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Abstract

Medical research is a very diverse field and recently machine learning has
become a part of it. One area in which it can be applied particularly well
is the analysis of medical image data. The segmentation of this data is a
difficult task in which a lot of research is done. In this thesis, a method for the
automatic segmentation of magnetic resonance images (MRI) of fetal brains
is presented. In comparison, the automatic segmentation of the adult brain is
already well advanced and there are several interesting results. In this case,
the quantity and quality of the data as well as the complex structure of the
fetal brain are a major challenge for any automatic segmentation program.
A popular method for segmentation is deep learning. In this process, artificial
neural networks are trained on pre-segmented data. With the experience
gained further data can be evaluated independently. Convolution and the
U-Net architecture are used to particularly improve the quality of the image
analysis of neural networks.
In the course of this thesis, experiments are carried out to find a suitable
structure for a neural network. Inspired by others, several techniques such
as sequencing neural networks or hierarchical structures are evaluated and
implemented. To improve the spatial information of the artificial neural
network, spectral coordinates are applied and a topological loss function
supports the identification of the cortex.
This techniques improve the automatic segmentation and lead to promising
results. Especially the spectral coordinates and the topological loss function
increase the performance of the network in the cortex.
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Chapter 1

Introduction

Medical research has greatly benefited from the use of machine learning [40].
Many successes have been achieved. This thesis presents an approach for
segmenting magnetic resonance images (MRI) of fetal brains. The following
chapter introduces the challenges, which are waiting ahead, and presents the
tasks that shall be fulfilled.
Although ultrasound is the dominant instrument for diagnosing fetuses, an
MRI is often used for further examination [61]. MRIs offers numerous advan-
tages, for example, it is not dependent on the position of the fetus or obesity.
In addition, the use of different sequences and modalities allows varying areas
to be focused on. They can be used to detect various pathologies, such as
anomalies of the central nervous system, disorders of cortical formations and
ventriculomegaly. In total, fetal MRI is an useful complementary instrument
for the detection of abnormalities and the development of diagnoses [3].
To begin with, the challenges of fetal brain segmentation are discussed and
what distinguishes it from adult brains. This shall serve as motivation for
the further work. Then it is explained what the main goals of this work are.
Additional data shall be generated and an approach for segmentation is to be
created. Further, insight into how the objectives will be achieved is provided.
The main contribution is the implementation of an artificial neural network
tailored to the task of fetal brain segmentation. At last, a brief description
of the structure is given by shortly summarizing all chapters.
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1.1 Problem Statement

In recent years, automatic segmentation of MR brain images has improved
significantly [18]. The reason for this is the successful application of deep
learning in medical imaging [40]. Accurate methods for automatic segmen-
tation of fetal brains are still being developed [41]. There are two reasons for
this: First, the availability of data is much more limited compared to adult
brain MRIs or non-medical data. The reason for this is the lower number of
fetal than adult patients, and fetal movement can corrupt the data. Further-
more, medical data is difficult to acquire due to data protection reasons. To
successfully apply deep learning algorithms a large amount of data is neces-
sary [23]. Second, the variability of shapes in the brains of unborn children
is far greater than of adults. Some regions are still developing or not clearly
distinguishable. This makes a proper segmentation far more challenging.

1.2 Aim of the Work

The goal of this thesis is to implement automatic segmentation of fetal brain
in-utero MRIs. Therefore, several deep learning models are tested and their
performance is evaluated. Different architectures are implemented and their
segmentation is compared. Furthermore, spectral coordinates are applied.
They can be used to encode anatomical location of image elements. Their
influence on the performance of the network will be investigated and evalu-
ated.

1.3 Methodological Approach

To increase the number of manually segmented MRIs an atlas based software
is used to pre-segment the images. These are then manually enhanced and
used to train the neural network.
The basis of the algorithm is a convolutional artificial neural network in
an U-Net architecture. Further techniques are implemented to improve its
performance: several models are processed to a Sequence, so that each can
improve the errors of the previous one. This improve the spatial information
and leads to a more accurate segmentation. The model has an hierarchical
structure, this allows to split up a problem in several sub-tasks, which are

2
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easier to solve. In doing so, the fetal brain is first identified and then seg-
mented. Spectral coordinates improve the structural understanding of the
graph, and a topological loss function can respond to the specific character-
istics of individual regions.
These techniques will be compared in experiments. The segmentation of each
model is evaluated by various metrics, such as dice coefficient, mean surface
distance or relative area of touch. The results will lead the way to a final
neural network for automatic fetal brain segmentation.

1.4 Thesis Outline

This thesis is structured in the following way:

Chapter 1: Introduction. In this chapter the problem of fetal brain
segmentation is described and the work of this thesis is motivated.

Chapter 2: Artificial Neural Networks. An overview of the theory of
neural networks is given. First, the concepts are motivated and more simple
and general topics are presented. Then, advanced structures are discussed.

Chapter 3: Spectral Coordinates. An introduction to the theory of
spectral coordinates and diffusion maps is given. It is discussed what they
reveal about the deeper structure of a graph and how they are linked.

Chapter 4: State-of-the-Art. In this chapter various publications are
presented, which deal with automatic segmentation of fetal brains. When
discussing them, special focus is put on the different deep learning techniques
that are applied. Many of them, such as sequencing neural networks or
spectral coordinates, are used later in this work.

Chapter 5: Methodology. The final architecture, which is used for the
automatic segmentation of fetal brains, is presented in this chapter. The de-
tailed structure of the neural network, the application of spectral coordinates
and the topological loss function are discussed.
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Chapter 6: Experiments and Results. In the course of this thesis
different approaches and ideas are explored. The corresponding experiments
and results are evaluated in this chapter. At the end, the final architecture
is also tested extensively.

Chapter 7: Conclusion. In the final chapter of this thesis, a summary is
given and ideas for future work are presented.
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Chapter 2

Artificial Neural Networks

In recent years, artificial neural networks became strongly popular in a wide
field of applications [30] [1]. Nowadays, they are also used in medical fields
[40]. In this work an artificial neural network is applied to segment fetal
brains from in-utero MRI acquisitions into distinct tissue types. Therefore,
its theory is discussed in the following chapter, by reviewing existing work.
An artificial neural network is an algorithmic implementation of a mathe-
matical model of the functioning of animal nervous systems, consisting of
large numbers of interconnected brain cells called neurons. Each neuron re-
ceives a signal, processes and forwards it to further cells. Mathematically,
an artificial neural network is a piece-wise linear function, which is used to
approximate an unknown, hidden function. Non-linearities are achieved by
using activation functions. The intuition and the basic structure is discussed
in section 2.1. Activation functions are introduced in section 2.2.
In order to quantify the predictions, which are produced by the neural net-
work, loss functions are used. A variety of these methods is presented in
section 2.3. A network is trained by using stochastic gradient descent to
minimize the loss function. This is done by computing the derivative (sec-
tion 2.5) of the network and adapting its weights accordingly. There are
several ways in which optimization is done. These are presented in section
2.4.
At the end of the chapter, more advanced techniques are discussed. Con-
volutional neural networks are typically used to process images. They are
designed so that each layer recognizes more complex structures in an image.
U-Nets are another way to design neural networks. The idea is to process
the input and then restore it to achieve a segmentation of the original im-
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age. These architectures are presented in sections 2.6 and 2.7. Recently,
neural networks have become very deep. Therefore, training them can be
quite unstable. Batch normalization is used to adapt the distribution of the
data given to a layer. This prevents divergence during training and allows
building deeper neural networks. Batch normalization is analyzed in section
2.8.

2.1 Basic Architecture of Artificial Neural Net-

works

The mathematical model of a artificial neural network is inspired by the
structure of a biological neuron [13]. A simple neuron functions as follows:
First, information is received as an electric impulse through the dendrites
[43]. This stimulus is processed in the cell body. Each impulse has an unique
influence on the output, based on which dendrite it came from and how
strong it is. The resulting impulse is transmitted from the body through the
axon and into its branches. The signal is then passed on to the dendrites
on to further neurons. The impulse, that is passed on to other cells, differs
depending on which arm of the axon the information is passed through. In
the following we review information based on [23] [16] [13]
A basic mathematical model of a neural network is built in a similar way.
First, the model receives information in form of a vector x ∈ R

n. The
input is processed by multiplying it with another vector w ∈ R

n. A single
scalar b ∈ R is added, and an activation function f is applied to the result.
The output, which is given as f(x · w + b), is then passed on to the next
mathematical neuron. In the case of the biological cell, each branch of the
axon can transmit a different signal. In the mathematical model this can be
realized by using several weight vectors wi ∈ R

n, i = 1, ...m and a bias vector
b ∈ R

n. The result is then given by

yi = f(wix+ bi), i = 1, ...m

The simplest neural network is the single-layer perceptron. Geometrically,
it separates data points with a hyperplane and classifies new ones depending
on which side of the plane they lie. The mathematical function which is
defined by the perceptron algorithm is given as
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y =

{

1 if x ·w + b > 0,

0 else

The hyperplane, which separates the data, is uniquely defined by the
weights w and b. The normal vector of the plane is given by the weights.
The bias b shifts the plane in the direction of w.
The perceptron is a beautiful example but unfortunately very limited. It
struggles with relatively simple problems, e.g., the exclusive-or problem.
Mathematically, it is defined as a simple function from {0, 1}2 → {0, 1}.
It’s values are shown in table 2.1.

Input Output
1 1 0
1 0 1
0 1 1
0 0 0

Table 2.1: Truth table for the exclusive-or problem

This is a problem that the peceptron algorithm is not able to solve. The
four points {(0, 0), (0, 1), (1, 0), (1, 1)} with corresponding labels (0, 1, 1, 0)
cannot be separated by a straight line. Each straight line which divides
them has always two differently labeled points on each side. Therefore, this
problem is not solvable by using the perceptron algorithm.
Since the model already fails handling simple problems, the algorithm has to
be modified to handle more complex tasks. The number of layers which are
used in the neural network as to be adapted. It’s number has to increase.
The algorithm presented above is an example for a network with just one
layer. Neural networks are usually structured in layers. The first layer is
called the input layer and the last output layer. The ones in between are
named hidden layers.
The fully connected or dense layer is the most common. It is structured
in nodes, each is defined as the above mentioned neuron. All mathematical
neurons of the previous layer are connected to each node of the current dense
layer. The input of a single node is, therefore, a vector of the size of the
previous layer.
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Another issue to address are activation functions f . A wide range of methods
is applied. They will be discussed later in more detail. For the time being,
only the rectified linear unit (ReLU) is introduced. It is a simple and very
common activation function:

f(x) = max(0, x)

The major advantage of activation functions is that they allow the model
to approximate non linear functions. This is an absolute necessity to handle
more complex problems. Already a simple neural network with a single hid-
den layer containing only 3 nodes can solve the exclusive-or problem. The
non-linear activation functions in the hidden layer allow the model to adapt
to the situation. The model is given in [21].
Since neural networks with a single hidden layer are already a lot stronger
than the classic perceptron algorithm, naturally, the following question arises:
How strong are these networks really? Cybenko [16] has given a comprehen-
sive answer to this problem. He proved that any continuous function in a
compact space can be arbitrarily well approximated by a neural network with
only one hidden layer and any continuous sigmoidal activation function.
In order to understand the statement, some expressions have to be clarified.
Let In be the n-dimensional unit cube [0, 1]n ⊂ R

n, and C(In) be the space
of real valued continuous functions on In. The supremum norm on C(In) is
denoted by ‖.‖. Furthermore, the space of finite, signed and regular borel
measures on In is given by M(In).

Definition 2.1. σ is called discriminatory if for a measure µ ∈M(In)

∫

In

σ(yTx+ θ)dµ(x) = 0

for all y ∈ R
n and θ ∈ R implies that µ = 0

Definition 2.2. σ is called sigmoidal if

σ(x) =

{

1 as x→ + inf,

0 as x→ − inf
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Before the main theorem can be proven, some other results are needed.
These won’t be proven, but just stated. First, a corollary of the Hahn-Banach
theorem is given. It states that if there is a subspace, which is not dense,
then there exists a functional that vanishes on the subspace but not on the
whole space. The second is the Riesz representation theorem. It will be used
to find a measure that can represent the above functional.

Theorem 2.1 (Hahn-Banach [49]). If p : X → R is a sublinear function
on a real vector space X, and f : M → R is a linear functional on a linear
subspace M ⊆ X that is dominated by p on M , then there exists a linear
extension F : X → R of f to the whole space X that is dominated by p, i.e.,
there exists a linear functional F so that

❼ F (m) = f(m) ∀m ∈M,

❼ |F (x)| ≤ p(x) ∀x ∈ X.

Corollary 2.1.1 ([49]). Suppose S is a subspace of a locally convex space X,
and x0 ∈ X. If x0 is not in the closure of S, then there exists a continuous
linear functional L so that L(x0) = 1 but L(x) = 0 for every x ∈ S.

Theorem 2.2 (Riesz representation theorem [5]). Let L be a continuous
linear functional on C(X), X compact and Hausdorff. Then there is a unique
measure µ ∈M(X) so that

L(f) =

∫

X

fdµ ∀f ∈ C(X)

Now we have the tools to prove the theorem.

Theorem 2.3 ([16]). Let σ be a continuous discriminatory function. Then
finite sums of the form

G(x) =
N
∑

j=1

αjσ(y
T
j x+ θj)

are dense in C(In). In other words, given any f ∈ C(In) and ǫ > 0, there is
a sum, G(x), of the above form, for which

|G(x)− f(x)| < ǫ for all x ∈ In.
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Proof. Let S ⊂ C(In) be the subset of all functions of the form G(x) =
∑N

j=1 αjσ(y
T
j x+ θj). S is a linear subspace of C(In). We want to prove that

S is dense in C(In): S = C(In).
Therefore, we assume that S is a real subset of C(In): S ⊂ C(In). According
to the corollary of the Hahn-Banach theorem, there exists a functional L on
C(In), such that L 6= 0 and L(S) = 0.
Due to the Riesz representation theorem, there is a signed measure µ ∈
M(In), so that

L(f) =

∫

In

fdµ(x) ∀f ∈ C(X).

L is zero on S. Since σ(yTx+ θ) ∈ S ∀y ∈ R
n, ∀θ ∈ R,

∫

In

σ(yTx+ θ)dµ(x) = 0 ∀y ∈ R
n, ∀θ ∈ R.

σ is discriminatory. Therefore, µ = 0, contradicting L 6= 0. So S has to be
dense in C(In).

It is shown that the statement holds for continuous, discriminatory and
sigmoidal functions σ. This is quite unsatisfying, because being discrim-
inatory is not a obvious property. Therefore, these functions are further
explored, and it will be proven that the above statement is already fulfilled
for continuous sigmoidal functions.

Theorem 2.4 ([16]). Any bounded, measurable sigmoidal function, σ, is
discriminatory. In particular, any continuous sigmoidal function is discrim-
inatory.

Proof. For all x, y, θ, φ we have

σ(λ(yTx+ θ) + φ) =











→ 1 for yTx+ θ > 0 as λ→∞
→ 0 for yTx+ θ < 0 as λ→∞
= σ(φ) for yTx+ θ = 0 for all λ

Therefore, the function σλ(x) = σ(λ(yTx + θ) + φ) converges pointwise and
boundedly to

γ(x) =











= 1 for yTx+ θ > 0

= 0 for yTx+ θ < 0

= σ(φ) for yTx+ θ = 0
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for λ → ∞. Let Πγ,θ be the hyperplane {x|yTx + θ = 0} and Hγ,θ be the
half-space {x|yTx+ θ > 0}. By the Lebesgue bounded convergence theorem,
the following holds

0 =

∫

In

σλ(x)dµ(x)

=

∫

In

γ(x)dµ(x)

=σ(φ)µ(Πγ,θ) + µ(Hγ,θ)

for all φ, θ, y. Therefore, the µ is zero on all half-planes. It has to be shown
that this implies that the measure µ itself is zero.
For fixed y and a bounded measurable function h, define the linear function
F as

F (h) =

∫

In

h(yTx)dµ(x).

F is a bounded functional on L∞(R), since µ is a finite singed measure.
If h is a indicator function on [θ,∞), then

F (h) =

∫

In

h(yTx)dµ(x) = µ(Πγ,−θ) + µ(Hγ,−θ) = 0.

Similarly, it can be shown that F (h) = 0 if h is the indicator function of
the open interval (θ,∞). Therefore, F (h) = 0 for any interval and hence for
all simple functions. Since the set of simple functions is dense in L∞(R)[5],
F = 0.
In particular, for s(u) = sin(mTu) and c(u) = cos(mTu) we get

F (s+ ic) =

∫

In

cos(mTx) + isin(mTx)dµ(x)

=

∫

In

exp(imTx)dµ(x)

=0

for all m. The Fourier transform of µ is 0, and so µ is zero [49]. Therefore,
σ is discriminatory.
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Theorem 2.5 ([16]). Let σ be a continuous sigmoidal function. Then finite
sums of the form

G(x) =
N
∑

j=1

αjσ(y
T
j x+ θj)

are dense in C(In). In other words, given any f ∈ C(In) and ǫ > 0, there is
a sum, G(x), of the above form, for which

|G(x)− f(x)| < ǫ for all x ∈ In.

Proof. This follows directly from theorems 2.3 and 2.4.

Until now, the function f was always defined to be continuous. In prac-
tice, a neural network is often used to approximate a decision function. These
are methods that are used for classification. They are defined below. The
main statement does also hold for this class of functions.

Definition 2.3. Let λ denote the Lebesgue measure in In. Let P1, P2.....Pk be
a partition of In into k disjoint, measurable subsets of In. Define the decision
function, f , according to

f(x) = j if and only if x ∈ Pj.

