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Abstract Steady two-dimensional turbulent free-surface flow in a channel with a slightly uneven bottom is
considered. The shape of the unevenness of the bottom can be in the form of a bump or a ramp of very small
height. The slope of the channel bottom is assumed to be small, and the bottom roughness is assumed to be
constant. Asymptotic expansions for very large Reynolds numbers and Froude numbers close to the critical
value Fr = 1, respectively, are performed. The relative order of magnitude of two small parameters, i.e. the
bottom slope and (Fr −1), is defined such that no turbulence modelling is required. The result is a steady-state
version of an extended Korteweg–de Vries equation for the surface elevation. Other flow quantities, such as
pressure, flow velocity components, and bottom shear stress, are expressed in terms of the surface elevation.
An exact solution describing stationary solitary waves of the classical shape is obtained for a bottom of a
particular shape. For more general shapes of ramps and bumps, stationary solitary waves of the classical shape
are also obtained as a first approximation in the limit of small, but nonzero, dissipation. With the exception
of an eigensolution for a ramp, an outer region has to be introduced. The outer solution describes a ’tail’ that
is attached to the stationary solitary wave. In addition to the solutions of the solitary-wave type, solutions of
smaller amplitudes are obtained both numerically and analytically. Experiments in a water channel confirm
the existence of both types of stationary single waves.

1 Introduction

Gravity driven, plane (2D) free-surface flow of an incompressible liquid over a bottom containing an obstacle
is a fundamental problem of hydraulics; cf. [12,14]. The classical approach is a one-dimensional flow approx-
imation, based on the assumption of a hydrostatic pressure distribution. However, that is insufficient for many
applications; cf. the monograph [11] on non-hydrostatic free-surface flows. In particular, the one-dimensional
flow approximation together with the assumption of a hydrostatic pressure distribution leads to equations that
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become singular as the critical Froude number 1 is approached. We shall further discuss the point in Sect. 4 in
the context of an extended KdV equation. Furthermore, no upstream influence of the obstacle is predicted by
the classical approach, which is in contrast to observations on near-critical flows, including the experiments
to be presented in this paper.

With the exception of the stability analysis given in Appendix D, the present analysis concerns steady flow.
The same is true for the following discussion of the pertinent literature, leaving propagating waves mainly
unnoticed.

For inviscid flow, a conventional approach is to solve the equations of potential flow or the Euler equations,
subject to boundary conditions at the bottom and at the free surface. A comprehensive survey on both classical
work and more recent research is given in [11], Ch. 3. As examples that are of some relevance to the present
work, we mention the following ones. Forbes and Schwartz [20] considered a semi-circular obstacle, analysed
linearized equations, and, in addition, provided numerical solutions of the nonlinear problem. Numerical
solutions for a semi-circular obstacle were also investigated by Vanden-Broeck [67], and a non-uniqueness was
found, with one solution corresponding to a perturbation of the uniform stream, the other one to a perturbation
of a solitary wave. Numerical solutions for a triangular obstacle were given by Dias and Vanden-Broeck [16].
Rapid changes in the channel bottom give rise to particular problems, of course. An example is a step in the
channel bottom; see [2].

Under certain assumptions, the full equations of motion of inviscid flow can be reduced to the Korteweg–de
Vries (KdV) equation for the free surface, or to various modifications and extensions of that famous equation,
cf. the monographs [51,63] as well as the survey articles [15,26,29]. In their work mentioned already above,
Binder et al. [2] solved the full nonlinear problem numerically, and, in addition, provided solutions of a forced
KdV equation for the weakly nonlinear problem. The semi-circular obstacle found again particular interest,
see [17], a non-uniqueness was observed, with two symmetric solitary waves as solutions, and a solution with
a cnoidal wave downstream for upstream supercritical flow was found. Nonlinear wave trains (resembling
unsteady undular bores) upstream and downstream of a locally steady surface elevation over the obstacle
were obtained in [27,28]. The interesting phenomenon of “shelves” was described in [39], whereas steady or
oscillatory “tails”, attached to solitary waves, were predicted in [37] for higher-order KdV equations. Non-
uniqueness was observed in [1,22], while the stability of the solutions was investigated in [4,5,13], among
others. Finally, it might be of interest to mention that coupled KdV equations describing resonant flow over an
uneven bottom have also been studied [44]. Concerning the effects of viscosity it may be mentioned that weakly
dissipative free-surface flows using the classical potential-flow approach, based on linearized Navier–Stokes
equations, were investigated in [18,19]. Remarkably, non-local viscous terms in the boundary condition at the
bottom were found in [19].

Turbulent flow, which is the rule rather than the exception in open-channel hydraulics, is, of course,
associated with dissipation. A variety of dissipation models can be found in the literature; cf. [11], Ch. 5, for a
survey that gives also many important details. Several authors applied the so-called Chezymodel to account for
bottom friction, i.e. the wall shear stress is assumed to be proportional to the mean-velocity square; cf. [45,46].
In the present context, it ought to be mentioned that Grillhofer [24] added a friction term of the Chezy type to
the basic equations for plane steady inviscid flow, expanded the equations for Froude numbers close to 1 and
obtained an extended KdV equation for the surface elevation with a linear dissipation term. Note, however, that
linear terms in extended KdV equations to describe bottom friction and dissipation are sometimes attributed to
the “Rayleigh model of dissipation”, cf. [55]. In view of results to be presented in the present work, it may be
of interest that the possible appearance of tails in case of small, but non-vanishing dissipation was discussed
in [56]. It ought to be mentioned, however, that other dissipation models have been proposed as alternatives,
e.g. in [6–10]. The model offered in [8] also accounts for the effects of streamline curvature.

There is, of course, always the possibility to solve the full equations of motion for turbulent flow. Presently
available commercial codes, e.g. FLUENT or FLOW-3D, allow the computation of turbulent shear flows
with free surfaces based on the Reynolds-averaged Navier–Stokes equations with various turbulence models.
However, finding the solution of a particular problem is not always an easy task when the Froude number is
close to the critical value 1 and the flow to be described contains both supercritical and subcritical regions;
see [32]. To cope with those difficulties, an iteration method based on an asymptotic analysis of near-critical
turbulent free-surface flow was proposed in [61] and applied to the undular-jump problem. Another example
of a successful solution of the Reynolds-averaged Navier–Stokes equations for undular jumps was recently
given in [58], using the volume of fluid method. It is remarkable that a one-dimensional flow model based on
the depth-averaged Navier–Stokes equations with Reynolds stress terms can give results that are comparable
with the solutions of the two-dimensional flow problem, see [11], Section 5.3.5.
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Fig. 1 Steady turbulent near-critical open-channel flow over a slightly uneven bottom, e.g. a ramp (schematic)

At a higher level of computational effort, large-eddy simulation (e.g. [31]) and even direct numerical
simulations (e.g. [30,40,50]) of turbulent free-surface flows are also available. From the view of the present
work, the DNS data due to [30,40] will be of importance as they provide justification for the assumption of
vanishing Reynolds shear stress at the free surface, cf. below.

The aim of the present work is to obtain asymptotic solutions for near-critical turbulent open-channel
flow over bumps and ramps without applying turbulence models. An extended KdV equation, containing
a linear dissipation term and a forcing term, was obtained in [60] for a channel bottom with a region of
enlarged roughness, providing the possibility to predict, apparently for the first time, stationary solitary waves
in turbulent open-channel flow. In the present work, the analysis due to [60] is modified to account for an
uneven bottom, e.g. for bumps or ramps, while keeping the bottom roughness constant. The main result of the
analysis is an equation for the averaged surface height as a function of the longitudinal coordinate, but other
flow quantities of interest are expressed in terms of the surface elevation.

For the previous case of a plane bottom with a region of enlarged roughness, the stationary solitary waves
were observed in laboratory experiments and reasonable agreement between predictions and measurements
was found [62]. Those favourable comparisons made it appear feasible to verify the theoretical predictions by
experiments also for bumps. However, the experiments led to surprising observations that will be described in
Sect. 7 below.

2 Reference quantities and non-dimensional parameters

Steady two-dimensional turbulent open-channel flow is considered (Fig. 1). Apart from small perturbations
of characteristic length l and elevation b, which varies in longitudinal direction, the channel bottom is plane
with small constant slope α. The order of magnitude of b will be fixed in course of the analysis. For now, it
suffices to assume that b is much smaller than the depth of the liquid in the channel. A Cartesian coordinate
system is chosen such that the x-axis is in the bottom plane, while the y-axis points upwards. The flow velocity
components in the x,y coordinate systemare u and v, respectively. Ensemble-averaged quantitieswill be denoted
by an overbar; e.g. h̄ stands for the ensemble-averaged surface height. Since steady flow is considered, the
ensemble-averaged quantities are in accord with time-averaged ones. Primes will indicate fluctuations around
the average.

It is assumed that the flow would be fully developed1 if the bottom were exactly plane. For bumps or
ramps, this implies that the flow is indeed fully developed far upstream and far downstream. Note that in case
of a ramp the surface elevation is slightly larger far downstream than far upstream, cf. Fig. 1. However, the
difference will turn out to be small of higher order in the asymptotic analysis.

