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Kurzfassung

In dieser Arbeit betrachten wir den Bereich von hohen Energien von zwei holo-
graphischen Modellen der QCD, welche durch die AdS/CFT Korrespondenz mo-
tiviert sind. Wir berechnen speziell Übergangsformfaktoren der leichtesten pseu-
doskalaren Mesonen und unendlich vielen axialen Vektormesonen und deren Bei-
träge zum Licht-Licht-Streuungstensor. Die Resultate werden verglichen mit Be-
rechnungen von der QCD, welche im Hochenergielimes durch die Operatorprodukt-
entwicklung vereinfacht werden kann. Weiters werden die chirale Symmetriebre-
chung und dadurch auftretende Goldstone-Bosonen und Resultate über die chiralen
Anomalien verwendet, um Ausdrücke aus der QCD zu gewinnen. Die mithilfe des
holographischen Prinzips berechneten Observablen stimmen im Fall eines Modells
(HW2) qualitativ mit den QCD Ausdrücken überein und im Fall des zweiten Mo-
dells (HW1) sogar quantitativ. Es wird auch gezeigt, dass die Zwangsbedingungen
für den Licht-Licht-Streuungstensor nur dann erfüllt werden können, wenn un-
endlich viele axiale Vektormesonen berücksichtigt werden, während eine endliche
Anzahl auf einen zu starken Abfall im Hochenergielimes führt.

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Abstract

We study the high-energy asymptotics of two bottom-up holographic models of
QCD motivated by the AdS/CFT correspondence. In particular we compute the
transition form factors of the lowest lying pseudoscalar mesons and an infinite
tower of axial vector mesons and their contributions to the hadronic light-by-light
scattering tensor. The results obtained are compared to high-energy expressions
of real QCD, which are obtained via the operator product expansion, results on
Goldstone bosons, and the chiral anomaly that appears when the axial currents
are coupled to external fields. The results from the holographic side qualitatively
reproduce the QCD results for one model (HW2) and qualitatively in the case
of another model (HW1). In particular it is shown that two constraints on the
hadronic light-by-light scattering tensor can only be fulfilled when including an
infinite number of axial vector resonances and a finite amount of resonances can
not produce the right fall off behaviour.
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1 Introduction

Low and intermediate energy regimes of correlators of gauge invariant operators
in QCD have been under investigation for many years but the confining aspects of
QCD are making it very difficult to obtain analytical and meaningful results. The
main mathematical tool to explore quantum field theories is perturbation theory
which does not work in low energy QCD. The effective running coupling constant
αs(Q) becomes larger and larger as one goes to lower energies and higher order
diagrams give larger and larger contributions preventing the diagrammatic series
from converging [1]. For very low momenta one may derive an effective Lagrangian
describing low energy degrees of freedom such as the lowest lying pseudoscalar
mesons, vector and axial vector mesons whose coefficients can be compared to ex-
periment [2]. Another region where meaningful results can be derived are very high
energies and momenta due to the asymptotic freedom of QCD. Results for corre-
lation functions can be extracted using perturbation theory and more importantly
the so called operator product expansion (OPE) of gauge invariant operators [3].

Recently another promising way of studying strongly interacting gauge theories
has been found in applying the AdS/CFT correspondence [4] which in some for-
mulations relates a strongly interacting gauge theory in 4 spacetime dimensions
to a weakly interacting classical theory in 5 spacetime dimensions. This is called
the holographic principle. There are so called top-down models which modify the
underlying string quantum theory, which lives in an even higher dimensional space,
in such a way as to make the dual theory more and more like real QCD [5]. There
are also bottom-up models which take important ingredients from the AdS/CFT
correspondence, but simply construct 5 dimensional Lagrangians by hand and try
to reproduce certain aspects of QCD (see [6], [7]).

The purpose of this work is to first review various constraints coming from the
OPE in the high-energy limit of QCD and then try to compare with the expressions
coming from the holographic side. Top-down models have the known problem that
their high-energy behavior differs qualitatively from real life QCD through their
construction, so we will mainly focus on the bottom-up models created by hand.

In chapter 2 we will briefly motivate the correlators of interest and comment on
the status of the OPE in particular in the presence of non-perturbative effects. In
chapter 3 we will start with stating our conventions and then proceed to apply the
OPE to lowest order to the light-by-light scattering tensor and to pseudoscalar me-
son transition form factors. In chapter 4 two bottom-up models will be introduced
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and matched to QCD. Then we proceed in calculating the hadronic observables in
this holographic setting and compare with the high-energy expressions from chap-
ter 3. The low energy predictions of these models will not be explored in detail
here although we use decay constants and masses of the lowest lying resonances
to fix some parameters.
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2 QCD correlators and the

Operator Product Expansion

In this section we motivate the strong interaction correlators of interest, recall
some key properties and give examples of their applications. The most important
ones are the hadronic light-by-light (HLbL) tensor Πµναβ and the transition form
factors (TFF) of the lowest lying pseudoscalar and pseudovector mesons. We then
review the Operator Product Expansion (OPE) and its current status in QCD.
We will discuss our conventions and the method to apply the OPE to the TFFs
and the HLbL tensor in chapter 3.

2.1 QCD correlators

Before working with the relevant Green’s functions it will be useful to motivate
why we are interested in current correlators. In the calculation of the electro-
magnetic moment of the muon (or the electron) one comes across diagrams drawn
in figure 2.1, where the square describes strong interactions which contribute to
photon-photon scattering. Note that the external momenta of this square are
off-shell in general. We denote this subdiagram by Πµ1µ2µ3µ4(q1, q2, q3, q4). In a
theory with quarks coupling to gluons and photons we can write it as the sum
of connected amputated diagrams with 4 external photons, where we omit the
polarization vectors and do not restrict the amplitude to on-shell photons

Πµ1µ2µ3µ4(q1, q2, q3, q4) =

∫

d4x1d
4x2d

4x3d
4x4e

−i(q1x1+q2x2+q3x3+q4x4)

∫

d4y1d
4y2d

4y3d
4y4(G

−1)ν1µ1
(x1 − y1)(G−1)ν2µ2

(x2 − y2)(G−1)ν3µ3
(x3 − y3)(G−1)ν4µ4

(x4 − y4)

〈Ω |T{Aν1(y1)Aν2(y2)Aν3(y3)Aν4(y4)} |Ω〉connected =
(G̃−1)ν1µ1

(q1)

(q1)2
(G̃−1)ν2µ2

(q2)

(q2)2
(G̃−1)ν3µ3

(q3)

(q3)2
(G̃−1)ν4µ4

(q4)

(q4)2
∫

e−i(q1x1+q2x2+q3x3+q4x4)∂2x1
∂2x2

∂2x3
∂2x4
〈Ω |T{Aν1(x1)Aν2(x2)Aν3(x3)Aν4(x4)} |Ω〉connected .

(2.1)
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Figure 2.1: Light-by-light scattering diagram. Graphic taken from [8].

All fields in this equation are renormalized fields and (G−1)νµ(x−y) is the inverse
operator of the 2-point function 〈Ω |T{Aµ(x)Aν(y)} |Ω〉. In general this object
includes both electroweak and strong interactions but in this work we focus on the
lowest order in e contribution which is O(e4). There will be no internal photon
lines in diagrams contributing to this tensor and it can be evaluated purely within
QCD, i.e. setting e = 0. First however we would like to simplify the above equation.
The connected 4-point function of the electro-magnetic field is gauge dependent
by itself, but of course the gauge dependence cancels in any physically meaningful
final result. We will choose the Feynman gauge to do computations. To continue
we first write the connected part of the 4-point function as

〈Ω |T{A1A2A3A4} |Ω〉connected =
〈Ω |T{A1A2A3A4 |Ω〉 − (〈Ω |A1A2 |Ω〉 〈Ω |A3A4 |Ω〉+ crossings). (2.2)

Within the path integral formalism we can derive a useful formula for the 4-point
function when each leg gets upon by a massless Klein-Gordon operator ∂2. After
calculating this, we will throw away all terms with more than 2 delta functions in
momentum space, since we only need the connected part of this correlator of gauge
fields, i.e. terms with only one delta function in momentum space enforcing overall
momentum conservation. The object to look at is (with abbreviated notation)

∂21∂
2
2∂

2
3

∫

DA0Dϕ0(A0)1(A0)2(A0)3e
iS(A0,ϕ0), (2.3)

where ϕ0 denotes any other fields like quarks and gluons. The "0" subscript
indicates that these are bare fields and the subscript outside of the bracket indicates
the point at which it is evaluated (A0)i := A0(xi). It is convenient to work with
unrenormalized fields in the following since the Lagrangian has a nicer form. We
will drop the "0" subscript in the upcoming calculation to make the computation
more transparent. By renaming integration variables to A′

µ(x) = Aµ(x) − εµ(x)
and using invariance of the measure wrt. this transformation we can make an
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expansion in ε. We also rename A′ back to A . The term of order zero just cancels
with the LHS and we get

∂21∂
2
2∂

2
3

∫

DAD(ϕ)A1A2A3e
iS(A,ϕ)i

∫

d4x
δS

δA(x)
ε(x)+

∂21∂
2
2∂

2
3

∫

DAD(ϕ)ε1A2A3e
iS(A,ϕ)+

∂21∂
2
2∂

2
3

∫

DAD(ϕ)A1ε2A3e
iS(A,ϕ)+

∂21∂
2
2∂

2
3

∫

DAD(ϕ)A1A2ε3e
iS(A,ϕ) = 0, (2.4)

which must hold for any ε that vanishes sufficiently quick near infinity. The vari-
ation of the action gives

δS

δAµ(x)
= ∂2Aµ(x) + e0ψ̄γ

µQ̂ψ = ∂2Aµ(x) + e0J
µ. (2.5)

The matter fields and the coupling constant are all bare quantities here. The
above equation arises since the action in the path integral is gauge fixed, i.e. not
the classical action. To get the explicit form above one has to choose the Feynman
gauge ξ0 = 1. Picking εµ(x) = δ(4)(x− x4)gµµ4 gives

∂2x1
∂2x2

∂2x3
∂2x4
〈Ω |T{Aν1(x1)Aν2(x2)Aν3(x3)Aν4(x4)} |Ω〉 =

−e0∂2x1
∂2x2

∂2x3
〈Ω |T{Aν1(x1)Aν2(x2)Aν3(x3)Jν4(x4)} |Ω〉+ (2.6)

(disc.) (2.7)

with (disc.) denoting terms that have more than one δ function in momentum
space which we will discard later on. Continuing in the same manner we get

∂2x1
∂2x2

∂2x3
∂2x4
〈Ω |T{Aν1(x1)Aν2(x2)Aν3(x3)Aν4(x4)} |Ω〉 =

e40 〈Ω |T{Jν1(x1)Jν2(x2)Jν3(x3)Jν4(x4)} |Ω〉+ (disc.) (2.8)

Taking the connected part of this equation finally brings us to

∂2x1
∂2x2

∂2x3
∂2x4
〈Ω |T{Aν1(x1)Aν2(x2)Aν3(x3)Aν4(x4)} |Ω〉connected =
e40 〈Ω |T{Jν1(x1)Jν2(x2)Jν3(x3).Jν4(x4)} |Ω〉connected . (2.9)

