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Abstract

Pose estimation of objects is an important task to understand the surrounding envi-
ronment for interacting with the objects in robot manipulation and augmented reality
applications. Major computer vision tasks, such as object detection and classification,
have significantly improved using Convolutions Neural Networks (CNN). Likewise, re-
cent pose estimation methods using CNN have achieved high performance using a large
amount of training data, which is, however, difficult to obtain from real environments.
This thesis presents multiple methods that overcome the limited source of training in
practical scenarios while solving common challenges in object pose estimation.

Symmetry and occlusion of objects are the most common challenges that make
estimations inaccurate. This thesis introduces a method that regresses pixel-wise
coordinates of an object while resolving ambiguous views from symmetric poses with a
novel loss function in the training process. Coordinates of occluded regions are also
predicted regardless of visibility, which makes the method robust to occlusion. The
method shows state-of-the-art performance in the evaluations using only a limited
number of real images. Nevertheless, annotating object poses in images is a difficult
and time-consuming task, which prevents pose estimation methods from learning a
new object from real scenes that are clutter. This thesis introduces an approach that
leverages a few cluttered images of an object to learn its appearances in arbitrary poses.
The novel refinement step updates pose annotations of input images to reduce pose
errors that are common if poses are self-annotated by camera tracking or manually
annotated by humans. Evaluations present the generated images from the method lead
to state-of-the-art performance compared to methods using 13 times the number of real
training images.

Domains such as retail shops face new objects very often. Thus, it is inefficient to
train pose estimators for new objects every time. Furthermore, it is difficult to build
precise 3D models of all instances in real-world environments. A template-based method
in this thesis tackles these practical challenges by estimating poses of a new object
using previous observations of the same or similar objects. The nearest observations are
used to determine the object’s locations, segmentation masks, and poses. The method
is further extended to predict dense correspondences between the nearest observation
and a target object for transferring grasp poses from similar experiences. Evaluations
using public datasets show the template-based method performs better than baseline
methods for segmentation and pose estimation tasks. Grasp experiments using a robot
show the benefit of leveraging successful grasp experiences that significantly improve
the grasp performance for familiar objects.
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Chapter 1

Introduction

Nowadays, robots are working at home to clean floors and in public spaces to interact
with people while displaying necessary information. Figure 1.1 shows typical functions
of practical robots in real environments. The advances in sensor technologies have
improved the accuracy and robustness of indoor localization tasks, which enables mobile
robots to navigate to desired locations in complex outdoor environments for delivering
packages. However, what people have expected from robots includes more advanced
tasks as presented in Figure 1.2. For example, robots are expected to detect and
manipulate objects [1], [2], learn a new object [1], [3] by themselves, and clean up a
room by moving objects to places where the objects are supposed to belong [4]. Due
to the uncertainty of real environments at home and offices, manipulating objects has
been dominantly performed in industrial domains where environments can be strongly
constrained without uncertainty, e.g., bin-picking of parts. Thus, it is important to
detect and estimate objects’ locations and orientations to manipulate them in uncertain
environments such as tables and shelves where the objects are randomly placed. Pose
estimation of objects is essential for understanding the surrounding environment and
performing physical interactions with the objects.

Recent advances in artificial intelligence and computer vision researches based on
massive amounts of data have greatly enhanced the robustness of object recognition
pipelines using 2D images [5]–[8]. The recognition pipelines are applicable to different
domains if the dataset used for training includes the target classes. For example, since
people’s appearances or their poses are usually similar across different domains, a
detection pipeline trained on the MS-COCO dataset [9] is applicable to any domain that
needs to detect people from images. However, it is challenging to train object recognizers
if no dataset provides training samples of target objects. Since real environments consist
of articulated objects, no prior knowledge, such as 3D models and training images, is
available for robots to predict their poses. Thus, the lack of sufficient training data has
prevented robots from applying advanced computer vision methods. This motivates the
methods introduced in this thesis to face limited training resources for pose estimation
pipelines in practical scenarios.

This chapter introduces why pose estimation of objects is essential, areas of applica-
tions using pose estimation, and challenges that have to be addressed for estimating
precise poses in practical scenarios.

1
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2 1 Introduction

Figure 1.1: Examples of robots that provide services in real environments. The robots
have robust navigation skills to provide services such as guiding a person, dis-
playing information, cleaning a floor, delivering packages. Left: Werner from
EU STRANDS1 project, Middle: Roborock52 from Roborock Technology
Co., Ltd, Right: Scout3 from Amazon.

Figure 1.2: Manipulation of objects is one of the useful tasks that people expect for
robots. Due to the uncertainty of real environments, the manipulation task
has been applied to industrial environments with strong constraints. Left:
Kenny from EU SQUIRREL1 project picking up a toy from the ground.
Right: Human Support Robot (HSR) [10] from Toyota picking up a bottle
and handing over to a person.

1.1 Applications of Pose Estimation

A pose of an object is the most detailed information that describes the status of
the object in 3D space. When a pose of the object is known in an image, the location
(bounding box) of the object in the image is known, and the pixel-wise segmentation can
be derived by comparing a rendered depth image with the input image. Therefore, it is
possible to perform high-level tasks beyond simply detecting the existence of objects.
There are two main applications that require precise poses of objects using images:

1http://strands.acin.tuwien.ac.at
2https://us.roborock.com/pages/roborock-s5
3https://blog.aboutamazon.com/transportation/meet-scout
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1.1 Applications of Pose Estimation 3

Figure 1.3: Examples of using poses of an object in Robot Manipulation. The grasp
poses (green grippers in the left side) are proposed using estimated poses
of the yellow bottle. The stable grasp poses are annotated by a physics
simulation or demonstrations.

Figure 1.4: Examples of using poses of an object in Augmented Reality. The blue cap
is rendered in a consistent orientation and location with respect to the ape
by estimating poses of it. The method introduced in Chapter 3 is used to
estimate poses.

robot manipulation and augmented reality applications.
In robot manipulation tasks, the object pose is used not only for picking the object

robustly but also for placing it in the correct orientation (Figure 1.3). The knowledge
of objects surrounding the target also helps the planning of safe trajectories without
collision. When the poses of target objects are known, a robot computes grasp poses
in the robot’s reference frame and corresponding joint values. Thus, it is important
to estimate accurate 3D locations of an object in the robot’s coordinate frame. The
employment of depth cameras has significantly improved the accuracy of pose estimation.
Pixel-wise depth measurements from the cameras are easily converted to 3D point
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4 1 Introduction

clouds and aligned to the robot’s coordinate frame with an actual environment scale.
For augmented reality applications, the pose of an object is used to display correspond-

ing 3D information or images directly onto the object (Figure 1.4). It is important to
compute poses in real-time for displaying information at correct locations while moving
cameras or objects. In contrast to the robot manipulation tasks, a small translation
error with respect to the principal camera axis, z-axis, is not crucial as the location
of 3D information after projecting them onto the 2D image plane is not sensitive to
the error. This property has enabled the applications to use common color cameras in
smartphones and tablet PCs without depth measurements.

For both scenarios, it is common to have a new target object. When the new object
is an articulated object, the object’s geometry and texture often differ entirely from
what has been observed from other objects. In other words, it is difficult to transfer
prior knowledge of known objects to the new object. In this case, either training
images or a 3D model of the object should be created. In general, 3D models are easily
available in industries where objects are manufactured by 3D CAD models. This is one
of the reasons why poses of objects have been widely used for bin-picking of industrial
parts [11], [12]. On the other hand, it has not been easy to have a 3D model of an
object in good quality at home and in offices using commercially available cameras in
robots or tablets. It is also difficult to collect training images of an object with precise
pose annotations. These difficulties have prevented recent pose estimation methods
from applying to real applications. On the other hand, people recognize a new object
by observing it from few viewpoints and predicting appearances of the object in unseen
viewpoints using the knowledge of partially observed geometries and similar object
classes. Thus, a key stepping stone towards practical applications is reducing efforts
for training object recognizers (detectors and pose estimators) for new objects while
keeping high-end performance, which is the purpose of this thesis.

1.2 Challenges

There are a number of challenges that need to be addressed to create robust pose
estimation pipelines for practical scenarios. Figure 1.5 shows examples of challenges in
pose estimation. Firstly, occlusion and symmetric objects have been mainly considered
as common challenges. When a part of an object is occluded, appearances of local parts
have to be leveraged to predict the poses of the object. When an object is symmetric,
the same appearance is observed from different poses. In other words, multiple correct
answers exist for the same input. If a recognition pipeline predicts a single pose for an
input, the pipeline is easily confused by different answers for the similar inputs without
prior knowledge of the symmetry. As many articulated objects and industrial objects
are symmetric, both challenges should be carefully handled in pose estimation pipelines.

It is difficult to obtain training resources for pose estimation if 3D models do not
exist for new objects. When color images are mainly used for recognition without depth
images (e.g., augmented reality applications using mobile devices), it is even more
difficult since 3D models should include high-quality textures for training. Furthermore,

1http://www.squirrel-project.eu/
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1.3 Contributions and Outline 5

Figure 1.5: Challenges in object pose estimation.

annotating 6D poses of objects in images is a very difficult task for people who are
unfamiliar with controlling 3D models in a virtual 3D world, and time-consuming
compared to annotating 2D bounding boxes of objects. The types of available training
resources vary with different scenarios. For example, when it is possible to reconstruct
a 3D model of an object by moving a camera or the object, the geometry of the
reconstructed 3D model can be directly used for training and matched to input depth
images [12]. On the other hand, color images perform a crucial role in determining
poses when depth images are not available as input (e.g., a monocular camera on a
tablet), or texture information is necessary to distinguish different objects with similar
geometries (e.g., cereal boxes). In this case, the reconstructed 3D models should include
high-quality texture information to render synthetic images. Otherwise, real images
with pose annotations are necessary for training. It is often difficult to obtain precise
3D models when constraints of an environment limit available viewpoints (e.g., a fixed
camera on top) or geometries of objects are slightly different (e.g., vegetables and fruit).
Therefore, types of training resources should be determined based on objects classes,
input modalities during training and test, and environmental constraints where training
data is collected.

Since this thesis’s main focus is using limited training resources, practical scenarios
are introduced to define the best way to obtain training resources while minimizing
humans’ efforts. In other words, instead of assuming all training resources are available,
each chapter introduces a method and specifies what kinds of training resources and
test modalities are available based on practical use cases.

1.3 Contributions and Outline

An overview of contributions made in this thesis is summarized in Figure 1.6. Methods
proposed in Chapter 3 and 4 use RGB images for pose estimation, which is useful when
objects have similar geometries but different textures or depth sensors are not available.
In both chapters, 3D models are assumed to be given without texture information. The
pose estimator, Pix2Pose, introduced in Chapter 3 performs pixel-wise regression of
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6 1 Introduction

Figure 1.6: An overview of methods introduced in each chapter.

objects coordinates using RGB images. For training, non-textured 3D models and real
images (200 to 3000) with pose labels are used. The object learning method, Neural
Object Learning (NOL), introduced in Chapter 4 is designed to minimize the number
of real images required for training pose estimators. Instead of a large number of real
images of an object without occlusion, the method synthesizes images of the object from
arbitrary views by leveraging a few observations of the object. In Chapter 5 and 6,
robot manipulation tasks are mainly considered without having 3D models of target
objects. In both chapters, previous observations are directly used to transfer knowledge
(e.g., successful grasp poses) of the previous one to the new input. Multi-Task Template
Matching (MTTM) is designed to match the nearest templates of an object to detect
and segment the object from the input image. Relative pose transformation from the
nearest template to the detected target is also computed. The method, DGCM-Net,
introduced in Chapter 6 employs basic ideas of MTTM for robot manipulation, which
transfers successful grasp experience with similar geometries and classes to new inputs.

1.3.1 Pixel-Wise Regression of Object Coordinates

Although recent work using CNN for pose estimation has shown precise results with
real-time performance using RGB images without depth information, estimations are
often unstable and imprecise with occluded objects when a network directly regresses
a representation of the pose (e.g., quaternions and axis-angle) or a few key points
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1.3 Contributions and Outline 7

of objects (e.g., 2D projected points of a 3D bounding box) that are used to match
2D-3D correspondences. Furthermore, these methods suffer from symmetric objects as a
network is forced to predict completely different values for similar images. We introduce
a novel method, Pix2Pose, that can supplement any 2D detection pipeline for additional
pose estimation. Pix2Pose predicts pixel-wise 3D coordinates of an object using RGB
images instead of a few key points to make estimations more robust. The network is
trained to predict entire object points regardless of the visibility of points to enhance
the performance for occluded objects. A specialized loss function, the transformer loss,
is introduced to guide the network correctly for symmetric objects. As a result of the
prediction, each pixel forms a 2D-3D correspondence that is used to compute poses by
the Perspective-n-Point algorithm (PnP) [13]. The experiments with Pix2Pose using
public datasets show outperforming results against previous work even if objects are
occluded or symmetric.

Training resources Practically, the geometry of a reconstructed 3D model using a
commercial RGB-D camera is reasonably good in different setups such as rotating or
manipulating an object in front of a camera or moving a camera around an object. On
the other hand, the quality of textures is often ignored in 3D reconstruction approaches.
Furthermore, in industries, textures of CAD models are often undefined since real
textures can be determined by materials used for manufacturing. Thus, the method is
optimized and designed to use a 3D model of an object with real images that have pose
annotations while ignoring texture information in 3D models. The symmetric poses of an
object are assumed to be known before the training process. The experiments performed
for a pose benchmark challenge show Pix2Pose is suitable for different domains that
use no real images for training.
Detailed descriptions and discussions of the contributions above are addressed in
Chapter 3 and have been published in the scientific paper [Park, ICCV 2019].

1.3.2 Neural Object Learning

Even though the method described above is successfully trained with a limited number
of real images, it has been observed that the method suffers from unseen poses that
are not covered by real training images. Thus, the real training images should cover
the entire range of target poses, which is difficult to satisfy in real environments due
to the difficulty of pose annotation and limited movements of a camera. This is why
textured 3D models are used to render synthetic training images from uniformly sampled
viewpoints. As explained above, however, the quality of textures of 3D models is not
guaranteed to be sufficient to render realistic images. Furthermore, the texture quality
becomes worse if images of a target object are captured from cluttered scenes, which is
a common configuration in practical scenarios. To overcome these challenging issues,
we propose a method, NOL, to synthesize images of an object in arbitrary poses using a
few cluttered images with pose annotations and a non-textured 3D model of the object.
For new objects, NOL requires 3D models and cluttered color images (less than 16
images in our evaluations) with pose annotations to map color information to vertices.
A novel refinement step is introduced to adjust poses of objects in the source images,
which overcomes pose annotation errors of source images. Evaluation results show that
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8 1 Introduction

images created by NOL are sufficient to train CNN-based pose estimation methods and
achieves state-of-the-art performance.

Training resources The knowledge of 3D representation and a few observations of
objects are usually sufficient for humans to recognize objects in a new environment.
Likewise, NOL composes appearances of objects in arbitrary poses using 3D models
and a few (a maximum of 16) cluttered and unconstrained images without using
depth images, which is sufficient to lead a pose estimator to achieve state-of-the-art
performance.
Detailed descriptions and discussions of the contributions above are addressed in
Chapter 4 and have been published in the scientific paper [Park, ECCV 2020].

1.3.3 Multi-Task Template Matching

For picking and grasping an object from tables and boxes, the geometry of the object is
more important than its texture. When geometries of objects are similar, a successful
way of grasping them should be similar. Furthermore, CNN-based pose estimation
methods that directly regress poses of objects have to be re-trained or fine-tuned every
time when a new object is added. This motivates us to develop a novel framework,
MTTM, for 6D pose estimation and segmentation of objects using a template set of
depth images, which does not require further training of the CNN for a new object. The
outputs of MTTM are the NN template with the closest pose, pixel-wise segmentation
masks and the pose transformation from the pose of the NN template to that of the
object in the test image. The experimental results show that MTTM successfully
retrieves the nearest template for detecting a target object and uses it to predict a
segmentation mask and pose of the object.

Training resources The network is trained with synthetically rendered depth images.
Realistic and noisy depth images are rendered by simulating a stereo camera. For a
target object, a set of observations of the object is used to build a set of templates. The
observations can be either synthetic depth images if a 3D model is available, or real
depth images with segmentation masks. The pose annotation is not necessary when
a relative pose between a template and the input is sufficient for a target task (e.g.,
transfer a grasp pose from a template to the input). Otherwise, pose labels should be
defined to compute a pose with respect to a predefined object coordinate frame.
Detailed descriptions and discussions of the contributions above are addressed in
Chapter 5 and have been published in the scientific paper [Park, ICRA 2019].

1.3.4 Dense Correspondence Matching for Experience-based
Grasping

The basic idea of MTTM is extended to grasp new objects using successful grasp
experiences. As a grasp success is relevant for the association between a grasp pose and
the local geometry of an object, a new pipeline is proposed to predict dense geometrical
correspondences between two observations. The objects with similar geometries are
identified through encoding global geometries, and successful grasp experiences of similar
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1.4 List of Publications 9

objects are transferred through local correspondence matching. DGCM-Net encodes
global geometrical feature vectors using depth images such that similar geometries are
represented nearby in feature space to retrieve the nearest experience. DGCM-Net
additionally predicts dense geometrical correspondences between pairs of depth images
that are used to compute transformations between the local region around the grasp
of a stored experience and the corresponding region on an object in a new scene. A
novel representation, View-Dependent Normalized Object Coordinates (VD-NOC),
is proposed to represent geometrical correspondences of similar objects regardless of
their poses in a camera frame. Experimental results using a new dataset show that
DGCM-Net precisely recovers grasps from experiences with the same object or objects
with similar geometries from the same or different classes. Experiments using a real
robot show that the inclusion of grasp proposals from DGCM-net using the closest
experience significantly improves the performance of the baselines that do not employ
information from experience. Additional experiments present the capability of collecting
successful grasps for a novel object without supervision. The experiments show that
it is often sufficient to have one or two successful grasp experiences to reliably grasp
the same object. Experiments using a mug and a drill show DGCM-Net can be used
to transfer meaningful grasp positions of an object for specific functionality such as
handles of the mug and drill.

Training resources The network is trained with synthetically rendered depth images
using representative 3D models of classes. The shape variations are simulated during
the rendering process by randomly scaling models via each axis. All experiments are
performed without additional training for a new object and a new class. Grasp attempts
are stored together with input images with segmentation masks to build a database of
successful experiences.
Detailed descriptions and discussions of the contributions above are addressed in
Chapter 6 and have been published in the scientific paper [Patten & Park, Frontiers in
Robotics and AI 2020].

1.4 List of Publications

Parts of the content presented in this dissertation have been previously published in
the following papers:

• Kiru Park, Timothy Patten, and Markus Vincze. Neural Object Learning for 6D
Pose Estimation Using a Few Cluttered Images. In Proceedings of the European
Conference on Computer Vision (ECCV), Springer, 2020.

• Mohammad Reza Loghmani, Luca Robbiano, Mirco Planamente, Kiru Park,
Barbara Caputo, and Markus Vincze. Unsupervised Domain Adaptation through
Inter-modal Rotation for RGB-D Object Recognition. IEEE Robotics and Au-
tomation Letters (RA-L), 2020.

• Bernhard Neuberger, Timothy Patten, Kiru Park, and Markus Vincze. Self-
initialized Visual Servoing for Accurate End-effector Positioning. In 2020 6th
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Chapter 2

Background

This chapter summarizes the basic knowledge that helps to understand this thesis. The
definition of the 6D pose estimation task and different metrics that have been used to
measure pose errors are introduced. Previous work related to object pose estimation
and robot manipulation is reviewed.

2.1 Task Definition

The task of the methods introduced in this thesis is to estimate 6D poses of an object
using RGB, RGB-D, and depth images. For a given coordinate frame of a known object
and an input image, the pose of the object is a transformation that locates the object
from the object’s local frame to the camera’s frame so that the appearance of the
transformed object is similar to that of the input image (see Figure 2.1). For rigid body
objects, a pose is defined by six parameters that represent special Euclidean group
SE(3), which consists of three components for translations with respect to the x, y, and
z axes and the other three components for rotations that satisfy the special orthogonal
group constraint SO(3). 3D models of target objects are assumed to be given except for
the methods in Chapter 5 and in Chapter 6 where partial observations of objects are
directly used to match templates and estimate poses. Thus, relative transformations
between templates (previous experience in Chapter 6) and target scenes are estimated.

2.2 Metrics

Different ways of measuring pose errors have been used for evaluation [14]. A standard
metric, AD{D|I}, has been used to evaluate results for LineMOD [15] and LineMOD
Occlusion [16]. This measures the average distance of vertices between a ground truth
pose and an estimated pose as formulated by,

eADD(Pe,PGT,M) =
1
M

∑

x∈M

|Pex − PGTx|, (2.1)

where Pe and PGT are estimated and ground-truth poses respectively. M is a set of
vertices of a 3D model and M is a number of vertices. For symmetric objects, the

11
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12 2 Background

Figure 2.1: The definition of the 6D pose estimation task. The output of the pose
estimation is transforming the local coordinate frame of an object to the
camera coordinate frame. When the pose is accurate, the appearance of the
object in the estimated pose should be similar to that of the input image.

average distance to the nearest vertices is used instead,

eADI(Pe,PGT,M) =
1
M

∑

x1∈M

min
x2∈M

|Pex1 − PGTx2|. (2.2)

The pose is considered correct when the error is less than 10% of the maximum 3D
diameter of an object.

