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Abstract Genetic algorithms (GAs) have a long history of

over four decades. GAs are adaptive heuristic search

algorithms that provide solutions for optimization and

search problems. The GA derives expression from the

biological terminology of natural selection, crossover, and

mutation. In fact, GAs simulate the processes of natural

evolution. Due to their unique simplicity, GAs are applied

to the search space to find optimal solutions for various

problems in science and engineering. Using GAs for lens

design was investigated mostly in the 1990s, but were not

fully exploited. But in the past few years, there have been a

number of newer studies exploring the application of GAs

or hybrid GAs in optical design. In this paper, we discuss

the basic ideas behind GAs and demonstrate their appli-

cation in optical lens design.

Keywords Genetic algorithm � Lens optimization � Lens
system design � Optimization strategies

Introduction

In terms of designing optical lenses, there are many con-

straints and requirements, including restrictions like

assembly, potential cost, manufacturing, procurement, and

personal decision making [1]. Typical parameters include

surface profile types such as spherical, aspheric, diffractive,

or holographic. Usually, the design space for optical sys-

tems consists of multi-dimensional parameter space.

Moreover, the radius of curvature, distance to the next

surface, material type and optionally tilt, and decenter are

necessary for lens design [2].

The most important aspects for designing optical lenses

are optical performance or image quality, manufacturing,

and environmental requisitions. Optical performance is

determined by encircled energy, the modulation transfer

function (MTF), ghost reflection control, pupil perfor-

mance, and the Strehl ratio [3, 4]. Manufacturing

requirements include weight, available types of materials,

static volume, dynamic volume, center of gravity, and

configuration requirements. Furthermore, environmental

requirements encompass electromagnetic shielding, pres-

sure, vibration, and temperature. Additional constraints

comprise lens element center and edge thickness, and

minimum and maximum air spaces between lenses. Other

important design constraints are maximum constraints on

entrance and exit angles, the physically realizable glass

index of refraction and dispersion properties [5].

Optical designers manufacture a lens system, with all

the design requirements for optical lenses, in one place.

The most important part of lens design is called opti-

mization. In the process of optimization, the values of

independent variables (e.g., material between surfaces) are

used to realize dependent variables such as imaging mag-

nification [6]. Furthermore, the optimization process con-

tains local and global minima. Global optimization is

needed to find the most stable solution.

Traditionally, the most effective optimization tool is the

Levenberg–Marquardt algorithm or damped least squares

(DLS) method which solves nonlinear least squares prob-

lems. A disadvantage of DLS is that the designer has to
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kaspar.hoeschel@student.tuwien.ac.at

1 TU Wien, Karlsplatz 13, 1040 Wien, Austria

2 Theoretical and Experimental Epistemology Lab,

Departments of Physics, School of Optometry and Vision

Science, ECE and Systems Design Engineering, University of

Waterloo, Waterloo, ON N2L 3G1, Canada

123

J Opt (March 2019) 48(1):134–144

https://doi.org/10.1007/s12596-018-0497-3

http://orcid.org/0000-0001-9881-7892
http://crossmark.crossref.org/dialog/?doi=10.1007/s12596-018-0497-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12596-018-0497-3&amp;domain=pdf
https://doi.org/10.1007/s12596-018-0497-3


tackle with the local minimum. Therefore, global opti-

mization tools were introduced [1, 7]. Usually, an optical

engineer starts from a global search algorithm with a rough

initial configuration of lens design (initial glass selection,

number of surfaces, field of view, a wavelength, and an

exact stop position). An automatic optimization algorithm

is applied to alter the configuration and to find the best or

adequate solution. An initial configuration could be parallel

plates of glass to control the surface curvature.

By defining many variables and a merit function, the

global search algorithms, combined with computer-aided

design (CAD) tools, can find design forms with inadequate

and many possible solutions. The optical designer needs to

examine one or more optical systems by improving the

adjustments and optimizations with algorithms like the

Hammer algorithm [8] or by hand calculation. In contrast

to traditional optimization tools, the optimization problem

of lens design can be solved by the use of a genetic algo-

rithm (GA). This specific kind of algorithm is capable of

imitating the principles of biological evolution. A GA is

based on repeating the modification of an individual pop-

ulation similar to biological reproduction. Its random nat-

ure is utilized to improve the search for a global solution

[9].

Since 2015, several researchers have applied the hybrid

GA to lens design [10–12]. These kinds of GAs can be

effectively applied to real-world problems and contain

other techniques within their frameworks. It can be argued

that hybrid GAs are more efficient than other types of

optimization strategies in the field of lens design. Studies

have shown that hybrid GAs can be usefully applied for

correcting and eliminating chromatic aberrations.