Recall that the above fields are all bare fields. To connect this to (2.1) we have
to divide by square roots of field renormalization constants Z3 for each factor of
A and insert the above equation into (2.1). As mentioned before we only want to
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know the O(e4) term of (2.1), so we first express all the bare quantities in terms
of a renormalized coupling e and then expand. Since e0 is e to first order with
no strong corrections, the rest of the terms can be taken with e = 0. The inverse
propagator (G−1)µν(p) of the photon to zeroth order in e is then p2

i
gµν and the

field renormalization constant is just 1 to this order. Our quantity of interest then
becomes

Πµ1µ2µ3µ4(q1, q2, q3, q4) = e4
∫

∏

i

(

d4xie
−i(qixi)

)

〈Ω |T{Jµ1(x1)Jµ2(x2)Jµ3(x3)Jµ4(x4)} |Ω〉connected (2.10)

where the current J is still built from bare quark fields and the correlator is
calculated with e=0, that is in pure QCD. If we are interested in the full amplitude
not just the O(e4) approximation we get

Πµ1µ2µ3µ4(q1, q2, q3, q4) =

(
√

Z3)
4e40

∫

∏

i

(

d4xi
G−1

b (qi)

q2i
e−i(qixi)

)

〈Ω |T{J1J2J3J4} |Ω〉connected =

e4
∫

∏

i

(

d4xi
G−1

b (qi)

q2i
e−i(qixi)

)

〈Ω |T{J1J2J3J4} |Ω〉connected (2.11)

where Gb is the bare propagator and e0
√
Z3 = e was used. Now of course the

current correlator is calculated with e 6= 0. The finiteness of all the above quantities
is guaranteed by the renormalizability of QCD coupled to electromagnetism. The
above tensor is gauge invariant with respect to all 4 indices on- and off-shell

{qµ1

1 , q
µ2

2 , q
µ3

3 , q
µ4

4 }Πµ1µ2µ3µ4(q1, q2, q3, q4) = 0 (2.12)

and is symmetric under any exchange of (qi, µi) ←→ (qj, µj). For many purposes
of this work we do not need the most general version of the HLbL tensor, we need
only the version where one photon has an infinitesimal momentum k which we
take to be q4 and is on-shell

Πµνλ(q1, q2, q3) =

∫

d4x1d
4x2e

−i(q1x1+q2x2) 〈Ω |T{Jµ(x1)Jν(x2)Jλ(0)} | γ(k, ǫk)〉 .
(2.13)

The momentum conserving delta function and e4 have been extracted. In Nf = 3
QCD the current is

Jµ := ψ̄γµQ̂ψ, (2.14)

with the matrix Q̂ = diag(2
3
,−1

3
,−1

3
) acting on the flavour indices and the quark

fields being bare fields. The off-shell behaviour of the above correlator is extremely
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Figure 2.2: Three contributions to the polarization tensor arising from neutral
hadron exchange. The blob represents the transition form factor, the
wiggly lines represent photon propagators and the dashed line repre-
sents the hadron propagator. The cross marks the coupling to the
external electro-magnetic field. Graphic taken from [8].

important, since this correlator contributes to the anomalous magnetic moment
of the muon (and also the electron) via figure 2.1. It is then the part linear in k
which contributes to the anomalous magnetic moment [8]. The polarization tensor
can be decomposed in terms of a generalized tensor basis and the contribution to
aµ can then be expressed as a 3-dimensional integral as shown by [9].

The TFFs for various hadrons arise when one considers the decay of a neutral
hadron into 2 photons. Taking the momenta of all 3 particles on-shell, the TFFs
are proportional to the physical amplitude of 2 photon decay. In phenomenological
models for the HLbL tensor, the off-shell values of these quantities contribute as
shown in figure 2.2.

The pseudoscalar transition form factors FPγγ(q
2
1, q

2
2) are defined by

i

∫

d4xe−iq1x 〈Ω |T{Jµ(x)Jν(0) |P (p)〉 = εµναβq
α
1 q

β
2FPγγ(q

2
1, q

2
2), (2.15)

where P = π, η, η′ and the axial vector amplitudesMµνα are defined by

i

∫

d4xe−iq1x 〈Ω |T{Jµ(x)Jν(0) |A〉 =Mµναε
α
A. (2.16)

There are different tensor decompositions of Mµνα so the definition of the scalar
functions multiplying the tensor structures, i.e. the form factors, depend on the
chosen tensor basis. We make our choice in chapter 4. To calculate for example
asymptotic constraints on these quantities in QCD or in a holographic theory
one computes vacuum expectation values of time-ordered products of two vector
currents and one axial vector current. In QCD one can for example prove that
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pion states have nonzero overlap with these axial vector currents in the chiral
limit mq → 0 via Goldstones theorem. The residue of such a vacuum expectation
value at the pion mass, which is zero in the chiral limit, then represents the decay
amplitude.

2.2 The BTT basis

In this section we would like to quickly summarize the decomposition of the HLbL
tensor in terms of a certain tensor basis, the Bardeen-Tung-Tarach (BTT) basis,
and coefficient functions, which was first presented in [9]. The basic quantities
which appear in the Feynman rules are εµναβ, gµν , q

µ
i . After using current conser-

vation in each index and Bose symmetry, it can be shown that one needs at least
43 scalar functions and tensor structures for the decomposition of the HLbL ten-
sor. This basis however has kinematic zeros and therefore another set of 54 tensor
structures is chosen. This set of structures is redundant but free of kinematical
singularities and zeros. Kinematic zeros are points or sets of points where a set of
tensor structures are not linearly independent anymore. A trivial example would
be the tensor structure (q1 · q2)qµ1 qν2 which vanishes when q1 is orthogonal to q2.
The scattering tensor can then be expressed as

Πµναβ =
54
∑

i=1

T µναβ
i Πi. (2.17)

With this basis the contribution to the anomalous magnetic moment of the HLbL
tensor can actually be greatly simplified to a three dimensional integral

aHLbL
µ =

2α3

3π2

∫ ∞

0

dQ1

∫ ∞

0

dQ2

∫ 1

−1

dτ
√
1− τ 2Q3

1Q
3
2

×
12
∑

i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, Q3), (2.18)

where Π̄i are linear combinations of Πi and the Ti are known integration kernels, for
example Π̄1 = Π1 + q1 · q2Π47. The tensor structure for which Π1 is the coefficient
will concern us the most here and is given by T µνλσ

1 = εµναβελσγδq1αq2βq3γq4δ.
Also notice that in the above formula the momenta are Euclidean momenta with
Q2

i := −q2i > 0.

2.3 Operator product expansion

One version of the OPE states [3, 10] that given two renormalized local operators
A(x) and B(y) their time-ordered product at nearby spacetime points can be
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written as a sum of products of singular coefficients fj(x − y) as y → x and
renormalized operators Oj(x)

T{A(x)B(y)} =
m
∑

j=1

fj(x− y)Oj(x) +R(x, x− y). (2.19)

The coefficients fj depend on the direction of ξ = x − y and its magnitude. We
will however assume that they are polynomials in the direction times functions
that only depend on the magnitude. The operator R(x, ξ) vanishes as its second
argument goes to zero. The fj are ordered by decreasing singularity as its argument
goes to zero

lim
ξ→0

fj+1(ξ)

fj(ξ)
= 0. (2.20)

More commonly the Fourier transformation of (2.19) is considered
∫

d4xe−ikxT{A(x)B(0)} =
m
∑

j=1

f̃j(k)Oj(0) + R̃(0, k). (2.21)

The canonical dimension of the operators Oj(0) is assumed to increase with in-
creasing j, i.e. they become more and more complicated. The coefficients f̃j(k)
vanish now more and more rapidly with increasing j for k →∞ and the function
R̃(0, k) decays exponentially fast.

The OPE becomes most important in asymptotically free theories which are
confining at low energies such as QCD. QCD is a renormalizeable theory but
the perturbative series of most low energy processes does not appear to converge
(exceptions are for example processes related to anomalies). In addition non-
perturbative corrections which are completely missed by the Feynman diagram
expansion are expected to give sizable contributions. The OPE allows one to
calculate the coefficients ˜fj(k) with perturbation theory since roughly speaking
for high-momentum transfer the coupling constant decreases and the perturbative
series gives meaningful answers while the low energy processes are encoded in the
matrix elements of the Oj(0) with external states. These can often be kinematically
decomposed and the values of the coefficients or coefficient functions at specific
momenta can be taken from experiment. One technical point is that the operators
Oj(0) are often renormalized versions of products of elementary fields at the same
spacetime point. Therefore they depend on a normalization scale µ at which
normalization conditions are specified. As the LHS of (2.21) is independent of
this scale the coefficient functions f̃j(k) are also dependent on µ and cancel the µ
dependence of the operators.

QCD also has non-perturbative contributions to observables which are com-
pletely missed by the standard Feynman diagram expansion. This has two impor-
tant effects. First of all it gives some vacuum matrix elements nonzero values that
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would get no contribution from Feynman diagrams at all like 〈Ω | (q̄q)M(0) |Ω〉 (M
is a normalization scale here). Secondly it can potentially violate the validity of the
OPE since the standard proof of the OPE within QFT’s relies on the perturbative
expansion in terms of Feynman diagrams [10]. In [11] it is argued using approxi-
mate solutions for instantons that up until a critical dimension dc the OPE is still
valid, i.e. that a finite sum of local operators and perturbatively calculated coeffi-
cients as above is a good approximation to the high-energy behaviour of operator
products until one gets to operators with canonical dimension d ≥ dc .
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3 QCD Constraints

In this section we will review constraints to the HLbL tensor and the pseudoscalar
TFFs coming from QCD. Some of these require the use of the OPE and others can
be calculated in a straightforward manner from Feynman diagrams. As we will
see, the chiral anomalies of QCD will play a big role in the determination of these
constraints.

The first constraint we will look at concerns an asymmetric limit of the HLbL
tensor first derived in [12] (2.13) namely

lim
Q3→∞

lim
Q→∞

Πµνλ(Q,Q,Q3), (3.1)

where the order of the limits matter.
To evaluate this we will use an OPE for the product of two currents

i

∫

d4x1d
4x2e

−i(q1x1+q2x2)T{Jµ(x1)Jν(x2)}, (3.2)

in the limit when |(q1 − q2)2|≫ |q23| = |(q1 + q2)
2|. We will start by describing

our conventions for QCD in the following section.