Theorem 2.6 ([16]). Let σ be a continuous sigmoidal function. Let f be a
decision function for any finite measurable partition of In. For any ǫ > 0,
there is a finite sums of the form

G(x) =
N
∑

j=1

αjσ(y
T
j x+ θj)

and a set D ⊆ In, so that λ(D) ≥ 1− ǫ and

|G(x)− f(x)| < ǫ for all x ∈ D.

Proof. By Lusin’s theorem [50], there is a continuous function h and a set
D with µ(D) > 1− ǫ, so that h(x) = f(x) for x ∈ D. Since h is continuous
and by theorem 2.5, there is a summation G, of the above form, that satisfies
|G(x)− h(x)| < ǫ ∀x ∈ In. Therefore,

|G(x)− f(x)| = |G(x)− h(x)| < ǫ ∀x ∈ D.
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So far only sigmoidal activation functions have been discussed. The range
of activation methods used in machine learning is much wider. There are
similar statements proven for different functions [8] [46], but the above proofs
give a broad overview of what is theoretically possible with neural networks.

2.2 Activation functions

In this section, the focus is on activation functions. The main purpose of
using these methods is the approximation of non-linear and more complex
functions. There are several different activation methods, not all of them
are covered in detail, but the most important ones are discussed thoroughly.
The information reviewed in this section is taken from [23].
Sigmoid σ and the hyperbolic tangent are two classic activation functions.
They are defined as follows:

σ(x) =
1

1 + e−x

tanh(x) =
e2x − 1

e2x + 1

These two functions are similar in the sense that their derivative is bell
shaped, limx→inff(x) = 1, and limx→− inff(x) = 0/− 1. The range of tanh is
from -1 to 1 and the range of the sigmoid function is between 0 and 1.
Unfortunately, there are some downsides. They suffer from the vanishing
gradient problem. The derivative of both functions is ranged between 0 and
1 and it decreases strongly for high absolute values of x. During training
the gradient is propagated back through the network. If |x| is large, the
derivative of the activation function is small and the gradient of the network
vanishes. This leads to a too early convergence of the training process. An-
other disadvantage is the expensive cost of computing the functions. Thus,
the time consumed by training the network increases.
Motivated by these problems, another class of activation methods became
popular. This group includes ReLU, which was already defined above, and
Parametric ReLU (PReLU [62]). The latter is defined as

PReLU(x) =

{

x if x > 0,

ax else
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These methods are less affected by the vanishing gradient problem than
the functions discussed above and are also easier to compute. In total, neu-
ral networks with ReLUs instead of tanh units train several times faster
(Krizhevsky, Sutskever, and Hinton [33]). Another activation function which
outperforms ReLUs and PReLUs (Xu et al. [62]) is called Leaky ReLU
(LReLU) and given as

LReLU(x) =

{

x if x > 0,

0.01x else

The last activation function, which is introduced here, is called scaled
exponential linear unit (SELU). It was developed by Klambauer et al. [32]
and is defined as follows:

SELU(x) = λ

{

x if x > 0,

αex − α else

2.3 Losses and Metrics

To train a neural network, it is necessary to evaluate it’s predictions. This is
done via loss functions. In machine learning there are several approaches to
assess the quality of a prediction. They vary depending on the problem and
the method, which is applied to solve it. There are two main categories in
which problems can be separated. The first is called regression. Predicting
the price of a house or the age of a person are just two examples. Regression
tasks always predict a value in a continuous spectrum. The price of a house is
not discrete. It is not either e100,000 or e200,000, it varies continuously in
a certain range. The same applies for the age of a person, which is not given
in whole numbers, but alters continuously over the years. For the network
to improve, it doesn’t suffice to label a prediction as correct or incorrect, but
it has to state how close the estimation was. Typical losses for regression
tasks, which meet this requirement, are the L1 and L2-loss [44].
The L1-loss computes the mean absolute error between the predicted and
the true value. It is given by
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L1 =
1

n

n
∑

i=1

|yi − ŷi|,

where yi is the true, ŷi is the predicted value and n is the number of
predictions. The L2-loss calculates the mean of the squared differences of
the true and predicted values. This function gives heavier weights to larger
errors than to smaller ones. This is due to the fact that the errors are squared.
Therefore, the L2-loss is more sensitive regarding outliers. It is defined as

L2 =
1

n

n
∑

i=1

(yi − ŷi)2 .

These losses got their names from mathematical norms. The L1 loss is
defined exactly as the L1 norm, the L2 norm is defined as the square-root of
the L2 loss. The reason for this is that in machine learning it is important
for derivatives to be simple. In comparison to the norm, the L2 loss is easy
to differentiate.
Classification tasks are the second main category. Illustrative problems are
the prediction of which product a user is likely to buy, segmenting or clas-
sifying an image. In all cases, there is a discrete set of values, which the
network can predict. These can be the possible items in a store, the range of
labels which can be assigned to a pixel, or the number of object which can
be identified in an image. The difference to regression problems is, naively
spoken, that there is only one possible correct label and the others are false.
It is unnecessary to state how close a prediction is. If a user buys a car
instead of the predicted boat, it is mathematically unclear how wrong the
prediction is.
A softmax function [45] is often implemented in classification tasks between
the last layer of the neural network and the loss function. It is defined as
follows:

softmax(y)i =
eyi

∑k
j=1 e

yj
,

The vector y = (y1, ..., yk) corresponds to the prediction of one subject,
such as the segmentation of a single pixel or the prediction of which product
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someone will buy. It has the form of a vector since each label is represented.
The softmax function scales the values of each entry of the vector between 0
and 1, such that

∑k
i=1 σ(y)i = 1. Therefore, the predictions are scaled, have

the characteristics of probabilities and are comparable.
A popular loss for classification tasks, which is used in combination with
softmax, is the categorical cross entropy [12]. If there are only two labels, it
is also called binary cross entropy. It is defined as

H(y, ŷ) = −
k
∑

i=1

yilog(ŷi)

yi is the true and ŷi the predicted value. It is necessary that the predicted
probabilities range between 0 and 1. This is due to the fact that the loga-
rithmic function is not defined for negative values and larger numbers than
1 lead to a negative loss. Both cases result in problems during the optimiza-
tion.
At last, the dice score [54] and the accuracy [2] is introduced. These metrics
are rarely used for training but are important for evaluations. The dice score
measures the overlap of two images. The dice score is 1, if the images are
equal, and 0, if they have no pixels is common.

Dice = 2
|X ∩ Y |
|X|+ |Y |

The dice score is often also used as loss function. Neuronal networks are
trained by gradient descent optimization. Therefore, they, and also the loss
function, must be differentiable. The dice score, as presented above, is not
differentiable. In order to make the dice score differentiable, some changes
must be made in the implementation. First, the values of the prediction are
not saved as Boolean but as continuous number between 0 and 1. Second,
the intersection operator is not differentiable. It is approximated by the
element-wise product. These adaptions make the dice score differentiable,
and therefore allow its use as an error function.
The accuracy is computed by dividing the number of correct predictions by
the total number of predictions. As with the dice value, 1 indicates a correct
prediction and 0 a poor one.
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Accuracy =
Number of correct predicitons

Number of total predicitons

The difference between these scores is that the accuracy does not take
the false negative predictions into account.

2.4 Optimization Algorithms

To train a neural network, the error function is f(x,w) is minimized re-
garding the weights w of the network. Since the derivative of a function
f(w) indicates the direction of the slope, optimization is done by altering
the weights in the negative direction of the derivative.

f(w − ǫf ′(w)) < f(w) for small ǫ > 0

Most of the information review here is taken from [14] and [23]. The method
of iteratively optimizing a differentiable function in order to find a minimum
by following the negative derivative is called gradient descent. The algorithm
is given in Alg. 1.

Algorithm 1: Gradient Descent [14]

Result: A local minimum x
learning rate;
precision;
while While precision > dx do

x += - leanring rate * dx;
end

Once the algorithm has reached a value w so that f ′(w) = 0, the derivative
holds no further information in which direction the value of the function
decreases. A point w such that f ′(w) = 0 is called a critical point. There are
three different types: local minima, local maxima and saddle points. A point
w is called a local minimum, if there exists a sufficiently small neighborhood U
of w such that f(w) is smaller or equal to all values f(w′) ∀w′ ∈ U . Therefore,
every infinitesimal movement leads to an increase of the value of the function.
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Likewise, a local maximum has exactly the opposite characteristics. Points
w, which fulfill f ′(w) = 0, but are neither a local maximum nor minimum,
are called saddle points. Furthermore, a point which has a lower/higher value
than any other point is called global minimum/maximum. When training
neural networks complicated functions are optimized, these might have a lot
of local minima or flat planes with saddle points. This leads to complicated
and delicate situations during the optimization and makes the procedure
more challenging and difficult.
In machine learning multidimensional functions f : Rn → R are used. Since
they receive a vector as input, partial derivatives d

dwi
f(w) are used. These

describe the variation of the function in relation to a single coordinate wi. A
point is called critical if d

dwi
f(w) = 0 holds for all coordinates. In order to find

the maximal gradient, not just along the coordinates, directional derivatives
are used. These are defined as

d

dv
f(w) =

d

dw
f(w) · v, ‖v‖ = 1

Here v is the direction in which the derivative is computed. This defini-
tion of the directional derivation allows to search for the greatest descent in
every possible direction without explicitly calculating every derivative.
Now an illustrative example which demonstrates the gradient descent algo-
rithm is given. The function used is

f(x, y) = sin(x) + y2.

Its directional derivations are given as

d

dx
f(x, y) = cos(x)

d

dy
f(x, y) = 2y

The critical points are located at y = 0, x = 2πn − π
2
. To demonstrate

the algorithm, the function is visualized with a contour plot and the move-
ment given by the gradient descent method is shown with a blue line. The
algorithm starts at a random point, in this case x = 1, y = 4, computes
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the partial derivatives and updates the location accordingly. This process is
repeated until the position of the point only changes slightly by each update,
then the algorithm converges. The visualization is shown in figure 2.1.

Figure 2.1: Contour plot of the function f(x, y) = sin(x) + y2. Gradient
descent is applied and given by the blue line.

The problem of multiple local minimal and saddle points was already
discussed above. This function does not only have several minima, as men-
tioned above, but also a number of saddle points, which are located at
x = 2πn + π

2
, y = 0. Here the choice of a clever starting point for the

algorithm is essential. If a different starting point is chosen, e.g. x = 2, y = 4
instead of x = 1, y = 4, then the sequence converges towards another mini-
mum (figure 2.2 left). In this specific case, this will not cause any problems,
since both points are global minima and equally reasonable solutions. In
many cases, different local minima are problematic, because they hinder the
algorithm to find the best possible solution.
A critical situation, which can be observed in the right plot of figure 2.2, is
the existence of saddle points. In such a case, the algorithm could not even
find a minimum but converge at a plateau. Here the result is a point with
value 1 instead of -1 thus far away from a satisfying solution.

A factor that has not yet been discussed is the learning rate. In the
previous examples a learning rate of 0.3 was chosen and relatively good results
where accomplished. This is not always the case. In the following, the
consequences of a too high or too low learning rate are discussed. In figure
2.3 on the left, an example is given in which a higher learning rate of 0.7 is
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Figure 2.2: Contour plot with gradient descent which does not result in ex-
pected points. Left: Converges against different minimum. Right: Converges
against saddle point.

chosen. It seems that due to the increased learning rate the step size of the
algorithm is too large. Although the algorithm still converges and the local
minimum is reached, one has to be careful. If the learning rate is chosen even
higher and the steps become too big, the algorithm gives rather poor results
and in many cases does not even converge.
In figure 2.3, an example is given in which a too low learning rate is applied.
In this case, a rate of 0.1 is chosen. The step size gets smaller the closer it
gets to the minimum. Unfortunately, it could not reach a reasonable result
and the sequence converged to early.

This example shows that although the idea of gradient descent is easily
understandable, its application in practice still presents many challenges. In
the discussed example, the function is quite simple, and one can always un-
derstand what is happening since it is easy to visualize. Neural networks are
a lot more complicated, and one can not understand a problem by just ”look-
ing” at it. Visualization might not be possible or sufficient to understand the
situation. Therefore, training algorithms are an import part of deep learn-
ing. In the remaining part of this section, several learning algorithms will be
discussed. They are motivated by the classic gradient descent algorithm but
introduce some additional features that improve the training process.
The first modification being discussed is momentum. It is explained in de-
tail by Bengio, Boulanger-Lewandowski, and Pascanu [7] and Sutskever [55].
Momentum is motivated by a simple physical processes. Consider an object
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Figure 2.3: Contour plot with gradient descent which does not result in
expected points. Left: Learning rate too high. Right: Learning rate too low.

which moves through space with constant speed and without any external
force acting on it, then it’s momentum is given as the product of it’s mass
and velocity. To change the speed of the object, a constant force must act
on it over a certain period of time. The rate in which the speed of the object
changes depends on it’s momentum. The speed will adapt slowly if the ob-
ject has a high momentum, whereas it will change quickly if the momentum
is low.
To implement this idea in machine learning, a modification of the gradient
descent algorithm is necessary. Instead of the usual update, a velocity vector
is introduced. During every update it is multiplied by a constant µ, which
ranges between 0 and 1, and added to the gradient. The algorithm then
follows the resulting vector to find a local minimum. It is presented in Alg.
2. The idea here is to gradually decrease the influence of earlier gradients by
the factor µ, while the current gradient is still taken into account.
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Algorithm 2: Momentum [14]

Result: A local minimum x
learning rate;
precision;
while While precision > dx do

v = µ * v - learning rate * dx;
x += v;

end

To illustrate the idea of momentum, the previous example is used again.
The algorithm is modified and momentum implemented. The result can be
seen in figure 2.4.

Figure 2.4: Contour plot with gradient descent using momentum.

In this specific case the adjustments have unfortunately not led to an
improvement, but the idea is still very plausible. In deep learning the data
might be quite noisy. Therefore, these optimization algorithms are normally
not applied to smooth functions as has been now. Due to the noise, the
gradient may not always return the best or fastest direction towards a mini-
mum. Momentum adapts to this problem by including earlier gradients but
weighting them differently. In total, the algorithm is less vulnerable to out-
liers and leads to better convergence.
The next optimization technique, which will be discussed, is called Rmsprop
and was first introduced by Tieleman and Hinton [56]. A earlier, very similar
version is called Adagrad and was developed by Duchi, Hazan, and Singer
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[20]. Rmsprop is given in algorithm 3.

Algorithm 3: Rmsprop [14]

Result: A local minimum x
learning rate;
precision;
decay rate;
while While precision > dx do

cache = decay rate * cache + (1 - decay rate) * dx**2 ;

x += - learning rate * dx / (
√
cache + eps) ;

end

The main difference is the variable cache. It is given as the sum over
all squared gradients and holds information of the geometry of the data,
which was observed in earlier iterations. Furthermore, the variable decays
over time. The reason for this is that the relevance of earlier information
decreases over time and is, therefore, weighted lower. The variable cache is
then used to scale the gradient dynamically. This is a major improvement,
because so far the gradient has only been scaled by a constant value. In
practice, the algorithm will slow down in geometries with large gradients
and accelerate in rather flat areas. The algorithm is, therefore, more stable
and resistant to noise.
The algorithm is again tested on the usual example, the result can be seen
in figure 2.5

The direct comparison to the algorithms presented before is a little tricky.
To achieve optimal results when implementing Rmsprop, the learning rate
has to be adapted. The reason for this is that two variables scale the gradi-
ent. The learning rate has been increased from 0.3 to 0.7. This is the same
value which was used in figure 2.3 as an example for a too high learning rate.
When Rmsporp is compared to the original gradient descent algorithm, which
was used in 2.1, several changes are immediately noticeable. First, Rmsprop
does not make as large steps as gradient descent when the geometry creates
large gradients. Second, when moving to flatter areas, the algorithm in 2.1
makes only tiny steps towards the minimum, whereas the step size of Rm-
sprop stays relatively constant. All in all, the algorithm leads to much more
balanced step sizes and is, therefore, more robust against unexpected gradi-
ent changes.
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Figure 2.5: Contour plot with the Rmsprop algorithm.

The last optimization method is an algorithm called Adam. It was intro-
duced by Kingma and Ba [31]. A simplified version can be seen in Alg. 4.

Algorithm 4: Adam [14]

Result: A local minimum x
learning rate;
precision;
beta1;
beta2;
while While precision > dx do

m = beta1*m + (1-beta1)*dx ;
cache = beta2*cache + (1-beta2)*(dx**2) ;

x += - learning rate * m / (
√
cache + eps) ;

end

This algorithm is basically a combination of two previously discussed
methods. In Alg. 2 the idea of momentum was introduced. It is imple-
mented in the Adam algorithm by the variable m. Furthermore, Rmsprop
was discussed, it used the variable cache to scale the gradient. This is also
implemented in the Adam algorithm. The variables beta1 and beta2 are used
as decay rates for the scaling factors. In total, Adam chooses the scaling and
direction of the algorithm dynamically based on earlier knowledge from the
training process. The visualization of the algorithm can be seen in figure 4.
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Figure 2.6: Contour plot with the Adam algorithm.

In this example, the learning rate is set to 0.7 and both decay rates beta1,
beta2 to 0.5. One can clearly observe the influence of both. The momentum
is visible by the fact that the sequence does not move straight towards the
minimum but moves in a small arc. The dynamic scaling is noticeable, as
with the algorithm above, by a more balanced step size. These two methods
combined make the algorithm very robust and easy to apply.