The purpose of this review is to provide an overview

about GAs used in lens design, starting with the back-

ground, the optimization problem, and specific require-

ments of GAs. We then discuss the use of GAs in lens

design.

Background

Optical lens system

A search space for lens design encompasses a multi-di-

mensional space including several peaks, nonlinearity, and

a strong correlation between parameters [13]. The search

for local minima is dependent on the initial point solution.

Only adjacent points of the initial solution are investigated

[1]. Hence, diverse applications of global search methods

can be inserted in optical design. Optical software includes

special algorithms to investigate beyond optima [14–16].

A typical two-element air-spaced lens with nine vari-

ables would consist of 4 radii of curvature, 2 glass types, 2

thicknesses, and 1 airspace thickness. Apart from that, a

multi-configuration lens includes corrections over the field

of view and over a wide spectral band as well as over

realistic temperature ranges and over a range of focal

lengths. This kind of configuration indicates a complex

design volume with many dimensions [5].

Predetermined constraints and parameters are necessary

to create an optical lens design. Parameters would include

the curvature of spherical surfaces, type of material, and

element position. In addition, constraints include magnifi-

cation, numerical aperture, and field of view. Economic

factors incorporate cost, size, and the weight of the system

elements. Moreover, the image quality depends on aber-

rations. The lower the aberrations, the better the image

quality and the better the optical lens system [17].

Lens optimization

Typically, there are independent and dependent variables

in lens design. Examples for independent variables are such

as total surface number, material between surfaces, or the

curvature of the surface and dependent variables such as

effective focal length, back focal length, or distance from

the object surface to the image surface. The most crucial

part of lens design is the process of optimization. Opti-

mization deals with receiving independent variables to

discover the target values of dependent variables. If the

amount of dependent variables is bigger than the amount of

independent variables, it is not possible to achieve the

target values of the dependent variables at the same time,

and the problem becomes a least squares problem [6].

Problem areas in optimization

Optimization problems have to find the minimum solution

of any dimensional problem (e.g., MinMax algorithm and

least squares estimation). In the process of optimization,

the global minimum or maximum solution is estimated.

The global extremum is defined as a point where the

function value is smaller or larger than at any other point in

the search space.

The local minimum in optimization returns a function

value which is smaller than at nearby points in the search

space. This value should be greater than at a distant point in

the search space [18]. It is necessary to find as many local

minima as possible, because the merit function does not

always precisely determine the lens quality. Hence, the

designer should select the optimal solution among the local

minima [6]. Typically, finding a global optimum within a

search space of many local optima is a challenging problem

for all systems which adapt and learn. A genetic algorithm

can be used with the right setup to overcome this deficiency

[9]. It is the task for the designer to choose a feasible
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design for an optical system and perform appropriate

refinements through numerical modeling [4]. Moreover, the

designer is in charge of fulfilling all necessary require-

ments and adjustments of the optimized lens design or must

to restart the entire process again [5].

Since the 1940s, Baker [19], Feder [20], Wynne and

Wormell [21] and Grey [22] have investigated lens opti-

mization techniques which can overcome this problem in

multi-dimensional space. Before the era of digital com-

puters, lens design was calculated manually by the use of

trigonometry and logarithmic tables to obtain 2D cuts

through multi-dimensional spaces. Computerized ray trac-

ing was introduced to facilitate quick lens modeling and the

search of design space.

Optimization strategies

Usually, in nonlinear optimization problems the state-of-

the-art technique is called the Broyden–Fletcher–Gold-

farb–Shanno algorithm [23]. This iterative method is only

feasible with available derivatives. Methods like DLS,

Newton methods, and variants are common algorithms

[24]. Generally, a quasi-Newton method is required to find

the local minima and maxima of functions.

A GA, or metaheuristic, belongs to a class of evolu-

tionary algorithms (EAs) [25] and is used to simulate and

solve optimization problems by applying a population of

solutions [26, 27]. In other words, the GA solves a problem

which is encoded in a series of bit strings that are manip-

ulated by the algorithm [28]. Furthermore, a GA copes with

hard nonlinear, multimodal functions, as well as multi-

objective optimization [1].

Genetic algorithms

GAs are both optimization algorithms and heuristic search

methods for populations. They are inspired by natural

processes, and in particular natural selection and genetic

evolution.

