Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

m Sibliothek,
Your knowledge hub

A
_ Cartography M.Sc.

Master thesis

Vector tile cache connecting effective spatial

communication and geospatial Al

Sharon Chawanji

Technical _— TECHNISCHE

University l UW’\IIIEZY\IERSITAT

of Munich Wl S\ vie rsity of Technology
TECHNISCHE @
UNIVERSITAT 7 UNIVERSITY OF TWENTE.

DRESDEN 1ITc

2020

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

m Sibliothek,
Your knowledge hub

TECHNISCHE

UNIVERSITAT
WIEN

MASTERARBEIT

Vector tile cache connecting effective spatial

communication and geospatial Al

eingereicht von
Sharon Chawaniji
Matrikelnummer 01234567
12 Oktober 2020

Ausgefiihrt am Department fir Geodéasie und Geoinformation

der Technischen Universitat Wien

unter der Anleitung
von
Dipl.-Ing. Dr. Markus Jobst, TU Wien
Univ.Prof. Mag.rer.nat. Dr.rer.nat. Georg Gartner, TU Wien

6<—)\~®}

(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

TECHNISCHE

UNIVERSITAT
WIEN

MASTER’S THESIS

Vector tile cache connecting effective spatial

communication and geospatial Al

Submitted by
Sharon Chawaniji

Matriculation number 01234567
12 October 2020

Conducted at the Department of Geodesy and Geoinformation

Vienna University of Technology

Under the supervision
of
Dipl.-Ing. Dr. Markus Jobst, TU Wien
Prof. Mag.rer.nat. Dr.rer.nat. Georg Gartner, TU Wien

6<)w©i

Signature (Author) Signature (Supervisor)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

Vector tile cache connecting effective spatial

communication and geospatial Al

submitted for the academic degree of Master of Science (M.Sc.)
conducted at the Department of Aerospace and Geodesy

Technical University of Munich

Author: Sharon, Chawanji

Study course: Cartography M.Sc.

Supervisor: Dipl.-Ing. Dr. Markus Jobst, TU Wien

Reviewer: M.Sc. Mathias Grobe, TU Dresden

Chair of the Thesis

Assessment Board: Prof. Mag.rer.nat. Dr.rer.nat. Georg Gartner, TU Wien
Date of submission: 12.10.2020

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Statement of Authorship

Herewith I declare that I am the sole author of the submitted master’s thesis entitled:
“Vector tile cache connecting effective spatial communication and geospatial AI”

I have fully referenced the ideas and work of others, whether published or unpublished. Literal or analogous citations

are clearly marked as such.

Munich, 12.10.2020 Sharon, Chawanji

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Acknowledgements

I would like to express my sincere gratitude to all who continually supported and motivated me during my thesis
research and writing process. To mention a few my main advisor Dipl.-Ing. Dr. Markus Jobst, Prof. Georg Gartner
and Mathias Grobe who expertly guided me with their immense knowledge. I would also like to thank the rest of my
thesis committee including Juliane Cron, Paulo Raposo and Wangshu Wang for their tremendous effort to motivate
me and the help with organisation. Not forgetting my fellow Cartorebels of the Cartography Master 8" intake and my

friends and family in Zimbabwe. I thank you all.

ii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Abstract

The growth of the Web has been characterised by publication and establishment of linked open data on the
Web powered by technologies such as RDF and SPARQL. Much of this data are embedded with geographic
content that links them to a position on Earth’s surface. This data can be extracted from sources such as
social media, remote sensing and government portals. The abundance of the data on the Web create a huge
pool of spatial big data. By employing geospatial artificial intelligence (geoAl), knowledge can be extracted
from the spatial big data that can answer questions to real world phenomena. Since the data is geolinked it
can be integrated with geospatially enabled Web services so that it can be visualised on Web GIS

applications.

As most datasets on the Web are distributed on different computers connected by the internet, Web services
are developed with the purpose of providing interoperable data access, data integration and data processing
functionalities. One such Web service is the Open Geospatial Consortium (OGC) Table Joining Service
(TJS). TJS provides an interface that can take a geospatial framework on one node, and attribute data on

another node and merge them based on common geographic identifiers.

The goal of this thesis is to examine the feasibility of implementing a TJS that uses cached vector tiles as
the geospatial framework and Comma Separated Value (CSV) format for attribute data. TJS specification
requires that attribute data be formatted in an XML based structure called GDAS. However, most datasets
published on the Web are in CSV format. Additionally, RDF data stores can be queried via SPARQL

endpoints, the results of these queries are in tabular format and can be converted to CSV data format.

To achieve the thesis goal a prototype implementation of the TJS concept is developed which ingest
attribute data in CSV format and cached vector tiles. The two datasets are to be merged based on common
geographic identifiers. Vector tiles are small pre-package containers of vector data. Vector tiles have several
advantages over other means of distributing geographic features through the internet. Vector tiles are small,
they can be cached for later use, they are rendered by the client and users are able to interact and use the
underlying geographic features for further geographical processing and spatial analysis. The results of this

thesis will be displayed as a Web thematic map in a simple OpenLayers Web map application.

Keywords: Table Joining Service, Vector tile cache, Linked Open Data, Geographic identifier, SPARQL

iii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Abbreviations

API

GDAS

GeoAl

GIS

GLS

GSGF

GWC

HTTP

HTTP

JSON

LOD

0GC

OL

OWS

RDF

SDGs

SOA

TJS

T™MS

UN-GGIM

UNSC

WES

WMS

WMS-C

Application Programming Interface
Geolinked Data Access Service
Geospatial Artificial Intelligence
Geographic Information Systems
Geolinked Service

Global Statistical Geospatial Framework
GeoWebCache

Hyper Text Transfer Protocol

Hypertext Transfer Protocol

JavaScript Object Notation

Linked Open Data

Open Geospatial Consortium
OpenLayers

Open Geospatial Consortium Web Services
Resource Descriptive Framework
Sustainable Development Goals

Service Orientated Architecture

Table Joining Service

Tile Map Service

United Nations Committee of Experts on Global Geospatial Information Management

United Nations Statistical Commission
Web Feature Service
Web Map Service

Web Map Service - Cache

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Web Map Tile Service

WMTS

“ayloljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay L
“JreqbBnyan yauloljqig usipn N1 Jep ue isi liagrewoldiq Jasalp uoisiareulblLO aponipab ausiqoidde aig

gny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

L]
|
rk

Table of Contents

Statement Of AUTNOISNIPooooiii ettt b st b b seese b eseens i
ACKNOWIEAGEMENLES..........ooeioiiieee ettt ettt et et e et e s st e st estesbesbe s eebeeseassessessessessesseassassessassan ii
ADSTIFACT ...ttt iii
ADDBIEVIAtIONS ...ttt ettt iv
Table OFf CONTENTESooiii ettt ettt ettt ettt vi
LiST OF FIQUIES ..otttk etttk et b et be bbbt viii
LISt OF TADIES ..otttk b etk b etk et b ettt st bt ntene ix
T INTFOAUCTION ...ttt b ettt sttt b e bbb b et se et s et bese e ene 1
1.1 Background and MOGIVAtioN ..ot e 1
1.2 ReSEArCh ODJECHIVEScoocviieiieee ettt ettt sttt b et ss et sbeaeas 2
1.3 Structure of the theSISc.coii e 3

2. Fundamentals and [iterature reVIeWccccoviiniiiiiiiineicccecte ettt 4
2.1 Theoretical BaCKGrOUNGc..oooiiiiiiiiiiieeee ettt b e sbeete et ess e s e b e sbeeneas 4
2.1.1 Web Map Service and Styled Layer Descriptor...............ccccoiiiiiiiiiiiiiiiiieeeeeee et 4
2.1.2 Geolinking Service and Geolinked Data Access Service..............coccoevieiiiiinienieiieeee e 6
2.1.3 Table JOINING SEIVICE........cc.cooiiiiiiiiiiieiieeeete ettt ettt ettt e s b e e st e e bt e ebbe e abeesteessbeeseeessseensaeen 7
2.1.4 Table Joining Service Implementations.................ccocueiriiiiiiiiniiiniieieet e 9

2.2 VECIOK TS ...ttt ettt sttt be e es 11
BuMEENOAS ...ttt bttt s bttt n et bttt n et b ettt e s 13
3.1 €ase StUAY SCONANIOc.oouiiiieiiicecteeee ettt ettt a bbbt et e s ae et e s ssesesens 13
3.2 SOftWare arChit@CIUIecoouiii et 15
32,1 Presentation LIEr...........cccoooiuiiiiiiiiiiiiiiieeite ettt ettt ettt et st e et e s baeebeeebeesabaeenbaeeanes 16
K220\ 1) 1) 11612 10) 1 T8) SRR 17
0 B D T 1 7 1 5 (=) TP 17

3.3 Software tECHNOIOGIEScooiieiiee ettt ettt ese e ns 17

4., Prototype IMPIementation ...ttt 21
41 EXperimental data ...t 21

vi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

411 ABEIDULE AALA........c.ooiiiiiieeece et sttt ettt et n e ae et e teenteenteeneas 21
4.1.2 Vector data for the TJS geospatial frameworkcccccooviieiiiiiiiiiiiieec e 23

4.2 Geospatial framework data...............ccooviiiiiiiiiie et s 24
4.2.1 Generating vector tiles With GeOSEIVercccoooiiiiiiiiiiiiieeeeeee e e e 24
4.2.2 Caching vector tiles with GEOWebCacChe....................ccciriiriiiiieeee s 25

4.3 TJS Application Programming Interface implementationc.cococoiiiniinncnnneen 26
4.3.1 Python function for joining datacocoiiiiiiiiiiiniie e e e e 27
4.3.2 Developing the TIS APot e et e e teeebbeessaessbaeesneenees 31

4.4 OpenLayers web application.................ccoooiiiiiiiiice s 32
B. DHSCUSSION ..ottt ettt ettt b et 33
5.1 Vector tile cache as framework data...............c..ccccoiiiniiiniiiniceccceceeceees 33
5.2 ARHDULE data.........ooei ettt s 33
5.3 FramMEWOTK KEY ..ottt etttk b et s e enes 35
5.4 Table Joining Service Implementation ... 35
6. Conclusion and FURUIE WOKK ...ttt 37
T. BIDHOGIAPRY ...ttt ettt ettt b e b et e teetb e s b e b e b e b e ebeereesbesbenbenbenrets 39
APPENAIX ..ottt ettt ettt e s b ab e b e b e heeteeta e st ea b e b e b e ebe et e ettertesbesbesbeebeeteereessestensenserers 42
APPENAIX 2.ttt ettt ettt e s bt e b e b e be bt ta e st e b e b e b e ebeeteettettesbesbesbe b e ebeereessestensensesranrs 44
APPENAIX ...ttt ettt ettt e r b b e b e b be et e tt e st e b e b e b e ebeeteettettes b e st esbe b e ebeeseeseestensenserenrs 46

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Figures

Figure 1. Vector tile scheme based on Quad tree structure in which each tile is a parent of 4 tiles in the subsequent

zoom levels in a tile pyramid. Source (Balog and Houtmeyers, 2017).......ccocuiiriiiriieiiieniieeieeeieeeiee et 6
Figure 2. Concept of Geolinking Service (GLS) (Grothe and Brentjens, 2013)........ccoviiriiiiiiiniinniieniieeieeieeeee e 7
Figure 3 Representation of the framework key present in both attribute data and geospatial framework 8
Figure 4 . The procedure for generating vector tiles according to Gaffuri (2012).ccceeverviirieniiniiniiniiiieienienene 11
Figure 5. Quad tree structure of a tile pyramid. Source (CSSE, 2014, p. 303). ..ccueeiieiiriiieiienteneecec e 11
Figure 6. Table Joining Service concept for automated service-oriented data joining (Grothe and Brentjens, 2013).14
Figure 7. Prototype SOftWare archit@CtUIE.coouiiiiieiiiiiieeiieeee ettt ettt st sat e st et esateesabeesabeesaneeeas 16
Figure 8. Input and Output data formats for Table JOININg SEIVICe.ccccevuiriiriiiniiiiriiiiienicreeneeecec e 21
Figure 9. Results from SPARQL QUETY. ..covutiiiiiiiiieiiieeiteeee sttt sttt ettt e st e st e sabeesabeesateesabeesaseesabeesaseesas 22
Figure 10. Results from SQL QUETY.....cooiuiiiiiiiiiiiiieeieesite ettt ettt ettt st e s bt este e s bt e sabeesabeesaseesabeesabeesabeenaneenns 23
Figure 11. Results from the joined attribute data.cooueiiiiiiiiiriee ettt st saee e 23

