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Zusammenfassung

Die Stabilität Strömung eines inkompressiblen Fluids, das in einem Rechteckbehälter
eingeschlossen ist, wird untersucht. In jeder der drei untersuchten Konfigurationen
wird die Strömung durch eine sich bewegende Grenzfläche angetrieben.

Zuerst betrachten wir einen in Spannweitenrichtung unendlich ausgedehnten
Behälter, in dem die Strömung durch eine tangentiale, aber schräge Bewegung ei-
nes Deckels angetrieben wird. Wir erhalten die kritische Reynoldszahle für den Ein-
satz einer drei-dimensionen Strömung für den gesamten Bereich der Gierwinkel. Für
alle untersuchten Aspektverhältnisse ist die Strömung im Vergleich zu den beiden
Grenzfällen stark destabilisiert. Die Vielzahl der instabilen Moden wird beschrieben
und der Hauptmechanismus der Destabilisierung analysiert.

Danach wird die lineare Stabilität einer thermokapillar-angetriebenen Strömung
in einem unendlich ausgedehnten Behälter betrachtet. Bei Erhöhung der Stärke des
Antriebs kann die Strömung aufgrund einer linearen Instabilität oszillieren. Interes-
se gilt der Sensitivität der Instabilität in Bezug auf den Wärmestrom, der an der
Grenzfläche aufgeprägt wird. Eine auf Sensitivität basierende Strategie zur effizienten
Stabilisierung oder Destabilisierung der stationären Strömung unter Verwendung eines
konstruierten Wärmeflusses wird als nichtlineares Optimierungsproblem formuliert.

Schließlich wird die Stabilitätsgrenze der Strömung in einem kubischen Behälter un-
tersucht, der durch eine konstante Scherspannung angetrieben wird. Im Gegensatz zu
der von einem Deckel angetriebenen Behälterströmung verliert die Strömung zunächst
ihre räumliche Symmetrie, bevor sie zeitabhängig wird. Die aufeinanderfolgenden Bi-
furkationen sind alle überkritisch. Mit zunehmender Stärke des Antriebs kann eine
komplexe Dynamik zwischen zwei Grenzzyklen beobachtet werden.
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Abstract

The stability of an incompressible fluid flow in a cavity is investigated. In each of the
three setups examined the flow is driven by a moving boundary.

First, we consider a cavity infinitely extended in the spanwise direction in which
the flow is driven by a tangential but oblique motion of a lid. We obtain the critical
Reynods number for the onset of three-dimensional flow for the whole range of yaw
angles. For all aspect ratios studied, the flow is strongly destabilized in comparison
with the two limiting cases. The wide variety of unstable modes is detailed and the
main destabilization mechanism is analyzed.

Then, the linear stability of a thermocapillary-driven flow in an infinitely extended
cavity is considered. Upon increasing the strength of the driving force, the flow can
become oscillatory due to a linear instability. Attention is paid to the sensitivity
of the onset of three-dimensional flow with respect to the heat flux imposed at the
interface. A sensitivity-based strategy to efficiently stabilize or destabilize the flow
using a designed heat flux is formulated as a non-linear optimization problem.

Finally, the stability boundary of the flow in a cubic cavity driven by a constant
shear stress is investigated. Unlike its lid-driven counterpart the flow first loses its
spatial symmetry before becoming time dependent. Successive bifurcations are all
supercritical. As the strength of the driving increases a complex dynamics between
two limit cycles is observed. Although the destabilization mechanisms are similar for
the cubic lid-driven and shear-driven cavities, the transition to the turbulence does
not follow the same path.
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General introduction

In this chapter, we will present the background of this dissertation. We will present
the family of flows that will be investigated, namely incompressible boundary-driven
cavity flows.

1.1 Boundary-Driven Cavity Flows

Boundary-driven flows are flows where the considered fluid is set in motion by a moving
surface, at a boundary of the considered domain. This boundary can represent, for
instance, an interface between the fluid and a solid non-deformable body (for example
at a wall), or an interface between two fluids, in one of which the motion is not taken
into account or simplified (for example at a liquid/gas interface). In both cases, the
flow at the boundary is modeled by applying different boundary conditions.

In the following, we shall give some examples of incompressible flows driven by a
moving solid body or by moving interface between two fluids. In fluid dynamics, a
solid body driving a flow is often interchangeably called a moving wall, a moving plate
or a moving lid when it moves tangentially to itself. At the boundary, the velocity of
the fluid is the same as the velocity of the moving wall.

One of the simplest configuration with a moving plate is the Couette flow [18]. It is
the flow of a fluid between two infinite parallel plates, one of which (upper plate in fig.
1.1(a)) moves tangentially to the other. Due to the viscous forces, the fluid between
the plates is set in motion. The velocity profile in the fluid is linearly increasing in the
wall normal direction y from 0 at the lower wall to U at the upper wall, as shown in fig.
1.1(a). This flow is, however, not recirculating, as a fluid element would indefinitely
travel in the same direction.

Another fundamental configuration is the lid-driven cavity [87]. A square container
is filled with a liquid, whose flow is driven by a lid moving tangentially to itself. As
sketched in fig. 1.1(b), the flow velocity at the lid U is given. The flow is confined
between the four walls and the fluid recirculates within the cavity. In particular, if the
flow is incompressible, two-dimensional and steady, a fluid particle would travel along
a closed trajectory. Although in these two examples, the flows are set in motion by a
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2 1. General introduction

(a)

y
U

(b)

U

x

y

Figure 1.1 – (a) Sketch of a Couette flow. The upper wall is moving with a velocity U , while the
lower wall is stationnary. (b) Sketch of a two-dimensional lid-driven cavity flow. The upper wall is
moving with a velocity U , while the lower wall is stationary.

surface moving at a given velocity, this is not always the case.

At the surface between a liquid and a gas, the molecules of the fluid are more
attracted to each other, due to cohesion forces, than attracted by the molecules of
the gas, due to adhesion forces. This force imbalance results in a force normal to the
surface, directed toward the liquid. Surface tension is a force per unit of length at
the surface. It depends on the fluid properties like the composition, temperature, the
presence of impurities at the surface, among many others.

A spatial variation of these properties along the surface induces a spatial variation
of the surface tension ∆Σ. Provided that the variation of surface tension is very small
in comparison to the total surface tension, this variation of surface tension results in
a local shear stress τ tangential to the surface, setting the fluid in motion [76]. In
contrast to wall-driven flows, the tangential flow velocity is not given, but the shear
stress at the surface is imposed. A flow driven by surface tension variations coming
from variations of the temperature along the free surface is called a thermocapillary-

y

τ

∆Σ

U

Figure 1.2 – Sketch illustrating the tangential shear stress τ stemming from a surface tension variation
∆Σ, and the flow velocity U close to the surface.
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1.2. Hydrodynamic Stability 3

driven flow.

In this thesis, we are focusing on flows in rectangular containers, driven by the
tangential motion of one of its boundaries, where either the velocity or the shear
stress is imposed. These type of flows are of interest: In addition to their minimalistic
geometries, they often serve as simplifications of more complex systems. For example,
the lid-driven cavity can be thought as a restriction of the flow over a cavity, or a
confined fluid flow driven by the motion of a piston. Therefore, they are still widely
investigated. For instance, there are research efforts concerning the flow topology
[21, 137], or exotic particle accumulation structures [138]. Here, we are particularly
interested in the stability of such flows.

1.2 Hydrodynamic Stability

Hydrodynamic stability theory is the field of fluid mechanics dealing with the stability
or the onset of instability of a fluid flow. In more than 150 years, hydrodynamic
stability received a lot of attention. As a proof of this, the names of many great
scientists are associated to classical hydrodynamic instabilities. To cite a few, a wake
instability is named after Theodore von Kármán and is illustrated in fig. 1.3(a). Lord
Kelvin and Herman Ludwig von Helmholtz gave their names to the Kelvin–Helmholtz
instability depicted in fig. 1.3(b), and painted in fig. 1.3(c).

The concept of stability of a state of a system was understood already in the
nineteenth century. As quoted by Drazin [46], James Clerk Maxwell clearly expressed
the qualitative concept:

When ... an infinitely small variation of the present state will alter only
by an infinitely small quantity the state at some future time, the condition
of the system, whether at rest or in motion, is said to be stable; but when
an infinitely small variation in the present state may bring about a finite
difference in the state of the system in a finite time, the condition of the
system is said to be unstable.

This is the backbone of the linear stability theory. This theory allows, for instance, to
successfully predict the onset of instability of flow around cylinder like in fig. 1.3(a)
or the destabilization of the two-dimensional flow in a lid-driven cavity (fig. 1.1(b)).
However, it fails by predicting that Couette flow (fig. 1.1(a)) is stable for all plate
velocity magnitudes.

Although this theory has some clear limitations, it is nonetheless a powerful tool.
As we shall see in this thesis, it enables us to understand the different mechanisms at
play in the destabilization of the flow.
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4 1. General introduction

(a)

(b)

(c)

Figure 1.3 – (a) This photography from Landsat 7 satellite on September 15, 1999 shows the von
Kármán vortex street visualized by the clouds, near the Juan Fernandez Islands in Chile. In (b) and
(c), the shape of the clouds reveal Kelvin–Helmholz instabilities in a photography taken by Beverly
Shannon in 1999 of the mount Mount Shasta in California, and in La nuit étoilée painted in 1889 by
Vincent van Gogh, respectively.
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1.3. Organization of the Dissertation 5

1.3 Organization of the Dissertation

The present dissertation deals with the stability of flows in cavities driven either by
the motion of a lid, thermocapillary stresses or a constant shear stress. It is organized
in the following order.

In Chapter 2, we will introduce the theoretical background necessary for the linear
stability analysis, and perturbation energy analysis.

In Chapter 3, the numerical tools that will be used throughout this dissertation
will be presented. First, the spatial and time discretization techniques employed for
two-dimensional and three-dimensional problems. Then, diverse methods used to solve
steady problems and large eigenvalue problems will be recalled. Finally, algorithms
more specific to infinitely extended setups will be introduced.

In Chapter 4, we will study the onset of the linear instability of a flow in a rectan-
gular container infinitely extended in its spanwise direction, driven at the top surface
by the motion of a lid. The lid velocity has a non-zero spanwise component, and
therefore the lid motion is not aligned with the cross section of the cavity: there is a
so-called yaw angle. The onset of instability is investigated for a wide range of angles,
and for square, shallow and deep cavities. The aim of this chapter is to explore the
different destabilization mechanisms, and provide data lacking in the literature.

In Chapter 5, the focus will be on shallow thermocapillary-driven cavities for a
low- and a high-Prandtl-number fluids. In particular, we will investigate the changes
of the onset of linear instability induced by variations of the spatial distribution the
heat flux through the free surface. The aim of this chapter is to clarify the role of
external heat flux on the stability of the system and to show how to efficiently stabilize
or destabilize the system by designing optimal fluxes.

In Chapter 6, we will study the progressive destabilization of the flow contained in
a cubic cavity driven by a constant shear stress at its top surface. Particular attention
will be paid to the destabilization mechanisms and the evolution of the temporal and
spatial symmetries exhibited by the system. The aim of this chapter is to probe
whether this system follows the same destabilization scenario as the cubic lid-driven
cavity.
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Theoretical Basics

2.1 Equations of Fluid Dynamics

The equations describing the motion of an incompressible viscous fluid have been
derived in the XIX century in their definitive form and with the correct interpretation
by Saint-Venant in 1843. Unfortunately for him, they are named after Navier who
derived the correct equations in 1822 but attributed the dissipative term not to shear
stresses but to intermolecular repulsive forces, and after Stokes who independently
derived them two year later in 1845 [11]. The Navier–Stokes equations read

ρ

(
∂

∂t
+U · ∇

)

U = −∇P + µ∆U , (2.1a)

∇ ·U = 0, (2.1b)

where t denotes time, ρ the fluid density, µ the dynamic viscosity, U the flow velocity
and P the pressure. Later the kinematic viscosity ν = µ/ρ will be used as well. U is
a vector field with d components, and P is a scalar field.

The first equation is the momentum conservation equation, that is nothing else
than the second law of Newton. The second equation is the mass conservation, also
called the incompressibility constraint.

All along this chapter, we consider the lid-driven cavity setup which is sketched in
fig. 2.1. The flow is bounded by walls forming a cuboid. All walls are at rest, except
for one which moves tangentially to itself and drives the flow. More details concerning
this fundamental setup will be given in Chapters 4 & 6. The boundary conditions are

U = (Ulid, 0, 0)
T at the moving wall, and U = (0, 0, 0)T at the walls,

where Ulid is the velocity imposed at the moving wall, also called lid.

The Navier–Stokes equations are non-linear due to the convective term (U · ∇)U
in the left-hand side of the momentum equations, and unfortunately no universal solu-
tion can be found. Already the proof of existence and smoothness of solutions in three
dimension and whether their energy remains bounded in time is one of the unsolved
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8 2. Theoretical Basics

Ulid

x

y

z

L

L

L

Figure 2.1 – Sketch of a cubic cavity of side length L, driven by a top lid with a velocity
U = (Ulid, 0, 0)

T.

millennium problems [53]. Regardless of this, one can calculate simple flows or approx-
imate solutions with the aid of a computer. The only way to find an approximation
of the solution - except for trivial or simplified cases - is to solve (2.1) numerically.
To that end (2.1) is typically discretized to reduce the infinite number of degrees of
freedom to a finite number.

Viscous Scaling All the four independent physical parameters of the system (side
length, density, kinematic viscosity and lid velocity) can be expressed in three funda-
mental units (length, time, and mass). The π-Buckingham theorem implies that the
Navier–Stokes equations can be recast into a system of equation involving only one
parameter: the Reynolds number, denoted Re. Throughout this thesis, we will use
a viscous scaling. We use the length of the domain, the kinematic viscosity and the
density of the fluid to describe the relevant spatial, temporal, velocity and pressure
scales:

x = Lx∗, t =
L2

ν
t∗, U =

ν

L
U∗, P =

ρν2

L2
P ∗,

where the starred quantities are dimensionless quantities. This leads to

(
∂

∂t∗
+U∗ · ∇∗

)

U∗ = −∇∗P
∗ +∆∗U

∗, (2.2a)

∇∗ ·U
∗ = 0, (2.2b)

where ∇∗ is the nabla operator in the dimensionless coordinates. In this scaling, the
Reynolds number appears in the boundary conditions. In the case of a lid-driven
cavity, the boundary conditions are then

U∗ = (Re, 0, 0)T at the lid, and U∗ = 0 at the walls, (2.3)
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2.2. The Navier–Stokes Equations as a Dynamical System 9

where the Reynolds number Re is defined as

Re =
UlidL

ν
.

In the rest of the thesis, the ∗ symbol will be dropped for the sake of a better readability.
Note that in the frequently used convective scaling, 1/Re appears in front of the viscous
term.

2.2 The Navier–Stokes Equations as a Dynamical

System

The Navier–Stokes equations can be seen as a dynamical system in the form

∂

∂t
Bq = F(q). (2.4)

In this case, q = (U , P )T, B is a operator selecting the variables for which their
variations in time explicitly appears in the equations, i.e. the velocity components:

B =

(
1d×d 0d×1

01×d 01×1

)

(2.5)

and the non-linear vector operator F is

F(q) =

(
−(U · ∇)U −∇P +∆U

∇ ·U

)

, (2.6)

and the boundary conditions (2.3). The first line of the operators correspond to the d
momentum equations, and the last line to the incompressibility constraint.

In this dissertation, we will focus on particular trajectories of the dynamical system
that are the fixed points of F . They do not depend on time and for that reason, they
are solutions of the steady problem

F(q0) = 0. (2.7)

Finding the roots q0 can be done analytically in some simple cases, however, most of
the time one has to apply a root finding algorithm like a Newton method. Of interest
is also the stability the steady solution q0. But let us first define what we mean by
that.

2.2.1 Stability of an Equilibrium

We call an equilibrium qe(x, t) a trajectory in the phase space which satisfies some
temporal symmetry. A fixed-point q0(x, t) is invariant to translations in time i.e.
q0(x, 0) − q0(x, t) = 0, while a closed orbit of period T qT (x, t) satisfies the relation
qT (x, t)− qT (x, t+ T ) = 0.

There are different definitions of stability of an equilibrium. Three of them are
presented here with order of increasing restriction.
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10 2. Theoretical Basics

t

‖ q − q
0
‖

δ

Lyapunov-stable

Asymptotically stable

Monotonically stable

ǫ

Figure 2.2 – Sketch illustrating the different stability definitions.

Lyapunov Stability The equilibrium qe is said to be Lyapunov-stable if ∀ǫ >
0, ∃δ(ǫ) > 0 such that if ‖ q(x, 0) − qe(x, 0) ‖< δ then ∀t > 0 we have
‖ q(x, t)− qe(x, t) ‖< ǫ. In other words, if the solution q is initiated close enough
to the equilibrium q0 (within a distance δ in some norm), it will stay close ”enough”
for all future times (within a distance ǫ).

Asymptotic Stability An equilibrium is said to be asymptotically stable if
it is Lyapunov stable and ∃δ > 0 such that if ‖ q(x, 0)− qe(x, 0) ‖< δ, then
limt→∞ ‖ q(x, t)− qe(x, t) ‖= 0. If the Lyapunov stability allowed for a little room ǫ
between one perturbed solution and the equilibrium in the long run, this is not the
case of the asymptotic stability, which requires that at an infinite time, the perturbed
trajectory returns to the equilibrium.

Monotonic Stability An equilibrium is said to be monotonically stable if it
is asymptotically stable and if ∃α > 0, ∃β > 0 and ∃δ > 0 such that if
‖ q(x, 0)− qe(x, 0) ‖< δ then ‖ q(x, t)− qe(x, t) ‖< α ‖ q(x, 0)− qe(x, 0) ‖ e−βt.

While asymptotic stability only required convergence as time goes to infinity and
therefore allowed for intermediate growth of the perturbation in some norm, monotonic
stability requires that if the initial distance from the equilibrium is small enough, the
perturbation decays exponentially. Sometimes this is also called exponentially stable.
The difference between these definitions of stability is sketched in fig. 2.2.

Studying the Lyapunov stability is particularly relevant for Hamiltonian systems
that preserve energy. A small change of energy in the initial condition leads to a change
in the total system energy. Since the energy is preserved the new state can be close to
the initial one, but is never equal to it. The asymptotic stability is characteristic for
dissipative system, which is the case of viscous flows. If the system is stable, a small
energy addition to a dissipative system will be dissipated, so that it will return to the
stable state. The monotonic instability should be considered together with a more
general case of so-called “non-modal” instability, and is not relevant to the present
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2.3. Linear Stability Analysis 11

study.

2.3 Linear Stability Analysis

The linear stability analysis considers small perturbations at all times such that non-
linear terms can be neglected. If a basic state (equilibrium) is linearly stable (all small
perturbations decay exponentially as t → ∞), then the basic state is asymptotically
stable. For more details and extensions, we shall refer to the following non-exhaustive
list of classical text books [35, 47, 46, 64, 71, 147].

2.3.1 General Case

Let us decompose the state variable q in the vicinity of a fixed point q0 as

q(x, t) = q0(x) + q′(x, t),

where q′ is an infinitesimal deviation from a fixed point q0 and in some norm ‖ q′ ‖≪ 1.
Inserting this decomposition in (2.4), and making use of (2.7) yields

∂

∂t
Bq′ = F(q0 + q′)

= F(q0) +
∂F(q0)

∂q0

· q′ +NL(q′)

= 0 +A(q0) · q
′ +O(‖ q′ ‖2)

where A(q0) is the linearization of the non-linear operator F around the fixed point
q0, and NL(q

′) are the non-linear higher order terms. Neglecting this non-linear part
gives the linearized equations for the perturbations

∂

∂t
Bq′ = A(q0) · q

′.

In the same manner, inserting the deviations in the boundary conditions of the system
yields homogeneous boundary conditions for the linear problem.

As the operator A(q0) is linear and its coefficients are constant in time, one can
decompose the solution as a superposition of solutions. Using homogeneity in time,
one can decompose the perturbation as being the sum of normal modes

q′(x, t) =
∑

i

q̂i(x)e
γit + c.c., (2.8)

where γi ∈ C, the mode q̂i is a vector field that can be complex valued, and ’c.c.’ de-
notes the complex conjugate. The real part ℜ(γi) denotes the growth rate of the mode,
while the imaginary part ℑ(γi) its angular frequency. Inserting this decomposition into
the linearized equations gives then a generalized eigenvalue problem:

γiBq̂i = A(q0) · q̂i. (2.9)
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12 2. Theoretical Basics

Depending on the signs of the real part of the eigenvalues, the linear stability of the
system can be characterized.

• If max
i

ℜ(γi) < 0 then the equilibrium is asymptotically stable.

• If max
i

ℜ(γi) = 0 then the equilibrium is marginally stable.

• If max
i

ℜ(γi) > 0 then the equilibrium is unstable.

In case of marginal stability the linear stability is not conclusive and the non-linear
part of the dynamical system might play a relevant role for the stability of the system.
Furthermore the imaginary part of the eigenvalue gives information on the oscillatory
nature of the perturbation.

• If ℑ(γi) = 0 the perturbations associated with the eigenmode is not oscillating.

• If ℑ(γi) 6= 0 the perturbations associated with the eigenmode is oscillating, with
an oscillation frequency ω = ℑ(γi).

To characterize the stability boundary of the dynamical system with respect to a
parameter α, one needs to find the critical parameter αc such that max

i
ℜ(γi(αc)) = 0.

Linear instability is sufficient for instability. But some systems may become unstable
despite of linear stability. They may be unstable depending on the magnitude of the
perturbation, the equilibrium is then conditionally stable.

2.3.2 Linear Stability Analysis Applied to the Navier–Stokes

Equations

In case of the Navier–Stokes equations, the variable q = (U , P )T is decomposed into
the fixed point q0 = (u0, p0)

T also called basic flow or basic state and the perturbation
q′ = (u′, p′)T. Inserting this decomposition in (2.2a) gives the non-linear equation for
the perturbation:

(
∂

∂t
+ u0 · ∇

)

u′ + u′ · ∇u0 + u′ · ∇u′ = −∇p′ +∆u′, (2.10a)

∇ · u′ = 0 . (2.10b)

Neglecting the non-linear terms, we obtain the linearized Navier–Stokes equations:

(
∂

∂t
+ u0 · ∇)u′ + u′ · ∇u0 = −∇p′ +∆u′, (2.11a)

∇ · u′ = 0. (2.11b)

As in (2.8) the perturbation is decomposed into normal modes of complex amplitudes
q̂i = (ûi, p̂i), and we obtain the generalized eigenvalue problem

−u0 · ∇ûi − ûi · ∇u0 −∇p̂i +∆ûi = γiûi, (2.12a)

∇ · ûi = 0, (2.12b)
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Ulid

x

y

zL

L

Figure 2.3 – Sketch of an infinitely extended lid-driven cavity of square cross section.

together with the boundary conditions of the perturbation velocity mode ûi =
(0, 0, 0)T at the moving and steady walls. The Reynolds number appears then only in
the boundary equation of the basic state. To find the linear stability boundary, one
has to find the Reynolds number Rec for which the leading eigenvalue has a real part
equal to zero.

2.3.3 Finite Size Geometries versus Infinitely Extended Ge-

ometries

So far, the example setup that we considered is bounded in all three spatial directions,
we can say that the domain has a finite size. However, one could also have a setup
with an homogenous spanwise direction in which the flow is not bounded, as sketched
for instance in fig. 2.3. We can say that the domain is infinitely extended. In that
case the basic flow variables could exhibit a translational invariance in the spanwise
direction z 1.

In case of finite size geometry, both the basic state and the perturbations do not
have spatial homogeneous direction. In this regard, no further assumptions can be
made with respect to the general case and the Jacobian of the system A(q0) is a
only real valued operator. This has the consequence that imaginary eigenvalues and
eigenmodes of this operator arise in complex conjugated pairs 2. From the structure of
(2.8) one can see that the perturbation associated to the eigenmode is then the same
as the one of associated with it conjugate since

q̂ie
γit + q̂

∗
i e

γ∗
i t = q̂

∗
je

γ∗
j t + q̂je

γjt,

where the subscript j denotes the complex conjugate mode to mode i, i.e. λj = λ∗i
and q̂j = q̂

∗
i .

1. The basic flow could also be periodic in z but this is not treated here.
2. If γi, q̂i are eigenvalue and eigenvector of the real valued operator A(q0), then γ∗

i q̂
∗
i = (γiq̂i)

∗ =
(A(q0) · q̂i)

∗ = A∗(q0) · q̂
∗
i = A(q0) · q̂

∗
i .
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14 2. Theoretical Basics

In case of an infinitely extended geometry, one can restrict the basic state to depend
on one spatial variable less. In the case sketched in fig. 2.3, the basic flow exhibits a
translational symmetry in the z-direction, and one can restrict the basic flow variable
to be two dimensional, i.e. q0 = q0(x, y). However, the perturbations can be three
dimensional, that is q′ = q′(x, y, z), and using the homogeneity in z, one can apply
a Fourier transform in the z-direction. Using the linearity of the system of equations
one can consider the perturbation associated with only one wavenumber k ∈ R, i.e.

q′(x, y, z, t) =
∑

i

q̂i(x, y, k)e
γit+ikz + c.c. (2.13)

The wavenumber k is then an additional parameter. The eigenvalue problem reads
then

γiBq̂i = A(q0, k) · q̂i (2.14)

and A is a complex valued operator. One can then distinguish a propagation speed c
given by

c = −
ℑ(γi)

k

and the direction of propagation is given by the sign of c. It is of course a priori not
known since it depends on the eigenvalue.

For symmetry reasons, pairs of conjugate eigenvalues arise. The perturbation as-
sociated to one eigenmode is propagating in one direction and the one associated to
the conjugate eigenvalue propagates in the opposite direction. However, this is not
necessarily the case: for instance if there was a non-zero spanwise component of the
basic flow (for example due to a spanwise pressure gradient or the lid motion having
a non-zero spanwise component), the property A(q0, k) = A(q0, k)

∗ is not verified
anymore and the eigenvalues do not necessarily arise in conjugate pairs.

In contrast with the finite size geometry case, the Reynolds number is not the only
parameter anymore. A second parameter the wavenumber k can be continuously varied
and one can find pairs of parameters Ren and kn such that the real part of the leading
eigenvalue is zero: ℜ(γi(Ren, kn)) = 0. These pairs of parameters form the neutral
curves Ren(kn), and form the ensemble of potential critical parameters {(Ren, kn)}.
The critical pair of parameters Rec and kc is defined as the pair of neutral parameters
having the lowest Ren. In other words

(Rec, kc) = argmin
(Re,k)∈{(Ren,kn)}

(Re) . (2.15)

This amounts to a finding a minimum and various strategies can be adopted. For
more details, we refer to Chapter 3.
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Rec

Ren

kc kn

Figure 2.4 – Sketch illustrating the definition of neutral curves Ren(kn) and of critical parame-
ters (Rec, kc). The two solid lines denote two different neutral curves at which different modes are
marginally stable.

2.4 A Posteriori Energy Budgets

2.4.1 The Reynolds-Orr Equation

In order to understand the mechanisms of the instability associated with the critical
mode, examining carefully at the energy transfer between the basic state and the
perturbation associated with the mode can be relevant. To that end, we define the
total kinetic energy of the perturbation E(t) as the integral over the volume V occupied
by the fluid of the local kinetic energy of the perturbation:

E(t) =
1

2

∫

V

u′ · u′ dV . (2.16)

We note that the rate of change of the total kinetic energy can be expressed as a
function of the time derivative of the perturbation velocity:

∫

V

∂

∂t
E dV =

∫

V

1

2

∂

∂t
u′2 dV =

∫

V

u′
∂

∂t
u′ dV . (2.17)

Using the non-linear equations for the perturbations (2.10a), performing integration
by parts, using the incompressibility constraint, and the fact that u′ ·n = 0 where n is
the outward pointing normal of the boundary, one obtains the Reynolds-Orr equation

∂E

∂t
= −

∫

u′ · (u′ · ∇u0) dV −

∫

∇u′ : ∇u′dV . (2.18)

In particular, one can inspect the perturbation associated to one eigenmode,

u′ = ûie
λit + c.c. (2.19)

It is important to note that if one uses the eigenmode instead via
∫

V

λiq̂
∗
i · B · q̂idV =

∫

V

λiq̂
∗
i · A(q0) · q̂idV, (2.20)
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16 2. Theoretical Basics

one obtains a different Reynolds-Orr equation as imaginary terms do not vanish, see
[62].

2.4.2 Energy budgets

The Reynolds–Orr equation can be rewritten as

1

D∗

∂

∂t
E = −1 +

4∑

j=1

∫

V

ij dV, (2.21)

which has been rescaled here by the dissipative term

D∗ =

∫

V

D dV =

∫

V

∇u′ : ∇u′ dV,

and where

i1 = −
1

D∗
u⊥ · (u⊥ · ∇)u0, (2.22)

i2 = −
1

D∗
u‖ · (u⊥ · ∇)u0,

i3 = −
1

D∗
u⊥ ·

(
u‖ · ∇

)
u0,

i4 = −
1

D∗
u‖ ·

(
u‖ · ∇

)
u0,

in which the perturbation velocity has been decomposed into components tangential
and perpendicular to the basic state, as done in [5]

u‖ =
(u0 · u

′)u0

‖ u0 ‖2
and u⊥ = u′ − u‖.

This decomposition is particularly useful in order to know where and which mech-
anisms are efficient in extracting the energy from the basic state. Crudely simplifying
for the analogy, let us consider that the basic flow has a linear velocity profile and
is constant in streamwise direction as depicted in fig. 2.5. Moreover we shall see in
Chapters 4, 5 and 6 that the mechanism represented by i2, is in most of the cases
responsible for the larger part of the growth rate of the kinetic perturbation energy.
We follow the interpretation of the sign of i2 given by Albensoeder et al. [5]. In fig.
2.5, the upper left and lower right quadrants are filled in blue to indicate that i2 is
positive when then perturbation velocity u′ lies in these quadrants.

In the upper left quadrant, the production of perturbation energy comes from
the transport downstream (as u‖ · e‖ > 0) of the high momentum of the basic flow
to regions with a low momentum. In the lower right quadrant, the production of
perturbation energy comes from the transport of low momentum from the basic flow
to regions with a higher momentum, upstream (as u‖ ·e‖ < 0). In the other quadrants,
i2 has a stabilizing effect. Albensoeder et al. [5] argued as well that if the basic

https://www.tuwien.at/bibliothek
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u0

u
′

e‖

e⊥

Figure 2.5 – Explanation of the sign of i2 depending on the orientation of u′ with respect to u0.
The basic flow is depicted with the grey arrows, while the pertubration velocity is shown in dark
blue. Depending on the direction of the velocity perturbation, the sign of i2 changes. If the dark blue
arrow lies in a light blue quadrant, i2 is positive, otherwise i2 is negative.

flow streamlines are curved, and that the momentum is decreasing radially outward
(where the considered radius is the streamline curvature radius, or the radius from
the center of a vortex), then high values of i2 in such a region is a marker for an
centrifugal instability. In later chapters, we shall argue in the same way, although for
two-dimensional basic inviscid flows, more a elaborated local criteria for centrifugal
instability have been introduced by Bayly et al. [19] or Sipp & Jacquin [163].

Another interpretation is given by Loiseau et al. [100], taking an anolgy with struc-
tures observed in shear flows [50, 26] or wall-bounded turbulence [36]. The streamwise
component of the perturbation could be associated to low- or high-speed streak, de-
pending on whether u‖ · u0 < 0 or u‖ · u0 < 0, while the perpendicular component
of the perturbation could represent a vortex. With this simplification in mind, the
mechanisms behind i1, i2, i3 and i4 can respectively be thought as

• a self promoting mechanism where counter-rotating vortices extract energy from
the basic flow and promote itself.

• a lift-up mechanism: counter-rotating vortices extract the energy from the basic
flow and in turn promotes streaky structures.

• an anti-lift-up mechanism: streaks extract the energy from the basic flow and
promotes vortex structures.

• a self promoting mechanism where streaks extract the energy from the basic flow
and promote themselves.

Depending on their average sign, one can then clearly see if a mechanism is re-
sponsible for quenching or promoting the considered eigenmode. If the numerical
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18 2. Theoretical Basics

implementation is correct the production rate should be equal to 1 when the mode
is neutral or critical, less than one when the mode stable - that is that the viscous
effects dissipate more energy than what can be extracted - and conversely if the mode
is unstable.
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Numerical Methods

In this chapter, the methods used throughout the thesis will be presented. In a first
part we will describe the spatial discretization used in the Finite Element method
(FEM) library FEniCS [97, 8], and in Nek5000 which uses the Spectral Element
Method (SEM), introduced by Patera [120]. In general, these methods are very similar
in that they both are Galerkin projections. Then, the temporal discretization used
in Nek5000 will be explicated. A presentation of the methods employed to perform
a linear stability analysis will follow in a natural order: first methods to solve the
basic flow and then technique to solve large eigenvalue problems. In these both steps
the method of solution strongly depends on the size of the problem, i.e. whether the
problem is 3D or whether the basic flow is 2D and the perturbation are described by
Fourier modes in the spanwise direction.

3.1 Spatial Discretizations

3.1.1 Galerkin Methods

Galerkin methods are a subgroup of the so-called methods of mean weighted residuals
(MWR) [56]. The assumption of the MWR methods is that the solution u can be
sufficiently well approximated by linear combination of functions φi called trial func-
tions. The unknowns are the coefficients ui multiplying these trial functions and can
be found by minimization in some norm of the residual

R = L

(

u−

N∑

i=1

uiφi

)

, (3.1)

where L is the (non)linear operator. In particular one can define norms with a weight
function

∫

V

WnR dV = 0, n = 1, ..., N (3.2)

which leads then to N equations, and where Wn are the weight functions, also called
test functions. The method obtained depends on the choice of the test functions. In
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20 3. Numerical Methods

the case of Galerkin methods, the test functions are set to be the same as the trial
functions, and (3.1.1) is called weak or variational formulation.

Notations Before going further, let us denote the L2 scalar product of two vector
fields a, b defined on the volume V

〈a, b〉 =

∫

V

a · b dV (3.3)

Moreover, let us recall the definition of the Sobolev spaces. The functional space
L2(V ) is the space of function with support in V that are square integrable

L2 (V ) =
{

f such that 〈f, f〉
1/2

<∞
}

. (3.4)

The functional space H1(V ) further requires that the first spatial derivatives of the
function f are also square integrable

L2 (V ) =
{

f ∈ L2(V ) such that (〈f, f〉+ 〈∇f,∇f〉)
1/2

<∞
}

. (3.5)

We note H1
0 (V ) and H1

b (V ) the restriction of of H1(V ) to the functions satisfying
homogeneous and non-homogeneous Dirichlet boundary conditions, respectively.

Variational Formulation

In the case of the Navier–Stokes equations the variational formulation is obtained by
multiplying (2.2a) by the test functions v and q and integrating the equations, and
performing integration by part of viscous terms, and eventually the pressure term as
well. The variational formulation reads

Find (u, p) ∈ H1
b (V )d × L2(V ) such that

〈(
∂

∂t
+ u · ∇

)

u,v

〉

+ 〈∇u,∇v〉 − 〈p,∇ · v〉 = 0, ∀v ∈ H1
0 (V )

d
(3.6a)

−〈∇ · u, q〉 = 0, ∀q ∈ L2
0 (V ) (3.6b)

where d is the dimension of the velocity vector. In case of non-homogeneous Neumann
boundary conditions, one would have extra integral terms, which we do not consider
here. From the structure of this variational formulation, one can recognize that this
problem is a saddle problem and that in the Navier–Stokes equations, the pressure
plays the role of a Lagrangian multiplier of the continuity constraint.

In practice, one needs to find a sufficient approximation of these Sobolev spaces
and it is done by limiting the choice of functions to piecewise polynomials of some
degree. For instance, one can then discretize the velocity, the pressure and their test
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3.1. Spatial Discretizations 21

functions in their respective basis of Nu and Np piecewise polynomials πu
i and πp

i .
That is

uh =

Nu∑

i=1

uiπ
u
i (x), ph =

Np∑

i=1

piπ
p
i (x)

where uh and ph are the velocity and pressure expressed in these bases, and we note
u ∈ R

Nu and p ∈ R
Np the vectors collecting the coefficients ui and pi. As mentioned

earlier, in Galerkin methods the test functions vn
h and qm

h are nothing else than the
functions composing the basis. All the terms in the variational form (3.6a) can then
be expressed, for the test functions πu

n, π
p
m

〈
∂

∂t
uh,v

n
h

〉

=

Nu∑

i=1

∂ui
∂t

Nu∑

n=1

∫

Ω

πu
i · πu

ndx (3.7)

〈(uh · ∇)uh,v
n
h〉 =

Nu∑

i=1

u2i

Nu∑

n=1

∫

Ω

[(πu
i · ∇)πu

i ] · π
u
ndx, (3.8)

〈∇uh,∇vn
h〉 =

Nu∑

i=1

ui

Nu∑

n=1

∫

Ω

∇πu
i : ∇πu

ndx, (3.9)

〈p,∇ · v〉 =

Np∑

i=1

pi

Nu∑

n=1

∫

Ω

πp
i ∇ · πu

ndx, (3.10)

〈∇ · uh, qh〉 =

Nu∑

i=1

ui

Np∑

n=1

∫

Ω

πp
n∇ · πu

i dx. (3.11)

The double sums can be recast in matrix vector formulations and the discretized
variational formulation of the whole problem reads then

(
∂/∂tM+C(u) +K DT

D 0

)(
u

p

)

(3.12)

where M, C(u), K, and D are the matrix representation of (3.7, 3.8, 3.9 and 3.11),
respectively. M is called mass matrix, and can be seen as being an approximation
of the integral operation, C(u)u represent the (non-linear) convection term, K is
the stiffness matrix and represents the Laplacian operator, and finally DT and D

discretizations of the gradient and the divergence.

