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A B S T R A C T

Separation logic is a formalism for the verification of programs that
make extensive use of dynamic resources, such as heap-allocated
memory. Separation logic enables modular program analyses and cor-
rectness proofs through its key innovation, the separating conjunction.
This has sparked the development of mature, scalable static analysis
and verification tools in both academia and industry.

The degree of automation and the precision that such tools can
achieve depend on the availability of solvers for checking the satisfia-
bility and entailment problems for separation-logic formulas. As these
problems are undecidable in general, various decidable fragments of
separation logic have been proposed. This leads to a trade-off between
expressiveness and tractability: On the one hand, we need solvers for
expressive fragments of separation logic to be able to automatically
prove interesting properties or discover subtle bugs. On the other
hand, increasing the expressiveness of a logical formalism generally
comes at a computational cost.

In this thesis, I focus on two variants of separation logic that attempt
to strike the balance between expressiveness and tractability.

1. I introduce a new separation logic, strong-separation logic with

lists, trees, and data, SSLdata. This logic combines a nonstandard
semantics of the separating conjunction with a novel approach
for constraining the data stored within data structures. This
enables automated reasoning about the functional correctness
of programs that use lists and trees of unbounded size. SSLdata

also is the first decidable separation logic that combines un-
bounded data structures with the so-called magic wand opera-
tor. This makes it possible, for example, to implement weakest-
precondition calculi using SSLdata.

I present a PSpace decision procedure for the logic with magic
wand but without constraints on data and an SMT-based, coNP
decision procedure for the entailment problem of a fragment of
SSLdata that subsumes the widely-used symbolic-heap fragment.

2. I design a novel decision procedure for a variant of separation

logic with inductive definitions (SLID). SLID supports the definition
of custom predicates by recursive equation systems. This makes
it possible to reason about intricate overlaid data structures, such
as trees with linked leaves (used to implement sorted-set data
structures).

While the entailment problem for SLID is undecidable in general,
a large fragment was shown to be decidable by Iosif et al. [IRS13].
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The original decidability proof relied on a reduction that caused a
blow-up of the problem size by several exponentials. In contrast,
the decision procedure I present in this thesis is asymptotically
optimal and operates directly on SLID formulas.
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K U R Z FA S S U N G

Separation Logic ist ein Formalismus für die Verifikation von Program-
men, die in großem Ausmaß dynamische Ressourcen, wie etwa dyna-
misch allokierten Speicher, verwenden. Der Erfolg von Separation Lo-
gic fußt auf der namensgebenden Separating Conjunction (“trennende
Konjunktion”), die modulare Programmanalysen und Korrektheits-
beweise ermöglicht. Diese Modularität ist der Grund dafür, dass sich
inzwischen eine Reihe von ausgereiften akademischen und industriel-
len Tools für statische Analyse und Programmverifikation Separation
Logic zunutze machen.

Der Grad der Automatisierung sowie die Präzision, die solche Tools
erreichen können, hängen von der Verfügbarkeit von Solvern ab, die
automatisch die Erfüllbarkeit von Separation-Logic-Formeln sowie
die Gültigkeit von Implikationen zwischen solchen Formeln üeber-
prüfen können. Weil die entsprechenden Entscheidungsprobleme im
Allgemeinen unentscheidbar sind, wurden eine Vielzahl entscheid-
barer Fragmente von Separation Logic entwickelt. Die Auswahl von
Fragmenten geht stets mit einem Kompromiss zwischen Ausdrucks-
stärke und Komplexität einher: Einerseits kann man mit Separation
Logic interessante Programmeigenschaften nur dann automatisiert
zeigen und subtile Bugs nur dann automatisiert finden, wenn Sol-
ver für ausdrucksstarke Fragmente der Logik zur Verfügung stehen.
Andererseits führt eine hohe Ausdrucksstärke eines logischen For-
malismus oft dazu, dass Entscheidungsprozeduren eine impraktiabel
hohe Komplexität haben.

In dieser Dissertation konzentriere ich mich auf zwei Varianten von
Separation Logic, die auf einen Kompromiss zwischen Ausdrucksstär-
ke und Komplexität abzielen.

1. Ich entwickle eine neue Separation Logic, Strong-Separation Logic

mit Listen, Bäumen und Daten, SSLdata. Diese Logik kombiniert
eine nicht-standard Semantik der Separating Conjunction mit
einem neuartigen Ansatz, Aussagen über die in Datenstrukturen
gespeicherten Daten zu treffen. Dies ermöglicht automatisierte
Schlussfolgerungen über die funktionale Korrektheit von Pro-
grammen, die Listen und Bäume unbeschränkter Größe verwen-
den. SSLdata ist außerdem die erste entscheidbare Separation
Logic, die sowohl Datenstrukturen unbeschränkter Größe als
auch den sogenannten Magic Wand (“Zauberstab”) unterstützt.
Der Magic Wand kann beispielsweise genutzt werden, um einen
Weakest-Precondition-Kalkül (“schwächste Voerbedingungen”)
mittels SSLdata zu implementieren.
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Ich präsentiere eine PSpace-Entscheidungsprozedur für die Lo-
gik mit Magic Wands, aber ohne Aussagen über gespeicherte
Daten; und eine SMT-basierte, coNP-Entscheidungsprozedur
für Implikationen in einem Fragment, das das weitverbreitete
Symbolic-Heap-Fragment umfasst und Aussagen über gespeicherte
Daten erlaubt.

2. Ich entwerfe eine neuartige Entscheidungsprozedur für Separa-

tion Logic mit induktiven Definitionen (SLID). In SLID kann man
rekursive Gleichungssysteme verwenden, um eigene Prädikate
zu definieren. Somit können die in einem Programm verwende-
ten Datenstrukturen in der Separation Logic abgebildet werden.
SLID ist ausdrucksstark genug, um komplizierte, überlagerte Da-
tenstrukturen zu formalisieren. Beispielsweise kann man Bäume
mit verketteten Blättern axiomatisieren, die in der Implementie-
rung von Sorted-Set-Datenstrukturen Verwendung finden.

Das Problem, Implikationen zwischen SLID-Formeln zu überprü-
fen, ist im Allgemeinen unentscheidbar, aber Iosif et al. [IRS13]
konnten die Entscheidbarkeit eines großen Fragments der Logik
zeigen. Der ursprüngliche Entscheidbarkeitsbeweis verwendete
eine Reduktion auf einen anderen Formalismus, was zu einer
mehrfach exponentiellen Komplexität führte. Im Gegensatz da-
zu arbeitet die Entscheidungsprozedur, die ich in dieser Disser-
tation präsentiere, direkt auf SLID-Formeln und erreicht eine
asymptotisch optimale Komplexität.
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151

∼= isomorphism 19

≡ rewrite equivalence on formulas with
guarded quantifiers 137

Ee/ Au
−−−→ partial instantiation of universals with ex-

istentials from e or universals from u 148

|= model relationship

entailment 9

|=Data model relationship of the data theory
TData 40

|=Φ model relationship or entailment w.r.t. SID
Φ 114

xviii
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List of Symbols xix

|=x entailment on models with dom(s) = x

49

7→ points-to assertion 13, 110

7→l,r points-to assertion allocating a tree node
(no data field specified) 41

7→ls points-to assertion allocating a list node
55

7→n points-to assertion allocating a list node
(no data field specified) 41

7→tree points-to assertion allocating a tree node
55

≺ access path ordering on locations in di-
rected graph 33

≈ equality between variables 13, 42, 110

6≈ dis-equality between variables 13, 42, 110

⊑ sub-function relation; f ⊑ g holds iff for
all x ∈ dom( f ), f (x) ⊆ g(x) 8, 186

⋆ separating conjunction 11, 13, 42

⋆ iterated separating conjunction 43, 111

⋆w weak separating conjunction 50

⋆̄ separating conjunction with re-scoping
(pushing existentials out) 148

−⋆ magic wand / separating implication 13,
42, 111

−©⋆ septraction / existential wand 13, 42, 111

⌈φ⌉ the chunk size of formula φ 73

[x]s= equivalence class of x w.r.t. stack s 20

〈x1, . . . , xk〉 ordered sequence consisting of the ele-
ments x1, . . . , xk 7

[F]∃ existential unary data predicate 53

[f : F]∃ existential binary data predicate for field
f 53

[F]∀ universal unary data predicate 53

[f : F]∀ universal binary data predicate for field f

53

{φ} c {ψ} Hoare triple with precondition φ, program
c, and postcondition ψ 8

A

guarded universal quantifier 135

E

guarded existential quantifier 135

α first free variable of a unary or binary data
predicate 53
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xx List of Symbols

β second free variable of a binary data pred-
icate 53

ε the empty sequence 7

λ notation for defining anonymous func-
tions 8

Π a pure constraint 111

Σ a stack-aliasing constraint 20

Σ|y restriction of stack-aliasing constraint Σ to
y 20

Σ[x/y] instantiate variables x with y in stack-
aliasing constraint Σ 184

Φ system of inductive definitions 112

φ(z) replace free variables of φ with z, equiva-
lent to φ[fvars(φ)/z] 113

φ[y/z] instantiate (free or bound) variables y with
z in φ 113

A an abstract memory state (AMS) 61

absts(φ) algorithm for computing the set amss(φ)∩

AMSk,s, for k = ⌈φ⌉ 75

AbstLists(s, x, y) set of abstract lists w.r.t. s with head x and
holes y 66

AbstLists≥2(s, x, y) set of abstract lists of size at least 2 w.r.t. s
with head x and holes y 66

AbstTrees(s, x, y) set of abstract trees w.r.t. s with root x and
holes y 66

AbstTrees≥2(s, x, y) set of abstract trees of size at least 2 w.r.t. s
with root x and holes y 66

ACx the set of all stack-aliasing constraints over
variables x 20

aliasing(s) the stack-aliasing constraint of stack s 20

allholepreds(t) set of all hole predicates of Φ-tree t 130

allholes(f) set of all holes across all trees of Φ-forest
f 132

allholes(t) set of all holes of Φ-tree t 130

alloc(A) the allocated variables of an AMS 62

alloc(x) derived SSL formula expressing that x is
allocated 42

alloced(s, h) set of allocated variables of the model 19

alloc−(s, h) the sets of variables allocated in negative
chunks of (s, h) 63

AMS the set of all AMS 62
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List of Symbols xxi

ams(s, h) the induced AMS of (s, h) 63

AMSk,s the set of all AMS with nodes classes(s)

and garbage-chunk count at most k 75

AMSs the set of all AMS with nodes classes(s) 62

amss(φ) the abstraction of SSL formula φ by the
set of all AMS of models with stack s that
satisfy φ 64

amsx(φ) the abstraction of SSL formula φ by the
set of all AMS of models with dom(s) = x

that satisfy φ 64

ar(pred) arity of predicate identifier pred 110

array s1 s2 the sort of arrays with indices of sort s1

and elements of sort s2 91

Bool Boolean sort in SMT 91

bound(φ) upper bound on the size of the minimal
model of φ ∈ SSL+

data 87

callst(l) the recursive calls at location l in Φ-tree t

130

CFG the set of all context-free grammars 201

chunks(s, h) all chunks of the model (s, h) 58

chunks−(s, h) the negative chunks of the model (s, h) 60

chunks+(s, h) the positive chunks of the model (s, h) 60

classes(s) the equivalence classes of aliasing(s) 20

D the set of built-in data structures of SSL

40

d(ℓ) data stored at location ℓ 41

dangling(h) set of dangling locations of the heap h 19

Data the set of data values that can be stored in
the heap 39

dom(Σ) domain of stack-aliasing constraint Σ 20

dom( f ) domain of (partial) function f 7

dom(f) the domain of the Φ-forest f 131

dropdata(φ) drop all data predicates, data fields, and
data formula from φ 87

ds an arbitrary data structure from D 40

DUSHΦ set of all DUSHs over SID Φ 162

dushrootss(φ) roots (i.e., root variables of the predicates
on the right-hand side of magic wands) of
DUSH φ 174

DUSHx
Φ set of all DUSHs φ over SID Φ with

fvars(φ) ⊆ x 162
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xxii List of Symbols

edgess(hc) the induced hyperedges of chunk hc

w.r.t. stack s 62

emp empty-heap predicate 13, 42, 110

even singly-linked lists of even length 112

f false 42

f a Φ-forest 131

FData the set of quantifier-free TData formulas 39

forestsΦ(h) set of Φ-forests f with heap(f) = h 157

forgetΣ,y(φ) forget variable y in φ, assuming stack-
aliasing constraint Σ 170

forgetΣ,y(T ) forget variable y in Φ-type T , assuming
stack-aliasing constraint Σ 170

fvars(φ) the set of free variables of formula φ 43

fvars(pred) the set of parameters of predicate pred 112

G a directed (indexed) graph 31

G a context-free grammar 201

graph(h) induced graph of heap h 31

graph(f) induced graph of Φ-forest f 131

graph(t) induced graph of Φ-tree t 130

h a heap 14

headt(l) the head predicate at location l in Φ-tree t

130

Heaps the set of all heaps 15

heap(t) the induced heap of Φ-tree t 130

heapt(l) the induced heap of location l in Φ-tree t

130

height(t) the height of Φ-tree t 130

holepredst(l) the hole predicates of location l in Φ-tree
t 130

holest(l) the holes of location l in Φ-tree t 130

IDbtw SIDs that satisfy progress, connectivity,
and establishment 26, 116

igraph(h) induced indexed graph of heap h 31

img( f ) image of (partial) function f 7

interface(f) the interface, i.e., the roots and holes, of
the Φ-forest f 158

K constant combinator of array theory 91

l(ℓ) left child of tree location ℓ 41

L(G) the language of context-free grammar G

201
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List of Symbols xxiii

lalloc(φ) variables allocated locally, i.e., not consid-
ering recursive calls 116

liftmրn(A) bound-lifting of AMS A from m ∈ N to
n ∈ N 75

Loc the set of memory locations 14

locls(h) allocated list locations of heap h 40

loctree(h) allocated tree locations of heap h 40

locs(h) the locations dom(h) ∪
⋃

img(h) for heap
h 19

locs(φ) locations that occur as terms in formula φ

112

lref(φ) variables referenced locally, i.e., not con-
sidering recursive calls 116

ls singly-linked list predicate in SSL 41

user-defined singly-linked list predicate in
SLID 112

ls≥2 restriction of ls to lists of length at least 2
41

lseg user-defined singly-linked list segment in
SLID 26, 112

map map combinator of array theory 91

max returns the maximal variable among a set
or sequence of variables 20

ModelsgΦ the set of guarded models w.r.t. SID Φ 117

n(ℓ) successor of list location ℓ 41

nil a variable representing the null pointer 14

odd singly-linked lists of odd length 112

predroot root parameter of a predicate call 116

Preds set of predicate identifiers 110

Preds(Φ) the set of predicate identifiers that occur
in SID Φ 112

project(s, f) stack–forest projection 142

projectLoc(v, f) forest projection of Φ-forest f w.r.t. loca-
tions v 140

projectLoc(v, t) tree projection of Φ-tree t w.r.t. locations
v 138

ptrlocs(t) Set of all locations that occur in a points-to
assertion in Φ-tree t 130

ptrk a predicate defined by the single rule
ptrk(x) ⇐ x1 7→ 〈x2, . . . , xk+1〉 117
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xxiv List of Symbols

ptypesx
p(φ, Σ) the x-types of φ for aliasing-constraint Σ

that can be computed by looking up the
types of predicate calls using the function
p 184

r(ℓ) right child of tree location ℓ 41

refed(s, h) set of referenced variables of the model 19

root(t) the root location of Φ-tree t 131

roots(f) the set of all roots of the Φ-forest f 131

rsize(A) the realizability size of AMS A 84

rsize(φ) the realizability size of formula φ ∈

SSL+
data 86

rulef(l) the rule instance at location l in one of the
Φ-trees in Φ-forest f 132

rulet(l) the rule instance at location l in Φ-tree t

130

s a stack 14

s−1 the inverse of stack s 20

s−1
max the stack-choice function of stack s 20

SH∃ set of existentially-quantified symbolic
heaps 110

sig(ds) node signature of data structure ds 40

sinkseq(h) ordered (w.r.t. ≺) sink sequence of di-
rected tree h 34

sinkvarss(h) the stack-equivalence classes w.r.t. s cor-
responding to the sinks of h, in the same
order as the sink sequence 34

SLbase a basic first-order separation logic 13

SLID

A

btw SLID formulas with guarded universals
135

SLID

E A

btw SLID formulas with guarded existentials
and guarded universals 135

SLIDg guarded quantifier-free separation logic
110

SLIDg
btw guarded quantifier-free separation logic

117

SLIDqf quantifier-free separation logic 110

SLIDqf
btw quantifier-free separation logic 117

SLIDbtw(·1, . . . , ·k) the SLID variant with additional atoms
and operators ·1, . . . , ·k. 201

sort(f) sort associated with the field f 41
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List of Symbols xxv

sourcevarss(h) the stack-equivalence classes w.r.t. s corre-
sponding to the sources of h 34

split(f, l) the unique l-split of Φ-forest f 134

SSL strong-separation logic 39, 41

SSL+ positive strong-separation logic 41

SSLdata strong-separation logic with data predi-
cates 39, 55

SSL+
data positive strong-separation logic with data

predicates 55

Stacks the set of all stacks 15

succt(l) successors of location l in Φ-tree t 130

t true 42, 111, 201

t a Φ-tree 129

Tarray array theory 91

TData background data theory 39

tll user-defined predicate for trees with
linked leaves 27, 119

tree binary tree predicate in SSL 41, 112

tree≥2 restriction of tree to trees of depth at least
2 41

typeΦ(s, h) Φ-type of (s, h) 163

Types(Φ) all Φ-types over SID Φ 164

types(φ, Σ) algorithm that computes the Φ-types of
SLIDg

btw formula φ for fixed stack-aliasing
constraint Σ 195

Typess(Φ) restriction of Types(Φ) to types of models
with stack s 164

TypesΣ
Φ(φ) all Φ-types of the models of φ with stack-

aliasing constraint Σ 165

TypessΦ(φ) all Φ-types of the models of φ with stack
s 164

Typesx
Φ(φ) all Φ-types of the models of φ with

dom(s) ⊆ x 164

Val the set of values that can be stored in the
stack and heap 14

Var the set of (program and logical) variables
14

WSL weak-separation logic 50

WSL+ positive weak-separation logic 50
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Part I

I N T R O D U C T I O N & O V E RV I E W

I introduce separation logic and provide an overview of the
contributions of this thesis. I also introduce some notation
and concepts that we will need in Parts ii and iii.
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1
I N T R O D U C T I O N

“The job of verification is not to explore some immense search space,
but to formalize the programmer’s intuitions until any faults are
revealed. This requires specifications and proofs that are succinct
and intelligible which in turn require logics that go beyond predicate
calculus (the assembly language of program proving).” [Rey11]

This is how John C. Reynolds argued for developing program logics
that go beyond first-order logic in his invited talk at the 5th IEEE

International Symposium on Theoretical Aspects of Software Engineering

in 2011. This was, of course, the same John C. Reynolds who is well
known for co-inventing and popularizing separation logic [Rey02], a
family of program logics that are very much in the spirit of the above
edict.

Separation logics—I use the plural here because countless vari-
ants have been proposed [Par10]—are program logics for reasoning
about dynamic resources such as heap-allocated memory or the locks
in a concurrent program. Separation logics have found many dif-
ferent application areas, from compiler verification [App14] to the
verification of concurrent algorithms [OHe07] and concurrent data
structures [KSW18] to information-flow security [EM19], from deduc-
tive verification [Rey02; Jac+11; PWZ14b] to shape analysis [DOY06;
Yan+08; Cal+11] to concolic execution [Pha+19a].

Separation logics generally have two things in common: They come
with atomic predicates for concisely specifying the resource usage of
the program; and they come with separating connectives, most impor-
tantly the separating conjunction , denoted ⋆. A separation-logic formula
φ ⋆ ψ expresses that the dynamic resources specified in the formulas
φ and ψ must be disjoint—something which cannot be expressed
concisely in first-order logic.

This property of the separating conjunction enables the succinct
and intelligible specifications and proofs of programs that Reynolds
envisioned. It is also the key to developing compositional proofs and
local program analyses that have made possible the unprecedented
scalability exhibited by tools such as Facebook’s Infer [Cal+11; Cal+15;
OHe19].

If you would like to use separation logic in your verification tool,
program analyzer or mechanized proof, you have to solve two quite
distinct tasks: to express the properties you would like to check and
the relevant aspects of program behavior in separation-logic formulas;
and to reason about these formulas. You might be familiar with this
distinction in the first-order setting. For example, the frontend of a

3
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4 introduction

program verifier such as Dafny [Lei10] generates verification conditions

in a fragment of first-order logic. It then sends these formulas to a
backend that determines whether the generated verification conditions
hold, i.e., whether the first-order formulas are valid. Dafny and many
other tools use SMT solvers such as Z3 [MB08] for this purpose.

This thesis is about developing such backends—but for separation
logic, not for first-order logic. Specifically, I present decision procedures

for several variants of separation logics. These decision procedures
can be used for automated reasoning about separation-logic formulas:
to determine fully automatically whether or not a separation-logic
formula is valid. This thesis is not about developing frontends. I do
not present any verification tool or full-fledged program analysis.

Even more specifically, I limit my attention to two “flavors” of
separation logic that target the analysis and verification of programs
that use unbounded data structures such as lists or trees:

1. I propose strong-separation logic with trees and data, SSLdata, a
novel separation logic that combines a nonstandard semantics of
the separating conjunction with predicates for reasoning about
list and tree structures in the heap and a mechanism for speci-
fying properties of the content of such data structures. SSLdata

is expressive enough to axiomatize common data structures
such as binary search trees or max heaps. At the same time,
the entailment problem of SSL, the fragment without data con-
straints, is decidable in PSpace and the entailment problem of
SSL+

data, a fragment with data predicates but without magic
wands and guarded negation, is even decidable in coNP. This
makes SSLdata more tractable than many other program logics.

2. Separation logic with inductive definition, SLID, is a separation
logic augmented with a powerful mechanism for modeling cus-
tom data structures by user-defined recursive definitions. I show
that a large fragment of this logic, the 2ExpTime-hard [EIP20]
logic SLIDbtw [IRS13], is decidable in 2ExpTime. I also propose
an extension of this logic, SLIDg

btw, that remains in 2ExpTime

despite supporting guarded variants of the magic wand, the sep-

traction operator, and negation.

In contrast to many other publications about separation logic, you
will not find any proof theory in this document. Instead, I take a model-
theoretic approach, exploiting that the program heap is essentially a
directed graph, so reasoning about separation-logic formulas often
boils down to reasoning about classes of graphs.
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1.1 a short guide to this thesis 5

1.1 a short guide to this thesis

My thesis consists of four parts.
The first part, which you are currently reading, continues as follows.

In Chapter 2, I establish notational conventions and introduce separa-
tion logic. I motivate and summarize the contributions of my thesis
in Chapter 3. As this chapter provides an overview of the remainder
of my thesis, it should be considered essential reading. The first part
of the thesis ends with a discussion of the connections between the
stack–heap model of separation logic and directed graphs in Chapter 4.

Each of the main parts of my thesis, Parts ii and iii, is centered
around developing decision procedures for one of the aforementioned
variants of separation logic: Part ii studies strong-separation logic
with trees and data. Part iii studies separation logic with inductive
definitions—in particular, with a fragment of inductive definitions
introduced by Iosif et al. [IRS13].

I discuss related work and conclude in Part iv.
My thesis builds on joint work with Christina Jansen, Dejan Jo-

vanović, Christoph Matheja, Thomas Noll, Georg Weissenbacher, and
Florian Zuleger [Jan+17; KJW18a; Kat+18; KMZ19a; PMZ20; PZ20a;
PZ20b].
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2
A N I N T R O D U C T I O N T O S E PA R AT I O N L O G I C

In the introduction, I promised that separation logic enables suc-
cinct specifications, intelligible proofs, and compositional verification.
Succinctness and intelligibility should need no further justification
(though I grant that intelligibility is, to a significant extent, in the eye
of the beholder). It is less obvious that compositionality is desirable;
or even what it means for verification to be compositional. Likewise, it
isn’t obvious why compositionality is difficult to achieve for programs
that use dynamic memory. To make this document self contained,
I will motivate separation logic by addressing these points before
delving into the formal details. I first need to introduce some of the
notation that I use throughout this thesis.

2.1 notation

In this section, I establish the basic notational conventions that I use
both later in this chapter and in the main parts of this thesis, Parts ii
and iii.

ordered sequences . Ordered sequences are denoted in bold-
face, e.g., x. The size of the sequence x is |x|. To list the elements
of a sequence, I write 〈x1, . . . , xk〉. Further, I often omit the brack-
ets around single-element sequences—i.e., write x instead of 〈x〉—to
reduce clutter.

The empty sequence is ε and the concatenation of x and y is x·y.
As usual, A∗ denotes finite sequences over A, A+ denotes nonempty

finite sequences over A.
Moreover, I frequently treat sequences as sets when convenient and

order does not matter. For example, x ∈ x states that the sequence x

contains the element x, x ∪ y is the set that contains the elements of
both sequences, etc.

functions . I write f : A⇀B to denote a partial function from
A to B; dom( f ) is the domain of (partial) function f and img( f ) is
the image of (partial) function f . The fact that partial function f is
undefined on x is denoted f (x) = ⊥. As usual, f ◦ g is the composition
of functions f and g that maps x to f (g(x)).

We will also need notation to compare partial functions:

1. For functions f , g : A ⇀ B, f ⊆ g holds if dom( f ) ⊆ dom(g)

and f (a) = g(a) for all a ∈ dom( f ).

7
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8 an introduction to separation logic

2. For functions f , g : A ⇀ 2B, f ⊑ g holds if dom( f ) ⊆ dom(g)

and f (a) ⊆ g(a) for all a ∈ dom( f ).

I frequently use set notation to define and reason about partial
functions. For example, {x1 7→ y1, . . . , xk 7→ yk} is the partial function
that maps xi to yi, 1 ≤ i ≤ k, and is undefined on all other values.
Consequently, ∅ represents a function that is undefined everywhere.
f ∪ g is the (not necessarily disjoint) union of partial functions f and g;
it is only defined if f (x) = g(x) for all x ∈ dom( f )∩dom(g). The size
of a partial function f is the size of its domain, i.e., | f | , |dom( f )|.

Finally, the following conventions will simplify defining and using
functions.

lifting functions to sequences . For f : A ⇀ B and a ∈ A∗,
then f (a) for the point-wise application of f to a, i.e.,

f (〈a1, . . . , ak〉) , 〈 f (a1), . . . , f (ak)〉 .

omitting brackets . If f : A∗ ⇀ B, I sometimes write f (a1, . . . , ak)

instead of f (〈a1, . . . , an〉) to improve readability.

lambda notation. The expression λx. f (x) defines an anonymous
(partial) function that maps x to f (x).

Additional information

Throughout this thesis, you will from time to time encounter
boxes like this one. I use these boxes to shed light on the larger
context or provide additional information that is connected to the
content at hand. Reading the boxes is not necessary for following
the technical development.

2.2 why separation logic?

In this section, I provide a tutorial-like motivation for separation
logic. If you already have some familiarity with separation logic, you
can skip this section and continue with the formal introduction to
separation logic in Section 2.3.

hoare logic and compositionality. To justify the develop-
ment of separation logic, we must first take a step back and look at the
shortcomings of “traditional” Hoare-style program verification when
it comes to programs that use dynamic memory. Recall that a Hoare

triple

{φ} c {ψ}

states that whenever I execute the program c starting from a program
state that satisfies the precondition φ, if the program terminates, the
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2.2 why separation logic? 9

resulting program satisfies the formula ψ.1 If this is the case, we say
that the Hoare triple is valid. Usually, φ and ψ are formulas from first-
order logic. For example, {x = y} x := x ∗ 2 {x = 2y} is a valid Hoare
triple that expresses that when we execute the assignment x := x ∗ 2
from a program state in which x and y are equal, then the value of x

is twice the value of y once the assignment has terminated.
When verifying a program using Hoare logic, we often need to

combine the Hoare triples of sub-programs into a Hoare triple for
the complete program. For example, say we have already established
the validity of the Hoare triple {φ2} foo(x, y) {ψ2} for the function call
foo(x, y) and we’re now analyzing a piece of code that contains a call
to foo, say c; foo(x, y), where c is a program and ; denotes sequential
composition. Assume further that we’ve already discovered the valid
Hoare triple {φ1} c {ψ1}. The sequence rule of Hoare logic allows us to
combine the Hoare triples of sequentially-composed programs with
the following proof rule.

{φ1} c1 {φ2} {φ2} c2 {φ3}

{φ1} c1; c2 {φ3}

I’ve listed the premises of the proof rule above the line and the conclu-
sion below the line, as is standard.

Continuing our above example, the sequence rule only allows us to
derive the Hoare triple {ζ} c; foo(x, y) {ψ}, if the postcondition of the
triple for c and the precondition of the triple for foo(x, y) match, i.e.,
if ψ1 and φ2 are syntactically identical. In practice, this will often not
be the case. There is a way out if ψ1 implies φ2: we can first apply the
rule of consequence.

φ0 |= φ1 {φ1} c {φ2} φ2 |= φ3

{φ0} c {φ3}

Here, |= represents logical implication or entailment, i.e., φ0 |= φ1

holds iff all program states that satisfy φ0 also satisfy φ1. The rule
of consequence allows us to weaken postconditions and to strengthen

preconditions.
If we can determine that ψ1 |= φ2 holds in our example, we can

construct a proof tree to derive a valid Hoare triple for c; foo(x, y) as
follows.

φ1 |= φ1 {φ1} c {ψ1} ψ1 |= φ2

{φ1} c {φ2} {φ2} foo(x, y) {ψ2}

{φ1} c; foo(x, y) {ψ2}

The rule of consequence can be a rather blunt tool, however: if the
entailment ψ1 |= φ2 holds, this means that φ2 is logically weaker than

1 This is known as partial correctness. To show total correctness, we would additionally
have to prove termination.
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10 an introduction to separation logic

ψ1; replacing ψ1 with φ2 may thus result in losing information about
the program state. To see why this matters, imagine a slightly different
scenario. Assume we’re given the Hoare triples

{φ} c {ψ1 ∧ ψ2} , {ψ1} foo(x, y) {ζ1} , {ψ2} bar(x, y) {ζ2} .

Can we prove that the Hoare triple

{φ} c; foo(x, y); bar(x, y) {ζ1 ∧ ζ2}

is valid? With the rules I’ve presented so far, this is impossible. As
before, we can combine the specifications of c and foo(x, y) using the
rule of consequence and the sequence rule:

φ |= φ {φ1} c {ψ1} ψ1 ∧ ψ2 |= ψ1

{φ1} c {ψ1} {ψ1} foo(x, y) {ζ1}

{φ1} c; foo(x, y) {ζ1}

Unfortunately, we are now stuck: when applying the rule of con-
sequence, we discarded the fact that the state also satisfies ζ2. But
without this fact, we cannot apply the sequence rule to combine the
above proof tree with the triple {ψ2} bar(x, y) {ζ2}. To avoid this prob-
lem, we would have to reprove foo and bar, establishing the following
specifications.

{ψ1 ∧ ψ2} foo(x, y) {ζ1 ∧ ψ2} , {ζ1 ∧ ψ2} bar(x, y) {ζ1 ∧ ζ2}

This is bad for multiple reasons: First, whenever foo is called in a
new calling context, the formula describing the global state of the
program will likely be different. As this global state must be used as
the precondition of foo, we have to prove the validity of a Hoare triple
for a new precondition, even if we’ve already discovered a valid Hoare
triple for foo. In other words, we likely have to prove the validity of
different Hoare triples for foo and bar every time they are called.

The second problem is that we obtain needlessly large specifications:
for example, the formula ζ1 is not relevant to the execution of bar(x, y),
so why should we have to prove {ζ1 ∧ ψ2} bar(x, y) {ζ1 ∧ ζ2}? This not
only violates our stated goal of succinct, intelligible specifications, but
also means that our reasoning engine has to analyze larger formulas,
incurring a potentially huge computational overhead.

This example showcases that Hoare logic, in the form discussed
so far, is ill-equipped for composing specifications: there is no way to
combine the specifications of components of the program (such as
the functions foo and bar) without re-analyzing these components for
every calling context.

To avoid these downsides, we somehow have to get around the need
to state irrelevant information in the logical formulas that make up
our specifications—a problem known as the frame problem in the field
of artificial intelligence [MH69]. Naively, we could add the following
frame rule to Hoare logic to solve the frame problem.
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2.2 why separation logic? 11

{φ} c {ψ}

{φ ∧ ζ} c {ψ ∧ ζ}

Using this frame rule instead of the rule of consequence makes it
possible to compose the specifications of c, foo, and bar:

{φ} c {ψ1 ∧ ψ2}

{ψ1} foo(x, y) {ζ1}

{ψ1 ∧ ψ2} foo(x, y) {ζ1 ∧ ψ2}

{φ} c; foo(x, y) {ζ1 ∧ ψ2}

{ψ2} bar(x, y) {ζ2}

{ζ1 ∧ ψ2} bar(x, y) {ζ1 ∧ ζ2}

{φ} c; foo(x, y); bar(x, y) {ζ1 ∧ ζ2}

Unfortunately, the frame rule proposed above is unsound if the spec-
ifications contain pointer variables. Consider the following simple
application of the frame rule.

{x 7→ v} ∗x := w {x 7→ w}

{x 7→ v ∧ y 7→ v} ∗x := w {x 7→ w ∧ y 7→ v}

Here, ∗x denotes the process of dereferencing pointer variable x and
x 7→ v denotes that dereferencing the pointer variable x yields value
v; put more succinctly, x points to v.

The above rule application is unsound if x and y are aliases, in which
case the postcondition should be x 7→ w ∧ y 7→ w. This illustrates
that compositional reasoning about dynamic memory is hard—with
aliasing, seemingly local commands can have global effects.

We could try to fix the frame rule, for example by adding side
conditions that require non-aliasing for all pairs of pointer variables in
the formulas. The result would be neither succinct nor intelligible (be-
cause of all the distracting aliasing information we’d have to explicitly
include in the specifications), nor compositional (because when we
compute a Hoare triple for a function, we may not yet known which
global aliasing information may be relevant in the calling context).
We will not attempt such a fix here. Instead, we will follow John
C. Reynold’s advice quoted in Chapter 1 and go beyond first-order
logic.

separation logic . The key innovation of separation logic (SL)
is the separating conjunction, denoted ⋆ [Rey02]. The formula φ ⋆ ψ,
pronounced φ and separately ψ, expresses that the dynamic resources
that occur in the formulas φ and ψ are disjoint. In this thesis, the only
dynamic resource we will look at is heap-allocated memory, but in
principle, the use of other dynamic resources is possible [Got+07]. In
this thesis, the formula φ ⋆ ψ therefore always means that the program
heap can be split into two disjoint parts, one of which satisfies φ, the
other of which satisfies ψ.

At this point, countless variants of separation logic have been pro-
posed [DD15a; Par10], targeting many different programming lan-
guages and application areas; I will provide a partial overview when
I discuss related work in Chapter 14. What the different separation
logics generally have in common is the monotonicity of the separating
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12 an introduction to separation logic

conjunction:2 if the entailment φ |= ψ is valid, so is φ ⋆ ζ |= ψ ⋆ ζ.
More precisely, the models of separation logics form separation alge-

bras [COY07], a concept that will appear in Chapter 5.
The monotonicity of the separating conjunction guarantees the

soundness of the following variant of the frame rule.

{φ} c {ψ}

{φ ⋆ ζ} c {ψ ⋆ ζ}

For example, the inference

{x 7→ v} ∗x := w {x 7→ w}

{x 7→ v ⋆ y 7→ v} ∗x := w {x 7→ w ⋆ y 7→ v}

is sound, because the use of ⋆ instead of ∧ enforces that x and y cannot
alias.

More generally, the separating conjunction enables succinct and
compositional specifications. To see this, it’s enough to replace ∧ with
⋆ in one of our previous examples:

{φ} c {ψ1 ⋆ ψ2}

{ψ1} foo(x, y) {ζ1}

{ψ2} bar(x, y) {ζ2}

The inferences in the following proof tree are now all sound:

{φ} c {ψ1 ⋆ ψ2}

{ψ1} foo(x, y) {ζ1}

{ψ1 ⋆ ψ2} foo(x, y) {ζ1 ⋆ ψ2}

{φ} c; foo(x, y) {ζ1 ⋆ ψ2}

{ψ2} bar(x, y) {ζ2}

{ζ1 ⋆ ψ2} bar(x, y) {ζ1 ⋆ ζ2}

{φ} c; foo(x, y); bar(x, y) {ζ1 ⋆ ζ2}

It thus suffices to derive Hoare triples for foo and bar whose precondi-
tions mention only the part of the heap that is relevant to the execution
of foo and bar. We then compose these specifications into larger spec-
ifications using the frame rule, without having to re-analyze foo or
bar. The frame rule thus enables compositional verification. Similarly, it
enables succinct specifications and proofs, because the specifications of
functions need only describe the local state accessible to the function.

Taking a different angle, the frame rule is the key to local, modular

program analyses [DOY06; Cal+11], because—absent recursion—we
can analyze or prove the correctness of each function of the program in
isolation. This explains the scalability and, ultimately, success of tools
based on separation logic [OHe19], which now span diverse formal
and semi-formal methods, including symbolic execution [BCO05b],
shape analysis [Cal+11], deductive Hoare-style verification [Jac+11;
PWZ14b], interactive theorem proving [KTB17; Jun+18], concolic exe-
cution [Pha+19a], and test-input generation [Pha+19b].

2 See [CCA17] for an in-depth examination of the shared properties of and differences
between separation-logic variants.
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2.3 a basic first-order separation logic 13

φatom ::= emp | x 7→ 〈y1, . . . , yk〉 | x ≈ y | x 6≈ y

φ ::= φatom | φ ⋆ φ | φ −⋆ φ | φ ∧ φ | φ ∨ φ | ¬φ | ∃x. φ | ∀x. φ

Figure 2.1: The syntax of a first-order separation logic

2.3 a basic first-order separation logic

Over the course of this thesis, I will study multiple variants of separa-
tion logic. I will introduce the syntax and semantics of these variants
as needed in Parts ii and iii of the thesis.

In this section, I formalize a simple first-order separation logic,
SLbase. This gives me the chance to introduce the stack–heap model

and formalize the separate connectives in a simple setting. More-
over, SLbase will serve as the basis for a discussion about alternative
semantics of the separating connectives in Chapter 3.

2.3.1 The Syntax of Separation Logic

In Fig. 2.1, I define the syntax of the first-order separation logic SLbase.
Informally, the meaning of the atomic formulas is as follows.

• The empty-heap predicate emp denotes the empty heap.

• The points-to assertion x 7→ 〈y1, . . . , yk〉 expresses that the pointer
variable x points to a heap-allocated object that consists of k

fields that store the values of the variables y1, . . . , yk.

• (Dis-)equalities x ≈ y and x 6≈ y express that the pointer variables
x and y alias and that they don’t alias, respectively.

The predicates emp and · 7→ · are often called spatial atoms because
they describe the spatial layout of the heap, whereas (dis-)equalities
are often called pure atoms [IO01].

The atomic formulas defined in Fig. 2.1 give rise to a rather mini-
malistic separation logic. Most separation logics provide additional
atomic formulas. Later in this thesis, I will consider an SL variant
with built-in atoms representing lists and trees as well as atoms for
reasoning about the data stored inside the heap (Part ii). I will also
consider an SL variant with a mechanism for user-defined predicates
(Part iii).

In SLbase, formulas are built using classical propositional connec-
tives ∧,∨,¬, quantifiers ∃, ∀, as well as a set of separating connectives,
the aforementioned separating conjunction ⋆ and its right adjoint, the
separating implication −⋆. Because of the appearance of the separating
implication, most people use the moniker magic wand instead. As
usual, we can derive additional operators such as classical implication
φ ⇒ ψ , ¬φ ∨ ψ and septraction φ−©⋆ψ , ¬(φ −⋆ ¬ψ) [BDL12; TBR14].
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14 an introduction to separation logic

Let us contrast the meaning of the classical and separating connec-
tives. While φ ∧ ψ means that the program state satisfies both φ and
ψ simultaneously, φ ⋆ ψ denotes that the program state can be split
into two disjoint parts which separately satisfy φ and ψ. In particular,
there can be no aliasing between the two disjoint parts of the program
state, which implies the soundness of the frame rule introduced in
Section 2.2. Similarly, while φ ⇒ ψ means that every program state
that satisfies φ also satisfies ψ, φ −⋆ ψ means that the extension of the
program state with any program state that satisfies φ yields a program
state that satisfies ψ.

The magic wand is particularly useful for weakest-precondition
reasoning, for example to express memory allocation [IO01; Rey02].
In much of the separation-logic literature as well as in the bulk of the
tools, the magic wand is not considered or only partially supported,
however, because its inclusion in a separation logic quickly leads to
undecidability [BDL12; App14; BH15; SS15].

2.3.2 The Semantics of Separation Logic

the stack–heap model . In this thesis, I use stack–heap pairs as
models of SL formulas. While clearly not the only possible model of
separation logics for reasoning about unbounded data structures, it
has been the most-widely used model ever since the first papers on
SL were written [IO01; Rey02]. A stack–heap pair is a pair of partial
functions (s, h). The stack s is a partial function from (program and
logical) variables to some set(s) of values. The set(s) of values may
be identical to or subsume the set of addressable memory locations.
The heap h is a partial function from memory locations to ordered
sequences of values.

Let us formalize these definitions. Throughout this thesis, Var de-
notes a countable infinite set of variables with nil ∈ Var. Here, nil can
be seen as an auxiliary constant that we can use to refer to the null
pointer in separation-logic formulas.

We also need a countably infinite set of addressable memory loca-
tions Loc and a set of values Val with Loc ⊆ Val. Note that interpret-
ing Loc by an infinite set is a deliberate abstraction from the (finite, e.g.
64 bit) address space of a real program. In a “shape-only” separation
logic whose formulas constrain only the shape, not the content of the
heap, we can simply set Val , Loc. This will be the case in Part iii. If
we want to combine reasoning about shape and content, we also need
to model the data stored in the heap, so Val will subsume both the
locations and a data domain. This will be the case in Part ii.

A stack is a finite partial function s : Var ⇀ Val. I implicitly assume
nil ∈ dom(s) for every stack, but unless nil is relevant for an example
at hand, I often do not explicitly include nil when defining stacks. A
heap is a finite partial function h : Loc ⇀ Val+ that maps locations to

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.3 a basic first-order separation logic 15

(s, h) |= emp iff h = ∅

(s, h) |= x ≈ y iff s(x) = s(y) and h = ∅

(s, h) |= x 6≈ y iff s(x) 6= s(y) and h = ∅

(s, h) |= x 7→ y iff h = {s(x) 7→ s(y)}

(s, h) |= φ ⋆ ψ iff ex. h1, h2 s.t. h1 ∩ h2 = ∅, h = h1 ∪ h2,

(s, h1) |= φ, and (s, h2) |= ψ

(s, h) |= φ −⋆ ψ iff for all h0, if h0 ∩ h = ∅ and (s, h0) |= φ

then (s, h0 ∪ h) |= ψ

(s, h) |= φ ∧ ψ iff (s, h) |= φ and (s, h) |= ψ

(s, h) |= φ ∨ ψ iff (s, h) |= φ or (s, h) |= ψ

(s, h) |= ¬φ iff (s, h) 6|= φ

(s, h) |= ∃x. φ iff ex. ℓ ∈ Loc s.t. (s∪ {x 7→ ℓ} , h) |= φ

(s, h) |= ∀x. φ iff for all ℓ ∈ Loc, (s∪ {x 7→ ℓ} , h) |= φ

Figure 2.2: A semantics of first-order separation logic. I implicitly assume for
all formulas φ that fvars(φ) ⊆ dom(s), i.e., (s, h) |= φ is undefined
if fvars(φ) * dom(s).

ordered sequences of values. By mapping to a sequence rather than a
single location, the heap maps every allocated memory location to the
entire structure allocated at this location. This is a fairly standard (but
far from ubiquitous [Rey02; Cal+06]) abstraction from actual memory
layout; it simplifies the model and does not lose precision as long
as we are not interested in pointer arithmetic or other word-level
operations. I write Stacks for the set of all stacks and Heaps for the
set of all heaps.

A model is a stack–heap pair (s, h) with s(nil) /∈ dom(h), reflecting
that the null pointer cannot be allocated.

semantics . I define a semantics for our basic first-order separation
logic SLbase in Fig. 2.2. In the definition of the model relation (s, h) |=
φ, I implicitly assume that all variables that occur in a formula φ are
defined in the stack s, i.e., (s, h) |= φ is undefined if fvars(φ) * dom(s).
This assumption is necessary because of my nonstandard choice to
define stacks as finite partial functions s : Var ⇀ Val. (On the other
hand, using partial functions will simplify some of the development
in Parts ii and iii.)

The empty-heap predicate emp holds iff the heap is empty; equali-
ties and disequalities between variables hold iff the stack maps the vari-
ables to identical and different values, respectively. For (dis-)equalities,
I additionally require that the heap is empty. This is nonstandard, but
not unprecedented [PWZ13], and will simplify some of the develop-
ment later in this thesis.
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16 an introduction to separation logic

A points-to assertion x 7→ 〈y1, . . . , yk〉 holds in a singleton heap that
allocates only the location s(x) and stores the values s(y1), . . . , s(yk)

in this location. This is often called a precise [COY07] semantics, be-
cause the heap contains precisely the object described by the points-to
assertion, nothing else.

The separating connectives are formalized in terms of disjoint
unions of heap functions: in the standard semantics presented here,
(s, h) |= φ ⋆ ψ if and only if there exist domain-disjoint functions h1,
h2 such that their point-wise union is h and such that (s, h1) |= φ and
(s, h2) |= ψ. I will argue in Chapter 3 and Part ii that there are other
reasonable semantics for ⋆ that may simplify automated reasoning
about the logic.

While the separating conjunction is about splitting the heap, the
magic wand is about extending the heap: (s, h) |= φ −⋆ ψ if all ways to
extend h with a disjoint model of φ yields a model of ψ.

The semantics of the Boolean operators and the quantifiers is stan-
dard; for simplicity I only allow quantifying over locations, not over
arbitrary values. This is necessary because variables in SLbase (as well
as the other logics in this thesis) are not sorted—their interpretation is
not constrained to either Loc or Val \ Loc—and it rarely makes sense
for a single variable to range both over memory locations and over the
domain of data values stored in the heap.

Example 2.1. 1. (x 7→ y) ⋆ (y 7→ nil) states that the heap consists of

exactly two objects, one pointed to by x, the other pointed to by y; that

the object pointed to by x contains a pointer to the object pointed to by

y; and that the object pointed to by y contains a null pointer. Put less

precisely but more concisely, x points to y, y points to nil, and x and

y are separate objects in the heap. The precise semantics of points-to

assertions guarantees that there are no other objects in the heap.

2. (x 7→ y) ∧ (z 7→ y) states that (1) the heap consists of a single object

x that points to y and that simultaneously (2) the heap consists of a

single object z that points to y. This formula is only satisfiable in stacks

s with s(x) = s(z).

3. (x 7→ y)−⋆ (z 7→ y) states that after adding a pointer from x to y to

the heap, we obtain a heap that contains a single pointer from z to y.

This formula is only satisfiable in the empty heap and in stacks s with

s(x) = s(z).

4. ∀x. (x 7→ nil)−⋆ ((¬emp) ⋆ (¬emp)) states that the heap contains

at least one pointer: No matter which variable we allocate additionally,

the resulting heap can be split into two nonempty parts, so the original

heap must itself have been nonempty. We could, of course, state this

property more succinctly as ¬emp.
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2.3 a basic first-order separation logic 17

2.3.3 Automated Reasoning about Separation Logic

While program verification and –analysis are the motivation for study-
ing separation logic, they are not the focus of this thesis. Instead, I
mainly focus on automated reasoning about separation-logic formulas.
Roughly speaking, such automated reasoning forms the backend of
an automated verifier or static analyzer based on SL: the verifier or
analyzer generates queries, i.e., SL formulas, which we would like
to answer automatically. This leads to the following two decision
problems.

• The satisfiability problem: given an SL formula φ, is there a stack-
heap pair (s, h) that satisfies φ?

• The entailment problem: given two formulas φ, ψ, is it the case for
all stack–heap pairs with (s, h) |= φ and dom(s) ⊇ fvars(φ) ∪

fvars(ψ) that (s, h) |= ψ holds as well?

We already saw in Section 2.2 that the entailment problem is central
to Hoare-style deductive verification: the rule of consequence involves
two instances of the entailment problem. This is in contrast to most
other Hoare-logic rules, which can be applied purely syntactically.
Given this central role of entailment checking in deductive verification,
it is not surprising that the entailment problem has received the bulk of
the attention in the corner of the separation-logic literature that is con-
cerned with automated deduction [BCO04; BDP11; Ene+14; Ene+17;
IRS13; IRV14; PR13; MJN15; SI18; Sig+19; Ta+18; TK15; TNK19].

For the first-order separation logic SLbase defined in this section,
satisfiability and entailment are, of course, undecidable. After all, the
logic can be seen as an extension of first-order predicate logic with
binary relations [CYO01], which is already undecidable.3

Many fragments of separation logic with decidable entailment prob-
lems have been proposed and implemented [BCO04; IRS13; IRV14;
PWZ13; PWZ14a; SI18; TK15; TNK19]; usually, these fragments restrict
or disallow quantifiers, the magic wand, and negation. I attempt a
more-or-less thorough overview of the “decidability landscape” in
Chapter 14.

The symbolic-heap fragment

Much effort has been put into automated reasoning about the
symbolic-heap fragment. This fragment is suitable as an abstract
domain in program analyses [BCO05b] and expressive enough to
write interesting specifications. At the same time, reasoning about
symbolic heaps is tractable [Coo+11] or at least decidable, even

3 It is less easy to see that the logic remains remains undecidable even if we only allow
unary points-to assertions, i.e., points-to assertions of the form x 7→ y. See [BDL12]
for a proof.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

18 an introduction to separation logic

when considering quite general data structures [IRS13]; as such,
this fragment has also been the main focus of the Competition of

Solvers for Separation Logic [Sig+19].
A symbolic heap is a formula of the form

∃ x1, . . . , xk
︸ ︷︷ ︸

k≥0

. φatom ⋆ · · · ⋆ φatom
︸ ︷︷ ︸

1 or more atoms

.

Since negation is not allowed in symbolic heaps, the entailment
problem for symbolic heaps is genuinely different from the satisfi-
ability problem—it is impossible to solve an entailment φ |= ψ by
checking the unsatisfiability of φ ∧ ¬ψ, because the latter formula
is not a symbolic heap.

This thesis can be seen as a search for the right trade-off between
expressiveness and tractability—to find a separation logic in which we
can express and prove interesting properties, and for which automa-
tion of the entailment problem is also feasible. Obviously, there is not
the one right trade-off; depending on your goals and target applica-
tions, quite different trade-offs may be appropriate. For example, if
you need a lightning fast bug finder, you may go for a logic that is not
very expressive and try to solve queries in this logic with a set of fast
but incomplete heuristics [Cal+11]. Conversely, if you’re interested
in building a deductive-verification tool for code annotated with con-
tracts and loop invariants, you may prefer a more expressive logic that
allows you to prove more complex properties of the program [Chi+12;
Qiu+13; PWZ14b].

2.3.4 Further Reading

So far, I’ve provided you with an informal motivation for separation
logic as well as a formal definition of a simple separation logic. If you
are interested specifically in an overview of decision procedures for
separation logic, you can have a look at Chapter 14.

If you’re looking for a more thorough introduction to separation
logic and its use in program specification and verification, I still
recommend “the classic”, John C. Reynold’s paper [Rey02]. For a
more up-to-date overview that recounts much of the development
of the past two decades, you should have a look at O’Hearn’s very
recent article [OHe19]. I also recommend Christoph Matheja’s PhD the-
sis [Mat20], which contains a very detailed and accessible introduction
to the analysis and verification of heap-manipulating programs.
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2.4 reasoning about stack–heap models 19

2.4 reasoning about stack–heap models : locations , iso-
morphism , aliasing

Several concepts appear again and again throughout Parts ii and iii:
we need to distinguish between several types of locations; we need
to reason about isomorphism; and we need to keep track of aliasing.
I formalize these terms below. This section is meant as a reference
section; you can skim it on a first reading. All notation introduced
below also appear in the List of Symbols at the beginning of this
document.

locations . We will frequently have to reason about the locations
in a heap. Let s ∈ Stacks be a stack and let h ∈ Heaps be a heap.
A location ℓ is labeled iff ℓ ∈ img(s). We let locs(h) , dom(h) ∪

((
⋃

img(h)) ∩ Loc). A location ℓ ∈ Loc is an allocated location in h

if ℓ ∈ dom(h) and a referenced location if ℓ ∈ img(h). Similarly, a
variable x is allocated or referenced if s(x) is allocated or referenced,
respectively.

A location ℓ is dangling if ℓ ∈ locs(h) \ dom(h) and a variable x is
dangling if s(x) is dangling. We collect all dangling locations of a heap
h in dangling(h).

We define alloced(s, h) , {x | s(x) ∈ dom(h)} and refed(s, h) ,

{x | s(x) ∈ img(h)}, i.e., the sets of allocated variables and referenced

variables of the model (s, h).

isomorphism . Two models are isomorphic if one can be trans-
formed into the other by renaming locations.

Definition 2.2 (Isomorphic models). Let (s, h), (s′, h′) be models. (s, h)
and (s′, h′) are isomorphic, (s, h)∼=(s′, h′), iff there exists a bijection

σ : Val → Val

such that

1. for all v ∈ Val \ Loc, σ(v) = v,

2. for all x, s′(x) = σ(s(x)), and

3. h′ = {σ(ℓ) 7→ σ(h(ℓ)) | ℓ ∈ dom(h)}.

We call σ an isomorphism.

By demanding in Definition 2.2 that the bijection σ is the identity
on Val \ Loc, we capture that the two heaps must agree on the data
stored inside the allocated heap locations.

Neither the logic SLbase, nor the logics SSL+
data and SLID

E A

btw studied
in Parts ii and iii can distinguish between isomorphic models.
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20 an introduction to separation logic

aliasing . In general, the stack may map multiple variables to the
same location, i.e., variables may be aliases.

We sometimes need to pick a variable from sets of aliases. To make
this choice consistently, I assume a linear order on Var and denote
by max(v) the maximal variable among a finite set of variables v

according to this order.
For example, we need the stack-choice function of stack s, a partial

function that maps every location ℓ ∈ img(s) to a variable x with
s(x) = ℓ.

Definition 2.3 (Stack inverse and stack-choice function). Let s be a

stack.

1. The function s−1 , {l 7→ {x | s(x) = l}} is the stack inverse

2. The function s−1
max ,

{
l 7→ max(s−1(l))

}
is the stack-choice func-

tion of s.

Stack aliasing induces an equivalence relation, the stack-aliasing

constraint of s given by

aliasing(s) , {(x, y) | x, y ∈ dom(s) and s(x) = s(y)} .

The equivalence class in aliasing(s) of variable x is

[x]s= , {y | s(y) = s(x)} .

Just like with other functions, I sometimes apply [·]s= to sequences
in a point-wise manner, i.e., write [〈y1, . . . , yk〉]

s
= as shorthand for

〈
[y1]

s
=, . . . , [yk]

s
=

〉
. The set of all equivalence classes of s is

classes(s) ,
{
[x]s= | x ∈ dom(s)

}
.

Finally, the following auxiliary notation will simplify reasoning
about stack aliasing.

• I frequently denote a fixed stack-aliasing constraint by Σ.

• The domain of stack-aliasing constraint Σ are all variables on
which Σ is defined, i.e., dom(Σ) , {x | (x, x) ∈ Σ}.

• The restriction of stack-aliasing constraint Σ to the variables y is
Σ|y , Σ ∩ (y × y).

• ACx , {aliasing(s) | dom(s) = x} is the set of all stack-aliasing
constraints over variables x.

Observe that ACx is finite if x is finite—Its size is given by the |x|-th
Bell number.
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3
C O N T R I B U T I O N S & O V E RV I E W

This thesis consists of two main technical parts. In each of these
parts, I study the satisfiability and entailment problem of a variant of
separation logic, prove (un-)decidability and complexity results, and
develop decision procedures.

I briefly summarize the main contributions and then continue with
a more detailed overview of both parts.

strong-separation logic (Part ii). While the magic wand is
clearly useful—for example, for reasoning about memory allo-
cation in weakest-precondition calculi—it is too powerful: sep-
aration logics that allow both the magic wand and inductive
predicates are generally undecidable. For example, propositional
separation logic with the singly-linked list predicate is undecid-
able [DLM18].

In this thesis, I show how to obtain a PSpace-decidable separa-
tion logic with magic wand, negation, and inductive predicates
for lists and trees. The key to the decidability result is assigning
a more restrictive but natural semantics to the separating con-
nectives. I call this more restrictive notion of separation strong

separation and the resulting logic strong-separation logic.

data predicates (Part ii). Most decidability results for separa-
tion logics are limited to “shape-only” specifications, which
describe the shape of the program heap, but not its content. In a
shape-only specification, I can express that the heap contains a
list, but not that this list is sorted.

In this thesis, I introduce a novel way of mixing reasoning about
shape and data: I introduce a family of data predicates that can
be passed as additional arguments to inductive predicates to con-
strain the data stored inside the data structures. I show that the
resulting logic is expressive enough to axiomatize common data
structures (such as sorted lists, binary search trees, max heaps,
etc.), while retaining good computational properties. Specifically,
entailment in an extension of the symbolic-heap fragment of the
logic is decidable in coNP.

inductive definitions (Part iii). In many variants of separa-
tion logic, systems of recursive equations can be used to define
custom data structures. Among these, “shape-only” symbolic-
heap separation logic with inductive definitions, a generalization
of the original symbolic-heap fragment [BCO04; BCO05b], has

21
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22 contributions & overview

received a lot of attention [BDP11; Ene+14; IRV14; SI18; Ta+18;
TK15; TNK19; Sig+19]. Entailment in this logic is undecidable in
general [Ant+14], but a large fragment, which I denote SLIDbtw

in this thesis, was shown decidable via reduction to monadic
second-order logic by Iosif et al. [IRS13]. Unlike most other de-
cidable separation logics, this fragment allows definitions of data
structures “beyond trees,” i.e., of data structures that are neither
lists or trees. For example, binary trees with linked leaves can be
defined in SLIDbtw.

Iosif et al. [IRS13] did not propose a practical decision proce-
dure for SLIDbtw; the authors remarked in the follow-up pa-
per [IRV14] that “the method from [IRS13] causes a blowup
of several exponentials in the size of the input problem and is
unlikely to produce an effective decision procedure.” To circum-
vent this blowup, I develop a direct, model-theoretic decision
procedure for an extension of SLIDbtw. This decision procedure
proved to have potential in practice [Sig+19], but takes double-
exponential time in the size of the input in the worst case. In
light of a recent 2ExpTime-hardness proof [EIP20], we now know
that this asymptotic behavior is unavoidable.

Let us look at each of these three contributions in more detail.

3.1 strong-separation logic

Strong-separation logic (SSL) is the main object of study in Part ii of the
thesis. The hyphen is important here. I do not claim to have made
separation logic strong. Rather, I propose a logic with a more restrictive
notion of separation than is commonly used—which yields stronger
guarantees on the way a model of a separating conjunction φ1 ⋆ φ2 can
be decomposed into models of φ1 and φ2.

In this section, I give an informal introduction to SSL.1 All formal
details follow in Part ii.

strong separation. As explained in Chapter 2, the separating
conjunction ⋆ is at the heart of the success of SL, because it supports
concise statements about the disjointness of resources and enables
compositional specification and verification.

The standard semantics of ⋆ allows splitting a heap into two ar-
bitrary sub-heaps. The magic-wand operator −⋆, which is the right
adjoint of ⋆, allows extension by arbitrary heaps. The possibility of
such arbitrary splits and extensions makes reasoning about SL formu-
las difficult, and quickly renders separation logic undecidable when
inductive predicates for data structures are considered. For example,

1 Florian Zuleger contributed significantly to the informal introduction to strong-
separation logic.
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Demri et al. showed that adding only the singly-linked list-segment
predicate to propositional separation logic (i.e., with ⋆,−⋆ and classical
connectives ∧,∨,¬) leads to undecidability [DLM18].

Most SL specifications used in automated verification do, however,
not make use of arbitrary heap (de-)compositions. For example, as
far as I am aware, all decidable variants of the widely used symbolic-
heap fragments of separation logic (see e.g., [BCO04; BCO05b; Coo+11;
IRS13; IRV14; MJN15; TK15; TNK19]) have the following property.
To show that a model of a symbolic heap satisfies a separating con-
junction, it is always sufficient to split the model at the locations that
interpret program variables (for quantifier-free symbolic heaps) and
logical variables (for existentially-quantified symbolic heaps).

This observation motivates a more restrictive separating conjunction
that allows splitting the heap only at locations pointed to by variables.

The difference between the standard, “weak” semantics and the
“strong” semantics is best explained by example. Let (s, h) be a stack–
heap pair as introduced in Chapter 2. A dangling pointer is a variable
x such that s(x) ∈ img(h) \ dom(h), i.e., a pointer variable that is the
target of a pointer in the heap, but is not itself allocated.

Figure 3.1a shows a graphical representation of a stack–heap pair
(s, h) that satisfies the formula ls(x, y) ⋆ ls(y, nil). Here, ls denotes the
list-segment predicate. As shown in Fig. 3.1a, h can be split into two
disjoint parts h1 and h2 such that (s, h1) is a model of ls(x, y) and
(s, h2) is a model of ls(y, nil). Now, the sub-heap h1 has a dangling
pointer with target s(y) (displayed with an orange background), while
no pointer is dangling in the heap h.

The standard semantics of ⋆ allows splitting a heap into two ar-
bitrary sub-heaps, which may result in the introduction of arbitrary
dangling pointers into the sub-heaps. Note, however, that the intro-
duction of dangling pointers is not arbitrary when splitting the models
of ls(x, y) ⋆ ls(y, nil); there is only one way of splitting the models of
this formula, namely at the location of program variable y.

Standard SL semantics also allows the introduction of dangling
pointers without the use of variables. Fig. 3.1b shows a model of
ls(x, nil) ⋆ t—assuming the standard semantics. Here, the formula t (for
true) stands for any arbitrary heap. In particular, this includes heaps
with arbitrary dangling pointers into the list segment ls(x, nil). This
power of introducing arbitrary dangling pointers is what is used by
Demri et al. for their undecidability proof of propositional separation
logic with the singly-linked list-segment predicate [DLM18].

Using such a semantics of φ1 ⋆φ2 allows us to make stronger assump-
tions about the ways that the models of φ1 and φ2 may overlap. For this
reason, Florian Zuleger and I decided to call the resulting logic strong-
separation logic [PZ20b]. Strong-separation logic (SSL) shares many
properties with standard separation-logic semantics. For example, the
models of SSL formulas form a separation algebra [COY07], which
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x y nil = x y + y nil

(a) A model of ls(x, y) ⋆ ls(y, nil) in both the standard semantics and our strong
semantics.

x nil = x nil +

(b) A model of ls(x, nil) ⋆ t in the standard semantics.

Figure 3.1: Two models and their decomposition into disjoint submodels. An
orange background highlights the dangling pointers of submod-
els.

guarantees the soundness of the standard frame rule of separation
logic [Rey02]. Consequently, SSL can be used instead of standard SL in
a wide variety of (semi-)automated analyzers and verifiers, including
Hoare-style verification [IO01; Rey02], symbolic execution [BCO05b],
and Infer-style bi-abductive analyses [Cal+11; Cal+15].

At the same time, SSL has much better computational properties
than standard SL—especially when formulas contain expressive fea-
tures such as the magic wand, −⋆, or negation. Specifically, I will
present a PSpace decision procedure for the satisfiability problem of
full propositional SSL with the singly-linked list-segment predicate,
singly-linked tree predicate, and a notion of relational data predicates
(discussed further below). Note that this matches the complexity of
propositional separation logic without any inductive predicates, i.e.,
limited to points-to assertions [CYO01].

The PSpace result is in stark contrast to the aforementioned un-
decidability result obtained by Demri et al. [DLM18] for the logic
without trees or data predicates, but assuming the standard semantics
of the separating conjunction.

The decidability result makes SSL a very promising formalism for
automating Hoare-style verification, as we can automatically discharge
the verification conditions (VC) generated by strongest-postcondition
and weakest-precondition calculi. This is much harder to achieve with
standard SL; to quote from [App14, p. 131]: “VC-generators do not
work especially well with separation logic, as they introduce magic-
wand −⋆ operators which are difficult to eliminate.”

3.2 data predicates

I will also define an extension of SSL in which inductive predicates
can be annotated with data predicates. Data predicates make it possible
to specify universal and existential properties of the content of data
structures. This allows us to go beyond memory correctness to auto-
matically prove functional-correctness properties of programs with
recursive data structures.
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Data predicates can be unary or binary, and they can be existential or
universal, for a total of four “flavors” of data predicates. A unary data
predicate asserts that the data structure contains a value that satisfies
the predicate (existential) or that all values in the data structure satisfy
the predicate (universal). By convention, the variable α occurs in all
unary data predicates and ranges over the data stored in the data
structure. For example, consider the formula

ls(x, [α ≈ c]∃) ⋆ ls(y, [α 6≈ c]∀),

where c is a fresh constant. The formula expresses that the lists have
different contents: the list with head x contains the data value c, as
specified by the existential predicate [α ≈ c]∃. You should read it as
“if I instantiate α with all data values stored in the list with head x, I
will find at least one value d that satisfies d ≈ c.” Similarly, the list
with head y does not contain c, as specified by the universal predicate
[α 6≈ c]∀, to be read as “all values d stored in the data structure satisfy
the formula d 6≈ c.”

A binary data predicate has two variables that are instantiated
with the data stored in the data structure, α and β. Moreover, it
always contains a field identifier. For example, the universal binary data
predicate [l : β < α]∀ can be read as “for all pairs of locations ℓ1, ℓ2 in,
if ℓ2 can be reached from ℓ1 by first dereferencing the field l (for left),
if ℓ2 stores d2 and ℓ1 stores d1, then d2 < d1 holds.” Put more simply,
all values stored in the left subtree of ℓ1 (for arbitrary tree location
ℓ1) are smaller than the value stored in ℓ1. Analogously, [r : β > α]∀

expresses that all values in the right subtree (specified via the field
identifier r) of a tree location ℓ are larger than the value stored in ℓ.

By combining the two predicates, we can thus specify that a tree is
a binary search tree. To give a concrete example,

tree(x,
{

[l : β < α]∀, [r : β > α]∀
}

)

asserts that x is the root of a binary search tree defined over fields l

and r.
The purpose of these examples was to give you a rough intuition for

what you can express with data predicates in SSL, so it does not matter
if you didn’t get all the details. You will find more examples as well as
the formal syntax and semantics of data predicates in Part ii. There, I
also present a decision procedure of a fragment of the logic with data
predicates but without magic wands or unguarded negations.

In Chapter 14, I will compare SSL with data predicates to other heap
logics that support some form of data constraints.

3.3 inductive definitions

Initially, separation logic was used for manual proofs of program
correctness [IO01; Yan01; Rey02]. The (unsurprising) undecidability
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of first-order separation logic and a few decidability results were
established early on [CYO01], but it took several more years until
Berdine et al. first showed the applicability of SL-based reasoning
in practice with the development of Smallfoot [BCO05a]. Smallfoot
uses a fragment of separation-logic as symbolic states in symbolic
execution [BCO05b]. This fragment is since known as the symbolic-heap

fragment of separation logic (see also Section 2.3.3).
Many tools, including Smallfoot, have hardcoded support for a

small number of data structures, typically variants of lists or binary
trees [BCO04; Coo+11; PR13; PWZ13; PWZ14a]. There has, however,
been significant theoretical [Ant+14; IRS13] and practical [Sig+19]
work on the symbolic-heap fragment with user-defined inductive
definitions. In this fragment, the user of the logic can define their
own custom data structures by providing a set of recursive equations
that I call systems of inductive definitions (SIDs) and define formally in
Chapter 8. The formulas in the equations are themselves symbolic
heaps. The semantics of the user-defined predicates is then given by
the least fixed point of the equation system. For example, the equations

lseg(x1, x2) ⇐ x1 7→ x2

lseg(x1, x2) ⇐ ∃y. (x1 7→ y) ⋆ lseg(y, x2)

define a binary predicate lseg whose models are all nonempty singly-
linked list segments.