Charles Darwin introduced the terminology of natural

selection for the first time in his book On the Origin of

Species in 1859 [29]. Every living organism is related and

has a common ancestor. The theory assumes that complex

creatures have gradually descended from oversimplified

ancestors. Certain random mutation processes occur in the

genetic organism’s code, and particular mutations are kept

alive to aid in survival, with follow on generations

receiving the last preserved mutations. With time, advan-

tageous mutations will increase and cumulate to produce an

entire new generation.

The term genetic algorithm was inspired by Darwin’s

theory of evolution and first devised by Holland and

Goldberg [30, 31]. It shows similarities to Rechenberg’s

[32] Evolutionsstrategien (evolutionary strategies ESs) of

1973. Holland’s and Goldberg’s first approach to this kind

of algorithm was theoretical. They used a binary code to

describe individuals in a population. This work was later

improved by Rechenberg [33].

GAs are applied to practical problems to assess the

solution for a desired outcome, but to also improve the best

solution. Examples for practical problems are image pro-

cessing, prediction protein structures with three dimen-

sions, or in very-large-scale integration. By applying a GA,

instead of a specific solution to a problem, the character-

istics of the solution are well known. In addition, restric-

tions of the solutions are used to reject possible and

potential solutions. GAs are mostly applied in the field with

many large complex problems where conventional algo-

rithms cannot succeed. For example, the GA can be applied

in combinatorial optimization, or parameter estimation

[34].

Ordinarily, a population of individuals is preserved in a

certain search space for a GA. The population represents a

possible solution for a given specified problem. Each

individual is coded with a finite length vector of variables

in the binary alphabet 0; 1f g. In the genetic analogy, the

individuals would resemble chromosomes and variables

can be compared to genes. Chromosomes consist of various

genes or variables, and each chromosome is composed of a

binary string. Each bit in the string is characteristic of the

solution [9].

When a GA is applied to find a solution in very large

problems, it looks into millions of samples from the search

space and creates small changes after recombining the best

parts of the solution. Then, the resultant fitness value is

compared with the current best solution, and the best

solution is taken. The entire process is iterative until a stop

condition is met (Fig. 1).

There are several benefits of using a GA over other

optimization strategies. An important aspect is the use of

optimization with a systematized set of continuous or dis-

crete parameters for global optimization scenarios. It works

with a large number of parameters. The result of applying a

GA gives a set of solutions and is not a single solution [36].

On the other hand, high computational cost is required to

look into billions of solutions which impede the opti-

mization of hard problems. Fine-tuning of all parameters

for the GA is associated with trials and errors [1, 37].

Procedure of a GA

Generally, a basic genetic algorithm includes five phases:

1. initialization, 2. selection, 3. crossover, 4. mutation, and

5. termination [38].

136 J Opt (March 2019) 48(1):134–144

123



1. Initialization A gene set is built out of a population of

candidate solutions. The algorithm generates random

strings from the individual solutions to form an initial

population. The initialization is done randomly to

cover the total range of possible solutions in the search

space. Normally, the population size is not depending

on the nature of the problem, but has a reasonable size

of about 100–1000 optimal solutions.

2. Selection and fitness value Individual genomes are

selected from an existing population to breed the new

generation. Individual solutions are selected through a

fitness function within a fitness-based process and are

named fitter solutions. Selection methods are chosen to

rate the fitness of each solution. The fitness value is

generated to give feedback so the GA can find the best

solution. Most fitness functions are stochastic methods

in order to select small proportions of less fitness

solutions and maintain a variety of large populations.

Furthermore, these functions prohibit premature con-

vergence on poor solutions. Additional selection

methods include roulette and tournament wheel

selection.

• Roulette Wheel Selection The fitness level is the

requirement that each individual solution is linked

with a probability of selection. In this method, the

fitness value for each input is calculated and

depicted on the wheel in portions of percentage

(Fig. 2a). The wheel is rotated and has a search

space of n-chromosomes. A chromosome with a

high fitness value will be selected more than once.

• Tournament Wheel Selection This method takes

two solutions out of the pool of possible solutions.

Then their fitness is compared, and the better

solution will be replicated. Hence, the tournament

selection chooses the best individual in each

process. This approach is capable of looking at

parallel architecture (Fig. 2b).

3. Crossover This genetic operator takes more than one

parent solution and generates a child solution. Genes

from parent chromosomes are taken, and a new

offspring is produced. In detail, the operator selects a

random crossover point (j). Everything in the binary

string from the first chromosome before this point is

copied and everything after this point from the second

chromosome is copied to generate a new offspring

(Table 1). It is possible to take several crossover points

and ameliorate the performance of the GA by applying

specific crossover on specific problems. Crossover also

permits the exchange of information in solutions,

similar to natural organism reproduction [34].

