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...

[ When one sets out writing a thesis... ]

The Road goes ever on and on

Down from the door where it began.

Now far ahead the Road has gone,

And I must follow, if I can,

Pursuing it with eager feet,

Until it joins some larger way

Where many paths and errands meet.

And whither then? I cannot say.

...

...

[ ... a time will come when it is finished. ]

The Road goes ever on and on

Out from the door where it began.

Now far ahead the Road has gone,

Let others follow it who can!

Let them a journey new begin,

But I at last with weary feet

Will turn towards the lighted inn,

My evening-rest and sleep to meet.

... J.R.R. Tolkien

... two versions of the song

... The Road Goes Ever On

... from The Lord of the Rings

...
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Abstract

The quantitatively accurate prediction of the deformation behavior of rubber upon extrusion has

been a long-pursued goal. Despite a considerable amount of research in this field, experimentally

validated solutions to this problem are still not available. The research project the outcomes of

which are presented in this thesis aimed at resolving this issue, in particular in the context of

the die swell occurring in the course of rubber extrusion. Recently published compression tests

performed on varying kinds of natural rubber and rubber blends showed that rubber exhibits a

considerable compressibility. Interestingly, this fundamentally contradicts a key assumption of

most numerical approaches to simulating the die swell of rubber. Hence, this work was based on

taking this usually neglected constitutive feature of rubber into account.

This work comprises both experimental and theoretical efforts. As for the former, a compre-

hensive experimental campaign was designed, in order to understand the constitutive behavior of

rubber as well as possible. In particular, compression tests, viscosity tests, and extrusion tests

were performed on several types of rubber blends and natural rubber, allowing for formulating

constitutive laws describing the elastic and the viscous behavior. For interpreting the results of

the extrusion tests, the concept of dimensional analysis was employed. This way, it was revealed

that the die swell of rubber is driven, to a considerable extent, by its compressibility, and also

(as expected) by the geometrical dimensions of the extrusion canal and of the extrusion die.

The experimental results served as basis for developing a new mathematical approach allowing

for prediction of the rubber die swell. To that end, the aforementioned constitutive laws were

merged into an objective, mass (density)-related, Gibbs potential-based, and thermodynamically

consistent theoretical framework, allowing for deriving a new set of governing equations, con-

sidering for that purpose rubber as soft solid (and not as viscous fluid, as it is done usually in

conventional state-of-the-art approaches). In order to solve the governing equations, the studied

domain was discretized by means of the Finite Element (FE) method, and the corresponding

weak solution of the governing equations was derived by means of the principle of virtual power.

Numerical implementation was performed by means of an in-house FE code, also developed

from scratch in this project. This code was applied to circular extrusion dies, motivating the

reformulation of the model for the special case of rotational symmetry. According numerical

evaluation of the model allowed for successful experimental validation, with deviations between

model-predicted and experimentally observed die swells ranging from −7.5 to +4.6%. Further

sensitivity studies showed qualitatively plausible model predictions, further corroborating the

soundness of the developed approach.

In conclusion, the research presented in this thesis comprises unprecedented insights as to

making the die swell of rubber upon extrusion predictable, in terms of both experimental

observations and the development of numerical simulation tools. Furthermore, the initially

posed, fundamental hypothesis of the presented work, namely that the compressibility of rubber

significantly contributes to the die well, could be confirmed.
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Kurzfassung

Die quantitativ korrekte Vorhersage der Deformationen, welchen Gummi im Zuge des Extrusi-

onsprozesses ausgesetzt ist, wird seit vielen Jahren angestrebt. Trotz einer beträchtlichen Menge

an diesbezüglichen wissenschaftlichen Arbeiten konnte diese Fragestellung noch nicht zufrieden-

stellend beantwortet werden. Die vorliegende Arbeit beschäftigt sich mit der Bewältigung dieses

Problems, mit Fokus auf die Vorhersage der Strangaufweitung von Gummi während des Extrusi-

onsprozesses. Eine kürzlich veröffentlichte Studie zeigte, dass verschiedene Kautschukmischungen

sowie Naturkautschuk eine signifikante Kompressibilität aufweisen. Bemerkenswerterweise steht

dieser Befund im Widerspruch zu den wesentlichen Annahmen auf welchen die meisten Modelle

zur Vorhersage der Strangaufweitung von Gummi beruhen. In der gegenständlichen Arbeit wird

dieses üblicherweise vernachlässigte konstitutive Charakteristikum von Gummi berücksichtigt.

Diese Arbeit umfasst sowohl experimentelle als auch theoretische Bemühungen. Zunächst

wurde ein umfassendes experimentelles Programm implementiert, um das konstitutive Verhalten

von Kautschukmischungen besser verstehen zu können. Insbesondere wurden Kompressionstests,

Viskositätstests und Extrusionstests an verschiedenen Kautschukmischungen und Naturkautschuk

durchgeführt. Diese Tests erlaubten die Formulierung konstitutiver Gesetze, welche das elastische

und viskose Verhalten der untersuchten Materialien beschreiben. Zur besseren Interpretation der

Extrusionstests wurde eine eingehende Dimensionsanalyse durchgeführt. Derart wurde gezeigt,

dass die Strangaufweitung von Kautschuk wesentlich durch dessen Kompressibilität und (wie

erwartet) die Geometrien von Extrusionskanal und -düse bestimmt wird.

Die experimentellen Ergebnisse dienten als Basis für die Entwicklung eines neuen mathemati-

schen Modells, welches zur Vorhersage der Strangaufweitung von Kautschuk ausgewertet werden

kann. Zu diesem Zwecke wurden die zuvor genannten konstitutiven Modelle in ein objektives, mas-

sebezogenes und thermodynamisch konsistentes theoretisches Konzept eingebettet, das zusätzlich

basierend auf das Gibbs-Potential formuliert wurde. So wurde eine Reihe neuer Grundgleichun-

gen hergeleitet, welche Kautschuk als weichen Festkörper berücksichtigen (und nicht, wie in

konventionellen Modellen üblich, als viskose Flüssigkeit). Zur Lösung dieser Gleichungen wurde

der untersuchte Raum im Rahmen der Methode der Finiten Element (FE) diskretisiert und

eine schwache Lösung mittels des Prinzips der virtuellen Leistung hergeleitet. Die numerische

Umsetzung erfolgte durch einen eigens entwickelten FE-Code. Dieser wurde für kreisrunde Düsen

angewendet, was die Umformulierung der zugrundeliegenden Gleichungen für den Spezialfall der

Rotationssymmetrie motivierte. Die entsprechenden numerischen Auswertungen erlaubten eine

erfolgreiche experimentelle Validierung, mit Abweichungen zwischen den Modellvorhersagen und

den entsprechenden experimentellen Ergebnissen im Bereich von −7,5 bis +4,6%.