2.5 Back-Propagation

During the training process, data is given to the neural network. It flows
through the various hidden layers of the network and finally produces a pre-
diction. This process is called forward propagation. At the end, the error
function returns a loss depending on the quality of the prediction. During
the computation of the derivative, information is passed backwards through
the neural network, this is called back propagation (Rumelhart, Hinton, and
Williams [51]). Most of the work discussed in this section is from [23]. To
compute the derivative of the network regarding it’s weights, the gradient of
the loss function is calculated and passed backwards through the network.
Mathematically, this is justified by the chain rule. Clearly, the derivative has
to be computed regarding the weights of the network, since it represents a
function which gets fitted to the data.
To understand back propagation, one must first study the chain rule. Let,
therefore, f : R → R and g : R → R be differentiable functions, then the
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following holds:

(f ◦ g)′(x) = f ′(g(x))g′(x)

The derivative of the concatenation of f and g at x is the product of the
derivative of f at g(x) and the derivative of g at x. In practice, often higher
dimensional functions, such as f : Rn → R

k and g : Rm → R
n, are used.

Then the derivatives are not given as scalars but as the Jacobian matrix.
The formula above still holds, but the scalar multiplication is replaced by a
matrix or vector product.
The chain rule is here very useful, because it reduces the computational
workload. To obtain the derivative of a complex function, due to the chain
rule, it is sufficient to decompose it in simpler functions and compute their
gradient. The derivative of the complicated function is then given by the
chain rule. To improve the understanding on this issue, as an example, the
chain rule is applied on the sigmoid function σ, which is given as

σ(x) =
1

1 + e−x
.

The sigmoid function can be decomposed into the following simpler func-
tions. Their derivatives can be determined a lot easier.

f(x) = −x → d

dx
f(x) = −1

g(x) = ex → d

dx
g(x) = ex

h(x) = 1 + x → d

dx
h(x) = 1

k(x) =
1

x
→ d

dx
k(x) = − 1

x2

The derivative of the sigmoid function can be computed by repeatedly
applying the chain rule, then the following result is obtained:

d

dx
σ(x) =

e−x

(1 + e−x)2
.
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Before the algorithms of forward and backward propagation can be dis-
cussed, computational graphs must be introduced. They are used to represent
functions. Like regular mathematical graphs, they are structured in vertices
and edges. The vertices define variables. In general, these can be given as
scalars, vectors, matrices or tensors, but in our example only scalars will be
used. The edges of a computational graph represent mathematical opera-
tions. These are simple functions whose derivations are easy to determine.
The graph is then structured according to the composition of the underlying,
more complex function. If a variable y is computed by the variable x by using
a single operation, then an edge is placed from vertex x to the vertex y. The
computational graph of the sigmoid function is shown in figure 2.7.

Figure 2.7: Computational graph of the sigmoid function.

Forward propagation is performed in the following way: The algorithm
starts at the first node and progresses step by step through the graph. At
each node the values of the parents Pi are used as input. The computation
is done according to the label of the edge f i, and the result is stored in the
next node ui. This process is repeated until all nodes are computed. The
algorithm is given in Alg. 5 and introduced by Goodfellow, Bengio, and
Courville [23].

Algorithm 5: Forward Propagation [23]

for i = 1, ..., ni do

ui ← xi;
end

for i = ni + 1, ..., n do

Pi ← {uj|j ∈ Pa(ui)};
ui ← f i(Pi);

end

return un
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In algorithm 5, xi, i = 1, ..., ni are the input values, which are given to
the input nodes ui, i = 1, ..., ni. The last node un is the output, which is
returned at the end of the algorithm.
To compute σ(1), the forward propagation algorithm is applied on the com-
putational graph of the sigmoid function. The result is shown figure 2.8

Figure 2.8: Computational graph of the sigmoid function after forward prop-
agation is applied.

The back propagation algorithm proceeds backwards through the graph.
It determines the derivative of every node. At first the derivative dun

dun of the
output node is computed, the algorithm follows the graph backwards and
computes the gradient at every node dun

duj . This is done by applying the chain
rule repeatedly.

dun

duj
=

∑

i:j∈Pa(ui)

dun

dui
dui

duj

The back propagation algorithm is shown in 6

Algorithm 6: Backward Propagation

gradTable;
gradTable[un]← 1;
for j = n-1,...,1 do

gradTable[uj] =
∑

i:j∈Pa(ui) gradTable[u
i] du

i

duj ;

end

return gradTable

There are a lot of algorithms, which can be used to compute derivatives.
The advantage of back propagation is that it is relatively resource-saving.
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Complex functions can be decomposed in simpler ones, then the computation
of the gradient is done by calculating the derivatives of these easier functions.
Due to the chain rule, the same sub-functions can be reused to compute the
derivatives regarding different weights. Therefore, the same results can be
reused several times and the whole process becomes less computationally
expensive.
To explain back propagation in more detail, the sigmoid function is used as
an example. With the notation from above, it can be written as σ(x) =
k ◦ h ◦ g ◦ f(x). Its derivative is then given as

σ′(x) = k′(h ◦ g ◦ f(x) h′(g ◦ f(x))) g′(f(x)) f(x).

The notation shows that several expressions would have to be computed
multiple times, if the derivation would have been determined in a naive way.
In figure 2.9, the back propagation algorithm is applied on the computational
graph of the sigmoid function.

Figure 2.9: Computational graph of the sigmoid function after backward
propagation is applied.

The blue expressions show the concatenations of the different functions.
Their values are given by the numbers in the nodes. These numbers are used
as input for the derivatives of the simple functions k′, g′, h′, f ′. To obtain
the gradient of the composition of the sub-functions, the derivative of every
simple function has to be multiplied with the derivative of the expression
before. The intermediate results are given by the red numbers. The red
value, which is furthest to the left, is the final result of the back propagation
algorithm d

dx
σ(1) = 0.196.
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2.6 Convolutional Neural Networks

The convolution operation is applied in many areas. In physics, it is used in
optics or signal processing. In mathematics, convolution is used to calculate
the density function of the sum of random variables, to name just two ex-
amples. Convolution is also used in artificial intelligence, often in connection
with image processing. Most of the work discussed in this section is from
[23].
Mathematically, the convolution operation is defined for real valued inte-
grable functions f, g : R→ R as follows

f ∗ g(t) =
∫

R

f(x)g(t− x)dx

This is equivalent to

f ∗ g(t) =
∫

R

f(t− x)g(x)dx

If convolution is applied in machine learning, the function in the first
position is typically the input, in this case a 2-dimensional image I. The
second function is the kernel K, which has the same dimensions as the image.
Furthermore, the functions, which are used here, are not continuous but
discrete. Then the convolution is defined as

(I ∗K)(i, j) =
∑

m

∑

n

I(m,n)K(i−m, j − n).

Often the input is not just a 2-dimensional image but possibly 3-dimensional.
Then the last 2 dimensions describe the shape of the image, and the first is
the number of channels. When images are used, there is typically a channel
for each RGB value. Similarly, the output of the convolution also has several
different channels, these are called feature maps. For each feature map a
different kernel is applied. Whereas every kernel uses all the channels of the
input to compute a feature map. The formula is then given by

(I ∗K)(k, i, j) =
∑

m

∑

n

∑

c

I(c,m, n)K(k, i−m, j − n, c).
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Here the indices c and k a linked to the channels. k is the index of the
channels of the input image and c is the index of the feature maps.
When a dense layer in a neural network is implemented, every node from
the previous layer is used to compute a node in the next layer. Here the
situation is different, as only a small part of the neurons are used during
the convolution. The reason for this is the design of the kernel, except for a
small section, it is almost everywhere zero. In practice, the input can be an
image with thousands of pixels, while the kernel has usually just a couple of
non zero values. In a densely connected layer with n pixels and n weights
per pixel, there are in total n× n weights and just as many operations have
to by computed during the forward propagation. With a convolutional layer
there are only k weights per node, where k is significantly smaller than n.
Therefore, the occupied memory and the required computational operations
are drastically reduced compared to classic neural networks. A visualization
of the two layers can be seen in figure 2.10

Another characteristic of convolutional networks is parameter sharing.
In regular neural networks each node has its own weights, so as mentioned
above n × n weights. Due to parameter sharing each node uses the exact
same weights, so a layer does only need k weights. While the computing
time during the forward propagation does not decrease, since there are still
n× k operations needed, the required memory space is significantly less.

Due to the shared weights, convolution is equivariant to translation.
Mathematically, a function f : R → R is equivariant with respect to an
operation g : R→ R if the following holds

f(g(x)) = g(f(x)) ∀x ∈ R.

This means that applying the operation g on x before the function f leads
to the same result as applying g on f(x). In this case, f is the convolution
and g the translation of the input. Since all the weights are shared in a
convolutional layer, translating does not change the outcome, but it shifts the
output by the same amount as the input. Convolution is only equivariant to
translation, other operations, such as scaling, flipping or rotating the input,
will lead to different outputs.
In the following, variations of convolution are discussed. First, strides [23]
are introduced. Applying convolution means sliding a window sized kernel
over the image and computing the resulting product. The convolution that
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Figure 2.10: Comparison between a dense layer and a convolutional layer.
Both layers have 5 nodes. The nodes are given by the circles and the connec-
tions/weights a represented by the arrows. Top: A dense layer. Each node is
connected with all the previous nodes. Bottom: A convolutional layer with
kernel size 3. Therefore, each node is only connected with 3 other nodes.

has been discussed until now has a stride of size 1. By increasing the number
of sliding steps to s, convolution is only applied to every s-th node. This is
called strided convolution. Of course, the step size can vary in each direction.
Mathematically, this can be described as follows:

(I ∗K)(k, i, j) =
∑

m

∑

n

∑

c

I(c,m, n)K(k, si−m, sj − n, c).

By multiplying the indices i, j with s the step size of the convolution in-
creases, and the operation is only applied to every s-th node. A visualization

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Figure 2.11: Parameter sharing. A convolutional layer is shown. The arrows
with the same color represent shared weights. Every node uses the same 3
weights.

is given in figure 2.12. Strided convolution always leads to a loss of informa-
tion, but the computational cost can already be reduced considerably with
a small step size. Therefore, it is always difficult to find a reasonable stride
size.

Figure 2.12: Strided convolution. The step size is chosen as 2. Therefore,
convolution is only applied to every second node. The others are left out.
This halves the output size.

The next variation within the convolutional operation is zero padding
[23]. It describes the process of adding rows of zeros at the end of the input
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to control shrinkage and avoid losing information at the boundary. Without
zero padding the size of the input decreases and convolution can not be ap-
plied to every node. There are 3 main cases of zero padding.
The first one is called ”valid”. It is the case where no padding is applied.
The size of the image shrinks after every convolution, depending on the stride
and the size on the kernel. After a couple of operations a lot of information
is lost. Therefore, the number of convolutions, which can be applied without
zero padding, is limited.
The second case is called ”same”. Here just enough zeros are added to the
boundary of the image to keep the size equal. Then the convolution is applied
normally on the enlarged image. The nodes at the border are influenced by
the zeros, since some values of the kernel are multiplied by zero.
The third variation is when zero-padding is used so that convolution is per-
formed equally often at all nodes. In this case, the input image is enlarged a
lot and usually the size of the output increases too. This case is called ”full”.
In figure 2.13 a convolution operation with zero padding is shown.

Figure 2.13: Zero-padding. Top: ”Same” is applied. Therefore, nodes with
value zero are added at the end. Bottom: Here ”full” is used. Two nodes at
each end are added, to make sure that convolution is applied equally often
to all nodes.

At last, dilated convolution (Yu and Koltun [63]) is introduced. The
difference to regular convolution is that the receptive field is enlarged, but
the size of the kernel stays the same. In order to implement this, some nodes
are skipped when computing the convolution.
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(I ∗K)(k, i, j) =
∑

m

∑

n

∑

c

I(c, dm, dn)K(k, i−m, j − n, c).

With regular convolution all the entries of the image and kernel are multi-
plied. In the formula above this is different, only every d-th entry of the input
is considered. This increases the area of influence, without increasing the size
of the kernel or the computing power needed to perform the operation. For
d = 1 the dilated convolution is the same as the regular convolution, when
d > 1 the receptive field increases. Figure 2.14 shows a visualization of the
operation.
Dilation is mostly useful for images with higher resolution, when not every
pixel is necessary to recognize important features. Nevertheless, information
is lost when using dilation. It is, therefore, crucial to carefully select the
dilation size.

Figure 2.14: Dilated convolution. The dilation size d is set to 2. Therefore,
only every second node is used for the convolution.

Now that several different versions of the convolution have been discussed,
a different operation is introduced. It is called pooling and is often used
after convolution. This operation uses a receptive field similar to convolu-
tion. While different nodes are weighted and added up during convolution,
the pooling operator computes the mean or maximum. This is called max-
pooling or average pooling.
The main effect of pooling is that it makes the output invariant to small
translations of the input. If an object in the image is slightly shifted, the
result will still be similar. As described in Goodfellow, Bengio, and Courville
[23], sometimes it is only important to know the approximate position of an
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object. To identify a face, for example, it is only important to know that one
eye is on the left and one on the right side. It is not necessary to determine
the exact location. An example of pooling is shown in figure 2.15

Figure 2.15: Max pooling. This image shows the max pooling operation.
The lower layer is always the input. By applying pooling the upper layer is
obtained. The input values in both cases are similar, but the bottom input
is moved one node to the left. While all values in the input have changed
only a few output values are different.

Maximum pooling has been found to work better than average pooling.
In practice, convolutional layers tend to encode the spatial information of
objects and patterns. Therefore, it’s more revealing to consider the maximal
than the average presence of different features (Chollet [9]).
Another type of pooling is called global pooling. In this case, the receptive
field is the whole input. The entire feature map is then used to perform
the operation. This type of pooling is used to aggressively summarize the
presence of an object.
There is a common way in which convolutional blocks are built. First, con-
volution, then an activation function and finally pooling is applied. Neural
networks often contain several of these blocks in series. This is motivated
by the following idea: The first blocks are supposed to recognize simple
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structures, such as lines, curves or edges. This information is then further
processed by the following blocks. They identify more complex pattern like
squares or circles. The last convolutional blocks can then finally locate the
desired objects. These might be houses, wheels or even a brain tumor, de-
pending on the problem. Therefore, every block in the network is responsible
for detecting increasingly complex structures, which ultimately result in the
identification of the targeted object.

2.7 U-Net

In this section, a modern architecture for convolutional neural networks is
discussed, which was published by Ronneberger, Fischer, and Brox [48]. In
recent years, this structure has become increasingly popular and is now state
of the art. Until today the paper has been cited over 1200 times. The neural
network proposed in the paper is called ”U-Net”. The name is inspired by
the shape of the architecture, which strongly resembles the shape of a ”U”.
The reason for this is that the model consists of an encoder and decoder
part. In the encoder, the data is processed ”downward” to encode the rele-
vant features of an image. In the decoder, output of the encoder is processed
”upward” to recreate the image in a appropriated way. The output of the
decoder is then for example a segmentation of the image.
The encoder and a decoder are each made up of several convolutional blocks.
The blocks in the decoder consist of two convolutional layers with relu acti-
vation followed by a pooling layer. The size of the input is halved after each
block, while the number of channels is doubled. The output of the encoder
is reduced from 572 × 572 to a size of 30 × 30 and the number of channels
is increased to over 1000. The decoder is built the other way around. After
each block the number of channels is halved and the size of the image is
doubled. The convolutional blocks in the decoder have a similar structure
as the blocks in the encoder. The main difference is that there is no max
pooling. Instead, up-convolution is used. Here the up-convolution operator
is implemented as up-sampling followed by a convolutional layer. Further-
more, skip connections are introduced. This means that the output of a
convolutional block of the encoder is merged with the input of a block of the
decoder. This improves the reconstruction on the original image, while the
data is up-sampled.
Another way to decode an image is to use de-convolution/transposed convo-
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lution (Zeiler et al. [64]) instead of up-convolution. The general idea arised
from the desire to perform convolution in the opposite direction. To prop-
erly understand how the method works, let y1, ..., yk0 be the input of the
de-convolutional layer with k different channels. When regular convolution
is applied to generate the image y1, ..., yk0 , then it is computed from feature
maps zj, j = 1, ..., k1 and kernels fi,j:

yi =

k1
∑

j=1

zj ∗ fi,j (2.1)

During de-convolution yi is given and used as an input to compute zj
from the kernel fi,j. Equation 2.1 holds, but yi is given and zj unknown.
Unfortunately, equation 2.1 is an under-determined system, so additional
conditions have to be defined to obtain a unique solution for zj. In [64] a
regularization term on zj is introduced, it favors sparsity on the feature maps.
The final loss function is then given as

L =
1

2

k0
∑

i=1

||
k1
∑

j=1

zj ∗ fi,j − yi||22 +
k1
∑

j=1

|zj|p

The formula shows that convolution is not applied regularly but actually
the other way round. Instead of the feature maps zj, yi is used as input and
the feature maps are computed by using the kernels fi,j.

2.8 Batch Normalization

Batch normalization (Ioffe and Szegedy [25]) was introduced to address the
problem of varying distributions of the data handled by a single layer. The
method normalizes the mean and standard deviation of the data, this allows
the use of a higher learning rate and less careful initialization.
When a neural network is trained with stochastic gradient descent the fol-
lowing optimization is done.

Θ = argminΘ

1

N

N
∑

i=1

l(xi,Θ)
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Here x1, ..., xN is the training data, Θ are the weights of the network and
l(xi,Θ) is the loss depending on both. Instead of computing the loss of the
whole training data, often only a smaller subset x1, ..., xm of m samples is
considered, called mini-batch. To optimize the loss of the whole training
data, the gradient of the mini-batch is computed.