However, the AD{D|I} metric does not suitably handle view ambiguities that are
caused by occlusion and symmetry. There should be multiple right answers for an object
if a part of the object is occluded by other objects or itself, and the same appearance
of the visible part can be observed from different poses. This motivates a new metric,
Visible Surface Discrepancy (VSD). The VSD metric measures distance errors of visible
parts only, which makes the metric invariant to ambiguities caused by symmetries and
occlusion as formulated by,

eV SD(Pe,PGT,M,δ,τ) =
1
V

∑

p∈Ve∪VGT

c(p,De, DGT,τ), (2.3)

where Ve and VGT are 2D masks of the visible surface of models in the estimated and
ground-truth poses. De and DGT are rendered depth images of models in each pose.
The function c counts how many pixels have larger distances than a threshold τ or are
not visible in one of the rendered depth images. Thus, the lower number means the
better pose estimation with more inlier pixels. In a pose benchmark of different pose
estimation methods [17], the pose is regarded as correct when the error is less than 0.3
with τ=20mm and δ=15mm. This metric is mainly used for the T-Less dataset where
all objects are symmetric and often occluded.
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2.3 Related work 13

The recent challenge for pose benchmark [18] proposes a new metric, BOP score, that
consists of three different pose errors (VSD, MSSD, and MSPD) [14] and their average
recall values over different thresholds. The errors on each metric are computed while
measuring recalls for each threshold value. For more details about pose metrics, it is
recommended to refer to Hodaň et al. [14].

2.3 Related work

This section summarizes previous work related to the methods and approaches in-
troduced in this thesis. Different approaches have been used for pose estimation are
reviewed. The types of training data that have been used in previous work are discussed.
Previous methods that learn and propose grasp poses are introduced to provide an
overview and highlight the difference of a new method using successful grasp experience.

2.3.1 Pose Estimation Approaches

The traditional way of estimating poses of objects in an image is to match features
extracted from the test image and training images that have pose annotations of the
objects. As the performance of visual recognition tasks such as object detection and
segmentation is significantly improved by data-driven approaches using CNNs, the
hand-crafted features are replaced with feature maps encoded by CNNs. This section
briefly introduces hand-crafted features and different approaches using CNNs that have
been used for pose estimation.

Local Feature Matching Local features have been widely used to find point-to-point
correspondences between multiple images such as Multi-View Stereo [19], [20], Structure
From Motion (SfM) [21], and Visual SLAM [22]. For input images, keypoints are de-
tected by a method to localize distinguishable points such as corners and edges. Feature
descriptors are computed for each detected keypoint. Finally, point-to-point correspon-
dences between images are derived by matching similar features from two images. The
2D locations of keypoints of matched points form 2D-2D correspondences that are used
to compute transformations of cameras. Depending on the type of images, different
types of descriptors have been used: RGB [23]–[25] and Pointclouds [26], [27]. In con-
trast to the two-view based methods that estimate movements of cameras, keypoints are
extracted only from points of target objects for pose estimation. Generally, 3D locations
of keypoints in the training images are known using pose annotations, which are used
to form 2D-3D correspondences for RGB images and 3D-3D correspondences for point
clouds. The local feature-based methods suffer from objects that produce an insufficient
number of unique features such as texture-less objects for RGB inputs and symmetric
objects for pointcloud inputs. As three or four correspondences produces a hypothesis, a
large number of hypotheses is usually created by local feature matching, which requires
additional techniques such as RANdom SAmple Consensus (RANSAC) [28] iterations
for removing outlier correspondences and hypothesis verification steps for removing
false positives [29].
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14 2 Background

Global Feature Matching Global features represent appearances of objects in differ-
ent poses. Thus, local textures and shapes are not necessarily unique, which makes the
methods using global features outperform local feature-based methods for texture-less
objects [15], [30]. In contrast to the local features that have corresponding keypoint
detection methods, global features should be computed on specific regions of interest
(ROI) that should be given by uniformly sampling windows (sliding-window) or addi-
tional segmentation methods. Thus, the performance of a method relies on the quality
of given ROIs. Like local features, different types of global features have been used
depending on input modalities: RGB [15], [30], RGB-D [15], [31], and pointcloud [12],
[32]–[34]. Point Pair Features [12] have been dominantly used for object pose estimation
when a 3D model of an object is available, and pointclouds are used for recognition [12],
[35]–[37] as the method produces accurate and reliable results for different types of
datasets [17]. The features are extracted from local pairs of points while knowing
the global association of those points, which combines the benefit of local and global
feature matching. Even though the method relies only on geometries of objects, it
outperforms other methods that use both RGB and depth images [35]. As the method
relies on surface normals of points, it suffers from noisy depth inputs. The method
needs additional verification steps, including multiple ICP refinements for hypotheses
as a single matched point-pair can produce a hypothesis, which is computationally
expensive.

Learned Feature Matching As CNNs trained on large scale datasets such as Ima-
geNet [38] and MS-COCO [9] have shown great performance for object classification [39]
and detection [5], features designed by researchers are replaced with trainable features.
For example, Kehl et al. [40] train local descriptors using RGB-D images and convo-
lutional auto-encoders. Each local correspondence of an object votes for the center
of the object using the relative position to where the local patch is collected from.
Oberweger et al. [41] predict multiple heat-maps to localize the 2D projections of 3D
points of objects using local patches. These methods are robust to occlusion because
they focus on local information only. However, additional computation is required to
derive the best result among pose hypotheses, which makes these methods slow.

Global features are also encoded by CNNs after cropping a patch of an object and
learn a manifold that can distinguish different objects and poses in feature spaces using
RGB-D images [42]–[44]. A triplet loss guides the feature to have a closer distance for
the same class and similar poses. For a given ROI from an image, the network encodes
the feature vector of the ROI. The nearest feature in a codebook that is derived by
rendering objects at uniform viewpoints is retrieved to propose a pose and a class label.
As same as the global feature matching, these methods require additional detection
pipelines to provide ROIs that contains target objects. The metric learning needs pairing
of positive and negative samples, which potentially suffer from symmetric objects by
assigning symmetric poses of an object as negative pairs. Balntas et al. [43] proposes a
method to overcome this issue by measuring the similarity of objects poses to make
positive pairs when renderings of different poses are similar.

More recently, Sundermeyer et al. [45] propose an auto-encoder network to train
implicit representations of poses without supervision using RGB images only. Manual
handling of symmetric objects is not necessary for this work since the implicit repre-
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2.3 Related work 15

sentation can be close to any symmetric view. However, it is difficult to specify 3D
translations using rendered templates that only give a good estimation of rotations.
The size of the 2D bounding box is used to compute the z-component of 3D translation,
which is too sensitive to small errors of 2D bounding boxes that are given from a 2D
detection method.

Direct Pose Regression One of the benefits of CNN-based methods is the network
can be trained end-to-end so that it is possible to train the network to produce values
representing object poses using images directly without performing an intermediate
process. Different types of representations have been used to predict poses of objects
directly from an image such as the 2D locations of projected points of 3D bounding
boxes [46], [47], classified view points [48], unit quaternions and translations [49], or the
Lie algebra representation with the translation of z-axis [50]. Except for methods that
predict projected points of the 3D bounding box, which requires further computations
for the Perspective-n-Point (PnP) algorithm [13], the direct regression is computation-
ally efficient since it does not require additional computation such as correspondence
matching and RANSAC iterations. The drawback of these methods, however, is the lack
of correspondences that can be useful to generate multiple pose hypotheses for the robust
estimation of occluded objects. Furthermore, symmetric objects are usually handled by
limiting the range of viewpoints, which sometimes requires additional treatments, e.g.,
training a CNN for classifying view ranges [46]. Xiang et al. [49] propose a loss function
that computes the average distance to the nearest points of transformed models in an
estimated pose and an annotated pose. However, searching for the nearest 3D points is
time consuming and makes the training process inefficient.

Dense Correspondence Matching Instead of predicting a few correspondences by
feature matching or a pose representation by the direct regression, Brachmann et al.
[16], [51] have proposed methods that predict pixel-wise 3D coordinates of an object
defined in the local frame of the object using the auto-context random forest. As
the output of the model represents 3D coordinates of every pixel on the object, a
large number of 2D-3D correspondences is created, which makes the pipeline robust to
occlusion, and have a possibility to produce multiple hypotheses.

The encoder and decoder architecture have been used not only for computing latent
features that represent necessary information of inputs to reconstruct output images
but also for predicting pixel-wise predictions such as semantic segmentation, image
de-noising [52], and image in-painting [53]. Recently, using Generative Adversarial
Network (GAN) [54] improves the quality of generated images that are less blurry and
more realistic, which have been used for the image-to-image translation [55], image
in-painting and de-noising [56], [57] tasks. The high-quality results of these generative
models show a clue that the pixel-wise predictions of 3D coordinates are significantly
improved by employing CNN-based generative models, which initially motivate the
method introduced in Chapter 3.
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2.3.2 Training Samples for 6D Pose Estimation and Grasping

Previous work using CNNs requires a large number of training images of an object that
covers a range of poses in test scenes sufficiently. Since it is difficult to annotate 6D poses
of objects manually, synthetic training images are created using a textured 3D model of
an object [48]. However, it is difficult to obtain a 3D model with high-quality texture
from the real world without special devices such as the BigBIRD Object Scanning
Rig [58] that provides precise pose information of cameras and objects to precisely align
textures from different views. Using synthetic data introduces the domain gap between
synthetic and real images, which should be specially treated with domain adaptation
techniques [59]. It is possible to use only approximately 200 real images and apply
various augmentation methods to successfully train pose estimation pipelines [46], [51].
However, the performance highly depends on the range of poses in the real training
samples as the limited coverage of poses in training images causes inaccurate results
for novel poses. This limitation has been tackled by using both real and synthetic
images for training [59]–[62], which currently achieves state-of-the-art performance. The
advantage of using both sources is that synthetic images supplement images for novel
poses that are not observed in real images while real images regularize the network
from over-fitting to synthetic images.

However, both textured 3D models and more than 200 real images with pose anno-
tations are difficult to obtain from the real world. Furthermore, textured 3D models
in public datasets are captured separately from constrained environments [15], [58],
[63], [64] such as single objects with a simple background and precise camera pose
localization tools. However, this well-constrained setup is difficult to replicate in real
scenarios, e.g., a target object on a table is often occluded by other objects, camera
poses are noisy without manual adjustments, and lighting conditions are not consistent.
Thus, it is challenging to derive training images of new objects from cluttered scenes.

3D Object Modeling and Multi-View Texturing RGB-D images have been used
to build 3D models by presenting an object in front of a fixed camera while rotating
a turn table [65], manipulating the object using a robot end-effector [66] or human
hands [67]. Alternatively, a mobile robot is used to actively move a camera to build a
model of a fixed object in [3]. Even though these methods produce good 3D models
in terms of geometry, textures are not optimized or even explicitly considered. Depth
images are also required to align different views.

On the other hand, it is possible to map multiple images from different views to 3D
mesh models using camera pose information [68], [69]. These approaches produce 3D
models with high-quality textures since their optimization tries to assign continuous
source images to neighboring pixels. However, these methods require depth images
for correcting pose errors, which causes misalignment of color values and disconnected
boundaries when different source images are not correctly aligned. Image-based rendering
(IBR) has been used to complete a large scene by in-painting occluded area using multiple
images from different view points [70]–[73]. These methods re-project source images
to a target image using the relative poses of viewpoints. Then, projected images from
different views are integrated with a weighted summation or an optimization based
on different objective functions. However, IBR methods are designed to complete
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2.3 Related work 17

large-scale scenes and suffer from noisy estimations of the camera and object poses,
which causes blurry or misaligned images.

Differentiable Rendering The recent development of differentiable rendering enables
the rendering process to be included during network training [74]–[76]. Therefore, the
relationship between the 3D locations of each vertex and UV coordinates for textures
are directly associated with pixel values of 2D rendered images, which have been used
to create 3D meshes from a single 2D image [74], [75]. Furthermore, it is possible to
render trainable features of projected vertices, which are optimized to minimize loss
functions defined in a 2D image space.

Grasp Estimation The significant amount of attention given to robotic grasping
has resulted in a large number and high diversity of techniques. A common strategy
uses known object instances, which are provided as CAD models or are captured by a
modeling process, e.g., [65], [67]. Given a known grasp configuration for an object in its
local coordinate system, the task of grasping is simplified to estimating the pose of the
object such that the grasp pose is transformed into the new scene. Traditional methods
identify hand-crafted features to localize an object model within a scene [77]–[79],
but more recent advances for pose estimation have been made using CNN-based pose
estimation [49] and grasping pipelines achieve high success rate [80], [81]. The main
limitation of this direction of research, however, is the closed-world assumption. The
approach is restricted to only the objects for which a model is provided and thus cannot
generalize to unknown objects.

To address the problem of grasping unknown objects, local geometry can serve as
a strong cue. For example, fitting primitives and estimating grasps based on the
geometrical structure of the primitives [82] or fitting superquadratics and synthesizing
grasp poses at the points of minimum curvature [83] have been shown to work in certain
cases. More often though, unknown object grasping is addressed by learning from
data [84]. Along this line, methods predict the success of a proposed grasp by training
a traditional classifier [85], [86] or deep neural network [87]–[92]. Alternatively, grasp
simulation or analytical grasp metrics are computed for objects in model databases
to generate training data [93]–[99]. The task is then to learn a model that predicts
the value of the grasp metric given a proposal and then select the grasp that is most
likely to succeed. There is also work that avoids the sampling and scoring procedure by
directly predicting a grasp pose with a quality measure [100]. The generative method
has proven to be computationally superior and sufficiently fast to be integrated in a
closed-loop system. While the work for unknown object grasping has made considerable
achievements, they are limited by the diversity of the training data. Out of distribution
objects may not receive accurate grasp quality predictions and may fail. Thus, it is
necessary to continuously learn and add new examples to the training set. Unfortunately,
the deep neural networks that are applied do not have the capacity to be updated
online.

Another approach to grasping is to leverage real robot experience and learn end-
to-end strategies. One direction is to employ reinforcement learning [101]–[104]. The
advantage of an end-to-end approach is that complete grasping policies are learned
directly from visual input, which removes the need for a dedicated perception pipeline
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with an additional motion planner for execution. A disadvantage, however, is that
the policies are only be applied to scenarios that are perceptually similar, and thus
generalization to novel environments is limited. Unsupervised methods, such as [105],
better generalize to unseen scenarios and objects. They are more general to the task
and less sensitive to the training scenes. These methods learn an embedding that can
used to retrieve manipulation policies for online execution. Despite these advances,
the major drawback of both self- and unsupervised learning is that many attempts are
needed for training.

Experience-based grasping is much more efficient than reinforcement learning methods
since far fewer examples are needed to learn grasps. The common approach is to
accumulate samples of past success or failures to guide the grasp selection in new
scenarios, under the assumption that objects with similar shape (or appearance) can
be grasped in a similar way. Some work defines global shape descriptors and train
a discriminative classifier to identify the similarity between object shapes to transfer
grasps to familiar objects [106]–[108]. Other work leverage local feature descriptors
to identify the relevant local regions associated with contact points to transfer grasps
between objects within the same class [109]. Another approach is to analyze object
regions and to maintain a library of prototypical grasps for recurring object parts. This
is accomplished by measuring the similarity between regions on the surface of objects
such as with height maps [110] or by surface distributions or densities [111]–[114]. A
major assumption is that the observed parts are equivalent, which means grasp transfer
is the application of a transformation from the prototype to the scene. They do not
deal with the possibility of scale change or deformation. Such geometry variation would
have to be stored as a new experience. Another drawback of prior work is that they
use hand-crafted features to encode shape information.
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Chapter 3

Pixel-Wise Coordinate Regression

3.1 Motivation

Although the inclusion of depth images has induced significant improvements by provid-
ing precise 3D pixel coordinates [17], [37], depth images are not always easily available.
For example, mobile phones and tablets are typical devices for augmented reality ap-
plications and are offering no depth data. The quality of depth images differs from
surface materials, lighting conditions, and environments, e.g., shiny and transparent
objects that produce wrong depth measurements. As such, substantial research has
been dedicated to estimating poses of known objects using RGB images only. The
recognition using RGB images is also potentially useful for robots with multiple cameras,
e.g., single RGB-D camera and multiple RGB cameras, as the same model can be used
to recognize objects using RGB images from different cameras while producing more
accurate results with RGB-D images.

Even though recent studies have shown great performance on pose estimation of
objects in RGB images using Convolutional Neural Networks (CNN) [46], [47], [50], [51],
the poses are not accurate as previous methods using depth images. Among the previous
methods, it has been observed that estimated poses are more accurate when a network
predicts 2D locations of projected 3D object coordinates [46], [47] instead of predicting
3D representation directly [49], [50]. Thus, the network does not need to learn the
complex association between 2D and 3D correspondences that can be solved by PnP
algorithms [13] without any training process. In this case, the network focuses more on
detecting and locating keypoints of the objects in 2D space, which is also intuitive for
humans as well (see Figure 3.1). However, since previous work predicts eight corners
of 3D bounding boxes, small errors on a few points cause wrong pose estimations.
Sundermeyer et al. [45] show that the encoder-decoder architecture produces ideal
renderings of objects in good quality as outputs of the network for randomly augmented
input images of the objects. This shows the possibility of predicting pixel-wise values
relevant to object poses using the encoder-decoder architecture, e.g., 3D coordinates in
the object frame [51]. This initiates the basic ideas of the method introduced in this
chapter.

Pose estimation is more challenging when objects are occluded or symmetric. Training
CNNs are often distracted by symmetric poses that have similar appearance inducing
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20 3 Pixel-Wise Coordinate Regression

very large errors in a naïve loss function. In previous work, a strategy to deal with
symmetric objects is to limit the range of poses while rendering images for training [41],
[48] or simply to apply a transformation from the pose outside of the limited range to
a symmetric pose within the range [46] for real images with pose annotations. This
approach is sufficient for objects that have infinite and continuous symmetric poses on a
single axis, such as cylinders, by simply ignoring the rotation about the axis. However,
as pointed in [46], when an object has a finite number of symmetric poses, it is difficult
to determine poses around the boundaries of view limits. For example, if a box has an
angle of symmetry, π, with respect to an axis and a view limit between 0 and π, the
pose at π+α(α ≈ 0, α > 0) has to be transformed to a symmetric pose at α even if the
detailed appearance is closer to a pose at π. Thus, a loss function has to be investigated
to avoid penalizing pose predictions of correct symmetric poses.

This chapter proposes solutions to the following research questions.

Research Questions

(1) What is the best way of estimating object poses using CNNs?
(2) How to guide the method to be more robust to occlusion?
(3) How to handle symmetric objects?

A novel method, Pix2Pose, is proposed to predict pixel-wise 3D coordinates of an
object using RGB images with the encoder-decoder architecture. As a result of the
prediction, each pixel forms a 2D-3D correspondence that is used to compute poses by
the Perspective-n-Point algorithm (PnP) [13]. Since a number of correspondences are
significantly larger than a few keypoints (e.g., eight corners for 3D bounding boxes),
the method is more accurate while rejecting outlier predictions efficiently. To be robust
to occlusion, the network predicts not only visible areas but also occluded parts of
the object. For symmetric objects, a specialized loss function, the transformer loss, is
proposed to robustly train the network for known symmetric poses of objects.

Figure 3.1: An example of converting a 3D model to a colored coordinate model. Nor-
malized coordinates of each vertex are directly mapped to red, green and
blue values in the color space. Pix2Pose predicts these colored images
to build a 2D-3D correspondence per pixel directly without any feature
matching operation.
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3.2 Pix2Pose Network 21

3.2 Pix2Pose Network

This section provides a detailed description of the network architecture of Pix2Pose and
loss functions for training. As shown in Figure 3.2, Pix2Pose predicts 3D coordinates of
individual pixels using a cropped region containing an object. The robust estimation is
established by recovering 3D coordinates of occluded parts and using all pixels of an
object for pose prediction. A single network is trained and used for each object class.
The texture of a 3D model is not necessary for training and inference.

Figure 3.2: An overview of the architecture of Pix2Pose and the training pipeline.

3.2.1 Network Architecture

The architecture of the Pix2Pose network is described in Figure 3.2. The input of
the network is a cropped image Is using a bounding box of a detected object class.
The outputs of the network are normalized 3D coordinates of each pixel I3D in the
object coordinate and estimated errors Ie of each prediction, I3D,Ie = G(Is), where G
denotes the Pix2Pose network. The target output includes coordinate predictions of
occluded parts, which makes the prediction more robust to partial occlusion. Since a
coordinate consists of three values similar to RGB values in an image, the output I3D

can be regarded as a color image. Therefore, the ground truth output is easily derived
by rendering the colored coordinate model in the ground truth pose. An example of 3D
coordinate values in a color image is visualized in Figure 3.1. The error prediction Ie is
regarded as a confidence score of each pixel, which is directly used to determine outlier
and inlier pixels before the pose computation.

The cropped image patch is resized to 128×128px with three channels for RGB
values. The sizes of filters and channels in the first four convolutional layers, the
encoder, are the same as in [45]. To maintain details of low-level feature maps, skip
connections [115] are added by copying the half channels of outputs from the first three
layers to the corresponding symmetric layers in the decoder, which results in the more
precise estimation of pixels around geometrical boundaries. The filter size of every
convolution and deconvolution layer is fixed to 5×5 with stride 1 or 2 denoted as s1 or
s2 in Figure 3.2. Two fully connected layers are applied for the bottleneck with 256
dimensions between the encoder and the decoder. The batch normalization [116] and
the LeakyReLU activation are applied to every output of the intermediate layers except
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22 3 Pixel-Wise Coordinate Regression

the last layer. In the last layer, an output with three channels and the tanh activation
produces a 3D coordinate image I3D, and another output with one channel and the
sigmoid activation estimates the expected errors Ie.

3.2.2 Network training

The main objective of training is to predict an output that minimizes errors between a
target coordinate image and a predicted image while estimating expected errors of each
pixel.