Figure 12. Attributes of the Natural Earth vector dataset displayed in QGIS application with the column of the Series

M, No. 49 UN area codes highlighted.ccoooiiriininiiiiiic et s 24
Figure 13 GeoJSON object (left) and FeatureCollection (FiZht).........cooiiriiiiiriinieieieeieee et 25
Figure 14 . TJS JoinData operation procedure steps RESTIUl SYSteML.....cc.covuiiriiiiiiiiiiiiiiiierieerieeeeesvee e 26
Figure 15. Procedure Of JOINING OPETAION c....eevviiriiiiiieiiieeieesiiee et et st e st e steesibtesteesabeesabeesabeesabeesabeesaseesabeesaneesas 28
Figure 16. GeoPandas data frame from GeoJSON data..........coocueeriiiiiiiiniiiiiiieeieeeiteeiee sttt ettt e e e saee e 29
Figure 17. Pandas data frame from the CSV data.......c.coouiiiiiiiiiiiiieriieeiee ettt ettt e b e snee e 29
Figure 18. Resultant merged geodata frame.c.coevirieieiiiiiniineeceeete ettt st e 29
Figure 19. Illustration of feature properties for a geographic feature after the joining operation........c..cccceceeevevennnne. 30
Figure 20. Rendered GeoJSON vector tiles from the resultant TJS joining Operation.ccecceveereeseeeieeeieneenenns 32

viii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Tables

Table 1. TJS implementations. (Source Grothe and Brentjens, 2013)c.coovuiiriiiiiiiiiiiniieeieeeieeeee et 9
Table 2. Operating SyStem and WED DIOWSET.ccoutiruiiriieriieniieeiee st et e st e st e sbtesteesabeesaseesabeesaeesabeesaseesabeesaseenas 18
Table 3. Software and technologies for the client tier COMPONENL.ccccueeriiiriiieriieriee ettt seeesbee e 18
Table 4. Software and technologies for the application tier COMPONENL.ccocueeriieriiierieerieerieeniee e sree e seee s 19
Table 5. Software and technologies for the data tier COMPONENL.c..coouiriiriiriiniieieeieeie ettt 20

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1. Introduction

1.1 Background and motivation

Spatial big data with high-precision and wide-coverage has exploded globally. Spatial big data include data from
remotely sensed data, geo-social media data, and statistical data from business to government data (Jiang and Shekhar,
2017). This provides a good opportunity to enhance the national decision-making, social supervision, public services,
and emergency capabilities (VoPham et al., 2018). According to Li et al., 2016 nearly 80% of data on the Web are
embedded with geographic information that can be mapped and geovisualised (Li et al., 2016). Spatial big data can
be made available as published structured data which is interlinked to other datasets also known ss Linked Data.
Linked data technologies are vital building blocks to knowledge graphs and are the core of the Semantic Web.
Knowledge graphs acquire concealed knowledge from an enormously large amount of interlinked data. This is
achieved by integrating the interlinked data into an ontology and applying a semantic reasoner (Fensel et al., 2020).
The Semantic Web, coupled with innovations in spatial science, artificial intelligence and high-performance

computing form a scientific discipline called Geospatial artificial intelligence (geoAl) (VoPham et al., 2018).

The Semantic web makes it possible to develop technologies such as Resource Description Framework (RDF) and
SPARQL that empower a Web of geolinked data to be used as knowledge bases. “The Semantic Web refers to refers
to W3C’s vision of the Web of linked data with technologies that enable people to create data stores on the
Web, build vocabularies and write rules for handling data”'. RDF is a standard model for describing resources on
the web 2. RDF data can be accessed using a data exchange service called an SPARQL endpoint. SPARQL (an
abbreviation for SPARQL Protocol and RDF Query Language) is a query language for RDF data, results from
SPARQL queries resemble tabular data and can be converted to a CSV data format. Web Geographic Information
Systems (GIS) technology enables the CSV data to be integrated with geographic frameworks based the embedded

geographic information so that the data can be visualised on a Web based map.

For an extended period, the traditional desktop GIS has been used for joining attribute data, ,usually in tabular structure
like CSV, with geographic data (Billen et al., 2006). Desktop GIS brings several limitation, including data sharing, it
is usually limited to one hardware at a time and it requires users to be experts with months of training and experience

(Abdalla and Esmail, 2018).

To date the development of the Web has made many to shift from desktop GIS to web GIS. Indeed, the Web GIS can
be accessed by many users simultaneously with a significant abstraction of the technical background for novice users;
it has a potential of offering more advanced full featured GIS enabled web services (Abdalla and Esmail, 2018). Vector

tiling for example has been proved as the most effective way of delivering spatial data over the recent decade (“OGC

! https://www.w3.org/standards/semanticweb/
2 https://www.w3.org/RDF/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

Vector Tiles Pilot: WFS 3.0 Vector Tiles Extension Engineering Report,” 2019). Vector tiles are containers of

geographic data that have been broken down into tiles for easy transfer over the internet (Martinelli and Roth, 2015).

Most map service systems such as Google Maps are built on vector tile map models (Wan et al., 2016). Vector tiles
have many advantages over other ways of delivering geospatial data over the internet because the tilling technology
reduces the size of vector data into vector tile hence transferring and rendering of vector tiles more efficient and faster.
Additionally, vector tiles are rendered by the client unlike the popularly used raster tiles which are rendered by the
server (Burghardt et al., 2014). However, vector tile technology deals with a high access rates in order to provide
fundamental information for geospatial processing and spatial analysis. Unlike the raster tiles which are created by
breaking down a map image and are useful for displaying purposes, vector tiles allow users to interact with embedded

geographic features.

To overcome the challenge of high access rates, caching mechanisms, like vector tile caches, are proposed to reduce
the computational resource requirement and this increases the concurrent request rate a server can handle. Vector tile
caches store data temporarily so that future requests of the data can be served faster. The data stored in a cache might
be a product of earlier computation or a copy of data store (Netek et al., 2020). These characteristics make vector tiles
highly flexible and optimised for an enhanced user experience. Additionally, the ability to utilise the raw vector data
makes accessing, manipulating and styling of geographic features on the client side possible (Li et al., 2017).
Ultimately, it gives an opportunity for vector tiles to be integrated with attribute datasets based on the embedded

geographic identifiers in the vector tiles on the client side instead of the server side.

Existing studies on vector tiles have mostly focused on optimizing rendering of vector tile on web applications,
efficient caching mechanisms for improved performance of Web map applications and improving vector tiles
transmission rates (e.g., Antoniou et al., 2009, Gaffuri, 2012). However, vector tiles can also be used as a dataset
capable of being integrated with other datasets based on common feature ID or any other feature attribute with unique
geographic identifiers. The applicability of cached vector tiles as a source of geospatial data to be integrated with

statistical data is not clearly understood.

1.2 Research Objectives

The aim of this thesis is to examine the potential of using cached vector tiles as a source of geospatial data for
integration with statistical data based on Open Geospatial Consortium’s Table Joining Service (TJS). Using cached
vector tiles reduces the processing pressure on the server that would have otherwise been created by multiple requests
(Shang, 2015). Multiple requests from the server at the same time can cause the server to slow down or shut down

(Wan et al., 2016).

Table Joining Service is an open Web service standard that defines a way for geolinked data to be accessed from a
remote location so that it can be joined with geographic data 3. Geolinked data in the context of TJS refers to attribute

data that can be linked to a geographic location. However, the attribute data itself does not carry the geometric

3 http://www.opengeospatial.org/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

information but rather a geographic identifier that can be linked to the corresponding geometry representing a

geographic feature. This geographic identifier is also referred to as the framework key.

The TJS uses the principles of a Service Oriented Architecture (SOA), offering a potential solution for client-to-server
based transformation and for merging geography and statistics with the benefits of interoperability and accessibility.
A SOA satisfies some guiding principle given by the Global Statistical Geospatial Framework (GSGF) for integrating
spatial and attribute data *. Specifically, principle number four which requires that data be published once and leaving
it at its source. The data can be reused and accessed many times through Web services for merging geography and

statistics.
The specific objectives of this research are to:

1. Examine the possibility of using cached vector tiles as a geospatial framework to be integrated with attribute data
by means of a Table Joining Service.

2. Develop a prototype implementation to be used as a tool for integrating spatial data and attribute data.

3. Demonstrate through a simple Web map application the results of objective 1 using the prototype developed in

objective 2.

1.3 Structure of the thesis

This research is organised as follows Section 2 gives the fundamentals and literatures review of the concept of TJS
and vector tiling. Section 3 describes approaches, experimental data, softwares and technology used to achieve the
research objectives. Section 4 describes the prototype implementation and Section 5 gives a discussion of the prototype

implementation and Section 6 gives a conclusion and recommendation for future work.

4 http://ggim.un.org/meetings/GGIM-committee/9th-Session/documents/The_ GSGF.pdf

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2. Fundamentals and literature review

2.1 Theoretical Background

Thematic maps are ranked amongst the most popular and important cartographic products for visualising spatial data.
Being more intelligible and clearer, they present a less complicated presentation of thematic data, enabling users to
connect information to a spatial location (Peterson, 2012, p. 143). Data is often collected according to spatial units
such as country, district and municipality. Qualitative and/or quantitative thematic data can be displayed to show
spatial distribution of the themes for the spatial units (Cammack, 2007). Thematic maps are used by experts such as
geographers, researchers and urban planners as sources of information or they may be used to present results
(Veldhuizen and Pfeffer, 2016). With the advancement in web technology different standards have been developed

for geospatial webservices that can enable development of web thematic maps. (Veenendaal et al., 2017).

Web services are software applications with standardised programming interfaces; they make it possible for web
applications to interact with each other over the internet (Alonso et al., 2013, p. 125). A web service functionality is
exposed as a service with methods and a published interface a client can request for. A client is a software that accesses
a web service from a server forming a client-server model. In many cases the server runs on a different computer thus

a client accesses a web service through a computer network.

Since web services offer an interface for computer programs to communicate it is important that they are loosely
coupled. This means software programs are deployed independent of each other and thus a program only needs to be
executed as needed. This scenario is known as service oriented architecture (SOA) (Alonso et al., 2013, p. 131). In a
SOA computer programs are in the form of services each program is separated into a distinct self-sufficient and
network assessible component intended to solve a specific concern (Krafzig et al., 2005, p. 55). SOA is especially
important for creating thematic maps in a clustered computer environment because many times computer hosting

geospatial webservices and those hosting statistical data are remote.

The Open Geospatial Consortium (OGC) is the main authority in developing standard for Geoinformation
technologies (GTI) web services (Peterson, 2012, p. 143). The OCG Web Services (OWS) provides interfaces for
geospatial content and services, GIS processing and data discovery (Lupp, 2008). A complete description of OGC
standards is available on the OGC website °. The following sections give an overview of standards that have previously

been used and those that are still in use for developing and distributing Web thematic maps.

2.1.1 Web Map Service and Styled Layer Descriptor

The Web Mapping Service (WMS) standard is one of the earliest standards issued by OGC in 2002. WMS

Implementation Specification provides an HTTP interface for requesting georeferenced map images from one or more

3 https://www.ogc.org/docs/is

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

distributed databases 6. WMS are created by a map server with data provided by a GIS database; thus, thematic maps
can be created and saved as map images. Clients can request a desired map image of any size covering an arbitrary
geographic bounding box (Garcia et al., 2012). WMS are often used in combination with an OCG specification called
Styled Layer Descriptor (SLD) (Bocher and Ertz, 2018). The SLD standard is used to describe the appearance of Web

Map Services. Multiple customized styles can be published that can be used to style a WMS displaying thematic map.

WMS has many disadvantages even though it is still in use; it is based on a raster model. Raster models do not allow
users access to the underlying geographic features; hence they can be used for displaying purposes only. A study by
Cammack in 2007 gives an extensive review of uses and limitations of WMS in thematic mapping. In this study one
of the major limitations of WMS is how it is tightly coupled to the underlying data; thus there is need to regenerate

an entire WMS each time data geometry changes (Cammack, 2007, p. 446).

Another issue with WMS is that it not cacheable; thus, with each new request from a client map images have to be
dynamically generated on the fly (Garcia et al., 2012). Sometimes the data is of such high volume that each display
upon each request is time consuming. Moreover, rendering of the WMS is done by the server which is computationally
expensive especially when there are high requests for the same resource on the server. Consequently WMS overall

performance and efficiency both on the client and server side is very poor (Davis et al., 2009).