1

m

dl(xi,Θ)

dΘ

Since the computation over the whole data set is often very expensive, the
gradient of the mini-batch is used as an approximation of the true gradient.
A neural network is designed as a structure consisting of many layers. Let
F1, F2 be two such layers. Then x is the input data and y the output.

y = F2(F1(x,Θ1)Θ2)

During the training of the network, the weights of each layer are updated
simultaneously. Since modern neural networks have become very deep, small
changes in the weights of early layers can lead to an enormous divergence in
later results. Therefore, the distribution of the data in a layer changes after
every update. This effect is called covariant shift [53]. It makes training
the later layers difficult, because the weights have to adapted to the varying
distribution. It is an advantage if the distribution of the data, which is given
to a layers, does not change.
Lets further consider the sigmoid activation function:

σ(x) =
1

1 + e−x

The derivative of the sigmoid function is almost zero for large values of |x|.
This means that the gradient will vanish for these values. Therefore, back
propagation does not work properly. This leads to an early convergence of the
training process, although a minimum might not be reached. The spreading
of x near zero will prevent the gradient from vanishing. A normalization of
the distribution can achieve this.
Let B = {x1, ..., xm} be a mini-batch of size m. During batch normalization
the mean µB and standard deviation σB are set to 0 and 1. They are defined
as
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µB =
1

m

m
∑

i=1

xi

σ2
B =

1

m

m
∑

i=1

(xi − µB)
2

Ideally, the mean and standard deviation are computed with the whole train-
ing data, but here mini-batches are used to estimate the actual mean and
std.
Then the data set is normalized by subtracting the mean and dividing it by
the standard deviation.

x̂i =
xi − µB
√

σ2
B
+ ǫ

The normalized data {x̂1, ..., x̂m} is not applicable for all layers, since it
would change the effect of certain functions. Let us take another look at
the activation function sigmoid. In this case, normalizing the data would
lead to a situation where mainly the linear part of the non-linear activation
function is used. Therefore, a pair of parameters γ, β is trained to scale the
normalized data. The final output of the batch normalization is then given
as

yi = γx̂i + β

By training these parameters, batch normalization does not necessarily scale
the data. When setting γ = σB and β = µB, batch normalization is equal to
the identity function.
By adapting the distribution of each layer, small changes in early layer will
not amplify later in the network. It is, therefore, less likely to converge in
saturated regions of activation functions. This allows the usage of higher
learning rates.
When training convolutional neural networks, the data is structured using
many feature maps. Then batch normalization is applied to each map indi-
vidually. In the case of a batch of size m which uses k feature maps with
dimensions p×q, when batch normalization is applied, the same feature map
of every data set is taken into account. Therefore, batch normalization is
applied to k data sets which have size |m× p× q|.
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2.9 Discussion

Neural networks are, in many cases piece-wise linear, functions which are
trained to approximate unknown decision functions. A main result is given
in theorem 2.6. It says that under certain conditions every decision function
can be approximated by an appropriately large network. Based on this result
it makes sense to deal more intensively with the architecture and training of
neuronal networks.
Several optimization algorithms are used to train neural networks. The Adam
[31] algorithm is very popular. Its uniqueness is dsiccused in section 2.4. The
scaling and direction of the weight adjustment is chosen dynamically, based
on earlier knowledge of the data. The derivation is further computed with
back-propagation. It allows a fast and resource-saving determination of the
gradient.
There are several different architectures used in deep learning. In image seg-
mentation convolutional U-Nets are state of the art [23]. Their structure
allows them to recognize more complex structures and simultaneously main-
tain the information of the original image. Therefore, this structure is ideal
for image segmentation tasks [15].
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Chapter 3

Spectral Coordinates

Artificial neural networks are often patch based. When they are used for
segmentation, they use a small window and are therefore limited to a lo-
cal view. More large scale information is an advantage when segmenting
biological structures. The anatomy of a brain, for example, differs greatly
depending on its position. Therefore, information about the location of a
patch improves the quality of the segmentation [59].
In this chapter spectral coordinates and diffusion maps are discussed. These
are used to gain structural information about a graph [10]. They are there-
fore an ideal support for neural networks in the segmentation of anatomical
structures. In the following sections, an introduction to their theory and an
insight to the numerous applications is given.
In section 3.1, the graph Laplacian and its varieties are introduced. To im-
prove the understanding, some of its characteristics, with a focus on eigenval-
ues and eigenvectors, are discussed and proven. At last, spectral coordinates
are introduced, and several examples of graphs and their coordinates are
given. Spectral clustering is a popular application. It is a method to parti-
tion the graph based on its structure. Spectral coordinates and clustering is
presented in sections 3.2 and 3.3.
Diffusion maps are closely connected to spectral coordinates. Although they
are not directly applied in this thesis, a thorough understanding of diffusion
coordinates improves the knowledge of spectral coordinates. In particular,
theorem 3.3 gives a strong justification for the use of diffusion and therefore
spectral coordinates. The common features and subtle differences are dis-
cussed in section 3.4.
If information spreads from a single node through the graph, this process
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can be described as diffusion. The diffusion metric describes how differently
this process takes place with two different starting nodes. It gives insight to
the deeper structure of a graph. The main result of this section is that the
diffusion metric can be computed be the diffusion coordinates.
At last, in section 3.5, applications of spectral coordinates and diffusion maps
are shown. Examples are given in which the coordinates are used to match
brains and add spatial information to neural networks. Another fascinating
application is the identification on functional brain regions.

3.1 The Graph Laplacian

This section is about the Graph Laplacian and its properties, the main in-
formation is given in [58]. Let, therefore, G = (V,E) be an un-directed
graph with vertices V = {v1, ..., vn} and edges E. The graph is weighted.
An edge ei,j ∈ E with corresponding vertices vi, vj is, therefore, assigned
to a weight wi,j ≥ 0. The adjacency matrix W of a graph G is given as
W = (wi,j)i,j=1,...,n. If there is no edge between two vertices, the correspond-
ing weight is set to zero wi,j = 0.
Furthermore, the degree di of a vertex vi is given as

di =
n
∑

j=1

wi,j.

The degree of vi is defined as the sum of all weights, which are attached to
vi. It indicates how strong a vertex is connected to the graph. The degree
matrix D is defined as the diagonal matrix formed by the degrees of the
vertices. D = diag(d1, ..., dn).
The (un-normalized) Laplacian L of the graph is given as

L = D −W.
In the literature there is no uniform definition for this matrix. Often each
author defines his individual graph Laplacian. In this work the definitions
given by Von Luxburg [58] are used.
Two further graph Laplacian exits. These are known as normalized graph
Laplacian and are defined as

Lsym =D−
1

2LD−
1

2 = I −D−
1

2WD−
1

2

Lrw =D−1L = I −D−1W
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Lsym is the symmetric version of the graph Laplacian and Lrw is often used
in connection with random walk problems.
Let u and λ be an eigenvalue and eigenvector of the un-normalized graph
Laplacian L. In the following equation the generalized eigenvalue problem
Lu = λD−1u of the symmetric Laplacian Lsym is discussed.

LsymD
1

2u =D−
1

2LD−
1

2D
1

2u

=D−
1

2Lu

=λD−
1

2u

=λD−1D
1

2u

One can see that the eigenvalue λ and vector D
1

2u satisfy the generalized
eigenvalue problem for Lsym. A similar property can be proven for the random
walk Laplacian Lrw.

Lrwu =D−1Lu

=D−1λu

=λD−1u

Therefore, the eigenvector u and the eigenvalue λ of the un-normalized Lapla-
cian L satisfy the generalized eigenvalue problem Lrwu = λD−1u.
In the following part a couple of basic properties of the graph Laplacian are
discussed. The focus lies mainly on the un-normalized version, but similar
results hold for the normalized Laplacian as well.

Theorem 3.1 ([58]). Let G be a connected, un-directed and weighted graph
with n vertices. Let further L be the un-normalized Laplacian of G, defined
as L = D −W . Then the matrix L holds the following properties:

1. For every vector f ∈ R
n

fTLf =
1

2

n
∑

i,j=1

wi,j(fi − fj)2

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0 and the corresponding eigenvector is
the constant one vector 1.
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4. L has n non-negative, real valued eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

Proof. 1. By the definition of di

fTLf =fTDf − fTWf =
n
∑

i=1

f 2
i di −

n
∑

i,j=1

fifjwi,j

=
1

2

(

n
∑

i=1

f 2
i di − 2

n
∑

i,j=1

fifjwi,j +
n
∑

i=1

f 2
i di

)

=
1

2

n
∑

i,j=1

wi,j(fi − fj)2

2. L is symmetric because the matrices W and D are. D is a diagonal
matrix, hence symmetric. In an un-directed graph wi,j = wj,i holds.
Therefore, W is symmetric.
From 1. follows that fTLf ≥ 0 ∀f ∈ R

n. Therefore, L is positive
semi-definite.

3. To proof this, the i-th entry of the of the vector L1 is calculated:

(L1)i = di −
n
∑

j=1

wi,j = 0

Hence, L1 is the zero vector and 1 is an eigenvector of L with eigenvalue
0.

4. Since L is real, symmetric and positive semi-definite, its eigenvalues are
real and non-negative. It follows from 3. that the smallest eigenvalue
is 0.

The main result of this theorem is the characterization of the eigenvalues
of the Laplacian. It says that all eigenvalues are non-negative and the small-
est eigenvalue is always 0. In the following proof the connection between the
multiplicity of the smallest eigenvalue and the number of connected compo-
nents is discussed.
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Theorem 3.2 ([58]). Let G be an undirected graph with non-negative weights.
Then the multiplicity k of the eigenvalue 0 in L equals the number of con-
nected components A1, ..., Ak in the graph. The eigenspace of the eigenvalue
0 is spanned by the indicator vectors 1A1

, ...,1Ak
of those components.

Proof. If k = 1, there is only one connected component. If f ∈ R
n is an

eigenvector of L with eigenvalue 0, then the following holds:

0 = fTLf =
1

2

n
∑

i,j=1

wi,j(fi − fj)2

For the sum to be zero, all the terms wi,j(fi−fj)2 have to vanish. All weights
are non-negative wi,j ≥ 0. If a weight is positive wi,j > 0, the corresponding
vertices vi, vj are connected by an edge. Then fi = fj has to hold. Every two
vertices in a connected component can be connected by a path. Since there
is only one connected component in the graph, the only vectors that satisfy
the requirement are constant vectors. Therefore, the constant one vector 1
spans the eigenspace of the eigenvalue 0. 1 is the indicator function of the
graph.
Now consider the case k > 1. Let the indices be ordered so that the adjacency
matrix is a block diagonal matrix. Then the Laplacian is also a block diagonal
matrix.

L =











L1

L2

. . .

Lk











The spectra of a block diagonal matrix is the union of the spectra of each
block matrix. The eigenvectors are the eigenvectors of each block matrix,
where the indices of the other matrices are filled up with zeros. Each block
matrix represents the Laplacian of a connected component. From the case
k = 1, it is known that the eigenvector of the eigenvalue 0 is given by the
indicator vector 1Ai

of the component. Therefore, the eigenspace of the
eigenvalue 0, regarding the matrix L, is spanned by the indicator vectors of
the connected components 1A1

, ...,1Ak
.

These proofs show that the Laplacian matrix holds a lot of information
about the structure of a graph. Therefore, further investigation is needed to
exploit the connections between the Laplacian and the structure of its graph.
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3.2 Spectral Coordinates

In order to calculate the spectral coordinates, the graph Laplacian is utilized.
Again, in the literature there is no agreement on which matrix is to be used.
Wachinger, Reuter, and Klein [59] prefers the un-normalized graph Lapla-
cian L = D −W , whereas in Lombaert et al. [39] and Lombaert, Sporring,
and Siddiqi [38] Lrw = D−1L is used. Since the calculation is identical in
both cases, the same notation as in the last section is used, and the spectral
coordinates are computed with the un-normalized Laplacian L.
Now let G be a graph and L the corresponding Laplacian, then let further be
λ1, ..., λn the eigenvalues and u1, ..., un the eigenvectors of L. If a k dimen-
sional representation of our data is required, then the spectral coordinates
for the vertex vi are given as u1,...,k[i]. These are the i-th entry of the first
k eigenvectors, a vector of length k. The eigenvectors are ordered according
to the size of the associated eigenvalues so that λ1 ≤, ...,≤ λn. Only the non
constant eigenvectors are included [59] [39], since the constant vector does
not hold any information about the structure of the graph.
Now some examples of spectral coordinates of different graphs are presented.
The first one is basically a line of vertices, two adjacent vertices are connected
by an edge. Every vertex has, therefore, two edges, except from the first and
last one. The graph Laplacian looks as follows:

L =























1 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 2 −1

−1 1























When the eigenvectors of the Laplacian are computed, the first vector is
constant. Therefore, it will not be displayed. The eigenvectors of the follow-
ing 4 smallest eigenvalues are given in figure 3.1. The value of a coordinate
of the eigenvector is represented by the color of the vertex. The spectral
coordinates of a vertex are then given by the values of the corresponding
entries in the eigenvectors.

The second example is a square. In this case the vertices are horizontally
and vertically alined. There is an edge connecting every vertex to the one
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Figure 3.1: Spectral Coordinates. The first eigenvector is constant and not
displayed. The second eigenvector is upper left, the third upper right, the
forth bottom left and the fifth is at the bottom right

above, below, to the right and the left. The graph is relatively simple and
the Laplacian looks similar to the one above. The difference is that on the
diagonal, which before consisted only of 2s, there are also 3s and 4s, which
represent the border and the inner points.

L =



























2 −1 −1
−1 3 −1 −1

−1 4 −1 −1 −1
. . .

. . .

−1 −1 −1 4 −1
−1 −1 3 −1

−1 −1 2


























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After building the graph Laplacian, the eigenvectors can be computed.
Since the graph has only one connected component, the first eigenvector
is again constant. Therefore, it will not be displayed. The following four
eigenvectors are shown in figure 3.2

Figure 3.2: Spectral Coordinates. The first eigenvector is constant and not
displayed. The second eigenvector is upper left, the third upper right, the
forth bottom left and the fifth is at the bottom right

Spectral coordinates are often used to compare similar structures [39].
Since eigenvectors are used to compute the coordinates, there are a couple of
things to consider. First, even normalized eigenvectors are not unique, since
for every vector v also −v fulfills the equation

L(−v) = λ(−v).

After ordering the eigenvectors according to the value of the eigenvalues,
the sign of each vector has to be checked and possibly changed. Second, the
multiplicity of eigenvalues can be a problem. If an eigenvalue has a geometric
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multiplicity of more than 1, there are no uniquely determined eigenvectors,
which span the eigenspace.
An example for a structure, in which such multiplicities occure, is a ring.
The graph is similar to the first example, but the first and last vertex are
also connected by an edge. The corresponding Laplacian is defined as

L =























2 −1 −1
−1 2 −1

−1 2 −1
. . .

−1 2 −1
−1 2 −1

−1 −1 2























When the eigenvalues are computed and ordered, the second and third
eigenvalue are equal. The eigenvalue has a geometric multiplicity of 2. The
computed eigenvectors are given in figure 3.3. As discussed above, these
vectors are not unique. Any vectors, which span the eigenspace, could be
chosen as eigenvectors.

Figure 3.3: Spectral Coordinates. The first eigenvector is constant and not
displayed. The second eigenvector is left, the third is right.

3.3 Spectral Clustering

A common use for spectral coordinates is spectral clustering. This method
is not used in the later work, but it gives an insight on what information

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

is contained in the coordinates. Therefore, it justifies the use of spectral
coordinates for a structural analysis of a graph. The work shown in this
section, is from [58].
let n data points be given, an let the goal be to separate them in k disjoint
clusters. At the beginning, their pairwise similarities wi,j = s(xi, xj) are
measured to obtain the weights. They have to be real and positive. There
are several ways to do that. One approach is to connect two data points,
if the distance between them is smaller than a predefined value ǫ. This
leads to a sparsely connected graph and might miss out information about
points which are further away from each other. Another way to compute the
weights is by fully connecting all the data points. This can be done by using
a distance function, such as

s(xi, xj) = exp(−‖xi − xj‖ /2σ).

The parameter σ defines how quickly the function decreases when the dis-
tance increases. The last approach, which is mentioned, is used to compare
fMRI data (Langs et al. [36]). Here every point is represented by a time
series. To calculate meaningful weights, the correlation coefficient < i, j >
between two time series is calculated. The distance function is then given by

s(xi, xj) = exp(− < i, j > /2σ)

In any case, the method on how to define weights between data points is cru-
cial for the outcome of the spectral clustering and should be chosen wisely.
The un-normalized graph Laplacian L is computed with the weights and
the adjacency matrix. The first k eigenvectors of L are written as a matrix
U ∈ R

n×k. The columns of U are the eigenvectors, and the rows the spectral
coordinates yi ∈ R

k i = 1, ..., n. These are then clustered by a k-means
algorithm in order to obtain k disjoint clusters. The algorithm is given in 7.
Similar algorithms exist for the normalized Laplacians Lsym and Lrw, which
give equal results.
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Algorithm 7: Spectral Clustering as in [58]

Input: Adjacency matrix W ;
Compute unnormalized Laplacian L = D −W ;
Compute first k eigenvectors U ∈ R

n×k;
For i = 1, ..., n let yi ∈ R

k be the vector corresponding to the i-th
row of U ;
Use k-means algorithm to group y1, ..., yn in k clusters C1, ..., Ck;
return C1, ..., Ck

Spectral coordinates are a useful way to group data points in disjoint clus-
ters. Within these algorithms there are still difficulties, such as the required
computing power or the question in how many clusters the data points should
be arranged. Nevertheless, the results suggest that spectral coordinates are
meaningful when it comes to describing the structure of a graph.