For introducing non-dimensional variables, the fully developed flow over a plane bottom with slope α is
chosen as a reference state, which is denoted by the subscript r. Thus, the averaged surface height of the fully
developed flow far upstream, h̄r , serves as reference length, and the y-coordinate will be referred to it. The
x-coordinate, however, will be contracted with a small parameter δ, which is chosen in a way that is appropriate
for describing solitary waves of small amplitudes. From [60], it is known that a suitable choice is

1 In the present paper, “fully developed flow” is defined in the way that is common in the literature on fluid mechanics, i.e. as
a flow of uniform water depth with distributions of velocity, pressure and Reynolds stresses, respectively, being invariant with
respect to the streamwise coordinate x . Thus, it implies mechanical equilibrium. In hydraulics, a different definition of “fully
developed” is sometimes used.
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δ = 3
√

ε , (1)

where the non-dimensional parameter ε characterizes the amplitude of the wave, while the coefficient 3 has
been introduced in the interest of simplifying the coefficients of the final equations. A definition of ε in terms
of the Froude number will be given below, cf. (17). The non-dimensional Cartesian coordinates X, Y and the
non-dimensional bottom elevation B are then defined as follows:

X = δx/h̄r , Y = y/h̄r ; B = b/h̄r . (2)

For the purpose of serving as reference velocity, the volumetric mean velocity ūr is introduced, i.e. ūr =
V̇ /h̄r , where V̇ denotes the volume flow rate per unit width of the channel. This choice of the reference velocity
is of importance for keeping the analysis free of turbulencemodelling, see [25]. Based on that reference velocity,
the Froude number is defined as

Fr = ūr/
√
gh̄r = V̇ /

√
gh̄3r , (3)

where g is the acceleration of gravity.
Concerning further dimensionless quantities, the pressure p̄ is referred to the averaged hydrostatic pressure

at the bottom of the channel in the fully developed flow, i.e. gρh̄r , with ρ denoting the constant density of the
fluid. The Reynolds stresses are referred to the averaged bottom shear stress in the fully developed flow, which
may be written as ρu2τr , where uτr is the reference friction velocity. Since the wall shear stress balances the
tangential component of the gravity force in fully developed flow, uτr is given by

uτr =
√
gαh̄r . (4)

As the bottom slope, α is assumed to be very small, cf. above, sin α was replaced by α in Eq. (4).
Using the reference quantities defined above, non-dimensional variables are introduced as follows:

H̄ = h̄/h̄r , Ū = ū/ūr , V̄ = δ−1v̄/ūr , P̄ = p̄/gρh̄r ; (5a)

U ′2 = u′2/u2τr , U ′V ′ = u′v′/u2τr , V ′2 = v′2/u2τr . (5b)

The effects of surface tension will be neglected. Concerning viscosity effects, very large Reynolds numbers
will be considered. Following common practice in the asymptotic analysis of turbulent flow, the Reynolds
number is defined in terms of the reference friction velocity, i.e.

Reτ = uτr h̄r/ν = (gα)1/2h̄3/2r ν−1 , (6)

where ν is the kinematic viscosity of the liquid.

3 Governing equations for large Reynolds numbers

For very large Reynolds numbers, the flow field is composed of two layers, i.e. the defect layer and the thin
viscous wall layer at the bottom. Concerning the latter, a universal solution is known to exist for steady flow,
cf. [21], or [59]. Thus, it is sufficient to consider only the defect layer in what follows.

3.1 Equations of motion

In terms of the present non-dimensional variables, the continuity equation for the mean flow reads

ŪX + V̄Y = 0 . (7)

Here, and in what follows, derivatives are indicated by subscripts, whenever it is convenient.
Since viscous stresses are negligible in the defect layer, themomentum equations for themean flow become

Fr2(ŪŪX + V̄ ŪY ) = −P̄X + α/δ − (α/δ)
[
δ(U ′2)X + (U ′V ′)Y

]
; (8a)

δ2Fr2(Ū V̄X + V̄ V̄Y ) = −P̄Y − 1 − α
[
δ(U ′V ′)X + (V ′2)Y

]
. (8b)

Here, and in what follows, sin α and cosα are replaced by α and 1, respectively.
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3.2 Boundary and matching conditions

With regard to the boundary condition at the bottom, it is assumed that the thickness of the viscous wall layer
is much smaller than the maximum bottom elevation, bmax, i.e. ν/uτr � bmax or

BmaxReτ � 1 . (9)

For a given bottom elevation, Eq. (9) is a condition for the Reynolds number, which will be specified more
precisely as soon as the order of magnitude of Bmax has been fixed, see Sect. 4 below. If Eq. (9) is satisfied,
the thin viscous wall layer will be attached to the bottom elevation. Otherwise, the bottom elevation would be
submerged partially, or even totally, in the viscous wall layer, requiring a special treatment; cf. [38,66].

With the viscous wall layer attached to the bottom elevation, the appropriate boundary condition for the
defect layer is the classical tangential-flow condition, i.e.

V̄ /Ū = BX on Y = B(X) ; (10)

see also [38].
In order to match the defect-layer solution to the wall-layer solution, the logarithmic overlap law is applied,

following [59], p. 536. The following expression for the non-dimensional surface velocity is obtained:

Ū (X, H̄) = √
αFr−1Uτ

{
(1/κ) ln

[
ReτUτ (H̄ − B)

]+ C+ + C̄(X)
}

, (11)

where Uτ and C̄(X) are defined by the relations

U 2
τ = −U ′V ′

∣∣∣
Y→B

(12)

and

C̄(X) =
H̄∫

B

(
Fr√
αUτ

∂Ū

∂Y
− 1

κY

)
dY, (13)

respectively. Furthermore, κ is v. Kármán’s constant, while the value of C+ depends on the non-dimensional
roughness, k+

s , with

k+
s = ksuτ /ν =

√
gαh̄r ksUτ /ν , (14)

where ks is the sand roughness height, see [59, pp. 528–530]. In the present analysis, the sand roughness is
assumed to be constant over the bottom. Thus, C+ is also constant. Neither the value of C+ nor the value of
v. Kármán’s constant matter for what follows.

It should be noted that (11) does not imply the assumption of a logarithmic, or any other particular, velocity
profile across the defect layer. (11) is just a result of applying the matching condition to the defect layer, which
is characterized by very small perturbations of the volumetric mean velocity.

Although it is not of relevance to the further analysis, it may be of interest to note that Uτ is exactly
equal to the non-dimensional friction velocity only in case of a plane bottom, i.e. B(X) ≡ 0; otherwise, Uτ

differs slightly from the local non-dimensional friction velocity, i.e. by a higher-order term in the asymptotic
expansion presented in Sect. 4.

Since there is a wall-pressure gradient at the bottom due to the X-dependence of the water depth, it is in
order to check whether the logarithmic overlap law is applicable. An appropriate analysis is given in “Appendix
A”.

At the free surface, kinematic and dynamic boundary conditions have to be satisfied. The kinematic bound-
ary condition is prescribed in the conventional form, i.e.

V̄ (X, H̄) = Ū (X, H̄)H̄X (X) , (15)

which may be interpreted as a definition of the ensemble-averaged surface.
With respect to the dynamic boundary conditions, we also follow the conventional approach, see [57]. Since

surface tension is neglected and viscous stresses are negligibly small in the defect layer, only the Reynolds
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stresses have to be taken into account. Thus, the required continuity of the total stresses at the free surface
leads to the following dynamic boundary conditions with respect to the X- and Y -directions, respectively:

−
[
P̄(X, H̄) + αU ′2(X, H̄)

]
sin ϑ + αU ′V ′(X, H̄) cosϑ = 0, (16a)

[
P̄(X, H̄) + αV ′2(X, H̄)

]
cosϑ − αU ′V ′(X, H̄) sin ϑ = 0, (16b)

where ϑ is the inclination angle of the ensemble-averaged free surface with respect to the horizontal, i.e.
tan ϑ = δ H̄X .

The application of “conventional” boundary conditions at the free surface rests on the assumption of
vanishing Reynolds shear stress at the free surface. This assumption has been subject to some discussion;
see [60] and the references given there. It may well be that the apparently unsettled question of zero versus
nonzeroReynolds shear stress at the free surface is associatedwith problems concerning the ensemble-averaged
kinematic boundary condition at free surfaces, as noted in [65] cf. also [43]. Furthermore, recent investigations
[42] show a three-dimensional character of the turbulent flow at free surfaces; however, implications with
regard to boundary conditions for the bulk flow seem to be uncertain at present. For the present analysis, it
may be seen as reassuring that the application of the conventional boundary conditions (16a) and (16b) in
previous work has led to reasonable agreement with measurements of surface elevation as well as shear stress
distribution for both undular jumps [25,35,36,61] and stationary solitary waves [62].

4 Asymptotic expansion for near-critical flow

Since solitary waves with small amplitudes move in an inviscid quiescent fluid with a velocity that corresponds
to a slightly supercritical Froude number, it is natural to expand the governing equations in terms of a small
parameter ε that is defined by the relation

Fr = 1 + 3
2ε (0 < ε � 1) . (17)

Here, and in what follows, coefficients like 3/2 are introduced in order to obtain the results in a convenient
form.

In general, the small parameter ε is independent of the slope α that has been introduced above as a small
parameter. However, it was shown in earlier work [25,60] that the analysis can be kept free of turbulence
modelling if α and ε2 are assumed to be of the same order of magnitude. The basic idea is to fix the relative
size of the two small parameters ε and α such that, on the one hand, the leading terms due to turbulence,
though small, are retained in the analysis, while, on the other hand, the magnitude of the Reynolds stresses
is sufficiently small to keep the analysis free of turbulence modelling. Thus, following [25,60], the coupling
parameter A is introduced with the relation

A = α/ε2 = O(1) . (18)

Note that the fully developed flow with small bottom slope α requires a particular, very large value of the
Reynolds number. Thus, (18) can also be seen as a coupling condition for the nearly critical Froude number
and the large Reynolds number.