3.2.3 Transformer loss for 3D coordinate regression

To reconstruct the desired target image, the average L1 distance of each pixel is used.
Since pixels belonging to an object are more important than the background, the errors
under the object mask are multiplied by a factor of β (≥ 1) to weight errors in the
object mask. The basic reconstruction loss Lr is defined as,

Lr =
1
n

[

β
∑

i∈M

||I i
3D − I i

gt||1 +
∑

i/∈M

||I i
3D − I i

gt||1

]

, (3.1)

where n is the number of pixels, I i
gt is the ith pixel of the target image, and M denotes

an object mask of the target image, which includes pixels belonging to the object when
it is fully visible. Therefore, this mask also contains the occluded parts to predict the
values of invisible parts for robust estimation of occluded objects.

The loss above cannot handle symmetric objects since it penalizes pixels that have
larger distances in the 3D space without any knowledge of the symmetry. While having
the advantage of predicting pixel-wise coordinates, the 3D coordinate of each pixel is
easily transformed to a symmetric pose by multiplying a 3D transformation matrix to
the target image directly. Hence, the loss can be calculated for a pose that has the
smallest error among symmetric pose candidates as formulated by,

L3D = min
p∈sym

Lr(I3D,RpIgt), (3.2)

where Rp ∈ R
3x3 is a transformation from a pose to a symmetric pose in a pool of

symmetric poses, sym, including an identity matrix for the given pose. The pool sym is
assumed to be defined before the training of an object. This novel loss, the transformer
loss, is applicable to any symmetric object that has a finite number of symmetric
poses. This loss adds only a tiny effort for computation since a small number of matrix
multiplications is required. The transformer loss in Equation (3.2) is applied instead of
the basic reconstruction loss in Equation (3.1).

To analyze the effect of transformer loss, the obj-05 in the T-Less dataset [63] is
used. To see the variation of loss values, 3D coordinate images are rendered while
rotating the object around the z-axis. Loss values are computed using the coordinate
image of a reference pose as a target output Igt and images of other poses as predicted
outputs I3D in Equation (3.1) and Equation (3.2). As shown in Figure 3.3, the L1 loss
in Equation (3.1) produces large errors for symmetric poses around π, which is the
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3.2 Pix2Pose Network 23

Figure 3.3: Variation of the reconstruction loss for a symmetric object with respect to
z-axis rotation. Obj-05 in the T-Less [63] dataset is used.

Transformer loss L1 w/view limits L1
55.2 47.2 33.4

Table 3.1: Recall (evsd < 0.3) of obj-05 in T-Less using different reconstruction losses
for training.

reason why the handling of symmetric objects is required. On the other hand, the value
of the transformer loss produces minimum values on 0 and π, which is expected for
obj-05 with an angle of symmetry of π. The result denoted by view limits shows the
value of the L1 loss while limiting the z-component of rotations between 0 and π. The
pose that exceeds this limit is rotated to a symmetric pose. As shown in Figure 3.3,
values are significantly changed at the angles of view limits and over-penalize poses
under areas with red in Figure 3.3, which causes noisy predictions of poses around
these angles. The results in Table 3.1 show the transformer loss significantly improves
the performance compared to the L1 loss with the view limiting strategy and the L1
loss without handling symmetries. Qualitative results of the different strategies are
discussed in Section 3.4.6.

3.2.4 Loss for error prediction

The error prediction Ie estimates the difference between the predicted image I3D and
the target image Igt. This is identical to the reconstruction loss Lr with β = 1 such
that pixels under the object mask are not penalized. Thus, the error prediction loss Le

is written as,

Le =
1
n

∑

i

||I i
e − min

[

Li
r,1
]

||22, β = 1. (3.3)
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24 3 Pixel-Wise Coordinate Regression

The error is bounded to the maximum value of the sigmoid function.

3.2.5 Training with Generative Adversarial Loss

As we reviewed in Section 2.3.1, using Generative Adversarial Network (GAN) [54]
improves the quality of generated images with less blurry and more precise outputs.
In the method, the discriminator network is added to determine whether the input is
ground-truth or predicted values. In particular, with GAN, it is possible to penalize
the network when a prediction has missing parts of the object due to occlusion while
ground-truth images always provide entire pixels of objects regardless of visibility, which
is similar to the image in-painting task. The adversarial loss term from GAN [54],
LGAN, is employed to train the network. The loss is defined as,

LGAN = logD(Igt) + log(1 −D(G(Isrc))), (3.4)

where D denotes the discriminator network. Finally, the objective of the training with
GAN is formulated as,

G∗ = arg min
G

max
D

LGAN(G,D) + λ1L3D(G) + λ2Le(G), (3.5)

where λ1 and λ2 denote weights to balance different tasks.

3.3 Two-Staged Pose prediction

This section gives a description of the process that computes a pose using the output of
the Pix2Pose network. The overview of the process is shown in Figure 3.4. Before the
estimation, the center, width, and height of each bounding box are used to crop the
region of interest and resize it to the input size, 128×128px. The width and height of the
region are set to the same size to keep the aspect ratio by taking the larger value. Then,
they are multiplied by a factor of 1.5 so that the cropped region potentially includes
occluded parts. The pose prediction is performed in two stages and the identical network
is used in both stages. The first stage aligns the input bounding box to the center
of the object, which could be shifted due to different 2D detection methods. It also
removes unnecessary pixels (background and uncertain pixels) that are not preferred by
the network. The second stage predicts a final estimation using the refined input from
the first stage and computes the final pose.

3.3.1 Stage 1: Mask prediction and Bbox Adjustment

In this stage, the predicted coordinate image I3D is used for specifying pixels that belong
to the object including the occluded parts by taking pixels with non-zero values. The
error prediction is used to remove the uncertain pixels if an error for a pixel is larger
than the outlier threshold θo. The valid object mask is computed by taking the union
of pixels that have non-zero values and pixels that have lower errors than θo. The new
center of the bounding box is determined with the centroid of the valid mask. As a
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3.3 Two-Staged Pose prediction 25

Figure 3.4: Examples of the pose estimation process. An image and 2D detection results
are the input. In the first stage, the predicted results are used to specify
important pixels and adjust bounding boxes while removing backgrounds
and uncertain pixels. In the second stage, pixels with valid coordinate
values and small error predictions are used to estimate poses using the PnP
algorithm with RANSAC. Green and blue lines in the result represent 3D
bounding boxes of objects in ground truth poses and estimated poses.

result, the output of the first stage is a refined input that only contains pixels in the
valid mask cropped from a new bounding box. Examples of outputs of the first stage
are shown in Figure 3.4. The refined input possibly contains the occluded parts when
the error prediction is below the outlier threshold θo, which means the coordinates of
these pixels are easy to predict despite occlusions.

3.3.2 Stage 2: Pixel-wise 3D coordinate regression with errors

The second estimation with the network is performed to predict a coordinate image and
expected error values using the refined input as depicted in Figure 3.4. Black pixels in
the 3D coordinate samples denote points that are removed when the error prediction
is larger than the inlier threshold θi even though points have non-zero coordinate
values. In other words, pixels that have non-zero coordinate values with smaller error
predictions than θi are used to build 2D-3D correspondences. Since each pixel already
has a value for a 3D point in the object coordinate, the 2D image coordinates and
predicted 3D coordinates directly form correspondences. Then, applying the PnP
algorithm [13] with RANdom SAmple Consensus (RANSAC) [28] iteration computes
the final pose by maximizing the number of inliers that have lower re-projection errors
than a threshold θre. It is worth mentioning that there is no rendering involved during
the pose estimation since Pix2Pose does not assume textured 3D models. This also
makes the estimation process fast.
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3.4 Evaluation

In this section, experiments on three different datasets are performed to compare
the performance of Pix2Pose to state-of-the-art methods. The evaluation using the
LineMOD [15] dataset shows the performance for objects without occlusion in the
single object scenario. For the multiple object scenario with occlusions, LineMOD
Occlusion [16] and T-Less [63] are used. The evaluation on T-Less shows the most
significant benefit of Pix2Pose since T-Less provides texture-less CAD models and most
of the objects are symmetric, which is more challenging and common in industrial
domains. Results of the Benchmark of Object Pose (BOP) challenge present how
Pix2Pose generally performs with different datasets from various domains in comparison
to state-of-the-art methods for the same amount of training sources.

3.4.1 Implementation details

For training, the batch size of each iteration is set to 50, the Adam optimizer [117]
is used with initial learning rate of 0.0001 for 25K iterations. The learning rate is
multiplied by a factor of 0.1 for every 12K iterations. Weights of loss functions in
Equation (3.1) and Equation (3.5) are: β=3, λ1=100 and λ2=50. For evaluation, a 2D
detection network and Pix2Pose networks of all object candidates in test sequences are
loaded to the GPU memory, which requires approximately 2.2GB for the LineMOD
Occlusion experiment with eight objects. The standard parameters for the inference are:
θi=0.1, θo=[0.1, 0.2, 0.3], and θre=3. Since the values of error predictions are biased by
the level of occlusion in the online augmentation and the shape and size of each object,
the outlier threshold θo in the first stage is determined among three values to include
more numbers of visible pixels while excluding noisy pixels using samples of training
images with artificial occlusions. Figure 3.5 shows the examples of refined inputs using
different outlier threshold values. All parameters used for evaluation are introduced in
Appendix A. The training and evaluations are performed with an Nvidia GTX 1080
GPU and i7-6700K CPU.

Augmentation of training data A small number of real images are used for training
with various augmentations. Image pixels of objects are extracted from real images and
pasted to background images that are randomly picked from the MS-COCO dataset [9].
After applying the color augmentations on the image, the borderlines between the object
and the background are blurred to make smooth boundaries. A part of the object area
is replaced by the background image to simulate occlusion. Lastly, a random rotation is
applied to both the augmented color image and the target coordinate image. The same
augmentation is applied to all evaluations except sizes of occluded areas that need to be
larger for datasets with occlusions, LineMOD Occlusion and T-Less. Sample augmented
images are shown in Figure 3.6. Table 3.2 and 3.3 summarize the parameters used for
the augmentation. As explained in Section 3.3, the network recognizes two types of
inputs, with background pixels in the first stage and without background pixels in the
second stage. Thus, a mini-batch is altered for every iteration as shown in Figure 3.6.
Target coordinate images are rendered before training by placing the object in the
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3.4 Evaluation 27

Figure 3.5: Examples of refined inputs in the first stage with varied values for the outlier
threshold. Values are determined to maximize the number of visible pixels
while excluding noisy predictions in refined inputs. The brighter pixel in
images of the third column represents the larger error.

Figure 3.6: Examples of mini-batches. A mini-batch is altered for every training iteration.
Left and right images are for the first and the second stage, respectively.

Add
(each channel)

Contrast
normalization

Multiply Gaussian Blur

U(-15, 15) U(0.8, 1.3)
U(0.8, 1.2)

per channel chance=0.3
U(0.0, 0.5)

Table 3.2: Color augmentations applied to all evaluations.

Type Random rotation Fraction of occluded area
Dataset All LineMOD LineMOD Occlusion, T-Less
Range U(-45◦, -45◦) U(0, 0.1) U(0.04, 0.5)

Table 3.3: Image manipulation applied to each dataset.
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28 3 Pixel-Wise Coordinate Regression

ground truth poses using the colored coordinate model as in Figure 3.1.

2D detection network An improved Faster R-CNN [5], [6] with Resnet-101 [118]
and Retinanet [7] with Resnet-50 are employed to provide classes of detected objects
with 2D bounding boxes for all target objects of each evaluation. The networks are
initialized with pre-trained weights using the MS-COCO dataset [9]. The same set of
real training images is used to generate training images. Cropped patches of objects in
real images are pasted to random background images to generate training images that
contain multiple classes in each image.

3.4.2 LineMOD

For training, test sequences are separated into a training and test set. The divided set
of each sequence is identical to the work of [47], [51], which uses 15% of test scenes,
approximately less than 200 images per object, for training. A detection result, using
Faster R-CNN, of an object with the highest score in each scene is used for pose
estimation since the detection network produces multiple results for all 13 objects. For
the symmetric objects, marked with (*) in Table 3.4, the pool of symmetric poses sym
is defined as, sym= [I,Rπ

z ], where Rπ
z represents a transformation matrix of rotation

with π about the z-axis.

Table 3.4 shows Pix2Pose significantly outperforms state-of-the-art methods that use
the same amount of real training images without textured 3D models. Even though
methods on the last two columns of Table 3.4 use textured 3D models for pose refinement,
our method shows competitive results against these methods. The results on symmetric
objects show the best performance among methods that do not perform pose refinement.
This verifies the benefit of the transformer loss, which improves the robustness of initial
pose predictions for symmetric objects. Figure 3.7 visualizes result examples.

Train src Real images only (approx. 150) w/o ref. synthetic w/ refinement

Objects Pix2Pose YOLO-6D [47] Brachmann [51] BB8 [46] AAE [45] BB8 [46] SSD-6D [48]

Ape 58.1 21.6 33.2 27.9 4.0 40.4 65
Bench vise 91.0 81.8 64.8 62.0 20.9 91.8 80

Camera 60.9 36.6 38.4 40.1 30.5 55.7 78
Can 84.4 68.8 62.9 48.1 35.9 64.1 86
Cat 65.0 41.8 42.7 45.2 17.9 62.6 70

Driller 76.3 63.5 61.9 58.6 24.0 74.4 73
Duck 43.8 27.2 30.2 32.8 4.9 44.3 66

Eggbox* 96.8 69.6 49.9 40.0 81.0 57.8 100
Glue* 79.4 80.0 31.2 27.0 45.5 41.2 100

Hole puncher 74.8 42.6 52.8 42.4 17.6 67.2 49
Iron 83.4 75.0 80.0 67.0 32.0 84.7 78

Lamp 82.0 71.1 67.0 39.9 60.5 76.5 73
Phone 45.0 47.7 38.1 35.2 33.8 54.0 79

Average 72.4 56.0 50.2 43.6 31.4 62.7 76.7

Table 3.4: LineMOD: Percentages of correctly estimated poses (AD{D|I}-10%).
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3.4 Evaluation 29

Figure 3.7: Example results on LineMOD. The result marked with sym represents that
the prediction is the symmetric pose of the ground truth pose. 3D boxes in
green and blue are ground-truth and estimated poses respectively.

3.4.3 LineMOD Occlusion

LineMOD Occlusion (LineMOD-Occ) is created by annotating eight objects in a test
sequence of LineMOD. Thus, the test sequences of eight objects in LineMOD are used
for training without overlapping with test images. Faster R-CNN is used as a 2D
detection pipeline.

As shown in Table 3.5, Pix2Pose significantly outperforms the method of [47] using
only real images for training. Furthermore, Pix2Pose outperforms the state of the art
on three out of eight objects. On average it performs best even though methods of [41]
and [49] use more images that are synthetically rendered by using textured 3D models
of objects. Although these methods cover more various poses than the given small
number of images, Pix2Pose robustly estimates poses with less coverage of training
poses.
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30 3 Pixel-Wise Coordinate Regression

Figure 3.8: Example results on LineMOD Occlusion. The precise prediction of occluded
parts enhances robustness.

Method Pix2Pose Oberweger† [41] PoseCNN† [49] Tekin [47]
Ape 22.0 17.6 9.6 2.48
Can 44.7 53.9 45.2 17.48
Cat 22.7 3.31 0.93 0.67

Driller 44.7 62.4 41.4 7.66
Duck 15.0 19.2 19.6 1.14

Eggbox* 25.2 25.9 22.0 -
Glue* 32.4 39.6 38.5 10.08

Hole puncher 49.5 21.3 22.1 5.45
Average 32.0 30.4 24.9 6.42

Table 3.5: LineMOD Occlusion: object recall (AD{D|I}-10%). (†) indicates the method
uses synthetically rendered images and real images for training, which has
better coverage of viewpoints.

3.4.4 T-Less

In this dataset, a CAD model without textures and a reconstructed 3D model with
textures are given for each object. Even though previous work uses reconstructed
models for training, to show the advantage of our method, CAD models are used for
training (as shown in Figure 3.1) with real training images provided by the dataset. To
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minimize the gap of object masks between a real image and a rendered scene using a
CAD model, the object mask of the real image is used to remove pixels outside of the
mask in the rendered coordinate images. The pool of symmetric poses sym of objects is
defined manually similar to the eggbox in the LineMOD evaluation for box-like objects
such as obj-05. For cylindrical objects such as obj-01, the rotation component of the
z-axis is simply ignored and regarded as a non-symmetric object. The experiment is
performed based on the protocol of [17]. Instead of a subset of the test sequences in [17],
full test images are used to compare with the state of the art [45]. Retinanet is used as
a 2D detection method and objects visible more than 10% are considered as estimation
targets [17], [45].

The result in Table 3.6 shows Pix2Pose outperforms the-state-of-the-art method that
uses RGB images only by a significant margin. The performance is also better than the
best learning-based methods [40], [51] in the benchmark [17]. Although these methods
use color and depth images to refine poses or to derive the best pose among multiple
hypotheses, our method, that predicts a single pose per detected object, performs better
than these methods without refinement using depth images.

Input RGB Only RGB-D
Method Pix2Pose AAE [45] Kehl [40] Brachmann [51]

obj-1 38.4 8.9 7 8
obj-2 35.3 13.2 10 10
obj-3 40.9 12.5 18 21
obj-4 26.3 6.6 24 4
obj-5 55.2 34.8 23 46
obj-6 31.5 20.2 10 19
obj-7 1.1 16.2 0 52
obj-8 13.1 19.7 2 22
obj-9 33.9 36.2 11 12
obj-10 45.8 11.6 17 7
obj-11 30.7 6.3 5 3
obj-12 30.4 8.2 1 3
obj-13 31.0 4.9 0 0
obj-14 19.5 4.6 9 0
obj-15 56.1 26.7 12 0
obj-16 66.5 21.7 56 5
obj-17 37.9 64.8 52 3
obj-18 45.3 14.3 22 54
obj-19 21.7 22.5 35 38
obj-20 1.9 5.3 5 1
obj-21 19.4 17.9 26 39
obj-22 9.5 18.6 27 19
obj-23 30.7 18.6 71 61
obj-24 18.3 4.2 36 1
obj-25 9.5 18.8 28 16
obj-26 13.9 12.6 51 27
obj-27 24.4 21.1 34 17
obj-28 43.0 23.1 54 13
obj-29 25.8 26.7 86 6
obj-30 28.8 29.6 69 5

Average 29.5 18.4 24.6 17.84

Table 3.6: Object recall (eVSD < 0.3, τ = 20mm) on all test scenes using PrimeSense in
T-Less. Results of [40] and [51] are cited from [17].
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32 3 Pixel-Wise Coordinate Regression

Figure 3.9: Example results on T-Less. For visualization, ground-truth bounding boxes
are used to show pose estimation results regardless of the 2D detection
performance. Results with rot denote estimations of objects with cylindrical
shapes.
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3.4.5 BOP Challenge

Pix2Pose is further evaluated with different pose estimation methods by participating
the BOP Challenge [17] for two years in a row (2019 and 2020). In the challenge,
participants are asked to submit pose estimation results for eleven datasets including
seven core datasets that are mainly used for measuring overall performance. As
all hyper-parameters should be the same for all objects and datasets, three outlier
thresholds, θo = [0.15, 0.25, 0.35], are used instead of using a fixed value for each object
in the previous evaluations. For each 2D detection, an outlier threshold with a larger
number of inlier pixels is selected after PnP-RANSAC iterations. Mask R-CNN is
used to supply 2D detection results and mask predictions that are used for specifying
target points during the ICP refinement. Table 3.7 report the summary of results
in the first year (2019). Thanks to the handling of symmetries with the transformer
loss, Pix2Pose produces reliable results for T-Less that consists of symmetric and
texture-less industrial objects compared against other methods [59], [61] that directly
predict pixel-wise correspondences. After the ICP refinement using depth images,
Pix2Pose performs the best on YCB-Video [49] and RU-APC [119] in comparison to all
participated methods. However, results are worse than other methods when synthetic
images are used for training (e.g., LM-O and HB) because the small range of color
augmentations optimized for real images are used for synthetic images. Furthermore,
synthetic training images are rendered with a simple OpenGL based pipeline without
varied lighting conditions and cluttered backgrounds, which generates appearances
of images apart from those of real images. Due to the lack of high-quality synthetic
images, the overall performance of RGB-based methods is significantly lower than PPF-
based methods. Nevertheless, Pix2Pose outperforms PPF methods for Rutgers-Amazon
Picking Challenge dataset [119] where the quality of depth images are significantly
worse.

From the results of the first year, participants and organizers have learned that
data-driven methods using RGB images rely on the quality of synthetic training images
when no real training image is available for dataset. Photo-realistic images are created
and provided after rendering photo-realistic images of cluttered scenes in the second year
(2020) to encourage the participation of the data-driven methods. The encoder part of
the Pix2Pose network is replaced with the first three stages of Resnet-50 with pre-trained
weights using Imagenet [38], which provides better initialization of parameters [59].
Table 3.8 summarizes the results of the second year. Pix2Pose outperforms the winner
of the first year and is placed at fourth in terms of the overall performance on core
datasets. The best method [122] requires textured 3D models for training the pose
refiner network. The second best method uses Mask R-CNN [6] and RetinaMask [125]
for 2D detection and mask prediction, and PPF for pose estimation. Therefore, Pix2Pose
leads CNN-based methods that use the same amount of information for objects [45],
[59], [61] after the ICP refinement. Implementation details including parameters are
shared in the public repository 1.