3.1 QCD

In this section we briefly describe the Lagrangian defining our theory. The classical
Lagrangian is

L0 = ψ̄0(i /D)ψ0 −
1

4
(F a

0µν)
2 − ψ̄0M0ψ0, (3.3)

where ψ describes fermions withNf numbers of flavours andNc numbers of colours,
M is a diagonal matrix acting on the flavour degrees of freedom describing the
masses of the fermions and /D is the usual Dirac operator γµ(∂µ − ig0Aa

0µt
a). The

fermions are taken to be in the fundamental representation of SU(Nc)× SU(Nf ),
and the indices corresponding to these representations and the Dirac indices are
suppressed in our notation. For the most part of this work we take Nc = Nf = 3.
Correlation functions of gauge invariant combinations of the elementary fields for
the quantum theory are formally given by

〈Ω |T{F1...Fn} |Ω〉 =
∫

Dψ̄0Dψ0DA0 e
i
∫
d4xL0F1...Fn

∫

Dψ̄0Dψ0DA0 ei
∫
d4xL0

, (3.4)
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with L0 being given by (3.3) and F1, ..., Fn being gauge invariant functionals of
the elementary fields. The right hand side contains infinities in the numerator
and the denominator due to integrations over the gauge group at each point in
spacetime. This makes it not suitable for a perturbative expansion. Furthermore
it is not known whether this object even makes mathematical sense. A formally
equivalent but more refined expression for correlation functions that gives finite
diagrams after renormalization is obtained via the Faddeev-Popov method [13].
With this the correlation functions give

〈Ω |T{F1...Fn} |Ω〉 =
∫

Dc̄0Dc0Dψ̄0Dψ0DA0 e
i
∫
d4xLnewF1...Fn

∫

Dc̄0Dc0Dψ̄0Dψ0DA0 ei
∫
d4xLnew

. (3.5)

For a particlar choice of the Faddeev-Popov procedure (generalized ξ gauges) the
new Lagrangian is

Lnew = ψ̄0(i /D)ψ0 −
1

4
(F a

0µν)
2 − ψ̄0M0ψ0 −

1

2ξ0
(∂µAa

0µ)
2 + c̄a0(−∂µDab

µ )cb0. (3.6)

In this formula ca0 is a Grassmann valued scalar field in the adjoint representation of
SU(Nc), Dab = δab∂µ + g0f

acbAc
0µ and ξ0 is a real parameter which fixes the gluon

propagator in the Feynman diagrams. Correlators of gauge invariant operators
are independent of ξ0. The Lagrangian has no local gauge symmetry anymore but
there is a new symmetry, the so called BRST symmetry [14]. A BRST transforma-
tion on the elementary matter and gauge fields looks like a gauge transformation
with the Grassmann valued field ca0 as the parameter. Physical observables are
now BRST invariant functionals of the fields. As a remark we would like to stress
that with the Feynman rules that this Lagrangian gives it is easily possible to cal-
culate non-gauge invariant correlation functions. These however in general do not
have a physical meaning and must be part of a bigger gauge invariant diagram,
i.e. these must always be subdiagrams. The new Lagrangian gives Feynman rules
for diagrams involving quark and gluon operators. After multiplying one-particle
irreducible (1PI) functions by appropriate factors

√
Zi and using renormalization

conditions, the bare constants M0, ξ0 g0 and Zi can be expressed via finite mass
and coupling parameters depending on some energy µ and a regularization param-
eter. This procedure then gives finite answers to 1PI diagrams for each order in
the renormalized coupling in the limit when the cutoff constant is taken to infin-
ity. Some of the field renormalization constants Zi can be related to each other
with the help of the Schwinger-Dyson equations. This is usually called bare per-
turbation theory. In QCD it is more difficult to connect diagrams to scattering
amplitudes since no elementary operator is associated to a physical particle, which
is an aspect of confinement. Renormalized versions of composite operators can
describe physical degrees of freedom like mesons and baryons. In the section 2 we
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once made the choice ξ0 = 1 for the computation involving the gauge invariant
HLbL tensor. In most calculations it is however more convenient to choose the
renormalized parameter ξ = 1.

For some applications it is better to use a different kind of Feynman diagram
expansion called renormalized perturbation theory. Here we introduce new rescaled
fields φ0i =

√
Ziφi for each field and express the Lagrangian L0 in terms of them. In

addition we split every bare mass and coupling to obtain a Lagrangian containing
a part that looks like Lnew but with finite renormalized couplings masses and
fields and bunch of additional terms called counterterms. To obtain scattering
amplitudes we compute the connected amputated Feynman diagrams with the
Feynman rules obtained from this Lagrangian. In this procedure we do not need
to multiply with

√
Zi for every external line. The diagramatic expansions of QCD

amplitudes only converge in special situations where some momentum transfer is
high. In addition to this problem there are contributions to the path integral which
are completely missed by perturbation theory. In the case of the OPE coefficents,
the diagramatic expression is valid however. It converges or appears to converge
and non-perturbative terms are expected to be negligible.

3.2 OPE for correlation functions

The first OPE we will perform is the one for T{J(x)J(0)}. Each one of the
individual currents is BRST invariant and therefore the product expansion needs
to be done in terms of BRST invariant operators. The external states that will
sandwich these operators will annihilate any ghost or antighost operators so we
really only need operators that are built out of the matter and gauge fields and
are gauge invariant. We will first enumerate the relevant gauge invariant operators
starting from the ones with the lowest canonical dimension d

I, (d = 0)

ψ̄ΓFψ, (d = 3)

F a
µνF

a
αβ, ψ̄ΓFDµψ (d = 4)

We have not displayed the colour, flavour, and Dirac indices on the matter fields
explicitly. Also the operators in this table that are composed of more than one
elementary field have to be renormalized so the symbols in the table really represent
renormalized versions of these operators. These renormalized versions have the
same quantum numbers and transformation properties under various symmetries
as the unrenormalized ones. In the above equation the Dirac matrix Γ is one
of the 16 basis matrices and F is a matrix acting only on flavours. It is also
important to say that even if one renormalizes composite operators in the usual
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way, i.e. making insertions of this operator into arbitrary Green’s functions of
elementary fields finite, it is not guaranteed that correlators of multiples of these
operators are finite. An example is the correlator of two electro-magnetic currents
and no elementary fields. It is possible to show that the contribution from the
unit operator is divergent and therefore not defined. The contributions from all
other operators are however well defined. A way to see this is to go back to (2.1)
and try to do the derivation for 2 currents (not 4 as above). One can see that the
connected amputated 2 point function Πµν is the correlator of two currents plus a
counterterm.

It is important to stress that we intend to use the OPE for the current correlator
to get an asymptotic formula for the HLbL tensor, i.e. the OPE will be sandwiched
between two states that are orthogonal to each other. This means we do not need
to worry about the unit operator but it also means that the operators that we use
in the OPE need not be Lorentz scalars. For our purposes we are content with the
first term in the OPE which uses dimension 3 operators. It might still be possible
that the coefficients of these operators vanish or that they contain mass terms.
In this case we would have to use the dimension 4 operators as well. We will see
that this is not the case. In order to have the correct C-parity transformation
properties the quark bilinear must be a scalar, a pseudoscalar or a pseudovector,
which means the matrix Γ should be I, γ5 or γ5γµ.

Each of the operators with one of the above spinor matrices sandwiched between
spinors ψ̄ and ψ will only be multiplicatively renormalized (if at all) since each one
is unique in the sense that there is no other gauge invariant operator of the same
dimension with the same transformation behavior under Lorentz transformations
and C and P . Even though we will only use the zeroth order result, we now give a
short description how one obtains the renormalized versions of the operators above
at one-loop level. Let us start with trying to find a renormalized version of q̄q
which we call (q̄q)M where M denotes the normalization point. The normalization
condition for operator (q̄q)M is

at spacelike momenta p2 = q2 = (p + q2) = −M2. The two lines meeting at "q"
denote the insertion of (q̄q)M(x) and the other two lines denote external fermions.
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If we make the Ansatz (q̄q)M(x) = (q̄q)(x)+δq̄q(q̄q)(x) then the zeroth order result
always gives 1 and we have to find a counterterm δq̄q which cancels the diagram
in figure 3.1 with one gluon propagator exactly at the normalization point.

Figure 3.1: The first order diagram contributing to the counterterm.

A calculation using dimensional regularization reveals that

δq̄q = −4
4

3

g2

(4π)2
Γ(2− d

2
)

(M2)2−d/2
(3.7)

The renormalized quark fields q also depend themselves on an energy scale M and
the computation at one-loop level of the anomalous dimension of (q̄q)M(x) gives

γq̄q =M
∂

∂M
(−δq̄q + δ2) = −8

g2

(4π)2
, (3.8)

where the first equality only holds at one-loop level and δ2 = Z2 − 1 is the field
renormalization constant for the quark field. The operator is now finite at one-
loop level and depends on the energy scale M . If we define a running "mass" term
m̄(Q) such that

Q
d

dQ
m̄(Q) = γq̄q(ḡ(Q))m̄(Q), (3.9)

where ḡ(Q) is the running coupling constant, then one can show that m̄(Q)(q̄q)Q is
independent of Q to all loop orders and is nothing but m0q̄0q0 where the subscript
denotes bare quantities. This is useful since whenever there is a chance of (q̄q)M(x)
appearing in an OPE of scale independent quantities, its OPE coefficient must be
proportional to a mass term to cancel the dependence on the normalization point.
Using dimensional analysis this also means that the OPE coefficient in Fourier
space will fall of faster for large momenta. The same analysis works for q̄γ5q. At
one-loop level the anomalous dimension is even the same as above. This is no
coincidence as one can prove using Ward identities for conserved currents that. As
an aside, it is also possible to show that in case we have different flavour structure
q̄q̃, with q = u and q̃ = d for example, its renormalized version has the same
anomalous dimension as for equal flavours.

m̄(Q)(q̄γ5q)Q = m0q̄0γ5q0, (3.10)
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with the same m̄(Q) as above. The scalar density and the pseudoscalar density
thereby have the same dependence on the normalization point.

Trying to find a renormalized version of a flavour current Jµ
5 = ψ̄γ5γ

µFψ at
one-loop level involves the same computation as above but with a slightly differ-
ent Lorentz index structure. The diagram 3.1 with one gluon inserted is again
divergent and a counterterm needs to be introduced. However due to the different
index structure, one can easily see that this counterterm is the same as δ2, the
field renormalization constant, and so at one-loop level

(Jµ
5 )M = ψ̄0γ5γ

µFψ0. (3.11)

This is of course independent of M and finite at one-loop level for any F . If the
flavour matrix F is a matrix in the algebra of SU(Nf ) then the associated bare
currents are conserved. With the associated Ward identity one can prove that
ψ̄0γ5γ

µFψ0 is a finite operator to all loop orders and also of course independent of
any scale since it is built from bare fields. We can take these to be the renormalized
version of Jµ

5 . The same line of arguments works of course for the ψ̄γµFψ operators
too and shows that their renormalized versions are ψ̄0γ

µFψ0. The slight difference
is that for the vector currents we can take F to be any matrix. If the matrix F is
proportional to the identity, then the above proof does not work anymore for the
axial vector current due to anomalies. The renormalized operator (Jµ

5 )M can of
course still be constructed order by order but this operator will not be independent
of the scale M and in addition mixes with other operators of the same dimension
when the scale is varied meaning

(Jµ
5 )M1 = c(M1,M2)(J

µ
5 )M2 + ci(M1,M2)(Oi)M2 . (3.12)

The non-perturbative aspects of the U(1)A anomaly allows one to find the following
equation

∂µ(J
µ
5 )M −

αs(Q)

8π
Nf (ε

µνρσF a
µνF

a
ρσ)M =

∂µψ̄0γ5γ
µψ0 −

α0

8π
Nfε

µνρσF a
0µνF

a
0ρσ (3.13)

with αs(Q) = ḡ2(Q)
4π

. Since the second line is completely independent of M this
can tell us about how the divergence of the current mixes with the field strength
bilinear. As a last comment we mention that a renormalized version of εµνρσF a

µνF
a
ρσ

requires different counterterms than a renormalized version of F a
µνF

µνa.
In the following we will omit the dependence of the renormalized operators

on M from the notation and we will only be concerned with the zeroth order
contributions from the operators. Via symmetries and dimensional analysis we
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find that for small euclidean x (omitting the identity operator)

T{Jµ(x)Jν(0)}
= A β

µν (x)(ψ̄γ5γβFAψ)(0) + Bµν (x)(ψ̄FBψ)(0) + Cµν (x)(ψ̄γ5FCψ)(0)