A further important assumption concerns the height of the bottom elevation (e.g. a bump or a ramp). It
is chosen such that the terms due to the bottom elevation will become of the same order of magnitude as the
terms due to dissipation. This is accomplished by introducing the parameter β with the definition

β = 1
3 A

√
ε = 1

3αε−3/2 (19)

and assuming that the non-dimensional bump or ramp height defined in (2) is of the order of magnitude
B = O(βε2) = O(ε5/2). Thus, the non-dimensional height of the bottom elevation is written in the following
form:

B = 3βε2ψ(X) , ψ = O(1) . (20)

For the further analysis it is of interest that the order of magnitude of B according to (20) allows an
analysis that remains free of turbulence modelling. It should also be noted that substituting (20) and (19) into
Eq. (9) gives α

√
ε Reτ � 1 as the condition for sufficiently thin viscous wall layers at the uneven bottom.
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That condition, or an equivalent one, has to be observed when experimental verification of the theoretical
predictions is sought; cf. Sect. 7.

For bumps, the bottom elevation vanishes far upstream and far downstream. In case of ramps, the bottom
elevation vanishes only far upstream, whereas it attains a nonzero constant value far downstream. This leads
to the following conditions for ψ :

ψ → 0 as X → − ∞ ; (21a)

ψ → ψ∞ = const. as X → + ∞ , (21b)

with ψ∞ = 0 for a bump, and ψ∞ > 0 for a ramp.
The dependent variables are now expanded in terms of powers of ε as follows:

H̄(X) = 1 + εH1(X) + ε2H2(X) + o(ε2) , (22)

and analogous expansions for the velocity components, the pressure and the Reynolds stresses. The expan-
sions are then introduced into the governing equations given in the preceding section. The procedure is a
bit cumbersome and not always straightforward, as the averaged Navier–Stokes equations remain incomplete
without a closure model. The details of the analysis, which follows the analogous analysis for a plane bottom
with a region of enlarged bottom roughness [60], can be found in “Appendix B”. For here it may suffice to
mention that the main difference between the present asymptotic expansion and the previous one stems from
the boundary condition (10) together with (20), which, of course, has no equivalent in case of a plane bottom.
Eventually, the following first-order results are obtained:

Ū (X, Y ) = 1 + ε
[
−H1(X, Y ) + √

A
U (Y )
]

+ · · · , (23)

V̄ (X, Y ) = εY H1X + · · · , (24)

P̄(X, Y ) = 1 − Y + εH1(X) + · · · , (25)

U ′V ′(X, 0) = −1 + 2εH1(X) + · · · , (26)

U ′V ′(X, 1) = −εH1(X) + · · · , (27)

where H1 has to satisfy the ordinary differential equation

H1XXX + (H1 − 1) H1X = β(H1 − ψX ) . (28)

The term 
U (Y ) appearing in (23) is the non-dimensional “velocity defect”, which is defined such that the
local value of Ū in the fully developed flow far upstream differs from its volumetric mean, i.e. 1, by the
amount

√
α
U . This quantity can be considered as known from experiments, e.g. [52], but, in the present

analysis, it does not affect any other variable except Ū . Note that the distribution of the first-order perturbation
of the Reynolds shear stress over the channel cross section cannot be obtained in the framework of the present
analysis; only the values at the bottom (Y = 0) and at the undisturbed surface level (Y = 1) can be determined
with (26) and (27), respectively.

According to Eqs. (23) to (27), all first-order perturbation quantities are expressed in terms of the first-order
surface elevation, H1(X). The latter is to be determined by solving (28), which can be recognized as a steady-
state version of an extended KdV equation. The extension consists of two parts, i.e. the linear term βH1, which
characterizes dissipation, and the “forcing” term −βψX , which is a given function of X, making the equation
an inhomogeneous one. If the term βH1 is dropped, (28) describes inviscid flow. As already anticipated above,

U does not appear in (28), so that knowledge of the velocity defect is not required.

For later use it will be of interest to observe that replacing ψX in (28) by Γ leads to the extended KdV
equation derived previously for a plane bottomwith a roughness that varies along the bottom [60,62]. However,
the formal similarity between the results should not obscure the fact that the forcing terms differ in origin. Γ
results from an expansion of the logarithmic overlap law (11) with C+(X) according to the roughness as a
function of X , whereas ψX follows from expanding the boundary condition (10) with (20) for the shape and
height of the bump or ramp.

It may be worth mentioning that dropping the term H1XXX in (28) leads to an equation that is equivalent
to the one-dimensional flow approximation of classical hydraulics [24].2 Obviously, the remaining equation

2 If the equations of one-dimensional flow are expanded for ε → 0, a coefficient 5/3 is obtained for H1 in the equation
corresponding to (28). This is due to the fact that the velocity defect is missing in the one-dimensional flow approximation.
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is singular as the surface elevation tends to the critical value H1 = 1. This shows the inability of the one-
dimensional flow approximation of classical hydraulics to describe the near-critical flow considered in the
present paper.

Since we consider flows that are fully developed both far upstream and far downstream, the solutions of
(28) have to satisfy the boundary conditions

H1 → 0 as X → ± ∞ . (29)

The boundary condition of vanishing surface elevation as X → + ∞ is trivial for a bump, as the bottom
elevation vanishes far downstream in this case. For a ramp, however, there remains a nonzero free-surface
elevation that is of the order of the bottom elevation as the fully developed flow far downstream is attained.
With the bottom elevation being as small as defined by (20), the free-surface elevation far downstream is small
of higher order and does not affect the first-order boundary condition (29).

Integrating (28) from −∞ to +∞ and accounting for the boundary conditions (29), the following integral
relation is obtained: +∞∫

−∞
H1dX = ψ∞ . (30)

Equation (30) represents the conservation of momentum for steady flow, see “Appendix C”.
By integrating (28) after multiplication with H1 and accounting again for the boundary conditions (29),

one obtains another integral relation that reads as follows:

+∞∫

−∞
H1(H1 − ψX )dX = 0 . (31)

If the bottom is unevenonly in a region of finite length (in termsof the contracted coordinate X ), the solutions
of (28) subject to the boundary condition (29) decay exponentially, i.e. H1 ∼ exp(kX), as X → ± ∞. Since
(28) is of third order, k has to satisfy a cubic equation that reads

k
(
k2 − 1

) = β . (32)

As at least two real roots of (32) are required for describing a solution that decays both upstream and down-
stream, a necessary condition for the existence of such a solution of (28) isβ ≤ 2/3

√
3 ≈ 0.385, i.e. dissipation

must not be too strong. For β < 2/3
√
3 the cubic equation (32) has two negative real roots, k1 < k2 < 0, and

one positive real root, k3 > 0. For very small values ofβ, (32) has the roots k1 = −1+O(β); k2 = −β+O(β3);
k3 = 1 + O(β). Thus there are two types of solutions that differ from each other with respect to the decay
downstream, i.e. as X → ∞. One type of solution is characterized by a strong decay according to the root k1,
the other one by a weaker decay according to k2. Examples will be given below.

5 Analytical solutions

5.1 The stationary solitary wave as an exact solution

For a ramp of the shape
ψ(X) = 6[1 + tanh(X/2)], (33)

an exact solution of (28) with boundary conditions (29) is

H1 = 3 sech2(X/2) , (34)

i.e. the classical solitary-wave solution of inviscid flow, see Fig. 2. The term in parenthesis on the right-hand
side of (28) is identically zero in this particular case. Thus, the solution (34) has the remarkable property of
being valid for any value of the dissipation parameter β. In case of inviscid flow, i.e. β = 0, the right-hand side
of (28) would vanish and the position of the stationary solitary wave would remain undetermined. In other
words, it is the dissipation that fixes the position of the stationary solitary wave relative to the position of the
ramp.
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Fig. 2 Stationary solitary wave according to (34) in turbulent open-channel flow over a ramp of shape (33)

Note that, in the present formulation, H1 represents the elevation of the free surface with respect to the
channel bottom including the bottom elevation due to the bump or the ramp, whereas the solitary wave in
inviscid flowwould require a plane bottom. However, as the height of the bump or ramp is assumed to be much
smaller than the surface elevation, cf. (20), the distinction is not of relevance in the present case.

5.2 Solutions for small dissipation parameters

The dissipation parameter β is quite small in many practical applications as well as in pertinent laboratory
experiments. For instance, comparisons with measurements were made for stationary undular jumps with
β = 0.086 . . . 0.225 [64], β = 0.0563 [36], β = 0.00764 and β = 0.086 [35], among others, and for a
stationary solitary wave with β = 0.127 [62]. Thus it appears appropriate to investigate the behaviour of the
solutions for β � 1.

5.2.1 Solutions of the first kind (solitary-wave type): general relations

In the limit β → 0, the first-order non-trivial solution of (28) with boundary conditions (29) is

H (0)
1 = 3 sech2[(X − X (0)

m )/2] , (35)

where X (0)
m is the X-value of the maximum of H (0)

1 , i.e. it fixes the position of the maximum surface elevation

in first order. The parameter X (0)
m depends on the shape of the bump or ramp and can be determined from the

integral relation (31). However, before that is done, it is advisable to check whether the integral relation (30)
is satisfied. If the first-order solution (35) is inserted into the integral relation (30), one obtains ψ∞ = 12.
Thus, (35) is a uniformly valid solution of the extended KdV equation (28) with the homogeneous boundary
conditions (29) only in case of ramps with the non-dimensional height ψ∞ = 12. This value plays the role of
an eigenvalue to the problem.