If arbitrary symbolic heaps are allowed in SIDs, the entailment
problem of the symbolic-heap fragment with inductive definitions is
undecidable [Ant+14]. To obtain a decidable logic, it is thus necessary
to restrict the inductive definitions; for example, restricting them to
linear structures [GCW16] or tree structures [TK15; TNK19; IRV14].

It is, however, also possible to go beyond trees. Iosif et al. [IRS13]
proposed to restrict SIDs in a way that guarantees that all models of
the user-defined predicates (when viewed as graphs) have bounded
treewidth. I denote this fragment of SIDs by IDbtw in this thesis. The re-
striction to IDbtw made it possible to solve the entailment problem for
symbolic heaps via a reduction to the satisfiability problem of monadic
second-order logic (MSO) over graphs of bounded treewidth (BTW),
which can be encoded into MSO over trees [Cou90], the decidability
of which is a classical result by Rabin [Rab69].

In IDbtw we can, for example, define a predicate for trees with linked
leaves (TLL), which can be used to implement an efficient sorted-set
data structure. I define such a predicate and display a small TLL in
Fig. 3.2.

The satisfiability problem of MSO over graphs of BTW is nonelemen-
tary, but the reduction in [IRS13] has a bounded number of quantifier
alternations, leading to an elementary recursive decision procedure
that is, however, still several times exponential [IRV14].
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3.4 abstraction-based satisfiability checking 27

tll(x1, x2, x3) ⇐ (x1 7→ 〈nil, nil, x3〉) ⋆ (x1 ≈ x2)

tll(x1, x2, x3) ⇐ ∃ 〈l, r, m〉 . (x1 7→ 〈l, r, nil〉)

⋆ tll(l, x2, m)

⋆ tll(r, m, x3)

(a) The definition of the tll predicate representing
trees with linked leaves.

x1

x2 x3

(b) A model of
tll(x1, x2, x3).

Figure 3.2: A system of inductive definition (SID) defining trees with linked
leaves. This SID is in the fragment IDbtw introduced in [IRS13].

My primary goal in Part iii is to develop a more practical decision
procedure for separation logic with inductive definitions from IDbtw.
I present a direct model-theoretic decision procedure, as opposed to
a reduction to a different formalism. This decision procedure runs
in double-exponential time in the worst case. Granted, this does not
sound all that practical; fortunately, the performance in practice is
much better than the asymptotic complexity would suggest [Sig+19].
Moreover, there is no hope to obtain a decision procedure with better
asymptotic behavior: The entailment problem for IDbtw was recently
shown to be hard for 2ExpTime [EIP20].

I also study whether we can allow arbitrary definitions from IDbtw,
but go beyond the symbolic-heap fragment. I show that it is possible to
allow classical conjunction and disjunction, as well as guarded variants
of negation, magic wand, and septraction, i.e., formulas of the form
φ ∧ ¬ψ, φ ∧ (ψ1 −⋆ ψ2) and φ ∧ (ψ1 −©⋆ ψ2). I also show that allowing
any of these three operators without guards yields an undecidable
logic. This leaves us with an almost complete picture of the decidability
landscape for separation logics with IDbtw definitions.

3.4 abstraction-based satisfiability checking

As discussed earlier in this chapter, both Part ii and Part iii are centered
around a decision procedure for a variant of SL. Both of these decision
procedures are based on a compositional abstraction that refines the
satisfaction relation of the respective SL variant. In this section, I
briefly discuss this approach in a generic setting.

Let SL be a variant of separation logic. We are looking for a finite ab-
stract domain A and an abstraction function abst : Stacks × Heaps →

A with the following key properties.

refinement. If abst(s, h1) = abst(s, h2), then (s, h1) and (s, h2) sat-
isfy the same SL formulas, so the equivalence relation induced
by the abstraction function,

(s, h1) ≡abst (s, h2) iff abst(s, h1) = abst(s, h2),

refines the satisfaction relation.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

28 contributions & overview

compositionality. There exists an operation • : A ×A ⇀ A such
that abst(s, h1 ⊔ h2) = abst(s, h1) • abst(s, h2), where ⊔ is the no-
tion of disjoint union used to give the semantics to the separating
conjunction. (This notion of disjoint union will differ between
Parts ii and iii.)

Refinement and compositionality make it possible to go from the
function abst : Stacks × Heaps → A to a function

abstSL : SL → A,

φ 7→ {abst(s, h) | (s, h) |= φ} ,

because

1. if a ∈ abstSL(φ1) ∩ abstSL(φ2) then a ∈ abstSL(φ1 ∧ φ2) (by re-
finement), and

2. if a1 ∈ abstSL(φ1) and a2 ∈ abstSL(φ2) then a1 • a2 ∈ abstSL(φ1 ⋆

φ2) (by compositionality).

Provided we come up with a way to compute the abstraction of
atomic formulas, we can then use abstSL for satisfiability checking:
abstSL(φ) 6= ∅ iff φ is satisfiable.

Table 3.1 points you to the key definitions and results of Parts ii
and iii. Besides the results explained above, I’ve included a few addi-
tional key lemmas.
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Part ii Part iii

Abstract domain AMS (Definition 6.9) Φ-type (Definition 11.17)

Size of domain Lemma 7.4 Lemma 11.39

SL Variant SSL SLIDg
btw

Compositionality Lemma 6.26 Corollary 11.32

Decomposability Lemma 6.27 Lemma 12.7

Refinement Theorems 6.28 and 6.38 Theorem 12.10

Computability Fig. 6.4 Predicates: Fig. 12.1

SLIDg
btw: Fig. 12.2

Decidability Theorem 6.45 Theorem 12.30

Table 3.1: Key definitions and results in Parts ii and iii.
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4
H E A P S A S D I R E C T E D G R A P H S

Throughout this thesis, I take a model-theoretic perspective: all deci-
sion procedures in this thesis are based on abstracting or encoding
models, rather than designing proof systems. When thinking about
stack–heap pairs, it is often useful to view them as directed graphs.

from stack–heap models to graphs . All of the technical
development in this thesis is, to a varying degree, informed by view-
ing the program heap as a directed graph whose nodes are the heap
locations and whose edges are the pointers between the heap locations.

Sometimes, I don’t care about the order of the pointers, i.e., about
the order of the sequences in img(h). In these cases, the following
notion of directed graphs is sufficient.

Definition 4.1 (Directed graph). Let VG ⊆ Loc be a finite set of locations

and EG ⊆ VG × VG . The pair G = 〈VG , EG〉 is a directed graph.

When I do care about the order in img(h), I label the edges of the
directed graph according to this order, obtaining a directed indexed

graph.

Definition 4.2 (Directed indexed graph). A directed indexed graph
is a pair G = 〈VG , EG〉, where VG ⊆ Loc is a finite set of locations and

EG ⊆ Loc × N × Loc.

In both types of graphs, VG are the nodes of the graph and EG are
the edges of the graph.

Let h be a heap in the sense of Section 2.3.2 and recall from Sec-
tion 2.4 that locs(h) denotes the locations in the domain and image of
the heap. The function graph of h induces a directed graph as follows.

Definition 4.3 (Induced graphs). Let h : Loc ⇀ Val∗ be a heap. The

induced graph and induced indexed graph of h are given by

graph(h) ,
〈
locs(h),
⋃

{{〈ℓ0, v〉 | v ∈ h(ℓ0) ∩ Loc} | ℓ0 ∈ dom(h)}
〉

igraph(h) ,

〈

locs(h),
⋃ {

{〈ℓ0, i, vi〉 | 1 ≤ i ≤ k, vi ∈ Loc} |

ℓ0 ∈ dom(h), h(ℓ0) = 〈v1, . . . , vk〉
}
〉

If igraph(h) = 〈VG , EG〉 and 〈ℓ1, i, ℓ2〉 ∈ EG , then the i-th field of the
structure allocated at location ℓ1 in the heap is a pointer to location
ℓ2. The restriction to Loc in the induced graphs guarantees that we

31
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32 heaps as directed graphs

only include locations, not data (i.e., elements from Val \ Loc) in the
induced graphs. The nodes of the induced graphs are all memory
locations that are allocated or referenced in h; the edges of the induced
graphs are all pointers between memory locations.

Example 4.4 (Induced graph). Assume Loc = N and Val = Loc ∪

{true, f alse} let h , {1 7→ 〈2, 3, true〉 , 2 7→ 〈0, 0, f alse〉 , 3 7→ 4}.

1. graph(h) = 〈{0, 1, 2, 3, 4} , {〈1, 2〉 , 〈1, 3〉 , 〈2, 0〉 , 〈3, 4〉}〉,

2. igraph(h) =
〈
{0, 1, 2, 3, 4} , {〈1, 1, 2〉 , 〈1, 2, 3〉 , 〈2, 1, 0〉 , 〈2, 2, 0〉 ,

〈3, 1, 4〉}
〉
.

reasoning about directed graphs . Later in the thesis, we
will need several graph-theoretic concepts like reachability, paths, cy-
cles, etc. We will also need to reason about specific classes of graphs,
such as trees. In the remainder of this section, I formalize these con-
cepts. You can treat this section as a reference section and skim it on a
first reading.

Definition 4.5 (Reachability and paths). Let G = 〈VG , EG〉 be a directed

indexed graph.

• ℓ1
i
→G ℓ2 holds iff 〈ℓ1, i, ℓ2〉 ∈ EG .

• ℓ1 →G ℓ2 holds iff there exists an i such that ℓ1
i
→ ℓ2 holds.

• ℓ1
∗
→G ℓ2 holds if there exist ℓ′1, . . . , ℓ′k, k ≥ 1, such that ℓ1 = ℓ′1,

ℓ2 = ℓ′k, and for all 1 ≤ j < k, ℓ′j → ℓ′j+1 holds. In this case, we say

that ℓ2 is reachable from ℓ1. If ℓ′1, . . . , ℓ′k are pairwise different, they

are a path of length k − 1.

• ℓ1
+
→G ℓ2 holds if there exists an ℓ′ such that ℓ1 →G ℓ′ and ℓ′

∗
→G ℓ2.

• ℓ1
i∗
−→G ℓ2 holds if there exist an ℓ′ with ℓ1

i
→G ℓ′ and ℓ′

∗
→G ℓ2.

We omit G when it is clear from the context, writing, for example, ℓ1
+
→ ℓ2

instead of ℓ1
+
→G ℓ2.

Definition 4.6 ((A-)cyclicity). Let G be a directed graph. G is acyclic if

there does not exist a location ℓ ∈ VG with ℓ
+
→G ℓ. If G is not acyclic, we

say that G contains cycles.

Definition 4.7 (Source, sink, predecessor, successor). Let G = 〈VG , EG〉
be a directed graph and ℓ ∈ VG .

1. ℓ is a source of G if ℓ →G ℓ′ for some ℓ′ ∈ VG , but ℓ′ 6→G ℓ for all

ℓ′ ∈ VG .

2. ℓ is a sink of G if ℓ′ →G ℓ for some ℓ′ ∈ VG , but ℓ 6→G ℓ′ for all

ℓ′ ∈ VG .
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heaps as directed graphs 33

3. ℓ2 is a successor of ℓ1 if ℓ1 →G ℓ2.

4. ℓ2 is a predecessor of ℓ1 if ℓ2 →G ℓ1.

I next formalize the two key data structures of Part ii, singly-linked
list segments and directed trees. In the definition of directed trees, I
include a dedicated terminal node representing the null pointer. This
node is special, because it is the only tree node that can have multiple
predecessors.

Definition 4.8 (Lists, trees). Let G = 〈VG , EG〉 be a directed indexed graph.

1. G is a singly-linked list if G has a single source ℓ, every node of G is

reachable from ℓ, and every node of G has at most one successor. The

length of the list is given by |VG | − 1.

2. G is a directed tree with root ℓ and terminal ℓ′ iff (1) G is acyclic,

(2) ℓ is the unique source of G, (3) ℓ
∗
→ ℓ′′ for all ℓ′′ ∈ VG , (4) if

ℓ′ ∈ VG then ℓ′ is a sink of G, and (5) every node except ℓ′ has at most

one predecessor. The depth of a tree is the length of the longest path in

the tree.

access path ordering . Later, we will need to order the sinks
of a tree from left to right. To this end, we introduce an ordering ≺

on the nodes of a tree based on the fields we have to follow in the
tree to get to the nodes. Specifically, ℓ≺ℓ′ in G iff ℓ precedes ℓ′ in a
depth-first preorder traversal of the tree G. We use ≺ to define the
aforementioned left-to-right ordering of the sinks of a tree.

Definition 4.9 (Access path ordering). Let G = 〈VG , EG〉 be a directed

tree with root ℓ0 and terminal ℓt and let ℓ ∈ VG \ {ℓt}. The access path
of ℓ is the unique sequence of natural numbers 〈n1, . . . , nk〉 ∈ N∗ for

which there exist nodes ℓ1, . . . , ℓk such that ℓk = ℓ and for all 1 ≤ i ≤ k,

(ℓi−1, ni, ℓi) ∈ G. The access path ordering, ≺ on G is given by

ℓ
′
1 ≺ ℓ

′
2 iff the access path of ℓ′1 is lexicographically smaller

than the access path of ℓ′2.

Definition 4.10 (Sink sequence). Let G be a directed tree with terminal ℓ.

The sequence 〈ℓ1, . . . , ℓk〉 is the sink sequence of G, written sinkseq(G), if

(1) it contains all and only the sinks of G except ℓ and (2) ℓi ≺ ℓj iff i < j.

We further refine the notions of lists and trees.

Definition 4.11. 1. A singly-linked list G is a cycle if every node of G

has exactly one predecessor, exactly one successor, and ℓ1
∗
→G ℓ2 for

all ℓ1, ℓ2 ∈ VG .

2. A singly-linked list G is a lasso if every node of G has exactly one

successor.
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34 heaps as directed graphs

3. Let G be a directed tree with root ℓ and terminal ℓ′. Then G is a

directed tree with root ℓ, terminal ℓ′ and holes 〈ℓ1, . . . , ℓk〉 iff

sinkseq(G) = 〈ℓ1, . . . , ℓk〉.

Example 4.12. 1. Let G = 〈{a, b} , {〈a, 1, b〉 , 〈b, 1, a〉}〉. G is a cycle.

2. Let G = 〈{a, b, c} , {〈a, 1, b〉 , 〈b, 1, c〉 , 〈c, 1, b〉}〉. G is a lasso.

3. Let G =
〈
{a, b, c, d, e, n} , {〈a, 1, b〉 , 〈a, 2, c〉 , 〈b, 1, n〉 , 〈b, 2, d〉 ,

〈c, 1, n〉 , 〈c, 2, e〉}
〉
. G is a directed tree with root a, terminal n, and

holes 〈d, e〉.

from graphs to stack–heap models . The reachability rela-
tions are adapted from directed graphs to heaps in the obvious way.
For example, if G = igraph(h), then ℓ1 7→h ℓ2 iff ℓ1 →G ℓ2 and ℓ1

∗
→h ℓ2

iff ℓ2
∗
→G ℓ2. Assuming s is clear from the context, we extend this no-

tation to variables. For example, we write x →h y if for two variables
x, y ∈ dom(s), it holds that s(x) →h s(y).

We adapt the notion of sources and sinks to variables. First, we
define sinkseq(h) , sinkseq(igraph(h)).

Definition 4.13 (Source and sink variables). Let (s, h) be a model.

• If (s, h) is a directed tree with root ℓ,

sourcevarss(h) ,s−1(ℓ) and

sinkvarss(h) ,s−1(sinkseq(h)).

• If (s, h) is an acyclic singly-linked list with source ℓ and sink ℓ′,

sourcevarss(h) , s−1(ℓ) and sinkvarss(h) ,
〈
s−1(ℓ′)

〉
.

• If h is not acyclic, but contains a unique location ℓ such that ℓ
∗
→h ℓ

′

for all ℓ′ ∈ locs(h), then

sourcevarss(h) ,s−1(ℓ) and

sinkvarss(h) ,s−1(img(s) \ s(nil)) \ ∅;

In this case, we impose an arbitrary order on sinkvarss(h).

In all other cases, sourcevarss(h) = ⊥ and sinkvarss(h) = ⊥.

Example 4.14 (Source and sink variables). 1. Let

s , {x 7→ 1, y1 7→ 6, y2 7→ 7, y3 7→ 5, z 7→ 5} and

h , {1 7→ 〈2, 3〉 , 2 7→ 〈4, 5〉 , 3 7→ 〈0, 0〉 , 4 7→ 〈6, 7〉}.

Then

sourcevarss(h) = {{x}} and

sinkvarss(h) = 〈{y1} , {y2} , {y3, z}〉 .
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heaps as directed graphs 35

2. Let s , {x 7→ 1, y 7→ 2} and h , {1 7→ 〈2, 1〉}. Then

sourcevarss(h) = {{x}} and sinkvarss(h) = 〈{x} , {y}〉 .

3. Let s , {x 7→ 1, y 7→ 2} and h , {1 7→ 〈2, 1〉 , 3 7→ 〈1, 2〉}. Then

sourcevarss(h) = ⊥ and sinkvarss(h) = ⊥, because (s, h) is neither

acyclic, nor does h contain a location from which all heap locations are

reachable.

Sources vs. roots

A source is any node (of directed graph G) or location (of model
(s, h)) that does not have predecessors, whereas I use the term
root only for the roots of (sets of) trees.

Sinks vs. holes

A sink is any node (of directed graph G) or location (of model
(s, h)) that does not have successors. A hole is an explicitly spec-
ified sink. Specifically, in the case of a tree with holes, a hole is
a sink that is different from the dedicated terminal node. The
terminal node represents the null pointer and is the only sink that
may occur multiple times in a tree.

Further, we also define several classes of stack–heap models related
to the graph classes defined in Definition 4.11.

Definition 4.15. Let (s, h) be a model and G , igraph(h).

1. (s, h) is a singly-linked list iff G is a singly-linked list. It is a cycle
or lasso iff G is a cycle or lasso.

2. (s, h) is a connected list segment from x to y via 〈x1, . . . , xk〉,

k ≥ 0, if either of the following holds.

a) h = ∅, k = 0, and s(x) = s(y); or

b) (s, h) is a singly-linked list, x is a source variable of (s, h), y is a

sink variable of (s, h), and if k > 0 then x
+
→h x1, xi

+
→ xi+1 for

all i, and xk
+
→h y.

3. (s, h) is a directed tree with root x and holes 〈x1, . . . , xk〉 if either

of the following holds.

a) h = ∅, k = 0, and s(x) = s(nil); or

b) h = ∅, k = 1, and s(x) = s(x1); or

c) igraph(h) is a directed tree with root s(x), terminal s(nil), and

holes 〈s(x1), . . . , s(xk)〉.

Finally, I will need the connected components of directed graphs,
which I will define in terms of the following auxiliary definition.
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36 heaps as directed graphs

Definition 4.16 (Symmetry closure). The symmetry closure of a directed

graph G = 〈VG , EG〉 is the directed graph 〈VG , EG ∪ {〈ℓ′, ℓ〉 | 〈ℓ, ℓ′〉 ∈ EG}〉.

Definition 4.17 (Connected component). Let G = 〈VG , EG〉 ,G ′ =
〈
V ′
G , E′

G

〉
be directed graphs and let S be the symmetry closure of G. G ′

is a connected component of G if (1) V ′
G is a maximal, nonempty subset of

VG such that for all ℓ, ℓ′ ∈ V ′
G , ℓ

∗
→S ℓ′ and (2) E′

G = EG ∩ V ′
G × V ′

G .

I deliberately allow that E′
G is empty in the above definition, i.e.,

that a connected component does not contain any edges.

Example 4.18 (Connected components). Let G =
〈
{a, b, c, d, e, f , g} ,

{(a, b), (b, c), (d, e), (e, d), ( f , d)}
〉
. The connected components of G are

1. 〈{a, b, c} , {(a, b), (b, c)}〉,

2. 〈{d, e, f } , {(d, e), (e, d), ( f , d)}〉,

3. 〈{g} , ∅〉.
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Part II

D E C I D I N G S T R O N G - S E PA R AT I O N L O G I C W I T H
T R E E S A N D D ATA

I study separation logic with built-in list and tree predi-
cates, but with two twists: First, I propose a more restrictive
semantics of the separating conjunction. This semantics
does not change the meaning of symbolic heaps, but makes
the (usually undecidable [DLM18]) full propositional logic,
including negation and magic wands, decidable. Second,
I consider universal and existential relational constraints
on the data stored inside the data structures to express
functional-correctness properties such as “h is the head of
a sorted list” or “t is the root of a binary search tree.” I
present a PSpace decision procedure for the full propo-
sitional logic without data predicates and SMT-based NP
and coNP decision procedures for the satisfiability and
entailment problem of the positive fragment of the logic
(with data predicates, guarded negation and without magic
wands). Some of the work presented in this part was previ-
ously published in [KJW18a; PZ20b].
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5
S T R O N G - S E PA R AT I O N L O G I C W I T H L I S T S , T R E E S ,
A N D D ATA P R E D I C AT E S

In Chapter 3, I motivated the strong-separation semantics of the separat-
ing connectives and proposed data predicates that enable a combined
shape–value analysis with strong-separation logic.

In this chapter, I formally introduce a separation logic with these
two features, strong-separation logic with lists, trees, and data predicates,
SSLdata. I begin with the logic SSL without data predicates, intro-
ducing its syntax and semantics and contrasting it to the semantics
of standard, “weak-separation” logic in Section 5.1. In Section 5.2, I
define SSLdata as the extension of SSL with data predicates.

Over the course of the following two chapters, I develop decision
procedures for SSL (Chapter 6) and SSL+

data, the positive fragment of
SSLdata (Chapter 7).

how Part ii relates to [KJW18a ; PZ20b]. Strong-separation
logic with lists, trees and data predicates is an amalgamation of the
logic SL∗

data that Dejan Jovanović, Georg Weissenbacher and I intro-
duced in [KJW18a] and of the logic SSL that Florian Zuleger and I
introduced in [PZ20b]: SL∗

data features data predicates, but assumes
standard, “weak” separation, allows no Boolean connectives below ⋆

and no magic wands. SSL as defined in [PZ20b] is a full propositional
separation logic built on top of strong separation, but only supports
lists, not trees, and is a “shape-only” logic without support for data
predicates.

As such, this part of the thesis has grown out of joint work with
Dejan Jovanović, Georg Weissenbacher and Florian Zuleger [KJW18a;
PZ20b]. Sections that are due in large part to one of my contributors
contain an explicit attribution.

adding a data theory to separation logic . In Chapter 2,
we made the distinction between memory locations, Loc, and values
in the heap, Val, but did not specify the set Val \ Loc of “non-location”
values.

In this part of the thesis, I assume a set Data of data values, with
Data ∩ Loc = ∅, and define the set of values as Val , Loc ∪ Data.

SSL is parametric with respect to a background theory TData of
the data domain Data. I denote by FData the set of all quantifier-
free TData-formulas. The background theory can be instantiated with
any first-order theory with equality, as usual in satisfiability modulo
theories (see, e.g., [Bar+09]). We assume a model relation |=Data that

39
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40 strong-separation logic

captures the semantics of the background theory, i.e., s |=Data F holds
if and only if the formula F ∈ FData is true in stack s.

Disjointness of Loc and Data

I make the disjointness assumption Data ∩ Loc = ∅ purely for
technical convenience. In practice, this assumption is unrealistic.
For example, both the memory locations and the data stored in
the heap might be fixed-width integers. We can still guarantee
disjointness in our mathematical representation of the heap, for
example by adding a “tag” to each value that identifies it as a
location or data value.

5.1 strong-separation logic without data predicates

In this section, I introduce the core fragment of strong-separation
logic (SSL) with lists, trees, and data, SSL. In this core fragment, it
is only possible to reason about the shape of the heap, not about the
data stored inside the heap. I will add support for such reasoning in
Section 5.2.

5.1.1 Data Structures

We will consider separation-logic over data structures D = {ls, tree}
representing singly-linked list segments and binary-tree segments. Before
I formalize SSL, I explain how these data structures are modeled in
the stack–heap model as introduced in Section 2.3.2.

We associate with each data structure ds ∈ D a node signature, sig(ds),
which captures the shape of each element (node) of the data structure.

sig(ls) , Loc × Data

sig(tree) , Loc × Loc × Data

A node in a list consists of a pointer to its successor (which is an
element from Loc) and the data stored in the list node (an element
from Data). A node in a tree consists of pointers to its left and right
successors (from Loc) and the data stored in the node (from Data).

Since heap locations are not typed in our variant of the stack–heap
model, I assume that every heap location that corresponds to the
signature of a data structure ds is in fact of the type defining this data
structure. For example, if h(ℓ) ∈ Loc × Data, ℓ is a list location. The
following definitions encapsulate this assumption.

locls(h) , {ℓ ∈ Loc | ℓ ∈ dom(h) and h(ℓ) ∈ sig(ls)}

loctree(h) , {ℓ ∈ Loc | ℓ ∈ dom(h) and h(ℓ) ∈ sig(tree)}

For convenience, we additionally define partial functions n, l, r, d for
accessing the (next, left, right, data) fields of the data structures:
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5.1 strong-separation logic without data predicates 41

• If ℓ ∈ locls(h) and h(ℓ) = 〈ℓ′, v〉, then n(ℓ) = ℓ′, l(ℓ) = ⊥,
r(ℓ) = ⊥, d(ℓ) = v.

• If ℓ ∈ loctree(h) and h(ℓ) = 〈ℓ1, ℓ2, v〉, then n(ℓ) = ⊥, l(ℓ) = ℓ1,
r(ℓ) = ℓ2, d(ℓ) = v.

Further, we define sort(f) as the associated sort of field f,

sort(n) , Loc, sort(l) , Loc, sort(r) , Loc, sort(d) , Data.

Extending SSL with additional data structures

The results in this part of the thesis can easily be extended to
other variants of lists and trees by extending D and defining an
appropriate node signature. For example, it would be possible to
support doubly-linked structures or structures that store multiple
values, possibly from multiple types of data. This would, however,
significantly complicate the formalization without providing any
additional insights, so I stick to ls and tree in this thesis.

Unfortunately, I do not have a formal characterization of the
data structures that my approach can handle. In particular, I do
not know if there is a class of data structures that allow limited
sharing and thus go “beyond trees” (cf. [MS01; IRS13]), while still
allowing abstractions of polynomial size (cf. Chapter 6).

5.1.2 Syntax of Strong-Separation Logic

In Fig. 5.1, I’ve defined the syntax of “shape-only” strong-separation

logic, SSL and its positive fragment, SSL+. Both SL variants are con-
structed from the same atomic formulas, φatom:

• A points-to predicate x 7→n y, expressing that x is an allocated list
node that contains a pointer to y.

• A points-to predicate x 7→l,r 〈y1, y2〉, expressing that x is an allo-
cated tree node that contains pointers to left child y1 and right
child y2.

• The logic includes the four inductive predicates ls, ls≥2, tree,
and tree≥2. These predicates correspond to (possibly empty) list
segments, list segments of length at least two, (possibly empty)
tree segments, and tree segments of depth at least two. The
inclusion of ls≥2 and tree≥2 in the logic is mostly for technical
convenience, as we will see later. The second parameter of each
inductive predicate, x, is a sequence of holes delineating the data-
structure segment. To reduce clutter, I write ds(x) instead of
ds(x, ε) and ds(x, y) instead of ds(x, 〈y〉).

• (Dis)equalities between variables, x ≈ y and x 6≈ y, are atomic
separation-logic formulas as well.
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42 strong-separation logic

φatom ::= x 7→n y | x 7→l,r 〈y1, y2〉

| ls(x, y) | tree(x, y) | ls≥2(x, y) | tree≥2(x, y)

| x ≈ y | x 6≈ y

φ ::= φatom | φ ⋆ φ | φ −⋆ φ | φ ∧ φ | φ ∨ φ | ¬φ

φspatial ::= φatom | φspatial ⋆ φspatial

φpos ::= φspatial | φpos ∨ φpos | φpos ∧ φpos | φpos ∧ ¬φpos

Figure 5.1: Syntax: φ defines formulas of strong-separation logic with lists,
trees, and data, SSL; and φpos defines the formulas of its positive
fragment, SSL+. We assume x, y, y1, y2 ∈ Var, y ∈ Var∗.

emp , nil ≈ nil empty-heap predicate

φ −©⋆ ψ , ¬(φ −⋆ ¬ψ) septraction

t , emp ∨ ¬emp true

f , ¬t false

alloc(x) , (x 7→n nil)−⋆ f x is allocated

Figure 5.2: Derived SSL formulas.

In “full” propositional SSL, we can freely combine atoms with all
the operators introduced in Part i, i.e., the separating conjunction ⋆,
the magic wand −⋆, and Boolean connectives ∧, ∨, and ¬. In positive
SSL, we build spatial formulas, φspatial, using the separating conjunction
⋆ and then combine spatial formulas using conjunction, disjunction,
and guarded negation.

Before we turn to the semantics, allow me to provide some context.

1. I have not included emp, representing the empty heap, in the
syntax. This is because in our semantics, it is possible to intro-
duce emp as syntactic sugar, see Fig. 5.2.

2. The spatial formulas φspatial are quantifier-free symbolic heaps.

3. Guarded negation has, as far as I know, not been studied pre-
viously in the context of separation logic, but for example for
first-order logic [BCS15].

4. Guarded negation is sufficient for reducing entailment checking
to (un-)satisfiability checking: φ |= ψ iff the guarded negation
φ ∧ ¬ψ is unsatisfiable.

In Fig. 5.2, I introduce notation for several derived formulas.

Example 5.1 (Syntax). Let w, x, y, z be variables.

• ls(x, y) ⋆ ls(y) are disjoint list segments from x to y and from y to nil.

• ls(x, y) ∧ (¬x 7→n y) ∧ ¬emp is equivalent to ls≥2(x, y).
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5.1 strong-separation logic without data predicates 43

• tree(x, 〈y, z〉) ⋆ tree(y) ⋆ tree(z) represents a binary tree rooted in x

that contains two subtrees y and z ordered from left to right, as specified

by the sequence of holes, 〈y, z〉.

• tree(y)−⋆ tree(x) is equivalent to the formula tree(x, y), i.e., a tree

segment with root x and a single hole y.

The first three formulas are SSL+ formulas, the last formula is in SSL \

SSL+.

additional notation. For Ψ = {ψ1, . . . , ψn}, we define ⋆Ψ ,

ψ1 ⋆ ψ2 ⋆ · · · ⋆ φn if n ≥ 1 and ⋆Ψ , emp if n = 0.
By fvars(φ) we denote the set of free variables of φ. As we are only

dealing with quantifier-free logics in this part of the thesis, these are
in fact all variables that occur in φ.

We define the size of the formula φ as |φ| = 1 for atomic formulas φ,
|φ1 × φ2| , |φ1|+ |φ2|+ 1 for × ∈ {∧,∨, ⋆,−⋆} and |¬φ1| , |φ1|+ 1.

5.1.3 Semantics of Strong-Separation Logic

We use the stack–heap model introduced in Section 2.3.2 to give a
semantics to SSL. Recall that in SSL, Val is Loc ∪ Data. Further, I will
make the simplifying assumption that all allocated heap locations are
a node of one of the data structures D = {ls, tree}. This implies that a
stack is a finite partial function s : Var ⇀ Loc ∪ Data and that a heap

is a partial function h : Loc ⇀
⋃

ds∈D sig(ds). I call x a location variable

if s(x) ∈ Loc and a data variable if s(x) ∈ Data.

two notions of disjoint union of heaps . We write h1 + h2

for the union of disjoint heaps, i.e.,

h1 + h2 ,







h1 ∪ h2, if dom(h1) ∩ dom(h2) = ∅

⊥, otherwise.

This standard notion of disjoint union is commonly used to assign a
semantics to the separating conjunction and magic wand. It requires
that h1 and h2 are domain-disjoint, but does not impose any restrictions
on the images of the heaps. In particular, the dangling pointers of h1

may alias arbitrarily with the domain and image of h2 and vice-versa.
Let s be a stack. We write h1 ⊎

s h2 for the disjoint union of h1 and
h2 that restricts aliasing of dangling pointers to the locations in the
image of stack s. This yields an infinite family of union operators: one
for each stack. Formally,

h1 ⊎
s h2 ,







h1 + h2, if locs(h1) ∩ locs(h2) ⊆ img(s)

⊥, otherwise.
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44 strong-separation logic

Intuitively, h1 ⊎
s h2 is the (disjoint) union of heaps that share only

locations that are in the image of the stack s. Note that if h1 ⊎
s h2 is

defined then h1 + h2 is defined, but not vice-versa.
Just like the standard disjoint union +, the operator ⊎s gives

rise to a separation algebra, i.e., a cancellative, commutative partial
monoid [COY07].

Lemma 5.2. Let s be a stack and write u , λx.⊥. The triple (Heaps,⊎s, u)

is a separation algebra.

Proof. Trivially, the operation ⊎s is commutative and associative with
unit u. Let h ∈ Heaps. Let h1 6= h2 such that h ⊎s h1 = h ⊎s h2 6= ⊥.
Since the domain h is disjoint from both the domain of h1 and the
domain of h2, it follows that for all ℓ, h1(ℓ) = h2(ℓ) and thus h1 = h2.
As h1 and h2 were chosen arbitrarily, we obtain that the function
h⊎s (·) is injective. Consequently, the monoid is cancellative.

Whether or not the models form a separation algebra can be viewed
as the litmus test for separation logics: it is a prerequisite for the logic
to satisfy the frame rule (cf. Chapter 2).1 The fact that ⊎s gives rise to
a separation algebra is thus a strong indicator that ⊎s is suitable for
defining the semantics of ⋆.2

semantics of atomic formulas . Figure 5.3 defines the seman-
tics of SSL. Just like in Chapter 2, I implicitly assume that all variables
that occur in a formula φ are defined in the stack s, i.e., (s, h) |= φ is
undefined if fvars(φ) * dom(s). (Dis-)equalities only hold if the heap
is empty. Points-to assertions hold in single-element heaps, i.e., we use
a precise semantics (see e.g. [BCO04]). Since we cannot reason about
data in SSL (as opposed to SSLdata), we only state that there must
exist some data value stored in the heap location, without constraining
which data value is stored in the location.

The holes of lists and trees are required to be pairwise different and
different from nil, expressed using the auxiliary formula distinct(z).
The semantics of lists and trees are defined recursively. You can read
the auxiliary predicate dsi

z(x, y), ds ∈ D, as “the data structure consists
of i allocated elements, its root is x, its holes are y, and it is part of a
larger data structure with holes z.” We use the reference to the original
holes z to enforce that none of the holes is allocated inside the data
structure, thus enforcing acyclicity.

1 Whether the frame rule actually holds then depends on the operational semantics of
the programming language underlying the Hoare logic: the statements of the pro-
gramming language need to have local effects for the frame rule to hold; see [COY07].

2 This is, perhaps, an overly simplistic view. If you are interested in a more nuanced
discussion of the semantics of separation logic, I suggest you read [CCA17].
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5.1 strong-separation logic without data predicates 45

(s, h) |= x ≈ y iff s(x) = s(y) and dom(h) = ∅

(s, h) |= x 6≈ y iff s(x) 6= s(y) and dom(h) = ∅

(s, h) |= x 7→n y iff ∃d ∈ Data. h = {s(x) 7→ 〈s(y), d〉}

(s, h) |= x 7→l,r 〈y1, y2〉 iff ∃d ∈ Data. h = {s(x) 7→ 〈s(y1), s(y2), d〉}

(s, h) |= distinct(z) iff (s, h) |= ⋆y1,y2∈z,y1 6=y2 y1 6≈ y2

(s, h) |= ls(x, y) iff ∃i ≥ 0. (s, h) |= lsi
y(x, y) ⋆ distinct(y ∪ {nil})

(s, h) |= ls≥2(x, y) iff ∃i ≥ 2. (s, h) |= lsi
y(x, y) ⋆ distinct(y ∪ {nil})

(s, h) |= tree(x, y) iff ∃i ≥ 0. (s, h) |= treei
y(x, y) ⋆ distinct(y ∪ {nil})

(s, h) |= tree≥2(x, y) iff ∃i ≥ 2. (s, h) |= treei
y(x, y) ⋆ distinct(y ∪ {nil})

(s, h) |= lsi
z(x, y) iff ∃ℓ ∈ Loc, s′ ∈ Stacks.

s′ = s∪ {v 7→ ℓ} , s′(x) /∈ s′(z) and

(s′, h) |= (x 7→n v) ⋆ lsi−1
z (v, y)

(s, h) |= treei
z(x, y) iff ∃i1, i2 ∈ N, y1, y2 ∈ Var∗, ℓ1, ℓ2 ∈ Loc, s′ ∈ Stacks.

y = y1 · y2, i = i1 + i2 + 1,

s′ = s∪ {v1, v2 7→ ℓ1, ℓ2} , s′(x) /∈ s′(z), and

(s′, h) |= (x 7→l,r 〈v1, v2〉) ⋆ tree
i1
z (v1, y1) ⋆ tree

i2
z (v2, y2)

(s, h) |= ds0
z(x, ǫ) iff (s, h) |= x ≈ nil

(s, h) |= ds0
z(x, 〈y〉) iff (s, h) |= x ≈ y

(s, h) |= φ1 ⋆ φ2 iff ∃h1, h2 ∈ Heaps. h = h1 ⊎
s h2,

(s, h1) |= φ1, and (s, h2) |= φ2

(s, h) |= φ1 −⋆ φ2 iff ∀h1 ∈ Heaps. if (s, h1) |= φ1 and h⊎s h1 6= ⊥

then (s, h⊎s h1) |= φ2

(s, h) |= φ1 ∧ φ2 iff (s, h) |= φ1 and (s, h) |= φ2

(s, h) |= φ1 ∨ φ2 iff (s, h) |= φ1 or (s, h) |= φ2

(s, h) |= ¬φ iff (s, h) 6|= φ

Figure 5.3: The semantics of strong-separation logic SSL. Variables v, v1, v2
are fresh. For brevity we denote with ds either ls or tree.

Cyclic data structures

Note that our semantics implies that ls(x, x) only holds if the heap
is empty, following e.g. [DLM18]; similar for tree(x, x). If you need
to specify that your data structure contains a cycle, you have to
model this fact explicitly, for example ls(x, z) ⋆ (z 7→n x), where z

is a fresh variable. All results in this part of the thesis can be easily
adapted to a semantics that allows cyclic list segments ls(x, x) or
cyclic tree segments tree(x, x), where one of the paths loops back
to the root.
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46 strong-separation logic

semantics of non-atomic formulas . We use ⊎s to give a
semantics to ⋆. The semantics of the magic wand −⋆ is also based on
⊎s as opposed to +. This guarantees that −⋆ is the right adjoint of ⋆,
as usual. The semantics of the Boolean connectives is standard.

Example 5.3 (Semantics). Consider the following graphical representations

of three stack–heap models.

x

42

ynd
(s, h1): (s, h2): x

42

y

23
n

n
d d

(s, h3): x

42

y nil

l

r

d

I’ve labeled the edges with n, l, r, and d if they correspond to the successor of

a list node, left or right child of a tree node, or data field of a node; and I’ve

included the labels of heap locations as node labels. In these models we have

that

(s, h1) |= ls(x, y), (s, h2) 6|= ls(x, y), (s, h2) 6|= ls(x, y) ⋆ ls(y, y),

(s, h2) |= ls(x, y) ⋆ (y 7→n y), (s, h3) |= tree(x, y) ⋆ (x 6≈ y).

characterizing list and tree models . We relate the models
of list and tree predicates to the heap classes of Definition 4.15.

In the list characterization, I explicitly include the intermediate vari-
ables of connected list segments (cf. Definition 4.15), as this information
will be useful for abstracting lists in Chapter 6.

Lemma 5.4 (Characterization of list models). Let (s, h) be a model,

x ∈ Var and y ∈ Var∗ with |y| < 1. Moreover, let y be nil if y is empty

and the unique element in y otherwise. Then (s, h) |= ls(x, y) iff there exist

x1, . . . , xk ∈ Var, k ≥ 0, such that (s, h) is a connected list segment from x

to y via 〈x1, . . . , xk〉.

Proof. We just show one direction, as the proof of the other direction
is similar. Assume (s, h) |= lsi

y(x, y). We proceed by induction on i.

case i = 0. In this case, x ≈ y holds. Consequently, h = ∅ and
s(x) = s(y), implying that (s, h) is a connected list segment (via
zero intermediate variables).

case i ≥ 1. Assume z is a fresh variable. By definition, there exists a
location ℓ ∈ Loc such that for s′ = s∪ {z 7→ ℓ}. (s′, h) |= (x 7→n

z) ⋆ lsi−1
z (z, y) holds.

Let h1, h2 be such that h = h1 ⊎
s′ h2, (s′, h1) |= (x 7→n z) and

(s′, h2) |= lsi−1
z (z, y).

By the induction hypothesis, (s′, h2) is a connected list segment
from z to y via some variables x1, . . . , xk. In particular, (s′, h2) is
a singly-linked list from z to y. As x 7→h z holds, it holds that
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5.1 strong-separation logic without data predicates 47

(s′, h) is a singly-linked list from x to y and thus (s, h) is a singly-
linked list from x to y. If s′(z) ∈ img(s), let x0 ∈ s−1(s′(z)) and
x , 〈x0〉 · 〈x1, . . . , xk〉. Otherwise, let x , 〈x1, . . . , xk〉. It follows
that (s, h) is a connected list segment from x to y via x.

Lemma 5.5 (Characterization of tree models). Let (s, h) be a model,

x ∈ Var, y ∈ Var∗. Then (s, h) |= tree(x, y) iff (s, h) is a directed tree with

root x and holes y.

Proof. We prove the more general claim that it holds for all s and h

and all z ⊇ y that (s, h) |= treei
z(x, y) iff (s, h) is a directed tree with

root x and holes y.
Since (s, h) |= treei

z(x, y) implies that (s, h) |= treei
y(x, y) and thus

also that (s, h) |= tree(x, y), the original claim follows.
We prove just one direction, as the proof of the other direction is

similar. We proceed by mathematical induction on i. Assume (s, h) |=
treei

z(x, y).

case i = 0. In this case, either x ≈ nil holds or y = 〈y〉 and x ≈ y

holds. Consequently, h = ∅ and s(x) = s(nil) or s(x) = s(y),
implying that (s, h) is a directed tree with root x and holes y.

case i ≥ 1. Assume z1, z2 are fresh variables. By definition, there
exist numbers i1, i2, sequences of variables y1, y2 ∈ Var∗ and
locations location ℓ1, ℓ2 ∈ Loc such that

1. y = y1 · y2,

2. i = i1 + i2 + 1 and thus in particular i1, i2 < i,

3. for s′ = s∪ {z1, z2 7→ ℓ1, ℓ2}

for s′ = s∪ {z 7→ ℓ}. (s′, h) |= (x 7→n z) ⋆ lsi−1
z (z, y) holds.

Let h0, h1, h2 be such that h = h0 ⊎s′ h1 ⊎
s′ h2, (s′, h0) |= (x 7→n z)

and (s′, h1) |= tree
i1
z (z1, y1) and (s′, h1) |= tree

i2
z (z2, y2).

Note that for j ∈ {1, 2}, it holds that (1) ij < i and (2) y1 ⊆ y ⊆ z.
Consequently, we have by the induction hypotheses that (s′, hj)

is a directed tree with rot zj and holes yj. Moreover, x /∈ z by
definition of treei

z, so x /∈ y1 and x /∈ y2. Further, x 7→h z1 and
x 7→h z2 hold. It follows that (s′, h) is a directed tree with root x

and holes y. Since x ∈ dom(s) and y ⊆ dom(s), it follows that
(s, h) is a directed tree with root x and holes y.

isomorphism . Recall from Definition 2.2 the notion of isomorphic
models. SSL cannot distinguish between isomorphic models.

We first show this for list and tree predicates.

Lemma 5.6. Let (s, h), (s′, h′) be models with (s, h) ∼= (s′, h′). Let pred ∈

{ls, ls≥2, tree, tree≥2}. Then (s, h) |= pred(x, y) iff (s′, h′) |= pred(x, y).
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48 strong-separation logic

Proof. Let σ : Val → Val be a witness of the isomorphism.
We show the claim for pred = ls. We show just one direction of the

proof, as the proof of the other direction is completely analogous.
Assume (s, h) |= ls(x, y). Then there exists an i such that (s, h) |=

lsi
y(x, y) ⋆ distinct(y ∪ {nil}). As σ is a bijection and s′(x) = σ(s(x)) for

all x, it follows that

(s, h) |= distinct(y ∪ {nil}) iff (s′, h′) |= distinct(y ∪ {nil}).

It remains to be shown that (s′, h′) |= lsi
y(x, y). We show the more

general claim that for all (s, h) and (s′, h′) with (s, h) ∼= (s′, h′) and for
all sequences of variables z and y, if (s, h) |= lsi

z(x, y) then (s′, h′) |=
lsi

z(x, y). We proceed by mathematical induction on i.

case i = 0. In this case, h = ∅, so h′ = ∅. Moreover, (s, h) |= x ≈

y iff (s′, h′) |= x ≈ y, because σ is a bijection. Consequently,
(s′, h′) |= ls0

z(x, y).

case i > 0. Let z be a fresh variable. There exist ℓ ∈ Loc and s1 ∈

Stacks, s1 = s∪ {z 7→ ℓ} and s1(x) /∈ s1(z) and (s1, h) |= (x 7→n

z) ⋆ lsi−1
z (z, y).

Define h1 , {s(x) 7→ h(s(x))} and h2 , h− s(x). Observe that
(s1, h1) |= (x 7→n z) (and in particular h1 = {s(x) 7→ 〈ℓ, d〉}) and
(s1, h2) |= lsi−1

z (z, y).

Let ℓ′ , σ(ℓ) and s′1 , s′ ∪ {z 7→ ℓ′, w 7→ d}. Because σ is a
bijection, s′1(x) /∈ s′1(z).

Let h′1 , {s′(x) 7→ h′(s′(x))} and h′2 , h′ − s′(x). By construc-
tion, h′1 = {s′(x) 7→ 〈ℓ′, d〉} = {σ(s(x)) 7→ 〈σ(ℓ), σ(d)〉}. In par-
ticular, (s′1, h′1) |= (x 7→n z).

Moreover, h′2 = {σ(ℓ̄) 7→ σ(h(ℓ̄)) | ℓ̄ ∈ dom(h) \ {s(x)}}.
Therefore, (s1, h2) ∼= (s′1, h′2). It follows by the induction hy-
pothesis that (s′1, h′2) |= lsi−1

z (z, y), and thus (s′1, h′) |= (x 7→n

z) ⋆ lsi−1
z (z, y), which in turn implies that (s′, h′) |= lsi

z(x, y) by
the semantics of lsi.

The identical proof strategy can be used to prove the claim for pred ∈

{ls≥2, tree, tree≥2}.

Lemma 5.7. Let (s, h), (s′, h′) be models with (s, h) ∼= (s′, h′) and let

φ ∈ SSL. Then (s, h) |= φ iff (s′, h′) |= φ.

Proof. We prove the claim by induction on the structure of the formula
φ. Clearly, the claim holds for the base cases x 7→n y, x 7→l,r 〈y1, y2〉,
x ≈ y and x 6≈ y. For pred ∈ {ls, ls≥2, tree, tree≥2}, the claim was
proved in Lemma 5.6.

Further, the claim immediately follows from the induction assump-
tion for the cases φ1 ∧ φ2, φ1 ∨ φ2 and ¬φ. It remains to consider the
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5.1 strong-separation logic without data predicates 49

cases φ1 ⋆ φ2 and φ1 −⋆ φ2. Let (s, h) and (s′, h′) be two stack-heap pairs
with (s, h) ∼= (s′, h′).

We will show that (s, h) |= φ1 ⋆φ2 implies (s′, h′) |= φ1 ⋆φ2; the other
direction is completely symmetric. We assume that (s, h) |= φ1 ⋆ φ2.
Then, there are h1, h2 with h1 ⊎

s h2 = h and (s, hi) |= φi for i = 1, 2. We
consider a bijection σ that is an isomorphism between (s, h) and (s′, h′).
Let h′1 respectively h′2 be the sub-heap of h′ restricted to σ(dom(h1))

resp. σ(dom(h2)). It is easy to verify that h′1 ⊎
s h′2 = h′ and (s, hi) ∼=

(s′, h′i) for i = 1, 2. Hence, we can apply the induction assumption
and get that (s′, h′i) |= φi for i = 1, 2. Because of h′1 ⊎

s h′2 = h′ we get
(s′, h′) |= φ1 ⋆ φ2.

We will show that (s, h) |= φ1 −⋆ φ2 implies (s′, h′) |= φ1 −⋆ φ2; the
other direction is completely symmetric. We assume that (s, h) |= φ1 −⋆

φ2. Let h′0 be a heap with (s′, h′0) |= φ1 and h′0 ⊎
s h′ 6= ⊥. We consider

a bijection σ that is an isomorphism between (s, h) and (s′, h′). Let
L ⊆ Loc be some subset of locations with L ∩ (locs(h) ∪ img(s)) = ∅,
L ∩ (locs(h′) ∪ img(s′)) = ∅, and |L| = locs(h′0) \ (locs(h

′) ∪ img(s′)).
We can assume w.l.o.g. that the restriction of σ to L is a bijection
from L to locs(h′0). Then, σ induces a heap h0 such that (s, h0) ∼=
(s′, h′0), h0 ⊎s h 6= ⊥ and (s, h0 ⊎s h) ∼= (s′, h′0 ⊎

s h′). By induction
assumption we get that (s, h0) |= φ1. From the assumption (s, h) |=

φ1 −⋆ φ2 and h0 ⊎s h 6= ⊥ we now get that (s, h0 ⊎s h) |= φ2. Again from
the induction assumption we finally get that (s′, h′0 ⊎

s h′) |= φ2.

semantic consequence . We denote by φ |= ψ that φ entails ψ,
i.e., that for all (s, h), if (s, h) |= φ then also (s, h) |= ψ. Moreover, we
define a restricted notion of entailment to stacks s with dom(s) ⊆ x.
Formally, φ |=x ψ iff for all (s, h), if dom(s) ⊆ x and (s, h) |= φ then
also (s, h) |= ψ.

Because of the strong-separation semantics, the number of possible
shapes of the heap of the models of φ over x may be smaller than over
y ⊇ x. For this reason, it is possible that φ |=x ψ, but φ 6|=y ψ.

Example 5.8 (Indexed entailment). It holds that

ls(x, y) |={x,y} ¬((¬emp) ⋆ (¬emp)),

because it is impossible to split a list into two non-empty sub-lists using ⊎s

without access to a variable at which we can split the list. (Recall that our

semantics precludes cyclic lists, so a model of ls(x, y) is never a model of

ls(x, y) ⋆ ls(y, y).) Conversely,

ls(x, y) 6|={x,y,z} ¬((¬emp) ⋆ (¬emp)).

For example, if s = {x 7→ ℓ1, y 7→ ℓ2, z 7→ ℓ3} and h = {ℓ1 7→ ℓ3, ℓ3 7→ ℓ2},

it holds that h = {ℓ1 7→ ℓ3} ⊎s {ℓ3 7→ ℓ2}, and thus both (s, h) |= t and

(s, h) |= (¬emp) ⋆ (¬emp).
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50 strong-separation logic

positive formulas vs . symbolic heaps .

Definition 5.9 (Positive model). Let (s, h) be a model. (s, h) is a positive
model if there exists a formula φ ∈ SSL+ such that (s, h) |= φ.

Clearly, every model of a positive formula satisfies at least one
symbolic heap.

Lemma 5.10. Let (s, h) be a positive model. Then there exist k ≥ 0 and

spatial atoms τ1, . . . , τk such that (s, h) |= τ1 ⋆ · · · ⋆ τk.

Proof. By definition, there exists a formula φ ∈ SSL+ such that
(s, h) |= φ. We proceed by induction on φ. If φ is spatial, there is
nothing to show. If φ = φ1 ∧ φ2 or φ = φ1 ∧ ¬φ2, then (s, h) |= φ1

by the semantics of ∧ and the result follows immediately from the
induction hypothesis for φ1. If φ = φ1 ∨ φ2 then either (s, h) |= φ1

or (s, h) |= φ2. Assume w.l.o.g. that (s, h) |= φ1. The result follows
immediately from the induction hypothesis for φ1.

5.1.4 Strong-Separation Logic vs Weak-Separation Logic

We contrast the semantics of strong-separation logic and the standard
“weak-separation” semantics.

The syntax of weak-separation logic WSL is like the syntax of
SSL, except that we use weak versions of the separating connectives,
denoted by a w superscript. In particular, positive weak-separation
logic, WSL+, is like SSL+ except that we use ⋆w instead of ⋆ as
separating conjunction. Formally, for φatom as in Fig. 5.1, we collect
formulas of the form φw

pos, defined below, in the set WSL+.

φw
spatial ::= φatom | φspatial ⋆

w φspatial

φw
pos ::= φw

spatial | φw
pos ∨ φw

pos | φw
pos ∧ φw

pos | φw
pos ∧ ¬φw

pos

We use “normal” disjoint union, +, to give a semantics to the weak
separating conjunction, ⋆w:

(s, h) |= φ1 ⋆
w φ2 iff ∃h1, h2 ∈ Heaps. h = h1 + h2,

(s, h1) |= φ1, and (s, h2) |= φ2

In other words, what I call weak here is really the standard semantics
of ⋆ in the separation-logic literature [Rey02; OHe19], which I also
used in the semantics of SLbase in Part i. I use the adjective weak in
this part of the thesis to explicitly contrast this semantics to the strong

semantics of ⋆, which imposes stronger requirements on sub-heap
composition: sub-heaps may only overlap at locations that are stored
in the stack.

Example 5.11 (SSL vs. WSL). Let φ , (ls(a, nil) ⋆ t) ∧ (ls(b, nil) ⋆ t),

where t is the derived formula representing true. In Fig. 5.4, we show two
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5.1 strong-separation logic without data predicates 51

a nil

b nil

a c nil

b

Figure 5.4: Models of (ls(a, nil) ⋆ t) ∧ (ls(b, nil) ⋆ t) for a stack with domain
a, b and a stack with domain a, b, c. I do not show data fields to
reduce clutter.

models of φ. On the left, we assume that a, b are the only variables in dom(s),

whereas on the right, we assume that there is a third stack variable c.

Note that the latter model, where the two lists overlap, is possible in

SSL only because the lists come together at the location labeled by c. If

we removed the variable c from the stack, the model would still satisfy

(ls(a, nil) ⋆w t) ∧ (ls(b, nil) ⋆w t), but no longer satisfy φ according to the

strong semantics, because ⊎s would no longer allow splitting the heap at that

location.

As I mentioned in Chapter 2, a lot of work on automated deduction
for and program analysis with separation logic is limited to sym-

bolic heaps. Interestingly, the semantics of WSL and SSL coincide on
the symbolic-heap fragment—in fact, they coincide on the positive
fragment.

Let us make this claim precise. Let φ ∈ SSL+. We denote by
weaken(φ) the WSL+ formula obtained by replacing every occurrence
of ⋆ with ⋆w.

Theorem 5.12. Let φ ∈ SSL+ and let (s, h) be a model. Then (s, h) |= φ

iff (s, h) |= weaken(φ).

Theorem 5.12 holds because in models of positive formulas, all
dangling locations are labeled by variables of the formula or nil.

Lemma 5.13. Let φ ∈ SSL+ ∪ WSL+ be positive and (s, h) |= φ. Then

dangling(h) ⊆ s(fvars(φ)) ∪ {s(nil)}.

Proof. By a straightforward structural induction on φ: let φ ∈ SSL+ ∪

WSL+ and let (s, h) be a model with (s, h) |= φ.

case φ = x ≈ y or φ = x 6≈ y. It holds that h = ∅, so trivially

dangling(h) = ∅ ⊆ s(fvars(φ)) ∪ {s(nil)} .

case φ = x 7→n y. It holds that dangling(h) ⊆ {s(y)} ⊆ s(fvars(φ)) ∪

{s(nil)}.

case φ = x 7→l,r 〈y1, y2〉. It holds that dangling(h) ⊆ {s(y1), s(y2)} ⊆

s(fvars(φ)) ∪ {s(nil)}.

case φ = ds(x, y). The semantics enforce that dangling(h) ⊆ s(y) ∪

{s(nil)} ⊆ s(fvars(φ)) ∪ {s(nil)}.
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52 strong-separation logic

case φ = φ1 ⋆ φ2 . There exist h1, h2 with (s, h1) |= φ1 and (s, h2) |= φ2

and h = h1 ⊎
s h2. By the induction hypotheses, dangling(hi) ⊆

s(fvars(φ)) ∪ {s(nil)}. Since

dangling(h) ⊆ dangling(h1) ∪ dangling(h2),

the claim follows.

case φ = φ1 ⋆
w φ2 . Analogously, except that h = h1 + h2.

case φ = φ1 ∧ φ2 , φ = φ1 ∨ φ2 The claim follows immediately from
the induction hypotheses.

As every location that is shared between heaps h1 + h2 is dangling
either in h1 or in h2 (or both), the union operations + and ⊎s coincide
on models of positive formulas.

Lemma 5.14. Let (s, h1) |= φ1 and (s, h2) |= φ2 for positive formulas

φ1, φ2. Then h1 + h2 6= ⊥ iff h1 ⊎
s h2 6= ⊥.

Proof. If h1 ⊎
s h2 6= ⊥, then h1 + h2 6= ⊥ by definition.

Conversely, assume h1 + h2 6= ⊥. We need to show that locs(h1) ∩

locs(h2) ⊆ img(s). To this end, let ℓ ∈ locs(h1) ∩ locs(h2). Then there
exists an i ∈ {1, 2} such that i ∈ img(hi) \ dom(hi)—otherwise ℓ

would be in dom(h1)∩ dom(h2) and h1 + h2 = ⊥. By Lemma 5.13, we
thus have ℓ ∈ img(s).

Since the semantics coincide on atomic formulas by definition and
on ⋆ by Lemma 5.13, we can easily show that they coincide on all
positive formulas.

Proof of Theorem 5.12. We proceed by structural induction on φ. If φ is
atomic, weaken(φ) = φ, so there is nothing to show.

For φ = φ1 ⋆ φ2, weaken(φ) = φ1 ⋆
w φ2, and the claim follows from

the induction hypotheses and Lemma 5.14. For φ = φ1 ∧ φ2, φ =

φ1 ∨ φ2, and φ = φ1 ∧ ¬φ2, the claim follows immediately from the
induction hypotheses and the semantics of ∧, ∨.

A difference between WSL and SSL: Size formulas

At this point, you might be wondering what the differences in the
expressiveness of WSL and SSL actually are. One such difference
is that the former allows reasoning about heap size, whereas the
latter does not. Given

(size ≥ k) , (¬emp) ⋆w · · · ⋆w (¬emp)
︸ ︷︷ ︸

k times

and

(size = k) , (size ≥ k) ∧ (¬(size ≥ k + 1)),

it holds that (s, h) |= (size ≥ k) iff |h| ≥ k and (s, h) |= (size = k)

iff |h| = k. Such size formulas are important ingredients of some of
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5.2 adding data predicates to ssl 53

the undecidability proofs for SL with the standard weak semantics,
see e.g. [DD14; DD15b; DLM18; EIP19b]. It is only possible to
express exact heap size in SSL using explicit points-to assertions.

5.2 adding data predicates to ssl

In this section, we add to SSL the possibility to constrain the data
values stored inside the heap by extending the atomic formulas of
SSL with three new types of atomic formulas.

1. We add quantifier-free formulas from the data theory TData.

2. We add a variant of the points-to assertions that allows specify-
ing the content of the data field.

3. We allow annotating list and tree predicates with data predicates

as proposed in Section 3.2.

We call the extended logic SSLdata. The motivation behind SSLdata

is to be able to reason about properties of inductive structures that
appear frequently in practice. For example, we would like to be able
to express that a data structure contains a certain value, a list is sorted,
or a tree is a binary search tree.

I begin with a semi-formal introduction to data predicates in Sec-
tion 5.2.1, then formalize the extension to SSLdata in Section 5.2.2.

5.2.1 A Semi-Formal Introduction to SSL with Data Predicates

We assume two dedicated fresh variables α and β from Var of sort
Data to be used exclusively in data predicates. We consider four kinds
of data predicates:

1. Existential unary data predicates [F]∃, where F ∈ FData, α ∈

fvars(F), β /∈ fvars(F).

2. Existential binary data predicates [f : F]∃, where F ∈ FData, α, β ∈

fvars(F), f ∈ {n, l, r}.

3. Universal unary data predicates [F]∀, where F ∈ FData, α ∈ fvars(F),
β /∈ fvars(F).

4. Universal binary data predicates [f : F]∀, where F ∈ FData, α, β ∈

fvars(F), f ∈ {n, l, r}.

All four types of predicates may also contain other variables from
Var \ {α, β}. We pass a set of data predicates P as additional parameter
to the list and tree predicates, obtaining ternary predicates ls(x, y,P),
tree(x, y,P), and so on. As before, if either of y or P is empty, we omit
them; and if either of them contain only a single element, we omit the
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54 strong-separation logic

braces. Semi-formally, the semantics of an inductive data predicate
ds(x, y,P) are as follows:

1. The predicate holds in (s, h) only if it holds without the data con-
straints, i.e., (s, h) |= ds(x, y) holds and (s, h) therefore describes
a ds data structure.

2. Let Q

∈ {∃, ∀}. For each unary data predicate [F(α)]

Q

∈ P ,

• If Q

= ∃, then there must exist a location ℓ ∈ dom(h) whose
data field satisfies F, i.e., there exists an ℓ ∈ dom(h) such
that (s∪ {α 7→ d(ℓ)} , h) |=Data F holds.

• If Q

= ∀, then the data fields of all locations ℓ ∈ dom(h)

must satisfy F, i.e., for all ℓ ∈ dom(h),

(s∪ {α 7→ d(ℓ)} , h) |=Data F

holds.

3. Let Q

∈ {∃, ∀} and f ∈ {n, l, r}. For each binary data predicate

[f : F(α, β)]

Q

∈ P ,

• If Q

= ∃, there must exist a location ℓ1 and an f-descendant
ℓ2 of ℓ1 such that F holds when evaluated on the data
fields of ℓ1 and ℓ2. Formally, f(ℓ1) 7→∗

h ℓ2 and (s ∪ {α 7→

d(ℓ1), β 7→ d(ℓ2)}, h) |=Data F holds.

• If Q
= ∀, then it must hold for all pairs of locations

ℓ1 and ℓ2 such that ℓ2 is an f-descendant of ℓ1 that F

holds when evaluated on the data fields of ℓ1 and ℓ2. For-
mally, for all ℓ1, ℓ2 ∈ dom(h), if f(ℓ1) 7→∗

h ℓ2 then (s ∪

{α 7→ d(ℓ1), β 7→ d(ℓ2)} , h) |=Data F holds.

Example 5.15 (Data predicates). I illustrate the use of data predicates

through representative examples of data predicates over lists and trees. The

predicates

ls(x, [α = 0]∀), ls(x, [n : α 6≈ β]∀, ls(x, [n : α < β]∀)

describe lists with all data values equal to 0, lists with all data values distinct,

and lists with data values that are strictly increasing, i.e., sorted lists with

distinct values. The predicates

ls(x, [α = 17]∃), ls(x, [n : α ≥ β]∃)

describe lists that contain the data value 17 and lists whose values are not
increasing, i.e., lists that are not sorted. The predicates

tree(x,
{

[l : β < α]∀, [r : β > α]∀
}

),

tree(x,
{

[l : β < α]∀, [r : β < α]∀
}

)
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5.2 adding data predicates to ssl 55

describe a binary search tree, and a max-heap.

The formula ls(x, m, [α < M]∀) ⋆ (m 7→ls 〈y, M〉) ⋆ ls(y, [α > M]∀) de-

scribes a partitioned list. The left partition contains elements smaller than

the pivot m and the right partition contains elements larger than the pivot m.

Here, M is a fresh variable of sort Data that represents the value d(m).

The formula ls(x, [α ≈ c]∃) ⋆ ls(y, [α 6≈ c]∀), where c is a fresh variable of

sort Data, describes lists that have different contents: the list x contains the

data value c and the list y does not contain c.

Restrictions on formulas in data predicates?

You may be wondering if we have to impose restrictions on the
FData formulas that can be used in data predicates. In particular,
universal binary data predicates mostly make sense for transi-
tive properties such as <, ≤, or 6≈. We do not impose any such
restrictions, however. The use of non-transitive universal binary
predicates will simply limit the size of the models. For example,
ls(x, [n : β = α + 1]∀) is satisfiable only in lists of length at most
2, because it is impossible for all pairs of three or more distinct
integers to differ by 1.

5.2.2 Formal Syntax and Semantics of SSL with Data

SSLdata is the extension of SSL with the following atomic formulas:

• All FData formulas, i.e., quantifier-free formulas from the data
theory.

• Points-to assertions x 7→ls 〈y1, z〉 and x 7→tree 〈y1, y2, z〉. In con-
trast to the assertions x 7→n y and x 7→l,r 〈y1, y2〉 of SSL, these
assertions enforce that d(s(x)) = s(z).

• Predicate calls pred(x, y,P), where pred ∈ {ls, tree, ls≥2, tree2},
x ∈ Var, y ∈ Var∗, and P is a set of data predicates.

We denote by SSL+
data the positive fragment of SSLdata.

The formal semantics of these new atoms is defined in Fig. 5.5.
An inductive predicate pred(x, y,P) holds only if its shape-only

variant pred(x, y) holds. The semantics of data predicates use the
reachability predicates from Chapter 4 in a straightforward way. I

would like to emphasize that ℓ1
f∗
−→h ℓ2 holds if ℓ2 is reachable from ℓ1

by first following the f-field; for the remainder of the path from ℓ1 to

ℓ2, we can follow arbitrary fields. For example, ℓ1
l∗
−→h ℓ2 holds for all

nodes ℓ2 in the left subtree of the tree with root ℓ1.
SSLdata inherits many properties from SSL. For example, it cannot

distinguish between isomorphic models.
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56 strong-separation logic

(s, h) |= φ, φ ∈ FData iff s |=Data φ and dom(h) = ∅

(s, h) |= x 7→ds y iff h = {s(x) 7→ s(y)} and s(y) ∈ sig(ds)

(s, h) |= pred(x, y,P) iff (s, h) |= pred(x, y) and(s, h) |=
∧
P

(s, h) |= [F]∃ iff ∃ℓ ∈ dom(h). s∪ {α 7→ d(ℓ)} |=Data F

(s, h) |= [F]∀ iff ∀ℓ ∈ dom(h). s∪ {α 7→ d(ℓ)} |=Data F

(s, h) |= [f : F]∃ iff ∃ℓ1, ℓ2 ∈ dom(h). ℓ1
f∗
−→h ℓ2 and

s∪ {α 7→ d(ℓ1), β 7→ d(ℓ2)} |=Data F

(s, h) |= [f : F]∀ iff ∀ℓ1, ℓ2 ∈ dom(h). if ℓ1
f∗
−→h ℓ2

then s∪ {α 7→ d(ℓ1), β 7→ d(ℓ2)} |=Data F

Figure 5.5: Semantics of SSLdata formulas. For brevity, we denote with pred

any of the inductive predicates ls, ls≥2, tree, tree≥2.

Lemma 5.16. Let (s, h), (s′, h′) be models with (s, h) ∼= (s′, h′) and let

φ ∈ SSLdata. Then (s, h) |= φ iff (s′, h′) |= φ.

Proof. Analogous to Lemma 5.7, noting that because isomorphisms
are defined to be identity functions on Data, it holds that

d(h(ℓ)) = d(h′(σ(ℓ))) for all ℓ ∈ dom(h),

where σ is an isomorphism. Consequently, neither data atoms nor
data predicates can differentiate between (s, h) and (s′, h′).
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6
D E C I D I N G S S L W I T H O U T D ATA P R E D I C AT E S

The goal of this chapter is to develop a decision procedure for the
full propositional logic SSL, i.e., the logic with Boolean operators and
magic wand, but without data predicates. Specifically, we will prove
the following theorem.

Theorem 6.1 (Satisfiability checking for SSL). Let φ ∈ SSL and let

x ⊆ Var be a finite set of variables. It is decidable in PSpace (in |φ| and |x|)

whether there exists a model (s, h) with dom(s) ⊆ x and (s, h) |= φ.

Note the parameterization on x in Theorem 6.1, which reflects that
the SSL semantics changes as we increase the stack size.