≈ A β
µν (x)(ψ̄γ5γβFAψ)(

x

2
) + Bµν (x)(ψ̄FBψ)(

x

2
) + Cµν (x)(ψ̄γ5FCψ)(

x

2
) (3.14)

with FA,B,C acting on flavour indices and the coefficients having a divergence no
worse than 1

x3 . In the second line we evaluate the operators at the point between
0 and x which makes no difference to leading order. We want to use this short
distance expansion in the Fourier transformation of T{Jµ(x)Jν(y)}. Using coordi-
nates z = x+y

2
, η = x− y and writing ξ = q1−q2

2
we have

∫

d4xd4ye−i(q1x+q2y)T{Jµ(x)Jν(y)} =
∫

d4zd4η det(J)eiηξe−iz(q1+q2)U(z)T{Jµ(
η

2
)Jν(−

η

2
)}U−1(z) =

∫

d4ze−iz(q1+q2)(ψ̄γ5γβFAψ)(z)Ã
β

µν (ξ)+
∫

d4ze−iz(q1+q2)(ψ̄FBψ)(z)B̃µν (ξ)+
∫

d4ze−iz(q1+q2)(ψ̄γ5FCψ)(z)C̃µν (ξ), (3.15)

with J the Jacobian of the coordinate-transformation which has been absorbed
into the Fourier transformed coefficients of the operators and U(z) a translation
by the vector z. In the second line above we can perform the Fourier transform
of T{Jµ(η2)Jν(−

η
2
)} separately. If this function was real analytic in η, then the

Fourier transform would decay exponentially fast for large q1−q2
2

= ξ. Only the
singular parts yield non-exponential behaviour so we can replace the time-ordered
product in the integral with the short-distance expansion. In other words the
short distance behaviour dominates the integral in the limit of high-momentum
ξ. The coefficients B̃µν(ξ) and C̃µν(ξ) by Lorentz invariance can be written as
linear combinations of gµν and ξµξν . The operators multiplying these coefficients
have however different parity transformation behavior. A calculation reveals that
C̃µν(ξ) has to vanish. Also the time-ordered product of two currents has a sym-
metry, namely interchanging of µ and ν with a simultaneous exchange of q1 and q2
leaves the object invariant. The coefficient Ã β

µν (ξ) can then be written as a scalar
function of ξ times ε β

µνα ξα. The time reversal symmetry doesn’t lead to any new
constraints on the coefficients since by the CPT theorem we can relate T to CP .
If the coefficient functions in x-space diverge no worse than 1

x3 , then the Fourier

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

coefficients are expected to go like 1
q

as q goes to infinity. Less divergent coefficients
in x space means faster fall off behavior in q space. With this knowledge we write

Ã β
µν (ξ) =

a

ξ2
ε β
µνα ξα,

B̃µν (ξ) =
b1

√

ξ2
gµν +

b2
ξ3
ξµξν . (3.16)

The coefficients a, b1, b2 will in general depend on the normalization scale at which
the operators multiplying them are defined and could in priniple also contain
logarithms of the momentum ξ. We want to stress also that the above OPE in
momentum space is valid for large ξ = q1−q2

2
independent of what value the sum

q1 + q2 has. To calculate the coefficients we will sandwich (3.15) between an
outgoing vacuum state and an incoming state that contains an antiquark and a
quark. Since states with external quarks might not be directly related to Feynman
diagrams because the Kählen-Lehman decomposition of the quark propagator in
QCD does not reveal the pole structure at low momenta it is more correct to
say that we consider a connected diagram with one amputated quark line and
one amputated antiquark line and also choose operator normalization points using
these diagrams instead of external states. We also ignored the unit operator on
the RHS of the OPE in our discussion since we will want to take matrix elements
between two orthogonal states. The first 2 diagrams that arise from sandwiching
the LHS with the 2 states mentioned before are shown in figure 3.2.

Figure 3.2: Two diagrams contributing to the coefficients. All momenta are incom-
ing in this diagram.

The incoming quark and antiquark have momenta p1 and p2 respectively. By
sandwiching (3.15) with the aforementioned states we get

〈

Ω

∣

∣

∣

∣

i

∫

d4xT{Jµ(x)Jν(0)}e−iqx

∣

∣

∣

∣

qf (p1), q̄f (p2)

〉

= cεµναβ
qα

q2
ūf ′(p2)γ

5γβFf ′fuf (p1) + (OT ), (3.17)

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

where OT stands for the terms coming from the other operator in the OPE. The
first contribution to the first term is then −i times the values of the two diagrams
in figure 3.2 which give

ū(p2)
{

Q̂γν
i

/q + /p1 −m
Q̂γµ + Q̂γµ

i

−/q − /p2 −m
Q̂γν

}

u(p1)

≈ iqα

q2
ū(p2)Q̂

2[γνγαγµ − γµγαγν ]u(p1). (3.18)

We have already extracted the high-momentum behaviour in the second line above.
To further simplify we use the identity

γνγαγµ − γµγαγν = −iενµαβγ5γβ, (3.19)

with γ5 = iγ0γ1γ2γ3. The first thing we see is that these diagrams only contribute
to the a coefficient and to this order the scalar operator with coefficients b1 and
b2 doesn’t contribute. We can then compare with (3.17) and find cF = 2iQ̂2. In
summary we have

i

∫

d4xT{Jµ(x)Jν(0)}e−iqx = 2iεµναβ
qα

q2 + iǫ
Jβ
5 (0), (3.20)

with Jβ
5 being ψ̄0Q̂

2γ5γ
βψ0. The flavour singlet part of the RHS is a finite operator

up to one-loop order and independent of the normalization scale M and the flavour
octet part is finite to all loop orders and independent of the normalization scale
to all orders.

3.3 The MV constraint

A soft photon with vanishing momentum k in the light-by-light scattering ampli-
tude can be modeled by an external state so we only need to look at the time-
ordered product of three currents. We now insert the operator expansion into the
HLbL tensor

Πµνλ(q1, q2, q3) =

∫

d4x1d
4x2e

−i(q1x1+q2x2) 〈Ω |T{Jµ(x1)Jν(x2)Jλ(0)} | γ(k, ǫk)〉 .
(3.21)

We change the integration to an integration over the midpoint of x and y called z
and an integration over relative coordinates called η. For high relative momentum
ξ = q1−q2

2
we only need to integrate over a small interval of relative coordinates to
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get the asymptotics right. We then approximate the above integral as
∫

z0>
η0
b
2

d4ze−i(q1+q2)z

∫

d4ηe−iξη 〈Ω |T{Jµ(z + η/2)Jν(z − η/2)}Jλ(0) | γ(k, ǫk)〉

+

∫

z0<− η0
b
2

d4ze−i(q1+q2)z

∫

d4ηe−iξη 〈Ω | Jλ(0)T{Jµ(z + η/2)Jν(z − η/2)} | γ(k, ǫk)〉

+ (OT ), (3.22)

where the η integration is constrained to a small region around 0 with the temporal
boundary of integration having time coordinates η0b and −η0b . The terms labeled
by (OT ) are terms where the Jα current is in between the other two currents, i.e.

where 0 is in the interval (z0− η0
b

2
, z0+

η0
b

2
). These other terms produce singularities

in z and η too since two or three currents come close to each other. But when
Fourier transforming they do not contribute to the high ξ asymptotics but to
different limits. For example the region of integration where x1 is very close to 0
determines the asymptotics when 2q1+ q2 becomes large. So by taking the ξ →∞
limit before any other limit, we can neglect these terms and also approximate
η0b = 0 in the above equation. The asymmetric limit (3.1) is used for this very
reason of being able to neglect such terms at this stage. In summary we get
∫

z0>0

d4ze−i(q1+q2)z

∫

d4ηe−iξη 〈Ω |T{Jµ(z + η/2)Jν(z − η/2)}Jλ(0) | γ(k, ǫk)〉

+

∫

z0<0

d4ze−i(q1+q2)z

∫

d4ηe−iξη 〈Ω | Jλ(0)T{Jµ(z + η/2)Jν(z − η/2)} | γ(k, ǫk)〉
(3.23)

as our limit for the HLbL tensor. We can now pull the η integration inside the
matrix element, insert the OPE and make use of the time ordering symbol for
Jβ
5 (z) and Jα(0).
To shorten notation we write q3 = −q1− q2. We have now completely separated

the ξ dependence of the amplitude from the q3 dependence. The q3 dependence is
contained in the quantities

Tαβ(k, q3) = i

〈

Ω

∣

∣

∣

∣

∫

d4zeiq3zT{J5β(z)Jα(0)}
∣

∣

∣

∣

γ(k, ǫk)

〉

. (3.24)

We can decompose the current Jα
5 in terms of fundamental SU(3f ) currents and

a singlet current

J5α =
∑

a=0,3,8

Tr[λaQ̂
2]

Tr[λ2a]
Ja
5α, (3.25)

where λa are the standard Gell-Mann matrices for a = 3, 8 and λ0 being the
appropriately normalized identity matrix. We denote by T

(a)
αβ (k, q3) the quantity
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on the RHS of (3.24) but with Ja
5β = ψ̄0γβγ5λ

aψ0 replacing J5β. We now want to
make a kinematical decomposition of (3.24). The amplitude is linear in the soft
photon polarization εµ and must be invariant under the replacement εµ → εµ+ kµ

by current conservation. The amplitude also obeys (q3 − k)αT
(a)
αβ (k, q3) = 0 by

current conservation. As mentioned before, the part that is interesting for the
anomalous magnetic moment is the part linear in k. The linear part then obeys

qα3 T
(a)
αβ (k, q3) = 0, (3.26)

since the amplitude vanishes for k = 0. This can be seen by trying to do a
kinematical decomposition of the O(k0) part with the tensors εµ, qµ3 , ηµν and εµναβ
linear in εµ and obeying the zeroth order current conservation conditions. Before
enforcing (3.26) the part linear in k can then be written in terms of 3 different
tensors and invariant functions

Tαβ(k, q) = f1(q
2)qαεβµ1µ2µ3q

µ1kµ2εµ3 + f2(q
2)qβεαµ1µ2µ3q

µ1kµ2εµ3

+ f3(q
2)εαβµ1µ2k

µ1εµ2 (3.27)

By enforcing (3.26) we can express f3 via f1. We then order the parts that do not
vanish when contracting Tαβ with qα and we get (see [12])

T
(a)
αβ (q

2
3) =

−ieNcTr[λaQ̂
2]

4π2

{

ω
(a)
L (q23)q3βq

σ
3 f̃σα

+ ω
(a)
T (q23)(−q23 f̃αβ + q3αq

σ
3 f̃σβ − q3βqσ3 f̃σα)

}

, (3.28)

where f̃ is the Hodge dual of fαβ = qα3 ε
β − qβ3 εα. Also an overall factor has been

extracted from the coefficient functions ωL,T which are linear combinations of f1,2,3.
The factor of Nc naturally arises when computing the diagrams associated to the
invariant functions. We still cannot use this to extract a constraint, we need to
calculate the functions ω(a)

L,T .