1https://github.com/kirumang/Pix2Pose
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34 3 Pixel-Wise Coordinate Regression

Real training image - X X - - - X -
Method Test img AVG LMO TLESS TUDL ICBIN ITODD HB YCBV RUAPC
PPF(w/edge) [12] RGB-D 0.550 0.515 0.500 0.851 0.368 0.570 0.671 0.375 0.170
Félix&Neves [120], [121] RGB-D 0.412 0.394 0.212 0.851 0.323 0.069 0.529 0.510
AAE(w/ICP) [45] RGB-D 0.398 0.237 0.487 0.614 0.281 0.158 0.506 0.505 -
CDPN [61] RGB 0.353 0.374 0.124 0.757 0.257 0.070 0.470 0.422 -
AAE [45] RGB 0.270 0.146 0.304 0.401 0.217 0.101 0.346 0.377 -
Pix2Pose RGB 0.205 0.077 0.275 0.349 0.215 0.032 0.200 0.290 0.253
Pix2Pose(w/ICP) RGB-D - - - - - - - 0.675 0.410
DPOD [59] RGB 0.161 0.169 0.081 0.242 0.130 0.0 0.286 0.222 -

Table 3.7: Results of BOP Challenge 2019.

Method Test img AVG LMO TLESS TUDL ICBIN ITODD HB YCBV
CosyPose(w/ICP) [122] RGB-D 0.698 0.714 0.701 0.939 0.647 0.313 0.712 0.861
Hybrid-PPF [123] RGB-D 0.639 0.631 0.655 0.920 0.430 0.483 0.651 0.701
CosyPose-RGB [122] ref. RGB 0.637 0.633 0.728 0.823 0.583 0.216 0.656 0.821
Pix2Pose(w/ICP) RGB-D 0.591 0.588 0.512 0.820 0.390 0.351 0.695 0.780
Vidal et al. [37] Depth 0.569 0.582 0.538 0.876 0.393 0.435 0.706 0.450
CDPNv2(w/ICP) [61] RGB-D 0.568 0.630 0.464 0.913 0.450 0.186 0.712 0.619
PPF(Edges) [12] RGB-D 0.550 0.515 0.500 0.851 0.368 0.570 0.671 0.375
Leaping from 2D to 6D RGB 0.471 0.525 0.403 0.751 0.342 0.077 0.658 0.543
EPOS [124] RGB 0.457 0.547 0.467 0.558 0.363 0.186 0.580 0.499
Félix&Neves [120], [121] RGB-D 0.412 0.394 0.212 0.851 0.323 0.069 0.529 0.510
AAE(w/ICP) [45] RGB-D 0.398 0.237 0.487 0.614 0.281 0.185 0.506 0.505

Table 3.8: Results of BOP Challenge 2020. Photo-realistic synthetic images significantly
improve the performance on datasets that do not have real training images.

3.4.6 Ablation study

This section analyzes components of Pix2Pose to clarify how each component contributes
to the performance of the method.

Transformer loss Figure 3.10 and 3.11 show the outputs of the network using a
symmetric object in T-Less after training with different configuration. The second
row of Figure 3.10 shows failure predictions around view boundaries, 0 and π, when
the view-limitation strategy is applied. However, the transformer loss successfully
guides the network to produce consistent values for symmetric poses (see the third
row in Figure 3.10. On the other hand, the network trained with the simple L1 loss
successfully predicts all poses when objects are fully visible. This is because the network
is able to distinguish the side of the object by the crucial clue, the upper center of
the object. As shown in Figure 3.11, the network trained with the L1 loss fails to
predict correct outputs when this crucial part is occluded while the network trained
with the transformer loss produces precise estimations regardless of occlusion. As the
transformer loss does not penalize estimations for different symmetric poses, the loss
implicitly guides the network to be converged to produce consistent values for similar
appearances from symmetric poses.

Imprecise 3D models The evaluation on T-Less already shows the robustness to
3D CAD models that have small geometric differences with real objects. However,
it is often difficult to build a 3D model or a CAD model with refined meshes and
precise geometries of a target object. Thus, a simpler 3D model, a convex hull covering
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3.4 Evaluation 35

Figure 3.10: Prediction results of varied rotations with the z-axis. The L1 loss with
the view limit strategy causes noisy predictions at boundaries, 0 and π, as
denoted with red boxes. The transformer loss implicitly guides the network
to predict a single side consistently for the symmetric poses (blue boxes.)

Figure 3.11: Prediction results with/without occlusion for a symmetric object. For the
network trained by the L1 loss, it is difficult to predict the exact pose
when the upper part, which is a clue to determine the pose, is not visible.
The prediction of the network using the transformer loss is robust to this
occlusion since the network consistently predicts a single side.
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36 3 Pixel-Wise Coordinate Regression

Figure 3.12: Results of the ablation study. Top: the fraction of frames within AD{D|I}
thresholds for the cat in LineMOD. The larger area under a curve means
better performance. Bottom: qualitative results with/without GAN.

out-bounds of the object, is used in this experiment as shown in Figure 3.12. The
training and evaluation are performed in the same way for the LineMOD evaluation
with synchronization of object masks using annotated masks of real images. As shown
in the top-left of Figure 3.12, the performance slightly drops when using the convex
hull. However, the performance is still competitive with methods that use 3D bounding
boxes of objects, which means that Pix2Pose uses the details of 3D coordinates for
robust estimation even though 3D models are roughly reconstructed.

Contribution of GAN The network of Pix2Pose can be trained without GAN by
removing the GAN loss in the final loss function in Equation (3.5). Thus, the network
only attempts to reconstruct the target image without trying to trick the discriminator.
To compare the performance, the same training procedure is performed without GAN
until the loss value excluding the GAN loss reaches the same level. Results in the top-left
in Figure 3.12 shows the fraction of correctly estimated poses with varied thresholds
for the ADD metric. Solid lines show the performance on the original LineMOD test
images, which contains fully visible objects, and dashed lines represent the performance
on the same test images with artificial occlusions that are made by replacing 50% of
areas in each bounding box with zero. There is no significant change in performance
when objects are fully visible. However, the performance drops significantly without
GAN when objects are occluded. Examples at the bottom of Figure 3.12 also show
training with GAN produces robust predictions on occluded parts.
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3.5 Discussion 37

2D Detector SSD-6D [48] Retinanet [7] R-CNN [5] GT bbox
2D bbox 89.1 97.7 98.6 100
6D pose 64.0 71.1 72.4 74.7

6D pose/2D bbox 70.9 72.4 73.2 74.7

Table 3.9: Average percentages of correct 2D bounding boxes (IoU>0.5) and correct 6D
poses (ADD-10%) on LineMOD using different 2D detection methods. The
last row reports the percentage of correctly estimated poses on scenes that
have correct bounding boxes (IoU>0.5).

Robustness to 2D detectors Table 3.9 reports the results using different 2D detection
networks on LineMOD. Retinanet and Faster R-CNN are trained using the same training
images used in the LineMOD evaluation. In addition, the public code and trained
weights of SSD-6D [48] are used to derive 2D detection results while ignoring pose
predictions of the network. It is obvious that pose estimation results are proportional
to 2D detection performances. On the other hand, the portion of correct poses on
good bounding boxes (those that overlap more than 50% with ground truth) does
not change significantly. This shows that Pix2Pose is robust to different 2D detection
results when a bounding box overlaps the target object sufficiently. This robustness
is accomplished by the refinement in the first stage that extracts useful pixels with
a re-centered bounding box from a test image. Without the two-stage approach, the
performance significantly drops to 41% on LineMOD when the output of the network
in the first stage is used directly for the PnP computation.

Inference time The inference time varies according to the 2D detection networks.
Faster R-CNN takes 127ms and Retinanet takes 76ms to detect objects from an image
with 640×480px. The pose estimation for each bounding box takes approximately
25-45ms per region. Thus, our method is able to estimate poses at 8-10 fps with
Retinanet and 6-7 fps with Faster R-CNN in the single object scenario.

3.4.7 Failure cases

There are three primary reasons for failure cases: (1) Poses that are not covered by real
training images and the augmentation. (2) Ambiguous poses due to severe occlusion. (3)
Not sufficiently overlapped bounding boxes, which cannot be recovered by the bounding
box adjustment in the first stage. The second row of Figure 3.13 shows that the random
augmentation of in-plane rotation during the training is not sufficient to cover various
poses. Thus, the uniform augmentation of in-plane rotation has to be performed for
further improvement.

3.5 Discussion

This chapter introduced a novel architecture, Pix2Pose, for 6D object pose estimation
from RGB images. Pix2Pose addresses several practical problems that arise during pose
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38 3 Pixel-Wise Coordinate Regression

Figure 3.13: Examples of failure cases due to unseen poses. The closest poses are
obtained from training images using geodesic distances between two trans-
formations (rotation only).

estimation: the difficulty of generating real-world 3D models with high-quality texture
as well as robust pose estimation of occluded and symmetric objects. Evaluations with
three challenging benchmark datasets show that Pix2Pose significantly outperforms
state-of-the-art methods while solving these aforementioned problems.

Evaluation results reveal that many failure cases are related to unseen poses that
are not sufficiently covered by training images or the augmentation process. Since
it is difficult to obtain textured 3D models in good quality from the real-world, it is
important to synthesize images of objects in unseen poses using a limited number of
training images. In this case, a few real images are sufficient for training the Pix2Pose
network while reducing the effort for collecting and annotating images. This challenging
problem is addressed in Chapter 4. As a summary, this chapter introduced the following
contributions.

Hightlights

(1) A novel framework for 6D pose estimation, Pix2Pose, that robustly regresses
pixel-wise 3D coordinates of objects from RGB images including invisible areas.
(2) A novel loss function, the transformer loss, for handling symmetric objects
that have a finite number of ambiguous views.
(3) Experimental results on three different datasets, LineMOD, LineMOD Occlu-
sion, and T-Less, showing that Pix2Pose outperforms the state-of-the-art methods
even if objects are occluded or symmetric.
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Chapter 4

Neural Object Learning

4.1 Motivation

In the previous chapter, it is shown that Pix2Pose is able to predict poses of objects
reliably when a dataset provides a sufficient number of real training images. However,
as discussed in Section 3.4.7, the failure cases are usually caused when a pose in a test
image is not observed in real training images. Thus, the real training images should
uniformly cover poses of the object to train a pose estimator robustly, which is difficult
to achieve in the real environment where objects are often occluded by other objects
and movements of cameras are limited. Furthermore, it is difficult to annotate 6D poses
of an object to more than 100 images while covering entire viewpoints of the object.

On the other hand, it is possible to create textured 3D models using real images
captured from known camera poses. The 3D models are then used to render objects
from uniformly sampled viewpoints. The textured 3D models included in standard
pose benchmarks are created with special scanning devices, such as the BigBIRD
Object Scanning Rig [58] or a commercial 3D scanner [64]. When scanning objects,
a single object is usually placed with a simple background and consistent lighting
condition without surrounding objects. Camera poses are precisely obtained by using
visible markers or multiple cameras with known extrinsic parameters. However, this
well-constrained setup is not realizable in the real environment again, where the target
objects are placed in a cluttered scene without any marker, which produces imprecise
camera pose information. This motivates us to develop a new approach to create images
of objects from arbitrary viewpoints using a small number of cluttered images for the
purpose of training object detectors and pose estimators.

In this chapter, we address the following research questions.

Research Questions

(1) Is it possible to train object detectors and pose estimators using a few cluttered
images of an object?
(2) How to synthesize images of an object in a novel pose using a small number
of images?
(3) How to deal with noisy pose annotations of source images?

39
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40 4 Neural Object Learning

Figure 4.1: The overall concept of Neural Object Learning (NOL) for pose estimation.
NOL uses a few cluttered scenes that consist of new target objects of which
to render images in arbitrary poses. Rendered images are used to train
pipelines for 6D pose estimation and 2D detection of objects

This chapter introduces Neural Object Learning (NOL), a method to synthesize images
of an object in arbitrary poses using a few cluttered images with pose annotations and a
non-textured 3D model of the object. The purpose of NOL is to train CNN-based pose
estimators for new objects while minimizing the effort for obtaining training data from
real environments. The knowledge of 3D representation and a few observations of objects
are usually sufficient for humans to recognize objects in a new environment. Likewise,
NOL composes appearances of objects in arbitrary poses using 3D models and a few
cluttered and unconstrained images without using depth images. To overcome pose
annotation errors of source images, a novel refinement step is proposed to adjust poses
of objects in the source images. Evaluation results show that images created by NOL
are sufficient to train CNN-based pose estimation methods and achieves state-of-the-art
performance.

4.2 Method

The overall concept of the NOL pipeline is summarized in Figure 4.1. The objective of
NOL is to create an image XD of an object in a target pose TD using K source images,
{I1, Ik...IK}, with pose annotations, {T 1, T k...TK}, and object masks that indicate
whether each pixel belongs to the object or not in a source image, {M1,Mk...MK}.
We do not assume T k or Mk to be accurate, which is common if the source images
are collected without strong supervision such as marker-based localization or human
annotation.
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Figure 4.2: An overview of the NOL architecture. XD is used as a rendered output
while Xφ is used to compute the image loss for training

4.2.1 Network Architecture

Figure 4.2 depicts an overview of the network architecture. Firstly, source images are
encoded and projected to compute an integrated feature map in a target pose. Secondly,
the weighted sum of the projected feature maps is computed by predicting weight maps.
A decoder block produces a decoded image that is used to compute the image loss.

Integrated Feature Maps Each source image, Ik ∈ H ×W × 3, is encoded with a
backbone network, Densenet-121 [126], to build feature pyramids using the outputs
of the first four blocks. Each feature map from the pyramids is processed with a
convolutional layer with 3×3 kernels to reduce the number of an output channel of
each block to 4, 3, 3, and 3. Each feature map is resized to the size of the original
input using bi-linear interpolation. In addition to the feature map with 13 channels,
original color images (3 channels) and face angles with respect to camera views (one
channel) are concatenated. As a result, the encoded feature map F k of each input
image Ik has 17 channels. The UV coordinates of each vertex are computed using 2D
projected locations of each visible vertex in an input pose T k. These UV coordinates
are then projected to the target pose TD using a differentiable renderer proposed in [74].
Feature values of each pixel in a projected feature map P k are computed using bilinear
interpolation of surrounding feature values obtained from corresponding pixels from the
encoded feature map F k, which is similar to rendering an object with a separate texture
image. The projected feature maps P k∈K are compiled by convolutional Long-Term and
Short-Term Memory (LSTM) layers to compute the integrated feature map X I with 16
output channels at the same resolution of the projected feature maps (Figure 4.3). This
LSTM layer enables the network to learn how to extract valuable pixels from different
source images while ignoring outlier pixels caused by pose errors. It is also possible to
use a different number of source images without changing the network architecture.

Weight Prediction Block Figure 4.4 presents the architecture of the weight prediction
block. The integrated feature map X I is concatenated with each projected feature map
P k to compute a corresponding weight map W k in the weight prediction block, which
implicitly encodes distances between P k and X I per pixel. The resulting weight maps
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Figure 4.3: The architecture of the LSTM block that integrates projected feature maps.

Figure 4.4: The architecture of the weight prediction block.

W k∈K are normalized with the Softmax activation function over K projected images.
Therefore, the summation of the weighted maps over W k∈K is normalized for each
pixel while keeping strong weights on pixels that have remarkably higher weights than
others. The weighted sum of projected feature maps using the predicted weight maps
produces the weighted feature map XS. Since the first three channels of P k represent
projected color values from source images, the first three channels of XS are a color
image, which is referred to as the weighted rendering XD and the output image of NOL
during inference.

Decoder Block Since XD is obtained by the weighted summation of projected images,
color values of pixels XD are limited to the color range of projected pixels. However,
when training the network, the color levels of the source images can be biased by
applying randomized color augmentations while maintaining the original colors for the
target image. This causes the weight prediction block to be over-penalized even though
color levels of XD are well balanced for given source images. This motivates us to add a
module to compensate for these biased errors implicitly during training. An architecture
used for the image super-resolution task, WDSR [127], is employed as a decoder block
to predict the decoded rendering Xφ in order to compute the losses during training. A
detailed analysis regarding the role of the decoder is presented in Section 4.4.

4.2.2 Training

The objective of training consists of two components. The first component, the image
loss, renders a correct image Li in a target pose. The second component, the smooth
loss, minimizes the high-frequency noise of the resulting images Ls.

Image Loss The image loss Li computes the difference between a target image XGT

in a target pose and the decoded output Xφ. In addition to the standard L1 distance of
each color channel, the feature reconstruction loss [128] is applied to guide the predicted
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images to be perceptually similar to the target image as formulated by

Li =
1
MD

∑

p∈MD

λi|X
φ
p −XGT

p |1+λf |ψ(Xφ
p ) − ψ(XGT

p )|1, (4.1)

where MD is a binary mask that indicates whether each pixel has at least a valid
projected value from any input Ik∈K , and ψ(·) denotes outputs of a backbone network
with respect to the image. The outputs of the first two blocks of DenseNet [81] are used
for the feature reconstruction loss. The parameters λi and λf are used to balance the
losses.

Smooth Loss Even if the objective function in Equation (4.1) guides the network
to reconstruct the image accurately, the penalty is not strong when the computed
image has high-frequency noise. This is the reason why IBR and image in-painting
methods [70], [72], [73] usually employ a smooth term. This minimizes the gradient
changes of neighboring pixels even if pixel values are obtained from different source
images. Similarly, we add a loss function to ensure smooth transitions for neighboring
pixels in terms of color values as well as encoded feature values. This is formulated as

Ls =
λs

MD

∑

p∈MD

∇2XS
p . (4.2)

The loss function creates a penalty when the gradients of color and feature values of
each pixel are inconsistent with neighboring pixels. In contrast to the image loss, the
weighted feature map XS is used directly instead of using the decoded output Xφ.
Thus, the weight prediction block is strongly penalized when producing high-frequency
changes in the predicted weight maps W k∈K and the weighted feature map XS.

Training using Synthetic Images with Pose Errors Synthetic images are created
to train the NOL network. 3D models from the YCB-Video dataset [49] are used while

Figure 4.5: Examples of source images and target images. Color augmentations are
applied to source images and pose perturbations are applied to pose annota-
tions of source images with the parameters in Table 4.1. No augmentation
is applied to target images and target poses.
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Color augmentation Pose augmentation
Color
add

Contrast
norm

Multiply
Gaussian

blur
Addictive

noise
∆Trans(m) ∆Rot(rad)

U(-15, 15) U(.8, 1.3) U(.8, 1.2) U(0, .5) N (0, 10) U(-.01, .01) U(-.05, .05)

Table 4.1: Parameters of color augmentations and pose perturbations

replacing original textures with randomly sampled images of the MS-COCO [9] dataset.
After sampling a 3D model and a texture image, 10 images are rendered as a batch set
in different poses with random background images. During training, one image from a
batch set is chosen as a target image XGT and its pose is set to a desired pose TD, and
the other K images are assigned as input images Ik∈K . To simulate different lighting
conditions, color augmentations are applied to the input images while no augmentation
is applied to the target image. Pose errors are also simulated by applying random
perturbations to the actual poses T k∈K of the input images during training. As a result
of the perturbations, vertices are projected to wrong 2D locations, which produces
wrong UV coordinates per vertex and outlier pixels in projected feature maps at a
desired pose. This pose augmentation forces the network to be robust to pose errors
while attempting to predict an accurate image in the target pose. A total of 1,000
training sets, consisting of 10 images per set, are rendered for training. The same
weights are used to render objects in all evaluations in this chapter after training for 35
epochs. Detailed parameters used for data augmentation are listed in Table 4.1 and
Figure 4.5 shows examples of mini-batches after the augmentation.

4.2.3 Gradient Based Pose Refinement and Rendering

The error in an input pose T k causes crucial outlier pixels in the projected feature map
P k at the desired pose. Figure 4.6 shows an example of wrong pixels in the projected

Figure 4.6: An overview of the proposed pose refinement process and example results.
The partial derivative of the projection error Ek is used to update each
input pose T k
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feature map obtained from the ground plane (blue) in the source image due to the error
of the initial pose T k

t=0. As discussed in Section 2.3.2, the differentiable renderer enables
derivatives of 3D vertices of a 3D model to be computed with respect to the error
defined in 2D space. Since 3D locations of vertices and UV coordinates in the desired
pose are derived by matrix multiplications, which is differentiable, the gradient of each
input pose T k can be derived to specify a direction that decreases the difference between
a desired feature map and each projected feature map P k. The first prediction of NOL,
XS

t0
, without refinement is used as an initial desired target. The goal of the refinement

step is to minimize the error, Ek, between the initial target and each projected feature
map P k. In every iteration, the partial derivative of the projection error Ek with respect
to each input pose T k

t=ti
is computed by

∆T k
ti

=
∂Ek

∂T k
ti

=
∂|XS

t0
− P k

ti
|

∂T k
ti

, (4.3)

and the input pose at the next iteration T k
ti+1 is updated with a learning step δ, i.e.

T k
ti+1 = T k

ti
− δ∆T k

ti
. In our implementation, translation components in T k are directly

updated using ∆T k
ti

. On the other hand, updated values for rotation components, R3×3,
do not satisfy constraints for the special orthogonal group, SO(3). Thus, the rotation
component of ∆T k

ti
is updated in the Euler representation and converted back to the

rotation matrix. As depicted in Figure 4.6, the iterations of the refinement step correctly
remove the pose error so that the projected image no longer contains pixels from the
background, which decreases blur and mismatched boundaries in the final renderings.
After refining every input pose T k

t=t0
until the error does not decrease or the number of

iterations exceeds 50, the final output XD is predicted using the refined poses T k
t=tf

.

4.3 Evaluation

This section presents the evaluation of the proposed NOL approach in relation to the
task of 6D object pose estimation. We introduce datasets used in the evaluation and
provide all implementation details of NOL. The evaluation results show that the quality
of NOL images created using a few cluttered images are sufficient for pose estimation
and leads to outperforming other methods trained with synthetic images using textured
3D models or real images.