The difference between FEM as implemented in FEniCS and SEM in Nek5000 lies
essentially in the choice of the test/trial functions, how the integration is performed
and the shape of the elements. Although, one could argue that SEM are actually
a particular example of FEM - Higher Order Finite Element Methods - and mainly
historical reasons are at the origin of the different nomenclature. In fact, the ”classical”
finite element method uses Lagrangian or Hermitian polynomials at relatively low
polynomial order (p = 1, 2, 3), while the SEM is based on some specific quadratures
and Legendre polynomials of high order (typically p > 5) [74, 168].
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(a)

0

0

1

1

0.5

0.5−0.5−1

x

p(x)

(b)

0

0

1

1

0.5

0.5−0.5−1

x

p(x)

Figure 3.1 – (a) Lagrange polynomials of the 2nd order polynomial basis (solid lines), using a uniform
quadrature. Quadrature points are shown by the black filled circles. (b) The evaluation of the function
f : x → 1/(1 + 25x2) is shown by a full line while the Lagrange interpolant of order 11 defined on
a uniform quadrature is shown by the dashed line. Evaluations of f at the quadrature points are by
black filled circles.

3.1.2 Finite Elements Method using FEniCS

According to FEniCS website,

FEniCS is a popular open-source (LGPLv3) computing platform for solv-
ing partial differential equations (PDEs). FEniCS enables users to quickly
translate scientific models into efficient finite element code. With the high-
level Python and C++ interfaces to FEniCS, it is easy to get started, but
FEniCS offers also powerful capabilities for more experienced program-
mers.

In this thesis, this finite element library has been used only to solve two-dimensional
steady flow and related eigenvalue problems from linear stability, as the number of
degrees of freedoms remains relatively low, i.e. of the order O(105). The variational
formulations used then follow the variational formulation presented earlier, with some
modifications depending on the symmetries of the system. To solve linear systems,
the MUMPS library[10, 9] is used.

Taylor-Hood Element

In the FEniCS nomenclature, the most basic element basis for scalar fields is called
Lagrange element and the quadrature used for the integration is uniformly distributed.
In fig. 3.1a the three functions composing the basis of second order polynomials defined
on [-1,1] is shown. By default, elements on FEniCS are triangles, for more details on
meshing in FEniCS, see Alnaes et al. [8]. In the case of the Navier–Stokes equations,
the velocity is a vector field and pressure a scalar field, and the variational formulation
is one of a saddle problem. The Ladyzhenskaya–Babuška–Brezzi condition ensures
that there is a solution of the saddle problem under certain conditions. It requires
that the polynomial order of the pressure has to be lower than that of the velocity. In
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(a)

0

0

1

1

0.5

0.5−0.5−1

x

p(x)

(b)

0

0

1

1

0.5

0.5−0.5−1

x

p(x)

Figure 3.2 – (a) Legendre polynomials of the 7th order polynomial basis (solid lines), using a Gauss-
Legendre-Lobatto quadrature (black filled circles). (b) The evaluation of the function f : x →
1/(1 + 25x2) is shown by a full line while the Lagrange interpolant of order 11 defined on a uniform
quadrature is shown by the dashed line. Evaluations of f at the quadrature points are by black filled
circles.

the case of classical Taylor–Hood elements, one discretize velocity and pressure with
piecewise polynomial of order 2 and 1, respectively. One could eventually use higher
orders, but in the current implementation of FEniCS, only uniform grid are used.
That can lead to spurious oscillations as shown in fig. 3.1b, where the function x →
1/1+ 25x2 is interpolated using Lagrange polynomials of order 11, on a uniform grid.
Therefore when using FEniCS and Taylor-Hood elements, we shall restrict ourselves
to low polynomial orders.

3.1.3 Spectral Element Method using Nek5000

In Nek5000, careful use of high-order polynomials is made. Lagrange interpolants
are defined using Gauss–Legendre–Lobatto (GLL) quadrature (it includes quadrature
nodes on the boundaries of the element) for the velocity and using Gauss-Legendre
(GL) (quadrature nodes only inside the element) for the pressure. The polynomials of
the 7th order basis defined with the GLL quadrature is displayed in fig. 3.2a. Similarly
as in the FEM, the interpolation of a fractional functions is displayed for interpolation
order 11 in fig. 3.2b. In contrast to the uniform grid distribution (fig. 3.1b), Runge
oscillations seem to be damped because of the Gauss-type distribution of the nodes.

Moreover, an interesting property of these polynomials is that by construction,

computing with the corresponding quadrature the integral
∫ 1

−1
LiLjdx = wiδi,i, where

Li are the Lagrange polynomials, wi the weights of the quadrature and δi,j the Kro-
necker delta. The mass matrix is then diagonal and shown in fig. 3.3a for three
1-dimensional elements of order 5, defined on a GLL quadrature. This is, from a com-
putational point of view an important property since its inverse is also diagonal and
can be used as a preconditioner. Conversely, the stiffness matrix is block diagonal.
Only quadrilateral mesh elements can be used in Nek5000. Although complex curved
geometry could be handled through curvilinear formulation, the setups that we study
are very simple and only rectangular or squared elements are used.
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24 3. Numerical Methods

(a) (b)

Figure 3.3 – Global mass matrix (a) and stiffness matrix (b) of 3 one dimensional spectral elements
of polynomial order 5.

Moreover, the global matrices are never assembled in Nek5000, which uses amatrix-
free approach. Instead of building the actual matrices, only their application on a
vector is computed. This is only an advantage for large problems where the matrix
cannot be kept in memory. This is especially relevant for higher-order polynomials,
because the stiffness matrix is dense and loading the large block matrices would take
more time than recomputing the coefficients. The algorithms to solve linear system
are then restricted to Krylov based algorithms (GMRES, CG, ... ), since the matrix
itself cannot be accessed. This can be particularly efficient on modern and parallel
architectures.

3.2 Temporal Discretization

FEniCS was only used to compute steady flows, and related eigenvalue problems. For
time-dependent problems or larger problems, i.e. more than one million unknowns,
Nek5000 is used. It is an unsteady solver, which relies on a particular time discretiza-
tion, which will be briefly explained here. Most of this section follows Deville et al.
[43].

The non-linearity of the Navier–Stokes equation arises only in the convection term
C(u). To avoid having to solve a non-linear problem at each time step, a classical
approach is to use a semi-implicit time-discretization. More precisely the diffusion
and pressure terms are treated implicitly while the non-linear convective terms are
treated explicitly. By doing so, the linear problem that is solved at each time step
has also been made symmetric. To further enhance the prediction of the non-linear
term, one can use an extrapolation procedure, based on the results of the previous
time steps. The temporal scheme implemented in Nek5000 is called BDFk/EXTk,
which stands for Backward Differentiation Formula of order k, and EXTrapolation of
order k, the higher the order, the less stable is the scheme, but also the more accurate.
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Table 3.1 – BDFk/EXTk coefficients αi γi as defined in (3.13a).

k α0 α1 α2 α3 γ0 γ0 γ0
1 1 -1 1
2 3/2 -4/2 1/2 2 -1
3 11/6 -18/6 9/6 -2/6 3 -3 1

Applied to the (3.12), this gives, in case of constant time steps ∆t

M

k∑

i

αi

∆t
un+1−i +Kun+1 +DTpn+1 = −

n∑

j=n−2

γjC(u)j , (3.13a)

Dun+1 = 0, (3.13b)

where αi and γj are defined as in table 3.1 up to k = 3 which is the highest time
discretization order implemented in Nek5000. One can further decompose the pressure
pn+1 = pn+δpn+1, where the increment δpn+1 naturally goes to zero when the flow is
steady. The pressure increment substitutes the pressure as the unknown for enforcing
the continuity of the next time step velocity. Gathering all the explicit velocity terms
in f , the previous system of equation can be recast in the form

(
H DT

D 0

)(
un+1

δpn+1

)

=

(
f −DTpn

0

)

, (3.14)

where H is the discretization of the Helmholtz operator which depends on ∆t. To gain
generality one can modify it to

(

H −HQDT

−D 0

)(
un+1

δpn+1

)

=

(
f −DTpn

0

)

+

(
rn+1

0

)

, (3.15)

where the residual rn+1 is accounting for the changes in the matrix, and Q is an
arbitrary matrix. This matrix vector problem can be solved using a LU decomposition,
which gives two sub-problems:

(
H 0

−D −DQDT

)(
u∗

δpn+1

)

=

(
f −DTpn

0

)

(3.16)

and
(

I QDT

0 I

)(
un+1

δpn+1

)

=

(
u∗

pn+1

)

, (3.17)

where the intermediate velocity v∗ is not divergence free, and for the sake of simplicity
the term with the residual has been neglected. Depending on the choice of Q, different
methods can be obtained. For instance if Q = H−1 exactly, one recovers the exact
same equations as before, and this is known as the Uzawa method. However, the
inversion of H is not straightforward, and the Blair-Perot method is implemented in
Nek5000, that is Q = ∆t/α0M

−1. Keeping this in mind and observing (3.16), one can
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26 3. Numerical Methods

easily see that the first line is a first guess of the velocity field, and the second line the
Poisson equation for the pressure changes. The second system of equations is nothing
else than the projection of the non divergence free velocity u∗ onto the divergence free
velocity un+1. This is actually the origin of the well known projection method. The
inversion of the mass matrix is trivial since it is diagonal. Using this diagonal matrix,
it can be shown that the terms linked to the residuals rn+1 decay with O(∆t2). Had
not we used this decomposition of pn+1, the scheme would have been of order O(∆t)
and eventually the residual would not have vanished when reaching a steady state.
By setting Q = ∆t/α0M

−1, we approximated H−1 with a first-order approximation,
one can naturally use higher order approximations of that inverse, yielding 4th or 6th
order of accuracy in the time splitting. However, that would require a higher order
time integration scheme, and domain of stability of the BDFk schemes would shrink
even more.

3.3 Computation of Steady States

We saw in Chapter 2 that studying the linear stability analysis of an equilibrium q0

required two steps: the first one being solving for the non-linear steady state equation.
The objective of this section is to explain the different methods to accomplish that
goal. The first idea is to use a Newton method. However, we will see that it has
strong limitations in this context, and some state-of-the-art methods to circumvent
these problems will be presented.

3.3.1 Newton Method

Algorithm

The Newton method is probably the most used method for solving non-linear system
in the form F(x) = 0 and will only be briefly presented here only for completeness.
Here, we apply it as the continuous level, however, it is possible to derive it as well
after discretization. The Newton method is initiated using a first guess for the solution
x0 and follows the steps:

1. Solve the linear system ∇F(xk) · δxk = −F(xk);

2. Set the new iterate xk+1 = xk + δxk;

3. Stopping criterion can be set with the norm of the increment ‖ δxk ‖ or the
norm of the residual ‖ F(xk+1) ‖.

In the case of the discretization of the steady Navier–Stokes equations using a
Galerkin approach, the non-linear steady problem 2.7 that has to be solved to find the
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steady state q0 = (u0, p0) reads

∫

V

(uk
0 · ∇)uk

0 · v dV +

∫

V

pk0∇ · v dV +

∫

V

∇uk
0 : ∇v dV = 0, (3.18a)

∫

V

q∇ · uk
0 dV = 0, (3.18b)

where k is the index of the current step of the Newton algorithm. The linearization
of (3.18a) around the current iterate qk = (uk

0 , p
k
0), ∇J(q

k
0) · δq

k is given by

∫

V

(uk
0 · ∇)δuk · v dV +

∫

V

(δuk · ∇)uk
0 · v dV

+

∫

V

δpk∇ · v dV +

∫

V

∇δuk : ∇v dV = 0, (3.19a)

∫

V

q∇ · δuk dV = 0. (3.19b)

Using the same discretization as presented above, one obtains a vector corresponding
to the discretized Navier–Stokes equations evaluated at qk

0 , and the Jacobian matrix.
Note that in case of a 3D linear stability analysis, it would correspond to the stability
matrix, whereas for infinitely extended systems they differ since the wavelength of
normal mode does not appears here.

Limitations for Large Problems

While the Newton method performs well for small systems, assembling and solving
the linear system of equations can be quite problematic for large systems. In fact, one
has to compute and store in memory the whole Jacobian matrix. Let us make a quick
estimation: take 2000 3D elements of order 7 for the velocity and 5 for the pressure,
the matrix itself would already be composed of 2.5× 109 entries, so about 30Gb. For
larger problem, for instance boundary layer flows, the number of element is orders of
magnitude higher [174] making it most likely impossible to handle.

To circumvent the problems associated with huge problems, numerous techniques
are available. Among them, Newton-Krylov methods [77] have been used extensively
for tracking periodic orbits. They can also be employed to find steady states but they
often turn out to be poorly conditioned, and preconditioning in an iterative matrix-
free framework might be difficult [178]. In case the system is unstable to oscillating
perturbations, a method commonly used is to filter these oscillations. Naturally, this
works only in case the perturbation is oscillating, and cannot recover unstable steady
equilibria to non-oscillating perturbations. Recently, the BoostConv algorithm has
been proposed by Citro et al. [39]. It is based on a recombination of the residuals and
fairly simple to implement. In case the basic flow exhibits more spatial symmetries
than the perturbations, another option is to enforce symmetry that only the basic flow
exhibits by imposing a boundary condition and later reconstruct the whole flow field.
For a comprehensive review on that matter, we refer to Loiseau et al. [99].
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28 3. Numerical Methods

3.3.2 Selective Frequency Damping

Unlike in the Newton method, we use here a time-dependent solver to obtain the steady
basic flow. If the basic state is stable, one can run the solver until the variations of
the velocity are smaller than some tolerance, in some norm. However, if the basic flow
is unstable this approach will not be successful. Selective Frequency Damping (SFD)
is a method that has been introduced by Åkervik et al. [2], to stabilize the basic flow
when it is subject to (growing) oscillations. Indeed, this method is nothing else than
a low-pass filter, and is often used in control theory. Once the oscillations have been
damped, the velocity field obtained corresponds to the basic flow. Practically, this
methods amounts to adding an equation for the filtered velocity ū, and a forcing term
in the momentum equations. The set of equations becomes

(
∂

∂t
u+ u · ∇

)

u = −∇p+∆u− χ (u− ū) , (3.20a)

∇ · u = 0 (3.20b)

∂

∂t
ū = ωc (u− ū) , (3.20c)

where ωc is the cut off frequency of the low-pass filter and χ is the strength of the
filter. This additional equation can straightforwardly be integrated in time using the
same BDFk/EXTk integration-schemes presented above. Necessary conditions for this
technique to damp oscillations are (a) that the cut off frequency ωc should be smaller
than the lowest frequency of the unstable oscillating mode ℑ(γi) (typically at least
twice as small), and (b) that the filter strength χ is larger than the growth rate of the
perturbation ℜ(γi). Obviously the rate of convergence of this technique strongly relies
on the choice of these parameters [98, 30]. Some attempts to optimize this technique
have been made by Jordi et al. [70], Cunha et al. [40], where either using a reduced
system of equation or by use of dynamical mode decomposition, they try to obtain an
optimal parameter pair,(χ, ωc) to suppress the oscillations faster.

3.3.3 BoostConv Algorithm

To obtain the basic steady flow (u0, p0)
T, another way is to solve the governing non-

linear system of equations using the BoostConv algorithm, recently proposed by Citro
et al. [39]. The method is based on the acceleration of the convergence of an iterative
method of solution. In the following a short description of the algorithm is provided.
For further details the reader is referred to Loiseau et al. [99] and Bucci [29].

This approach relies on the use of a transient solver. This transient solver can be
represented as

xn+1 = xn +B · rn, (3.21)

where xn+1 is the next iterate, B represents the time integration operator for a chosen
time interval ∆tB , and rn is the residual, defined by the equation

rn = A · xn − b, (3.22)
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Outer World

Un

Un ← Un + ξN+1

Transient solver

time integration (∆tB)
Un+1

rn ← Un+1 −Un

BoostConv
Update & Store

• rN ← rN+1

• ri − ri+1 ← ri+1 − ri+2

• ξi ← ξi+1

Modify Residual

• ξN+1 = rn + (U − V) · c

Update Krylov spaces

• rN+1 ← rn
• U = [ξ1, ..., ξN ]

• V = [r1 − r2, ..., rN − rN+1]

Solve Least Square Problem

• Form matrix Dij = 〈Ui,Uj〉

• Form vector ti = 〈Ui, rN+1〉
• Solve Dc = t

Figure 3.4 – Sketch of the BoostConv Algorithm

where A is the steady operator, possibly non-linear. rn can be thought as the time
derivative, when it cancels, xn is the solution of the steady problem. Like many other
iterative algorithms, the residual rn is subject to minimization. Applying the operator
A on (3.21) and using (3.22), one obtains

rn+1 = rn −C · rn, (3.23)

where C = −A ·B. We introduce the modified residual ξ(rn), which is designed such
that the next residual rn+1 cancels, i.e.

rn+1 = rn −C · ξ(rn) = 0. (3.24)

Requiring rn+1 = 0 leads to a linear system of equations

rn = C · ξ(rn). (3.25)

The objective of the method is to find the best (non trivial) ξ. Computing the operator
C would be a very hard task, to avoid that, we introduce two Krylov spaces

U = {r1, r2, . . . rN} and V = {r1 − r2, r2 − r3, . . . rN − rN+1} (3.26)

of dimension N are generated and are related to each other using (3.23), by V = C ·U .
One can then express

ξ = U · c, (3.27)
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where c ∈ R
N , is a linear combination of the vectors composing U . The components

of c can be obtained by solving the least-squares problem

c = argmin |rn − U · c|2. (3.28)

This leads to a small linear system of N equations

UTU · c = UT · rn, (3.29)

which can be solved by direct methods. Here, we solve (3.29) using the LU factoriza-
tion. So far we only expressed C ·ξ in a specific basis, which, alone, does not accelerate
convergence. The key idea of [39] is to also express the new residual ρ = rn −C · ξn
which (3.27) introduces in (3.25) using the Krylov space V such that

ρ = rn − V · c. (3.30)

Adding this residual to (3.27) yields

ξn = rn + (U − V) · c. (3.31)

By replacing the residual rn in (3.21) by the corrected value ξn the convergence is
much accelerated, while the extra load to compute ξn is negligible for large systems.
It is based on a combination of residuals in low-dimensional Krylov spaces U , V of
dimension N . These Krylov spaces are fed in a cyclic fashion, meaning that the data
written N iterations before will be overwritten by the data obtained at the current
iteration. For further details and explanations on the acceleration, we refer e.g. to
Bucci [29].

The two parameters on which this method depends are the dimension N of the
Krylov space, and the time ∆tB between two calls. Typically a small Krylov space is
enough, but the dimension has to be set in accordance with ∆tB such that potential
oscillations can be seen, i.e. respect a Nyquist criterion. From a practical point of view,
the fact that there is no parameter depending on the growth rate of the perturbation
is a considerable advantage. The workflow to apply the BoostConv algorithm is shown
in fig. 3.4.

Compared to the SFD, the BoostConv algorithm is usually faster, and allows re-
covering basic states which are unstable to non-oscillatory perturbations. Especially
once the residual has been sufficiently reduced, the convergence curve is very steep
(see fig. 3.6).

This BoostConv algorithm can be implemented on the basis of the time-dependent
solver with only minor changes. For all calculations we use a Krylov space dimension
of dim(K) = 10. As a side note, this algorithm can also be used to recover periodic
orbits of known period without implementation changes: one only has to call the
function with ∆tB = Tp, where Tp is the period.

3.3.4 Symmetries

Using symmetries of the problem, if there are any, can also be a very good alternative
to the previous methods to find steady states. In simple geometries, the basic flow
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30

3515

u
=

(R
e,
0)

T

Symmetry plane

Periodic

Periodic

Outflow

1

x

y

Figure 3.5 – Sketch of the flow past a cylinder.

often exhibits more spatial symmetry than the perturbation, and in some cases one
can eventually take advantage of it. For instance in the case of a flow past a cylinder
sketched in fig. 3.5, the basic flow is symmetric with respect to the x-axis, whereas the
most dangerous mode is not. Then limiting the solutions to the subspace of symmetric
solutions naturally leads to the steady basic flow. This approach can be faster than
a SFD, since by design the most unstable perturbations are not present, and do not
need to be damped. On one hand, this approach necessitates to generate a second
mesh (half of the full mesh). On the other hand, the number of unknowns being twice
as small, the CPU time needed is consequently lower.

In order to quickly compare the performance of these methods, we use the test
case of the flow past a cylinder sketched in fig. 3.5 at Re = 100, so beyond the critical
Reynolds number which is about 50. If the flow evolves freely without any control or
symmetry being imposed, the system evolves toward a limit cycle. The uncontrolled
case is shown by the blue curve in fig. 3.6. If the low pass filter is applied (orange in
fig 3.6), the oscillations are damped and as one can see that it converges rather slowly
in the long term.

The BoostConv shown in red performs the best in term of iterations needed to
converge. One could argue that changing the parameters could change the performance
of SFD and BoostConv, but generally speaking the latter is faster. For more details,
we refer the reader to [29, 99]. Finally, applying a symmetry constraint along the
x-axis is possible, and the residual multiplied by 2 is shown in green. One notices
the same decay of the residual as for the SFD but the convergence slope seems to be
steeper. Moreover the computation finished twice as fast as the other simulations (all
on one core).

3.4 Eigenvalue Problems

The second step to investigate the linear stability of a problem at a given parameter
is to solve the eigenvalue problem (2.9). To solve large eigenvalue problems, many
techniques have been developed in the past century. First came the power iteration
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Figure 3.6 – Evolution of the residual for the flow over a cylinder at Re = 100 for the system without
any control (blue), with SFD parameters χ = 0.5, ωc = 0.5 (orange), with BoostConv parameters
N = 10,∆tB = 1 (red), and imposing a symmetry condition along the x-axis (green).

[141], which can give information only on the largest eigenvalue and eigenmode of
the operator. For symmetric problem, one could use Lanczos method [88] as well,
but in the linearized Navier-Stokes equations, the convection term makes the problem
non-symmetric and these algorithms cannot be used. Using a Gram-Schmidt orthogo-
nalization procedure, the Arnoldi algorithm [13] and its extension Implicitly Restarted
Arnoldi Method [89] have become nowadays standards for generalized eigenvalue prob-
lems.

3.4.1 Power Iteration

The Krylov space of dimension n of a linear operator A of dimension m×m is defined
as

Kn (A,v) =
[
v,Av,A2v, ...,An−1v

]
,

where v is an arbitrary vector. As n grows, this sequence of vector converges toward the
eigenvector corresponding to the largest eigenvalue of the matrix. It is the eigenvector
for which the norm ‖ Anv ‖ decays the slower with n, or grows the faster with n
depending on the real part of the eigenvalue.

However, this method is requires a lot of computational power, although only the
last vector An−1v is kept, and the rest of the Krylov basis remains useless. This
method can converge slowly depending on the spectrum of the operator: if two eigen-
values are very close to each other, the relative decay/growth of one compared to the
other might be moderate.

Generally, the Krylov basis is not orthogonal and could be orthogonalized using
a simple Gram-Schmidt algorithm, and more information could be extracted from it.
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This is the principle of the Arnoldi algorithm.

3.4.2 Arnoldi Method

The goal of this iterative method is to obtain a restriction of the high dimensional
linear operator A to the n-Krylov subspace. One builds a collection of k orthogonal
vectors Vk = [vi, i = 1 : k],

vk+1 = Avk −

k∑

j=1

(Avk,vj)vj . (3.32)

To understand what happens, it is convenient to look at it from a matrix point of
view. Let us gather the coefficients of the Gram-Schmidt orthogonalization in an
upper Hessenberg matrix Hk ∈ C

k×k, where Hk,ji = (Avi,vj). One can then rewrite
(3.32) as

AVk = VkHk − hk+1,kvk+1e
T
k+1. (3.33)

the rightmost term of this equation is the rest, and is orthogonal to the constructed
basis (Galerkin property). As Vk is orthonormal, one gets

Hk = VH
k AVk, (3.34)

where the superscript H denotes the transpose conjugate. From (3.34) one can see
that the Hessenberg matrix is a restriction of the linear operator to some Krylov
subspaces. Furthermore, the eigenvalues of Hk ,also called Ritz eigenvalues, converge
towards those of A. For more details, the reader is referred to [176, 12]. As the matrix
Hk is relatively small, eigenvalues µi and eigenvectors yi can be numerically computed
using a QR algorithm. They are related to the eigenpairs γi, v̂ of the linear operator
by

µi ≈ γi and v̂ ≈ Vkyi.

The Arnoldi method has two drawbacks: it becomes more and more resource con-
suming as k increases, and might require huge amount of memory, and there is no op-
timal Krylov space dimension n that ensures convergence. To remedy these problems,
several techniques have been proposed: a variation of that algorithm called the Im-
plicitely Restarted Arnoldi method (IRAM) has been proposed by Lehoucq & Sorensen
[89] and a second one relies on a Schur decomposition [170]. As the IRAM is available
in the ARPACK Library, it is used to solve the eigenvalue problem, as implemented in
[122, 123] when using Nek5000, and is called in scipy’s function linalg.eigs. Follow-
ing the notation of [89], one first builds a length k Arnoldi factorization, evaluates the
eigenvalues of Hk and sort then according to some user defined criterion (by largest
real part or magnitude for instance) into a wanted set {µj : j = 1 : m} and an un-
wanted set {µj : j = m+1 : k}. If the convergence of the first nW wanted eigenvalues
is not satisfying, IRAM performs the first k −m iterations of a QR algorithm on Hk

such that

HkQk = QkH
+
k
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34 3. Numerical Methods

Defining Qm the first m columns of Qk, multiplying (3.33) by Qm one obtains a
deflated decomposition

AVkQm = VkQmH+
m + f+

meTm,

where H+
m is the leading submatrix of order m. The right hand side is composed of the

new reduced Hessenberg matrix, the reduced Krylov basis, and the residual that will
be used to restart the Arnoldi iterations. This process of reduction is called deflation.

3.4.3 Time Stepping

The application of IRAM directly to the Jacobian matrix of the linearized Navier–
Stokes equations is possible for small problems (e.g. two-dimensional). Fully three-
dimensional problems become more challenging regarding the memory requirements.

According to Theofilis [174], the discretized Jacobian of would need Terabytes of
storage in the case of a boundary layer. Therefore, the storage in memory of such a
large matrix is hardly possible and the calculations would slow down, because most of
the computer’s work would be to fetch the information.

To palliate this problem, Marcus & Tuckerman [103] and Edwards et al. [49] used
a time stepping approach, which was then popularized by Bagheri et al. [16]. Project-
ing the velocity on the divergence-free vector space, the dynamical system linearized
around its equilibrium u0 can be simply recast as

∂

∂t
u′ = A(u0)u

′,

where A(u0) is the projection of the Jacobian matrix onto the divergence-free space.
The solution of this system can be expressed as

u′(t = ∆t) = eAt
︸︷︷︸

M(∆t)

u′(t = 0).

The operator eA∆t is the so-called exponential propagator or also time propagator of
the system. Seemingly, taking the exponential of the operator does not look like it will
help with the memory problem since computation of the matrix exponential is usually
very costly. However, one notes that u′(∆t) corresponds both to the evaluation of
this propagation operator on the initial perturbation and the output of the linearized
solver after a time ∆t given the initial perturbation. Computing the action of the
operator M(∆t) on a vector u′ is quite straightforward, and does not require the
colossal task of forming the matrix. Besides, instead of assembling the matrix and
performing the matrix-vector products in the Arnoldi method, one can use only its
evaluation: the integrated perturbation after ∆t. The choice of the ∆t is of course
very important and mainly depends on the oscillations that one expects, and has to
follow a Nyquist-Shannon criterion.

The propagator matrix and the Jacobian matrix being simply related, the Ritz
pairs µi, obtained by the Arnoldi method on the propagator operator are related to
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Nek5000

Linearized Navier–Stokes

k = N ?

Update Hessenberg

Update Hessenberg

Update Krylov space

Update Krylov space

Deflation

Get new residual

Get new residual

Converged ?
no

no

yes

yes

u
′

k
(t = 0) u

′

k
(t = ∆t)

ARPACK

µ,y = QR(H)
q̂i = Qy

log(µi)/∆t, q̂i

Figure 3.7 – Sketch illustrating the time stepping technique as used in this thesis.

the eigenvalues γi of the Jacobian by

γi =
logµi

∆t
, (3.35)

and the eigenvectors stay the same.

3.5 Additional Methods for Infinitely Extended Sys-

tems

3.5.1 Finding the Critical Wavelength

As mentioned in the section 2.3.3, in case of infinitely extended systems where the basic
flow is homogeneous in one direction, finding the critical Reynolds number necessitates
to find the critical pair (Rec, kc) where kc is the wavenumber for which the Reynolds
number is minimal.

Finding the critical Reynolds number involves (a) finding the zero of the largest
growth rate for given wave number yielding the neutral Reynolds number Ren, and
(b) minimizing the neutral Reynolds number with respect to the wave number.

(a) To find the neutral Reynolds number Ren at which the largest growth rate

vanishes for given k, Ren is estimated by Re(1) and a linear stability analysis is per-
formed for Re(1) and for a slightly different Reynolds number Re(2) = Re(1) + δRe
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where δRe is small, e.g. 100 times smaller than Re(1). The linear interpolation to
zero of the maximum growth rates obtained for Re(1) and for Re(2) determines Re(3).
If the absolute value of the largest growth rate for Re(3) is still larger than a given
tolerance ǫ, Re(4) is found by quadratic interpolation to zero of the largest growth
rates obtained for the previous three Reynolds numbers. The iteration continues until
the convergence condition |σ| < 10−4 is met.

(b) The wave number kc at which the neutral Reynolds number takes its minimum
can be estimated by kmax at which the growth rate of the most dangerous eigenmode
takes its maximum. This corresponds to minimizing the function k → −ℜ(γ(k)) at a
given Reynolds number Re which leads to the minimization problem

kmax(Re) = argmin (−ℜ(γ (k,Re))) . (3.36)

To that end, one can compute the sensitivity of the eigenvalue γi with respect to
changes of the wave number

∂γi
∂k

= −2k − i
〈

w0ûi, û
†
i

〉

− i 〈p̂i, ŵi〉 − i
〈

ŵi, p̂
†
i

〉

, (3.37)

where 〈a, b〉 =
∫

V
a∗b dV , the asterisk (∗) denotes the complex conjugate and the

dagger (†) indicates the adjoint of the i-th eigenmode (see Appendix A for the deriva-
tion). This sensitivity can then be used in a minimization algorithm, e.g. the Broyden–
Fletcher Goldfarb–Shanno (BFGS), to find the local minimum.

Once the critical wave number kmax has been estimated it is used to return to step
(a) and find the corresponding neutral Reynolds number which improves on Rec. A
couple of iterations between the two steps (a) and (b) is usually sufficient to find kc and
Rec with high accuracy. The iteration is terminated as soon as |∆Re|+ |∆k| < 10−3,
where ∆Re and ∆k denote the updates of Re and k, respectively, after one full iteration
step consisting of (a) and (b).

BFGS: a Quasi-Newton Algorithm

In order to find the critical wavelength for an infinitely extended system, we made use
of the Broyden–Fletcher Goldfarb–Shanno (BFGS) algorithm. Although it was not
implemented but only used in the framework of this thesis, it is briefly explained. For
more details, see e.g. [15]. In the case of a minimization or maximization problem,
the zeros of the gradient of the function is of interest, and the Newton method can be
recast into

xn+1 = xn −H−1
f ∇f . (3.38)

Very often the Hessian matrix Hf is not available analytically and one has to find
a way to approximate this matrix. A method doing such approximation is called a
Quasi-Newton method.

To initialize the BFGS algorithm, one has to provide a first guess for the solution
x0 and for the approximate Hessian matrix H0, typically the latter is set to identity.

1. Find the direction p by solving Hkp = ∇f(xk).
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Re
(0)

Rec

k
(0)

kc

Re

k

Figure 3.8 – Sketch illustrating the critical parameter search. Grey shades denote the real part of
the eigenvalue, which is zero on the dotted line. The dashed line represent the maximum of the
eigenvalue over k at a given Re. The full line shows the first iterations of the search. A search of
maximum corresponds to the horizontal line, while a root search is a vertical line.

2. Find the step size s using a line search algorithm, that is s = argmin
d

∇f(xk+dp).

3. Set the increment sk = sp, and xk+1 = xk + sk.

4. Compute the difference between the gradient of two iterates and set yk =
∇f(xk+1)−∇f(xk).

5. Update the approximation of the Hessian

Hk+1 = Hk +
yky

T
k

yT
k sk

−
Hksks

T
kH

T
k

sTkHksk
.

6. The stopping criterion can be set using the norm of the increment or the norm
of the residual.

Although the Hessian matrix can be numerically inverted, there exists an analytical
inversion using the Sherman-Morrison formula to invert the sum of an invertible matrix
and outer product. For large systems, computing and storing the Hessian can be
a limiting factor, and a lighter version of the BFGS algorithm, using only smaller
matrices for the Hessian approximation can be used. It is called L-BFGS-B. This
latter algorithm will be used to stabilize or destabilize a thermocapillary driven cavity
with a designed heat flux, see Chapter 5.
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3.5.2 Continuation Method Based on Polynomials

To find (Rec, kc) as a function of a third parameter α using the above iteration, a good
initial guess is required. This is obtained by extrapolating the converged critical data
obtained for previous values of α. Based on the N + 1 known data (αi,Rec,i, kc,i) for
i ∈ 0, . . . , N the distance function from the first point (α0,Rec,0, kc,0)

di =

√

(αi − α0)
2
+ a (Rec,i − Rec,0)

2
+ (kc,i − kc,0)

2
(3.39)

is evaluated for i = 1, . . . , N , where the Nth point is the point found in the last
converged iteration. The coefficient a = 0.1 has been selected in order to improve
the condition number of the fit, because the Reynolds number is typically two to
three orders of magnitude larger than α and k, which also applies to their variations.
Based on the parametrization di each of the three quantities (α,Rec, kc) is fitted by a
polynomial of maximum order three Pf (di), where f ∈ [α,Rec, kc]. The coefficients are

obtained by least-squares minimization of the functional
∑N

i=1 wi [fi − Pf (di)]
2
, where

the weights wi are selected to give preference to the last point by setting wi = i. The
three polynomials obtained are then evaluated for d > dN to arrive at the new initial
guess for (αN+1,Rec,N+1, kc,N+1). Using a low polynomial order (P ∈ P3) renders the
method stable.
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Linear Stability Analysis of

Obliquely-Driven Rectangular

Cavities

The flow of an incompressible fluid in a cavity of rectangular cross section, driven by the
tangential motion of one or more lids is of general importance in fluid mechanics. The
system is an an important benchmark but also encompasses fundamental problems.
Together with the von Karmán vortex street, it is one of the main benchmark tests
for a numerical solver. Owing to its simple geometry and, in particular, the absence
of curved boundaries, the mesh generation does not need elaborate techniques since
a simple tensor grid is sufficient and the implementation of the Dirichlet boundary
conditions is also straightforward. The reader is referred to [154, 87] for comprehensive
reviews on the subject.

Historically, the first two-dimensional steady flows computations are due to
Kawaguti [75] and Burggraf [31] who used finite-difference schemes on a 11 × 11
and a 40 × 40 tensor grid, respectively. As the computational resources increased,
highly-resolved benchmark data were obtained in the early 80s by Ghia et al. [63] and
Schreiber & Keller [149] who computed steady flows up to Re = 104. Later on Botella
& Peyret [22] employed a spectral method together with the singularity subtraction
method [23] to avoid an excessive deterioration of the exponential convergence of the
spectral method by the singular boundary condition. The same method has been
employed by Albensoeder & Kuhlmann [3] to treat three-dimensional cases, providing
benchmark data for specific aspect ratios.

While benchmark data have been gathered, the lid-driven cavity naturally served
as test bed for the development of numerical schemes. For instance De Vahl Davis
& Mallinson [42] examined several schemes for convection and their stability, and Ku
et al. [82] tested a psoeudospectral Chebyshev method. Eventually, Tuann & Olson
[177] reviewed different schemes for recirculating flows. All were tested using the
lid-driven cavity.