Example 6.2 (Parameterization on x). Recall the formulas alloc(x) and

−©⋆ from Fig. 5.2. Let φ = alloc(x) −©⋆ ls≥2(x, nil). In standard, weak SL,

(s, h) |= φ iff

h = {ℓ1 7→ 〈ℓ2, d2〉 , ℓ2 7→ 〈ℓ3, d3〉 , . . . , ℓn−1 7→ 〈ℓn, dn〉} ,

n ≥ 1, with s(nil) = ℓn and s(x) /∈ dom(h): all such list segments can be

extended to a list segment from x to nil by prepending a list segment from s(x)

to ℓ1. This is not the case in SSL, because ⊎s only allows concatenating the

two list segments if ℓ1 ∈ img(s). Consequently, φ is unsatisfiable in stacks

with dom(s) ⊆ {x}, but is satisfiable in stacks with dom(s) = {x, y}. In

the latter case, we can pick s(y) = ℓ1, which allows us to prepend the list

segment as in the WSL case, illustrated in Fig. 6.1.

Our approach is based on abstracting stack–heap models by abstract

memory states (AMS). AMSs have the following two key properties.

refinement (Theorem 6 .28). If (s1, h1) and (s2, h2) have the same
AMS, then they satisfy the same SSL formulas. As such, the AMS
abstraction refines the satisfaction relation of SSL.

computability (Fig . 6 .4). For every formula φ ∈ SSL we can
compute (in PSpace) the set of all AMS of all models of φ. A
formula φ ∈ SSL is satisfiable if this set is nonempty.

These two properties together imply Theorem 6.1; see also Section 3.4
for a high-level summary of the approach of abstraction-based satisfiabil-

ity checking that I take in both main parts of this thesis.
The AMS abstraction is motivated by the following insights.

1. The strong union operator, ⊎s, induces a unique decomposition
of the heap into at most |s| minimal chunks of memory that
cannot be further decomposed.
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58 deciding ssl without data predicates

y : ℓ1 ℓ2 · · · ℓn−1 nil : ℓn |= alloc(x)−©⋆ ls≥2(x, nil)

⇓

y : ℓ1 ℓ2 · · · ℓn−1 nil : ℓnx : ℓ0

alloc(x)

|= ls≥2(x, nil)

Figure 6.1: A model of alloc(x)−©⋆ ls≥2(x, nil) with a stack of size 2. In SSL,
this is no longer a model if y is removed from the stack.

2. To decide whether (s, h) |= φ holds, it is sufficient to know for
each chunk of h (1) which atomic formulas the chunk satisfies
and (2) which variables (if any) are allocated in the chunk.

We proceed as follows. In Section 6.1, we will make precise the
notion of memory chunks and define the AMS abstraction. We will
prove the refinement theorem for SSL in Section 6.2. This makes it
possible to map every SSL formula to the AMS of its models, as we
will see in Section 6.3. In Section 6.4, we will build upon these results
to develop a procedure for deciding satisfiability of SSL formulas
by means of AMS computation. Finally, we will show the PSpace-
completeness result in Section 6.5.

While the idea for strong-separation logic and the AMS abstraction
were mine, I would like to stress that large parts of this chapter are
closely based on joint work with Florian Zuleger [PZ20b].

6.1 abstract memory states

An abstract memory state consists of an abstraction of every chunk of
memory of a stack–heap model. For our purposes, a chunk of h is a
minimal nonempty sub-heap of h that can be split off of h according to
the strong-separation semantics.

Definition 6.3 (Chunk). Let (s, h) be a model. A sub-heap h1 ⊆ h is a

chunk of (s, h) if

1. there exists a heap h0 such that h = h1 ⊎
s h0, and

2. for all h2 ( h1 with h2 6= ∅, there does not exist a heap h0 with

h = h2 ⊎s h0.

We collect the set of all chunks of (s, h) in chunks(s, h).

Example 6.4 (Chunks). Let d ∈ Data be an arbitrary value from the data

domain. Consider the following model (s, h):

s ={x 7→ 1, y 7→ 3, z 7→ 3, w 7→ 5, v 7→ 8}

h ={1 7→ 〈2, d〉 , 2 7→ 〈3, d〉 , 3 7→ 〈7, d〉 , 4 7→ 〈6, d〉 , 5 7→ 〈6, d〉 ,

6 7→ 〈3, d〉 , 8 7→ 〈8, d〉 , 9 7→ 〈10, d〉 , 10 7→ 〈9, d〉}
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6.1 abstract memory states 59

1 : x 2 3 : y, z

4

5 : w

6

7

8 : v

109

x y, z

v

n, [≥2]

n, [=1]

{{w}} , {{y, z}} 1

Figure 6.2: Graphical representation of a model consisting of five chunks (left,
see Example 6.4; data fields omitted for clarity) and its induced
AMS (right, see Example 6.12).

The model (s, h) is illustrated in Fig. 6.2. I’ve deliberately omitted the data

fields from the graphical representation to make it easier to parse the figure.

Like in the previous chapter, I include both the identities and the labels of

locations in the graphical representation; e.g., 3 : y, z represents location 3
with s(y) = 3 and s(z) = 3.

The model consists of five chunks, h1 , {1 7→ 〈2, d〉 , 2 7→ 〈3, d〉},

h2 , {8 7→ 〈8, d〉}, h3 , {4 7→ 〈6, d〉 , 5 7→ 〈6, d〉 , 6 7→ 〈3, d〉}, h4 ,

{3 7→ 〈7, d〉}, and h5 , {9 7→ 〈10, d〉 , 10 7→ 〈9, d〉}.

Every model can be decomposed into its chunks:

Lemma 6.5 (Decomposability into chunks). Let (s, h) be a model and let

chunks(s, h) = {h1, . . . , hn}. Then, h = h1 ⊎
s h2 ⊎s · · · ⊎s hn.

Proof. We prove the claim by providing a graph-theoretic representa-
tion of the chunks of (s, h). We consider the directed graph

G = {dom(h), {(ℓ, ℓ′) | ℓ′ ∈ h(ℓ) ∩ Loc, ℓ′ 6∈ img(s)}.

This graph is like the induced graph graph(h), except that we remove
all the edges that end in a labeled location.

Let C1, . . . , Cn be the connected components of G. Recall that con-
nected components may consist of a single location and no edges.

We now consider the sub-heaps h1, . . . , hn of h induced by the con-
nected components, where we define hi to be the heap h restricted to
the locations of Ci.

We now prove that h1, . . . , hn are indeed the chunks of h: We consider
two heaps hS and hT such that hS ⊎

s hT = h. Then we have that each
sub-heap hi is fully contained in either hS or hT because only edges
that end in a labeled location can be used to connect the two heaps hS

and hT, but by construction, only the sources and the sinks of hi can
be labeled locations.

Further, for all i 6= j, the locations in locs(hi) ∩ locs(hj) are labeled
locations, i.e., locs(hi) ∩ locs(hj) ⊆ img(s), because these locations are
the targets of the removed edges and thus in img(s) by construction.
Consequently, h1 ⊎

s h2 ⊎s · · · ⊎s hn is defined. Moreover, every location
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60 deciding ssl without data predicates

in dom(h) is contained in some connected component Ci and thus in
some sub-heap hi. Hence, h = h1 ⊎

s h2 ⊎s · · · ⊎s hn.

We distinguish two types of chunks: those that satisfy SSL atoms
and those that don’t.

Definition 6.6 (Positive and negative chunk). Let hc ⊆ h be a chunk

of (s, h). hc is a positive chunk if there exists an atomic SSL formula τ

such that (s, hc) |= τ. Otherwise, hc is a negative chunk. We collect the

positive and negative chunks of (s, h) in chunks+(s, h) and chunks−(s, h),
respectively.

As the name suggests, every positive chunk satisfies at least one
positive formula, whereas negative chunks don’t satisfy any positive
formula.

Example 6.7. Recall the chunks h1 through h5 from Example 6.4. h1 and h2

are positive chunks (blue in Fig. 6.2), h3 to h5 are negative chunks (orange).

Negative chunks can be classified into four (not mutually-exclusive)
categories, illustrated in Fig. 6.3.

cyclic structures . A cyclic list or lasso (cf. Definition 4.15) of
length at least two1 or tree segments of depth at least two whose
root is among its holes.

unlabeled join points . Overlaid lists or trees that cannot be sep-
arated via ⊎s because they are joined at locations that are not in
img(s).

garbage . Chunks that contain locations that are inaccessible via
stack variables.

unlabeled dangling pointers . Chunks that contain an unla-
beled sink, i.e., a dangling location that is not in img(s) and thus
cannot be “made non-dangling” via composition using ⊎s.

Example 6.8 (Negative chunks). The chunk h3 from Example 6.4 can be

viewed as two overlaid list segments (from 4 to 3 and 5 to 3), and it contains

garbage, namely the location 4 that cannot be reached via stack variables. The

chunk h4 has an unlabeled dangling pointer. The chunk h5 is cyclic.

By definition, every positive chunk satisfies at least one atomic
formula (a points-to assertion, a list predicate, or a tree predicate),
whereas negative chunks do not satisfy any positive SSL formula.

In abstract memory states (AMSs), we retain for every chunk enough
information to (1) determine which atomic formulas the chunk satis-
fies, and (2) keep track of which variables are allocated within each
chunk.

1 Such lists are negative chunks because our semantics of ls does not allow cyclic
list segments. Consequently, heaps that correspond to cyclic lists do not satisfy any
atomic SSL formula and are thus negative.
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x

(a) A lasso.

x

z

y

(b) An unlabeled
join point
(orange).

x

w

z

y

(c) Garbage (or-
ange).

x

(d) Unlabeled dan-
gling pointer.

Figure 6.3: Types of negative chunks.

An AMS is a graph abstraction that uses an abstract edge relation

with the following signature.

E : (V × {l, r, n}) ⇀ (V+ × {[=1], [≥2]})

A hyperedge

〈v, f〉 7→ 〈w, [∼n]〉 , where [∼n] ∈ {[=1], [≥2]} ,

is a partial encoding of a positive chunk, stating that if I follow field f

from node v, I can reach sinks w; and that this part of the chunk is
either of size exactly one, [=1], or of size at least two, [≥2]. For example,
〈v, l〉 7→ 〈w, [≥2]〉 expresses that the left subtree of v is of depth at least
two and contains the sinks w.

We define AMSs in terms of the following auxiliary notation.

• domV(E) , {v | ex. f s.t. 〈v, f〉 ∈ dom(E)}.

• fieldsE(v) , {f | 〈v, f〉 ∈ dom(E)}.

We use sets of variables—specifically, stack equivalence classes—as
the nodes of an AMS. Recall from Section 2.4 that classes(s) denotes
the equivalence classes of stack s.

Definition 6.9. Let s be a stack. Let V , classes(s), E : (V × {l, r, n}) ⇀
(V+ × {[=1], [≥2]}), ρ ⊆ 2V , and γ ∈ N. Then A = 〈V, E, ρ, γ〉 is an

abstract memory state (AMS) for stack s if all of the following consistency
conditions hold.

1. Consistent data structures: For all v ∈ V,

fieldsE(v) ∈ {∅, {n} , {l, r}} .

2. No double allocation: (
⋃

domV(E))∩
⋃

ρ = ∅ and for all v1, v2 ∈ ρ,

if v1 6= v2 then v1 ∩ v2 = ∅.

3. No unrealizable edges:

a) If E(v, n) = 〈〈v1, . . . , vk〉 , ι〉 then k = 1.

b) For all f, if E(v, f) = 〈〈v1, . . . , vk〉 , ι〉 and k ≥ 2 then ι = [≥2].
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We call V the nodes, E the hyperedges, ρ the negative-allocation con-
straint and γ the garbage-chunk count of A. The size of A is given by

|A| , |V|+ ∑v∈dom(E),E(v)=〈y,ι〉 |y|+ γ. Finally, the allocated variables
of an AMS are given by alloc(A) , domV(E) ∪

⋃
ρ.

We collect the set of all AMS in AMS and the set of AMS with
nodes classes(s) in AMSs.

The consistency conditions enforce that every AMS is the abstraction
of at least one stack–heap pair, as we will see below. The rationale
behind each of the conditions is as follows.

1. An edge label f corresponds to allocated fields of the location
labeled by v. We must thus ensure that we don’t allocate both
the list field n and a tree field l, r on the same variable; and we
must ensure that we either allocate both l and r or neither of
them.

2. Both domV(E) and
⋃

ρ correspond to (equivalence classes of)
allocated variables, so we demand that these sets are disjoint to
preclude double allocation.

3. A list can only ever have one hole; and only structures of size at
least two can have more than one hole per field.

Every model induces an AMS based on its decomposition into
chunks. First, every positive chunk induces hyperedges. Informally,
each hyperedge maps the source of a positive chunk and a field f to
the sinks of the chunk reachable via f (including nil, if applicable) and
to a tag that indicates whether or not the size of the chunk is exactly
one or at least two.

Definition 6.10 (Induced hyperedge). Let hc ∈ chunks+(s, h) for a model

(s, h), let ℓ be the unique source of hc, and let v , s−1(ℓ). Define

ι ,







[=1] if |hc| = 1

[≥2] otherwise.

The induced hyperedges of hc,

edgess(hc) : V × {l, r, n} ⇀ V+ × {[=1], [≥2]} ,

are then defined as follows.

case ℓ ∈ locls(h). If sinkvarss(hc) = ε, we let w ,
〈
[nil]s=

〉
. Otherwise,

we let w , sinkvarss(hc). Then, edgess(hc) , {〈v, n〉 7→ 〈w, ι〉}.

case ℓ ∈ loctree(h). Let wl, wr be such that wl · wr = sinkvarss(hc) and

such that wl are those sink variables in the left subtree of ℓ, i.e.,

wl =
{

s−1(ℓ′) | ℓ′ ∈ sinkseq(s, hc) s.t. ℓ
l∗
−→hc ℓ

′
}

. Moreover,

w′
l ,
〈
[nil]s=

〉
if wl = ε and w′

l , wl otherwise,

w′
r ,

〈
[nil]s=

〉
if wr = ε and w′

r , wr otherwise.
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6.1 abstract memory states 63

Then edgess(hc) = {〈v, l〉 7→ 〈w′
l , ι〉 , 〈v, r〉 7→ 〈w′

r, ι〉}.

In the above definition, we explicitly include (the equivalence class
of) nil among the targets of the hyperedges that would otherwise have
no target. This reflects that every chunk that does not contain explicitly
specified sinks must be null-terminated.

Inclusion of nil in induced hyperedges

You may have noticed that we only include nil among the targets
if no target is explicitly specified, i.e., for null-terminated lists and
for sub-trees without holes. It would be possible to also include
nil for sub-trees in which both nil and one or more holes occur as
dangling pointers. This is not necessary, however, because SSL

formulas cannot distinguish between trees of depth at least two
that contain holes and nil and trees that contain only holes.

We denote the sets of variables allocated in negative chunks by

alloc−(s, h) , {s−1(dom(hc) ∩ img(s)) | hc ∈ chunks−(s, h)} \ ∅.

Now we are ready to define the induced AMS of a model.

Definition 6.11 (Induced AMS). Let (s, h) be a model. Let

V , classes(s),

E ,
⋃ {

edgess(hc) | hc ∈ chunks+(s, h)
}

,

ρ , alloc−(s, h),

γ ,
∣
∣chunks−(s, h)

∣
∣−
∣
∣alloc−(s, h)

∣
∣ .

Then ams(s, h) , 〈V, E, ρ, γ〉 is the induced AMS of (s, h).

Example 6.12. The induced AMS of the model (s, h) from Example 6.4 is

illustrated on the right-hand side of Fig. 6.2. The blue box depicts the graph

(V, E) induced by the positive chunks h1, h2. The negative chunk h3 allocates

the variables
{
[w]s=

}
= {{w}}, negative chunk h4 allocates the variables

{
[y]s=

}
= {{y, z}}. Consequently, the negative-allocation constraint is

{{{w}} , {{y, z}}}. Finally, and the garbage-chunk count is 1, because h5

is the only negative chunk that does not allocate stack variables.

Observe that the induced AMS is indeed an AMS.

Lemma 6.13. Let (s, h) be a model. Then ams(s, h) ∈ AMS.

Proof. Let 〈V, E, ρ, γ〉 , ams(s, h). We show that all conditions hold.

1. Every set of induced hyperedges defines either the field n or
both fields l, r, guaranteeing data-structure consistency.

2. Every variable is allocated in at most one chunk, so no variable
can occur both in dom(E) and in ρ.
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3. Every hyperedge is realizable:

a) List segments have exactly one hole.

b) Trees can only have more than one sink in a subtree if they
are of size at least two.

Conversely, every AMS is the induced AMS of at least one model.

Lemma 6.14 (Realizability of AMS). Let A ∈ AMS. There exists a model

(s, h) with ams(s, h) = A.

Proof. The claim follows easily from the consistency criteria of AMS. I
defer a detailed proof, including a polynomial bound on the size of
the minimal model (s, h) with ams(s, h) = A, until Section 7.1, where
I return to the problem of realizability in the larger context of proving
a small-model property for SSL.

We abstract SSL formulas by the set of AMS of their models.

Definition 6.15 (Abstraction of SSL formulas). Let s be a stack. The

SSL abstraction w.r.t. s, amss : SSL → 2AMS, is given by

amss(φ) , {ams(s, h) | h ∈ Heaps and (s, h) |= φ}.

We lift SSL abstraction from individual stacks to all stacks over a
set of variables: amsx(φ) , {amss(φ) | dom(s) = x}. Because AMS do
not retain any information about heap locations, just about aliasing,
abstractions do not differ for stacks with the same equivalence classes.

Lemma 6.16. Let s, s′ be stacks with classes(s) = classes(s′). It then holds

for all formulas φ ∈ SSL that amss(φ) = amss′(φ).

Proof. Let A ∈ amss(φ). There exists a heap h such that ams(s, h) = A

and (s, h) |= φ. Let h′ be such that (s, h) ∼= (s′, h′). By Lemma 5.7,
(s′, h′) |= φ. Moreover, ams(s′, h′) = A. Consequently, A ∈ amss′(φ).
The other direction is proved analogously.

We thus have |amsx(φ)| = B|x| if Bk denotes the k-th Bell number,
i.e., the number of partitions of a set with k elements.

Garbage-free AMS

It makes sense to view an AMS A = 〈V, E, ρ, γ〉 with ρ = ∅ and
γ = 0 as a garbage-free AMS. By definition of induced AMS, we
have that if (s, h) |= φ for a positive formula φ ∈ SSL+, then
ams(s, h) is garbage free in this sense. The purpose of the ρ and
γ component thus is to deal correctly with formulas that contain
negation and/or the magic wand and may thus be satisfied by
models that contain garbage.
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6.2 the refinement theorem for ssl

The main goal of this section is to show the following refinement theorem

for SSL.

Theorem (Refinement theorem for SSL). Let φ ∈ SSL and let (s, h1),

(s, h2) be models with ams(s, h1) = ams(s, h2). Then (s, h1) |= φ iff

(s, h2) |= φ.

I will go about this step by step, characterizing the SSL abstraction,
amss(φ), of all atomic formulas and of the separating conjunction
before proving the refinement theorem. In the remainder of this section,
let (s, h) be an arbitrary but fixed model.

6.2.1 Abstract Memory States of Atomic Formulas

The empty-heap predicate emp is only satisfied by the empty heap,
i.e., by a heap that consists of zero chunks. Consequently,

Lemma 6.17. (s, h) |= emp iff ams(s, h) = 〈classes(s), ∅, ∅, 0〉

Proof. (s, h) |= emp iff h = ∅ iff chunks(s, h) = ∅ iff ams(s, h) =

〈classes(s), ∅, ∅, 0〉.

Lemma 6.18. 1. (s, h) |= x ≈ y iff ams(s, h) = 〈classes(s), ∅, ∅, 0〉
and [x]s= = [y]s=.

2. (s, h) |= x 6≈ y iff ams(s, h) = 〈classes(s), ∅, ∅, 0〉 and [x]s= 6= [y]s=.

Proof. I only show the first claim, as the proof of the second claim is
completely analogous. (s, h) |= x ≈ y iff (s(x) = s(y) and h = ∅) iff
([x]s= = [y]s= and (s, h) |= emp) iff, by Lemma 6.17, ([x]s= = [y]s= and
ams(s, h) = 〈classes(s), ∅, ∅, 0〉).

Models of points-to assertions consist of a single positive chunk of
size 1.

Lemma 6.19. 1. Let E , {
〈
[x]s=, n

〉
7→

〈〈
[y]s=

〉
, [=1]

〉
}. (s, h) |=

x 7→n y iff ams(s, h) = 〈classes(s), E, ∅, 0〉.

2. Let E , {
〈
[x]s=, l

〉
7→
〈〈
[y]s=

〉
, [=1]

〉
,
〈
[x]s=, r

〉
7→
〈〈
[z]s=

〉
, [=1]

〉
}.

(s, h) |= x 7→l,r 〈y, z〉 iff ams(s, h) = 〈classes(s), E, ∅, 0〉.

Proof. We only show the claim for 7→n, as the argument for 7→l,r is
analogous. If (s, h) |= x 7→n y then h = {s(x) 7→ 〈s(y), d〉} for some
d ∈ Data. In particular, it then holds that h is a positive chunk with
|h| = 1, source variables [x]s=, and sink variables

〈
[y]s=

〉
. Consequently,

edgess(h) = E. It follows that ams(s, h) = 〈classes(s), E, ∅, 0〉.
Conversely, assume ams(s, h) = 〈classes(s), E, ∅, 0〉. Because |E| = 1,

ρ = ∅ and γ = 0, h consists of a single positive chunk and no negative
chunks; and it holds for that |h| = 1, the source variables of h are
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[x]s=, and the sink variables of h are
〈
[y]s=

〉
. In other words, h consists

of a single list location and it holds that h = {s(x) 7→ 〈s(y), d〉} for
some d ∈ Data. By the semantics of points-to assertions, we then have
(s, h) |= x 7→n y.

We capture the abstractions of list and tree predicates in the follow-
ing sets of abstract lists and abstract trees.

Definition 6.20 (Abstract List). Let x ∈ Var, y ∈ Var∗ with |y| < 1.

Moreover, let y be nil if y is empty and the unique element in y otherwise.

An AMS A is an abstract list w.r.t. s, x, and y if there exist x1, . . . , xk

and a heap h such that such that (s, h) is a connected list segment from x to

y via 〈x1, . . . , xk〉 and ams(s, h) = A.

We collect all abstract lists in AbstLists(s, x, y). All abstract lists induced

by heaps h with |h| ≥ 2 are collected in AbstLists≥2(s, x, y).

Definition 6.21 (Abstract Tree). Let x ∈ Var, y ∈ Var∗. An AMS A is

an abstract tree w.r.t. s, x, and y if there exists a heap h such that (s, h) is a

directed tree with root x and holes y and ams(s, h) = A.

We collect all abstract trees in AbstTrees(s, x, y). All abstract trees

induced by heaps h with |h| ≥ 2 are collected in AbstTrees≥2(s, x, y).

Since we already know from Lemmas 5.4 and 5.5 that connected list
segments and directed trees characterize the models of the list and tree
predicates, it is no surprise that abstract lists and trees characterize
the abstractions of these models.

Lemma 6.22 (Abstraction of predicate calls). 1. (s, h) |= ls(x, y) iff

ams(s, h) ∈ AbstLists(s, x, y).

2. (s, h) |= ls≥2(x, y) iff ams(s, h) ∈ AbstLists≥2(s, x, y).

3. (s, h) |= tree(x, y) iff ams(s, h) ∈ AbstTrees(s, x, y).

4. (s, h) |= tree≥2(x, y) iff ams(s, h) ∈ AbstTrees≥2(s, x, y).

Proof. Immediate consequence of Lemmas 5.4 and 5.5 and the defini-
tion of abstract lists and abstract trees.

So far, defining abstract lists and abstract trees may seem like a
pointless exercise. This is not quite true. Yes, we have proved the
trivial fact that the abstraction of a model of a list is an abstract list—
but we have also proved that an abstract list only abstracts list models.
In other words, all models whose abstraction is an abstract list do
satisfy a list predicate. This is crucial for showing the refinement
theorem.

Besides, having dedicated notation such as AbstTrees(s, x, y) will
be useful later when reasoning about the computability and complex-
ity of AMS-based satisfiability checking.
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6.2.2 Composing Abstract Memory States

Our next goal is to lift the union operator ⊎s to the abstract domain
AMS. We will define an operator • with the following property.

if h1 ⊎
s h2 6= ⊥ then ams(s, h1 ⊎

s h2) = ams(s, h1) • ams(s, h2).

This will allow us to extend the results that we showed for the abstrac-
tions of atomic formulas Section 6.2.1 to arbitrary SSL formulas—and
thus prove the refinement theorem.

AMS composition is a partial operation defined only on compatible

AMS. Compatibility enforces (1) that there is no double allocation and
(2) that the AMSs were obtained for equivalent stacks (i.e., for stacks
s, s′ with classes(s) = classes(s′)).

Definition 6.23 (Compatibility of AMSs). AMSs A1 = 〈V1, E1, ρ1, γ1〉
and A2 = 〈V2, E2, ρ2, γ2〉 are compatible iff (1) V1 = V2 and (2) alloc(A1)

∩ alloc(A2) = ∅.

Note that if (s, h1)⊎
s (s, h2) is defined, then ams(s, h1) and ams(s, h2)

are compatible. The converse is not true, because ams(s, h1) and
ams(s, h2) may be compatible even if dom(h1) ∩ dom(h2) 6= ∅.

AMS composition is defined in a point-wise manner on compatible
AMSs and undefined otherwise.

Definition 6.24 (AMS composition). Let A1 = 〈V1, E1, ρ1, γ1〉, A2 =

〈V2, E2, ρ2, γ2〉 be AMS. The composition of A1,A2 is then given by

A1 • A2 ,







〈V1, E1 ∪ E2, ρ1 ∪ ρ2, γ1 + γ2〉 , if A1,A2 compatible

⊥, otherwise.

Lemma 6.25. Let s be a stack and let h1, h2 be heaps. If h1 ⊎
s h2 6= ⊥ then

ams(s, h1) • ams(s, h2) 6= ⊥.

Proof. Since the same stack s underlies both abstractions, we have V1 =

V2. Furthermore, dom(h1) ∩ dom(h2) = ∅ implies that alloc(A1) ∩

alloc(A2) = ∅.

We next show that ams(s, h1 ⊎
s h2) = ams(s, h1) • ams(s, h2) when-

ever h1 ⊎
s h2 is defined.

Lemma 6.26 (Homomorphism of composition). Let (s, h1), (s, h2) be

models and assume h1 ⊎
s h2 6= ⊥. Then ams(s, h1 ⊎

s h2) = ams(s, h1) •

ams(s, h2).

Proof. The result follows easily from the observation that

chunks(s, h1 ⊎
s h2) = chunks(s, h1) ∪ chunks(s, h2),

which, in turn, is an immediate consequence of Lemma 6.5.
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68 deciding ssl without data predicates

To show this in more detail, we need to look at the components of

〈V1, E1, ρ1, γ1〉 , ams(s, h1),

〈V2, E2, ρ2, γ2〉 , ams(s, h2), and

〈V, E, ρ, γ〉 , ams(s, h1 ⊎
s h2).

• As all models have the same stack, it holds that V = V1.

• As chunks+(s, h1 ⊎
s h2) = chunks+(s, h1) ∪ chunks+(s, h2), it fol-

lows that
{
edgess(hc) | hc ∈ chunks+(s, h1 ⊎

s h2)
}

=
{
edgess(hc) | hc ∈ chunks+(s, h1)

}

∪
{
edgess(hc) | hc ∈ chunks+(s, h2)

}

and thus E = E1 ∪ E2.

• As chunks−(s, h1 ⊎
s h2) = chunks−(s, h1) ∪ chunks−(s, h2), it fol-

lows that

ρ =alloc−(s, h1 ⊎
s h2)

=alloc−(s, h1) ∪ alloc−(s, h2) = ρ1 ∪ ρ2

and

γ =
∣
∣chunks−(s, h1 ⊎

s h2)
∣
∣−
∣
∣alloc−(s, h1 ⊎

s h2)
∣
∣

=(
∣
∣chunks−(s, h1)

∣
∣−
∣
∣alloc−(s, h1)

∣
∣)

+ (
∣
∣chunks−(s, h2)

∣
∣−
∣
∣alloc−(s, h2)

∣
∣) = γ1 + γ2.

Combining these observations, we obtain

ams(s, h1 ⊎
s h2) = ams(s, h1) • ams(s, h2).

6.2.3 Proving the Refinement Theorem

The results from Sections 6.2.1 and 6.2.2 imply the refinement theorem

that I stated at the beginning of this chapter: models with the same
AMS abstraction satisfy the same SSL formulas.

To show the refinement theorem, we need one additional property of
AMS composition. If an AMS A of a model (s, h) can be decomposed
into two smaller AMS A = A1 • A2, it is also possible to decompose
the heap h into smaller heaps h1, h2 with ams(s, hi) = Ai.

Lemma 6.27 (Decomposability of AMS). Let ams(s, h) = A1 •A2. There

exist h1, h2 with h = h1 ⊎
s h2, ams(s, h1) = A1 and ams(s, h2) = A2.

Proof. Let hc ∈ chunks(s, h). Since chunks cannot be split into smaller
heaps using ⊎s, there are only two possibilities: either there exists
an A′

1 such that A1 = ams(s, hc) • A′
1 or there exists an A′

2 such that
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6.2 the refinement theorem for ssl 69

A2 = ams(s, hc) • A′
2. In the former case, we add hc to h1, in the latter

case we add it to h2.
By construction, we obtain for 1 ≤ i ≤ 2 that Ai is the composition

of the abstractions of all chunks of hi, i.e., ams(s, hi) = Ai.

Theorem 6.28 (Refinement theorem for SSL). Let φ ∈ SSL and let

(s, h1), (s, h2) be models with ams(s, h1) = ams(s, h2). Then (s, h1) |= φ

iff (s, h2) |= φ.

Proof. Let A , 〈V, E, ρ, γ〉 be the AMS for which ams(s, h1) = A =

ams(s, h2) holds. We proceed by induction on the structure of φ. I
present only one direction of the proof, as the proof of the other
direction is completely analogous.

Assume that the claim holds for all subformulas of φ and assume
that (s, h1) |= φ. In particular, this implies that A ∈ amss(φ)—a fact
that we will use throughout this proof. We show that (s, h2) |= φ.

case emp. Immediate consequence of Lemma 6.17.

case x ≈ y. As both models have the same stack, this is an immediate
consequence of Lemma 6.18.

case x 6≈ y. Analogous.

case x 7→n y, x 7→l,r y. Immediate consequence of Lemma 6.19.

case pred(x, y), pred ∈ {ls, ls≥2, tree, tree≥2}. Immediate consequence
of Lemma 6.22.

case φ1 ⋆ φ2 . By the semantics of ⋆, there exist h1,1, h1,2 with h1 =

h1,1 ⊎
s h1,2, (s, h1,1) |= φ1, and (s, h1,2) |= φ2. Let A1 , ams(s, h1,1)

and A2 , ams(s, h1,2). By Lemma 6.33, ams(s, h1) = A1 • A2 =

ams(s, h2). We can thus apply Lemma 6.27 to ams(s, h2), A1, and
A2 to obtain heaps h2,1, h2,2 with h2 = h2,1 ⊎

s h2,2, ams(s, h2,1) =

A1 and ams(s, h2,2) = A2.

For 1 ≤ i ≤ 2, we apply the induction hypotheses for φi, h1,i and
h2,i to obtain that h2,i |= φi. By the semantics of ⋆, we then have
(s, h2) = (s, h2,1 ⊎

s h2,2) |= φ1 ⋆ φ2.

case φ1 −⋆ φ2 . Since (s, h1) |= φ1 −⋆ φ2, it holds for all heaps h0 with
(s, h0) |= φ1 and h1 ⊎

s h0 6= ⊥ that (s, h1 ⊎
s h0) |= φ2. Let h0 be an

arbitrary such heap. We assume w.l.o.g. that h2 ⊎s h0 6= ⊥—if this
is not the case, simply replace h0 with a heap h′0 with (s, h0) ∼=
(s, h′0) for which h2 ⊎s h′0 6= ⊥. This is always possible, because
all locations in locs(h0) \ img(s) can be renamed arbitrarily, so
in particular to locations that are neither in locs(h1) \ img(s) nor
in locs(h2) \ img(s). By Lemma 5.7, (s, h1 ⊎

s h′0) |= φ2.

Note that ams(s, h1 ⊎
s h0) = ams(s, h1) • ams(s, h0) = ams(s, h2) •

ams(s, h0) = ams(s, h2 ⊎s h0) (by assumption and Lemma 6.33). It
therefore follows from the induction hypothesis for φ2, (s, h1 ⊎

s
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70 deciding ssl without data predicates

h0), and (s, h2 ⊎s h0) that (s, h2 ⊎s h0) |= φ2 and thus (s, h2) |=

φ1 −©⋆ φ2.

case φ1 ∧ φ2 . By the semantics of ∧, we have both (s, h1) |= φ1 and
(s, h1) |= φ2. We apply the induction hypotheses for φ1 and φ2 to
obtain (s, h2) |= φ1 and (s, h2) |= φ2. By the semantics of ∧, we
then have (s, h2) |= φ1 ∧ φ2.

case φ1 ∨ φ2 . By the semantics of ∨, we have (s, h1) |= φ1 or (s, h1) |=

φ2. Assume w.l.o.g. that (s, h1) |= φ1. We apply the induction
hypothesis for φ1 to obtain (s, h2) |= φ1. By the semantics of ∨,
we then have (s, h2) |= φ1 ∨ φ2.

case ¬φ1 . By the semantics of ¬, we have (s, h1) 6|= φ1. By the in-
duction hypothesis for φ1 we then obtain (s, h2) 6|= φ1. By the
semantics of ¬, we have (s, h2) |= ¬φ1.

Corollary 6.29. Let (s, h) be a model and φ ∈ SSL. (s, h) |= φ iff

ams(s, h) ∈ amss(φ).

Proof. Let A , ams(s, h). Because A ∈ amss(φ), there exists by defini-
tion of amss a model (s, h′) such that (s, h′) |= φ and ams(s, h′) = A.
By applying Theorem 6.28 to φ, (s, h) and (s, h′), it then follows that
(s, h) |= φ.

6.3 computing abstract memory states

In this section, I show how to compute the AMS of arbitrary SSL

formulas. I proceed in two steps. First, I derive recursive equations
that reduce the set of AMS amss(φ) for arbitrary compound SSL

formulas to the set of AMS of the constituent formulas of φ. I then
show that we can actually evaluate these equations, as well as the set
of AMS we found for atomic formulas in Section 6.2.1, thus obtaining
an algorithm for computing the abstraction of arbitrary SSL formulas.

6.3.1 Abstracting Non-Atomic SSL Formulas

abstracting the boolean operators . The refinement theo-
rem ensures that we can express the sets of AMS of Boolean operators
∧, ∨ and ¬ in terms of intersection, union, and complement.

Lemma 6.30. amss(φ1 ∧ φ2) = amss(φ1) ∩ amss(φ2).

Proof. (⇒) Assume A ∈ amss(φ1 ∧ φ2). Let (s, h) be a model with
ams(s, h) = A. By Corollary 6.29, (s, h) |= φ1 ∧ φ2. Consequently,
(s, h) |= φ1 and (s, h) |= φ2. Thus, A ∈ amss(φ1) and A ∈

amss(φ2), i.e., A ∈ A ∈ amss(φ1) ∩ amss(φ2).

(⇐) Let A ∈ amss(φ1) ∩ amss(φ2). Let (s, h) be such that ams(s, h) =
A. By Corollary 6.29, (s, h) |= φ1 and (s, h) |= φ2 and thus
(s, h) |= φ1 ∧ φ2. It follows that A ∈ amss(φ1 ∧ φ2).
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6.3 computing abstract memory states 71

Lemma 6.31. amss(φ1 ∨ φ2) = amss(φ1) ∪ amss(φ2).

Proof. (⇒) Assume A ∈ amss(φ1 ∨ φ2). Let (s, h) be a model with
ams(s, h) = A. By Corollary 6.29, (s, h) |= φ1 ∨ φ2. Consequently,
(s, h) |= φ1 or (s, h) |= φ2. Assume w.l.o.g. that (s, h) |= φ1. Thus,
A ∈ amss(φ1) ⊆ amss(φ1) ∪ amss(φ2).

(⇐) Let A ∈ amss(φ1)∪ amss(φ2). Assume w.l.o.g. that A ∈ amss(φ1).
Let (s, h) be a model with ams(s, h) = A. By Corollary 6.29,
(s, h) |= φ1 and thus (s, h) |= φ1 ∨ φ2. It follows that A ∈

amss(φ1 ∨ φ2).

Lemma 6.32. amss(¬φ1) = {ams(s, h) | h ∈ Heaps} \ amss(φ1).

Proof. (⇒) Assume A ∈ amss(¬φ1). Let (s, h) be such that ams(s, h) =
A. By Corollary 6.29, (s, h) |= ¬φ1 and thus (s, h) 6|= φ1. By defi-
nition, we then have that A /∈ amss(φ1), i.e.,

A ∈ {ams(s, h) | h ∈ Heaps} \ amss(φ1).

(⇐) Let A ∈ {ams(s, h) | h ∈ Heaps} \ amss(φ1). Let (s, h) be such
that ams(s, h) = A. Because A /∈ amss(φ1), it follows by Corol-
lary 6.29 that (s, h) 6|= φ1. By the semantics of ¬, (s, h) |= ¬φ1. It
follows that A ∈ amss(¬φ1).

abstracting the separating conjunction. In Section 6.2.2,
we defined the composition operation, •, on pairs of AMS. We now
lift this operation to sets of AMS in a point-wise manner. Let A1, A2 ⊆

AMSs be sets of AMS w.r.t. some stack s. We define

A1 • A2 , {A1 • A2 | A1 ∈ A1,A2 ∈ A2,A1 • A2 6= ⊥} .

Lemma 6.26 implies that amss is a homomorphism from formulas
and the separating conjunction, ⋆, to sets of AMS and the composition
operator, •:

Lemma 6.33 (Correctness of AMS composition). Let φ1, φ2 ∈ SSL.

Then amss(φ1 ⋆ φ2) = amss(φ1) • amss(φ2).

Proof. Let A ∈ amss(φ1 ⋆ φ2). There then exists a heap h such that
(s, h) |= φ1 ⋆ φ2 and ams(s, h) = A. By the semantics of ⋆, we can split
h into h1 ⊎

s h2 with (s, hi) |= φi (and thus ams(s, hi) ∈ amss(φi)). By
Lemma 6.26, A = ams(s, h1) • ams(s, h2) for h1, h2 as above. Conse-
quently, A ∈ amss(φ1) • amss(φ2) by definition of •.

Conversely, let A ∈ amss(φ1) • amss(φ2). By definition of •, there
then exist Ai ∈ amss(φi) such that A = A1 •A2. Let h1, h2 be witnesses
of this fact, i.e., such that (s, hi) |= φi and ams(s, hi) = Ai. Assume
w.l.o.g. that h1 ⊎

s h2 6= ⊥. (Otherwise, replace h2 with an h′2 such that
(s, h2) ∼= (s, h′2) and h1 ⊎

s h′2 6= ⊥.)
By the semantics of ⋆, (s, h1 ⊎

s h2) |= φ1 ⋆ φ2. Therefore, ams(s, h1 ⊎
s

h2) ∈ amss(φ1 ⋆ φ2). By Lemma 6.33, ams(s, h1 ⊎
s h2) = A. The claim

follows.
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abstract magic wands . Finally, we formalize the abstraction of
magic wands in terms of an abstract magic wand, −•, which relates to •

in the same way that −⋆ relates to ⋆.

Definition 6.34. Let A1, A2 ⊆ AMS. The abstract magic wand, A1−•A2,

is given by

A1−•A2 , {A ∈ AMS | for all A1 ∈ A1 if A •A1 6= ⊥

then A •A1 ∈ A2}

Using the refinement theorem, in the form of Corollary 6.29, and
the properties of • showed in Lemmas 6.26 and 6.27, we can show that
amss is a homomorphism from SSL formulas and −⋆ to sets of AMS
and the abstract magic wand, −•.

Lemma 6.35. For all φ1, φ2 ∈ SSL, it holds that

amss(φ1 −⋆ φ2) = amss(φ1)−•amss(φ2).

Proof. Define Ai , amss(φi), 1 ≤ i ≤ 2. Let A ∈ amss(φ1 −⋆ φ2). Then
there exists a model (s, h) with ams(s, h) = A and (s, h) |= φ1 −⋆ φ2.

Let A1 ∈ A1 be an arbitrary AMS with A •A1 6= ⊥. By definition
of A1 there exists a heap h1 such that (s, h1) |= φ1 and ams(s, h). Since
A • A1 6= ⊥, we can assume w.l.o.g. that h ⊎s h1 6= ⊥—otherwise,
simply replace h′1 with an appropriate isomorphic heap, i.e., such that
(s, h1) ∼= (s, h′1) and h⊎s h′1 6= ⊥.

By the semantics of −⋆, it follows that (s, h ⊎s h1) |= φ2. Con-
sequently, ams(s, h ⊎s h1) ∈ A2. By Lemma 6.26, ams(s, h ⊎s h1) =

ams(s, h) • ams(s, h1) = A •A1, so A •A1 ∈ A2.
Since A1 was arbitrary, it follows that A ∈ A1−•A2.
Conversely, let A ∈ A1−•A2. Let h, h1 be arbitrary heaps with

ams(s, h) = A, ams(s, h1) ∈ A1, (s, h1) |= φ1, and h ⊎s h1 6= ⊥.
Let A1 , ams(s, h1). Note that A • A1 6= ⊥. Since A1 ∈ A1 and
A ∈ A1−•A2, it follows by definition of −• that A • A1 ∈ A2. Fur-
ther, by Lemma 6.26, we then have ams(s, h ⊎s h1) = A • A1 ∈ A2.
By Corollary 6.29, this allows us to conclude that (s, h ⊎s h1) |= φ2.
Consequently, (s, h) |= φ1 −⋆ φ2. Since h1 was arbitrary, it follows that
A ∈ amss(φ1 −⋆ φ2).

6.3.2 Refining the Refinement Theorem: Bounding Garbage

Even though we have now characterized the set amss(φ) for every
formula φ, we do not yet have a way to implement AMS computation:
while amss(φ) is finite if φ is a spatial atom, the set is infinite if the for-
mula contains negation (Lemma 6.32) or magic wands (Lemma 6.35).

As every node in V has to contain at least one stack variable, there
are for every fixed stack s only finitely many ways to pick the nodes
V, the edges E and the negative-allocation constraint ρ. The garbage-
chunk count can, however, be an arbitrary natural number. Fortunately,
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6.3 computing abstract memory states 73

to decide the satisfiability of any fixed formula φ, it is not necessary to
keep track of arbitrarily large garbage-chunk counts.

We introduce a notion of chunk size of formula φ, ⌈φ⌉, that provides
an upper bound on the number of chunks that may be necessary to
satisfy and/or falsify the formula.

Definition 6.36 (Chunk size). Let φ ∈ SSL. The chunk size of φ, denoted

⌈φ⌉, is defined as follows.

• ⌈τ⌉ , 1 if τ is atomic

• ⌈φ ⋆ ψ⌉ , ⌈φ⌉+ ⌈ψ⌉

• ⌈φ −⋆ ψ⌉ , ⌈ψ⌉

• ⌈φ ∧ ψ⌉ , max(⌈φ⌉, ⌈ψ⌉), ⌈φ ∨ ψ⌉ , max(⌈φ⌉, ⌈ψ⌉)

• ⌈¬φ⌉ , ⌈φ⌉.

Observe that ⌈φ⌉ ≤ |φ| for all φ. Intuitively, ⌈φ⌉ − 1 is an upper
bound on the number of times the operation ⊎s is applied when
checking whether (s, h) |= φ.

Example 6.37 (Chunk size). Let ψ = (x 7→n y) ⋆ ((b 7→n c)−©⋆ ls(a, c)).

Then ⌈ψ⌉ = 2; and to check that ψ holds in a model that consists of a pointer

from x to y and a list segment from a to b, it suffices to split this model once—

i.e., (⌈ψ⌉ − 1) many times—using ⊎s, obtaining sub-heaps that correspond

to the points-to assertion and the list segment.

We generalize the refinement theorem, Theorem 6.28, to mod-
els whose AMS differ in their garbage-chunk count, provided both
garbage-chunk counts exceed the chunk size of the formula.

Theorem 6.38 (Refined refinement theorem for SSL). Let φ ∈ SSL

be a formula with ⌈φ⌉ = k. Let m ≥ k, n ≥ k and let (s, h1), (s, h2) be

models with ams(s, h1) = 〈V, E, ρ, m〉, ams(s, h2) = 〈V, E, ρ, n〉. Then

(s, h1) |= φ iff (s, h2) |= φ.

Proof. If m = n, the result follows from Theorem 6.28. If m 6= n,
assume w.l.o.g. that m < n. We proceed by structural induction on φ.
We only prove one implication, as the proof of the other direction is
very similar.

atomic formulas . As we saw in Section 6.2.1, the AMS of all
models of atomic SSL formulas have a garbage-chunk count of
0. Moreover, by definition of chunk size, ⌈φ⌉ = 1 for all atomic
φ. Since m ≥ ⌈φ⌉ = 1 and n > m, it follows that (s, h1) 6|= φ and
(s, h2) 6|= φ.

case φ1 ⋆ φ2 . Assume (s, h1) |= φ1 ⋆ φ2. Let h1,1, h1,2 be such that
h1 = h1,1 ⊎

s h1,2, (s, h1,1) |= φ1, and (s, h1,2) |= φ2. Let

A1 = 〈V1, E1, ρ1, m1〉 , ams(s, h1,1) and

A2 = 〈V2, E2, ρ2, m2〉 , ams(s, h1,2).
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74 deciding ssl without data predicates

Since m ≥ ⌈φ1⌉ + ⌈φ2⌉, it follows that, either m1 ≥ ⌈φ1⌉ or
m2 ≥ ⌈φ2⌉ (or both). Assume w.l.o.g. that m1 ≥ ⌈φ1⌉ and let
A′

1 , 〈V1, E1, ρ1, n − m2〉. Observe that ams(s, h2) = A′
1 • A2.

There thus exist by Lemma 6.27 heaps h2,1, h2,2 such that (s, h2) =

h2,1 ⊎
s h2,2, ams(s, h2,1) = A′

1 and ams(s, h2,1) = A2. As both
m1 ≥ ⌈φ1⌉ and n − m2 > m − m2 = m1 ≥ ⌈φ1⌉, we have by the
induction hypothesis for φ1 that (s, h2,1) |= φ1. Additionally, we
have h2,2 |= φ2 by Theorem 6.28. Consequently, (s, h2) |= φ1 ⋆ φ2.

case φ1 −⋆ φ2 . Assume (s, h1) |= φ1 −⋆φ2. Let h′ be such that (s, h′) |=
φ1 and (s, h′ ⊎s h1) |= φ2. Assume w.l.o.g. that h2 ⊎s h′ 6= ⊥—if
this is not the case simply replace h′ with an isomorphic heap
that has this property. Let

A2 = 〈V2, E2, ρ2, m + m2〉 = ams(s, h′ ⊎s h1) and

A′
2 = 〈V2, E2, ρ2, n + m2〉 = ams(s, h′ ⊎s h2).

Trivially, m + m2 ≥ m = ⌈φ2⌉ and n + m2 ≥ n > m = ⌈φ2⌉. It
thus follows from the induction hypothesis for φ2 that (s, h′ ⊎s

h2) |= φ2. As h′ was arbitrary, it follows that (s, h2) |= φ1 −⋆ φ2.

case φ1 ∧ φ2 . Assume (s, h1) |= φ1 ∧ φ2 and hence (s, h1) |= φ1 and
(s, h1) |= φ2. For 1 ≤ i ≤ 2, we have by definition of ⌈φ1 ∧ φ2⌉

that m ≥ max(⌈φ1⌉, ⌈φ2⌉) ≥ ⌈φi⌉ and hence n ≥ ⌈φi⌉. We thus
conclude from the induction hypotheses that (s, h2) |= φi and
therefore, by the semantics of ∧, (s, h2) |= φ1 ∧ φ2.

case φ1 ∨ φ2 . Assume (s, h1) |= φ1 ∨φ2. W.l.o.g., we have (s, h1) |= φ1.
By definition of ⌈φ1 ∨ φ2⌉, it follows that

m ≥ max(⌈φ1⌉, ⌈φ2⌉) ≥ ⌈φ1⌉

and hence n ≥ ⌈φ1⌉. We thus conclude from the induction hy-
pothesis for φ1 that (s, h2) |= φ1 and therefore, by the semantics
of ∨, (s, h2) |= φ1 ∨ φ2.

case ¬φ1 . Assume (s, h1) |= ¬φ1. Consequently, (s, h2) 6|= φ1. Since
m ≥ ⌈¬φ1⌉ = ⌈φ1⌉ and n > m, it follows by induction that
(s, h2) 6|= φ1. By the semantics of negation, we conclude that
(s, h2) |= ¬φ1.

This implies that φ is satisfiable over stack s iff φ is satisfiable by a
heap that contains at most ⌈φ⌉ garbage chunks.

Corollary 6.39. Let φ be an SSL formula with ⌈φ⌉ = k. Then φ is satisfiable

over stack s iff there exists a heap h such that (1) ams(s, h) = (V, E, ρ, γ)

for some γ ≤ k and (2) (s, h) |= φ.

Proof. Assume φ is satisfiable and let (s, h) be a model with (s, h) |= φ.
Let A = 〈V, E, ρ, γ〉 , ams(s, h). If γ ≤ k, there is nothing to show.
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6.4 deciding ssl by ams computation 75

Otherwise, let A′ , 〈V, E, ρ, k〉. Let h′ be a heap such that ams(s, h′) =
A′; such a heap exists by Lemma 6.14. By Theorem 6.38, (s, h′) |= φ.

Conversely, if φ is not satisfiable over s, it is not satisfied by any
heap; in particular, it is not satisfied by heaps with garbage-chunk
count of at most k.

6.4 deciding ssl by ams computation

In light of Corollary 6.39, we can decide the SSL satisfiability problem
by means of a function absts(φ) that computes the (finite) intersection
of the (possibly infinite) set amss(φ) and the (finite) set

AMSk,s , {〈V, E, ρ, γ〉 ∈ AMS | V = classes(s) and γ ≤ k} ,

setting k , ⌈φ⌉. We define absts(φ) in Fig. 6.4. The definition is
straightforward except for the cases for ⋆, −⋆, ∧, and ∨, which rely on
lifting the bound on the garbage-chunk count from m to n ≥ m.

The idea behind the lifting operation, formalized below, is to adapt
the set computed for the chunk size of the subformulas, m, to the
chunk size of the larger formula, n ≥ m, by adding for every AMS of
the form 〈V, E, ρ, m〉 all the AMS of the form 〈V, E, ρ, j〉, m < j ≤ n.
This is sound by Theorem 6.38.

Definition 6.40. Let m, n ∈ N with m ≤ n and let A = 〈V, E, ρ, γ〉 ∈

AMS. The bound-lifting of A from m to n is

liftmրn(A) ,







{A} if γ < m

{〈V, E, ρ, k〉 | m ≤ k ≤ n} if γ = m.

We apply bound-lifting to sets of AMS in a point-wise manner, i.e.,

liftmրn(A) ,
⋃

A∈A

liftmրn(A).

Note that as a consequence of Theorem 6.38,

lift⌈φ⌉րn(amss(φ) ∩ AMS⌈φ⌉,s) = amss(φ) ∩ AMSn,s

for all n ≥ ⌈φ⌉. By combining this observation with the lemmas
characterizing amss (Lemmas 6.17 to 6.19, 6.22, 6.30 to 6.33 and 6.35),
we obtain the correctness of absts(φ).

Theorem 6.41 (Correctness of AMS computation). Let s be a stack and

let φ ∈ SSL be a formula. Then absts(φ) = amss(φ) ∩ AMS⌈φ⌉,s.

Proof. We proceed by induction on the structure of φ.

case emp. By Lemma 6.17, absts(emp) = amss(emp). Moreover, as
amss(emp) ⊆ AMS0,s, we also have amss(emp) ⊆ AMS⌈φ⌉,s.
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76 deciding ssl without data predicates

absts(emp) , {〈classes(s), ∅, ∅, 0〉}

absts(x ≈ y) , if s(x) = s(y) then absts(emp) else ∅

absts(x 6≈ y) , if s(x) 6= s(y) then absts(emp) else ∅

absts(x 7→n y) ,
{〈

classes(s),
{
[x]s= 7→ [y]s=

}
, ∅, 0

〉}

absts(x 7→l,r y) ,
{〈

classes(s),
{
[x]s= 7→ [y]s=

}
, ∅, 0

〉}

absts(ls(x, y)) , AbstLists(s, x, y)

absts(ls≥2(x, y)) , AbstLists≥2(s, x, y)

absts(tree(x, y)) , AbstTrees(s, x, y)

absts(tree≥2(x, y)) , AbstTrees≥2(s, x, y)

absts(φ1 ⋆ φ2) , AMS⌈φ1⋆φ2⌉,s ∩ (lift⌈φ1⌉ր⌈φ1⋆φ2⌉(absts(φ1))

•lift⌈φ2⌉ր⌈φ1⋆φ2⌉(absts(φ2)))

absts(φ1 −⋆ φ2) , AMS⌈φ1−⋆φ2⌉,s ∩

(absts(φ1)−•lift⌈φ2⌉ր⌈φ1⌉+⌈φ2⌉(absts(φ2)))

absts(φ1 ∧ φ2) , lift⌈φ1⌉ր⌈φ1∧φ2⌉(absts(φ1))

∩ lift⌈φ2⌉ր⌈φ1∧φ2⌉(absts(φ2))

absts(φ1 ∨ φ2) , lift⌈φ1⌉ր⌈φ1∨φ2⌉(absts(φ1))

∪ lift⌈φ2⌉ր⌈φ1∨φ2⌉(absts(φ2))

absts(¬φ1) , AMS⌈φ1⌉,s \ absts(φ1)

Figure 6.4: Computing the abstract memory states of the models of φ with
stack s.

case x = y. If s(x) = s(y) then amss(x = y) = {〈V, E, ρ, γ〉 ∈ AMS |

V = classes(s)} by Lemma 6.18. Thus, in particular, amss(x =

y) ⊇ AMS1,s = AMS⌈x=y⌉,s and the claim follows. If, instead,
s(x) 6= s(y) then amss(x = y)∩ AMS⌈x=y⌉,s = ∅ = absts(x = y).

case x 7→n y, x 7→l,r y. Apply Lemma 6.19 and proceed as for emp.

case pred(x , y) , pred ∈ { ls , ls≥2 , tree , tree≥2} . Apply Lemma 6.22

and proceed as for emp.

case φ1 ⋆ φ2 . By the induction hypotheses, we have for 1 ≤ i ≤ 2
that absts(φi) = amss(φi) ∩ AMS⌈φi⌉,s Let

Ai , lift⌈φ1⌉ր⌈φ1⋆φ2⌉(absts(φi)).

By Theorem 6.38, it follows that Ai = amss(φi) ∩ AMS⌈φ1⋆φ2⌉,s.
By Lemma 6.33, it thus follows that A1 • A2 contains all AMS
in amss(φ1 ⋆ φ2) that can be obtained by composing AMS with
a garbage-chunk count of at most ⌈φi ⋆ φ2⌉. Thus, in particular,
(1) A1 • A2 ⊆ amss(φ1 ⋆ φ2) and (2) A1 • A2 ⊇ amss(φ1 ⋆ φ2) ∩

AMS⌈φi⋆φ2⌉,s. The claim follows.
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case φ1 −⋆ φ2 . By the induction hypotheses, we have for 1 ≤ i ≤ 2
that absts(φi) = amss(φi) ∩ AMS⌈φi⌉,s Let

A2 , lift⌈φ2⌉ր⌈φ1+φ2⌉(absts(φ2)).

By Theorem 6.38 and the definition of ⌈φ1 ⋆ φ2⌉, it follows that
A2 = amss(φ2) ∩ AMS⌈φ1⋆φ2⌉,s. Thus, in particular, A2 contains
every AMS in amss(φ2) that can be obtained by composing an
AMS in AMS⌈φ1−©⋆φ2⌉ = AMS⌈φ2⌉ with an AMS from amss(φ1)∩

AMS⌈φ1⌉,s. It thus follows from Lemma 6.35 that amss(φ1)−•A2

is precisely the set of AMS amss(φ1 −©⋆ φ2) ∩ AMS⌈φ1−©⋆φ2⌉.

case φ1 ∧ φ2 . By the induction hypotheses, we have for 1 ≤ i ≤

2 that absts(φi) = amss(φi) ∩ AMS⌈φi⌉,s. For 1 ≤ i ≤ 2, let
Ai , lift⌈φ1⌉ր⌈φ1∧φ2⌉(absts(φi)). By Theorem 6.38, we have Ai =

amss(φi) ∩ AMS⌈φ1∧φ2⌉,s. The claim follows from Lemma 6.30.

case φ1 ∨ φ2 . By the induction hypotheses, we have for 1 ≤ i ≤

2 that absts(φi) = amss(φi) ∩ AMS⌈φi⌉,s. For 1 ≤ i ≤ 2, let
Ai , lift⌈φ1⌉ր⌈φ1∨φ2⌉(absts(φi)). By Theorem 6.38, we have Ai =

amss(φi) ∩ AMS⌈φ1∨φ2⌉,s. The claim follows from Lemma 6.31.

case ¬φ1 . By the induction hypothesis, we have that absts(φ1) =

amss(φ1) ∩ AMS⌈φ1⌉,s. From Lemma 6.32, it follows that

amss(¬φ1) ∩ AMS⌈¬φ1⌉,s

=AMS⌈¬φ1⌉,s \ amss(φ1)

=AMS⌈¬φ1⌉,s \ (amss(φ1) ∩ AMS⌈φ1⌉,s).

The claim follows.

computability. As all sets that occur in the definition of absts(φ)
are finite, and the operators •,−•,∩,∪ and \ are all computable, it
remains to be shown that we can compute the set of AMS for all
atomic formulas. This is trivial for emp, (dis-)equalities, and points-to
assertions. It remains to be shown that we can compute the sets of
abstract lists and abstract trees.

Lemma 6.42. The sets AbstLists(s, x, y) and AbstLists≥2(s, x, y) can

be computed in PSpace in |s|.

Proof. We need to enumerate all abstractions of connected list seg-
ments from x to y via 〈x1, . . . , xk〉. First, observe that every such ab-
straction is of the form 〈classes(s), E, ∅, 0〉 for some set of hyperedges
E. Our goal is to enumerate all possible sets E in polynomial space.

To this end, observe that every connected list segment consists of
k+ 1 positive chunks: One chunk with source x and sink x1, one chunk
with source xi and sink xi+1 for all 1 ≤ i < k, and one chunk with
source xk and sink y.
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78 deciding ssl without data predicates

Each of these chunks is abstracted by a single edge of the form
〈z1, n〉 7→ 〈z2, [=1]〉 or 〈z1, n〉 7→ 〈z2, [≥2]〉. Here, z1 and z2 are the
stack-equivalence classes of source and sink.

Since x, y, and all xi are pairwise different, k < |s|. Consequently,
every abstract list consists of at most O(|s|) many edges. Since each
of these edges is of the forms illustrated above, each edge can be
encoded by

(
log(|s|)) many bits, so every abstract list can be stored

in polynomial space.
Further, it is easy to systematically enumerate (with a polynomial

number of additional bits for bookkeeping) all these AMS: We sequen-
tially consider all possible ways to pick x1, . . . , xk; and for each such
pick, systematically construct the induced edges of the corresponding
positive chunks.

To enumerate AbstLists≥2(s, x, y), we simply skip all AMS that
contain no edge or that contain only a single edge of the form
〈
[x]s=, n

〉
7→
〈
[y]s=, [=1]

〉
.

Lemma 6.43. The sets AbstTrees(s, x, y) and AbstTrees≥2(s, x, y) can

be computed in PSpace in |s|.

Proof sketch. We proceed as in Lemma 6.42, except that (1) we need to
consider all directed trees with root x and holes y, which can each
consist of at most |s| many positive chunks and (2) each chunk is
abstracted by two hyperedges rather than one hyperedge, as positive
chunks of tree segments induce edges for both field l and field r.

Corollary 6.44 (Computability of absts(φ)). Let s be a (finite) stack. Then

absts(φ) is computable for all formulas φ.

To decide whether φ is satisfiable in a stack of size n, we can thus
proceed as follows. We pick a set of variables x ⊇ fvars(φ) with
|x| = n. By Lemma 6.16, there are only finitely many stacks over x that
have different abstractions. For each of these stacks, we can decide
the nonemptiness of amss by Theorem 6.41 and Corollary 6.44. The
formula is satisfiable iff amss is nonempty for any of the stacks.

Theorem 6.45 (Decidability of SSL satisfiability checking). It is decid-

able whether φ is satisfiable in a stack of size at most n.

Proof. Observe that φ is satisfiable in a stack of size at most n iff φ is sat-

isfiable in a stack s with dom(s) ⊆ {fvars(φ)} ∪
{

a1, . . . , an−|fvars(φ)|

}

,

where we assume w.l.o.g. that ai /∈ fvars(φ) for all i. Observe that
C , {classes(s) | dom(s) ⊆ x} is finite; and that all stacks s, s′ with
classes(s) = classes(s′) have the same abstraction by Lemma 6.16. Con-
sequently, we can compute the set R , {absts(φ) | dom(s) ⊆ x} by
picking for each element X ∈ C one stack s with classes(s) = X and
computing absts(φ) for this stack. Moreover, by Corollary 6.44, absts(φ)
is computable for every such stack. By Theorem 6.41 and Corol-
lary 6.39, φ is satisfiable over stack s iff absts(φ) is nonempty. Putting
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6.5 complexity of the ssl satisfiability problem 79

all this together, we obtain φ is satisfiable in stacks of size n if and
only if any of finitely many computable sets absts(φ) is nonempty.

As our logic is closed under negation, we can, of course, also decide
the entailment problem for SSL formulas.

Corollary 6.46 (Decidability of indexed SSL entailments). It is decidable

whether φ |=x ψ for all finite sets of variables x and all formulas φ, ψ ∈ SSL.

Proof. φ |=x ψ iff φ ∧ ¬ψ is unsatisfiable over stacks of size |x|, which
is decidable by Theorem 6.45.

6.5 complexity of the ssl satisfiability problem

It is easy to see that the algorithm absts(φ) runs in exponential time.
We conclude this section with a proof that SSL satisfiability and entail-
ment are actually PSpace-complete.

PSpace-hardness . An easy reduction from quantified Boolean
formulas (QBF) shows that the SSL satisfiability problem is PSpace-
hard. I assume w.l.o.g. that every QBF formula is fully quantified,
i.e., every variable is either existentially quantified or universally
quantified.

The reduction is presented in Fig. 6.5. For convenience, we make use
of emp, t and −©⋆ as defined in Fig. 5.2. We encode positive literals x

by (x 7→n nil) ⋆ t (the heap contains the pointer x 7→n nil) and negative
literals by a septraction (x 7→n nil)−©⋆ t (it is possible to extend the
heap with a pointer x 7→n nil, implying that the heap does not allocate
x). The magic wand is used to simulate universals (i.e., to enforce that
we consider both the case x 7→n nil and the case emp, thus setting x

both to true and to false). Analogously, septraction is used to simulate
existentials.

As we only encode fully quantified formulas F, every variable
occurs on the left-hand side of a magic wand or septraction in the
encoding qbf_to_sl(F). For this reason, we may require that the model
of qbf_to_sl(F) is empty, as we do in emp ∧ aux(F). This restriction
is actually necessary for the correctness of the encoding of universal
quantifiers. To see this, consider the formula F , ∀x. F′ and let (s, h)
be a stack–heap pair with s(x) ∈ dom(h). Then (s, h) |= (x 7→n nil)−⋆

aux(F′) for all F′, so aux(F) does not correctly encode the universal
quantifier. By setting qbf_to_sl(F) , emp ∧ aux(F), we can exclude
models such as (s, h) that break the encoding of the universal.

Similar reductions from QBF to SL can already be found (for stan-
dard, “weak” SL) in [CYO01].

Lemma 6.47 (Hardness of SSL satisfiability checking). The satisfiability

problem for SSL without list predicates, without tree predicates and without

7→tree is PSpace-hard.
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80 deciding ssl without data predicates

qbf_to_sl(F) , emp ∧ aux(F)

aux(x) , (x 7→n nil) ⋆ t

aux(¬x) , (x 7→n nil)−©⋆ t

aux(F ∧ G) , aux(F) ∧ aux(G)

aux(F ∨ G) , aux(F) ∨ aux(G)

aux(∃x. F) , ((x 7→n nil) ∨ emp)−©⋆ aux(F)

aux(∀x. F) , ((x 7→n nil) ∨ emp)−⋆ aux(F)

Figure 6.5: Translation qbf_to_sl(F) from closed QBF formula F (in negation
normal form) to an SSL formula that is satisfiable iff F is true.

Note that this reduction simultaneously proves the PSpace-hardness
of SSL model checking, i.e., of answering the question whether for a
given model (s, h) and given formula φ, (s, h) |= φ holds.

Lemma 6.48 (Complexity of SSL model checking). The model checking

problem for SSL without list predicates, without tree predicates and without

7→tree is PSpace-hard.

Proof. If F is a QBF formula over variables x1, . . . , xk, then qbf_to_sl(F)

is satisfiable iff

({xi 7→ li | 1 ≤ i ≤ n} , ∅) |= qbf_to_sl(F).

PSpace-membership. For every stack s and every bound on the
garbage-chunk count of the AMS we consider, it is possible to encode
every AMS by a string of polynomial length.

Lemma 6.49 (Size of AMS). Let k ∈ N, let s be a stack and n := k + |s|.

There exists an injective function encode : AMSk,s → {0, 1}∗ such that

max {|encode(A)| | A ∈ AMSk,s} ∈ O(n log(n)).

Proof. Let A = 〈V, E, ρ, γ〉 ∈ AMSk,s. Each of the |s| ≤ n variables
that occur in A can be encoded by a logarithmic number of bits.

Observe that |
⋃

V| ≤ |s|, so V can be encoded by O(n log(n) + n)

symbols (using a constant-length delimiter between the nodes). Each
of the at most |V| edges can be encoded by O(log(n)) bits, encoding
the position of the source and target nodes in the encoding of V

by O(log(n)) bits each and expending another bit to differentiate
between [=1] and [≥2] edges. ρ can be encoded like V. Since γ ≤ k ≤ n,
γ can be encoded by at most log(n) bits. In total, we thus have an
encoding of length O(n log(n)).

An enumeration-based implementation of the algorithm in Fig. 6.4
(that has to keep in memory at most one AMS per subformula at any
point in the computation) therefore runs in polynomial space.
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Lemma 6.50. Let φ ∈ SSL and let n ∈ N. It is decidable in polynomial

space in |φ|+ n whether φ is satisfiable in a stack of size at most n.

Proof. A simple induction on the structure of φ shows that it is possible
to enumerate the set absts(φ) in polynomial space.

For lists and trees, we showed this in Lemmas 6.42 and 6.43. All
other base cases are obvious.

The most interesting induction step is φ1 −⋆ φ2. Assume that we
can enumerate the sets absts(φ1) = {A1, . . . ,Am} and absts(φ2) =

{B1, . . . ,Bn} in polynomial space. Use additional memory to succes-
sively enumerate all A ∈ AMS⌈φ1−⋆φ2⌉,s. This is possible in space
O(n log(n)) by Lemma 6.49. For each such A, we enumerate all pairs
of AMS (Ai,Bj), 1 ≤ i ≤ m, 2 ≤ j ≤ n. A ∈ absts(φ1 −⋆ φ2) iff for all
Ai such that A •Ai 6= ⊥, Bj = A •Ai holds for at least one the pairs
(Ai,Bj). Thus we only need to store a constant number of additional
AMS to enumerate AMS⌈φ1−©⋆φ2⌉,s. Similar results hold for all binary
operators and negation.

The PSpace-completeness result for SSL, stated at the beginning
of this chapter as Theorem 6.1, follows by combining Lemmas 6.47

and 6.50.
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7
D E C I D I N G P O S I T I V E S S L

In this chapter, I develop a decision procedure for SSL+
data, the positive

fragment of SSL with data predicates. The restriction to the positive
fragment allows us to bring down the complexity of the decision
procedure by exploiting properties such as Lemma 5.13. I conjecture
that the AMS abstraction of Chapter 6 can be extended to “full” SSL
with, for example, transitive data predicates such as sortedness, but
do not address such extensions here.