Zusammenfassend kann festgestellt werden, dass die in dieser Arbeit präsentierten Forschungs-

arbeiten neue Erkenntnisse liefern bezüglich der Vorhersagbarkeit der im Zuge des Extrusions-

prozesses auftretenden Strangaufweitung von Kautschuk, basierend auf experimentellen und

numerischen Ergebnissen. Außerdem konnte die eingangs aufgestellte Hypothese hinsichtlich der

Wichtigkeit der Kompressibilität für die Strangaufweitung bestätigt werden.
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Chapter 1

Introduction

Between October 2016 and June 2020, the Institute for Mechanics of Materials and Structures

of the TU Wien, Vienna, Austria, collaborated with the Semperit Technische Produkte GmbH,

Wimpassing, Austria, in the framework of the project Modellierung der Strangaufweitung von

Kautschukmischungen beim Extrusionsvorgang, basierend auf neuen Expansionstests, funded by

the Austrian Research Promotion Agency (FFG); translated to English, the project title reads as

Modeling of the die swell of rubber blends during the extrusion process, based on new expansion

tests. This project unified both a comprehensive experimental campaign, aiming at studying the

mechanical behavior of unvulcanized rubber, as well as a fundamentally new modeling approach

applicable to soft solids in general, and allowing, in particular, for numerically simulating the

deformations unvulcanized rubber undergoes during the extrusion process.

This first chapter is devoted to setting the stage for the scientific contributions arisen during

the implementation of the above-mentioned project, contained in Chapters 2 to 5 of this thesis.

In particular, this chapter comprises an elaboration of the motivation of this work and of the

pursued objectives (see Section 1.1); a description of the state of the art in the field, as well as

of the progress achieved during this project (see Section 1.2); an overview of the actual project

implementation (see Section 1.3); and a brief description as to how the remainder of this thesis

is structured (see Section 1.4).

1.1 Motivation and objectives

Extrusion is a process often utilized in rubber industry for the sake of shaping a base material into

the eventually desired form. It typically involves automated feeding of some kind of (unvulcanized)

rubber blend into a device typically called extruder (see [1, 2] and Figures 1.1 and 1.2 for pictures

and cross sections of such extruders), followed by heating up the material to up to 150◦C, and

pressing or squeezing of the now comparatively soft material through formative tools, usually

referred to as (extrusion) dies. Thereby, the rubber is subjected to pressures of up to 200 bar, i.e.

20 MPa [1, 2].

Extrusion, which is the process essentially dealing with shaping the base material such that it

eventually features a specific cross section (see Figure 1.3 for a selection of typical cross sections

obtained through extrusion), is followed by the vulcanization process, during which long-chain

rubber molecules are cross-linked by sulfur-bridges. This chemical process hardens the originally

much softer unvulcanized rubber, altering it from a deformable state into a stable, more brittle,

and non-deformable state. Then, the material is referred to as vulcanized rubber [1, 2].

Between extrusion and vulcanization, one further, unintended process takes place, which bears

the potential of decisively influencing the cross-sectional shape of the eventual product. In
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2 1 Introduction

(a)

(b)

Fig. 1.1: Schematic sketches of screw extruders used for the production of rubber profiles: (a)
showing complete extruder setup [2, 3], (b) also showing the pressure distribution
development inside the extruder’s canal [2]

Fig. 1.2: Picture of a screw extruder used at Semperit Technische Produkte GmbH, additionally
equipped with the measuring equipment used in the experimental campaign described
in Chapter 2 of this thesis
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1.1 Motivation and objectives 3

Fig. 1.3: Typical cross sections of extrusion dies, including two T-shaped dies, one square-shaped
die, and one circular die; note that the deviations of the dies from the corresponding
perfect shapes (as prominently visible for the square-shaped die) were made deliberately,
in order to compensate the die swell effect

particular, reiterating from above, the extrudated material gets substantially pressurized in

the extrusion canal and in the extrusion die. Upon leaving the die, the extrudate enters an

environment where its surfaces are instantaneously released from any pressure. This is typically

accompanied by a hardly predictable and (depending on the material) sometimes considerable

shape change, which is usually referred to as “die swell” [4–10], see Figure 1.4 for respective

visualizations. The change in the extrudate’s cross section can be up to 20% or even more

(in terms of specific geometrical dimensions of the cross sections), depending on the actual

type of rubber (or rubber compound) being used. It is thus essential that the shape of the

die compensates the die swell effect such that the eventually obtained cross-sectional shape of

the extrudate takes the desired form. It should also be mentioned that after the completed

swelling, stresses may remain in the extrudate, and those stresses become “frozen” during the

vulcanization process, thus remaining in the final product as a residual stress (with the potential

of reducing the final product’s life span) [13, 14].

The aforementioned compensation of the die swell based on shaping the die accordingly is

standardly achieved based on an iterative trial-and-error procedure. Clearly, such approach

is time-consuming and hence expensive. Typically, depending on the skill of the toolmaker,

between 5 and 15 iterative steps of die geometry changes and in-between extrusions are needed

for achieving satisfactory results. For complex cross-sectional shapes, the number of required

iterations may be even (much) higher [1, 2]. Furthermore, this iterative procedure yields a lot of

usually not reusable waste, and occupies an extruder which cannot be used otherwise for that

period of time. An additional downside is the fact that a change of material (or even material

composition) usually requires the design of a new die, as the deformation behavior might be

different.