In the mean time, experiments were also carried out. Pan & Acrivos [119] investi-
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gated experimentally the length of the core vortex as a function of the length-to-depth
ratio of the cavity. More in-depth experimental studies were carried on by Koseff
Koseff et al. [81], Koseff & Street [80, 79, 78] and Prasad & Koseff [133]. They in-
vestigated a square cavity with a spanwise aspect ratio of 3 driven by a plate at its
top surface and discovered the presence of three-dimensional Taylor–Görtler vortices
(TGV) at Re = 3000, developing along the curved boundary layer next to the bottom
corners. These vortices could obviously not be observed in two-dimensional simula-
tions. The discovery of the Taylor–Görtler vortices stimulated further research on the
laminar-turbulent transition.

In two-dimensional numerical simulations, the two-dimensional steady flow be-
comes unstable to two-dimensional perturbations at a relatively high Reynolds num-
ber. Shen [155] found the existence of a Hopf bifurcation at Rec ≈ 104. However,
due to the smoothing of the lid velocity that was implemented, the critical Reynolds
number is over-estimated. Much more accurate, Auteri et al. [14] found that the
Hopf bifurcation arises at Rec = 8018.2 ± 0.6. The bifurcating limit cycle was re-
constructed by Auteri et al. [14], Peng et al. [121], or Bruneau & Saad [28]. The
high critical Reynolds number was further confirmed by linear stability analyses of
Poliashenko & Aidun [128], Fortin et al. [58] or Sahin & Owens [142]. The critical
Reynolds at which the system is unstable to two-dimensional oscillating perturbation
was Rec = 7763± 2%, Rec = 8000 and Rec = 8069.76, respectively.

Assuming the square cavity to be infinitely extended in its spanwise direction and
allowing the perturbation to be three-dimensional, Ramanan & Homsy [134],Ding &
Kawahara [44, 45] could find a critical Reynolds numbed of Rec = 920 and critical
wavelength of λc = 0.84. The neutral mode found could correspond to the TGV that
were described in the experiments of Koseff & Street [78]. However, they apparently
missed a mode with a lower wavelength which was found by Albensoeder et al. [5]
at Rec = 786 and wavelength λc = 0.407. This latter study investigated the flow
instability as a function for the depth-to-width aspect ratio Γ ∈ [0.1, 4]. For deep
cavities, the depth of the cavity seems to become less and less relevant for the critical
Reynolds number, as the critical mode arises around the limit of the first vortex
immediately below the moving lid. For a square cavity, the local rate of production of
kinetic perturbation energy is maximal close to the corner upstream to the moving lid
and forms some banana-like structures. This instability was shown to be of centrifugal
origin: there is an exchange of momentum from a region at small distance from the
vortex (small radius) center with a fluid having a large momentum to a region at
larger radius (far from the center of the vorter) with a lower momentum. For more on
centrifugal instabilities in inviscid flows, we refer to Bayly et al. [19]and Sipp & Jacquin
[163]. The results of Albensoeder et al. [5] are in agreement with the experiments
carried by Siegmann-Hegerfeld et al. [161]. Besides Theofilis et al. [175] confirms
numerically the results of [5] for a square cavity but results differ for other aspect
ratios.

In cavities of finite spanwise dimension, the flow stability is affected by the end
walls. Aidun et al. [1] observed experimentally that the flow in cavity of square cross
section with a throughflow and spanwise aspect ratio of 3 remained stationary until
Re = 875 ± 50, and found multiple steady cellular flows for Re < 500 which might
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be reached through finite-amplitude perturbations only. Siegmann-Hegerfeld et al.
[162] investigated larger spanwise aspect ratios up to 10 and noted that the TGV were
present in the center of the cavity but that end walls effect were preventing the vortices
to form in wide regions next to the end walls. This was also confirmed numerically by
Albensoeder & Kuhlmann [4], who compared the wavelength of the vortices in case of
end walls and for periodic boundary conditions in the spanwise direction. They found
that the wavelength of the TGV were agreeing with the one predicted by the linear
stability analysis of the infinitely extended system. However, the fact that the end
wall effects dominate on a large span of the cavity can delay the appearance of the
vortices.

Strongly end-wall dominated cavities became of interest as Feldman & Gelfgat [55]
investigated the onset of time-dependent flow in a cubic cavity. They found a critical
Reynolds number of Rec ≈ 1900. Further experiments Liberzon et al. [95] showed,
using water and glycerol as working fluids, that the flow does destabilize between Re =
[1700, 1950]. Although there was some discrepancy concerning the critical Reynolds
number, the frequency of the oscillation compared very well. Kuhlmann & Albensoeder
[85] found that the steady flow undergoes a slightly subcritical Hopf bifurcation and
that the limit cycle is unstable in form of bursts breaking the mirror symmetry of the
flow after a long integration time. These results were further confirmed by Loiseau
et al. [100]. They also found that during these bursting events, the system visits a
second limit cycle. Finally Lopez et al. [101] could isolate the unstable quasi-periodic
states linking the two limit cycles and clarify the scenario using symmetries and edge-
state tracking.

Povitsky [131, 132] investigated the steady flow in a cubic cavity when the lid
moves diagonally. He noted the higher number of vortices and a higher mean mo-
mentum than in the canonical case. Due to the confined geometry and the diagonal
driving, the viscous effect are very strong at the downtream end of the lid and the flow
returns earlier to the bulk than in the classical case. This leads to vortices in the bulk
which are mirror symmetric with respect to the diagonal plane, but the steady flow
structure is much more complicated (10 transverse vortices) than in the classical case
(4 corner vortices) and the mixing properties of the flow are enhanced. Feldman [54]
was interested in the temporal evolution of the system and found a supercritical Hopf
bifurcation in which the flow oscillations breaks the mirror symmetry with respect to
the diagonal plane. According to Feldman [54], the oscillations saturate and, unlike in
the classical case, the limit cycle seems to be stable. The time-dependent perturbation
flow seems to have a rather complicated structure, stemming from the intricate basic
flow structure. A streamwise vortex, centered on the diagonal plane, which alternates
its sense of rotation seems to be the essential feature of the perturbation flow. Appar-
ently, the end-wall effects on the flow structure are potentially of greater importance
than in the classical case. Benchmark data for the critical Reynolds number was pro-
vided by Gelfgat [60] for the diagonally driven cubic cavity flow. In the same study,
a linear stability of the flow was carried. Using Rayleigh and Bayly criteria and that
the perturabation did not arise in pair of vortices with the core of the vortex aligned
with the flow. Gelfgat [60] came then to the conclusion that the flow instability was
not centrifugal.
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x

y

z

O

α

−1/2

1/2

−Γ/2

Γ/2

U

Figure 4.1 – Geometry of the problem with cartesian coordinates centred in the cavity (O) and a lid
(dark grey) moving tangentially with velocity U under an angle α with respect to the x axis.

Despite extensive stability analyses of the classical lid-driven cavity, only Theofilis
et al. [175] considered the stability analysis of the infinitely extended system for rectan-
gular cavities driven with an oblique motion of the lid. They scrutinized three different
angles: π/4, π/2 and 3π/4 and did not find any unstable mode below Re = 800 for
these angles. The aim of this chapter is to fill the gap and provide the linear stability
boundaries as a quasi-continuous function of the angle the lid velocity makes with the
walls.

After introducing the mathematical description of the problem in §4.1, the code
will be verified against data available in the literature. Our findings for a square
cavity, as well as for representative shallow and deep cavities of height-to-width aspect
ratio 1/2 and 2 will be presented in §4.3. Flow structures and instability mechanisms
will be investigated by the considering the production rates of kinetic perturbation
energy. We shall provide an explanation for the strong stabilization of the basic flow
at large angles, which, in the limit, corresponds to a bounded Couette flow. Finally,
the common features of the instabilities found are discussed and their link to Couette
flows in §4.4 conclude this work.

4.1 Formulation of the Problem

We consider the incompressible flow of a Newtonian fluid with density ρ and kinematic
viscosity ν in a rectangular cavity. The width d in x direction and the height h in y
direction define the aspect ratio Γ = h/d. In the z direction the cavity is assumed to
be infinitely extended. The origin of the coordinate system is placed in the centre of
the (x, y) cross section. The flow is driven by the steady tangential motion of a lid
at the top y = h/2 of the cavity. The lid-velocity vector U = U (cosαex + sinαez),
where ex and ez are the unit vectors in x and z direction, respectively, is inclined with
respect to the x axis with inclination angle α (fig. 4.1).

Using the length, time, velocity and pressure scales d, d2/ν, ν/d and ρν2/d2,
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4.1. Formulation of the Problem 43

respectively, the fluid flow is governed by the non-dimensional Navier–Stokes and
continuity equations

∂u

∂t
+ u · ∇u = −∇p+∇2u, (4.1a)

∇ · u = 0, (4.1b)

where u(x, t) = (u, v, w) is the velocity vector and p(x, t) the pressure field. Equations
(4.1) must be solved subject to the boundary conditions

u(x = ±1/2) = 0, (4.2)

u(y = −Γ/2) = 0, (4.3)

u(y = Γ/2) = Re(cosα, 0, sinα)T. (4.4)

Furthermore, we consider the case of a vanishing pressure gradient in z direction,
∂p/∂z = 0. The problem is thus defined by three parameters: the aspect ratio Γ, the
inclination angle α, and the Reynolds number

Re =
Ud

ν
. (4.5)

Due to the translation invariance of the problem in z and t the governing equations
allow for a steady two-dimensional basic flow u0(x, y) which only depends on x and y.

We are interested in the linear stability boundary, expressed by Rec(Γ, α), at which
the two-dimensional basic flow becomes unstable to three-dimensional perturbations.
Linearizing (4.1) with respect to small perturbations of the basic flow yields the linear
perturbation equations

∂u

∂t
+ u0 · ∇u+ u · ∇u0 = −∇p+∇2u, (4.6a)

∇ · u = 0, (4.6b)

where now u and p denote the deviations from the basic state.

Owing to the homogeneity in z-direction, these equations may be solved using
normal-modes

(
u

p

)

=

(
û(x, y)
p̂(x, y)

)

eγt+ikz + c.c., (4.7)

where k ∈ R is a real wave number, γ = σ + iω ∈ C a complex growth rate with real
growth rate σ and frequency ω, and c.c. denotes the complex conjugate. Inserting this
ansatz into the perturbations equations (4.6) we are left with

−γû = (û∂x + v̂∂y)u0 + (u0∂x + v0∂y + ikw0) û+ ∂xp̂− (∂2x + ∂2y)û+ k2û, (4.8a)

−γv̂ = (û∂x + v̂∂y) v0 + (u0∂x + v0∂y + ikw0) v̂ + ∂yp̂− (∂2x + ∂2y)v̂ + k2v̂, (4.8b)

−γŵ = (û∂x + v̂∂y)w0 + (u0∂x + v0∂y + ikw0) ŵ + ikp̂− (∂2x + ∂2y)ŵ + k2ŵ, (4.8c)

0 = ∂xû+ ∂y v̂ + ikŵ. (4.8d)
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44 4. Linear Stability Analysis of Obliquely-Driven Rectangular Cavities

Together with the boundary conditions û(x = ±1/2) = û(y = ±Γ/2) = 0 this system
of equations constitutes a generalized eigenvalue problem with eigenvectors (û, p̂) and
eigenvalues γ. The eigenvalue γ(k, n; Γ, α,Re) depends on the wave number k of
the disturbance, the three parameters (Γ, α,Re), and on the index n numbering the
discrete set of solutions for given k. For given Γ and α neutral stability boundaries
Ren(k, n) are defined by σ(Re) = 0. Finally, the critical Reynolds number Rec is the
lowest neutral Reynolds number, equivalent to maxk,n σ(Re) = 0.

4.2 Methods of Solution

All differential equations are discretized with triangular elements on a rectangular
domain (x, y) using the finite element library FEniCS [8]. To properly resolved the
flow fields near the boundaries the mesh is refined towards all walls by subsequently
doubling of the number of grid points within 5%, 1% and 0.5% of the width and the
height of the cavity. Taylor–Hood elements are employed which implement a quadratic
interpolation for the velocity fields and a linear interpolation for the pressure.

4.2.1 Basic State

The steady two-dimensional flow (u0, p0) is computed using Newton–Raphson iteration
already implemented in the FEniCS framework, where only the variational formulation
and boundary conditions are needed. Absolute and relative convergence criteria on
the L2 norm of the residuum are set to 10−10 and 10−8, respectively. During tracking
the stability boundary, the basic state calculation is typically terminated due to the
absolute convergence criterion. The converged basic flow field enters the linear stability
analysis parametrically.

4.2.2 Linear Stability Analysis

To solve the generalized eigenvalue problem, we use the ARPACK library [89] in a
shift-invert mode with a spectral shift of 1. The eigenvalues close to this spectral
shift should be the well captured by the solver. In order to ensure that the method
captures all the eigenvalues of interest the Krylov space dimension is set to 300, while
the number of converged eigenvalues required to assume convergence is set to 50.
We noticed that when lowering both these numbers some eigenvalues would not be
captured, in particular in the restabilisation of mode III, for Γ = 1.

To find the critical Reynodls number for given (Γ, α), we used the technique de-
scribed in subsections 3.5.1 and 3.5.2, using eigenvalue sensitivity to wavenumber
variations to feed a BFGS algoritm together with a polynomial continuation method.
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4.2. Methods of Solution 45

λ2-criterion

To better observe the presence of vortices in the perturbation associated to critical
eigenmodes, one can use the λ2-criterion, introduced by Jeong & Hussain [69]. Let us
decompose the gradient of the velocity into a symmetric and anti-symmetric part

S =
1

2

(
∇u′ +∇u′T

)
and Ω =

1

2

(
∇u′ −∇u′T

)
. (4.9)

The criterion is based on that at least two of the sorted eigenvalues (λ1, λ2, λ3)(x) of
S2 +Ω2 should be negative in the core of a vortex. Therefore λ2 should be negative
in the vortex core, and a vortex can be represented as a connected region where λ2
is continuously negative. To visualize vortices, one can then plot the contours of a
negative isovalue of λ2.

4.2.3 Code Verification

In a first step a grid-convergence study for the critical Reynolds and wave numbers is
carried out. Table 4.1 shows (Rec, kc) as function of the grid resolution for three aspect
ratios Γ and α = 0◦. Grid convergence is clearly obtained and the converged results
compare very well, i.e. within 1%, with the reference results of Albensoeder et al. [5]
and Theofilis et al. [175]. The data suggest that a mesh of 40 × 40 provides already
very accurate results for Γ = 1. Note that the grid specified represents the grid with
equidistant spacing, the actual grid used is refined towards the walls as specified above
such that the formal 40× 40 resolution practically is made of 13976 elements or 95328
degrees of freedom. With similar arguments, the initial grids 40× 80 and 80× 40 for
Γ = 2 and Γ = 1/2, respectively, are used for the stability analysis for α > 0◦.

To verify the growth rate σ and the oscillation frequency ω as functions of the wave
number k we consider Γ = 1 and α = 0◦ for which reference data are available in the
literature. To that end the most dangerous mode has been computed for Re = 200
and Re = 1000. Figure 4.2 shows the growth rates and oscillation frequencies of
the fastest growing mode for Re = 200 (dashed lines) and Re = 1000 (full lines) in
comparison with the results of Ding & Kawahara [45] (�) and Albensoeder et al. [5]
(◦). For Re = 200 an excellent agreement is found for all k considered using the basic
grid resolution of 40 × 40. The numerical results for Re = 1000 also show a good
agreement with the reference data for the frequency ω. Agreement of the growth rate
σ obtained for the current resolution with the reference data is acceptable. Typically,
our results are in-between the two reference data sets and tend to compare slightly
better with those of Ding & Kawahara [45] than with those of Albensoeder et al. [5].

4.2.4 Non-Linear Numerical Simulation

For the purpose of an additional verification we also carried out full numerical simula-
tions of the time-dependent three-dimension flow. To that end the problem (4.1) was
solved employing the spectral element code Nek5000.
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46 4. Linear Stability Analysis of Obliquely-Driven Rectangular Cavities

Table 4.1 – Critical Reynolds number Rec and wave number kc as functions of the grid resolution
for α = 0◦. The column labelled ’Grid’ refers to the initial grid size before refinement, nT denotes
the number of triangles, while nDOF is the number of degrees of freedom.

Author Γ Grid nT nDOF Rec kc
Present 1 16× 16 1032 7160 811.96 14.71
Present 1 20× 20 3520 25124 788.52 15.29
Present 1 30× 30 6136 43248 787.16 15.34
Present 1 40× 40 13976 95328 786.39 15.37
Present 1 50× 50 18896 128428 785.93 15.38
Present 1 60× 60 24792 167872 785.63 15.39

[5] 1 spectral 141× 141 786.3± 6 15.43± 0.06
[175] 1 spectral 48× 48 782.61 15.37

Present 2 10× 20 1268 9100 455.29 1.7146
Present 2 20× 40 7008 48916 445.95 1.7181
Present 2 30× 60 12324 85150 445.57 1.7178
Present 2 40× 80 24064 163140 444.90 1.7183

[5] 2 spectral 141× 141 446.3± 10 1.715± 0.012
Present 0.5 32× 16 2716 19016 711.15 10.662
Present 0.5 40× 20 7008 48916 709.71 10.655
Present 0.5 60× 30 12324 85150 707.69 10.646
Present 0.5 80× 40 24064 163140 706.70 10.642

[5] 0.5 spectral 141× 141 706.1± 7 10.63± 0.1

(a)

0

0 2 4 6 8 10

−40

−80

−120

k

σ

(b)

0

0 2 4 6 8 10

200

400

600

k

ω

Figure 4.2 – (a) Growth rate σ = ℜ(γ) and (b) oscillation frequency ω = ℑ(γ) of the most dangerous
mode for α = 0◦, Γ = 1 for Re = 200 (dashed lines) and Re = 1000 (full lines). Results are given
for the base-grid resolution of 40 × 40 in comparison with data of Ding & Kawahara [45] (�) and
Albensoeder et al. [5] (◦).
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For these calculations the flow was assumed periodic in z with a wavelength cor-
responding to 2π/kc. Using a regular tensor mesh composed of Nx × Ny × Nz =
20×20×10 elements of polynomial order p = 6 for the velocity and p = 4 for the pres-
sure, simulations are carried out for Γ = 1 with α = 22.5◦. Temporal integration was
performed using a 3rd order Adams–Bashforth scheme with 3rd order extrapolation
of the convective terms.

4.3 Results

4.3.1 Basic Flow

The basic flow u0 = u2D
0 +uC

0 can be decomposed into a recirculating two-dimensional
cavity flow u2D

0 (x, y) driven by the reduced Reynolds number Re cosα, and the parallel
bounded Couette flow uC

0 (x, y) = wC
0 (x, y)ez driven by the effective Reynolds number

Re sinα. The recirculating part u2D
0 of the flow field is independent of the Couette

part of the flow, because ∇ · u0 = ∇ · u2D
0 = 0 and the non-linear coupling terms

uC
0 · ∇u2D

0 = 0 vanishes. On the other hand, the parallel Couette part of the flow
uC
0 depends on the recirculating part of the flow and results from a linear equation

balancing viscous diffusion and advection by u2D
0 in the (x, y) plane. The strength

of both parts of the flow are related to each other via the Reynolds number and the
inclination angle.

In the combined basic flow u0 fluid elements have helical trajectories. This flow
structure also arises in the context of air motion in street canyons driven by oblique
wind directions [see e.g. 185, 169]. The projections of the fluid trajectories onto the
(x, y) plane correspond to the closed streamlines of the recirculating part u2D

0 of the
flow. The pitch of the fluid trajectories is determined by the spanwise component uC

0 .
Because of the spanwise velocity is considerably stronger near the moving lid than in
the bulk of the cavity, fluid elements are transported in the z direction mainly in the
upper part of the cavity. Due to the monotonic decay of the magnitude of uC

0 from the
lid, the mean spanwise velocity of fluid elements is always less than span component
of the lid velocity.

In the limit α → 0 the classical lid-driven cavity flow is recovered with uC
0 = 0.

The stability boundary has been investigated by several authors with [5] perhaps
providing the most comprehensive stability results quasi-continuously covering the
range of aspect ratios Γ ∈ [0.2, 4]. In the other limit of α → π/2, the recirculating
part u2D

0 = 0 vanishes and the basic flow arises as a pure bounded Couette flow in a
rectangular channel which can be given as an infinite series

wC
0 = Re

∞∑

n=0

4(−1)n

(2n+ 1)π

sinh[(2n+ 1)π(y + Γ/2)]

sinh[(2n+ 1)πΓ]
cos[(2n+ 1)πx]. (4.10)

The stability of this basic flow has been considered by Theofilis et al. [175]. No
unstable modes have been found by these authors, even for Reynolds numbers as large
as Re = 5000. Our linear stability analysis also indicates the basic flow is linearly
stable, at least up to Re = 3000. Since the critical Reynolds numbers for lid-driven
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cavity flows for α = 0◦ and Γ & 0.5 satisfy Rec < 103 [5], a strong stabilization of the
basic flow is expected as α→ π/2.

The linear stability boundary Rec(α,Γ) depends on the inclination angle α and the
cross sectional aspect ratio Γ. For this reason calculations have been carried out for
selected aspect ratios, varying α quasi-continuously.

4.3.2 Linear Stability for Γ = 1

Neutral Reynolds and wave numbers for Γ = 1 are shown in fig. 4.3 as functions
of the inclination angle α. The critical Reynolds number (full bold lines) is made of
different segments belonging to different neutral curves (full lines, color coded) leading
to qualitatively different critical modes, depending on α. As α approaches π/2 the
critical wave number becomes very small, indicating the critical mode becomes nearly
two-dimensional. Numerical data for the critical parameters are listed in table 4.2.

Modes I and II

At α = 0◦ the classical Taylor–Görtler mode [mode I, 5] with relatively high wave
number is recovered. As the inclination angle increases from zero, the Taylor–Görtler
mode I with a small wavelength evolves continuously and changes only slightly due to
the Couette part of the basic flow. While the Taylor–Görtler mode I is stationary for
α = 0◦, the Görtler vortices drift in positive z direction with a phase velocity which
increases as α increases. From fig. 4.3(b,c) it can be observed that the phase velocity
of the Görtler mode increases nearly linearly with α.

When α is increased the basic flow is slightly stabilized until, at α ≈ 4.3, the
critical mode I changes to mode II which has a similar wave number. Mode II very
much resembles mode I and the corresponding neutral stability boundary extends
down to α = 0◦ (not shown). At α = 0◦ mode II is only the second most dangerous
mode and, to the best of our knowledge, it has not yet been reported in the literature.

The neutral mode II is illustrated in fig. 4.4 for α = 6◦. Shown is the perturba-
tion velocity field u in the plane y = 0 (fig. 4.4(a)) and in a plane z = const. (fig.
4.4(b)) in which the energy production rate i takes its global maximum. In addition
fig. 4.4(b) shows the basic state in form of streamlines of u2D

0 and, in color from yellow
to red, the magnitude of uC

0 . The energy transfer to the critical mode primarily arises
in the boundary layer of u2D

0 with curves streamlines in regions where the direction
of the perturbation flow makes and angle of approximately 45◦ with respect to the
streamlines. Finally, fig. 4.4(c) shows a three-dimensional view over two wavelengths
of the isosurfaces of the energy production rate i at 10% of its maximum value imax.
The region where the i > 0.1 × imax is also indicated by the blue areas in fig. 4.4(b).
Comparing fig. 4.4(c) with fig. 4.4(a) it is clear that banana-shaped regions of high
energy transfer mirror the perturbation vortex structures which they feed. The per-
turbation vortices are just located in-between to neighbouring isosurfaces of i shown
in fig. 4.4(c).

Mode II very much resembles the classical Taylor–Görtler mode I for α = 0◦ [5]
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Figure 4.3 – Neutral Reynolds number (top), wave number (middle) and angular frequency (bottom)
as functions of α for Γ = 1 for the most dangerous modes. Bold lines indicate the critical values.
Different branches are distinguished by colour and capital Roman numbers. The numbers at the top
of the upper panel denote the angles at which critical curves intersect (vertical dotted lines). The
square (�) and the circle (◦) indicate the critical Reynolds and wave number, respectively, obtained
by Albensoeder et al. [5] for α = 0◦.
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Figure 4.4 – Mode II (grey in fig. 4.3) over one period in z for α = 6◦, Ren = 795.07, kn = 15.27. (a)
Shown are the perturbation velocity vector field (u,w) in the plane y = 0 (arrows), the perturbation
velocity v (orange) normal to y = 0 with v > 0 (full lines) and v < 0 (dashed lines), and the total
local production i (blue shading). (b) Perturbation velocity vectors (u, v) in the plane z = const.
in which i takes its maximum, streamlines of u2D

0 , magnitude of uC
0 (yellow–red), and the region in

which i > 0.1 × imax (blue). (c) Isosurfaces of i on which i = 0.1 × imax shown over two periods in
z. The lid motion is indicated by the orange arrow.

with strong vortices on the wall at x = −1/2, upstream of the moving lid where the
energy production peaks. On the downstream wall at x = 1/2 the vortices are much
weaker. The weak vortices on the downstream wall are slightly offset in positive z
direction as compared to the vortices on the upstream wall, as a result of the Couette
part of the basic flow. Hence, the vortices are slightly helical with a small pitch. For
α < 5.9 this mode propagates in the negative spanwise direction as can be seen from
fig. 4.3(c).This means that for the small range of α for which this mode is the critical
mode it propagates against the z component of the lid velocity. Progressively the
phase velocity diminishes and changes sign such that for α > 5.9 the wave propagates
in the same z direction as the lid. Again, the propagation speed seems to scale linearly
with the yaw angle α.

Mode III

Near α = 5.8◦ the critical mode II (grey) changes to mode III (orange in fig. 4.3)
which has approximately half the wave number as the low-α Taylor–Görtler modes.
It can be seen from fig. 4.3 that the neutral mode III originates from α = 0◦ and has
already been reported [45, 5]. Unlike mode I, which is stationary at α = 0◦, mode III
is oscillatory at α = 0◦ and arises as a pair of waves traveling in the ±z directions.
As α increases from zero the degeneracy of the neutral Reynolds number removed
and the basic flow is strongly destabilised with respect to the mode which propagates
in the negative z direction (opposing the direction of the Couette part of the basic
flow), while the basic state is stabilised with respect to the complex conjugate mode
which travels in the positive z direction. This behavior can be inferred from the slope
∂ReIIIn /∂α|α=0 6= 0 in fig. 4.3. After the neutral mode III has become critical for
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α > 5.8◦ the propagation direction of mode III turns in the positive z direction at
α = 9.6◦ (fig. 4.3(c)). For α . 15◦, ωn depends approximately linearly on α, whereas
for α & 15◦ the magnitude of the frequency increases monotonically indicating an
increasing phase velocity of this mode as α increases.

Mode III is illustrated in fig. 4.3 for α = 0◦ (left column), 22.5◦ (middle columns)
and 35◦ (right column), showing the same quantities as in fig. 4.4. Similar to mode II
the critical mode III arises as vortices which are the strongest on the upstream wall
x = −1/2. The vortices, best seen in fig. 4.5(b) for α = 22.5◦, have a similar size in
wall-normal direction in both cases. However, different from mode II at α = 6◦, mode
III has a much larger wavelength throughout the range of yaw angles over which it
is critical (cf. figs. 4.3 and 4.5). Near the downstream wall we do not find the same
vortices. Rather, in the plane y = 0 larger-scale vortex structures occupying the full
width of the cavity can be identified. Furthermore, the pitch of the vortices of mode
III is larger than the one for mode II which can be seen by correlating the vortex
structures (e.g. the isolines of v in the plane y = 0) on the two walls at x = ±1/2.

Common to modes I, II and III they all extract most of their energy from the basic
state in the curved boundary layer of u2D

0 on the upstream wall [see also 5]. In addition,
we also find minor contributions to the energy production near the bottom of the
cavity. Correspondingly, the energy budgets of all three modes are very similar (Table
4.2). All modes destabilise the basic flow primarily through the process described by
I2. Therefore, the modes I, II and III may be called spiral Taylor–Görtler vortices.

For a constant Reynolds number the shear rate in the curved boundary layer of u2D
0 ,

which is responsible for the Taylor–Görtler instability, becomes weaker like ∼ cosα as
α is increased. Therefore, a certain stabilization of the basic flow might be expected
with respect to modes which build on the Görtler mechanism. However, this is not
the case. Rather, the critical Reynolds number for mode III decreases and reaches
a minimum near α ≈ 22.5◦. This behavior can be explained by the additional shear
in z direction from which kinetic energy can be extracted. The shear is provided by
the Couette part of the basic flow wC

0 which exhibits a plateau in the centre of the
cavity. Furthermore, the vortex structures of mode III at α = 22.5◦ are larger than at
α = 0 (fig. 4.5(a,b)). Associated with the structural changes of the critical mode, also
the region of energy production within which i2 (lift-up) is dominant changes and,
for increasing α, extends over the bottom of the cavity up to the wall downstream
of the moving lid (fig. 4.5). Interestingly, the extended isosurfaces of perturbation-
energy production for α = 0◦ make an angle of ≈ 25◦ with respect to the direction of
motion of the lid (fig. 4.5(g)). As the yaw angle α is increased the orientation of the
production isosurfaces, and thus the perturbation vortices, turns into the direction of
the lid velocity such that, near the minimum of the critical Reynolds number neutral
at α ≈ 22.5◦, the perturbation-energy production surfaces are approximately aligned
parallel to the (x, y) plane (fig. 4.5(h)).

Mode IV and V

Beyond α ≈ 22.5◦ (minimum of ReIIIc (α)) mode III is less efficient in extracting energy
from the basic flow and for α > 37.4◦ mode IV (red in fig. 4.3) becomes critical, with a
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Figure 4.5 – Neutral mode III for α = 0◦ (a,d,g), 22.5◦ (b,e,h) and 35◦ (c,f,i). Shown are the same
quantities as in fig. 4.4, except that (g,h,i) show only one period in z.
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Figure 4.6 – Critical mode IV (red in fig. 4.3) at α = 40◦, Rec = 637.3, and kc = 4.59. All quantities
as in fig. 4.4, except for (c) which shows isosurfaces at i = 0.03 × imax. The box extends of one
wavelength in z. (d) isocontour of the vortex centerline criterion λ2 = −5 is shown in orange while
the same isocontour for the production rate as in (c) is in blue, to convince the reader that they are
somehow equivalent.
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critical wave numbers kc ≈ 8, slightly larger than for mode III, and phase velocity ω/k
nearly twice as slow as the one of mode III. The lift up mechanism I2 becomes even
more preponderant in the perturbation energy budget, while I3 (anti-lift up) decreases
to 14% for α = 40◦ (table 4.2). Mode IV is visualized in fig. 4.6 for α = 40◦. As
can be seen from fig. 4.6(c) the isosurfaces of the total local production rate i are
approximately aligned with the basic flow and extend in a spiral fashion about the
center of the basic swirling vortex. Likewise the perturbation vortices, well visible
in fig. 4.6(b) spiral about the basic vortex core. These vortices which are centered
between two neighbouring regions of high energy production are also visualized by
isosurfaces of the λ2-criterion introduced by Jeong & Hussain [69] λ2 = −5 in fig.
4.6(d). One can see that between each thread of production rate isosurface (blue)
is a vortex centerline (orange). From fig. 4.6(c) one can identify seven segments of
elongated energy production regions corresponding to seven perturbation vortices.
Close to the lid, one could see a double structure of production rate (better seen in
fig. 4.6(c), and in the next figures). In fact, these two threads are surrounding a single
vortex. The presence of the upper thread is due to the strong gradients of the basic
flow close to the lid, while the lower one is only due to the perturbation vortex. The
spiralling energy-production surfaces and the associated vortices close on themselves
after 3.5 periods in z direction after having completed one full revolution about the
basic vortex, thus the average pitch is 7λc/2. The vortices are initiated along the
wall downstream of the lid and grow in size as they evolve in direction parallel to
the basic flow. After passing the bottom wall, the vortices attain their maximum size
when they reach the upstream wall (also visible in fig. 4.6(a)), where also the local
production i reaches its maximum, before being damped by the strong perturbation-
energy dissipation near the moving lid (not shown). Figure 4.6(b) confirms the vortices
gaining in strength as they extend from the downstream to the upstream wall.

Unlike modes I, II and III, the axes of the perturbation vortices of mode IV are
strongly deflected from the (x, y) plane. In this respect, the critical mode IV is a
members of another family of modes whose vortex structures are primarily aligned in
the z direction.

Mode IV is critical only within a relatively small range of inclination angles. For
α > 42.1◦ mode V (green in fig. 4.3) becomes critical. It is illustrated in fig. 4.7. The
critical mode has a similar spiral structure as mode IV, but with 5 vortices arranged
about the circumference of the basic vortex flow and cutting through the periodic unit
cell. Figure 4.7(c) shows the corresponding isosurfaces of i = 0.03 × imax.Thus the
average pitch of the perturbation vortices is 5λc/2.

It is worth noting that mode V has a wave number very close to the one of Mode
III (fig. 4.3(b)). This property may lead to complex non-linear mode interactions near
α = 40◦. Technically, the similarity of the critical wave numbers makes the numerical
tracking slightly more difficult.

Modes VI and VII

Mode V remains is critical in the range of α ∈ [42.1◦, 65.7◦] and α ∈ [70.4◦, 73.6◦].
Between these two ranges, mode V is replaced by mode VI (pink in fig. 4.3) within
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Figure 4.7 – Critical mode V (green in fig. 4.3) for α = 60◦, Rec = 637.34 and kc = 4.59. All
quantities as in fig. 4.6.
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α ∈ [65.7◦, 70.4◦]. Finally, mode VII (brown in fig. 4.3) appears to be the critical
mode for α > 73.6◦.

The structures of modes VI and VII are illustrated in figs. 4.8 and 4.9, respectively.
They are similar as for mode V (fig. 4.7), but the critical wavelength λc is increasing
with α. Moreover as the angle increases, the strength of the vortices close to the
downstream edge of the lid decreases dramatically, not making it possible to state
whether they are still spiraling or if it consists of distinct vortices being generated along
the downstream recirculation zone. Consistent with the fact that the cross-sectional
flow becomes weaker, the perturbation eddies are slowly migrating towards the center
of bulk, while the main vortex of the basic flow moves toward to top downstream
corner. This is best seen comparing fig. 4.6(b,c) and 4.9(b,c). Mode VII undergoes a
dramatic stabilization for α & 80◦, rapidly reaching critical Reynolds number which
are beyond those for which our numerical solver has been designed. Most likely, critical
modes of the linear analysis become increasingly crowded and stabilized as α→ 90◦.

General Properties of the Critical Modes for Γ = 1

All critical modes found for Γ = 1 are destabilized by the lift-up mechanism represented
by i2 whose integral contribution ranges from 68% for α = 0◦ to 94% for α = 75◦. The
energy production is most pronounced near the upstream wall of the cavity. Therefore,
we conclude that the mechanism is essentially a modification of the Taylor–Görtler
instability which is well established for Γ = 1. This interpretation is supported by
the expectation that the pure Couette part of the flow (4.10) is linearly stable and no
linear mechanism can be derived from this parallel shear flow alone. Since the Taylor–
Görtler-like vortices are aligned with the direction of the basic flow, the pitch of the
vortices of the helical critical modes increases with α. For small α the diameter of the
vortices is small, as they scale with the boundary layer thickness of u2D

0 . Therefore,
as α increases, more and more helical vortices penetrate the unit cell defined by one
wavelength λc of the perturbation flow (see, e.g., fig. 4.6(c)). As the basic flow turns
predominantly into the span (z) direction and the critical wavelength increases, the
Taylor–Görtler-like vortices become longer and can grow to larger diameters (see figs.
4.6(b) to 4.9(b)), because the characteristic length scale becomes the height of the
cavity. Therefore, the trend is reversed and a lesser number of vortices penetrate the
unit cell.

Except for mode I which is not traveling in the spanwise direction for α = 0, the
propagation speed of the neutral modes cn = −ωn/kn in the spanwise direction at
low angle seems to be rather independent of the lid velocity and become more and
more affected by it at larger angles. This can been seen from fig. 4.10(b), in which
curves of the ratio of the propagation speed and the spanwise lid velocity is varying
consequently at small α and flattens as it increases. In contrast, at large angles, the
neutral modes propagation speed seems to scale with the lid velocity and the ratio
remains almost constant. Naturally all modes are propagating slower (a factor 2)
than the lid velocity at large α, since in the bulk of the flow the transport of the
perturbation by the basic flow has to be slower than close to the lid. It is worth
also appreciating the notable jump of the propagation speed between the mode III
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Figure 4.8 – Critical mode VI (pink in fig. 4.3) at α = 67.5◦ Rec = 643.2, kc = 3.19. All quantities
as in fig. 4.4.
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Figure 4.9 – Mode VII (brown in fig. 4.3) at α = 75◦, Rec = 631.6, kc = 1.82. All quantities as in
fig. 4.4.
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Figure 4.10 – (top) Neutral propagation speed cn, (bottom) propagation speed to spanwise lid-
velocity ratio, colors are the same as in fig. 4.3

and mode IV, differentiating clearly the two types of modes. The Taylor-Goertler
modes from mode III propagates nearly 6 times faster than the spiraling mode IV
when their critical curves intersect, and 5 times faster than mode V which has a
similar wave number. Similarly, the direction of the production streaks close to the
lid, progressively become more and more aligned with the lid direction. Mode III
progressively changes its direction although a shift remains, mode IV is not perfectly
aligned wheras mode V,VI,VII are. This is visible for instance in fig. 4.6(c) and 4.7(c).