For bumps, aswell as for rampswithψ∞ �= 12, the integral relation (30) requires that a long, but shallow, tail
is added to the solitary-wave solution (35). Then, (35) serves as a leading-order inner solution. An asymptotic
analysis for β � 1, analogous to the case of a plane bottom with a region of enlarged roughness considered in
[62, Appendix II], gives the following leading-order solution for the tail (outer solution) in terms of the outer
coordinate βX > 0:

H1 = β (ψ∞ − 12) exp (−βX) ; (X > 0) . (36)

According to (36), the shape of the bump or ramp does not affect the tail. The tail depends, in leading order,
only on the non-dimensional bottom elevation ψ∞ far downstream, which is zero for a bump and nonzero
for a ramp. If ψ∞ > 12, the surface elevation is positive in the whole stationary wave, including the tail. If
ψ∞ < 12, the tail is a shallow trough. Forψ∞ = 12 the tail vanishes, which is in accord with the eigensolution
given above.

If the dissipation term βH1 is dropped in the extended KdV equation (28), the integral condition (30) is
trivially satisfied, in first order, by the classical solitary-wave solution (35) in case of a bump of any shape,
whereas it cannot be satisfied in case of a ramp. In the former case, the integral condition (31) gives X (0)

m = 0
for a symmetric bump, i.e. the wave crest is exactly above the top of the bump in this particular case of inviscid
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flow. However, it should be noted that the solution for the inviscid case may not exist, though the solution of
the full equation, i.e. including the dissipation term, does. A well-known related problem is the undular jump,
which cannot be described as an inviscid flow, no matter how weak dissipation may be [25].

5.2.2 Solution of the first kind (solitary-wave type) for a plane ramp

An example that may be of practical interest is a plane ramp, i.e. a ramp with constant gradient ψX = ψ∞/L
in the region 0 < X < L . Note that the geometric height and length, respectively, of the ramp are b∞ =
ψ∞h̄rα

√
ε and l = Lh̄r/3

√
ε. The gradient of the ramp is b∞/ l = 3ψ∞αε/L , which is as small as ε3.

The integral relation (31) then gives the following expression for the position of the crest of the solitary
wave:

X (0)
m = L/2 ± arcosh[(ψ∞/2L) sinh(L/2) − cosh(L/2)] , (37)

which is analogous to equation (5) of [48] for the problem of a plane bottom with enlarged constant roughness
in the region 0 < X < L . A graph of (37) is shown in Fig. 3a. Real values of X (0)

m are obtained from (37) if,
and only if,

ψ∞/L ≥ 2 coth(L/4) . (38)

Equation (38) defines a minimum non-dimensional height ψ∞ for a given non-dimensional length L of the
ramp, or, vice versa, a maximum length for a given height.

If ψ∞ = 12, which leads, in first order, to the stationary solitary wave without a tail, Eqs. (37) and (38)
reduce to

X (0)
m = L/2 ± arcosh[(6/L) sinh(L/2) − cosh(L/2)] (39)

and
L/6 ≤ tanh(L/4) , (40)

respectively. Formally the same result was obtained for a plane channel bottom with enlarged constant rough-
ness in a region of length L [62]. It was shown there in Appendix I that only the solution with the lower sign
in (39) corresponds to a stable stationary wave. By analogy, it can be assumed that the same is true for (37).
According to (40) stationary solitary waves without a tail exist for plane ramps only if the ramp length does
not exceed a maximum value Lmax, which is given by Lmax ≈ 5.151 in first order.

For constructing a uniformly valid solution including the non-vanishing tail according to (36) the second-
order inner solution is required. In general, the second-order analysis will be rather cumbersome. However,
in the special case of a plane ramp, the results can be taken from [47], where the mathematically equivalent
problem of a plane bottom with a region of constant enlarged roughness is considered. The parameter ΓL with
the eigenvalue λ of [47] corresponds to ψ∞/L in the present problem. This gives the following second-order
eigenvalue for the ramp height:

ψ∞ = 12

[
1 + β

√
9 + (L/2)2 − 3L coth(L/2)

]
. (41)

(a) (b)

Fig. 3 The position of the crest of stationary solitary waves, X (0)
m , according to (37) and (42), respectively. a Plane ramp with

height ψ∞ and length L . First-order eigenvalue ψ∞ = 12. b Bump with isosceles triangular cross section of height ψ(0) and
half-length L
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The second-order eigenvalue may be of importance for predicting the parameters for experiments with good
accuracy. Since neither the second-order inner solution nor the uniformly valid solution will be used in what
follows, we refrain from reproducing the rather lengthy results here, and refer to [47].

5.2.3 Solution of the first kind (solitary-wave type) for a bump with triangular cross section

Another case of interest is a bump with a cross section of the shape of an isosceles triangle in the region
−L < X < +L . The piecewise constant gradient of the bump, ψX , is then related to the non-dimensional
height of the bump, ψ(0), by the equation ψX = ±ψ(0)/L , with the upper and lower signs for −L < X < 0
and 0 < X < +L , respectively. The geometric height of the top of the bump is bt = ψ(0)h̄rα

√
ε, while the

geometric length of the bump is l = 2Lh̄r/3
√

ε. A similar bump was investigated in [16] based on potential-
flow theory. Triangular bumps are also relatively easy to produce for the purpose of laboratory experiments;
cf. below.

For turbulent flow, the integral relation (31) gives the following implicit relation for the position of the
wave crest, X (0)

m :

tanh
X (0)
m + L

2
+ tanh

X (0)
m − L

2
− 2 tanh

X (0)
m

2
= 4L

ψ(0)
. (42)

It follows from (42) that a minimum height of the bump is required for the stationary solitary wave to exist,
i.e.

ψ(0) ≥ ψ(0)min = L(1 + 2 cosh L + √
5 + 4 cosh L)

(cosh L − 1)
√
1 − 4/(3 + √

5 + 4 cosh L)

. (43)

Providedψ(0) > ψ(0)min, (42) has two real solutions for X
(0)
m , cf. Fig. 3b. It is shown inAppendixD that the

solution with the larger value of X (0)
m is unstable with respect to a small perturbation of the position, associated

with a small perturbation of the amplitude. For the solution with the smaller value of X (0)
m , the same analysis,

which is based on the theory of slowly varying solitary waves [63], predicts stability. However, the experiments
that will be described below indicate that the realization of the “stable” solution of the solitary-wave type is
not an easy task and may even be impossible.

5.2.4 Solutions of the second kind

The solitary-wave solution (35) is associated with a surface elevation of the order of ε. However, (35) is not
the only non-trivial solution of the extended KdV equation (28) with boundary conditions (29). The previously
investigated case of a plane bottom with a region of enlarged roughness may serve as a guidance. Instigated by
numerical solutions of the unsteady, transient flow problem [34], it was shown [47] that there are also solutions
of (28), (29) with the leading term being of the order of β, i.e. describing free-surface elevations of the order
of βε = O(ε3/2). Those solutions describe waves that will be addressed as “stationary single waves of the
second kind” in what follows. They are characterized, among others, by remaining supercritical in the whole
flow field if β � 1.

Since theproblemof aplanebottomwith constant enlargedbottom roughness in a regionof non-dimensional
length L is mathematically equivalent to the problem of a plane ramp as defined in Sect. 5.2.2, first paragraph,
the uniformly valid solution given in [47] may be re-written in terms of the present variables as follows:

H1 =
{

βψ∞L−1H in(X) for X ≤ 0;
βψ∞L−1[H in(X) + Le−βX − L] for X ≥ 0,

(44)

with

H in(X) =

⎧
⎪⎨
⎪⎩

(1 − e−L) eX/2 for X ≤ 0 ;
−e−LeX/2 + e−X/2 + X for 0 ≤ X ≤ L ;
(1 − eL) e−X/2 + L for X ≥ L .

(45)

The superscript in indicates that it concerns the contribution of the inner solution.
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It is remarkable that the solutions of the second kind for a ramp, in contrast to the solutions of the first kind
(solitary-wave type), exist only for non-vanishing dissipation, display weak downstream decay, and the height
of the tail is of the same order of magnitude as the main part of the stationary wave.

For a bump, the behaviour of the solution of the second kind differs considerably from that given above for
a ramp. According to [49], the inner solution displays strong decay and, therefore, is a uniformly valid solution
of first order. To find a uniformly valid solution that comprises the shallow tail would require to determine the
second-order inner solution and match it with the outer solution. However, the extended KdV equation (28)
was derived by an expansion for small values of ε, and it seems doubtful whether it is still valid for terms being
as small as the second-order terms in the inner expansion. Thus, we refrain from providing a uniformly valid
solution of the second order and rather use numerical solutions for the comparison with experimental data.

6 Method of numerical solution

Even for simple geometries of the ramp or the bump, e.g. a plane ramp or a bump with an isosceles triangular
cross section, the problem is governed by three independent parameters, i.e. the non-dimensional length L, the
non-dimensional height ψ∞ or ψ(0), and the dissipation parameter β. In the lack of a general theory, it would
require an enormous computational effort to determine the regime of existence of solutions in the 3D parameter
space. That was beyond the scope of the present work. However, numerical solutions have been obtained, if
possible, for the purpose of comparisons with analytical solutions and experimental data, respectively.