4.3.1 Datasets

Three datasets are used for evaluation: LineMOD [15], LineMOD-Occlusion [16], and
our new dataset. LineMOD and LineMOD-Occlusion have been used as standard
benchmarks for 6D pose estimation of objects. LineMOD provides textured 3D models
and 13 test sequences that have an annotated object per image. The 3D models are
created by placing each object alone on a plane and performing a voxel-based 3D
reconstruction [15]. LineMOD-Occlusion is created by additionally annotating eight
objects presented in a test sequence in LineMOD. Previous works reporting results on
these dataset have used either synthetic images using given 3D models [45], [48] or 15%
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real images obtained from test sequences (150 to 200 images per object) [46], [47], [51]
for training. In contrast to previous work, images created by NOL are used to train
both a pose estimator and a 2D detection pipeline.

4.3.2 Single sequence-Multi Objects Training Dataset

A new dataset, Single sequence-Multi Objects Training (SMOT), is created to reflect
real noise when training images are collected from a real scenario, i.e., a mobile robot
with a RGB-D camera collects a sequence of frames while driving around a table to
learning multiple objects and tries to recognize objects in different locations. The
dataset consists of two training sequences and eleven test sequences using eight target
objects sampled from the YCB-Video [49] objects. Figure 4.8 presents the target objects
of the dataset. Two training sequences that include four target objects per sequence
are collected by following trajectories around a small table (see Figure 4.7). Camera
poses of frames are self-annotated by a 3D reconstruction method [129] while building
a 3D mesh of the static scene. 3D models provided in YCB-Video are aligned to the
reconstructed scenes, and corresponding object poses are computed using camera poses.
No manual adjustment is performed to preserve errors of self-supervised annotations.
On the other hand, test images are collected with visible markers to compute more
accurate camera poses while moving the robot manually in front of different types of
tables and a bookshelf. The pose of each object is manually annotated for one reference
frame and the poses in other frames are computed using the relative camera poses that
are jointly determined using the 2D markers [130] and the 3D reconstruction method.
Additional manual adjustments are performed when poses are remarkably wrong. As a
result, each object has approximately 2,100 test images. Figure 4.9 shows examples
test images of each sequences. The statistics of the dataset is summarized in Table 4.2,
which show the range of view points are very limited while test images have the wider
ranges.

Figure 4.7: Training images of SMOT is collected using a mobile robot driving around
the table.
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Figure 4.8: Target objects of SMOT.

Figure 4.9: Test sequences of SMOT.

Object
cracker

box
bleach driller mustard pitcher

tomato
can

maxwell
can

sugar
box

No. Test images 2155 2171 2118 2118 2090 2053 2106 2037
Train-Azimuth (-180◦, 180◦) (-180◦, 180◦)

Train-Elevation (38.3◦, 40.0◦) (38.9◦, 40.8◦)

Test-Azimuth (-180◦, 180◦)
Test-Elevation (8◦, 42◦)

Table 4.2: Statistics of SMOT. Training images have a limited elevation range in com-
parison to the range of test images.
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4.3.3 Implementation Details

For the NOL network, the resolution of input and target images are set to 256×256.
A number of source images, K, is set to 8 for training and 6 for inference. Thus, a
mini-batch is assigned to have 8 input images with noisy pose annotations and a target
image with an actual pose. The loss weights are set to, λi=5, λf=10, and λs=1.

Sampling of Source Images To render NOL images for training a pose estimator,
source images are sampled from the training sequences of a dataset. For LineMOD
and LineMOD-Occlusion, a maximum of 16 images per object are sampled from the
same training splits of real images used in previous work [46], [47], [51]. Since objects
are always fully visible in the training set, images are simply sampled using pose
annotations. In each sampling iteration, an image is randomly sampled and images
that have similar poses (less than 300mm translation and 45◦ rotation), are removed.
The sampling is terminated when no more images remain. In contrast to LineMOD and
LineMOD-Occlusion, the visibility of each object varies in the training set of SMOT.
In order to minimize the number of source images, a frame with the highest value is
selected at each sampling iteration by counting the number of visible vertices that
have not been observed in the previously sampled frames. The sampling iteration is
terminated when no frame adds additionally observed vertices.

Rendering NOL Images Each target object is rendered using NOL in uniformly
sampled poses defined over an upper-hemisphere for every 5◦ for both azimuth and
elevation. For each target pose, 6 images are chosen from sampled images using the
same image sampling procedure while limiting the target vertices to visible vertices in
the pose. As a result, 1296 images are rendered and for each image, 2D rotations are
applied from -45◦ to 45◦ for every 15◦ to augment the in-plane rotation. For LineMOD
and LineMOD-Occlusion, synthetic images are also rendered in the same sampled poses
using given 3D models to train a pose estimator for comparison.

Training Recognizers To show whether NOL images are sufficient to estimate poses of
objects in arbitrary poses using a recent RGB-based pose estimation method, Pix2Pose
introduced in Chapter 3, is used. To increase the training speed and decrease the
number of training parameters, the discriminator and the GAN loss are removed. All
other aspects are kept the same except for the number of training iterations, which is
set to approximately 14K because of the decreased number of trainable parameters.
Resnet-50 [118] is used as a backbone for the encoder and weights are initialized with
pre-trained weights on ImageNet [38]. Retinanet [7] with Resnet-50 is trained to
supplement 2D detection results using NOL images with the same setup in Chapter 3.

4.3.4 Quality of Rendered Images

Figure 4.10 shows the rendered images using a training sequence of SMOT. Renderings
in 3DRecont show object models extracted directly from a reconstructed 3D mesh of the
training scene [129]. Both MVS [69] and G2LTex [68] use the same images sampled for
rendering NOL images with the same pose annotations. Multi-view texturing methods
create less blurry textures than NOL for planar surfaces since they try to map an image
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Figure 4.10: Rendered results of SMOT objects using a training sequence. NOL success-
fully removes pixels from the background and other objects due to pose
refinement

to a large area without combining pixels from other images. However, this induces
misaligned results when the input poses are inaccurate even if depth images are used to
optimize poses as in [68], e.g., doubled letters on the cheeze-it box. On the other hand,
results of NOL after pose refinement (last column) removes these doubled textures by
correcting pose errors using color images only, which is robust to depth registration
errors. Furthermore, NOL successfully rejects outlier pixels from other objects and the
background.

4.3.5 Pose Estimation: LineMOD

The left side of Table 4.3 shows the results when RGB images are used for pose estimation.
Since no real image is directly cropped and used to train the pose estimator, the results
are mainly compared against methods that use synthetic images only for training. The
method trained with NOL images outperforms the same method trained with synthetic
images using the given 3D models. This verifies that the quality of NOL images is
more similar to the appearances of real objects. The results of objects with metallic
or shiny surfaces, e.g., Camera, Phone, and Can, show significant improvements against
other results obtained with synthetic training images without any real observation. As
depicted in Figure 4.12, NOL realizes the details of shiny and metallic materials by
optimizing the colors of each view separately. The performance is competitive to the
best method that uses real color and depth images of objects for domain adaptation.

NOL images tend to contain noisy boundaries, especially around the lower parts
of objects where NOL mistakenly extracts pixels from the background table (see the
bottom of Iron, Can, and Phone in Figure 4.12. This limits the translation precision of
predictions along the principle camera axis (z-axis). To decrease the translation errors,
ICP refinement is applied to refine poses using depth images as reported on the right
side of Table 4.3. The method trained with NOL images outperforms state-of-the-art
trained with synthetic images. The result is competitive to state-of-the-art results in
the last two columns even though the methods [81], [131] use more than 13 times the
number of real images for training.
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Figure 4.11: Source images and generated images of ape in LineMOD using NOL in
comparison to the 3D model.

Figure 4.12: Examples of rendered images of objects in LineMOD using NOL.
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Types Required data for training
Texture - X X X X X - X X - X

No. real images 14 - - - - 183 14 - - 183 183

GT 6D pose X - - - - - X - - X X

Depth image - - - - - X - - - X X

Test type RGB w/o refinement RGB + ICP RGB-D
Training on NOL synthetic images real+syn NOL syn real+syn

Method Pix2Pose Pix2Pose [48] [45] [59] [132] Pix2Pose Pix2Pose [45] [81] [131]
Ape 35.4 10.0 2.6 4.0 35.1 19.8 95.2 92.7 20.6 92.3 97.3

Benchvise 55.6 13.4 15.1 20.9 59.4 69.0 99.0 90.4 64.3 93.2 99.7
Camera 37.5 4.4 6.1 30.5 15.5 37.6 96.6 77.9 63.2 94.4 99.6

Can 65.5 26.4 27.3 35.9 48.8 42.3 97.6 85.8 76.1 93.1 99.5
Cat 38.1 24.8 9.3 17.9 28.1 35.4 98.6 90.1 72.0 96.5 99.8

Driller 52.2 9.1 12.0 24.0 59.3 54.7 98.0 66.1 41.6 87.0 99.3
Duck 14.7 3.7 1.3 4.9 25.6 29.4 89.1 82.3 32.4 92.3 98.2

Eggbox 93.7 34.6 2.8 81.0 51.2 85.2 99.2 88.7 98.6 99.8 99.8
Glue 63.1 35.1 3.4 45.5 34.6 77.8 96.5 92.2 96.4 100 100

H.puncher 34.4 3.7 3.1 17.6 17.7 36.0 93.2 46.3 49.9 92.1 99.9
Iron 57.9 30.4 14.6 32.0 84.7 63.1 99.3 93.5 63.1 97.0 99.7

Lamp 54.2 6.7 11.4 60.5 45.0 75.1 96.6 39.3 91.7 95.3 99.8
Phone 41.8 13.8 9.7 33.8 20.9 44.8 92.8 79.1 71.0 92.8 99.5

Average 49.5 16.6 9.1 28.7 40.5 51.6 96.3 78.8 64.7 94.3 99.4

Table 4.3: Evaluation results on LineMOD. The ADD score is used except for Eggbox

and Glue that use the ADI score.

Type RGB w/o refinement RGB+ICP3D Depth
Train source NOL Syn. using 3D models NOL Syn 3D model

Method Pix2Pose Pix2Pose [45] [61] [59] Pix2Pose Pix2Pose [45] [37]
BOP Score 37.7 20.0 14.6 37.4 16.9 61.3 45.3 23.7 58.2

Table 4.4: Evaluation results on LineMOD-Occlusion. The results of other methods are
cited from the 6D pose challenge 2019 [18].

4.3.6 Pose Estimation: LineMOD-Occlusion

The same models used in the LineMOD evaluation are used to test on LineMOD-
Occlusion as reported in Table. 4.4. Similar to the LineMOD evaluation, methods
trained by synthetic images are mainly compared. The evaluation protocol used in the
recent pose challenge [18] is applied with the same test target images. The result of
Pix2Pose using synthetic images is obtained by re-training the network with Resnet-50
backbone, which performs better than the official result in the challenge [18].

The performance of this method is significantly improved by using images created
by NOL for training with RGB inputs and with the inclusion of ICP refinement using
depth images. Furthermore, using NOL images leads to the method outperforming state
of the art using color images [61] and the best performing method on this dataset [37].

4.3.7 Pose Estimation: SMOT

The Pix2Pose network and the 2D detection method [7] are trained using crops of
entire real images where each object is visible more than 50%. This is an average of
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Type RGB RGB-D (ICP3D)
3D Model Precise Recont Precise Recont

Train source Real G2Ltex NOL NOL Real G2Ltex NOL NOL
cracker_box 30.8 24.8 49.5 45.4 85.2 92.5 96.3 88.6

bleach_cleanser 19.1 27.5 32.7 12.8 94.0 89.9 93.6 64.9
driller 23.8 2.3 19.8 26.0 87.8 53.9 96.4 91.2

mustard 2.0 33.2 25.9 19.0 88.3 73.8 89.7 82.0
pitcher* 25.9 21.7 30.9 34.8 93.3 92.9 88.7 96.1

tomato_can* 36.7 17.5 41.3 11.1 86.9 79.0 84.9 71.7
maxwell_can* 37.6 40.9 54.7 18.3 95.3 94.2 93.3 84.6

sugar_box 23.7 37.9 29.0 12.3 60.8 79.9 76.9 55.2
Average 25.0 25.7 35.5 22.5 86.5 82.0 90.0 79.3

Table 4.5: Object-wise results of the SMOT evaluation. The ADD metric is used except
for symmetric objects, marked with (*), that are evaluated with the ADI
metric.

364 images per object. For G2Ltex and NOL, up to 16 images per object are sampled
as explained in Section 4.3.3 to render training images.

Table. 4.5 shows pose estimation and 2D detection results in terms of the AD{D|I}
score and the mean Average Precision (mAP) [133]. The results using NOL images
outperform other methods using real images and models textured by G2Ltex for both
RGB and RGB-D inputs. This is because real images do not fully cover target poses and
objects are often occluded by other objects in training images. The comparison with
G2LTex provides a quantitative verification regarding the better quality of renderings
created by NOL using the same source images.

4.3.8 Dynamic Objects

It is possible to render an object if poses of the object are known even though objects
in source images are dynamically moving. To show how the method performs with
this challenging scenario, the HO3D dataset [134] is used. The dataset is collected
by manipulating objects in front of multiple cameras while automatically annotating
hand and object poses. Thus, annotated poses of objects potentially include errors, and
objects are often occluded by fingers. We sampled source images from the training set by
following the same sampling procedure. As a portion of the training set has significantly
wrong pose annotations, we rejected images when pose errors are remarkable. Figure 4.13
presents source images and example results of two objects in the dataset, which shows
acceptable results in this challenging configuration. Therefore, NOL is able to compose
different observations of objects even though objects are captured from dynamic scenes.
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Figure 4.13: Example results using HO3D.

4.4 Ablation Study

This section analyzes factors that influence the quality of NOL images. The perceptual
similarity [135] is used to measure the quality of generated images in comparison to the
real images. We sample 10 test images per object in SMOT (80 images), render the
objects at GT poses, and compare them with real images.

4.4.1 Each component

Table 4.6 shows the most significant improvement comes from the decoder. Figure 4.14
shows qualitative results of weighted renderings XD, decoded renderings Xφ, and results
after training the network without the decoder. As discussed in Section 4.2.1, the
network trained with the decoder converges to produce XD in a neutral color level as a
reference image while the decoder absorbs over-penalized errors caused by randomly
biased colors. The results denoted as w/o LSTM are derived by replacing the LSTM
module with a simple average over projected features P k. In this case, the results drop
significantly since the LSTM module highlights valuable pixels among projected pixels.
The refinement step consistently improves the image quality for all configurations.

4.4.2 Loss functions

The best results are made with all proposed losses Li+Ls. The perceptual loss in
addition to the standard L1 loss significantly improves the performance by guiding the
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Figure 4.14: Outputs of weighted renderings, decoded renderings, and weighted render-
ings after training without the decoder block.

Components Loss functions
Setup All w/o Decoder w/o LSTM L1 (RGB) Li Li + Ls +LGAN

w/o Ref 0.181 0.289 0.247 0.194 0.184 0.181 0.188
w/ Ref 0.173 0.279 0.241 0.184 0.177 0.173 0.183

Table 4.6: Perceptual similarity (smaller is better) of rendered images with different
configurations

network to preserve perceptual details, like edges, with less blurry images while the
smooth loss Ls additionally reduces the high-frequency noise. As the adversarial loss [54]
provides better performance for image reconstruction tasks, the adversarial loss LGAN

is added to our loss function, which does not improve the result in our implementation.

4.4.3 Geometrical Errors in 3D Models

Geometrical errors of 3D models cause outlier pixels in projected feature maps that are
not adjusted by the pose refinement. To analyze the effect of geometrical errors, the
same evaluation with SMOT is performed using object models obtained from the 3D
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Figure 4.15: Visualization of geometrical errors measured with the Hausdorff distance.

reconstruction of training scenes. Models denoted with 3DRecont in Figure 4.10 show
examples of four SMOT objects and the geometrical error of each object is visualized
in Fig 4.15. Table 4.5 includes the evaluation results denoted with Recont for 3D
models. The results show that the performance drops since the NOL images are noisier
and blurrier due to the imprecise 3D models. This indicates that precise 3D models
are important for NOL to generate images with sufficient quality. Thus, the further
optimization of 3D vertices is required using a few cluttered images when geometries of
models are not accurate.

4.5 Discussion

This chapter introduced a novel method, Neural Object Learning, that creates training
images for pose estimators using a small number of cluttered images. To the best of
our knowledge, this is the first attempt to learn multiple objects from a cluttered scene
for 6D pose estimation, which minimizes the effort for collecting and annotating data
for training. In the evaluations, it has been shown that estimation methods trained by
NOL images outperform the same methods trained by synthetic images and 13 times
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the number of real images. This work highlights the fact that not only estimation
methods but also the creation of training images using a few observations are important
for real applications.

For future work, the method can be extended to optimize 3D models for reducing
geometrical errors. This accomplishes the fully self-supervised learning of objects from
cluttered scenes in real environments without any human supervision.

Hightlights

(1) Neural Object Learning that uses non-textured 3D models and a few cluttered
images of objects to render synthetic images of objects in arbitrary poses without
re-training the network.
(2) A novel refinement step to adjust annotated poses of an object in source
images to project features correctly in a desired pose without using depth images.
(3) A new challenging dataset, Single sequence-Multi Objects Training (SMOT),
that consists of two sequences for training and eleven sequences for evaluation,
collected by a mobile robot, which represents a practical scenario of collecting
training images of new objects in the real world.
(4) Evaluation results that show images rendered by NOL, which uses 8 to 16
cluttered images per object, are sufficient to train 6D pose estimators with state-
of-the-art performance in comparison to methods that use textured 3D models
and 13 times the number of real images.
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Chapter 5

Mult-Task Template Matching
using Depth Images

5.1 Motivation

In the previous chapters, it has been shown that using color images is sufficient for
pose estimation even though only a few training images are available for a new object.
However, geometric information of an object is more important than texture in robotic
manipulation tasks [136], [137]. For instance, the way of grasping should be similar
for boxes with similar sizes regardless of their textures and colors. In other words,
many items in daily life can be manipulated properly by using previous experiences of
grasping different objects that have similar geometries but different textures, e.g., mugs,
bowls, and plates. Furthermore, objects in industrial domains are often texture-less
without specific texture information in CAD models. Therefore, it is worth using depth
information to obtain geometrical information of objects for manipulating the objects.
Furthermore, depth images are also comparably easy to simulate [138], which allows the
use of synthetically rendered images for training without additional domain adaptation
techniques.

A drawback of CNN-based methods that directly regress poses of objects is that a
network trained for a specific set of objects has to be re-trained when new objects are
added. However, this is inefficient for domains that face new objects very often. In this
case, training a network for each instance is not feasible. As introduced in Section 2.3.1
in Chapter 2, the same network can be used to estimate poses of different objects by
matching corresponding samples that has the nearest feature values in a learned metric
space [42], [43]. Real or synthetic training images of the object can be used to create a
codebook of features of the object in different poses. Thus, fine-tuning of the network
is not necessary for a new object, which is very efficient for domains that have to face
new objects every day. This concept is also applicable to objects in a class with similar
shapes when the features are trained to have closer distances to similar geometries.

This chapter introduces a novel framework, Multi-Task Template Matching (MTTM),
for 6D pose estimation and segmentation of objects using a template set of depth images,
which does not require further training of the network for a new object. The outputs of
MTTM are the NN template with the closest pose, pixel-wise segmentation masks, and
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the pose transformation from the pose of the NN template to that of the object in the
test image. In summary, this chapter addresses the following research questions.

Research Questions

(1) How to design a pipeline that matches samples of new objects for detection,
segmentation, and pose estimation using depth images?
(2) How to make the pipeline more robust to noisy depth images, simulate noise
in synthetic images?
(3) How does the pipeline working with public benchmarks and real scenarios?

5.2 Method

This section presents the method for rendering synthetic depth images and the details
of MTTM including the network architecture, the training method for multiple tasks,
and the process for deriving and evaluating pose hypotheses.

5.2.1 Rendering of Noisy Depth Images

MTTM uses only synthetic depth images for training as depth images are easier to
simulate than color images. Therefore, MTTM can be applied to any other domain
that does not have sufficient training images. As described in [138], noisy depth images
are rendered by simulating a typical stereo camera. This motivates us to implement
a rendering with a sensor simulation that creates realistic depth images. Figure 5.1
presents the process of sensor simulation and examples. As shown in the resulting image,
the outputs of the rendering pipeline have invalid pixels at the boundaries of each object,

Figure 5.1: The process of generating realistic depth images by a sensor simulation. In
contrast to the ideal depth image, the generated image includes pixels with
invalid depth values and noise, which is common in real depth images.
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5.2 Method 59

Figure 5.2: The network architecture of MTTM. Layers annotated with yellow denote
the computations that are required during test time since the features of
templates are precomputed and stored in the database (gray boxes).

which is the most significant difference between synthetic and real depth images. The
realistic depth images enable us to train the network of MTTM without any additional
augmentation of sensor noise. Training images are rendered from arbitrary camera
poses after randomly placing target objects on a plane that simulate cluttered scenes.
As a result of the sensor simulation, no domain adaptation technique is required to use
both real and synthetic images as a template set at test time.