I show in Section 7.1 that every satisfiable SSL+
data formula has mod-

els of polynomial size. This small-model property allows us to solve the
satisfiability problem of SSL+

data with a guess-and-check procedure: guess
a small model (nondeterministically or by enumeration) and check
whether it satisfies the formula. Since the model-checking problem
for SSL+

data is in PTime, this immediately yields an NP decision proce-
dure. This is in contrast to full SSLdata, which also has a small-model
property, but a PSpace-complete model-checking problem.

Rather than implementing a custom guess-and-check procedure, I
define an SMT encoding that exploits the small-model property in
Section 7.2.

This chapter is based to a large extent on joint work with Dejan
Jovanović and Georg Weissenbacher [KJW18a]. In particular, I would
like to emphasize that the SMT encoding in Section 7.2 is based on
the SMT encoding of SL∗

data, which was presented in [KJW18a] and
was mainly developed by Dejan Jovanović. I’ve adapted this encoding
to SSL+

data, fixed a few small bugs in the encoding, and completely
overhauled its correctness proof.

Besides rewriting or extending most proofs, I’ve also made several
other changes compared to [KJW18a]. In particular, (1) I use the stan-
dard stack–heap model instead of heap interpretations; (2) I’ve dropped
support for “fully negative formulas” (which do not seem particu-
larly useful in the context of SSL and would thus be an unnecessary
complication); and (3) I’ve dropped support for per-field allocation to
simplify the presentation.

7.1 the small-model property of ssl

In this section, we take the following steps to prove that satisfiability
of SSL+

data formulas is decidable in NP:

1. We show that every AMS is induced by a polynomial model,
which implies that every satisfiable SSL+ formula has a polyno-
mial model.

83
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2. We show that the minimal models of SSL+
data formulas differ

from to the minimal models of SSL+ formulas only by a polyno-
mial number of witnesses, i.e., locations that determine the truth
or falsity of data predicates.

3. We show that the model-checking problem for SSL+ is in PTime.

Together, these results imply that the satisfiability problems of both
SSL+ and SSL+

data can be solved by a guess-and-check procedure that
is in NP.

realizability size of ams . Every AMS corresponds to a model.
More precisely, every AMS is realizable in a model of linear size. We
call this size bound the realizability size of the AMS A. We first define
the realizability size of individual positive chunks abstracted by A.

Definition 7.1 (Chunk realizability size). Let A = 〈V, E, ρ, γ〉 be an

AMS and v ∈ domV(E).

1. If fieldsE(v) = {n}, then rsize(v) , 1 iff E(v, n) = 〈w, [=1]〉 and

rsize(v) , 2 otherwise.

2. If fieldsE(v) = {l, r}, let w1, w2 and ι be such that E(v, l) = 〈w1, ι〉
and E(v, r) = 〈w2, ι〉. If ι = [=1], rsize(v) , 1. Otherwise, rsize(v) ,

max(2, |w1|+ |w2| − 1).

Definition 7.2 (Realizability size). Let A = 〈V, E, ρ, γ〉 be an AMS. The

realizability size of A is then given by

rsize(A) ,

(

∑
v∈domV(E)

rsize(v)

)

+

(

∑
r∈ρ

|r|

)

+ γ.

Lemma 7.3. Let A = 〈V, E, ρ, γ〉 ∈ AMS. Then there exists a model (s, h)
with |h| = rsize(A) and ams(s, h) = A.

Proof. Let d ∈ Data be arbitrary, {v1, . . . , vn} , V and s , {x 7→

ℓi | 1 ≤ i ≤ n, x ∈ vi}. In the following we write s(v) for the single
location corresponding to stack-equivalence class v. We pick h as the
union of the following chunks hc.

• For each vi ∈ domV(E), we construct a positive chunk as follows.

– If fieldsE(v) = {n}, let 〈〈w〉 , ι〉 , E(vi, n). If ι = [=1], we
define hc , {s(vi) 7→ 〈s(w), e〉}. Otherwise, we let ℓ be a
fresh location and define hc , {s(vi) 7→ ℓ, ℓ 7→ 〈s(w), d〉}.
Note that |hc| = rsize(E(vi)) and edgess(hc) = {E(vi, n)}.

– If fieldsE(v) = {l, r}, we let

〈〈w1, . . . , wm〉 , ι〉 , E(vi, l),

〈〈wm+1, . . . , wk〉 , ι〉 , E(vi, r).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.
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If ι = ([=1]), we know that m = 1, k = 2 and let hc ,

{s(vi) 7→ 〈s(w1), s(wm+1), d〉}. Otherwise, we let hc be a
tree segment with root s(vi), sink sequence in the left sub-
tree s(w1), . . . , s(wm), and sink sequence in the right sub-
tree, s(wm+1), . . . , s(wk). The smallest such tree has k − 1
inner nodes (including the root).

If k = 2, this means we have to introduce some arbitrary in-
ner node to bring the size of the tree to two, thus satisfying
the constraint ι.

If k ≥ 3, we introduce fresh locations ℓ′2, ℓ′k−1 and con-
struct a tree with root s(vi), inner nodes ℓ′2, ℓ′k−1, and holes
w1, . . . , wk. Note that edgess(hc) = {E(vi, l), E(vi, r)} and
|hc| = rsize(vi).

• For each set {w1, . . . , wm} ∈ ρ, we let ℓ be a fresh location and
construct a negative chunk hc , {s(wi) 7→ 〈ℓ, d〉}. Note that
ams(s, hc) = 〈V, ∅, {{w1, . . . , wm}} , 0〉 Further, observe that one
location is allocated for each element of

⋃
ρ, yielding a sub-heap

of size
(

∑r∈ρ |r|
)

as desired.

• For 1 ≤ i ≤ γ, we let ℓi be a fresh location and construct a
negative chunk hc , {ℓi 7→ 〈ℓi, d〉}. Thus, exactly γ additional
locations are allocated.

The above case analysis reveals that ams(s, h) = A and |h| = rsize(A).

We can easily bound rsize(A) by a small polynomial in (1) the size
of the stack of the abstracted model and (2) an upper bound on the
garbage-chunk count.

Lemma 7.4 (AMS realizability size is polynomial). Let A ∈ AMSk,s be

an AMS. Then rsize(A) ≤ |s|2 + 3 |s|+ k.

Proof. Observe that |V| ≤ |s| and that for all v ∈ V, rsize(v) ≤

max(2, |v|) ≤ max(2, |s|). Thus:

rsize(A) =

(

∑
v∈domV(E)

rsize(v)

)

+

(

∑
r∈ρ

|r|

)

+ γ

≤ |s| (max(2, |s|)) + |V|+ γ

≤max(2 |s| , |s|2) + |s|+ k

≤|s|2 + 3 |s|+ k.

realizability of SSL+
data formulas . We will define a similar

notion of realizability size for SSL+
data formulas. This size notion will

only take into account the size of the heap of the minimal models,
because the size of the stack of minimal models of a positive formula
φ is always given by |fvars(φ)|.
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Lemma 7.5. Let φ ∈ SSL+
data and let (s, h) be a model of φ. Let s′ be the

restriction of s to fvars(φ). Then (s′, h) |= φ.

Proof. An immediate consequence of Lemma 5.13.

Note that Lemma 7.5 cannot be generalized to full SSL because of
the strong-separation semantics; see Example 6.2.

In light of Lemma 7.5, it makes sense to define the realizability size of
a formula φ simply as the minimal heap size among the models of φ.

Definition 7.6 (SSLdata realizability size). Let φ ∈ SSLdata. The realiz-
ability size of φ is given by

rsize(φ) , min {|h| | s ∈ Stacks, h ∈ Heaps, (s, h) |= φ} .

The realizability size of SSL+ formulas (i.e., formulas without data
constraints) is closely connected to the realizability size of AMS, be-
cause every model induces an AMS and all models with the same
AMS satisfy the same SSL+ formulas.

Lemma 7.7 (Polynomial realizability of SSL+ formulas). Let φ ∈ SSL+

with fvars(φ) = x. If φ is satisfiable, it holds that rsize(φ) ≤ |x|2 + 3|x|.

Proof. Let (s, h) be an arbitrary model with (s, h) |= φ. Define A ,

ams(s, h). Observe that A ∈ AMS0,s. By Lemma 7.4, there exists a
model (s, h′) with ams(s, h′) = A and |h′| ≤ |x|2 + 3|x|. Moreover,
(s, h′) |= φ by Theorem 6.28, implying the claim.

Corollary 7.8 (Small-model property of SSL+). Let φ ∈ SSL+. Then

φ is satisfiable iff φ is satisfiable in a model (s, h) with |s| ≤ |φ| and

|h| ∈ O(|φ|2).

Proof. As |fvars(φ)| ≤ |φ|, the claim follows immediately from Lem-
mas 7.5 and 7.7.

realizability size in the presence of data predicates .
We next adapt the small-model property of SSL+, Corollary 7.8, to
SSL+

data, i.e., to positive formulas with data predicates. In the presence
of data predicates it is impossible to bound the realizability size
solely based on the size of AMS, because every model of a predicate
ds(x, y,P) must contain witnesses of the existential data predicates
in P . Symmetrically, a model of ds(x, y) ∧ ¬ds(x, y,P) may have to
contain witnesses of the falsity of a universal data predicate in P .

Example 7.9 (Witnesses). Let

φ = ls(x1, x2, [n : α < β]∀) ∧ ¬ls(x1, x2, [n : 2α < β]∀).

Every model of φ satisfies the “dual” of [n : 2α < β]∀, i.e., the existential data

predicate [n : 2α ≥ β]∃. Consequently, every model of φ contains a pair of

witnesses for this data predicate. For example, this is the case in the model

(s, h) in Fig. 7.1. We have that (s, h) |= φ, with the two highlighted locations

ℓ2, ℓ3 witnessing the existential.
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2

x1 : ℓ1(s, h) :

4

ℓ2

5

ℓ3 ℓ4 : x2
n n nd d d

Figure 7.1: A model that contains witnesses for the data predicate
[n : 2α ≥ β]∃.

Intuitively, the size bound for SSL+
data formulas can thus be obtained

from the size bound for SSL+ by adding a bound on the number of
witnesses that are necessary to satisfy the formulas.

To formalize the small-model property for SSL+
data, we define a

projection function, dropdata(φ), from SSL+
data formulas onto SSL+

formulas without negation:

dropdata(pred(x, y,P)) , pred(x, y), pred ∈ {ls, ls≥2, tree, tree≥2}

dropdata(x 7→ls 〈n, d〉) , x 7→n n

dropdata(x 7→tree 〈l, r, d〉) , x 7→l,r 〈l, r〉

dropdata(F) , emp, F ∈ FData

dropdata(τ) , τ, for all other atoms τ

dropdata(φ ∧ ¬ψ) , dropdata(φ)

dropdata(φ × ψ) , dropdata(φ)× dropdata(ψ),

× ∈ {⋆,∧,∨}

Lemma 7.10. If (s, h) |= φ then (s, h) |= dropdata(φ).

Proof. A straightforward induction on φ, recalling that (1) (s, h) |=

pred(x, y,P) =⇒ (s, h) |= pred(x, y) and (2) (s, h) |= φ ∧ ¬ψ =⇒

(s, h) |= φ.

For technical convenience, we encapsulate the size bound for mini-
mal models of SSL+

data formulas in bound(φ).

Definition 7.11 (Model-size bound). Let φ ∈ SSL+
data. The model-size

bound of φ is bound(φ) , |φ|2 + 5 |φ|.

Lemma 7.12 (Small-model property of SSLdata). Let φ ∈ SSL+
data. Then

φ is satisfiable iff φ is satisfiable in a model (s, h) with |s| ≤ |φ| and

|h| ≤ bound(φ).

Proof sketch. Let (s, h) be an arbitrary model with (s, h) |= φ and let
A , ams(s, h). By Lemma 7.5, we can assume that dom(s) = fvars(φ)

and thus |s| ≤ |φ| as desired.
I claim that we can transform (s, h) into a model that is isomorphic

to the model of size rsize(A) that we constructed in Lemma 7.3 through
location removal, as illustrated in Fig. 7.2.

Specifically, we can remove all locations except for:

1. Labeled locations, as this would change domV(E).
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x(s, h0) : ℓ1 ℓ2 ℓ3 nil
n n n n

x(s, h1) : ℓ1 ℓ2 nil
n n n

x(s, h2) : ℓ1 nil
n n

x(s′, h3) :

ℓ1y0

ℓ2y1

y2 nil

x(s′, h4) :

ℓ1y0

y1 y2

Figure 7.2: Subsequent removal of list locations ℓ3 and ℓ2 and tree location ℓ2,
transforming (s, h1) via (s, h1) into (s, h2) and (s′, h3) into (s′, h4),
without changing the induced AMS.

2. Immediate successors of the head of a list or root of a tree,
because removing these could change a [≥2] hyperedge into an
[=1] hyperedge.

3. Enough inner nodes of a tree to still accommodate all k holes of
a tree, i.e., k − 2 nodes beside the root.

Such a location removal never invalidates a universal data predicate,
i.e., if a universal data predicate holds in a sub-heap of the original
model, it continues to hold in the minimized model.

Conversely, location removal that removes all witnesses of an exis-
tential data predicate falsifies that data predicate, and may thus result
in a model that no longer satisfies φ.

Note further that a universal data predicate that occurs under nega-
tion corresponds to an existential data predicate and vice-versa.

Consequently, we exempt from the iterative location removal:

1. one location per unary existential data predicate that occurs in φ

under an even number of negations,

2. two locations per binary existential data predicate that occurs in
φ under an even number of negations,

3. one location per unary universal data predicate that occurs in φ

under an odd number of negations, and

4. two locations per binary existential data predicate that occurs in
φ under an odd number of negations.

It follows that (1) the minimized model still induces the AMS A, (2)
the minimized model still satisfies φ.

Moreover, Lemma 7.10 implies that A is an AMS of dropdata(φ).
Since we retained at most two witnesses per occurrence of a data
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predicate in φ, and the number of data-predicate occurrences is limited
by |φ|, Lemma 7.7 yields that the minimized model is of size at most

rsize(A) + 2 |φ|

≤rsize(dropdata(φ)) + 2 |φ|

≤|fvars(φ)|2 + 3 |fvars(φ)|+ 2 |φ|

≤|φ|2 + 5 |φ| = bound(φ).

Tighter size bounds?

Clearly, the model-size bound bound(φ) is not tight for most for-
mulas. For example, the bound overapproximates the required
number of witnesses by assuming two witnesses for every occur-
rence of a data predicate. Moreover, rsize(φ) is linear (as opposed
to quadratic) in |φ| if we have a constant bound on the number
of holes that occur in a tree segment—which is a very reason-
able assumption in practice. In approaches that are based on the
size bound (as is the case for the SMT encoding defined in Sec-
tion 7.2), it is worthwhile to compute tighter bounds, as this may
significantly improve the performance of an implementation in
practice.

The final step to obtaining an NP decision procedure is a polynomial-
time algorithm for model checking. Our model-checking algorithm
will exploit that SSL predicates are precise (see e.g. [COY07]), i.e., that
they satisfy the following unique footprint property.

Lemma 7.13 (Unique footprint property). Let (s, h) be a model such that

(s, h) |= pred(x, y) ⋆ t for pred ∈ {ls, ls≥2, tree, tree≥2}. Then there exists a

unique heap h′ such that h′ ⊆ h and (s, h′) |= pred(x, y).

Proof. For pred = ls and pred = ls≥2, the result holds trivially. We
prove the claim for tree; the proof for tree≥2 is completely analogous.

By the semantics of ⋆, there exists at least one such h′. We show that
this h′ is unique by systematically constructing all candidates for h′.

Let h1, . . . , hk be the positive chunks of h. Assume y = 〈y1, . . . , yn〉.
It suffices to show that there is a unique subset of these chunks whose
union satisfies tree(x, y).

W.l.o.g., h1 allocates x. Every sub-heap h′ with (s, h′) |= tree(x, y)

must contain h1, so we make h1 the current candidate for h′. Let
z = 〈z1, . . . , zm〉 be the sink sequence of h1. If z = y, we are done: even
though it might be possible to add other hi to obtain the same sink
sequence y, this would only be possible by allocating at least one of
the y, which contradicts the semantics of the tree predicate.

Otherwise, let i be the first index with [zi]
s
= 6= [yi]

s
=. Let hj be the

chunk that allocates zi. Every sub-heap h′ with (s, h′) |= tree(x, y)

must contain hj. We therefore add hj to the current candidate for h′
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This yields a larger model with root x and new sink sequence
〈
z′1, . . . , z′m′

〉
. If
〈
z′1, . . . , z′m′

〉
= y, we are done. Otherwise, we iterate

the previous step. Since there are only k positive chunks, this process
terminates. Since (s, h) |= tree(x, y) ⋆ t, we must arrive at a model with
sink sequence y.

Moreover, at no step did we have a choice: all the chunks we added
to the candidate for h′ had to be added to this candidate to arrive at a
model of tree(x, y).

Lemma 7.14 (Polynomial-time model checking for SSL+
data). Assume

that TData is decidable in NP. Let (s, h) be a model and φ ∈ SSL+
data. It is

decidable in PTime (in |(s, h)| as well as |φ|) whether (s, h) |= φ holds.

Proof sketch. Since φ is a Boolean combination of symbolic heaps, we
need to check whether (s, h) |= ψ for each symbolic heap ψ in φ. Take
such a symbolic heap ψ = τ1 ⋆ · · · ⋆ τk.

Because of the unique footprint property of SSL (Lemma 7.13),
there is at most one way to split h into h1 ⊎

s · · · ⊎s hk such that for
each i, (s, hi) |= τi. We can discover such a split in a greedy way: hi

must consist of the root of τi and everything reachable from this root
without going through the holes of τi.

If no such split exists, ψ is unsatisfiable. Otherwise, we must simply
check for each hi whether (s, hi) |= τi holds. This can clearly be done
in polynomial time, as it is possible to check whether hi is a list or a
tree in polynomial time and it is possible to evaluate data predicates
on hi in polynomial time.

Crucially, Lemma 7.14 holds only for SSL+
data, not for the full logic

SSLdata, whose model-checking problem we proved to be PSpace-hard
in Lemma 6.48.

Theorem 7.15. Assume that TData is decidable in NP. Then the satisfiability

problem of SSL+
data is decidable in NP.

Proof. Let φ ∈ SSL+
data. By Lemma 7.12, φ is satisfiable iff it is satis-

fied by a model (s, h) with dom(s) = fvars(φ) and |h| ≤ bound(φ) ∈

O(|φ|2). Consequently, we guess a stack–heap pair within these (poly-
nomial) size bounds and then check (by Lemma 7.14) in deterministic
polynomial time in the size of (s, h) whether (s, h) |= φ holds. We thus
obtain a guess-and-check procedure that runs in NP.

In principle, we could use the guess-and-check procedure from
Theorem 7.15 to implement the oracle decide+ and thus conclude the
chapter at this point. Towards a more practical implementation, I will
instead propose an SMT encoding of SSL+

data formulas based on the
small-model property.
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7.2 encoding positive formulas into smt

In this section, I assume that TData is stably infinite. Under this as-
sumption, we can decide SSL+

data formulas by encoding them into
SMT formulas that can be discharged by off-the-shelf SMT solvers.

Specifically, I show how to model the spatial constraints of SSL+
data

formulas in the theory of arrays, thus obtaining an SMT formula over
the combination of TData and the theory of arrays that is satisfiable
if and only if φ is satisfiable. This encoding can be performed in
polynomial time (and space).

Since SSL+
data is decidable in NP if TData is decidable in NP, as we

just saw in Theorem 7.15, an encoding into SAT (i.e., the satisfiability
problem of propositional logic) rather than SMT would also be con-
ceivable, but by encoding into SMT, we can make use of the highly
optimized decision procedures that are available in state-of-the-art
SMT solvers for many common choices of TData.

the theory of arrays . Our approach relies on the theory of
arrays extended with combinators that can express constant arrays and
express point-wise array operations [MB09]. We denote this theory by
Tarray.

The basic theory of arrays defines functions store and ·[·] that satisfy
the following axioms [McC62; BM07].

∀i, j. i = j =⇒ a[i] = a[j]

∀a, i, j, v. i = j =⇒ store(a, i, v)[j] = v

∀a, i, j, v. i 6= j =⇒ store(a, i, v)[j] = a[j]

The generalized theory Tarray adds a constant combinator K and a map
combinator map such that

∀c, i. K(c)[i] = c

∀n, f , a1, . . . , an, i.map f (a1, . . . , an)[i] = f (a1[i], . . . , an[i]),

where c ranges over constants and f over functions of arity n.
We write array s1 s2 for the sort of arrays with indices of sort s1 and

elements of sort s2.
With K and map, it is possible to express universal statements

about array elements without relying on quantifiers. Moreover, the
satisfiability of generalized array formulas is decidable in NP with
effective decision procedures implemented in popular SMT solvers
such as Z3 [MB08] and Boolector [PNB13].

The array combinators in Tarray are powerful enough to express basic
set-theoretic operations. For example, we can view a set of locations l
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92 deciding positive ssl

as an array al mapping Loc to Bool = {t, f}, where al[l] = t iff l ∈ l.
Taking this view, set operations can be defined as follows.

{x} , store(K(f), x, t) x ∈ x , x[x]

x = ∅ , (x = K(f)) x ⊆ y , map⇒(x, y) = K(t)

x ∪ y , map∨(x, y) x ∩ y , map∧(x, y)

In the following, I use the set notation as a shorthand for the equivalent
array encoding. I denote array variables that represent sets by boldface
letters (e.g., x), and vectors of array variables by uppercase boldface
letters (e.g., X = 〈x1, . . . xn〉). To ease notation, I overload predicates
over sets to predicates over vectors of sets in a point-wise manner. For
example, X = ∅ represents

∧
xi = ∅, and X = Y ∪ Z for

∧
xi = yi ∪ zi.

from stack–heap pairs to first-order models . To each
stack–heap model (s, h), with |h| = n, we associate an equivalent
first-order model Msmt in the theory combination TArray ⊕ TData as
follows. Msmt uses the same interpretations of the sorts Loc and Data

as the stack–heap model.1 For each field f ∈ {n, l, r, d}, Msmt contains
an array of sort array Loc sort(f) The interpretation fMsmt of a field f

is an array mapping each ℓ ∈ dom(h) to f(ℓ),if f(ℓ) 6= ⊥, and to an
arbitrary well-sorted value otherwise.

For each data structure ds ∈ {ls, tree}, Msmt also contains a dedi-
cated set variable xds. The interpretation xMsmt

ls is an array representing
the set locls(h). Analogously, xMsmt

tree is an array representing the set
loctree(h).

The interpretation Msmt also includes n dedicated location variables
x1, . . . , xn, and a set of locations xglobal interpreted so that (1) xglobal =

xls ∪ xtree and (2) xglobal ⊆ {x1, . . . , xn} holds. The variables dom(s)

and nil are interpreted in Msmt as they are in (s, h).
The following SMT formula ∆n

SSL defines positive stack–heap mod-
els of size at most n.

∆n
SSL ,(xglobal =

⋃

ds∈D

xds) ∧ (xglobal ⊆ {x1, . . . , xn})

∧ (nil 6∈ xglobal) ∧ (xls ∩ xtree = ∅)

Formula ∆n
SSL makes sure that every allocated location is either a list

location or a tree location, that the allocated heap size is at most n,
that nil is not allocated, and that no variable is treated as both a list
and a tree location.

To guide the development of the SMT translation, we formalize the
model correspondence between stack–heap models and the SMT models

1 This somewhat limits the interpretation of Loc in practice, because the theory of
arrays need not work for indexes of arbitrary sort. It usually makes sense to interpret
Loc by the set of integers. This allows us to translate the heap to integer-indexed
arrays.
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7.2 encoding positive formulas into smt 93

described above. The idea is to define a translation from an SSL+

formula φ to an SMT formula F such that (s, h) |= φ if and only if the
SMT models Msmt that correspond to (s, h) satisfy F.

Definition 7.16 (Model correspondence). Let (s, h) be a stack–heap pair

with |h| = n and Msmt an SMT model such that Msmt |= ∆n
SSL. Msmt

corresponds to (s, h) iff all of the following hold.

1. xMsmt

global = dom(h),

2. yMsmt = s(y) for all y ∈ dom(h),

3. fMsmt [ℓ] = f(ℓ) for all fields f and all ℓ ∈ dom(h) with f(ℓ) 6= ⊥.

Informally, an SMT model Msmt corresponds to a stack–heap model
(s, h) if Msmt interprets both the stack variables and all heap locations
in the same way as (s, h).

Lemma 7.17. For every stack–heap model (s, h) with |h| = n, there exists

an SMT model Msmt such that Msmt |= ∆n
SSL and Msmt corresponds to

(s, h). Likewise, for every SMT model Msmt with Msmt |= ∆n
SSL, there

exists a stack–heap model (s, h) with |h| = n such that Msmt corresponds

to (s, h).

Proof. By construction.

Note that there is no unique SMT model that corresponds to a
stack–heap model (s, h), as the interpretation of each f-array can be
arbitrary outside of locls(h) (for f ∈ FData

ls ) or loctree(h) (for f ∈ FData
tree ).

smt translation. The encoding function ❚n that translates basic
SSL+

data formulas to SMT is shown in Fig. 7.3. We start without induc-
tive predicates, following the approach from [PWZ13]. The function
❚n takes an SSL+

data formula φ and translates φ into an SMT formula
F = ❚n(φ) such that F is satisfiable if and only if φ is satisfiable in a
model of size at most n.

The translation relies on two auxiliary functions: ❚b
n(φ), which

translates the Boolean structure of φ recursively; and ❚s
n(φ, Y), which

translates spatial formulas. Here, Y, contains the footprint variables yls

and ytree that the translation will define. Both functions return a triple
〈A, B, Z〉, where A and B together define the semantics of φ and Z is
the set of all fresh variables introduced (recursively) by the translation.
The encoding is straightforward, with the exception of negation. Let
❚b

n(φ) = 〈A, B, Z〉. In order for our encoding to be correct, we will
prove that it has the following three properties.

correctness : If Msmt corresponds to (s, h) then (s, h) |= φ iff
Msmt |= ∃Z. A ∧ B;

Z-existence : ∃Z. B is valid; and
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❚s
n(FData, Y) , 〈FData, (Y = ∅), ∅〉

❚s
n(x 7→n 〈y〉 , Y) , 〈(n[x] = y),

(yls = {x} ∧ ytree = ∅), ∅〉

❚s
n(x 7→l,r 〈y1, y2〉 , Y) , 〈(l[x] = y1 ∧ r[x] = y2),

(yls = ∅ ∧ ytree = {x}), ∅〉

❚s
n(x 7→ls 〈y, d〉 , Y) , 〈(n[x] = y ∧ d[x] = d),

(yls = {x} ∧ ytree = ∅), ∅〉

❚s
n(x 7→tree 〈y1, y2, d〉 , Y) , 〈(l[x] = y1 ∧ r[x] = y2 ∧ d[x] = d),

(yls = ∅ ∧ ytree = {x}), ∅〉

❚s
n(φ1 ⋆ φ2, Y) , let Y1, Y2 be fresh

〈A1, B1, Z1〉 = ❚s
n(φ1, Y1),

〈A2, B2, Z2〉 = ❚s
n(φ2, Y2)

Z = Z1 ∪ Z2 ∪ Y1 ∪ Y2

in 〈A1 ∧ A2 ∧ Y1 ∩ Y2 = ∅,

B1 ∧ B2 ∧ Y = Y1 ∪ Y2, Z〉

❚b
n(φ) , let Y be fresh, 〈A, B, Z〉 = ❚s

n(φ, Y)

in 〈A ∧ X = Y, B, Z ∪ Y〉

❚b
n(¬φ) , let 〈A, B, Z〉 = ❚b

n(φ) in 〈¬A, B, Z〉

❚b
n(φ1 ∧ φ2) , let 〈A1, B1, Z1〉 = ❚b

n(φ1),

〈A2, B2, Z2〉 = ❚b
n(φ2)

in 〈A1 ∧ A2, B1 ∧ B2, Z1 ∪ Z2〉

❚b
n(φ1 ∨ φ2) , let 〈A1, B1, Z1〉 = ❚b

n(φ1),

〈A2, B2, Z2〉 = ❚b
n(φ2) in

〈A1 ∨ A2, B1 ∧ B2, Z1 ∪ Z2〉

❚n(φ) , let ❚b
n(φ) = 〈A, B, Z〉 in A ∧ B ∧ ∆n

SSL

Figure 7.3: SMT encoding for the core fragment of SSL+ without inductive
predicates. We assume arrays X that represent the global footprint
of the model.

Z-equivalence : B(Z1) ∧ B(Z2) =⇒ A(Z1) = A(Z2) is valid.

The correctness property ensures that the encoding correctly encodes
the SSL+

data semantics: φ is true in a stack–heap model of size at most
n iff it is true in the corresponding SMT model. Z-Existence and Z-
Equivalence make sure that the encoding can accommodate negation:
the B part of the translation is a “definition” of the fresh variables Z:
the variables Z can be assigned in each model Msmt in such a way
that B is satisfied; and if there are multiple ways to assign Z that make
B true, then either both assignments or neither assignment make A

true, i.e., the A part cannot distinguish between assignments to Z.
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7.2 encoding positive formulas into smt 95

These properties allow us to ensure correctness of the translation of
negation ¬φ.

Lemma 7.18 (Encoding negation). Assume ❚b
n(φ) = 〈A, B, Z〉 and

Msmt corresponds to (s, h). Then (s, h) |= ¬φ iff Msmt |= ∃Z. B ∧ ¬A.

Proof.

(s, h) |= ¬φ iff (s, h) 6|= φ iff

Msmt 6|= ∃Z. A ∧ B iff Msmt |= ¬∃Z. A ∧ B iff

Msmt |= ∀Z. B ⇒ ¬A iff Msmt |= ∃Z. B ∧ ¬A ,

where the last equivalence follows from Z-existence and Z-equivalence
as follows:

(⇒) Assume Msmt |= ∀Z. B ⇒ ¬A. Because of Z-existence, we then
have Msmt |= (∀Z. B ⇒ ¬A) ∧ ∃Z. B and thus Msmt |= ∃Z. B ∧

¬A.

(⇐) Assume Msmt |= ∃Z. B ∧ ¬A. Assume towards a contradiction
that Msmt |= ∃Z. B ∧ A. We can remove the quantifier prefix by
adding an appropriate number of constants to Msmt. Specifically,
there exists a model M′

smt that is like Msmt, except that M′
smt

is defined on additional constants Z1 and Z2 such that both
M′

smt |= B(Z1) ∧ ¬A(Z1) and M′
smt |= B(Z2) ∧ A(Z2) hold. In

this case, we have M′
smt |= B(Z1) ∧ B(Z2) ∧ A(Z1) 6= A(Z2).

This contradicts Z-equivalence.

lists and trees . To translate a predicate ❚s
n(ds(x, s,P), Y), with

s = 〈s1, . . . , sk〉, for models of size at most n, we introduce fresh
binary predicates rz

1, . . . , rz
n, and a fresh set of locations z. These fresh

predicates are meant to represent reachability in up to n steps within
the set z. Location set z will represent all nodes reachable from the
source of the data structure, x, and allocated within the sub-heap that
is the model of ds(x, s,P).

Throughout the remainder of the section, we assume that ds, x, s, P ,
Y, z, rz

i and n are fixed and in scope of all definitions. We also assume
sets of fields Fds and FData

ds , defined as Fls = {n} and FData
ls = {n, d},

or Ftree = {l, r} and FData
tree = {l, r, d}.

To improve readability of the translation function ❚s
n for inductive

data structures, we define several auxiliary formulas. To start with, we
define the following functions for convenience.

isleaf(y) , y = nil∨
∨

s∈s

y = s

succ(y1, y2) ,
∨

f∈Fds

f[y1] = y2

These formulas capture whether x is a leaf (a hole or null) and whether
y is a direct successor of x.
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As the variable z represents the footprint of the data structure, we
need to connect it to the appropriate footprint parameter of ❚s

n.

defineY , (yds = z) ∧
∧

ds′∈D\{ds}

yds′ = ∅

Next, we define reachability predicates, which we will need both to
define the footprint of the data structure and to enforce its acyclicity.
Although reachability is not expressible in first-order logic, since we
are only interested in finite reachability with respect to the (locations
interpreting the) variables x1, . . . , xn, we can define m-step reachability
predicates rz

m, for 1 ≤ m ≤ n, as follows.

R1 ,
∧

1≤i,j≤n

rz
1(xi, xj) ⇔ (xi ∈ z ∧ ¬isleaf(xj) ∧ succ(xi, xj))

Rm ,
∧

1≤i,j≤n

rz
m(xi, xj) ⇔ (rz

m−1(xi, xj)∨

∨

1≤k≤n

(rz
m−1(xi, xk) ∧ rz

1(xk, xj))

reachability , R1 ∧ R2 ∧ · · · ∧ Rn

By requiring ¬isleaf(xj) for the target xj, we ensure that only the loca-
tions that are allocated within ds are in the reachability predicate. This
means that we can define the footprint of ds in terms of reachability:
We define a formula footprint that asserts that the set z (the footprint
of ds) is defined as the set of allocated locations reachable from x.

footprint , z ⊆ {x1, . . . , xn} ∧ (isleaf(x) ⇒ z = ∅)∧

∧
(
¬isleaf(x) ⇒
∧

1≤i≤n ((xi ∈ z) ⇔ ((xi = x) ∨ rz
n(x, xi)))

)

Next, the formula structure ensures that the elements of the data
structure ds are part of an acyclic data structure, starting at x, with no
sharing of non-nil nodes.

rootloc ,(
∨

1≤i≤n

x = xi) ∨ (x = nil) ∨ (
∨

s∈s

x = s)

oneparent ,
∧

1≤i≤n

xi ∈ z ⇒

(
∧

f 6=g∈Fds

(f[xi] = g[xi] ⇒ f[xi] = nil)

∧
∧

1≤j≤n

(
xj ∈ z ∧ xi 6= xj ⇒

∧

f,g∈Fds

(f[xi] = g[xj] ⇒ f[xi] = nil)
)
)

structure ,rootloc∧ (¬isleaf(x) ⇒ x ∈ z) ∧ oneparent∧ ¬rz
n(x, x)

The formula rootloc enforces that the root of the data structure, x,
is either allocated (and hence among xglobal ⊆ {x1, . . . , xn}) or a leaf,
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7.2 encoding positive formulas into smt 97

as required by the data-structure semantics. The formula oneparent

expresses that (1) the non-null successors of node xi are pairwise
different or null (i.e., the left and right child of a tree node cannot be
the same) and (2) the non-null successors of distinct nodes xi, xj are
pairwise different. Together, this guarantees that every node has at
most one incoming pointer.

The formula structure then expresses that the data structure has a
nonempty footprint unless its source is also a sink; that every node
has at most one incoming pointer; and that x is not reachable from
itself. Combined, these constraints guarantee that ls(x, s,P) can only
be interpreted by an acyclic list from x to s and that tree(x, s,P) can
only be interpreted by a tree with root x and holes s.

We still need to axiomatize the properties of holes: we must assert
that the holes of ds are pairwise different, occur exactly once, are the
only (non-null) leaves of the structure, and, for trees, occur in the same
order as prescribed by the vector s = 〈s1, . . . , sk〉.

holeseq , (isleaf(x) ⇒
∧

s∈s

x = s) ∧
∧

1≤i<j≤k

si 6= sj

holesoccur , ¬isleaf(x) =⇒
∧

s∈s

∨

1≤p≤n

(xp ∈ z ∧ succ(xp, s))

correctleaves ,
∧

1≤i≤n

∧

f∈Fds

(xi ∈ z ∧ f[xi] /∈ z) ⇒ isleaf(f[xi])

rz
n(y1, y2, f) , f[y1] = y2 ∨ (f[y1] ∈ z ∧ rz

n(f[y1], y2))

fldholef(xp, s) , f[xp] = s

∨
∨

1≤c≤n

(rz
n(xp, xc, f) ∧ xc ∈ z ∧ succ(xc, s))

before(xp, s1, s2) , fldholel(xp, s1) ∧ fldholer(xp, s2)

ordered ,
∧

1≤i<k

∨

1≤p≤n

(xp ∈ z ∧ before(xp, si, si+1))

The formula holeseq asserts that if the source x of the data structure
is itself a leaf, then it is equal to all holes; and that the holes are
pairwise different. This guarantees, for example, that the translation
of a formula such as ls(x, 〈s1, s2〉) is unsatisfiable, in accordance with
SSL+ semantics.

The formula holesoccur states that every hole has a direct predeces-
sor in z, i.e., in the data-structure footprint, ensuring that all holes
occur. Note that it is necessary to state this property in such a round-
about way, because the holes themselves are not in the footprint z.

correctleaves ensures that all successors of variables in the footprint
that are not themselves in the footprints, i.e., all leaves of the data
structure, are indeed among the set of leaves (either nil or a hole).

Finally, the formula ordered expresses that the holes occur in the
correct left-to-right order. It makes use of several auxiliary formulas.
In particular, the formula fldholef(xp, s) states that the hole s is in
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the f-subtree of xp and rz
n(x, y, f) denotes that y is reachable from x

through f as the first step.
We combine the above constraints into

leafconstraintsls ,holesoccur ∧ holeseq∧ correctleaves and

leafconstraintstree ,holesoccur ∧ holeseq∧ correctleaves∧ ordered

Finally, we define the alldata formula that ensures that the data fields
of the allocated nodes of the data structures respects the given (unary
and binary, existential and universal) data predicates. In the encod-
ing of binary data predicates, we reuse the ternary function rz

n that
expresses reachability through the field f. Otherwise, the encoding of
data predicates is straightforward.

data([F]∀) , map⇒(z,mapF(d)) = K(t)

data([F]∃) , map⇒(z,mapF(d)) 6= K(f)

data([f : F]∀) ,
∧

1≤i,j≤n

xi, xj ∈ z ∧ rz
n(xi, xj, f) ⇒ F(d[xi], d[xj])

data([f : F]∃) ,
∨

1≤i,j≤n

xi, xj ∈ z ∧ rz
n(xi, xj, f) ∧ F(d[xi], d[xj])

alldata ,
∧

F∈P

data(F)

Putting all the auxiliary formulas together, we define the translation
of inductive predicates ds ∈ {ls, tree} to SMT as follows.

❚s
n(ds(x, s,P), Y) , let rz

1, . . . , rz
n, z be fresh

let A = structure∧ leafconstraintsds ∧ alldata

let B = reachability ∧ footprint∧ defineY in

〈A, B, {rz
1, . . . , rz

n, z}〉

I would like to reiterate that the reachability constraint reachability only
ensures that the predicates rz

k are fully defined on the set {x1, . . . , xn}
and can be interpreted arbitrarily elsewhere. Nevertheless, this is
sufficient for the translation to be correct, because the A part of the
translation cannot distinguish two interpretations of rz

k that differ
only outside of {x1, . . . , xn}. This is crucial for the correctness of the
encoding as it supports the Z-Equivalence property of the translation.

For the predicates ds≥2, we extend the encoding with a depth con-
straint.

depth ≥ 2 ,
∨

1≤i≤n

(rz
2(x, xi) ∧ ¬rz

1(x, xi))

❚s
n(ds≥2(x, s,P), Y) ,let 〈A, B, Z〉 = ❚s

n(ds(x, s,P), Y)

in 〈A ∧ depth ≥ 2, B, Z〉
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7.2 encoding positive formulas into smt 99

Theorem 7.19. Let φ be a SSL+
data formula and let n , bound(φ) be

the realizability size of φ. Then φ is SSL+
data-satisfiable if and only if the

SMT translation F = ❚n(φ) is satisfiable. Moreover, the translation F is

polynomial in the size of φ.

As Tarray is in NP, this yields an NP decision procedure for SSL+
data

if TData is in NP, matching the complexity result of Theorem 7.15 in
Section 7.1 that we derived from the small-model property.

In the remainder of this section, I give a detailed proof of Theo-
rem 7.19.

Evaluation of the SMT Encoding

I’ve implemented an almost identical SMT encoding for the
logic SL∗

data in my tool Sloth. A preliminary evaluation of Sloth
showed that the SMT encoding can be used to solve small but intri-
cate entailments about all data structures discussed here—binary
search trees, heaps, etc.—but does not yet scale to large queries.
Since I only evaluated the encoding of SL∗

data, not of SSL+
data, I do

not include the experimental results here. They are available in
the (informal) proceedings of the First Workshop on Automated
Deduction for Separation Logics (ADSL) [KJW18b].

7.2.1 Correctness of the SMT Encoding of Lists and Trees

I begin by showing the correctness of the encoding of lists and trees. I
focus on trees, as the list encoding is essentially a simpler special case
of the tree encoding. Disregarding data predicates for the moment,
the correctness argument can be summarized as follows.

1. The tree predicate tree(x, y) holds in (s, h) iff (s, h) is a directed
tree with root x and holes y (Lemma 5.5).

2. A model (s, h) and its corresponding models induce the same
directed graph (Lemma 7.21).

3. The encoding of tree(x, y) holds in a model Msmt if and only
if Msmt is a directed tree with root xMsmt , terminal nilMsmt , and
holes yMsmt (Lemma 7.22).

This implies the correctness of the encoding, because by Lemma 7.17,
every stack–heap model has a corresponding SMT model and vice
versa, allowing us to transform every model of tree(x, y) into an SMT
model of the tree encoding and vice versa.

We must first clarify what we mean by the directed graph induced
by an SMT model.
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Definition 7.20. Let Msmt be an SMT model. The directed graph of Msmt

is given by

GMsmt
,
{〈

ℓ, 0, ℓ′
〉
| ℓ ∈ xMsmt

global, l
Msmt [ℓ] = ℓ

′
}

∪
{〈

ℓ, 1, ℓ′
〉
| ℓ ∈ xMsmt

global, r
Msmt [ℓ] = ℓ

′
}

Lemma 7.21. Let (s, h) be a stack–heap model and let Msmt be a corre-

sponding SMT model. Then igraph(h) = GMsmt
.

Proof. Follows immediately from the definition of model correspon-
dence.

We show that the (directed graphs of) the first-order models of
❚s

n(tree(x, 〈s1, . . . , sk〉 ,P)) are directed trees with holes.

Lemma 7.22. Let Msmt be an SMT model.

Msmt |= ∆n
SSL ∧ ∃Y∃rz

1, . . . , ∃rz
n∃z.❚s

n(tree(x, 〈y1, . . . , yk〉))

if and only if GMsmt
is a directed tree with root xMsmt , terminal nilMsmt , and

holes
〈

yMsmt

1 , . . . , yMsmt

k

〉

.

Proof. Let yMsmt ,
〈

yMsmt

1 , . . . , yMsmt

k

〉

. First observe that the formula

is satisfied by a model with xMsmt

global = ∅ iff xMsmt is equal to the unique
hole (if any) or to nilMsmt iff GMsmt

is an empty directed tree with root
xMsmt , terminal nilMsmt , and holes yMsmt .

Now assume that xMsmt

global 6= ∅. As per Definition 4.11, we need to
prove that GMsmt

satisfies the following properties.

1. GMsmt
is acyclic.

2. xMsmt is the unique source of GMsmt
.

3. nilMsmt is a sink of GMsmt
or does not occur in the nodes of GMsmt

.

4. Every node except nilMsmt has at most one predecessor.

5. sinkseq(GMsmt
) = yMsmt .

We prove these properties one by one. Let Msmt1 be the extension
of Msmt with symbols Y, rz

1, . . . , rz
n, z such that Msmt1 |= ∆n

SSL ∧

❚s
n(tree(x, y)). Observe that GMsmt1 = GMsmt

.

1. It suffices to show that none of the nodes x1, . . . , xn is on a cycle.

If xi = x, we note that Msmt1 |= structure, so Msmt1 |= ¬rz
n(x, x),

guaranteeing that x is not reachable from itself, i.e., not on a
cycle.

Since Msmt1 |= footprint, every other node xi ∈ xglobal, xi 6= x, is
reachable from x. Since every node except nil has at most one
predecessor, the only path to xi then is the path from x. It follows
that xi cannot be on a cycle. Since xi was arbitrary, it follows that
GMsmt

is acyclic.
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2. Since Msmt1 |= footprint, every other node xMsmt

i ∈ xMsmt

global is
reachable from xMsmt , so no other node except xMsmt can possible
be a source of GMsmt

. Because GMsmt
is acyclic, it follows that

xMsmt has no predecessors, so xMsmt is indeed a source of GMsmt
.

3. Msmt1 |= ∆n
SSL, so in particular Msmt1 |= nil 6∈ xglobal. By defini-

tion, only the nodes in xMsmt

global have successors in GMsmt
. Conse-

quently, nil is a sink of GMsmt
or does not occur in the nodes of

GMsmt
.

4. Msmt1 |= oneparent, so it holds that (1) the successors of all
nodes in xMsmt

global are either both nil or distinct and (2) the succes-
sors of all pairs of nodes may only overlap on nil. Consequently,
every node except for nilMsmt has at most one predecessor.

5. The reachability constraint guarantees that the nodes xj in z (and
thus in xMsmt

global) do not satisfy isleaf(xj), implying that the nodes
yMsmt do not have any successors in GMsmt

, i.e., they are sinks
of the graphs if they occur in the graph As Msmt1 |= holesoccur,
every node in yMsmt occurs, so the sinks of GMsmt are precisely
the nodes yMsmt .

As Msmt1 |= ordered, we have that yMsmt

i ≺ yMsmt

j (i.e., that

yMsmt

i occurs in the access path ordering before yMsmt

j ) iff i < j,

implying that sinkseq(GMsmt
) = yMsmt .

Consequently, GMsmt
is a directed tree with root xMsmt , terminal

nilMsmt and holes yMsmt .

To finish the correctness proof, we need to show that the data predi-
cates P in tree(x, y,P) hold in (s, h) iff they hold in the corresponding
SMT model.

Lemma 7.23. Let (s, h) be a model and Msmt its corresponding SMT model.

Let P be a data predicate. Then (s, h) |= P iff Msmt |= data(P).

Proof. We make a case distinction based on the type of data predicate.

case [F]∃ . (s, h) |= [F]∃

iff there ex. a location ℓ ∈ dom(h) s.t. F(d(ℓ)) holds

iff there exists an ℓ ∈ xMsmt

global such that F(dMsmt [ℓ]) holds

iff Msmt |= map⇒(z,mapF(d)) 6= K(f).

case [F]∀ . Analogously.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

102 deciding positive ssl

case [f : F]∃ . (s, h) |= [f : F]∃

iff there exist locations ℓ1, ℓ2 ∈ dom(h) such that

ℓ1
f∗
−→h ℓ2 and F(d(ℓ1), d(ℓ2)) holds

iff there exist locations ℓ1, ℓ2 ∈ zMsmt such that

ℓ1
f∗
−→Msmt

ℓ2 and F(dMsmt [ℓ1], dMsmt [ℓ2]) holds

iff there exist xMsmt

1 , xMsmt

2 ∈ zMsmt such that

xMsmt

1
f∗
−→Msmt

xMsmt

2 and

F(dMsmt [xMsmt

1 ], dMsmt [xMsmt

2 ]) holds

iff Msmt |=
∨

1≤i,j≤n

xi, xj ∈ z ∧ rz
n(xi, xj, f) ∧ F(d[xi], d[xj]).

case [ f : F ]∀ . Analogously.

We now have all the necessary ingredients for proving the correct-
ness of the SMT encoding of trees.

Lemma 7.24. Let 〈A, B, Z〉 = ❚
s
n(tree(x, 〈s1, . . . , sk〉 ,P), Y), let F = A∧

B ∧ ∆n
SSL. Let (s, h) be a stack–heap pair and Msmt an SMT model that

corresponds to (s, h). Then:

1. B satisfies (Y ∪ Z)-existence,

2. A and B satisfy (Y ∪ Z)-equivalence,

3. Assume Msmt corresponds to (s, h). Then:

a)
(
(s, h) |= tree(x, 〈s1, . . . , sk〉 ,P) and |h| ≤ n

)
iff Msmt |=

∃Y∃Z. F

b)
(
(s, h) |= tree≥2(x, 〈s1, . . . , sk〉 ,P) and |h| ≤ n

)
iff
(
Msmt |=

∃Y∃Z. F and
∣
∣
∣x

Msmt

global

∣
∣
∣ ≥ 2

)
.

Proof. Observe that Y ∪ Z = 〈yls, ytree, z, rz
1, . . . , rz

n〉.
We consider each of the three statements separately:

1. The formula B = reachability ∧ footprint∧ defineY is always satis-
fied in the assignment that assigns to the sets z and yds those
locations among {x1, . . . , xn} that are reachable from x without
going through a hole, and to yds′ the empty set for ds′ 6= ds.

In this interpretation, we interpret each rz
i as the predicate repre-

senting i-step reachability on the set z. Note, in particular, that z

is empty if and only if the tree root x itself is a hole; and that if
z is empty all the rz

i are empty as well.

2. Assignments to (Y ∪ Z) are not unique, but they are unique on
the interpretation of {x1, . . . , xn}, which are the only locations
that influence the truth value of A.
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7.2 encoding positive formulas into smt 103

3. By Lemma 5.5, (s, h) |= tree(x, y,P) if and only if (s, h) is a
directed tree with holes s and satisfies P . By Lemma 7.22, Msmt

satisfies the tree encoding if and only if Msmt is a directed
tree with holes s and satisfies P . The first sub-claim follows
because by Lemma 7.21, (s, h) is a directed tree with holes s iff
its corresponding models Msmt are directed trees with holes s.

The second sub-claim follows because Msmt |= depth ≥ 2 iff
∣
∣
∣x

Msmt

global

∣
∣
∣ ≥ 2 iff Msmt corresponds to a model with |h| ≥ 2.

I omit a proof of the correctness of the list encoding, as it is a simpler
special case of the tree encoding.

Lemma 7.25. Let 〈A, B, Z〉 = ❚
s
n(ls(x, 〈s1, . . . , sk〉 ,P), Y) and let F =

A ∧ B ∧ ∆n
SSL. Then:

1. B satisfies (Y ∪ Z)-existence,

2. A and B satisfy (Y ∪ Z)-equivalence,

3. Assume Msmt corresponds to (s, h). Then:

a)
(
(s, h) |= ls(x, y,P) and |h| ≤ n

)
iff Msmt |= ∃Y∃Z. F

b)
(
(s, h) |= ls≥2(x, y,P) and |h| ≤ n

)
iff
(
Msmt |= ∃Y∃Z. F

and
∣
∣
∣x

Msmt

global

∣
∣
∣ ≥ 2

)
.

7.2.2 Correctness of the SMT Encoding of Arbitrary Positive Formulas

To show the correctness of the full encoding, we also need a compo-
sition operation on SMT models that mimics the heap-composition
operator ⊎s. Such an operation need only be defined on SMT models
that are compatible in the following sense.

Definition 7.26. Let s be a stack and let Msmt1 and Msmt2 be two first-

order models. We say that Msmt1 and Msmt2 are s-compatible if they

have disjoint global footprints (i.e., xMsmt1
global ∩ xMsmt2

global = ∅), but agree on the

interpretation of all SSL+
data-common elements (all field arrays f, all variables

in dom(s), nil and all variables xi).

We define a partial composition operation on compatible models.

Definition 7.27. If Msmt1 and Msmt2 are compatible, we define the com-

bined model Msmt1 ⊕Msmt2 as the model that interprets xglobal by xMsmt1
global ∪

xMsmt2
global and interprets all variables that occur in Msmt1 or Msmt2 (or both)

like they are interpreted in Msmt1 and Msmt2. If Msmt1 and Msmt2 are

not compatible, Msmt1 ⊕Msmt2 = ⊥.

Composition is well defined because of the assumption that Msmt1

and Msmt2 are compatible.
As desired, there is a close correspondence between the composition

of heaps via ⊎s and the composition of first-order models via ⊕:
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104 deciding positive ssl

Lemma 7.28 (Correspondence of composition). Let s be a stack and

let h1, h2 be heaps such that |h1| + |h2| = n. Then h1 ⊎
s h2 6= ⊥ if and

only if there exist compatible SMT models Msmt1,Msmt2 such that (1)

Msmti |= ∆n
SSL, (2) Msmti corresponds to (s, hi), and (3) Msmt1 ⊕Msmt2

corresponds to h1 ⊎
s h2.

Proof. We pick models Msmt1 and Msmt2 such that they correspond to
(s, h1) and (s, h2) and such that they interpret the variables x1, . . . , xn

as well as the arrays n, l, r, and d in an identical way. The former is
possible because we can assign to the xi pairwise different elements
of dom(h1) ∪ dom(h2); the latter is possible because h1 ⊎

s h2 6= ⊥,
so we can interpret the array f simply by f(ℓ) for all ℓ ∈ dom(h1) ∪

dom(h2) and arbitrarily (but in the same way in both SMT models) on
all other locations. By construction, Msmt1 ⊕Msmt2 corresponds to
h1 ⊎

s h2.

Lemma 7.29. Let φ be a spatial formula. Let (s, h) be a stack–heap model

of size n = |h| and let Msmt be any corresponding SMT model. Let Y =

{yls, ytree} be fresh set variables and 〈A, B, Z〉 = ❚
s
n(φ, Y). Then

1. (s, h) |= φ iff Msmt |= ∃Y∃Z. A ∧ B ∧ X = Y.

2. B satisfies (Y ∪ Z)-existence

3. A and B satisfy (Y ∪ Z)-equivalence.

Proof. Let φ be a spatial formula without tree and ls predicates. We
proceed by structural induction on φ.

❚
s
n(F), F ∈ FData : The translation defines no fresh variables, i.e., Z =

∅, and so (Y ∪ Z)-existence is just Y-existence. There is a unique
interpretation of Y that satisfies B, namely Y = ∅. Hence both
Y-existence and Y-uniqueness are satisfied. Due to SSL+

data se-
mantics we also have that (s, h) |= F iff Msmt |= F ∧ X = ∅ iff
Msmt |= ∃Y. A ∧ B ∧ X = Y.

❚
s
n(x 7→ls 〈y, d〉): Again, the translation defines no fresh variables, i.e.,

Z = ∅, and there is a unique interpretation of Y that satisfies
B, namely yls = {s(x)} and ytree = ∅. Hence Y-existence and
Y-uniqueness are satisfied. If (s, h) |= x 7→ls y, d, then h(s(x)) =

〈s(y), s(d)〉 and thus n(x) = s(y), d(x) = s(d). Because Msmt

corresponds to (s, h), nMsmt(xMsmt) = yMsmt and dMsmt(xMsmt) =

dMsmt , so Msmt |= A. Due to Y-existence, also Msmt |= ∃Y. A ∧

B ∧ X = Y.

For the other direction, if Msmt |= ∃Y. A ∧ B ∧ X = Y, then
xMsmt

ls = yMsmt

ls =
{

xMsmt
}

= {s(x)} and xMsmt
tree = yMsmt

tree =

∅. Because Msmt corresponds to (s, h), this implies dom(h) =

{s(x)}. Moreover, because A holds in Msmt, nMsmt(xMsmt) =

yMsmt and dMsmt(xMsmt) = dMsmt , so by model correspondence,
h(s(x)) = 〈s(y), s(d)〉. It follows that (s, h) |= x 7→ls 〈y1, . . . , yk〉.
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❚
s
n(x 7→tree 〈y1, y2, d〉): Analogous to the previous case.

❚
s
n (ds(x , s , P )) : See Lemmas 7.24 and 7.25.

❚
s
n(φ1 ⋆ φ2): We introduce names for the parts of the sub-encodings.

〈A1, B1, Z1〉 , ❚s
n(φ1, Y1),

〈A2, B2, Z2〉 , ❚s
n(φ2, Y2),

Z , Z1 ∪ Z2 ∪ Y1 ∪ Y2.

By induction, there exist assignments to Z1 and Z2, Y1 and Y2

such that B1 and B2 are satisfied. Consequently, B1 ∧ B2 satisfies
Z-existence.

Also by induction, we have for 1 ≤ i ≤ 2 that Ai cannot dis-
tinguish between different assignments that make the Bi true.
Since the (Y1 ∪ Z1) ∩ (Y2 ∪ Z2) = ∅, it follows that A1 ∧ A2 and
B1 ∧ B2 satisfy Z-equivalence.

Because the variables Y are fresh and do not occur in the Ai

and Bi, (Y ∪ Z)-existence and (Y ∪ Z)-equivalence follow for
A = A1 ∧ A2 and B = B1 ∧ B2 ∧ Y = Y1 ∪ Y2.

Assume that (s, h) |= φ. By the semantics of ⋆, there exist h1 and
h2 such that h = h1 ⊎

s h2 and (s, hi) |= φi. By induction, Msmti |=

∃Yi∃Zi. Ai ∧ Bi, with Msmti the model corresponding to (s, hi).
By Lemma 7.28, we can assume that Msmt = Msmt1 ⊕Msmt2 is
the first-order model associated with (s, h), and we have di-
rectly that Msmt |= ∃Y∃Y1∃Z1∃Y2∃Z2.A1 ∧ A2 ∧ empty(Y1 ∩

Y2) ∧ B1 ∧ B2 ∧ Y = Y1 ∪ Y2 ∪ X = Y. For the other direction,
assume that Msmt |= ∃Y∃Y1∃Z1∃Y2∃Z2. A1 ∧ A2 ∧ Y1 ∩ Y2 =

∅ ∧ B1 ∧ B2 ∧ Y = Y1 ∪ Y2 ∧ xglobal = Y. Let Y∃
i be the values

that witness above existential satisfiability. Observe that Ai and
Bi refer only to fresh variables Yi and Zi, for i ∈ {1, 2}. We can
therefore decompose Msmt into Msmt1 ⊕Msmt2, where Msmti

interprets variables Yi and Zi and interprets xglobal as Y∃
i . We

have that Msmti |= ∃Yi∃Zi .Ai ∧ Bi ∧ xglobal = Yi.

By Lemma 7.17 we can assume that Msmti is the first-order
model associated with some SSL+

data model (s, hi), for i ∈ {1, 2}.
By the induction hypotheses, we have that (s, hi) |= φi. By the
semantics of ⋆, we have for h = h1 ⊎

s h2 that (s, h) |= φ1 ⋆ φ2.
(Note that ⊎s is defined because Y1 ∩ Y2 = ∅ holds in the SMT
model Msmt.) Moreover, by Lemma 7.28, we can assume that
Msmt corresponds to corresponds to Msmt.

Lemma 7.30 (Correctness of the SMT encoding). Let φ ∈ SSL+
data

and let ❚b
n(φ) = 〈A, B, Z〉. ❚n(φ) satisfies correctness, Z-existence and

Z-equivalence.

Proof. Again, we proceed by structural induction and analyze the
relevant cases:
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• If φ is a spatial formula, the result is an immediate consequence
of Lemma 7.29, noting that (Y∪ Z)-existence implies Z-existence
and (Y ∪ Z)-equivalence implies Z-equivalence.

• If φ = φ1 ∧ φ2, or φ = φ1 ∨ φ2, the results follows immediately
by induction. Note that both for conjunctions and disjunctions,
B1 and B2 are conjoined, guaranteeing that both existence and
equivalence are satisfied by ❚b

n(φ).

• If φ = ¬φ1 then, by induction, φ1 satisfies Z-equivalence and
Z-existence. Since B and Z are not changed by ❚b

n(¬φ1), Z-
existence is preserved. Since Msmt |= ❚b

n(¬φ1) iff Msmt 6|=

❚b
n(φ1), the truth value of the A-component is simply flipped, so

Z-equivalence is preserved as well. It then follows by Lemma 7.18

that (s, h) |= ¬φ1 iff Msmt |= ∃Z.¬A ∧ B, yielding correctness.

correctness of the data-structure encoding . We now
have all the tools to show that Theorem 7.19 holds.

Proof of Theorem 7.19. We first show that φ is SSL+
data-satisfiable if and

only if the SMT translation F = ❚n(φ) is satisfiable, for n , bound(φ).
Since n is an upper bound on the size of the minimal model of φ by
Lemma 7.12, φ is satisfiable if and only if it is satisfiable in a model
with at most n allocated locations. It follows from Lemma 7.30 that
φ and ∃Z.❚b

n(φ) ∧ ∆n
SSL are satisfiability equivalent. Since ❚n(φ) =

❚b
n(φ) ∧ ∆n

SSL, the desired satisfiability equivalence between φ and
❚n(φ) follows.

It remains to be shown that the reduction is polynomial. The size
of the encoding ❚n(φ) is dominated by the encoding of the tree and ls

predicates, which in turn are dominated by the formula reachability. As
the formula reachability is of order O(n4), the total size of the encoding
of φ is bounded by O((nls + ntree)n4). Since n is itself polynomial in
|φ| by Lemma 7.12, the encoding is polynomial in |φ|.
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Part III

D E C I D I N G S E PA R AT I O N L O G I C W I T H
I N D U C T I V E D E F I N I T I O N S

I study separation logic with a powerful mechanism for
modeling custom data structures by inductive definitions.
I give an asymptotically optimal 2ExpTime decision proce-
dure for the entailment problem of a quantifier-free separa-
tion logic in which negation, septraction and magic wand
are guarded and in which inductive definitions are restricted
to IDbtw [IRS13]. IDbtw imposes restrictions on inductive
definitions that guarantee that all models are of bounded

treewidth. The resulting formalism is expressive enough to,
for example, reason about trees with linked leaves, a data
structure used to implement sorted sets. Some of the work
presented in this part was previously published in [Jan+17;
Kat+18; KMZ19a; PMZ20; PZ20a].
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8
S E PA R AT I O N L O G I C W I T H I N D U C T I V E
D E F I N I T I O N S

In this part of the thesis, I study separation logic with inductive definitions

(SLID). In contrast to Part ii, we no longer assume that predicates for
data structures, such as ls and tree, are built into the logic. Instead,
the user of SLID can define custom predicates by providing a set
of recursive equations called a system of inductive definitions (SID).
Our main focus will be on (an extension of) the decidable fragment
SLIDbtw [IRS13], which I introduced informally in Chapter 3 and will
formalize later in the present chapter.

outline . In this chapter, I introduce the syntax and semantics
of SLID and define the guarded fragment SLIDg

btw, the extension of
SLIDbtw that is my main object of study. The following three chapters
center around an abstraction for SLIDg

btw formulas, Φ-types. Specif-
ically, Chapter 9 contains an informal motivation of the abstraction,
Chapter 10 introduces Φ-forests and their projections onto formulas,
and Chapter 11 uses such forest projections to define the Φ-type
abstraction. A decision procedure for SLIDg

btw based on the Φ-type
abstraction follows in Chapter 12. In Chapter 13, I conclude this part
of the thesis by proving that all logics that all extensions of SLIDg

btw

that lift one of the guardedness restrictions are undecidable.

how Part ii relates to [Jan+17 ; Kat+18 ; KMZ19a ; PMZ20 ;
PZ20a]. We began studying abstraction-based entailment checking
for SLID, in the guise of compositional heap automata and robustness

properties, in [Jan+17]. In that paper, we provided anecdotal evidence
that our approach might lend itself to deciding entailment in large
fragments of SLID. In [KMZ19a], we proposed the Φ-profile abstraction,
including an implementation in our Harrsh tool [Kat+18], claiming
that this approach yields a 2ExpTime decision procedure for SLIDbtw.

Unfortunately, we later discovered that the approach of [KMZ19a]
is incomplete, which led to the development of the Φ-type abstraction
introduced in [PMZ20]. Chapters 10 to 12 are based on this article.
Our recent article [PZ20a] contains a more accessible introduction
to the Φ-type abstraction, which has informed both Chapter 9 and
the presentation of Chapters 10 to 12. Further, [PZ20a] contains an
abridged version of the undecidability proofs in Chapter 13.

To sum up, this part of the thesis has grown out of joint work
with Christina Jansen, Christoph Matheja, Thomas Noll and Florian
Zuleger [Jan+17; Kat+18; KMZ19a; PMZ20; PZ20a]. Sections that are
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110 separation logic with inductive definitions

u, v, ui, v′i, . . . ∈ Var ∪ Loc,

u, v, wi, . . . ∈ (Var ∪ Loc)∗, e, ai ∈ Var∗

τ ::= emp | u 7→ v | pred(u) | u ≈ v | u 6≈ v

φg ::= τ | φg ⋆ φg | φg ∧ φg | φg ∨ φg

| φg ∧ ¬φg | φg ∧ (φg −©⋆ φg) | φg ∧ (φg −⋆ φg)

φqf ::= τ | φqf ⋆ φqf | φqf −⋆ φqf | φqf ∧ φqf | φqf ∨ φqf | ¬φqf

φsh ::= ∃e. (u1 7→ v1) ⋆ · · · ⋆ (uk 7→ vk)

⋆ pred1(w1) ⋆ · · · ⋆ predl(wl) ⋆ Π,

with Π = u1 ≈ v1 ⋆ · · · ⋆ um ≈ vm ⋆ u′
1 6≈ v′1 ⋆ · · · ⋆ u′

n 6≈ v′n

Figure 8.1: The syntax of the separation-logic fragments studied in this
part of the thesis: Guarded formulas φg, collected in SLIDg;
quantifier-free formulas φqf , collected in SLIDqf ; and existentially-
quantified symbolic heaps, φsh, collected in SH∃.

due in large part to one of my contributors contain an explicit attribu-
tion.

8.1 syntax of separation logic with inductive defini-
tions

We assume a set Preds of predicate identifiers. Each predicate pred ∈

Preds is equipped with an arity ar(pred) ∈ N, representing the num-
ber of parameters to be passed to the predicate.

The grammar in Fig. 8.1 defines three variants of separation logic
with inductive definitions:

• Guarded quantifier-free separation logic, formulas of the form
φg, collected in the set SLIDg.

• Quantifier-free separation logic, formulas of the form φqf , col-
lected in SLIDqf .

• Existentially-quantified symbolic heaps, SH∃.

In Fig. 8.1, pred ∈ Preds is a predicate identifier and |u| = ar(pred).
The first line of Fig. 8.1 defines the atomic formulas, τ, common to

all three SL variants. As with the first-order separation logic SLbase

from Chapter 2, emp is the empty heap, x 7→ y asserts that x points to the
locations captured by y, x ≈ y asserts the equality between variables x

and y, and x 6≈ y asserts the disequality of x and y. Guarded formulas,
φg, are built from atomic formulas using the separating conjunction
⋆, conjunction ∧, disjunction ∨, guarded negation φg ∧ ¬φg, guarded

septraction φg ∧ (φg−©⋆φg), and guarded magic wands φg ∧ (φg−⋆φg).
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8.1 syntax of separation logic with inductive definitions 111

In (not necessarily guarded) quantifier-free formulas, φqf , negation
and magic wands may occur unguarded. Moreover, we omit the sep-
traction operator in φqf , as it is definable as φ −©⋆ ψ , ¬(φ −⋆ ¬ψ).

Finally, φsh formulas are existentially-quantified symbolic heaps,
consisting of points-to assertions, predicate calls, and a pure constraint,
i.e., a conjunction of (dis-)equalities. In the literature, the pure con-
straint, Π, is usually defined with the classical conjunction ∧ [BCO04].
Just like in Parts i and ii of the thesis, we instead use the separating
conjunction ⋆ to express the pure constraint, because our semantics of
(dis-)equalities, defined in Section 8.2, forces the heap to be empty in
models of (dis-)equalities.

As in Part ii, ⋆ {ψ1, . . . , ψk} is the formula ψ1 ⋆ · · · ⋆ ψk.

Example 8.1 (Syntax of SLID). Assume the predicate lseg(x1, x2) is inter-

preted by the set of all nonempty list segments from x1 to x2.

1. The symbolic heap ∃y. lseg(x, y) ⋆ lseg(z, y) ⋆ lseg(y, nil) ∈ SH∃

states that the heap consists of two overlaid null-terminated lists,

one with head x, the other with head z.

2. The guarded formula lseg(x, y) ∧ ¬x 7→ y ∈ SLIDg
btw states that the

heap consists of a list of length at least two.

3. The guarded formula lseg(x, y) ∧ (ls(y, z) −©⋆ ls(x, x)) ∈ SLIDg
btw

states that the heap consists of a list segment from x to y that can be

extended to a cyclic list by adding a (nonempty) list from y to z. This

formula is only satisfied by models in which x ≈ z holds.

4. The unguarded formula (x 7→ nil)−⋆ x 6≈ x ∈ SLIDqf
btw states that in

all models obtained by extending the current model with a pointer from

x to nil, x is different from x. As it is impossible that x is different from

x, the formula is only satisfied by models in which there is no way to

extend the heap by a pointer from x to nil, i.e., by models in which x is

already allocated.

An atom representing true?