Figure 4.3 reveals that the critical Reynolds numbers are less than Rec < 800 for
most inclination angles. In particular, Rec(α = 22.5◦) = 619.9 (kc = 6.9645) and
Rec(α = 75◦) = 631.6 (kc = 1.822). These results deviate from the ones obtained by
Theofilis et al. [175] who also performed a linear stability analysis of the same flow for
α = 22.5◦, 45◦ and 67.5◦, but did not find any unstable eigenmode at Re = 800 in the
range k ∈ [0, 25]. Since our results are at variance with these previously published data,
we carried out an independent non-linear numerical simulation using NEK5000 for Γ =
1, α = 22.5◦ and for slightly supercritical conditions 800 > Re = 650 > Rec = 619.9
and periodic boundary conditions in z with period λ = 2π/kc. Impulsively starting
the lid motion from a state of rest at t = 0 we find the basic flow to be established near
t ≈ 0.5. At about the same time small amplitude oscillations of w become visible and
start growing exponentially in an oscillatory fashion (fig. 4.11). Fitting the signal w(t)
in the greyed area shown in fig. 4.11 by wF(t) = a+beσFt sin(ωFt+c) we find the growth
rate σF = 5.66 > 0 and the angular frequency |ωF| = 478.5. The frequency compare
reasonably with the real part σ = 4.63 and excellently with the imaginary part |ω| =
475.7 of the eigenvalue obtained for the same parameter set. The deviations amount
to 18% and 0.6%, respectively. The discrepancy in the real part can be explained
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Figure 4.11 – Spanwise velocity component w(−0.4, 0.4, 0) obtained by non-linear numerical simula-
tion using NEK5000. The lid motion is impulsively started from rest at t = 0. Shown is the saturation
phase of the basic flow and the subsequent exponential growth of an oscillatory perturbation. The
parameters are Γ = 1, α = 22.5◦, k = 6.96, and Re = 650 > Rec = 619.9. Note, the position z = 0 of
the monitoring point is arbitrary. The range on which the fit is performed is shown in grey.

as it varies quickly in the vicinity of these parameters. Besides, critical Reynolds,
estimated by the fitting the evolution of the amplitude of the limit cycle on which the
system settles is bracketed Rec,nek ∈ [613, 614], and is in good agreement with the
one of the linear stability Rec = 619.9. This independent simulation demonstrates the
instability of the basic flow with a critical Reynolds number Rec < 650, consistent
with the present linear stability analysis.

4.3.3 Linear Stability for Γ = 0.5

An overview on the linear linear stability analysis for a shallow cavity with Γ = 0.5 is
shown in fig. 4.12. For the classical case with α = 0◦ we find Rec = 706.7, kc = 10.64
and ωc = 818.9. This is in very good agreement (differences less than 1%) with the
result of Albensoeder et al. [5] who obtained Rec = 706.1 ± 7, kc = 10.63 ± 0.01 and
ωc = 819.9 ± 4. Except for kc our result is also in good agreement with the data of
Theofilis et al. [175] (mode T2 from their table 7: Rec = 720.18, kc = 11.40, ωc = 838).

Mode I

The critical mode I at α = 0◦ is oscillatory and arises has a pair of waves with relatively
short wavelength which propagate in positive or negative z direction. As α increases,
the degeneracy of the critical parameters is removed. While the wave propagating in
the positive z direction is stabilized, the wave propagating in the negative z direction,
opposite to the z component of the lid velocity vector, is destabilized and becomes
the critical mode. As α increases the phase velocity of the critical mode slows down
and the mode become stationary at α = 10.1◦. For larger yaw angles the mode starts
propagating again, but now in the direction of the spanwise lid motion.

For shallow cavities and elevated Reynolds numbers the basic flow at α = 0◦

arises as a spanwise vortex near the downstream end of the cavity. As described by
Albensoeder et al. [5] for Γ = 0.25 this flow becomes unstable due to a centrifugal
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Ren

kn

ωn

α

600

800

1200

20 40 60 80

10

5

0

0

0

−1000

−2000

−3000

1000

1000

4
5
.7

5
5
.9

7
4
.4

I

II

III

Figure 4.12 – Neutral Reynolds numbers (top) wave numbers (middle) and angular frequency (bot-
tom) as functions of α for Γ = 0.5. Branches are distinguished by color and capital Roman letters.
Bold lines indicate critical values. The numbers indicated at the top of the upper plot are the angle
at which critical curves intersect. The square (�), the open circle (◦), and the diamond (♦) indicate
the critical Reynolds number, wave number, and oscillation frequency, respectively, obtained by Al-
bensoeder et al. [5]. Corresponding data of Theofilis et al. [175] are shown as asterisk (∗) and down-
(▽), and up-triangle (△), respectively.
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instability in the region where the vortex flow separates from the bottom wall. As α
increases the Couette part of the basic flow uC

0 becomes stronger, but the main vortex
structure provided by u2D

0 remains dominant. This explains why the mechanics of the
critical mode I for Γ = 0.5 and α = 15◦, shown in fig. 4.13, is similar as for α = 0◦.
From fig. 4.13(b) the spanwise vortex also arises near the separation of the basic flow
from the bottom, indicated by the streamlines of u2D

0 . This is also the region of
maximum energy transfer i.

The critical mode I at α = 15◦ is primarily destabilised by the lift up process de-
scribed by i2, which arises near the separation line of u2D

0 from the bottom. However,
as α increases, the integral contribution I2 is reduced and cannot explain the desta-
bilisation by about ∆Re ≈ 100 compared to α = 0◦. However, I1 gains importance
and overcompensates the reduction of I2 (see table 4.2). The process described by i1
is responsible for the weaker (with a local local maximum of i at 20% of max i), but
growing region of energy transfer near the moving lid, best noticed in figs. 4.13(b)
and 4.14(c). Different from i2, i1 vanishes in parallel flow, because the energy-transfer
process of i1 requires the direction of the basic flow to change perpendicular to itself.
Therefore, i1 cannot build on gradients of the Couette part of the flow uC

0 . More-
over, as the swirling part of the basic flow u2D

0 becomes weaker for increasing α, the
destabilisation with α cannot be explained by u2D

0 alone. Therefore, the change of
the modal structure accompanied with the increase of α must be responsible for the
ability of the critical mode to extract more energy via i1 from u2D

0 , despite of u2D
0

being weaker as compared to α = 0◦.

Mode I remains the critical mode over a wide range of α ∈ [0◦, 45.7◦] with a
minimum critical Reynolds number of Rec = 599.5 at α = 13.6◦. At α = 40◦, I1 and
I2 have become of comparable magnitude with a share of 42% and 54%, respectively,
of the total energy budget. The critical mode for α = 40◦ is shown in fig. 4.14.
Compared to α = 15◦ the flow field of the critical mode has changed. Now it arises
mainly as vortices nearly perpendicular to the moving wall which are located near
the downstream end of the cavity (fig. 4.14(a)), but slightly tilted (fig. 4.14(b)). This
critical mode I is fed by gradients of the basic flow in the downstream half of the cavity,
where both the important contributions of i1 and i2 are interwoven in a complicated
fashion (fig. 4.14(c)).

Modes II and III

As the Couette part of the basic flow becomes dominant upon an increase of α, the
critical mode changes to mode II at α = 45.7. Mode II has a similar critical wave
number as mode I. Mode II is illustrated in fig. 4.15 for α = 50◦. The structure of
mode II is quite different from that of mode I and resembles the critical modes for
Γ = 1 discussed in section 4.3.2. From table 4.2 the lift-up mechanism I2 dominates the
energy budget of the critical mode II, similar as for Γ = 1. From fig. 4.15(b) one can
see different patches (blue) of localized energy production which are arranged around
the periphery of the basic vortex u2D

0 . These local production region extend as threads
in three-dimensions as shown in fig. 4.15(c). The threads of energy production feed
energy to the helical-type of perturbation vortices which are visualized in fig. 4.15(d)
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Figure 4.13 – Critical mode I (blue in fig. 4.12) for Γ = 0.5 and α = 15◦ with Rec = 600.6 and
kc = 11.0. All quantities as in fig. 4.4, except for (c) showing isosurfaces of i at i = 0.2× imax.
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Figure 4.14 – Critical mode I (blue in fig. 4.12) for Γ = 0.5 and α = 40◦ with Rec = 858.7 and
kc = 9.05. All quantities as in fig. 4.4, except for (c) showing isosurfaces of i at i = 0.2× imax.
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by isosurfaces of λ2 = −20.One can identify 5 spiral vortices in the bulk of the flow
which, similarly as mode IVΓ=1, VΓ=1, change their sense of rotation as they pass
along the downstream to the lid top corner. From fig. 4.15(d) two weaker vortices
counter-rotating vortices can be identified above the recirculation zone, but the total
production rate associated with these latter vortices contributes only about 5% to the
total energy budget.

As the inclination angle is further increased the energy production I2 by the lift-up
process becomes ever more important than for Γ = 1 (table 4.2). At α = 55.9◦ mode
III becomes critical. For increasing α the critical curve reaches a local minimum at
α = 63.4◦ beyond which the basic flow is strongly stabilized. As an example for mode
III we consider α = 65◦. The mode is similar to mode II. However, the wavelength of
mode III is about twice as long as the one for mode II, and the perturbation vortices
are more aligned with the z direction. The critical mode is characterized by a pair
of helical vortices which wind about the recirculating basic vortex. One of the two
vortices is clearly visible in the cross section shown in fig. 4.16(c), offset with respect
to the basic state vortex u2D

0 upstream of the moving lid vortex. In the plane shown
the vortex is fed by three largest patches (blue) of energy production. The spiral
character of the perturbation flow can best be recognized from fig. 4.16(a) which
shows isosurfaces of i.The total production I of kinetic energy is mainly due to I2
with I1, I3 and I4 altogether contributing less than 16% to the total energy transfer.
On a further increase of α the basic flow is rapidly stabilised and we did not follow the
critical curve beyond α = 75◦. Up to this inclination angle, mode III remains critical
and keeps the same characteristics as for α = 65◦. Again the vortices are weakening
along the downstream lid corner as the angle increases and it becomes less and less
evident that the vortices are feeding on themselves.

Comparison of Results for Γ = 0.5 and Γ = 1

It seems that the scenario at Γ = 0.5 is overall similar to what has been observed for
square cavity Γ = 1. Mode IΓ=0.5 of the former would correspond to mode IIIΓ=1

of the latter case: The propagation direction for very low yaw angles is opposing the
spanwise lid motion and progressively realigning with the lid motion as α increases.
Eventually, the critical Reynolds number drops below Rec(α = 0◦) before increasing
to values Rec(α) > Rec(α = 0◦). Furthermore, mode IIΓ=0.5 and IIIΓ=0.5 would
correspond the VΓ=1,VIIΓ=1 and higher modes. It is worth noting that in both Γ = 1
and Γ = 0.5 cases, the wave number between mode IIIΓ=1 and VΓ=1 are very close,
and this can be found again in the case Γ = 0.5 where the wave number between
IΓ=0.5 and IIΓ=0.5 are also almost the same. In particular, they seem to have similar
structure with helical vortices together with a substantially higher I2 production rate.
This interpretation is also corroborated by the fig. 6 and 16 of Albensoeder et al. [5],
where the mode of Ding & Kawahara [45] (mode IIIΓ=1) and mode IIΓ=0.5 seem to
be the same.One can anticipate the scenario for Γ = 2 to be somewhat simpler since
the critical Reynolds and wavenumbers for α = 0◦ remain more or less constant as Γ
increases [5].
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Figure 4.15 – Critical mode II (orange in fig. 4.12) for Γ = 0.5 and α = 50◦ with Rec = 1112.1 and
kc = 7.81. All quantities as in fig. 4.6, except for the contour of λ2 which is set to the isovalue of
λ2 = −20.
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Figure 4.16 – Critical mode III (green in fig. 4.12) for Γ = 0.5 and α = 65◦ with Rec = 984.0 and
kc = 4.13. All quantities as in fig. 4.4.
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4.3.4 Linear Stability for Γ = 2

An overview on the neutral Reynolds numbers for a deep cavity with Γ = 2 is shown
in fig. 4.17. Again, the critical data for the stationary mode at α = 0, Rec(α = 0) =
444.90 and kc(α = 0) = 1.72, are in good agreement with Albensoeder et al. [5] who
obtained Rec = 446.3 and kc = 1.71 (symbols in fig. 4.17). Unlike for the two previous
aspect ratios, only two different critical modes arise of which mode I is critical within
the large range α ∈ [0, 78.9] of inclination angles.

As α is increased from zero, the stationary mode starts drifting in positive z di-
rection. But the character of the critical mode does not change very much even at
α = 50◦. The structure of the mode is shown in fig. 4.18. It is very similar to the
stationary mode for α = 0◦ reported in figs. 20 and 21 of Albensoeder et al. [5]. The
most important region of energy production (again I2 is dominant) is located in the
curved boundary layer of u2D

0 just before the basic vortex flow separates from the
downstream wall at x = 1/2 (fig. 4.18(b)). In the (x, y) plane the perturbation flow is
a vortex slightly offset from the basic state vortex and towards the centre of the cavity.
As the perturbation vortex periodically changes its sense of rotation such perturbation
leads to a modulation of the total vortex flow as has been observed experimentally for
Γ = 1.6 by Siegmann-Hegerfeld et al. [162]. Associated with the perturbation flow is a
periodic up- and down-flow region at the midplane y = 0 shown in fig. 4.18(a) which
arise just at the edge of the basic state vortex.

As the inclination angle is increased the wavelength of the critical mode increases.
After the crossover to mode II at α = 78.9◦ the wavelength is reduced, but it again
grows and reaches λ = 9.2 at α = 85◦. Accordingly, the structure of the perturbation
flow becomes stretched in z direction. This is a consequence of the wall-bounded
Couette part uC

0 of the basic flow. Yet, the region near the separation line of the
basic flow from the wall at x = 1/2 remains of crucial importance for the transfer of
kinetic energy to the perturbation (fig. 4.19(b)), now being nearly exclusively due to
I2. As shown in fig. 4.19(a) the critical mode now has significant velocity components
w in z direction.The ratios of the magnitude of the perturbation velocity components
max(u) and max(v) compared to the magnitude of max(w) for α = 85◦ (α = 0◦) are
max(u)/max(w) = 0.1950 (2.2195) and max(v)/max(w) = 0.1456 (1.8370).

Similar as for Γ = 1 and Γ = 0.5, the basic flow is strongly stabilized with respect
to linear perturbations as α → 90◦ (fig. 4.17). Finally, common to all aspect ratios is
the increase with α of the critical wavelengths and an increasing length scale in of the
perturbation-flow structures in the cross sections z = const.

4.4 Discussion and Conclusion

The linear stability of the steady flow in a rectangular cavity driven by the oblique
motion of a lid has been investigated with respect to spatially periodic perturbations.
The parameter space for this problem is made of the Reynolds number Re, the incli-
nation angle of the lid α, and the cross-sectional aspect ratio Γ. Three representative
cavities have been investigated: a cavity with a square cross (Γ = 1), a shallow cavity
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Figure 4.17 – Neutral Reynolds numbers (top), wave numbers (middle) and angular frequency (bot-
tom) as functions of α for Γ = 2. Branches are distinguished by color and capital Roman letters.
Bold lines indicate critical values. Different branches are distinguished by colour and capital Roman
numbers. The number at the top of the upper panel denotes the angle at which the critical curves
intersect (vertical dotted lines). The square (�) and the open circle (◦) indicate the critical Reynolds
and wave number, respectively, obtained by Albensoeder et al. [5].
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Figure 4.18 – Critical mode I (blue in fig. 4.17) for Γ = 2 and α = 50◦ with Rec = 269.1 and
kc = 1.75. All quantities as in fig. 4.4.
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Figure 4.20 – Eigenspectra γ = σ + iω for all cases of table 4.2 distinguished by the aspect ratio Γ.
The darker the symbols are, the larger is α.

(Γ = 0.5), and a deep cavity (Γ = 2).

The basic flow in the obliquely-driven cavity is made of a superposition of two types
of motion. One is the well-known two-dimensional cavity flow u2D

0 (x, y), driven by the
x component Re cos(α) of the normalized lid velocity which is reduced compared to
the absolute normalized lid velocity Re. The other part of the flow field is made by
the parallel Couette-type of flow uC

0 (x, y) in spanwise direction. It is driven by the
spanwise component Re sin(α) of the normalized lid velocity. While the recirculating
part of the motion is independent of the spanwise motion, the Couette part uC

0 (x, y) =
w0(x, y)ez of the basic flow is affected by u2D

0 which advects the spanwise momentum
w0. The basic flow is thus made of a swirling flow with non-zero axial (spanwise)
velocity and a swirl corresponding to the two-dimensional classical cavity flow.

Critical Reynolds numbers as function of the yaw angle α have been computed
for all three aspect ratios. For α = 0◦ the accurate stability boundaries provided by
Albensoeder et al. [5] are recovered. The slope ∂Rec/∂α|α=0 = 0 of the critical curve
at α = 0◦ vanishes for critical modes which are stationary (Γ = 1,Γ = 2), because the
isolated real eigenvalue must evolve continuously and symmetrically with respect to
α. Therefore, the critical Reynolds number increases from zero and the critical modes
start drifting in the direction of the spanwise lid motion (positive z direction). On the
other hand, the degeneracy of the critical Reynolds number for oscillatory eigenmodes
at α = 0 is removed and ∂Rec/∂α|α=0 = ±a 6= 0, where a = const., such that the
critical Reynolds number is always reduced and the critical mode for α > 0 evolves
from one of the degenerate modes at α = 0◦. For both of such latter cases we find
the critical mode which destabilizes the basic state for small α to propagates in the
spanwise direction opposite (ω > 0) to the spanwise component of the lid motion. As
α increases the critical mode becomes stationary near α ≈ 10◦ and turns propagating
parallel to the z component of the lid motion for larger α. In this respect, fig. 4.20
shows the spectra made of all eigenvalues computed for the cases listed in table 4.2.
We find more modes propagate in the z direction (ω < 0) the larger α (indicated by
the darkness of the symbols). While this is perhaps not so surprising, also the deeper
the cavity is, i.e. the larger Γ, the more modes propagate parallel to the z component
of the lid motion.

When α is small the basic flow is dominated by the recirculating part part of the
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flow u2D
0 . In this situation all critical modes arise in the curved boundary layer of

u2D
0 and receive their kinetic energy mainly due to the lift-up process described by

i2 = −u ·(u ·∇u0). The similarity of the modal structures and the the basic instability
mechanism with the ones of the classical lid-driven cavity at α = 0◦ [78, 5] suggests
to call the modes for α 6= 0◦ spiral Taylor–Görtler vortices. Spiral Taylor–Görtler
vortices also arise in spherical Couette flow when the inner sphere rotates [152, 115].
Between rotating spheres the Taylor–Görtler vortices near the equator become spiral-
shaped due to the meridional flow generated by the Ekman pumping from the polar
regions. The spiral Taylor–Görtler vortices may also be related to the helical vortices
which arise in a nominally axisymmetric swirling jet [107, 6, 118], although notable
differences are the non-constant swirl of the flow and the fact that the vortices switch
the sense of rotation along the downstream lid-corner. Consistent with our results,
Gallaire & Chomaz [59] discovered that the number of helical vortices in a swirling
jet decays as the wave number decreases and Mathur et al. [105] found an centrifugal
instability in a non-axisymmetric Stuart vortex with a axial throughflow, using the
local instability framework (WKBJ) [96]. They established an heuristic criterion which
could further confirm the centrifugal nature of the instability in our setup.

For large inclination angles α→ 90◦ the recirculating part of the basic flow dimin-
ishes and the basic flow tends to a confined Couette flow (4.10). As the basic flow
becomes more parallel the most dangerous modes become elongated in spanwise direc-
tion. In the limit, the energy production terms in for n = 1, 3 and 4 vanish and only
the lift-up term i2 remains. This trend is also reflected by the integral contributions
listed in table 4.2. As long as an even weak recirculating part of the basic flow can
provide a feed back from streaks to the nearly streamwise vortices which create the
streaks, a linear instability is possible. With the recirculating basic flow getting weaker
the feedback becomes weaker and the stability boundary Rec(α) increases strongly as
α→ 90◦. This interpretation is consistent with the previous investigation of Theofilis
et al. [175]. There does not seem to be any linear process which could destabilize the
wall bounded Couette flow at α = 90◦.

For the present system, infinitely extended in the spanwise (z) direction, the pres-
sure gradient of the basic flow ∂p0/∂z = 0 has been assumed to vanish. A natural
extension of the present work could be concerned with the effect of an imposed span-
wise pressure gradient. Of particular interest would be the effect on the flow stability
of the pressure gradient which leads to a zero mean flow

∫

S
w0(x, y)dS = 0, where

S is the cross section of the cavity in the (x, y) plane. Such basic flow could model
the effect of distant end walls on the bulk-flow instability in the central region of the
cavity.
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Sensitivity Analysis of a Shallow

Thermocapillary-Driven Cavity

5.1 Introduction

From striders walking on water to soap solving mazes [173], surface tension effects
have always intrigued. At the interface between a liquid and a gas, the cohesion
forces of the molecules of the liquid are stronger than the adhesion forces to the other
fluid. This force imbalance at the interface leads to a net force directed towards the
interior of the liquid, and is responsible for the shape of the interface, defined by the
minimum of the interface energy. Surface tension, expressed as the surface energy by
unit area, can vary depending on many factors for instance the presence of surfactants
or temperature. These variations of surface tension cause an imbalance of forces at
the interface, eventually putting the fluids in motion. These type of flow, driven by
surface tension variations, are named after Marangoni who conducted experiments in
the Tuileries bassin in Paris [102]. Detailed descriptions of surface tension effects can
be found e.g. in [92], and historical perspectives in [106, 129].

Typically, surface tension decreases with an increase of the temperature. When
the interface is locally heated, the variations of surface tension induce a force along
the surface directed toward the region of lower temperature, driving the flow. We say
that the flow is thermocapillary driven. This class of flows is important for natural
as well as for industrial applications. In particular in crystal growth applications,
instabilities due to the thermocapillary effect have been found responsible for the
formation of undesired striations, resulting in a non-uniform crystal [67]. If this had
the disadvantage of reducing the purity of the crystal, it also motivated investigations
on the fundamental instability mechanisms in thermocapillary-driven flows [84].

Among the many techniques for melt growth of crystals, the floating zone and open-
boat zone techniques have been developed [150]. In the floating zone method, the melt
forms a liquid bridge between a top rod formed of the crystal and a bottom rod made
out of the feed-substance. The melt is kept in a liquid state by a heater nearby (see fig.
5.1), the temperature difference at the surface triggers the thermocapillary effect, while
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Thot

Tcold

T

∆T

z

z

Figure 5.1 – Illustration of the simplification of the floating zone to the half zone configuration,
taken from Leypoldt [93].

in the bulk buoyancy effects can also arise depending on the size of the system. In fact,
both effects arise if the surface tension and the density of the fluid are not constant
along the surface and in the volume, respectively. The strength of thermocapillary
effects is scaling with the typical length of the domain L, while buoyancy effect with
L3. Surface effects are then of importance, when the domain size is small.

This setup is relatively complex: one has moving solid-liquid boundaries (Stefan
Problem), curved interfaces for both solid–liquid and liquid–gas interfaces, different
rods diameters, strong variations in the temperature profile, evaporation, among many
aspects. Therefore, it has been idealized as illustrated in fig. 5.1: the top rod is kept
at a higher temperature than the bottom rod. The liquid bridge formed by the melt
has an approximately cylindrical shape, maintained by the mean surface tension. This
setup is shown in fig. 5.2(a), and will be referred to later as the half zone or liquid
bridge (LB).

In the open-boat method, the melt lays between the crystal and the feed material.
It can be idealized as a melt flow in a cavity with a free surface at its top, and heated at
different temperatures at its lateral walls. To further simplify the system, the bottom
wall and the top surface are supposed to be flat and adiabatic. This setup is shown
in fig. 5.2(b), and will be later referred to as the thermocapillary-driven cavity. Both
these setups received a lot of attention as they are relatively complex from a dynamical
system point of view.

In their pioneering work, Smith & Davis [167] investigated the linear stability
of an infinite layer, driven by a surface tension gradient stemming from an imposed
temperature gradient. They studied a flow with a linear profile, that might be relevant
for thin films, and a return flow in which the direction of the velocity changes once along
the depth of the layer. This latter flow mimics a infinitely long cavity in the streamwise
direction, excluding the lateral end walls, and therefore the depth averaged velocity is
zero. In that case, they found the flow to be unstable for all Prandtl numbers to three-
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5.1. Introduction 77

(a) (b)

Figure 5.2 – (a) Idealized half-zone configuration using NaNO3, upper and lower rod temperature
are 360◦C, 350◦C, respectively. Diameter and height are of 6 and 4 mm. The flow is going down
close to the free surface, and up in the core. (b) Open-boat configuration in a cavity of length, height
and width of 20, 12, 20 mm, temperature at the left and right walls are 380◦C and 330◦C. At the
free surface the flow is going from left to right. Both images are taken from Schwabe [150].

dimensional perturbations propagating obliquely with respect to the direction of the
basic flow. These three-dimensional perturbations are called hydrothermal waves. This
was confirmed experimentally by Daviaud & Vince [41] who used a fluid of Pr = 10,
and further reproduced by [143, 144, 32]. Daviaud & Vince [41] investigated a cavity
of width and length 10 mm × 200 mm and varied the height of the liquid. They found
the presence of hydrothermal waves when the height of the fluid was less than 2.8 mm,
whearas for h > 2.8 mm, steady rolls were found to exist.

Numerically, Zebib et al. [186] inspected the flow structure and the leading order
of the surface deformation in a square cavity driven solely by thermocapillary forces.
Carpenter & Homsy [33] simulated two-dimensional thermocapillary flows in a square
cavity, and came to the conclusion that thermocapillary effects are dominating the
system, provided that the Marangoni number is high enough. The same authors
[34] noted that there was some similarity in the steady flow structure between the lid-
driven cavity of square cross section and its thermocapillary counterpart and confirmed
numerically that the flow remains linearly stable to two-dimensional perturbations up
to at least Re = 1300 for a fluid of Pr = 10. Xu & Zebib [182] performed two- and
three-dimensional temporal simulations in order to quantify the onset of instability
in the thermocapillary-driven cavity as a function of the length-to-depth ratio of the
cavity, the Prandtl number and the Reynolds number. Their results confirmed those
of Carpenter & Homsy [34] since no two-dimensional instability can be found below a
width-to-height aspect ratio of approximately 2.1. Additionally, the critical Reynolds
number seems to shrink with the decrease in Prandtl number. Besides, they reported
three-dimensional instabilities in a cavity of spanwise finite length 1 × 3 × 20, at
Reynolds numbers lower than the two-dimensional ones at Pr = 4.4. At higher Prandtl
number Pr = 13.9, they observed a very large damping effect of the end walls on
the instability, and the critical Reynolds number increases. Finally, Kuhlmann &
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Albensoeder [83] studied the linear stability of the system investigated by Daviaud &
Vince [41] and could explain the different mechanisms causing the instability of the
flow.

In the mean time, similar studies were conducted in the liquid bridge setup. Neitzel
et al. [116] and Wanschura et al. [181] investigated the linear stability of the liquid
bridge, agreeing with experimental findings of e.g. [179]. Wanschura et al. [181]
computed numerically the critical curve of the Reynolds number as a function of
the Prandtl number for a fixed height-to-radius aspect ratio Γ = 1. They found
two different branches depending on the Prandtl number. In the case of low Prandtl
numbers Pr < 1, they found a shear instability mainly driven by inertia, corroborating
the results of Levenstam [90]. At higher Prandtl numbers Pr > 1, the system becomes
unstable to a hydrothermal wave that propagates azimuthally and the critical Reynolds
number decreases upon increasing the Prandtl number. Nienhüser & Kuhlmann [117]
extended this analysis to non cylindrical flow, and found a similar distinction of the
instability mechanism.

It appears that the onset of stability of three-dimensional flow in a liquid bridge
depends on the heat transfer at the surface: In fact, for very high Prandtl numbers
Pr = 49, [73, 180] showed that depending on the surrounding air temperature (net
heat loss and net heat gain, respectively), the critical Reynolds number could decrease
by a factor of two, although the heat transfer coefficient was relatively small. Simi-
larly, Mialdun & Shevtsova [110] stressed the dramatic changes of the experimental
results they obtained for a Pr = 68 with and without a thermal shield, separating the
experimental setup from the external environment. Later, Yasnou et al. [184] studied
the effect of a co-axial flow of a gas on the stability of the liquid bridge, and observed
variations of the flow oscillations depending on the gas temperature.

The motivation for these fundamental research efforts was the appearance of stri-
ations gathering impurities in crystal growth, generated by the time-dependent flow.
Yet, the time-dependent flow seems to be very sensitive to the heat transfer at the
surface and, therefore, it is legitimate to try to control the onset of time dependence
to at least attenuate the fluctuations if not remove them completely, with the help of
additional heat transfer along the surface.

Guided by this idea, Petrov et al. [125, 124] suppressed the oscillations in a liquid
bridge via a non-linear control algorithm using heat measurements close to the free
surface as observable of the system and thermoelectric elements as controllers. They
relied on a look-up table constructed beforehand and were able to suppress the insta-
bility only for Reynolds numbers 8.5% higher than the critical one. Shiomi et al. [160]
investigated the placement of heaters and sensors around the liquid bridge in order
to better suppress the oscillations. Using a linear control law, they could increase the
stability limit by 42% and remove the oscillations. Beyond and until 90% of the un-
controlled stability limit they could damp the oscillation down to 30% of their original
amplitude. Similarly, they also studied circular configurations, see [159, 158].

Concomitantly, Benz et al. [20] used a laser sheet aligned with the oblique front of
the hydrothermal wave in a shallow layer to suppress the instabilities using either active
or passive control. In a slightly more complicated framework, Sampath & Zabaras [145]
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5.2. Setup and Mathematical Formulations 79

used an adjoint-based method to optimize the heat flux through the heating wall of
an open-boat configuration in order to achieve a certain melt solidification front speed
and a desired temperature gradient between the walls using a two-dimensional model
taking into account surface tension, buoyancy, Lorentz forces and solidification. Later,
Muldoon [112], Muldoon & Kuhlmann [114] also used an adjoint-based method but to
suppress the two-dimensional instabilities in a shallow thermocapillary-driven cavity
by designing a time and space dependent flux all over the surface. This work was
extended to limit the zone on which the control heat flux was applied to a region close
to the hot corner [113].

The aim of this study is to provide an explanation on the sensitivity of the system
with respect to the heat transfer to the external environment for different Prandtl
numbers. Because of the straightforward implementation in Cartesian coordinates, we
will focus on the thermocapillary-driven cavity. In a first step, we use advanced tools
from linear stability analysis, where the focus is placed on the sensitivity of the leading
eigenvalue to changes of the surface heat flux. In a second step, we aim at controlling
the global stability of the system by designing an optimal steady heat flux using non-
linear programming techniques, combined with the sensitivity analysis developed in
the first part.

5.2 Setup and Mathematical Formulations

5.2.1 Formulation of the Problem

The open-boat or thermocapillary-driven cavity setup is shown in fig. 5.3. A fluid with
a kinematic viscosity ν, density ρ and thermal diffusivity κ is contained in an open
cavity of height H and width W and infinitely extended in the third direction. The
fluid is heated and cooled at the lateral walls, and we assume that the walls are at
the temperatures Th and Tc. We note ∆T the temperature difference ∆T = Th − Tc
and T0 the mean temperature T0 = (Th + Tc)/2. The bottom wall is considered to be
adiabatic, while a given steady heat flux is imposed on the free surface. The surface
tension Σ at the free surface is assumed to depend linearly on temperature

Σ(T ) = Σ0 − Σ1 (T − T0) +O
(

(T − T0)
2
)

,

where Σ0 is the surface tension at T = T0, and Σ1 = −∂Σ/∂T is the rate of change of
the surface tension with respect to temperature deviating from T = T0. Since typically,
∂Σ/∂T < 0, so Σ1 is positive. It is further assumed that the mean surface tension Σ0 is
asymptotically very large and that Σ1∆T/Σ0 → 0 and therefore the free surface can be
approximated as being flat and non deformable. For instance, Kuhlmann & Nienhüser
[86] showed for silicon oil liquid bridges that the variations of the surface where less
than 0.1% of the liquid bridge radius[see also 157]. We take H, H2/ν, ν/H, ρν2/H2

and ∆T as respective scales for length, time, velocity, pressure and temperature. The
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Re

ΓΘ
=

−
1
/2

Θ
=

1
/2

∇Θ · n = 0

f

1

x

y

Figure 5.3 – Sketch of the thermocapillary-driven cavity setup.

domain V = [−Γ/2,Γ/2]× [−1/2, 1/2] and the governing equations can be written as

(
∂

∂t
+U · ∇

)

U = −∇P +∆U (5.1)

(
∂

∂t
+U · ∇

)

Θ =
1

Pr
∆Θ

∇ ·U = 0

subject to the boundary conditions for U

U = 0, at all walls x = ±Γ/2 and y = −1/2,

V = 0, at the free surface y = 1/2,

∂U

∂y
+Re ∂Θ/∂x = 0,

and for Θ

Θ =
x

Γ
, at the lateral walls x = ±Γ/2,

∂Θ

∂y
= f, at the free surface y = 1/2,

∂Θ

∂y
= 0, at the bottom wall y = −1/2,

where we used of the following dimensionless numbers:

Γ =
W

H
, Pr =

ν

κ
, Re =

Σ1∆TH

ρν2
.
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5.2.2 Basic Flow and Eigenvalue Problem

Following the same steps as in Chapter 1, we decompose the velocity, pressure and
temperature into basic flow and perturbation normal modes





u′

θ′

p′



 (x, y, z, t) =
∑

i





ûi

θ̂i
p̂i



 (x, y)eγit+kz + c.c.

The basic flow is a solution of a non-linear problem which is essentially the steady
two-dimensional version of (5.1). The perturbation modes are solution of the direct
eigenvalue problem given by

γiûi + u0
∂ûi
∂x

+ v0
∂ûi
∂y

+ûi
∂u0
∂x

+ v̂i
∂u0
∂y

= −
∂

∂x
p̂i +

(
∂2

∂x2
+

∂2

∂y2
− k2

)

ûi

γiv̂i + u0
∂v̂i
∂x

+ v0
∂v̂i
∂y

+ûi
∂v0
∂x

+ v̂i
∂v0
∂y

= −
∂

∂x
p̂i +

(
∂2

∂x2
+

∂2

∂y2
− k2

)

v̂i

γiŵi + u0
∂ŵi

∂x
+ v0

∂ŵi

∂y
= −ikp̂i +

(
∂2

∂x2
+

∂2

∂y2
− k2

)

ŵi

γiθ̂i + u0
∂θ̂i
∂x

+ v0
∂θ̂i
∂y

+ûi
∂θ0
∂x

+ v̂i
∂θ0
∂y

=
1

Pr

(
∂2

∂x2
+

∂2

∂y2
− k2

)

θ̂i

∂ûi
∂x

+
∂v̂i
∂y

+ ikŵi = 0 (5.2)

subject to the boundary conditions for ûi

ûi = 0 at all walls x = ±Γ/2 and y = −1/2

v̂i = 0 at the free surface y = 1/2

∂

∂y
(ûi, ŵi)

T
+Re

(
∂

∂x
, ik

)T

θ̂i = 0

and for θ̂i

θ̂i = 0 at the lateral walls x = ±Γ/2

∂θ̂i/∂y = 0 at the top and bottom y = 1/2, y = −1/2

From the structure of these equations, it is evident that the production of perturba-
tion kinetic energy due to the spanwise velocity component can only be caused by
thermocapillary effect, and not from inertia. These inertial production terms do not
appear in the perturbation equations and left blank in (5.2).