5.2.2 Network Architecture

The network extracts feature descriptors of given regions of interest (ROI) in a test
scene to retrieve the nearest template while predicting the segmentation mask of a
target object and pose transformation from the nearest template to the object in the
scene. As shown in Figure 5.2, the Resnet-50 [118] architecture is used as a backbone
network and initialized by the weights that are trained on the Imagenet dataset [38].
Since the original network needs a color image as an input, a depth image, which has
one channel, must be converted into a three-channel image. We apply one typical
technique, using x, y, and z components of surface normals as each channel of image
pixels. The output of the third stage of Resnet-50 is used as a feature map of the given
input image. An additional 3x3 convolution layer with 256 filters is applied to reduce
the dimension of the feature map. Hence, the dimension of the shared feature map of
an image is 256 channels with eight times smaller resolution than the input image. Like
the method used in [6], the feature map of a ROI is cropped using bi-linear interpolation
of the feature map. Different from the original ROI-Align method of [6], a simplified
method is applied that crops the propositional ROI area in the feature map and resizes
it to the desired output size (14x14), which works without a remarkable difference as
mentioned in [6]. The ROI-Align enables the network to have any arbitrary sizes of
images as inputs.

Each ROI feature map in the fixed size is used for multiple tasks: extraction of
descriptors for manifold learning, mask prediction and pose regression using pairs of
ROI feature maps. The descriptor is calculated by fully connected layers with filter
sizes of 256, 256, and 128. The last layer has the linear activation while all the others
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use the elu activation. Therefore, the dimension of the feature vector of each ROI is
128, f ∈ R

128. This feature vector is calculated independently so that feature vectors of
templates are pre-calculated and stored in a database for efficient tree search at test
time.

A pair consisting of ROI feature maps from a scene and a template proceeds to 3x3
convolution layers with 256 filters separately before channel-wise concatenation of feature
maps. Hence, the output dimension of the concatenated feature map is 14x14x512.
This merged feature map is used for mask prediction and pose regression separately
in the feature comparison network as shown in Figure 5.2. For mask prediction, a
3x3 convolution layer with 256 filters and a 1x1 convolution layer with single channel
output with the sigmoid activation is used to represent per-pixel mask prediction. For
pose regression, fully connected layers with 256, 256, and 4 output channels are applied
with the hyperbolic tangent (tanh) activation for the last layer, which gives the pose
difference of the pairs in quaternions, q ∈ R

4.

5.2.3 Training Networks for Multiple Tasks

Distances of feature vectors between similar poses should be smaller than distances
to different poses or different objects. Triplet loss gives reliable performance for this
purpose [42]–[44]. Compared to previous work that use cropped image patches, the
feature map of the entire scene is computed to crop a feature map of each ROI. For
each training scene that contains multiple objects, a1, a2...ai, the positive and negative
templates are assigned to each object. A positive template, tp,i, is selected from the top
five closest pose templates in the same class while a negative template, tn,i, is randomly
picked from a different class or a different pose of the same object. One-half of the
negative templates are from the same class while the other half is from different classes.

Symmetric objects can have close shapes even though the poses of objects are different.
Balntas et al. [43] introduce a function to measure the pose similarity of an object using
rendered depth images of each pose q1, q2 :

φ(q1, q2) =
1
P

∑

P

||s(q1)p − s(q2)p||, (5.1)

where s(q)p denotes the depth value of the rendered image at pixel p after placing the
object in the pose q. φ value is set to zero if the value is smaller than φl and set to one
if the value is larger than φu. The pose distance of two views is defined as:

δ(q1,q2) = arccos(|q1 · q2|)φ(q1, q2), (5.2)

where the pose q is the rotational pose of an object in quaternions. The negative
template is accepted to be assigned when the pose distance δ(q1,q2) is larger than that
of the positive template. The loss function for manifold learning is defined as

Ltriplet = max

(

0, 1 −
||fa − fn||22

||fa − fp||22 +m

)

, (5.3)
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where fa, fp and fn represent feature vectors of ROIs from the anchor image, positive
and negative templates. m is the dynamic margin introduced by [44] that forces the
features to have larger distances to different classes, which is formulated by

m =

{

2δ(qa,qn) if ca = cn,
γ otherwise,

(5.4)

where ca and cn denote the class of the object in the anchor ROI and the negative
template. The margin m is comparably large when the negative template is not the
same class. To guide the features to have a closer distance for the similar pose [137], an
additional loss for the positive pair is also applied as follows.

Lpose_pair = ||fa − fp||22. (5.5)

Segmentation masks and pose transformations are computed only for positive pairs.
Since the ground truth segmentation of templates is assumed to be given, the ROI
feature map of a template is filtered by its segmentation mask to minimize the effect of
the background. Thus, feature values that do not belong to the object are set to zero for
all channels. This filtered ROI feature map is also applied when the feature descriptor
is pre-calculated for templates while the ROI feature map of the test scene keeps all
the values. The loss function Lmask for mask prediction is a mean value of binary cross
entropy loss over the pixels of the resized ROI feature map. The pose regression loss
Lpose_reg is the Euclidean distance between the ground truth transformation and the
predicted transformation in quaternions. Finally, the total loss for all the tasks is given
by

L = Ltriplet + Lpose_pair + Lmask + Lpose_reg. (5.6)

5.2.4 Object Detection and Pose Hypotheses Generation

Figure 5.3 summarizes the inference process that detects an object and creates pose
hypotheses. For an input scene, center pixels are uniformly sampled and generate ROI
proposals with fixed spatial size. Thus, the width and height, w, of the ROI proposal of
the sampled point p is wp = ssizef/dp, where d denotes the depth value at each sampled
pixel, f is the focal length, and ssize is set to cover the maximum size of target objects
in 3D space. These boxes keep the aspect ratio and the spatial scale of the object in
the feature map. For each ROI, a feature vector of the ROI is computed to find the
NN template in the database using the efficient Kd-Tree search algorithm in Euclidean
space, and the feature distance is also calculated.

From this first matching step, ROIs that have closer distances to their nearest
template are selected to estimate segmentation masks. Then, the first mask prediction
is performed for the selected ROIs with pre-calculated ROI feature maps of templates.
Each segmentation mask from the feature comparison network is resized to its original
size. To remove the redundant masks of the same object, overlapping masks are merged
by the non-maximum suppression algorithm. For every iteration, the seed mask is set
to the mask that has the minimum feature distance and merges masks that overlap by
more than 50%. The remaining masks are used to specify the new centers of new ROI
proposals.
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Figure 5.3: The overview of the pose estimation process with an input depth image.
Color images are used only for visualization.

In the second matching step, predicted segmentation masks are used to filter out
backgrounds in feature maps to match the refined NN templates again. Then, final
segmentation masks and poses are estimated. As a result, five pose hypotheses are
generated for each region, Rk, using the five nearest templates Ti, a predicted segmenta-
tion mask M and rotation matrices Mi, Rk = {(T 1

k ,Mk,Q
1
k), (T 2

k ,Mk,Q
2
k)...(T 5

k ,Mk,Q
5
k)}.

The segmentation mask is computed once for each region using the result of the first
hypothesis for computational efficiency.

5.2.5 Post-Processing

Post-processing is an essential step to refine the pose and remove false detections from
the pool of hypotheses. Post-processing is made easier if the CAD model of the target
object is given since an exact rendering of each hypothesis is possible. It is challenging
to reject and derive the best result using depth images and a set of templates without
CAD models, which is going to be discussed as future work. Therefore, CAD models
are used only for evaluating generated hypotheses and refining pose predictions.

In the first rejection step, regions are removed if the overlap between predicted
segmentation masks and the rendered area of the first pose hypothesis is lower than 30%
after three iterations of ICP refinement with down-sampled points. After removing false
regions, hypotheses in the accepted regions are refined and evaluated by rendering the
object in refined poses. As with previous work that uses depth images for verification [15],
[36], the difference between the rendered depth image and the scene is calculated to
derive the number of inlier points, Ni, the number of occluded points, Nocc, and
the number of outliers, Nout, with respect to the number of rendered model points,
Nm. In contrast to the depth fitness score used in [36], the occlusion penalty term
is removed to detect an occluded object without penalty. Instead, the penalty term
for outliers PO = 1 − Nout/Nm is added. Thus, the depth fitness, SD, is derived by
SD = PONi/(Nm − Nocc). The remaining parts of the evaluation such as the ratio of
overlapped boundary points, SB, and the ratio of matched surface normals, SN , are
used in the same formula of [36]. The final score is a simple multiplication of these
scores, Sfinal = SDSBSN , which is used to filter out false detections and select the best
prediction.
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5.3 Evaluation

This section gives implementation details and experimental results. The experiments
are performed using a dataset that has heavily occluded objects in the scene, the
LineMOD-Occlusion [16]. Experiments using The T-Less dataset [63] show how MTTM
performs with unseen objects.

5.3.1 Implementation Details

To train the network of MTTM, both cluttered scenes with multiple objects and template
images are rendered using 15 objects of the original dataset. The total number of
cluttered scenes used for network training is approximately 20,000. For each training
scene, objects that are occluded less than 50% are included for training. The center
point of each ROI is randomly shifted for the robustness of misaligned center points.
The same method of [15] is applied to sample the viewpoints of synthetic templates
except for different scales since surface normals are invariant to the distance to the object
from the camera. After two subdivisions of a regular icosahedron, objects are sampled
from 301 viewpoints with additional in-plane rotation from −45◦ to 45◦ with a step
size of 15◦. As a result, each object’s template contains 2,107 samples. The parameters
are set to φl = 0.1m, φu = 0.5m, γ = 10 and ssize = 0.3m. All the experiments use the
same network with the same weights after training of 25 epochs.

Pixels with missing values are in-painted using values of surrounding pixels for both
rendered and real depth images before calculating surface normals. Surface normals
of an input image are computed efficiently by calculating depth gradients [139]. The
center points used in the initial detection step are uniformly sampled from every 20
pixels. During the hypothesis generation step, a hypothesis that already has a similar
hypothesis in the same region is removed, and the next NN template is selected to avoid
redundant hypotheses. In the post-processing step, the depth inlier threshold is set
to 10mm except for small objects, the ape and duck, that need a smaller depth inlier
threshold of 5mm. All experiments are conducted on an Intel i7-6700K CPU and an
NVIDIA GTX1080 GPU.

5.3.2 Evaluation of Segmentation

Since an advantage of MTTM is to predict segmentation masks without aligning the
object to the scene, the segmentation performance is evaluated. To annotate the
segmentation masks on the dataset, ground truth poses are used to place objects and
calculate the difference between test images and rendered images to decide which pixel
belongs to each object. A pixel is marked as a part of an object if its depth difference is
less than 0.02m. The segmentation results used in this evaluation are refined segments
of each object after the second matching step in Section 5.2.4. Thus, no alignment of
templates or CAD models are involved in this evaluation.

The performance is compared to other segmentation methods: using attention points
of objects to correctly segment the target object from the scene [140] and an edge-based
segmentation method [141]. Centers of objects in test scenes are provided as attention
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Approach MTTM Attention [140] FastGraph [141]
Object % of correctly segmented objects (IoU>0.5)

Ape 80.1 65.4 38.1
Can 79.6 72.8 55.1
Cat 64.9 59.9 33.6

Driller 78.8 85.2 76.3
Duck 85.0 60.9 58.0
Box 75.8 67.7 36.8
Glue 71.3 80.6 33.3

Hole P. 94.9 69.8 47.0
Average 78.8 70.3 47.0

Table 5.1: Results of Segmentation.

Figure 5.4: Matching results of two similar ROIs in the same image. Mask predictions
are dramatically changed by retrieving NN templates from different classes.
Colors are used only for visualization.

points to the method of [140]. Public code1 that is implemented by the authors of [140]
and code2 of [141] are used for this evaluation with their default parameters. For the
method of [141], we derive results with and without blurring and take the best result
between them for each object.

As shown in Table 5.1, segmentation results of MTTM outperforms other methods
even though they use color and depth values. This shows that MTTM uses features
of NN templates to predict corresponding segmentation masks of the target objects
rather than using general boundaries of arbitrary objects. The examples in Figure 5.4
show the mask predictions are dramatically changed with the retrieved templates even
though the ROIs are very close. This confirms that the advantage of MTTM that
matches features of templates not only for detecting an object but also for segmenting
the specific object without rendering and comparing depth images. Additional results
for entire images are depicted in Figure 5.5.

1https://rgit.acin.tuwien.ac.at/v4r/v4r
2https://github.com/rrg-polito/graph-canny-segm
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5.3 Evaluation 65

Figure 5.5: Examples of segmentation results using the LineMOD-Occlusion dataset.
Results of the baseline [140] are included for comparison.

5.3.3 Evaluation of Object Detection and Pose Estimation

In this evaluation, the target object is assumed to be visible in the scene. The maximum
of 50 regions that has a larger portion of inlier points is selected to calculate the final
score, Sfinal, after the first rejection step in Section 5.2.5. The top 15 hypotheses that
have higher scores are refined by maximum 30 iterations of ICP. Then, the final scores
are re-computed to decide on the best prediction. A set of templates of an object is
only included for each recognition step. Thus, each region does not compete with other
object classes. To analyze the effect of the pose regression network, the same experiment
is performed without pose regression, which directly uses poses of templates for initial
alignment. The metric is the AD{D|I} error that has been used to measure the pose
error for the dataset [15]. The box and glue are regarded as symmetric objects so that
the ADI metric is applied. Since there is no previous work that matches templates
using depth images only for detection and pose estimation, we compare our method
with a template-based method that has been widely used as a baseline for the original
dataset [15].

Figure 5.6 shows examples of pose estimation results. As shown in Table 5.2, MTTM
performs better on six out of eight objects despite the baseline method using color
and depth information together. The second column reports the results without pose
prediction, which shows worse performance than using pose prediction. It is clear that
the pose regression network predicts a more similar pose than the original pose of the
NN template except for the symmetric objects, the box and the glue. Since multiple
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66 5 Mult-Task Template Matchingusing Depth Images

Figure 5.6: Examples of pose estimation results using LineMOD-Occlusion with depth
images. Green: ground truth poses, blue: estimated poses. Color images
are used only for visualization.

Approach MTTM MTTM-NN Linemod [15]
Object % of correct poses (AD{D|I} < 0.1kd)

Ape 56.7 54.4 49.8
Can 54.5 50.6 51.2
Cat 38.2 37.9 34.9

Driller 55.4 54.2 59.6
Duck 56.3 55.6 65.1
Box 48.9 50.7 39.6
Glue 41.7 42.9 23.3

Hole P. 71.2 69.8 67.2
Average 52.9 52.0 48.8

Table 5.2: Results of Detection and Pose estimation.
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5.3 Evaluation 67

Figure 5.7: Sample results of MTTM using real templates. The database is simply
replaced by real images and no further training is performed. Color images
are used only for better visualization. Green: ground truth poses, red:
predicted poses.

transformations exist for symmetric objects, the pose regression network sometimes
tries to predict a transform from the template to a pose that is not the closest among
possible candidates, which results in a less accurate estimate. This result shows it
is worth using the pose regression network for non-symmetric objects. Most of the
failure cases are caused by the wrong estimation of translations since MTTM predicts a
rotation of an object only and estimates the center points from visible parts of objects.
Thus, the initial alignments are shifted when objects are partially occluded.

5.3.4 Real Templates and New Objects

The qualitative results of using real templates and novel objects are shown in Figure 5.7.
Templates of target objects are supplied by real test images of LineMOD [15] that do
not overlap with test images of LineMOD-Occlusion [16]. Approximately 1,000 images
per object are used as templates without heavy occlusion, and segmentation masks
are derived by the same method used in the segmentation experiment. The results
show the method produces good results with real templates without additional domain
adaptation techniques, which is an advantage of using synthetic depth images with the
sensor simulation for training.

Figure 5.8 shows recognition results of three new objects in the T-Less dataset [63]
and Figure 5.9 shows examples of pose estimation results of all objects in test images.
Templates are replaced by the given training images for the objects in the scene while
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68 5 Mult-Task Template Matchingusing Depth Images

Figure 5.8: Sample results of MTTM using real templates for unseen objects.

Figure 5.9: Examples of pose estimation results using T-Less with depth images. Green:
ground truth poses, blue: estimated poses. Color images are used only for
visualization.

the network remains the same. The results show that MTTM successfully retrieves the
nearest templates, predicts segmentation masks, and estimates poses of novel objects
that have not seen during the network training. Since segmentation results rely on the
features of matched templates, it is more crucial for the novel objects to match correct
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5.4 Discussion 69

templates to predict precise segmentation masks.

5.4 Discussion

Learning new objects in real environments requires features derived directly from
a limited number of sample scenes rather than CAD models or a large amount of
training data. Furthermore, detecting objects without texture is important in order
to cope with objects having similar geometry but different texture. MTTM handles
this challenging problem by using learned features of templates with a multi-task
architecture. Consequently, adding sample images of target objects to the template
database is the only step that is necessary for a new object.

The limitation of MTTM is the lack of proper evaluation of generated pose hypotheses
without CAD models. Since MTTM does not use color information and does not
produce any local correspondence, it is difficult to reject false detections without ICP
for computing the fitness of each hypothesis. This also causes longer computation
time for evaluation, which takes up to 20 seconds while the generation of hypotheses
takes between 1s and 2s per image including the retrieval of NN templates. Thus,
the verification part should be improved to select the best hypothesis using matched
templates directly instead of CAD models while rejecting false detections quickly.

Hightlights

(1) A novel depth-based framework, MTTM, that matches the NN template as
well as predicts the segmentation mask and the pose of an object using a shared
feature map, which does not require additional training for a new object.
(2) Derivation of segmentation masks without any alignment of an object to the
scene, which enhances the robustness of the pose estimation performance.
(3) A rendering pipeline that creates realistic depth images by a sensor simulation.
(4) Experimental results showing that MTTM outperforms baseline methods with
a more challenging configuration with the standard benchmarks, and MTTTM
can be extended to new objects.
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Chapter 6

Dense Correspondence Matching
for Experience-based Grasping

6.1 Motivation

The previous chapter introduces MTTM that matches the nearest samples for segmen-
tation and pose estimation of a target object. MTTM is applicable to objects with the
same shape as well as slightly different shapes with similar sizes. Thus, it is possible to
transfer a grasp pose of a previous successful attempt to a new object that has a similar
shape by applying the estimated transformation on the grasp pose. However, predicting
a global transformation is not sufficient when the target object’s size is significantly
different from that of the nearest sample. As shown in Figure 6.1, the location of the
grasp pose can be assigned to a wrong location when the size of two objects are different,
which means that computing transformations of local parts are more important. This
fact has motivated previous work that estimates grasp poses based on local shapes [86],

Figure 6.1: Global transformation between two objects are not sufficient to estimate good
grasps when the scales of the objects are significantly different. Estimating
local correspondences under global contexts is necessary to suitably locate
the grasp pose.
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72 6 Dense Correspondence Matching for Experience-based Grasping

[96], [97]. Although the local shape-based methods are good for grasping a new object,
the methods do not deploy successful grasp experience with a similar object such that
every attempt is independent of previous experience. Furthermore, grasp proposals
are obtained without understanding global contexts that are helpful to manipulate
objects for further tasks after picking them (e.g., handles of drills). Therefore, when
we estimate a grasp pose of a new object, it is beneficial to leverage grasp experience
if the shape of the new object is similar to one of objects in a database of successful
grasp history. It is also beneficial to transfer grasp poses that are relevant to local parts
of familiar objects while estimating locations of corresponding local parts of the new
object based on global semantics. This chapter explores the benefits of using successful
grasp experiences by addressing the following research questions.

Research Questions

(1) How to use successful grasp experience to estimate a grasp pose of a new
object with a similar shape?
(2) How to predict dense geometrical correspondences between two depth images
or two 2.5D point clouds while understanding the global context of geometries?
(3) Is it possible to make robots collect good grasp experience of a novel object
by themselves without supervision?
(4) Is it possible to guide robots to grasp an object in a specific way (e.g., grasping
a handle of a mug)?

This chapter introduces a new method for incremental grasp learning from experience.
The key idea is to apply dense geometrical correspondence matching. Familiar objects
are identified through global geometric encoding and associated grasps are transferred
through local correspondence matching. The Dense Geometrical Correspondence
Matching Network (DGCM-Net) is proposed to encode the global geometry of objects in
depth images such that similar geometries are represented nearby in feature space to allow
accurate retrieval of experience. DGCM-Net additionally reconstructs dense geometrical
correspondences between pairs of depth images using a variant of normalized object
coordinate (NOC) values, View-Dependent Normalized Object Coordinates (VD-NOC).
VD-NOC values are used to represent correspondences of similar objects regardless of
their poses in a camera frame. These values are used to compute the rigid transformation
between the local region around the grasp of a stored experience and the corresponding
region on an object in a new scene.

Advantages of DGCM-Net are presented by experiments with practical scenarios.
DGCM-Net is applied in an incremental grasp learning pipeline, in which a robot
self-supervises grasp learning from its own experience. Experimental results show
that a robot learns to repeatably grasp the same object after one or two successful
experiences and also to grasp novel objects that have comparable geometry to a known
experience. As an extension, we show that the predictions from DGCM-Net improve
the performance of baseline grasping methods by combining their quality measures with
our experience-based measure. The incremental learning pipeline is also flexible in that
grasp success is not the only measure to constitute experience. Specific positions or
configurations of grasps can be preferred and therefore used in future situations. In
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6.2 Method 73

Figure 6.2: Overview of storing and retrieving experience with the incremental grasp
learning framework.

particular, semantic grasps, such as grasping the handle of a mug, are prioritized as
they are more relevant for the subsequent manipulation of the object [142]–[145]. As a
result, task-oriented grasps are quickly learned, allowing a robot to perform meaningful
actions with objects.

6.2 Method

This section describes our methodology for incremental experience-based grasp learning.
We begin with an overview of the framework. We then describe the dense geometrical
correspondence matching network for retrieving experience samples and generating
dense 3D-3D correspondences. Lastly, we outline how grasps are transferred between
local regions using the predicted correspondences.