Though the steady-state version (28) of the extended KdV equation is an ordinary differential equation that
can be solved with standard methods, the solution requires some consideration. First of all, a shooting method
cannot be applied, as one of the solutions of the homogeneous equation increases exponentially as X tends to
infinity. Thus the two-point boundary-value problem has to be solved. Secondly, the possible appearance of
very long, but very shallow, tails makes it advisable to choose the computational domain and the mesh size
with care.

The size of the computational domain was chosen sufficiently large to comprise the expected exponential
decay of the solution upstream and downstream, respectively, according to (32). The solutions are subject to
strong upstream decay according to the root k3 of (32). Since the wave crest is expected to be upstream of
the bump in the cases to be considered, cf. Fig. 3b, the upstream boundary of the domain was chosen to be
at X left = −20. In contrast, the downstream decay will be weak, as predicted by (36). Thus, the downstream
extension of the domain ought to depend on the dissipation parameter β. In order to constrain the error, Xright
is determined from the condition βXright = 8, e.g. Xright = 80 for β = 0.1 as a typical value of the dissipation
parameter. The boundary conditions (29) are then implemented as H1 = 0 at X left and Xright, respectively.
This approximation introduces errors of the order of 10−6 in H1.

A second-order difference scheme for non-uniform grids was used to discretize the terms in (28). The
grid point density near the ends of the computational domain was allowed to die out for the cases where a
large domain is required. The derivatives H1X and H1XXX were discretized by a central 3-point stencil and a
central 5-point stencil, respectively [3]. Equivalent one-sided second-order schemes were used at the domain
boundaries. The finite difference formulas are given in Appendix E.

For the present cases, β values of the order of 0.1 are sufficiently large to allow the use of an equidistant
distribution of grid points. The numerical solutions given below as examples were obtained with 12,000
uniformly distributed grid points. The computation was repeated with 6000 grid points in order to check
whether the resolution was sufficient. The comparison of the computations with 12,000 and 6000 grid points,
respectively, showed a difference of the order of 10−6 in the height of the wave crest.

The sparse nonlinear system of equations was solved with the Newton method. The Jacobian matrix was
computed analytically. The solution for weak dissipationwas used as an initial guess, if available, seeAppendix
F for details. The linear systems were solved with the LinearSolve command inMathematica. The maximum
value of the residuals after the Newton iterations was below 10−8 in all cases.

In order to confirm that the solver gives correct results, a comparison with analytical results [47] is given
in Fig. 4. Four cases of ramps are shown. The ramps have different non-dimensional heights, whereas the
non-dimensional length and the dissipation parameter, respectively, are the same in all cases. The relative error
of the uniformly valid asymptotic solution is of the order of β. The comparisons show reasonable agreement
even for the rather large value β = 0.1. For considerably smaller values of β, the numerical and analytical
solutions become indistinguishable from each other.
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Fig. 4 Solutions of the first kind for plane ramps of different non-dimensional heights ψ∞ and equal non-dimensional lengths
L , with L = 2. Dissipation parameter β = 0.1. Numerical solutions of (28) with boundary conditions (29), in comparison to
uniformly valid solutions [47]

7 Experiments

To perform experiments with the aim of verifying the theoretical results, a facility was available at Nihon
University, Tokyo; see [23,53,54] for technical details. The channel width and length are 0.8 m and 15 m,
respectively. A typical value of the volume flow rate per unit channel width is V̇ ∼ 0.1 m2/s. With a channel
width of 0.8 m and a water depth of approximately 0.1 m in the fully developed flow far upstream of the
bump, the hydraulic diameter becomes dh ∼ 0.3 m, leading to Reynolds numbers Re, based on the hydraulic
diameter, between 200,000 and 400,000. However, when the Reynolds number is determined for a particular
experiment, it has to be taken into account that the viscosity of the water depends on the room temperature in
the laboratory, which is subject to seasonal variations, among others.

In order to allow the application of bumps without ruining the facility, the channel bottomwas covered with
steel plates of 0.796 m width. Six steel plates were plane. Each had a thickness of 5 mm and a length of 1 m.
An additional steel plate, containing a bump with constant cross section in lateral direction, was placed behind
the third plate. The additional plate had the length of the bump; cf. Fig. 5. The shape of the bump cross section
was an isosceles triangle. Observations for steep-slope channels [53] as well as estimates based on theoretical
investigations on non-developed in-flow [33,35] indicate that placing three plane steel plates upstream of the
plate containing the bump is sufficient to guarantee fully developed flow upstream of the wave, while the
remaining three plane plates were placed downstream of the bump plate in order to simulate a plane bottom
of large extent. The first steel plate was located 5 m downstream of the upstream end of the channel. The flow
dropped over a head tank with 1.2 m height at the upstream end of the open channel. As the channel was sloped
until the required steep slope, the supercritical flow was formed without using a sluice gate. The flow was a
developing flow upstream of the location of the first steel plate. Along the three steel plates upstream of the
bump, the flow underwent a transition from gradually varying flow to uniform flow with a depth of about 9.08
cm for Fr = 1.08. By measuring the water depth it was confirmed that the flow depth was constant upstream
of the bump, indicating that the flow was indeed fully developed.

Results for two bumps will be presented below. One bump had a half-length of 195 mm and a height of
1.5 mm, the respective values of the second bump were 135 mm and 3.0 mm. For technical reasons it was not
possible to use bumps with heights considerably smaller than 1.5 mm. The larger height of 3.0 mm was then
chosen for the purpose of observing possible effects of the bump height. That resulted in non-dimensional
bump heights ψ(0) of 23.3 and 46.7, respectively. Unfortunately, those values are rather large, whereas they
are assumed to be of the order of 1 in the asymptotic analysis.

Concerning ramps, it was not possible at the time being to perform experiments to a sufficient extent and
with sufficient accuracy. Future work may be devoted to that problem.

Based on the values given in [59], Table 17.1, the roughness of seamless steel plates can be estimated
to be between 0.05 and 0.1 mm. To smooth the surface, it was covered with an oil film. Thus, the surface
can be considered as hydraulically smooth. Knowledge of the hydraulic roughness makes the planning of the
experiments easier, but it is of no relevance for the comparison with the analysis, provided the flow is fully
developed far upstream of the stationary wave. This is accomplished by arranging the steel plates as described
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Fig. 5 Part of the test section. Light grey: plane steel plates. Dark grey: bump

Fig. 6 Water depth above bottom (including bump) as measured at different lateral distances z from the centreline of the channel.
Bump with isosceles triangular cross section, bump half-length 135mm, height 3.0mm, bump crest at x = 3.425m; h̄r = 9.10
cm, V̇ = 9.23 × 10−2 m2/s, Re = 400,000, Fr = 1.08, α = 3.06 × 10−3

above, and by adjusting the channel slope α according to the upstream flow parameters. Then, the channel
slope becomes of the order of α ∼ 3 × 10−3.

The water surface elevation was measured with a point gauge with± 0.1mm reading. The uncertainty of
the measurement is about± 1mm. Apart from the turbulent fluctuations, the water surface was found to be
practically steady, i.e. in accord with the assumption of steady mean flow. Video 1, which is available online,
lends support to that observation. The video shows the water flow over a bump of isosceles triangular cross
section with half-length 135 mm and height 3.0 mm; the bottom slope is 1/327, while the Froude number and
the Reynolds number (based on hydraulic diameter) are Fr = 1.08 and Re = 400,000, respectively.

In order to check whether the surface elevation is also in accord with the assumption of two-dimensional
flow, the surface elevation at different lateral positions was measured; see Fig. 6 for a typical result. It appears
that the secondary flow, which is certainly present [57], has little effect on the surface elevation. Nevertheless,
in order to minimize possible sidewall and secondary-flow effects on the measurements, laterally averaged
values are used for the comparison with theoretical results.

Another assumption requiring justification concerns the viscous wall layer at the bottom. According to
Sect. 3.2, first paragraph, the thickness of the viscous wall layer is assumed to be much smaller than the height
of the bump. Using (4) for the friction velocity, the thickness of the viscous wall layer is estimated to be of the
order of ν/

√
gαh̄r . In the experiments, the room temperature in the laboratory varied between 10 and 27.3 ◦C.

Accordingly, the kinematic viscosity of the water varied between 1.31 × 10−6 and 0.754 × 10−6 m2/s. This
gives a thickness of the viscous wall layer of about 24 µm and 14 µm, respectively. In view of those values,
the bump heights of 1.5 mm and 3 mm, respectively, are well above the required minimum.