4. Mutation This operator changes a single bit randomly

in the current generated offspring from the crossover

operator, e.g., from 0 to 1 or from 1 to 0 (Table 2). The

engine needs a way to produce a new guess by

mutation the current one. The parent string is con-

verted into an array with of parent strings, list(parent).

After replacing 1 letter in this array with a random

selected letter from the gene set, the result is recom-

bined into a new string. The reason for mutation is to

prevent that not all solutions of the population occur in

the local optimum of the solved problem.

5. Termination The entire process is iterative until either

the known solution has been found, the population of

n-iterations has not changed, or a certain amount of

time and generations have passed [9].

Fig. 1 Procedure of a GA, modified from [35]
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Genetic algorithms in lens system design

First studies of GA in lens design

In 1990, research into the application of EAs for the

monochromatic quartet was proposed at the International

Lens Design Conference, now IODC [40]. Constraints of

the four-element lens design included only spherical sur-

faces, gradient-index (GRIN) optics elements, and Fresnel

lenses.

Betensky successfully applied a GA to a Gaussian optics

system design to correct aberrations, but mainly astigma-

tism. This algorithm was set with almost zero power

operators including optimized structural changes in order

to develop a lens system. To apply a GA to the zoom lens,

problem is arduous due to the complex requirements for

each operator [41]. A few years later, van Leijenhorst et al.

investigated the GA as a tool for the automatic optimiza-

tion and design of an optical lens system. Results showed

fast and simultaneous corrected aberrations, even on less

powerful computers. Further, they said it was possible that

optical industries could use the GA for larger and more

sophisticated optical systems [42].

Chen and Yamamoto applied a GA and a combined

algorithm, including a GA and the DLS method, to lens

design in order to correct lens aberrations and determine

differences between these two methods. They found out

that the GA is a useful algorithm for the global search and a

beneficial starting point to perform the DLS method.

Moreover, with the GA it is possible to avoid the local

minima in gradient-based algorithms because the GA is

based on a merit function of a population [26].

In the 2000s, Ono et al. [43] proposed a new lens

optimization method by including real-coded GAs to

small- and large-scale problems. They applied their tech-

nique successfully for global and multi-objective opti-

mization. It worked very effective in finding good lens

designs for both small- and large-scale problems. It was

possible to analyze the lens design problem by optimizing a

single criterion and with the two criteria such as distortion

and resolution. The proposed GA utilizes unimodal normal

distribution crossover (UNDX) and minimal generation

gap (MGG) for an optimal lens design.

In terms of practical use, the proposed GA by Ono et al.

could not be applied for several reasons. By changing the

thickness and curvature, the GAs are not able to improve

chromatic aberration. Due to this disadvantage, the algo-

rithms are restricted to a single wavelength when designing

optical systems such as IR cameras. Furthermore, the

proposed GAs are not included in commercial CAD pro-

grams, which are essential for lens designers to use and do

not provide an user interface that is easy to handle. A

newer study by Fontana et al. [44] showed the possible

implementation of a GA into a CAD tool they had devel-

oped for optimization and design.

Banerjee and Hazra studied the application of a GA on a

structural lens design. They effectively accomplished the

search for a global solution within utilitarian local optima.

Fig. 2 Selection methods [39].

a Roulette wheel selection,

b tournament selection

Table 1 Single-point crossover operator

Chromosome 1 10100 —10100100110
Chromosome 2 10100 —11000101100
Offspring 1 10100 —11000101100
Offspring 2 10100 —10100100110

Table 2 Mutation operator

Offspring 1 101 0 0 11000101100
Offspring 2 10100 1 0 1001001 1 0
Mutated offspring 1 101 1 0 11000101100
Mutated offspring 2 10100 1 1 1001001 0 0
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It is not possible to ascertain all values for the various

parameters in a GA all at once. Alterations can probably

affect the efficiency of the GA. The results could be used to

improve the GA for optimization problems in real-life lens

design [45].

Gagné et al. [46] applied EAs to an optimization crite-

rion with complex mechanical constraints. Their results

showed that EAs are comparable to those obtained by

humans.