6.2.1 Incremental Grasp Learning Framework

The main components of the incremental experience-based grasp learning framework
are shown in Figure 6.2. The input is a depth image Di ∈ R

W ×H and a segmentation
mask Mi ∈ R

W ×H that has entries 1 for pixels belonging to the target object and 0
otherwise. The goal of the framework is to generate a pose for the gripper that will
result in a successful grasp. This is represented as a rigid transformation T ∈ SE(3) of
the gripper pose in the camera coordinate frame.

The first step is to match the target object to samples stored in an experience database
E . Matching is done using the global geometric encoding from DGCM-Net, where the
feature map fi of the input image is compared to the feature maps of the database
samples. Feature maps are the output of a geometry encoder that takes a surface normal
image derived from the initial depth image as input. The set of samples with high
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matching scores are used to propose a candidate grasp. For each database match in E ,
the output of the VD-NOC encoder ce and the geometry feature encoding fe as well as
fi from the input are passed to the decoder of DGCM-Net to reconstruct the VD-NOC
values Vi ∈ R

W ×H×3. This represents a dense mapping between the pixels of the sample
and the input and thus a transformation of the points in the 3D coordinates can be
computed. Each experience has an associated grasp pose, therefore, the transformation
between the images is applied to transform the experience grasp to the target object.
Sensitivity to the difference in geometry between the input and sample is reduced by
confining the alignment to the region around the grasp pose. The region of interest
(ROI) on the sample Re is determined from the overlap of the gripper with the 3D
coordinates of the segmented object in the depth image. The corresponding ROI on
the target object Ri is derived through the matches between the VD-NOC values. The
ROIs are aligned by finding the optimal rotation and translation. The outcome is a
proposal for a full 6D grasp pose for the target object.

Incremental learning operates by executing a selected grasp proposal and updating
the database online with a new exemplar if the grasp is successful. Specifically, the
depth image, surface normal image, VD-NOC values, ROI and transformation of the
grasp pose are stored. Unsuccessful grasp attempts do not provide any information
for replicating past experience, therefore, no data is stored for failed grasps. As more
successful experience is accumulated, the likelihood of finding a nearby match for a new
input increases. The method is not restricted to only finding samples of exact object
instances, but can match to new or unseen objects if they have geometry resembling
those from experience.

6.2.2 Dense Geometrical Correspondence Matching

View-dependent Normalized Object Coordinate Space Predicting dense corre-
spondences between two depth images (i.e., the depth image of the object to grasp and
an experience in the database) is done by predicting a variant of NOC values. The
NOC values used in Chapter 3 represent the correspondence between the target object
and another one in the target object’s local frame. Typically this has been applied for
object pose estimation where the target object has a reference model and the other
object is an observation of the reference model in a scene.

To apply the same methodology without object models, we introduce the view-
dependent normalized object coordinate values. The depth images for a reference and
an input are converted to surface normal images. The VD-NOC values for the input Vi

are computed using the 3D coordinates of each pixel I3D
i from the input segmentation

mask in the camera coordinate frame. normalization is performed by setting the origin
to the mean coordinate between the maximum and minimum values of I3D

i according
to,

Vi =
I3D

i − I
3D
i

max |I3D
i − I

3D
i |

, where Ī3D
i =

max(I3D
i ) + min(I3D

i )
2

. (6.1)

normalization is performed separately for each dimension resulting in different normal-
ization factors for each axis. The direction of the z-axis is flipped to produce positive
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Figure 6.3: Overview of the DGCM-Net architecture and training objectives.

values for points that are nearer.
For grasping, the VD-NOC values are used to estimate the similarity between points

on the target object in the input image and the points on the object in the experience
database. A smaller distance between values in the VD-NOC values represents closer
geometrical correspondence. These can be used to estimate the transformation of a set
of points in the grasp pose ROI in order to transfer the grasp experience to the target
object.

DGCM-Net Architecture An overview of the dense geometric correspondence net-
work is shown in Figure 6.3. DGCM-Net consists of a geometry encoder, VD-NOC
encoder and VD-NOC decoder. The purpose of the geometry encoder is to learn a
representation that places images with similar geometry closer in feature space than
images with dissimilar geometry. The purpose of the VD-NOC encoder-decoder is to
reconstruct the VD-NOC values between a pair of images.

The input to the geometry encoder is a cropped surface normal image derived from
the input depth image and segmentation mask. The cropped image is created from
a 2D bounding box that is centered at the 2D projected point of the segmentation
mask’s centroid. The height and width of the image are adjusted to correspond to
30cm spatial size in 3D space. The cropped image is then resized to 128x128 pixels.
The first three stages of the Resnet-50 [118] architecture is employed and initialized
with the pre-trained weights using the ImageNet dataset [38]. The output of the third
block is passed to three convolution layers, kernel sizes = [3, 3, 2] and filter sizes =
[256, 256, 128] with strides 2 for all, and two fully connected layers with 256 outputs.
The LeakyReLU activation is applied to every layer output except the last layer that
uses the tanh as an activation to transform feature descriptors to 256 dimensions.

The input to the VD-NOC encoder is a cropped VD-NOC image. The input is passed
to five convolution layers, kernel sizes = [5, 3, 3, 3, 3] and filter sizes = [128, 256, 256,
256, 256] with strides 2 for all, and one fully connected layer with 256 outputs. The
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Figure 6.4: 3D models used for training and examples of positive and negative training
pairs. Left: Object models from the YCB dataset used to train DGCM-Net.
Middle: Examples of positive pairs with online augmentation, Gaussian
noise, and partial occlusion. Right: Examples of negative pairs. The
pairs are used to train feature vectors to have smaller distances for similar
geometries.

Stage Data generation Online augmentation
Parameters Scale Dist. to camera Frac. of Occlusion Gaussian noise
Range U(0.8, 1.5) U(1m, 1.7m) U(0.0, 0.25) N (µ=0,σ=0.01)

Table 6.1: Overview of the parameters used to generate the training data and for the
online data augmentation.

activation of each layer is the same for the geometry encoder. The VD-NOC decoder
reconstructs the VD-NOC values for the input image with respect to the camera
frame. The input to the decoder is the concatenated features from both geometry
encodings of the images and the output of the VD-NOC encoder for the reference. Skip
connections [115] are added by concatenating one-half of the output channels of each
intermediate layer of the encoders with corresponding layers in the decoder. This helps
to predict fine details in local areas. The decoder ends with a fully connected layer
with 2048 outputs followed by five blocks of deconvolution and convolution layers. The
output of the last convolution layer is the same size as the input image with three
channels that represent the x, y and z components of the VD-NOC values.

Training Objective DGCM-Net has two tasks and therefore consists of two objectives
in the training process. The first is the metric learning of feature descriptors to perform
matching and the second is for reconstructing the VD-NOC values of an input image.
For metric learning, the contrastive loss [146] is employed to minimize the Euclidean
distance between features of similar geometry (a positive pair) while increasing the
distance for a pair of different geometry (a negative pair) as formulated by,

Lmetric =
1
N

N
∑

i=1

(1 − ωi)d2
i + ωi max(10 − di,0)2, (6.2)
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where ω denotes labels for pairs that are set to 0 for positive pairs and 1 for negative
pairs. d denotes the Euclidean distance between encoded feature vectors (fi, fe ∈ R

256)
of the target and experience images from the geometry encoder. The loss is computed
for a mini-batch that consists of N pairs of training images.

For the reconstruction of VD-NOC values, the standard L1 loss is applied for each
pixel p. Since background pixels are masked out, their values are easy to predict. Hence,
the loss values for pixels on the object masks Mi ∈ R

W ×H are weighted by a factor of 3
to more precisely predict the values of pixels in the object masks as we performed in
Chapter 3. The reconstruction loss is thus given by,

L3D =
1

N ×W ×H

N
∑

i=1



3
∑

p∈Mi

||V p
i − V p

gt||1 +
∑

p/∈Mi

||V p
i − V p

gt||1



. (6.3)

The reconstruction loss is computed only if the pair of samples is positive. Finally, the
objective of the training is the weighted sum of two loss functions,

L = Lmetric + λL3D, (6.4)

where λ is a weight balancing the two objectives. We set λ to 1 in our experiments.

Training using Synthetic Images Synthetic depth images are created to train the
network. 3D models are sampled such that no two models are the same even after
a scale change1. Objects are selected from the YCB object and model set [58] and
listed in Figure 6.4 (left). Depth images are rendered in OpenGL2 for each object
model by uniformly sampling a pose and randomly selecting scale factors for each axis.
Five scenes are rendered with different scales for each sampled object pose. To avoid
ambiguous views of symmetric objects, view angles are limited between 0 and 45 degrees
on each axis. For cylindrical objects, no variation around the rotational axis is applied.
Parameters used in the generation process are summarised in Table 6.1. The result for
every training sample is a depth image, VD-NOC image, annotated pose, annotated
scale factors for each dimension and a look-up table of visible vertices. Approximately
166k images are created and used for training.

Metric learning requires positive and negative pairs. Positive pairs are obtained
from samples of the same object in different poses when a pair of images share more
than half of the visible vertices. Negative pairs are obtained from different objects
or different poses of the same object when images share less than half of the visible
vertices. Examples of training samples of both types are given in Figure 6.4 (middle and
right). For positive pairs, the target VD-NOC values (i.e., the ground-truth value) is
computed using the relative pose of the object, which is known for the training samples.
Thus, the VD-NOC values that are defined in the camera frame of the first element of
the pair are transformed to the camera frame of the second element. For our grasping
framework, this amounts to transforming the VD-NOC values from the object in the
input image to the object in the experience database.

1The set of 3D models only contains one box because any other box can be constructed just by
manipulating the scale in the different dimensions

2https://www.opengl.org
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Figure 6.5: Overview of the process for generating grasp proposals from the nearest
neighbour experience.

Further augmentation is applied to the image samples to improve robustness against
occlusion and noise. Occlusion is simulated by setting a partial area in the surface normal
image and the corresponding entries in the VD-NOC values to zero (i.e., the value for the
background). This enables the network to learn features that still return good matches
between an input and samples in the database even when one is occluded. Gaussian
noise is also applied to both images to cope with the expected noise from real sensors.
Figure 6.4 (middle and right) presents examples after applying the augmentation. More
details about the parameters used for augmentation are provided in Table 6.1.

We train the network for 35 epochs using the ADAM optimiser [117] while assigning
25 positive pairs and 25 negative pairs for each batch. The learning rate is initially set
to 0.0001 and divided by a factor of 10 every 5 epochs. After training the network once,
the weights are fixed for all experiments in this chapter without any fine-tuning.

6.2.3 Generating Grasp Proposals

The overview in Figure 6.5 shows the process of retrieving and generating grasps given
an input depth image. First, the surface normal image of the input is encoded to
a feature map fi by the geometry encoder. This is compared to all feature maps
{fe} ∀ e ∈ E to find a set of nearest neighbours Ni ⊂ E . The stored VD-NOC
values Ve of a sample e ∈ Ni is loaded to compute the VD-NOC feature map ce.
Given ce, fe and fi, the decoder predicts the VD-NOC values of the input depth
image Vi;e (VD-NOC values of Di in the frame of De) as shown in Figure 6.5. The
ROI of the experience Re is used to compute the corresponding ROI for the input
Ri = {p ∈ Vi : min

e
|p − pe| < θc ∀ pe ∈ Re}, which is the subset of points whose

distance to the nearest points in Re is below a threshold θc. The predicted VD-NOC
ROI points is denoted V R

i;e and are defined in the camera frame of De. Each pixel of V R
i

forms a 3D-3D correspondence from the VD-NOC values V R
i;e and V R

i;i that are defined
in De and Di. Thus, an initial rotation from the camera frame of the experience to the
camera frame of the input is derived by aligning the ROI VD-NOC images. The grasp
pose Te is then aligned to Di by computing the rotation that minimises the summation
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of distances of the correspondences given by,

Rinit,tinit = arg min
R,t

∑

Ri

||(RV R
i;e + t) − V R

i;i ||2. (6.5)

The optimised solution for Equation (6.5) is obtained using singular value decompo-
sition. The unit of tinit does not correspond to the scale of the 3D space because the
VD-NOC values are normalized. Therefore, the translation tinit is separately computed
using the difference between the mean coordinates between the maximum and minimum
values of the ROI points as was applied in Equation (6.1). The computed rotation
and translation are used to transform all ROI points of the experience Re to the scene
and the alignment is refined by applying the iterative closest point algorithm. The
grasp poses in the experience Te is transformed to create the grasp proposal Tg by
applying the same refined transformation. Finally, the gripper position is moved to a
fixed distance from the object surface by translating along the approach direction with
respect to the closest point in the input.

Each match in the database has an associated score in the range (0,1] that represents
that similarity of the depth image to the input, which is used as a pseudo-measure for
the quality of the grasp. This score is computed as,

S(i, e) = e−||fi−fe||2 . (6.6)

The final output is a set of grasps G = {(Tg, sg)} where each grasp proposal is composed
of a transformation of the gripper into the scene Tg as well as a score value sg using
Equation (6.6).

6.3 Evaluation

This section analyzes the grasp proposal method with a hand-annotated dataset. Real-
world grasping experiments with a mobile manipulator presents the grasp performance of
our framework using multiple object classes in different scenarios. Code for DGCM-Net
is publicly available at https://rgit.acin.tuwien.ac.at/v4r/dgcm-net.

6.3.1 Offline Experiments

Offline experiments are performed to first investigate the quality of grasp pose prediction
with respect to the size of the grasp experience database and secondly to evaluate
the ability to transfer grasps between observations of objects within the same and to
different classes. The threshold for matching ROI correspondences θc is set to 0.3 for
all experiments. This value produces a reasonable separation of ROI areas and other
parts of objects. Every stored experience is duplicated with in-plane rotations at angles
between -90 and +90 degrees with a step size of 45 degrees. This enables grasp transfer
to objects in new poses.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://rgit.acin.tuwien.ac.at/v4r/dgcm-net
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Figure 6.6: Objects in the dataset used for the offline experiments and to supplement
past experience during the online experiment.

Dataset A dataset is created to evaluate the quality of grasp prediction compris-
ing depth images of the objects shown in Figure 6.6. These objects are organised
into seven classes: can, mug, cup, bottle, bowl, box and clamp. Four instances
are used for each class and a number of these instances are from the YCB ob-
ject dataset [58], while other instances are objects commonly found in homes. The
dataset is available at https://www.acin.tuwien.ac.at/en/vision-for-robotics/

software-tools/lfed-6d-dataset/.
Recordings are made by placing each object on a small table and capturing a depth

image with an ASUS XTion Pro Live RGB-D camera. Each object is placed in various
poses and locations, and the camera is moved between two different heights. The object
is segmented in each depth image by detecting the table surface with RANSAC and
selecting all points that remain above the table plane. The dataset does not require
ground-truth segmentations, but instead should be segmented by the same method
that extracts the masks for the input images in order for the entries in the experience
database to best resemble the inputs.

Grasp poses for a parallel-jaw gripper are manually annotated in the depth images.
Each depth image consists of possibly multiple grasp annotations according to their
direction, for example, from the top or from the side. The full dataset used for testing
consists of depth images, segmentation masks and grasp poses for 28 objects.

Measuring Grasp Pose Quality Reporting quantitative statistics requires the quality
of the estimated grasp poses to be measured. It is possible to execute physics simulation
and to check for grasp success, however, to isolate the grasp prediction itself, we measure
the difference in grasp pose for an input with respect to the annotated pose. The
experiments are simplified by selecting only grasp annotations on the top of the objects

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.acin.tuwien.ac.at/en/ vision-for-robotics/software-tools/lfed-6d-dataset/
https://www.acin.tuwien.ac.at/en/ vision-for-robotics/software-tools/lfed-6d-dataset/
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Figure 6.7: Results of the offline experiments. Left: Ratio of accurately estimated grasp
pose with an increasing number of experiences per instance. Solid lines show
results when class specific experience is used for each test class. Dotted
lines show results when experience from all classes is used. Right: Ratio of
accurately estimated grasp poses using experience from each instance in all
classes.

when they are placed in their upright canonical pose. Even though the grasp proposals
are limited to top-down, multiple poses are available, especially for objects that are
symmetric or are elongated in the x or y dimension such that translations of a top-down
grasp are equivalent. Consistency of top-down grasp poses is ensured by testing with
the subset of classes can, mug, cup and bottle.

A grasp pose is regarded as correct when the translation error is less than 5cm and
the rotational error around the x- and y-axes is less than 15 degrees. A rotation error
around the z-axis in the gripper frame, which is parallel to the rotational axis of an
object, is ignored since it should be a successful grasp regardless of the rotation with
respect to this axis.

Increasing Experience The left plot of Figure 6.7 shows the ratio of correctly esti-
mated grasp poses with increasing numbers of experience per instance. Solid lines show
results when only the experience for the relevant class is considered and the dotted lines
show the results when experience for all classes is considered. For each configuration
(class and number of experience per instance), we perform ten iterations using randomly
selected samples in the iteration. The results with class-specific experience demonstrate
that the grasp poses are often correctly estimated even if only one experience is included
per instance. For the can and bottle classes, the correct estimation is approximately
90%, while the worst performing class, cup, achieves 68%. However, as the number of
experiences increases per instance in each class, the grasp pose estimation improves.

The dotted lines show the variation in performance when including other classes for
experience, which reflects more practical scenarios in the real world. Except for the mug

class, the performance slightly drops because the retrieval of experiences from different

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
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Figure 6.8: Examples of the three nearest experiences and estimated grasp poses for
example input images. Top two rows show examples when the same instance
is included in the experience database. Bottom two rows show examples
when the instance is not in the experience database.

classes can cause inaccurate prediction of VD-NOC values. However, the accuracy still
achieves more than 79% when two experiences are included per instance. This implies
that the feature space encoded by the geometry encoder is sufficient to distinguish
different geometrical shapes. The performance gap for the can class, which has the
most simple shape, is comparably larger than for the other classes. This is because the
mapping from more complex to simpler geometries produces inaccurate estimations by
transferring detailed shapes into simpler geometries. We discuss more detail regarding
this relationship between classes in the following section.

Figure 6.8 shows qualitative results. The figure shows the three nearest experiences
and the best transformed pose for different instances from different classes. The first
and second rows are obtained when the experience database contains samples from all
classes and include the exact instance in the test image. The third and fourth rows are
obtained after excluding the instance in the test image so that different instances in the
same class must be retrieved to generate grasp proposals. The results reveal that the
grasp poses are transformed to similar locations and directions even if the object poses
from experience are different (see the grasp poses for the can in the third row).

Transfer Between Instances and Classes These experiments show that experience
can be transferred between instances and classes. The experiments are conducted by
using all experience from a single object instance while testing on different instances.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
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The evaluation metric and subset of target grasp poses are the same as in the previous
experiment. The matrix on the right of Figure 6.7 shows that the experience of instances
transfers well to other instances within the same class. Furthermore, experience also
transfers beyond the class. For example, many good grasps are found for bottle

instances when provided by experience from can instances (both types of objects have
a closed surface on the top) and that instances of the cup class provide sufficient
experience for grasping mug instances (both types of objects have no surface on the top).
However, the results show that it is difficult to transfer the experience of a class to an
instance in the same class when the geometry and scale of the instance are different
from the other instances in the class (e.g., Can4 and Cup4). Thus, better grasp poses are
obtained when the experience is obtained from geometrically similar objects regardless
of explicit classes. It is also observed that grasps for simpler geometries (e.g., from can

to bottle and cup to mug) are more accurately transferred, while the other direction
from complex geometry to simpler geometry is more difficult. This is because the
network tries to predict VD-NOC values of detailed shapes of objects in the experience
set, such as handles of mug instances, which potentially causes errors by predicting
corresponding points even if the shapes are missing in the new object.

6.3.2 Robot Experiments

This section presents results of real-world grasping experiments with a mobile manip-
ulator. First, we describe the hardware set up used for the experiments. Second, we
compare our method to baseline approaches. Third, we evaluate the full pipeline of
online incremental grasp learning. Finally, we demonstrate the extension to semantic
grasp learning.

Experimental Details The robot experiments are performed with the Toyota Human
Support Robot [147]. The platform consists of a 4-DOF arm but motions are computed
including the omni-directional base, which effectively offers seven degrees of freedom.
Motions for grasp execution are planned using MoveIt [148]3. The end-effector is a
parallel-jaw gripper and grasp success is measured by checking the distance between the
tips of the gripper after the target object is lifted. If the distance is non-zero, then the
grasp is declared successful, otherwise, it is a failure. Depth images are captured with
the onboard ASUS XTion Pro Live RGB-D sensor positioned on the head of the robot.

For all grasping experiments, individual objects are placed on a small table that
has a height of 45cm. The robot is approximately positioned 30cm from the table
(edge of the robot base to edge of the table). The head of the robot is tilted such that
the camera faces the center of the table. The torso of the robot is raised to give an
approximate distance from the camera to an object of 1m to suit the optimal range
of the sensor. Objects are segmented from the table with the same procedure for
generating segmentation masks for the dataset.

All code is written in C++ and Python, and is running on the robot in Ubuntu
16.04. ROS [149]4 is used for process communication. DGCM-Net is implemented in

3http://moveit.ros.org
4https://www.ros.org/

https://www.tuwien.at/bibliothek
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Tensorflow and is running on an external PC with an NVIDIA GTX 1050 Ti.

Comparison to Baselines Experiments are conducted to measure the grasp per-
formance of our framework. For comparison, experiments are also performed with a
number of baselines. The full set of methods is as follows:

• HAF: The approach introduced in [86], where height accumulated features are
extracted from point clouds to derive grasp-relevant structure. The features
are computed on different regions of the input and a support vector machine
is trained to predict the quality of the grasp for each feature. Both top-down
and forward-facing grasps are enabled, and the output with the highest score is
executed. We use the original code provided5.