3.4 Diffusion Maps

Diffusion maps, as discussed by De la Porte et al. [17], [42] and [35], also
have a tight connection to spectral coordinates. Although their interchange-
ability is not entirely proven, discussing diffusion maps helps to strengthen
the understanding of spectral coordinates.
The idea of diffusion maps is to measure the distance between two vertices vi
and vj by not just computing the shortest path but by taking several paths
into account. The diffusion distance decreases when there are multiple short
paths from vi to vj. Therefore, vertices in the same high density region are
closer than points that are only connected by a single short path.
As in spectral clustering, data points are given and an adjacency matrix W
is defined. This can be done with similar methods as before, but in De la
Porte et al. [17] they choose a more general approach. A diffusion kernel k
is introduced. It has to satisfy the following two properties:

1. k is symmetric: k(vi, vj) = k(vj, vi)

2. k preserves positivity: k(vi, vj) ≥ 0

These properties are in line with the requirements from above, since the
weights of an undirected graph are symmetric, and the weights have to be
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real valued and non-negative. Instead of computing the graph Laplacian, the
diffusion matrix is used. It is defined as

P = D−1W

The matrix D is, again, defined as the diagonal matrix of the row sums
of the adjacency matrix W .
The diffusion matrix P seems to be very different form the graph Laplacian,
but there are some similarities. Therefore, the eigenvectors and eigenvalues
of P and the normalized Laplacian Lrw are explored. Let u and λ be an
eigenvector and eigenvalue of Lrw.

Pu =D−1Wu

=(I − I −D−1W )u

=(I − Lrw)u

=Iu− Lrwu

=u− λu
=(1− λ)u

The eigenvectors of Lrw are also the eigenvectors of P . The difference is that
the corresponding eigenvalue is 1−λ instead of λ. In spectral clustering, the
focus always lies on the eigenvectors with the smallest eigenvalues. These
hold the most information about the graph. In this case, the eigenvectors
with the largest eigenvalues are used.
All the entries of P are positive, and the sum over each row equals 1. There-
fore, the entries of P can be interpreted as transition probabilities. The entry
pi,j can be seen as the probability of making a step from the vertex vi to vj.
Similarly, the entry pti,j of the matrix P t represents the probability to move
from vi to vj in t steps.
The closer two points are to each other, or the more short paths there are
from vi to vj, the higher is value of pti,j. The matrices P t reveal the under-
lying geometry of the graph, since an increasing number of paths are taken
into account.
Next, the diffusion metric is defined. It benefits from the information of the
diffusion matrix and is given as follows:
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Dt(vi, vi)
2 =

∑

vk∈V

(ptj,k − pti,k)2
1

Dk,k

.

V is the set of vertices of the graph G. pti,k is the probability of moving
from vi to vk in t steps. Dk,k are the row sums of the adjacency matrix W .
The diffusion metric sums up all the weighted differences of the probabilities
of moving from vi or vj to a vertex vk. This means that the metric describes
how differently the diffusion process of two vertices takes place. Two ver-
tices which lie in the same high density area will diffuse similarly through
the graph. In contrast, points in different areas with only sparse connections
diffuse differently and, therefore, have a high diffusion value.
Let u1, ..., un be the eigenvectors of the diffusion matrix P . The main result
is that the diffusion metric of two vertices Dt(vi, vj) can be written as the
difference between the spectral coordinates of P multiplied with the eigen-
values of the diffusion matrix P . Let u1, ..., un be the eigenvectors, λ1, ..., λn
the eigenvalues of P and ui[j] be the j-th entry of i-th eigenvector.

Dt(vi, vj) =

∥

∥

∥

∥

∥

∥

∥

∥

∥











λt1u1[i]
λt2u2[i]

...
λtnun[i]











−











λt1u1[j]
λt2u2[j]

...
λtnun[j]











∥

∥

∥

∥

∥

∥

∥

∥

∥

‖‖ is the euclidean norm. The most important characteristics of this state-
ment are, first, that all eigenvectors are taken into account. The statement
does not hold, if only the first k eigenvectors are used. The second charac-
teristic is the use of eigenvalues. The i-th eigenvalue is multiplied with the
corresponding eigenvector before computing the spectral coordinates.
Although the theorem above does only hold if all eigenvectors are used. In
practice and in order to achieve dimensionality reduction, only k eigenvectors
are chosen. Therefore, the eigenvectors with the most dominant eigenvalues
are chosen [17], [42]. This ensures the best approximation of the diffusion
distance. The algorithm to compute the diffusion distance is given in 8
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Algorithm 8: Diffusion mapping algorithm as in [17]

Input: Adjacency matrix W ;
Compute diffusion matrix P = D−1W ;
Compute first k eigenvectors and multiply them with the
corresponding eigenvalue U = (λt1u1, ..., λ

t
kuk);

For i = 1, ..., n let yi ∈ R
k be the vector corresponding to the i-th

row of U ;
return y1, ..., yn

The algorithm works as follows: First, instead of using the Laplacian,
the diffusion matrix P is computed. Second, the eigenvectors ui of P are
multiplied with the corresponding eigenvalues λi. To compute the diffusion
metric of P t, the t-th power of the eigenvalue λti is taken instead of λ. To
achieve dimensionality reduction, only the eigenvectors corresponding to the
k largest eigenvalues are used. The vectors yj are then defined as the j-th
index of each vector λtiui[j], i = 1, ...k. The euclidean distance between these
vectors is equal to the diffusion distance between the vertices vj.
The following statement proves that the diffusion distance can be computed
with the vectors yi, ...., yn. This will be done in two steps. At first, the ma-
trix P ′ = D

1

2PD−
1

2 is introduced. It will be verified that it has the same
eigenvectors and similar eigenvalues as P . In the second prove, this will be
utilized to achieve the desired result.

Lemma 3.2.1 ([17]). Let G be a graph with vertices V and k be the diffusion
kernel defined on G. Let further W be the symmetric n× n matrix such that
W [i, j] = k(vi, vj). D is defined as the diagonal matrix containing the row
sums of W . Then the diffusion matrix P is given as

P = D−1K. (3.1)

The matrix P ′ is defined as

P ′ = D
1

2PD−
1

2 , (3.2)

Then the following statements hold:

1. P ′ is symmetric

2. P ′ has the same eigenvalues as P
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3. The eigenvectors x′k of P ′ are multiplied by D−
1

2 and D
1

2 to receive the
left and right eigenvectors of P respectively.

Proof. When 3.1 is substituted into 3.2, the following is obtained:

P ′ = D−
1

2WD−
1

2

SinceW and D are symmetric, so is P ′. Therefore, there exits a orthonormal
set of eigenvectors, so that

P ′ = SΛST (3.3)

Λ is a diagonal matrix, containing the eigenvalues of P ′. S is a matrix with
the eigenvectors as columns. Equation 3.2 can be rewritten as

P = D−
1

2P ′D
1

2 (3.4)

and with equation 3.3

P = D−
1

2P ′D
1

2 = D−
1

2SΛSTD
1

2

is received. S is an orthogonal matrix.

P =D−
1

2SΛS−1D
1

2

=(D−
1

2S)Λ(D−
1

2S)−1

=QΛQ−1

This equation shows that the eigenvalues λ of P are also the eigenvalues of
P ′. Further, the right eigenvectors of P are the columns of

Q = D−
1

2S

and the left eigenvectors are the rows of

Q−1 = STD
1

2 .

Therefore, the eigenvectors x′k of P ′ can be written as the eigenvectors of P .
The right eigenvectors uk of P are

uk = D−
1

2x′k (3.5)

and the left eigenvectors ek are

ek = D
1

2x′k. (3.6)
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Since P ′ is symmetric, its eigendecomposition is given by

P ′[i, j] =
∑

n

λnx
′

n[i]x
′

n[j].

Similarly, the eigendecomposition of P ′t is given by

P ′t[i, j] =
∑

n

λtnx
′

n[i]x
′

n[j].

Applying 3.5 and 3.6 leads to the eigendecomposition of P t.

P [i, j] =
∑

n

λtnun[i]en[j].

This result will be used in the following theorem.

Theorem 3.3 ([17]). If the diffusion coordinates are chosen as the eigenvec-
tors of P multiplied with their eigenvalues, then the diffusion distance between
points in the data space is equal to the euclidean distance in the embedding
space.

Proof. Let yi be the i-th diffusion coordinate of the matrix P t such that

yi =











λt1u1[i]
λt2u2[i]

...
λtnun[i]











What has to be proven is

Dt(xi, xj)
2 =

∑

vk∈V

(pti,k − ptj,k)2
1

Dk,k

= ‖yi − yj‖2

pt(xi, xj) are the elements of the diffusion matrix P . Using the eigendecom-
position, which was discussed above, this becomes

D(xi, xj)
2 =

∑

vk∈V

(pti,k − ptj,k)2
1

Dk,k

=
∑

k

(
∑

n

λtnun[i]en[k]−
∑

n

λtnun[j]en[k])
2 1

Dk,k

=
∑

k

(
∑

n

λtnen[k](un[i]− un[j]))2
1

Dk,k
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Then the brackets are expanded, and the order of summation is exchanged.

=
∑

k

∑

n,m

λtnλ
t
men[k]em[k](un[i]− un[j])(um[i]− um[j])

1

Dk,k

=
∑

n,m

λtnλ
t
m(un[i]− un[j])(um[i]− um[j])

∑

k

en[k]em[k]
1

Dk,k

=
∑

n,m

λtnλ
t
m(un[i]− un[j])(um[i]− um[j])

∑

k

x′n[k]D
1

2

k,kx
′

m[k]D
1

2

k,k

1

Dk,k

=
∑

n,m

λtnλ
t
m(un[i]− un[j])(um[i]− um[j])

∑

k

x′n[k]x
′

m[k]

The eigenvectors x′n are orthonormal.

x′Tn x
′

m = 0 for n 6= m

x′Tn x
′

m = 1 for n = m

Therefore,

=
∑

n

λ2tn (un[i]− un[j])2)

= ‖yi − yj‖2

After diffusion maps have been discussed in detail, the similarities and
differences to spectral coordinates are analyzed. First, the eigenvectors of P
are the eigenvectors of the normalized Laplacian Lrw. These are the eigenvec-
tors of the generalized eigenvalue problem Lv = λDv. Second, let λ1, ..., λn
be the eigenvalues of P . These are not the eigenvalues of Lrw. They have
the be transformed as follows:

1− λ1, ..., 1− λn.

Again, these are the eigenvalues of a generalized eigenvalue problem for L.
The third difference are the diffusion coordinates themselves. Spectral co-
ordinates are obtained by computing the first k eigenvectors u1, ..., uk. The
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diffusion coordinates of the matrix P are defined as follows:










λt1u1[i]
λt2u2[i]

...
λtkuk[i]











The eigenvectors are multiplied with to corresponding eigenvalues: λ1u1, ..., λkuk.
Then they are formed into a matrix U , in which the columns are the eigen-
vectors multiplied with the eigenvalues. The rows of U are the diffusion
coordinates. The i-th row of U corresponds to the i-th vertex in the graph.

3.5 Applications

In this section four recent papers are discussed, in which spectral coordinates
and diffusion maps have been successfully used. The focus of the papers lies
on medical applications of spectral coordinates and diffusion maps. The
first paper, ”DeepNAT: Deep Convolutional Neural Network for Segmenting
Neuroanatomy” by Wachinger, Reuter, and Klein [59], introduces spectral
coordinates to deep learning to segment brains. The second and third paper,
”Fast Brain Matching with Spectral Correspondence” and ”Diffeomorphic
Spectral Matching of Cortical Surfaces” by Lombaert et al. [39] and Lom-
baert, Sporring, and Siddiqi [38], use spectral coordinates to develop an algo-
rithm which matches human brains according to their cortical surface. The
last paper, ”Identifying Shared Brain Networks in Individuals by Decoupling
Functional and Anatomical Variability” by Langs et al. [36], applies diffusion
maps on fMRI data to explore the connectivity map of the human brain.
”DeepNat” is a 3 dimensional neural network which segments MR images of
human brains. The network consists of two parts. At first, the MRI is seg-
mented into foreground and background. The result is then used to compute
the spectral coordinates. In the second part, another neural network, which
receives the original MRI and the first three spectral coordinates as input,
identifies 25 different regions of the human brain.
The spectral coordinates are computed by using the eigenvalues of the un-
normalized Laplacian L = D−W . The weights in the adjacency matrix are
set to 1 if two points are neighbored and 0 if not. It is argued that since
neural networks are often patch based, they only have limited spatial infor-
mation of the brain. Spectral Coordinates are isometry invariant, so they
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do not change when the brain rotates or translates. The coordinates, given
to the neural network, provide further regional context and improve the seg-
mentation accuracy. In the paper the mean dice coefficient is improved from
0.819 using a state of the art method to 0.92 with DeepNat.
In ”Fast Brain Matching with Spectral Correspondence” a method to align
cortical surfaces based on spectral coordinates is introduced. First, the spec-
tral coordinates are computed, whereby sign changes and the problem of
algebraic multiplicity is handled. The weights are defined according to the
distance of two vertices on the cortical surface.

Wi,j =

{

(dist(vi, vj) + ǫ)−1 if vi ∈ N(vj) and i 6= j,

0 else

dist(vi, vj) is a distance metric and ǫ a small value greater zero. The
graph Laplacian used is given by

L =D−1(D −W )

=I −D−1W

At last, a nonrigid transformation is used to align the spectral coordi-
nates. The vertices are then matched with the nearest point of the spectral
representation of the other brain.
The algorithm’s results are similar to other state-of-the-art methods but a
major time improvement is achieved.
The paper ”Diffeomorphic Spectral Matching of Cortical Surfaces” also fo-
cuses on matching with spectral coordinates. In this case, the main outcome
is not the decrease of computing power but an improvement of the quality
of the matching. In order to match two brain surfaces an initial correspon-
dence is applied. Therefore, the Laplacian graph includes both brains and
connecting links from the initial correspondence. The weights are selected as
before, and the graph Laplacian is defined as L = D−1(D −W ). Then the
eigenvectors of the Laplacian are computed, these have an entry for every
vertex of both brains. The eigenvectors are split up and the spectral coordi-
nates are assigned to each vertex of the graphs.
The difference to the matching algorithm from above is that multiplicity or
sign ambiguity is no longer a problem. The eigenvectors of the two brain
surfaces are computed from the same Laplacian.
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The resulting spectral coordinates align perfectly. With these coordinates it
is possible to define a diffeomorphic matching ψ between the surfaces. Let
vi be a vertex on the surface of the first brain S1. The vertex on the second
brain surface S2 with the nearest spectral coordinates shall be called v̂i. The
matching point ψ(vi) of vi on S2 is defined as

ψ(vi) =

∑

vj∈N(v̂i)
wi,jvj

∑

vj∈N(v̂i)
wi,j

This defines a diffeomorphic matching between the brain surfaces S1 and S2.
At last, the paper ”Identifying Shared Brain Networks in Individuals by De-
coupling Functional and Anatomical Variability” is discussed. Here fMRI’s
are used. Therefore, a vertex does no longer represent a voxel, but a whole
time series. To define the adjacency matrix a correlation coefficient of two
vertices < vi, vj > is computed. Values below a threshold are set to zero.
The weights are defined as

Wi,j = e−(<vi,vj>/ǫ).

Finally the diffusion coordinates are computed. In the resulting diffusion
space vertices have low euclidean distance, if their diffusion metric in the
graph is high. The metric is defined as follows

Dt(vj, vi)
2 =

∑

vk∈V

|ptj,k − pti,k|2

Vertices that are close together in the diffusion space have a similar con-
nection pattern in the graph. When the brain is analyzed one is interested
in regions with similar connectivity, so clustering in the diffusion space is
reasonable. This was done to define connectivity regions.

3.6 Discussion

In this chapter, the theory of spectral coordinates and diffusion maps has
been discussed. The spectral coordinates are given as the coordinates of the
eigenvectors of the graph Laplacian [10]. These vectors hold information
about the structure of the graph e.g. the number of connected components.
Therefore, they are used for partitioning graphs [58].
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To compute the diffusion coordinates, the eigenvectors of the diffusion matrix
are multiplied with their corresponding eigenvectors. The coordinates of the
resulting vectors are the diffusion coordinates. They are closely linked to the
diffusion metric, and therefore have a great significance for the structure of
the graph [35].
Since these coordinates are so expressive, there is wide variety of applications.
In this chapter deep learning, brain matching and analyzing connectivity
patterns have been presented.
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Chapter 4

State-of-the-Art

There are already highly developed programs in the field of segmentation,
such as FreeSurfer [22] and SPM [6]. Since this thesis is focused on fetal brain
segmentation, only a few outstanding examples of adult brain segmentation
are discussed here. The goal of this section is to give an overview of related
work that solves the problem of fetal brain segmentation. The papers pre-
sented all use deep learning. Nevertheless, there are significant differences.
The most important characteristics of each work are highlighted. The pa-
pers shown have achieved excellent results and serve as inspiration for further
work.

4.1 Brain Segmentation

4.1.1 Isointense Infant Brain MR Image Segmentation

Zeng and Zheng [65] introduce a 3-dimensional convolutional neural network
which is built hierarchical and contains two U-Nets. Each network uses con-
volutional layers with a kernel size of 3×3×3 and stride 1. Max pooling with
kernel size of 2× 2× 2 and stride 2 is applied. Finally, batch normalization
and rectified linear units are used. Each U-Net contains an encoder and a
decoder. A multimodal input is used, it consists of T1 and T2 MR images.
Therefore, the first network contains two encoders, which are merged at the
end and continue into a single decoder.
The hierarchical approach is used to obtain a probability map from the first
U-Net. This is then computed into a distance map and given as input to-
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gether with the original images to the second U-Net. It predicts the final
segmentation.