Comparisons of measured surface elevations with the theoretical predictions according to the present
analysis are given below. The values of the dissipation parameter β were determined from (19) with the
bottom slope α as measured at the facility for the particular experiment. The results to be shown have been
selected from several experiments with the aim of verifying the existence of two stationary wave types.
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Fig. 7 Non-dimensional surface elevation H1 as a function of the non-dimensional longitudinal coordinate X for a bump with
isosceles triangular cross section. The non-dimensional surface elevation at the critical state is H1 = 1. Fr = 1.08, α =
3.06×10−3, β = 0.0829, L = 1.49, ψ(0) = 23.3. Lines: numerical solutions of (28) with boundary conditions (29); solid lines:
stable and unstable solutions, respectively, of the solitary-wave type; dashed line: solution of the second kind. Dashed-dotted line:
bump profile. Crosses: results of measurements at steady state after straightforward start-up. Bump half-length 195 mm, height
1.5 mm; h̄r = 9.08cm, V̇ = 9.23 × 10−2 m2/s, Re = 220,000 (based on hydraulic diameter)

The experiments were performed in the well-established way [23,53,54], i.e. by adjusting the channel
slope and the discharge in order to settle the required Froude number and the required supercritical flow depth.
When the water surface profile was recorded transversely and longitudinally under steady flow conditions,
which took about 5min, a surprising observation was made. In contrast to what has been observed for a plane
bottom with a region of enlarged roughness [62], the stationary surface elevation over the bump did not come
close to the predicted solitary wave. The stationary single wave was rather of the type of the solutions of the
second kind; see Fig. 7 for a typical example. Figure7 shows that the position and the maximum height of
the observed stationary wave are in good agreement with the predictions, whereas the width of the observed
wave is somewhat larger, and the tail is a bit less pronounced, than according to the numerical solution of the
second kind. However, the deviations are within the approximate error bounds, cf. the estimates given below.
Far downstream of the stationary wave, after the flow had already reached a region of nearly undisturbed water
depth, another stationary surface elevation was observed, as the measured value near X = 10 indicates. The
latter surface elevation was apparently caused by a very small step in the bottom near the sidewall. Regrettably,
it was not possible to remove that unevenness of the bottom in course of the experiments, but, as the flow is
supercritical, an effect on the single wave quite far upstream of the unevenness can be ruled out.

In course of attempts to realize the stationary wave of the first kind (solitary-wave type), the following
start-up process was discovered. A point gauge was inserted into the water down to the bottom and kept there
for some time, e.g. 40–60s. As a consequence, the wave resembling the solution of the second kind moved
upstream of the bump, while the amplitude of the wave became larger. After the movement of the wave, the
wave formation was stable when the point gauge was removed from the water. Figure8 shows the results of
measurements for a stationary wave of the solitary-wave type that was obtained in that way.

It is thought that those observations clearly indicate the existence of two types of stationary single waves,
as theoretically predicted. Note that tails are visible in all results of measurements as given in Figs. 6, 7 and
8. With regard to quantitative comparisons of experimental data and theoretical results, the following error
estimates can be made. The derivation of the extended KdV equation is based on an asymptotic expansion
for Froude numbers close to 1 and large Reynolds numbers. Thus, the relative errors of the extended KdV
equation are of the order of ε and 1/ln Reτ , respectively. With ε ≈ 0.05 according to (17) and 1/ln Reτ ≈ 0.12
according to (6), the error of the solutions of the extended KdV equation could be expected to be of the order
of 10%. However, a particular problem is the bump with the rather large height of 3.0 mm. According to the
asymptotic expansion described in Sect. 4, the forcing term in the extended KdV equation (28) gives rise to a
relative error of the order of εβψ(0). With the values given in the caption to Fig. 8 one obtains εβψ(0) ≈ 0.20,
i.e. an error of about 20%. Regarding the experimental data, the error in the water surface elevation measured
with the point gauge is about 
h̄ ∼ 1 mm, as already mentioned above. Using Eqs. (5a), (22) and (17), the
error can be expressed in terms of the perturbation of the surface elevation as
H1 ∼ 3
h̄/2(Fr −1)h̄r . With
the parameters given in the captions to the Figs. 7 and 8, one obtains 
H1 ∼ 0.2. Accounting for the error
estimates for both theory and experiment, the deviations of the measured values of the surface elevation from
the predictions appear reasonable.
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Fig. 8 Non-dimensional surface elevation H1 as a function of the non-dimensional longitudinal coordinate X for a bump with
isosceles triangular cross section. The non-dimensional surface elevation at the critical state is H1 = 1. Fr = 1.08, α =
3.06 × 10−3, β = 0.083, L = 1.03, ψ(0) = 46.7. Experiments: bump half-length 135mm, height 3.0mm; h̄r = 9.10cm,
V̇ = 9.23 × 10−2 m2/s, Re = 400,000 (based on hydraulic diameter). Solid line: numerical solitary-wave type solution of
(28) with boundary conditions (29). Dashed line: classical solitary-wave solution (35) with X (0)

m from (42), stable position.
Dashed-dotted line: Bump profile. Crosses: Results of measurements at steady state after start-up with applying point gauge

With regard to the numerical solutions it may be worth mentioning that it was not possible to find a
numerical solution for the stationary wave of the second kind in case of the larger bump height, i.e. with the
parameters as given in the caption to Fig. 8. Besides, in this case the numerical solution of the solitary-wave
type exhibits a hump and differs considerably from the first-order analytical solution (35), i.e. the classical
solitary wave, which is shown for the purpose of comparison in Fig. 8. Those peculiarities seem to indicate
limits of applicability of the asymptotic expansions that form the basis of the present analysis, in particular
with respect to the height of bumps.

If the predictions shown in Fig. 8 had been known a priori, a better spatial resolution of the experimental
data could have been obtained locally at, and near, the predicted hump or other particular features of the
numerical solutions. However, the numerical results were not available prior to conducting the experiments.
As the results are very sensitive to the parameters, i.e. (Fr − 1), bottom slope and reference surface height, it
was not possible to adjust all parameters in a particular experiment to a parameter set prescribed according to
a numerical solution. Instead, the experiments were performed with parameters as close to the desired values
as possible, and afterwards the numerical solutions were obtained with the data sets of the experiments for the
purpose of comparison.

Finally, it might be worth mentioning that flow separation was not observed in any of the experiments with
bumps. Obviously, the inclination angle of the bump flanks is too small to give rise to noticeable separation.

8 Conclusions

The present paper concerns turbulent open-channel flow over bumps or ramps of very small height. In the
main theoretical part, a double asymptotic expansion was performed. Firstly, an asymptotic expansion for very
large Reynolds numbers or, equivalently, very small slopes α of the channel bottom, could take advantage
of splitting the flow field into two regions, i.e. the universal viscous wall layer at the bottom and the defect
layer. For the latter, matching conditions with respect to the wall layer and boundary conditions at the free
surface had to be satisfied. The novel feature in that approach is the treatment of the boundary conditions at
the bumps or ramps. Secondly, in order to describe near-critical free-surface flow, the Froude number was
written as Fr = 1+ (3/2)ε, and an asymptotic expansion was performed with ε as a small parameter. Though
the governing equations of the defect layer and the dynamic boundary conditions at the free surface contain
Reynolds stresses, turbulencemodelling could be avoided by a proper choice of the relative orders ofmagnitude
of α, ε and the non-dimensional height of the bump or ramp, B.

The results indicate that a very small unevenness in the channel bottom produces much larger surface
elevations in steady near-critical turbulent open-channel flow. Shape and position of the surface elevation are
governed by the steady-state version of an extended KdV equation. The extension consists of two parts: one is
a linear term due to dissipation, which is known from previous investigations; the other one is a new forcing
term that describes the effect of the unevenness in the bottom. For a ramp of a particular shape, the shape
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of the stationary surface elevation is found to be that of the classical solitary wave of inviscid flow over a
plane bottom. The same solution is obtained in the limit of vanishing dissipation parameters for ramps and
bumps of any shape. However, depending on the shape and size of the ramp or the bump, the position of the
stationary solitary wave varies. With the exception of a ramp with a non-dimensional height of a particular
value (eigenvalue), a long, shallow tail is attached to the solitary wave. For finite values of the dissipation
parameter, stationary single waves resembling solitary waves with tails were obtained by numerical solutions
of the extended KdV equation (28) with boundary conditions (29).

In addition to the waves of the type of solitary waves, stationary single waves of a second kind were
obtained as solutions of the extended KdV equation. Their amplitudes are considerably smaller than those of
the solitary-wave type. All solutions of the second kind display a long tail.

The asymptotic analysis gives results that are exact in the limit of infinite Reynolds number Re, Froude
number Fr approaching the critical value 1 and non-dimensional bump or ramp height B approaching zero.
In experiments, however, one deals with finite values of Re (or α), ε = (2/3)(Fr − 1), and B. That limits
the accuracy of the theoretical results for the purpose of comparison with measurements. The accuracy of
the measurements, on the other hand, is also rather limited, as the water surface elevation is relatively small.
However, there can be no doubt that the experiments prove the existence of two fundamentally different steady
states. In particular, it appears to be the first time that a solution of the second kind of an extended KdV
equation has been observed in an experiment. Position and maximum surface elevation of the stationary wave
of the second kind were predicted with good accuracy, without applying empirical constants. For the stationary
waves of the first kind, i.e. those resembling stationary solitary waves, the agreement between experimental
data and theoretical predictions is less good, but still within the estimated error bounds.

Two steady states are not uncommon in fluid mechanics. Examples that are close to the present one have
already beenmentioned in the introduction in the discussion of inviscid-flow solutions. Often, different start-up
processes lead to different steady states. In the present case, it is the insertion of the point gauge that causes
a start-up process that differs from that without an initial disturbance. In Appendix D, single waves of the
solitary-wave type, varying slowly with time, are considered for the case of flow over a bump. That allows
interesting, though limited, conclusions regarding stability of the stationary single waves of the first kind.
Investigations on the stability of the stationary single waves of the second kind were beyond the scope of
the present work. Clearly, the stability of the stationary single waves described in the present paper deserves
further investigations.