It is quite common to include an atomic formula that holds in
every model, often denoted true or t [Rey02], even in symbolic-
heap fragments [Cal+11]. We do not include a spatial atom true in
any of the logics; while true can of course be defined in SLIDqf ,
for example by emp ∨¬emp, it is not definable in SLIDg because
of the aforementioned semantics of (dis-)equalities. This is crucial:
If true were definable, SLIDqf and SLIDg would be equivalent,
because we could simply use true for all guards.

locations in formulas . I make the nonstandard choice to allow
locations as terms in formulas. While I make this choice purely for
technical convenience, it is in fact quite natural when considering
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112 separation logic with inductive definitions

languages such as C that allow accessing concrete memory addresses.
Given a formula φ, we denote by locs(φ) the set of all locations that
occur in φ.

inductive definitions . Predicates are defined by a system of

inductive definitions (SID). An SID is a finite set Φ of rules of the form
pred(x) ⇐ φ, where pred ∈ Preds is a predicate symbol, x are the
parameters of pred, and—as is standard [IRS13; Ant+14]—φ ∈ SH∃

is an existentially-quantified symbolic heap as defined in Fig. 8.1.
We assume that all rules of the same predicate pred have the same
parameters. We collect these free variables of pred in the set fvars(pred).
We collect all predicates that occur in SID Φ in the set Preds(Φ). The
size of an SID Φ, |Φ|, is the sum of the sizes of the formulas in its
rules. We give a few examples of SIDs; the formal semantics of SIDs
will be defined in Section 8.2.

Example 8.2 (SID). 1. Let Φls be the following SID.

lseg(x1, x2) ⇐ x1 7→ x2

lseg(x1, x2) ⇐ ∃y. x1 7→ y ⋆ lseg(y, x2)

ls(x1) ⇐ x1 7→ nil

ls(x1) ⇐ ∃y. (x1 7→ y) ⋆ ls(y)

The predicates lseg and ls correspond to the built-in ls predicate of the

logic SSL from Part ii with one and zero holes, respectively, except that

they do not allow empty lists. The formulas lseg(x1, nil) and ls(x1) are

equivalent w.r.t. Φls.

2. Let Φodd/even be the following SID.

odd(x1, x2) ⇐ x1 7→ x2

odd(x1, x2) ⇐ ∃y. (x1 7→ y) ⋆ even(y, x2)

even(x1, x2) ⇐ ∃y. (x1 7→ y) ⋆ odd(y, x2)

Φodd/even defines all lists of odd and even length, respectively.

3. Let Φtree be the following SID.

tree(x1) ⇐ x1 7→ 〈nil, nil〉

tree(x1) ⇐ ∃ 〈l, r〉 . (x1 7→ 〈l, r〉) ⋆ tree(l) ⋆ tree(r)

Φtree defines the set of null-terminated binary trees, equivalent to trees

without holes in SSL.

instantiating variables . Let φ be a formula and let y, z ∈

(Var ∪ Loc)∗ be sequences of the same length, y repetition free. We de-
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8.2 semantics of separation logic with inductive definitions 113

note by φ[y/z] the instantiation of y = 〈y1, . . . , yk〉 by z = 〈z1, . . . , zk〉
in φ. Formally,

yi[y/z] , zi, 1 ≤ i ≤ k

a[y/z] , a, iff a /∈ y

〈a1, . . . , ak〉[y/z] , 〈a1[y/z], . . . , ak[y/z]〉

emp[y/z] , emp

a 7→ b[y/z] , a[y/z] 7→ b[y/z]

pred(x)[y/z] , pred(x[y/z])

¬φ[y/z] , ¬(φ[y/z])

φ × ψ[y/z] , φ[y/z]× ψ[y/z], where × ∈ {∧,∨, ⋆,−⋆,−©⋆ }

∃e. φ[y/z] , ∃e[y/z]. φ[y/z]

For example, for y = 〈x〉 and z = 〈w〉, we have (x 7→ v)[y/z] = w 7→

v; and ∃x. ls(z, x)[y/z] = ∃w. ls(z, w).
Finally, assuming we have an order on the free variables of a formula

(as we do with predicate calls, for example) we abbreviate φ(z) ,

φ[fvars(φ)/z].

8.2 semantics of separation logic with inductive defi-
nitions

As usual, we define the semantics in terms of stack–heap pairs, (s, h)
(cf. Chapter 2). In this part of the thesis, we only consider variants
of SLID without data constraints. We thus define Val , Loc for this
part of the thesis. Given this assumption, we have s : Var ⇀ Loc and
h : Loc ⇀ Loc+, i.e., all values stored in the stack and the heap are
locations. Figure 8.2 defines the semantics of separation logic formulas
φ w.r.t. a fixed SID Φ. To simplify the technical development in later
chapters, we deviate from the standard presentation of the semantics
(see e.g. [Rey02]) by syntactically replacing variables by their corre-
sponding heap locations. This is possible because we allow locations
as terms in formulas. When writing φ[dom(s)/ img(s)], I assume that
an arbitrary but consistent order is imposed on the domain and image
of the stack, i.e., every variable x ∈ dom(s) is replaced by s(x).

As in Parts i and ii, the semantics of equalities and disequalities
require that the heap is empty. This ensures that true is not definable
in guarded formulas (e.g., as x ≈ x). Apart from this choice, our
semantics is equivalent to the standard semantics of separation logic
with inductive definitions [IRS13; Ant+14] on formulas that do not
contain location terms.

Just like in Parts i and ii, we use a precise [COY07] semantics of
the points-to assertion: (s, h) |=Φ x 7→ y holds only in single-pointer
heaps.

A heap is a model of a predicate call pred(v) iff it is a model of
a rule pred(x) ⇐ ψ, in which the parameters x have been replaced
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114 separation logic with inductive definitions

(s, h) |=Φ φ iff fvars(φ) ⊆ dom(s) and h |=Φ φ[dom(s)/ img(s)]

h |=Φ emp iff dom(h) = ∅

h |=Φ ℓ1 ≈ ℓ2 iff dom(h) = ∅ and ℓ1 = ℓ2

h |=Φ ℓ1 6≈ ℓ2 iff dom(h) = ∅ and ℓ1 6= ℓ2

h |=Φ v 7→ w iff h = {v 7→ w}

h |=Φ pred(v) iff h |=Φ φ[x/v] for some rule (pred(x) ⇐ ψ) ∈ Φ

h |=Φ φ1 ⋆ φ2 iff ex. h1, h2 s.t. h = h1 + h2 and h1 |=Φ φ1

and h2 |=Φ φ2

h |=Φ φ1 −⋆ φ2 iff for all h1, h2 s.t. h2 = h1 + h

it holds that if h1 |=Φ φ1 then h2 |=Φ φ2

h |=Φ φ1 ∧ φ2 iff h |=Φ φ1 and h |=Φ φ2

h |=Φ φ1 ∨ φ2 iff h |=Φ φ1 or h |=Φ φ2

h |=Φ ¬φ1 iff h 6|=Φ φ1

h |=Φ ∃e. φ iff exists v ∈ Loc s.t. h |=Φ φ[e/v]

Figure 8.2: Semantics of separation logic with inductive definitions.

by the actual arguments, v. Note that this semantics of predicates
corresponds to the least fixed-point semantics as formalized e.g. in
[Bro+14].

In this part of the thesis, we use the standard, “weak” semantics of
the separating conjunction: h |=Φ φ1 ⋆ φ2 iff h can be split into disjoint
heaps that are models of φ1 and φ2; and h |=Φ φ1 −⋆ φ2 iff extending h

with a model of φ1 always yields a model of φ2, provided the extension
is defined. The semantics of the (classical) Boolean connectives and
the existential ∃ are standard. In particular, ∃ corresponds to stack
extension, even though this is not explicit in our semantics.

Lemma 8.3. Let φ ∈ SH∃ and e ∈ Var. Let (s, h) be a stack–heap pair

with e /∈ dom(s). Then (s, h) |=Φ ∃e. φ if and only if there exists a location

v ∈ Loc such that (s∪ {e 7→ v} , h) |=Φ φ.

Proof. (s, h) |=Φ ∃e. φ

iff h |=Φ (∃e. φ)[dom(s)/ img(s)]

iff h |=Φ ∃e. (φ[dom(s)/ img(s)])

iff ex. v ∈ Loc s.t. h |=Φ φ[dom(s)/ img(s)][e/v]

iff ex. v ∈ Loc s.t. h |=Φ φ[dom(s) · 〈e〉 / img(s) · 〈v〉]

iff ex. v ∈ Loc s.t.

h |=Φ φ[dom(s∪ {e 7→ v})/ img(s∪ {e 7→ v})]

iff ex. v ∈ Loc s.t. (s∪ {e 7→ v} , h) |=Φ φ

satisfiability and entailment. As the semantics of an SLID
formula depends on the given SID, the satisfiability and entailment
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8.3 sids with models of bounded treewidth 115

problems are parameterized by an SID. Let φ, ψ be SLID formulas
with fvars(ψ) ⊆ fvars(φ). We say that φ is satisfiable w.r.t. SID Φ if there
exists a model (s, h) such that (s, h) |=Φ φ. We say that φ entails ψ

w.r.t. Φ, denoted φ |=Φ ψ, iff for all models (s, h), (s, h) |=Φ φ implies
(s, h) |=Φ ψ.

isomorphism . Formulas without location terms cannot distin-
guish between isomorphic models. I restate the definition of isomor-
phism, simplifying it (compared to Definition 2.2) based on the identity
Val = Loc that holds in this part of the thesis.

Definition 8.4 (Isomorphic stack–heap pairs). Two stack–heap pairs

(s, h) and (s′, h′) are isomorphic, written (s, h) ∼= (s′, h′), if there exists

a bijection σ : (locs(h) ∪ img(s)) → (locs(h′) ∪ img(s′)) such that (1) for

all x, s′(x) = σ(s(x)) and (2) h′ = {σ(l) 7→ σ(h(l)) | l ∈ dom(h)}.

Lemma 8.5. Let φ be an SLID formula with locs(φ) = ∅. Let (s, h) and

(s′, h′) be models with (s, h) ∼= (s′, h′). Then (s, h) |=Φ φ iff (s′, h′) |=Φ φ.

Proof sketch. Let σ be an isomorphism between (s, h) and (s′, h′). Then:

(s, h) |=Φ φ

iff h |=Φ φ[dom(s)/ img(s)]

iff h′ |=Φ φ[dom(s)/ img(s)][dom(σ)/ img(σ)] (†)

iff h′ |=Φ φ[dom(s′)/ img(s′)] (because locs(φ) = ∅)

iff (s′, h′) |=Φ φ.

If we wanted to be fully formal, we would have to prove the step
marked (†) by a structural induction on φ.

8.3 sids with models of bounded treewidth

As discussed in Section 3.3, the entailment problem even of the
symbolic-heap fragment of SLID is undecidable in general [Ant+14;
IRV14]. To obtain a decidable logic, we restrict SIDs to the fragment
IDbtw that was introduced by Iosif et al. in [IRS13]. IDbtw imposes
restrictions on SIDs that guarantee that all models of the predicates of
the SID are of bounded treewidth.1

The relationship between IDbtw and monadic second-order logic

over graphs of bounded treewidth.

The subscript btw is slightly misleading, as IDbtw does not have
the same expressive power as MSO over connected graphs of
bounded treewidth. It is easy to find MSO formulas that do
not have equivalent IDbtw formulas. For example, the progress

1 More precisely, when viewed as graphs, all models of the SIDs in IDbtw have bounded
treewidth. For a definition of treewidth, see e.g. [Die16].
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116 separation logic with inductive definitions

property of IDbtw only allows “forward edges” starting in a free
variable, whereas MSO can also model “backward edges.” It is an
open question whether there is a separation logic that captures
MSO over connected graphs of bounded treewidth.

In IDbtw, all SIDs have to satisfy progress, connectivity, and estab-

lishment. To formalize these assumptions, we introduce a couple of
auxiliary definitions for symbolic heaps φ: the local allocation of φ,
lalloc(φ); and the local references of φ, lref(φ). In the following defini-
tion, lfun ∈ {lalloc, lref}.

lalloc(x 7→ y) , {x} lref(x 7→ y) , y

lfun(emp) , ∅

lfun(pred(y)) , ∅

lfun(φ1 ⋆ φ2) , lfun(φ1) ∪ lfun(φ2)

lfun(∃e. φ) , lfun(φ)

progress . A predicate pred satisfies progress iff every rule of pred con-
tains exactly one points-to assertion and there is a variable x ∈

fvars(pred) such that for all rules (pred(x) ⇐ φ) ∈ Φ, lalloc(φ) =
{x}. In this case, we define lalloc(pred(y)) , {x[x/y]} and call
x the root of the predicate. Moreover, if the i-th parameter of pred
is the root of pred, then predroot(pred(z1, . . . , zk)) , zi.

connectivity. A predicate pred satisfies connectivity iff for all rules
of pred, all variables that are allocated in the recursive calls
of the rule are referenced in the rule. Formally, for all rules
(pred ⇐ φ) ∈ Φ and for all predicate calls pred′(y) ∈ φ, it holds
that lalloc(pred′(y)) ⊆ lref(φ).

establishment. A predicate pred is established iff all existentially
quantified variables across all rules of pred are eventually allo-
cated. Formally, for all rules (pred ⇐ ∃y. φ) ∈ Φ and for all
models (s, h), if (s, h) |=Φ φ then s(y) ⊆ dom(h).

We collect in IDbtw all SIDs that satisfy progress, connectivity, and
establishment. Unless stated otherwise, we assume Φ ∈ IDbtw for all
SIDs Φ in this thesis.

Example 8.6 (SID Assumptions). All SIDs in Example 8.2 satisfy progress,

connectivity, and establishment and are thus elements of IDbtw.

Throughout this thesis, I assume w.l.o.g. that rules whose right-
hand side does not contain predicate calls do not contain existential
quantifiers, because in IDbtw, such existentials can always be elim-
inated: all existentially-quantified variables in such “non-recursive”
rules must be provably equal to the root of the predicate—and thus to
a parameter of the predicate—to satisfy establishment. Consequently,
we can replace all occurrences of existentially-quantified variables in
non-recursive rules with the corresponding root variable.
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8.4 guarded models and dangling pointers 117

restricting slid to sids from IDbtw . I write SLIDg
btw and

SLIDqf
btw for the restriction of the logics SLIDg and SLIDqf in which

only SIDs from IDbtw may be used to interpret predicate calls.

adding predicates for points-to assertions to sids . To
avoid dedicated reasoning about points-to assertions, we sometimes
(specifically, in Section 8.4 and Chapter 12) exploit that we can add
predicates that simulate points-to assertions to any SID. I call the
resulting SIDs pointer-closed.

Definition 8.7 (Pointer-closed SID). An SID Φ is pointer-closed w.r.t. φ

iff it contains for all points-to assertions of arity k + 1 that occur in φ a

predicate ptrk defined by the rule ptrk(x) ⇐ x1 7→ 〈x2, . . . , xk+1〉.

8.4 guarded models and dangling pointers

guarded models . Much of the development in the remainder
of this thesis exploits that guarded formulas interpreted over SIDs
from IDbtw, i.e., formulas in SLIDg

btw, only have guarded models in the
following sense.

Definition 8.8. Let (s, h) be a model. We call (s, h) guarded w.r.t. SID

Φ if there exist predicate calls pred1(x1), . . . , predk(xk), k ≥ 0, such that

(s, h) |=Φ pred1(x1) ⋆ · · · ⋆ predk(xk).

We write ModelsgΦ , {(s, h) | (s, h) is guarded w.r.t. Φ} for the set
of all guarded models w.r.t. SID Φ.

The use of the adjective guarded is justified by the following lemma.

Lemma 8.9. Let Φ ∈ IDbtw be a pointer-closed SID. Let φ ∈ SLIDg
btw and

let (s, h) be a model with (s, h) |=Φ φ. Then (s, h) ∈ ModelsgΦ.

Proof. By induction on φ.

case φ = emp. Trivial, as (s, h) satisfies the separating conjunction
of k = 0 predicate calls.

case φ = x ≈ y, φ = x 6≈ y. Analogously.

case φ = x 7→ y. Because Φ is pointer-closed, there exists a predicate
that (s, h) satisfies.

case φ = pred(x). Trivial.

case φ = φ1 ⋆ φ2 . Split h into h1 + h2 such that (s, h1) |=Φ φ1 and
(s, h2) |=Φ φ2, which is possible by the semantics of ⋆. By the
induction hypotheses, there exist pred1,1(x1), . . . , pred1,m(xm) and
pred2,1(y1), . . . , pred2,n(yn) with

(s, h1) |=Φ ⋆1≤i≤mpred1,i(xi) and

(s, h2) |=Φ ⋆1≤j≤mpred2,j(yj).
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118 separation logic with inductive definitions

As h = h1 + h2, we obtain

(s, h) |=Φ ⋆1≤i≤mpred1,i(xi) ⋆⋆1≤j≤mpred2,j(yj).

Thus, (s, h) is guarded.

case φ = φ1 ∧ φ2 . In this case, in particular (s, h) |=Φ φ1, so the claim
follows immediately from the induction hypothesis for φ1.

case φ = φ1 ∨ φ2 . Assume w.l.o.g. that (s, h) |=Φ φ1. The claim fol-
lows immediately from the induction hypothesis for φ1.

dangling pointers in SLIDbtw . If a predicate pred satisfies
establishment, and (s, h) |=Φ pred(y), then only the locations s(y) can
be dangling in (s, h).

Recall from Section 2.4 that we denote the dangling locations of the
heap h by dangling(h) , {l ∈

⋃
img(h) | l /∈ dom(h)}.

Lemma 8.10. Let h be a heap, let l be a sequence of locations, let Φ ∈ IDbtw,

and pred ∈ Preds(Φ). If h |=Φ pred(l) then dangling(h) ⊆ l.

Proof. A simple consequence of establishment.

Lemma 8.11. Let (s, h) be a stack–heap pair, let z ∈ Var∗, let Φ ∈ IDbtw,

and pred ∈ Preds(Φ). If (s, h) |=Φ pred(z) then dangling(h) ⊆ s(z).

Proof. Follows from the semantics and Lemma 8.10.

This property extends to arbitrary SLIDg
btw formulas over IDbtw

SIDs and hence to guarded models.

Lemma 8.12. Let Φ ∈ IDbtw and (s, h) ∈ ModelsgΦ. Then dangling(h) ⊆

img(s).

Proof. By Lemma 8.9, there exist predicate calls pred1(x1), . . . , predk(xk)

such that (s, h) |=Φ ⋆1≤i≤kpredi(xi). By the semantics of ⋆, there
thus exist h1, . . . hk with h = h1 + · · · + hk and (s, hi) |=Φ predi(xi).
Lemma 8.11 yields dangling(hi) ⊆ s(xi) for all 1 ≤ i ≤ k. It follows
that

dangling(h) = dangling(h1) ∪ · · · dangling(hk)

⊆ s(x1) ∪ · · · ∪ s(xk) ⊆ img(s),

where the last inequality holds because xi ⊆ dom(s) for all i.

Corollary 8.13. Let φ1, φ2 ∈ SLIDg
btw be guarded formulas and let Φ ∈

IDbtw. Let (s, h) |=Φ φ1 ⋆ φ2. Then there exist heaps h1, h2 such that

(s, h1), (s, h2) ∈ ModelsgΦ, h = h1 + h2, (s, h1) |=Φ φ1 and (s, h2) |=Φ

φ2.

Proof. By the semantics of ⋆, there exist h1, h2 with h = h1 + h2,
(s, h1) |=Φ φ1 and (s, h2) |=Φ φ2. By Lemma 8.9, (s, h1), (s, h2) ∈

ModelsgΦ.
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8.4 guarded models and dangling pointers 119

We will exploit this property of SLIDg
btw in the decision procedure

we develop later in the thesis.

The importance of guardedness for limiting dangling pointers

For all models to be guarded (Lemma 8.9), it is crucial that all
occurrences of negation, magic wand, and septraction in SLIDg

btw

are guarded. For negation and the magic wand, this is straightfor-
ward, as they can be used to define true (e.g. by emp ∨ (¬emp)

and ((x 7→ nil) ⋆ (x 7→ nil))−⋆ emp), and true is satisfied by all
models, including non-guarded models.

For septraction, consider the following SID.

tll(r, h, t) ⇐ h 7→ t ⋆ r ≈ h

tll(r, h, t) ⇐ ∃ 〈s1, s2, m〉 . (r 7→ 〈s1, s2〉) ⋆ tll(s1, h, m) ⋆ tll(s2, m, t)

lseg(h, t) ⇐ h 7→ t

lseg(h, t) ⇐ ∃n. (h 7→ n) ⋆ lseg(n, t)

The tll predicate encodes a binary tree with root r and left-
most leaf h overlaid with a singly-linked list segment from h

to t whose nodes are the leaves of the tree. Now assume that
(s, h) |=Φ lseg(h, t)−©⋆ tll(r, h, t). Then there exists a heap h1 with
(s, h1) |=Φ lseg(h, t) and (s, h+ h1) |=Φ tll(r, h, t). It is easy to see
that dangling(h) = dom(h1), contradicting Lemma 8.12, which in
turn implies that lseg(h, t)−©⋆ tll(r, h, t) has non-guarded models.
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9
T O WA R D S A C O M P O S I T I O N A L A B S T R A C T I O N F O R
S L I D

In Section 3.4, I gave a high-level argument that a finite compositional

abstraction that refines the satisfaction relation can be used to implement
satisfiability checking for separation logic. In Part ii, we followed this
approach to decide SSL and SSLdata. In this part, we take the same
approach to decide SLIDg

btw.

Complications and simplifications compared to the AMS ab-

straction

If you’ve read Part ii, you are familiar with the AMS abstraction.
The AMS abstraction only needs to keep track of the built-in list
and tree predicates, which allowed a fairly simple abstraction of
chunks of memory by a small set of hyperedges. Such an abstraction
is obviously not possible for SLIDg

btw, where we have to deal with
arbitrary user-defined predicates from IDbtw, leading to a more
complicated abstraction. At the same time, AMSs had to keep
track of garbage in the model, because SSL allowed unrestricted
use of negations and magic wands. This is not necessary when
abstracting SLIDg

btw, since guardedness guarantees that models
of SLIDg

btw formulas cannot contain garbage.

Clearly, the key challenge is to develop an abstraction mechanism
that can deal with arbitrary user-defined predicates from the IDbtw

fragment. To get an abstraction that satisfies refinement, we need to
be able to deduce from the abstraction which predicate calls hold in
the underlying model. To this end, we will abstract every model by a
set of formulas that relates the model to predicates of the SID.

9.1 first attempt : abstracting models by symbolic heaps

Our first idea is to abstract a model by the quantifier-free symbolic
heaps that it satisfies.

abst1(s, h) , {φ quantifier-free symbolic heap | (s, h) |=Φ φ} .

Let us analyze the properties of this abstraction function.

finiteness . For the moment, let us not worry whether we can
actually compute this abstraction. At least, it is finite, because there
are only finitely many quantifier-free symbolic heaps up to logical
equivalence: if Φ ∈ IDbtw, every predicate call in a symbolic heap φ

121
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122 towards a compositional abstraction for slid

has to allocate at least one free variable because of the progress property;
trivially, the same holds for every points-to assertion. Consequently,
every satisfiable quantifier-free formula can contain at most |fvars(φ)|
many predicate calls and points-to assertions. In principle, we can, of
course, “blow up” a satisfiable formula φ to arbitrary size by adding
emp atoms and (dis-)equalities, but any fixed stack-aliasing constraint

(cf. Section 2.4) over fvars(φ) can be expressed by fewer than |fvars(φ)|2

such atoms. For this reason, it is not necessary to consider larger
symbolic heaps in the abstraction.

refinement. Trivially, abst1 guarantees refinement at least on the
symbolic-heap fragment of SLIDg

btw.

compositionality. Can we compose abstractions, i.e., can we find
a (computable) operator • with abst1(s, h1) • abst1(s, h2) = abst1(s, h1 +

h2)? A very simple example shows that this is a difficult problem.
Assume Φ defines the list-segment predicate lseg (cf. Example 8.2),
(s, h1) |=Φ lseg(x, y), (s, h2) |=Φ lseg(y, z) and s(x) 6= s(y) 6= s(z).
Then (not including pure constraints for simplicity):

• abst1(s, h1) = {lseg(x, y)}

• abst1(s, h2) = {lseg(y, z)}

• abst1(s, h1 + h2) = {lseg(x, z)}.

That lseg(x, z) holds in the composed model cannot be inferred from
the abstractions of the individual model in a syntactic way. Instead,
we have to look at the semantics of the predicate, i.e., at the Φ. In fact,
the above composition operation • boils down to an entailment check

lseg(x, y) ⋆ lseg(y, z) |=Φ lseg(x, z)

So we have a chicken-and-egg problem: we need an entailment checker
to implement the composition operator • that we would like to use
in the implementation of our abstraction-based (satisfiability and)
entailment checker.

9.2 second attempt : unfolding predicates into forests

Can we extend the abstraction abst1 to get a “more syntactic” com-
position operation that can be implemented without an entailment
check? Yes, we can.12 To explain how, we need to take a step back and
think about the semantics of SIDs.

1 Change we can believe in.
2 Or, as suggested by Thomas Wies, let’s make abstractions great again!
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9.2 second attempt : unfolding predicates into forests 123

1 : r

2 : x

3 4 : y

5 6
⊥⊥

⊥⊥ ⊥⊥

(a) A model of
tree(r).

tree(1) ⇐ (1 7→ 2) ⋆ treerp(2, 1)

treerp(2, 1) ⇐ (2 7→ 〈3, 4, 1〉) ⋆ treerp(3, 1) ⋆ treerp(4, 1)

treerp(3, 1) ⇐ (3 7→ 〈0, 0, 1〉)

treerp(4, 1) ⇐ (4 7→ 〈5, 6, 1〉) ⋆ treerp(5, 1) ⋆ treerp(6, 1)

treerp(5, 1) ⇐ (5 7→ 〈0, 0, 1〉) treerp(6, 1) ⇐ (6 7→ 〈0, 0, 1〉)

(b) A corresponding Φ-tree t.

Figure 9.1: A model (s, h) |=Φ tree(r) and the Φ-tree t corresponding to this
model.

unfolding predicate calls . According to the semantics, the
model relationship (s, h) |=Φ pred(z) holds iff there exists a rule
pred(x) ⇐ ψ(x) ∈ Φ such that (s, h) |=Φ ψ(z). We say that we have
unfolded the predicate pred by its rule ψ. In general, ψ may itself contain
predicate calls. To show that (s, h) |=Φ ψ(z), we must unfold each
of these predicate calls by a rule of the respective predicates. This
unfolding process continues until every predicate has been unfolded
by a nonrecursive rule.

It is natural to visualize such an unfolding process as a tree. In
fact, it is quite possible to define the semantics of inductive predicates
explicitly in terms of such unfolding trees (cf. [IRS13; IRV14; Jan+17]).
In this thesis, I define a variant of unfolding trees, Φ-trees.

Example 9.1 (Φ-tree). Consider the following SID Φ.

tree(r) ⇐ ∃x. (r 7→ x) ⋆ treerp(x, r)

treerp(x, r) ⇐ (x 7→ 〈nil, nil, r〉)

treerp(x, r) ⇐ ∃ 〈c1, c2〉 . (x 7→ 〈c1, c2, r〉) ⋆ treerp(c1, r) ⋆ treerp(c2, r)

Let s = {r 7→ 1, x 7→ 2, y 7→ 4}, h = {1 7→ 2, 2 7→ 〈3, 4, 1〉 , 3 7→ 〈0, 0, 1〉 ,
4 7→ 〈5, 6, 1〉 , 5 7→ 〈0, 0, 1〉 , 6 7→ 〈0, 0, 1〉}, displayed in Fig. 9.1a. Note

that (s, h) |=Φ tree(r). Each node is labeled with a location and the stack

variable interpreted by the location (if any). The first two outgoing pointers

of each node are displayed by solid edges, the third pointer by a dashed edge.

Figure 9.1b shows a Φ-tree t that corresponds to this model. Each node of

the Φ-tree t is labeled with a rule instance, i.e., a rule of the SID in which

all variables—both formal parameters and existentially-quantified variables—

have been instantiated with the locations of the model. This is a difference

to other notions of unfolding trees, in which nodes are labeled by rules, not

rule instances [IRS13; IRV14; Jan+17]. Note that t induces the heap h in a

very direct way: h is the union of all the points-to assertions that occur in the

node labels of t. We denote this as h = heap(t).
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124 towards a compositional abstraction for slid

Now that we are familiar with Φ-trees, we can read the entailment

lseg(x, y) ⋆ lseg(y, z) |=Φ lseg(x, z)

as follows: the entailment is valid iff whenever (s, h) |=Φ lseg(x, y) ⋆

lseg(y, z) holds, it is possible to find a Φ-tree t with heap(t) = h and
with root lseg(s(x), s(z)).

abstracting models by forests . Our next abstraction attempt
is to encode the existence of such a Φ-tree in the abstraction.

More precisely, we need to encode that the models of lseg(x, y)

and lseg(y, z) each correspond to partial unfolding trees of lseg(x, z)

that can be combined into an unfolding tree of lseg(x, z). We model
such partial unfolding trees by allowing holes in Φ-trees: we allow
the unfolding process to stop at any point, i.e., that one or more of
the predicate calls introduced (by means of recursive rules) in the
unfolding process remain folded. The calls that remain folded form
the holes of the tree.

Example 9.2 (Φ-trees with holes). Recall the entailment lseg(x, y) ⋆

lseg(y, z) |=Φ lseg(x, z) from above. Figure 9.2a shows (s, h1), (s, h2) with

(s, h1) |=Φ lseg(x, y) and (s, h2) |=Φ lseg(y, z). By the semantics of ⋆, it

holds for h , h1 + h2 that (s, h) |=Φ lseg(x, y) ⋆ lseg(y, z).

We would like to argue that (s, h) |=Φ lseg(x, z). To this end, Fig. 9.2b

shows a Φ-forest consisting of two trees, t1 and t2. The tree t1 corresponds to

the sub-heap h1 (i.e, heap(t1) = h1) and t2 corresponds to h2 (i.e., heap(t2) =

h2. The tree t1 contains a hole: the recursive call lseg(4, 6) is not unfolded in

the tree. The hole, location 4, is not allocated in the tree, even though it is the

root parameter of the hole predicate lseg(4, 6). Put differently, the tree t1
witnesses that h1 is a partial model of lseg(1, 6), because h1 corresponds to a

partial unfolding tree (i.e., an unfolding tree with holes) with root lseg(1, 6).
We can merge t1 and t2 into a larger tree by adding an edge from the hole

of t1 and the root of t2. Adding such an edge makes sense, because the root of

t2 is labeled with the aforementioned hole predicate, lseg(4, 6). The resulting

tree is a Φ-tree for lseg(x, z)—that is, a tree without any holes whose root is

labeled with a rule instance for lseg(s(x), s(z)).
By merging the two trees—i.e., identifying the root of the tree t3 with the

hole of t1—we have thus shown that the model of lseg(x, y) ⋆ lseg(y, z) is

also a model of lseg(x, z).

We formalize Φ-trees in Definition 10.1 in the next chapter. We can
go one step further and consider partial unfolding forests or simply
Φ-forests (cf. Definition 10.3), i.e., forests consisting of Φ-trees. For
example, {t1, t2} in Fig. 9.2 are a Φ-forest. Forests can contain an
arbitrary finite number of trees.

Example 9.3 (Φ-forest). Recall Φ and (s, h) from Example 9.1. Fig. 9.3

shows a Φ-forest f = {t1, t2, t3} that encodes one way to derive the model
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9.2 second attempt : unfolding predicates into forests 125

1 : x

2

3

4 : y

4 : y

5

6 : z

(a) The models (s, h1), (s, h2).

t1

t2

lseg(1, 6) ⇐ (1 7→ 2) ⋆ lseg(2, 6)

lseg(2, 6) ⇐ (2 7→ 3) ⋆ lseg(3, 6)

lseg(3, 6) ⇐ (3 7→ 4) ⋆ lseg(4, 6)

lseg(4, 6) ⇐ (4 7→ 5) ⋆ lseg(5, 6)

lseg(5, 6) ⇐ (5 7→ 6)

hole of t1

(b) Φ-trees corresponding to the models.

Figure 9.2: Models (s, h1) |=Φ lseg(x, y) and (s, h2) |=Φ lseg(y, z) and Φ-trees
t1, t2 for these models. The tree t1 contains one predicate call that
is not unfolded, the hole predicate lseg(4, 6). We say that 4, the root
of this folded predicate call, is a hole of the tree.

t1

t2

t3

tree(1) ⇐ (1 7→ 2) ⋆ treerp(2, 1)

treerp(2, 1) ⇐ (2 7→ 〈3, 4, 1〉) ⋆ treerp(3, 1) ⋆ treerp(4, 1)

treerp(3, 1) ⇐ (3 7→ 〈0, 0, 1〉)

treerp(4, 1) ⇐ (4 7→ 〈5, 6, 1〉) ⋆ treerp(5, 1) ⋆ treerp(6, 1)

treerp(5, 1) ⇐ (5 7→ 〈0, 0, 1〉) treerp(6, 1) ⇐ (6 7→ 〈0, 0, 1〉)

Figure 9.3: A Φ-forest f = {t1, t2, t3} for the model from Example 9.1, used
in Example 9.3.

(s, h) by unfolding predicates of the SID. Both t1 and t2 only partially unfold

the predicates at their roots, leaving 2 and 4 as holes, respectively. By merging

the three trees, we get the tree t from Example 9.1.

Denote by abst2(s, h) the set of all Φ-forests of the model (s, h).

compositionality. We can easily define a suitable composition
operation: the operation abst2(s, h1) • abst2(s, h2) consists in comput-
ing all ways to merge the Φ-forests of abst2(s, h1) and abst2(s, h2). It
is fairly easy to see that this process yields precisely the set of all
Φ-forests of (s, h1 + h2), i.e., the set abst2(s, h1 + h2), as required by
the compositionality property.

finiteness . There are two reasons that abst2 gives rise to an infi-
nite abstraction.

issue 1 The tree nodes are labeled with concrete locations, so the
value of abst2 differs even for isomorphic models—not exactly
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126 towards a compositional abstraction for slid

what we would expect of an abstraction, and one reason that the
image of abst2 is an infinite set.

issue 2 If we keep track of all unfolding forests, the size of abst2(s, h)
grows with the size of h, without any upper bound. For example,
I could map a list sequence of size n to a forest that contains n

one-node trees. This is another reason that the image of abst2 is
an infinite set.

This part of the thesis is to a large extent concerned with overcoming
these two issues to obtain a viable abstraction for SLIDg

btw.

9.3 third attempt : forest projections

Above, I introduced Φ-trees as unfolding trees with holes. Let’s say t is
a Φ-tree with root rootpred(t) and with hole predicates allholepreds(t).

Example 9.4. 1. Let t1, t2 be the Φ-trees from Example 9.2. Then

• rootpred(t1) = lseg(1, 6), allholepreds(t1) = {lseg(4, 6)},

• rootpred(t2) = lseg(4, 6), allholepreds(t2) = ∅.

2. Let t1, t2, t3 be the Φ-trees from Example 9.3. Then

• rootpred(t1) = tree(1), allholepreds(t1) = {treerp(2, 1)},

• rootpred(t2) = treerp(2, 1), allholepreds(t2) = {treerp(4, 1)},

• rootpred(t3) = treerp(4, 1), allholepreds(t3) = ∅.

The main insight behind the Φ-type abstraction is that every Φ-tree t

can be viewed as encoding a model of rootpred(t) from which models
of allholepreds(t) have been subtracted. The tree t can thus be projected

onto the formula

(⋆allholepreds(t))−⋆ rootpred(t). (†)

Observe that the above formula contains locations rather than vari-
ables, because the parameters of predicate calls in Φ-trees are locations,
not variables. If we simply used the above magic wand in our abstrac-
tion, we would thus get a different abstraction even of Φ-trees that
encode the same model up to isomorphism—in other words, we have
not yet solved Issue 1 as formulated in the previous section.

replacing locations with variables . To avoid this problem,
we replace the locations in the formula (†) with variables. Our first
attempt is as follows. Say t is a Φ-tree of the model (s, h). Then we
replace the locations in the formula (†) in the following way.

1. Every location v ∈ img(s) is replaced by an arbitrary variable in
s−1(v).
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9.4 beyond the third attempt 127

2. Every location in locs(h) \ img(s) is replaced by an existentially-
quantified variable, because there exists a location in the heap h

that corresponds to the location in the formula (†).

3. All other locations are replaced by a universally-quantified vari-
able, because these locations do not occur in the heap h and can
thus be picked in an arbitrary way.

Example 9.5 (Forest projection (first attempt)). 1. Let s be the stack

and let t1, t2 be the Φ-trees from Example 9.2. The projection of s and

Φ-forest {t1, t2} is

(lseg(y, z)−⋆ lseg(x, z)) ⋆ (emp −⋆ lseg(y, z)).

2. Let t1 be as above and let s′ be the restriction of s to {x, y}. The

projection of s′ and Φ-forest {t1} is

∀a. lseg(y, a)−⋆ lseg(x, a)

3. Let s and f be the stack and Φ-forest from Example 9.3. The projection

of s and f is

(treerp(x, r)−⋆ tree(x, r))

⋆ (treerp(y, r)−⋆ treerp(x, r))

⋆ (emp −⋆ treerp(y, r)).

4. Let f be as above and let s′ be the restriction of s to {r}. The projection

of s′ and f is

∃ 〈e1, e2〉 .(treerp(e1, r)−⋆ tree(e1, r))

⋆ (treerp(e2, r)−⋆ treerp(e1, r))

⋆ (emp −⋆ treerp(e2, r)).

This is not quite the right way to define forest projections, for
reasons that go beyond the scope of this overview chapter; but it is
close enough to the actual definition to serve as a guide for the next
two chapters, Chapters 10 and 11.

9.4 beyond the third attempt

To sum up, I propose to abstract the model (s, h) in the following way.

1. We compute all Φ-forests of (s, h).

2. We project these forests onto formulas as explained above.

3. The abstraction of (s, h) is the set of all these formulas.

There are two important complications that bar us from implement-
ing this approach.
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128 towards a compositional abstraction for slid

1. The use of quantifiers as proposed above fails for certain SIDs
that use pure constraints. For this reason, we have to use guarded

variants of the quantifiers. I will introduce these quantifiers and
justify their use in Section 10.2.

2. We still haven’t solved Issue 2 from Section 9.2: just like the
number of forests, the number of projections grows as the model
grows.

To obtain a finite abstraction, we thus have to limit the Φ-forests
that we consider for projection. In Section 11.1, I will identify
the set of delimited Φ-forests as a finite set of Φ-forests suitable
for defining a finite and compositional abstraction.

outline of this part of the thesis . In Chapter 10, I for-
malize Φ-forests and their projections. Chapter 11 defines the Φ-type

abstraction as the set of projections of all delimited Φ-forests. In Chap-
ter 12, I show the refinement theorem for the Φ-type abstraction and
SLIDg

btw formulas, and develop a decision procedure for SLIDg
btw

based on computing Φ-types. Finally, I prove the undecidability of all
unguarded extensions of SLIDg

btw in Chapter 13.
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10
F O R E S T S A N D T H E I R P R O J E C T I O N S

In this chapter, I formalize the concepts that I informally introduced
in the previous chapter: Φ-forests (Section 10.1), their projection onto
formulas (Section 10.2), and the composition of these objects (Sec-
tion 10.3). This will prepare us for defining the Φ-type abstraction in
Chapter 11. The decision procedures for SLIDg

btw based on Φ-types
follow in Chapter 12.

10.1 forests

Our main objects of study in this section are Φ-forests (Definition 10.3)
made up of Φ-trees (Definition 10.1). As motivated in Chapter 9, a
Φ-tree encodes one fixed way to unfold a predicate call by means of
the rules of the SID Φ. The differences between the unfolding trees
of [IRS13; IRV14; Jan+17] and our Φ-trees are (1) that we instantiate
variables with locations and (2) that Φ-trees can have holes, because
we allow that one or more of the predicate calls introduced (by means
of recursive rules) in the unfolding process remain folded.

rule instances . We annotate every node of a Φ-tree with a rule

instance of the SID Φ, i.e., with a formula obtained from a rule of the
SID by instantiating both the formal arguments of the predicates and
the existentially quantified variables of the rule with locations:

RuleInst(Φ) , {pred(v) ⇐ φ[x · y/v · w] |

(pred(x) ⇐ ∃y. φ) ∈ Φ,

v ∈ Locar(pred), w ∈ Loc|y| and all

(dis)equalities in φ[x · y/v · w] are valid}

Here, I mean the (dis-)equalities that occur explicitly in the formula,
not those implied by recursive calls or by the separating conjunction.
Note that because all variables have been instantiated with locations,
it is trivial to check whether these (dis)equalities hold. Furthermore,
whenever h |=Φ pred(v), there is at least one rule instance (pred(v) ⇐

ψ) ∈ RuleInst(Φ) such that h |=Φ ψ.

Φ-trees . We model Φ-trees as partial functions

t : Loc ⇀
(
2Loc × RuleInst(Φ)

)
.

The set of locations Loc serves as the nodes of the tree; and every
node is mapped to its successors in the (directed) tree as well as to

129
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130 forests and their projections

its label, a rule instance. For t to be a Φ-tree, it must satisfy a certain
set of consistency criteria. To make it easier to work with Φ-trees and
formalize the consistency criteria, we first introduce some additional
notation.

Let Φ ∈ IDbtw and let

t(l) = 〈w, (pred(v) ⇐ (a 7→ b) ⋆ pred1(v1) ⋆ · · · ⋆ predm(vm) ⋆ Π)〉 ,

where Π is a pure constraint. Note that, by progress of the SID Φ, all
rule instances are of this form. We define:

• succt(l) , w

• headt(l) , pred(v),

• heapt(l) , {a 7→ b},

• callst(l) , {pred1(v1), . . . , predm(vm)}, and

• rulet(l) , pred(v) ⇐ (a 7→ b) ⋆ pred1(v1) ⋆ · · · ⋆ predm(vm) ⋆ Π.

Moreover, we define the hole predicates of l as those predicate calls
in callst(l) whose root does not occur in succt(l); and the holes as the
corresponding root locations:

• holepredst(l) , {pred′(z′) ∈ callst(l) | ∀c ∈ succt(l). headt(c) 6=

pred′(z′)}, and

• holest(l) ,
{
predroot(pred′(z′)) | pred′(z′) ∈ holepredst(l)

}
.

We lift some of the definitions from individual locations l to entire
trees t.

• heap(t) ,
⋃

c∈dom(t) heapt(c)

• ptrlocs(t) ,
⋃

(c 7→d)∈heap(t) {c} ∪ d

• allholes(t) ,
⋃

l∈dom(t) holest(l)

• allholepreds(t) ,
⋃

c∈dom(t) holepredst(c)

Finally, we define the projection of t onto the directed graph (cf. Defini-
tion 4.1), graph(t), induced by its first component,

graph(t) , 〈dom(t), {〈x, y〉 | x ∈ dom(t), y ∈ succt(x)}〉 .

We denote by height(t) the length of the longest path in graph(t).

Definition 10.1 (Φ-Tree). Let Φ ∈ IDbtw. A partial function

t : Loc ⇀
(
2Loc × RuleInst(Φ)

)

is a Φ-tree iff
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10.1 forests 131

1. graph(t) is a directed tree and

2. t is Φ-consistent, i.e., for all l ∈ dom(t), if succt(l) = 〈v1, . . . , vk〉,

callst(l) = {pred1(v1), . . . , predm(vm)}, headt(l) = pred(v), and

heapt(l) = {a 7→ b} then

• l = a,

• succt(l) ⊆ b, and

• {headt(v1), . . . , headt(vk)} ⊆ {pred1(v1), . . . , predm(vm)}.

Let t be a Φ-tree. As t is a directed tree, it has a root, which we denote by

root(t). We set rootpred(t) , headt(root(t)).

Example 10.2 (Φ-Tree). 1. Let

t(l) ,







〈b, even(l1, a) ⇐ (l1 7→ b) ⋆ odd(b, a)〉 if l = l1

〈∅, odd(b, a) ⇐ (b 7→ l2) ⋆ even(l2, a)〉 if l = b

⊥ otherwise.

Then t is a Φ-tree with dom(t) = {l1, b}, succt(l1) = b, headt(l1) =

even(l1, a), callst(l1) = {odd(b, a)}, heap(t) = {l1 7→ b, b 7→ l2},

heapt(l1) = {l1 7→ b}, ptrlocs(t) = {l1, b, l2}, allholes(t) = {l2},

and allholepreds(t) = {even(l2, a)}.

2. Chapter 9 contains several examples of Φ-trees.

Handling duplicate holes?

You may have observed that the definitions of holes and hole
predicates do not work correctly if a rule instance contains multi-
ple predicate calls with the same root parameter, or even multiple
identical predicate calls. We will see in Chapter 11 that we do
not need to consider such trees. We can thus get away with this
imprecision, obtaining a simpler formalization of Φ-trees.

We combine zero or more Φ-trees into Φ-forests.

Definition 10.3 (Φ-Forest). Let Φ ∈ IDbtw. Let t1, . . . , tk be Φ-trees. The

set f = {t1, . . . , tk} is a Φ-forest iff dom(ti) ∩ dom(tj) = ∅ for i 6= j.

We assume that all definitions are lifted from Φ-trees to Φ-forests
in the obvious way. In particular, for forest f = {t1, . . . , tk}, we define

• the induced heap of f as heap(f) ,
⋃

t∈f heap(t);

• dom(f) ,
⋃

i dom(ti);

• graph(f) ,
〈

dom(f),

{〈x, y〉 | 1 ≤ i ≤ k, x ∈ dom(ti), y ∈ succti(x)}
〉
;
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132 forests and their projections

t1

t3

t2

〈l4, p1(l1, l2, l3) ⇐ (l1 7→ 〈l4, l3〉) ⋆ ptr(l4, l2) ⋆ p2(l3, l2, l4)〉

〈∅, ptr(l4, l2) ⇐ l4 7→ l2〉 〈∅, p2(l3, l2, l4) ⇐ (l3 7→ l2) ⋆ ptr(l2, l4)〉

〈∅, ptr(l2, l4) ⇐ l2 7→ l4〉

Figure 10.1: The Φ-forest defined in Example 10.4. The edge within t1 illus-
trates that l4 ∈ succt1(l1). The holes of t1 and t3 are the roots of
t3 and t2, respectively, indicated by the dotted edges.

• roots(f) , {root(ti) | 1 ≤ i ≤ k};

• allholes(f) ,
⋃

1≤i≤k allholes(ti);

• and if l ∈ dom(ti) then rulef(l) = ruleti(l).

Example 10.4 (Φ-Forest). 1. Example 9.3 defines a Φ-forest.

2. Consider the following SID Φ.

ptr(x1, x2) ⇐ x1 7→ x2

p1(x1, x2, x3) ⇐ ∃y. (x1 7→ 〈y, x3〉) ⋆ ptr(y, x2) ⋆ p2(x3, x2, y)

p2(x1, x2, x3) ⇐ (x1 7→ x2) ⋆ ptr(x2, x3)

q1(x1, x2, x3) ⇐ ∃y. (x1 7→ 〈y, x3〉) ⋆ q2(y, x2)

q2(x1, x2) ⇐ (x1 7→ x2) ⋆ ptr(x2, x1)

Figure 10.1 displays the Φ-forest f = {t1, t2, t3}, where

• t1(l1) = 〈l4, p1(l1, l2, l3) ⇐ (l1 7→ 〈l4, l3〉)⋆ptr(l4, l2)

⋆p2(l3, l2, l4)〉.

• t1(l4) = 〈∅, ptr(l4, l2) ⇐ l4 7→ l2〉

• t2(l2) = 〈∅, ptr(l2, l4) ⇐ l2 7→ l4〉

• t3(l3) = 〈∅, p2(l3, l2, l4) ⇐ (l3 7→ l2) ⋆ ptr(l2, l4)〉

• The trees ti, 1 ≤ i ≤ 3, are undefined on all other locations.

Every model of a predicate call corresponds to (at least one) Φ-tree.

Lemma 10.5. If (s, h) |=Φ pred(z1, . . . , zk), then there exists a Φ-tree

t with rootpred(t) = pred(s(z1), . . . , s(zk)), allholepreds(t) = ∅, and

heap({t}) = h.

Proof. The statement directly follows by induction on the number of
rules applied to derive (s, h) |=Φ pred(z1, . . . , zk).
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10.1 forests 133

10.1.1 Composing Forests

As motivated in Chapter 9, forests are composed by (1) taking their
disjoint union and (2) optionally merging pairs of trees of the resulting
forest by identifying the root of one tree with a hole of another tree.

disjoint union of forests . The union of two Φ-forests corre-
sponds to ordinary set union, provided no location is in the domain
of both forests; otherwise, it is undefined.

Definition 10.6 (Union of Φ-forests). Let f1, f2 be Φ-forests. The union
of f1, f2 is given by

f1 ⊎ f2 ,







f1 ∪ f2 if dom(f1) ∩ dom(f2) = ∅,

⊥, otherwise.

Lemma 10.7. Let f = f1 ⊎ f2. Then heap(f) = heap(f1) + heap(f2).

Proof. heap(f) =
⋃

t∈f heap(t) = (
⋃

t∈f1 heap(t)) ∪ (
⋃

t∈f2 heap(t)) =

heap(f1) + heap(f2). (Where we have + rather than ∪ because f1 ⊎ f2 is
defined.)

splitting forests . We formalize the process of merging Φ-trees
in a roundabout way: we first define a way to split the trees of a forest
into sub-trees at a fixed set of locations—the reverse operation of the
merge operation. This may seem like an arbitrary choice, but will
simplify the development in later sections and chapters.

I introduce the split operation by example before formalizing it in
Definition 10.9.

Example 10.8 (Splitting forests). 1. Let t be the Φ-tree from Exam-

ple 10.2. The {b}-split of {t} is given by {t1, t2}, for

• t1 = {l1 7→ 〈∅, even(l1, a) ⇐ (l1 7→ b) ⋆ odd(b, a)〉},

• t2 = {b 7→ 〈∅, odd(b, a) ⇐ (b 7→ l2) ⋆ even(l2, a)〉}.

In fact, {t1, t2} is the l-split of {t} for all l ⊇ {b}: in our definition of

l-split we will not require for the locations in l to occur in the forest.

2. Recall the forest f = {t1, t2, t3} from Example 9.3 and the tree t

from Example 9.1. Then f is the {2, 4}-split of {t}. Likewise, f is the

{1, 2, 4, 7}-split of {t}, because 1 is already the root of a tree and 7
does not occur in the forest. In contrast, f is not the {1, 2, 5}-split of

{t}, because 5 ∈ dom(f) \ roots(f).

Definition 10.9 (l-split). Let f, f̄ be forests and l ⊆ Loc. f̄ is an l-split of

f if (1) dom(f) = dom(f̄), (2) rulef(d) = rulef̄(d) for all d ∈ dom(f), and

(3) graph(f̄) = graph(f) \ {(a, b) | a ∈ Loc, b ∈ l}.

Lemma 10.10 (Uniqueness of l-split). Every Φ-forest f has a unique

l-split.
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134 forests and their projections

Proof. Let 〈VG , EG〉 , graph(f). We consider the graph

G , 〈VG , EG \ {〈a, b〉 | a ∈ Loc, b ∈ l}〉 .

We now consider the connected components (cf. Definition 4.17)
C1, . . . , Ck of G. Since graph(f) is a forest and G ⊆ graph(f), G is a
forest, i.e., all the connected components Ci of G are trees. Hence, the
connected components induce a Φ-forest f̄: Let locs(Ci) be all loca-
tions that occur in Ci and let succCi

(a), a ∈ Loc, be the maximal set of
locations such that {a} × succCi

(a) ⊆ Ci. Define

ti , {a 7→ 〈succCi
(a), rulef(a)〉 | a ∈ locs(Ci)} ,

f̄ , {t1, . . . , tn} .

By construction, the forest f̄ is an l-split of f. Moreover, because every
l-split must have the same domain and same rule instances as f and
because every connected component necessarily gives rise to a single
Φ-tree, the l-split is unique.

From now on, we denote by split(f, l) the unique l-split of f.

Definition 10.11 (Forest derivation). Let f1, f2 be forests. f2 is one-step
derivable from f1, denoted f1◮f2 iff there exists a location l ∈ dom(f) with

f1 = split(f2, {l}).

We denote by ◮∗ the reflexive–transitive closure of ◮ and say that f2
is derivable from f1 if f1 ◮∗ f2 holds. Intuitively, f1 ◮∗ f2 holds if splitting
the trees in f2 at zero or more locations yields f1; or, equivalently, if
“merging” zero or more trees of f1 yields f2.

Lemma 10.12. f1 ◮∗ f2 iff there exists a set of locations l with f1 =

split(f2, l).

Proof. This follows from the observation that

split(f, {l1, . . . , lk}) = split(. . . split(split(f, {l1}), {l2}), . . . , {lk}).

Example 10.13. Let

t1 , {l1 7→ 〈∅, odd(l1, l4) ⇐ (l1 7→ l2) ⋆ even(l2, l4)〉}

t2 , {l2 7→ 〈l3, even(l2, l4) ⇐ (l2 7→ l3) ⋆ odd(l3, l4)〉 ,

l3 7→ 〈∅, odd(l3, l4) ⇐ (l3 7→ l4)〉}

f , {t1, t2}.

Let f̄ , {t̄} for

t̄ , {l1 7→ 〈l2, odd(l1, l4) ⇐ (l1 7→ l2) ⋆ even(l2, l4)〉 ,

l2 7→ 〈l3, even(l2, l4) ⇐ (l2 7→ l3) ⋆ odd(l3, l4)〉 ,

l3 7→ 〈∅, odd(l3, l4) ⇐ (l3 7→ l4)〉 .}

Then f ◮ f̄.
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10.2 forest projections 135

Forests that are in the ◮∗ relation have the same induced model.

Lemma 10.14. Let f be a Φ-forest and f̄ ◮∗ f. Then heap(f̄) = heap(f).

Proof. Since f̄ ◮∗ f, there exists by Lemma 10.12 a set of locations
l with f̄ = split(f, l). By definition of l-splits, we have (1) dom(f̄) =

dom(f) and (2) for every location l ∈ dom(f̄) that rulef̄(l) = rulef(l).
Consequently, heap(f̄) = heap(f).

The derivation relation ◮∗ induces the composition operation on
pairs of forests that we motivated at the beginning of this section.

Definition 10.15 (Forest composition). Let f1, f2 be Φ-forests. The com-
position of f1 and f2 is given by f1•Ff2 , {f | f1 ⊎ f2 ◮

∗ f}.

10.2 forest projections

In this section, we define the projection of Φ-forests onto formulas. In
Chapter 9, I gave a “morally correct” introduction to these projections.
In the present chapter, I will employ a form of guarded quantification

in projections to turn morally correct projections into actually correct
projections. I formalize these quantifiers in Section 10.2.1, then define
stack–forest projection in two steps in Sections 10.2.2 and 10.2.3.

In the end, we will obtain a projection function for stack–forest pairs
that works as follows. Given a stack s and a Φ-forest f = {t1, . . . , tk},

1. we compute the formula

φ , ⋆1≤i≤k (⋆allholepreds(ti))−⋆ rootpred(ti),

in which all parameters of all predicate calls are locations;

2. we replace in φ every location v ∈ img(s) by an arbitrary but
fixed variable x for which s(x) = v holds;

3. we replace every location v ∈ locs(heap(f)) with v /∈ img(s) by
a guarded existential;

4. we replace every other location by a guarded universal.

This process is exactly like the process proposed in Chapter 9, except
for the use of guarded quantifiers instead of standard quantifiers.

10.2.1 Interlude: Guarded Quantifiers

We introduce guarded versions of both existential and universal quanti-
fiers, which we denote

E

and

A

. Specifically, we consider formulas of
the form

E

e. (

A

a1. φqf) ⋆ · · · ⋆ (

A

ak. φqf),
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136 forests and their projections

where φqf denotes SLIDqf
btw formulas as defined in Section 8.1. We

collect all formulas of this form in the set SLID

E A

btw; SLID

E A

btw formulas
without guarded existentials are collected in SLID

A

btw.
The guarded quantifiers have the following semantics.

• (s, h) |=Φ

E

〈e1, . . . , ek〉 . φ iff there exist pairwise different loca-
tions

v1, . . . , vk ∈ dom(h) \ img(s)

such that

(s∪ {e1 7→ v1, . . . , ek 7→ vk} , h) |=Φ φ.

• (s, h) |=Φ

A

〈a1, . . . , ak〉 . φ iff for all pairwise different locations

v1, . . . , vk ∈ Loc \ (locs(h) ∪ img(s)),

it holds that

(s∪ {a1 7→ v1, . . . , ak 7→ vk} , h) |=Φ φ.

I would like to stress three things. First, quantifiers cannot be instanti-
ated with locations that are already in the stack. Second, it is crucial
that the locations are pairwise different. Third, the quantifiers are not

dual, i.e.,

E

x. φ is not equivalent to ¬

A

x.¬φ. In particular,

A

ranges
over all locations that are not in locs(h), whereas

E
ranges only over

some locations that are in locs(h), namely dom(h).
Location terms in a formula can be replaced by a guarded universal

if the locations are not used in the model.

Lemma 10.16. Let φ ∈ SLIDqf , let v ∈ (Loc \ (locs(h) ∪ img(s)))∗ be

repetition free, and assume that (s, h) |=Φ φ. Let a ,
{

a1, . . . , a|v|
}

such

that a ∩ dom(s) = ∅. Then (s, h) |=Φ

A

a. φ[v/a].

Proof sketch. Let w ∈ (Loc \ (locs(h) ∪ img(s)))∗ be a repetition-free
sequence of locations with |v| = |w|. Since neither v nor w intersect
with locs(h) or img(s), it follows that (s, h) |=Φ φ[v/w] Since w was
arbitrary, (s, h) |=Φ

A

a. φ[v/a] by the semantics of

A

.

The semi-distributivity of quantifiers in separation logic1 also holds
for guarded quantifiers.

Lemma 10.17. Let φ, ψ be formulas with fvars(ψ) ∩ z = ∅. Let Q ∈

{

E

,

A

} and (s, h) |=Φ (Qz. φ) ⋆ ψ. Then (s, h) |=Φ Qz. (φ ⋆ ψ).

Proof. case Q =

E

. Assume (s, h) |=Φ (

E

z. φ) ⋆ ψ. Then there exist
h1, h2 with h = h1 + h2, (s, h1) |=Φ (

E

z. φ) and (s, h2) |=Φ ψ. By

1 See, for example, [Rey02].
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10.2 forest projections 137

the semantics of

E

, there then exists a sequence of pairwise-
different locations v ∈ (dom(h1) \ img(s))∗ such that

(s∪ {z 7→ v} , h1) |=Φ φ

holds. As fvars(ψ) ∩ z = ∅, it follows that (s∪ {z 7→ v} , h) |=Φ

φ ⋆ ψ. Since dom(h1) ⊆ dom(h), v ∈ (dom(h1) \ img(s))∗ im-
plies that v ∈ (dom(h) \ img(s))∗. It follows by the semantics of

E

that (s, h) |=Φ

E

z. φ ⋆ ψ.

case Q =

A

. Assume (s, h) |=Φ (

A

z. φ) ⋆ ψ. Then there exist h1, h2

with h = h1 + h2, (s, h1) |=Φ (

A

z. φ) and (s, h2) |=Φ ψ. By the
semantics of

A

, it then holds for all sequences of pairwise-
different locations v ∈ (Loc \ (locs(h1) ∪ img(s)))∗ that (s ∪

{z 7→ v} , h1) |=Φ φ. As fvars(ψ) ∩ z = ∅, it also holds for all
such z that (s∪ {z 7→ v} , h) |=Φ φ ⋆ ψ. Now observe that

(Loc \ (locs(h1) ∪ img(s))) ⊇ (Loc \ (locs(h) ∪ img(s))).

Consequently, φ ⋆ψ holds in (s∪ {z 7→ v} , h) for all sequences v

drawn from (Loc \ (locs(h) ∪ img(s))). It follows by the seman-
tics of

A

that (s, h) |=Φ

A

z. φ ⋆ ψ.

Moving any guarded quantifier out results in a strictly weaker
formula. In particular,

E

z. (φ ⋆ ψ) 6|= (

E

z. φ) ⋆ ψ even if z ∩ fvars(ψ) =

∅. For example,

E

z. (y 7→ z) ⋆ lseg(x, y) is satisfiable (by a model in
which y points to an inner node of the list segment lseg(x, y), i.e.,
z is identified with an inner node of the list), whereas (

E

z. y 7→

z) ⋆ lseg(x, y) is unsatisfiable (because the only allocated location in
a model of (

E

z. y 7→ z) would be s(y), but guarded existentials can
only be instantiated with locations that are not in img(s)). In contrast,
∃z. (φ ⋆ ψ) |= (∃z. φ) ⋆ ψ holds if z ∩ fvars(ψ) = ∅.

Many of the standard equivalences of separation logic continue to
hold for formulas with guarded quantifiers, however. For the sake
of completeness, I define in Fig. 10.2 the rewriting equivalence, an
equivalence relation ≡ on formulas with guarded quantifiers that
includes all the rewriting rules we need in the remainder of the thesis.

Lemma 10.18 (Soundness of rewriting equivalence). If φ1 ≡ φ2 then

φ1 |=Φ φ2.

10.2.2 Forest Projections without Stacks

We are now ready to define the projection functions. We begin with the
projection of single trees. Besides the tree, we pass a set of locations
v to the projection function. The locations v are blocked from being
replaced by guarded universals. As we will see later, we can use this
parameter to avoid introducing universals for the locations in img(s)
and locs(h)—in accordance with the semantics of

A

.
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138 forests and their projections

φ1 ≡ φ2 (mono)
φ1 ⋆ ψ ≡ φ2 ⋆ ψ

(emp)
φ1 ⋆ emp ≡ φ1

φ1 ≡ φ2 (anti)
φ2 −⋆ ψ ≡ φ1 −⋆ ψ

(assoc)
φ1 ⋆ (φ2 ⋆ φ3) ≡ (φ1 ⋆ φ2) ⋆ φ3

(comm)
φ1 ⋆ φ2 ≡ φ2 ⋆ φ1

Q ∈ {

A

,

E

} z /∈ vars(φ)
(ren)

Qy. φ ≡ Qz. φ[y/z]

φ1 ≡ φ2 (

E

-intro)E

y. φ1 ≡

E

y. φ2

φ1 ≡ φ2 (

A

-intro)A

y. φ1 ≡

A

y. φ2

φ1 ≡ φ2 (sym)
φ2 ≡ φ1

φ1 ≡ φ3 φ3 ≡ φ2 (trans)
φ1 ≡ φ2

Figure 10.2: A set of rules for rewriting SLID

E A

btw formulas into equivalent
formulas.

Definition 10.19 (Tree projection). Let t be a Φ-tree and let v ⊆ Loc. The

tree projection of t w.r.t. v, projectLoc(v, t), is given by

projectLoc(v, t) ,

A

a. ψ[w/a]

where ψ , (⋆allholepreds(t))−⋆ rootpred(t)

w , locs(ψ) \ (ptrlocs(t) ∪ v)

a ,
〈

a1, . . . , a|w|

〉
.

Example 10.20 (Tree projection). Let t be the Φ-tree from Example 10.2.

Then

1. projectLoc(∅, t) =

A

a1. even(l2, a1)−⋆ even(l1, a1).

2. projectLoc({l1, l2} , t) =

A

a1. even(l2, a1)−⋆ even(l1, a1).

3. projectLoc({l1, l2, a} , t) = even(l2, a)−⋆ even(l1, a).

Tree projection is sound in the sense that the induced heap of a tree
satisfies the projection of the tree. To show this soundness result, we
need the following variant of modus ponens.

Lemma 10.21 (Generalized modus ponens).

((pred2(x2) ⋆ ψ)−⋆ pred1(x1)) ⋆ (ψ
′ −⋆ pred2(x2))

implies (ψ ⋆ ψ′)−⋆ pred1(x1).

We write φ
mp
=⇒ ψ if φ implies ψ by Lemma 10.21.

Lemma 10.22 (Soundness of tree projection). Let t be a Φ-tree, let

v ⊆ Loc, and let s be a stack with img(s) ⊆ v. Then (s, heap(t)) |=Φ

projectLoc(v, t).
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Proof. We proceed by mathematical induction on height(t). Let

r , root(t),

〈s1, . . . , sm〉 , succt(r),

(pred(z) ⇐ (a 7→ b) ⋆ pred1(z1) ⋆ · · · ⋆ predk(zk)) , rulet(r),
{
pred1,1(z1,1), . . . , pred1,m(z1,m)

}

, {pred1(z1), . . . , predk(zk)} \ holepredst(r),
{
pred2,1(z2,1), . . . , pred2,n(z2,n)

}
, holepredst(r).

Moreover, let ti be the sub-tree of t rooted in si. By the semantics of
−⋆, we have

{a 7→ b} |=Φ (pred1(z1) ⋆ · · · ⋆ predk(zk))−⋆ pred(z).

By the induction hypotheses for t1, . . . , tm, we additionally have that

(s, heap({ti})) |=Φ project(ti)

=

A

ai. ((⋆allholepreds(ti))−⋆ pred1,i(z1,i))
︸ ︷︷ ︸

,ψi

[vi/ai]

for appropriate choices of vi and ai.
By definition, heap(f) = {a 7→ b}

⋃
heap({ti}). By the semantics of

the separating conjunction, we therefore obtain

heap(f) |=Φ((pred1(z1) ⋆ · · · ⋆ predk(zk))−⋆ pred(z))

⋆⋆1≤i≤mψi[vi/ai].

I claim that projectLoc(v, f) is implied by this formula, which would
imply that heap(f) |=Φ projectLoc(v, f) holds.

To this end, we first instantiate the variables ai with vi, reversing
the introduction of the guarded universals. Since the vi are pairwise
different and occur neither in img(s) nor in the sub-heaps of heap(f)
that satisfy ψi[vi/ai], we are guaranteed by the semantics of guarded
universals that (s, heap(f)) satisfies the resulting formula, i.e.,

(s, heap(f)) |=Φ((pred1(z1) ⋆ · · · ⋆ predk(zk))−⋆ pred(z))

⋆⋆1≤i≤mψi.

Let v′ be all those locations that occur in this formula but not in heap(f)

and a′ ,
〈

a1, . . . , a|v′|

〉
. By Lemma 10.16,

(s, heap(f)) |=Φ

A

a′.
(

((pred1(z1) ⋆ · · · ⋆ predk(zk))−⋆ pred(z))

⋆⋆1≤i≤mψi

)

[v′/a′]. (†)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

140 forests and their projections

Note that for every 1 ≤ i ≤ m there exists a 1 ≤ j ≤ k with
pred1,i(z1,i) = predj(zj). We apply Lemma 10.21 to (†) m times, set-
ting pred1(x1) , pred(z) = rootpred(t) and pred2(x2) , pred1,i(z1,i) =

rootpred(ti).
Let v′′ ⊆ v′ all those locations among v′ that still occur in the

formula at the end of this process and let a′′ ⊆ a′ be the corresponding
variables. We obtain the following identities.

(s, heap(f)) |=Φ

A

a′′.
(
(
⋆1≤i≤m(⋆allholepreds(ti) ⋆⋆1≤j≤npred2,j(z2,j))

)

−⋆pred(z)

)

[v′′/a′′]

=

A

a′′.
(
(
⋆1≤i≤m(⋆allholepreds(ti) ⋆⋆holepredst(r))

)

−⋆pred(z)

)

[v′′/a′′]

=

A

a′′.
(
(
⋆1≤i≤m(⋆allholepreds(ti) ⋆⋆holepredst(root(t)))

)

−⋆pred(z)

)

[v′′/a′′]

=

A

a′′.
(
(⋆allholepreds(t))−⋆ rootpred(t)

)
[v′′/a′′]

= projectLoc(v, t).

Why we need guarded quantifiers in tree projections

Lemma 10.22 only holds because tree projection (Definition 10.19)
introduces guarded universals rather than “normal,” unguarded
universals. For example, assume that

Φ = {pred(x1, x2, x3) ⇐ (x1 7→ nil) ⋆ x1 6≈ x2 ⋆ x2 6≈ x3}

t = {l1 7→ 〈∅, pred(l1, l2, l3) ⇐ (l1 7→ 0) ⋆ l1 6≈ l2 ⋆ l2 6≈ l3〉} .

In this case,

heap(t) |=Φ

A

〈a1, a2〉 . emp−⋆ pred(l1, a1, a2) = projectLoc(∅, t),

but

heap(t) 6|=Φ emp −⋆ pred(l1, l1, l1)

heap(t) 6|=Φ emp −⋆ pred(l1, l2, l2),

so in particular heap(t) 6|=Φ ∀ 〈a1, a2〉 . emp −⋆ pred(l1, a1, a2).a

a Adapted from an example by Nicolas Peltier.