4.1.2 Deep Convolutional Neural Network for Segment-

ing Neuroanatomy

Wachinger, Reuter, and Klein [59] also introduce a hierarchical approach
for segmentation called DeepNat. Two 3-dimensional convolutional neural
networks are used. First, the MR scan is segmented into foreground and
background. In the second stage, 25 brain structures are identified. Both
networks have an identical architecture. 3 convolutional layers are used. The
kernel shapes are 7 × 7 × 7, 5 × 5 × 5 and 3 × 3 × 3. Thus a reduction of
the image size from 23 × 23 × 23 to 3 × 3 × 3 is achieved. ReLU as non-
linear activation function, dropout and batch normalization is applied. The
output and the spectral coordinates are concatenated to improve the spatial
information. Fully connected layers are used before and after the merging.
Finally, the segmentation is achieved.
Not only spectral coordinates are used. Experiments were also done with
cartesian coordinates. The best results were achieved with a combination of
both. The spectral coordinates are computed by constructing an adjacency
matrix W . The entry wi,j is set to 1 if the voxels vi and vj are neighbored.
Then the graph Laplacian is computed as follows

L = D −W

D is the diagonal matrix which has the sums of each row of W as entries.
The i-th spectral coordinate is the vector containing the i-th index of the
eigenvectors with the smallest eigenvalues of L.
After the neural networks a conditional random field (CRF) is applied to
finalize the segmentation. DeepNat was tested on a public dataset and out-
performed several state-of-the-art methods.
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4.2 Fetal Brain Segmentation

4.2.1 A Hyper-Densely Connected CNN for Multi-Modal

Image Segmentation

Dolz et al. [19] introduce a 3-dimensional fully connected convolutional neural
network called ”HyperDenseNet”. The model is composed of 11 consecutive
convolutional layers, the last 4 are fully convolutional. A stride of 1 and no
pooling is used, so the input shape decreases from 25×25×25 to 9×9×9. The
”HyperDenseNet” is, therefore, not a U-Net. The main difference between
this approach and others is that each layer is not just connected to the
previous layer but to all preceding layers. Let xl be the l-th layer of the
CNN. Typically, it is computed by a non-linear function Hl which takes the
previous layer as input:

xl = Hl(xl−1)

In this case, the non-linear function Hl does not just take the previous layer
as input but all the preceding layers.

xl = Hl(xl−1, xl−2, ..., x1)

If a multimodal input, here T1 and T2 MR scans are used, each modality
has it’s own convolutional path. Each path is densely connected with not
only itself but the other one as well. Let x11, ..., x

1
n be the layers of the first

path and x21, ..., x
2
n the layers of the second. Again, the layers x1l and x2l are

computed by non-linear functions H1
l and H2

l which take the previous layers
as input.

x1l = H1
l (x

1
l−1, x

2
l−1, ..., x

1
1, x

2
1)

x2l = H2
l (x

2
l−1, x

1
l−1, ..., x

2
1, x

1
1)

The paths are merged at the end to generate the segmentation.
HyperDenseNet was evaluated on human and fetal brain and achieved great
results in both cases.

4.2.2 Auto-Context Convolutional Neural Network

Salehi, Erdogmus, and Gholipour [52] propose two different convolutional
neural networks for human brain extraction. The first approach is a voxelwise
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CNN architecture. It is used to predict each voxel of a 3-dimensional MR
scan separately. The second is a fully convolutional network with a U-Net
architecture. Furthermore, an auto-context algorithm [57] is proposed and
applied on the CNNs
The first network consists of 9 pathways. They are split up in 3 sagittal, 3
coronal and 3 axial ways. From each plane 3 different sizes 15× 15, 25× 25
and 51 × 51 are cropped and given to separate paths. In each pathway the
input is convolved several times until 256 feature maps with size 1×1 remain.
These are concatenated with the other pathways from the same plane. After
applying 1× 1 convolution, the feature maps are merged with the remaining
pathways. Finally, 1 × 1 convolution and softmax is applied to obtain the
final prediction.
Due to the patch size of 51×51 relatively large kernels with a size of up to 7×7
are used. Furthermore, each convolutional block consisted of a convolutional
layer, a ReLU activation function and batch normalization.
In the second approach a U-Net architecture is used. In the encoder 3 × 3
convolution, a ReLU activation function and 2× 2 max pooling with a stride
of 2 is used. In the decoder 2× 2 upsampling followed by two convolutional
layers is applied. Skip connection are implemented to concatenate the feature
maps of the decoder with the corresponding feature maps of the encoder. To
generate the final segmentation 1× 1 convolution is used.
In the auto-context algorithm a series of classifiers is designed and trained
so that the probability map of a previous classifier is used as input for the
next one. In this case, the CNN presented above is used as classifier. The
probability map computed by the CNN with the softmax function can be
written as follows:

p(yi = l|X(Ni)) =
efl

∑c
j=1 e

fj(Ni)

Here X is an input image and X(Ni) is the patch used to compute a predic-
tion for the voxel yi. c is the number of labels, l = 1, ..., c. fl is the output
of the CNN regarding the label l. The cost function is defined as

H = −
∑

i

logp(yi = true label|X(Ni)) (4.1)

Without the auto-context algorithm the segmentation is directly com-
puted from the probability map p(X). Now it is used as additional features
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for the next classifier. The concrete algorithm is given in 9

Algorithm 9: Auto-context algorithm as in [52]

Input: Training data set {(Xi, Yi), i = 1, ..., n} ;
Construct uniform distribution p0(Xi) ;
while I > ǫ do

Set up training sets {((Xi, p
t−1(Xi)), Yi)};

Train a CNN architecture described above;
Compute probability maps pt(Xi), i = 1, ..., n ;
Calculate Ht using 4.1;
I = |Ht−1 −Ht| ;

end

return Final probability maps {pT (Xi), i = 1, ..., n};
Salehi, Erdogmus, and Gholipour [52] prove in their paper that the auto-

context algorithm converges. The training is stopped, as soon as the variation
of the loss functions falls below a certain threshold ǫ.
The architectures are evaluated on on the basis of two publicly available data
sets and surpass the latest deep learning methods.

4.2.3 Automatic Segmentation of the Intracranial Vol-

ume in Fetal MR Images

Khalili et al. [29] introduce a convolutional neural network for voxelwise
segmentation of fetal brains. The architecture uses 2-dimensional MR scans
as input. When predicting a label for a voxel, three differently sized patches
are cut out and used to compute the label. The patches have the sizes
151×151, 101×101 and 51×51. These are give to three different pathways,
each applying 3 strided convolutions followed by batch normalization. At
the end of each pathways a fully connected layer is used. Then the three
pathways are merged by concatenating the layers. This is followed by another
fully connected layer, which produces the final prediction. After every fully
connected layer dropout is applied.
To avoid bias, the minority class is oversampled, so the network is trained
on an equal amount of positive and negative cases (brain and non-brain).
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4.2.4 Fetal Cortical Plate Segmentation using 2D U-

Net with Plane Aggregation

Hong et al. [24] introduce a 2-dimensional convolution neural network with
a U-Net style architecture. The network is designed to segment the cortical
plates and the corresponding internal region.
The encoder and decoder each consist of 4 blocks which are separated by
max pooling or deconvolution. Each block consists of 4 convolutional layers
with a kernel size of 3×3. These are followed by an ELU activation function
and batch normalization. The final layer is a 1 × 1 convolution followed by
a softmax function.
They argue that the dice coefficient as loss function is unfavorable regarding
small structures, because small missclassifications lead to a large decrease
in the score. Therefore, a different loss function is introduced, where the
logarithm is applied on the dice score. It is defined as

L(I, Î) = − 1

N

N
∑

i=1

ln(Dice(Ii, Îi)
0.3)

Here I = I1, ..., IN are the true labels of the images, and Î = Î1, ..., ÎN are
the corresponding predictions of the network.

4.2.5 Automatic Brain Tissue Segmentation in Fetal

MRI using Convolutional Neural Networks

Khalili et al. [28] introduce a pipeline to segment fetal brains. The problem is
split up in two subtasks. The first part is the identification of the fetal brain
in the MR image, which is then automatically extracted from the image.
During the second part, the brain tissue is segmented into seven classes.
Both subtasks are accomplished by a convolutional neural network with a
similar 2-dimensional U-Net structure.
The design of the networks used to identify the brain and to segment it is the
same. The U-Net architecture consists of the contracting and an expanding
path. The contracting part consists of 4 convolutional blocks in which 3× 3
convolution and the non-linear activation function ReLU are applied. 2× 2
max pooling is used to downsample the feature maps. In the expanding path
up-sampling followed by 2×2 convolution is applied. It halves the number of
channels and expands the feature maps. The results are concatenated with
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the corresponding features from the contracting path and convolved with a
kernel of size 3×3. Then ReLu is applied. In the final layer 1×1 convolution
is used to obtain the final segmentation. Additionally, batch normalization
is used after every convolutional layer.
Intensity inhomogeneity augmentation is applied to increase the robustness
of the network towards these artifacts. They are simulated by a combination
of linear gradients and random offsets.

Z = I × ((X + x0)
2) + (Y + y0)

2)

I is the image before the artifacts are applied. X and Y are 2-dimensional
matrices with integer values form 0 to the size of the image. x0 and y0 are
the offsets. These are chosen randomly out of a certain range. The gradient
pattern is randomly rotated between 0 and 360➦. These inhomogeneity arti-
fact make the network robust against regions with varying intensity.
The proposed method performed accurate segmentation. Furthermore, it was
shown that the introduced method made the neural network robust against
occurring artifacts.

4.2.6 A deep learning approach to segmentation of the

developing cortex in fetal brain MRI with mini-

mal manual labeling

Anonymous [4] trained a convolutionl neural network to segment fetal brains
in two regions, namely cortex and non-cortex. The model used was earlier
proposed by Kamnitsas et al. [27] with the name ”DeepMedic”. It was used
for brain lesion detection.
To augment the data 11 different combinations of Gaussian distributions are
used. The network was trained for 65 epochs and the learning rate was halved
at predefined epochs.
The network architecture is built up of three pathways. Each one processing
input at a different resolution. Pathways with higher resolution encode lo-
cal, detailed information. In contrast, paths with lower resolution are more
focused in contextual information such as the recognition of structures. The
first path processes the regular image, the data for the second and third
paths are downsampled by 3 and 5 times, respectively. Each path consists
of 8 convolutional layers with a kernel of size 3 × 3. The output features of
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the pathways are concatenated and processed by a final classification layer.
The method produces good results. It should be emphasized that the seg-
mentation of the network remained very stable over various stages of cortical
development. It seems to be relatively age-invariant, since it was tested on
fetal brains in a wide range of gestational age. The results show that the
network is invariant regarding intensity changes around the brain. This is
important due to the alternating structure of the developing brain.

4.2.7 Automated 2D Fetal Brain Segmentation of MR

Images Using a Deep U-Net

Rampun et al. [47] introduce a network based on the U-Net. It takes 2-
dimensional MR images as input and segments them (brain vs. non-brain).
Although the architecture is very similar to the classic U-Net a few adaptions
have been made. A U-Net has a decoder and an encoder, each one is built
up of convolutional blocks. Instead of only using 4, this architecture uses 7
blocks. This enables the network to capture more coarse and finer contextual
information.
The cross-entropy loss function is very popular in machine learning. It is im-
proved by using a combination of a binary cross-entropy and dice coefficient
as loss function. If I is the true label of the image, and Î the prediction by
the neural network, then the loss is given by

L(I, Î) = − 1

N

N
∑

n=1

(
1

2
InÎn +

2InÎn

In + În
)

The network employs an activation function called ”ELU” [11], this guaran-
tees better learning generalization. The function is defined a follows

f(x) =

{

x if x > 0,

α(ex − 1) if x ≤ 0

To avoid overfitting batch normalization and dropout layers are added to the
convolutional blocks.
The experimental results have shown that the proposed method has achieved
significantly better results than the original U-Net and its variants. The
networks was tested in different scenarios including low contrast, obscure
brain regions, diffuse brain boundaries and overlapping boundaries. The
proposed changes lead to competitive results across these various challenges.
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4.3 Discussion

After discussing several papers, in the following the most important features
are going to be elaborated. A special focus lies on characteristics which make
the papers unique and outstanding compared to the broad field of brain imag-
ing. Several of the features, which are discussed now, will be used in the next
part of the thesis.
To improve the spatial information different pathways are used. These pro-
cess several images either in varying resolution/size or from different axis
(coronal, sagittal and transversal). Images with higher resolution/smaller
size are used to process local and more detailed information. The pathways
which are given lower resolution/ larger size identify main structures and
generate more contextual information. When 2-dimensional input patches
are used, the network lacks spatial information about the missing axis. Sup-
plying it with patches of all 3 dimensions improves the final segmentation.
Most of the network architectures are designed as a U-Net. This structure
has great success in image recognition and has, therefore, influenced the med-
ical image analysis. The U-Net architecture is state-of-the-art and used in
many popular papers.
In recent years spectral coordinates and diffusion maps have gained popu-
larity. They are successfully applied in various applications such as deep
learning and brain segmentation. They are invariant to rotation and trans-
lation. Therefore, they can improve the spatial information of the neural
network. Especially in fetal brain segmentation, where brains are difficult
to align due to fetal movement. In addition, neural networks predict often
based on smaller patches, so a lot of global information is lost. Therefore,
spectral coordinates can have a positive influence on the segmentation.
A hierarchical architecture is sometimes favorable compared to a single neural
network. This gives the possibility of separate problems in simpler sub-tasks.
The typical implementation consists of first recognizing the fetal brain in the
original image, then cropping the image and processing it through a second
U-Net to segment several brain regions. Often the hierarchical structure is
used to compute further information such as distance maps or spectral coor-
dinates.
Another interesting feature is the auto-context algorithm. Several networks
are aligned in a series and the probability map generated by a previous net-
work is given as input feature to the next one. This is repeated until the
average loss converges. The auto-context algorithm can dramatically im-
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proved the performance of a single network
In the papers discussed above, many different loss functions such as cross-
entropy, dice score and logarithmic dice are presented. In deep learning loss
function are a crucial part of success and have to be carefully chosen [26].
A lot of this ideas are used in the following chapter. Three 2-dimensional net-
works are going to be used as a composition, where each receives a dimension
(coronal, sagittal and transversal) as input. These artificial neural networks
will be designed as U-Nets. Furthermore, a hierarchical architecture will be
applied, by putting two compositions in series. The first will identify the
brain and the second segment several regions. This concept will be extended
by the use of spectral coordinates. These are computed with the mask of the
brain, and given as additional information to the next composition. Further-
more, several compositions will be put in a sequence to improve the mask.
This is motivated by the auto-context algorithm.
These methods give very good results, but they are not perfect. Limitations
are caused by the quality and quantity of the data. Deep learning methods
depend on the data-sets which they are trained on. These problems will also
influence the results of this thesis.
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Chapter 5

Methodology

This work is devoted the segmentation of the fetal brain. Therefore, 3-
dimensional MR images of fetal brains were collected and manually seg-
mented. By performing and evaluating various experiments, a final model
has been developed. The architecture of this artificial neural network and
the design of the corresponding experiments are discussed in this chapter.

Preprocessing

To successfully work with deep learning methods, data must first be provided
and processed. In this case 3-dimensional MR images of fetal brains are
available. This data was processed in several ways. The movement of the
fetus during the imaging often leads to corrupted images, this problem had
to be corrected. Further was the maternal and non-brain tissue removed and
the volume centered. The data is then split up in training and validation
data. The first set is used for training, while the model is evaluated on the
other one. This assures a independent testing procedure.

Segmentation with a U-Net Architecture

The method, which is the final result of several experiments, consists of 3
components. First, a sequence of U-Net compositions is the main structure
of the model. Each composition is built up of 3 2-dimensional U-nets. 4
compositions are put in a sequence to identify the fetal brain. The mask is
used to compute further information, which is then given, together with the
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original image, to a final composition. The output is a segmentation of the
brain in 7 regions. This architecture is explained in section 5.1.
The second component is the application of spectral coordinates. They are
computed with masks, which are produced by the sequence of U-Net com-
positions. The mathematical theory is discussed in chapter 3. In section 5.2
the calculation is explained in detail. The third component is a loss function
to improve topological consistency. Earlier models often had problems with
segmenting the thin cortex correctly. The custom loss function penalizes
holes in the cortex. It is presented in section 5.3.