In the theoretical part of the paper, equations were derived that relate the most important flow quantities,
such as velocity components, pressure and shear stress at the bottom, to the free-surface elevation, which is to
be determined as a solution of the steady-state version of the extended KdV equation. Measuring other flow
quantities in addition to the surface elevation, though desirable, was not possible with the facility available for
the present experiments. It may be noted, however, that the Reynolds shear stress distribution at the location
of the first crest of an undular jump was measured by Lennon and Hill [41]. A comparison with solutions of
(28) and ψX ≡ 0 showed reasonable agreement [35]. In view of the similarity between the first wave of an
undular jump and the solitary wave, this may be considered as lending further support to the present analysis.

Concerning future work, experiments with ramps are desirable. Preliminary investigations led to promising
results, but they are still incomplete. Thus it was decided to refrain from including them in the present paper.
It will also be of interest to compare the analytical results with numerical solutions of the full equations of
motion with modelled Reynolds stresses, e.g. by applying the iteration method described in [61]. Work in that
direction is in progress.
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A Justification of using the logarithmic law of the wall

According to the generalized lawof thewall [59], p. 547, a non-dimensional coupling parameter K characterizes
the effect of the pressure gradient on the law of the wall. For K → 0, the generalized law of the wall reduces
to the logarithmic law. In the present notation, K is defined as

K = (us/uτr )
3 , with u3s = (ν/ρ)dp(x, 0)/dx . (46)

Introducing non-dimensional variables according to (2), (5a) and (6) gives

K = (δ/αReτ )P̄X (X, 0) . (47)

Substituting for δ and expanding P̄ according to (1) and (25), respectively, and introducing β with (19), one
obtains

K = (1/βReτ )H1X . (48)

For the parameters of the experiment, K-values of the order of 10−3 are obtained, justifying the application of
the logarithmic law.

B Derivation of the extended KdV equation (28)

The following derivation of the extended KdV equation (28) follows [60], accounting for different boundary
conditions at the bottom due to the presence of bumps or ramps.

The dependent variables are expanded in terms of powers of ε as shown in (22) for the non-dimensional
surface elevation as an example. To keep the analysis free of turbulence modelling, several important points
have to be observed. First, the volumetric mean velocity of the fully developed flow far upstream is taken
as the reference velocity, as already noted in Sect. 2. Secondly, the surface height of the fully developed
flow, i.e. the reference height h̄r , ought to be known for given values of bottom slope, α, and volume flow
rate, V̇ . This implies that the friction coefficient of the channel, c f r , is known, as the force balance gives
h̄r = (c f r V̇ 2/2gα)1/3. Thirdly, the non-dimensional “velocity defect” 
U = 
U (Y ) is introduced such
that the local value of Ū in the fully developed flow far upstream differs from its volumetric mean, i.e. 1, by
the amount

√
α
U ; cf. the comments below (28). In addition, the perturbation of the defect velocity profile,

which leads to a perturbation of C̄ as defined by (13), will appear only in terms of higher order than presently
considered. For that, it is of importance to apply the logarithmic “law of the wall” (“overlap law”) in a suitable
form, such as (11). On that basis, the asymptotic analysis can be performed as follows.

With the basic state given by the simple relations

H0 = 1 , U0 = 1 , V0 = 0 , P0 = 1 − Y , (U ′V ′)0 = Y − 1 , (49)

the expansion of the continuity equation (7) leads to U1X + V1Y = 0, which can be integrated to obtain

V1 = −
Y∫

0

U1XdY , (50)

where the expanded boundary condition at the bottom, Eq. (10), has already been satisfied.
Before expanding the momentum equations (8a) and (8b) for small values of ε, the small parameters δ and

α are expressed in terms of ε according to (1) and (18), respectively. Expanding then (8b) gives P1Y ≡ 0, i.e.

P1 = P1(X) . (51)

Then expanding (8a), one obtains U1X = −P1X . This can also be integrated. The free function of inte-
gration is determined from relations characterizing the fully developed flow far upstream, i.e. P1 ≡ 0 ,
U1 = √

A
U (Y ) as X → −∞. 
U (Y ) is the non-dimensional velocity defect, which is introduced as
described above. Therewith one obtains the relation

U1(X, Y ) = −P1(X) + √
A
U (Y ) . (52)
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Next, the following relations follow from the dynamic boundary conditions (16b) and (16a), in this order:

P1(X) = H1(X) ; (53)

(U ′V ′)1(X, 1) = −H1(X) . (54)

Taking (52) and (53) into account, the integration in (50) can be performed, with the result

V1 = Y H1X . (55)

Finally, the logarithmic law (11) is expanded together with (13). Concerning the expansion of the latter
equation it suffices to formally write C̄(X) = C̄r + εC̄1(X), where C̄r denotes the value of C̄ in the reference
state, i.e. for the fully developed flow. Using (6) and (12), one obtains the following relation:

1 + εU1(X, 1) + · · · =
√

α

Fr

⎛
⎝ 1

κ
ln

√
gαh̄3r

ν
+ C+ + C̄r

⎞
⎠

+ ε
√

α

Fr

⎡
⎣−1

2
(U ′V ′)1(X, 0)

⎛
⎝ 1

κ
ln

√
gαh̄3r

ν
+ C+ + C̄r + 1

κ

⎞
⎠+ H1

κ
+ C̄1

⎤
⎦+ · · · .

(56)
Far upstream, the velocity perturbation is given by the velocity defect of the fully developed flow, and the
perturbation of the Reynolds shear stress vanishes, i.e.

X → −∞ : U1 = √
A
U (Y ) ; (U ′V ′)1 ≡ 0 ; C̄1 = 0 . (57)

Comparing (57) with (56) shows that the logarithmic terms in the latter equation may be substituted according
to the relation √

α

Fr

⎛
⎝ 1

κ
ln

√
gαh̄3r

ν
+ C+ + C̄r

⎞
⎠ = 1 + ε

√
A
U (1) , (58)

to obtain
(U ′V ′)1(X, 0) = 2H1(X) , (59)

where Fr has been replaced by 1 in leading order, and
√
A
U (1) has been eliminated with the help of (52) and

(53). Note that Y = 0 refers to the channel bottom in terms of defect-layer coordinates, i.e. −(U ′V ′)1(X, 0)
is equal to the first-order perturbation of the bottom shear stress.

With (52)–(55) and (59), the results of the expansion up to first order are complete. Obviously, either H1(X)
or P1(X) remain free in the framework of the first-order equations. Thus, the second-order equations have to
be inspected for solvability.

Expanding, first, the momentum equation (8b) up to second order, making use of the first-order results given
above, integrating with respect to Y and determining a free function of integration from the dynamic boundary
condition (16b) at second order, gives

P2 − H2 = 9

2
H1XX (1 − Y 2) − A(V ′2)0 , (60)

where the last term on the right-hand side of the equation is a function of Y only. Secondly, the momentum
equation (8a) is also expanded up to second order, retaining the term of the order βε2, with β defined in (19),
to obtain

U2X + P2X = −U1U1X − V1U1Y − 3U1X − β(U ′V ′)1Y . (61)

U2X may be replaced by −V2Y according to the expanded version of the continuity equation (7), and, further-
more, P2 may be eliminated using (60). The equation hence obtained can then be integrated with respect to Y,
accounting for the boundary condition at the bottom, Eq. (10). Introducing, once more, the first-order results
and observing that, by definition,

1∫

0


UdY = 0 ,

1∫

0

Y (
U )Y dY = 
U (1) , (62)



4720 W. Schneider et al.

one obtains the following relation:

V2(X, 1) − H2X = 3H1XXX − [3 − H1 − √
A
U (1)]H1X − 3β[H1 + ψX ] . (63)

On the other hand, the second-order kinematic boundary condition, which follows from (15) upon expanding,
gives

V2(X, 1) − H2X = −[2H1 − √
A
U (1)]H1X . (64)

Equations (63) and (64) are compatible if H1 satisfies the equation

H1XXX + (H1 − 1)H1X = β(H1 − ψX ) , (65)

i.e. (28). Note that 
U (1) has cancelled, so that knowledge of the velocity defect is not required.

C Conservation of momentum flow

As the steady flow far upstream (X → −∞), as well as far downstream (X → +∞), is assumed to be fully
developed, the momentum flow rate far upstream is the same as far downstream, and the forces acting on the
total volume of fluid must balance. The hydrostatic pressures far upstream and far downstream balance each
other. Thus, the forces that remain to be taken into account in the over-all force balance are the X -component
of the gravity force acting on the liquid, the force due to the pressure acting on the bump or ramp, and the
bottom friction force. Since fully developed flow is characterized by an equilibrium of forces, only the forces
in excess to those acting in the fully developed flow have to be considered. This gives the following force
balance:

gαh̄r

+∞∫

−∞
(H̄ − 1) dX − gδh̄r

+∞∫

−∞
P̄(X, B)BXdX − u2τr

+∞∫

−∞
(U 2

τ − 1) dX = 0 . (66)

The coefficients in front of the first and the third integral cancel according to (4). Substituting for δ, B and
U2

τ according to (1), (20) and (12), respectively, and introducing the expansions (22) to (26) gives, to the first
order,

+∞∫

−∞
(H1 − ψX ) dX = 0 . (67)

With the integral boundaries (21a,b) for ψ , one finally obtains the integral relation (30).