The eigenvalue γi can then be seen as a function γi(Re,Pr,Γ, k, f). The next section
is concerned with the evaluation of the sensitivity of the eigenvalue with respect to
changes of the flux function f .
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82 5. Sensitivity Analysis of a Shallow Thermocapillary-Driven Cavity

Additional Terms in the Energy Budget

The kinetic energy budget (2.21) (on page 16) has to be completed by additional terms
originating from the thermocapillary stresses. We obtain

1

D∗

∂

∂t
E = −1 +

4∑

n=1

∫

V

in dV +
2∑

n=1

∫

V

mn dS

= −1 +

4∑

n=1

In +

2∑

n=1

Mn, (5.3)

where mn can be defined equivalently using the velocity shear or the surface temper-
ature gradient

m1 = −
1

D∗
u′
∂u′

∂y
=

Re

D∗
u′
∂θ′

∂x
, (5.4)

m2 = −
1

D∗
w′ ∂w

′

∂y
=

Re

D∗
w′ ∂θ

′

∂z
. (5.5)

and Mn are the integral contributions. Besides, a perturbation thermal energy (in a
mathematical sense, nothing to do with the thermodynamics) is defined as Eth = θ′2/2.
Similarly as for the Orr-Reynolds equations (2.17), one express the rescaled rate of
change of the thermal energy perturbation flow

1

D∗
th

∂

∂t
Eth = −1 +

2∑

n=1

∫

V

jn dV = −1 +
2∑

n=1

Jn, (5.6)

where

D∗
th =

∫

V

∇θ′ · ∇θ′ dV ,

j1 = −
1

D∗
th

θ′u′
⊥ · ∇θ0 ,

j2 = −
1

D∗
th

θ′u′
‖ · ∇θ0 .

The local production rate of thermal perturbation energy j1 corresponds to the tem-
perature perturbation created by the transport of the basic flow temperature by the
part of the velocity perturbation that is orthogonal to the basic flow velocity. The
second term j2 corresponds to the temperature perturbation created by the transport
of the basic flow temperature by the velocity perturbation parallel to the basic flow
velocity.

The velocity perturbation can create a temperature perturbation where only the
basic flow temperature is varying. The temperature perturbation has no impact on
the velocity perturbation in the bulk of the flow (unlike buoyancy driven flows) but
only at the free surface.
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5.3. Sensitivity of the Eigenvalues to Variations of the Heat Flux 83

5.3 Sensitivity of the Eigenvalues to Variations of

the Heat Flux

To obtain the variation of the eigenvalue generated by small changes in the steady heat
transfer in the basic flow free surface, we used the framework developed independently
by Marquet et al. [104] and Hill [66]. Reviews are provided in [164, 165, 37]. Of
interest are also the work of Meliga et al. [109] for variation in the wall temperature
for a compressible flows past a bluff body and Tchoufag et al. [172] for the sensitivity
to shear stress and normal velocity at a the interface of a bubble.

Briefly, one can consider the eigenvalue γi as a function of the heat flux f . The
eigenvalue for a small variation of the heat flux at the free surface δf can then be
formulated as a Taylor series

γi(f + δf) = γi(f) + 〈∇fγi, δf〉S +O
(
‖ δf ‖2

)
,

where we used the scalar product

〈a, b〉S =

∫

S

a∗ b dS.

The sensitivity of the growth rate and of the frequency of the mode can be expressed
as

∇fσi = ℜ (∇fγi) ,

∇fωi = −ℑ (∇fγi) ,

where the minus sign in the sensitivity of the frequency comes from the conjugate in
the scalar product. The scalar field ∇fγi is defined for all points at the free surface.
Its point-wise value indicates the local contribution of a flux variation in the change
of the eigenvalue.

Similarly, one can consider the sensitivity to variations in the basic flow ∇q0
γi or

sensitivity to small external forces ∇F γi. Both of them are defined on the volume, and
their value at a specific point indicates the local contribution of a basic flow variation
or external force variation at that point to the changes of the eigenvalue. For second
order sensitivities, we refer to the work of Boujo et al. [25].

In this chapter, only the methodology and the workflow to follow will be presented.
Only the equations in case of an infinitely extended cavity will be developed. For the
derivation of the equations and their general form for arbitrary systems, the reader
is referred to Appendix B. In addition to solving the direct eigenvalue problem (5.2),
one needs to find the adjoint eigenmodes and eigenvalues. After scaling the adjoint
and direct eigenmodes, one can express the sensitivity to basic flow variations. Then,
solving for an extra linear system of equations, one obtains a so-called adjoint basic
flow, from which one can directly extract the sensitivity to variations in the surface
heat transfer.
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84 5. Sensitivity Analysis of a Shallow Thermocapillary-Driven Cavity

5.3.1 Adjoint Eigenvalue Problem

The adjoint eigenvalue problem can either be obtained by solving the adjoint of the
eigenvalue problem (5.2) by taking the transpose of the complex conjugate, or by

discretizing the adjoint equations. The adjoint eigemodes q̂
†
i can be obtained by

solving the adjoint eigenvalue problem

γ†i û
†
i − u0

∂û†i
∂x

− u0
∂û†i
∂y

+û†i
∂u0
∂x

+ v̂†i
∂v0
∂x

+ θ̂†i
∂θ0
∂x

= −
∂

∂x
p̂†i +

(
∂2

∂x2
+

∂2

∂y2
− k2

)

û†i ,

γ†i v̂
†
i − u0

∂v̂†i
∂x

− v0
∂v̂†i
∂y

+û†i
∂u0
∂y

+ v̂†i
∂v0
∂y

+ θ̂†i
∂θ0
∂y

= −
∂

∂x
p̂†i +

(
∂2

∂x2
+

∂2

∂y2
− k2

)

v̂†i ,

γ†i ŵ
†
i − u0

∂ŵ†
i

∂x
− v0

∂ŵ†
i

∂y
= − ikp̂†i +

(
∂2

∂x2
+

∂2

∂y2
− k2

)

ŵ†
i ,

γ†i θ̂
†
i − u0

∂θ̂†i
∂x

− v0
∂θ̂†i
∂y

=
1

Pr

(
∂2

∂x2
+

∂2

∂y2
− k2

)

θ̂†i ,

∂û†i
∂x

+
∂v̂†i
∂y

+ ikŵ†
i = 0, (5.7)

subject to the boundary conditions for û†
i

û
†
i = 0, at all walls x = ±Γ/2 and y = −1/2,

v̂†i = 0, at the free surface y = 1/2,

∂

∂y
(û†i , ŵ

†
i ) = 0,

for the adjoint mode temperature θ̂†i

θ̂†i = 0, at the lateral walls x = ±Γ/2,

∂θ̂†i
∂y

− PrRe

(

∂û†i
∂x

+ ikŵ†
i

)

= 0, at the free surface y = 1/2,

∂θ̂†i
∂y

= 0, at the bottom wall y = −1/2.

One can clearly see from these equations that the adjoint perturbation is transported
upstream by the basic flow, and that the production terms of the thermal perturbation
are now appearing in the momentum equations. The adjoint perturbation velocity not
only builds on basic flow velocity gradients but also on basic temperature gradients.
Besides the driving of the flow at the free surface is now at the boundary condition
of the temperature and not anymore in the boundary condition of the velocity. By
construction, the adjoint eigenvalues γ†i are the conjugate of the eigenvalues of the
direct problem, see Appendix B.
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Normalization of the Eigenmode and its Adjoint

For the following subsection to hold, one needs to normalize the eigenmode and its
adjoint since they both are defined up to a scaling factor. The scaling that has to
be enforced (see Appendix B) is the scalar product of the explicitly time dependent
variables

∫

V

û∗
i · û

†
i + θ̂∗i θ̂

†
i dV = 1, (5.8)

where the superscript ∗ denotes the complex conjugate. For further information the
reader is referred to Appendix B.

5.3.2 Sensitivity to Basic Flow Variations

The sensitivity of the eigenvalue to changes in the basic flow - also called structural
sensitivity - is defined by

∇q0
γi =





∇u0
γi

∇θ0γi
∇p0

γi



 =





−û
†
i · ∇ûH + û∗

i · ∇û
†
i − θ̂†i∇θ̂

∗

û∗
i · ∇θ̂

†
i

0



 , (5.9)

where the superscript H denote the transpose of the conjugate. In the case of an
infinitely extended setup, that gives

∇u0
γ = −û†i

∂û∗i
∂x

− v̂†i
∂v̂∗i
∂x

− ŵ†
i

∂ŵ∗
i

∂x
+û∗i

∂û†i
∂x

+ v̂∗i
∂û†i
∂y

+ ŵ∗
i kû

†
i − θ̂†i

∂θ̂∗

∂x
,

∇v0
γ = −û†i

∂û∗i
∂y

− v̂†i
∂v̂∗i
∂y

− ŵ†
i

∂ŵ∗
i

∂y
+û∗i

∂v̂†i
∂x

+ v̂∗i
∂v̂†i
∂y

+ ŵ∗
i kv̂

†
i − θ̂†i

∂θ̂∗

∂y
,

∇w0
γ = −iŵ†

i kû
∗
i − iŵ†

i kv̂
∗
i − iŵ†

i kŵ
∗
i+û

∗
i

∂ŵ†
i

∂x
+ v̂∗i

∂ŵ†
i

∂y
+ iŵ∗

i kŵ
†
i − iθ̂∗i kθ

†
i ,

∇θ0γ = û∗i
∂

∂x
θ̂†i + v̂∗i

∂

∂y
θ̂†i + ŵ∗

i ikθ̂
†
i ,

∇p0
γ = 0.

In our case the third line is zero since the basic flow velocity has only two components
(u, v) and as we consider the basic flow to be two-dimensional, variations of the third
one are not allowed. However, if, for instance, a transverse pressure gradient would
be imposed in the basic flow equations inducing a non zero spanwise component of
the basic flow velocity, the third line would indicate the local effect of variations
in the spanwise velocity component. As the expressions above are already lengthy,
the decomposition into real and imaginary part will not be given here, but needs to
implemented, and numerically validated.

For a given variation of the basic flow δq0 = (δu0, δθ0, δp0), the (first order) change
of the eigenvalue δγi is given by

δγ =

∫

V

∇q0
γ∗ · δq0 dV . (5.10)
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86 5. Sensitivity Analysis of a Shallow Thermocapillary-Driven Cavity

5.3.3 Eigenvalue Sensitivity with Respect to Variations of the

Source Terms

Once the sensitivity to basic flow variations is obtained, one can compute the so-
called adjoint basic flow. To do so, we introduce the adjoint basic flow variables
q
†
0 = (u†

0, θ
†
0, p

†
0). They are the solution of the linear system of equations

[
∂

∂q0

B

]†

· q0 · q
†
0 = ∇q0

γ, (5.11)

where ∂B/∂q0 corresponds here to the Jacobian matrix without the terms in k coming
from the normal mode ansatz. Practically, this operator comes from the differentiation
with respect to the basic flow of the steady 2D Navier–Stokes operator, in which these
terms in k do not appear. So if the perturbations are purely two-dimensional, then
this operator is the same as the Jacobian matrix. Note that this operator is linear and
real valued, therefore one can solve two different problems: one for the real part of the
right hand side of (5.11), and one for the imaginary part of (5.11). The adjoint basic

flow variables q†
0 correspond to the sensitivity of the eigenvalue to a small additional

steady source term δF (x) in the momentum equations and δq(x) in the heat equation.
Therefore,

∇F γi = u
†
0

and

∇qγi = θ†0.

Sensitivity to Changes in the Boundary Conditions

Once q
†
0 is computed, one can express the sensitivity of the eigenvalue to steady heat

flux variations as

∇fγ =
1

Pr
θ†0. (5.12)

Note that many other quantities of potential interest can readily be obtained. For
instance the sensitivity to changes to shear stress variations at the free surface [see
172]

∇τγ = u†0.

5.4 Numerical Methods

5.4.1 Implementation

The linear stability analysis is implemented based on the FEM library FEniCS using
Taylor–Hood elements for the velocity and pressure, and quadratic continuous elements

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5.4. Numerical Methods 87

Table 5.1 – Critical parameters for two- (a) and three-dimensional instabilities (b) obtained by the
linear stability analysis for an infinitely extended cavity.

(a) two-dimensional instabilities

Author Γ Pr N NDF Re2Dc ωc

Present 3 4.4 20 21219 2035.10 16.5266
Present 3 4.4 40 64527 2027.93 16.5346
Present 3 4.4 80 206029 2027.01 16.5355
Kuhlmann (2008) 3 4.4 2026.6± 2.8 16.537± 0.006

Present 3 13.9 40 64527 1201.45 11.0726
Present 3 13.9 80 206029 1199.16 11.0726
Kuhlmann (2008) 3 13.9 1197.7± 5.4 11.076± 0.003

(b) three-dimensional instabilities

Author Γ Pr N NDF Re3Dc kc ωc

Present 3 4.4 20 27718 846.85 1.621 8.0159
Present 3 4.4 40 84322 846.26 1.621 8.0183
Present 3 4.4 80 269304 846.12 1.621 8.0185
Kuhlmann (2008) 3 4.4 844.9± 3.3 1.618± 0.010 8.010± 0.002

Present 3 13.9 20 27718 893.86 0.949 3.444
Present 3 13.9 40 84322 882.64 0.946 3.445
Present 3 13.9 80 269304 882.26 0.946 3.445
Kuhlmann (2008) 3 13.9 861± 65 0.957± 0.004 3.451± 0.057

for the temperature (see Chapter 3). The mesh is generated using a tensor grid
N × NΓ/2 which is refined in two steps. First, the elements which are closer than
δy = 0.1 from the free surface and δ = 0.05 from the wall are refined using the
Plaza–Carey algorithm [127]. Then, elements touching the free surface are refined
two more times to ensure that the high shear stresses, especially close to the corners,
are well captured. In the end the smallest length of the side of an element is seven
times smaller than the side length of a non-refined element. The number of degrees of
freedom denoted NDF correspond to the number of basis functions used to discretize
the perturbation mode. It depends on the mesh and on whether the perturbation is
two- or three-dimensional.

5.4.2 Code Verification

To test our implementation, we compare our the critical Reynolds number Rec and
oscillation frequency ωc with those obtained by Kuhlmann & Albensoeder [83] for
specfic sets of parameters. This is shown in table 5.1. To find critical pairs, we proceed
in two steps. First, we use a cubic interpolation of the eigenvalue with the largest real
part to find the neutral Reynolds numbers for a given wavenumber k, as in Chapter 3.
The Reynolds number is considered to be a neutral Reynolds number if |σ1| < 10−6.
Second, the Reynolds number is fixed and we explore the wavenumber vicinity: the
eigenvalues at k − δk, k and k + δk are probed and the maximum is approximated
using a quadratic interpolant. This is repeated using 4 times smaller δk around the
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Table 5.2 – Thermal and kinetic perturabtion energy budgets for different Prandtl numbers and
Γ = 3. The main contribution to the kinetic and thermal energy budget are written in boldface.

Pr Rec kc I1 I2 I3 I4 M1 M2

J1 J2

0.1 5497 2.13 0.0371 0.5215 −0.0069 0.0850 0.0723 0.2911
0.2664 0.7335

4.4 846.26 1.621 0.0010 0.0466 0.0059 0.0136 0.3373 0.5865
0.7617 0.2382

13.9 882.64 0.946 −0.001 0.0100 0.0006 −0.0041 0.4795 0.4957
0.8274 0.1722

newly approximated maximum, until the difference between two successive values of
k is smaller than 10−3. These two steps are sequentially repeated until the sum of
the variation in Reynolds δRe and wavenumber δk satisfies the tolerance condition
|δRe|+ |δk| < 10−3.

In table 5.1, we see that for both two-dimensional and three-dimensional perturba-
tions, the critical Reynolds numbers and oscillation frequencies fall within the margins
provided by Kuhlmann & Albensoeder [83] as soon as the grid parameter N ≥ 40.
Therefore, all the following simulations are made using N = 40.

5.5 Sensitivities at Criticality

In this section, we recall the different instability mechanisms at representative Prandtl
numbers Pr = 0.1, and Pr = 13.9, which correspond to molten metals like iron and
n-decane, respectively. For both these cases, the basic flow at the critical Reynolds
number will be discussed as well as the eigenmode and the instability mechanism.
After that, the sensitivity to changes in the heat flux and in the shear stress at the
free surface will be presented.

5.5.1 Low Prandtl Number Pr = 0.1

Basic Flow and Instability Mechanism

At low Prandtl number and low Reynolds number (i.e. Marangoni number Re Pr =
Ma → 0), thermal diffusion effects are preponderant and the temperature profile at the
free surface is linear, see fig. 5.4(a). Since there is no source term in the heat equation
and the transport terms are negligible, the temperature field varies linearly in the
whole domain as both the free surface and the bottom wall are considered adiabatic.
Increasing the Reynolds number, deviations from the linear profile appear. At the
critical Reynolds number Rec = 5497, they are visible in fig. 5.4(a) near the cold wall
x = −1.5 and are due to the locally high velocity magnitude. In fact, the velocity
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Figure 5.4 – Basic flow at Re = 5497, Pr = 0.1, Γ = 3. (a) Tangential velocity (dashed line, left scale)
and temperature (full line, right scale). Conducting temperature profile for Ma → 0 is indicated by
a dotted line. (b) Basic flow streamlines are shown with full lines, while the basic flow temperature
field is shown by colors.

magnitude at the free surface gradually increases as the flow leaves the hot corner,
and reaches a plateau near the center of the surface where its value varies around
u0 ≈ −210. As the flow approaches the cold corner, the surface velocity decreases
after passing a small peak at x = −1.42. The fluid is then transported downwards at
a velocity magnitude comparable to the surface velocity and due to the presence of
the lower wall a vortex is formed. Because of this strong surface velocity, warmer fluid
gets closer to the cold corner resulting in the deviation from the linear profile at the
free surface. In the bulk of the flow, the strong core vortex, whose center is located
close to the cold wall, is responsible for the transport of cold fluid towards the center
of the cavity, as can be seen in fig. 5.4(b). On the other hand, in the slow region of
the flow in the lower half of the cavity close to the hot wall, thermal diffusion still
dominates and the iso-temperature curves are nearly vertical.

Qualitatively, the streamlines of the flow are similar to those of a lid-driven cavity,
see for instance fig. 4.13 (on page 64) or fig. 8 of Albensoeder et al. [5]. Indeed, the
main part of the production rate of the perturbation energy is I2 which indicates that
the inertial effects are important in the destabilization mechanism. The second post
in the energy budgets is M2 which corresponds to the work done by thermocapillary
stresses in the z-direction at the free surface through the Marangoni effect. The local
production rate of perturbation kinetic energy corresponding to the inertial effects
i =

∑
in is displayed in fig. 5.5(a). Unlike the lid-driven case, the maximum is located

along the wall downstream of the cold corner and not above a recirculation zone. In
the limit of vanishing Prandtl numbers, the thermal budget must be passive since the
thermal perturbation are immediately dissipated. At Pr = 0.1, this is not the case, and
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(a)
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Figure 5.5 – (a,b) Color indicates the local rate of production of (a) perturbation kinetic energy
i =

∑

in and (b) perturbation thermal energy j =
∑

jn in the same plane where they take their
maximum. Arrows indicate the x-, y- component of the perturbation velocity while the full lines show
the basic flow streamlines. (c) Color represents the arbitrarily scaled perturbation temperature at the
plane y = 0.09 where it takes its maximum, lines and arrows indicate the perturbation temperature
isovalues and velocity at the free surface. The white dashed line indicates the plane in which (a) and
(b) are shown. The wave propagates in the negative z direction.
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we can only suspect that the mechanical part of the energy budget is of importance.
Following the argument of Albensoeder et al. [5], if the streamline of the basic flow
is curved, if in the region where i2 is high the momentum of the basic flow decays
radially outwards from the vortex center, then the instability is centrifugal. Here
inertial effects work in conjunction with the thermocapillary stresses. The temperature
perturbation produced by the velocity perturbation affects almost directly the free
surface temperature distribution. The perturbation temperature profile on the plane
y = 0.09 where it takes its maximum and at the free surface are very similar. They
are respectively indicated by colors and isolines in fig. 5.5(c) and superpose almost
perfectly. The surface temperature perturbations engender mainly spanwise velocity
perturbation as can be seen in fig. 5.5(c). This provides a feedback mechanism for the
I2 term in the bulk. The wave propagates in the negative z direction and the maximum
of the temperature perturbation lags behind the plane of maximum of thermal energy
production rate.

Sensitivity with Respect to Changes of the Basic Flow

The growth-rate sensitivity to basic flow variations ℜ∇q0
γ1 is plotted in fig. 5.6. In

(a) and (b), the sensitivity of the variation to x- and y-components of the basic flow
velocity are shown. They take their minimum close to the cold wall and the free
surface, respectively. Their maximum is located in the inner part of the main vortex.
Note that in the case of the y-component ∇v0γ, the sensitivity values at the free
surface are the largest by magnitude, although variations of the y-component of the
basic flow velocity are not allowed at the surface by the boundary conditions and
previous assumptions (no surface deformation, and no flow through the surface). This
is not an implementation error, but rather information that is irrelevant in our case.

On the other hand, small variations of the basic flow velocity have an impact which
is two orders of magnitude smaller than variation of the temperature field. This can
be seen comparing the scales of (a), (b) and (c). The sensitivity to basic temperature
variations takes its maximum around x = (−0.5, 0.375)T, and its minimum at the
free surface x = (−1.456, 1)T. It seems then that the stability of the flow depends
greatly on the basic flow temperature at the surface, and that small changes there
could dramatically change the critical Reynolds number.

Sensitivity with Respect to External Forces

The sensitivities of the leading eigenvalue with respect to a steady force directed in
x-, y-direction and to a steady heat source are shown in fig. 5.7(a,b,c), respectively.
The region where a steady force will affect the growth rate the most coincides with
the region of the vortex where the flow is directed upwards. While the maximum
of the sensitivity with respect to a steady force is located in the bulk of the flow,
the sensitivity with respect to a steady heat source is greater along the free surface
where both its maximum and minimum arise. Again the same difference in the order
of magnitude appears between the adjoint basic flow components and the structural
sensitivity components. This is not very surprising, since the latter is the right-hand
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Figure 5.6 – Real part of the leading eigenvalue sensitivity with respect to changes in the basic
flow (a) x-component velocity ℜ (∇u0

γ), (b) y-component velocity ℜ (∇v0γ) and (c) temperature
ℜ
(

∇θ0γ
)

for Γ = 3, Pr = 0.1, Re = 5497, k = 2.13.

side in (5.11).

Sensitivity with Respect to Changes in the Heat Flux and Shear Stress

The evaluation of the sensitivity with respect to shear stress and heat flux variations
at the free surface are plotted in fig. 5.8. Both of them oscillate around the zero line.
Thus, if an extra positive shear stress is applied in a region where ℜ (∇τγ) is positive,
the growth rate will increase, and ,conversely it will decrease where the sensitivity to
shear-stress variation is negative.

One can clearly see from the scales that four orders of magnitude separate the
shear-stress sensitivity and heat-flux sensitivity. If one assumes an external gas flow
in the streamwise direction uext = uextex causes the external shear stress, the interface
condition for the basic flow would read:

∂u0
∂y

= −Re
∂θ0
∂x

+
µext

µ

∂uext
∂y

︸ ︷︷ ︸

δτ

,

where the subscript ”ext” denotes the quantities of the external flow. Typically the
external fluid has a dynamic viscosity two or three orders of magnitude lower than
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Figure 5.7 – Real part of the adjoint basic flow or real part of the sensitivity to a steady momentum

heat or source term. (a) x-component ℜ
(
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)

, (b) y-component ℜ
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)

and (c) temperature ℜ
(

θ†0

)

of the adjoint basic flow for Γ = 3, Pr = 0.1, Re = 5497, k = 2.13.
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Figure 5.8 – Sensitivity of the leading eigenvalue with respect to surface shear-stress (a) and to
surface heat-flux variations (b) for Γ = 3, Pr = 0.1, Re = 5497, k = 2.13.
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that of the liquid in the cavity. The variation of shear stress δτ of the liquid in the
cavity due to the external flow shear on the free surface is then already small. This
diminishes even more the potential impact the shear stress of the external flow could
have on the stability of the basic flow.

Therefore, at Pr = 0.1, the temperature of the external flow has a much stronger
impact on the stability of the basic flow than the external shear. However, the external
flow velocity itself can impact the stability of the internal flow in that the faster the
external flow is, the larger the heat transfer at the free surface can be.

Let us now focus on the sensitivity with respect to heat flux variations. In the linear
approximation, a flux having locally the same sign as the sensitivity would solely
destabilize the flow. Here the sign of the heat-flux sensitivity alternates along the
surface. Starting from the hot corner at x = 1.5, a positive heat flux would destabilize
the basic flow for x ∈ [1.02, 1.5] followed by a negative flux for x = [−0.18, 1.02]. Such
heat flux would locally increase the temperature near the hot corner and decrease it
downstream from it, resulting in an increased driving shear stress downstream from
the location of the positve heat flux. A second similar pattern but of lower magnitude
is met along the second half of the surface. We can anticipate that the additional
thermocapillary stress produced by this destabilizing heat flux would be similar in
shape with the one depicted in fig. 5.8(a) with a change of sign since the addition
stress would be in the −x direction.

5.5.2 High Prandtl Number Pr = 13.9

Basic Flow Description

Consistent with the observations made by Riley & Neitzel [135], Kuhlmann & Alben-
soeder [83], the basic flow show in fig. 5.9(b) is composed of a strong vortex close
to the hot wall and a weaker vortex close to the cold wall. Both vortices are rotat-
ing counterclockwise, carrying the hot fluid along the surface and the cold fluid at
the bottom of the cavity. One can see in fig. 5.9(a) that the temperature along the
free surface (full lines) rapidly decays as the fluid is transported away from the hot
corner. The temperature stays nearly constant along a large portion of the surface
before dramatically dropping to reach the minimal temperature imposed at the cold
wall. Correspondingly, the dashed line in fig. 5.9(a) indicates that the flow is acceler-
ated as it leaves the hot corner and the surface velocity magnitude reaches a peak at
x = 1.39. This can also be seen from the crowding of the streamlines in fig. 5.9(b). As
the temperature profile flattens, the driving force is reduced and the flow decelerates
progressively and its magnitude is about 30% of the previous peak. Close to the cold
corner, the magnitude of flow velocity greatly increases in an extremely sharp peak.

Due to the flow being stronger close to the hot wall than at the cold wall (except
for the cold-corner peak), the thermal boundary layer on the hot wall at x = 1.5 is
thinner than on the cold wall at x = −1.5, resulting in larger wall normal temperature
gradient along the hot wall. Close to the hyperbolic point between the two vortices
the temperature gradient increases slightly in magnitude as warmer fluid is dragged
from the free surface by the strong vortex and colder fluid is carried upwards by the
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Figure 5.9 – Basic flow at Re = 882.64, Pr = 13.9, Γ = 3. (a) Tangential surface velocity (dashed
line, left scale) and surface temperature (full line, right scale). (b) Basic flow streamlines are shown
as full lines, while the basic flow temperature field is shown in color.

other vortex.

Instability Mechanism

As indicated in table 5.2, the energy production done by the work of the thermocap-
illary forces M1 and M2 is readily dissipated and balanced by the dissipation (nor-
malized to 1). Therefore, inertial effects have almost no role in the growth of the
perturbation energy. The velocity perturbation in the bulk only transports the ba-
sic temperature and, therefore, produces the temperature perturbation which in turn
feeds the thermocapillary stresses when reaching the free surface.

In fig. 5.10(a), the local production rates of thermal perturbation energy has a wide
peak around the hyperbolic point of the basic flow streamlines, where the perturbation
velocity meets the locally higher basic flow temperature gradient. The mode shown
in fig. 5.10 is propagating in the positive z direction. The perturbation temperature
reaches an extremum in the vicinity of the maximum of the rate of production (see
5.10(b)) and is transported to the surface by the vortices of the basic flow. This triggers
the Marangoni effect and drives the perturbation velocity, which forms vortices. At
least three perturbation vortices are formed: the main one is located in the colder
part of the cavity (x < 0). It is rotating counterclockwise in fig. 5.10(a). In addition
a weaker clockwise vortex arises close to the cold corner. The third vortex is located
in the warmer half of the flow (x > 0) and rotates clockwise in fig. 5.10(a). From fig.
5.10(b) one can see that these vortices stay confined in their respective halves.

Interestingly, the temperature at the free surface (shown by contour lines in fig.
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(a)

1.5−1.5

0.5
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y j

(b)

1.5

−1.5
6.60.0

−1

1
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z

Figure 5.10 – (a) The local thermal perturbation energy production j in the plane z = 3.75 where
it takes its maximum is shown by color while arrows denote the perturbation velocity on that plane.
Full lines are the streamlines of the basic flow. (b) The perturbation temperature over one wavelength
is shown by color on the plane y = 0.007 where it takes its maximum and by black contour lines
at the free surface. Full lines denote positive values while dashed lines denote negative values. The
perturbation velocity at the free surface is shown by arrows. The plane plotted in (a) in shown in (b)
by the white dashed line. The wave propagates in the positive z direction.
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Figure 5.11 – Real part of the leading eigenvalue sensitivity with respect to changes of the basic flow
(a) x-component velocity ∇u0

γ, (b) z-component velocity ∇v0γ and (c) temperature ∇θ0γ.

5.10(b)) is shifted in comparison with the temperature on the plane y = −0.007
where the maximum perturbation temperature is reached. Besides, the temperature
perturbation close to the midplane, shown in color in fig. 5.10(b), indicates that the
a hydrothermal wave is propagating obliquely. For the aspect ratio considered here,
the hydrothermal wave is confined to the colder half of the cavity. This mode is
then representative of the hydrothermal waves, observed in shallower containers in for
instance Kuhlmann & Albensoeder [83](Γ = 8, in their fig. 17), as well as in infinitely
long layers [167, 166].

Sensitivitity with Respect to Changes in the Basic Flow

The sensitivity of the growth rate with respect to changes of the basic flow is dis-
played in fig. 5.11. The location where the sensitivity is the largest corresponds to the
weaker basic-state vortex close to the free surface. In particular, an increase of the
x-component of the basic flow velocity (opposite to the basic flow) in the rightmost
part of the weaker vortex would increase the growth rate of the mode (see fig.5.11b).
Accelerating the flow in the vertical direction in this weaker vortex would also destabi-
lize the system as the flow gets closer to the free surface. Indeed that would result in a
cooler flow reaching the free surface, exactly where the growth sensitivity with respect
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Figure 5.12 – Real part of the adjoint basic flow or real part of the leading eigenvalue sensitivity to a

steady momentum or heat source term. (a) x-component u†
0, (b) y-component v†0 and (c) temperature

θ†0 of the adjoint basic flow.

to a cooling is the largest (fig. 5.11(c)). Again, the sensitivity of the growth rate with
respect to changes in the basic-state temperature is two to three orders of magnitude
larger than the sensitivity with respect to changes in the basic-state velocity.

Sensitivity with Respect to Steady Source Terms

The growth-rate sensitivities with respect to steady forces and steady heat sources
are depicted in fig. 5.12. The zone with the greater sensitivity to a small steady force
corresponds to the zone occupied by the hydrothermal wave (colder half of the cavity).
Moreover, forces opposing the motion of the basic flow in the weaker vortex have a
large destabilizing effect. Apparently, a weaker vortex in the colder half would lead
to higher temperature gradients of the basic state in the bulk. This could in fact
profoundly change the structure of the flow, as we shall see later in section 5.6.4.

The growth-rate sensitivity with respect to a heat source is displayed in fig. 5.12(c).
One can clearly see that the growth rate is mainly affected by source terms close to
the free surface, in the half x < 0. The distribution of θ†0 again indicates an increased
growth rate if the weak vortex is suppressed (the thermocapillary forces corresponding
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Figure 5.13 – Growth-rate sensitivity with respect to shear (a) and the heat flux variations (b) at
Pr = 13.9

to θ†0 act against it). In contrast, the effect of heat flux through the free surface above
the stronger vortex seems to be rather low. The growth-rate sensitivity with respect
to variations of the heat flux is four times smaller above the main vortex (warmer
half) than on the weak vortex (colder half).

In this part, we have found that the impact of the heat flux through the free
surface on the stability of the flow depends largely on the spatial distribution of the
surface heat flux. The growth-rate sensitivity with respect to small heat flux variations
naturally depends on the type of the instability. This was found to be true for both
the high and low Prandtl numbers investigated. For the hydrothermal waves observed
at high Prandtl number, surface heat flux variations on the cooler half of the surface
are the most effective. At low Prandtl number, the sensitivity magnitude is of the
same order of magnitude over both halves of the free surface.

For both low and high Prandtl numbers, we found that the sensitivity of the leading
eigenvalue with respect to small heat flux variations oscillates along the free surface.
Therefore control the stability of the flow can be controlled using a dedicated flux,
regardless of its sign, since both positive and negative heat flux can have a stabilizing
or destabilizing effect, depending on the location at which the flux is imposed. The
following section provides an example for such a control strategy.

5.6 Sensitivity-Based Control

In order to illustrate the importance of the distribution of an imposed heat flux along
the free surface, we shall develop in this section a framework to generate several heat
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fluxes that modify the basic flow in a way that the growth rate of the most dangerous
mode changes its sign.

First, we formulate the search for the heat flux distribution as a minimization
problem and detail the optimization work flow. Then, we will find fluxes that change
the onset of time-dependent flows for the configurations investigated above.

While a technical realization of these heat fluxes is beyond the scope of this work,
the results demonstrate the importance of the thermal conditions at the free surface
for the critical onset.

5.6.1 Formulation

Primarily, we are interested in stabilizing or destabilizing the basic flow using a tailored
flux imposed at the free surface. To that end, we define a target growth rate σT whose
sign depends on the desired stability of the system. Then, we want the state variables
γ, q̂, q0 to be the solution of the state equations which are the steady Navier–Stokes
equation and the eigenvalue problem. These state variables can be controlled through
a control variable, in our case the heat flux f(x) through the boundary. To find a flux
such that σ = σT , one can minimize a cost function, for instance

J (f) = (σ1 − σT )
2
. (5.13)

Note that this function does not depend explicitly on the control variable f , but only
implicitly through the most dangerous perturbation growth rate σ1. Eventually one
could add some terms depending on f . Then J would depend both implicitly and
explicitly on f . In the end, this problem can be formulated as a non-linear optimization
problem:

Find fT = argmin [J (f)] (5.14)

such that







F(q0) = 0, , (5.15a)

∇θ0 · n− f = 0, (5.15b)

A (q0) · q̂ + γMq̂ = 0, (5.15c)

where fT (x) is a (perhaps non-unique) heat flux, and (5.15b) corresponds to the bound-
ary condition at the free surface of the heat equation. The Lagrangian function L
associated to this constrained optimization problem is

L(f, q0, γ, q̂, q
†
0, f

†, q̂†) = J (f)−
〈

F(q0), q
†
0

〉

V

−
〈

A (q0) · q̂ + γMq̂, q̂†
〉

V

−
〈
∇θ0 · n− f, f†

〉

S
, (5.16)

where the q
†
0, f

†, q̂† are the Lagrangian multipliers corresponding of the constraints
on the basic flow (5.15a), the heat flux (5.15b) and the eigenvalue problem (5.15c),
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5.6. Sensitivity-Based Control 101

respectively. The scalar products on the volume 〈a, b〉V and on the free surface 〈a, b〉S
are defined by

〈a, b〉V =

∫

V

a∗ · b dV and 〈a, b〉S =

∫

V

a∗ · b dS .

Taking the Fréchet derivative of L with respect to all state and control variables and
canceling all the derivatives with respect to the state variables allows us to identify
the derivative with respect to f as

∇fJ (f) =
2

Pr
(σ1 − σT ) θ

†
0, (5.17)

where σ1 is the growth rate of the mode and θ0† is computed using the adjoint basic
flow equations (5.11). The proof is essentially 1 the same as for the sensitivity analysis
in Appendix B. Indeed, an equivalent approach would be to use the real part of the heat
flux sensitivity ℜ(∇fγi)(5.12) while directly differentiating the cost function (5.13).

5.6.2 Optimization Procedure

Now that the gradient of the cost function with respect to changes in the heat flux at
the free surface is know, it can be used in a minimzation algorithm, which contains
the following steps

1. Compute the basic flow q0 associated with the current estimate of the heat flux
f(x),

2. Evaluate the direct eigenvalues and eigenmodes γ, q̂ by solving (5.2),

3. Evaluate the adjoint eigenvalues and eigenmodes γ†, q̂† by solving (5.7),

4. Normalize the direct and adjoint modes using (5.8),

5. Evaluate the sensitivity to changes in the basic flow ∇q0
γ using (5.9),

6. Compute the adjoint basic flow q
†
0 using (5.11),

7. Evaluate the gradient ∇fJ using (5.17),

8. Perform a step from the BFGS algorithm (see Chapter 3) using the gradient of
step 7 and evaluation of the cost function J to update the heat flux distribution,

9. Depending on a tolerance on the cost function, the target flux fT is obtained or
return to 1.

1. The only difference comes in the rescaling of the modes: 〈q̂iMq̂
†
i 〉 = 2(σ1 − σT ) instead of

(5.8). This amounts to rescaling θ†0 with this new factor since the equations (5.11) are linear.
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In the following, we shall find (among potentially many other candidates) a heat
flux that either stabilizes or destabilizes the flow for a low- or a high-Prandtl-number
fluid. In each case, a first optimization (Opti1) will be carried without any additional
constraints on the flux, starting from an initial first guess of the surface heat flux
fFG(x) = 0. Follows a second optimization (Opti2) in which the condition f(x) ≥ 0
is imposed, since heat can be supplied technically (e.g. by a laser), but not easily
removed. In order to probe the dependency of the result on the initial guess for f(x),
we repeat the previous procedure (Opti3 and Opti4) with another arbitrarily chosen
starting flux fFG(x) = (Γ/2 − x)(x + Γ/2)/30. The energy budgets of the leading
eigenmode after each of the optimizations are reported in table. 5.3.