Computational modeling seems to be a promising alternative (or at least complement) to the

current practice in rubber industry (in terms of designing extrusion dies). Per se, this idea is
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4 1 Introduction

(a)

(b)

Fig. 1.4: Visualization of the die swell effect: (a) schematic sketch including the flow pattern
within the extrudate [11], (b) pictures from experiments [12]

not new – numerous attempts in developing modeling and simulation strategies can be found in

literature, as summarized in the next section of this thesis. However, while literature provides

interesting, insightful, and indeed sophisticated approaches, the published modeling strategies are

mostly not sufficiently accurate. Thereby, it should be stressed that such simulations are usually

performed by means of standard computational fluid dynamics (CFD) software, based on the

radical assumption of an incompressible material. This contradicts the recently obtained results

of compression tests performed on rubber blends, showing a distinctive compressive behavior [15],

see Appendix A. Hence, the fundamental hypothesis of this thesis (and of the research project

mentioned at the beginning of Chapter 1) was that most (if not all) of those models are based

on substantial oversimplifications, particularly concerning the constitutive behavior of rubber.

With this in mind, the following objectives were formulated at the outset of the project:

1. Improving the understanding concerning the material behavior of unvulcanized rubber: To

that end, the goal was to develop a fundamentally new, physically (thermodynamically) well-

defined mathematical description of the mechanical behavior of rubber blends. Importantly,

tying in with the above-raised arguments supporting the potentially important role of

rubber compressibility, the new mathematical description needed to take this additional
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1.2 Progress beyond the state of the art 5

constitutive effect into account. Furthermore, a comprehensive experimental campaign

was planned, involving compression tests (in order to quantify the compressive behavior),

extrusion tests (aiming at capturing the deformations upon extrusion), and viscosity tests.

2. Definition of suitable boundary conditions: Extrusion tests presented in this thesis were

mainly conducted using screw extruders, see Figures 1.1 and 1.2, where the raw material is

inserted at one end through a filling funnel, and then moved towards the extrusion die by a

rotating screw. This is combined with a sudden or continuing reduction of the cross section

of the extrusion canal towards the die, resulting in an increase of pressure. However, when

leaving the die, the pressure-inducing boundary is instantaneously “replaced” by a free

surface. In order to accurately simulate the die swell occurring in the course of extrusion,

taking into account all of those boundary conditions was believed to be essential.

3. Development of a suitable simulation tool and validation of the results: The core of this

thesis was the development of numerical tools for evaluation of the mathematical framework,

thus being able to predict the swelling behavior of unvulcanized rubber (blends) after they

leave the extrusion die, also utilizing the results obtained in the experimental campaign,

and appropriately taking into account the boundary conditions mentioned above. This

challenge was tackled based on the Finite Element (FE) method, whereby using commercial

FE software turned out to be impractical; instead an in-house FE code was developed. For

validation of the model, the aforementioned extrusion tests, also performed in the course of

this project, were considered.

Finally, it is stressed that the models presented in this thesis were mainly developed while

having in mind extrusion of unvulcanized rubber compounds as eventual application. Nevertheless,

all theoretical considerations as well as the developed simulation tools can be applied and/or

adapted to similar materials and production processes.

1.2 Progress beyond the state of the art

Currently, the design of new extrusion dies is based on a trial-and-error approach. Obviously, this

strategy is ineffective, as a (possibly) great number of iterative cycles – consisting of a manual

change of the die geometry and subsequent testing of the extrusion result by actually performing

the extrusion process – is needed until the desired cross section of the extrudate is obtained.

Especially complex extrudate shapes require a large number of iterations to properly compensate

the swelling effect of the extrudate. The development of mathematical models or simulation

methods describing the changes in geometry upon the material exiting the die has therefore been

a goal for many decades. Research aimed at predicting the expansion of compressed elastomer or

thermoplast materials, promising to provide support in the design of extrusion dies.

Usually, commercial software is used to perform so-called computational fluid dynamics (CFD)

simulations. The applied software generally allows for a high flexibility when considering complex

geometry and the accompanying material flow. But, in general, they come along with a great

disadvantage: they apply simplified material laws, which are not always thermodynamically

consistent, or lack specific constitutive material properties, such as the compressibility of rubber

materials [16, 17]. The latter simplification usually results in only considering shear deformation
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6 1 Introduction

rates and shear stresses in the conducted simulations, which usually renders simulations being

(in the best case) qualitatively interesting, but rarely quantitatively accurate.

Flawed material models, especially those lacking consideration of material compressibility, have

already been identified as being inappropriate for the quantitative description of the swelling

process, and that this and other effects need to be considered. Adding the possibility of material

compression to a material model does allow for the consideration of changes in material density,

as well as for using viscoelastic models including both deviatoric and volumetic strains [16, 18,

19]. From a numerical point of view, taking into account all these effects by far exceeds the

current possibilities provided by commercial CFD software. Furthermore, it has been suggested

that for appropriately modeling the swelling behavior of rubber, the latter should not to be

considered as a viscous fluid (as it is done stanadardly), but as a viscoelastic (and rather soft)

solid [8, 9]. This has already been underlined by some measurements and simulations undertaken

in previous studies [17, 20], although all these publications remain loyal to the assumption of

incompressibility.

Before engaging in the project leading to this thesis, a preliminary project was implemented,

with the aim to make advances towards experimental investigation and mathematical description

of the compressibility of unvulcanized rubber. The results of this research were eventually

published in [15, 21], with [15] also added to this thesis as Appendix A. The preliminary project

led to the development of a completely new testing setup and protocol, with the results being

investigated and compared to both (instantaneous) elastic, as well as viscoelastic, material models.

The acquired results clearly implicated that rubber compressibility could not be neglected, and

that it is of an elastic nature, i.e. not time-dependent and thus not showing any time delay

between loading and deformation.

It should be mentioned that elastic deformation of rubber and rubber blends is indeed considered

in available publications, see e.g. [22–26], but that it has been (so far) not connected with the

die swell of rubber upon extrusion. Nevertheless, considering incompressible material behavior

of rubber is still the gold standard in the field. One of very few exceptions was published by

Anand [27], who modeled the hydrostatic compression tests by Adam and Gibson [28] based on

a thermodynamically consistent, objective (base-frame indifferent) free energy formulation. This

finally resulted in a linear relation between the pressure and the natural logarithm of the volume

change, divided through the latter, which could be – to some extent – applied perfectly upon

the results presented in [28]. On the same theoretical basis, uniaxial tension tests performed by

Penn [29] could also be modeled to some satisfaction.