3.4 The invariant functions

It is well known that if we compute qβT
(a)
αβ the result will be given by famous

anomaly relations. These give values to the longitudinal functions for a = 3, 8
which receive no further corrections either perturbatively or non-perturbatively in
the chiral limit mq = 0. The a = 0 function does receive corrections. To reliably
calculate the invariant functions we again have to make use of asymptotic freedom
and pick a high external momentum q3. Then the first diagram, a triangle diagram
dominates and gives

ω
(a)
L (q2) =

−2
q2
, ω

(a)
T (q2) =

−1
q2
. (3.29)
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If we now insert all the relevant functions we get for the asymmetric limit the
following expression

Πµ1µ2µ3(q̂, q
2
3, k)a. lim. =α

2Nc
8

q̂2
εµ1µ2δρq̂

δ
∑

a=0,3,8

(Tr[λaQ̂
2])2

Tr[λ2a]

{

ω
(a)
L (q23)q

ρ
3q

σ
3 f̃σµ3

+ ω
(a)
T (q23)(−q23 f̃ρ

µ3
+ q3µ3q

σ
3 f̃

ρ
σ − qρ3qσ3 f̃σµ3)

}

. (3.30)

This is the final form of the MV constraint and once a model for the HLbL
tensor is given we can perform the asymmetric limit and check if it satisfies the
above expression. By extracting the ε tensor contained in f̃µν we see that in terms
of the BTT basis the above expression contributes to Π̄1

lim
Q3→∞

lim
Q→∞

Q2Q2
3Π̄1(Q,Q,Q3) = −

2

3π2
, (3.31)

where again we mention that the order of the limits matters. We also want to
mention that there exists a theorem [15] on the perturbative contributions to the
invariant functions ω(a)

T,L which states that 2ω(a)
T (q2) = ω

(a)
L (q2) for all q. This holds

only for the additional contributions from higher order Feynman diagrams and is
violated by perturbative corrections. For constraints on the HLbL tensor the limit
of high q has to be taken to make the non-perturbative corrections vanish and we
arrive again at the asymmetric limit. Non-perturbative contributions to T (a)

αβ have

been calculated in [15] using an OPE of JαJ
(a)
5β in a weak external electro-magnetic

field. The next-to-leading order term involves a condensate of the renormalized
version of ψ̄[γµ, γν ]ψ in an external field. The holographic models in their simplest
form will not be able to account for these terms.

3.5 The symmetric momenta constraint

The second constraint on the HLbL tensor comes from the momentum region where
all Euclidean momenta q2i , i = 1, 2, 3 are large and comparable in magnitude [16].
This regime is not available for ordinary perturbation theory since one of the
momenta q4 is infinitesimal. We will model this external photon by adding a new
term ψ̄0(x)Q̂γ

µψ0(x)Aµ(x) to the Lagrangian which models the interaction with an
external classical electro-magnetic field. Our polarization tensor is then the same
as the correlator of three currents under the influence of an external field. The
term of zeroth order in the external field vanishes by Furry’s theorem (or charge
conjugation invariance) and we are left with the first-order term. The momenta
of the other 3 currents are all hard. In an OPE the external photon field has two
effects. In a Feynman diagram the line for the external photon can be inserted on
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a hard quark line and secondly operators whose vacuum expectation value usually
vanishes by Lorentz invariance can now obtain nonzero values. This procedure
incorporates the large logarithms that we would have in the standard perturbative
procedure into new expectation values. The most important contribution is then
the diagram where the external line is inserted into a quark loop diagram (see
figure 3.3). The contribution to the HLbL tensor in this limit of this diagram is

Figure 3.3: The quark loop current with the external photon inserted. The blob
represents the interaction with the external photon.

proportional to
∫

d4p

(2π)4
tr{γµS(p)γνS(p+ q2)γ

λS(p+ q2 + q3)γ
σS(p+ q2 + q3 + q4)}εσ(q4),

S(p) =
i( /p+m)

p2 −m2 + iε
.

The limit in which the three photon momenta go to infinity involves a lot of
computation so we will just quote the result. Just as in the case of the MV
constraint this contributes mainly to the coefficient of the T µνλσ

1 tensor structure
in the BTT basis

lim
Q→∞

Q4Π̄1(Q,Q,Q) = −
4

9π2
. (3.32)

It is possible to calculate subleading terms of the OPE in this particular limit
which would give additional constraints. For the models considered later on we
will see that the above constraint is at least qualitatively obeyed but all subleading
terms vanish exponentially so in this work only the leading term will be of value.

3.6 Constraints on the pion transition form factor

In this section we will look at the pion transition form factor defined in (2.15). The
first constraint can be obtained using the OPE (3.20) that we already obtained.
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To use it we have to have q1 and q2 very large in magnitude and space-like, but its
sum −p has to be a light-like vector or one with a very small invariant mass.

i

∫

d4xe−iq1x
〈

Ω
∣

∣T{Jµ(x)Jν(0)
∣

∣ π0
〉

= 2iεµναβ
qα1
q21

∑

a=0,3,8

Tr[λaQ̂
2]

Tr[λ2a]

〈

Ω
∣

∣ Ja
5β(0)

∣

∣ π0
〉

(3.33)

The pion state is a (pseudo) Goldstone boson of QCD and therefore it can be proven
that the pion state has overlap with the current of the associated spontaneously
broken symmetry, which is ψ̄0γ5γ

µλ3ψ̄0. The currents with a = 0, 8 do not have the
right quantum numbers and therefore they do not contribute. Lorentz invariance
allows to parametrize the matrix element as follows

〈

Ω
∣

∣ J3µ
5 (0)

∣

∣ π0
〉

= 2iFπp
µ. (3.34)

Usually the factor 2 is missing in the above equation in the literature but there the
flavour matrix contained in the current built out of bare fields has an additional 1

2

factor. Fπ is known as the pion decay constant and can be independently measured
using the weak decays of the π+, π− particles. Its value is about 93 MeV. Inserting
this and writing q21 = q22 = −Q2 we get for the transition form factor

Fπγγ(−Q2,−Q2) =
2Fπ

3

1

Q2
. (3.35)

In the chiral limit where up, down and strange masses vanish, the η particle which
is also a pseudoscalar boson can be interpreted as the Goldstone boson associated
to the current ψ̄0γ5γ

µλ8ψ̄ and the derivation before works exactly in the same
way. The only thing that is different is that Tr[λaQ̂2] is not 1 like for the pion
(colour gets traced too) but 1√

3
. So if we write the result as above we would obtain

Fη =
Fπ√
3
. Since chiral symmetry of the Lagrangian is only approximate, the actual

η decay constant might differ from that exact value so we will just denote it as Fη.
Note that the way we have defined the η decay constant is different from the way
we have defined the π decay constant, i.e. as a factor in the overlap of the pion
state and the Goldstone current.

The η′ particle can not be identified with a broken symmetry. First of all in the
chiral limit we only have 8 broken SU(3)A symmetry currents which describe the
lowest pseudoscalar meson octet among which the η′ is not included. It can also
not be the the Goldstone boson associated to the U(1)A symmetry with the current
ψ̄0γ5γ

µψ̄ even though it has the same quantum numbers, since this current is not
conserved. We can find a conserved current from this one since its divergence
can be written as ∂µKµ and we just subtract Kµ from the symmetry current.
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The resulting charge Q is however not gauge invariant due to instanton effects.
The instantons have the effect that when we perform a gauge transformation with
nonzero winding number, our charge Q would change by an integer times a well
defined prefactor. Hence this charge can not be used to prove the existence of
another Goldstone boson.

If we denote by 3 the fundamental representation of SU(3f )V and by 3̄ its anti-
fundamental one, the particles can be characterized by members of irreducible
sub-representations of tensor representations of SU(3), i.e. elements in invariant
subspaces of 3⊗ ...⊗ 3⊗ 3̄⊗ ...⊗ 3̄. The number of fundamental representations
need not be the same as the number of anti-fundamental representations. The
representation space 3⊗3̄ can be decomposed into a direct sum of an 8-dimensional
and a 1-dimensional space 3⊗ 3̄ = 8⊕ 1. The 1-dimensional subspace is spanned
by the vector δij̄ei⊗ ēj̄ ∈ 3⊗3̄, where ei ∈ 3 and ēj̄ ∈ 3̄ are basis in their respective
spaces. The η′ is then identified with this one dimensional subspace. This is the
best we can do and it is not possible from these considerations to find a constraint
on the η′ transition functions. One can however show that as Nc →∞ with fixed
t’Hooft coupling the U(1)A anomaly vanishes and the η′ becomes a Goldstone
boson. It then joins the GB octet to form a nonet.

The states that describe the η and η′ particles strictly speaking do not have
definite flavour quantum numbers. Experiments show that both are linear combi-
nations of states η8 and η0 which have the same quantum numbers as ψ̄0γ5γ

µλ8ψ̄
and ψ̄0γ5γ

µψ̄. The mixing is however quite small and to a good approximation we
can take η = η8 and η′ = η0.

The next constraint we want to look at regards the zero momentum limit of
the transition form factors FPγγ(0, 0). This region of momenta can not be treated
in the asymptotic freedom framework, but two useful results help us there. The
first one is the fact that the pion state has nonzero overlap with Jµ,(3)

5 |Ω〉 and the
second one is the exact computations one can do thanks to the axial anomaly.

The quantity to look at is

∫

d4xe−ipx
〈

γ(q1), γ(q2)
∣

∣

∣
J
α,(3)
5 (x)

∣

∣

∣
Ω
〉

= (2π)4δ(4)(p+ q1 + q2)M
α
µνε

∗µε∗ν (3.36)

in QCD coupled to electromagnetism. Standard polology results tell us that if
the momentum p comes close to the pion mass shell p2 = 0 then the LHS can be
written as

− 2iFπp
α i

p2
〈

γ(q1), γ(q2)
∣

∣ π0(p)
〉

= −(2π)4δ(4)(p+ q1 + q2)2iFπp
α i

p2
e2

i
Fπγγ(q

2
1, q

2
2)εµνλσε

∗µε∗νqλ1 q
σ
2 , (3.37)
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where we only kept terms of order e2 and Fπγγ is calculated within pure QCD
giving

M α
µν = −2Fπp

αe2
i

p2
Fπγγ(q

2
1, q

2
2)εµνλσq

λ
1 q

σ
2 , (3.38)

Contracting with ipα and inserting on-shell values for all momenta we get

ipαM
α
µν = 2Fπe

2Fπγγ(0, 0)εµνλσq
λ
1 q

σ
2 . (3.39)

The value of ipαM α
µν can be calculated in a second way, namely via perturbative

diagrams. It turns out that there are only two diagrams contributing to it and
this is the famous result of the non-perturbative nature of quantum anomalies.
We express M α

µν as

M α
µν = e20

∫

d4xd4ye−iq1·xe−iq2·y
〈

Ω
∣

∣

∣
T{Jµ(x)Jν(y)Jα,(3)

5 (0)}
∣

∣

∣
Ω
〉

. (3.40)

If one now dots ipα into this expression the so called contact terms will not con-
tribute and we can insert the divergence of the axial current into the correlator,
which is

1

16π2
εαβµνF

αβ
0 F µν

0 tr{λ3Q2}, (3.41)

where the trace is just 1 for our case of normalization (remember that the trace
here runs over color indices too). The external photon lines require wave function
renormalization, i.e multiplication by

√
Z3 for each external line. We are content

with the order e2 terms and the matrix element can be computed straightforwardly
to give

1

2π2
εαβµνε

∗µε∗νqλ1 q
σ
2 . (3.42)

This should be compared now to (3.39) to give

Fπγγ(0, 0) =
1

4π2Fπ

. (3.43)

The above analysis can be repeated for the η current Jµ,(8)
5 in almost the same

way, giving

Fηγγ(0, 0) =
1

4π2Fη

, (3.44)

where again Fη =
1√
3
Fπ for exact chiral symmetry.