We lift tree projections to forest projections in the obvious way.

Definition 10.23 (Forest projection). Let f = {t1, . . . , tk} be a Φ-forest.

The forest projection of f, projectLoc(v, f), is given by

projectLoc(v, f) ,⋆1≤i≤k project
Loc(v, ti).
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10.2 forest projections 141

The terms in tree and forest projections are a mix of locations
and variables. Strictly speaking, the forest projection is not unique,
as it involves imposing an (arbitrary) order on the trees t1, . . . , tk.
Because of the commutativity and associativity of ⋆, this order does
not matter, however. Put differently, changing the order of the trees in
the projection yields a formula that is equivalent w.r.t. the rewriting
equivalence ≡ defined in Fig. 10.2.

Example 10.24 (Forest projection). Let f be the forest from Example 10.13.

Then

projectLoc(∅, f) =(

A

a1. even(l2, a1)−⋆ odd(l1, a1))

⋆ (emp −⋆ even(l2, l4)).

Observe that even though l4 ∈ ptrlocs(t2), because l4 /∈ ptrlocs(t1), it

is replaced with the universally-quantified variable a1 in the part of the for-

mula corresponding to t1. In contrast, projectLoc({l4} , f) = (even(l2, l4)−⋆

odd(l1, l4)) ⋆ (emp −⋆ even(l2, l4)), i.e., we can avoid the introduction of

the universal by adding l4 to the first parameter of the projection function.

Note that the separating conjunction of the projections of two forests
is equivalent to the projection of the union of the forests.

Lemma 10.25. Let f = f1 ⊎ f2. Then project(f1) ⋆ project(f2) ≡ project(f).

Proof. Follows from (comm) and (assoc) (combining sub-proofs as
necessary via (mono) and (trans)).

Using this result, the soundness of tree projections, Lemma 10.22,
can be lifted from trees to forests.

Lemma 10.26. Let f be a Φ-forest, v ⊆ Loc, and let s be a stack with

img(s) ⊆ v. Then (s, heap(f)) |=Φ projectLoc(v, f).

Proof. Let f = {t1, . . . , tk}. For each i, we have by Lemma 10.22 that
(s, heap(ti)) |=Φ projectLoc(v, ti). By definition, heap(f) = heap(t1) +

· · ·+ heap(tk). It thus follows by the semantics of ⋆ that

(s, heap(f)) |=Φ projectLoc(v, t1) ⋆ · · · ⋆ projectLoc(v, tk).

By Lemma 10.25,

projectLoc(v, t1) ⋆ · · · ⋆ projectLoc(v, tk) ≡ projectLoc(v, f).

Finally, the soundness of ≡ (Lemma 10.18) yields (s, heap(f)) |=Φ

projectLoc(v, f).
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10.2.3 Stack–Forest Projection

Forest projections as defined in the previous section contain locations.
We now get rid of these locations based on the stack s. Specifically, the
projection of stack–forest pairs replaces every location l in the forest
projection by a variable: a stack variable, if l is in the image of the
stack and an existentially-quantified variable otherwise.

In the following, we assume for all stacks that

dom(s) ∩ ({a1, a2, . . .} ∪ {e1, e2, . . .}) = ∅.

We also need the stack-choice function, s−1
max, defined in Definition 2.3

on page 20.

Definition 10.27 (Stack–forest projection). Let f = {t1, . . . , tk} be a Φ-

forest and let s be a stack. Let w , locs(heap(f)) \ img(s) be the (arbitrarily

ordered) sequence of locations that occur in a pointer in heap(f) but are not

the value of any stack variable, and let e ,
〈
e1, e2, . . . , e|w|

〉
be a sequence of

fresh variables. The stack–forest projection of s and f, project(s, f), is given

by

E

e. projectLoc(img(s) ∪ w, f)[dom(s−1
max) · w/ img(s−1

max) · e].

Note that by construction (1) dom(s−1
max) ∩ w = ∅ and (2) the

sequence img(s−1
max) · e is repetition free. Further, I am aware that

the notation φ[dom(s−1
max) · w/ img(s−1

max) · e] is not fully formal, as
dom(s−1

max) and img(s−1
max) are sets, not sequences. Just like in earlier

chapters, I assume that a suitable order is imposed on these sets to
instantiate every location v ∈ dom(s−1

max) with the variable s−1
max(v).

Intuitively, stack–forest projection replaces all locations in the image
of the stack with stack variables; and all other location terms with
existentially-quantified variables. Consequently, the resulting formula
no longer contains any location terms. By passing img(s) ∪ w to the
call projectLoc(img(s) ∪ w, f), we ensure that uses of these locations
are not replaced by universals. In other words, it is guaranteed that
all occurrences of locations in img(s) ∪ w are replaced by a (unique)
variable in dom(s) ∪ e in the stack–forest projection.

The use of guarded existentials (as opposed to ∃) is for compatibility
with the guarded universal: if φ and ψ are (the quantifier-free part of)
stack–forest projections, the implication

(

A

a. φ) ⋆ (

E

e. ψ) =⇒

E

e. φ[a/e] ⋆ ψ

is valid. This will be crucial when composing projections later in this
chapter (cf. Definition 10.32). In contrast,

(

A

a. φ) ⋆ (∃e. ψ) 6=⇒ ∃e. φ[a/e] ⋆ ψ.

is not valid for multiple reasons: The quantifier ∃e admits interpreting
e by a location in img(s) or by a location that is shared between the
sub-models of

A

a. φ and ∃e. ψ. Further, multiple existentials could be
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10.2 forest projections 143

interpreted by the same location. In all these cases, it would not be
allowed to instantiate the quantifier

A

a with the location interpreting
the existential, showing that the substitution ∃e. φ[a/e] ⋆ ψ is indeed
invalid.

Example 10.28 (Stack–forest projection). 1. Let t be the Φ-tree from

Example 10.2. Let f = {t} and s = {x1 7→ l1, x2 7→ l2}. Then

heap(f) = {l1 7→ b, b 7→ l2} and

projectLoc({l1, l2} , f) =

A

a1. even(l2, a1)−⋆ even(l1, a1).

As all locations in this formula are in the image of the stack, we have

project(s, f) = projectLoc({l1, l2} , f)[dom(s−1
max)/ img(s−1

max)]

=

A

a1. even(x2, a1)−⋆ even(x1, a1).

Observe that

(s, heap(f)) |=Φ project(s, f).

2. Let s and f be the stack and Φ-forest from Example 9.3. Then

project(s, f) =(treerp(x, r)−⋆ tree(r))

⋆ (treerp(y, r)−⋆ treerp(x, r))

⋆ (emp −⋆ treerp(y, r)).

3. Let s = {x1 7→ l1, x2 7→ l2, x3 7→ l3} and let f be the Φ-forest from

Example 10.4.

heap(f) = {l1 7→ 〈l4, l3〉 , l2 7→ l4, l3 7→ l2, l4 7→ l2} ,

img(s) ∪ (locs(heap(f)) \ img(s)) = {l1, l2, l3, l4}

and

projectLoc({l1, l2, l3, l4} , f) =(p2(l3, l2, l4)−⋆ p1(l1, l2, l3))

⋆ (emp −⋆ ptr(l2, l4))

⋆ (ptr(l2, l4)−⋆ p2(l3, l2, l4)).

In Fig. 10.3a, we display the model (s, heap(f)). The corresponding

stack–forest projection is given by

projectLoc({l1, l2, l3, l4} , f)[dom(s−1
max) · l4/ img(s−1

max) · e1],

i.e.,

project(s, f) =

E

e1.(p2(x3, x2, e1)−⋆ p1(x1, x2, x3))

⋆ (emp −⋆ ptr(x2, e1))

⋆ (ptr(x2, e1)−⋆ p2(x3, x2, e1)).
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144 forests and their projections

l1 : x1

l4 l2 : x2

l3 : x3

1

2

(a) (s, heap(f))

l1 : x1

l4 l2 : x2

l3 : x3

1

2

(b) (s, heap(f1))

l2 : x2

l3 : x3

(c) (s, heap(f2))

Figure 10.3: The models obtained via the projection of the Φ-forest f defined
in Examples 10.4 and 10.28 and the forests f1 and f2 as defined
in Example 10.30.

Observe that (s, heap(f)) |=Φ project(s, f). Note also that the entail-

ment

project(s, f) |=Φ p1(x1, x2, x3)

is valid—in fact, (s, heap(f)) is the unique model (up to isomorphism)

of the predicate p1(x1, x2, x3).

In Example 10.28, we observed that (s, heap(f)) |=Φ project(s, f).
This is not an accident: the same property holds for all stacks and
forests.

Lemma 10.29 (Soundness of stack–forest projection). Let f be a Φ-forest

and let s be a stack. Then (s, heap(f)) |=Φ project(s, f).

Proof. Let v , locs(heap(f)) \ img(s) and e ,
〈
e1, e2, . . . , e|v|

〉
. By

Lemma 10.26, (s, heap(f)) |=Φ projectLoc(w, f) for all w with img(s) ⊆
w ⊆ Loc; in particular, this holds for w = img(s) ∪ v. The claim
then follows by the implications in Fig. 10.4. In Fig. 10.4, we exploit
that even if s is not injective, s ◦ s−1

max is the identity function—unlike
s−1

max ◦ s, which is only the identity if s is injective.
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s
1

4
5

(s, heap(f)) |=Φ projectLoc(img(s) ∪ v, f)

=⇒ heap(f) |=Φ projectLoc(img(s) ∪ v, f)[dom(s)/ img(s)] (semantics)

=⇒ heap(f) |=Φ projectLoc(img(s) ∪ v, f) (dom(s) ∩ fvars(projectLoc(img(s) ∪ v, f)) = ∅)

=⇒ heap(f) |=Φ projectLoc(img(s) ∪ v, f)[dom(s−1
max)/ img(s−1

max)][dom(s)/ img(s)] (s ◦ s−1
max is identity)

=⇒ (s, heap(f)) |=Φ (projectLoc(img(s) ∪ v, f))[dom(s−1
max)/ img(s−1

max)] (stack–heap semantics)

=⇒ (s, heap(f)) |=Φ (projectLoc(img(s) ∪ v, f))[v/e][e/v][dom(s−1
max)/ img(s−1

max)] (e is fresh, so φ[v/e][e/v] is the identity)

=⇒ (s, heap(f)) |=Φ

(

E

e. (projectLoc(img(s) ∪ v, f))[v/e]

)

[dom(s−1
max)/ img(s−1

max)]

(semantics of
E

, all locations in v allocated by Definition 10.27)

=⇒ (s, heap(f)) |=Φ

E

e. (projectLoc(img(s) ∪ v, f))[dom(s−1
max) · v/ img(s−1

max) · e] (v ∩ dom(s−1) = ∅, e ∩ dom(s−1) = ∅)

=⇒ (s, heap(f)) |=Φ project(s, f) (Definition 10.27)

Figure 10.4: Soundness of stack–forest projection.
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10.3 composing projections

10.3.1 Motivation

Recall that we defined a composition operation on forests, f1 •F f2,
in Definition 10.15. Since our abstraction of models will consist of
projections of forests, not of the forests themselves, we need to adapt
the operation from forests to projections. This operation should derive
from project(s, f1) and project(s, f2) all and only the projections of
forests f ∈ f1 •F f2, i.e., forests with f1 ⊎ f2 ◮

∗ f. In other words, we are
looking for an operation •P that satisfies the following identity.

project(s, f1) •P project(s, f2)
?
= {project(s, f) | f ∈ f1 •F f2} . (†)

Put differently, we are looking for an operation •P such that project(s, ·)
is a homomorphism from the set of Φ-forests and •F to the set of
projections and •P.

How can we define such an operation •P? Intuitively, we need to
conjoin the projections via ⋆ (to simulate the operation f1 ⊎ f2) and
subsequently simulate the merge operation ◮ at the level of projections.
Recall that ◮ identifies a hole of a tree t1 with the root of another
tree t2. This is only possible if the hole and root are labeled with the
same predicate call, say pred2(l2). To simulate this merge operation on
projections, we define a derivation operation on projections, ⊲, that
rewrites formulas based on the variant of modus ponens, Lemma 10.21:
by applying Lemma 10.21, we can merge the hole of the (projection
of) tree t1 with the root of the (projection of) tree t2.

There is a further complication, however: the projections contain
quantifiers. In particular, project(s, f1) ⋆ project(s, f2) is of the form
(

E

e1. ψ1) ⋆ (

E

e2. ψ2), whereas project(s, f1 ⊎ f2) is of the form

E

e. ψ,
where ψ1, ψ2, ψ do not contain guarded existentials. In other words,
•P has to push the guarded existentials out before applying the merge
operation.

To sum up, to define •P, we need two ingredients: (1) a variant
of the separating conjunction, which we will denote ⋆̄, that captures
all sound ways to move the existential quantifiers to the front of the
formula project(s, f1) ⋆ project(s, f2) (i.e., “re-scopes the existentials”)
and (2) a derivation operation on projections, ⊲, that rewrites formulas
based on generalized modus ponens,

mp
=⇒ (Lemma 10.21).

Example 10.30 (Composing projections). Recall the SID Φ and the trees

t1, t2, t3 from Example 10.4.

Let

s = {x1 7→ l1, x2 7→ l2, x3 7→ l3} ,

h1 , {l1 7→ 〈l4, l3〉 , l2 7→ l4, l4 7→ l2} , and

h2 , {l3 7→ l2} .
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10.3 composing projections 147

The models (s, h1) and (s, h2) are displayed in Figs. 10.3b and 10.3c on

p. 144. Let f1 , {t1, t2} and f2 , {t3}. Note that hi = heap(fi). Let

t0 = {l1 7→
〈
〈l4, l3〉 , p1(l1, l2, l3)

⇐ (l1 7→ 〈l4, l3〉) ⋆ ptr(l4, l2) ⋆ p2(l3, l2, l4)
〉
,

l2 7→ 〈∅, ptr(l2, l4) ⇐ l2 7→ l4〉 ,

l3 7→ 〈l2, p2(l3, l2, l4) ⇐ (l3 7→ l2) ⋆ ptr(l2, l4)〉 ,

l4 7→ 〈∅, ptr(l4, l2) ⇐ l4 7→ l2〉}

and define f0 , {t0}. Note that f1 ⊎ f2 ◮
∗ f0. We would thus expect for

project(s, f0) = emp −⋆ p1(x1, x2, x3),

project(s, f1) =

E

e1. (p2(x3, x2, e1)−⋆ p1(x1, x2, x3))

⋆ (emp −⋆ ptr(x2, e1)),

project(s, f2) =

A

a1. ptr(x2, a1)−⋆ p2(x3, x2, a1)

that

project(s, f0) ∈ project(s, f1) •P project(s, f2).

To this end, •P must execute the following two steps.

re-scoping . We push the existential out using the operation ⋆̄, in the

process instantiating the universal a1 with e1:

φ ,

E

e1. (p2(x3, x2, e1)−⋆ p1(x1, x2, x3))

⋆ (emp −⋆ ptr(x2, e1))

⋆ (ptr(x2, e1)−⋆ p2(x3, x2, e1))

∈(

E

e1. (p2(x3, x2, e1)−⋆ p1(x1, x2, x3))

⋆ (emp −⋆ ptr(x2, e1)))

⋆̄ (

A

a1. ptr(x2, a1)−⋆ p2(x3, x2, a1)).

merge steps . We apply
mp
=⇒ (cf. Lemma 10.21) twice to subformulas of

the re-scoped formula φ, each step denoted by ⊲:

φ ⊲

E

e1. (p2(x3, x2, e1)−⋆ p1(x1, x2, x3))

⋆ (emp −⋆ p2(x3, x2, e1))

⊲emp −⋆ p1(x1, x2, x3) = project(s, f0).

Assume we define the operation •P as rescoping ⋆̄ followed by arbitrarily

many merge steps:

φ1 •P φ2 , {φ |there exist a k ≥ 1 and ζ1, . . . , ζk

s.t. ζ1 is a re-scoping of φ1 and φ2,

ζi ⊲ ζi+1 for all 1 ≤ i < k, and ζk = φ}.

Then we obtain

project(s, f0) ∈ project(s, f1) •P project(s, f2),

as desired.
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148 forests and their projections

In the remainder of this section, I formalize the operations ⋆̄ and ⊲,
and then prove that the operation •P that combines these operations
indeed corresponds to forest composition. This will “almost” yield the
homomorphism (†) as proposed at the beginning of this section—there
is one minor complication that will force us to change the statement
slightly.

Sections 10.3.2 and 10.3.3 do not contain any deep insights. If you
aren’t interested in the formal details of •P, you can safely skip the
remainder of this section and continue with Chapter 11.

10.3.2 Formal Definition of Projection Composition

We need the following auxiliary notation. We write

A

a. φ

Ee/ Au
−−−→

A

b. φ′

if there exist disjoint subsets ā1, ā2 ⊆ a and subsets ū ⊆ u, ē ⊆ e such
that φ′ = φ[ā1 · ā2/ū · ē] and b =

(
a \ (ā1 ∪ ā2)

)
∪ ū.

Example 10.31. Let

φ ,

A

〈a1, a2〉 . (odd(y, a2)−⋆ odd(e1, a2)) ⋆ (even(e1, a1)−⋆ odd(x, a1)).

Then

φ

Ee2/ Au1−−−−→

A

u1.(odd(y, e2)−⋆ odd(e1, e2))

⋆ (even(e1, u1)−⋆ odd(x, u1)) but also

φ
Ee2/ Au1−−−−→

A
u1.(odd(y, u1)−⋆ odd(e1, u1))

⋆ (even(e1, e2)−⋆ odd(x, e2)), and

φ

Ee2/ Au1−−−−→

A

a1.(odd(y, e2)−⋆ odd(e1, e2))

⋆ (even(e1, a1)−⋆ odd(x, a1)) etc.

We formalize the two ingredients of •P, the notions of re-scoping and
derivability.

Definition 10.32 (Re-scoping). Let n ∈ N and φi =

E

ei.⋆1≤j≤nψi,j for

1 ≤ i ≤ 2 such that e1 ∩ e2 = ∅. We say that ζ is a re-scoping of φ1

and φ2, written ζ ∈ (φ1 ⋆̄ φ2), if there exist formulas ψ′
1,1, . . . , ψ′

2,n2
such

that (1) ψi,j

Ee3−i/

Aε
−−−−→ ψ′

i,j for all i, j; and (2) ζ =

E

e1 · e2.⋆1≤j≤n1 ψ′
1,j ⋆

⋆1≤j≤n2 ψ′
2,j.

Re-scoping is sound for projections that correspond to guarded
models.

Lemma 10.33 (Soundness of re-scoping). Let s be a stack and let f1, f2
be Φ-forests with (s, heap(f1)), (s, heap(f2)) ∈ ModelsgΦ. Define φi ,

project(s, fi). Finally, assume φ3 ∈ (φ1⋆̄φ2). Then φ1 ⋆ φ2 |=Φ φ3.

Proof. By Lemma 10.17, it is sound to move the guarded existential
quantifiers to the front.
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10.3 composing projections 149

It remains to be shown that instantiation of guarded universals with
guarded existentials as in Definition 10.32 is sound.

Specifically, re-scoping instantiates the universals in φ1 only with
existentials from φ2 and vice-versa. We show the soundness of the
former; the argument for the latter is completely analogous.

Let (s, h′) |=Φ (

E

e1. ψ1) ⋆ (

E

e2. ψ2). Then there exist models h′1, h′2
such that (s, h′i) |=Φ

E

ei. ψi and h′ = h′1 + h′2.
We have to show that the interpretation of the existentials e2 does

not overlap with locs(h1), because guarded universals may only be
instantiated with locations that don’t occur in the model.

Let e ∈ e2. By the semantics of

E

, there then exists a location
l ∈ dom(h′2) \ img(s) such that (s, h′2) |=Φ ψ2[e/l]. Because h′1 + h′2 6=

⊥, it follows that l /∈ dom(h′1). Because (s, h′1) ∈ ModelsgΦ and l /∈
img(s), we have by Lemma 8.12 that l /∈ dangling(h′1). Consequently,
l /∈ locs(h′1). It is thus sound w.r.t. the semantics of guarded universals
to instantiate a universal quantifier a by e in ψ1.

Definition 10.34 (Derivability). We say that ψ is derivable from ζ =

E

e.⋆1≤i≤n

A

ai. ζi, written ζ ⊲ ψ, iff there exist indices m1 and m2,

variable sequences u1, u2, b1, b2, b, and formulas φ1, φ2, φ such that (1)

A

ami
. ζmi

Eε/ Aui−−−→

A

bi. φi for 1 ≤ i ≤ 2, (2) φ1 ⋆ φ2
mp
=⇒ φ, (3) b =

(b1 ∪ b2) ∩ fvars(φ) and (4) ψ is obtained from ζ by removing the subfor-

mulas

A

ami
. ζmi

and adding the subformula

A

b. φ.

We write ⊲∗ for the reflexive–transitive closure of ⊲.

Lemma 10.35 (Soundness of ⊲). Let φ1, φ2 be such that φ1 = project(s, f)
for some choice of s, f and such that φ1 ⊲ φ2. Then φ1 |=Φ φ2.

Proof sketch. Because of the soundness of the modus-ponens variant
mp
=⇒ used in ⊲, it suffices to show that the instantiation

A

ami
. ζmi

Eε/ Aui−−−→

A

bi. φi, (‡)

carried out to obtain matching predicate calls prior to applying
mp
=⇒

is sound. Since we only rename guarded universals to other guarded
universals, this follows immediately from the injectivity of the instan-
tiation carried out by (‡): every variable among ui instantiates at most
one of the variables ami

, ensuring that we do not “merge” distinct
variables from ami

by renaming them to the same variable in bi. This
is necessary for soundness, because distinct universals have to be
interpreted by distinct locations according to the semantics of guarded
universals.

As explained in Section 10.3.1, we integrate re-scoping, ⋆̄, and deriv-
ability, ⊲∗, into the composition operation •P.

Definition 10.36 (Projection composition). Let φ1 = project(s, f1), φ2 =

project(s, f2) for some choice of s, f1, f2. Then

φ1•Pφ2 , {φ | there ex. ζ s.t. ζ ∈ (φ1⋆̄φ2) and ζ ⊲∗ φ}.
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Corollary 10.37 (Soundness of •P). Let s be a stack and let f1, f2 be Φ-

forests. If f1 ⊎ f2 6= ⊥ and (s, heap(f1)), (s, heap(f2)) ∈ ModelsgΦ then

project(s, f1) ⋆ project(s, f2) |=Φ ψ for all ψ ∈ φ1 •P φ2.

Proof. Thanks to the transitivity of logical implication, this follows
immediately from Lemmas 10.33 and 10.35.

Example 10.38. • For φ1 = ls(x2, x3)−⋆ ls(x1, x3) and φ2 = emp −⋆

ls(x2, x3), it holds that φ1 ⋆ φ2 ⊲ emp −⋆ ls(x1, x3). Hence, (emp −⋆

ls(x1, x3)) ∈ φ1 •P φ2.

• Let φ1 =

A

a. ls(x2, a)−⋆ ls(x1, a),

φ2 =

A

b. ls(x3, b)−⋆ ls(x2, b),

φ′
1 =

A

c. ls(x2, c)−⋆ ls(x1, c) and

φ′
2 =

A

c. ls(x3, c)−⋆ ls(x2, c).

Observe that φi

Eε/ Ac
−−−→ φ′

i and that (ls(x2, c)−⋆ ls(x1, c)) ⋆ (ls(x3, c)−⋆

ls(x2, c)) ⊲ ls(x3, c)−⋆ ls(x1, c). Hence, (

A

c. ls(x3, c)−⋆ ls(x1, c)) ∈

φ1 •P φ2.

• Let φ1 =

E

e1. (treerp(y, e1)−⋆ treerp(x, e1))

⋆ (emp −⋆ treerp(y, e1)) and

φ2 = emp.

Then

ψ =

E

e1. (treerp(y, e1)−⋆ treerp(x, e1)) ⋆ (emp −⋆ treerp(y, e1))

is a re-scoping of φ1 and φ2 and (treerp(y, e1) −⋆ treerp(x, e1)) ⋆

(emp −⋆ treerp(y, e1)) ⊲ emp −⋆ treerp(x, e1), so (

E

e1. emp −⋆

treerp(x, e1)) ∈ φ1 •P φ2.

• The semi-formal example in Section 10.3.1, Example 10.30, also works

for •P as formalized in this section.

10.3.3 Relating Forest Composition and Projection Composition

At the beginning of this section, we stated a design goal for pro-
jection composition: The projection function project(s, ·) should be a
homomorphism from forests and •F to projections and •P, i.e.,

project(s, f1) •P project(s, f2)
?
= {project(s, f) | f ∈ f1 •F f2} .

Is this the case for the operation •P as defined in Definition 10.36?
Not quite.

Example 10.39 (Projection is not homomorphic). Let

t1 , {l1 7→ 〈∅, (odd(l1, m1) ⇐ (l1 7→ l2) ⋆ even(l2, m1))〉}

t2 , {l2 7→ 〈∅, (even(l2, m2) ⇐ (l2 7→ l3) ⋆ odd(l3, m2))〉}

f1 , {t1} , f2 , {t2}

s , {x1 7→ l1, x2 7→ l2, x3 7→ l3}
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Then

project(s, f1) =

A

a1. even(x2, a1)−⋆ odd(x1, a1),

project(s, f2) =

A

a1. odd(x3, a1)−⋆ even(x2, a1), and

A

a1. odd(x3, a1)−⋆ odd(x1, a1) ∈ project(s, f1) •P project(s, f2).

Because different locations m1, m2 are unused in the two forests, there is only

one forest in f1 •F f2: the forest {t1, t2}. It is not possible to merge the trees

using ◮, because the hole predicate of the first tree, even(l2, m1), is different

from the root of the second tree, even(l2, m2). In particular, there does not
exist a forest f with f ∈ f1 •F f2 and project(s, f) =

A

a1. odd(x3, a1) −⋆

odd(x1, a1).

The essence of Example 10.39 is that while •P allows renaming
universals, •F does not allow renaming unused locations, breaking
the homomorphism. To get a correspondence between the two notions
of composition, we therefore allow renaming the location terms in
forests that do not occur in any points-to assertion. We capture this in
the notion of α-equivalence.

In the following, we write

(pred(l) ⇐ φ)[v1/v2] , pred(l[v1/v2]) ⇐ φ[v1/v2].

Definition 10.40 (α-equivalence). Two Φ-trees t1, t2 are α-equivalent,
denoted t1≡αt2, iff there exist sequences v1, v2 ∈ (Loc \ locs(heap(t1)))

∗

such that

t2 = {l 7→ 〈succt1(l), rulet1(l)[v1/v2] | l ∈ dom(t1)〉} .

Two Φ-forests f1 = {t1, . . . , tk} , f2 = {t̄1, . . . t̄k} are α-equivalent, also

denoted f1 ≡α f2, iff ti ≡α t̄i for all 1 ≤ i ≤ k.

Intuitively, f1 ≡α f2 if it is possible to rename the location terms in
f1 that do not occur in any points-to assertions in such a way that we
obtain f2. Consequently, α-equivalent forests induce the same heap.

Lemma 10.41. If f1 ≡α f2 then heap(f1) = heap(f2).

Proof. The forest f2 differs from f1 only in locations that are not in
heap(f1).

Our final goal for this chapter is to prove

project(s, f1) •P project(s, f2)

= {project(s, f) | ex. f̄1, f̄2 s.t. f1 ≡α f̄1, f2 ≡α f̄2 and f ∈ f̄1 •F f̄2} .

from composition of forests to composition of projec-
tions . Every ◮∗ derivation on forests of guarded models induces
a ⊲∗ derivation on forest projections. We first show this for single-step
derivations ◮ and ⊲.
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Lemma 10.42. Let f1, f2 be Φ-forests with (s, heap(f1)), (s, heap(f2)) ∈

ModelsgΦ. If f1 ⊎ f2 ◮ f then project(s, f) ∈ project(s, f1) •P project(s, f2).

Proof sketch. Let f′ , f1 ⊎ f2. Since f′ ◮ f, there exists a location l ∈

dom(f) with f′ = split(f, {l}). In particular, there then exist trees t1, t2 ∈

f′ and t ∈ f such that

1. dom(t1) ∪ dom(t2) = dom(t),

2. rule{t1,t2}(l
′) = rule{t}(l

′) for all l′,

3. l = root(t1), l ∈ allholes(t2) and (allholes(t1) ∪ allholes(t2)) \

{l} = allholes(t).

This implies that the projections of t1 and t2 are mergeable into the
projection of t via generalized modus ponens (Lemma 10.21). Let
us examine this claim in more detail. By definition of stack–forest
projection, we have for 1 ≤ i ≤ 2 and appropriate choices of wi, ei

that

project(s, fi) =

E

ei. ζ[dom(s−1
max) · wi/ img(s−1

max) · ei], for

ζ =(

A

ai,1. ψi,1[vi,1/ai,1])

⋆ · · · ⋆ (

A

ai,n1 . ψi,n1 [vi,n1
/ai,n1

]).

We construct a formula ψ ∈ (project(s, f1)⋆̄project(s, f2)) as follows:

1. We push e1 and e2 out.

2. For all 1 ≤ j ≤ n1 and every location v ∈ v1,j, if v ∈ w2—that
is, if v is a location that is replaced by an existential quantifier
in project(s, f2) and thus replaced by a universal quantifier in
project(s, f1)—then we instantiate the universal v[v1,j/a1,j] with
the existential v[w2/e2] in ψ1,j.

3. Symmetrically, for all 1 ≤ j ≤ n2 and every location v ∈ v2,j, if
v ∈ w1 then we instantiate v[v2,j/a2,j] with v[w1/e1] in ψ2,j.

Observe that in the resulting formula ψ, it holds for every location
v ∈ locs(heap(f1 ⊎ f2)) that this location corresponds to a fixed variable
in ψ, namely one of the variables in dom(s) ∪ e1 ∪ e2. In particular,
this means that the thus-renamed projections of t1 and t2 can be
merged via

mp
=⇒ , implying ψ ⊲ project(s, f). Hence, project(s, f) ∈

project(s, f1) •P project(s, f2).

A straightforward inductive argument allows us to lift Lemma 10.42

from ◮ to ◮∗ and thus to •F.

Corollary 10.43. Let f1, f2 be Φ-forests with (s, heap(f1)), (s, heap(f2)) ∈
ModelsgΦ. If f ∈ f1 •F f2 then project(s, f) ∈ project(s, f1) •P project(s, f2).
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10.3 composing projections 153

from composition of projections to forest composition.
Up to α-equivalence of forests f1, f2, every element in project(s, f1) •P

project(s, f2) corresponds to an element in the composition f1 •F f2.
At a high level, merging two subformulas in ⊲ corresponds exactly

to merging two trees in f1, which then yields the desired forest f2. It
might, however, be necessary to rename some locations that occur
in predicate calls in f1 that end up universally quantified so as to
obtain trees to which we can apply ◮; hence the need to apply ◮ to
an α-equivalent forest f′1, not directly to f1, in the following lemma.

Lemma 10.44. Let f1 be a Φ-forest with heap(f1) ∈ ModelsgΦ and let φ

be such that project(s, f1) ⊲ φ. Then there exist forests f′1, f2 with f1 ≡α f′1,

f′1 ◮ f2 and project(s, f2) = φ.

Proof. Assume project(s, f1) =

E

e1. ψ1,1 ⋆ · · · ⋆ψ1,n1 and φ =

E

e2. ψ2,1 ⋆

· · · ⋆ ψ2,n2 . Because project(s, f1) ⊲ φ, there exist indices m1, m2, m3,
sequences of variables u1, u2, and formulas ψ′

1,m1
, ψ′

1,m2
such that

1. ψ1,mi

Eε/ Aui−−−→ ψ′
1,mi

for 1 ≤ i ≤ 2,

2. ψ′
1,m1

⋆ ψ′
1,m1

mp
=⇒ ψ2,m2 , and

3. φ ≡ ⋆(({ψ1,1, . . . , ψ1,n1} \ {ψ1,m1 , ψ1,m2}) ∪ ψ2,m2).

Let t1, t2 ∈ f1 and v, e1 be such that

ψ1,mi
= projectLoc(img(s) ∪ v, ti)[v/e1],

1 ≤ i ≤ 2. There then exist variable sequences a1, a2 and location
sequences v1, v2 such that

ψ1,mi
=

A

ai. (⋆allholepreds(ti))−⋆ rootpred(ti)[v · vi/e1 · ai]

We assume w.l.o.g. that in the derivation project(s, f1) ⊲ φ, the pred-
icate call rootpred(t1) is merged with a call pred(l) ∈ allholepreds(t2).
(If this is not the case, simply swap t1 and t2.)

Because ψ1,mi

Eε/ Aui−−−→ ψ′
1,mi

for 1 ≤ i ≤ 2 and ψ′
1,m1

⋆ ψ′
1,m1

=⇒ ψ2,m2

by Lemma 10.21 there exist variable sequences b1 ⊆ a1 ∪ u1 and
b2 ⊆ a2 ∪ u2 such that

rootpred(t1)[v · v1/e1 · a1][a1/b1] = pred(l)[v · v2/e1 · a2][a2/b2].

A simplification step yields

rootpred(t1)[v · v1/e1 · b1] = pred(l)[v · v2/e1 · b2].

In general, there is, however, no guarantee that rootpred(t1) = pred(l):
the calls only need to match after variable introduction.

To ensure that the predicate calls in the trees match exactly, which
is required to apply ◮, we therefore rename the locations in v1 and
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154 forests and their projections

v2 to fresh locations v′
1 and v′

2 in such a way that for all w1 ∈ v1 and
w2 ∈ v2, if w1[v ·v1/e1 ·b1] = w2[v ·v2/e1 ·b2] then also w1[v1/v1

′] =

w2[v2/v2
′].

We then rename the locations v1 in t1 to v1
′ and the locations v2

in t2 to v2
′, obtaining t′1 and t′2. We define f′1 , (f1 \ {t1, t2}) ∪ {t′1, t′2}.

Observe that f1 ≡α f′1, because we have only renamed locations that
were replaced by universal quantifiers, i.e., locations that are not in
locs(heap(f1)).

Now that the root call and hole call in the renamed trees match
exactly, i.e., now that there exists a call pred(l′) ∈ allholepreds(t′2) with
pred(l′) = rootpred(t′1), we can apply ◮ to the forest with the renamed
trees, f′1. We call the result f2. It is easy to verify that the projection of
the merged trees is exactly ψ2,m3 . Consequently, project(s, f2) ≡ φ.

Lemma 10.45. If project(s, f1) ⊲∗ φ then there exist forests f′1, f2 with (1)

f1 ≡α f′1, (2) f′1 ◮
∗ f2, and (3) project(s, f2) ≡ φ.

Proof. We proceed by induction on the number n of steps of the
derivation project(s, f1) ⊲∗ φ. If n = 0, set f′1 = f2 = f1.

If n > 0, let ψ be such that project(s, f1) ⊲∗ ψ ⊲ φ. By the in-
duction hypothesis, there exist forests f′′1 , f3 with f1 ≡α f′′1 , f′′1 ◮∗ f3
and project(s, f3) = ψ. By Lemma 10.44, there exist forests f′3, f2 with
f3 ≡α f′3, f′3 ◮ f2 and project(s, f2) = φ.

Let v1, v2 be the location sequences that witness f3 ≡α f′3, i.e., such
that renaming v1 to v2 in f3 yields f′3. Also rename v1 to v2 in f′′1
to obtain a forest f′1 with f′′1 ≡α f′1. Observe that because f′′1 ◮∗ f3, it
holds that f′1 ◮

∗ f′3. Combining this derivation with f′3 ◮ f2, we obtain
f′1 ◮

∗ f2. As we have already shown that project(s, f2) = φ, this proves
the claim.

Lemma 10.46. Let f1, f2 be Φ-forests with (s, heap(f1)), (s, heap(f2)) ∈

ModelsgΦ and f1 ⊎ f2 6= ⊥. If φ ∈ project(s, f1) •P project(s, f2) then there

exist forests f′1, f′2, f with (1) f1 ≡α f′1, (2) f2 ≡α f′2, (3) f ∈ f′1 •F f
′
2 and (4)

φ = project(s, f).

Proof. Because φ ∈ project(s, f1) •P project(s, f2), there exists a formula
ψ with ψ ∈ (project(s, f1)⋆̄project(s, f2)) and ψ ⊲∗ φ.

We first construct forests f′′1 and f′′2 that are α-equivalent to f1 and
f2 in a way that corresponds to the instantiation steps that produced
the re-scoping ψ: For example, let t ∈ f1 and let

A

a. ζ be the formula
corresponding to t in project(s, f1). Assume that in the re-scoping, the
variable a ∈ a was instantiated with the variable e ∈ e2, where e2

are the existential quantifiers in project(s, f2). Assume further that the
variable a replaced the location v1 in project(s, f1) and that the variable
e replaced the location v2 in project(s, f2).

Note that v2 /∈ locs(heap(f1)): By the semantics of the guarded
existential

E

, v2 ∈ dom(heap(f2)), so v2 /∈ dom(heap(f1)). More-
over, because (s, heap(f1)) ∈ ModelsgΦ and v2 /∈ img(s), we have by
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10.3 composing projections 155

Lemma 8.12 that v2 /∈ dangling(h1). Consequently, v2 /∈ locs(heap(f1)).
This implies that renaming v1 to v2 in t yields a tree t′ with t ≡α t′.

We repeat this process until we have renamed the appropriate
location in f1 ⊎ f2 for every instantiation in the re-scoping. This yields
a forest f′′1 ⊎ f′′2 with f1 ≡α f′′1 , f2 ≡α f′′2 , and project(s, f′′1 ⊎ f′′2 ) = ψ.

We apply Lemma 10.45 and obtain forests f′1, f′2, and f with f′′1 ⊎ f′′2 ≡α

f′1 ⊎ f′2 (and thus f′′1 ≡α f′1 and f′′2 ≡α f′2), f′1 ⊎ f′2 ◮
∗ f, and project(s, f) = φ.

By definition, f ∈ f′1 •F f
′
2 and by transitivity of ≡α, f1 ≡α f′1 and f1 ≡α f′2,

proving the claim.

the correspondence between •F and •P . By combining the
previous results, we obtain a variation of the homomorphism stated
as (†) at the beginning of this section.

Theorem 10.47. Let f1, f2 be Φ-forests with (s, heap(f1)), (s, heap(f2)) ∈
ModelsgΦ and f1 ⊎ f2 6= ⊥. Then

project(s, f1) •P project(s, f2)

= {project(s, f) | ex. f̄1, f̄2 s.t. f1 ≡α f̄1, f2 ≡α f̄2 and f ∈ f̄1 •F f̄2} .

Proof. Immediate from Corollary 10.43 and Lemma 10.46.
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11
T H E T Y P E A B S T R A C T I O N

In this chapter, we develop the Φ-type abstraction, which abstracts every
(guarded) model by a set of stack–forest projections. In Chapter 12,
we will develop a decision procedure for SLIDg

btw by systemically
computing the Φ-types of all models of arbitrary SLIDg

btw formulas.
Recall that all stack–forest projections can be obtained by “par-

tially unfolding” symbolic heaps (and adding appropriate quantifiers).
Henceforth, we thus call such formulas unfolded symbolic heaps (USHs)
w.r.t. Φ.

Unfolded symbolic heaps vs. inductive wands

Note that USHs are a generalization of the inductive wands pro-
posed in [TNK19]: Inductive wands also correspond to partial
unfolding of predicates, but Tatsuta et al. only consider quantifier-
free formulas with inductive wands, whereas we allow a (guarded)
exists–forall prefix.

Our idea for abstracting models is as follows: because the USHs
that hold in a model (s, h) capture all the ways that (s, h) relates to
the predicates of the SID, we would like to abstract every model by a
subset of the USHs of the model (s, h). Let us formalize this.

Definition 11.1 (Forests of a heap). The forests of a heap h ∈ Heaps are

forestsΦ(h) , {f | heap(f) = h}, i.e., the set of all Φ-forests whose induced

heap is h.

The abstraction should map (s, h) to a subset of the set of USHs

{project(s, f) | f ∈ forestsΦ(h)} .

However, we cannot use the entire set as abstraction: while this set
is finite for every fixed model, the set of all USHs w.r.t. an SID Φ is
infinite and thus not suitable for defining a finite abstraction of the set
of all models.

Example 11.2. Let Φ be an SID that defines the list-segment predicate lseg.

Let (s, h) |=Φ lseg(x, nil) with |h| > n. Then there exists a forest f with

heap(f) = h and

project(s, f) =

E

y1, . . . , yn.lseg(yn, nil)

⋆ (lseg(yn, nil)−⋆ lseg(yn−1, nil))

⋆ · · · ⋆ (lseg(y2, nil)−⋆ lseg(y1, nil))

⋆ (lseg(y1, nil)−⋆ lseg(x, nil))

As there exist such models (s, h) for arbitrary n ∈ N, there are infinitely

many USHs w.r.t. Φ.
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158 the type abstraction

To obtain a finite abstraction, we only consider delimited USHs

(DUSHs), in which (1) all root parameters of predicate calls are free
variables and (2) every variable occurs at most once as a root param-
eter on the left-hand side of a magic wand. We formalize DUSHs in
Section 11.1.

The Φ-type of a model (s, h), formally introduced in Section 11.2,
then is the set of all DUSHs that can be obtained via stack–forest
projection of the forests forestsΦ(h).

11.1 delimited unfolded symbolic heaps

11.1.1 Interfaces

To obtain a finite set of USHs, we will restrict the interface of the forests
we consider.

Definition 11.3 (Interface). The interface of f = {t1, . . . , tk} is given by

interface(f) ,
⋃

1≤i≤k

({root(ti)} ∪ allholes(ti)).

Example 11.4. Recall the forest f from Example 10.4. We have interface(f) =

{l1, l2, l3}: the locations l1, l2, l3 all occur as the roots of a tree; l2 and l3 ad-

ditionally occur as holes (of t3 and t1, respectively); and l4 occurs neither as

root nor as hole of a tree.

When we split a forest f at locations l, this adds the locations l to
the interface of the forest—provided those locations actually occur in
the forest f to begin with.

Lemma 11.5. Let f be a forest and l ⊆ Loc. Then interface(split(f, l)) =

interface(f) ∪ (l ∩ dom(f)).

Proof. In the following, let locs(graph(f)) denote all those locations
that occur in the relation graph(f).

roots(split(f, l))

=roots(f) ∪ {b ∈ l | ∃a. (a, b) ∈ graph(f)}

=roots(f) ∪ {b ∈ l ∩ dom(f) | ∃a. (a, b) ∈ graph(f)}
(locs(graph(f)) ⊆ dom(f))

= {b ∈ dom(f) | ∀a. (a, b) /∈ graph(f)}

∪ {b ∈ l ∩ dom(f) | ∃a. (a, b) ∈ graph(f)}
(all and only roots have no predecessor)

= {b ∈ dom(f) | ∀a. (a, b) /∈ graph(f)}

∪ {b ∈ l ∩ dom(f) | ∀a. (a, b) /∈ graph(f)}

∪ {b ∈ l ∩ dom(f) | ∃a. (a, b) ∈ graph(f)}
(second set subset of first set)
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11.1 delimited unfolded symbolic heaps 159

=roots(f) ∪ {b ∈ l ∩ dom(f) | ∀a. (a, b) /∈ graph(f)}

∪ {b ∈ l ∩ dom(f) | ∃a. (a, b) ∈ graph(f)}

=roots(f) ∪ {b ∈ l ∩ dom(f)}

Similarly,

allholes(split(f, l)) =allholes(f) ∪ {b ∈ l | ∃a. (a, b) ∈ graph(f)}

=allholes(f) ∪ {b ∈ l ∩ dom(f)} .

By definition of interfaces, we thus obtain

interface(split(f, l)) =roots(split(f, l)) ∪ allholes(split(f, l))

=roots(f) ∪ {t ∈ l ∩ dom(f)}

∪ allholes(f) ∪ {b ∈ l ∩ dom(f)}

=interface(f) ∪ {b ∈ l ∩ dom(f)} .

11.1.2 Delimited Forests and Their Projections

s-delimited forests . An s-delimited forest is a forest whose inter-
face is contained in img(s) and which, additionally, does not have any
duplicate holes.

Definition 11.6. A forest f is s-delimited iff (1) interface(f) ⊆ img(s)
and (2) for all l ∈ allholes(f) there exist exactly one tree t ∈ f and exactly

one location l′ such that l ∈ holest(l′).

That every hole occurs at most once in a delimited forest f is a
prerequisite for “removing” all holes of a delimited forest via forest
composition and ◮∗. In other words, only if there are no duplicate
holes can there exist forests f′, f̄ such that f ⊎ f′ ◮∗ f̄ and allholes(f̄) =

∅. Conversely, in forests with duplicate holes, eliminating all holes
is impossible, because any attempt to do so would lead to double
allocation.

Example 11.7. Let Φtree be the SID that defines binary trees from Exam-

ple 8.2. Let s = x 7→ l1, y 7→ l2, z 7→ l3.

1. Let t1 = {l1 7→ 〈∅, tree(l1) ⇐ (l1 7→ 〈l2, l3〉) ⋆ tree(l2) ⋆ tree(l3)〉}.

Observe that allholes({t1}) = {l2, l3}. Since both holes occur only

once and interface(f) = {l1, l2, l3} ⊆ img(s), {t1} is s-delimited. We

can eliminate these holes as follows. We let

t2 , {l2 7→ 〈∅, tree(l2) ⇐ l2 7→ 〈nil, nil〉〉},

t3 , {l3 7→ 〈∅, tree(l3) ⇐ l3 7→ 〈nil, nil〉〉},

t̄ , {l1 7→ 〈〈l2, l3〉 , t1(l1)〉} ∪ t2 ∪ t3.

Then {t1} ∪ {t2, t3} ◮∗ {t̄} and allholes(t̄) = ∅, i.e., we have suc-

cessfully eliminated all the holes of {t1}.
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160 the type abstraction

2. Let

t′ = {l1 7→ 〈{l2} , tree(l1) ⇐ (l1 7→ 〈l2, l3〉) ⋆ tree(l2) ⋆ tree(l3)〉 ,

l2 7→ 〈{l4} , tree(l1) ⇐ (l2 7→ 〈l3, l4〉) ⋆ tree(l3) ⋆ tree(l4)〉 ,

l4 7→ 〈∅, tree(l3) ⇐ (l3 7→ 〈nil, nil〉)〉}.

We have allholes({t′}) = {l4}, but this hole now appears twice. We

can eliminate one occurrence of this hole. For example, there exists

a tree t̄′ such that with t3 as in the previous example, we have that

{t′} ∪ {t3} ◮∗ {t̄′}. In the derivation step we can, however, only

eliminate one occurrence of the hole, so allholes(t̄′) = {l3}. We cannot

eliminate this remaining occurrence of the hole by merging with another

forest, because l3 would have to be the root of that forest and thus in

the domain of that forest, but we already have l3 ∈ dom(t̄′).

If heap(f) = h1 + h2 for (s, h1), (s, h2) ∈ ModelsgΦ, we can always
find s-delimited forests f1, f2 with heap(fi) = hi and f1 ⊎ f2 ◮

∗ f. Specif-
ically, we can always obtain f1 and f2 via the s-decomposition of f via an
img(s)-split.

Definition 11.8. Let f be an s-delimited forest. We call split(f, img(s)) the

s-decomposition of f. We call f s-decomposed iff f = split(f, img(s)).

Lemma 11.9 (Decompositions are delimited). Let f̄ be the s-decomposition

of an s-delimited forest f. Then f̄ is s-delimited.

Proof. By definition, f̄ = split(f, img(s)). By Lemma 11.5, we then have
interface(f̄) ⊆ interface(f)∪ img(s). Since f is s-delimited, interface(f) ⊆
img(s). Overall, we thus obtain interface(f̄) ⊆ img(s), i.e., f̄ is s-
delimited.

Because the s-decomposition of a forest is obtained by splitting the
trees of the forest at all locations in img(s), only the roots of the trees
in an s-decomposition of forest f can be locations in img(s).

Lemma 11.10. Let f̄ be the s-decomposition of an s-delimited forest f and let

t̄ ∈ f̄. Then img(s) ∩ dom(t̄) = {root(t̄)}.

Proof. Since f̄ is s-delimited by Lemma 11.9, we have {root(t̄)} ⊆

img(s). Since root(t̄) ∈ dom(t̄), {root(t̄)} ⊆ img(s) ∩ dom(t̄).
Conversely, since f̄ = split(f, img(s)), we have roots(f̄) = roots(f) ∪

(img(s) ∩ dom(f)), i.e., every location in img(s) ∩ dom(f̄) is a root of
f̄. Consequently, img(s) ∩ dom(t̄) ⊆ {root(t̄)}.

This implies in particular that the stack-allocated variables of (s, h)
correspond precisely to the roots of the s-decomposed forests of h.

Lemma 11.11. Let (s, h) be a model and f ∈ forestsΦ(h) s-delimited. Let f̄

be the s-decomposition of f. Then alloced(s, h) = {x | s(x) ∈ roots(f̄)}.
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11.1 delimited unfolded symbolic heaps 161

Proof. By Lemma 10.14, heap(f̄) = h and thus, in particular, dom(f̄) =

dom(h). Consequently,

s(alloced(s, h)) = img(s) ∩ dom(f̄).

By Lemma 11.10, img(s)∩dom(t̄) = {root(t̄)} for all t̄ ∈ f̄, so img(s)∩
dom(f̄) =

⋃
{{root(t̄)} | t̄ ∈ f̄} = roots(f̄). Overall, we thus have

s(alloced(s, h)) = roots(f̄). On both sides, we replace every location
l with {x | s(x) = l} and obtain alloced(s, h) = {x | s(x) ∈ roots(f̄)}.

Lemma 11.12. Let s be a stack, let h1, h2 be heaps such that (s, h1), (s, h2) ∈

ModelsgΦ, and let f̄ be the s-decomposition of s-delimited forest f with

heap(f) = h1 + h2. Then there exist forests f1, f2 with f1 ⊎ f2 = f̄ and

heap(fi) = hi.

Proof. We let fi , {t̄ ∈ f̄ | root(t̄) ∈ dom(hi)}. Since f1 ⊎ f2 = f and
thus heap(f1) + heap(f2) = heap(f) by Lemma 10.7, it suffices to show
that for every tree t̄ in fi, heap(t̄) ⊆ hi

To this end, let t̄ ∈ fi. Assume towards a contradiction that dom(t̄)∩

dom(h3−i) 6= ∅. Then there exist locations l1 ∈ dom(t̄)∩ dom(hi) and
l2 ∈ dom(t̄) ∩ dom(h3−i) with l2 ∈ succt̄(l1)—otherwise, we would
have root(t̄) ∈ dom(h3−i), but root(t̄) ∈ dom(hi) by construction.
In particular, l2 ∈ img(hi) and l2 ∈ dom(h3−i), implying that l2 ∈

dangling(hi). Since (s, h1), (s, h2) ∈ ModelsgΦ, we have by Lemma 8.12

that l2 ∈ img(s). Since l2 6= root(t̄), this contradicts Lemma 11.10.

Corollary 11.13. Let (s, h1), (s, h2) ∈ ModelsgΦ and h1 + h2 6= ⊥. Let

f ∈ forestsΦ(h1 + h2) be an s-delimited forest. Then there exist s-delimited

forests f1, f2 with heap(fi) = hi and f ∈ f1 •F f2.

Proof. Let f̄ be the s-decomposition of f. In particular, we then have f̄ ◮∗

f by definition of ◮∗. Let f1, f2 be such that f1 ⊎ f2 = f̄ and heap(fi) = hi.
Such forests exist by Lemma 11.12. We then have f1 ⊎ f2 = f̄ ◮∗ f, i.e.,
f ∈ f1 •F f2. Since f̄ is s-delimited (by Lemma 11.9), so are f1 and f2.

delimited ushs . The projections of s-delimited forests give rise
to a fragment of unfolded symbolic heaps: USHs where all root pa-
rameters of predicate calls are free variables; and every free variable
occurs at most once as a root parameter on the left-hand side of a
magic wand. Consequently, we call such projections delimited as well:

Definition 11.14. An unfolded symbolic heap φ is delimited iff

1. for all pred(z) ∈ φ, predroot(pred(z)) ∈ fvars(φ), and

2. for all z there exists at most one predicate call pred(z) ∈ φ such that

z = predroot(pred(z)) and pred(z) occurs on the left-hand side of a

magic wand.

A forest is s-delimited precisely when its projection is delimited.
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162 the type abstraction

Lemma 11.15. Let f be a forest and let s be a stack. Then f is s-delimited iff

project(s, f) is delimited.

Proof. Recall that the projection contains predicate calls corresponding
to the roots and holes of the forest. It thus holds for all forests that

interface(f) = {predroot(pred(z)) | pred(z) ∈ project(f)} . (†)

We show that if f is s-delimited then project(s, f) is delimited. The
proof of the other direction is completely analogous.

If f is s-delimited then interface(f) ⊆ img(s) and thus, by (†),

{predroot(pred(z)) | pred(z) ∈ project(f)} ⊆ img(s).

Trivially, the set of root locations in the projection is a subset of the set
of all locations in the projection.

{predroot(pred(z)) | pred(z) ∈ project(f)} ⊆ locs(project(f)).

Combining the above two observations, we conclude

{predroot(pred(z)) | pred(z) ∈ project(f)}

⊆ img(s) ∩ locs(project(f)).

We apply s−1
max on both sides to obtain that

s−1
max({predroot(pred(z)) | pred(z ∈ project(f))})

⊆dom(s) ∩ (fvars(project(s, f))
︸ ︷︷ ︸

{s−1
max(l)|l∈img(s)∩locs(project(f))}

⊆ fvars(project(s, f)).

Moreover, since there are no duplicate holes in f, and the holes of
f are mapped to the predicate calls on the left-hand side of magic
wands in project(s, f), no variable can occur twice as root parameter
on the left-hand side of magic wands in project(s, f).

Consequently, project(s, f) is delimited.

We collect the set of delimited unfolded symbolic heaps (DUSH)
over SID Φ in

DUSHΦ , {project(s, f) | s ∈ Stacks, f Φ-forest,

project(s, f) is delimited}

and denote by DUSHx
Φ the restriction of DUSHΦ to formulas φ with

fvars(φ) ⊆ x.

11.1.3 Finiteness of the DUSH Fragment

As explained before, the number of all unfolded symbolic heaps is
infinite. In contrast, the set DUSHx

Φ is finite for every fixed SID Φ and
every fixed finite set of free variables x, because (1) every root variable
in a DUSH is among x and (2) every variable can appear at most twice
as root variable (once as the projection of a hole, once as the projection
of the root of a tree).
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Lemma 11.16. Let Φ ∈ IDbtw and let x ∈ 2Var be a finite set of variables.

Let n , |Φ|+ |x|. Then |DUSHx
Φ| ∈ 2O(n2 log(n)).

Proof. We first note that every element of DUSHx
Φ can be encoded

as a string of length O(n) over the alphabet Z , Preds(Φ) ∪ x ∪

{e1, . . . , en2} ∪ {a1, . . . , an2} ∪ {emp, ⋆,−⋆, (, )} (†), where we assume
that {e1, . . . , en2 , a1, . . . , an2} ∩ x = ∅.

To this end, let φ ∈ DUSHx
Φ be a DUSH and let e, ψi, predi etc. be

such that

φ =

E

e. ψ1 ⋆ · · · ⋆ ψm,

ψi =

A

ai. ζi −⋆ predi(zi) for 1 ≤ i ≤ m.

Because φ is delimited, predroot(predi(zi)) ∈ x. As φ is the projection
of a Φ-forest f, every variable x ∈ x can appear as root parameter for
at most one choice of i—otherwise, the location corresponding to x

would be in the domain of at least two trees in f, contradicting the
assumption that f is a Φ-forest. Consequently, m ≤ n.

Furthermore, because predroot(pred′(z′)) is a hole for all pred′(z′)
that occur in a ζi sub-formula, and the forest is delimited, it follows for
all pred′(z′) that occur in a ζi sub-formula that predroot(pred′(z′)) ∈ x.
Since no hole may occur more than once in a delimited USH, this
implies that the total number of predicate calls across all ζi is also
bounded by |x| ≤ n.

Overall, it is therefore guaranteed that φ contains at most 2n ∈ O(n)

predicate calls. Each predicate call takes at most |Φ| ≤ n many param-
eters. This implies that the formula can contain at most n2 − |x| ≤ n2

different variables. We can thus assume w.l.o.g. that all existentially-
quantified variables in φ are among the variables e1, . . . , en2 and all
universally-quantified variables are among a1, . . . , an2 . There then is
no need to include the quantifiers explicitly in the string encoding.
After dropping the quantifiers, we obtain a formula φ′ that consists
exclusively of letters from the alphabet Z. Moreover, this formula
consists of at most O(n2) letters. This concludes the proof of (†).

Now observe that |Z| ∈ O(n2). Consequently, every letter of Z

can be encoded by O(log(n2)) = O(log(n)) bits. Therefore, every
φ ∈ DUSHx

Φ can be encoded by a bit string of length O(n2 log(n)).
Since there are 2O(n2 log(n)) such strings, the claim follows.

11.2 defining the type abstraction

We call the set of all DUSHs of a model (s, h) the Φ-type of the model.

Definition 11.17 (Φ-Type). Let (s, h) ∈ ModelsgΦ be a model and Φ ∈

IDbtw. The Φ-type of (s, h) is

typeΦ(s, h) , {project(s, f) | f ∈ forestsΦ(h)} ∩ DUSHΦ.
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164 the type abstraction

Note that because we require models to be guarded in the definition
of types, we only have to deal with nonempty types.

Lemma 11.18. Let (s, h) ∈ ModelsgΦ. It holds that typeΦ(s, h) 6= ∅.

Proof. By definition, (s, h) |=Φ ⋆1≤i≤kpredi(xi) for appropriate pred-
icate calls. We split h into h1, . . . , hk such that h = h1 + · · ·+ hk and
(s, hi) |=Φ predi(xi). For 1 ≤ i ≤ k, let ti be a tree with heap(ti) = hi;
such trees exist by Lemma 10.5. Observe further that these trees
are delimited, as they do not have any holes and since their root
is in s(xi). Let f , {t1, . . . , tk}. Lemma 10.7 yields that heap(f) = h.
We apply Lemma 10.29 to obtain that (s, h) |=Φ project(s, f). Thus,
project(s, f) ∈ typeΦ(s, h) implying typeΦ(s, h) 6= ∅.

We need the set of all types over an SID Φ and the restriction of this
set to stack s,

Types(Φ) , {typeΦ(s, h) | s ∈ Stacks, h ∈ Heaps} ,

Typess(Φ) , {typeΦ(s, h) | h ∈ Heaps} ⊆ Types(Φ).

We use Φ-types to define an abstraction of SLIDg
btw formulas. This

is completely analogous to how we defined an abstraction of SSL

formulas by sets of AMS in Definition 6.15 in Part ii.

Definition 11.19 (s-Types of a formula). Let φ ∈ SLIDg
btw be a guarded

formula. The s-types of φ are given by

TypessΦ(φ) , {typeΦ(s, h) | h ∈ Heaps, (s, h) |=Φ φ} .

Note that TypessΦ(φ) ⊆ Typess(Φ). Finally, the x-types of a formula
are the union over all stacks s with dom(s) = x of the s-types of that
formula.

Definition 11.20 (x-Types of a Formula). Let x ∈ 2Var be finite. We define

Typesx
Φ(φ) ,

⋃
{TypessΦ(φ) | dom(s) ⊆ x}.

Note that it is always possible to infer from typeΦ(s, h) the set of
variables alloced(s, h).

Definition 11.21 (Allocated variables of a type). Let T be a Φ-type. We

define the set of allocated variables of T as

alloced(T ) , {x | there ex. φ ∈ T and (ψ −⋆ pred(z)) ∈ φ

s.t. x = predroot(pred(z))}}.

Lemma 11.22. For all models (s, h) ∈ ModelsgΦ, it holds that

alloced(s, h) = alloced(typeΦ(s, h)).
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11.2 defining the type abstraction 165

Proof. By definition of DUSHs, all root parameters of all DUSHs
in alloced(typeΦ(s, h)) are in img(s). Consequently, alloced(s, h) ⊇

alloced(typeΦ(s, h))
For the other implication, let f be a forest with heap(f) = h and

project(s, f) ∈ typeΦ(s, h). Such a forest must exist, as typeΦ(s, h) 6= ∅

by Lemma 11.18. Let f̄ be the s-decomposition of f. By Lemma 11.9, f̄
is delimited and by Lemma 10.14, heap(f̄) = h, implying project(s, f̄) ∈
typeΦ(s, h) and we can apply Lemma 11.11 to obtain that

alloced(s, h) = {x | s(x) ∈ roots(f̄)} .

Consequently, all variables in alloced(s, h) occur as root parameters
on the right-hand side of magic wands in project(s, f̄). Therefore,
alloced(s, h) ⊆ alloced(typeΦ(s, h)).

11.2.1 From Stacks to Stack-Aliasing Constraints

Recall from Section 2.4 the notion of stack-aliasing constraints. It is not
necessary to differentiate between the types of stacks with identical
stack-aliasing constraints. To be able to formalize this observation, we
define TypesΣ

Φ(φ) ,
⋃
{TypessΦ(φ) | s ∈ Stacks and aliasing(s) = Σ}.

The above claim can then be expressed as the identity TypessΦ(φ) =

Types
aliasing(s)
Φ (φ) (cf. Corollary 11.25). Intuitively, the identity holds

because isomorphic models have the same type.

Lemma 11.23 (Isomorphic models have the same type). Let (s, h),
(s′, h′) be models with dom(s) = dom(s′) and (s, h) ∼= (s′, h′). Then

typeΦ(s, h) = typeΦ(s
′, h′).

Proof. Let T , typeΦ(s, h) and T ′ , typeΦ(s
′, h′). Let σ be an isomor-

phism, i.e., such that (1) for all x, s′(x) = σ(s(x)) and (2) h′ = {σ(l) 7→

σ(h(l)) | l ∈ dom(h)}.
Let φ ∈ typeΦ(s, h). Then there exists a forest f ∈ forestsΦ(h) such

that φ ∈ project(s, f). We let f′ be the forest obtained from f by renam-
ing every location in f with σ, i.e.,

f′ , {σ[t] | t ∈ f} , where

σ[t] ,

{

σ(a) 7→
〈
σ(succt(a)),

σ[headt(a)] ⇐ σ[a 7→ b] ⋆ σ[⋆callst(a)]
〉
|

a ∈ dom(t), heapt(a) = {a 7→ b}

}

.

Note that by construction, heap(f′) = σ ◦ heap(f) = σ ◦ h = h′. Con-
sequently, we have forest f′ ∈ forestsΦ(h

′) and φ = project(s′, f′)
and thus φ ∈ typeΦ(s

′, h′). Since φ was arbitrary, this proves that
typeΦ(s, h) ⊆ typeΦ(s

′, h′). By a completely symmetric argument, we
can show the other inclusion, typeΦ(s, h) ⊇ typeΦ(s

′, h′).
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166 the type abstraction

Lemma 11.24. Let s, s′ be stacks with aliasing(s) = aliasing(s′). It then

holds for all formulas φ with locs(φ) = ∅ that TypessΦ(φ) = Typess
′

Φ(φ).

Proof. Let T ∈ TypessΦ(φ). Then there exists a heap h such that
T = typeΦ(s, h) and (s, h) |=Φ φ. Let h′ be a heap such that (s, h) ∼=
(s′, h′,). Note that such an h′ exists because aliasing(s) = aliasing(s′).
By Lemma 11.23, typeΦ(s

′, h′) = T .
Moreover, by Lemma 8.5, (s′, h′) |=Φ φ, which yields typeΦ(s

′, h′) =
T ∈ Typess

′

Φ(φ).
As T was arbitrary, it follows that TypessΦ(φ) ⊆ Typess

′

Φ(φ); the
other inclusion, TypessΦ(φ) ⊇ Typess

′

Φ(φ), can then be shown by a
symmetrical argument.

Corollary 11.25. TypessΦ(φ) = Types
aliasing(s)
Φ (φ) for all s ∈ Stacks

and all φ ∈ SLIDg
btw with locs(φ) = ∅.

Corollary 11.26. Typesx
Φ(φ) =

⋃ {
TypesΣ

Φ(φ) | Σ ∈ ACx
}

for all φ ∈

SLIDg
btw with locs(φ) = ∅.

Corollary 11.26 implies that we can express the x-types of φ as a
finite union—induced by the finitely many aliasing constraints ACx—
as opposed to an union over the infinitely many different stacks over x.
In particular, if we can compute TypesΣ

Φ(φ) for all Σ ∈ ACx, we can
compute Typesx

Φ(φ). This is the approach we will take in Chapter 12.
Before we get there, we lift several operations from models to types to
facilitate computation at the level of types rather than models.

11.2.2 Composing Types

We will now show that the types of heaps can be composed by applying
projection composition, •P, to all members of the types.

the completeness of •P on the dush fragment. We lift
Corollary 11.13 from s-delimited forests and •F to DUSHs and •P.

Lemma 11.27. Let s be a stack and let h1, h2 be heaps with (s, h1), (s, h2) ∈

ModelsgΦ and h1 + h2 6= ⊥. If φ ∈ typeΦ(s, h1 + h2) is delimited then

there exist DUSHs ψi ∈ typeΦ(s, hi), 1 ≤ i ≤ 2, such that φ ∈ ψ1 •P ψ2.

Proof. Let f ∈ forestsΦ(h1 + h2) with φ = project(s, f). Since φ is delim-
ited, f is delimited by Lemma 11.15. By Corollary 11.13, there exist
s-delimited forests f1 and f2 with f ∈ f1 •F f2 and heap(fi) = hi. Let
f1, f2 be such forests and let ψi , project(s, fi). It follows from The-
orem 10.47 that project(s, f) ∈ ψ1 •P ψ2 and from Lemma 11.15 that
ψ1, ψ2 are delimited.
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11.2 defining the type abstraction 167

Understanding the incompleteness of [KMZ19a]

In the extended version of [KMZ19a] available at [KMZ19b], we
made a similar claim about context decompositions (cf. [KMZ19b,
Lemma 33]), which, roughly speaking, correspond to DUSHs
without existential quantifiers. Unfortunately, Lemma 11.27 fails
to hold when disallowing (guarded) existentials in projections.
That is because the lemma depends on Corollary 11.13, which
only holds for the “full” DUSH fragment, including guarded exis-
tentials. This is the source of the incompleteness of the approach
of [KMZ19a]. I illustrate this problem in the example immediately
below this box.

Example 11.28 (Necessity to allow existentials in DUSHs). Recall the

forests f1, f2 from Example 10.30. Then project(s, f0) ∈ project(s, f1) •P

project(s, f2), because it holds for

ψ ,

E

e1.(p2(x3, x2, e1)−⋆ p1(x1, x2, x3)) ⋆ (emp −⋆ ptr(x2, e1))

⋆ (ptr(x2, e1)−⋆ p2(x3, x2, e1))

that ψ ∈ (project(s, f1)⋆̄project(s, f2)) and

ψ ⊲

E

e1. (p2(x3, x2, e1)−⋆ p1(x1, x2, x3)) ⋆ (emp −⋆ p2(x3, x2, e1))

⊲ emp −⋆ p1(x1, x2, x3) = project(s, f0),

witnessing Lemma 11.27.

In contrast, there do not exist forests f′1, f′2 such that f′i ∈ forestsΦ(hi),

neither project(s, f′1) nor project(s, f′2) contains existentials, and

project(s, f0) ∈ project(s, f′1) •P project(s, f2).

This illustrates that it is crucial to allow existential quantifiers in DUSHs—

for the set of all DUSHs that do not contain existentials, Lemma 11.27 does

not hold. This is the key distinction between the context decompositions of

[KMZ19a] and the DUSHs I use in this thesis.

Theorem 11.29 (Compositionality of Φ-types). Let s be a stack and let

h1, h2 be heaps with (s, h1), (s, h2) ∈ ModelsgΦ and h1 + h2 6= ⊥. Then

typeΦ(s, h) = {φ ∈ DUSHΦ | ex. ψ1 ∈ typeΦ(s, h1),

ψ2 ∈ typeΦ(s, h2)

s.t. φ ∈ ψ1 •P ψ2}.

Proof. ⊆ Let φ ∈ typeΦ(s, h). By definition, φ is delimited. There then
exist by Lemma 11.27, ψi ∈ typeΦ(s, hi) such that φ ∈ ψ1 •P ψ2.