Considering, on the one hand, that neglecting rubber compressibility is still omnipresent in

the field of die swell simulation, and, on the other hand, that the aforementioned compression

tests clearly revealed that the compressibility of rubber is actually significant and should not be

neglected, the major novelty of this thesis is, undoubtedly, the development of a simulation tool

which does not neglect the compressibility of rubber. Given that commercial software is usually

inflexible in terms of implementing new material models, or different governing equations, it was

expected from the outset that development of new codes from scratch was indispensable. In

order to successfully achieve the above-sketched ambitious overall goal, several “minor” novelties

needed to be achieved as well:

• Firstly, a number of new experimental protocols needed to be defined, leading to a substantial

broadening of the understanding of the compressibility and the expansion behavior of
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1.3 Project implementation 7

unvulcanized rubber, allowing to develop corresponding mathematical material models in a

well-founded fashion. Details on the experimental campaign can be found in Chapter 2 of

this thesis.

• The core of the subsequently presented improved mathematical model of the mechanical

behavior of rubber (as it is relevant for the die swell), is certainly a correspondingly

improved constitutive law. In particular, the latter has been designed such that previous

insights of both experimental and theoretical nature [15, 21–27] can be considered, adapted,

and extended. As is elaborated in detail in Chapters 3 and 4, the employed constitutive law

takes into account both the compressibility of rubber and viscous (or viscoelastic) effects,

with suitable models originating from the viscosity tests described in Chapter 2.

• As compared to standard simulation tools, the here-pursued strategy allows for realistic

consideration of boundary conditions, especially concerning the instantaneous transition

from the rubber leaving a confined, pressurized compartment (i.e., the extrusion die) into a

somewhat unrestricted environment, as it occurs in the course of extrusion, leading to the

swelling of the extrudate, see Chapter 3 for details.

• Taking into account that rubber is actually a compressible material entails considerable

consequences in terms of the corresponding mathematical framework. Hence, off-the-shelf

numerical methods are no longer applicable, and the here developed numerical solution

strategy (described extensively in Chapters 3 and 4) can be considered as a novelty in itself.

• Considering previous studies concerning the simulation of the die swell of rubber, model

validation is limited to qualitative aspects in most cases. In the course of the experimental

campaign, a considerable amount of extrusion tests were performed, leading to a large

number of data utilizable for model validation (and verification). Notably, the data comprise

tests performed on different materials, different extrusion facilities, different die geometries,

different temperatures, and different test parameters. Hence, model validation (as visible

in Chapter 5) was performed on an extremely broad experimental basis, corroborating the

soundness of the model.

1.3 Project implementation

For the sake of a structured project implementation, the following six work packages (WP) were

defined:

WP1 – Experimental investigation of the constitutive behavior of unvulcanized

rubber

The first WP provides the basis for subsequent model developments, and comprises the planning,

implementation, and analysis of the experimental campaign. In particular, mainly unvulcanized

EPDM (ethylen-propylen-diene-monomer) rubbers were studied, while, for the sake of compara-

bility, some tests were also carried out on natural rubber. In order to study the differences in

material behavior between different kinds of material, different types of EPDM mixtures were

considered, differing in terms of their amount of polymer and filler, and of the type of filler
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8 1 Introduction

used (e.g. kaolin or carbon black). Three types of experimental tests were performed, namely

compression, viscosity and extrusion tests, described briefly in the following.

As shown in [15, 21] and Appendix A, the compressibility behavior was studied using a capillary

rheometer, see [30] and Figure A.1(a). The preliminary studies thereby helped to establish a

well-working experimental protocol including pre-heating, compaction (prevention of inclusion

of air), and the actual testing. The material specimens were compressed under hydrostatic

conditions up to a predefined maximum pressure, which was held for a predefined time, and then

reduced to the initial pressure. Parameters such as maximum pressure, loading and unloading

speed, holding time of maximum pressure, and temperature were varied, studying the effects of

such alterations.

Viscosity tests were performed using the standard experimental protocol, again involving a

rheometer. The studied material was simultaneously filled into two canals of the rheometer, and

then extruded using two types of extrusion dies which differ in their length to diameter ratio.

The obtained results included extrusion speed and pressure, from which a viscosity could be

back-calculated. Also, various temperature levels were tested.

Extrusion tests were performed using two kinds of extruders and the rheometer, allowing

for studying the effects of varying extrusion parameters. The obtained results included the

temperature levels, the pressures in the canal, and the extrusion velocities.

Details on the experimental protocols and on the experimental results can be found in Chapter

2 of this thesis.

WP2 – Constitutive modeling of unvulcanized rubber and rubber blends

One key part of the modeling approach developed in the course of this thesis concerned revisiting

constitutive models of rubber (subjected to extrusion), striving for a model which is able to

capture the constitutive behavior of rubber as observed in the tests of WP1 as well as documented

in literature.

Based on the results obtained from the compressibility tests, respective materials laws could

be derived. As described in WP1, different EPDM compound materials were studied considering

varying testing parameters. The viscosity tests formed the basis for describing the deformation

behavior under deviatoric loading, which can be considered to be viscoelastic. Thus, the

deformation of rubber involves both an elastic volumetric and a viscoelastic deviatoric part, and

combining both observations into resulting material laws helped to describe the deformation

behavior of rubber more accurately. This also includes the expansion behavior, which can be

better understood when also relying on the results of the extrusion tests as they suggested that

considering rubber compressibility is actually imperative when describing rubber deformation

behavior.

Furthermore, it is important to keep in mind that unvulcanized rubber is actually a very soft

solid, exhibiting large deformations and large deformation gradients. This key aspect was also

taken into account.

The experimental basis for the constitutive models is presented in Chapter 2, while the key

concepts for the modeling approach can be found in Chapters 3 and 4.
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1.3 Project implementation 9

WP3 – Modeling of the extrusion process of rubber and rubber blends

This WP mainly focused on identifying the boundary conditions representative for extrusion of

rubber. Both the results from the extrusion tests performed in WP1 and insights available in

literature were considered as basis for this important task.

While material is hindered from expansion rectangular to the flowing direction because of the

extrusion canal, which also leads to application of high pressures when the material is compacted

before passing the extrusion die, this suddenly changes after the die is exited. The material is

then able to expand freely due to the free surface surrounding it.

The boundary conditions chosen for numerical simulation of extrusion, as well as aspects

related to their actual implementation, are described in Chapter 3 of this thesis.