Thibault et al. from the Gagnés research group [46]

discovered that on a real-life imaging problem the EA lens

showed better results by a factor of almost two and was

four times more sensitive than the expert lens design for the

1990 monochromatic quartet [40]. Moreover, an EA can

explore a lens system, which is similar to a design per-

formed by experts. Thibault et al. [1] did not incorporate

sensitivity with regard to lens bending and lens shape.

Cuevas et al. applied the GA to solve the closed-fringe

demodulation problem in 2006. The population of chro-

mosomes in a GA is linked to the coefficients of polyno-

mials to calculate the local phase of an interferogram

window. Specifically, they used the multi-polynomial fit-

ting (MPF) because the phase field is estimated and inter-

polated to any resolution size to assess the polynomial

coefficients. In a second application, a GA was used on the

nesting problem of finite materials. The nesting problem is

based on the optimization of items which are nested in a

valid place with the least wasted material [36].

Chen et al. used the GA in order to optimize Fresnel

lenses which were inserted in light-emitting diode (LED)

sources. It is not feasible to guarantee sufficient flux with a

single LED, but with numerous LEDs it is possible. Chen

et al. proposed an optimal design of a Fresnel lens with

several LEDs to provide white light. The GA, including a

fitness function with the appropriate illuminance and uni-

formity, was employed to search for the optimal groove

angles of the Fresnel lens. They figured out that the gen-

erated optimal Fresnel lens showed more of an augmented

light guidance than with typical Fresnel lenses for a mul-

tiple-LED reading light system. The problem is the

intrinsically restricted execution speed while performing

the nonimaging optical tool for the optimal design proce-

dure because it is not designed to create an optimal design

with more numbers of source light rays [47].

Similar results were achieved by Chen and Uang [48]

with their hierarchical GA (HGA) in order to optimize a

large-scale Fresnel lens for a multiple-LED reading light

system.

Chen et al. [50] suggested another method to optimize

the optical LED design. Taguchi method [49] is well-

functioning in the discontinuous region but poor for the use

of an optimal optical design because of immoderate time

consumption during the analyses. Angle and average illu-

minance were observed and indicated that the evolved

system is applicable to the optical design of different LED

lenses [50].

Fang et al. used a GA to effectively eliminate both axial

and lateral chromatic aberrations of two Gauss-type lens

designs and to find the appropriate glass combination of

two different Gauss-type lenses. These two Gauss lens

designs can remove primary chromatic aberrations. A

telephoto lens design was used due to its sensitivity to axial

aberration; in addition, a wide-angle Gauss design was

used to deal with lateral chromatic aberrations. In com-

parison with the DLS method, the proposed method to

search for a two lens-type combination was more suc-

cessful [51].

The lens designer has to deal with obstacles such as the

variable nature of chromatic aberrations and influence.

Fang et al. used the GA for lens design and optimization of

the liquid lens element. The GA could be efficiently

applied to replace the conventional least damping square

(LDS) method to search for the optimal solution, including

the chosen optical lens element, but also to quickly select

the best glass combination. They achieved promising

results in searching for the nest optical layout with liquid

lenses and the best glass set to remove chromatic aberra-

tions. This research took into account only the first-order

aberrations of thin lenses. Hence, the results were satis-

factory [52].

Other research by Fang et al. was focused on a new

digital zoom layout and optimization using an altered GA.

They successfully developed an optical design and opti-

mization of digital zoom optics which includes the liquid

aspheric lens surface and improved significantly the per-

formance of zoom optics. They noted that the MTF

resembles the conventional DLS method in terms of

approaching the optical diffraction limit [35].
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State of the art technologies

Bajpai and Kumar [9] applied the GA to achieve global

optimization by using the Rastrigin’s function [53]. They

determined with the Rastrigin’s function many local

minima function and only one global minimum. Further,

they investigated the reasons why a GA is a good opti-

mization tool. One of the main benefits is its intrinsic

parallelity and therefore the ability to assess various

schemas at once [9].

Furthermore, a hybrid GA is more effective and efficient

than a traditional GA and is achieved if the GA includes

other techniques in its framework. These kinds of algo-

rithms are inserted to solve real-world problems rapidly,

precisely, and reliably, without any manual help [9].

The application of hybrid GAs in lens system design

was studied by several authors [10, 12, 54]. Fang et al.

proposed a hybrid Taguchi GA to eliminate chromatic

aberrations more effectively than with the conventional

DLS method. This algorithm was applied to zoom optics

with a diffractive optical element (DOE). Compared with

the DLS method, they found that chromatic aberration for

optical lenses could be significantly reduced with the

hybrid technology [54]. Also, Tsai et al. [55] successfully

applied the hybrid GA to zoom optics to specify the best

position for DOE and to remove chromatic aberrations of

the zoom optics with a DOE.