The last constraint that we will look at gives values to the meson transition form
factors for one on-shell photon and one highly virtual photon [17]. The derivation
involves techniques such as light cone perturbation theory, hadronic wave functions
and is beyond the scope of this work, so we simply state the result
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lim
Q2→∞

Q2Fπγ∗γ(−Q2, 0) = 2Fπ (3.45)

for the pion, and the result for the η transition form factor has the same form with
Fπ replaced by Fη which is Fπ√

3
for exact chiral symmetry.
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4 Holographic models and their

asymptotic behaviour

In this chapter we will discuss models of the low energy degrees of freedom inspired
by the AdS/CFT correspondence [4]. Once we have obtained some of them we will
calculate contributions to the HLbL tensor and the meson transition form factors
and check if the constraints derived above are satisfied.

The holographic principle provides a way to relate two apparently very different
theories. Two theories describing the same phenomena are called dual. A situation
that occurs very often with the sort of dualities that we will discuss is that the
strong coupling regime of one theory is described by the small coupling regime
of the dual theory, which makes perturbation theory applicable. Frequently such
dualities are fundamentally relations between two quantum theories at least one
of which is a string theory. However in certain limits these string theories are well
described by an effective action in 5 dimensions at low energy computed from tree
processes. So we will have a theory in 5 spacetime dimensions whose dual is a 4
dimensional gauge theory similar to QCD. In many formulations of holographic
dualities the dual theory will be quite different from real QCD. There have been
many creative ideas which aim to uphold a holographic duality but which change
both theories in such a way to make the 4 dimensional theory more and more
similar to QCD. Here it is of importance to break any inital supersymmetry and
conformal symmetry in the 4 dimensional theory.

Motivated by these dualities originating from string theory, models have also
been created by hand, i.e. specifying a set of fields in a 5 dimensional spacetime,
an effective action and a background geometry. These models are called "bottom-
up" models. Predictions of these models include "static" observables such as masses
of mesons and baryons and decay widths as well as dynamical quantities such as
scattering amplitudes and correlation functions also involving photons. We will
use these models to calculate the HLbL tensor and some meson transition form
factors and check whether they satisfy the constraints derived above.

In each of these models we will have a 5-dimensional bulk space and fields φ
with an action S[φ], where the fields are supposed to obey the equations of motion
and have a fixed value on the UV boundary φ(0, x) := φ0(x). Here (z, x) could be
Poincaré coordinates on AdS. The message from the holographic principle [18] is
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now that each of these fields φ0 is a source for a corresponding operator in QCD
living on the z = 0 boundary, i.e.

exp(iS[φ])|φ(0,x)=φ0(x) =

〈

exp
[

i

∫

d4xφ0(x)O(x)
]

〉

QCD

. (4.1)

In our case we will have field theories of 5-dimensional U(Nf ) flavour gauge fields
V a and Aa whose values at the UV boundary are to be interpreted as sources for
the QCD currents ψ̄λaγµψ and ψ̄λaγµγ5ψ with λa representing a generator of the
algebra of U(Nf ). This is another recipe from the holographic principle: Global
symmetries in the boundary theory are gauged in the bulk theory. For Nf = 2
their generators can be taken to be the 3 Pauli matrices and the identity matrix
and for Nf = 3 these can be taken to be the 8 Gell-Mann matrices and the identity
matrix or more correctly appropriately normalized versions of the above. It is quite
reasonable to believe that a highly complicated quantum theory like QCD which
is supposed to describe so many phenomena cannot be accurately described by
just one smooth functional S[φ] in one dimension higher. We will however see
that the agreement is in many cases quite good qualitatively and sometimes also
quantitatively. This is quite remarkable for a classical theory with only a handful
of coupling constants and boundary conditions. The above equation (4.1) is only
the weak form of the holographic correspondence. In its strong form it connects
the boundary theory, which is supposed to model the strong interactions with a
string QT. In the case where stringy corrections can be neglected the partition
function will still include loops. Approximating the path integral by the value of
the integrand at the saddle point we arrive at the LHS of (4.1).

In the following we will look at various bottom-up holographic models of QCD.
The main connection to QCD is that the holographic partition function with fixed
boundary conditions will be the generating functional of Green’s functions of left
and right current operators in QCD. In all of these models we will have two U(Nf )
gauge fields LM(x, z) and RM(x, z) whose values of the x components at the bound-
ary at z = 0 are defined as lµ(x) and rµ(x). Depending on which model one uses,
there will be additional fields denoted by X here, whose boundary values will
describe sources of different operators.

With

ZQCD[lµ, rµ] = eiW [lµ,rµ] =

∫

DA0Dψ̄0Dψ0e
i
∫

LQCD+laµJ
aµ
L

+raµJ
aµ
R (4.2)

the precise correspondence reads

ZQCD[lµ, rµ] = Z[lµ, rµ] (4.3)
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where

Z[lµ, rµ] =

∫

Lµ(z=0)=lµ;Rµ(z=0)=rµ

DLDRDXeiShol[L,R,X] (4.4)

By demanding boundary conditions for X one can have additional sources for
other operators. It turns out that the above is just the exponential of the effective
action Γ[L,R] with above mentioned boundary conditions and where L and R are
extrema of Γ[L,R]. So we can abbreviate the above by

WQCD[lµ, rµ] = Γ[L,R]|b.c, (4.5)

i.e. the connected correlators of currents in QCD can be obtained by functional
differentiation of the effective action of the holographic theory evaluated on so-
lutions to the quantum equations of motion subject to boundary conditions with
respect to the boundary fields.

One can in principle differentiate Γ[L,R]|b.c wrt. fields L or R evaluated inside
the bulk z > 0 and then insert the solutions to the equations of motion. The
resulting objects have no direct interpretation in terms of QCD observables, but
they will be of computational value. These functions will encode information about
QCD bound states. In some models it is also possible to decompose the 5D gauge
fields with boundary conditions and the additional fields X into 2 sets depending
on only the x coordinates where the fields in the first set can be interpreted as
meson, vector and axial vector meson fields, and fields in the second set are purely
the boundary fields l and r. In this formulation one sees that the holographic
actions try to describe QCD observables in terms of observable dynamical degrees
of freedom, i.e. hadrons. In all of the following models, baryons are excluded and
these correspondences hold only in the large Nc limit of QCD with fixed but large
t’Hooft coupling. Colour degrees of freedom are not encoded in the holographic
models directly, but instead free parameters of the theory will be proportional to
Nc. The action Shol will always include a Yang-Mills term

SYM = − 1

4g25
tr

∫

d4xdz
√

|detg|gMNgRS(LMRLNS +RMRRNS), (4.6)

with RMN = ∇MRN − ∇NRM − i[RM , RN ]. The integral over the z coordinate
will be cut off at z = z0. As an aside, Poincaré coordinates do not cover all of
Lorentzian AdS, but, if it is cut off at a finite z value, then we may use them with-
out hesitation [19]. Other terms which are added to the action include a Chern-
Simons term and often terms containing the additional fields X. After rescaling
the gauge fields so as to have the usual propagator, the coupling constants of var-
ious interactions will have negative mass dimension (g25 has mass dimension -1) so
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renormalization appears to not be possible. We can however compute the effective
action at tree level and compare its predictions to experiments and constraints
coming from QCD. The qualitative agreement will be quite impressive. In the
tree approximation we solve the equations of motion for the quadratic part of the
action for our boundary conditions and insert them back into the action. This will
yield all the n-point functions up to n = 3, then one has to build the respective
terms out of the given vertices and propagators. In all models we will work with
the fields V = L+R and A = L−R.

4.1 HW1 model

In the HW1 model of [7] an additional field X with two flavour indices in the
fundamental representation is introduced which is minimally coupled to the gauge
fields. In addition to the usual kinetic term it also comes with a potential which
breaks the flavour gauge symmetry of the Lagrangian to the diagonal subgroup
gR = gL. The contribution to the total action is

SX = tr

∫

d4xdz
√

|detg|{|DX|2 + 3|X|2}, (4.7)

with DAX = ∇AX − iLAX + iXR. The coefficient in front of the mass term
"3" (in units of the AdS radius) is determined by the conformal dimension of the
dual operator which is the quark condensate. This is how the chiral symmetry
breaking of QCD is implemented in this model. A broken local symmetry in 4
dimensions leads via the Higgs mechanism to masses for gauge bosons. In our
5D theory the axial gauge fields which correspond to the broken generators get
an additional z dependent term in the action that acts like a mass and lifts the
degeneracy of vector and axial vector fields. The field 2

z
X on the boundary acts as

the source for the quark condensate which is already incorporated into the QCD
Lagrangian. The source X at the boundary is therefore related to the renormalized
current quark mass matrix via 2

ε
X(ε) =M = mqI. Solving the classical equations

of motion for X gives rise to another free parameter σ. Writing the scalar field
then as X = v(z)

2
ei2π(x,z) where v(z) = zmq + z3σ contains the symmetry breaking

parameters and π(x, z) will later be associated to the physical pion we can start
solving the linearized EOM for the vector and the axial vector field. As boundary
conditions on the IR brane we pick the gauge invariant conditions Lzµ = Rzµ = 0.
We may also choose the axial gauge Lz = Rz = 0 to simplify computations. If the
above action S = SYM + SX is to be interpreted as an action in a path integral
with boundary conditions, then the effective action at tree level is comprised of
S and of gauge fixing and ghost terms for L and R coming from the Faddeev-
Popov procedure. Using as gauge fixing functions simple delta functions of the
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fifth components R5, L5 one can remove the fifth component from the equations
of motion [20] without introducing ghosts or other new terms to the Lagrangian.
The longitudinal part is defined via the Fourier transform as the projection of
Ṽ µ(q, z) with qµqν

q2
for spacelike and timelike momenta. The equation of motion for

V µ = V µ
⊥ then reads

−∂2V µ + z∂z(
1

z
∂zV

µ) = 0, (4.8)

while the transverse part is just a constant. Since the above equation treats every
spacetime component and flavour component in the same way, we could introduce
a scalar function f which solves the above equation and which has f(x, 0) = δ(d)(x)
and ∂zf(x, z0) = 0 and then

∫

dyf(x − y)vµ(y) also solves the equation and has
vµ(x) as boundary condition. The more standard way is to go to Fourier space
and write Ṽ µ(p, z) = ṽµ(p)V (p, z) with V (p, 0) = 1 and ∂zV (p, z0) = 0. The
term ṽµ(p) is then the Fourier transform of the source l(x) + r(x). V is the
Fourier transform and called the bulk-to-boundary propagator. It makes explicit
the sources in the effective action after reinsertion of the above solution. The
version of V with Euclidean momenta inserted is usually denoted by J .