WP4 – Identification and development of suitable mathematical solution

techniques for the simulation of rubber extrusion processes

It is believed several aspects achieved during this task can be considered to be key novelties,

which have not been accomplished previously. Nevertheless, some seminal works in the field

should be mentioned as important basis, such as [8, 9, 31, 32] and others. In the end, a

mathematical framework was derived representing an objective, mass-related, fully consistent

Gibbs potential-based thermodynamics formulation. Based on the principle of virtual power [33],

the resulting equations were respectively transformed into a discretized format.

For solving the resulting differential equations, based on the constitutive models developed in

WP2 (based on the experimental results of WP1), taking thereby into account the boundary

conditions identified in WP3, a new in-house FE code was developed. This owes to the fact

that commercial FE software usually does not take into account the compressibility of “flowing”

material which was however considered to be key for accurately simulating the die swell of rubber.

The results of WP4, which should be considered as the key results of the whole project are

discussed in detail in Chapters 3 and 4 of this thesis.

WP5 – Actual implementation of a suitable mathematical model by using

numerical computation software

Computational mechanics in general, and simulation of soft materials in particular involve a

number of pitfalls, when attempting to apply basic (well-known) concepts to this materials. All

of those intricacies needed to be dealt with in the course of this thesis, namely in this WP,

leading to specific modes of algorithmic treatment in order to assure satisfying convergence in

time and space. In order to succeed, proven methods available in literature could be utilized, see

e.g. [34–36] or FE method-related aspects in general, or [37] for the so-called Newmark approach

ensuring improved convergence in time.

Details on the numerical implementation, together with the presentation of first numerical

results are documented in Chapters 3 and 4 of this thesis.
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10 1 Introduction

WP6 – Verification and validation of the results obtained from the other work

packages

In order to maximize the impact of all developed modeling tools, experimental model validation

was considered as key aspect at the later stages of the project. Thereby, a two-stage strategy was

pursued. On the one hand, the simulation tool was verified comprehensively, through a large set

of sensitivity studies. The latter involved variations of key parameters of the extrusion process.

Through checking the correspondingly obtained results based on intuition and plausibility, the

soundness of the model and of the numerical solution approach could be verified.

On the other hand, after successful verification, the model predictions were scrutinized. To

that end, the model parameters were adapted such that they represented the extrusion tests

as well as possible and the corresponding model predictions (in terms of the die swell) were

compared to the measured die swells. While it should be noted that future model improvements

and extensions are needed, the model validation performed in the course of the present thesis

can be considered as satisfying and very promising.

Details on model verification and validation can be found in Chapters 3, 4 and 5 of this thesis.

1.4 Remarks on the following chapters

Implementing the project serving as basis of this thesis, as described in Sections 1.1 to 1.3, led to

three manuscripts which are in the final stages of preparation before being submitted to scientific

journals. Chapters 2 to 5 include those manuscripts, which are entitled as follows:

• Chapter 2 includes the manuscript entitled “Compression, viscosity, and extrusion tests on

unvulcanized rubber blends confirm importance of compressibility for die swell — arguments

from dimensional analysis”, authored by R. Plachy, S. Scheiner, F. Arthofer, S. Robin,

A. Holzner and C. Hellmich, which is under preparation for submission to the journal

Polymer.

• Chapter 3 includes the manuscript entitled “A hypoviscoelastic thermodynamics model

of soft solids, utilized for numerically simulating the die swell of rubber”, authored by

R. Plachy, S. Scheiner, F. Arthofer, A. Holzner and C. Hellmich, which is under preparation

for submission to the journal International Journal of Engineering Science.

• Chapter 4 includes some supplementary information related to Chapter 3, entitled “Detailed

derivations and proofs related to the paper “A hypoviscoelastic thermodynamics model

of soft solids, utilized for numerically simulating the die swell of rubber””, authored by

R. Plachy, S. Scheiner, F. Arthofer, A. Holzner and C. Hellmich.

• Chapter 5 includes the manuscript entitled “Prediction of rubber die swell during the

extrusion process based on a hypoviscoelastic thermodynamics model considering rubber

as soft solid”, authored by R. Plachy, S. Scheiner, F. Arthofer, A. Holzner and C. Hellmich,

which is under preparation for submission to the journal Applications in Engineering

Science.

Furthermore, Chapter 6 summarizes the main results obtained in Chapters 2 to 5, also

explaining how further research on the topic of simulation of rubber extrusion processes could be

https://www.tuwien.at/bibliothek
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1.4 Remarks on the following chapters 11

tackled. Appendix A presents an additional paper on an experimental protocol developed for

identifying the compressibility of rubber, which can be considered as preliminary study serving

as basis for this thesis. This paper was published in the journal Polymer [15], and resulted from

the Master’s thesis [21] of the author of this thesis. Appendix B includes a brief CV of the author

of this thesis, while the thesis is concluded by the bibliography including all references made in

Chapters 1 to 6 of this thesis.
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Chapter 2

Compression, viscosity, and extrusion tests on

unvulcanized rubber blends confirm importance

of compressibility for die swell — arguments

from dimensional analysis

Authored by: R. Plachy1, S. Scheiner1, F. Arthofer2, S. Robin2, A. Holzner2, C. Hellmich1

1 Institute for Mechanics of Materials and Structures, TU Wien
2 Semperit Technische Produkte GmbH

Under preparation for submission to: Polymer

Abstract: The extrusion of unvulcanized rubber involves a phenomenon called die swell, which

is essentially the enlargement of the geometrical dimensions of the extrudate after leaving the

die. Several factors have been suggested to influence the die swell, including the sizes of the

die and of the canal, the mechanical properties of the extruded material (in particular its vis-

cosity, but also its compressibility), and probably also the temperature at which the extrusion

is performed. This paper aims at elucidating which of these factors are actually effective in

terms of influencing the die swell and which not. To that end, compression tests, viscosity tests

(using circular dies), and extrusion tests (using also circular dies) were performed on two types

of ethylene-propylene-diene-monomers, and additional compression tests were also performed

on natural rubber. First, all three testing modalities were assessed separately, revealing that

(i) the compressibility of rubber is pressure-dependent, but not significantly influenced by the

temperature; (ii) the viscosity of rubber is strain rate-dependent, but also not significantly

influenced by the temperature; and (iii) the die swell of rubber is influenced by several factors at

once (including its mechanical properties, or the die geometry), leading to large variations in the

resulting enlargement of the extrudate’s diameters. In order to somehow reconcile this compre-

hensive body of experimental data, we have applied the tool of dimensional analysis, providing

several insights: First of all, the compressibility of unvulcanized rubber has turned out to be

indeed of great importance for the die swell. Suprisingly, the effect of the temperature appears

to be much less prominent than originally expected. Finally, further key factors influencing the

die swell concern the geometries of the die and the canal. Apart revealing insights concerning

the die swell behavior of unvulcanized rubber blends, this study also demonstrates the value

https://www.tuwien.at/bibliothek
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14 2 Arguments from dimensional analysis

of dimensional analysis for the analysis of physical phenomena influenced by many different factors.