In 2015, Tsai et al. investigated the effect of a GA with

DLS optimization on a projector lens to ameliorate the field

curvature aberration (FCA) and image resolution. Often

optical software is not able to simultaneously optimize the

FCA and image resolution of lens design. The software

works either for global or for local optimization and can

only give out results of local optimization. The combina-

tion of a hybrid GA and DLS could be an optimal opti-

mization approach for commercial software and has the

capability to improve both image quality and various

aberrations [12].

Yen and Jin applied efficiently a GA on aspherical lens

design to reduce aberrations in multi-focal artificial

intraocular lenses (IOL) [10, 11]. They inserted a GA by

mimicking the variation of thickness and curvature of the

human eye into the optical software CODE V to create an

IOL design. By comparing the built-in software algorithm

with the GA, the suggested GA for IOL design showed

more improvements of the spot size in root mean square

(RMS), tangential coma (TCO), and the MTF.

Conclusion

In this paper, we have reviewed various results on the use

of GAs in optical system design. A GA is applied to lens

design to find the best global and stable solution within an

optimization problem. Optimization is needed to improve

the performance of a design. Compared to conventional

optimization strategies (e.g., DLS), the GA is a powerful

tool because it uses a coded parameter set, searches a

population of points, and applies objective function infor-

mation and probabilistic transition rules [56]. Specific

studies have proven that GAs are perfect for finding the

optimal groove angles of the Fresnel lens and are useful in

finding the proper glass combination of two different

Gauss-type lens designs. Several cutting edge studies suc-

cessfully show that a hybrid GA can be useful in lens

design to correct and eliminate chromatic aberrations in the

axial and lateral view. Fast and simultaneous corrections

were applied to zoom optics with certain DOEs. The

missing availability of the GA in commercial CAD pro-

grams has been resolved.

However, there still exist some limitations on the use of

GAs. Limitations of GAs include time consumption for

convergence which can be improved by a proper sized

population and many generations. Trial and error is con-

nected with the fine-tuning of all indispensable parameters

for a GA. Defining the right definition of the MF for a GA

is another crucial issue in lens design. Moreover, an

inappropriate fitness function design may lead to unintel-

ligible solutions. Having said this, there is considerable

scope for further research and exploration of GAs in optical

engineering.
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Appendix B: Historical Perspective

For more than 20 years, GAs have been successfully

applied in the areas of image processing [59, 60], medicine

[61], or laser technology [62, 63].

Table 4 gives the historical perspective on the use of GA

in lens design.

Table 3 Advantages and disadvantages

Advantages Disadvantages

� Optimization with a systematized set of continuous or discrete

parameters for global optimization scenarios

� Due to its stochastic nature, no convergence provided to find a global

maxima

� No calculus of derivatives demanded � Instead of using only a single search value, it works with a population

of solutions

� Works with a large number of parameters � High computational cost is required to look into billions of solutions

which impede the optimization of hard problems [1]

� Intrinsically parallelity permits the analysis of many schemas at once � Goldbergs Pascal code of a simple GA from 1989 was used for more

than 25 years but can be seen as obsolete and useless for nearly all

real-valued decision

� Optimization of complex objective functions and criteria [9, 36] � The binary representation is not appropriate for real-valued decisions

[57]

� Easy to use for black-box simulation modeling [58] � Convex optimization techniques presume a functional relationship

between decisions and objectives [58]

� Overcome border of local optimums � Time consumption for convergence

� The result is a set of solutions and not a single solution � Fine-tuning of all parameters for the GA is associated with trials and

errors

� Able to work with experimental data or numerically generated data

[36]

� Efficacy of the system depends strictly on the fitness function, choice

of genetic encoding, and genotype to phenotype mapping [37]

� Optimization over a broad search space is attainable due to an

increased population of chromosomes [26]

� The fitness function needs to go through dynamic scaling before

selection [34]

� Efficient and comprehensive search method for optimization � Simulated annealing and deterministic global searching [9]

� Characterizable and controllable procedure of alteration

� Multiple offspring are able to examine the solution space in multiple

directions

� Well-suited for a fitness function which is discontinuous, noisy and

changes over time, or has several local optima

� GAs can manipulate numerous parameters simultaneously. The

parallelism allows them to generate different equally good solutions

to an identical problems

� GAs are unaware of the problems in which they are applied, because

of random changes within candidate solutions[9]
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