Note that these optimized heat fluxes do not change the average shear of the basic
flow along the free surface since

∫

S

∂u0
∂y

dS = −Re

∫

S

∂θ0
∂x

dS = −Re .

Therefore the flux is only changing the distribution of the thermocapillary shear
stresses along the surface, not their average value.

5.6.3 Low Prandtl Number

The fluxes and the basic flows presented in this subsection were all obtained by the
algorithm in 5 to 7 iterations, and the cost function was always such that J (f) < 10−14

after minimization. This means that the target growth rates were obtained up to the
7th digit.

Flow Destabilization

We consider a subcritical basic flow with an adiabatic free surface at Pr = 0.1 and
Re = 4500 < Rec = 5497 so a Reynolds number 18% below the critical one and
σ(f(x) = 0) = −2.74. The basic flows obtained when the surface is adiabatic, with
a flux as obtained after Opti1 and Opti2 are shown in fig. 5.14. If we consider the
results from Opti1 (no particular constraint on the heat flux), we can see from fig.
5.14(a) that the profile of the optimal flux (dotted line) is strikingly similar to the
growth-rate sensitivity at the critical Reynolds number (see fig. 5.8(b) on page 93).
This means that the sensitivity with respect to heat flux of the growth rate of the
least stable mode do not change much with the Reynolds number. Comparing the
velocity profiles (fig. 5.14(c)) for the adiabatic (full line) and optimized flux (dotted
line) reveals that the optimized flow is slightly accelerated in the upstream part of
the free surface and decelerated in the downstream half. This is also reflected by the
temperature decaying faster as the flow leaves the hot corner, and being flatter in the
downstream half, resulting in a locally lower shear. Consistently, the peak close to the
cold corner x = −1.5 has almost vanished. In fig. 5.14(d,e), one can appreciate the
global cooling of the fluid, and the streamlines plotted for the same isovalues. The
basic flow changes only slightly such that the basic vortex is stronger and extends
further towards the hot wall.
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Table 5.3 – Kinetic and thermal perturbation energy budgets for an adiabatic surface f(x) = 0 and
after the optimizations for subcritical (a,c) and supercritical conditions (b,d) for low (a,b) and high
(c,d) Prandtl numbers. In Opti1 and Opti3, the sign of the flux is not constrained. In Opti2 and
Opti4 the flux is positive. The initial guess for Opti1 and Opti2 is fguess(x) = 0, while for Opti3 and
Opti4 fguess(x) = (Γ/2− x)(x+ Γ/2)/30.

(a)

Pr = 0.1, Re = 4500 < Rec, k = 2.166, σT = 0.1

state I1 I2 I3 I4 M1 M2 J1 J2

f(x) = 0 0.0376 0.4693 -0.0033 0.0949 0.0719 0.2806 0.2482 0.7198
Opti1 0.0446 0.5204 -0.0026 0.1090 0.0586 0.2720 0.2388 0.7623
Opti2 0.0398 0.4864 -0.0179 0.1079 0.0821 0.3037 0.3066 0.6945
Opti3 0.0431 0.5036 -0.0091 0.1109 0.0651 0.2883 0.2772 0.7240
Opti4 0.0378 0.4816 -0.0163 0.1055 0.0836 0.3096 0.3236 0.6775

(b)

Pr = 0.1, Re = 6500 > Rec, k = 2.166, σT = −0.1

state I1 I2 I3 I4 M1 M2 J1 J2

f(x) = 0 0.0325 0.5516 -0.0019 0.0845 0.0694 0.2996 0.2774 0.7489
Opti1 0.0293 0.4992 0.0017 0.0842 0.0800 0.3043 0.3060 0.6929
Opti2 0.0290 0.4932 0.0012 0.0836 0.0828 0.3089 0.3178 0.6811
Opti3 0.0286 0.4684 -0.0023 0.0893 0.0940 0.3207 0.3447 0.6543
Opti4 0.0284 0.4676 -0.0018 0.0895 0.0947 0.3203 0.3484 0.6505

(c)

Pr = 13.9, Re = 700 < Rec, k = 0.957, , σT = 0.1

state I1 I2 I3 I4 M1 M2 J1 J2

f(x) = 0 -0.0002 0.0079 0.0002 -0.0027 0.4918 0.4917 0.7756 0.1601
Opti1 -0.0009 0.0112 0.0003 -0.0043 0.6260 0.3683 0.8599 0.1923
Opti2 -0.0013 0.0095 0.0003 -0.0004 0.6233 0.3689 0.8905 0.1649
Opti3 -0.0008 0.0105 0.0002 -0.0033 0.6224 0.3714 0.8669 0.1870
Opti4 -0.0012 0.0097 0.0004 -0.0015 0.6240 0.3689 0.8717 0.1820

(d)

Pr = 13.9, Re = 1000 > Rec, k = 0.957, σT = −0.1

state I1 I2 I3 I4 M1 M2 J1 J2

f(x) = 0 -0.0008 0.0112 0.0009 -0.0049 0.5053 0.4889 0.8470 0.1829
Opti1 -0.0003 0.0152 0.0011 -0.0102 0.4786 0.4822 0.7458 0.2079
Opti2 -0.0003 0.0163 0.0010 -0.0122 0.4874 0.4777 0.7444 0.2114
Opti3 -0.0005 0.0146 0.0006 -0.0092 0.4736 0.4936 0.7646 0.1878
Opti4 -0.0005 0.0146 0.0006 -0.0092 0.4736 0.4936 0.7646 0.1878
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The term in the energy budget that has grown the most is I2, which, after optimiza-
tion, represents more than half of the total production rate of perturbation energy,
whereas the terms representing the suplly of mechanical of energy by thermocapillary
effect slightly decrease, as displayed in table 5.3. This means that the heat flux im-
posed at the surface favored the inertial mechanism in the bulk rather than the surface
mechanisms.

If we impose the positivity constraint (f > 0, Opti2), the optimized flow differs
slightly. Two distinct zones are heated, one close to the hot corner, and the other
downstream from the middle of the free surface. These two zones correspond to the
regions where the growth-rate sensitivity is positive (fig. 5.8b), suggesting that the
sensitivity barely changed with the addition of the heat flux. Logically, the surface
temperature is higher all along the free surface (fig. 5.14(a)), and the temperature
difference with the uncontrolled case increases only in the vicinity of the region where
the flux is imposed, as the Prandtl number is low.

The peak values of the imposed flux to obtain σT = 0.1 is nearly more than
seven times higher than the one from Opti1 close to the hot corner. Due to this
large incoming heat flux, two local temperature maxima arise along the free surface.
Therefore, the wall is even colder than a portion of the free surface and a counter flow
forms close to the hot corner, as shown in fig. 5.15(f). Downstream from this first
heated region, the flow is rapidly accelerating until x = 0.95. The velocity stays then
nearly constant for roughly one third of the cavity length up to x = −0.23, before
slowing down due to the local increase of temperature in the second zone of non-zero
heat flux. The second increase of the temperature results in an increase shear stress
close to the cold corner, since the gradient of temperature is higher. The velocity peak
close to the cold wall is then more pronounced than in the uncontrolled case with a
velocity magnitude of |u0| = 243 compared to |u0| = 185 in the adiabatic case.

While the terms related to the work done by the thermocapillary stresses M1 and
M2 were decreasing in Opti1, they are the terms in the energy budget which increased
the most in Opti2. In fact the contribution in the energy budget from the inertial terms
decreased slightly. Therefore, the positive flux favored the thermocapillary effects over
the inertial effects.

The third and fourth optimizations, using a different initial condition for f(x)
yielded similar results. In particular, the case Opti4 (f > 0), has the same energy
budget as Opti2 up to the third digit.

Basic Flow Stabilization

In a similar way as for the flow destabilization, we consider a Reynolds number 18%
larger than the critical Reynolds number, Re = 6500 > Rec = 5497, and target a
growth rate of σT = −0.1. The basic flows obtained when the surface is adiabatic
(σ = 2.39), with a flux as obtained after Opti1 and Opti2 are shown in fig. 5.15.

Considering the first optimization Opti1 in which the flux sign is not constrained,
we find an optimal flux (fig. 5.15(a), dotted line) having a similar shape as the heat
flux sensitivity but with an opposite sign. If the flux sign is constrained to be positive
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(a)

(b)

(c)

(d)

(e)

(f)
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Opti2

Figure 5.14 – Basic flows at different optimization stages for Pr = 0.1, Re = 4500 < Rec. Surface
heat flux (a), basic surface temperature (b) and basic surface velocity (c) with f = 0 and σ = −2.74
(solid line), and after Opti1 (dotted line) and Opti2 (dashed line) both for σT = 0.1. (d,e,f) show the
basic temperature field (color) and streamlines (solid and dashed lines) for an adiabatic free surface,
and for the flux after Opti1 and Opti2, respectively.
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(a)
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(c)
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(e)

(f)
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Figure 5.15 – Basic flows at different optimization stages with Pr = 0.1, Re = 6500 > Rec. Surface
heat flux (a), basic surface temperature (b) and basic surface velocity (c) with f = 0 and σ = 2.39
(solid line), and after Opti1 (dotted line) and Opti2 (dashed line) both for σT = −0.1. (d,e,f) show
the basic temperature field (color) and streamlines (solid and dashed lines) for an adiabatic free
surface, and for the flux after Opti1 and Opti2, respectively.
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(Opti2), the flux is only slightly increased in the regions where the flux for Opti1 was
already positive. In both cases, the temperature at the free surface is increased. This
results in a higher shear rate close to the cold corned, and slows down the flow along
the hot part of the free surface (fig. 5.15(c)), where the surface velocity is almost 25%
smaller as compared to the uncontrolled case. The velocity at the free surface after
both optimizations is nearly identical.

As the temperature gradient along the free surface are reduced, one observes a
weaker vortex in the hot half of the cavity. A consequence of this weaker flow is that
the strong recirculation present at the bottom of the cavity in the adiabatic case (fig.
5.15(d)) splits in two parts in the controlled cases (e) and (f).

In table 5.3, one can see that on one hand the production rates of perturbation
energy linked to the Marangoni effects have slightly increased. On the other hand,
this is largely compensated by the decrease of the inertial posts in the budget, and in
particular I2. Therefore, this mechanism is less efficiently extracting the perturbation
energy from the basic flow close to the cold wall (not shown).

For the present small Prandtl number, the heat flux required to stabilize the flow
for Re > Rec is smaller in magnitude than the one needed to destabilize the flow for
Re < Rec. In case of only positive fluxes, the maximum of the optimal flux is about
1 for the destabilization while it is about 0.3 for the stabilization.

A variation of the first guess given to the optimization algorithm significantly affects
the profile of the optimal solution f found by the BFGS algorithm. In Opti3 and Opti4
the initial flux is defined by fFG(x) = (Γ/2 − x)(x − Γ/2)/30, with a maximum at
x = 0 and f(0) = 0.025. The optimized basic flows are shown in fig. 5.16. The heat
fluxes obtained are greater than zero for x < 1.10, and no changes of the sign of f
is observed between the two maxima. The upstream maximum has now the largest
magnitude whereas the downstream peak is lower as compared to Opti1 and Opti2 (fig.
5.15). The perturbation temperature at the free surface is then slightly higher and
the velocity mismatch with the adiabatic case are also accentuated. The structure of
the flow in the bulk does not change visibly, but one can see in the energy budget that
the thermocapillary effects increased, while the inertial effects decreased even more.
This underlines the dependence of the obtained flux to the initial guess, indicating the
existence of multiple optima for this non-linear problem.

5.6.4 High Prandtl Number

To compute the fluxes and basic flows presented in this subsection for Pr = 13.9, the
BFGS algorithm needed up to 13 iterations to decrease the cost function J (f) to less
than 10−8, in the case of flow destabilization. Equivalently, the target growth rate
was achieved up to 4 digits. The number of iterations suggests that the structure of
the flow at high Prandtl numbers depends more on the surface heat flux than at low
Prandtl numbers. However, for flow stabilization, the algorithm needed only up to 6
steps to reduces the cost function to 10−12, similar as for small Prandtl numbers, so
the target growth rate was approached up to the 6th digit.
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Figure 5.16 – Same as in fig. 5.15, but for Opti3 and Opti4 instead of Opti1 and Opti2.
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Flow Destabilization

We consider now the flow for a higher Prandtl number Pr = 13.9, at a subcritical
Reynolds number Re = 700 < Rec = 882, which is 20% belowe the linear stability
boundary. The basic flows obtained when the surface is adiabatic (σ(f = 0) = −0.105),
with a flux as obtained after Opti1 and after Opti2 are shown in fig. 5.17. If we consider
the results from Opti1 (no particular constraint on the heat flux), we can see from fig.
5.17(a) that the heat flux obtained (dotted line) does not have the same profile as the
flux sensitivity from fig. 5.13(b) (on page 99). Apparently the sign of the surface heat
flux oscillates once more than the sign of sensitivity.

In fact, this is consistent with the appearance of a third co-rotating vortex in the
basic flow which can be seen in fig. 5.17(e). The alternation of positive and negative
flux close to the hot corner slightly accelerates the flow at the free surface. Afterward,
the flux is positive again from x = 0.77 to x = −0.03 and the temperature increases,
resulting into a thermocapillary shear in the positive direction opposing the basic flow.
As a result, the main vortex near the hot wall shrinks. The same flux alternation
repeats itself twice and two other smaller vortices are formed, visible in fig. 5.17 by
the waviness of the streamlines. This leads to the existence of two hyperbolic points
between the three vortices, and, therefore, higher temperature gradients around these
points as explained earlier.

This change of the structure of the basic flow naturally affects the leading eigen-
value, albeit the general shape of the mode remains unchanged. The vortices of the
most dangerous mode (subcritically unstable) are very similar to those shown in fig.
5.10. However, the angle made by the isotherms of the perturbations with respect to
the cold wall diminishes and the mode becomes more oblique (not shown). This can
also be seen from the energy budget: in the adiabatic case, M1 and M2 are almost
equal. However, with the imposed heat flux, M1 > 0.60 and M2 < 0.4. M2 represent
the kinetic energy production due to the work done by the spanwise thermocapillary
forces. Therefore the spanwise component of the perturbation is weaker at the free
surface.

If one constrains the flux to be positive, a very large flux close to the hot corner
appears, about ten times larger than the flux magnitude obtained by Opti1. It is
positive until x = 1.34, and the velocity magnitude grows until that same point.
The velocity peak is slightly shifted in the negative direction in comparison to the
adiabatic case. A after Opti1, a stronger vortex but smaller in size is created near
the hot wall, and two other co-rotating vortices are also created in the colder half
of the cavity. Along the free surface, the temperature locally increases slightly due
to the heat fluxes. Even though the controlling heat flux does not create opposing
thermocapillary forces, the abrupt acceleration and deceleration of the flow at the free
surface results in a waviness of the streamlines in fig. 5.17(f), similar as for Opti1.
Despite these differences, the energy budget stays the same as for Opti1, and the
durection of propagation of the most unstable mode is also a bit more oblique than in
the adiabatic case.
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Figure 5.17 – Basic flows at different optimization stages with Pr = 13.9, Re = 700 < Rec. Surface
heat flux (a), basic surface temperature (b) and basic surface velocity (c) with f = 0 and σ = −0.105
(solid line), and after Opti1 (dotted line) and Opti2 (dashed line) both for σT = 0.1. (d,e,f) show the
basic temperature field (color) and streamlines (solid and dashed lines) for an adiabatic free surface,
and for the flux after Opti1 and Opti2, respectively.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5.6. Sensitivity-Based Control 111

(a)

(b)

(c)

(d)

(e)

(f)

1.5−1.5

0.5

0.5

0.5

−0.5

−0.5

−0.5

−0.5

0.5

y

y

y

x

f

θ0

θ0

u0

0.4

−0.4

0.0

0.2

−0.2

0.10

0.05

0.00

−0.05

0

−20

−40

−60

−80

f = 0

Opti1

Opti2

Figure 5.18 – Basic flows at different optimization stages with Pr = 13.9, Re = 1000 > Rec. B.
Surface heat flux (a), basic surface temperature (b) and basic surface velocity (c) with f = 0 and σ =
0.053 (solid line), and after Opti1 (dotted line) and Opti2 (dashed line) both for σT− = 0.1. (d,e,f)
show the basic temperature field (color) and streamlines (solid and dashed lines) for an adiabatic free
surface, and for the flux after Opti1 and Opti2, respectively.
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Figure 5.19 – Same as in fig. 5.18, but for Opti3 and Opti4 instead of Opti1 and Opti2.
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Flow Stabilization

In a similar way as for the flow destabilization, we now consider a Reynolds number
13% larger than the critical Reynolds number, Re = 1000 > Rec = 882, and a target
growth rate of σT = −0.1. The basic flows obtained when the surface is adiabatic
(σ(f = 0) = −0.053), with a flux as obtained after Opti1 and after Opti2 are shown
in fig. 5.18.

Unlike in the destabilization case, the heat flux at the free surface (fig. 5.18) re-
sembles very much the growth-rate sensitivity shown in fig. 5.13(b), and the controlled
basic flow resembles the uncontrolled one. In particular the temperature at the free
surface is nearly the same, see fig. 5.18(a). The same holds for the surface velocity,
albeit the controlled flows accelerate slightly more above the weaker vortex in the cold
half of the cavity. This vortex is then stronger in the controlled flow case. Looking at
the energy budget in table 5.3 shows that the terms linked to the thermocapillary ef-
fect decreased slightly, and that the perturbation velocity is less efficient in producing
the temperature perturbation via J1.

When starting the optimization with a non-zero flux, we can obtain a substan-
tially different flux. Although it still exhibits a peak of similar amplitude slightly
downstream of the center of the surface (x = 0), the flux depicted in fig. 5.19(a) is
only positive. In that case the temperature gradients along the free surface are lower
in the hot half of the cavity, and the corresponding main vortex is weaker. On the
other hand, the second vortex is slightly stronger and has grown in size.

5.7 Summary and Discussion

In this chapter, we first presented sensitivities of the growth rate of the most unstable
mode for thermocapillary-driven flows in a shallow container at a low and a high
Prandtl number. The instability mechanisms for both cases are different: at low
Prandtl number a conjunction of inertial and surface mechanisms is responsible for
the instability with the inertia effect dominating. At high Prandtl number only the
thermocapillary effects are necessary to produce the hydrothermal wave, in which the
temperature perturbations in the bulk are generated by a weak perturbation flow -
driven by thermocapillarity. The growth-rate sensitivity of each of these modes with
respect to small variation of the basic flow, small additional source terms, shear stresses
and heat flux variation have been presented. We found that in both cases the sign of
the sensitivity to small variations of the heat transfer changes along the surface.

Then we applied a sensitivity-based gradient descent method in order to obtain
a surface flux that leads to a target growth rate of the most unstable mode, thereby
shifting the linear stability boundary of the system. In a similar approach, Muldoon &
Kuhlmann [114], Muldoon [112, 113] controlled the decay of two-dimensional oscilla-
tions in a cavity with aspect ratio Γ = 8, using an adjoint-based minimization method.
They showed that two-dimensional perturbations could be suppressed using a time-
dependent localized positive heat flux through an otherwise adiabatic free surface.
However, the observable used in their minimization function consists of the tempo-
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ral variation of the total kinetic energy, averaged over a given time horizon. Here,
we directly controlled the linear stability of the two-dimensional flow with respect to
three-dimensional perturbations and, therefore, do not need observables varying in
time to quantify whether the system is destabilized or not. Besides, the cost function
used to monitor the stability of the flow is much simpler in our case. However, a
limitation of our approach is that it cannot cope with finite amplitude perturbations.
However, for thermocapillary-driven cavities, the general stability problem including
finite amplitude perturbations has not yet been addressed.

The present analysis has demonstrated the complexity and importance of the heat
transfer on the stability of the basic flow. In particular, it was shown that there is
no one-to-one correspondence between a positive heat flux and a destabilization or
stabilization of the flow, since both can be achieved with a positive heat flux. Note
that, although they are possible in principle, modal changes were not observed within
this study. The least stable mode before and after the optimzation was always the
same mode, although it was distorted by the changes of heat flux.

The impact of an imposed surface heat flux on a thermocapillary-driven cavity has
not yet been comprehensively investigated. On the contrary numerous studies inves-
tigated the effect of heat transfer on the basic flow for the liquid bridge configuration
and, eventually, some parallels can be drawn. To name only a few, Wang et al. [180]
investigated the influence of a nearby heat source/sink on the structure of the basic
flow and the onset of flow oscillations. Yasnou et al. [184] studied the impact of a
co-axial gas flow for different gas temperatures on a liquid bridge made by a liquid of
Pr = 13.9. Both observed the formation of an additional vortex in the bulk of the flow
when the free surface is heated, just like in fig. 5.17(e,f). This confirms the idea that,
at high Prandtl numbers, the topology of the basic flow itself can be altered by heat
transfer between the liquid and the external environment.

Concerning the stability of the liquid bridge under different heat-transfer condition,
Yano et al. [183] reported a change of modes in the LB depending on the average heat
flux through the free surface for very high Prandtl numbers. The hydrothermal wave
seems to switch from propagating in the same direction as the surface flow when the
heat flux is negative (heat loss) to an opposing direction when the heat flux is positive
(heat gain). Moreover, linear stability analyses carried out by Shevtsova et al. [156]
and, more recently, by Stojanovic & Kuhlmann [171] revealed dramatic changes of the
flow stability in a liquid bridge under variations of the magnitude and direction of
the velocity of a coaxial gas. The critical curve exhibit a very stiff slope as the axial
flow changes direction, thereby passing from a overall positive to negative heat flux.
Examining the sensitivity of the liquid bridge in theses condition could shed some light
on the reasons of this abrupt changes of the stability of the system.

In general, heat transfer across the free surface is usually higher at the corners
due to the thermal boundary layers present there. They can be very well seen for
instance in Wang et al. [180], in their fig. 10, or in fig. 2 of Romanò & Kuhlmann
[136]. The an importance fact is confirmed by our results: In the optimization process
for high Prandtl, fluxes close to the corners were shown to be particularly important
in the destabilization of the flow. This behavior would need to be confirmed for liquid
bridges, although a similar behavior can be anticipated. If one simulates only the
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liquid phase and not the surrounding gas, it is particularly important to take the high
heat transfer near the corners into account, since they can dramatically affect the
stability of the basic flow.

In this regard, our results confirm the importance of an accurate modeling of the
heat transfer accross the free surface in order to be able to compare with experiments.
Therefore, the attempt of modeling the heat flux though fits of a flux function obtained
from two-phase simulations of a liquid bridge in a cooling chamber by Romanò &
Kuhlmann [136] is a significant step forward. A possible extension of this modeling
approach could be to identify the regions of importance for the flow dynamics through
a sensitivity analysis, and weight the error of the fit with the sensitivity magnitude.
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Stability Analysis of a Cubic

Shear-Driven Cavity

6.1 Introduction

In this chapter, we will study the progressive destabilization of the incompressible
flow in a cubic cavity, driven at its top by a constant shear stress. Although this
setup has barely been considered in the literature, we will first comment on the its
similarities with various problems, depicted in fig. 6.1: thermocapillary driven cavity
for low-Prandtl-number fluids, liquid filled cavity driven by an external flow, the flow
over an open cavity, and finally the lid-driven cavity. The progressive destabilization
of the flow in a cubic lid-driven cavity has been investigated extensively and therefore
we shall mainly compare with this last setup.

(a) (b) (c) (d)

xxxx

y y y y

Figure 6.1 – Setups similar to the shear driven cavity: thermocapillary driven flow in a cavity (a),
flow over a filled cavity (b), flow over an open cavity (c) and flow in a lid-driven cavity (d).
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118 6. Stability Analysis of a Cubic Shear-Driven Cavity

6.1.1 Similar Setups

Thermocapillary-Driven Flows at Low Prandtl Numbers

A thermocapillary-driven flow in a cavity filled by a liquid with a Prandtl number
tending to zero and where the free surface is adiabatic, is equivalent to a cavity driven
by a constant shear. In fact the temperature is linearly distributed between the hot
and cold wall and the temperature gradient is then constant. Assuming that the
surface tension varies linearly with the temperature, the shear stress generated by the
temperature gradient is then constant along the surface (see Chapter 5, subsection
5.5.1). Consistent with this analysis, Hadid & Roux [65] investigated shallow cavities
and layers for low Prandtl number and found that the two-dimensional basic flow was
stable to two-dimensional perturbations at Re = 3× 104 for Pr = 0. Later Schimmel
et al. [146] provided the critical curves for a cavity infinitely extended in its spanwise
direction, driven by a constant shear stress and draw a parallel between this case and
the lid-driven cavity. In both cases, for cavities of square cross sections, the flow is
unstable to centrifugal instabilities with a high wave number.

Although Cartesian geometries were rarely investigated, axisymmetric setups re-
ceived much more attention. For liquid bridges (already presented in Chapter 5), the
top and bottom walls are heated and cooled, respectively. A nearly cylindrical geome-
try is maintained due to a high surface tension, and variations of surface tension along
the free surface drive the flow. Wanschura et al. [181] found that the flow becomes un-
stable to a mechanical instability at vanishing Prandtl numbers, and would re-stabilize
as the Prandtl number is increased. Levenstam et al. [91] performed both linear sta-
bility analysis and three-dimensional simulations and found that for Pr < 0.585 the
flow axisymmetric flow becomes three-dimensional at Re ≈ 2000 and oscillates at
Re = 6000. Motegi et al. [111] further investigated the secondary oscillatory flow by
means of a Floquet analysis.

Flow over a Liquid-Filled Open Cavity

The liquid flow in a cavity driven by a gas stream is a comparable problem, provided
that interface is non-deformable. The liquid in the cavity is then put in motion by
the shear exerted by the gas on the liquid at the surface. In the context of Stokes
flows, Schönecker & Hardt [151] derived an analytical solution for transverse and
longitudinal flow over a cavity filled with an immiscible fluid. Interested by crystal
growth applications Kalaev [72] investigated the gas stream over a cubic cavity filled
with a liquid. Kalaev [72] was interested in the temporal behavior of the flow and
in roughly quantifying the transition to turbulence. They quantified their results
with a dimensionless number DN which will turn out to be our definition of the
Reynolds number. Considering higher Reynolds numbers, van Eckeveld et al. [48]
studied experimentally cavities partially filled with water in pipe subject to a dry air
flow. The main focus was to to reduce the acoustic noise (pipe whistling) linked to
vortex shedding from the downstream edge of the cavity.
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Flow over an Open Cavity

The flow over an open cavity has first received attention in the 60’s in the context of
compressible flows and its acoustic properties. Experimentally Rossiter [139] showed
that there was an acoustic mechanism resulting from the interaction of a shear layer
with the downstream corner of the cavity. A two-dimensional Kelvin-Helmholtz in-
stability is initiated at shear layer at the top of the cavity and vortices are shed from
the downstream edge. He gave an empirical formula to predict the frequency of reso-
nance. Depending on the boundary layer momentum thickness, the aspect ratio and
the Reynolds number, and at low Mach number, different modes can be unstable.
We refer to Brés & Colonius [27] who performed a linear stability analysis study at
Ma = 0.3 and 0.8 for the system infinitely extended in the spanwise direction and is
probably the most complete study on that subject. In particular they found that for
a square cavity, the basic flow is unstable to modes with a high wave number. These
modes are formed by vortices, similar to the Taylor Görtler vortices from the lid-driven
cavity. This result could be reproduced numerically for instance by Alizard et al. [7]
or Citro et al. [38] for incompressible flows.

Faure et al. [52, 51] investigated this instability experimentally in a cavity of various
streamwise aspect ratios and of spanwise aspect ratio 6. They observed mushroom-like
structures corresponding to these modes. Later Picella et al. [126] reproduced numer-
ically the flow in the same cavity configuration. They observed the same patterns and
spanwise recirculation structures and studied the successive Hopf bifurcations in this
setup. In the context of urban canyons, [140] investigated a cubic cavity with spatially
constant flow imposed at its to boundaries with a RANS turbulence model. They
observed a mean flow symmetric with respect to its midplane and focused on the flow
structure in view of pollutant dispersion in the canyon.

Flow in a Cubic Lid-Driven Cavity

In the previous chapters, we stressed the importance of the lid-driven cavity in fluid
mechanics as it serves as a canonical benchmark for computational codes, exhibits
complex flow patterns and shows a non-trivial dynamical evolution to turbulence. To
avoid too many repetitions we refer to Chap. 4 for the historical perspective and the
linear stability analysis of the infinitely extended systems. Of interest for this chapter is
the cubic lid-driven cavity. The onset of linear instability has first been investigated by
Feldman & Gelfgat [55] who found that the basic flow becomes unstable to oscillating
perturbations at Re ≈ 1920. The perturbations saturate and the system settles on a
limit cycle. In other words, the systems loses its stability through a Hopf bifurcation.
However, the scenario turned out to be more complicated as Kuhlmann & Albensoeder
[85] pointed out that the Hopf bifurcation was slightly subcritical and subject to non-
linear bursts when a sufficiently long time integration was performed (several viscous
time units). Loiseau et al. [100] reproduced this result and showed that a second limit
cycle was approached during the non-linear bursts. Using the fact that the oscillations
and the basic flow are satisfying a mirror symmetry, Lopez et al. [101] could identify
the complete bifurcation scenario for Re < 2100 including the unstable limit cycles
using edge state tracking [148, 68]. First, the flow bifurcates with a subcritical Hopf
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bifurcation and saturates in a limit cycle. This limit cycle also bifurcates with an
even more subcritical Neimark-Sacker bifurcation. The complex dynamics between
these two limit cycle is characterized by bursts that break the mirror symmetry. The
transition to turbulence is characterized by these intermittent bursts and follows a
Pomeau–Manneville scenario [130].

6.1.2 Objectives

In this chapter, we will study the incompressible flow in a cubic cavity, driven at its
top surface with a constant shear. We can expect that the flow will be destabilized
by a similar mechanism as in the lid-driven cavity due to the similar structure of the
basic flow, and because similar modes are obtained for the different setups discussed
earlier.

The aim of this chapter is to obtain the sequence of bifurcations the flow under-
goes by combining linear stability analysis and non-linear simulations. Of interest
are the characteristics of the unstable modes and their relations to their lid-driven
counterparts. Moreover, we want to state whether or not the scenario of transition
to turbulence is the same as for the cubic lid-driven cavity, and whether we should
expect other cavity setups to follow similar scenarii.

In a first section, we will define the setup and the mathematical models that we
will be using. In a second section, we will validate the solvers against the results
available for the cubic lid-driven cavity. Then the three-dimensional linear stability
results will be presented and discussed in terms of symmetries. Finally, we will carry
out a detailed analysis of the non-linear evolution upon increasing the strength of the
driving.

6.2 Mathematical Formulation

6.2.1 Problem Definition

We consider the flow of an incompressible Newtonian fluid with density ρ and kinematic
viscosity ν in a cubical cavity of side length L (fig. 6.2). The flow is driven by a constant
stress τ > 0 imposed on one face of the cube and aligned with the cube’s edges, while
the remaining boundaries are rigid.

Using the scales L, ν/L, L2/ν and ρν2/L2 for length, velocity, time and pressure,
and a cartesian coordinate system with origin in the centre of the cavity, the do-
main occupied by the fluid is V = [−1/2, 1/2]3 and the Navier–Stokes and continuity
equations are

(∂t + u · ∇)u = −∇p+∇2u, (6.1a)

∇ · u = 0. (6.1b)

A constant stress acting in negative x direction is imposed on the boundary at y = 1/2
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x

y

z

Re

Figure 6.2 – Schematic of the cubical cavity. The grey square indicates the mirror-symmetry plane
z = 0.

such that

∂yu = −Re

v = 0

∂yw = 0







on y = 1/2, (6.2a)

while no-slip and no-penetration conditions are imposed on the remaining boundaries
of the cavity

u = 0 on x = ±1/2, y = −1/2, and z = ±1/2. (6.2b)

The Reynolds number directly proportional to the strength of the stress is defined as

Re =
τL2

ρν2
. (6.3)

It is the square of the conventional shear-stress Reynolds number Reτ =
√

τ/ρL/ν

based on the friction velocity
√

τ/ρ.

The problem is invariant in time and mirror-symmetric with respect to the plane
z = 0. Thus, the basic flow at low Reynolds number is expected to be steady and
mirror-symmetric. We are interested in the linear stability of this basic flow and
the nonlinear flow above the threshold Rec at which the symmetry will be broken
spontaneously.

6.2.2 Linear Stability Analysis of the Steady Basic Flow

The classical road to quantify the linear stability of a dynamical system is to first solve
for the basic flow q0 = (u0, p0) which satisfies the steady Navier–Stokes equations

u0 · ∇u0 = −∇p0 +∇2u0, (6.4a)

∇ · u0 = 0, (6.4b)
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x/z

y

−0.5 0 0.5

−0.5

0

0.5

Figure 6.3 – 12×12×12 tensor-grid mesh employed, with refined surface elements at the boundaries.

subject to the boundary conditions (6.2). However, one can eventually be interested
in the subspace of mirror-symmetric basic flows and impose a symmetry condition on
the midplane

∂u0
∂z

= 0,
∂v0
∂z

= 0, w0 = 0, at z = 0. (6.5)

Once q0 = (u0, p0) has been obtained, small perturbations q′ = (u′, p′) are con-
sidered. They are solutions of the linearized Navier–Stokes equations

(∂t + u0 · ∇) + (u′ · ∇)u0 = −∇p+∆u, (6.6a)

∇ · u′ = 0, (6.6b)

and they must satisfy the boundary conditions

∂yu
′ = v′ = ∂yw

′ = 0 on y = 1/2, (6.7a)

u′ = 0 else. (6.7b)

Using the normal mode ansatz one obtains the eigenvalue problem described in section
2.3.2. For the perturbation modes, we never enforce symmetries.

6.3 Numerical Methods

6.3.1 Time-Dependent Flow

The time-dependent flow is computed using the spectral-element solver Nek5000, with
an ad-hoc refinement of the elements close to the edges of the cavity as shown in Fig.
6.3. The elements at the free surface have been refined in order to better capture the
strong variations of the velocity at the surface as a result of the imposed shear stress.
The discontinuities in the first derivative at the top edges due to the jump in the
boundary condition naturally slow down the convergence of the unsteady solver. For
the spatial discretization, the PN/PN−2 formulation for the velocity/pressure is used
employing Lagrange polynomials defined on the Gauss-Lobatto-Legendre quadrature
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6.3. Numerical Methods 123

Table 6.1 – Critical Reynolds and frequencies for the flow in a cubic lid-driven cavity reported in
literature.

Ref. Method Relid,c ωc

Feldman et al. [55] 1914 1100.55
Kuhlmann et al. [85] 1919.5 1124.83
Gelfgat [61] 1919.4 1124.96
Lopez et al. [101] 1928.9 1124.93
Loiseau et al. [100] Relid,c ∈ [1900, 1930] 1123.2
Present time marching Relid,c ∈ [1918.5, 1919] 1125.59
Present eigenvalue solver 1918.75 1125.56

points of degree N = 6, on a tensor grid mesh of 12×12×12 elements (fig. 6.3). Time
integration is accomplished using the BDF3/EXT3 scheme, see Chapter 3 for more
details. The time step was selected in order to keep at all times the Courant number
C ≤ 0.5. This leads, for Re = 57300, to a time step ∆t ≈ 1.2× 10−6.

To verify the solver the shear-boundary condition on y = 1/2 is replaced by a
lid moving with constant velocity Ulid and we consider the Reynolds number of the
lid-driven cavity Relid = UlidL/ν. The critical Reynolds number is compared with
literature. The critical Reynolds number is bracketed by running the solver to obtain
the largest Reynolds number for which the flow remains steady and the lowest Reynolds
number for which the flow is oscillatory. In a first step, the flow is computed for
Relid = 1900 at which only one steady solution exists. Then the Reynolds number is
gradually increased with a small increment ∆Re = 1 using the BoostConv algorithm
with a BDF2/EXT2 time-integration scheme until the time derivative of the total
kinetic energy drops below 10−4. In this way, the systems approaches the steady
equilibrium, but does not completely remove the oscillations. In a second step, we
run the unsteady solver with a BDF3/EXT3 time-integration scheme: as the time-
integration scheme is different and the residual not too small, small perturbations in
the flow are triggered. The evolution of this perturbation is monitored via the kinetic
energy of the total flow during one time unit. Depending on the growth or decay of
the oscillations, an estimation of the critical Reynolds number is obtained.