Keywords: viscosity, compressibility, extrusion, circular die, Buckingham theorem

2.1 Introduction

Extrusion is among the most important manufacturing technologies in the rubber industry

[4]. Essentially, this process is based on squeezing the heated raw material (usually termed

extrudate) through formative tools. Remarkably, depressurization of the extrudate (upon leaving

the tool) leads to an unintentional additional change of the extrudate’s cross section, known as

die swell or Barus effect [5–8]. Since the die swell effect considerably complicates the design of the

aforementioned formative tools, its computer simulation-based prediction, promising to provide

a means for circumventing a tedious trial-and-error procedure, is one of the grand challenges in

the field. While this modeling challenge had been tackled numerous times, see e.g. [38–41], the

respective model predictions could not reach a satisfying accuracy.

It has been suggested [18, 19, 42–44] and recently confirmed by a series of compression tests

[15], see Appendix A, that unvulcanized rubber exhibits considerable compressibility. For the

sake of a simpler numerical solution of the problem-governing mathematical framework, modeling

approaches standardly neglect this (potentially important) constitutive feature of unvulcanized

rubber. It seems thus obvious to hypothesize that taking into account the compressibility of

unvulcanized rubber may improve the accuracy of such models.

This paper aims at elucidating which factors effectively contribute to the extent of the die swell

of unvulcanized rubber upon extrusion, with particular focus on the effect of the compressibility,

based on both experimental tests and theoretical considerations. To that end, two particular

kinds of rubber compounds as well as one kind of natural rubber, defined in Section 2.2, were

studied. Section 2.3 presents the experimental program performed in the course of this study,

comprising compression tests (see Section 2.3.1), viscosity tests (see Section 2.3.2), and extrusion

tests (see Section 2.3.3). The main novelty of this paper, namely evaluating and interpreting the

experimental results presented in Section 2.3 by means of a thorough Buckingham Π theorem-

based dimensional analysis [45, 46], is presented in Section 2.4. A comprehensive discussion of

the results and of the related key findings concludes the paper, see Section 2.5.

2.2 Materials under investigation

Two types of unvulcanized rubber compounds were considered, both being ethylene-propylene-

diene-monomers (EPDM), hereafter referred to as EPDM-A and EPDM-B. Note that EPDM-A

is equivalent to the material referred to as EPDM-1 in [15], see Appendix A; for the sake of

unambiguity, the denotation has been slightly changed in this paper. Both EPDM-A and EPDM-

B were mainly crystalline EPDMs, exhibiting a high content of white filler. The Mooney viscosity

after four minutes, ML(1+4), ranged between 47.2 and 48.1 MU for EPDM-A, and between 21.8

and 25.1 MU for EPDM-B. Finally, the density of EPDM-A amounted to 1.445 g/cm3, whereas

the density of EPDM-B amounted to 1.288 g/cm3. For reference purposes, the compressibility

tests described in Section 2.3.1 were also conducted on a natural rubber material, hereafter

https://www.tuwien.at/bibliothek
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2.3 Experimental program and data evaluation 15

refereed to as NR, which was characterized by an ML(1+4) ranging from 50.2 to 93.3 MU and a

density of 0.930 g/cm3.

2.3 Experimental program and data evaluation

2.3.1 Compressibility tests

In order to determine the compressibility behavior of the studied materials, hydrostatic com-

pression tests were carried out on the three materials defined in Section 2.2, using a standard

Göttfert Rheograph [30], following thereby the experimental protocol described in detail in [15],

see Appendix A. First, some preparatory steps needed to be carried out, comprising sealing the

extrusion canal, inserting the material into the canal, and compacting the material in order to

remove possibly entrapped air. Then, the specimens were heated to the desired temperature

Tcan (amounting to 100, 120, and 160 ◦C), were compressed by means of a PVT-piston at a

predefined velocity vPVT (amounting to 0.01, 0.05, 0.1, and 0.2 mm/s) until the target pressure

pmax
can (amounting to 20, 40, 60, and 80 MPa) was reached. Then, the respective position was held

for a predefined time thold (considering 0, 30, 120, and 600 s), after which the piston moved back

to its initial position at velocity −vPVT; see Figure 2.1 for an illustration of the experimental

protocol.

For evaluation of the data obtained from the above-described hydrostatic compression tests, a

number of energetically conjugated pairs of stress and strain measures can be considered [47, 48].

Tying in with the findings presented in [15], see Appendix A, we consider the linearized strain

tensor ε and the Cauchy stress tensor σ to be suitable for describing the compression behavior

of unvulcanized rubber as it occurs in the hydrostatic compression tests studied in this paper.

On this basis, we consider the following constitutive law:

σ − σ0 = λ · tr(ε) · 1 + 2 ·G · ε , (2.1)

where σ0 is the initial Cauchy stress tensor, λ is the Lamé parameter, G is the shear modulus,

and tr is the trace operator, tr(ε) = ε11 + ε22 + ε33. Considering that the studied material is

subjected to a stress state which is approximately hydrostatic (hence, σ11 ≈ σ22 ≈ σ33), the stress

t0

t

t

pmax
can

pcan

vPVT
thold

Fig. 2.1: Qualitative sketch showing the experimental protocol followed for determining the
compressibility of the studied materials (defined in Section 2.2); see [15] and Appendix
A for details.
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16 2 Arguments from dimensional analysis

tensor can be rewritten in terms of the mean hydrostatic stress σm = tr(σ)/3 = −pcan, with pcan

being the hydrostatic pressure the studied material experiences in the canal. Introducing the

latter definition in Eq. (2.1), and combining it with

ε =
l − l0
l0

· e1 ⊗ e1 , (2.2)

where l0 and l are the initial and current lengths of the specimen, and e1 is the base vector in

moving direction of the rheograph’s piston [15], see Appendix A, yields

K = (pcan − p0) · l0
l0 − l

, (2.3)

where K is the bulk modulus, K = λ+ 2 ·G/3 [47], and p0 is the initial pressure resulting from

sample preparation [15], see Appendix A.