The introduction of tilling schemes for WMS improved its ability to cache maps. Tilling schemes allow map images
to be broken down into discrete image tiles giving birth to the OGC Web Map Tile Service Standard (WMTS) (Masé
et al., 2010). This specification significantly improved performance because instead of computer applications dealing
with the entire raster image, they only display the portion of image tiles requested by the client. Tile Map Service

(TMS) serve as the basis of the WMTS where raster image is broken down into small raster tiles.

TMS is an open source specification for tiled web maps developed by Open Source Geospatial Foundation (OSGeo)
7. TMS uses a tiling scheme where each tile in a zoom level is a parent to 4 tiles in the succeeding zoom levels (see
Figure 1). In the case of WMTS raster tiles are generated by splitting a map image into tile-based grid. The position
of each tile is based on the coordinates of the tile grid used to create it. To request a specific tile the request should be
directed to the coordinate of the tile on the grid. The extraction format is in the form z/x/y.format where z is zoom
level x is column position and y is row position. For example, to request for a tile in level 1 in column 1 and row 2 the

format extraction would be 1/1/2.png.

Nevertheless, WMTS still suffers the same limitations as WMS in that they are both based on a raster model and

interaction or manipulation with the geographic features is not possible.

6 https://www.ogc.org/standards/wms
7 https://wiki.osgeo.org/wiki/Tile_Map_Service_Specification

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Level 1 Level 2 Level 3

0 1 00 01 10 11 000 001 010 011 100 101 110 111
..\\ “*mu..._*“_"«mh
2 3 "'“""OZ___‘\ 03 12 13 002 003 0ﬂ'%~-%19§ 112 113
e A e o R e ———

...