Comparing alternative approaches

To get the architecture, which is described in the sections above, various
experiments were done. First of all, naturally the question arises if a 2 or
3-dimensional should be used. A 2-dimensional input has the advantage of
larger size, while one dimension remains unseen. This approach is used in
the final model. The contrary applies for the 3-dimensional case, all dimen-
sions are used, although the input size is smaller. With this approach the
main model is compared. In section 5.4 an experiment set-up is explained,
that analyzes this difference. In section 5.5 the influence the composition of
several models is explored. If 2-dimensional U-Nets are used to the produce
a segmentation, they lack the information of the third dimension. This dis-
advantage can be minimized by putting models in a sequence. In the main
model a sequence of length 4 is used. With the experiment the choice of
the length shall be confirmed. A hierarchical approach, as used in the main
model, has the advantage that a task can be divided in smaller ones. This
allows several models to by trained, each specializing on a single sub-task.
This approach is compared to a single composition, which takes the MRIs as
input and segments them immediately. The experiment to evaluate this pro-
cedure is described in section 5.6. Section 5.7 is dedicated to the exploitation
of spectral coordinates. The theory is discussed in chapter 3. The question
arises how spectral coordinates can best be integrated into an artificial neu-
ral network. The experiment, which is described here, compares the normal
spectral coordinates, which are used in the main model, to re-scaled ones and
not using them at all.
In the final chapter, the different evaluation metrics are discussed. Special
focus lies on the dice coefficient, the mean surface area and the area of touch.
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5.1 Cascaded U-Nets for 3D Segmentation

The model is based on several neural networks. The architecture consists of
3 parts. The first one is an U-Net structure, which segments foreground from
background. In the second the spectral coordinates Si are computed, and at
last, an U-Net ensemble segments the image I. The first structure (figure 5.1,
left) is given by 4 ensembles of neural networks. Each ensemble is made up
of 3 2-dimensional U-Nets, which have been trained on coronal, sagittal and
transversal slices. Each U-Net produces a probability map P x,y

i , i = 1, ..., x ∈
{c, s, t}, y ∈ m, s. The letter c, s, t represent the slice (coronal, sagittal and
transversal) that is used, m, s differs between the probability map of the
mask or the segmentation of the 7 regions.The number i is the output of
the i-th model. The output of the first ensemble P c,m

1 , P s,m
1 , P t,m

1 is merged
together by taking the average Am

1 = average(P s,m
1 , P c,m

1 , P t,m
1 ). This result is

concatenated with the original image (I, Am
1 ) and used as input for the next

ensemble. This procedure is repeated for all the following U-Net ensembles.
After the 4th ensemble the resulting outputs Am

4 are used to compute the first
3 spectral coordinates S1, S2, S3 of the obtained mask M . Finally, another
ensemble of U-Nets (figure 5.1, right), which receives the original image, the
mask and the spectral coordinates as input (I,M, S1, S2, S3), computes the
segmentation of the original image P .

Figure 5.1: Left: First U-Net Cascade, which computes the masks. Right:
Second U-Net Cascade, which segments 7 regions, with the use of spectral
coordinates.

The hierarchical structure offers the possibility to solve simplified tasks
at each level. First, the fetal brain is identified. Second, further information
is computed and used to segment the brain into several regions. Therefore,
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in each level a simple sub-task is solved, and the final segmentation is easier
to achieve.
2-dimensional U-Nets are used to solve a 3-dimensional task. Each network
has a lack of spatial information, this typically leads to problems. This
issue has been resolved, by using coronal, sagittal and transversal planes and
combining the predictions of the single U-Nets.
As proposed by the auto-context algorithm, several U-Net ensembles are put
in series. Each ensemble uses the probability map generated by the previous
one as additional feature map. Thus a single network can use 3-dimensional
spatial information, although only a 2-dimensional input is used. A further
advantage is that later networks can focus on improving the errors of previous
ones. This results in an overall improved segmentation.
The U-Nets used for the identification of the brain and the segmentation of
the different brain regions are built in a similar way. The only difference is
the number of feature maps in the last layer. This is due to the different
number of regions which the U-Nets identify.
As usual the U-Nets have an encoder and decoder, which are built up of 5
convolutional blocks. The input shape is 128 × 128. Therefore, the slices
of the original MRI are cropped and only patches are given to the network.
The number of feature maps in the first convolutional block is 16. This
number doubles in every block, while the shape of the feature maps halves.
Each block in the encoder uses three convolutional layers, which are followed
by batch normalization and the activation function ReLU. Furthermore, the
feature maps of the first and third convolutional layer are summed up. The
downsampling between the blocks is performed by a strided convolution with
stride 2.
The decoder also consists of 5 convolutional blocks. Unlike with the encoder,
the number of feature maps halves, while the size doubles in each block. In
each block 3 convolutions are applied, which are again followed by batch
normalization and the ReLU activation function. The difference is that the
feature maps of the first convolutional layer of a certain block in the decoder
are summed up with the output of the corresponding block of the encoder.
Between the blocks up-sampling is applied.
The output of the last three blocks of the decoder are merged together to
receive the final segmentation. This is done by applying 1×1 convolution on
each output. After convolving the third block it is up-sampled and summed
up with the convolved output of the fourth block. The result is then up-
sampled again, summed up with the last feature map of the fifth block and
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finally softmax is applied to obtain the final result.

Figure 5.2: Architecture of a single U-Net

The U-Net structure is very popular and often applied for image recog-
nition tasks such as in medical imaging. The network is inspired by this ar-
chitecture, but some improvements have still been made. Several layers were
added in the end to compute the segmentation. This allows the network to
include information, which was gathered earlier, for the final result. Strided
convolution is used instead of max-pooling. Therefore, not only maximum
values are taken, but the image is further processed. Finally, the detailed
design of the convolutional blocks has been modified. The most noticeable
change is that the output of the first and third convolutional layer are added
up. This allows the network to combine the initial image with the processed
one, and therefore improve already processed results.

5.2 Spectral Coordinates

Spectral Coordinates have been used in the past to solve various problems
such as shape description (Wachinger et al. [60]), brain matching (Lombaert,
Sporring, and Siddiqi [38]) as well as for brain segmentation (Wachinger,
Reuter, and Klein [59]). A patch-based approach with neural networks, espe-
cially a 2-dimensional model on 3-dimensional images, as it is proposed here,
is limited by its spatial context. Since spectral coordinates have achieved
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good results in the past, we suggest to use them here as well.
In section 5.1 a U-Net cascade is used to generate a mask of the fetal brain.
With this mask the spectral coordinates are computed. First a graph G is
created by setting each voxel of the mask as a vertex vi in the graph. The
vertices vi, vj of voxels, which are neighbored in the mask, are connected by
an edge ei, j in the graph. The generated graph in un-directed. Let further
be V the set of vertices and E the set of edges.
For every two adjacent vertices vi, vj the corresponding edge ei,j is assigned
the weight ωi,i = 1. The weights are represented as a matrixW = (ωi,j)i,j=1,...,n,
the weight matrix. The weights of non-adjacent vertices is set to 0. The de-
gree di of a vertex vi is defined as

di =
n
∑

j=1

ωi,j.

The degree matrix is defined as a diagonal matrix with the values d1, ..., dn
in the diagonal. Finally, the un-normalized graph Laplacian is given as

L = D −W.

In order to receive the spectral coordinates, the eigenvectors of the graph
Laplacian are computed. The eigenvectors u1, ..., un and their corresponding
eigenvalues λ1, ..., λn are ordered such that λ1 ≤ λ2 ≤ ... ≤ λn. Let U ∈ R

n×k

be the matrix containing the first k eigenvectors u1, ..., uk as columns. Then
the vector yi ∈ R

k corresponding to the i-th row in U is an approximation of
the spectral coordinates of the corresponding i-th voxel.
If the graph G is connected, the smallest eigenvalue λ1 = 0, and the cor-
responding eigenvector is the constant one vector (Von Luxburg [58]). Fur-
thermore, if G is connected, then λ2 > 0 (Chung and Graham [10]). The
first three eigenvectors with eigenvalue > 0 are used.

5.3 Topological Loss Function

Due to its thin shape, the cortex is sometimes not continuously segmented
by the network if standard loss functions such as categorical cross entropy
(section 2.3) are used, i.e. it has holes. In order to solve this, a topological
loss function is proposed.
The output shape of the model is 128×128×7, since the brain is segmented in
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7 regions. Due to the softmax function at the end of the U-Net, each of the 7
layers represent the probability of a certain region. The cortex separates two
regions, namely liquor and white matter. The topological loss is computed
in two steps. First, the layers, which correspond to the regions liquor pl and
white matter pwm, are detached from the output P . Second, these layers are
convoluted with a kernel, whose values are all set to 1. At last, the results
are multiplied with the respective other layer and added up. The topological
loss Lt(P ) is given as

Loss = pwm ∗ (pl ⊙ 1) + pl ∗ (pwm ⊙ 1)

The output is added to the categorical cross entropy loss and returned as
final loss Lf = Lc + Lt.

5.4 Construction of 2D and 3D ANNs

To determine whether a 2-dimensional or 3-dimensional input is more advan-
tageous, different models with varying input size are compared. The input
dimensions, which are used, are of size 32× 32× 32, 64× 64 and 128× 128.
In the main model, which is discussed above, an input size of 128 × 128 is
used.
In section 5.1 the single U-Net structure is explained. It takes a 2-dimensional
image with size 128 × 128 as input. It is processed by the network and the
output is a segmentation of size 128× 128. For this experiment the model is
slightly modified. Instead of using a 2-dimensions, a 3-dimensional input is
used.
The first and second models, which are tested, have a input size of 32×32×32
and 64×64. The corresponding output sizes are 32×32×32×7 and 64×64×7.
Expect for the dimensionality everything remains unchanged compared to the
model in section 5.1.
At last, a 2-dimensional model is tested. It is made of three different U-Nets.
Each takes a 2-dimensional slice of size 128× 128 as input. The U-Nets are
trained separately on coronal, sagittal and transversal images. To predict a
3-dimensional MR image, every 2-dimensional slice is processed by the U-
Nets separately and produces probability maps P s,s

1 , P c,s
1 , P t,s

1 . After each
network has predicted the whole image, they are merged together by taking
the average As

1 of all three probability maps. A similar procedure is described
in section 5.1.
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5.5 The Design of Sequences of ANNs

In the previous section and in section 5.1 a composition of 2-dimensional mod-
els is used to predict a 3-dimensional image. The downside of this procedure
is that each model lacks spatial information of the remaining dimension. In
order to address this problem, several of these composition are put in series.
By comparing the following models, the effect of a sequence of 1 to 5 U-Nets
is analyzed. In the main model a sequence of length 4 is used.
The first part is a composition of three 2-dimensional U-Nets. Each U-Net is
trained on coronal, sagittal or transversal slices of the original 3-dimensional
MR image. The probability maps P s,s

1 , P c,s
1 , P t,s

1 of the U-Nets is merged by
taking the mean As

1 = average(P s,s
1 , P c,s

1 , P t,s
1 ).

For the second part a similar composition of three neural networks is used.
Again, each takes as input coronal, sagittal or transversal slices of the origi-
nal MR image. The difference is that this time the image slices are merged
with the probability maps, which were produced by the first composition
of U-Nets (I, As

1). So instead of 128 × 128 × 1 the input size increases to
128× 128× 2. The output of the three networks are again probability maps
P s,s
2 , P c,s

2 , P t,s
2 of the segmentation. The final result is again generated by

taking the mean of the predictions As
2 = average(P s,s

2 , P c,s
2 , P t,s

2 ).
This process is repeated five times. In summary, five compositions of three
U-Nets are connected into a sequence. Each of the compositions, except the
first one, takes the original image concatenated with the probability map,
which was predicted by the previous one, as input. This is used to generate
another probability map, which is then passed on to the next part in the
sequence.

5.6 Architecture of a Hierarchical Approach

In this section a method for an experiment is described which evaluates an
hierarchical approach for segmentation, which is also used in the main model
and described in section 5.1 . A similar idea was presented by Khalili et al.
[28]. First a U-Net was used to identify the fetal brain, and then a second
one segmented it. A difficult task was divided into several smaller ones.
Therefore, the hierarchical approach is compared to the regular composition
of U-Nets, which takes the MRI as input and segments seven regions is one
step.
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The first model is again the composition of three U-Nets, which is explained
in detail in section 5.1 . Each U-Net takes a coronal, sagittal or transversal
slice as input, and the outputs P s,s

1 , P c,s
1 , P t,s

1 are merged together by taking
the mean As

1. The input of the composition is the original 3-dimensional MR
image, and the output is a segmentation into seven regions.
The second model is hierarchically designed. Two separate compositions of
three U-Nets are used. The first composition takes the original MR image I
as input and produces probability maps P s,m

1 , P c,m
1 , P t,m

1 of foreground and
background. A voxel is labeled as foreground if it belongs to one of the
following regions: cortex, cerebellum, white matter, brainstem, ventricles,
liquor. The mask M is generated my taking the maximum of the probabil-
ity map Am

1 . It is concatenated with the original image (I,M) and passed
on to the second composition. Then probability maps of the segmentation
are generated P s,s

2 , P c,s
2 , P t,s

2 , which are merged together by computing the
average As

2. Segmentation of the brain is then given by the maximum. This
approach is also used in 5.1.

5.7 Exploiting Spectral Coordinates

Spectral coordinates are applied in several papers and improve the under-
standing of the structure of a graph. They have already been discussed in
detail in chapter 3 and section 5.2. By using spectral coordinates the network
receives additional spatial information. In this experiment three different
ways to apply spectral coordinates are compared: None, regular coordinates
S and re-scaled spectral coordinates. In the main model the un-scaled spec-
tral coordinates are applied.
Variations of spectral coordinates are compared. Nevertheless, the main ar-
chitecture remains unchanged. The model is built in a hierarchical way and
consists of 3 parts: First, a composition of 3 U-Nets receives the original MR
image I and produces a probability map Am

1 of foreground and background.
Second, the mask M is used to compute the spectral coordinates S or its
variations. The image I, the mask M of the first composition and the spec-
tral coordinates S are merged together (I,M, S) and passed on to the second
composition and used to segment the fetal brain into seven regions.
In the first configuration only the probability map, which was produced by
the first composition, concatenated with the MRI is used as an input. In this
case, no spectral coordinates are used. This setup is necessary to determine
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the influence of spectral coordinates on the segmentation.
In the second case, the probability map is used to compute a mask of the
brain. This is done by setting the value of a voxel to 1 if its probability
is greater than 0.5, and to 0 if it is lower. The generated mask defines a
graph: Every voxel is a vertex, and to neighboring vertices are connected
by an edge. This graph is used to compute the spectral coordinates. The
first three coordinates are concatenated with the MRI and the mask. This
is passed on to the second composition.
The last configuration, that is investigated, is a re-scaling of the spectral
coordinates. Normally, all eigenvectors are normalized. Therefore, the maxi-
mal values of the spectral coordinates depend on the size of the mask. Larger
brains produce graphs with more vertices. The normalized vector has there-
fore smaller values. A younger fetus with a tinier brain leads to lager values
in the spectral coordinates. Therefore, the eigenvectors are all re-scaled with
the maximum lying between -1 and 1.

5.8 Evaluation Measures

The experiments are evaluated by several metrics. This gives the opportu-
nity to analyze the results in more diverse ways. The most important metric,
which is used, is the dice coefficient. It is computed for every region sepa-
rately (background, cortex, cerebellum, white matter, brainstem, ventricles
and liquor). This allows each region to be assessed individually and appro-
priate changes to be made.
Furthermore, it is also necessary to assess the segmentation as a whole.
Therefore, the dice coefficient, accuracy, false positive and false negative rate
of the entire image is computed. Let S and S̄ be the manual and automatic
segmentation of a fetal brain, then the dice coefficient [54] D is given by

D = 2
S ∩ S̄
|S|+ |S̄|

For the other metrics the true positive TP , true negative TN , false pos-
itive FP and false negative FN labeled voxels are required. These values
are used, if there are two regions, e.g. foreground and background. The
true positive voxels are the labels where the model correctly predicted the
positive class, in this case foreground. Similarly, the false positive voxels
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are mistakenly labeled as the positive class. The cases true negative and
false negative are defined accordingly. Let further P,N be the total num-
ber of positive and total number of negative voxels. The positive voxels are
given by P = TP + FN . Likewise, the negative voxels can be written as
N = FP + TN . Then the accuracy ACC, the false positive rate FPR and
the false negative rate FNR are defined as

ACC =
TP + TN

P +N
, FPR =

FP

N
, FNR =

FN

P

Another metric that is used is the mean surface distance of the cortex.
This region is particularly difficult to segment as it topologically resembles
a thin line. The mean surface distance measures, broadly spoken, the devi-
ation of the cortex of the prediction from the original image. In detail, only
the voxels in the manual segmentation and the prediction, which are labeled
as ”cortex” and have a neighboring voxel of label ”liquor”, are considered.
After removing the remaining voxels, the images are overlaid to compute the
shortest distance from every predicted voxel to the nearest manually seg-
mented voxel. The mean of all these distances results in the mean surface
distance.
The metric described above only considers the outer surface of the cortex.
To achieve a better understanding, another surface distance is computed. It
includes the complete surface area of the cortex and is labeled as ”whole cor-
tex”. Instead of only taking the voxels in the cortex, which are neighbored
to liquor, all the voxels in the border of the cortex are included. In summary,
every voxel, which is labeled as ”cortex” and has a neighboring voxel with a
different label, is used.
As discussed above, the cortex is fairly challenging to segment. Sometimes
holes have appeared in the predicted cortex. Of course, this should not hap-
pen. To evaluate this mistake, the area of touch between the neighboring
regions of the cortex is computed. Therefore, the number of voxels labeled
as ”white matter”, which have a neighboring voxel named ”liquor”, is deter-
mined. This was done for the manually segmented Cm and the automatically
segmented images Ca. Furthermore, the difference of these two values is com-
puted. Due to the varying sizes of fetal brains, it is necessary to scale the
obtained value. This is done by dividing it by the surface area of the cortex
Sc.
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Relative area of touch =
Ca − Cm

Sc

5.9 Discussion

In this chapter the methodological approach is explained. A composition of
several convolutional neural networks is used. First, foreground and back-
ground is segmented. In the second step, 7 brain regions are identified. Each
U-Net takes 2-dimensional images, the results are put together to receive a
3-dimensional output.
Spectral coordinates are computed from the mask. These are passed on to
later networks to improve their spatial information. A topological loss func-
tion is introduced, to reduce the holes of the segmentation of the cortex.
The set-up of several experiments is discussed. These results of these exper-
iments will give a justification the architecture of the final model.
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Chapter 6

Experiments and Results

In this chapter the experiments, which were done in the course of this work,
are presented. The characteristics of the data are discussed in section 6.1.
The following chapters deal with the design and evaluation of the various
experiments.
The first experiments deal with the development of the final architecture.
At the end, it will be tested and evaluated in combination with spectral
coordinates and a custom loss function.