• GPD: The approach introduced in [96], where grasps are sampled using the surface
geometry of the input point cloud. Grasp success for each sample is classified
using a convolutional neural network (CNN). This takes as input three images: an
averaged height map of occupied points, averaged height map of the unobserved
region and averaged surface normals. Given this input, the CNN generates a score
value. Finally, grasps are clustered and the highest scoring cluster is selected. We
use the original code provided6 and the full 15 channel version.

• DGCM-Net: The grasp proposals from DGCM-Net using pre-collected experience
for the relevant object classes in the experiments. Similar to GPD, the set
of proposals from DGCM-Net are clustered and the highest scoring cluster is
executed. Clustering is performed by grouping all grasps within 5cm translation
and 15 degrees rotation. The grasp of the cluster is the mean pose of the proposals
that make up the cluster. The cluster with the highest summed score is executed.
The number of nearest neighbors to be retrieved by DGCM-Net is set to 10.

• GPD + DGCM-Net: Grasps are proposed using GPD and the scores are modified
by the predictions from DGCM-Net. First, the grasps from the GPD method are
computed and the scores are normalized to the range [0, 1]. Then DGCM-Net
is run on the same input and for each GPD candidate, we find all DGCM-Net
proposals within 5cm translation and 15 degrees rotation. The experience score is
the average of the scores for all DGCM-Net grasps deemed to be nearby. The final
score for each GPD candidate is the average of the normalized GPD score and
the summed experience score. The grasp with the highest final score is executed.

Many robotic grasping approaches are successful for the bin-picking task, e.g., [95].
However, these are focused on 2D grasping and therefore expect a top-down view of the
scene and only generate a grasp parallel to the camera axis. This is unsuitable for our
robot platform due to the position of the arm on the front of the body that occludes the
scene when facing the camera directly downwards. Additionally, bin-picking methods
are at a disadvantage because they only generate grasps for a single approach direction.
It is left to future work to extend the evaluation to this type of scenario.

5https://github.com/davidfischinger/haf_grasping
6https://github.com/atenpas/gpd
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Figure 6.9: Test objects used for the online grasping experiments. Three instances in
seven classes are used.

HAF GPD
DGCM-

Net

GPD +
DGCM-

Net

Box 0.87 0.80 0.67 1.00

Can 0.87 0.67 0.93 0.73

Bottle 0.87 0.93 0.93 0.93

Mug 0.80 0.80 0.87 1.00

Cup 0.80 0.80 0.73 1.00

Bowl 0.40 0.87 0.80 0.87

Clamp 0.40 0.60 0.60 0.67

Average 0.71 0.79 0.79 0.89

Table 6.2: Grasp success rate of our framework and baseline methods for different target
object classes. The bottom row shows the average for all classes.

The experiments are performed for objects from the classes box, can, bottle, mug,
cup, bowl and clamp. Three instances are chosen per class and five poses are considered
per instance. The five poses for each instance are kept constant for the experiments
with each grasping method. The objects selected for the experiments are shown in
Figure 6.9. These include one object from the YCB dataset for each class from the
objects used in Section 6.3.1, in particular, the sugar box, spam can, mustard bottle,
red mug, orange cup, red bowl and XL clamp. The other two objects for each class
are a mixture of YCB objects and common objects found in homes.

The experience used for our method is an extension of the database from Section 6.3.1
that includes instances from the additional classes of box, bowl and clamp. Since we
are interested in observing the grasp performance for unseen objects, the YCB objects
selected as target objects are removed from the experience database.

Performance is measured by grasp success rate, which is the number of successful
grasps divided by the total number of attempts. Table 6.2 reports the average grasp

https://www.tuwien.at/bibliothek
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success rate for each class and the average for all classes (bottom row). The results show
that our method performs equivalently to GPD and that both methods outperform
HAF (+8%). However, combining experience with GPD achieves a much higher grasp
success rate overall. In comparison to the original GPD method, this is an increase of
10%.

For most classes, the combined approach performs either the same as the best
performing individual method or better. The only exception is the can class, which
has 20% lower grasp success rate than our direct method. Our observation during the
experiments is that GPD often proposed grasps on and orthogonal to the rim of the can

objects, which resulted in failures. This exposes the flaw that if the initial candidates
are unfavorable, the combined approach cannot improve. For these objects, when grasp
experience on the top of the can are stored, the grasps on the rim are still similar in
position and orientation to warrant their selection.

Surprisingly, the box class is the most difficult for our approach despite having easy
geometry to compute a grasp as shown by the high success rate of HAF. This can be
explained by the fact that all objects of this type can be represented by a single box by
changing the scale in the different dimensions. Thus, the network has to decide whether
to regard a new instance as a scaled version of an experience or as a transformed
(i.e., rotated) instance. The ambiguity causes noisy predictions of VD-NOC values.
Furthermore, since grasp proposals are transformed from previous experiences and are
ideally in a similar grasp location, a scale change may cause the prediction to exceed
the range of the gripper, resulting in its rejection due to the collision.

Incremental Learning This set of experiments demonstrate the incremental learning
framework. The test objects chosen are the grey clamp from our dataset, the plastic

drill from the YCB object dataset and a gaming controller. Past experience is
stored in the database, however, not for the classes of the test objects. Therefore,
experience from the clamp class is removed. Since good grasps may not be generated for
the unseen objects, GPD is used in the beginning until DGCM-Net makes reasonable
predictions. A threshold of 0.9 is set as the minimum feature distance that must be
achieved by the output of DGCM-Net, otherwise, the best grasp from GPD is executed.
Typically it only takes one or two successful attempts for the system to switch from
GPD to DGCM-Net. The objects are placed randomly on the table at the beginning
of each experiment and the system runs autonomously, with the robot grasping the
object from where it lies after a successful or failed attempt. The object is only handled
by a person if it is unintentionally moved near the edge of the table and presents a
risk of falling. After successful grasps, objects are placed on the table by the robot
and receive a slight variation in pose; failed grasps typically cause considerable object
movement. After any grasp attempt, the robot base returns to the start position and
the localization inaccuracy generates further viewpoint variation.

Figures 6.10, 6.11 and 6.12 show the evolution of grasp success for the three objects.
In these figures, the first row shows the surface normal image of the input and the
second to fourth rows show the nearest three matches in the database. Below this,
we plot the minimum feature distance of the nearest neighbor. Lastly, we show the
best grasp proposal from DGCM-Net and the actual gripper position during the grasp
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6.3 Evaluation 87

Figure 6.10: Summary of results for the incremental learning experiment with the grey

clamp.

Figure 6.11: Summary of results for the incremental learning experiment with the YCB
plastic drill.

captured by an external camera (red border indicates failure and green border indicates
success).

From these experiments, we make two observations. Firstly, after the first successful
attempt from GPD is recorded, the robot typically continues to grasp the target objects
successfully. The predicted grasps for each attempt confirms that our method reliably
predicts the same successful experience so long as the object and its shape is correctly
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Figure 6.12: Summary of results for the incremental learning experiment with the
gaming controller.

identified. The second observation is that the minimum feature distance drops below
the threshold after as many as one samples is in the database. This is most apparent for
the grey clamp in which the minimum feature distance is very small for all subsequent
trials.

The grasping for the plastic drill and gaming controller are less reliable than
for the grey clamp. For the plastic drill, the system still exhibits some failures
even after accumulating experience. In both cases, the nearest feature distance does not
converge to the same low value as was observed for the grey clamp. The reason is that
the plastic drill and gaming controller have less distinct shapes and therefore
are more difficult to match. This is especially noticeable when the objects have rotated.
The objects are often confused as an instance from the box class and the grasps for the
matching object is executed. Fortunately for the gaming controller, the execution
still results in success. However, for the plastic drill, the predicted grasp is not very
good and the grasp fails.

Semantic Grasping A final set of experiments demonstrate the extension of our
method to generate semantic grasps for instances belonging to the same functional
class. For these experiments, we investigate grasps on the handles of mug and drill

objects. The experience is hand-annotated for test exemplars of instances in the same
classes. The semantic grasps can be automatically annotated by affordance detection
methods [150] in real applications.

Example grasp proposals generated by our method as well as GPD and HAF for
a mug and drill in various poses are shown in Figure 6.13. Our method reliably
generates grasp poses on the relevant object part, while both GPD and HAF fail to
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6.4 Discussion 89

Figure 6.13: Examples of semantic grasping for the YCB red mug and the YCB orange
drill in four different poses. First row: Surface normal image. Second
row: Grasp pose executed by the robot. Third row: Predicted grasp from
DGCM-Net. Fourth row: Predicted grasp from GPD. Fifth row: Predicted
grasp from HAF.

do so. Although the grasps from GPD and HAF may result in success, they do not
support the functional use of the object. For the mug, it is understandable that the
handle is not grasped because the quality of the depth data on that part of the object
is very poor and does not characterize a stable grasp. Our method, on the other hand,
does not only rely on the local structure to estimate the grasp. So long as there is
some cue about the handle, as is present in these selected examples, the handle grasp
is generated. The drill offers more depth data on the handle, but the baselines still
prefer to grasp the head. Even though HAF is executed to find both top and front
grasps, a top grasp or a front grasp on the head is preferred.

6.4 Discussion

This chapter introduced an approach for incrementally learning grasps by leveraging past
experiences. In our system, every successful grasp is stored in a database and retrieved
to guide future grasps. This is accomplished with the dense geometric correspondence
network that is trained to predict the similarity between newly acquired input depth
images and stored experiences as well as to predict 3D-3D correspondences to transform
grasp poses. A descriptive feature space is constructed for the retrieval task using metric
learning and correspondences are established by predicting view-dependent normalized
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object coordinate values.
Offline studies with a dataset showed that our approach precisely recovers grasps

from experiences with the same object and also transfers well to unseen objects from
the same or different classes. Furthermore, results showed that more experience leads
to more reliable grasp proposals. Hardware experiments with a mobile manipulator
showed that our experience-based grasping method performs equally successful as
the baselines and integration with the baselines show overall superior performance.
Additional experiments demonstrated the full online capability to efficiently learn grasps
for unseen objects, often needing only one or two successful grasps to reliably re-grasp
the same object. Finally, an extension was demonstrated whereby specific grasps, such
as those on handles, can be desired in order to achieve semantically meaningful grasps.

Hightlights

(1) The dense geometrical correspondence matching network to encode object
geometry for nearest neighbor retrieval and to densely reconstruct 3D-3D corre-
spondences in order to transfer grasps from stored experiences to unseen objects.
(2) An experience-based 6D grasp learning pipeline that accumulates exemplars
to guide grasp selection for the same object or novel unseen objects.
(3) Offline experiments with a new dataset showing the capability of DGCM-Net
to transfer grasps to unseen objects as well as to steadily improve over time with
increasing accumulation of data.
(4) Online grasping experiments showing that combining the baselines with our
experience-based predictions significantly improves the reliability of grasping.
(5) Demonstrations showing the extension of our method for semantic grasping
by guiding grasp selection to specific parts of objects
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Chapter 7

Conclusion

Typical datasets for object pose estimation have reflected challenging scenarios during
test time by capturing images from unconstrained and cluttered scenes in different
lighting conditions. However, not only test environments but also training environments
are unconstrained in real-world scenarios. 3D models with high-quality textures are
common in datasets while it is difficult to obtain 3D models in good quality from the
real world without a special device and setup. Capturing real images of objects using
cameras is easy but annotating poses is a difficult and time-consuming task. The objects
in the captured images are often occluded by other objects. There are objects that
cannot be represented by a 3D model due to shape variations of individual instances
such as vegetables, fruit, and cups. In our daily lives, we face new objects every day
while recognizing them after a few observations instead of thinking and learning the
objects for a night. Likewise, poses of new objects can be determined by referencing
a few observations instead of training a new recognizer for the new objects, which is
useful to transfer successful interaction with an object to a new object when they are
similar.

This chapter summarizes how the methods introduced in this thesis tackled the
aforementioned challenges and discusses further directions of object pose estimation
research.

7.1 Summary

In each chapter, different types of the aforementioned practical scenarios were assumed,
and the obstacles that make previous work difficult to apply for the scenarios were
tackled, which is the biggest contribution of this thesis. Evaluations using our custom
datasets and real robots showed the proposed methods in this thesis successfully reduce
the gap between the dataset world and the real world. Furthermore, evaluations on
public benchmarks showed the methods also achieve state-of-the-art performance in
comparison to previous work.

A novel architecture for 6D pose estimation of objects using RGB images, Pix2Pose,
was introduced in Chapter 3. As textures of 3D models are difficult to obtain, the
network was trained with only real images using 3D models without texture information.
Pix2Pose also tackled two common challenges of object pose estimation: occlusion and
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92 7 Conclusion

symmetry. The occlusion of objects is handled by predicting coordinates of each pixel
regardless of visibility. A novel loss function took a minimum error among possible
loss values computed from multiple symmetric poses of an object, which made the
training process more robust with higher accuracy. Pix2Pose has shown robust and
state-of-the-art performance in different types of datasets from various domains using
either 3D models without texture or with texture.

Chapter 4 highlighted the issue that it is difficult to obtain either 3D models
with high-quality textures or many real images with pose annotations from various
viewpoints, which has been assumed in previous work. A novel method, NOL, was
introduced to create training images of an object using a few cluttered images (e.g., less
than 20 images) with noisy annotations. A new dataset was collected with a mobile
robot from a practical scenario, i.e., the robot drives around a table with multiple
objects while looking at the center of the table, and poses of objects are self-annotated
by a 3D reconstruction method. Experimental results with this new dataset showed
NOL successfully synthesizes training images of objects using a few observations. The
generated training images were sufficient to train a 2D detection method and a pose
estimation method for an object. Evaluations on public benchmarks also showed training
images created by NOL led to state-of-the-art performance in comparison to methods
that are trained with 13 times the number of real images and synthetic images using
textured 3D models.

The methods introduced in Chapter 5 and 6 tackled more challenging scenarios in
applications of robot manipulation. The pose estimators that directly predict poses of
a closed-set of objects are not applicable when we have to face new objects frequently
as the estimation model has to be re-trained. Instead of re-training the model every
time, a novel method, MTTM, is proposed in Chapter 5 to estimate poses of objects
by matching the nearest sample from a set of object templates. The method compares
features of inputs and templates to predict pixel-wise segmentation of target objects.
Since geometries of objects are more important than textures for manipulation, depth
images were used as inputs. Evaluations on public benchmark showed the method
successfully performs detection, segmentation and pose estimation of objects using a set
of templates regardless of their types (synthetic, real). The method enables to recognize
a new object by adding sample images of target objects immediately without fine-tuning
of the network model. Experiments in a practical scenario show that the method is
also applicable to objects with similar shapes (e.g., vegetables and fruit) without exact
3D models.

Chapter 6 further improved MTTM to transfer successful grasp experience of an object
to a new object that has a similar geometry. As grasp success relies more on local shapes,
the features of two inputs, one from a camera and another from an experience, are
compared to predict pixel-wise geometric correspondences. The dense correspondences
were used to specify a relevant region for grasping and transfer a grasp pose from the
experience to the target object. The network is trained to predict consistent values for
an object regardless of scale changes of the object by applying random scaling factors.
Thus, locations of local parts in the object are globally consistent for the object in
the dense correspondences, which enables the method to estimate grasp poses at the
semantically same location (e.g., handles of drills). Evaluations performed on a new
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7.2 Outlook 93

dataset showed that the method precisely estimates grasp poses from experiences with
the same object and also successfully transfers to unseen objects when the objects have
similar geometries. Experiments using a real robot showed outperforming results when
the method is integrated with a baseline that supplements grasp poses for unfamiliar
objects. Additional experiments demonstrated that grasping of specific parts, such as
handles of drills and mugs, can be guided by including corresponding grasp experience
on the specific parts as the method predicts local correspondences at globally consistent
locations.

7.2 Outlook

The effort for reducing the gap between dataset-based research and real applications
should be continued in future work. As this thesis addressed, one of the major directions
is to reduce the effort for training since the quality and amount of training data is more
important when a data-driven model is employed. The instance-level pose estimation
can be extended to estimate poses of objects in the same category. For both robotics
and augmented reality applications, it is also important to develop a method that is
computationally efficient so that object poses can be estimated using a mobile device
with low power consumption. Precisely estimated poses of surrounding objects play a
key role in robot manipulation tasks by guiding robots to plan safe trajectories with
successful manipulation of target objects.

7.2.1 Training Data for Pose Estimation

Types of training data vary by domains, scenarios, and applications. The most practical
and challenging scenario is when no prior knowledge of a target object is given. Although
NOL and the SMOT dataset in Chapter 4 tackled this scenario by reconstructing 3D
scenes and self-annotating object poses, the pipeline suffers from geometrical errors of
reconstructed 3D models. Therefore, future work should aim to reconstruct precise 3D
models from a few observations of objects. Furthermore, some parts of objects, such as
the bottom parts of the objects in SMOT, cannot be observed without reconfiguration of
a static scene. A possible approach will be expanding data incrementally and associating
different sequences. For example, an initial model is trained by partial observations of
a target object. The initial model is used to associate new observations from different
scenes. The same approach can be applied when textured 3D models are available so
that synthetically rendered images train the initial model [151], [152] for associating real
images. Using robots is a great option for collecting training data from real environments
as the robots can actively reconfigure scenes by moving objects and cameras [153].

7.2.2 Category-level Pose Estimation

It is not difficult for humans to presume a shape of a new instance when the instance
belongs to a well-known category (e.g., people assume the entire shape of new mugs,
bowls, and plates at a glance as they have prior-knowledge of the categories). Likewise,
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94 7 Conclusion

it is more efficient to train a model for a class than train a model for each instance
in the class so that no further training is required for a new instance in the class. As
Chapter 6 introduced, it is possible to predict normalized coordinates of objects even
though the shapes of objects are not the same. A similar approach using RGB-D
images [154] also shows that poses of objects in a category can be represented with
normalized coordinates and final poses are derived by depth information. There are
a limited number of classes in public datasets since a huge effort is necessary to align
all 3D models of a class in the same canonical pose. Hence, a large scale dataset is
required to scale research in this direction.

7.2.3 Computational Efficiency

Robots and mobile devices are often powered by batteries and are not equipped with
the high-performance Graphic Process Unit (GPU) that is a key component of CNN-
based methods. Thus, improving the computational efficiency is important for both
robotic and augmented reality applications. Multiple techniques have been proposed for
downsizing CNN models for image recognition tasks [155], [156]. As such, CNN-based
pose estimation methods can be optimized in terms of computational efficiency while
minimizing performance drops.

7.2.4 Robot Manipulation using Object Poses

When poses of objects are precisely estimated from a scene, it is possible to transform
grasp poses defined in a local frame of a target object to the scene while knowing
the 3D configurations of surrounding objects. Thus, robots can build a digital twin
of an environment to compute safe trajectories of manipulators. Furthermore, stable
grasp poses for a new object can be determined by hand or automatically annotated by
physics simulations and real robot attempts. Thus, an ideal system in the future can
be realized by integrating the self-supervised collection of training data and automated
grasp pose annotations, which requires no human intervention for safely manipulating
new objects in cluttered environments.
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Appendix A: Pix2Pose Parameters

A.1 Pools of Symmetric Poses

I: Identity matrix, RΘ
a : Rotation matrix about the a-axis with an angle Θ.

• LineMOD and LineMOD Occlusion - eggbox and glue: sym = [I,Rπ
z ]

• T-Less - obj-5,6,7,8,9,10,11,12,25,26,28,29: sym = [I,Rπ
z ]

• T-Less - obj-19,20: sym = [I,Rπ
y ]

• T-Less - obj-27: sym = [I,R
π
2
z ,Rπ

z ,R
3π
2

z ]

• T-Less - obj-1,2,3,4,13,14,15,16,17,18,24,30: sym = [I], the z-component of the
rotation matrix is ignored.

• Objects not in the list (non-symmetric): sym = [I]

A.2 List of outlier thresholds

ape bvise cam can cat driller duck eggbox glue holep iron lamp phone
θo 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2

Table A.2.1: Outlier thresholds θo for objects in LineMOD

ape can cat driller duck eggbox glue holep
θo 0.2 0.3 0.3 0.3 0.2 0.2 0.3 0.3

Table A.2.2: Outlier thresholds θo for objects in LineMOD Occlusion

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
θo 0.1 0.1 0.1 0.3 0.2 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.2 0.2 0.2 0.3 0.3 0.2 0.3 0.3 0.2 0.2 0.3 0.1 0.3 0.3 0.3 0.3 0.3 0.3

Table A.2.3: Outlier thresholds θo for objects in T-Less
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Appendix B: Open Resources

A.1 Codes and Tools

• Pix2Pose (Chapter 3): https://github.com/kirumang/Pix2Pose

• Neural Object Learning (Chapter 4): https://github.com/kirumang/NOL

• DGCM-Net (Chapter 6): https://rgit.acin.tuwien.ac.at/v4r/dgcm-net

A.2 Dataset

• Single sequence Multi Objects Training (SMOT): https://www.acin.tuwien.ac.

at/en/vision-for-robotics/software-tools/smot

• Learning from Experience and Demonstration for 6-DOF Grasping Dataset (LfED-
6D): https://www.acin.tuwien.ac.at/en/vision-for-robotics/software-tools/

lfed-6d-dataset

A.3 Videos

• Pix2Pose (Chapter 3): https://youtu.be/fQJPS01cmac

• Neural Object Learning (Chapter 4): https://youtu.be/wnmGmbDn3ZQ

• Multi-Task Template Matching (Chapter 5): https://youtu.be/rs4ekmE6SGo

• DGCM-Net (Chapter 6): https://youtu.be/iI_P1UVXfjo
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