Expressing the covariant derivative of the scalar field X with the V and A fields
we see that there is a term proportional to A with no pion fields multiplying it but
no corresponding term for V . We will denote the longitudinal part of the axial
vector field as Aµ

‖(x, z) = ∂µψ(x, z). The equations of motion for AM split into 3
equations

− ∂2Aµ
⊥ + z∂z(

1

z
∂zA

µ
⊥)−

g25v
2

2z3
Aµ

⊥ = 0,

∂z
(1

z
∂zψ

a
)

+
g25v

2

z2
(πa − ψa) = 0

∂2∂zψ
a +

g25v
2

z2
∂zπ

a = 0. (4.9)

This defines the transverse axial vector bulk-to-boundary propagator A (q, z)
in the same way as above for the vector case and the last two equations are
coupled now. Inserting the solution for the vector field back into the action and
differentiating twice wrt. the Fourier representation of the source ṽµ(p) we obtain
the vector current 2-point function

ΠV (−q2) = −
1

2g25Q
2

∂zV (q, z)

z
|z=0. (4.10)
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One way to fix a parameter of the holographic model would be to compute the
high-momentum transfer limit and compare with the OPE of these two currents
obtained within QCD. The first term in the OPE is divergent, independent of the
QCD coupling and is obtained from the quark loop graph. After manually sub-
tracting the divergent term at Q2 = µ2 the OPE gives ΠV (−q2) = − 1

4π
lnQ2

µ2 and
this may be compared to (4.10). One should be cautious however since the holo-
graphic model does not model the running coupling of QCD and thereby asymp-
totic freedom correctly and is only expected to agree well with QCD for low and
intermediate energies. In this model we will usally set mq = 0 so there will be 3
free parameters z0, g5, σ which need to be fitted. We will choose the above con-
straint coming from perturbative QCD as one constraint. Two further constraints
will come from the low energy parameters of the lowest lying mesons. By insert-
ing the identity operator in the form of a sum over projection operators onto the
various states describing physical particles, polology tells us that the current cor-
relator has poles at the masses of these states and the residue is proportional to
their decay constants. Indeed the correlator computed from holography has such
poles. For this we introduce the vector bulk-to-bulk propagator G(z, z′, q). Con-
sider solutions ψn of (4.8) for an arbitrary component of V and with q2 = m2

n with
boundary conditions ψn(0) = 0 and ∂zψn(z0) = 0. Normalizable modes exist only
for discrete mn and the ψn(z) are called holographic wave functions. The Green’s
function G(z, z′, q) associated to (4.8) for an arbitrary component can then be
shown to be

G(z, z′, q) =
∞
∑

n=1

ψn(z)ψn(z
′)

q2 −m2
n + iε

(4.11)

and

V (q, z′) = lim
ǫ→0
−1

ǫ
G(ǫ, z′, q). (4.12)

This allows us to express the current correlator in terms of sums of poles

ΠV (−q2) = −
1

g25

∑

n

[ψ′
n(ǫ)/ǫ

2]

(q2 −m2
n + iε)m2

n

(4.13)

and identify mn as masses of vector meson resonances and the derivatives of the
wave functions at the UV boundary with decay constants Fn. The same thing can
be done for the axial current correlator A (q, z). We first define the holographic
wave functions of the transverse compontents of A as the solution to the equations
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of motion for discrete momenta and with the same boundary conditions. In the
axial sector we also have an equation for the longitudinal component of A which
is encoded in ψ(q, z). The equation for ψ(q, z) at discrete momenta defines the
so called pion wave function. The current correlator of axial currents then gets
contributions from the pion sector and the axial vector meson sector. The three
free parameters will be fitted to the asymptotic constraint, the ρ meson mass and
the pion decay constant Fπ.

We are now in a position to calculate the pion transition form factor. The
transition form factor can be extracted from the current correlator of two electro-
magnetic currents and one axial current with the same quantum numbers as the
neutral pion, i.e J (3)

5 from the residue of the pole at p = 0 where p is brought in by
the axial current. The pion state (in QCD) has no overlap with the transverse part
of the axial current so we need only the longitudinal one, which in holography is
described by ψ̃(p, z) = 1

i
pαã

α(p)ψ(z). ψ(z) can be computed approximately from
the equations of motion in the axial sector as 1−A (0, z) [7].

In the upcoming calculations we will choose Nf = 2 which is sufficient for this
observable and mainly follow [21]. The pion is described by a vector in the I = 1
representation which has only the 3-component 6= 0, where I labels the value of
the Casimir operator of the SU(2) subgroup of U(2). Since states in different
irreducible representations of a symmetry group are orthogonal to each other, the
only terms surviving from the electro-magnetic current, which has I = 0 and I = 1
parts, are J I=1;3J I=0 and J I=0J I=1;3.

The terms contributing to the current 3-point function will come from AV V
parts of the Chern-Simons term. The trilinear parts in the Yang Mills action do
not contribute. The Chern-Simons term for our model in terms of L and R gauge
fields has the following form

SCS[L,R] = S̃CS[L]− S̃CS[R]

S̃CS[B] =
Nc

24π2

∫

tr
(

BF 2 +
i

2
B3F − 1

10
B5

)

(4.14)

The fact that the prefactor of this term is quantized follows from certain consid-
erations of Chern-Simons terms on manifolds with boundaries [22] which we will
come to later. When a gauge transformation is performed, the Chern-Simons term
is not invariant and gets an additional boundary term SCS → SCS+boundary term.
To obtain the equations of motion in the bulk one always varies the the action in
such a way that the variations of the fields at the boundary is zero, so a gauge
transformed solution will still obey the equations of motion, but when reinserted
into the action there might appear additional terms if the gauge transformation
does not vanish on the boundary. This would mean that current correlators could
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be gauge dependent which is not desirable. In 5 dimensional gauge theories with
a Chern-Simons term one therefore has to introduce chiral fermions living on the
boundary and being coupled to the boundary values of the gauge field. Integrating
out these fermions in the path integral which can be done if they have high mass
will introduce another term in the effective action

Alternatively one can determine the prefactor by requiring it to be consistent
with the QCD anomaly result on π0 → γγ decay (3.43). We decompose each gauge
field in terms of the generators

Bµ = Ba
µt

a + B̂µ
I

2
. (4.15)

Each one of the generators is normalized in a standard way and the coefficient
function of the generator of the U(1) subgroup is distinguished by a hat symbol.

The only terms contributing from the Chern-Simons action are the terms trilin-
ear in the fields. After inserting L,R = V ±A we keep the terms linear in the axial
field. Only the longitudinal part of A is needed for this computation and because
of the 5-dimensional ε-tensor we need only terms in which no derivative acts on
A. We can then use A5 = V5 = 0 which means that always one derivative has to
be wrt. the coordinate z and we only keep terms with one V̂ . We can then easily
compute the trace over the flavour indices since there are always only two SU(Nf )
generators multiplying each other. Using the antisymmetry of the 4 dimensional
ε-tensor and shifting derivatives we arrive at

SCS = 2
Nc

24π2
εµνρσ

∫

d4x

{

[−ψa(∂ρV
a
µ )(∂σV̂ν)]|z=z0 + 3

∫

dz∂zψ
a(∂ρV

a
µ )(∂σV̂ν)

}

.

(4.16)

The boundary term is problematic and would not reproduce the correct QCD
anomaly result. The aforementioned boundary term resulting from integrating
out the chiral fermions on the boundary will actually cancel this term exactly
leaving us only with the second one. Writing the vector fields in terms of their
bulk-to-boundary propagators and sources and the ψ(q, z) in terms of ψ(z) and
the axial source and then differentiating wrt. to these, the 3-point correlator is
given by

〈J5 α(−p)JEM
µ (q1)J

EM
µ (q2)〉 = i(2π)4δ(4)(q1 + q2 − p)

Nc

12π2

pα
p2
εµνρσq

ρ
1q

σ
2Kb(Q

2
1, Q

2
2),

(4.17)

with
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Kb(Q
2
1, Q

2
2) = −

∫

dzJ (Q1, z)J (Q2, z)∂zψ(z). (4.18)

A surface term at z = z0 also needs to be subtracted by hand from the above
equation in order to reproduce the QCD anomaly giving

K(Q2
1, Q

2
2) = −

∫

dzJ (Q1, z)J (Q2, z)∂zΨ(z) + J (Q1, z0)J (Q2, z0)Ψ(z0),

(4.19)

with Ψ(z) = 1− ψ(z).
In the HW1 model the bulk-to-boundary propagator and the function Ψ(z) can

be represented in terms of Bessel functions

J (Q, z) = Qz
[

K1(Qz) + I1(Qz)
K0(Qz0)

I0(Qz0)

]

,

Ψ(z) = zΓ(2/3)(
ξ

2
)1/3

[

I−1/3(ξz
3)− I1/3(ξz3)

I2/3(ξz
3
0)

I−2/3(ξz30)

]

, (4.20)

with ξ = g5σ
3

. For the function K(Q2
1, Q

2
2) there is no closed formula for generic mo-

menta. By construction it satisfies the anomaly QCD constraint. Using J (Q, ξ/Q) =
ξK1(ξ) +O(e−Q) and ∂zΨ ≈ −2 z

z20
for small z we can find that for high momenta

Q we get

K(Q2, Q2) =
4

3z20

1

Q2
,

K(0, Q2) =
4

z20

1

Q2
. (4.21)

This shows that the Brodsky-Lepage constraint (3.45) where one photon is real and
the constraint coming from the OPE (3.35) where both photons are highly virtual
are both satisfied. Considering that these holographic models are built to describe
low to intermediate energies this is a remarkable achievment. In the case where
the two photons are highly virtual, one can compute subleading terms in the 1

Q2

expansion coming from the OPE. The holographic models considered here can not
reproduce any of these subleading terms. Before we check if the 2 constraints on
the HLbL tensor, the MV constraint (3.31) and the symmetric momenta constraint
(3.32), are fulfilled in this model, we will look at 2 more holographic models, the
HW2 model and the Sakai-Sugimoto model.
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4.2 HW2 model

The HW2 model of [6] is very similar to the HW1 model, it only differs essentially
in the way chiral symmetry is broken spontaneously and how the pion fields arise
during this process. The HW2 model has only 5D gauge fields L and R and no
scalar field which breaks the symmetry. Instead different boundary conditions are
used for the vector and axial vector combinations at the IR brane z = z0. This
model will therefore have one less parameter to fix and fixing them via low energy
resonance properties will cause various observables to not obey perturbative QCD
expressions quantitatively. The boundary conditions in the path integral on the
IR brane are

Rµ(x, z0)− Lµ(x, z0) = 0

FR,5µ(x, z0) + FL,5µ(x, z0) = 0 (4.22)

The theory, i.e. the action together with the above boundary condition does
not possess the full gauge symmetry anymore. At z = z0 the above boundary
conditions demand that gL(x, z0) = gR(x, z0) so the symmetry is broken down to
the diagonal vector subgroup at the IR boundary. One proceeds now by defining
a Wilson line which starts at the IR brane [23] by

ξL(x, z) = P exp

{

− i
∫ z0

z

dz′L5(x, z
′)

}

, (4.23)

and analogously for R. An action with a Chern-Simons term is not gauge invariant
anymore, so it is generally not possible to set L5 = R5 = 0 without acquiring
boundary terms. To proceed we simply do a field redefinition

Lξ
M(x, z) = ξ†L(x, z)[LM(x, z) + i∂M ]ξL(x, z)

Rξ
M(x, z) = ξ†R(x, z)[RM(x, z) + i∂M ]ξR(x, z) (4.24)

such that Lξ
5 = Rξ

5 = 0, and insert it back into the action. The Chern-Simons term
changes and via the definition of

U(x) = ξL(x, 0)ξ
†
R(x, 0) =: e

i2π(x)
Fπ , (4.25)

one can show that the resulting action describes an effective action of pions, vector
and axial vector fields. We rename the fields Lξ, Rξ into L,R again and consider
their vector and axial vector combinations. Analogously to the HW1 model we
decompose them according to

Vµ(q, z) = v(q, z)v̂⊥µ (q) (4.26)

Aµ(q, z) = a(q, z)â⊥µ (q) +
¯a(q, z)â‖µ(q) +

α(z)

Fπ

∂µπ(x),
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where v̂ and â are identified with the sources of the QCD currents and the unhatted
version represent transverse and longitudinal bulk-to-boundary propagators. The
π(x) appears since the above fields are the redefined versions of the original fields
whose boundary values are sources for the currents. The boundary values of the
new fields get contributions from the redefinition.