20 21 | 30 31 T0200.021 030 031 120 121 | 130 131

.
~~~~~
‘‘‘‘‘

\
22 23 32 33 022 023° 032 033422, 123 | 132 133

200 201 210 211 300 301 310 311

202 203 212 213 302 303 312 313

220 221 230 231 320 321 330 331

222 223 232 233 322 323 332 333

Figure 1. Vector tile scheme based on Quad tree structure in which each tile is a parent of 4 tiles in the subsequent

zoom levels in a tile pyramid. Source (Balog and Houtmeyers, 2017)

2.1.2 Geolinking Service and Geolinked Data Access Service

Hong and Lin (2005) research was the earliest study in which a system was developed, that make use of OGC web
services for joining attribute data with geospatial data to produce web thematic maps. The system architecture for their
research was under the assumption that geospatial data and statistical data are hosted on different computers in a
distributed computer network. Naturally there would be requirement for a Web Service to connect the two computers
so that the data can be merged to create a Web thematic map. Geolinking Service (GLS) defines an interface for
services that provide the ability to join datasets that contain thematic data about geographic features with geographic

data in another repository 8.

In this study the GLS was designed to mimic the joining of tables in a relational database. The assumptions being both
datasets have geographic identifiers to link the two datasets. The result of the joining was a Web-based thematic map

distributed as a WMS. Even though the output product was WMS, users had the option of submitting their own

8 https://www.ogc.org/standards/requests/53


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

statistical data in CSV format to be integrated with geographic data. In 2010 the GLS was upgraded to Table Joining
service (TJS). TJS combine GLS and GDAS rather treating them as separate standards.

|5*

/ W |

-~

-~

-

applications

r

tabular data OGC GLS

Figure 2. Concept of Geolinking Service (GLS) (Grothe and Brentjens, 2013).

2.1.3 Table Joining Service

The TJS has been around for a little over a decade; however, not much research has been done to demonstrate its
potential to join geospatial data and statistical data in a distributed environment. TJS describes a way to define and
exchange data that contains information about geographic objects °. TJS ingests attribute data which refers to
geographic features also known as geolinked data and joins it to a geospatial framework so that it can be mapped as

Web based thematic map or used for further geoprocessing.

Attribute data in the context of TJS refers to data about a certain geographic space, but this data is not directly

embedded with geographic coordinates or geometry. The attributes are encoded in a format defined by OGC for TJS

o https://www.ogc.org/standards/tjs


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

called Geolinked Data Assess service (GDAS), which is an XML format. The attribute data contains a field with

geographic identifiers to indicate the geographic feature to which it applies to.

Geographic identifiers can be administrative identifiers e.g. district name, regions or persistent identifiers like postal
code and country area codes. The geographic identifiers are also present in as the framework key of the framework
data. Through these common geographic identifiers in the two datasets linking can be realised. The output of the

linking operation is a new geospatial framework populated by the attribute data.

Attribute data
Popiilatlon

Framework data

| Growing Degree Days

based an

Climate / Precipitation
EcoDist | Ayg lan | | Rair
/8 2689 -

atiributs

ko 1 Ecodistrct Polygons
pramework Ecolist | Area | Perimeter
FC7ES | 503 545,1
M 79 | 4i7 | 7a
[ . T I
framework key &1 | 02 15503

Figure 3 Representation of the framework key present in both attribute data and geospatial framework '°.

Framework data describes data about features positioned on the Earth’s surface. These geographic features can be
countries, ecological regions, rivers, or census grids. Examples of attribute data that can be related to geographic
features include population by country. Framework data may reside locally in a TJS or it can be provided by a Web
Service that provides geospatial data in its raw vector format such as the Web Feature Service (WFES). Currently
known TJS implementations use the WFS. WFS is an OGC interface standard that allows requesting of raw geographic
features over the web !!. Because in a WFS data are in raw format end users have direct access to geographic
information at the feature and feature property level; thus, the data can be edited and used for spatial analysis and
geoprocessing. However, WFS does not give administrative rights over the data to clients. Thus, clients without
administrative access can only retrieve and modify features virtually but cannot modify the underlying data store

containing the original data. This is a major advantage as data can be published once and used many times.

10 http://geoprocessing.info/tjsdoc/Overview#history
! https://www.ogc.org/standards/wfs


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.14  Table Joining Service Implementations

In a study by Grothe and Brentjens in 2013 the authors presented merits and possibilities of using TJS. They revealed
that very few implementations of the TJS exist. At the time of writing a Google search shows that two TJS software
implementations are available (see Table 1). Géoclip is a Web-based platform for geospatial visualization of statistical
data, it was developed by a French company called Emc3 2. With Géoclip statistical data providers can provide

statistical data to be visualized on a web map thanks to TJS.

The second TJS implementation is the open source Geoserver TJS plugin that runs on Geoserver. Geoserver is an
open source software to serve maps and spatial data in several formats to clients such as web browsers and desktop
GIS applications (Gratier et al., 2015). It offers OGC’s Web Services such as WMS and WFS interfaces for building
spatial data structures. The TJS plugin implements the joining operation of the WFS with attribute data in GDAS
format; the output can be accessed by WMS or WFS.

Table 1. TJS implementations. (Source Grothe and Brentjens, 2013)

Software Products Client/Server TJS  access/TJS Technology Type of Software
join

Géoclip Client server TJS-access ? Proprietary
TJS-join

Geoserver TJS | server TJS-access Java Open source

Extension TJS-join

Bresters et al (2016) conducted an impact analysis of the TJS in an environment comparable to the national
infrastructure that the Netherlands uses for the European project INSPIRE. They used the Geoserver TJS plugin. The
geospatial framework was provided as Web Feature Service (WFS) and attribute data was first made available in three
formats; namely CSV, SDMX and Odata. The attribute data would then be converted to GDAS so that it could be
used in TJS. The output of the joining operation of attribute and geospatial framework was accessible WES or
WMS.One of the concerns in this impact analysis is a scenario of when Geoserver changes its versioning. The
Geoserver TIS plugin was developed based on the then current Geoserver version. Such tightly coupled software
programs have many disadvantages; firstly, when the Geoserver version change the TJS plugin also need to be
updated. Secondly the Geoserver TIS plugin is designed to work within Geoserver framework. This does not allow
interoperability between the Geoserver TJS plugin and other Web map servers. The other concern was that an

additional software to convert the attribute data formats to GDAS was needed. Most attribute datasets are available in

12 https://www.geoclip.fr/


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

other formats and there are no tools or specifications of how to convert data to GDAS. The burden of this task is left

to attribute data providers.

Another study that examined the TJS concept was by the European and Global Forum for Geography and Statistics
(EFGS) and Eurostat in 2019. The study was conducted as a proof of concept for the implementation of the European
Union version of GSGF in a project called for the GEOSAT 3 (EFGS and Eurostat, 2019). In this study a TJS
implementation was developed based on Map Server. The Geoserver TJS plugin was not of interest because using the
Geoserver TJS plugin would require that the geospatial framework be hosted in Geoserver. Geoserver restricts the
total count of features and number of requests that can be made to the server. For this study the experimental spatial
data used were the 1km by 1km census grids covering GEOSAT 3 countries and Belgium that could be accessed via

WES.

Since the study was done for EU regions the statistical data used followed a format already used for INSIRE datasets
called SDMX. EFGS and Eurostat developed the TJS in a manner that it directly ingests attribute data in SDMX
format rather than converting it to GDAS first. The output from this research could be delivered by WFES or WMS.

The study demonstrated that TJS offers a solution for joining geospatial data with statistical data in a distributed
environment. By using SDMX attribute data the complexity of creating an application for converting SDMX to GDAS

was avoided.

One of the major shortcomings faced in this research was transferring and processing geographic features from the
WES. Due to the high volume of features that needed to be accessed, WFS proved to be inefficient as a source for

geospatial data as it slowed down the whole system.

Currently to efficiently transport geographic features wrapped in a WES is to filter geographic feature requested to a
limited size so a client is not receiving the whole dataset. In a way this did not take away the concerns that comes with
using Geoserver. Another disadvantage of WES is it only caches request queries for later use and not the geographic
features. Caching geographic features would be an advantage in that clients will not need to continually access the

server but the cached geographic features. This kind of system is possible when using vector tilling technology.

Vector tiles have been on the geospatial scene for some time now; however, the potential of using them for
geoprocessing or spatial analysis is less understood. Most research that focuses on vector tile emphasises on
transmission efficiency (Antoniou et al., 2009), optimising vector tile caching (Shang, 2015) and optimising rendering

and styling (Fujimura et al., 2019; Netek et al., 2020).

Considering that vector tiles have many advantages over other means of transporting, rendering and storage of
geographic features on the web, they hold more promise for future web cartography (Warf, 2018). The following

section gives an overview of the vector tilling technology.

10


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.2 Vector tiles

Vector tiles and raster tiles in WMTS operate the same way. The only difference is instead of breaking down an map
image in the case of raster tiles, vector tiles are a product of breaking down vector data (Netek et al., 2020). Like raster

tiles, vector tiles also use the TMS and the concept of tile pyramids (Ingensand, 2019).

Tiled dataset Object

b parts
Veclor '/"\
W

HH- 588 =
SE

Figure 4 . The procedure for generating vector tiles according to Gaffuri (2012).

Vector dataset Tilimg grid

The procedure of generating vector tiles involves dividing an original vector dataset into a tiling grid and each
corresponding data is displayed on a tile (Netek et al., 2020). After the packaging of the vectors dataset into tiles they
now can be transmitted web (Ingensand et al., 2016). Vector tiles are smaller and therefore they download and display
more quickly on the client (Kyriakidis et al., 2019, p. 65). Vector tiles are usually named after a specific storage
scheme. A storage scheme has parameters such as supported coordinate reference system, size of tiles, number of
zoom levels, etc. The web Mercator projection (EPSG: 3857) is the commonly used coordinate reference system
(CRS) for web maps; under the Mercator projection a world map is presented as a square with the polar regions cut
off. It is this square that represented the zero-zoom level tile in a vector tilling scheme. Subsequent zoom levels are
created by dividing the prior tile into four new tiles; as shown on Figure 5 this concept is also known as tile pyramid.
If a feature on a tile boundary overlaps into the adjacent tile, the feature is divided, and each section is displayed on

the corresponding tile.

Level 2 Level 1 Level 0

Figure 5. Quad tree structure of a tile pyramid. Source (CSSE, 2014, p. 303).

11


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

Vector tiles are requested from a server using an HTTP request and the format for extraction follows a zoom/x/y.format
(Sambells et al., 2007, p. 252). For example, to request a tile at zoom level 2 in column 1 and line 1 the format
extraction would be 2/1/1.geojson. Vector tiles mainly support three formats namely TopoJSON, GeoJSON and
Mapbox Vector tile (mvt) (Shang, 2015).

Vector tiles formats maintains raw vector geometry; therefore, geographic features can be manipulated. Vector tiles
are stored on the server side as vector objects and as a result the server does not concern itself with rendering the
vector tiles rather the client is tasked with the rendering(Antoniou et al., 2009). The other interesting feature of vector
tiles is that they can be cached. Tile caching is a technique that allows the map server to generate vector tiles and store
them for future use. As a result, map servers can pass the vector tiles to the client immediately without querying from
the server. Caches reduce demand on the GIS and frequent access to database servers (Zouhar and Senner, 2020).
Additionally, caches can be created for the client so that the vector tiles already downloaded from a server can be
reused without downloading again enabling, an optimised transmission over a network. The tile caching is suitable

for map data that do not change frequently such as administrative boundaries.

12


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

3. Methods

3.1 Case study scenario

Of late, interest has been sparked in implementations for better integration of spatial and statistical data. For example,
this a has led to establishment of the Global Statistical Geospatial framework for the homogeneousness production
and integration approaches for geospatial and statistical data. The incentive being anticipation of the statistical results

collected for SDG indicators and how to geovisualise them.

A case study scenario that would require this approach follows. The United Nations Statistical Division (UNSD)
collects statistical data of Sustainable Development Goals (SDG) indicators for member states. For example,
hypothetically Gross Domestic Product (GDP) per capita can be used as indicator for economic growth in line with
SDG 8. The statistical data of GDP for member states is collected, stored and published on the web as web resources

in CSV format 3.

At the same time the published CSV data may not always contain other supporting additional attributes .For example
instead of utilising just the GDP data one may want to standardize the GDP values using the country population or a
country’s surface area. This supporting attribute data can be queried from Webs of data on the Semantic Web. Just as
there is need for a geographic identifier for merging statistical and geospatial data, there is also a need for these
identifiers to merge and query attribute datasets that are stored on different RDF stores on the Semantic Web. The

dataset can be queried using SPARQL; the results of the query can be converted to a CSV format.

Statistical data is often collected and aggregated according to administrative boundaries, for example at a national
level. Thus, each administrative boundary can have multiple attributes like name of the country, its population and