All pressures and piston displacements, recorded in the hydrostatic compression tests, were

evaluated according to Eq. (2.3), for all three materials (i.e. EPDM-A, EPDM-B, and NR, defined

in Section 2.2) and separately for each of the studied test parameters (i.e., pmax
can , vPVT, thold, and

Tcan). It has turned out that the resulting developments of K over (pcan − p0) are completely

unaffected by pmax
can , thold, and vPVT. Hence, the compressibility of the tested rubber blends is a

purely elastic effect. Furthermore, while intuition suggests an increasing compressibility with

increasing temperature, the obtained results show that the dependence of the K over (pcan − p0)-

relation on the temperature was not significant as compared to the fluctuations observed due to

inconsistencies in the considered material batches, as well as to potential inaccuracies related to

the measurement devices, see Figures 2.2(a) – (c). In the following, distinguishing between the

results obtained for different temperature levels will be thus omitted; a dimensional analysis-based

justification of this choice can be found in Section 2.4 of this paper.

The resulting data pairs of K and (pcan − p0) were fitted by means of a power function of the

form
K

Kref
=
(
pcan − p0

Kref

)β

, (2.4)

where parameters Kref and β were determined material-specifically, based on a standard least

squared errors optimization. The resulting fitting parameters for all three materials are presented

in Table 2.1; the resulting K-over-(pcan − p0) functions are also included in Figures 2.2(a) – (c),

see the dotted graphs.

Tab. 2.1: Values of Kref and β obtained from fitting the experimentally obtained data pairs of
K and (pcan − p0), according to Eq. (2.4), for materials EPDM-A, EPDM-B, and NR,
as defined in Section 2.2; together with the respective coefficients of determination
R2.

Kref [MPa] β [–] R2 [–]

EPDM-A 45781 0.5100 0.91
EPDM-B 6838 0.3168 0.80
NR 17809 0.4483 0.92
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Fig. 2.2: Bulk modulus K versus pressure (pcan−p0), as recorded for (a) EPDM-A, (b) EPDM-B,
and (c) NR, at temperatures 100◦C, 120◦C, and 160◦C. The dotted graph shows the
theoretical, material-specific fit over all experimental data according to Eq. (2.4) and
Table 2.1.
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18 2 Arguments from dimensional analysis

2.3.2 Viscosity tests

For determining the viscosities of EPDM-A and EPDM-B, again a Göttfert Rheograph [30] was

used. This capillary rheometer consists of two vertical canals, which need to be properly filled

with the materials under investigation. To that end, the protocol summarized in Table 2.2 (see

steps 1 to 6) was obeyed, followed by the actual viscosity tests (see steps 7 to 10 in Table 2.2).

The sequence of steps listed in Table 2.2 gives access to the apparent viscosity ηapp [49], still

reflecting effects of the actually inhomogeneous flow patterns and pressure losses. By means

of the Weissenberg-Rabinowitsch and the Bagley corrections [2, 49], ηapp can be translated

into the so-called true viscosity η (relating homogeneous shear strain rates and shear stresses).

The described mode of viscosity testing was repeated for different piston velocities and various

temperatures Tcan (considering 80◦C, 90◦C, 100◦C, and 140◦C).

The viscosity depends on the velocity of the rubber inside the extrusion die, vdie. The latter

follows from continuity considerations, involving the vertical piston velocity in the extrusion

canal vcan, and the diameters of the canal and of the die, dcan and ddie, yielding [50]

vdie = vcan ·
(
dcan

ddie

)2

. (2.5)

The aforementioned varying velocities vPVT = vcan imposed in the extrusion canal resulted in die

velocities vdie ranging from 6.25 mm/s to 250 mm/s.

The thus resulting relations between vdie and η are depicted material-specifically in Fig-

ures 2.3(a) and (b). Analogously to the compression tests presented in Section 2.3.1, no

significant and consistent temperature dependence is observed. As with the compressibility, we

suspect that this can be explained by potential variations between the used material batches (in

terms of composition) or by potential inaccuracies related to the experimental equipment. This

Tab. 2.2: Protocol followed for inserting the studied materials into the capillary rheometer as
preparation for viscosity tests (steps 1 to 6) and for measuring the materials’ viscosities
(steps 7 to 10).

# Description of activity

1. Cleaning of the empty extrusion canals (exhibiting diameter dcan).
2. Heating the canals to the desired temperature Tcan.
3. Mounting two different dies to the bottom of the two canals. The two dies must exhibit the same die

diameter ddie, but must differ in terms on the die length ldie, implying hence different ratios
Λ = (ldie/ddie). In the present study, the length of one die was ldie = 0.1 mm, while the length of the
other amounted to ldie = 10 mm.

4. Chipping of the material to be tested into small pieces, and inserting those pieces into each of the canals
from the top.

5. Compacting the material pieces by moving the pistons up- and downwards, while excessive material
might be extruded through the dies at the bottom.

6. Repeating of steps 4 and 5 until the canals are completely filled.
7. Moving the pistons downwards inside the canals with a predefined vertical speed vPVT = vcan, thereby

inducing a pressure pcan in each of the canals, measured by means of pressure transducers.
8. Extruding material through the dies at the bottom of the canal.
9. Recording velocities vcan and pressures pcan when the extrusion reaches a steady state, after which the

vertical piston speed vPVT is changed.
10. Repeating steps 7 to 9 until both canals are empty.
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2.3 Experimental program and data evaluation 19

suggests to cast the relation between η and vdie into mathematical format by disregarding any

influence the temperature may have; see Section 2.4 for dimensional analysis-based arguments

supporting this choice. In particular, we propose the following power law:

η = α ·
[
vdie

v0

]
−τ

, (2.6)

where v0 is a reference velocity, amounting to v0 = 1 m/s. Parameters α and τ were determined

(by means of a standard least squared errors optimization) for both materials, considering for

that purpose all tests performed for each material. The resulting pairs of fitting parameters are

presented in Table 2.3, and the respective η-over-vdie functions are included in Figures 2.3(a)

and (b), see the dotted graphs.