The vector fields Aµ(x, z) and Vµ(x, z) now obey the same differential equations
in our approximation. They however have to obey different boundary conditions,
which models spontaneous symmetry breaking. The vector bulk-to-boundary prop-
agator v(q, z) therefore coincides with V (q, z) from the HW1 model.

To compute correlators of currents we insert the solution to the linearized equa-
tions of motion into the action again and using a pole decomposition of the bulk-
to-boundary propagator we fit the 2 parameters of the model g5, z0 to the pion
decay constant and the ρ meson mass. The asymptotic constraint on the QCD
current correlator is now not fulfilled. The dependence on the momentum Q is
reproduced but the precise coefficient is not.

The computations for the pion transition form factor are mostly analogous with
the key differences that no boundary term needs to be added to the action like
above and also that no term must be added by hand to the function Kb(Q1, Q2)
because of the boundary conditions. This gives us

K(Q2
1, Q

2
2) = −

∫

dzJ (Q1, z)J (Q2, z)∂zα(z) (4.27)

where α(z) solves

∂z(
1

z
∂zα) = 0 (4.28)

with boundary conditions α(0) = 1. Setting α(z0) = 0 gives

α(z) = 1− z2

z20
. (4.29)

The vector bulk-to-boundary propagator obeys the same differential equation as in
the HW1 model with the same boundary conditions, so when expressed in terms of
z0 and g5 they are the same. Fitting to the ρ meson mass implies z0 = 3.103 GeV−1

for both models. If in the HW1 model g5 and σ are fitted with the pion decay
constant and the constraint from asymptotic QCD then one gets g25 = 12π2/Nc

and ξ = (0.424 GeV)3. The HW2 model being fitted to the pion decay constant
gives g25 = 2

F 2
πz

2
0
, which differs from the HW1 model. The HW2 TFF already

satisfies the QCD anomaly constraint K(0, 0) = 1 which can be checked by using
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the expansions of the Bessel functions near Q = 0. For very high momenta the
integration over the holographic coordinate is dominated by the region near z = 0
where the derivatives of the functions Ψ(z) and α(z) coincide. The HW2 TFF
therefore has the same functional form as the HW1 TFF in the high Q regime but
with differently fitted parameters. The coefficients in the HW2 for both constraints
(3.35) and (3.45) only reach about 62 % of the desired values [24].

The most interesting model of low energy QCD is the Sakai-Sugimoto model [5]
which is a top-down model constructed from string theory. It would be beyond
the scope of this paper to describe the process by which this model is obtained,
but in the end it can be put into a form which is very similar to HW2. The action
is formulated on a space in which the holographic coordinate Z goes from −∞
to ∞ and describes one U(Nf ) flavour gauge field Bµ. Its even and odd parts
in the holographic coordinate are identified with the fields Vµ and Aµ. Using the
decomposition into even and odd parts allows one to restrict the interval of Z
to Z ≥ 0 and with certain coordinate transformations we may identify the UV
and IR branes in this theory. We will again be able to find a bulk-to-boundary
propagator where the axial one satisfies different boundary conditions than the
vector one just as in the HW2 model. From its derivation from string theory
it is clear from the start that the dual theory will approximate QCD only in
the low energy regime and will certainly not fulfill asymptotic constraints from
QCD. Explicit computations also show this, for example the TFF in the double
virtual case scales like 1

Q4 , see [24]. For this reason we leave this model out of
our discussion regarding asymptotic constraints. We now turn to the holographic
computation of the HLbL tensor and check if the results obey the MV constraint
and the symmetric momenta constraint.

4.3 Holographic computation of the light-by-light

scattering tensor

To compute the HLbL tensor from holography we first want to introduce the axial
vector transition form factor. It describes the decay of an axial vector meson
into two in general virtual photons. When both photons are on-shell, the resulting
amplitude has to be zero by the Landau Yang theorem [25, 26]. Axial vector mesons
contribute to the Π tensor just as the neutral pseudoscalar mesons do and we will
see that they are absolutely necessary for the implementation of the constraints.
Even though their on-shell value vanishes, the axial TFF’s also contribute to the
anomalous magnetic of the muon aµ. We will work with Nf = 3 from now on. We
parametrize the amplitude γ∗(q1)γ∗(q2)→ Aa as (see [27])
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i
Nc

4π2
tr(Q2ta)εµ1ε

ν
2ε

∗ρ
A εµνρσ[q

σ
2Q

2
1A(Q

2
1, Q

2
2)− qσ1Q2

2A(Q
2
2, Q

2
1)]. (4.30)

To compute this within holography we compute the current correlator of one
axial current and two vector currents from the Chern-Simons terms in the action
and then look at the residue of the pole at the desired axial vector meson mass.
This brings in the holographic wave function ψA of that resonance and in the two
HW models it leads to

A(Q2
1, Q

2
2) =

2

Q2
1

∫ z0

0

dz[
d

dz
J (Q1, z)]J (Q2, z)ψ

A/[g−2
5

∫ z0

0

dz

z
(ψA)2]1/2. (4.31)

The integral in the denominator becomes 1 if the wavefunctions are normalized
correctly. There is experimental data on the decay of the f1 axial vector meson into
one real and one virtual photon which can be compared to the holographic results
above. The Sakai-Sugimoto which we leave out on our discussion on asymptotic
constraints and the HW2 model agree very well with the experimental data [27].
To get the terms that are relevant for the MV constraint, we only have to look at
diagrams in which the q1 and q2 photon legs are connected by an axial form factor
(see figure 4.1), the other two diagrams fall off faster.

Figure 4.1: One of the diagrams contributing to the HLbL tensor. The double
lines represent the axial vector propagator and the blob represents the
axial vector form factor. There are two additional diagrams related to
this one via crossing symmetry. In these two diagrams different pairs
of photon lines are connected via an axial vector form factor.

It is also only the longitudinal part of the axial vector propagator qµ3 q
ν
3/(M

A
n Q3)

2

that contributes to Π̄1 thereby giving
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Π̄1 = −
g25
2π4

∞
∑

n=1

∫ z0

0

dz[
d

dz
J (Q, z)]J (Q, z)ψA

n (z)
1

(MA
n Q3)2

×
∫ z0

0

dz′[
d

dz′
J (Q3, z

′)]ψA
n (z

′), (4.32)

The vector bulk-to-boundary propagator associated to the soft photon does not
appear explicitly above since J (Q, 0) = 1. Analysis of the asymptotics of any
truncated version of the above infinite sum shows that the MV constraint is com-
pletely missed and the only chance to fulfill it is to consider the whole infinite sum.
The axial bulk-to-bulk propagator

GA(Q; z, z′) =
∞
∑

n=1

ψn(z)ψn(z
′)

Q2 +M2
n

(4.33)

is the appropriate tool since the sum above reduces to the zero momentum limit
of this propagator for which a closed form can be derived at least within the HW2
model where one can express it in terms of Bessel functions. The zero momentum
limit in the HW2 model is particularly simple

GA(0; z, z′) =
min(z, z′)(z20 −max(z, z′))

2z20
. (4.34)

Changing integration variables toQz = ξ andQ3z
′ = ξ′ and restricting toQ2 ≫ Q2

3

we get

− g25
2π4

1

2Q2
3

∫ ∞

0

dξ

∫ ∞

0

dξ′ξK1ξ
d

dξ
[ξK1(ξ)]

d

dξ′
[ξK1(ξ)]ξ

2/Q2. (4.35)

The ξK1(ξ) term of J (Q, ξ/Q) is the only part that survives the high-momentum
limit since the second part falls of exponentially with Q. The ξ′ = 0 integrand is a
total derivative and gives contributions at the ξ′ boundary, since K1 has a pole of
order 1 there. Performing the last integral we arrive at

Π̄1 = −
g25
4π2

2

3π2Q2Q2
3

. (4.36)

For the HW2 model fitted to low lying resonance parameters this matches the
constraint quantitatively only up to 62 %.
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For the HW1 no closed form for the double integral has been found but the
HW1 and the HW2 should yield the same predictions for high-energy observables
and if for a moment we pretend that the above result holds also for HW1 then we
see that due to the different fitting of HW1, g25 = 4π2 for Nc = 3, the constraint
is fulfilled exactly. For a long time it was not known how to naturally incorporate
the MV constraint (3.31) into hadronic models with a finite number of resonances
since one could never get the asymptotic matching naturally. This has occasionally
led to rather ad hoc modifications of models such as in [12] but the above results
show that an infinite number of resonances can at least qualitatively reproduce
the asymptotic behaviour and no unnatural modifications have to be made.

To perform the symmetric limit we write

Π̄1 =
−g25
2π4Q2

3

∫

dz

∫

dz′J ′(Q1, z)J (Q2, z)J
′(Q3, z

′)GA(0; z, z′) (4.37)

as before where the prime on J denotes differentiation wrt. z and we shift the
derivatives from the bulk-to-boundary propagators to GA via partial integration.
This works since GA vanishes when either z or z′ is on one of the two bound-
aries and the above function is symmetric wrt. Q1 and Q2 so we can replace
2J ′(Q1, z)J (Q2, z) by J ′(Q1, z)J (Q2, z)+J ′(Q2, z)J (Q1, z). Inserting then
(see for example [23])

∂z∂z′G
A(0; z, z′) =

z20
2
[α′(z)α′(z′) + α′(z)δ(z − z′)] (4.38)

we can simplify and discard terms coming from the first term above since they
decay too fast to contribute in the limit. Using then the explicit form of the
α(z) wave function, making a variable transformation zQ = ξ and inserting the
high-momentum limit of J (Q, ξ/Q) we find

Π̄(Q,Q,Q) = − g25
4π2

1

π2Q4

∫ ∞

0

dξξ4K3
1(ξ). (4.39)

The value of the integral is roughly 0.36 whereas the coefficient from (3.32) is
4
9
= 0.44. For the IR fixed HW2 model the factor g25

4π2 is about 0.62 so the axial
vector sector is able to account for 51 % of the constraint, the UV fitted one for
81 %. Like before in the MV constraint, the pions and any finite number of axial
vector resonances cannot obtain the right asymptotic behaviour, infinitely many
axial vector resonances are needed. It is hoped that inclusion of other resonances
will lead to a better matching to the two asymptotic constraint on the HLbL tensor
[27].
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4.4 Conclusion

We first reviewed some key asymptotic constraints on mesonic transition form
factors and the HLbL tensor coming from QCD. The main tools that were used
to derive these constraints was the OPE and the asymptotic freedom of QCD. We
also briefly commented on the validity of the OPE in QCD and derived the explicit
form of the HLbL tensor as a 4-point current correlator of the electro-magnetic
current. We also saw that the chiral flavour anomaly and spontaneous symmetry
breaking play an important roles in deriving these constraints. We then focused
on two models of QCD coming from the holographic prinicple. These models took
inspiration from the AdS/CFT correspondence to build a 5D gauge theory which
describes current correlators of QCD. They incorporate pions, vector and axial
vector resonances and have no colour degrees of freedom. We were able to show
that both models satisfy the asymptotic constraints for the pseudoscalar meson
TFF’s at least qualitatively where we had to make subtractions by hand in the
HW1 model. The fall off behaviour of the HLbL tensor in holography was shown
to be consistent with QCD results in the HW2 model but the exact coefficient was
not obtained. In the case of the HW1 model we argued that the constraints are
even better fulfilled but were not able to show it rigorously.
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