various other statistics. Statistical data collected at a national scale, especially for the UN member states, often contain
a field with a three-digit area code developed and maintained by UNSD. The three-digit area code is called UN M49
or the Standard Country or Area Codes for Statistical Use (Series M, No. 49) 4, It is also the same as the ISO 3166-1
numeric standard published by the International Organization for Standardization (ISO). This three-digit code is
unique for each member state and is useful as a form of geographic identifier to link various datasets from different

sources including geographic features in a GIS environment.

The working assumption is that spatial data is published as vector tile format and can be assessed by other programs
on the internet as a map web service. The goal is to populate the vector tiles with statistical data so it can be transported

and displayed on a web client as a web thematic map.

13 http://data.un.org/
14 https://unstats.un.org/unsd/methodology/m49/

13


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://unstats.un.org/unsd/methodology/m49/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

-~
-

applications v\

' 3
) i 5

tabular data

Figure 6. Table Joining Service concept for automated service-oriented data joining (Grothe and Brentjens, 2013).

Another assumption to note is the software architectural style for the web services is RESTful. RESTful web services
are web services that adhere to a Representational state transfer (REST). This means web services allow other
programs on the internet to access and manipulate the textual representation of web resources (Masse, 2011, p. 6).
The textual representation of web resources includes the GeoJSON (a vector tile format) and CSV data formats. In a
RESTful system web resources can be requested using a Uniform Resource Identifier (URI) by means of Hypertext

Transfer Protocol (HTTP). A URI is a short string that explicitly identifies a resource on the web.

HTTP is the primary means of communication on the web. HTTP has methods that indicate which direction data is
moving and what should happen to it. These methods include GET, POST, PUT and DELETE. For example, GET
method is used to request data from a specified resource. POST method is used to send data to server to create or

update a resource (Ashton Acton, 2013).

RESTful web services also use stateless protocols, meaning a server does not need to retain information about a request

connection between client and server. A connection is only valid whilst a transaction is running. This is beneficial

14


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

because software components can be managed and updated without affecting the entire system. In short SOA is used

with REST to ensure rapid performance and reliability.
3.2 Software architecture

To provide a proof of concept for TJS concept, a prototype with a three-tier architecture is developed. A three-tier
architecture is a client-server software architecture with software components divided into three layers. Each layer is
established according to the software component functionality. These three layers are the presentation layer, the
application layer and the data layer. The reason for separating the layer is software components can be developed and
maintained as autonomous components on separate platforms (Tiwari and Jain, 2014). The advantage of using this
architecture is it would be possible to switch or alter technologies used at each layer without affecting the whole
system (Krewinkel et al., 2015). The following sections describe the functions of each layer and the proposed software

components.

15


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

OpenlLayers
Web Application

Developed using JavaScrpt, HTML, C55 and Node.js

Presentation Tier

———————

A A
A T —_—— —_——————————————
—_— -
:
[15]
o]
| £
c
| 3
8
Y g
3 e I
- |
e
S
ﬁ ™
o
; ;
{ £
| g 2
] =
A b
2 2
[+]
= = I
|
S A e A o i
T TTTTTTT T Yy T I ___________I
CSV data files ESRI shapefile |
v |
I
3 I
= I
o}
@ I
o T A—— Y |

Figure 7. Prototype software architecture.

3.2.1 Presentation tier

The presentation layer, also referred to as the client layer, provides the user interface that consumers interact with.
This layer is the front end of the entire system and users can access the system via a Web browser. For this prototype
users will be able to access the results from the TJS joining operation and display them in Web Map Application. This
layer is be supported by technologies which include JavaScript, HTML, CSS and Node.js. The presentation layer is if

the topmost layer on a hierachy of and application and its communication with other layers via API requests.

16


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.2.2  Application tier

The application layer contains the business logic applications a system’s core functions capabilities. For this prototype
on the application layer are three autonomous server components, namely a Table Joining Server, a Web Server and
a Web Map Server. The servers contain Web services and Web resources that can be requested over HTTP protocol.
The main reason for separating the software components is the assumption that each server is provided by the service

provider independently. The functions of each server component are described below.

Table Joining Server is the physical instantiation of the Table Joining Service. It provides the Application
Programming Interface for joining vector tiles from the Web Map Server and attribute data from the Web Server. The
results of the joining operation are vector tiles populated with the attribute data and published as a Tile Map Service.
The results can be accessed by Web Map Application in the presentation layer. The Table Joining server and the Table

Joining Service are built using Flask, a micro Web framework.

Web Server is dedicated to hosting the attribute data in CSV format. It also containing interface that enables the
server to access SPARQL Endpoint services and access RDF data stores. The queried results are converted into CSV
data formats and stored inside the Web Server. Requests can be made to access CSV data using the HTTP protocol.

The server is built using Flask a micro Web framework.

The Web map server is dedicated to creating and publishing geospatial Web services. Geospatial data from the data
layer can be assessed by other layers as Web services. Geoserver is used as the web map server. Vector data from the
data layer is used to generate vector tiles using a Geoserver Vector Tiles extension. A software component integrated

in Geoserver called GeoWebCache is used to cache vector tiles and publish vector tiles as a Tile Map Service.

3.2.3 Data tier

The data layer represents the container of input data that can be used by the system. For this prototype the data is
uploaded to servers in the application layer from data files located on the computer hard disk. Geospatial data is

available in ESRI shapefile format and attribute data as CSV data formats.

3.3 Software technologies

All software and programming language used develop the software prototype to achieve the objectives of the thesis
are open source and can be downloaded for free. The motivation for using open source technologies is to guarantee
that anyone can read, modify, and build on this concept to improve the quality of the software so that it can be

redistributed at no cost.

The prototype is built on a Windows 10 Operating System and Google Chrome as the web browsers all web
applications are executed. Software, technologies and programming language used to develop the prototype are

described in the tables below.

17


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Table 2. Operating system and web browser.

COMPONENT TECHNOLOGIES PROGRAMMING

FUNCTION

LANGUAGE LIBRARY

OPERATING SYSTEM Windows 10 64-bit

WEB BROWSER Google Chrome

Table 3. Software and technologies for the client tier component.

COMPONENT TECHNOLOGIES PROGRAMMING
LANGUAGE
LIBRARY

Software running on computer

hardware.

Retrieving and displaying contents

from the Web server.

FUNCTION

WEB MAP
APPLICATION HTML

CSS

JavaScript (JS) OpenLayers (OL)
JavaScript Library
v6.4.3

Node.js

18

A standard mark-up language for
displaying contents in a web browser. In
this prototype it carries content of the
Web map applications that should be
displayed on the browser.

A language to describe how elements in
the HTML document should be displayed
including styling and a structure of the
web page.

A programming language that can create
functions that control behaviour of a Web
document. The main JS library used in
this thesis is the OL. It is used to display
the vector tiles from the TJS.

Acts as backend JS runtime environment.
For this prototype it executes OL JS script

to produce vector tile maps in real time.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Table 4. Software and technologies for the application tier component.

COMPONENT

TECHNOLOGIES

PROGRAMMING
LANGUAGE
LIBRARY

FUNCTION

WEB SERVER

WEB MAP
SERVER

TABLE JOINING
SERVER

Python 3.8.5 and a

Web framework

Python 3.8.5,
SPARQL Endpoint SPARQL

GeoServer 2.15

GeoWebCache 1.15.0 (GWC)

Tile Map Service

Flask

SPARQLWTrapper

Pandas

Geoserver Vector Tile

Extension

Table Joining Service: Python Flask Framework

3.8.5and a

Web framework

19

Flask is web framework building Web
servers. It is used to build a mock Web
server for storing CSV data files. It also
manages HTTP requests for the Web
resources in the Web Server. Flask is
purely built using Python. Python is a
high-level object oriented programming
language for building software.

A python module for querying data from
SPARQL endpoint using SPARQL.
SPARQL endpoint is a web exchange
service that provides access to RDF data
stores. SPARQL is a language for
querying RDF data stores.

Pandas is a python module that would be
used to convert SPARQL query results to
CSV data format.

GeoServer Java web application for
implementing OGC protocols and other
geospatial services. It is to create vector

tiles and publish them as a TMS.

A Java web application that will be used
to cache vector tiles. GWC integrated in

Geoserver is used.

Open standard for publishing and

distributing tiled maps.

Flask is web framework building Web
servers and Web services. It is used to

build the Table Joining Service API for


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Pandas

Geopandas

Table 5. Software and technologies for the data tier component.

joining cached vector tiles with attribute
data. It is also used build the Table
Joining Server where the TJS API can
access from.

Pandas is a python module that would be
used to manage and process CSV data to
be used the TJS data operation.
GeoPandas is a python module that would
be used to manage and process cached
vector tiles in GeoJSON format to be used

the TJS data operation.

COMPONENT TECHNOLOGIES PROGRAMMING FUNCTION
LANGUAGE LIBRARY
DATA FILES CSV is simple data format for data
CSv in tabular format.

ESRI  Shapefile
QGIS 3.4.6

and

20

ESRI Shapefile is a common data
format for vector data. It can be
processed and displayed in a QGIS.
QGIS is a GIS desktop application.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4. Prototype Implementation

To examine the feasibility of using vector tile cache as a framework data for TJS a prototype application is developed
based on the three-tier architecture described previously. In this section the process of developing the prototype is
described. The input experimental data used and the output experimental results from the data joining operation using
the developed TJS API are also described. Furthermore, a description of the development of the Web map application

that would be used to display the results of the TJS data join is described.

Attribute data Geospatial
Input : Tabulardata framework data
Data format : CSW Imput: TMS

Data format : GeoJSON

Table Joining Service API
Oustput : TMS
Data format : Geod SON

Figure 8. Input and Output data formats for Table Joining Service.

4.1 Experimental data

The following sections give a description of the experimental data including preprocessing procedures for each dataset.

4.1.1 Attribute data

Attribute data used is retrieved from two sources: Wiki data SPARQL endpoint '> and a CSV data file available from
UNDS website '°. The attribute data from the two sources can be used independently or merged to get enriched
attribute data. Any joining procedures for the attribute dataset is done using the python module called Pandas. The

results are stored in a mock Web server developed using the Flask.

Wiki data SPARQL endpoint

SPARQL endpoint provides access to RDF data stores on the Web. SPARQL query language is used to query RDF
data. To automate the process of running a SPARQL query and converting the results into a CSV data file the python

15 https://query.wikidata.org/
16 http://data.un.org/

21


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://data.un.org/

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

module called SPARQLWrapper is used'”. SPARQLWrapper provides an interface for SPARQL endpoint services to

be queried in a Python environment. The results from querying a Wiki data SPARQL endpoint service were then

converted to CSV data formats. The following SPARQL query retrieve data from a Wiki data SPARQL endpoint.

WHERE
{

~ o U bW DN

"[AUTO LANGUAGE], de”}
8. } order by? ISO A2

? country wdt: P299? UN A3.
? country wdt: P297? ISO_A2.
? country wdt: P1082? Population.
SERVICE wikibase:label

{bd:serviceParam

SELECT distinct? countryLabel? UN A3? ISO A2? Population

wikibase:language

The results of the query are in a tabular format. Shown here are the first five rows of country records queried out of

251 rows.
Landername UN_A3 ISO_A2 Population
Andorra 820 AD 76177
Vereinigte Arabische Emirate 784 AE 9400145
Afghanistan @4 AF 34940837
Antigua und Barbuda @28 AG 102012
Anguilla 660 Al 16086
Albanien 2083 AL 3020209

Figure 9. Results from SPARQL query.

United Nations Statistical Division (UNSD) website

UNDS website provided statistics on national Gross Domestic Product (GDP) for UN member states. The data is

available in Comma Separated Value (CSV) format. CSV data format for attribute data provides a table like structure

and uses commas or other characters to separate column values from one another. The original dataset contained gross

domestic product and gross domestic product per capita values for UN regions and UN member for years between

1985 and 2017. For simplicity the data was reduced to only GDP for the year 2005. To achieve this the CSV file was

imported into a Postgres SQL database and using a SQL query statement only 3 columns retrieved.

1. SELECT GDP, Country name,
2. FROM public.gdp countries

3. where year=2005

UN_ 3

17 https://github.com/RDFLib/sparglwrapper

22



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

The results of the query are in a tabular format. Shown here are the first five rows of country records queried out of
222 rows. The CSV data was then uploaded to a mock server developed using micro web framework written in python

called Flask.

Un_A3 Country name GDP(2805)
4 Afghanistan 1714

8 Albania 19895

12 Algeria 248534

20 Andorra 48395

24 Angola 94874
660 Anguilla 18627

Figure 10. Results from SQL query.

Joined Attributes

The two attribute datasets can be merged based on the common identifiers i.e. ISO 3166-1 numeric standard codes

UN_A3.

UM_A3 Country name GDP({2085) IS0 A2 Landername Population
4 Afghanistan 17148 AF Afghanistan 24948837
8 Albania 198495 AL Albanien 3820209
12 Algeria 248534 DZ Algerien 41318142
28 Andorra 48395 AD  Andorra 76177
24 Angola 94874 AD  Angola 29784193

Figure 11. Results from the joined attribute data.

4.1.2 Vector data for the TJS geospatial framework

The vector dataset used to create vector tiles came from Natural Earth in the ESRI shapefile format '® Natural Earth
is a public domain providing geospatial data available at different scales. For this study, the 1:10million vector datasets
