatedly testing it. Moreover, we introduced a restricted version of HA+EM1 called
HA + EM−1 , where we showed that the new logical principle added to the logic is equivalent
to Markov’s principle. This new system inherits the Curry-Howard correspondence and the
realizability interpretation from the one it derives from.

By means of HA + EM−1 , we have obtained a new proof of constructivity of intuitionistic
arithmetic extended with Markov’s principle. Finally, we have generalized the obtained result
and shown that Markov’s principle is also equivalent to adding to intuitionistic arithmetic the
principle EM−, that is a restricted form of the rule of excluded middle where we are only
allowed to use it in disjunction eliminations if the conclusion is simply existential.

This �nal observation led us to the introduction of a new negative translation in the style
of the classic ones by Gödel and Friedman. Our new translation has the advantage of not
changing ∃ and ∨ when compared to the usual ones, but needs a series of permutation rules
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6. Conclusions

to be applied on proofs in order to be useful. Combining these results, we obtained a way
to transform classical proofs of Σ0

1 statements into proofs in HA + EM−1 , thus allowing us to
extract programs from any of these proofs.

Our system HA + EM−1 is reminescent of the one of Herbelin [Her10]. Here, a deductive
system for intuitionistic logic is extended with the two rules throw and catch and is equipped
with a Curry-Howard correspondence:

Γ `α:T,∆ p : T
Γ `∆ catchαp : T catch Γ `∆ p : T (α : T ) ∈ ∆

Γ `∆ throwαp : C throw

The reduction rules for the lambda terms catch and throw de�ne a mechanism of delimited
exceptions. Herbelin addresses pure �rst order logic, and obtains for Markov’s principle the
term

λa.catchαefq a(λb.throwαb) : ¬¬T → T

where T is a ∀, →-free formula. The behaviour of the term is similar to the one presented
in section 4.4. Thanks to this, Herbelin proves the constructivity of the logic by showing the
disjunctive and existential properties.

However, in this work we have related Markov’s principle to the other semi-classical princi-
ple EM−1 , and thus the logical part of the system results much clearer. In addition, we extended
a system of arithmetic whereas Herbelin’s work addressed pure intuitionistic logic; by present-
ing also a realizability interpretation, the extracted programs can be interpreted as a way to
actually compute the witnesses for existential statements.

Another related work is [AZ14]. Here the authors extend modi�ed realizability, and thus
the work has the advantage of using a purely functional language. However, just like modi�ed
realizability, the realizability interpretation that is provided does not satisfy subject reduction
and is therefore not suitable for the investigation of the logical properties of the system. More-
over, the realizer for Markov’s principle is

λz(N→U)→U 〈quote(zmtestλx.P ), ifP⊥[quote(zmtestλx.P )/x] then tt0 else z mtestλx.P 〉

where mtestλx.P := λxN.if P then ttx else ttx. This is much less clear than what we
have seen so far, and relies on an internal comunication system based on the primitive type U ,
terms >0 : U,>1 : U, . . . and ⊥0 : U,⊥1 : U, . . . and the reduction rules

ttn 7→ >n ffn 7→ ⊥n
quote>m 7→ m quote⊥m 7→ m

As mentioned, this thesis has the advantages of a clearer explanation of Markov’s principle
and of presenting a system that enjoys subject reduction.
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Future Work

As known for example from the �eld of proof mining [Koh08] Markov’s principle is fundamen-
tal for the aim of extracting constructive information from non purely constructive proofs. A
similarly important principle is the double negation shift, stated as

∀x¬¬A(x)→ ¬¬∀xA(x)

for A atomic. In [Ili12], Danko Ilik showed that an intuitionistic logic extended with this
principle retains the disjunctive and existential properties, using techniques similar to those
of Herbelin. In the same work, he mentions that Herbelin had also extended his calculus of
delimited control operators to a system proving this principle. Given the relation between
Herbelin’s work on Markov’s principle and our current work, it is interesting to see if one
could develop a modi�ed version of HA + EM− that is able to interpret the double negation
shift. A candidate could be the system IL + EM presented in [AZ16]: we conjecture that a
version of this system for arithmetic with restrictions similar to those presented in this thesis
would be constructive; its relationship with other principles remains to be studied.
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