D Slowly varying solitary wave in turbulent free-surface flow over a bump

For turbulent free-surface flowswith ensemble-averaged quantities depending on time t, the analysis of Sects. 3
and 4 can easily be extended to obtain the following extended KdV equation:

H1T − H1XXX − (H1 − 1) H1X + βH1 = βψX , (68)

where T is the non-dimensional time variable, which is defined by the equation

T = (9/2)ε3/2
(
V̇ /h̄2r

)
t . (69)

Applying a method due to [63], pp. 294–296, to the bump with isosceles triangular cross section defined in
Sect. 5.2.3, one obtains the following expression for the slowly changing surface elevation:

H1(X, T ) = 3(1 − V ) sech2[(X − X0 − VT )
√
1 − V /2] , (70)

with the evolution equation

3

β

dV

dT
= 4(1 − V ) − ψX

{
tanh

[
(X0 + L + VT )

√
1 − V

2

]

+ tanh

[
(X0 − L + VT )

√
1 − V

2

]
− 2 tanh

[
(X0 + VT )

√
1 − V

2

]} (71)
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for the slowly varying wave speed V (T ). When evaluating the integrals that lead to the right-hand side of (71),
only the solitary-wave solution (35) was taken into account, whereas the contribution of the tail according to
(36) turns out to be of the order of β, i.e. negligible.
According to (70), the maximum free-surface elevation (“amplitude” of the solitary wave) is equal to 3(1−V ).
It is located at Xm = X0 + VT , i.e. at each moment the wave moves as if V were constant, with X = X0
being the locus of the maximum surface elevation at time T = 0.

For small perturbations of the stationary solitary wave, the evolution equation (71) can be linearized and
then integrated to give

V = V (0) exp[β(K1T + K2T
2)] , (72)

with the constants

K1 = −4

3
+ ψX

[(
X (0)
m + L

)
sech2

(
X (0)
m + L

2

)

+
(
X (0)
m − L

)
sech2

(
X (0)
m − L

2

)
− 2X (0)

m sech2
(
X (0)
m

2

)]
; (73)

K2 = −ψX

[
sech2

(
X (0)
m + L

2

)
+ sech2

(
X (0)
m − L

2

)
− 2 sech2

(
X (0)
m

2

)]
, (74)

where X (0)
m is given by the solutions of (42). Figures9 and 10 show K1 and K2, respectively, as functions of

X (0)
m with L as parameter. Note that the zeros of K2 are at the same values of X (0)

m as the minima of ψ(0)
according to (43), see Fig. 3b. Since K2 characterizes the development of the perturbations for T � 1 as
long as the perturbations remain small, the following conclusions can be drawn. Provided ψ(0) ≥ ψ (0)min

for a fixed parameter L, (42) has two solutions for X (0)
m , see Fig. 3b. For the larger value of X (0)

m , (74) gives
K2 > 0, as shown in Fig. 10, i.e. the wave speed grows beyond bounds with increasing time T, indicating
that the stationary solitary wave is unstable. For the smaller value of X (0)

m , in contrast, one obtains K2 < 0,
i.e. the wave speed decays and the perturbed solitary wave returns to the stationary position. In the limiting
case ψ (0) = ψ (0)min, K2 vanishes, but K1 remains positive, indicating instability with respect to small
perturbations, cf. (72). Furthermore, a comparison of Figs. 9 with 10 shows that there is a regime of values
of X (0)

m where K1 > 0 and K2 < 0; this implies that the perturbation initially grows as if the solution were
unstable, but eventually the perturbation decays, stabilizing the solution.

As already noted in [63], the present method for predicting slowly varying solitary waves neglects possible
oscillatory waves of small amplitudes and, furthermore, does not allow for creation and destruction of solitary
waves. Thus, the results should be checked by numerical solutions. For the case of a plane bottom with a
region of constant enlarged roughness, which is mathematically equivalent to a plane ramp, comparisons with
numerical solutions are already available [34]. Among others, it was shown in [34] that the unstable solitary
wave approaches a new solution, i.e. the solution of the second kind in the present nomenclature, for very large
non-dimensional times. Similar investigations for bumps are certainly desirable.

E Finite difference formulas

The following finite difference schemes are used in the numerical solver described in Sect. 6. A set of n grid
points with nodes at the positions Xi and non-uniform spacing 
i = Xi+1 − Xi is defined. The expression Hi
represents H1 at the grid point with index i . H ′

i and H
′′′
i , as given below, are the finite difference approximations

for H1X and H1XXX , respectively, at the point with index i . The difference formulas for the derivatives are
second order accurate in space.

E.1 First derivative

At the domain boundary point i = 1, a right-biased 3-point stencil is used

H ′
i = − 2
i + 
i+1


i (
i + 
i+1)
Hi + 
i + 
i+1


i
i+1
Hi+1 − 
i


i+1 (
i + 
i+1)
Hi+2 .
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Fig. 9 The constant K1 as a function of X
(0)
m for various values of the non-dimensional half-length of the bump, L

Fig. 10 The constant K2 as a function of X
(0)
m for various values of the non-dimensional half-length of the bump, L . For fixed L ,

K2 vanishes at the value of X
(0)
m that is associated with the minimum of ψ(0)

For the interior points i = [2, n − 1], a central stencil is used, cf. [3]

H ′
i = − 
i


i−1 (
i−1 + 
i )
Hi−1 + 
i − 
i−1


i−1
i
Hi + 
i−1


i (
i−1 + 
i )
Hi+1 .

The stencil used at the right domain boundary point i = n is left-biased accordingly.

E.2 Third derivative

At the left boundary point i = 1, a right-biased 5-point stencil is used

H ′′′
i = − 6 (4
i + 3
i+1 + 2
i+2 + 
i+3)


i (
i + 
i+1) (
i + 
i+1 + 
i+2) (
i + 
i+1 + 
i+2 + 
i+3)
Hi

+ 6 (3
i + 3
i+1 + 2
i+2 + 
i+3)


i
i+1 (
i+1 + 
i+2) (
i+1 + 
i+2 + 
i+3)
Hi+1

− 6 (3
i + 2
i+1 + 2
i+2 + 
i+3)


i+1 (
i + 
i+1)
i+2 (
i+2 + 
i+3)
Hi+2

+ 6 (3
i + 2
i+1 + 
i+2 + 
i+3)


i+2 (
i+1 + 
i+2) (
i + 
i+1 + 
i+2)
i+3
Hi+3

− 6 (3
i + 2
i+1 + 
i+2)


i+3 (
i+2 + 
i+3) (
i+1 + 
i+2 + 
i+3) (
i + 
i+1 + 
i+2 + 
i+3)
Hi+4 .



Near-critical turbulent open-channel flows 4723

For the point next to the left domain boundary i = 2

H ′′′
i = − 6 (3
i + 2
i+1 + 
i+2)


i−1 (
i−1 + 
i ) (
i−1 + 
i + 
i+1) (
i−1 + 
i + 
i+1 + 
i+2)
Hi−1

+ 6 (−
i−1 + 3
i + 2
i+1 + 
i+2)


i−1
i (
i + 
i+1) (
i + 
i+1 + 
i+2)
Hi

+ 6 (
i−1 − 2
i − 2
i+1 − 
i+2)


i (
i−1 + 
i ) 
i+1 (
i+1 + 
i+2)
Hi+1−

− 6 (
i−1 − 2
i − 
i+1 − 
i+2)


i+1 (
i + 
i+1) (
i−1 + 
i + 
i+1)
i+2
Hi+2

+ 6 (
i−1 − 2
i − 
i+1)


i+2 (
i+1 + 
i+2) (
i + 
i+1 + 
i+2) (
i−1 + 
i + 
i+1 + 
i+2)
Hi+3 .

For the interior points i = [3, n − 2], a central 5-point stencil is used, cf. [3]

H ′′′
i = 6 (
i−1 − 2
i − 
i+1)


i−2 (
i−2 + 
i−1) (
i−2 + 
i−1 + 
i ) (
i−2 + 
i−1 + 
i + 
i+1)
Hi−2

− 6 (
i−2 + 
i−1 − 2
i − 
i+1)


i−2
i−1 (
i−1 + 
i ) (
i−1 + 
i + 
i+1)
Hi−1

− 6 (−
i−2 − 2
i−1 + 2
i + 
i+1)


i−1 (
i−2 + 
i−1)
i (
i + 
i+1)
Hi

− 6 (
i−2 + 2
i−1 − 
i − 
i+1)


i (
i−1 + 
i ) (
i−2 + 
i−1 + 
i )
i+1
Hi+1

+ 6 (
i−2 + 2
i−1 − 
i )


i+1 (
i + 
i+1) (
i−1 + 
i + 
i+1) (
i−2 + 
i−1 + 
i + 
i+1)
Hi+2 .

Accordingly, left-biased stencils are used for i = n − 1 and i = n.

F Initial guess for the Newton iteration

In the numerical solver described in Sect. 6, the following initial guesses are used to start the Newton loop.
For the numerical solutions in Fig. 4, the uniformly valid solutions from [47], as shown in the figure, are used
as initial guesses. For the bump in Fig. 7, a uniformly valid analytical solution of the first kind is not available
yet. Instead, we selected

H1 = 12

(
1

exp(X − X (0)
m )

+ 2 + 1

exp(X (0)
m − X) + β (ψ∞ − 12) exp(−βX)/12

)−1

(75)

as initial guess for the solutions of the first kind. For very weak dissipation, i.e. β → 0, this expression
coincides with the first-order inner solution Eq. (35), valid for X = O(1), as well as with the outer solution
Eq. (36) for βX = O(1). For bumps,ψ∞ = 0.We chose X (0)

m = −2 and X (0)
m = −1 for the stable and unstable

solitary wave, respectively. For the solution of the second kind, the first-order inner solution according to [49],
Eq. (6), was used as the initial guess. For the result in Fig. 8, the displayed classical solitary-wave solution
was used.
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