of countries were used. The vector dataset is embedded with attributes for each geographical feature representing a
country. These attributes include the Series M, No. 49 standard area codes that are also used by UNSD to collect
statistical data. This attribute will be used as the geographic identifier. Figure 12 shows a portion of the attribute table

of the vector dataset displayed in a QGIS application.

18 http://www.naturalearthdata.com

23


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

ISO_N3 UN_A3 ~] REGION_UN SUBREGION REGION_WB NAME_DE NAME_EN
004 004 Asia Southern Asia South Asia Afghanistan Afghanistan
008 008 Europe Southern Europe Europe & Centr... Albanien Albania
012 012 Africa MNorthern Africa Middle East & ... Algerien Algeria
024 024 Africa Middle Africa Sub-Saharan Af... Angola Angola
031 031 Asia Western Asia Europe & Centr... Aserbaidschan Azerbaijan
032 032 Americas South America Latin America ...  Argentinien Argentina
036 036 Oceania Australia and N... East Asia & Paci... Australien Australia
040 040 Europe Western Europe  Europe & Centr... Osterreich Austria
044 044 Americas Caribbean Latin America ... Bahamas The Bahamas
050 050 Asia Southern Asia South Asia Bangladesch Bangladesh
051 051 Asia Western Asia Europe & Centr... Armenien Armenia
056 056 Europe Western Europe  Europe & Centr... Belgien Belgium
064 064 Asia Southern Asia South Asia Bhutan Bhutan
068 068 Americas South America Latin America ... Bolivien Bolivia

Figure 12. Attributes of the Natural Earth vector dataset displayed in QGIS application with the column of the Series
M, No. 49 UN area codes highlighted.

Pre-processing of the vector data was done in a QGIS. The vector dataset contained some outdated M49 area codes
for some countries which needed to be updated. This vector data would then be uploaded to Geoserver to generate

vector tiles.

4.2 Geospatial framework data

The geospatial framework for the TJS can be accessed via a Tile Map Service (TMS). TMS is a Web service that
supports publication of tiled maps in various formats. For the prototype, a tiled GeoJSON is published via TMS.
GeoJSON is a data format for vector data and it is also one of the common formats for vector tiles. The following

sections describe processes, methods for generating and caching vector tiles using GeoServer and GeoWebCache.

4.2.1 Generating vector tiles with GeoServer

GeoServer Vector Tile Extension was used to generate vector tiles. Vector Tile Extension is a module that adds a
functionally to Geoserver for vector tile generation. It is installed as an add-on to the base Geoserver installation. '°.
Geoserver is an open source software to serve maps and spatial data in several formats to clients such as web browsers

and desktop GIS applications (Gratier et al., 2015).

GeoServer generates vector tiles in three major formats which are MapBox Vector (MVT), GeoJSON and TopoJSON

20, MVT format is a commonly used format for encoding vector tiles and is supported by most current web map

19 https://docs.geoserver.org

20 https://docs.geoserver.org/latest/en/user/extensions/vectortiles/tutorial.html

24


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

application (Netek et al., 2020). However, MVT is optimised for rendering and does not specify how the format can
be used as a dataset '. Therefore, for this study the GeoJSON format is of interest because of its JavaScript Object

Notation (JSON) structure.

GeoJSON data format is already supported by programs for feature manipulation and feature analysis on the web
(Balog and Houtmeyers, 2017). GeoJSON is a geospatial data interchange format based on JSON (Gillies et al., 2016).
Geographic features are presented as a combination of JSON objects along with their properties and spatial extents.
GeoJSON geometry types are: Point, Linestring, Polygon, MultiPoint, MultiLineString, MultiPolygon and
GeometryCollection 22, A geographic feature in GeoJSON is represented as a Geometry object and a feature collection

is a list of features (see Figure 13).

"features" :[ & =
{8 "type" :"FeatureCollection”,
"id":"e", "features":[ @
"type" :"Feature", (B
"properties" :{ & "id"-"Q",
"UN_A3":242,

“type" :"Feature”,
"properties":{ [ },
"geometry”:{ b

"Country_name" :"Fiji”,
"GDP(2805)" :"9641"
'

"geometry":{ & b
"type":"MultiPolygon”, {E],,_ G ke
"coordinates” :[ & ,,1d : ,,T 2 ;

= type" :"Feature”,
(g "properties":{[# },
1= "geometry":{[#H }
280837508 .34,
-1812498.41 =
1, b s s A
=] “type" :"Feature”,
2003750834, "properties":{ @ },
-1869110.46 "geometry":{ [# }
1. ¥

Figure 13 GeoJSON object (left) and FeatureCollection (right)

4.2.2 Caching vector tiles with GeoWebCache

Any application that requests for vector tiles from Geoserver are redirected to the GWC endpoint where vector tiles

are cached. GWC cache vector tiles on disk. The tile caching is activated by enabling the GWC Tile Map Service

endpoint in the Geoserver application:

http://localhost:8080/geoserver/gwc/service/tms/1.0.07?

2! https://docs.mapbox.com/vector-tiles/specification/
22 https://geojson.org/geojson-spec

25


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

The URL the above lists all dataset layers cached within GWC as vector tiles. To get a specific vector layer the request

must specify the layer name, coordinate reference system and the format of the tiled map.

http://localhost:8080/geoserver/gwc/tms/1.0.0/layernamelgrisetIdRformatExt
ension/z/x/y.format

z is zoom level
x and y define a given tile coordinates
gridsetId refers to the coordinate reference system

format refers to format of the vector tiles

If the requested vector tiles are not found in the cache storage folder, contact will be made to Geoserver. The GWC is
populated dynamically as responses are transferred back to a web client. GWC also allows for pre-seeding of vector

tile cache. Future requests are made to the cache storage that is already populated with pre-generated vector tile.

4.3 TJS Application Programming Interface implementation

To facilitate the joining of the geospatial framework and the attribute data a RESTful API was created based on the
TJS JoinData operation. The API pull GeoJSON vector tiles and the CSV attribute data from GWC and the attribute
data server. Once the data is pulled a function provided by the API processes and merges the two datasets. After the
data has been merged and converted to GeoJSON format the OpenLayers web application can make requests to the

TJS server and render the results as a vector tiled map.

Server
API
Geosarver
GeaSSON
Client vector we format GeowsbCache
TJS —
APL .
@ " GeoJSON
penLayes .
Web Map Application vector file
................ ] JoinDaw CSV wabular dawa
Operation format
—

Auribute daw
""""""""""" u server

Commnication
---------------- "  RequestHTTP GET

————— Response

Figure 14 . TJS JoinData operation procedure steps RESTful system.

26


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

The following sections give a description of how the API was built and the function that automates the joining of the
two datasets. First a description of the logics of the Python function for the joining operation is given. A Python
function is a block of code written in Python programming language that is executed when invoked. Secondly a
description of how the TJS API for data joining was developed. The API calls the Python function via a URL and

receives certain parameters for it to return joined data.

4.3.1  Python function for joining data

The function is for joining the geospatial data and the attribute data is built using three Python modules. These modules
are Request, GeoPandas and Pandas. Note the Request modules can be used integrated in the Flask module or can be

used independently.

A module is a code library which contains a set of functions that can be used in an application. The function is built
so that it accepts at least four parameters which are: the URL to get the vector tiles, URL to get attribute data in CSV
format, the name of the geographic identifier, also called the framework key and at least one attribute from the CSV
table. These parameters are listed in the parenthesis of the functions; they are values required by the function to

execute. Figure 15 illustrates how the function works to return results of the joining.

Request module allows users to send HTTP request using Python. The request returns a response object with all the
response data?’. The vector tiles URL parameter is used to make requests for the GeoJSON vector tiles. The attribute

URL requests the CSV attribute data. Pandas to read CSV data and Geopandas reads GeoJSON data.

2 https://pypi.org/project/requests/2.7.0/

27


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

GeoJSON
vectortile format

!

Merged GEOM | UN_A3 | NAME | GDFP
GeoDataFrame 716
360
*
Geopandas

Left join on UN_AZ'

Framework key
Geopandas Pandas
GeoDataFrame [ 1 DataFrame
e GEOM. | UN_A3 csv tabular data
vector tile format 716 format
> 800 ‘___________-----.
360

Commnication

i=m==m-m——------p  Request HTTP GET

44— Response

Figure 15. Procedure of joining operation

Pandas is an open source Python library that allow data analysis and manipulation. It has methods and functions that
allow reading, processing, and writing data from CSV format >*. The Pandas library converts CSV data into a data

frame.

Geopandas is an open source Python library that works with geospatial data. GeoPandas supports processing and
analysis of geospatial data types including the GeoJSON format. It encompasses datatypes used by Pandas thus allow
spatial operations on geometric types °. The GeoPandas is tasked with converting the GeoJSON to a data frame and

the merging the Pandas data frame and the Geopandas data frame into one.

GeoPandas allow attribute join using its merge method. For the final data frame to retain the geometry field, it is
recommended that join be on the data frame from the GeoJSON. After the merge the data frame is converted back to

GeoJSON vector tile, where the vector tiles can be accessed from URL that is mapped onto the joining function. Flask

24 https://pandas.pydata.org/
% https://geopandas.org/

28


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

is a web micro framework for building web APIs. It has functions that map a URL path to a Python function running

on a Flask web server.

The joining of the data frame from GeoJSON and data frame from CSV is done based on common geographic
identifier. Vector tile in Geojson format and attribute data in CSV format are requested from their respective servers.
GeoJSON vector tile is converted into a geodata frame inside the Python function using GeoPandas and the CSV is
converted into a data frame using Pandas. The difference between a regular Pandas data frame and geodata frame

from Geopandas is the geodata frame contains a field with feature type and geographic coordinates of that feature (

see Figure 16 and Figure 17).

geometry UN_A3 MAME_EN
POLYGON ((200375688.34 -1812498.41 ... 2432 Fiji
POLYGOM ((3774143.87 -1B85758.36 ... 834 Tanzania
POLYGOM ((-964645.82 32085725.61 .... 732 Western Sahara
POLYGOM ((-13674486.25 6274861.39 .... 124 Canada
POLYGON ((-13674486.25 6274861.39 .... 842 United States of America

Figure 16. GeoPandas data frame from GeoJSON data

UN_A3 Country_name GDP (20@5)
4 Afghanistan 17148
3 Albania 19895
12 Algeria 248534
20 Andorra 48395
24 Angola 94874

Figure 17. Pandas data frame from the CSV data.

Figure 18 shows the results of the merged attribute in the new geodata frame. All rows with geographic features
with a geographic identifier that do not match the geographic identifier in the data frame are discarded. Geopandas
would then convert the data frame into a GeoJSON format that can be accessed by any web client. Figure 19 shows

the before joining and after and after GeoJSON for a geometric feature.

geometry Un_A3 Country_name GDP(2005)
POLYGON ((20837508.34 -1812498.41 ... 242 Fiji 17140
POLYGON ((3774143.87 -185758.36 ... 834 Tanzania 19895
POLYGON ((-964649.82 3205725.61 .... 732 Western Sahara 248534
POLYGON ((-13674486.25 6274861.39 .... 124 Canada 48395
POLYGON ((-13674486.25 6274861.39 .... 840 United States of America 94874
POLYGON ((20037508.34 -1812498.41 ... 398 Kazakhstan 18627

Figure 18. Resultant merged geodata frame.

29


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

"type":"FeatureCollection"”,
"features”: [

"idmavan,
"type":"Feature",
"properties”: {
"UN_A3":732,
"Country name”:"Western Sahara”,
"GDE(2005)":"2178617"
}.
"geometry™:{
"type":"Polygon",
"coordinates": [

[

[

-964649.02,
3205725.61

-13324295.62,
2950828.74

-1435%261.04,
2430921.27

-le420&8.75,
2451670.88

-1268213.41,
3108914.65

-964649.02,
3205725.61

Figure 19. Illustration of feature properties for a geographic feature after the joining operation.

A web map application can request for the GeoJSON vector tiles now populated with attributes from the CSV data
frame using the URL. The following sections describes the designing of the URL for the TJIS API where web clients

can request the joined data from.

30



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

4.3.2  Developing the TJS API

The prototype API was developed using Flask web. Flask web is a micro web framework written in Python?®. It
supports the development of web applications, webservices, web APIs and web resources as well as managing HTTP
requests. In this prototype development HTTP GET requests are of concern as they correspond to reading data from

SErvers.

The design principle of this prototype greatly revolves around a well formatted request. For example, a Flask server

at:

http://127.0.0.1:5000/

Flask maps HTTP request to a Python functions (TJS JoinData operation) in a process called routing. The syntax

below:

@app.route (/tjs/api', methods=["'GET'])

informs Flask that a function should be mapped to /tjs/api. The syntax (methods=['"GET"']) reveals the kind of

HTTP request allowed in order to access the function. The URL to access the TJS api would be written as follows:

http://127.0.0.1:5000/tjs/api?

TJS requires a HTTP GET response for a specific vector tile dataset and a specific attribute dataset from severs. A
general resolution is to filter results of a request is to add a query string into the URL. The data passed through the
URL after the question mark symbol (?) are called query parameters with a key-value- pair encoding (KVP). The URL
below shows the HTTP GET request of the JoinData operation request using the KVP encoding implemented by the

Flask server.

http://127.0.0.1:5000/tjs/api?

FrameworkURI=http://localhost:8080/geoserver/gwc/service/tms/1.0.0/countri
es%3Ane 110m admin 0 countries@EPSG%3A3857@geojson/{z}/{x}/{y}. geojsons&

GetDataURL=http://127.0.0.1:8000/static/sample-csv.csv&
Framework Key=UN A3&
attributel=Country nameé&

attribute2=GDP (2005)

26 https:/flask.palletsprojects.com/en/1.1.x/

31


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.4 OpenLayers web application.

For displaying the joined results, a simple WebGIS application was built using OpenLayers JavaScript library. The
OpenLayers web application was executed on a Node.js server environment. Node.js is open source; it allows creation
of web servers, run a JavaScript code outside a web browser. The styling is done on the client side, the products being
a choropleth map showing GDP values for the year 2005 over countries. The styling is basically colouring the countries

with different colour shade to show the relative differences in GDP per capita.

Map Legend
GDP per Capita (2006)

B o
[ Jswnen- oo

—

Figure 20. Rendered GeoJSON vector tiles from the resultant TJS joining operation.

32


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5. Discussion

This principal goal of this study is to examine the feasibility of using cached vector tiles as a geographic framework
in TJS joining operation. TJS is used as a tool for joining geospatial data with attribute data in a distributed
environment. The attribute data is sourced from RDF data stores and converted to CSV data format. A TJS prototype