The reason why we used the second-order time integration scheme for the steady
computations, is that we noted a numerical instability of the algorithm for third order
time integration. The solution blows up less than 10 iterations after the flow cor-
rections from the BoostConv algorithm. Therefore, we used only second-order time-
scheme for finding the steady solution, which avoids low order dissipation errors and
the numerical instability. The reason of this instability is not clear, but we note as
well that in the original paper [39], only second-order time-integration is successfully
tested. However, for lower Reynolds numbers, the third-order time-integration scheme
seems to be stable (see Chapter 3).

The results obtained are compared in Table 6.1 with data for the critical Reynolds
number available in the literature. The present results agree very well with the results
of Kuhlmann & Albensoeder [85] and Gelfgat [61]. These studies are also the most
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accurate, since they used a spectral method with a 1283 tensor grid combined with
a singularity subtraction method and a finite volume method with 2563 grid points,
respectively.

6.3.2 Steady Flow

To obtain the basic steady flow (uT
0 , p0)

T, the governing non-linear system of equations
is solved using the BoostConv algorithm, recently proposed by Citro et al. [39], pre-
sented in Chapter 3. The BoostConv algorithm can be implemented on the basis of the
time-dependent solver with minor changes only. It allows to track three-dimensional
steady flow states, regardless of their stability. For all calculations we use a Krylov
space dimension of dim(K) = 10 and a second-order time-integration scheme.

Although we found the BoostConv algorithm to be able to also track steady states
unstable to non-oscillating perturbations, we enforce a mirror-symmetry boundary
condition on the midplane in order to track the steady mirror-symmetric solution which
first destabilizes as we will see later. Therefore, we enforce the additional boundary
condition (6.5). Equations (6.4) are only solved for half of the domain and the flow
is reconstructed by mirror symmetry. In that case, the BoostConv algorithm is not
used and this enables us to use a third-order time integration scheme and bypass the
numerical instability issue. When this approach is not possible, i.e. if the symmetric
basic flow is found to be unstable, the BoostConv algorithm is employed.

6.3.3 Linear Stability

In the classical approach to linear stability, the generalized eigenvalue problem (2.12)
is solved. However, the size of the discretized eigenvalue problem is usually too large
to be solved directly by assembling the matrix of the discretized linearized problem. In
this case, we solve the eigenvalue problem using a time marching technique, described
in Chapter 3.

To verify the implementation of the linear stability analysis we consider again the
lid-driven cube. The basic flow is obtained using the BoostConv algorithm with a time
step between two iterates of ∆t = 7× 10−4 and a Krylov space dimension of 10. For
the eigenvalue solver, we use a Krylov space of dimension dim(K) = 400. To define
the propagation operator, we use ∆t = 3.5× 10−4. As this Krylov space dimension is
already large enough, no restart is needed from the implicitly restarted Arnoldi-method
which is then equivalent to the classical Arnoldi method. The leading eigenvalues for
three Reynolds numbers are reported in table 6.2. Quadratic interpolation to zero
yields the critical Reynolds number indicated at the last line of table 6.1. As the
critical Reynolds number is agreeing very well with the results from literature and, in
particular, with those of [85] and [61], the steady solver and the eigenvalue solver can
be considered verified.
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Table 6.2 – Eigenvalues for specific Reynolds numbers.

Relid σ1 ω1

1915 -0.891073 1123.81876
1918 -0.178565 1125.21944
1920 0.296443 1126.15033

6.4 Results

The basic state q0 = (u0, p0)
T, denoted S1 in fig. 6.4, is steady with symmetry

q0(x, t) = q0(x, t + t′) with t′ arbitrary. It also satisfies the spatial (mirror) sym-
metry, and we define the mirror symmetry map M

M : (u0, v0, w0, p0) (x, y, z) → (u0, v0,−w0, p0) (x, y,−z) . (6.8)

When the mirror symmetry is preserved, the spanwise velocity on the midplane should
be identically zero: w(z = 0) = 0.

The basic flow can lose its stability by breaking of either the translational invari-
ance in t, the spatial symmetry (6.8), or both. From the linear stability equations,
perturbations of the symmetric basic state must either be mirror-symmetric, satisfying
the same spatial symmetry M as the basic flow, or they are antisymmetric, satisfying

(û, v̂, ŵ) (x, y, z) = (−û,−v̂, ŵ) (x, y,−z) . (6.9)

In order to quantify symmetry breaking we measure the deviation from the mirror
symmetry by

S =
1

2E

∫

V

|M(u)− u|2dV , (6.10)

where the total kinetic E energy is defined by

E =
1

2

∫

V

|u|2dV . (6.11)

The criterion S is the ratio of the kinetic energy which corresponds to the asymmetry
over the total kinetic energy. This criterion is the same as defined by Lopez et al.
[101]. However, they used a spectral method with Chebishev polynomials. These
polynomials can be sorted into even and odd polynomials. Using the fact that the
even polynomials are symmetric by design, one can consider only the odd polynomials
to evaluate the integral in (6.10) and readily obtain S. In SEM with Nek5000, we used
a symmetric tensor grid and created a new communication map for the MPI processes
to get the symmetrically opposed elements. This is, in comparison to the spectral
method, not so straightforward to implement.

As the Reynolds number is increased, the basic flow becomes unstable and a se-
quence of instabilities can be identified. The relation and naming convention of the
different bifurcation points and solutions found are sketched qualitatively in fig. 6.4.
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AS’

S1

S2

AS

LC1

LC1’

P1

P2

H1

H2

H2’

H3

H3’

I

I

Figure 6.4 – Sketch of critical points and bifurcating solutions. Linearly stable solutions are indicated
by full lines, unstable ones by dashed lines. S1 is the mirror-symmetric steady state, stable until a
pitchfork bifurcation P1 where it becomes unstable to a non-oscillating anti-symmetric mode q̂P1.
After saturation of the mode, the system reaches an asymmetric steady state AS or its anti-symmetric
counterpart AS’. Upon increase of the Reynolds number, S1 loses its stability with respect to an
oscillating mode q̂H1 at the Hopf Bifurcation H1. S2 is a mirror-symmetric steady state, originating
from the pitchfork bifurcation P2. S2 is stable only in the subspace of mirror-symmetric solutions.
The asymmetric steady state AS (resp. AS’) is stable until a Hopf bifurcation H2 (resp. H2’) where it
becomes unstable to an oscillating mode q̂H2 (resp. q̂H2’). As the oscillations saturated, the system
settles on a limit cycle LC1 (resp. LC1’). Upon increasing the Reynolds number AS (resp. AS’)
becomes unstable to a second oscillating mode q̂H3 in a Hopf bifurcation H3 (resp. H3’). The limit
cycles LC1 and LC1’ destabilize in I and a complex dynamics between the two limit cycles arises.

6.4.1 Stability of the Symmetric Basic Flow

Basic Flow Structure at Re = 53450

The basic flow structure before loss of symmetry is very similar to the one observed
in the cubic cavity [55]. At Re = 53450, the flow at the top accelerates as it leaves
the upstream edge, reaching maxima of velocity magnitude of max |u0| = 1863.9 at
(x, y, z) = (−0.380, 0.5,±0.449). The maxima are located close to the downstream
top edge. The average free-surface velocity is uavg = (−1278.8, 0, 0)T. The main
characteristic of the flow is a core vortex aligned with the spanwise direction, best
seen in fig. 6.5(c). As in the cubic lid-driven cavity, in the vicinity of the end walls
the swirling motion is suppressed and two co-rotating eddies are formed in the bulk
of cavity 6.5(a,b). The product of the vertical component of the velocity and the
vertical component of the vorticity v ωy takes its maximum and minimum at the
points indicated by the pink circles. At these points, both the vortical structures and
the y-component of the velocity are strong, and they will be useful in a comparison
later. Between these eddies, the spanwise component of the flow is weaker and cancels
in the midplane z = 0 forming then two distinct cells from which the fluid elements
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cannot escape. These two cells can be seen in fig. 6.5(a,b) with the purple line denoting
the isovalues w0 = 0 crossing the cavity along the line z = 0 (i.e. in the symmetry
plane). Close to the plane z = 0, at the bottom of the cavity (y ∈ [−0.5,−0.4] in
fig. 6.5(a)) and at the wall upstream to the top surface (x ∈ [0.4, 0.5] in fig. 6.5(b)),
one can observe changes in the sign of w0 indicating another pair of vortices, which,
however, have a very small amplitude.

Pitchfork Bifurcation

Linear Stability Analysis As the Reynolds number is increased, the mirror sym-
metry is lost first. The spectrum of eigenvalues of the linear stability problem slightly
above the critical Reynolds number shows that the first eigenvalue crossing the imagi-
nary axis has ω = 0 (fig. 6.6). The critical Reynolds number obtained by interpolation
of the growth rates obtained near the critical point P1 yields a critical Reynolds num-
ber of ReP1 = 53 495. From the distribution of the spanwise velocity w(x, y, z = 0) of
the slightly supercritical eigenmode on z = 0, shown in fig. 6.7(a), this mode breaks
the mirror symmetry (6.8) (i.e. w(z = 0) 6= 0), but is antisymmetric. The result of the
linear stability analysis is confirmed by the full numerical simulation. The deviation
of non-linear steady state AS at Re = 54 000 from the symmetric steady state S1 has
essentially the same structure (apart from small non-linear corrections) as the linear
mode on the midplane. This is demonstrated in fig. 6.7b which shows the spanwise
velocity on the plane z = 0. The distribution of wAS is almost indistinguishable from
those of the eigenfunction ŵP1 shown in fig. 6.7a. As a convention, we define AS the
steady state in which w(xp) > 0, and AS′ its mirror symmetric (i.e. w(xp) < 0),
where xp = (−0.4, 0., 0.)T is an arbitrarily chosen point, shown by a cross × in fig.
6.7.

The global structure of the steady anti-symmetric mode P1 is illustrated in fig.
6.8 at slightly supercritical conditions at Re = 53 700. The anti-symmetric mode is
breaking the mirror symmetry, this can be easily identified by w being particularly
strong on z = 0 (fig. 6.8c). The perturbation velocity fields is primarily located near
the upstream wall at x = 0.5 and extends upstream of the basic flow. Furthermore,
the perturbation exhibits a strong velocity components in the streamwise direction,
parallel to the basic flow. From the two major regions (yellow and purple) of u and v
the perturbation flow primarily consists of a single slender vortex located in midplane
z = 0 and extending over the solid walls. This structure can be clearly seen from fig.
6.8d which shows the structure of the vortex in the horizontal plane y = −0.3 in the
upper half of the cavity. The structure of the perturbation flow corresponds to a single
Taylor–Görtler vortex. While a single Taylor–Görtler vortex has not been reported
before, the vortex structure is similar to the periodic Taylor–Görtler vortices known
from the spanwise extended lid-driven cavity [81, 78, 5].

Finite-amplitude steady asymmetric flow At the critical Reynolds number
ReP1 the asymmetric steady flows AS and its counterpart AS’ (fig. 6.4) bifurcate
supercritically from the symmetric basic state S1. We find the steady asymmetric
mode to grow to finite amplitude and saturate for t→ ∞. To compute the saturated
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(a) x = 0

0.5

0.5
−0.5

−0.5
0.00.0

y

z

1541

(b) y = 0

0.5

0.5
−0.5

−0.5
0.00.0

z

x

691

(c) z = 0

0.5

0.5
−0.5

−0.5
0.00.0

y

x

1789

Figure 6.5 – Basic flow at Re = 53450 < Rec in the x = 0 plane (a), y = 0 plane (b) and z = 0
plane (c). Arrows denote the in-plane components of the velocity vector while the shades of blue
indicate the velocity magnitude |u0|. Purple lines denote w0 = 0 isovalues. Global extrema of v ωy

are indicated by the pink filled circles.
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Re(γ)
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Figure 6.6 – Eigenvalue spectrum for the linear stability problem of the basic flow at the supercritical
Reynolds number Re = 53 700. Grey shade indicates the region of negative growth rates.

flow state AS we run the unsteady solver until the time derivative of the total kinetic
energy ∂E/∂t is less than 10−5. The flow was first obtained for Re = 54000 and
then decreased in order to determine whether or not the bifurcation is supercritical.
To measure the amplitude of the asymmetric steady flow, we consider the symmetry
criterion S presented earlier. It is evaluated at different Reynolds numbers beyond
criticality and a three parameter fit is performed (fig. 6.9). The fitting function is in
the shape

f(Re) = a1(Re− a2)
a3 . (6.12)

Parameter a2 gives an estimate of the critical Reynolds number, parameter a3 should
be close to unity if the bifurcation is a supercritical pitchfork bifurcation. Since S takes
the square of the deviation in the integral, it should vary linearly with the distance to
the critical Reynolds number. The second estimate for the critical Reynolds number
is a2 = 53490 = ReP1 and a3 = 0.9612. This is in perfect agreement with the result
obtained from the linear stability analysis, since the relative difference is less than
0.01%.

Further Destabilization of S1

Hopf Bifurcation At slightly higher Reynolds number ReH1 = 54 107, the already
unstable steady state S1 loses its stability to a second mode: A complex conjugate
pair of eigenvalues crosses the imaginary axis with ωH1 = 689.68. The index H1 refers
to Hopf bifurcation point H1 in fig. 6.4. The oscillating eigenmode shown in fig. 6.10
is anti-symmetric (6.9), just like the stationary mode P1.
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(a)

ŵ

0

0.5

0.5
−0.5

−0.5

x
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(b)
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−8.7
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0

0.5

0.5
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x

Figure 6.7 – Spanwise velocity fields on the plane z = 0 (a) of the slightly supercritical eigenmode
ŵP1(x, y) for Re = 53 700 and (b) of the velocity field w0(x, y, z = 0) of the slightly supercritical
non-linear steady-state AS obtained by numerical simulation for Re = 54 000. The dashed lines
correspond to ŵ = 0 (a) and w0 = 0 (b). The marker (×) in (b) indicates the monitoring point
xp = (−0.4, 0., 0.)T.

The time-dependent anti-symmetric mode also consists of a single Taylor-Görtler
vortex. The vortex centerline is in the mid plane z = 0 and the vortex is stronger
near the solid wall of the cavity upstream to the free surface. Besides, the vortex
periodically changes its sense of rotation. The sense of rotation also varies along the
apparent centerline of the Taylor–Görtler vortex. This is illustrated by the temporal
evolution of the isosurfaces of u, v and w in fig. 6.10 and also supported by the structure
of the perturbation flow in the plane y = −0.3 shown in fig. 6.11 at the same instants
of time.

The realization of a flow in which the oscillating perturbation is initially growing
and saturates in form of a limit cycle for long times is very unlikely: The faster
growth of the stationary anti-symmetric mode prevents a further development of this
oscillating mode. We did not find any stable limit cycle related to the secondary
destabilization of the flow and thus did not determine the character of the bifurcating
solution (sub/super-critical).

Second pitchfork bifurcation For a Reynolds number slightly larger than ReH1,
the mirror-symmetric basic state S1 experiences a second pitchfork bifurcation at
ReP2 = 54130, the corresponding mode is not oscillating, but is symmetric. The
eigenmode is composed of two vortices which are symmetric to each other (not shown).
This leads to a second branch of symmetric steady flows S2 when the space of solu-
tion is restricted to symmetric flows. In this subspace of solutions, the perturbation
saturates and the vortices grow to a finite amplitude. Although it is not shown, we
found that this bifurcation is subcritical and the folding point of the bifurcation is
below Re = 53800. While this branch of symmetric solutions is stable to symmetric
perturbations, it is, however, unstable to non-symmetric perturbations. In fact, the
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(a) u

x

y

z

(b) v (c) w

(d)
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v̂

A
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z

x

0.5

−0.5

Figure 6.8 – Isosurfaces of the velocity components û (a), v̂ (b) and ŵ (c) of the most dangerous

non-oscillating eigenmode ˆu(x)P1 at Re = 53 700 at ±20% of their respective maxima. The arrow
indicates the direction of the surface stress. (d) Structure of the most dangerous stationary eigenmode
at Re = 53 700 shown in the plane y = −0.3. Arrows indicate the cross stream velocity field (u,w),
while color indicates the velocity component v.
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10−3

10−4

102 103

Slope = 1

S

Re− ReP1

Figure 6.9 – Asymmetry measure S as a function of the Reynolds number. Open symbols represent
numerical simulations, the fit of shape a1(Re − a2)a3 is represented with a full line. The slope of a
linear function is represented by the line of the triangle almost parallel to the fit.

Table 6.3 – Asymmetry parameters, leading eigenvalues and energy budget close to the bifurcation
points. All modes energy budget have similar proportion for all modes, and are thus destabilized by
the same mechanism.

Re S γi I1 I2 I3 I4

P1 53500 0 0.13075 0.030 0.789 0.142 0.039
H1 54100 0 −1.10422± i689.68 0.042 0.782 0.141 0.035
P2 54100 0 −4.12442 0.061 0.763 0.119 0.053
H2 55700 7.6× 10−4 −0.19771± i764.16 0.036 0.789 0.131 0.044
H3 56200 9.0× 10−4 0.26699± i82.559 0.040 0.781 0.128 0.052

leading eigenvalues are very large σ1,2 > 50. Therefore the steady bifurcating solutions
were not observed when simulating the problem without imposing a mirror symmetry
in the midplane.

Instability mechanism The normalized energy budget is displayed in table 6.3
for several Reynold numbers. It can be seen that the magnitude of the different
terms In (time averaged) for the three modes mentioned earlier are almost the same.
Therefore the first non-oscillating symmetry breaking mode P1, the second oscillating
symmetry breaking mode H1 and the third non-oscillating symmetric mode P2 are then
destabilized by a similar process. The similarity is due to the very similar structure of
the three modes. Since the contribution I2 dominates, all these modes are destabilized
primarily through to the lift-up mechanism i2 by which the streamwise perturbation
flow u‖ is amplified by transport of basic state momentum in the cross-stream direction
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t = 0
(a) u

x
y

z

(b) v (c) w

t = T0/6

(d) u
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z

(e) v (f) w

t = 2T0/6

(g) u

x
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z

(h) v (i) w

Figure 6.10 – Evolution of the time-dependent anti-symmetric eigenmode at Re = 54 100 < ReH1.
Shown are isosurfaces of u, v and w at three instants of time over half a period, t = 0, t = T0/6 and
t = 2T0/6. Each isosurface correspond to ±0.2 × maxx |u|. Positive and negative values are coded
in color. The arrow indicates the direction of the surface stress and grey shows the cut on which the
flow is illustrated in fig. 6.11.
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(a) t = 0
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Figure 6.11 – Evolution of the time-dependent anti-symmetric eigenmode at ReH1 = 54 100 in the
plane y = −0.3 shown at t = 0, t = T0/6 and t = 2T0/6 corresponding to fig. 6.10. Arrows show the
velocity vectors (u,w) in the plane while the velocity component v is shown by color.
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(a) S2
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Figure 6.12 – Total flow on the plane x = 0 (a,c), y = 0 (b,d) on the symmetric branch S2 at
Re = 54 150 (a,b) and on the asymmetric branch AS at Re = 55 700 (c,d). Arrows show the in-plane
velocity components. Purple lines denote w0 = 0 isovalues in all figures. The velocity magnitude is
shown by shades of blue. Global extrema of v ωy are indicated by the pink filled circles.

due to u⊥. Furthermore, the distribution of the energy production terms (not shown)
is very similar as those for periodic Taylor–Görtler vortices in an extended lid-driven
square cavity (fig. 12 of [5]) which underlines the interpretation of the three modes as
stationary and time-dependent Taylor-Görtler vortices.

Comparison of Steady Flows

In order to qualitatively compare the changes of the total flow induced by the two
pitchfork bifurcations, the symmetric flow S2 at Re = 54 150 (unstable to non sym-
metric perturbation), and the non-symmetric flow AS at Re = 55 700 are shown in fig.
6.12. The flow in the z = 0 plane resembles very much the flow depicted in fig. 6.5c
and no qualitative change has been noticed.

On the symmetric branch S2, after the second pitchfork bifurcation, the two unsta-
ble symmetric vortices have saturated and are clearly visible. In fact, the extrema of
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136 6. Stability Analysis of a Cubic Shear-Driven Cavity

the product of the y-component of the velocity and y-component of vorticity indicated
by the pink dots in fig.6.12(b), are located within these Taylor-Görtler vortices. They
are much stronger than the very weak vortices observed at Re = 53 450 in fig. 6.5, and
they can be seen at the bottom of the cavity (z = 0, y ∈ [−0.5,−0.4]) and at the wall
upstream to the sheared surface (z ∈ [−0.1, 0.1], x ∈ [0.4, 0.5]) in fig. 6.12(a) and (b),
respectively. The maximum value of the velocity magnitude is still located at the top
surface with max |u0| = 1863.9 at x = (−0.381, 0.5, 0.4487)T, and the average velocity
at the surface is uavg = (−1287.8, 0, 0)T .

On the asymmetric branch AS, however, the saturated perturbation does not seem
to have such a visible effect on the total flow. In fact, the magnitude of the vortex
centered on the midplane is so small that it can barely be seen in comparison with the
end-walls vortices. The maximum value of the magnitude of the velocity is max |u0| =
1909.3 at x = (−0.383, 0.5, 0.4494)T and the average flow at the surface is uavg =
(−1316.1, 0, 0.37137)T reflecting the broken symmetry with a net spanwise flow on the
top surface. This weak symmetry breaking is also visible by the purple lines in fig.
6.12(c,d) representing the w0 = 0 isolines. In particular, the spanwise velocity on the
midplane w(z = 0) is not zero, and distinct cells are no longer present.

6.4.2 Time-Dependent Asymmetric Flow - Hopf Bifurcation

Linear Stability Analysis

A linear stability analysis of the steady asymmetric flow AS reveals a Hopf bifurcation
at ReH2 = 55 718. The BoostConv algorithm in combination with the second-order
time-integration scheme is used to find the steady asymmetric flow AS. The critical
frequency is ωH2 = 764.16, which is only about 10% larger than ωH1. Since the basic
flow is no longer symmetric, one cannot expect any symmetry of the perturbation
variables.

Figure 6.13 shows the components of the velocity field of the eigenmode H2 at the
slightly subcritical Reynolds number Re = 55 700. The mode resembles the oscillatory
mode H1 destabilizing the symmetric basic state at ReH1 (fig. 6.10). While mode H1
is anti-symmetric and like a standing wave, the modes H2 and H2’ appear to travel in
negative and positive z direction, respectively. The traveling direction is dictated by
the particular asymmetric flow state (AS or AS’) being destabilized and the Taylor–
Görtler vortices involved are oriented slightly obliquely. Mode H2 traveling in the
negative z direction is illustrated in fig. 6.13. The instabilities of the asymmetric
steady flows AS and AS’ also arise in form of one or two (at a time) Taylor-Götler
vortices and are located in the vicinity of the midplane of the cavity. The relatively
small amplitude of the deviation of the steady asymmetric flows states AS and AS’
from the symmetric basic state (fig. 6.9 and fig. 6.12(c,d)) suggests that the onset
of asymmetric oscillations is not caused by the asymmetry of the flow, but is rather
a similar instability as for mode H1. The asymmetric part of the three-dimensional
steady flow seems to merely suppress the onset of oscillations for a small range of
Reynolds numbers Re ∈ [ReH1,ReH2]. This interpretation is confirmed by the mean
energy budget. From table 6.3 we notice that also the critical mode H2 is destabilized
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t = 0
(a) u

x
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(b) v (c) w
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Figure 6.13 – Evolution of the time-dependent asymmetric eigenmode H2 at Re = 55 700. Shown
are isosurfaces of u, v and w at three instants of time over half a period, t = 0, t = T1/6 and t =
2T1/6. Yellow and purple isosurfaces correspond to ±20% of the extrema of the velocity component,
respectively. The arrow indicates the direction of the surface stress and grey shows the cut on which
the flow is illustrated in fig. 6.14.
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(a) t = 0
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Figure 6.14 – Evolution of the time-dependent asymmetric eigenmode H2 at Re = 55 700 in the
plane y = −0.3 shown at t = 0, t = T1/6 and t = 2T1/6 corresponding to fig. 6.13. Arrows show the
velocity vectors (u,w) in the plane while the velocity component v is shown by color.

by the same mechanism as modes P1 and H1, because of the similar modal structure
and the similar energy budget with again I2 being dominant.

Finite Amplitude Oscillations

For Re > ReH2 the amplitude of the asymmetric oscillation saturates and reaches the
limit cycle LC1. To investigate the saturation, the third-order time-integration scheme
has been used. Let us introduce the peak to peak amplitude of the asymmetry measure
S of the fully developed non-linear periodic flow with constant oscillation amplitude
∆S. To see whether the bifurcation is supercritical or not, we consider ∆S2 as a
function of the Reynolds number, and we use a fit function of the same shape as for
the pitchfork bifurcation: a1(Re− a2)

a3 . The results from the non-linear simulations
and the best fit from a least square problem are shown in (fig. 6.15(a)) We find the
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Figure 6.15 – (a) Squared peak to peak amplitude ∆S2 of the saturated oscillatory asymmetric flow
LC1. The straight line is a fit with shape function of the form a1 (Re− a2)

a3 . (b) Evolution of the
spectral amplitudes A of the saturated asymmetric non-linear oscillations (LC1).

critical Reynolds a2 = ReH2 = 55 715 and a3 = 1.0307. This means that ∆S scales
almost like the square root of the distance from the ReH2, and indicates a supercritical
Hopf bifurcation. The estimations of H2 from the linear stability analysis and from
the fit agree almost perfectly.

As the Reynolds number increases, higher harmonics are generated whose ampli-
tudes are shown in fig. 6.15(b). At Re = 57 300, the second and third harmonics have
already grown to an appreciable amplitude of 0.65A1, and 0.18A1, where A1 is the am-
plitude of the fundamental harmonic, and the fundamental frequency is ωLC1 = 764.5.
Due to the two asymmetric steady solutions AS and AS’ there also exists another limit
cycle LC1’ which is created near the other asymmetric flow state.

Further Destabilization of the Steady Asymmetric Flow

As one continues increasing the Reynolds number on the asymmetric branch AS, a
second oscillating mode is destabilized at ReH3 ≈ 56 200. The associated frequency
is ωH3 = 82.55, which is approximatively ten times less than the frequency ωH2 of
the limit cycle LC1. Again, the energy budgets are extremely similar to the ones of
all previous modes, indicating that the steady state AS is destabilized by the same
centrifugal mechanism. This mode H3 (resp. H3’) consists of three vortices that are
travelling in the negative (resp. positive) z direction. In fig. 6.16 and fig. 6.17, vortices
travelling in the −z direction are shown. Qualitatively, the vortices of mode H3 seem
to be more aligned with the streamwise component of the basic flow than those of mode
H2, which are more in a spiral form. This is particularly visible for the x-component
of the perturbation velocity in figs. 6.13(a,d,g) and 6.16 (a,d,g).

The bifurcation diagram is represented in terms of the asymmetry measure, to-
gether with the sign of the spanwise velocity at the probing point xp from fig. 6.7(b),
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t = 0
(a) u

x
y

z

(b) v (c) w

t = Tp/6

(d) u

x
y

z

(e) v (f) w

t = 2T6
(g) u

x
y

z

(h) v (i) w

Figure 6.16 – Evolution of the time-dependent asymmetric eigenmode H3 at Re = 56 200. Shown
are isosurfaces of u, v and w at three instants of time over half a period, t = 0, t = T1/6 and t =
2T1/6. Yellow and purple isosurfaces correspond to ±20% of the extrema of the velocity component,
respectively. The arrow indicates the direction of the surface stress and grey shows the cut on which
the flow is illustrated in fig. 6.14.
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(a) t = 0

0.590.5

0.5

90.5

z

x

(b) t = T1/6

0.590.5
z

(c) t = 2T1/6

0.590.5

0.5

90.5

v̂

A

9A

z

x

Figure 6.17 – Evolution of the second most instable mode H3 at Re = 56 200 on the asymmetric
branch in the plane y = −0.3 shown at t = 0, t = Tp/6 and t = 2Tp/6 corresponding to fig. 6.16.
Arrows show the velocity vectors (u,w) in the plane, while the velocity component v is shown by
color.
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Figure 6.18 – Bifurcation diagram, symbols show the simulations results, the amplitude of the
oscillations after the Hopf bifurcation is represented with a grey shading. Unstable branches are
shown by dashed lines.

is shown in fig. 6.18. Only the estimates of the critical Reynolds numbers from the
saturated steady state or limit cycle are shown.

6.4.3 Destabilization of the Limit Cycle

For even higher Reynolds numbers, Re ∈ [57 000, 58 000], the limit cycles LC1 and LC1’
become unstable. Long periods of oscillations with constant amplitude are interrupted
by non-linear bursts in an intermittent fashion leading to a complex dynamics.

The dynamics is illustrated by the evolution of w(xp, t) shown in fig. 6.19 (middle).
After a burst, the dynamical system may return to the same limit cycle or to the limit
cycle which exists near the other asymmetric steady state. The switch between the
two limit cycles LC1 and LC1’ can be seen in fig. 6.19 (middle) at about t = 48.5 when
the mean value w(xp, t) during the phases of regular oscillation changes from negative
before the burst to positive after the burst (white dashed lines). The timespan during
which the burst happens is not the same for all bursts and the durations of the regular
oscillations differ as well.

When the system is locked on one of the limit cycles its spectrum contains only
harmonics of the fundamental frequency as discussed above (fig. 6.19, bottom). During
a bursting event, however, the power density spreads on a broad bandwidth. This
spreading happens in the form of peaks (almost) regularly spaced around the harmonics
of the limit cycle.
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Figure 6.19 – The two upper panels show the time evolution of S(t) (top) and w(xp, t) (middle) at
Re = 57 300. The mean values of w(xp, t) corresponding to LC1 and LC1’ are indicated by horizontal
white dashed lines and the full line indicates the zero. A Short-time Fourier transform of w(xp, t) with
sliding window of width of 0.6 time units is shown in the lower panel. The gray shading represents
the spectral amplitude of the signal, only amplitudes larger than 10−4 are plotted. The red vertical
lines qualitatively delimit the three phases mentioned in the text.

These bursting events can be subdivided in three distinct phases. In the first
phase, the oscillation frequency of the limit cycle decreases, and frequencies below
the harmonics start invading the spectrum in a continuous manner. The mechanism
triggering this first step is, however, not very clear.

In a second phase, the flow undergoes strong oscillations. The beat frequency is
about ωbeat,1 = 50 ± 5. Due to the strong non-linear interactions, the beating is
strongly anharmonic which results in the multiple peaks at ω = nωLC1 ±mωbeat in
the short-time spectrum in the lower panel of fig. 6.19. During this second step, the
symmetry of the flow varies significantly. In fact, S varies from 10−6 to 10−2 in the
last burst of fig. 6.19. This indicates that the flow is repeatedly nearly symmetric. In
accordance, the value of w(xp) is getting close to zero.

In the last phase, the beat frequency of the signal during the return to regular os-
cillations is ωbeat ≈ 75±5 which is close to the frequency of the unstable low-frequency
limit cycle which is created by the secondary bifurcation H3 from the unstable asym-
metric steady solution, ωH3 = 82. The limit cycle LC1 is apparently a saddle limit
cycle attracting from one orthogonal direction and repelling in the other. To formally
prove this, one would need to perform a Floquet analysis, see e.g. [57, 17, 153], if the
destabilization mechanism is linear.
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Figure 6.20 – Temporal evolution of w(xp, t) at Re = 57300 with (a) and without employing a
low-pass filter (b). The two upper panels show zooms into the signal as indicated by the gray shading
in the bottom panel. The red dots in the top and middle panels of (a) indicates the times as which
the total flow is shown in fig. 6.21.

To probe the existence of another unstable limit cycle in the second step, one may
take advantage of the frequency of LC1 being ten times higher than the hypothesized
limit cycle at this Reynolds number. This allows to design a low pass filter to obtain
only the dynamics associated with the slowly evolving mode. To that end selective
frequency damping (SFD) is used, not to seek the basic flow as usual [2], but to even-
tually find the low-frequency limit cycle. Following the notation of [2] the parameters
χ = 3000 and ∆ = 0.0007 are selected, corresponding to a cut-off frequency ωc = 227
which is more than twice as small as ωH2 of the limit cycle LC1, but still large enough
not to damp oscillations with frequencies of ω ≈ 50 and its second harmonic. This
approach is much more economic computationally than other methods to find unstable
manifolds, e.g. tracking of edge states [101, 148, 68], due to a relatively long period of
the hypothetical limit cycle.

Initiating the flow with q = q0,AS+aq̂H3 with a small constant a the flow initially
oscillates with a low frequency of ω ≈ 30 and a growing amplitude (fig. 6.20a). At
about t = 1.2 higher-frequency oscillations of low amplitude develop on the low-
frequency signal until the signal w(xp, t) settles on a periodic flow with fundamental
frequency ω ≈ 10 and higher harmonics for t > 1.8. These frequencies do not match
the ones of the flow which is not damped. This is due to the low pass filter apparently
further slowing down already slow dynamics. That side effect most likely depends on
the strength of the damping χ.
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Figure 6.21 – Instantaneous snapshots of the damped velocity in the x = 0 plane (a,c,e) and in the
y = 0 plane (b,d,f), at the times indicated in fig. 6.20(a) by the red dots: at t = 3.427 (a,b), at
t = 3.567 (c,d) and at t = 3.607 (e,f). The color denotes the flow velocity magnitude while the arrows
denote the in-plane components of the velocity field.
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However, from fig. 6.20 one can see that the dynamics are similar (up to a
time scale). In both cases, the system passes by a nearly symmetric state with
S ∈ [10−5, 10−4] and then the asymmetry measure S increases in an exponential
fashion before oscillations with a frequency close to ωLC1 start appearing. Eventu-
ally the oscillations are damped before the system settles again in a nearly symmetric
state. Apparently, the direction in which the symmetry is breaking alternates, see fig.
6.20 (middle). To understand the flow states during these periodic patterns, we look
at the damped velocity field shown in fig. 6.21, at the times marked by red dots in
fig. 6.20 (top,middle). We see that in (a,b) that the flow is nearly symmetric but also
resembles the basic flow S1 (6.5)(a,b). In particular the extrema of the product of the
y-component of the velocity and the y-component of the vorticity v ωy are also located
near the spanwise wall in the large almost mirror-symmetric eddies. Then in (c,d), two
nearly symmetric vortices have grown close to the plane z = 0, x ∈ [0.4, 0.5]. These
are very much similar to those of the symmetric flow stemming from P2 and visible
in fig. 6.12(a,b). Similarly, the extrema of v ωy are located in the Taylor–Görtler vor-
tices. In the mean time, symmetry breaking modes are growing and the two centered
vortices are transported in the spanwise direction, as shown in fig. 6.21(e,f). It is
perhaps better visible by comparing the location of the extrema of v ωy. This triggers
the shedding of 5 vortices in this damped case (not shown). These vortices eventually
weaken, and the symmetric flow is approached again, completing the loop. We have
not been able to quantify the distances of the flow from both saddles S1 and S2, for
the reason that even in the mirror symmetric subspace of solutions, the saddle S1 is
not reachable (or at least not trivially). We tried increasing the Reynolds number
gradually with a step ∆Re = 10 together with the BoostConv algorithm, but even
then the solution always settled on S2.

From these observation we anticipate that the evolution of the shear-driven cav-
ity exhibits a Pomeau–Manneville scenario [130] where the limit cycle LC1 becomes
unstable in only a single direction in phase space which caused the system to deviate
from the limit cycle and initiate the burst. After a short exploration of the phase
space, potentially visiting neighboring saddles like S1 and S2 the system may again
settle on either LC1 and LC1’ before the next burst event. The scenario on an in-
crease of the Reynolds number is symbolically sketched in fig. 6.22. Further increasing
the Reynolds number, the duration of the oscillations near LC1 becomes shorter and
shorter and the system becomes more chaotic. The system is still characterized by
the shedding of Taylor-Görler vortices, but their structure and spanwise direction of
propagation becomes irregular. A similar route is also reported by Kalaev [72] for a
filled cavity driven by an external gas stream.

6.5 Discussion and Conclusion

In general the flow in a cubic shear driven cavity shares characteristics with its lid-
driven and open cavity counterparts. In both lid-driven and open cavity, the basic
flow becomes unstable to spanwise periodic Taylor-Görler vortices with a high wave
number, in both infinitely extended [5, 27] and finite-size cavities [55, 52].
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(a)

S1

(b)
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Figure 6.22 – The dashed line represents the subspace of mirror-symmetric solutions. Steady stable
and unstable states are shown with full and dotted line circles, respectively. Stable limit cycle is
shown with full line arrows, while unstable limit cycles are shown with dot-dashed arrows. (a) For
Re < 53490 the steady symmetric flow S1 is unique and stable. (b) S1 loses its stability to non
oscillating perturbation and two non symmetric steady states AS and AS’ that are antisymmetric
with respect to each other appear. (c) S1 loses its stability to non-oscillating perturbation and a
steady state S2 can be approached, S2 is stable in the symmetric subspace but unstable in the whole
space of solutions. (d) At Re = 55 715, AS and AS’ undergo Hopf bifurcations which lead to two
limit cycles LC1 and LC1’. (e) Both LC1 and LC1’ lose their stability in the long term, leading to a
complex dynamic between the two limit cycles and the symmetric saddle states S1 and S2.
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148 6. Stability Analysis of a Cubic Shear-Driven Cavity

In particular, cubic cavities have been studied in different configurations. Kalaev
[72] found that a flow in a cavity filled with a liquid and driven by a gas stream at its
top surface becomes unsteady at Re ≈ 55 555, and that a turbulent flow is achieved
at Re = 105. This agrees qualitatively well with our observation.