⊇ Let φ be such that there exist for 1 ≤ i ≤ 2 formulas ψi ∈

typeΦ(s, hi) with φ ∈ ψ1 •P ψ2. By definition, there exist forests
fi with ψi = project(s, fi) and hi = heap(fi). Theorem 10.47

yields that there exist forests f̄1, f̄2 such that f1 ≡α f̄1, f2 ≡α f̄2,
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168 the type abstraction

f ∈ f̄1 •F f̄2, and project(s, f) = φ. We know from Lemma 10.41

that heap(f̄1) = h1 and heap(f̄2) = h2, so Lemma 10.7 yields
h1 + h2 = heap(f̄1 ⊎ f̄2). It follows from Lemma 10.14 that h =

heap(f), i.e., f ∈ forestsΦ(h). Consequently, φ ∈ typeΦ(s, h).

composing Φ-types . In light of Theorem 11.29, we define a com-
position operation • on Φ-types as follows.

Definition 11.30 (Type composition). Let T1, T2 be Φ-types. The compo-
sition of T1 and T2 is given by

T1 • T2 ,







⊥, if alloced(T1) ∩ alloced(T2) 6= ∅

φ1 •P φ2, otherwise.

The composition of heaps h1 + h2 is only defined if it does not lead to
double allocation. Mirroring this, • is undefined iff the disjoint-union
operation + is undefined on the underlying heaps (up to isomor-
phism).

Lemma 11.31 (Undefinedness of type composition). Let s be a stack and

h1, h2 be models. Then typeΦ(s, h1) • typeΦ(s, h2) = ⊥ if and only if for all

h′2 with (s, h2) ∼= (s, h′2), h1 + h′2 = ⊥.

Proof. If typeΦ(s, h1) • typeΦ(s, h2) = ⊥, then alloced(typeΦ(s, h1)) ∩

alloced(typeΦ(s, h2)) 6= ∅. By Lemma 11.22, we then also have

alloced(s, h1) ∩ alloced(s, h2) 6= ∅.

Let x be a variable with s(x) ∈ dom(h1) ∩ dom(h2). By definition
of isomorphism, it follows for all h′2 with (s, h2) ∼= (s, h′2) that also
s(x) ∈ dom(h1) ∩ dom(h′2). Consequently, h1 + h′2 = ⊥.

Conversely, if it holds for all h2 with (s, h2) ∼= (s, h′2) that h1 +

h′2 = ⊥, there must by a variable x with s(x) ∈ h1 ∩ h2—otherwise,
there would exist an h′2 such that h1 + h′2 6= ⊥. By Lemma 11.22, it
holds that alloced(typeΦ(s, h1)) ∩ alloced(typeΦ(s, h2)) 6= ∅, implying
typeΦ(s, h1) • typeΦ(s, h2) = ⊥.

Furthermore, typeΦ(s, ·) is a homomorphism from heaps and + to
types and •.

Corollary 11.32 (Compositionality of type abstraction). Let s be a stack

and let h1, h2 be heaps with (s, h1), (s, h2) ∈ ModelsgΦ and h1 + h2 6= ⊥.

Then typeΦ(s, h1 + h2) = typeΦ(s, h1) • typeΦ(s, h2).

Proof. An immediate consequence of Theorem 11.29.
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11.2 defining the type abstraction 169

11.2.3 Instantiating Variables in Φ-Types

To compute the types of predicate calls pred(y) from the types of
pred(fvars(pred)), we need a way to rename the variables in the types
of pred(fvars(pred)) in a way that reflects the instantiation of the formal
arguments fvars(pred) with the actual arguments y. To this end, we
first capture this instantiation at the level of stacks.

Definition 11.33 (Stack instantiation). Let s, s′ be stacks with |s| ≥ |s′|,

let x, y be sequences of variables with |x| = |y| = |s| such that x is a

permutation of dom(s) and y contains each variable in dom(s′) at least

once. Then s′ is the [x/y]-instantiation of s iff it holds for all variables

x ∈ dom(s) that s(x) = s′(x[x/y]).

Note in particular that if s′ is a [x/y]-instantiation of s then [x]s= =

[x[x/y]]s
′

= for all x ∈ dom(s), i.e., stack instantiation cannot merge
equivalence classes.

Lemma 11.34. If (s, h) |=Φ pred(fvars(pred)) and s′ is a [fvars(pred)/y]-

instantiation of s, then (s′, h) |=Φ pred(y).

Proof. By definition of stack instantiation, it holds that

s′(x[fvars(pred)/y]) = s(x) for all x ∈ fvars(pred). (†)

Using this identity, we obtain

(s, h) |=Φ pred(fvars(pred))

=⇒ h |=Φ pred(fvars(pred))[dom(s)/ img(s)]

=⇒ h |=Φ pred(y)[y/s′(y)] (by (†))

=⇒ h |=Φ pred(y)[dom(s′)/ img(s′)]

=⇒ (s′, h) |=Φ pred(y).

We lift instantiation from stacks to types. Recall from Section 10.2
that the stack–forest projection always replaces a location l by the
minimal stack variable that is interpreted by l. To guarantee that the
result of type instantiation yields stack–forest projections, we include a
normalization step via [·]s

′

= in Definition 11.35.

Definition 11.35 (Type instantiation). Let s, s′ be stacks and let x, y be

such that s′ is the [x/y]-instantiation of s. Moreover, let y′ , [y]s
′

= be the

sequence obtained by replacing every variable in y by the maximal variable

in its equivalence class. The [x/y]-instantiation of T is given by

T [x/y] ,
{

φ[x/y′] | φ ∈ T
}

.

Thanks to the normalization step via [·]s
′

=, the following lemma
holds.
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170 the type abstraction

Lemma 11.36. Let s, s′ be stacks with and let x, y be such that s′ is the

[x/y]-instantiation of s. Then typeΦ(s, h)[x/y] = typeΦ(s
′, h).

Proof. Let y′ , [y]s
′

=. Let φ ∈ typeΦ(s, h)[x/y]. Then there exists a for-
mula φ′ ∈ typeΦ(s, h) such that φ = φ′[x/y′]. Let f ∈ forestsΦ(h)

such that project(s, f) = φ′. Note that because stack instantiation
does not merge equivalence classes of s, it holds that project(s′, f) =
project(s, f)[x/y′] = φ′[x/y′] = φ. Thus, φ ∈ typeΦ(s

′, h).
For the other direction, let φ ∈ typeΦ(s

′, h). Let f ∈ forestsΦ(h)

such that project(s′, f) = φ and define φ′ , project(s, f). Observe that
φ = φ′[x/y′], because no equivalence classes of s are merged by
[x/y′]-instantiation. Thus, φ ∈ typeΦ(s, h)[x/y].

11.2.4 Forgetting Variables in Φ-Types

In the following, we are concerned with removing a variable y from
the formulas in a type T = typeΦ(s, h). Depending on s, removing y

from an individual DUSH φ ∈ T could mean either of two things:

• existentially quantifying over y, if y does not alias with any other
free variable, i.e., if [y]s= = {y},

• replacing y with the maximal variable that aliases with y, i.e.,
max([y]s= \ {y}).

Formally, we define an operation for removing a variable y from a
formula given stack-aliasing constraint Σ , aliasing(s).

forgetΣ,y(φ) ,







φ, if y /∈ fvars(φ)

E

y. φ, if y ∈ fvars(φ), [y]Σ= = {y}

φ[y/ max([y]Σ= \ {y})], if y ∈ fvars(φ), [y]Σ= ) {y} .

We can then define the removal of y from the free variables of a Φ-
type by applying φ[y/] to all formulas φ ∈ T . As forgetΣ,y(φ) may
existentially quantify over a root variable of φ—in which case the
resulting formula is no longer in the DUSH fragment—we intersect
the result with DUSHΦ.

Definition 11.37 (Forgetting a variable). Let T be a type, Σ a stack-

aliasing constraint and y ∈ Var. Then forgetting y in T w.r.t. Σ is defined

by forgetΣ,y(T ) ,
{

forgetΣ,y(φ) | φ ∈ T
}

∩ DUSHΦ.

Removing a variable y from a stack and then computing the type
is the same as computing the type and then forgetting the variable y,
provided s(y) ∈ dom(h). The requirement s(y) ∈ dom(h) guarantees
that it is sound to introduce a guarded existential (as opposed to an
unguarded existential) when we remove y from the stack.
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11.2 defining the type abstraction 171

Lemma 11.38. Let s be a stack with y ∈ dom(s) and let s′ be the restriction

of s to dom(s) \ {y}. Then for all h with s(y) ∈ dom(h), typeΦ(s
′, h) =

forgetaliasing(s),y(typeΦ(s, h)).

Proof. typeΦ(s
′, h)

=
{
project(s′, f) | f ∈ forestsΦ(h)

}
∩ DUSHΦ

=
{

forgetaliasing(s),y(project(s, f)) | f ∈ forestsΦ(h)
}

∩ DUSHΦ

=forgetaliasing(s),y(typeΦ(s, h))

11.2.5 Size of the Type Domain

Lemma 11.39. Let Φ ∈ IDbtw and let s be a stack. Let n , |Φ|+ |s|. Then

|Typess(Φ)| ∈ 22O(n2 log(n))
.

Proof. Every Φ-type for stack s is a subset of DUSH
dom(s)
Φ , which is of

size 2O(n2 log(n)) by Lemma 11.16.
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12
U S I N G T Y P E S T O D E C I D E G UA R D E D S E PA R AT I O N
L O G I C

In this chapter, I develop a decision procedure for guarded quantifier-
free SL formulas φ ∈ SLIDg

btw, i.e., guarded SLID formulas in which
inductive definitions are restricted to IDbtw. The idea is to use Φ-types
to decide satisfiability and entailment for SLIDg

btw, similar to the way
we used AMSs to decide the same reasoning problems for SSL in
Part ii.

This involves two steps, as with AMS. (See also Section 3.4 for a
discussion of the parallels between the two decision procedures.)

1. We need a refinement theorem for SLIDg
btw formulas and Φ-

types. This justifies reducing satisfiability checking to checking
nonemptiness of the set of Φ-types of the formula. I prove the
refinement theorem in Section 12.1.

2. We need an algorithm for computing the set Typesx
Φ(φ) for

finite x ∈ Var∗ and φ ∈ SLIDg
btw. Actually, we need two algo-

rithms: One for computing the types of the predicate calls of
an SID, and one algorithm for computing the types of arbitrary
SLIDg

btw formulas. I formulate these algorithms in Section 12.2
and Section 12.3, respectively.

In the remainder of this chapter, I would like to avoid dedicated
reasoning about points-to assertions. For this reason I only handle
pointer-closed SIDs, as defined in Definition 8.7, in this chapter.

12.1 the refinement theorem for guarded formulas

Our goal in this section is to show that models with the same type
satisfy the same SLIDg

btw formulas that do not contain location terms.
This is perhaps surprising, as types only contain formulas from the
DUSH fragment, which is largely orthogonal to SLIDg

btw. For example,
SLIDg

btw formulas allow guarded negation and guarded septraction,
but neither quantifiers nor unguarded magic wands, whereas DUSHs
allow limited use of guarded quantifiers and unguarded magic wands,
but neither Boolean structure nor septraction.

decomposing types into sub-types . In Corollary 11.32, we saw
that typeΦ(s, h1) • typeΦ(s, h2) = typeΦ(s, h1 + h2). For the refinement
theorem, we need to reverse this result: Given typeΦ(s, h) = T1 • T2,
we need to find h1 and h2 with h = h1 + h2, typeΦ(s, h1) = T1 and

173
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174 using types to decide guarded separation logic

typeΦ(s, h2) = T2. We need a couple of auxiliary lemmas before we
can show this result in Lemma 12.7.

Lemma 12.1. Let (s, h) ∈ ModelsgΦ. Then there exists a forest f that is

s-decomposed and s-delimited with project(s, f) ∈ typeΦ(s, h).

Proof. Take an arbitrary forest f̄ with project(s, f̄) ∈ typeΦ(s, h). Such
a forest exists by Lemma 11.18. By definition, f̄ is s-delimited. Let
f , split(f, img(s)) be the s-decomposition of f̄. By Lemma 11.9, f is
s-delimited. By Lemma 10.12, f ◮∗ f̄. Lemma 10.14 thus gives us that
heap(f) = h. Hence project(s, f) ∈ typeΦ(s, h).

Lemma 12.2. Let T1, T2 ∈ Typess(Φ) be types with typeΦ(s, h) = T1 • T2.

Let f be an s-decomposed Φ-forest with heap(f) = h and project(s, f) ∈

typeΦ(s, h). Then there exist Φ-forests f1, f2 such that f = f1 ⊎ f2 and

project(s, fi) ∈ Ti.

Proof. By definition of •, there exist formulas ψ1 ∈ T1, ψ2 ∈ T2 with
project(s, f) ∈ ψ1 •P ψ2. By definition, there exist Φ-forests f′1, f′2 with
project(s, f′i) = ψi. Because T1 • T2 is defined, we have alloced(T1) ∩

alloced(T2) = ∅, allowing us to assume w.l.o.g. that f′1 ⊎ f′2 6= ⊥. As
a consequence of Lemma 10.46, there then exist forests f1, f2 with
project(s, fi) = ψi and f ∈ f1 •F f2. Because f is s-decomposed, this
implies that zero ◮-steps were taken by •F, i.e., f = f1 ⊎ f2.

Lemma 12.3. Let typeΦ(s, h) = T1 • T2. Then there exist s-decomposed, s-

delimited Φ-forests f1, f2 such that project(s, fi) ∈ Ti and heap(f1 ⊎ f2) = h.

Proof. Let f be an s-decomposed, s-delimited forest with project(s, f) ∈
typeΦ(s, h); note that there exists at least one such forest by Lemma 12.1.
By Lemma 12.2, there then exist forests f1, f2 with f = f1 ⊎ f2 and
project(s, fi) ∈ Ti, 1 ≤ i ≤ 2.

Definition 12.4 (Roots of a DUSH). Let φ =

E

e.⋆1≤i≤k

A

ai. (ζi −⋆

predi(zi)) be a DUSH. The roots of ψ are the set

dushrootss(φ) ,
⋃ {

[predroot(predi(zi))]
s
= | 1 ≤ i ≤ k

}
.

Clearly, the roots of a forest are connected to the roots of a DUSH
via the stack.

Lemma 12.5. Let f be a Φ-forest. Then

dushrootss(project(s, f)) = {x | s(x) ∈ roots(f)} .

Proof. Let φ , project(s, f). By definition of DUSHs, roots(f) ⊆ img(s).
Every root l ∈ roots(f) is therefore replaced by a variable in s−1(l)

by stack–forest projection. Since dushrootss(φ) closes the set of roots
under [·]s=, we obtain that dushrootss(φ) contains all variables x with
s(x) ∈ roots(f).
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Lemma 12.6. Let T be a Φ-type and ψ ∈ T . There exists a formula ψ′ ∈ T

such that ψ′ ⊲∗ ψ and alloced(T ) = dushrootss(ψ′).

Proof. Let (s, h) be such that typeΦ(s, h) = T . In particular, it then
holds that alloced(s, h) = alloced(T ) (†). By definition of Φ-types,
there then exists a Φ-forest f with heap(f) = h and project(s, f) = ψ.
Let f̄ , split(f, img(s)) be the s-decomposition of f and write ψ′ ,

project(s, f̄). We show that ψ′ has the desired properties.
First, f̄ ◮∗ f by Lemma 10.12. Observe that f ∈ f̄ •F ∅. Corollary 10.43

therefore guarantees that ψ ∈ ψ′ •P emp and thus ψ′ ⊲∗ ψ.
Second, by Lemma 10.14, heap(f̄) = heap(f) and thus ψ′ ∈ T .

Moreover, by Lemma 11.11, alloced(s, h) = {x | s(x) ∈ roots(f̄)}. We
combine this with (†) to derive alloced(T ) = {x | s(x) ∈ roots(f̄)}.
Lemma 12.5 yields that alloced(T ) = dushrootss(ψ′).

Lemma 12.7 (Type decomposability). Let (s, h) ∈ ModelsgΦ and assume

that typeΦ(s, h) = T1 • T2. Then there exist h1, h2 such that h = h1 + h2,

T1 = typeΦ(s, h1), and T2 = typeΦ(s, h2).

Proof. Let T , typeΦ(s, h). By Lemma 12.3, there exist s-decomposed,
s-delimited forests f1, f2 with

1. project(s, fi) ∈ Ti, 1 ≤ i ≤ 2,

2. heap(f1 ⊎ f2) = h and thus project(s, f1 ⊎ f2) ∈ T .

Define h1 , heap(f1), h2 , heap(f2). Observe that h1 + h2 = h. Because
the fi are s-delimited, we have dangling(hi) ⊆ img(s) (♣). Further, we
have

alloced(s, hi) = {x | s(x) ∈ roots(fi)} = alloced(Ti), (†)

where the first equality follows from Lemma 11.11, and the second
equality holds because the fi are decomposed and project(s, fi) ∈ Ti.

I will show that Ti = typeΦ(s, hi). I only prove T1 ⊆ typeΦ(s, h1), as
the other three inclusions can be proved analogously.

Let ψ1 ∈ T1. By Lemma 12.6, there then exists a formula ψ′
1 ∈ T1

such that ψ′
1 ⊲

∗ ψ1, and alloced(T1) = dushrootss(ψ′
1). Combining this

fact with (†) yields alloced(s, h1) = dushrootss(ψ′
1) (‡).

Let ψ′
2 , project(s, f2) ∈ T2 for f2 as above. By definition of type

composition, •, it follows that ψ′
1 ⋆ψ′

2 ∈ T . Consequently, there exist Φ-
forests g′, g′1, g′2 with g′ ∈ forestsΦ(s, h), g′ = g′1 ⊎ g′2, project(s, g′1) = ψ′

1
and project(s, g′2) = ψ′

2.
Observe that (‡) implies that {x | s(x) ∈ roots(g′1)} = alloced(s, h1).

In particular, g′1 is s-decomposed. Moreover, {x | s(x) ∈ roots(g′2)} =

alloced(s, h2): Because f2 and g′2 have identical stack–forest projections,
it holds that

{
x | s(x) ∈ roots(g′2)

}
= {x | s(x) ∈ roots(f2)} ;
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176 using types to decide guarded separation logic

the identity then follows by (†).
Trivially, dom(g′i) ⊇ roots(g′i), so

{
x | s(x) ∈ dom(g′1)

}
⊇ alloced(s, h1),

{
x | s(x) ∈ dom(g′2)

}
⊇ alloced(s, h2).

Since alloced(s, h) = alloced(s, h1) ∪ alloced(s, h2), we have that every
allocated location in img(s) is contained in at least one of the sets
dom(g1) and dom(g2). It follows that

{
x | s(x) ∈ dom(g′i)

}
= alloced(s, hi). (♠)

If this weren’t the case, there would be double allocation of a stack
variable. We use this result to argue that h1 = heap(g′1).

Write {t1, . . . , tk} , g′1 and let h1,j , heap(tj). Because tj is s-
delimited, root(tj) ∈ img(s), so (♠) implies that root(tj) ∈ dom(h1).
Hence, h1,j ∩ h1 6= ∅. Assume h1,j ( h1. Because g′1 is s-decomposed,
there then exists a location l ∈ dom(h1,j) \ img(s) such that l ∈

dangling(h1). This contradicts (♣). Consequently, h1,j ⊆ h1. It follows
that heap(g′1) ⊇ h1.

A similar argument shows that for all t′ ∈ g′2, h1 ∩ heap(t′) = ∅:
h1 cannot contain the root of t′ without contradicting (‡), and thus
cannot contain any of the locations in dom(t′) without contradicting
(♣). Consequently, heap(g′1) ⊆ h1. By combining the two inequalities,
we finally obtain heap(g′1) = h1. Therefore, ψ′

1 ∈ typeΦ(s, h1).
Since ψ′

1 ⊲∗ ψ1, in particular ψ1 ∈ ψ′
1 •P emp. Lemma 10.46 then

gives us a forest g1 s.t. g′1 ◮∗ g1 and project(s, g1) = ψ1. Because
also heap(g′1) = heap(g1) by Lemma 10.14, g1 ∈ forestsΦ(h1) and
project(s, g1) ∈ typeΦ(s, h1). As g1 was an arbitrary forest with projec-
tion in T1, T1 ⊆ typeΦ(s, h1) as desired.

models with the same types satisfy the same guarded

formulas . Lemma 12.7 allows us to show the refinement theorem,
Theorem 12.10, which states that guarded models with identical types
satisfy the same guarded formulas.

We need two additional properties of types to prove the refinement
theorem. First, observe that a model satisfies all the formulas in its
type.

Lemma 12.8. If φ ∈ typeΦ(s, h) then (s, h) |=Φ φ.

Proof. Since φ ∈ typeΦ(s, h), there exists a Φ-forest f with heap(f) = h

and project(s, f) = h. By Lemma 10.29, (s, heap(f)) |=Φ project(s, f).
Substituting the previous identities, we obtain (s, h) |=Φ φ.

Second, if two models have the same type, then the first model is
guarded iff the second model is guarded.

Lemma 12.9. Let s ∈ Stacks, h1, h2 ∈ Heaps and assume that (1)

(s, h1) ∈ ModelsgΦ and (2) typeΦ(s, h1) = typeΦ(s, h2). Then (s, h2) ∈

ModelsgΦ.
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12.1 the refinement theorem for guarded formulas 177

Proof. By Definition 8.8, (s, h1) |=Φ pred1(x1) ⋆ · · · ⋆ predk(xk) for some
choice of predicate calls. For ψ , ⋆1≤i≤k(emp −⋆ predi(xi)), it then
holds that ψ ∈ typeΦ(s, h1) = typeΦ(s, h2). Lemma 12.8 yields that
(s, h2) |=Φ ψ holds. Therefore, (s, h2) |=Φ pred1(x1) ⋆ · · · ⋆ predk(xk),
implying (s, h2) ∈ ModelsgΦ.

Theorem 12.10 (Refinement theorem). Let s be a stack and h1, h2 be heaps.

Let φ ∈ SLIDg
btw with locs(φ) = ∅ and let Φ ∈ IDbtw be pointer-closed

w.r.t. φ. Moreover, assume typeΦ(s, h1) = typeΦ(s, h2). Then (s, h1) |=Φ φ

iff (s, h2) |=Φ φ.

Proof. If (s, h1), (s, h2) /∈ ModelsgΦ, then typeΦ(s, h1) is undefined and
neither model satisfies φ by Lemma 8.9.

Assume (s, h1), (s, h2) ∈ ModelsgΦ We proceed by induction on the
structure of φ. We only show that if (s, h1) |=Φ φ then (s, h2) |=Φ φ, as
the proof of the other direction is completely analogous.

case φ = emp. Assume that (s, h1) |=Φ φ. By the semantics of emp,
h1 = ∅. Let f = ∅ be the empty forest. Then f ∈ forestsΦ(h1)

and thus emp = project(s, f) ∈ typeΦ(s, h1) = typeΦ(s, h2). Thus
(s, h2) |=Φ emp by Lemma 12.8.

cases φ = x ≈ y, φ = x 6≈ y. Trivial, because the models have the
same stack.

case φ = x 7→ 〈y1, . . . , yk〉. Assume that (s, h1) |=Φ φ. By assump-
tion, Φ is pointer-closed, so (s, h1) |=Φ ptrk(x, y1, . . . , yk). Let

t = {s(x) 7→ 〈∅,ptrk(s(x), s(y1), . . . , s(yk))

⇐ s(x) 7→ 〈s(y1), . . . , s(yk)〉〉}

be a tree and f = {t}. Observe that f ∈ forestsΦ(h1) and

ptrk(x, y1, . . . , yk) = project(s, f) ∈ typeΦ(s, h1)

= typeΦ(s, h2).

Thus (s, h2) |=Φ ptrk(x, y1, . . . , yk) by Lemma 12.8. By definition
of ptrk, we conclude that (s, h2) |=Φ x 7→ 〈y1, . . . , yk〉.

case φ = pred(z1, . . . , zk). Assume that (s, h1) |=Φ φ. By Lemma 10.5,
there exists a Φ-tree t with rootpred(t) = pred(s(z1), . . . , s(zk)),
allholepreds(t) = ∅, and heap({t}) = h1. Let

ψ , pred(s(z1), . . . , s(zk))[dom(s−1
max)/ img(s−1

max)].

Note that ψ = project(s, {t}) by definition of stack–forest projec-
tion and thus ψ ∈ typeΦ(s, h1) = typeΦ(s, h2). By Lemma 12.8,
(s, h2) |=Φ ψ. Observe that while ψ 6= pred(z) is possible, we
have by definition of s−1

max that the parameters of the predicate
call in ψ evaluate to the same locations as the parameters z. Thus,
(s, h2) |=Φ pred(z1, . . . , zk).
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178 using types to decide guarded separation logic

case φ = φ1 ∧ φ2 . Assume that (s, h1) |=Φ φ. We then have that
(s, h1) |=Φ φ1 and (s, h1) |=Φ φ2. By the induction hypotheses,
(s, h2) |=Φ φ1 and (s, h2) |=Φ φ2 and thus (s, h2) |=Φ φ1 ∧ φ2.

case φ = φ1 ∨ φ2 . Assume that (s, h1) |=Φ φ. We then have that
(s, h1) |=Φ φ1 or (s, h1) |=Φ φ2. Assume w.l.o.g. that (s, h1) |=Φ

φ1. By induction, (s, h2) |=Φ φ1 and thus (s, h2) |=Φ φ1 ∨ φ2.

case φ = φ1 ∧ ¬φ2 . Assume that (s, h1) |=Φ φ. We then have that
(s, h1) |=Φ φ1 and (s, h2) 6|=Φ φ2. By the induction hypotheses,
(s, h2) |=Φ φ1 (s, h2) 6|=Φ φ2 and thus (s, h2) |=Φ φ1 ∧ ¬φ2.

case φ = φ1 ⋆ φ2 . Assume that (s, h1) |=Φ φ. By the semantics of ⋆,
there exist h1,1 and h1,2 such that (s, h1,i) |=Φ φi for 1 ≤ i ≤ 2. Let
Ti , typeΦ(s, h1,i) and apply Lemma 12.7 to (s, h2), T1 and T2 to
obtain models h2,1 and h2,2 with h2 = h2,1 + h2,2, typeΦ(s, h2,1) =

T1, and typeΦ(s, h2,2) = T2.

Note that (s, h1,i) ∈ ModelsgΦ by Lemma 8.9. Lemma 12.9, ap-
plied once to h1,1 and h2,1, once to h1,2 and h2,2, then yields that
also (s, h2,i) ∈ ModelsgΦ.

We can therefore apply the induction hypothesis for both h1,1,
h1,2, φ1 and h2,1, h2,2, φ2 to obtain that for 1 ≤ i ≤ 2, (s, h2,i) |=Φ

φi. As h2,1 + h2,2 = h2, it follows by the semantics of ⋆ that
(s, h2) |=Φ φ.

case φ = φ0 ∧ (φ1 −©⋆ φ2). Assume that (s, h1) |=Φ φ. Then there ex-
ists a heap h0 with (s, h0) |=Φ φ1 and (s, h1 + h0) |=Φ φ2.

Since (s, h1) and (s, h2) have the same type, alloced(s, h1) =

alloced(s, h2) holds. We can therefore assume w.l.o.g. that h2 + h0

is defined—if this is not the case, simply replace h0 with a heap
h′0 such that (s, h0) ∼= (s, h′0) and both h1 + h′0 and h2 + h′0 are
defined. By Lemma 8.5, h1 + h′0 |=Φ φ.

By assumption (s, h1) ∈ ModelsgΦ and by Lemma 8.9, (s, h0) ∈

ModelsgΦ. Thus, (s, h1 + h0) ∈ ModelsgΦ. Our assumptions and
Corollary 11.32 thus yield

typeΦ(s, h1 + h0) =typeΦ(s, h1) • typeΦ(s, h0)

=typeΦ(s, h2) • typeΦ(s, h0)

=typeΦ(s, h2 + h0).

We apply the induction hypothesis for φ0 and h1 and h2 to obtain
(s, h2) |=Φ φ0 Furthermore, we apply the induction hypotheses
for formula φ2 and models (s, h1 + h0) and (s, h2 + h0) to ob-
tain (s, h2 + h0) |=Φ φ2. By the semantics of −©⋆ and ∧, we get
(s, h2) |=Φ φ0 ∧ (φ1 −©⋆ φ2).
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12.2 computing the types of predicate calls 179

case φ = φ0 ∧ (φ1 −⋆ φ2). x Analogous to the case for guarded sep-
traction, except that we must consider arbitrary models h0 with
(s, h0) |=Φ φ1 and (s, h1 + h0) |=Φ φ2. Lemma 8.5 and Corol-
lary 11.32, and the induction hypotheses can then be applied
just like in the case for septraction.

For Theorem 12.10 to hold, it is crucial that SLIDg
btw only contains

quantifier-free formulas, as illustrated by the following example.

Example 12.11. Recall the SID Φls from Example 8.2. Moreover, let (s, hk),

k ∈ N, be a list of length k from x1 to x2. It then holds for all i, j ≥ 2 that

typeΦ(s, hi) = typeΦ(s, hj). However,

(s, h2) 6|=Φ ∃ 〈y1, y2〉 . lseg(x1, y1) ⋆ lseg(y1, y2) ⋆ lseg(y2, x2),

whereas

(s, hj) |=Φ ∃ 〈y1, y2〉 . lseg(x1, y1) ⋆ lseg(y1, y2) ⋆ lseg(y2, x2)

for all j ≥ 3.

Theorem 12.10 immediately implies that if the type of a guarded
model (s, h) is among the types of φ, then (s, h) is a model of φ.

Corollary 12.12. Let φ ∈ SLIDg
btw and let (s, h) ∈ ModelsgΦ be a guarded

model such that typeΦ(s, h) ∈ TypessΦ(φ). Then (s, h) |=Φ φ.

Proof. Because typeΦ(s, h) ∈ TypessΦ(φ), there exists, by definition
of TypessΦ(φ), a heap h′ such that (s, h′) |=Φ φ and typeΦ(s, h′) =

typeΦ(s, h). Because (s, h) ∈ ModelsgΦ by assumption, Theorem 12.10

then implies that (s, h) |=Φ φ.

12.2 computing the types of predicate calls

12.2.1 Computing on Sets of Types

In the remainder of this chapter, we will frequently compute on sets
of types. To simplify notation, we lift •, ·[·/·], and forget from types to
sets of types in a point-wise manner, i.e.,

{T1, . . . , Tm} •
{
T ′

1 , . . . , T ′
n

}

,
{

Ti • T
′

j | 1 ≤ i ≤ m, 1 ≤ j ≤ n, Ti • T
′

j 6= ⊥
}

,

{T1, . . . , Tm}[x/y] , {T1[x/y], . . . , Tm[x/y]} and

forgetΣ,y({T1, . . . , Tm}) ,
{

forgetΣ,y(T1), . . . , forgetΣ,y(Tm)
}

Note that the lifted • operator can be used to compute the types of
φ1 ⋆ φ2 from the types of φ1 and φ2. This is formalized in the following
lemma.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

180 using types to decide guarded separation logic

Lemma 12.13 (Composition of type sets). Let φ1, φ2 ∈ SLIDg
btw. Then

TypesΣ
Φ(φ1 ⋆ φ2) = TypesΣ

Φ(φ1) • TypesΣ
Φ(φ2).

Proof. We show each inclusion separately.

• Let T ∈ TypesΣ
Φ(φ1 ⋆ φ2). Let h be such that (s, h) |=Φ φ1 ⋆ φ2

and T = typeΦ(s, h). By Corollary 8.13, there then exist heaps
h1, h2 such that (s, h1), (s, h2) ∈ ModelsgΦ, (s, hi) |=Φ φi and h =

h1 + h2. Corollary 11.32 yields T = typeΦ(s, h1) • typeΦ(s, h2).
Since (s, hi) |=Φ φi, it follows that typeΦ(s, hi) ∈ TypesΣ

Φ(φi).
This implies T ∈ TypesΣ

Φ(φ1) • TypesΣ
Φ(φ2).

• Let T ∈ TypesΣ
Φ(φ1) •TypesΣ

Φ(φ2). There exist T1 ∈ TypesΣ
Φ(φ1)

and T2 ∈ TypesΣ
Φ(φ2) s.t. T = T1 • T2. As Ti ∈ TypesΣ

Φ(φi), there
are heaps h1, h2 such that typeΦ(s, hi) = Ti and (s, hi) |=Φ φi.
By the semantics of ⋆, (s, h1 + h2) |=Φ φ1 ⋆ φ2. According to
Lemma 8.9, (s, h1), (s, h2) ∈ ModelsgΦ. Further, it holds that
T = typeΦ(s, h1) • typeΦ(s, h2). It follows by Corollary 11.32 that
T = typeΦ(s, h1 + h2). Therefore, T ∈ TypesΣ

Φ(φ1 ⋆ φ2).

12.2.2 Interlude: Consequences of Establishment

Recall from Section 8.3 that all SIDs in IDbtw have the establishment

property. The algorithm for computing the Φ-types of predicates,
which I present in Section 12.2.3, depends in nontrivial ways on this
property.

First, we need that if (the location interpreting) an existentially-
quantified variable is allocated in a recursive call, the variable must
have been passed explicitly as parameter to the recursive call.

Lemma 12.14 (Allocated existentials must be parameters). Let Φ ∈

IDbtw and (pred(x) ⇐ φ) ∈ Φ, φ = ∃e. φ′, φ′ = (a 7→ b) ⋆ pred1(z1) ⋆

· · · ⋆ predk(zk) ⋆ Π, where Π is a pure constraint, and assume (s, h) |=Φ φ.

Moreover, let s′ ⊇ s and h0, . . . , hk be such that

• dom(s′) = dom(s) ∪ e,

• (s′, h) |=Φ φ′,

• h = h0 + · · ·+ hk,

• (s′, h0) |=Φ a 7→ b, and

• (s′, hi) |=Φ predi(zi).

Finally, let e ∈ e such that s(e) ∈ dom(hi). Then there exists a variable

v ∈ zi such that s′(v) = s(e).

Proof. If there were no such variable, then we could replace hi with
h′i such that s(e) /∈ dom(h′i) but (s′, h′i) |=Φ predi(zi). We would then
have

(s′, h0 + · · · hi−1 + h′i + hi+1 · · ·+ hk) |=Φ φ
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12.2 computing the types of predicate calls 181

with s(e) /∈ dom(h0 + · · · hi−1 + h′i + hi+1 · · ·+ hk), contradicting es-
tablishment.

Moreover, we exploit that establishment limits the way that locations
can be shared between sub-heaps. Let t be a Φ-tree with root predicate
pred(v). Assume we split off a “child tree” tsub with root predicate
predsub(w) from t, i.e., a tree tsub with root(tsub) ∈ succt(root(t)). Then
the only locations that are shared between t and tsub—that is, the
only locations that can occur in a points-to assertion in both tsub and
t \ tsub—are v ∪ w. Put differently, all shared locations must occur
explicitly as parameter of either the root of the “main” tree or the root
of the sub-tree. This is captured for arbitrary sub-trees (as opposed to
child trees) by the following lemma.

Lemma 12.15 (Locations shared between sub-trees). Let t be a Φ-tree

with rootpred(t) = pred(v) and allholes(t) = ∅. Let l ∈ Loc, let tsub
be the sub-tree of t with root l and let trem be the remainder of t, i.e.,

split({t} , {l}) = {tsub, trem} and root(tsub) = l. Assume rootpred(tsub) =

predsub(w). Then ptrlocs(tsub) ∩ ptrlocs(trem) ⊆ v ∪ w.

Proof. Let v ∈ ptrlocs(tsub) ∩ ptrlocs(trem). As v ∈ ptrlocs(tsub), it must
either be allocated or dangling. We handle each case separately.

case v is allocated in tsub . Formally,

v ∈ dom(tsub) = dom(heap(tsub)).

Because we also have v ∈ ptrlocs(trem), v must be dangling in
trem, i.e.,

v ∈ dangling(heap(trem)) ⊆ dangling(heap(t)) ∪ {l} . (†)

If v = l, then v is the root parameter of predsub(w), so v ∈ w ⊆

v ∪ w.

If v 6= l, we recall that Lemma 10.22 guarantees that heap(t) |=Φ

pred(v). As all dangling locations of a model of pred(v) have
to be included in v by Lemma 8.10, it follows from (†) that
v ∈ v ⊆ v ∪ w.

case v is dangling in tsub . Formally, v ∈ dangling(heap(tsub)). As
in the previous case, we obtain that heap(tsub) |=Φ predsub(w)

by Lemma 10.22. Because all dangling locations of a model of
predsub(w) have to be included in w by Lemma 8.10, we have
v ∈ w ⊆ v ∪ w.

This has profound consequences on the type computation for predi-
cate calls. Assume we would like to compute the x-types of all predi-
cates. Pick a rule

pred(fvars(pred)) ⇐ ∃y. (a 7→ b) ⋆ pred1(z1) ⋆ · · · ⋆ predk(zk).
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182 using types to decide guarded separation logic

We begin by fixing some stack s with dom(s) = x ∪ fvars(pred). We
extend this stack to a stack s′ with dom(s′) = dom(s) ∪ y and are left
with computing the types of

(a 7→ b) ⋆ pred1(z1) ⋆ · · · ⋆ predk(zk).

At a first glance, this implies recursively computing the types of the
calls, predi(zi), w.r.t. the variables x′ , x ∪ fvars(pred) ∪ y. We attempt
to do so by picking a rule of predi, say

predi(fvars(predi)) ⇐ ∃y′. (a′ 7→ b′) ⋆ pred′1(z
′
1) ⋆ · · · ⋆ pred

′
k′(z

′
k′).

We start from a stack si with dom(si) = x′ ∪ fvars(predi), extend it
to a stack s′i with dom(s′i) = x′ ∪ fvars(predi) ∪ y′. We then have to
compute the types of the pred′j w.r.t. x′′ , x′ ∪ fvars(predi) ∪ y′.

You see where this is going: the computation diverges as we have
to enlarge the set x again and again.

We can avoid this divergence by using Lemma 12.15. Recall that
every type is the type of a model; and that every model of a predicate
call corresponds to a tree without holes by Lemma 10.5. Computing
the types of a predicate pred thus corresponds to computing the types
of all Φ-trees with root predicate pred and without holes. Computing
the types of pred(fvars(pred)) in terms of the types of the recursive
calls pred1(z1), . . . , predk(zk) thus corresponds to composing the types
of sub-trees. Lemma 12.15 shows that not all locations can be shared
between the sub-trees, so we do not actually have to compute the
types of predi w.r.t. the entire set of variables x′. Likewise, we do not
need to compute the types of pred′j w.r.t. all variables in x′′. Instead, we
restrict these sets of variables to those variables whose interpretation
can actually occur in the models of predi and pred′j. For example, we
restrict x′ to the variables

{
x | s′(x) can occur in the model of predi(zi)

}
.

The first step towards this restriction is the following lemma. Like
Lemma 12.15, we show the lemma for arbitrary sub-trees, as the proof
does not depend on tsub being a “child tree” of t.

Lemma 12.16. Let (pred(fvars(pred)) ⇐ ∃y. ψ) ∈ Φ. Let x be a set of

variables and let s be a stack with dom(s) = x ∪ fvars(pred), s(x) ⊇ v and

s(fvars(pred)) = v. Assume t is a Φ-tree with allholes(t) = ∅ such that

rulet(root(t)) is an instance of the above rule and let u be the sequence of

locations by which the existentially-quantified variables y were instantiated in

the rule instance. Let s′ , s∪ {y 7→ u} be the corresponding stack extension.

Finally, let tsub be a sub-tree of t with rootpred(tsub) = predsub(w). Then

ptrlocs(tsub) ∩ img(s′) ⊆ s′(x) ∪ w.

Proof. Let trem be the unique Φ-tree with split({t} , {l}) = {tsub, trem}.
By Lemma 12.15, ptrlocs(tsub) ∩ ptrlocs(trem) ⊆ v ∪ w. By assumption,
v ⊆ s(x) = s′(x), so

ptrlocs(tsub) ∩ ptrlocs(trem) ⊆ s′(x) ∪ w. (†)
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12.2 computing the types of predicate calls 183

By establishment, every variable in y is eventually allocated. Because
allholes(t) = ∅, we thus have s(y) ⊆ dom(t).

Let y′ , {y ∈ y | s′(y) /∈ w}. It follows from Lemma 12.14 that
s′(y′) ⊆ dom(trem) and thus, in particular, s′(y′) ⊆ ptrlocs(trem). Com-
bining this with (†), we obtain ptrlocs(tsub)∩ s′(y′) = ∅. As img(s′) =
s′(x) ∪ s′(fvars(pred)) ∪ w ∪ s′(y′) and s′(fvars(pred)) = v ⊆ s′(x) by
assumption, we conclude ptrlocs(tsub) ∩ img(s′) ⊆ s′(x) ∪ w.

Let us revisit the divergence argument outlined before Lemma 12.16.
In light of Lemma 12.16, we can avoid divergence: we start from a stack
of size |x| ∪ |fvars(pred)| and perform the recursive type computation
for predi for a stack of size |x| ∪ |fvars(predi)|, because only locations in
s(x) and the locations passed to predi can occur in the model of predi.

Lemma 12.16 is not sufficient to obtain a practical algorithm, because
it only allows computing the types of pred w.r.t. x∪ fvars(pred) in terms
of the types of predi w.r.t. x ∪ zi, where zi are the actual arguments
of the call to predi, consisting of variables from fvars(pred) and some
subset of existentially-quantified variables of size at most fvars(predi).
In other words, even though we are computing the types of pred

w.r.t. the formal arguments of pred, the recursion needs access to the
types of predi w.r.t. the actual arguments of predi.

Because of this dependence on the actual arguments as opposed to
the formal parameters, we might still have to consider many different
stack domains during type computation.

To avoid this, we apply the following trick. We compute the types
of predi w.r.t. x ∪ fvars(predi) (assuming w.l.o.g. that fvars(predi) ∩

fvars(pred) = ∅) and then simply rename the variables to the ac-
tual arguments via ·[fvars(predi)/zi]. This is captured in the following
corollary, which is identical to Lemma 12.16 apart from the definition
of the stack ssub that implements the trick.

Corollary 12.17. Let (pred(fvars(pred)) ⇐ ∃y. (a 7→ b) ⋆ pred1(z1) ⋆

· · · ⋆ predk(zk)) ∈ Φ. Let s be a stack with dom(s) = x ∪ fvars(pred)

with s(x) ⊇ v and s(fvars(pred)) = v. Further, let t be a Φ-tree with

allholes(t) = ∅ such that rulet(root(t)) is an instance of the above rule

and let u be the sequence of locations by which the existentially-quantified

variables y were instantiated in the rule instance. Let tsub be a sub-tree of t

with rootpred(tsub) = predsub(w). Finally, define

s′ , s∪ {y 7→ u} ssub , s′ ∪ {fvars(predsub) 7→ w} .

Then ptrlocs(tsub) ∩ img(s′) ⊆ img(ssub).

Proof. By Lemma 12.16, ptrlocs(tsub) ∩ img(s′) ⊆ s′(x) ∪ w. By con-
struction, img(ssub) = s′(x) ∪ w.

It is thus possible to compute the types of pred w.r.t. x ∪ fvars(pred)

in terms of the types of predi w.r.t. x ∪ fvars(predi). Our next goal is to
develop an algorithm that does exactly that.
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184 using types to decide guarded separation logic

12.2.3 A Fixed-Point Algorithm for Computing the Types of Predicates

For the remainder of this section, we fix a pointer-closed SID Φ ∈

IDbtw and a finite set of variables x, for which we assume w.l.o.g. that
x ∩ fvars(pred) = ∅ for all pred ∈ Preds(Φ).

Our goal in this section is to compute for every predicate pred ∈

Preds(Φ) the set of all x-types of pred. Specifically, we will compute
the set

TypesΣ
Φ(pred) , TypesΣ

Φ(pred(fvars(pred))).

for all aliasing constraints Σ ∈ ACfvars(pred)∪x.
Once we have a way to compute these types, we can also compute

the types of all SLIDg
btw formulas with free variables x, as we will see

in Section 12.3.
We compute TypesΣ

Φ(pred) for all choices of Σ and pred by a simul-
taneous fixed-point computation. Specifically, we compute a (partial)
function

p : Preds(Φ)× AC ⇀ 2Types(Φ)

that maps every predicate pred and every Σ ∈ ACx∪fvars(pred) to the
types TypesΣ

Φ(pred). We start off the fixed-point computation with
p(pred, Σ) = ∅ for all predicates pred and aliasing constraints Σ; each
iteration adds to p some more types such that after each iteration,
p(pred, Σ) is a subset of TypesΣ

Φ(pred); and when we reach the fixed
point, p(pred, Σ) = TypesΣ

Φ(pred) holds for all pred and Σ.
Each iteration of the fixed-point computation consists in applying

the function ptypesx
p(φ, Σ) defined in Fig. 12.1 to all rule bodies φ ∈

SH∃ of the SID Φ and all stack-aliasing constraints Σ. Here, p is the
pre-fixed point from the previous iteration.

In Fig. 12.1, we use the following two auxiliary definitions.

• ptrmodelΣ(a 7→ b) denotes an arbitrary stack–heap pair (s, h)
with aliasing(s) = Σ and (s, h) |=Φ a 7→ b.

• We lift stack instantiation (Definition 11.33) to stack-aliasing
constraints: Let Σ be a stack-aliasing constraint, let x be a permu-
tation of dom(Σ), and let y ∈ Var|dom(Σ)|. If there exist stacks s, s′

such that (1) aliasing(s) = Σ and (2) s′ is the [x/y]-instantiation of
s, then we define Σ[x/y] , aliasing(s′). Otherwise Σ[x/y] , ⊥.
Note that |Σ| = |Σ[x/y]|, reflecting that the instantiation does
not merge equivalence classes of Σ.

Informally, the function ptypesx
p(φ, Σ) works as follows.

• Recall that according to our semantics, (dis)equalities only hold
in the empty heap. Consequently, if φ is a (dis)equality, we look
up in the aliasing constraint whether the (dis)equality holds and
return either the type of the empty model or no type.
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12.2 computing the types of predicate calls 185

ptypesx
p(x ≈ y, Σ) , if 〈x, y〉 ∈ Σ then {{emp}} else ∅

ptypesx
p(x 6≈ y, Σ) , if 〈x, y〉 /∈ Σ then {{emp}} else ∅

ptypesx
p(a 7→ b, Σ) , {typeΦ(ptrmodelΣ(a 7→ b))}

ptypesx
p(pred(y), Σ) , let C ,

{

Σ′ ∈ ACx∪fvars(pred) |

Σ′[fvars(pred)/y] = Σ|x∪y

}

in
⋃
{p(pred, Σ′)[fvars(pred)/y] | Σ′ ∈ C}

ptypesx
p(φ1 ⋆ φ2, Σ) , ptypesx

p(φ1, Σ) • ptypesx
p(φ2, Σ)

ptypesx
p(∃y. φ, Σ) , let z , dom(Σ),

C ,
{

Σ′ ∈ ACz∪{y} | Σ′|z = Σ
}

in
⋃
{

forgetΣ′,y(ptypes
x
p(φ, Σ′)) | Σ′ ∈ C

}

Figure 12.1: Computing (a subset of) the Φ-types of existentially-quantified
symbolic heap φ ∈ SH∃ for stacks with stack-aliasing constraint
Σ under the assumption that p maps every predicate symbol
pred and every stack-aliasing constraint to (a subset of) the types
TypesΣ

Φ(pred).

• If φ = a 7→ b, there is up to isomorphism only one model with
stack-aliasing constraint Σ that satisfies φ. We return the type of
this model.

• If φ = pred(y), we look up the types of pred(fvars(pred)) in
the pre-fixed point p and then rename the formal parameters
fvars(pred) to the actual arguments y.

Crucially, we look up in p only types w.r.t. aliasing constraints
over the variables x ∪ fvars(pred), which in general need not
contain all variables in dom(Σ)—in particular, if the predicate
call occurs in scope of existential quantifiers.

This restriction guarantees that the computation of ptypesx
p(φ, Σ)

does not diverge by considering larger and larger aliasing con-
straints in recursive calls. See Corollary 12.17 for a justification
of the restriction.

• If φ = φ1 ⋆ φ2, we simply compose the types of the subformulas.

• If φ = ∃y. φ′, we consider all ways to extend the aliasing con-
straint Σ with y and recurse. Our treatment of predicate calls
outlined above guarantees that this does not lead to divergence.
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186 using types to decide guarded separation logic

We wrap ptypes in a fixed-point computation as follows.

unfoldx : (Preds(Φ)× AC ⇀ 2Types(Φ))

→ (Preds(Φ)× AC ⇀ 2Types(Φ)),

unfoldx(p) = λ(pred, Σ). p(pred, Σ) ∪
⋃

(pred(y)⇐φ)∈Φ

ptypesx
p(Σ, φ),

lfp(unfoldx) , lim
n∈N

unfoldn
x(λ(pred

′, Σ′). ∅).

convergence . The fixed point will always be reached after finitely
many iterations. To see this, we first recall our underlying ordering,

f ⊑ g , ∀pred∀Σ. f (pred, Σ) ⊆ g(pred, Σ).

Note that

1. unfoldn
x(λ(pred

′, Σ′). ∅) ⊑ unfoldn+1
x (λ(pred′, Σ′). ∅) for all n;

2. the domain of the computed functions is given by
{

〈pred, Σ〉 | pred ∈ Preds(Φ), Σ ∈ ACx∪fvars(pred)
}

and thus of a fixed, finite size; and

3. the image of the computed functions, 2Types(Φ), is finite.

In other words, there are only finitely many functions that can be
returned by an iteration of the function; and every iteration returns
a larger function w.r.t. ⊑. Consequently, lfp(unfoldx) is the least fixed
point of unfoldx and is reached after finitely many iterations.

correctness . To show the correctness of the fixed-point compu-
tation, we proceed as follows.

1. We show lfp(unfoldx)(pred, Σ) ⊆ TypesΣ
Φ(pred) in Section 12.2.4.

2. We show lfp(unfoldx)(pred, Σ) ⊇ TypesΣ
Φ(pred) in Section 12.2.5.

3. We use these results and perform a complexity analysis in
Section 12.2.6 to conclude that TypesΣ

Φ(pred) is computable in
double-exponential time.

12.2.4 Soundness of the Type Computation

We first show that lfp(unfoldx)(pred, Σ) ⊆ TypesΣ
Φ(pred). To show this,

we first need to establish that ptypesx
p(Σ, φ) is sound when φ is a

rule of pred—i.e., that ptypesx
p(Σ, φ) ⊆ TypesΣ

Φ(φ)—under the assump-
tion that p maps every pair of predicate identifier and stack-aliasing
constraint to a subset of the corresponding types. As SID rules are
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12.2 computing the types of predicate calls 187

guaranteed to be existentially-quantified symbolic heaps, it suffices to
prove this result for arbitrary φ ∈ SH∃.

As preparation, we need a few simple lemmas characterizing the
types of atomic formulas.

Lemma 12.18. For all Σ, TypesΣ
Φ(emp) = {{emp}}.

Proof. Let (s, h) be a model with typeΦ(s, h) ∈ TypesΣ
Φ(emp) and

aliasing(s) = Σ. By definition, (s, h) |=Φ emp and thus h = ∅, which
in turn implies that alloced(s, h) = ∅. Moreover, emp ∈ typeΦ(s, h)
because emp = project(s, {∅}) and ∅ ∈ forestsΦ(h). Putting this to-
gether, we obtain typeΦ(s, h) = 〈Σ, F, ∅〉 for some F ⊇ {emp}.

Assume ψ ∈ F. By definition, there is a Φ-forest f = {t1, . . . , tk} with
project(s, f) = ψ and heap(f) = h. As h = ∅, we have heap(f) = ∅ and
thus heap(ti) = ∅ for all i. Hence, k = 0. By definition of stack–forest
projection, we then have ψ = emp. Therefore, F ⊆ {emp}. Since (s, h)
was an arbitrary model of φ with typeΦ(s, h) ∈ TypesΣ

Φ(emp) and
aliasing(s) = Σ, we have

TypesΣ
Φ(emp) = {{emp}} = ptypesx

p(Σ, emp).

Lemma 12.19. Let Σ be a stack-aliasing constraint and x, y ∈ dom(Σ). If

(x, y) ∈ Σ, then TypesΣ
Φ(x ≈ y) = {{emp}} and TypesΣ

Φ(x 6≈ y) = ∅.

Otherwise, TypesΣ
Φ(x 6≈ y) = {{emp}} and TypesΣ

Φ(x ≈ y) = ∅.

Proof. We only consider the case x ≈ y, as the argument for x 6≈ y is
completely analogous. If 〈x, y〉 ∈ Σ, our semantics of equalities gives
us that TypesΣ

Φ(emp) = TypesΣ
Φ(x ≈ y). The claim then follows from

Lemma 12.18. If 〈x, y〉 /∈ Σ, it holds for all s with aliasing(s) = Σ that
s(x) 6= s(y). The semantics of x ≈ y then give us for all heaps h that
(s, h) 6|=Φ x ≈ y. Consequently, TypesΣ

Φ(x ≈ y) = ∅.

Lemma 12.20. Let Σ be a stack-aliasing constraint, let a ∈ dom(Σ), and

let b ∈ Var∗ with b ⊆ dom(Σ). Then

TypesΣ
Φ(a 7→ b) = {typeΦ(ptrmodelΣ(a 7→ b))} .

Proof. “⊇” Let (s, h) , ptrmodelΣ(a 7→ b) and T , typeΦ(s, h). By
definition, (s, h) |=Φ a 7→ b. Hence, T ∈ TypesΣ

Φ(a 7→ b).

“⊆” Let (s, h) be an arbitrary model with typeΦ(s, h) ∈ TypesΣ
Φ(a 7→

b) and aliasing(s) = Σ. By definition, (s, h) |=Φ a 7→ b and
thus h = {s(a) 7→ s(b)} by the semantics of points-to assertions.
Consequently, (s, h) ∼= ptrmodelΣ(a 7→ b) and

typeΦ(s, h) = typeΦ(ptrmodelΣ(a 7→ b)).

Since (s, h) was an arbitrary model of φ with typeΦ(s, h) ∈

TypesΣ
Φ(a 7→ b) and aliasing(s) = Σ, we have TypesΣ

Φ(a 7→

b) ⊆ {typeΦ(ptrmodelΣ(a 7→ b))}.
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188 using types to decide guarded separation logic

We are now ready to prove the “relative soundness” of ptypes for
arbitrary symbolic heaps: if the parameter p (which is the pre-fixed
point from the previous iteration) maps predicates and aliasing con-
straints to a subset of the corresponding types, the same property
holds for the function computed in the next iteration (which consists
in evaluating ptypes for all predicates and aliasing constraints).

Lemma 12.21. Let φ ∈ SH∃ and Σ ∈ AC with dom(Σ) ⊇ fvars(φ).

Moreover, let

p : Preds(Φ)× AC ⇀ 2Types(Φ)

be such that for all pred ∈ Preds(Φ) and all Σ′ ∈ ACx∪fvars(pred), it holds

that p(pred, Σ′) ⊆ TypesΣ′

Φ (pred). Then ptypesx
p(φ, Σ) ⊆ TypesΣ

Φ(φ).

Proof. We proceed by induction on the structure of φ.

cases φ = x ≈ y, φ = x 6≈ y. The claim follows from Lemma 12.19.

case φ = a 7→ b. The claim follows from Lemma 12.20.

case φ = pred(y). Let T ∈ ptypesx
p(Σ, φ). By definition of ptypes,

there is a stack-aliasing constraint Σ′ ∈ ACx∪fvars(pred) such that
Σ′[fvars(pred)/y] = Σ|x∪y and T ∈ p(pred, Σ′)[fvars(pred)/y].

By assumption, p(pred, Σ′) ⊆ TypesΣ′

Φ (pred), so there exists a
T ′ ∈ TypesΣ′

Φ (pred) such that T ∈ T ′[fvars(pred)/y]. By defini-
tion of TypesΣ′

Φ (pred), there is model (s′, h) with typeΦ(s
′, h) =

T ′ and (s′, h) |=Φ pred(fvars(pred)).

Note that because Σ′[fvars(pred)/y] 6= ⊥, we know that there is
a stack s such that s is the [fvars(pred)/y]-instantiation of s′ and
aliasing(s) = Σ′[fvars(pred)/y] = Σ|x∪y.

By Lemma 11.34, (s, h) |=Φ pred(y) (†).

By Lemma 11.36, T = typeΦ(s
′, h)[fvars(pred)/y] = typeΦ(s, h).

Together with (†), this implies that T ∈ Types
Σ|x∪y

Φ (pred(y)).
Consequently, it also holds that T ∈ TypesΣ

Φ(pred(y)).
1

case φ = φ1 ⋆ φ2 . Let T ∈ ptypesx
p(Σ, φ1 ⋆ φ2). By definition, T ∈

ptypesx
p(Σ, φ1) • ptypes

x
p(Σ, φ2). From the induction hypotheses

for φ1 and φ2, we obtain

T ∈ TypesΣ
Φ(φ1) • TypesΣ

Φ(φ2).

By Lemma 12.13, T ∈ TypesΣ
Φ(φ1 ⋆ φ2).

1 This, in fact, only holds up to normalization of variable names. It might be the

case that there exists a variable z with max [z]Σ= > max [z]
Σ|x∪y
= , in which case some

variable names in the formulas in T might be different than the variable names used
in TypesΣ

Φ(pred(y)). This can be avoided easily by a normalization step similar to
Definition 11.35, which I have not included in Fig. 12.1 to reduce clutter.
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12.2 computing the types of predicate calls 189

case φ = ∃y. φ. Let T ∈ ptypesx
p(Σ, ∃y. φ). By definition, there exist a

stack-aliasing constraint Σ′ ∈ ACdom(Σ)∪{y} with Σ′|dom(Σ) = Σ

and a type T ′ ∈ ptypesx
p(φ, Σ′) such that T = forgetΣ′,y(T

′).

By the induction hypothesis, we have that T ′ ∈ TypesΣ′

Φ (φ).
Consequently, there exists a model (s, h) with (s, h) |=Φ φ and
typeΦ(s, h) = T ′.

Let s′ be the restriction of s to dom(s) \ {y}. Note that estab-
lishment guarantees that s(y) ∈ locs(h). We can thus apply
Lemma 11.38 and obtain

T = typeΦ(s
′, h) = forgetΣ′,y(typeΦ(s, h)) = forgetΣ′,y(T

′).

Moreover, because (s, h) |=Φ φ, we have by Lemma 8.3 that
(s′, h) |=Φ ∃y. φ. Consequently, T ∈ TypesΣ

Φ(∃y. φ).

Theorem 12.22. lfp(unfoldx)(pred, Σ) ⊆ TypesΣ
Φ(pred).

Proof. A straightforward induction on top of Lemma 12.21.

12.2.5 Completeness of the Type Computation

Our next goal is to prove that lfp(unfoldx)(pred, Σ) ⊇ TypesΣ
Φ(pred).

The main challenge is to show the completeness of our treatment of
predicate calls: we need to show that ptypes discovers all types even
though ptypesx

p(pred(y), Σ) restricts the stack-aliasing constraint Σ to
x ∪ y. To this end, we will use the consequences of the establishment
property derived in Section 12.2.2.

Before we continue, recall that throughout this section, we assume
x ∩

⋃

pred∈Preds(Φ) fvars(pred) = ∅.
We will show that the fixed-point algorithm discovers for all predi-

cates pred and all Σ ∈ ACx∪fvars(pred) all the types

{typeΦ(s, heap(t)) | aliasing(s) = Σ,

rootpred(t) = pred(s(fvars(pred))),

allholes(t) = ∅}.

This set contains all Σ-types of pred(fvars(pred)) because every model
corresponds to at least one such Φ-tree by Lemma 10.5.

Lemma 12.23. Let s be a stack with dom(s) = x ∪ fvars(pred) and

s(fvars(pred)) = v and let t be a Φ-tree with rootpred(t) = pred(v) and

allholes(t) = ∅. Then

typeΦ(s, heap(t)) ∈ unfold
height(t)+1
x (λ(pred′, Σ′). ∅)(pred, aliasing(s)).

Proof. Define h , heap(t), r , root(t), and Σ , aliasing(s). We prove
the claim by induction on height(t).
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190 using types to decide guarded separation logic

Induction base: height(t) = 0. Because allholes(t) = ∅, there exists
a non-recursive rule2

(pred(fvars(pred)) ⇐ (y 7→ z) ⋆ Π) ∈ Φ

such that r is labeled with an instance of this rule, i.e., such that
there exist a location a, a sequence of locations b and a (trivial) pure
constraint Π′ such that

rulet(r) = pred(v) ⇐ (a 7→ b) ⋆ Π′,

((y 7→ z) ⋆ Π)[fvars(pred)/v] = (a 7→ b) ⋆ Π′ and

h = {a 7→ b} .

By construction, we then have (s, h) |=Φ y 7→ z, and thus

(s, h) ∼= ptrmodelΣ(y 7→ z).

Consequently,

typeΦ(s, h) ∈ ptypesx
p(y 7→ z, Σ)

for p = λ(pred′, Σ′). ∅. Then,

unfold
height(t)+1
x (λ(pred′, Σ′). ∅)(pred, Σ)

=unfoldx(λ(pred
′, Σ′). ∅)(pred, Σ)

=
⋃

(pred(fvars(pred))⇐φ)∈Φ

ptypesx
λ(pred′,Σ′).∅(Σ, φ)

⊇ptypesx
p((y 7→ z) ⋆ Π, Σ)

=ptypesx
p(y 7→ z, Σ)

⊇{typeΦ(s, h)} .

Induction step: height(t) ≥ 1. There is a recursive rule (pred(x) ⇐

φ) ∈ Φ, for some φ = ∃e. φ′, φ′ = (y 7→ z) ⋆ pred1(z1) ⋆ · · · ⋆

predk(zk) ⋆ Π, Π pure, such that

1. (s, h) |=Φ φ, and

2. rulet(r) = pred(v) ⇐ φ′[fvars(pred) · e/v · m] for some m ∈ Loc∗,
i.e., the root of t is labeled with an instance of the rule.

Let s′ ⊇ s be a stack with dom(s′) = dom(s) ∪ e and (s′, h) |=Φ φ′;
such a stack exists by Lemma 8.3. (Assuming w.l.o.g. that e∩dom(s) =

∅.) By the semantics of ⋆ and Corollary 8.13, there exist h0, . . . , hk such
that the models (s, hi) are guarded, h = h0 + · · ·+ hk, (s′, h0) |=Φ y 7→

z, and (s′, hi) |=Φ predi(zi) for i ≥ 1.

2 Recall from Section 8.3 that we assume w.l.o.g. that non-recursive rules do not contain
existentials.
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12.2 computing the types of predicate calls 191

We define

Σ′ , aliasing(s′)

T0 , typeΦ(ptrmodelΣ′(y 7→ z))

Ti , typeΦ(s
′, hi), i ≥ 1

〈s1, . . . , sk〉 , succt(t)

Let ti be the sub-tree of t with root si and let vi be a sequence of
locations such that rootpred(ti) = predi(vi).

For 1 ≤ i ≤ k, let si , s ∪ {fvars(predi) 7→ s′(zi)}. Define T ′
i ,

typeΦ(si, hi) and Σi , aliasing(si). Corollary 12.17 then gives us that
ptrlocs(ti) ∩ img(s′) ⊆ img(si) = s′(x) ∪ s′(zi). By construction, this
is equivalent to

ptrlocs(ti) ∩ img(s′) ⊆ s′(x) ∪ s′(zi). (†)

Let s′′ be the restriction of s′ to x ∪ zi.
Observe that s′′ is the [fvars(predi)/zi]-instantiation of si. It follows

by Lemma 11.36 that T ′
i [fvars(predi)/zi] = typeΦ(s

′′, hi). Moreover,
because only the locations in img(s) can actually occur in hi by (†),
we have typeΦ(s

′′, hi) = typeΦ(s, hi). Putting this together, we obtain

Ti = T ′
i [fvars(predi)/zi]. (‡)

Finally, note that height(ti) < height(t). Consequently, we can apply
the induction hypothesis to obtain that

T ′
i =typeΦ(si, hi)

∈unfold
height(ti)+1
x (λ(pred′, Σ′). ∅)(predi, aliasing(si))

⊑unfold
height(t)
x (λ(pred′, Σ′). ∅)(predi, Σi). (♣)

We are now in a position to prove the claim. Let

p , unfold
height(t)
x (λ(pred′, Σ′). ∅) and

Σi , aliasing(si).

Then,

unfold
height(t)+1
x (λ(pred′, Σ′). ∅)(pred, Σ)

=
⋃

(pred(fvars(pred))⇐φ)∈Φ

ptypesx
p(Σ, φ)

⊇ptypesx
p(Σ, ∃e. φ′)

⊇forgetΣ′,e(ptypes
x
p(φ

′, Σ′))

=forgetΣ′,e(ptypes
x
p(y 7→ z, Σ′) • ptypesx

p(pred1(z1), Σ′)

• · · · • ptypesx
p(pred1(zk), Σ′))
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192 using types to decide guarded separation logic

=forgetΣ′,e({T0} • ptypes
x
p(pred1(z1), Σ′)

• · · · • ptypesx
p(pred1(zk), Σ′))

⊇forgetΣ′,e({T0} • p(pred1, Σ1)[fvars(pred1)/z1]

• · · · • p(predk, Σk)[fvars(predk)/zk])

⊇forgetΣ′,e({T0} •
{
T ′

1
}
[fvars(pred1)/z1])

• · · · •
{
T ′

k

}
[fvars(predk)/zk] (by (♣))

=forgetΣ′,e({T0 • T1 · · · • Tk}) (by (‡))

=
{
forgetΣ′,e(typeΦ(s

′, h))
}

(by Corollary 11.32)

= {typeΦ(s, h)} . (by Lemma 11.38, as s(e) ⊆ dom(h))

Put differently, typeΦ(s, h) ∈ unfold
height(t)+1
x (λ(pred′, Σ′). ∅)(pred, Σ).

Completeness then follows by exploiting the one-to-one correspon-
dence between Φ-trees without holes and the models of a predicate.

Theorem 12.24. Let pred ∈ Preds(Φ) with fvars(pred) = 〈z1, . . . , zk〉.

Let y , 〈y1, . . . , yk〉 ⊆ x. Assume (s, h) |=Φ pred(y) and let s′ , s ∪

{z1 7→ s(y1), . . . , zk 7→ s(yk)}. Then

typeΦ(s, h) ∈
(
lfp(unfoldx)(pred, aliasing(s′))

)
[fvars(pred)/y].

Proof. By Lemma 10.5, there exists a Φ-tree t with rootpred(t) =

pred(s(y)), allholes(t) = ∅ and heap({t}) = h. We apply Lemma 12.23

to t, obtaining

typeΦ(s
′, heap(t)) ∈ unfold

height(t)+1
x (λ(pred′, Σ′). ∅)(pred, aliasing(s′)).

Recalling that lfp(unfoldx) = limn∈N unfoldn
x(λ(pred

′, Σ′). ∅) and h =

heap(t), we get

typeΦ(s
′, h) ∈ lfp(unfoldx)(pred, aliasing(s′)). (†)

Note that s is the [fvars(pred)/y]-instantiation of s′, because y ⊆ x by
assumption. By Lemma 11.36, we then have

typeΦ(s
′, h)[fvars(pred)/y] = typeΦ(s, h),

where the latter equality follows because y ⊆ x by assumption. Com-
bining this identity with (†), we conclude

typeΦ(s, h) ∈
(
lfp(unfoldx)(pred, aliasing(s′))

)
[fvars(pred)/y].

12.2.6 Correctness and Complexity of the Fixed-Point Computation

Together, the results of Sections 12.2.4 and 12.2.5 imply that the fixed
point lfp(unfoldx) contains all and only the Φ-types of all predicates
and stack-aliasing constraints.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

12.2 computing the types of predicate calls 193

Theorem 12.25. For all pred ∈ Preds(Φ) and Σ ∈ ACx∪fvars(pred), it

holds that lfp(unfoldx)(pred, Σ) = TypesΣ
Φ(pred).

Proof. Immediate from Theorems 12.22 and 12.24.

To derive the double-exponential complexity bound, we first inves-
tigate the complexity of computing the types of points-to assertions.

Intuitively, the models of points-to assertions correspond to Φ-
trees of size 1. To compute the types of a points-to assertion a 7→ b,
we thus systematically enumerate all such trees and check for each
tree whether the points-to assertion in the tree node is identical to
s(a) 7→ s(b).