implementation was developed to facilitate joining operation. For a TJS joining operation to be implemented at least
four factors are important. These four factors are the geospatial framework data, framework keys, attribute data and
the software architecture. In this section each factor is discussed in relation to this study and previous that provided

TJS proof of concept.

5.1  Vector tile cache as framework data

The possibility of using cached vector tiles as geospatial framework data is examined. Vector tiling is confirmed as a
mechanism for optimal storage, efficient transmission and optimised rendering of geographic vector data from large
datasets on the Web (“OGC Vector Tiles Pilot: WFS 3.0 Vector Tiles Extension Engineering Report,” 2019). The
successful joining of attribute data with vector tile caches serves as a proof of concept. Previous studies by Bresters
et al.,, 2016 and EFGS and Eurostat, 2019 conducted to examine the TJS concept used WES as the geospatial
framework. WES publish geographic data in several formats such as Geographic Mark-up Language and GeoJSON
?7_EFGS and Eurostat, (2019) observed that WFS with geographic features encoded using GeoJSON format performed
better than those encoded in GML. Nevertheless, the general shortcoming experienced whilst using WFS was
increased loading, processing and transmission time. This was particularly an issue with the study by EFGS and
Eurostat, 2019; they used 1 km? by 1 km? census grid covering many countries within the EU region. Dealing with

such a large dataset is cumbersome and require more computational resources.

This study used vector tiles encoded in GeoJSON format; whether vector tiles are undeniably efficient over the WFS
used in current TJS application is yet to be tested. But based on the technologies and mechanisms employed for
creating and publishing vector tiles, they may offer solution some solutions to some of the current issues with WES
as geospatial framework data for TJS. The advantages of vector tiles over WFS includes their ability to cached
efficiently ,ability to be transmitted speedily and a decreased loading rate which can be attributed to the small size of
vector tiles (Shang, 2015). These characteristics of vector tiles that makes them worth considering as a source of

geographic framework for TJS.

5.2 Attribute data

The current version of TJS only support attribute data encoded in GDAS format. However based of previous studies
there has been inconsistences in attribute data formats used. Hong and Lin, 2005 used the CSV data format and EFGS

and Eurostat, 2019 used the SDMX data format. A study to examine the impact analysis of using TJS for Statistics

27 https://www.ogc.org/standards/wfs

33


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Netherlands had attribute data in three formats namely SDMX, Odata and CSV. The authors developed an API that

coverts attribute data coming from the various formats to GDAS (Bresters et al., 2016).

This study used CSV data format. CSV data format is the most popular data format for publishing data on the Web 2
and in Open Government Data (OGD) portals (Mahmud et al., 2020). CSV data can be published as Linked Open
Data (LOD) on the Web. LOD can also be accessed from the Web and converted into CSV data. Over the years, the
amount of LOD published on the Web has exploded. A majority of LOD is embedded with geographic information.

This type of LOD data is called Geolinked data and it is at the core of geospatial artificial intelligence geoAl.

Attribute dataset accessed from Wiki data SPARQL endpoint service was one of the sources of attribute data. A
SPARQL endpoint service gives access to LOD stored in RDF datastores. Using SPARQL query language attribute
data, that can be linked to geospatial web services through a geographic identifier, was retrieved. It was vital to find
data embedded with the ISO 3166-1 numeric identifiers that could be used as geographic identifiers %°. Persistence
identifiers are unique names given to a resource. ISO 3166-1 numeric codes are standardised persistence identifiers

that uniquely label countries *°.

One short coming discovered when accessing attribute data from SPARQL endpoints was limited efficiency in
accessing data. RDF data stores also experience high access rates like web map servers. When users try to access large
datasets, it becomes even more cumbersome for data servers (Akhtar et al., 2020). Vector tiles support transmission
of vector data in smaller containers from the server that can be stitched together when rendered on the client side. This
one of the advantages of vector tiles over other ways of transmitting vector data. Only the vector tiles with the
geographic features displayed on a Web GIS application are requested from the server. However, this is not the same
case for querying RDF databases. Large vector data sets are likely to have large attributes datasets results from

SPARQL queries.

Additionally, prior knowledge of the contents of the RDF databases would have been beneficial for making successful
queries. This is a challenging task for novice users because they mainly depend on trial and fail approach to query
results from RDF stores and RDF databases restrict heavy quires and cancel long running queries. However even
though for experienced users queries with large data results can still be a challenge hence it may be beneficial to
develop ontologies that can be assigned to a collection of persistent identifiers that link to geographic features in a
certain vector tile. This can be developed as a pyramid scheme for attribute data linked to pyramid schemes of vector

tiles.

28 https://www.w3.org/TR/tabular-data-primer/
2 https://www.rd-alliance.org/group/data-fabric-ig/outcomes/persistent-identifiers-consolidated-assertions
30 https://www.iso.org/iso-3166-country-codes.html

34


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

5.3 Framework key

This study used the standardised geographic identifiers, the ISO 3166-1 numeric standard codes, as framework keys.
Using the ISO standardised geographic identifiers ensured that the identifiers in the heterogenous datasets were
uniform. Inconsistences in naming format used for geographic identifiers was a major challenge in the impact analysis
of TJS for Statistic Netherlands research. The authors observed that some data providers would put string characters
in front of the identifiers such that statistic data would have the identifier named “GM0307” vs “0307” for spatial data

(Bresters et al., 2016). This resulted in many unmatched geographic identifiers.

In the study by the European and Global Forum for Geography and Statistics (EFGS) and Eurostat, the researchers
proposed a new naming system for census grids after discovering that; the census grids names were not unique for the
whole spatial data set. The study region used for this study spanned across several countries within Europe (EFGS
and Eurostat, 2019). As a results census grid identifier that were unique within a country but could be repeated in
another country. For a successful joining operation is important for geographic identifiers to be the uniformly named

and unique for all input datasets.

Since this study used persistent identifiers of the standardised ISO 3166-1 numeric code there were no discrepancies
in the labels of framework keys in all datasets. However, there were issues when GeoJSON features had null values
for the geographic identifier field. For instance, small island countries, Antarctica and some countries do not have ISO
3166-1 numeric codes assigned to them. Therefore, GeoJSON features with a missing or unmatched geographic
identifier were discarded. This was a problem when rendering the results on the OpenLayers Web Application.
Missing geometry disrupted the rendering of geometric features on Web Application. There were large portions of
missing geometry in the final map. The solution to this problem was either removing features with missing ISO 3166-
1 numeric code or inserting mock ISO 3166-1 numeric codes before generation of vector tiles. It was vital to retain

all geometry information of all geographic features in the vector tiles.

5.4 Table Joining Service Implementation

This study used a SOA approach for joining attribute data with geospatial data. The software components in the
prototype were designed to be autonomous. Access and interaction between software components was through. TMS
and TJS API RESTful interfaces. The incentive behind developing the OCG TJS standard was to introduce a Web
service that brings together attribute data and geospatial data located on different domains. This study was able to
implement a TJS protype that can retrieve attribute data in a CSV format and vector tiles encoded in GeoJSON using

URLSs via HTTP.

In the OGC Testbed-13 vector tiles engineering report they gave three options for handling attribute data for vector
tiles (Ingensand, 2019). One of the proposed options was to store attribute data and vector tiles in separate containers;
then make use of Web service to join the two datasets based on geographic features identifiers whenever it is required.

The main advantage for this structure would be vector tiles would become more light making their transmission and

35


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

loading rate faster. The results of this thesis show that OGC TIJS can be employed for the task of joining attribute data
and vector tiles stored in separate containers. Similar studies by Hong and Lin, 2005; Bresters et al., 2016 and EFGS
and Eurostat, 2019 also used the same approach of developing prototypes based on the concept of a SOA. Data
providers would provide information on now to access their datasets and geographic identifiers would become the

crucial factor for data harmonisation.

36


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6. Conclusion and Future Work

The specific objectives of this research were to:

1. Examine the possibility of using cached vector tiles as a geospatial framework to be integrated with attribute

data by means of a Table Joining Service.
2. Develop a prototype implementation to be used as a tool for integrating spatial data and attribute data.

3. Demonstrate through a simple Web map application the results of objective 1 using the prototype developed

in objective 2.

The result of this study demonstrates that cached vector tiles can successfully be used as a spatial framework data for
an OCG Table Joining Service. A TJS API prototype was developed that can access attribute data in CSV format and
GeoJSON encoded vector tiles. The TJS API also provide a function that can join the two datasets based on a common
geographic Identifier. This study also used some experimental data to demonstrate how the TJS API can be used to
integrate attribute data with geographic features distributed as vector tiles. The results were rendered on an

OpenLayers Web Application.

Previously the main source and means of transferring geospatial data for the TJS joining operation was OGC WEFS.
However, WFS is not very efficient with high volume data as it can be cumbersome making it slow to download and
transfer. These concerns were also raised by studies done by EFGS and Eurostat, 2019 and Bresters et al., 2016. In
both studies the researchers used WES as source of geospatial data for TJS joining operation and, also as a by-product

of TJS joining that could be assessed and displayed by any WebGIS client.

Vector tiles have not received much attention yet; mostly because vector tilling technology is still new (Netek et al.,
2020) , there is lack of open source implementations (Balog and Houtmeyers, 2017) and there is no standardised
approach of creating and publishing vector tiles (Ingensand, 2019). However, the future of vector tiles as a way of

delivering web maps is very promising. The OGC is currently underway to adopt vector tilling as an OGC standard.

Besides the limitations brought by using WFS for TJS there are still issues with the TJS standard itself. Generally,
there have been very few studies that have explored the feasibility of using TJS as a tool for integration of statistical
and geospatial data on the Web. Moreover, there are very few TJS software implementations both open source and
proprietary despite the fact the concept of TJS has existed since 2004, at first as the OCG Geolinking Service (GLS)

then later as Table Joining Service an improved version of GLS in 2010.

The reason could be TJS enforces use of a GDAS data format for encoding attribute data (Aarnio and Reini, n.d.). The
familiar format for publishing attribute data on the Web is CSV according to W3C 3!. Using GDAS introduces an

extra complexity of developing a software that converts attribute data from already existing in formats to GDAS

3Uhttps://www.w3.0rg/2013/05/Icsv-charter.html

37


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

(Grothe and Brentjens, 2013). The National Land Survey of Finland is currently working on the revision of the TJS
addressing some of these concerns. Some of the improvements will include defining TJS as a RESTful service,
supporting more input and output formats and services and support use of persistent identifiers for all references to

geospatial and attribute data.

38


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

7. Bibliography

Aarnio, T., Reini, J., n.d. OGC Table Joining Service standard revision and Oskari 5.

Abdalla, R., Esmail, M., 2018. WebGlIS for Disaster Management and Emergency Response. Springer.

Akhtar, U., Sant’Anna, A., Jihn, C.-H., Razzaq, M.A,, Bang, J., Lee, S., 2020. A cache-based method to
improve query performance of linked Open Data cloud. Computing 102, 1743-1763.
https://doi.org/10.1007/s00607-020-00814-9

Alonso, G., Casati, F., Kuno, H., Machiraju, V., 2013. Web Services: Concepts, Architectures and
Applications. Springer Science & Business Media.

Antoniou, V., Morley, J., Haklay, M. (Muki), 2009. Tiled Vectors: A Method for Vector Transmission over
the Web, in: Carswell, J.D., Fotheringham, A.S., McArdle, G. (Eds.), Web and Wireless Geographical
Information Systems, Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 56—71.
https://doi.org/10.1007/978-3-642-10601-9_5

Ashton Acton, 2013. Internet Protocols—Advances in Research and Application: 2013 Edition.
ScholarlyEditions.

Balog, D., Houtmeyers, R., 2017. Testbed-12 Vector Tiling Implementation Engineering Report [WWW
Document]. URL https://docs.ogc.org/per/16-067r4.html (accessed 7.23.20).

Billen, R., Joao, E., Forrest, D., 2006. Dynamic and Mobile GIS: Investigating Changes in Space and Time.
CRC Press.

Bocher, E., Ertz, O., 2018. A redesign of OGC Symbology Encoding standard for sharing cartography. Peer)
Computer Science 4, e143. https://doi.org/10.7717/peerj-cs.143

Bresters, P., NI, S., van Qirschot, H.K., NI, S., Fokke, E., NI, S., Venema, J., Brentjens, T., Grothe, M., van
Pelt, B., Hogeboom, J., Kruse, D., 2016. Impact analysis Table Joining Service 35.

Burghardt, D., Duchéne, C., Mackaness, W., 2014. Abstracting Geographic Information in a Data Rich
World: Methodologies and Applications of Map Generalisation. Springer.

Cammack, R.G., 2007. Cartographic Approaches to Web Mapping Services, in: Cartwright, W., Peterson,
M.P., Gartner, G. (Eds.), Multimedia Cartography. Springer, Berlin, Heidelberg, pp. 441-453.
https://doi.org/10.1007/978-3-540-36651-5_31

Davis, C.A., Kimo, Y.J., Duarte-Figueiredo, F.L.P., 2009. OGC Web Map Service implementation challenges
for mobile computers, in: 2009 17th International Conference on Geoinformatics. Presented at
the 2009 17th International Conference on Geoinformatics, pp. 1-6.
https://doi.org/10.1109/GEOINFORMATICS.2009.5293410

EFGS and Eurostat, 2019. Automated Linking of SDMX and OGC Web Services [WWW Document]. URL
https://www.globalhealthlearning.org/gheltaxonomy/term/1177 (accessed 7.11.20).

Fensel, D., Simsek, U., Angele, K., Huaman, E., Karle, E., Panasiuk, O., Toma, ., Umbrich, J., Wahler, A,,
2020. Knowledge Graphs: Methodology, Tools and Selected Use Cases. Springer Nature.