The instability mechanism is similar to the one reported in the lid-driven and open
cavities. In the shear-driven cavity, using the terminology of Albensoeder et al. [5],
the modes consists mainly of stationnary Taylor-Görtler vortices, whose centers are
following the streamlines of the basic flow. The second component of the energy budget
I2 accounting for the transfer of kinetic energy extracted by the vortical structures and
transfered to the streamwise velocity component of the perturbation flow is the main
contributor to the perturbation energy production: I2 = 79%. This is consistent with
the results of Loiseau et al. [100] who found for the cubic lid-driven cavity I2 = 81 at
slightly supercritical conditions. Loiseau et al. [100] linked it to the lift-up effect in
boundary layer flows in which velocity streaks (i.e. u‖) are promoted by streamwise
counter-rotating vortices (i.e. u⊥). Albensoeder et al. [5] draw the complementary
conclusion that I2 was also a footprint of centrifugal instabilities in this context. More
elaborated criteria of Bayly et al. [19] and Sipp & Jacquin [163] cannot be used here
as indicators for centrifugal instability, because the basic flow is three-dimensional,
whereas the necessary condition to apply those criteria is that the basic flow should
be two-dimensional.

Symmetry breaking was also observed numerically by Picella et al. [126] in the open
cavity. They found modes breaking the symmetry being unstable slightly after sym-
metric modes became unstable. They, however, insisted that these mode have never
been triggered in transient simulations. Loiseau [98] also found symmetry breaking
modes in the lid-driven cavity, but they would become unstable only at higher Reynolds
numbers.

The bifurcation scenario seems somehow similar to the one observed for axisym-
metric liquid bridges for low Prandtl numbers [91], and for much lower Reynolds
numbers. In a first destabilization step the axisymmetry is lost at Re = 1793 [181]
and the flow becomes thee-dimensional. Upon further increasing the Reynolds num-
ber to Re = 5960, the three-dimensional flow becomes unstable to three-dimensional
oscillating perturbations [94]. To the authors’ best knowledge, no experimental nor nu-
merical study on thermocapillary driven flow at low Prandtl number in a cubic cavity
has ever been carried for Reynolds numbers of comparable magnitude. Although, with
a similar code we recovered for Pr = 0.01 the same symmetry breaking at a higher
Reynolds numbers ReP1 ∈ [68 000, 70, 000], followed by oscillations upon increasing
the driving strength ReH2 ∈ [75 000, 80 000].

In previous studies [55, 100, 85, 101, 61], the cubic lid-driven cavity flow loses its
time invariance through a slightly subcritical Hopf bifurcation leading to a limit cycle.
Loiseau et al. [100]and Lopez et al. [101] noted that a second limit cycle is present and
that through the bursts observed by Kuhlmann & Albensoeder [85] the system was
visiting this second limit cycle. Here the situation is different: the two limit cycles are
anti-symmetric to each other and through bursts and exploration of the phase space
the system can settle on the opposite limit cycle, or come back to the same limit cycle.
The burts may be related and due to the existence of some other limit cycle, which
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6.5. Discussion and Conclusion 149

we could not pinpoint, though. The existence of LC1 and LC1’ adds another feature
to the dynamics, not present in the lid-driven cavity, which further complicates the
transition scenario.

It seems then that, although the setups are similar, with similar destabilization
mechanisms, the bifurcation pattern is different and the path to turbulence changed.
It would be of interest to test if changing the direction of the lid motion by a small
yaw angle would also change the bifurcation pattern, by, e.g., giving preference to one
of the limit cycles LC1.
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General Conclusion

In this dissertation, we studied the flow in rectangular containers, driven by the tan-
gential motion of one of the boundaries. We used the framework of the linear stability
analysis to study the onset of instability in three different configurations.

Obliquely-Driven Cavity

In Chapter 4, we studied the incompressible steady two-dimensional flow in a square,
a shallow and a deep cavities driven by a moving lid. The lid motion is tangential to
the surface, but not aligned with the cross section: there is a yaw angle α. For all
aspect ratios studied, we found that the critical Reynolds number of the linear theory
is lower at moderate angles than in the limiting cases α = 0, π/4. This is at odd
with results reported in literature, but supported by non-linear transient simulations,
carried out with an independent solver.

When the lid velocity is aligned with the cross section, we recovered the classical
results from the lid-driven cavity. When the lid velocity moves nearly perpendicularly
to the cross section the basic two-dimensional flow is strongly stabilized. The spanwise
perturbation velocity component ŵ is promoted by the cross-section components û and
v̂. This is the classical lift-up mechanism. However, the mechanisms promoting of the
x- and y-components of the perturbation velocity drastically weaken as the lid motion
angle increases to π/4. Therefore, the lack of feedback for the lift-up mechanism is
responsible for the strong stabilization of the system for large angles.

Even though the critical Reynolds number from linear stability increases in the
limit of large yaw angles, the system might become unstable to finite-amplitude per-
turbations for lower Reynolds numbers. Classically, the plane Couette flow is stable
for all Reynolds numbers [47] but the onset of instability to finite-amplitude pertur-
bations is about Re = 125 [147]. Although the onset of three-dimensional flow due
to finite-amplitude perturbations for laterally-bounded Couette flow has received less
attention, we anticipate that, similarly, the bounded flow would also be unstable to
finite-amplitude perturbations.
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152 7. General Conclusion

Thermocapillary-Driven Cavity

In Chapter 5, we investigated the thermocapillary-driven flow of a low- and a high-
Prandtl-number fluid in a shallow cavity. In particular, we investigated the sensitivity
of the growth rate of the three-dimensional perturbation for both Prandtl numbers.

To demonstrate the importance of the spatial distribution of the heat-flux along
the free surface, we formulated a non-linear optimization problem in order to obtain
heat-fluxes that efficiently shift the onset of flow oscillations. In particular, we showed
that it is possible to both stabilize and destabilize the flow by a suitable imposed heat
flux for both high- and low-Prandtl number fluids. Therefore, there is no one-to-one
correspondence between the sign of the average heat flux along the surface and its
effect on the stability of the system. It is rather the spatial distribution that dictates
the effect on the onset of oscillatory flow.

The results demonstrate the need for an accurate modeling of the heat transfer in
thermocapillary-driven flows when considering the liquid phase only. As most research
has dealt with a cylindrical configuration, it would be of interest to extend the present
analysis to cylindrical geometries.

The heat flux across the free surface in such geometries is often similar: the heat-
flux profile exhibits sharp peaks close to the hot and cold corners due to the presence
of thermal boundary layers. As the global shape of the flux is often known, it would
also be of interest to apply a second-order sensitivity analysis as introduced by Boujo
et al. [25]. This would allow a more accurate prediction of the variation of the growth
rate of the most unstable mode for particular heat-flux profiles.

Finally, an extension of this work could be to investigate the effect of a heat source
placed in the environment near the interface on the growth rate of the perturbation.
To this end, one would need to simulate the gas phase as well and perform a similar
sensitivity analysis. One could then obtain optimal positions of the heater to quench
or promote the instability.

Cubic Shear-Driven Cavity

In Chapter 6, we considered the progressive loss of symmetries of the three-dimensional
flow in a cubic cavity, driven by a constant shear. In a first step, the flow loses its
mirror symmetry, as the basic flow becomes unstable to a Taylor–Görtler vortex,
whose centerline lies in the midplane. By analyzing the finite-amplitude saturation
of the mode, we could interpret this first destabilization as a supercritical pitchfork
bifurcation. The system settles on one of two equilibria antisymmetric to each other.
Upon further increasing the shear stress, the equilibria become unstable to oscillating
perturbations, leading to two antisymmetric limit cycles. These Hopf bifurcations are
also supercritical.

Upon further increasing the Reynolds number, the limit cycles also destabilize in
some direction in phase space. The weak destabilization leads to bursting events during
which the system visits the vicinity of several saddle points. Through these bursting
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events the system can pass from one limit cycle to its antisymmetric counterpart.
This constitutes an interesting dynamics between the limit cycles which is absent in
the configuration of the lid-driven cubic cavity.

A natural extension of this work is to understand the mechanisms of destabilization
of the limit cycles. This would involve a Floquet analysis, which could be implemented
by minor changes in the solver used. In case the destabilization happens through a
non-linear mechanism, a dynamic-mode decomposition can also be considered.
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Sensitivity of the Eigenvalues to

Variation of the Wavenumber

Based on the eigenvalue equation (2.9) of the form [γiM +A(k)] q̂i = 0 where q̂i =

(ûi, p̂i)
T

is the vector of the mode variables, we use the classical approach of [104]
who considered the sensitivity of the eigenvalue γi and eigenvector q̂i with respect to
a variation of the basic flow. As in [104], we treat like in an optimal control framework
and define q̂i and γi being state variables and k being a control parameter. The
Lagrangian is defined as

L
(

γi, k, q̂i, q̂
†
i

)

= γi −
〈

[γiM +A(k)] q̂i, q̂
†
i

〉

, (A.1)

where q̂
†
i =

(

û
†
i , p̂

†
i

)T

are the adjoint variables. Formally the first term of the right

hand side is the cost function of the problem and the second term is enforcing the
constraint through the lagrangian multipliers. Cancelling the derivative with respect
to the lagrangian multiplier q̂

†
i is equivalent to enforcing the state equation i.e. the

eigenvalue problem. Cancelling the derivative with respect to the state variables q̂i

and γi is equivalent to solving the adjoint problem and enforcing a normalisation
condition on q̂i and q̂

†
i . Evaluating the derivative of the Lagrangian with respect to

the parameter k will give us the gradient of the cost function and by construction the
sensitivity of the eigenvalue with respect to variations of k.

Differentiating L with Respect to γi

Evaluating the differential of the Lagrangian functional (A.1) with respect to δγi and
requiring δγi

L = 0 yields
〈

∇γi
L
(

γi, k, q̂i, q̂
†
i

)

, δγi

〉

= δγi − γi

〈

Mδq̂i, q̂
†
i

〉

= 0. (A.2)

This leads to the normalization condition
〈

Mq̂i, q̂
†
i

〉

= 1 . (A.3)
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156 A. Sensitivity of the Eigenvalues to Variation of the Wavenumber

Differentiating L with Respect to any Eigenvector q̂i

Setting the differential of the Lagrangian in the direction δq̂i to zero, δq̂i
L = 0, we

obtain 〈

∇q̂i
L
(

γi, k, q̂i, q̂
†
i

)

, δq̂i

〉

= −
〈

[γiM +A (k)] δq̂i, q̂
†
i

〉

= 0, (A.4)

which leads to the adjoint eigenvalue problem

[

γ†iM +A†
]

q̂
†
i = 0. (A.5)

A.0.1 Differentiating L with Respect to k

Considering δkL = 0 we obtain

〈

∇kL
(

γi, k, q̂i, q̂
†
i

)

, δk
〉

= −

〈
∂A (k)

∂k
δkq̂i, q̂

†
i

〉

. (A.6)

In the present formulation A is the right hand side of (4.8). Taking the derivative of
the vectorial form of these equations with respect to k we obtain

〈
∂A(k)q̂i

∂k
δk, q̂†

i

〉

=
〈

2k δk ûi, û
†
i

〉

+ i
〈

w0ûi δk, û
†
i

〉

+ i
〈

p̂i δk, ŵ
†
i

〉

+ i
〈

ŵi δk, p̂
†
i

〉

.

(A.7)
The first term on the right hand side derives from the viscous diffusion. The following
terms derive from the transport of perturbation momentum in the spanwise direction,
the pressure gradient and the continuity equation. Finally we obtain the sensitivity of
the eigenvalue γi with respect to wave number changes

∂γi
∂k

δk = 〈∇kL, δk〉 = −2k δk − i
〈

w0ûi, û
†
i

〉

δk − i
〈

p̂i, ŵ
†
i

〉

δk − i
〈

ŵi, p̂
†
i

〉

δk, (A.8)

where we used the normalisation
〈

ûi, û
†
i

〉

= 1 which derives from (A.3).
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Sensitivities

In this appendix, the sensitivity of an eigenvalue to small variations in the basic flow
variables, to a small source term in momentum and heat equation, and to changes in
the boundary condition will be derived, that were used in Chapter 5. Therefore we
keep the same setup and notations.

The equations will be derived for an incompressible fluid driven by surface tension
but also by buoyancy forces. We also consider Newton’s cooling law for the heat flux
at the free surface. We will see that these two variations from the problem studied in
Chapter 5 do not affect the final expressions.

First we will focus on the derivation of the adjoint equations, needed afterward.
Then we will follow the steps of Marquet et al. [104] and derive the structural sensitivity
(or sensitivity to changes in the basic flow), and then the heat flux sensitivity. In this
appendix, we will use the denomination from the thermocapillary-driven cavity of
Chapter 5.

B.0.1 Notations

First let us define some notation: the scalar product on the the volume is defined as

〈a, b〉 =

∫

V

a∗ · b dV ,

and the scalar product on the free surface S as

〈a, b〉S =

∫

S

a∗ · b dS .

Let us denote A a linear application. The adjoint of A, denoted A† is defined by the
relation

〈a,Ab〉 =
〈
A†a, b

〉
.
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158 B. Sensitivities

B.1 Equations for the Linear Stability Analysis

B.1.1 Basic Flow

Let us consider the non-dimensional Navier–Stokes equations in the framework of the
Boussinesq approximation

(∂t + u · ∇)u = −∇p+∆u+Gr θeg + F , (B.1a)

∇ · u = 0, (B.1b)

(∂t + u · ∇)θ =
1

Pr
∆θ + q, (B.1c)

subject to the boundary conditions for the velocity u

u = 0 at all walls, (B.2a)

u · n = 0 at y = 1/2, (B.2b)
[(
∇u+∇uT

)
· n
]
· ti +Re∇tiθ = 0 , (B.2c)

and for the temperature θ

θ = ±1/2 at x = ±Γ/2, (B.2d)

∇θ · n+ Bi(θ − θa) = f at y = 1/2, (B.2e)

∇θ · n = 0 at y = −1/2. (B.2f)

We made use of the Reynolds, Grashof, Prandtl and Biot numbers which we define as

Re =
Σ1∆Th

ρν
; Gr =

gβ∆Th3

ν2
; Pr =

ν

κ
; Bi =

lh

k
, (B.3)

where h is a typical length of the system, ρ is the fluid density, ν is the kinematic
viscosity, Σ1 is opposite of the rate of change of the surface tension upon changing
temperature, g is the gravitational acceleration and β is the thermal expansion coef-
ficient.

One particular solution of this equation is the solution of the steady Navier–Stokes
equation

u0 · ∇u0 = −∇p0 +∆u0 +Gr θ0eg, (B.4a)

∇ · u0 = 0, (B.4b)

u0 · ∇θ0 =
1

Pr
∆θ0, (B.4c)

together with the same boundary conditions (B.2a).

Remark In the last section, one will denote the basic flow equations and boundary
condition as

F(q0) = f , (B.5)
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B.1. Equations for the Linear Stability Analysis 159

where q0 = (u0, p0, θ0)
T , f denotes a potential external forcing through an volume

force F or volume heat source q or a heat flux at the free surface f . In this case, it
will be assumed to be zero.

B.1.2 Perturbation Equation : An Eigenvalue Problem

As in Chapter 2, linearizing (B.1a) around the basic state q0 and taking a normal
mode ansatz, we obtain the generalized eigenvalue problem

(γi + u0 · ∇) ûi + ûi · ∇u0 = −∇p̂i +∆ûi +Gr θ̂ieg, (B.6a)

∇ · ûi = 0, (B.6b)

(γi + u0 · ∇) θ̂i + ûi · ∇θ0 =
1

Pr
∆θ̂i, (B.6c)

subject to the boundary conditions for the velocity ûi

ûi = 0 at all walls, (B.7a)

ûi · n = 0 at the free surface y = 1/2, (B.7b)
[(

∇û+∇û
T
)

· n
]

· ti +Re∇ti θ̂ = 0, (B.7c)

and for the temperature θ̂i

θ̂i = 0 at the lateral walls x = ±Γ/2, (B.7d)

∇θ̂i · n− Bi θ̂i = 0 at y = 1/2, y = −1/2. (B.7e)

This is an eigenvalue problem which can be written

γBq̂ +Aq̂ = 0, (B.8)

where A is a linear application that depends on q0.

B.1.3 Derivation of the Adjoint Eigenvalue Problem

Let us derive then the Adjoint perturbation equation, which will show to be of use by
the next sections.

By definition of the adjoint, one searches A† such that

〈

Aq̂, q̂†
〉

=
〈

A†q̂
†, q̂
〉

. (B.9)
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Expliciting the integrals

〈

q̂
†,Aq̂

〉

=

∫

V

γû† · û∗ dV +

∫

V

û
† · u0 · ∇û

∗ dV +

∫

V

û
† · û∗ · ∇u0 dV

−

∫

V

û
† · ∇p̂∗ dV −

∫

V

û
†∆û

∗ dV +Gr

∫

V

θ̂∗ û† · eg dV

+

∫

V

p̂†∇ · û∗

+

∫

V

γθ̂†θ̂∗ dV +

∫

V

θ̂†u0 · ∇θ̂
∗ dV +

∫

V

θ̂†û∗ · ∇θ0 dV

−
1

Pr

∫

V

θ̂†∆θ̂∗ dV . (B.10)

The two first lines of the latter equation come from the momentum equations,
the third line is the continuity constraint, and the two last lines come from the heat
equation. One wants to isolate the perturbation variables i.e. not having the differ-
entiation terms applying on û, p̂ and θ̂ but rather on their respective adjoints û

†,p̂†

and θ̂†. Integrating by parts the terms differentiating the pertubation variables, and
using the fact that u′ is a solenoidal vectorfield, yields

〈

q̂,A†q̂
†
〉

=

∫

V

γû∗ · û† dV −

∫

V

û
∗ · u0 · ∇û

† dV +

∫

V

û
∗ · û† · (∇u0)

T dV

+

∫

V

p̂∗∇ · û† dV −

∫

V

û
∗∆û

† dV +Gr

∫

V

θ̂∗û† · eg dV

+

∫

S

û
† · u0 û

∗ · n
︸ ︷︷ ︸

=0

dS +

∫

S

p̂∗û† · n dS

−

∫

S

û
† · ∇û

∗ · n dS +

∫

S

û
∗ · ∇û

† · n dS

−

∫

V

û
∗ · ∇p̂† dV +

∫

S

p̂∗û† · n dS

+

∫

V

γθ̂∗θ̂† dV −

∫

V

θ̂∗u0 · ∇θ̂
† dV +

∫

V

θ̂†û∗ · ∇θ0 dV

−
1

Pr

∫

V

θ̂∗∆θ̂† dV

+

∫

S

θ̂∗θ̂†u0 · n dS −
1

Pr

∫

S

θ̂† ∇θ̂∗ · n
︸ ︷︷ ︸

=−Bi θ̂∗

dS +
1

Pr

∫

S

θ̂∗∇θ̂† · n dS.

From this we can deduce that the adjoint problem is defined as

γ†û† − u0 · ∇û
† + û

† · (∇u0)
T + θ̂†∇θ0 = ∇p̂† +∆û

†,

∇ · û† = 0,

γ†θ̂† − u0 · ∇θ̂
† =

1

Pr
∆θ̂† +Gr û† · eg, (B.11)
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combined with the boundary conditions on the adjoint velocity mode û
†
i

û
†
i = 0 at all walls, (B.12a)

û
†
i · n = 0 at y = 1/2, (B.12b)

[(

∇û
† +∇û

†T
)

· n
]

· tk = 0, (B.12c)

and for the temperature θ̂†i

θ̂†i = 0 at x = ±Γ/2, (B.12d)

∇θ̂†i · n = 0 at y = −1/2, (B.12e)

∇θ̂i · n− Bi θ̂i − Pr Re∇t · û
†
i = 0 at y = 1/2, (B.12f)

where ∇tû
†
i the divergence of the tangential component (see below).

We note the apparition of a Marangoni number at the temperature boundary
condition (Ma = RePr). One notices that the production of temperature adjoint
perturbation is now in the momentum equation, the gravity term are now in the heat
equation. These adjoint equation are in agreement with what can be found in the
literature, e.g. [24].

The boundary at the free surface for the temperature is, however, far from being
evident: stress free boundary condition at the free surface for the adjoint velocity and
a flux of the adjoint temperature through the free surface that is proportional to the
tangential part of the velocity’s divergence. Follows its derivation.

Adjoint thermal boundary condition at the free surface

∫

SF

û
† · ∇û · n dS =

∫

SF

(

(û† · n)
︸ ︷︷ ︸

=0

n+ (û† · t1)t1 + (û† · t2)t2

)

· ∇û · n dS (B.13)

∇û · n = ((∇û · n) · n)n+ ((∇û · n) · t1)t1 + ((∇û·n) · t2)t2

= ((∇û · n) · n)n− Re(∇θ̂ · t1)t1 − Re(∇θ̂ · t2)t2. (B.14)

Inserting the result in the previous equation, gives

∫

SF

û
† · ∇û · n dS = −Re

∫

SF

[

(û† · t1)t1 + (û† · t2)t2

]

·
[

(∇θ̂ · t1)t1 + (∇θ̂ · t2)t2

]

dS

= −Re

∫

SF

(û† · t1)(∇θ̂ · t1) + (û† · t2)(∇θ̂ · t2) dS.

Integrating by part gives

∫

SF

û
† · ∇û · n dS = Re

∫

SF

∂t1(û
† · t1)θ̂ + ∂t2(û

† · t2)θ̂ dS.
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Then one can deduce the thermal boundary condition at the free surface

∇θ̂† · n = −Bi θ̂† + PrRe∇t · û
†, (B.15)

where ∇t · • =
2∑

i=1

∂ti • ·ti, which can be thought as ”the tangential part of the

divergence”.

B.2 Sensitivity of γ to Changes in the Basic Flow

One is interested in the changes of stability that can be induced to variation of the
basic flow variables. It can be useful for instance if one wants to quantify the error on
the eigenvalue when one knows that a region of the flow is subject to computational
error e.g. in the thermocapillary driven cavity, close to the free surface cold corner
where the gradients are particularly strong. The derivation is similar to what Marquet
et al. [104], or [108] for a compressible fluid. To that end, let us introduce a Lagrangian
functional

L(γ, q̂, q0, q̂
†) = γ −

〈

q̂
†, γBq̂ +A(q0)q̂

〉

, (B.16)

where q̂
† is the Lagrangian multiplier enforcing the constraint γBq̂ + A(q0)q̂ = 0.

Note that when the latter constraint is satisfied, a small variation of this Lagrangian
functional δL is equal to a small variation of the growth rate δγ. Therefore, when the
constraint on the eigenvalue problem is satisfied, one has

δγ =
〈
∇q

0
γ, δq0

〉

=
〈
∇q

0
L, δq0

〉
.

To get this sensitivity to changes in the basic flow ∇q
0
γ, one has to cancel all the

other derivatives of the Lagrangian function with respect to γ, q̂, q̂†.

with respect to γ

∂

∂γ
L · δγ = δγ −

〈

q̂
†, δγBq̂

〉

,

which brings the normalisation condition

〈

q̂
†,Bq̂

〉

= 1. (B.17)

with respect to q̂
† As the eigenvalue problem is supposed to be fulfilled, one

trivially has that ∂

∂q̂†L · δq̂† = 0.
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with respect to q̂

∂

∂q̂
L · δq̂ =

〈

q̂
†, γBq̂ +Aq̂

〉

(B.18)

=
〈

γ†Bq̂
† +Aq̂

†, δq̂
〉

(B.19)

= 0 (B.20)

where A† is the adjoint of A which has been derived in the previous section. It defines
the adjoint eigenvalue problem.

with respect to q0

∂

∂q0

L · δq0 = −

〈

q̂
†,

[
∂

∂q0

A(q0)

]

· δq0 · q̂

〉

(B.21)

where

[
∂

∂q0

A(q0)

]

· δq0 · q̂ =





δu0 · ∇û+ û · ∇δu0

0

δu0 · ∇θ̂ + û · ∇δθ0



 , (B.22)

in which the second line is to remind that the perturbation continuity equation does
not depends on the basic flow, actually only the terms of transport and production of
perturbation variables are kept. Now the integral reads

〈[
∂

∂q0

A(q0)

]

· δq0 · q̂, q̂
†

〉

=

∫

V

û
†δu0 · ∇û

∗ + û
†
û
∗ · ∇δu0 dV,

+

∫

V

θ̂†δu0∇θ̂
∗ + θ̂†û∗ · ∇δθ0 dV. (B.23)

Integrating by part the terms related to production (using that ∇ · û), and using the
transpose of the gradients in the term related to transport

〈[
∂

∂q0

A(q0)

]

· q̂† · q̂, δq0

〉

=

∫

V

δu0 · û
† · ∇û

H − δu0 · û
∗ · ∇û

† dV

+

∫

V

δu0 · ∇θ̂
∗θ̂† − δθ0û

∗ · ∇θ̂† dV. (B.24)

All the boundary terms vanish, because û · n = û
† · n = 0. One can identify the

gradient

∇q
0
γ =

[
∂

∂q0

A(q0)

]†

· q̂†
q̂, (B.25)

and explicitly

∇q
0
γ =





−û
† · ∇û

H + û
∗ · ∇û

† − θ̂†∇θ̂∗

0

û
∗ · ∇θ̂†



 . (B.26)
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where the superscript H denotes the transpose of the conjugate. Besides, one can
identify the terms related to production (where gradient of adjoint variables appears)
and the terms related to transport (the others).

B.3 Sensitivity of γ to a Heat Flux Variation at the

Free Surface

To derive the sensitivity of γ to a heat flux variation at the free surface, one can use
the a similar approach as in the previous section. Knowing the sensitivity to heat flux
can be of interest when one wants to control the flow with the heat flux, or to find the
flux at the boundary, given experimental data.

We refer to Marquet et al. [104] for the derivation of the sensitivity to steady forces.
Tchoufag et al. [172] used a similar method to study the eigenvalue sensitivity of the
wake after a bubble to changes in tangential stress or normal velocity at the bubble
interface and what follows is mainly small changes to this, in order to obtain the heat
flux sensitivity. Recently Boujo et al. [25] extended this framework to second order
sensitivity.

B.3.1 Derivation

The problem that we will consider is the following

F(q0) = 0, (B.27)

γBq̂ +A(q0) · q̂ = 0, (B.28)

∇θ0 · n+ Biθ0 = f. (B.29)

The term F(q0) encompasses the Steady Navier–Stokes (B.1a), together with the
appropriate boundary conditions described in (B.2a). The second line represent the
eigenvalue problem from the linear stability analysis. The third line correspond to the
boundary condition at the free surface with the control flux f . As before let us use a
Lagrangian functional

L(γ, q, q0, q
†
0, q̂

†, f, f†) = γ −
〈

q̂
†, γBq̂ +A(q0)q̂

〉

−
〈

q
†
0,F(q0)

〉

−
〈
f†,∇θ0 · n+ Biθ0 − f

〉

S
. (B.30)

For the same reason as in the previous section, we want to cancel the derivative of
L with respect to γ, q, q0, q

†
0, q̂

†, f†. The derivative with respect to adjoint quantities
are trivially obtained. Canceling the derivative with respect to gamma will give the
normalization condition (B.17). Canceling the derivative with respect to q̂ will lead
to the adjoint perturbation eigenvalue problem (B.18).
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Differentiation with Respect to q0

The differentiation with respect to the basic flow variables gives three term:

〈
∇q

0
L, δq0

〉
=−

〈

q̂
†,
[
∂q

0
A(q0)

]
δq0q̂

〉

(B.31)

−
〈

q
†
0, [∂q0

F(q0)]δq0

〉

(B.32)

−
〈
f†,∇δθ0 · n+ Biδθ0

〉

S
. (B.33)

We can notice that first term of the right hand side of (B.31) is already know from
the previous section and corresponds to the sensitivity to changes in the basic flow.
The second term (B.32) is essentially the linearized Navier-Stokes operator around q0,
except that the boundary conditions are not fixed yet since we allow variations of the
basic flow also in the boundary condition. They will notably appear in the double
integration by part of the Laplacians. Here we only look at the temperature diffusion,
but the same is done for the viscous terms.

1

Pr

∫

V

∆δθ0θ
†
0 dV =

1

Pr

∫

V

δθ0∆θ
†
0 dV

+
1

Pr

∫

S

(∇δθ0 · n+ Bi δθ0) θ
†
0 dS

−
1

Pr

∫

S

(

∇θ†0 · n+ Bi θ†0

)

δθ0 dS

where we added and subtracted the term with the Biot number in second and third
line, respectively. The third line corresponds to the boundary conditions of the adjoint
problem, while the second line are extra terms coming from the integration. One can
then notice that the operator [∂q0B(q0)]

† is in fact A(q0)
†. Then the equation (B.31)

reads

〈
∇q

0
L, δq0

〉
=
〈
∇q

0
γ, δq

0

〉
−
〈

A(q0)
†q

†
0, δq0

〉

(B.34)

+

〈

θ†0
Pr
,∇δθ0 + Bi δθ0

〉

S

−
〈
f†,∇δθ0 + Bi δθ0

〉

S
, (B.35)

where the first line corresponds to the volume terms and the second line to the surface
terms. To cancel this gradient component, one needs to cancel volume terms and
surface terms separately. Then come the equalities

A(q0)q
†
0 = ∇q

0
γ (B.36)

θ†0
Pr

= f†. (B.37)

From (B.36), we obtain a linear system of equations, which allows use to find the

adjoint basic flow q
†
0, provided that one already computed the structural sensitivity

using the eigenmode and its adjoint. The second equation (B.37) gives a relation
between the adjoint flux variable and the adjoint basic temperature.
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(a) |FD − Re(∇fγ)|
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Figure B.1 – Evolution of the relative difference between the finite difference estimation and the
sensitivity, (a) real part, (b) imaginary part. Circles and squares denote finite difference of first order
forward and backward, respectively, triangles denote centered finite difference of second order.

Differentiation with Respect to f

Differentiating with respect to flux gives

〈∇fL, δf〉 =
〈
f†, δf

〉

S
. (B.38)

Using then the relation (B.37), one gets

〈∇fL, δf〉 =

〈

θ†0
Pr
, δf

〉

S

. (B.39)

Finally, one can conclude that the eigenvalue sensitivity to changes in the flux reads

∇fγ =
θ†0
Pr

. (B.40)

This expression can be numerical verified, as in the next subsection.

B.3.2 Numerical Validation

To validate numerically both the implementation and the previous derivation, we check
the evolution of the difference estimation between finite difference and the sensitivity
as the finite difference results get more accurate. To that end, we consider the setup
Re = 844.9, Pr = 4.4, Γ = 3, k = 1.618, polynomial order N = 3, on a mesh adapted
using the variational adaptive mesh solver implemented in FEniCS in order to have
the norm of the stress tensor converged for this particular setup.

Practically, we evaluate the largest eigenvalue γ1(f0)) with an adiabatic free surface
so f0(x) = 0 and with a perturbation flux scaled with a parameter epsilon γ1(f0+ ǫf),
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where f = x is chosen arbitrarily. Estimation of the sensitivity of the eigenvalue to
fluxes of that shape f can be obtained with first order finite difference, forward and
backward, and with a centered scheme, that read

FDF =
γ1(f0 + ǫf)− γ1(f0)

ǫ
+O(ǫ),

FDB =
γ1(f)− γ1(f0 − ǫf)

ǫ
+O(ǫ),

FDC =
γ1(f0 + ǫf)− γ1(f0 − ǫf)

2ǫ
+O(ǫ2),

respectively. The evolution of |γfγ0 − FD| for both real and imaginary part is shown
in fig. B.1, the convergence toward the same number validates the implementation and
theory.
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d’arts et métiers - ENSAM.

[30] Bucci, M. A., Puckert, D. K., Andriano, C., Loiseau, J.-C., Cherubini,

S., Robinet, J.-C. & Rist, U. 2018 Roughness-induced transition by quasi-
resonance of a varicose global mode. J. Fluid Mech. 836, 167–191.

[31] Burggraf, O. R. 1966 Analytical and numerical studies of the structure of
steady separated flows. J. Fluid Mech. 24, 113–151.

[32] Burguete, J., Mukolobwiez, N., Daviaud, F., Garnier, N. & Chif-

faudel, A. 2001 Buoyant-thermocapillary instabilities in extended liquid layers
subjected to a horizontal temperature gradient. Phys. Fluids 13, 2773–2787.

[33] Carpenter, B. M. & Homsy, G. M. 1989 Combined buoyant-thermocapillary
flow in a cavity. J. Fluid Mech. 207, 121–132.

[34] Carpenter, B. M. & Homsy, G. M. 1990 High Marangoni number convection
in a square cavity: Part II. Phys. Fluids A 2, 137–149.

[35] Charru, F. & de Forcrand-Millard, P. 2009 Hydrodynamic Instabilities.
Cambridge University Press.

[36] Chernyshenko, S. & Baig, M. 2005 Streaks and vortices in near-wall turbu-
lence. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 363, 1097–1107.

[37] Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: Non-
normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357–392.

[38] Citro, V., Giannetti, F., Brandt, L. & Luchini, P. 2015 Linear three-
dimensional global and asymptotic stability analysis of incompressible open cav-
ity flow. J. Fluid Mech. 768, 113–140.

[39] Citro, V., Luchini, P., Giannetti, F. & Auteri, F. 2017 Efficient sta-
bilization and acceleration of numerical simulation of fluid flows by residual
recombination. J. Comput. Phys. 344, 234–246.

[40] Cunha, G., Passaggia, P.-Y. & Lazareff, M. 2015 Optimization of the
selective frequency damping parameters using model reduction. Phys. Fluids
27, 094103.

[41] Daviaud, F. & Vince, J. M. 1993 Travelling waves in a fluid layer subjected
to a horizontal temperature gradient. Phys. Rev. E 48, 4432–4436.

[42] De Vahl Davis, G. & Mallinson, G. D. 1976 An evaluation of upwind and
central difference approximations by a study of recirculating flow. Comp. Fluids
4, 29–43.

[43] Deville, M. O., Fischer, P. F. & Mund, E. H. 2002 High-Order Methods
for Incompressible Fluid Flow . Cambridge University Press.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

172 Bibliography

[44] Ding, Y. & Kawahara, M. 1998 Linear stability of incompressible fluid flow
in a cavity using finite element method. Int. J. Num. Meth. Fluids 27, 139–157.

[45] Ding, Y. & Kawahara, M. 1999 Three-dimensional linear stability analysis
of incompressible viscous flows using the finite element method. Int. J. Num.
Meth. Fluids 31, 451–479.

[46] Drazin, P. G. 2002 Introduction to hydrodynamic stability . Cambridge: Cam-
bridge University Press.

[47] Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability . Cambridge: Cam-
bridge University Press.

[48] van Eckeveld, A. C., Westerweel, J. & Poelma, C. 2017 Mitigation of
whistling in vertical corrugated pipes by liquid addition. Exp. Fluids 58.

[49] Edwards, W. S., Tuckerman, L. S., Friesner, R. A. & Sorensen, D. C.

1994 Krylov methods for the incompressible Navier–Stokes equations. J. Com-
put. Phys. 110, 82–102.

[50] Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18,
487–488.

[51] Faure, T., Pastur, L., Lusseyran, F., Fraigneau, Y. & Bisch, D. 2009
Three-dimensional centrifugal instabilities development inside a parallelepipedic
open cavity of various shape. Exp. Fluids 47, 395–410.

[52] Faure, T. M., Adrianos, P., Lusseyran, F. & Pastur, L. 2007 Visual-
izations of the flow inside an open cavity at medium range Reynolds numbers.
Exp. Fluids 42, 169–184.

[53] Fefferman, C. L. 2000 Existence and smoothness of the Navier–Stokes equa-
tion.

[54] Feldman, Y. 2015 Theoretical analysis of three-dimensional bifurcated flow
inside a diagonally lid-driven cavity. Theor. Comput. Fluid Dyn. 29, 245–261.

[55] Feldman, Y. & Gelfgat, A. Y. 2010 Oscillatory instability of a three-
dimensional lid-driven flow in a cube. Phys. Fluids 22, 093602–1–093602–9.

[56] Finlayson, B. A. 1972 The Method of Weighted Residuals and Variational
Principles. Academic Press.
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