6.1 Data

The study includes 341 T2-weighted MR scans. The image size is 210 ×
238× 200 and the voxel spacing is 0.5× 0.5× 0.5 mm3. 102 MR scans have
been manually segmented into 7 regions, which are cortex, cerebellum, white
matter, brainstem, ventricles, liquor and background. Out of all the 102
cases, 33 are diseased cases and the remaining are normal brains. The other
239 MR scans have been segmented in foreground, which includes all the
labels for brain regions, and background. An overview is given in 6.1.

The images are already registered and centered by an in-house developed
software. The MR scans were segmented in two stages. Before manually
enhanced, some of the images were pre-segmented by an atlas-based software.
Later, the remaining images were pre-segmented by an U-Net, which was
trained on the first images, and then manually improved.
The first structure of U-Nets was trained on the 239 MR scans, which are only
segmented in foreground an background. Subsequently, masks were predicted
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Label Overview

Figure 6.1: Overview of all segmented labels.

for the remaining 102 images and used to compute spectral coordinates. After
being concatenated with the original images and predicted masks, these were
passed on to the second U-Net structure. It was trained and validated by a
5-fold cross validation scheme of the 102 images.
In order to train the models, Adam ([31]) optimizer with an initial learning
rate of 5 ∗ 10−5, which dropped to half every 10 epochs, was applied. A
patience of 15 epochs, and a dropout of 0.3 was used during the training.

6.2 Comparing 2D and 3D ANNs

In this section the results of the comparison of different dimensional inputs
are presented and discussed. The method is described in detail in section
5.4. To evaluate the results the overall dice score (section 5.8) of all 7 region
is measured.
The three models used input sizes 32× 32× 32, 64× 64× 64 and 128× 128,
respectively. The third model produces the best results, with a dice coeffi-
cient of 0.944 compared to 0.911 and 0.930 of the first and second one. The
first model performs significantly worse than the second.
Due to the small input size of 32× 32× 32 of the first model, the calculation
time is reduced dramatically, and a fast training and prediction time is the
result. A input of this size also has drawbacks. The small size leads to less
spatial information, so the segmentation accuracy decreases. The dice coef-
ficient is 0.911. Compared to the first model, the second network has signif-
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icantly more spatial information. Therefore, the quality of the segmentation
increases to a dice of 0.930. A disadvantage of this model is the increased
training time. An eight-fold increase in input size leads to a considerable
rise in computing effort. Therefore, the time needed for training and predict-
ing increases a lot. The idea of the third construction is to further increase
the input size from 32/64 to 128 without losing spatial information of the
remaining dimension. By using 2-dimensional networks this was achieved.
The computational resources needed to train the networks is less than the
second model. Further, little spatial information was lost, as an U-Net was
used for each dimension. All this led to a comparably good result and a dice
coefficient of 0.944.

6.3 Comparing Different Sequences of ANNs

In this section the results of the experiments with a sequence of 1-5 models is
discussed. This structure is used in the first cascade of the final model. The
U-Nets are put in series, and the current model uses the predicted probability
map of the previous one as input. The method is presented in detail in section
5.5. The evaluation is performed with the dice coefficient, which is discussed
in section 5.8. It is measured in all 7 regions and compared to the other
models. The data is presented in section 6.1.
When comparing the 5 different models, an increase in the dice score can
be observed after each model in the sequence. The results are shown in
table 6.1. Although an improvement takes place, it is not linear. There is
a flattening after the fourth model. The fifth model does not lead to any
noticeable improvement.

Model 1 Model 2 Model 3 Model 4 Model 5
Dice 0.946 0.964 0.982 0.986 0.985

Table 6.1: Dice score of Sequence of models of length 5.

In each composition the predictions of each dimension are merged into a
single output. Nevertheless, there is lack of spatial information. The advan-
tage of the longer sequence is that the output of the previous composition
is given as input to the next one. Therefore, each U-Net of the next com-
position uses spatial information produced by U-Nets that were trained on
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different dimensions. During the first models of the sequence the dice coef-
ficient rises considerably, but after the fourth one a flattening can be seen.
The reason for this is that the spatial information, given by the probability
map of the previous composition, does not increase every time. At a certain
point a saturation develops.

6.4 Evaluating a Hierarchical Approach

In this section the results of the experiment regarding the hierarchical ap-
proach are evaluated and discussed. Two models are compared. The first
one is the regular U-Net composition. In the second one, the hierarchical ap-
proach is applied. The method is discussed in 5.6. The results are evaluated
with the dice coefficient.
The hierarchical approach has clearly improved the segmentation and the
dice coefficient has risen considerably from 0.9493 to 0.9788. Dividing the
process into smaller tasks has the advantage that each network can focus on
simpler problems and specialize in a certain task. Therefore, the hierarchical
approach makes the overall problem easier to solve, this leads to an improved
segmentation.

6.5 Comparing Different Ways of Exploiting

Spectral Coordinates

In this section the experiment with different implementations of spectral co-
ordinates is discussed. Therefore 3 variations are presented: None, regular
spectral coordinates and re-scaled ones. The experiment set-up is presented
in section 5.7. To evaluate the results the dice coefficient is used. The data
is described in section 6.1.
When comparing the 3 models the dice coefficient has remained more or
less constant and has sometimes fallen slightly. When examining the mean
surface distance (m.s.d.), a clear drop can be seen when using spectral coor-
dinates. Unfortunately, the re-scaling of the eigenvectors did not lead to a
further improvement of the segmentation. The results are presented in table
6.2.

In summary, the dice of all three models was fairly equal. The reason
for this is that the overall segmentation did not drastically alter. On the
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None Regular Re-scaled
Dice 0.9792 0.9716 0.9742
M.s.d 0.9133 0.9549 0.9465

Table 6.2: Dice score and mean surface distance of models with different
applications of spectral coordinate

other hand, changes in the segmentation of the cortex are visible. These
can be measured with the mean surface distance, which has decreased with
use of spectral coordinates. Re-scaling the eigenvectors did not improve the
segmentation, since the artificial neural network has already been able to use
the regular coordinates efficiently.

6.6 Evaluation of Spectral Coordinates and

Topological Loss

In this section the model which is explain in sections 5.1-5.3 is extensively
tested. Therefore, the model from 5.1 is used. It is evaluated as a stand
alone, with spectral coordinates and the topological loss function.
The results are evaluated with the dice score of each region, the accuracy,
false positive and false negative rate. Additionally the mean surface distance
of the whole and the outer cortex is computed. To assess the topological loss
function the relative area of touch is computed. All these evaluation methods
are presented in detail in section 5.8.
In all models a similar hierarchical structure is applied, which is explained
in sections 5.1. They differ regarding the use of spectral coordinates (section
5.2) and the topological loss function (section 5.3). Concerning the first one,
to which is referred as ”Classic U-Net”, it uses the first U-Net structure to
generate masks, but does not compute spectral coordinates. The input to the
second U-Net is the concatenation of the original image and the given mask.
Moreover, it does not use the topological loss function. The second model
which is called ”Spectral Coordinates”, computes the spectral coordinates.
They are concatenated with both, the image and the mask, and passed on
to the second structure. However, once again, the topological loss function
is not in use. The third set-up is referred to as ”Topological loss function”.
It is built in a similar way as the second one, but the custom loss function is
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applied.

6.6.1 Result 1: Segmentation Accuracy

In table 6.3, the dice coefficients of all brain regions are given. The corre-
sponding regions are illustrated in figure 6.1. Table 6.4 includes the overall
dice coefficient, the accuracy as well as the false positive and false negative
rate.
Except for the background the dice coefficient of each region ranges between
80-90%. The models perform best on the region liquor, and the cortex is the
most challenging region. The dice coefficient is fairly constant in all three
models. The region where the models have performed the most variously is
the ventricles. Here a drop of 0.0054 occurred when using spectral coordi-
nates. This has improved with the use of the custom loss function, but still
a difference of 0.0031 remains. In table 6.4, the overall dice and accuracy
declines by 0.0013 and 0.0003, while the false positive and false negative rate
increases by up to 0.0002 and 0.0014.
In figure 6.2, a plot for each proposed model is presented, showing a box
plot of every region. In the last figure a box plot is used to demonstrate the
development of the dice coefficient of the cortex over all models.
In summary, the performance of the models decreases or remains fairly con-
stant in these evaluations. Since the changes are small, this outcome moti-
vates to take a closer look at the results. In further investigations, the mean
surface distance as well as the relative area of touch will be discussed.

Dice
Background Cortex Cerebellum White matter

Classic U-Net 0.9954 (0.002) 0.8125 (0.075) 0.8601 (0.062) 0.9093 (0.048)
Spectral coordinates 0.9953 (0.003) 0.8076 (0.074) 0.8555 (0.056) 0.9077 (0.044)
Topological loss 0.9953 (0.003) 0.8099 (0.072) 0.8601 (0.052) 0.9097 (0.043)

Brainstem Ventricles Liquor
Classic U-Net 0.8534 (0.099) 0.8541 (0.065) 0.8879 (0.056)
Spectral coordinates 0.8485 (0.11) 0.8487 (0.062) 0.8846 (0.055)
Topological loss 0.8536 (0.109) 0.8510 (0.064) 0.8860 (0.056)

Table 6.3: Dice score for automatic segmentation of fetal brains for different
approaches and separate regions
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Accuracy (Freesurfer)
Dice Accuracy False positive False negative

Classic U-Net 0.9625 (0.023) 0.9937 (0.005) 0.0039 (0.003) 0.0332 (0.037)
Spectral coordinates 0.9612 (0.024) 0.9934 (0.004) 0.0041 (0.003) 0.0344 (0.038)
Topological loss 0.9614 (0.025) 0.9935 (0.003) 0.0040 (0.003) 0.0346 (0.040)

Table 6.4: Dice score, accuracy, false positive rate and false negative rate
for automatic segmentation of fetal brains. The region measured was cortex
+ white matter + ventricles + brainstem + cerebellum vs. background +
liquor

Dice Score of all regions produces be the 3 models

Figure 6.2: First three plots are the dice score of each brain region predicted
with all three architectures: Classic U-Net is upper left, spectral coordinates
upper right, topological loss is bottom left. The dice score of just the cortex
of all architectures is shown at the bottom left.

Table 6.5 shows the surface distance of all three models. The first results
present the surface distance of the outer cortex, while the second show the
surface distance of the whole cortex. Each of the proposed models improves
the mean and standard deviation compared to the previous one. The perfor-
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mance of the mean surface distance on the outer cortex improves from 0.8595
to 0.8311. On the whole cortex the mean decreases from 0.9205 to 0.8590.
In figure 6.3, a box plot of the mean surface distances of all segmentations is
shown.

Mean surface distance M.s.d. (whole cortex)
Mean Standard deviation Mean Standard deviation

Classic U-Net 0.8595 1.3452 0.9205 1.3289
Spectral coordinates 0.8504 1.2830 0.8725 1.1622
Topological loss 0.8311 1.2169 0.8590 1.1200

Table 6.5: Surface error for ground truth vs. automatic segmentation for all
three architectures.

Mean Surface Distance

Figure 6.3: Surface distance predicted with all three architectures

Figure 6.4 shows the diversity of the network’s predictions. Examples of
good, bad and average results are presented. Each column shows a sagittal
and coronal slice of a brain which has been segmented by the proposed model.
It uses spectral coordinates and the topological loss. The images are sorted
by dice. The two segmentations on the left have a good dice score, while
the images in the middle show an average and those on the right a bad dice
score. One problem of the model is to display the continuity of the cortex,
this can be seen in the middle images. The models performed worst when
the data was corrupted or the fetuses were very young. This is shown in the
right images.

The performance of the proposed model is compared to a network by
Hong et al. [24]. It is referred to as ”CPS Net”. This model was trained
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Figure 6.4: Figure: Sagittal/Coronal slices: 2 good cases, 2 average cases, 2
bad cases (Dice wise)

to identify the cortex and the internal region of the cortex. The internal
region corresponds to the regions white matter and ventricles. In table 6.6.1,
the dice score of each region is given. The model proposed in this paper
performed better by more than 18% in the cortex and more than 10 % in the
internal region.

Dice Score
Background Cortex Internal region of cortex

CPS Net 0.9879 0.6279 0.8242
Topological loss 0.9967 0.8099 0.9293

6.6.2 Result 2: Topological Consistency of Annota-

tions

As shown in table 6.6, the area of touch is reduced by both models. Using
spectral coordinates has decreased the area of touch from 0.0459 down to
0.04402. The proposed topological loss function could reduce the area of
touch further down to 0.0347.
The columns in figure 6.6 titled Ca/Sc and Cm/Sc show the area of white
matter, which is neighbored to liquor voxels, divided by the outer surface
area of the cortex. The first column represents the prediction and the second
the manually segmented mask. While the latter is obviously the same in all
cases, there is a reduction in the first column.
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Relative area of touch
Mean Standard deviation Ca/Sc Cm/Sc

Classic U-Net 0.0459 0.0390 0.1083 0.0715
Spectral Coordinates 0.04402 0.0363 0.1080 0.0715
Topological loss 0.0412 0.0347 0.1030 0.0715

Table 6.6: Area of touch between Brian and Liquor. 3 different architectures
were evaluated

In figure 6.5, images of segmented brains are shown. Both the two left and
the two right pictures show the same brain. The first and third image from
the left show brains which are segmented without the proposed loss function.
In the second and fourth image the topological loss function is applied. The
red area represent the cortex and the blue area the white matter, which lies
underneath and should not be visible. As the model has difficulties with the
segmentation of the cortex and sometimes creates holes, the topological loss
function was introduced. Due to its use, the holes have been shrunk and
closed. Therefore, the segmentation of the cortex has been improved.

Figure 6.5: 3D rendering of 2 example cases, demonstrating how a hole is
closed by the topological loss

6.7 Replication on Diseased Cases

It is further examined whether the results are replicable for diseased cases.
Therefore, the second U-Net structure is retrained on only the alive cases
and the dice for each region is evaluated. Furthermore, the mean surface
distance is computed on a validation set of alive cases, which were not used for
training, as well as the diseased cases. The results are provided in table 6.7.
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The dice score drastically reduces in all regions, especially in the ventricles.
More precisely, the dice score reduces from 84.8% to nearly half to about
48.74%. Concerning the other regions, the dice score only reduces by up to
10%. Furthermore, there is a major increase in the mean surface distance for
the outer and the whole cortex. Regarding the outer cortex, the score nearly
doubles and increases from 0.7221 to 1.4059. The mean surface distance of
the whole cortex rises from 0.8598 to 1.4550. There is a clear increase of the
standard deviation in both cases.

Dice
Background Cortex Cerebellum White matter

Regular 0.9956 0.8185 0.8627 0.9088
Diseased 0.9948 0.7220 0.7471 0.8339

Dice
Brainstem Ventricles Liquor

Regular 0.8555 0.8480 0.9007
Diseased 0.8284 0.4874 0.8059

Mean surface distance M.s.d. (whole cortex)
Mean SD Mean SD

Regular 0.7221 1.4814 0.8598 1.1025
Diseased 1.4059 1.8258 1.4550 1.8584

Table 6.7: Replication on diseased cases: Dice score and surface error for
ground truth vs. automatic segmentation for all compartments and different
approaches

6.8 Discussion

In this chapter several experiments have been discussed, which evaluate the
segmentation performance of neural networks on MR images of fetal brains.
The effect of several techniques, such as sequencing neural networks, hierar-
chical structures, spectral coordinates and topological loss functions on the
segmentation has been evaluated and the results have been discussed. These
were used to develop a neural network, which delivers solid results.
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Chapter 7

Conclusion

In this chapter the key points of this thesis are revisited and the most relevant
results are highlighted. Finally, a short overview of possible further work is
given.

7.1 Summary

Several things stand in the way of establishing an automatic segmentation
of fetal brains. First, the quantity of fetal and healthy MRI data is very
limited, compared to adults, and the manual segmentation is not only time
consuming but also very complex. Therefore, extending the database at the
beginning was necessary. Second, fetal brains are much more diverse than
adult ones. Therefore, intense experiments and advanced techniques were
necessary to establish an automatic segmentation.
In detail, the main results were the following: It was shown that a com-
position of 2-dimensional U-nets delivered better results than a single 3-
dimensional one. A hierarchical approach allowed to separate the segmen-
tation issue in several sub-tasks, which were easier to solve. Compared to
an approach, where the segmentation is created from a single composition,
the hierarchical model provided better results. The influence of spectral co-
ordinates and a custom topological loss function were evaluated, and it was
shown that the quality of the segmentation was increased.
All these experiments have led to a final architecture, which is used for au-
tomatic segmentation of fetal brains.
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7.2 Future Work

In this thesis a relatively large amount of data was used to train the neural
networks. Nevertheless, this is still a tiny quantity compared to other, es-
pecially non-medical, applications [37] [34]. In order to further improve the
automatic segmentation, gathering and manually segmenting new data will
be necessary.
A functioning automated segmentation process gives rise to the broad field of
diagnosing brain related diseases [61]. Neural networks could be applied to
segment and then classify brain MRIs accordingly and can assist physicians
with challenging diagnoses. This opens the door to more medical research.
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