Lemma 12.26. Let Σ be a stack-aliasing constraint, let a ∈ dom(Σ),

and let b ∈ Var∗ with b ⊆ dom(Σ). Let n , |Φ| + |dom(Σ)|. Then

typeΦ(ptrmodelΣ(a 7→ b)) is computable in 2O(n log(n)).

Proof. Let (s, h) = ptrmodelΣ(a 7→ b). Let

k , max
pred∈Preds(Φ)

|fvars(pred)| − 1.

We set L , img(s) ∪ {l1, . . . , lk}, assuming w.l.o.g. that img(s) ∩
{l1, . . . , lk} = ∅. Clearly, |L| ∈ O(n). Now define

R ,{pred(l) ⇐ (v 7→ w) ⋆ φ ∈ RuleInst(Φ) | l ∈ L∗,

predroot(pred(l)) ∈ img(s), s(a) = v, s(b) = w}

Recall that in every predicate call in every DUSH, at least the root
parameter is a stack variable. By “padding” the set L with l1, . . . , lk,
we have ensured that it is possible for all other locations to be pairwise
different non-stack variables, i.e., universally or existentially-quantified
variables. R thus contains rule instances for every possible assignment
of stack- and non-stack locations to parameters.

Then typeΦ(s, h) is given by

{project(s, {{a 7→ 〈∅,R〉}}) | R ∈ R} .

The complexity bound follows immediately from the fact that the
Φ contains at most n predicates and |L| ∈ O(n), which imply that
|R| ≤ n · nn ∈ 2O(n log(n)).

Because (1)
∣
∣TypesΣ(Φ)

∣
∣ ∈ 22O(n2 log(n))

, and (2) there are only expo-
nentially many different stack-aliasing constraint Σ, the fixed-point
algorithm terminates after doubly-exponentially many iterations. The
double-exponential complexity bound then follows by examining the
time spent in each iteration.

Theorem 12.27 (Complexity of the fixed-point computation). Let n ,

|Φ|+ |x|. Then lfp(unfoldx) can be computed in 22O(n2 log(n))
.
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194 using types to decide guarded separation logic

Proof. By Lemma 11.39, it holds that |Typess(Φ)| ∈ 22O(n2 log(n))
for all

s with dom(s) = x. The number of predicates of Φ is bounded by n

and the number of different stack-aliasing constraints over x is given
by the |x|-th Bell number, bounded by nn ∈ O(2n log(n)). Consequently,
the number of functions with signature Preds(Φ)× AC ⇀ 2Types(Φ)

is bounded by

n · O(2n log(n)) · 22O(n2 log(n))
= 22O(n2 log(n))+2

= 22O(n2 log(n))
.

Since every iteration of the fixed-point computation discovers at least

one new type, the computation terminates after at most 22O(n2 log(n))

many iterations. Each iteration consists in computing

• for every predicate pred ∈ Preds(Φ) (of which there are at most
n),

• for every stack-aliasing constraint Σ ∈ ACx (of which there are
at most O(2n log(n))),

• for every rule pred(fvars(pred)) ⇐ φ ∈ Φ (of which there are at
most n),

the function ptypesx
p(φ, Σ), where p is the pre-fixed point from the

previous iteration.
Consequently, each iteration consists of at most n · O(2n log(n)) · n =

O(2n log(n)) many invocations of calls of the form ptypesx
p(φ, Σ), where

φ is a rule body. There are additional recursive calls, but at most
|φ| ≤ n for each rule body φ, so the total number of invocations of
ptypes remains in O(2n log(n)).

Now observe that:

1. If φ is a (dis-)equality, the evaluation of ptypesx
p(φ, Σ) takes con-

stant time.

2. The evaluation of ptypesx
p(φ, Σ) for points-to assertions can be

done in time O(2n log(n)) by Lemma 12.26.

3. The evaluation of the three operations •, ·[·/·], and forget·,·(·)

each takes time polynomial in the size of the types to which
the operation is applied. For ·[·/·], and forget·,·(·), this is trivial.
For the composition operation, •, the polynomial bound follows
from the facts that (1) we apply merge to polynomially many
formulas (namely to all pairs of formulas in the types that are
composed), (2) the number of ⊲ steps that can be applied is
bounded by the length of the formula and (3) each ⊲ step can
be computed in polynomial time.

4. As Lemma 11.16 bounds the size of each type by 2O(n2 log(n)), this
yields a bound of 2poly(n) for each of the ·[·/·], forget·,·(·), and •

operations.
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12.3 computing the types of guarded formulas 195

types(emp, Σ) , {{emp}}

types(x ≈ y, Σ) , if 〈x, y〉 ∈ Σ then {{emp}} else ∅

types(x 6≈ y, Σ) , if 〈x, y〉 /∈ Σ then {{emp}} else ∅

types(a 7→ b, Σ) , {typeΦ(ptrmodelΣ(a 7→ b))}

types(pred(y), Σ) , let Σ′ ∈ ACdom(Σ)∪fvars(pred) be the unique

aliasing constraint with Σ = Σ′[fvars(pred)/y]

in
(
lfp(unfoldx)(pred, Σ′)

)
[fvars(pred)/y]

types(φ1 ⋆ φ2, Σ) , types(φ1, Σ) • types(φ2, Σ)

types(φ1 ∧ φ2, Σ) , types(φ1, Σ) ∩ types(φ2, Σ)

types(φ1 ∨ φ2, Σ) , types(φ1, Σ) ∪ types(φ2, Σ)

types(φ1 ∧ ¬φ2, Σ) , types(φ1, Σ) \ types(φ2, Σ)

types(φ0 ∧ (φ1 −©⋆ φ2), Σ) ,

{T ∈ types(φ0, Σ) | ∃T ′ ∈ types(φ1, Σ). T • T ′ ∈ types(φ2, Σ)}

types(φ0 ∧ (φ1 −⋆ φ2), Σ) ,

{T ∈ types(φ0, Σ) | ∀T ′ ∈ types(φ1, Σ). T • T ′ ∈ types(φ2, Σ)}

Figure 12.2: Computing the Φ-types of quantifier-free guarded formula φ ∈
SLID

g
btw

for stacks with stack-aliasing constraint Σ.

5. Again by Lemma 11.39, the number of types to which each

function is applied is bounded by 22O(n2 log(n))
.

We thus obtain that the evaluation of ptypesx
p(φ, Σ) for a fixed formula

φ, not taking into account the evaluation time of recursive calls, takes
at most time

2O(poly(n)) · 22O(n2 log(n))
= 22O(n2 log(n))

.

The total run time of the fixed-point computation is thus bounded by

O(2n log(n))
︸ ︷︷ ︸

number of calls to ptypes

· 22O(n2 log(n))

︸ ︷︷ ︸

evaluation time per call

= 22O(n2 log(n))
.

12.3 computing the types of guarded formulas

Now that we know how to compute the types of predicate calls, we
are ready to define a function types(φ, Σ) that computes the types of
arbitrary SLIDg

btw formulas φ—i.e., quantifier-free guarded formulas—
for fixed stack-aliasing constraint Σ. I define the function types in
Fig. 12.2.

Theorem 12.28 (Correctness of type computation). Let φ ∈ SLIDg
btw

with fvars(φ) = x and locs(φ) = ∅. Let Σ ∈ ACx. Then TypesΣ
Φ(φ) =

types(φ, Σ).
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196 using types to decide guarded separation logic

Proof. We proceed by induction on φ.

case φ = emp. The claim follows from Lemma 12.18.

case φ = x ≈ y.] The claim follows from Lemma 12.19.

case φ = x 6≈ y. The claim follows from Lemma 12.19.

case φ = a 7→ b. The claim follows from Lemma 12.20.

case φ = pred(y). Let T ∈ TypesΣ
Φ(φ). Let (s, h) be a model with

aliasing(s) = Σ, (s, h) |=Φ pred(y) and T = typeΦ(s, h). Such a
model must exist by the definition of TypesΣ

Φ(·).

Let s′ , s ∪ {fvars(pred) 7→ s(y)}. It is easy to see that s is a
[fvars(pred)/y]-instantiation of s′.

Let Σ′ , aliasing(s′) and T ′ , typeΦ(s
′, h). It follows from

Lemma 11.36 that T ′[fvars(pred)/y] = typeΦ(s, h) = T (†). Since
(s, h) |=Φ pred(y), we obtain (s′, h) |=Φ pred(fvars(pred)) and
thus T ′ ∈ TypesΣ′

Φ (pred(fvars(pred))).

Now observe that:

1. By construction, Σ′ is the unique stack-aliasing constraint
with Σ = Σ′[fvars(pred)/y].

2. By Theorem 12.25,

lfp(unfoldx)(pred, Σ′) = TypesΣ′

Φ (pred(fvars(pred))),

so T ′ ∈ lfp(unfoldx)(pred, Σ′).

3. T = T ′[fvars(pred)/y] by (†).

Consequently, T ∈ types(pred(y), Σ).

Conversely, let T ∈ types(pred(y), Σ). Write Σ′ for the unique
stack-aliasing constraint with Σ = Σ′[fvars(pred)/y]. Then T ∈
(
lfp(unfoldx)(pred, Σ′)

)
[fvars(pred)/y]. By Theorem 12.25, this guar-

antees that

T ∈ TypesΣ′

Φ (pred(fvars(pred)))[fvars(pred)/y].

Since 〈yi, zi〉 ∈ Σ′, where yi and zi denote the i-th elements of y

and z and 1 ≤ i ≤ |y|, it follows that

T ∈ TypesΣ′

Φ (pred(y))[fvars(pred)/y].

After instantiating fvars(pred) with y, we are left with the original
stack-aliasing constraint Σ, so it holds that

TypesΣ′

Φ (pred(y))[fvars(pred)/y] = TypesΣ
Φ(pred(y)).

Thus, T ∈ TypesΣ
Φ(pred(y)).
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12.3 computing the types of guarded formulas 197

case φ = φ1 ⋆ φ2 .

TypesΣ
Φ(φ1 ⋆ φ2)

=TypesΣ
Φ(φ1) • TypesΣ

Φ(φ2) (by Lemma 12.13)

=types(φ1, Σ) • types(φ2, Σ)

(by the induction hypotheses)

=types(φ1 ⋆ φ2, Σ).

case φ = φ1 ∧ φ2 . Let T ∈ TypesΣ
Φ(φ). Let (s, h) be a model with

aliasing(s) = Σ, (s, h) |=Φ φ1 ∧ φ2 and T = typeΦ(s, h). Such a
model must exist by the definition of TypesΣ

Φ(·). Then (s, h) |=Φ

φ1 and (s, h) |=Φ φ2 by the semantics of ∧. Consequently, T ∈

TypesΣ
Φ(φ1) and T ∈ TypesΣ

Φ(φ2), i.e.,

T ∈ TypesΣ
Φ(φ1) ∩ TypesΣ

Φ(φ2).

By the induction hypotheses, TypesΣ
Φ(φi) = types(φi, Σ), 1 ≤ i ≤

2. Consequently, T ∈ types(φ1, Σ) ∩ types(φ2, Σ) = types(φ, Σ).

Conversely, let T ∈ types(φ, Σ) = types(φ1, Σ) ∩ types(φ2, Σ). By
the induction hypotheses, we then have T ∈ TypesΣ

Φ(φ1) and
T ∈ TypesΣ

Φ(φ2). Let (s, h) be a model with aliasing(s) = Σ,
(s, h) |=Φ φ1 and T = typeΦ(s, h). Because T ∈ TypesΣ

Φ(φ2)

and (s, h) ∈ ModelsgΦ (by Lemma 8.9), it follows from Corol-
lary 12.12 that (s, h) |=Φ φ2. Hence, (s, h) |=Φ φ1 ∧ φ2, implying
T ∈ TypesΣ

Φ(φ).

case φ = φ1 ∨ φ2 . Analogously.

case φ = φ1 ∧ ¬φ2 . Analogously.

case φ = φ0 ∧ (φ1 −©⋆ φ2). Let T ∈ TypesΣ
Φ(φ). Let (s, h) be a model

with aliasing(s) = Σ, (s, h) |=Φ φ0 and (s, h) |=Φ φ1 −©⋆ φ2 and
T = typeΦ(s, h). Such a model must exist by the definition of
TypesΣ

Φ(·). By the induction hypothesis, T ∈ types(φ0, Σ) (†). By
the semantics of −©⋆ , there exists a heap h1 with (s, h1) |=Φ φ1 and
(s, h+h1) |=Φ φ2. Let T1 , typeΦ(s, h1) and T2 , typeΦ(s, h+h2).
By Corollary 11.32, T2 = T • T1. Combining this with (†), we
derive that T is in the set

{
T ′ ∈ types(φ0, Σ) |∃T ′′ ∈ TypesΣ

Φ(φ1).

T ′ • T ′′ ∈ TypesΣ
Φ(φ2)

}
.

By the induction hypotheses for φ1 and φ2, we thus have that T
is in the set

{T ′ ∈ types(φ0, Σ) | ∃T ′′ ∈ types(φ1, Σ).

T ′ • T ′′ ∈ types(φ2, Σ)}

=types(φ1 −©⋆ φ2, Σ).
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198 using types to decide guarded separation logic

Conversely, let T ∈ types(φ0 ∧ (φ1 −©⋆ φ2), Σ). By the induction
hypotheses for φ0, φ1 and φ2, this implies that T is in the set

{
T ′ ∈ TypesΣ

Φ(φ0) |∃T
′′ ∈ TypesΣ

Φ(φ1).

T ′ • T ′′ ∈ TypesΣ
Φ(φ2)

}
.

In particular, T ∈ TypesΣ
Φ(φ0) (†). Let T1 ∈ TypesΣ

Φ(φ1) such
that T • T1 ∈ TypesΣ

Φ(φ2), i.e., a witness for the existential in
the above set. Moreover, let h be a heap such that typeΦ(s, h) =
T . Further, let h1 be a heap such that typeΦ(s, h1) = T1 and
(s, h1) |=Φ φ1. Such a heap exists by definition of TypesΣ

Φ(φ1).
Assume w.l.o.g. that h+ h1 6= ⊥—otherwise, replace h1 with an
isomorphic heap that has this property.

Corollary 11.32 yields typeΦ(s, h+ h1) = T • T1 ∈ TypesΣ
Φ(φ2).

Because φ0, φ1 ∈ SLIDg
btw, (s, h) ∈ ModelsgΦ and (s, h1) ∈

ModelsgΦ by Lemma 8.9. Therefore also (s, h+ h1) ∈ ModelsgΦ.
Corollary 12.12 then gives us that (s, h+ h1) |=Φ φ2. Therefore,
(s, h) |=Φ φ1 −©⋆ φ2, implying T ∈ TypesΣ

Φ(φ1 −©⋆ φ2). Combining
this with (†), we conclude that T ∈ TypesΣ

Φ(φ0 ∧ (φ1 −©⋆ φ2)).

case φ = φ0 ∧ (φ1 −⋆ φ2). Analogously.

Unsurprisingly, the asymptotic complexity of types(φ, Σ) coincides
with the asymptotic complexity of the fixed-point computation.

Theorem 12.29 (Complexity of type computation). Let φ ∈ SLIDg
btw

and let Σ ∈ ACfvars(φ). Let n , |Φ|+ |φ|. Then types(φ, Σ) can be com-

puted in 22O(n2 log(n))
.

Proof. Recall from Lemma 11.39 that
∣
∣TypesΣ(Φ)

∣
∣ ∈ 22O(n2 log(n))

(†).
The evaluation of types(φ, Σ) consists in evaluating at most |φ| ≤ n

invocations of the form types(·, Σ). Each of these invocations can be

evaluated in time at most 22O(n2 log(n))
:

• For emp and (dis-)equalities, this is trivial.

• For points-to assertions, this follows from Lemma 12.26.

• For predicate calls, this follows from Theorem 12.27.

• For φ1 ⋆ φ2, this follows from the facts that (1) • is applied to at

most 22O(n2 log(n))
· 22O(n2 log(n))

= 22O(n2 log(n))
many types by (†) and

(2) the composition T1 • T2 takes time at most 2poly(n), as argued
in the proof of Theorem 12.27.

• For septraction and the magic wand, (†) also implies that we

must compute at most 22O(n2 log(n))
· 22O(n2 log(n))

many composition
operations, so the bound follows as for ⋆.
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12.3 computing the types of guarded formulas 199

• For ∧, ∨, and ¬, the bound follows immediately from (†).

The overall complexity is thus bounded by n · 22O(n2 log(n))
= 22O(n2 log(n))

.

Now that we know that types(φ, Σ) computes TypesΣ
Φ(φ) in double-

exponential time, we are ready to prove that the satisfiability problem
for guarded quantifier-free formulas with SIDs from IDbtw is decidable
in double-exponential time.

Theorem 12.30 (Decidability of SLIDg
btw). Let φ ∈ SLIDg

btw. Let n ,

|Φ|+ |φ|. It is decidable in time 22O(n2 log(n))
whether φ is satisfiable.

Proof. Let x , fvars(φ). Note that |x| ≤ n. The formula φ is satisfiable
if and only if there exists a model (s, h) with (s, h) |=Φ φ. By definition,

Typesx
Φ(φ) = {typeΦ(s, h) | dom(s) = x, h ∈ Heaps, (s, h) |=Φ φ} .

Because every model of φ is guarded by Lemma 8.9, it follows that φ

is satisfiable if and only if Typesx
Φ(φ) 6= ∅.

By Corollary 11.26, Typesx
Φ(φ) =

⋃ {
TypesΣ

Φ(φ) | Σ ∈ ACx
}

. By
Theorem 12.28, we then obtain

Typesx
Φ(φ) =

⋃

{types(Σ, φ) | Σ ∈ ACx} .

We use Theorem 12.29 and the observation that

|ACx| ≤ nn ∈ O(2n log(n))

to conclude that we can compute the finite set Typesx
Φ(φ) 6= ∅ (and

thus also check whether this set is nonempty) in time

O(2n log(n)) · 22O(n2 log(n))
= 22O(n2 log(n))

.

Since the entailment query φ |=Φ ψ is equivalent to checking the
unsatisfiability of φ ∧ ¬ψ, and the negation in φ ∧ ¬ψ is guarded, we
obtain an entailment checker with the same complexity for free.

Corollary 12.31 (Decidability of entailment for SLIDg
btw). Let φ, ψ ∈

SLIDg
btw and n , |Φ| + |φ| + |ψ|. The entailment problem φ |=Φ ψ is

decidable in time 22O(n2 log(n))
.

Proof. If φ, ψ ∈ SLIDg
btw, then φ ∧ ¬ψ ∈ SLIDg

btw. The entailment
φ |=Φ ψ is valid iff φ ∧ ¬ψ is unsatisfiable. Since 2ExpTime is closed
under complementation, the claim follows from Theorem 12.30.

In other words, we have developed a sound and complete entailment
checker for guarded formulas in the bounded-treewidth fragment,
fixing the incompleteness issues of [KMZ19a], while extending the
result beyond symbolic heaps and retaining the same asymptotic
complexity as in [KMZ19a].
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13
B E Y O N D G UA R D E D S E PA R AT I O N L O G I C :
U N D E C I D A B I L I T Y P R O O F S

In this chapter, I write SLIDbtw(·1, . . . , ·k) for the restriction of SLIDqf
btw

to formulas built from atomic predicates τ (as defined in Fig. 8.1)
and the additional symbols and operators ·1, . . . , ·k. For example,
SLIDbtw(∧, ⋆, t) is the SL in which formulas are built from atomic
predicates τ, additional predicate t and binary operators ⋆, ∧.

In this chapter, I explicitly need t as built-in atom rather than derived
formula. As usual, t holds in all models, i.e., (s, h) |=Φ t for all choices
of s and h.

13.1 undecidability of unguarded slid

In this section, I justify the use of guarded negation, magic wand, and
septraction in SLIDg

btw by proving that allowing any of these three
operators to be used without guards leads to an undecidable logic.
Together with the decidability result from Chapter 12, this yields an
almost tight delineation between decidability and undecidability of
separation logics that allow arbitrary IDbtw SIDs.1

context-free grammars . The undecidability results are based
on an encoding of the language-intersection problem for context-free
grammars.

Definition 13.1 (Context-free grammar). A context-free grammar (CFG)

is a 4-tuple G = 〈N, T, R, S〉, where N is a finite set of nonterminals; T is

a finite set of terminals, disjoint from N; R ⊆ N × (N2 ∪ T) is a finite set

of production rules; and S ∈ N is the start symbol. CFG is the set of all

CFGs.

We often denote production rules 〈a, b〉 by a → b to improve read-
ability. We assume w.l.o.g. that CFGs are in Chomsky normal form.
Further, we only consider CFGs that do not accept the empty word. Un-
der these assumptions, rules are either of the form N → AB, A, B ∈ N,
or of the form N → a, a ∈ T.

Definition 13.2. Let G = 〈N, T, R, S〉 ∈ CFG and let v, w ∈ N ∪ T∗.

We write v⇒w if there exist u1, u2 ∈ N ∪ T∗, 〈a, b〉 ∈ R such that v =

u1 · a · u2 and w = u1 · b · u2. We write ⇒+ for the transitive closure of ⇒.

The language of G is given by L(G) , {w ∈ T∗ | S ⇒+ w}.

1 The ideas presented in this section are to a large extent due to Florian Zuleger; in
particular, Zuleger proposed the SID encoding of the CFG intersection problem.
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202 beyond guarded separation logic : undecidability proofs

letteri(a) ⇐ a 7→ 〈nil, . . . , nil〉
︸ ︷︷ ︸

length i

, 1 ≤ i ≤ n

N(x1, x2, x3) ⇐ ∃l, r, m. (x1 7→ 〈l, r〉) ⋆ A(l, x2, m) ⋆ B(r, m, x3),

j ∈ {1, 2} , (N → AB) ∈ Rj

N(x1, x2, x3) ⇐ ∃a. (x1 7→ 〈x3, a〉) ⋆ letterk(a) ⋆ x1 ≈ x2,

j ∈ {1, 2} , (N → ak) ∈ Rj

word(x, y) ⇐ ∃a. (x 7→ 〈y, a〉) ⋆ letteri(a),

1 ≤ i ≤ n

word(x, y) ⇐ ∃ 〈n, a〉 . (x 7→ 〈n, a〉) ⋆ letteri(a) ⋆ word(n, y),

1 ≤ i ≤ n

Figure 13.1: The SID Φ that encodes the derivations of the context-free gram-
mars G1 = 〈N1, T, R1, S1〉 and G2 = 〈N2, T, R2, S2〉.

In the following, we exploit the following classic result.

Theorem 13.3 (Undecidability of language intersection). Let G1, G2 ∈

CFG. It is undecidable whether L(G1) ∩ L(G2) 6= ∅.

It is easy to see that this result continues to hold under our assump-
tion that CFGs do not accept the empty word.

encoding cfgs as sids . Let T = {a1, . . . , an} and for 1 ≤ i ≤ 2,
let Gi = 〈Ni, T, Ri, Si〉 be a context-free grammar. Assume w.l.o.g. that
N1 ∩ N2 = ∅. Consider the SID Φ defined in Fig. 13.1. The predicates
N, N ∈ N1 ∪ N2, and letteri, 1 ≤ i ≤ n, encode the derivations of the
grammars G1, G2 as trees with linked leaves (TLL), similar to the SID
in Fig. 3.2 on p. 27. The predicate word is an auxiliary predicate that
overapproximates the lists of linked leaves that the TLLs may contain;
we will need it later. Every word in L(Gi) corresponds to at least one
model (s, h) with (s, h) |=Φ Si(x1, x2, x3); and every model (s, h) with
(s, h) |=Φ Si(x1, x2, x3) corresponds to a derivation tree and a word in
L(Gi), where the inner nodes of the TLL correspond to the derivation
tree and the linked list of leaves correspond to the word in L(Gi).

Example 13.4. I illustrate the encoding in Fig. 13.2. Figure 13.2a shows the

rules R of a simple CFG G = 〈{S, A, B, C} , {a1, a2} , R, S〉. The derivation

tree in Figure 13.2b proves that the word a2a2a1a1a1 is in the language of the

grammar, L(G). In Fig. 13.2c, we show the stack–heap model that encodes

the aforementioned derivation tree. Every nonterminal is translated to a node

in a binary tree (blue). The leaves of the tree are linked. They each have a

successor that encodes a terminal symbol of the derivation (orange): The node

contains k pointers to nil (denoted as ⊥ in the figure) to represent terminal ak.

The list of linked leaves and orange nodes together form the induced word
of the model as defined later in Definition 13.7.
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13.1 undecidability of unguarded slid 203

S → AB

A → CC

B → BB

B → a1

C → a2

(a) Production
rules of a CFG
G.

a2 a2 B B a1

a1 a1

C C B B

A B

S

(b) A derivation tree for the
word a2a2a1a1a1 ∈ L(G).

x2 x3

x1

⊥⊥ ⊥⊥

⊥ ⊥

⊥

(c) The corresponding model
of the predicate call
S(x1, x2, x3).

Figure 13.2: Encoding a derivation of a context-free grammar as a stack–heap
model.

To show the correctness of the encoding, we need the induced words

of the models of Φ, which correspond to the induced letters of the list
of linked leaves in the models.

Definition 13.5 (Induced letters). Let G = 〈N, T, R, S〉 and let Φ be the

corresponding SID encoding. Let (s, h) |=Φ word(x, y) and let j1, . . . , jm ∈

{1, . . . , n} be such that

(s, h) |=Φ∃n1, . . . , nm−1, b1, . . . , bm. ((x 7→ 〈n1, b1〉) ⋆ letterj1(b1))

⋆ ((n1 7→ 〈n2, b2〉) ⋆ letterj2(b2))

⋆ · · · ⋆ ((nm−1 7→ 〈y, bm〉) ⋆ letterjm(bm)).

We define the induced letters of (s, h) and x, y as letters(s, h, x, y) ,

aj1 aj2 · · · ajm .

Every model that satisfies N(x1, x2, x3) contains a sub-heap that
satisfies the word predicate.

Lemma 13.6. Let G1 = 〈N1, T, R1, S1〉, G2 = 〈N2, T, R2, S2〉 and let Φ

be the corresponding SID encoding. Let x1, x2, x3 ∈ Var, N ∈ N1 ∪ N2 and

let (s, h) |=Φ N(x1, x2, x3) ⋆ t. Then there exists a unique heap hw ⊆ h with

(s, hw) |=Φ word(x2, x3).

Proof. A straightforward induction shows that the models of the pred-
icate call N(x1, x2, x3) are trees with linked leaves with root s(x1),
leftmost leaf s(x2), and successor of rightmost leaf s(x3). We pick as
hw the heap that contains s(x2) as well as all locations reachable from
s(x2) in h. This gives us precisely the list from s(x2) to s(x3). Moreover,
every leaf satisfies a formula of the form ∃a. (y 7→ 〈z, a〉) ⋆ letterk(a).
Consequently, (s, hw) |=Φ word(x2, x3).

Lemma 13.6 ensures that the following is well defined.

Definition 13.7 (Induced word). Let G = 〈N, T, R, S〉 and let Φ be the

corresponding SID encoding. Let x1, x2, x3 ∈ Var, N ∈ N and let (s, h) |=Φ
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204 beyond guarded separation logic : undecidability proofs

N(x1, x2, x3). Let hw ⊆ h be the unique heap with (s, hw) |=Φ word(x2, x3).

We define the induced word of (s, h) and N as wordofN(s, h, x2, x3) ,

letters(s, hw, x2, x3).

Every word w ∈ L(G) is the induced word of a model of the
corresponding SID encoding.

Lemma 13.8 (Completeness of the encoding). Let G = 〈N, T, R, S〉
and let Φ be the corresponding SID encoding. Let x1, x2, x3 ∈ Var and let

w ∈ L(G). Then there exists a model (s, h) with (s, h) |=Φ S(x1, x2, x3)

and wordofS(s, h, x2, x3) = w.

Proof. We show the stronger claim that for all x1, x2, x3 ∈ Var, w ∈

L(G), and N ∈ N, if N ⇒+ w then there exists a model (s, h) with
(s, h) |=Φ N(x1, x2, x3) and wordofN(s, h, x2, x3) = w. We proceed by
mathematical induction on the number m of ⇒ steps in a (minimal-
length) derivation N ⇒+ w.

If m = 1, w = ai for some 1 ≤ i ≤ n and there exists a rule N → ai.
We let (s, h) be a model such that (s, h) |=Φ ∃a. (x1 7→ 〈x3, a〉) ⋆

letteri(a) ⋆ x1 ≈ x2. Note that this is a rule of the predicate N, so it
holds that (s, h) |=Φ N(x1, x2, x3). Moreover, wordofN(s, h, x2, x3) = ai.

If m > 1, there exists a rule N → AB such that N ⇒ AB ⇒+ w. This
implies that there exists words wA, wB with w = wA · wB, A ⇒+ wA

and B ⇒+ wB.
Observe that both of these sub-derivations consist of strictly fewer

than m steps. Let l, m, r ∈ Var. By the induction hypotheses, there
exist stacks s1, s2 and heaps h1, h2 such that

• (s1, h1) |=Φ A(l, x2, m) and wordofA(s1, h1, x2, m) = wA.

• (s2, h2) |=Φ A(r, m, x3) and wordofB(s2, h2, m, x3) = wB.

Let v ∈ Loc. Assume w.l.o.g. that (1) dom(s1) ∩ dom(s2) = m, (2)
s1(m) = s2(m), (3) and h1 + h2 6= ⊥, and (4) l /∈ locs(h1 + h2)—if this
is not the case, simply replace (s1, h1) and (s2, h2) with appropriate
isomorphic models.

Let s , s1 ∪ s2 ∪ {x1 7→ l} and h , h1 ∪ h2 ∪ {v 7→ 〈s(l), s(r)〉}.
We obtain (s, h) |=Φ (x1 7→ 〈l, r〉) ⋆ A(l, x2, m) ⋆ B(r, m, x3) and thus
also (s, h) |=Φ ∃ 〈l, r, m〉 . (x1 7→ 〈l, r〉) ⋆ A(l, x2, m) ⋆ B(r, m, x3). By
definition of Φ, we conclude (s, h) |=Φ N(x1, x2, x3). Furthermore,
observe that

wordofN(s, h, x2, x3) =wordofA(s, h1, x2, m) · wordofN(s, h2, m, x3)

=wA · wB = w.

Likewise, every induced word of a model of the corresponding SID
encoding is in L(G).

Lemma 13.9 (Soundness of the encoding). Let G = 〈N, T, R, S〉 and let

Φ be the corresponding SID encoding. Let x1, x2, x3 ∈ Var and let (s, h) be

a model with (s, h) |=Φ S(x1, x2, x3). Then wordofS(s, h, x2, x3) ∈ L(G).
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13.1 undecidability of unguarded slid 205

Proof. We show the stronger claim that for all x1, x2, x3 ∈ Var, all
models (s, h), and all N ∈ N, if (s, h) |=Φ N(x1, x2, x3) then N ⇒+

wordofN(s, h, x2, x3). Observe that h is a tree overlaid with a linked list.
We proceed by mathematical induction on the height h of the tree in h.

If h = 0, there exists a rule (N(x1, x2, x3) ⇐ ∃a. (x1 7→ 〈x3, a〉) ⋆

letterk(a) ⋆ x1 ≈ x2) ∈ Φ such that (s, h) |=Φ ∃a. (x1 7→ 〈x3, a〉) ⋆

letterk(a) ⋆ x1 ≈ x2. Then wordofN(s, h, x2, x3) = ak. By definition of
Φ, this implies that N → ak ∈ R1 ∪ R2. Consequently, N ⇒ ak and
therefore N ⇒+ ak = wordofN(s, h, x2, x3).

If h > 0, there exists a rule (N(x1, x2, x3) ⇐ ψ) ∈ Φ, for ψ =

∃l, r, m. (x1 7→ 〈l, r〉) ⋆ A(l, x2, m) ⋆ B(r, m, x3), such that (s, h) |=Φ ψ.
Recall that by definition of Φ, N → AB ∈ R1 ∪ R2 (†).

By the semantics of ∃ and ⋆ there then are a stack s′ with dom(s′) =

dom(s) ∪ {l, r, m} and heaps h0, hA, hB such that h = h0 + hA + hB,
(s′, h0) |=Φ (x1 7→ 〈l, r〉), (s′, hA) |=Φ A(l, x2, m), and (s′, hB) |=Φ

B(r, m, x3). Note that the height of the trees in hA and hB is at most
h − 1, so we can apply the induction hypotheses for these models to
obtain

• A ⇒+ wordofA(s
′, h1, x2, m),

• B ⇒+ wordofB(s
′, h2, m, x3).

Together with (†), we derive

N ⇒ AB

⇒+ wordofA(s
′, h1, x2, m) · wordofB(s

′, h2, m, x3)

= wordofN(s
′, h, x2, x3)

= wordofN(s, h, x2, x3).

We are ready to prove the undecidability results. First, we show
that adding t (true) to the logic with binary operators ∧ and ⋆ (i.e.,
the fragment of SLIDg

btw without disjunction or any of the guarded
operators) immediately leads to undecidability.

Theorem 13.10. The satisfiability problems of SLIDbtw(∧, ⋆, t) is undecid-

able.

Proof. Let G1 = 〈N1, T, R1, S1〉 , G2 = 〈N2, T, R2, S2〉 ∈ CFG and let
Φ be the corresponding SID encoding. I claim that φ , (S1(a, x, y) ⋆

t) ∧ (S2(b, x, y) ⋆ t) is satisfiable iff L(G1) ∩ L(G2) 6= ∅. We prove the
implications separately.

If φ is satisfiable, there exists a model (s, h) with (s, h) |=Φ φ. Let
hw1 , hw2 ⊆ h be such that wordofSi

(s, h, x, y) = letters(s, hwi
, x, y); such

heaps exist by Lemma 13.6.
Observe that both (s, hw1) |=Φ word(x, y) and (s, hw2) |=Φ word(x, y).

This implies that both hw1 and hw2 contain s(x) and all locations of the
heap h that are reachable (in h) from s(x) without going through s(y).
Consequently, hw1 = hw2 , which implies w , wordofS2(s, h, x, y) =

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

206 beyond guarded separation logic : undecidability proofs

wordofS1(s, h, x, y). By Lemma 13.9, it follows that w ∈ L(G1) and
w ∈ L(G2), i.e., w ∈ L(G1) ∩ L(G2).

Conversely, assume L(G1) ∩ L(G2) 6= ∅ and let w ∈ L(G1) ∩

L(G2). By Lemma 13.8, there exist models (s, h1), (s, h2) with (s, h1) |=Φ

S1(a, x, y) and (s, h2) |=Φ S2(b, x, y). Let hw1 ⊆ h1, hw2 ⊆ h2 be the
unique heaps with wordofS1(s, h1, x, y) = letters(s, hw1 , x, y) = w =

letters(s, hw2 , x, y) = wordofS2(s, h2, x, y).
Observe that (s, hw1)

∼= (s, hw2). Consequently, we can replace h2

with an isomorphic heap that contains hw1 (as opposed to hw2) as sub-
heap and is otherwise disjoint from h1, i.e., there exists a heap h′2 such
that h2

∼= h′2, locs(h′2)∩ locs(h1) = locs(hw1), and wordofS2(s, h′2, x, y) =

letters(s, hw1 , x, y) = w. Note in particular that (s, h′2) |=Φ S2(b, x, y),
because isomorphic models satisfy the same formulas. Now let h ,

h1 ∪ h′2 be the (non-disjoint) union of h1 and h′2. Since h1 ⊆ h and
(s, h1) |=Φ S1(a, x, y), we have (s, h) |=Φ S1(a, x, y) ⋆ t; and simi-
larly, since h′2 ⊆ h and (s, h′2) |=Φ S2(a, x, y), we have that (s, h) |=Φ

S2(b, x, y). Consequently, (s, h) |=Φ φ.

Corollary 13.11. The satisfiability problem of SLIDbtw(∧, ⋆,¬) is undecid-

able.

Proof. this follows directly from the undecidability of SLIDbtw(∧, ⋆, t)
(Theorem 13.10), because t is definable in SLIDbtw(∧, ⋆,¬); for exam-
ple t , ¬(emp ∧ ¬emp).

Corollary 13.12. The satisfiability problem of SLIDbtw(∧, ⋆,−⋆) is unde-

cidable.

Proof. Follows directly from the undecidability of SLIDbtw(∧, ⋆, t)
(Theorem 13.10), because t is definable in SLIDbtw(∧, ⋆,−⋆); for exam-
ple t , (x 6≈ x)−⋆ emp.

Our final undecidability proof concerns unguarded septractions. We
need one more auxiliary result before we can prove this result.

Lemma 13.13. Let G2 = 〈N2, T, R2, S2〉, let Φ be the corresponding SID

encoding, word2(x, y) , (word(x, y)−©⋆ S2(a, x, y))−©⋆ S2(a, x, y), and let

(s, h) be a model. (s, h) |=Φ word2(x, y) iff (s, h) |=Φ word(x, y) and

letters(s, h, x, y) ∈ L(G2).

Proof. Let (s, h) |=Φ word2(x, y). By the semantics of −©⋆ , there exists
a heap h1 with (s, h1) |=Φ word(x, y) −©⋆ S2(a, x, y) such that (s, h +
h1) |=Φ S2(a, x, y). Observe that h1 contains precisely the inner nodes
of the model (s, h+ h1), i.e., everything except the part of the model
that induces the word. Consequently, h is the part of the model that
induces the word, i.e., wordofS2(s, h+ h1, x, y) = letters(s, h, x, y) and
(s, h) |=Φ word(x, y). Lemma 13.9 then yields letters(s, h, x, y) ∈ L(G2).

Conversely, let (s, h) be such that w , letters(s, h, x, y) ∈ L(G2).
As a consequence of Lemma 13.8, there exists a heap h1 with (s, h+
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13.2 discussion 207

h1) |=Φ S2(a, x, y). Because (s, h) |=Φ word(x, y) by assumption, we
have by the semantics of −©⋆ that (s, h1) |=Φ word(x, y)−©⋆ S2(a, x, y).
Because (s, h+ h1) |=Φ S2(a, x, y), we obtain by the semantics of −©⋆
that (s, h) |=Φ (word(x, y)−©⋆ S2(a, x, y))−©⋆ S2(a, x, y).

Theorem 13.14. The satisfiability problem of SLIDbtw(−©⋆ ) is undecidable.

Proof. I claim that ψ , word2(x, y)−©⋆ S1(a, x, y) is satisfiable iff L(G1)∩

L(G2) 6= ∅. Intuitively, this holds because ψ is satisfiable iff it is possi-
ble to replace the “word part” of a model of S1(a, x, y) with the “word
part” of a model of S2(b, x, y). Let us formalize this intuition.

Assume ψ is satisfiable and let (s, h) be such that (s, h) |=Φ ψ. By the
semantics of −©⋆ , we have that there exists a heap h0 ⊆ h with h0 |=Φ

word2(x, y) and (s, h+ h0) |=Φ S1(a, x, y). As letters(s, h0, x, y) ∈ L(G2)

by Lemma 13.13, we have in particular that (s, h0) |=Φ word(x, y). It
follows that h0 is the unique sub-heap of h+ h0 with wordofS1(s, h+
h0) = letters(s, h0, x, y). By Lemma 13.9, letters(s, h0, x, y) ∈ L(G1).
Together with Lemma 13.13, we thus have that letters(s, h0, x, y) ∈

L(G1) ∩ L(G2).
Conversely, assume there exists a word w ∈ L(G1) ∩ L(G2). By

Lemma 13.8, there exist heaps h, h0, h′, h′0 with

(s, h) |=Φ S1(a, x, y),

wordofS1(s, h, x, y) = letters(s, h0, x, y),

(s, h′) |=Φ S2(a, x, y), and

wordofS2(s, h′, x, y) = letters(s, h′0, x, y).

Because letters(s, h0, x, y) = letters(s, h′0, x, y), it holds that h0
∼= h′0, so

we can assume w.l.o.g. that h0 = h′0—if the models are not isomorphic,
simply replace h′ with an appropriate isomorphic heap to establish
this property. Let h2 ⊆ h′ be the sub-heap of h′ with h2 + h0 = h′. By
Lemma 13.13, (s, h0) |=Φ word2(x, y). Consequently, (s, h2) |=Φ ψ, i.e.,
ψ is satisfiable.

13.2 discussion

We now have a good picture of the decidability landscape for separa-
tion logics built on top of IDbtw SIDs:

• As we saw in Chapter 12, we can decide SLIDg
btw, in which any

combination of the operators ⋆, ∧ and ∨ and guarded occur-
rences of the operators ¬, −⋆, and −©⋆ are allowed.

• As we saw in Section 13.1, all extensions of SLIDg
btw in which

one of the guards is removed are undecidable.

It is, of course, also conceivable to remove some of the operators from
SLIDg

btw prior to removing the guards. I did this to some extent for all
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208 beyond guarded separation logic : undecidability proofs

of the undecidability proofs in Section 13.1, but leave open the question
whether there are restrictions of SLIDbtw(∧, ⋆, t), SLIDbtw(∧, ⋆,¬)
and SLIDbtw(∧, ⋆,−⋆) that remain undecidable.

decidability and dangling pointers . What is the funda-
mental difference between the logics studied in Section 13.1 and the
guarded separation logic SLIDg

btw that explains the undecidability of
the former and the decidability of the latter?

If you examine the undecidability proofs, you will see that all of
them rely on the possibility to decompose the heap into parts with
unboundedly many dangling pointers. Specifically, by splitting the
CFG encoding into the “non-word” part of the derivation and the
induced word w introduces |w| dangling pointers.

Conversely, the number of dangling pointers in the models of
SLIDg

btw formulas is always bounded by the number of free variables
of the formula—a simple consequence of Lemma 8.12.

I conjecture that generalizations of SLIDbtw that retain this property
remain decidable. Such generalizations would still have the property
that all models have bounded treewidth. Other interesting questions in-
clude: Is it possible to change the restrictions of the SLIDbtw fragment
to capture exactly all MSO-definable models of bounded treewidth?
And are there, perhaps, even decidable SLs that admit models of un-
bounded treewidth? Both of these questions remain open at the time
of writing.

strong-separation semantics . Another research direction
would be to give ⋆ the strong-separation semantics from Part ii and
investigate whether we can remove the guardedness restrictions under
this semantics. This would rule out the introduction of an unbounded
number of dangling pointers and thus invalidate the undecidability
proofs from Section 13.1. It makes sense to try and adapt the “garbage-
chunk” idea from Part ii, but because of the possible ambiguity in the
SIDs in IDbtw, there is no analog of decomposing the “non-garbage
part” of the model in a unique way, i.e., no unique way to split a
model into positive chunks and negative chunks.

data constraints . In my opinion, the most interesting type of
extension would be to add some way to combine the shape constraints
imposed by the IDbtw predicates with data constraints. Not much
is known about the decidability of SLs that combine user-defined
predicates with data constraints; see Chapter 14. One approach would
be to augment IDbtw predicates with a variant of the data constraints
from Part ii. I refrain from speculating about the decidability status of
such an extension.
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Part IV

C O N C L U S I O N

I discuss related work and conclude.
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14
R E L AT E D W O R K

In Parts ii and iii, we developed decision procedures for several frag-
ments of separation logic. In particular:

1. a PSpace decision procedure for entailment in the separation
logic SSL,

2. a coNP decision procedure for entailment in the separation logic
SSL+

data, and

3. a 2ExpTime decision procedure for entailment in the separation
logic SLIDg

btw.

In this chapter, I compare this result to (un-)decidability results from
the literature. I begin with “shape-only” logics (such as SLIDg

btw) in
Section 14.1 and continue with logics that mix reasoning about shape
and data (such as SSLdata) in Section 14.2.

Given the extent of the separation-logic literature in particular and
the literature about “heap logics” in general, this chapter is necessarily
incomplete. For this reason, I will provide a deliberately incomplete
overview.

14.1 logics for reasoning about the shape of the heap

shape analysis . Much work on separation logic falls under the
purview of shape analysis; see for example [DOY06; Ber+07; Cal+07;
Yan+08; Cal+11; DES13; Le+14]. Other logic-based approaches to shape
analysis have been proposed in the literature. I consider this work
beyond the scope of this thesis, but recommend the influential work
by Sagiv et al. [SRW02] as a starting point.

first-order logic (fo) and smt. In FO, transitive closure can-
not be axiomatized. Consequently, it is impossible to reason about the
reachability in unbounded data structures [Lev+09]. This impossibility
result can be avoided by working in fragments such as EPR [Itz+13]
or by translating from a logic that has a small-model property [LQ08].
The latter approach was used for several SL dialects [PR13; PWZ13;
PWZ14a; KJW18a], including SSL+

data (cf. Chapter 7). I will further
discuss this work in Section 14.2.

monadic second-order logic (mso). When viewing the heap
as a directed graph, as we have done throughout this thesis, it is quite
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212 related work

natural to use MSO over graphs to reason about the heap [MS01]. Un-
like in FO, unbounded reachability is expressible in MSO. Moreover,
MSO over graphs of bounded treewidth is decidable [Cou90], albeit
with nonelementary complexity [SM73]; if quantifier alternation is
bounded, the complexity is elementary. It is also possible to automate
reasoning about some structures of unbounded treewidth by combin-
ing MSO with a fragment of FO with counting quantifiers [KVZ16].

Separation logic itself has a (monadic) second-order “flavor”. The
separating conjunction φ ⋆ ψ holds in a heap if there exists a set of
locations—i.e., a monadic relation—such that φ holds in the sub-heap
corresponding to the set of locations and ψ holds in the remainder of
the heap. As such, it is not surprising that reductions of separation
logics to MSO are possible [IRS13]. In fact, there is a close relationship
between graph grammars in the MSO world and systems of inductive
definitions in SLID [DP08; Jan17]. Note, however, that not all sepa-
ration logics are second-order logics: it is, for example, possible to
translate SL without inductive predicates to first-order logic [EIP19b].

symbolic-heap separation logic . The symbolic-heap frag-
ment goes back to the Smallfoot [BCO05a] tool, which implemented
symbolic execution based on symbolic heaps [BCO05b]. The original
symbolic-heap fragment had a built-in singly-linked list predicate and
no support for other data structures [BCO04]. Entailment is this frag-
ment was later shown to be decidable in PTime in the quantifier-free
case and in coNP for existentially-quantified formulas [Coo+11].

There is a large body of work on extensions of the symbolic-heap
fragment with user-defined inductive definitions, i.e., the logic SLID

studied in Part iii. If arbitrary (existentially-quantified) symbolic heaps
can be used in the inductive definitions, satisfiability and model check-
ing are ExpTime-complete [Bro+14; Bro+16] and entailment is unde-
cidable [Ant+14].

Various fragments have been proposed, including:

• The logic SLIDbtw that we studied in Part iii. The results in this
thesis together with a recent hardness proof [EIP20] imply that
SLIDbtw is 2ExpTime-complete.

• An ExpTime-complete separation logic without dis-equalities,
but with inductive definitions that are general enough to model
doubly-linked lists and trees [IRV14]. This logic is a fragment of
SLIDbtw.

• The fragment with monadic definitions and so-called implicit

existentials [TK15]. This fragment allows data structures with an
arbitrary number of dangling pointers (via implicit existentials),
but only a single “structural parameter” that can be used to build
the structure. This is sufficient for defining singly-linked lists
and trees, but not for doubly-linked structures. The logic was
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14.1 logics for reasoning about the shape of the heap 213

proved decidable, but no complexity bound was given. This logic
is not a fragment of SLIDbtw, because SLIDbtw does not admit
implicit existentials. When implicit existentials are disallowed,
we obtain a fragment of SLIDbtw

• Separation logic with cone inductive definitions [TNK19] is a restric-
tion of SLIDbtw. In this logic, existentially-quantified variables
in inductive rules must be allocated immediately in a recursive
call, thus strengthening the establishment property. The inductive

wands used in [TNK19] can be viewed as the quantifier-free spe-
cial case of the DUSH fragment we saw in Chapter 11. The proof-
theoretic decision procedure in [TNK19] runs in 2NExpTime.

Besides the aforementioned complete decision procedures, various
incomplete methods for proving and dis-proving SLID entailments
have been proposed and implemented, for example in Cyclist, Spen,
and Songbird [BGP12; BG15; DES13; Ene+14; Ene+17; Ta+18].

Tools for semi-automated verification, such as Verifast [Jac+11],
also work with (undecidable) assertion languages that are related to
SLID.

beyond symbolic heaps . The propositional fragment of sepa-
ration logic without any inductive definitions, i.e., with no spatial
atoms besides points-to assertions, was shown to be PSpace-complete
in [CYO01]. It was later reduced to first-order logic [CGH05] and
implemented in the SMT solver Cvc4 [Rey+16].

Adding the singly-linked list predicate to this basic logic already
leads to undecidability [DLM18]—assuming the standard “weak” se-
mantics of the separating conjunction. This result was our main mo-
tivation to investigate strong-separation logic, which—as we saw in
Part ii—remains decidable in PSpace even when list and tree predi-
cates are added to the logic.

Similarly, an extension of propositional SL with an exists–forall
quantifier prefix also leads to undecidability [EIP19a] (despite earlier
claims to the contrary [RIS17]).

More generally, extensions with even very limited forms of quan-
tification lead to undecidability or non-elementary complexity very
quickly [BDL12; DD15b; DD16; Dem+17; EIP19b].

The decidability status of SSL with quantifiers is open at the time of
writing.

beyond induction. In a sense, Part iii shows “how far we can
go” with inductive definitions. While some further generalization of
IDbtw is likely possible without sacrificing decidability, it is worth
pointing out that the inductive approach has inherent limitations. Not
every data structure can be described inductively. This is especially
true in a concurrent setting. Krishna et al. have recently proposed
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214 related work

flows as an alternative to inductive definitions for circumventing these
limitations [KSW18; KSW20].

14.2 logics for reasoning about shape and content

satisfiability modulo theories . Several heap logics rely on
a reduction to SMT [LQ08; MPQ11; PR13; PWZ13; PWZ14a]. Among
these, [PR13; PWZ13; PWZ14a] are most closely related to SSL+

data.
Navarro Pérez et al. [PR13] only support the list-segment predicate,

not trees. Moreover, they do not have any support for constraining
the data stored inside a data structure (as opposed to the data stored
at individual locations, which can easily be handled thanks to the
reduction to SMT). They can, however, reason about the length of list
segments, which is not supported by SSL+

data.
Piskac et al. [PWZ13; PWZ14a] propose the logics Grass and Grit.

Combined, these logics are quite similar to SSL+
data. There are several

subtle distinctions. First, SSL+
data supports tree segments as opposed to

complete binary trees. Second, the SMT encoding of trees for SSL+
data

does not require ghost parent pointers. Third, the encoding of SSL+
data

does not need the “heavy machinery” of local theory extensions to
deal with data constraints. Fourth, Grass and Grit can express certain
properties that cannot be expressed in SSL+

data. In particular, SSL+
data

can only express that certain individual elements must be stored inside
a data structure; it cannot be used to reason about the complete set of
elements stored in a data structure.

data constraints in recursive definitions . A key dif-
ference between SSLdata and most other SLs with data is that data
constraints in SSLdata are orthogonal to shape constraints: we do not
allow data constraints inside inductive definitions. Instead, we allow
annotating predicate calls with data predicates (see Section 5.2). A
similar approach can be found in the Strand logic [MPQ11]. Strand
is undecidable in general. While Strand is not a separation logic, the
decidable fragment identified in [MPQ11] has a similar expressive-
ness to SSL+

data, but involves an encoding to both MSO (for the shape
constraints) and SMT (for the data constraints).

There is an extensive body of work on allowing data constraints
within user-defined inductive definitions. This was done in the logic
Dryad [Qiu+13], but also in variants of SLID [Chi+12; TLC16; Le+17;
Ta+18]. In all of these logics, the entailment problem is either known
to be undecidable or not known to be decidable.

If we restrict inductive data structures to lists, several decidable
variants have been proposed. For example, lists with ordered data
can be handled by [BBL09; Bro13]. The separation logic in [GCW16]
supports user-defined list predicates with a limited form of arithmetic
constraints that have a similar expressiveness to our data predicates
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14.3 tool support 215

when TData is instantiated with linear integer arithmetic. Finally, the
formalism in [GCW19] can be used to reason about set constraints
(not supported by SSLdata) as well as limited arithmetic constraints.

pointer arithmetic . Another way to go “beyond shape” is to
support reasoning about pointer arithmetic. This extension is studied
for SL without inductive definitions in [BK18]. More pragmatic work
in this direction (without decidability or complexity results) can, for
example, be found in [Cal+06; Hol+16].

14.3 tool support

As mentioned before, separation logics have been used in a wide range
of program analysis and program verification tools. I will give a brief,
deliberately incomplete overview of this work and how it relates to
the results presented in this thesis.

A significant number of tools for deductive program verification are
based on separation logic or closely related formalisms. These tools
include GRASShopper [PWZ14b] (for a custom intermediate language),
Viper [MSS16] (for a custom intermediate language, to which multiple
high-level languages have been translated), and Verifast [Jac+11] (for
C and Java programs). In such tools, the code has to be annotated
with preconditions, postconditions and loop invariants written in
an assertion language that is a variant of separation logic. Program
correctness is then proved automatically from these annotations. Such
(semi-)automated proofs require provers for the assertion language.
Exploiting the decision procedures developed in Parts ii and iii of this
thesis, both SSL and SLIDg

btw could be used as assertion language in
deductive verification tools. In the case of concurrent separation logics,
SSL and SLIDg

btw could be used as underlying sequential base logics.
Separation logics have also been very successfully employed for

finding bugs (as opposed to proving their absence). Arguably the most
prominent tool that takes this approach is Facebook’s Infer [CD11;
Cal+15], which is based in part on separation logic. Infer relies on a
heuristic prover for bi-abduction, i.e., a prover that computes for inputs
of the form φ ⋆ [?] |= ψ ⋆ [?] formulas φ′, ψ′ such that the entailment φ ⋆

φ′ |= ψ ⋆ ψ′ is valid. Thanks to their compositional nature, the decision
procedures for SSL and SLIDg

btw can be extended to bi-abduction
and could thus, at least in principle, be used as underlying prover in
Infer. This would, for example, enable Infer to reason about all data
structures definable in SLIDg

btw—albeit at a high computational cost.
SSL also opens up new possibilities for tool development: thanks

to the decidability of the magic wand in SSL, implementing weakest-
precondition calculi for separation logic as developed in [IO01; Rey02]
becomes feasible.
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15
C O N C L U S I O N

This thesis has been a deep dive into automated reasoning for separa-
tion logic.

First, I proposed a new separation logic, strong-separation logic with

lists, trees, and data, SSLdata, that combined a nonstandard semantics
of the separating conjunction with a novel approach for constraining
the data stored within data structures. SSLdata is expressive enough
to enable a combined shape–value analysis about important data
structures such as binary search trees and max heaps. I showed that
despite this expressiveness, the full propositional fragment includ-
ing the magic wand and negation, but without data constraints, is
decidable in PSpace; and that entailment in the positive fragment
of SSLdata (subsuming the symbolic-heap fragment) is decidable in
coNP. SSLdata is thus more tractable than many other logics that
combine reasoning about shape and data [MPQ11; Chi+12; Qiu+13;
Le+17].

Second, I designed a novel decision procedure for a large fragment
of separation logic with inductive definitions, SLIDbtw [IRS13]. SLIDbtw is
expressive enough to enable reasoning about intricate data structures
such as trees with linked leaves. I developed the first direct decision
procedure for this logic. This decision procedure avoids a blowup
of multiple exponentials compared to the only previously known
decision procedure [IRS13]; it still takes double-exponential time in
the worst case, but a recent 2ExpTime-hardness proof shows that this
is unavoidable [EIP20].

In Chapter 2, I argued that research into fragments of separation
logic is to a large extent about finding the right trade-off between
expressiveness and tractability. Whether or not I struck the right
balance with the work in this thesis is debatable (and can ultimately
only be revealed by an extensive evaluation). At any rate, the results
in this thesis show that it is possible to design expressive fragments
of separation logic without incurring super-exponential complexity
(SSLdata) or relying on reductions that blow up the size of the input
by many exponentials (SLIDbtw).

implementation. In this thesis, I have focused almost exclusively
on theoretical results. While I hope I succeeded in conveying interest-
ing theoretical insights, I also hope that some of these insights can be
put into practice—i.e., that the decision procedures developed in this
thesis find their way into mature tools.
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218 conclusion

Given the abysmal worst-case performance of all decision proce-
dures presented here, this may seem like a pointless endeavor. I am
more optimistic. First, pretty much every decision procedure imple-
mented in SMT solvers has a seemingly prohibitive worst-case per-
formance. Nevertheless, SMT solvers can handle very large inputs
in practice. Second, I have already implemented special cases of the
decision procedures I presented in this thesis, which resulted in two
open-source1 prototypes with encouraging performance.

harrsh [Kat+18] implements the heap automaton framework in-
troduced in [Jan+17], including decision procedures for all the
robustness properties studied in that paper. It also implements
the Φ-profile abstraction for entailment checking, which we de-
veloped in [KMZ19a; KMZ19b] and which is the precursor of
the Φ-type abstraction presented in Part iii. For the reasons ex-
plained in Part iii, Harrsh cannot handle the entire SLIDbtw

fragment. For this reason, I chose not to present an evaluation
of the tool in this thesis. The tool can, however, handle a large
fragment of SLIDbtw by an approach that is closely related to
the one in Part iii; and it fares fairly well in practice despite its
double-exponential asymptotic complexity, as was revealed at
the competition SL-COMP’19 [Sig+19].

Harrsh could thus serve as a starting point for implementing an
entailment checker based on the φ-types of Part iii.

sloth is a satisfiability and entailment checker for SL∗
data formu-

las [KJW18a]. Sloth works by encoding SL∗
data to SMT using an

encoding that is very similar to the SMT encoding of SSL+
data

presented in Part ii. An initial evaluation2 provided evidence
that solving queries involving, for example, binary search trees
is feasible.

Sloth could thus serve as a starting point for an implementation
of the decision procedures for SSL+

data and SSL.

While I cannot provide direct evidence of the practical merit of the
decision procedures as formulated in Parts ii and iii, I believe that
the performance of Harrsh and Sloth merits further work on tool
development for both SLIDg

btw and SSLdata.

future work . Besides developing solvers for the logics SLIDg
btw

and (fragments of) SSLdata, there are several other promising avenues
for further practical research.

symbolic execution. Abstract memory states and extended ab-
stract memory states as introduced in Part ii are suitable as

1 see https://github.com/katelaan/

2 Not formally published, but available in the informal proceedings of the First Work-
shop on Automated Deduction for Separation Logics.
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conclusion 219

abstract domains for a symbolic-execution engine. It is straight-
forward to formulate the standard symbolic-execution rules
for separation logic [BCO05b] in terms of AMS as opposed to
symbolic heaps. It would be very interesting to compare the
scalability and precision of this approach against the approach
based on symbolic heaps.

weakest preconditions . Weakest-precondition calculi for sepa-
ration logic make use of the magic wand [IO01; Rey02], which
has made it difficult to automate them [App14]. Thanks to the
decidability of the magic wand in SSL, it would be feasible to
implement a program verifier based on weakest preconditions
that uses an SSL solver as backend.

bi-abduction. Thanks to their compositional nature, both the deci-
sion procedures for SSL and for SLIDg

btw can be extended to the
abduction, frame inference, and bi-abduction problems as stud-
ied, e.g., in [Cal+11; GKO11; LSQ18]. Whether these extensions
are feasible in practice can only be revealed by an implementa-
tion.

If I were to add another year to my PhD, I would start working through
the above list.

At the same time, many interesting theoretical research questions
about SSL and SLID remain unanswered. For example, one could
look into:

• extending the PSpace decision procedure for SSL to SSLdata

(perhaps under some mild semantic assumptions on the data
predicates);

• adding quantifiers to SSL;

• adding data predicates to (fragments of) SLIDbtw;

• studying an unguarded extension of SLIDg
btw assuming strong-

separation semantics, either with arbitrary IDbtw SIDs or with
further SID restrictions, for example to “deterministic” SIDs as
defined in [Bro+16];

• capturing monadic-second order logic over (connected) graphs
of bounded treewidth by an extension of IDbtw.
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I N D E X

abduction, 219

abstract edge relation, 60

abstract magic wand, 72

abstract memory state, 58, 61

abstraction, 57

for satisfiability checking, 27

of SLIDg
btw formulas, 164

of SSL formulas, 64

access path ordering, 33

acyclicity, 32

adjoint, 46

allocated location, 19

allocated variables, 19

of a Φ-type, 164

of an AMS, 62

α-equivalence, 151

AMS, see abstract memory state
AMS composition, 67

AMS computation, 70

correctness of, 75

arity, 110

array theory, 91

automated reasoning, 4, 17

background theory, 39

bi-abduction, 215, 219

binary data predicate, 53

binary tree
SID defining, 112

binary-tree segment
in SSL, 40

Boolector, 91

bound-lifting, 75

bounded treewidth, 26, 115

BTW, see bounded treewidth

CFG, see context-free grammar
chunk, 58

chunk size, 73

compatibility
of AMSs, 67

of SMT models, 103

complexity
of Φ-type computation, 198

of SLIDg
btw, 199

of SSL+
data, 90

PSpace-hardness of SSL, 79

PSpace-membership of SSL, 80

composition
of AMSs, 67

of Φ-types, 166, 168

compositional abstraction, 27

compositional verification, 12

compositionality, 28

for SLIDg
btw, 168

for SSL, 67

concolic execution, 12

cone inductive definitions, 213

connected component, 36

connected list segment, 35

connectivity, 116

context-free grammar, 201

correctness
of AMS computation, 75

of Φ-type computation, 195

corresponding SMT model, 93

Cvc4, 213

cycle, 35

cyclic data structures, 45

Cyclist, 213

Dafny, 4

dangling locations, 19

dangling pointers, 23

in SLIDbtw, 118

data predicate, 21, 24, 53

restrictions on, 55

data structure
in SSL, 40

data theory, 39

data variable, 43

decidability
of SLIDg

btw, 199
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222 index

decomposability
into chunks, 59

of AMS, 68

of Φ-types, 175

delimited unfolded symbolic heap, 162

depth
of a tree, 33

derivability
between projections, 149

between Φ-forests, 134

derivation tree
of context-free grammar, 202

directed graph, 31

induced by Φ-tree, 130

directed indexed graph, 31

directed tree
with holes, 35

with root and terminal, 33

disequality, 13, 110

doubly-linked list, 41

Dryad, 214

DUSH, 162

empty-heap predicate, 13

entailment problem, 9, 17

of SLID, 115

of SSL, 49

equality, 13, 110

establishment, 116, 180

existential data predicate, 53

false, 42

field, 40

field identifier, 25

first-order logic, 211

fixed-point computation, 184

flow, 214

forests, 131

Φ-forest, 131

derivation between, 134

of a heap, 157

projection, 126, 140

union of, 133

forget
a variable of a Φ-type, 170

frame rule, 10

frame inference, 219

frame problem, 10

frame rule
of separation logic, 12

free variables
of predicate, 112

of SL formula, 43

garbage-chunk count, 62

garbage-free AMS, 64

generalized modus ponens, 138

graph grammar, 212

graphs of bounded treewidth, 115

Grass, 214

GRASShopper, 215

Grit, 214

guarded magic wand, 110

guarded model, 117

guarded negation
in SLID, 110

in SSL, 42

guarded separation logic, 110

guarded septraction, 110

guardedness, 119

guess-and-check procedure, 83

Harrsh, 218

heap, 14

heap automaton, 109

heap interpretation, 83

Hoare logic, 8

Hoare triple, 8

hole
in SSL, 41

of Φ-tree, 124, 130

hole predicate, 124, 130

homomorphism
of AMS abstraction, 67, 72

of forest projection, 155

of Φ-type abstraction, 168

hyperedges
of an AMS, 62

implicit existential, 212

indexed entailment, 49

induced AMS, 63

induced graph
of a heap, 31
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index 223

induced heap
of Φ-forest, 131

induced hyperedge, 62

induced letters, 203

inductive definition, 112

inductive wand, 157, 213

Infer, 215

interface, 158

isomorphism
in SLID, 115

in SSL, 47

of models, 19

join point, 60

l-split, 133

labeled location, 19

language intersection
of context-free languages, 202

lasso, 35

length
of a list, 33

of a path, 32

list segment
in SSL, 40

user-defined, 112

local allocation, 116

local analysis, 12

local references, 116

local theory extension, 214

location
in formulas, 111

location variable, 43

magic wand, 13

model, 15

model checking
for SSL, 80

for SSL+
data, 90

model correspondence
of SMT model, 93

model-size bound, 87

modular analysis, 12

modus ponens, 138

monadic second-order logic, 26, 115, 211

MSO, see monadic second-order logic

negation

guarded, 110

negative chunk, 60

negative-allocation constraint, 62

node signature, 40

nodes
of an AMS, 62

nonterminal, 201

null pointer, 14

parameter
of a predicate, 112

partial unfolding tree, 124

path
in directed graph, 32

per-field allocation, 83

Φ-forest, 131

Φ-tree, 123, 130

Φ-type composition, 168

pointer arithmetic, 15

pointer-closed, 117

points-to assertion, 13

intuitionistic, 42

of SSL, 41

positive chunk, 60

positive model, 50

positive SSL, 41

precise, 44, 89, 113

predecessor, 32

predicate identifier, 110

production rule, 201

progress, 116

proof tree, 9

pure, 13

pure constraint, 111

QBF, see quantified Boolean formulas
quantified Boolean formulas, 79

re-scoping, 148

reachability
in directed graphs, 32

realizability size
of AMS, 84

of SSLdata formula, 86

referenced location, 19

referenced variables, 19

refined refinement theorem, 73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

224 index

refinement, 27

refinement theorem
of Φ-types, 177

of AMS, 69

of SSL, 65

related work, 211

rewriting equivalence, 137

robustness property, 109

root
of directed tree, 33

of predicate, 116

rule
of SID, 112

rule instance, 129

rule of consequence, 9

s-decomposition, 160

s-delimited, 159

s-types, 164

satisfiability problem, 17

of SLID, 115

semantics
of SLbase, 15

of SLID, 113

of SSL, 44

of SSLdata, 55

separating connective, 13

separating conjunction, 3, 11

separating implication, 13

separation algebra, 12, 44

separation logic, 3, 11

guarded, 110

of bounded treewidth, 115

quantifier-free, 110

separation logic competition, 18, 218

separation logic with inductive defini-
tions, 21, 109

septraction, 13, 42, 110

sequence rule, 9

shape analysis, 12, 211

singly-linked list, 35

sink, 32

sink sequence, 33

size
of SID, 112

of an AMS, 62

of SSL formula, 43

size formula, 52

SL-COMP, 18, 218

SL-projection
of stack–forests pairs, 142

SLID, see separation logic with inductive
definitions

Sloth, 99

SL∗
data, 83, 99

small-model property, 83

of SSL+, 86

of SSL+
data, 87

Smallfoot, 26

SMT, 39, 214

SMT solver, 4

Songbird, 213

source, 32

spatial, 13

spatial formula, 42

Spen, 213

SSL, see strong-separation logic
stably infinite, 91

stack, 14

stack instantiation, 169

stack inverse, 20

stack–forest projection, 142

stack–heap pair, 14

stack-aliasing constraint, 20

stack-choice function, 20

Strand, 214

strong separation, 22

strong-separation logic, 21, 22, 39

semantics, 43

syntax, 41

successor, 32

symbolic execution, 12, 218

symbolic heap, 42, 110

symbolic-heap fragment, 17

symmetry closure, 36

syntax
of SLbase, 13

of SLID, 110

of SSL, 41

of SSLdata, 55

system of inductive definitions, 112

terminal, 33, 201

theory of arrays, 91
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TLL, see tree with linked leaves
tools, 215

transitive closure, 211

tree
Φ-trees, 129

directed tree, 33

tree projection, 138

tree with linked leaves, 26, 202

treewidth, 115

true
in SLID, 111

in SSL, 42

type, 163

type instantiation, 169

type composition, 166, 168

type computation
completeness, 192

fixed-point computation, 184

of SLIDg
btw formula, 195

soundness, 186

unary data predicate, 53

undecidability
of SLIDbtw(∧, ⋆, t), 205

of SLIDbtw(∧, ⋆,¬), 206

of SLIDbtw(∧, ⋆,−⋆), 206

of SLIDbtw(−©⋆ ), 207

unfolded symbolic heap, 157

delimited, 162

unfolding
of predicates, 123

unfolding tree, 123

union
of forests, 133

unique footprint property
of SSL, 89

universal data predicate, 53

USH, 157

validity
of Hoare triple, 9

variable instantiation, 112

Verifast, 213

verification condition, 4, 24

Viper, 215

weak-separation logic, 50

weaken, 51

weakest preconditions, 24, 219

weakest-precondition calculus, 14

witness
of data predicate, 86

x-types, 164

Z3, 91
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