Fujimura, H., Sanchez, O., Ferreiro, D., Kayama, Y., Hayashi, H., Iwasaki, N., Mugambi, F., Obukhov, T.,
Motojima, Y., Sato, T., 2019. DESIGN AND DEVELOPMENT OF THE UN VECTOR TILE TOOLKIT. ISPRS
- International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences

XLII-4/W14, 57-62. https://doi.org/10.5194/isprs-archives-XLII-4-W14-57-2019

Gaffuri, J., 2012. Toward Web Mapping with Vector Data, in: Xiao, N., Kwan, M.-P., Goodchild, M.F.,
Shekhar, S. (Eds.), Geographic Information Science, Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, pp. 87-101. https://doi.org/10.1007/978-3-642-33024-7_7

Garcia, R., Castro, J.P. de, Verdu, E., Verdu, M.J., Regueras, L.M., 2012. Web Map Tile Services for Spatial
Data Infrastructures: Management and Optimization. Cartography - A Tool for Spatial Analysis.
https://doi.org/10.5772/46129

39


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

Gillies, S., Butler, H., Daly, M., Doyle, A., Schaub, T., 2016. The GeoJSON Format [WWW Document]. URL
https://tools.ietf.org/html/rfc7946 (accessed 9.8.20).

Gratier, T., Spencer, P., Hazzard, E., 2015. OpenLayers 3 : Beginner’s Guide. Packt Publishing Ltd.

Grothe, M., Brentjens, T., 2013. Joining tabular and geographic data — Merits and possibilities of the Table
Joining Service 53.

Hong, J.H., Lin, S.Y., 2005. Web-based thematic map service in openGIS environment.

Ingensand, J. (Ed.), 2019. OGC Testbed-13: Vector Tiles Engineering Report 163.

Ingensand, J., Nappez, M., Moullet, C., Gasser, L., Ertz, O., Composto, S., 2016. Implementation of Tiled
Vector Services: A Case Study, in: SDW@GIScience.

Jiang, Z., Shekhar, S., 2017. Spatial Big Data Science: Classification Techniques for Earth Observation
Imagery. Springer International Publishing. https://doi.org/10.1007/978-3-319-60195-3

Krafzig, D., Banke, K., Slama, D., 2005. Enterprise SOA: Service-oriented Architecture Best Practices.
Prentice Hall Professional.

Krewinkel, A., Stinkler, S., Lewandowski, D., Finck, N., Tolg, B., Kroh, L., Schreiber, G., Fritsche, J., 2015.
Lebensmittelkontrolle 2.0. Journal fiir Verbraucherschutz und Lebensmittelsicherheit 10.
https://doi.org/10.1007/s00003-015-1000-6

Kyriakidis, P., Hadjimitsis, D., Skarlatos, D., Mansourian, A., 2019. Geospatial Technologies for Local and
Regional Development: Proceedings of the 22nd AGILE Conference on Geographic Information
Science. Springer.

Li, L., Hu, W., Zhu, H., Li, Y., Zhang, H., 2017. Tiled vector data model for the geographical features of
symbolized maps. PLoS One 12, e0176387-e0176387.
https://doi.org/10.1371/journal.pone.0176387

Li, S., Dragicevic, S., Castro, F.A., Sester, M., Winter, S., Coltekin, A., Pettit, C., Jiang, B., Haworth, J., Stein,
A., Cheng, T., 2016. Geospatial big data handling theory and methods: A review and research
challenges. ISPRS Journal of Photogrammetry and Remote Sensing, Theme issue “State-of-the-art
in photogrammetry, remote sensing and spatial information science” 115, 119-133.
https://doi.org/10.1016/j.isprsjprs.2015.10.012

Lupp, M., 2008. OGC Web Services, in: Shekhar, S., Xiong, H. (Eds.), Encyclopedia of GIS. Springer US,
Boston, MA, pp. 799-800. https://doi.org/10.1007/978-0-387-35973-1_903

Mahmud, S.M.H., Hossin, Md.A., Hasan, Md.R., Jahan, H., Noori, S.R.H., Ahmed, Md.R., 2020. Publishing
CSV Data as Linked Data on the Web, in: Singh, P.K., Panigrahi, B.K., Suryadevara, N.K., Sharma,
S.K., Singh, A.P. (Eds.), Proceedings of ICETIT 2019, Lecture Notes in Electrical Engineering.
Springer International Publishing, Cham, pp. 805-817. https://doi.org/10.1007/978-3-030-30577-
2 .72

Martinelli, L., Roth, M., 2015. Vector Tiles from OpenStreetMap (srp). HSR Hochschule fiir Technik
Rapperswil.

Maso, J., Pomakis, K., Julia, N., 2010. OpenGIS® Web Map Tile Service Implementation Standard, v. 1.0. 0,
Open Geospatial Consortium Inc. Document reference number 07-057r7, 2010.

Masse, M., 2011. REST API Design Rulebook: Designing Consistent RESTful Web Service Interfaces. O’Reilly
Media, Inc.

Netek, R., Masopust, J., Pavlicek, F., Pechanec, V., 2020. Performance Testing on Vector vs. Raster Map
Tiles—Comparative Study on Load Metrics. ISPRS International Journal of Geo-Information 9, 101.
https://doi.org/10.3390/ijgi9020101

OGC Vector Tiles Pilot: WFS 3.0 Vector Tiles Extension Engineering Report [WWW Document], 2019. URL
https://docs.ogc.org/per/18-078.html (accessed 10.5.20).

Peterson, M.P., 2012. Online Maps with APIls and WebServices. Springer Science & Business Media.

Sambells, J., Purvis, M., Turner, C., 2007. Beginning Google Maps Applications with PHP and Ajax: From
Novice to Professional. Apress.

40


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

L]
|
rk

Shang, X., 2015. A Study on Efficient Vector Mapping With Vector Tiles Based on Cloud Server
Architecture. http://dx.doi.org/10.11575/PRISM/25046

Tiwari, A., Jain, D.K., 2014. GEOSPATIAL FRAMEWORK FOR DENGUE USING OPEN SOURCE WEB GIS
TECHNOLOGY [WWW Document]. URL /paper/GEOSPATIAL-FRAMEWORK-FOR-DENGUE-USING-
OPEN-SOURCE-Tiwari-Jain/c47320c957aa9adf2a07d8398c49f7cd10cce85f (accessed 10.8.20).

Veenendaal, B., Brovelli, M.A., Li, S., 2017. Review of Web Mapping: Eras, Trends and Directions. ISPRS
International Journal of Geo-Information 6, 317. https://doi.org/10.3390/ijgi6100317

VoPham, T., Hart, J.E., Laden, F., Chiang, Y.-Y., 2018. Emerging trends in geospatial artificial intelligence
(geoAl): potential applications for environmental epidemiology. Environmental Health 17, 40.
https://doi.org/10.1186/s12940-018-0386-x

Wan, L., Huang, Z., Peng, X., 2016. An Effective NoSQL-Based Vector Map Tile Management Approach.
ISPRS International Journal of Geo-Information 5, 215. https://doi.org/10.3390/ijgi5110215

Warf, B., 2018. The SAGE Encyclopedia of the Internet. SAGE.

Zouhar, F., Senner, l., 2020. Web-Based Visualization of Big Geospatial Vector Data, in: Kyriakidis, P.,
Hadjimitsis, D., Skarlatos, D., Mansourian, A. (Eds.), Geospatial Technologies for Local and
Regional Development, Lecture Notes in Geoinformation and Cartography. Springer International
Publishing, Cham, pp. 59-74. https://doi.org/10.1007/978-3-030-14745-7_4

41


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Appendix 1

Script for the Web Server.

QO J oy 0w

NeJ

29.
30.
31.
32.
33.

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,

45.
46.
47.

import flask

from flask import Flask

# pip install sparglwrapper

# https://rdflib.github.io/sparglwrapper/

import sys

from SPARQLWrapper import SPARQLWrapper, JSON
import pandas as pd

un _df = pd.read csv("static\sample-csv.csv")
# dfcolumns = ['UN_A3', 'country name', 'sum']
# df = df.reindex (columns=dfcolumns)
# define the columns with key to be of same data type
# df['UN _A3'] = df['UN_A3'].astype (int)
# df = df[['UN_A3', 'country name', 'sum']]
# print (un_df)
endpoint url = "https://query.wikidata.org/sparqgl"
query = """#Find ISO 3166-1 alpha-2 country codes
SELECT distinct ?countryLabel ?UN A3 ?ISO A2?Population
WHERE
{

?country wdt:P299 ?UN A3

?country wdt:P297 ?ISO A2

?country wdt:P1082 ?Population.

SERVICE wikibase:label { bd:serviceParam wikibase:language
"[AUTO_ LANGUAGE],en" }

} order by

def get re
user a

?ISO A2"""

sults (endpoint url, query):
gent = "WDQS-example Python/%$s.%s" % (sys.version info[O0],

sys.version infol[l])

# TODO
sparqgl

sparql.
sparql.

return

results =
# Print re
results df
# wiki df

adjust user agent; see https://w.wiki/CX6

= SPARQLWrapper (endpoint url, agent=user agent)
setQuery (query)

setReturnFormat (JSON)

spargl.query () .convert ()

get results(endpoint url, query)

sults as dataframe

= pd.io.json.json normalize(results['results']['bindings'])
= results df[['countrylLabel.value', 'UN A3.value',

'ISO_A2.value', 'Population.value']]

wiki_df =

results df[['UN A3.value', 'Population.value']]

42



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

48.
49.
S0
51.
52.
53.
54.
S)S)
555
57.
58.
59.
60.

61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
2.
73.
74.
75.

# Convert column names

wiki df.columns = ["UN A3 1", "Population"]

#print (wiki df)

wiki df columns = ["UN A3 1", "Population"]

un_df columns = ["UN_A3", "Country name", 'GDP(2005) "]

un _df = un_ df.reindex(columns=un_df columns)
wiki df = wiki df.reindex(columns=wiki df columns)
un df['UN A3'] = un df['UN A3'].astype (int)
wiki df['UN A3 1'] = wiki df['UN A3 1'].astype (int)

result = un df.join(wiki df.set index('UN A3 1'"),on=["UN A3"])

#print (result)

result.to csv(r'C:\Users\Sharon\TJS\TJSpythonProject\static\un wiki.cs
v', index = False)

# mock server = 'http://localhost:8000'

app = Flask(_name )

# Get url for a static file.

with app.test request context():
att uri = flask.url for("static", filename="sample-csv.csv")
# print(att_uri)

@app.route('/")
def index () :
return 'TJS'

app.run (debug=True, port=8000) # run app in debug mode on port 5000

43



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Appendix 2

Script for the Table Joining Server and TJS API

QO J oy 0w

NeJ

import geopandas as gpd
import pandas as pd
from flask import Flask, request

app =

Flask(_name )

def get frameworkdata (vtc url):

def

def

gdf = gpd.read file(vtc url)
return gdf

get attributedata (attribute url):
df = pd.read csv(attribute url)
return df

get frameworkkey (frameworkkey, attributel, attribute2):

framework key = str (frameworkkey)

attribute 1 = str(attributel)

attribute 2 str(attribute?)

return [framework key, attribute 1, attribute 2]

@app.route('/")

def

index () :
return 'TJS'

@app.route('/tjs/api', methods=["'GET'])

def

join data() :

vtc url = request.args.get('vtc url')
attribute url = request.args.get ('attribute url')
framework key = request.args.get ('framework key')
attributel = request.args.get('attributel')
attribute?2 = request.args.get('attribute2')

gdf = get frameworkdata (vtc url)

adf get attributedata(attribute url)
keys = get frameworkkey (framework key, attributel,
gdf columns = ['UN_A3', 'geometry']

adf columns = keys

adf = adf.reindex (columns=adf columns)
gdf = gdf.reindex(columns=gdf columns)
adf ['UN_A3'] = adf['UN_A3'].astype (int)
gdf ['UN_A3'] = gdf['UN_A3'].astype (int)
geometry = gdf[['geometry', 'UN A3']]
attributes = adf[keys]

geometry = geometry.merge (attributes,

on='UN A3') .reindex (gdf.index)

44

attribute?)



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

geometry.to Json ()

geojson

50.

return geojson

51.

52.
S)E)5

# run app in debug mode on port 5000

True, port=5000)

app.run (debug

54.

55.

“ayloljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay L
“JreqbBnyan yauloljqig usipn N1 Jep ue isi liagrewoldiq Jasalp uoisiareulblLO aponipab ausiqoidde aig

gny a8pajmoud| INoA

Saylolqie

45


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Appendix 3

Script for the Openlayers Web Application.

31.
32.

<!IDOCTYPE html>
<htmI>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-
scalable=0">
<script sre="http://code.jquery.com/jquery-latest.js"></script>
<script sre="https://maxcdn.bootstrapcdn.com/bootstrap/2.2.1/js/bootstrap.min.js" ></script>
<script sre="http://cdnjs.cloudflare.com/ajax/libs/openlayers/2.12/OpenLayers.js"></script>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/2.2.1/css/bootstrap.min.css">
<style>
body {
padding-top: 60px;
padding-bottom: 40px;
}
.map {
height: 512px;
background-color: #eee;

border: 1px solid #CCCCCC;

</style>
</head>
<body ">
<div class="navbar navbar-inverse navbar-fixed-top">
<div class="navbar-inner">
<div class="container-fluid">
<a class="brand" href="/">Web Thematic Map created by OGC TJS</a>
</div>
</div>
</div>

<div class="container-fluid">

46



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

33. <div class="row-fluid">

34. <div class="span5">

35. <div id="map" class="map">

36. </div>

37. </div>

38. <div class="span7">

39. <div>

40. <table>

41. <tr>

42. <td><img src="data/key.svg"/></td>
43.

44, </tr>

45. </table>

46. <div id="metrolmage"></div>

47. </div>

48. </div>

49. </div>

50.  </div>

51.

52.

53. <script sre="main.js"></script>

54. </body>

55. </html>

1. import 'ol/ol.css';

2. import {Vector} from 'ol/source';

3. import {GeoJSON} from 'ol/format';

4. import Map from 'ol/Map';

5. import View from 'ol/View';

6. import VectorLayer from 'ol/layer/Vector';
7. import {Fill, Stroke, Style, Text} from 'ol/style';
8. import VectorTilelLayer from 'ol/layer/VectorTile';
9. import VectorTileSource from 'ol/source/VectorTile';
10. dimport MVT from 'ol/format/MVT';

11. dimport Layer from 'ol/layer/Layer';

12.

13.

14. var style simple = new Style ({

15. f£ill: new Fill ({

16. color: '#ADD8EG'

17. 1),

18. stroke: new Stroke ({

19. color: '#880000',

20. width: 1

47



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.
35.
36.

37.
38.
39.
40.
41.
42.
43.
44 .
45.
46.
47.
48.
49.
50.
51.
SAG
S)E)5
54.
55.
56.
Sy
Sl
S5
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.

})
b

function simpleStyle (feature) {
return style simple;

}

var colorGradient = |
'rgb(128,128,128) "',

'rgb(140,81,10) "', 'rgb(216,179,101) "', 'rgb(246,232,195) "', 'rgb (199,234,229

)','rgb(90,180,172) "', 'rgb (1,102, 94)
]

// map the income level codes to a colour value, grouping them
var gradStyle = function (feature, resolution) {
//console.log (feature.get ('sum')) ;

console.log(feature.getId()+ ': ' +feature.get ('Country name')

+ ': ' + feature.get ('GDP(2005) ")) ;
var data = feature.get ('GDP(2005)");
var color;
if ( data < 50000 ) {
color = colorGradient[6];//low value
} else 1if ( data >= 50000 && data < 500000 ) {
color = colorGradient[5];//
} else if ( data >= 500000 && data < 1000000 ) ¢{
color = colorGradient[4];
} else if ( data >= 1000000 && data < 3000000) {
color = colorGradient[3];
} else if ( data >= 3000000 && data < 5000000) ¢{
color = colorGradient[2];
} else if ( data >= 5000000 ) {
color = colorGradient[1l];

else 1if ( data = 'null' ) {
color = colorGradient[0];
}
return new Style ({
stroke: new Stroke ({
color: 'black', //'rgba (255, 255, 255 ,1.0)"',
//lineDash: [3, 3],
lineCap: 'butt',
lineJoin: 'miter',
width: 0.5,
)y
fill: new Fill ({
color: color
)y
1)

var url =

"http://127.0.0.1:5000/tjs/api?vtc_url=http://localhost:8080/geoserver/

gwc/service/tms/1.0.0/"+

48



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

72. 'countries%3Ane 110m admin 0 countries@EPSG%3A3857@geojson/{z}/{x}/{-
y}.geojsoné&'+

73. 'attribute url=http://127.0.0.1:8000/static/sample-csv.csv&'+
74. 'framework key=UN A3&attributel=Country name&attribute2=GDP (2005)"'
75.

76.

77. const layer = new VectorTileLayer ({

78. //style:simpleStyle,

79. style: gradStyle,

80. source: new VectorTileSource ({

81. attributions: '',

82. format: new GeoJSON(),

83. maxzoom: 19,

84. url: url,

85.

86.

//'http://localhost:8080/geoserver/gwc/service/tms/1.0.0/" +
87.
//'countries:ne 110m admin 0 countries@EPSG%3A900913Q@geojson/{z}/{x}/{-
y}.geojson',
88. tileLoadFunction: function(tile, url) {
89. tile.setLoader (function (extent, resolution,
projection) {
90. fetch(url) .then (function (response) {
91. response.text () .then (function (data) {
92. const jsons = JSON.parse (data);
93. const format = tile.getFormat();
94. console.log(data);
95.
tile.setFeatures (format.readFeatures (data));});
96. }):
97. 1Y:
98. b,
99.
100.
101. })
102. });
103.
104.
105. var map = new Map ({
106.
107. view: new View ({
108. center: [0, 0],
1009. zoom: 2,
110. maxzoom: 20
111. 1),
112. layers: [layer],
113. target: 'map'
114. });

Y 3ibliothek,
Your knowledge hu

49



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

O 0O Joy U b W

"name": "mywebmap2",
"version": "1.0.0",
"description": "",
"main": "main.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"start": "parcel index.html",
"build": "parcel build --experimental-scope-hoisting --public-url
index.html"
by
"author": "",
"license": "ISC",
"dependencies": {
"Q@geoext/geocext": "73.2.0",
"Qterrestris/basigx": "*2.0.2",
"ol": ""6.4.3"
1y
"devDependencies": {
"parcel-bundler": "71.12.4"
}

50



https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