(a)

vdie [m/s]
10−3 10−2 10−1 100

η
[P

a
·s

]

101

102

103

104

(b)

vdie [m/s]
10−3 10−2 10−1 100

η
[P

a
·s

]

101

102

103

104

80 ◦C 90 ◦C 100 ◦C 140 ◦C Eq. (2.6)

Fig. 2.3: Viscosity η versus the velocity in the die vdie, as recorded for (a) EPDM-A and (b)
EPDM-B, at temperatures 80◦C, 90◦C, 100◦C, and 140◦C. The dotted graph shows
the theoretical, material-specific fit over all experimental data according to Eq. (2.6)
and Table 2.3.
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20 2 Arguments from dimensional analysis

Tab. 2.3: Values of α and τ obtained from fitting the experimentally obtained data pairs of η
and vdie, according to Eq. (2.6), for materials EPDM-A and EPDM-B, as defined in
Section 2.2; together with the respective coefficients of determination R2.

α [Pa·s] τ [–] R2 [–]

EPDM-A 30.39 0.8671 0.93
EPDM-B 25.17 0.8729 0.90

Tab. 2.4: Protocol followed for inserting the studied materials into the capillary rheometer, see
Figure 2.4(a), as preparation for extrusion tests (steps 1 to 6) and for measuring the
die swell (steps 7 to 11).

# Description of activity

1. Cleaning of the empty extrusion canal (exhibiting diameter dcan); note that in contrast to the viscosity
tests described in Section 2.3.2 only one of the two available canals was used.

2. Heating the canal to the desired temperature Tcan.
3. Mounting the extrusion die to the bottom of the canal; characterized (i) by the die diameter, ddie, and by

the die length, ldie, yielding a respective ratio Λ = (ldie/ddie); (ii) by the gradient of the tapering from
the canal diameter to the die diameter, gcd; and (iii) by the ratio of the canal diameter to the die
diameter, Ξ = (ddie/dcan).

4. Chipping of the material to be tested into small pieces, and inserting those pieces into the canal from the
top.

5. Compacting the material pieces by moving the piston up- and downwards, while excessive material might
be extruded through the die at the bottom.

6. Repeating of steps 4 and 5 until the canal is completely filled.
7. Moving the piston downwards inside the canal with a predefined vertical speed vPVT = vcan, thereby

inducing a pressure pcan in the canal, measured by means of a pressure transducer.
8. Extruding material through the die at the bottom of the canal.
9. Measuring the diameter of the extruded material dext by means of a laser measuring device.
10. Recording vcan, pcan, and dext when all three quantities have reached a steady state.
11. Repeating steps 7 to 10 until the extrusion canal is empty.

2.3.3 Extrusion tests

2.3.3.1 Testing modalities

In order to find quantitative relations between the die swell and the underlying factors, extrusion

tests were performed using three types of experimental facilities: (i) a capillary rheometer,

namely a Göttfert Rheograph [30], see Figure 2.4(a); (ii) a (small) laboratory extruder, namely a

Brabender Plastograph, see Figure 2.4(b); and (iii) a (regularly sized) production extruder, see

Figure 2.4(d). This variety of extrusion facilities allows for covering wide ranges of extrusion

specifics, as summarized at the end of this section, in Table 2.6. In contrast to the capillary

rheometer, see Figure 2.4(a), the laboratory and production extruder, see Figures 2.4(b) and

(d), involve a horizontal extrusion canal, with the die mounted on one end, a screw conveyer

continuously moving material along the canal, and a filling funnel for the insertion of material

on the other end, see [2] and Figure 2.5. The protocols followed for performing the extrusion

tests are summarized in tabular format in Tables 2.4 and 2.5.

The high-speed cameras attached to the laboratory and production extruders, see Figures 2.4(c)

and (e), were used for tracking the actually occurring die swell. To that end, the pictures taken

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.
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(a) (b) (c)

(d) (e)

thermal camera

reference squares

high-speed cameras

high-speed cameras

reference squares

thermal camera

Fig. 2.4: Extrusion facilities used in this study, comprising (a) a Göttfert Rheograph 50, (b)
a laboratory extruder of type Brabender Plastograph, (c) a magnified area of (b),
(d) a production extruder, and (e) a magnified area of (d). The mounted measuring
equipment (i.e., high-speed cameras, thermal cameras, and reference squares for
subsequent evaluation) is indicated in (c) and (e).

by means of these cameras were processed as described in the following. The pictures were

imported into the commercial software Matlab, where the original RGB-color matrices were

converted into corresponding grey value representations, see Figure 2.6. Then, two distinctive

features were considered for further processing; on the one hand, the reference square (indicated

by the red-colored box in Figure 2.6), and, on the other hand, the extrudate (indicated by the

blue-colored box in Figure 2.6). The reference square was used for evaluating the actual size of

the recorded pixels making up the images. Hence, in order to not adulterate the resulting pixel

sizes due to perspective distortion, the reference square needed to be placed as close to the axis

of extrusion as possible, with the plane spanned by the reference square oriented perpendicular
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extrudate

die

canal screw conveyer

filling
funnel

m
o
to

r

pressure transducer

and thermometer

dext dcanddie

ldie

vext

vcan

gcd

1

Fig. 2.5: Schematic sketch of the laboratory and production extruders, also showing the geo-
metrical dimensions relevant for evaluating the extrusion tests, namely the diameters
of the canal (dcan), of the die (ddie), and of the extrudate (dext), the length of the die
(ldie), and the gradient of the tapering from the canal to the die (gcd).

Fig. 2.6: Grey scale-representation of a picture taken by one of the high-speed cameras attached
to the laboratory extruder, showing an EPDM-A extrudate (see the blue-colored box)
after exiting a circular die. The red-colored box shows the reference square used for
numerically evaluating the die swell.

to the line of sight of the high-speed camera. Using a built-in function of Matlab, called edge,

the corner pixels of the reference square were detected. Knowing that the side length of the

reference square amounts to 1 cm, and knowing the pixels representing the edges of the square,

as well as its diagonals, the pixel size could be straightforwardly back-calculated. Based on this

information, the diameter of the circular extrudate, dext, could be easily deduced from the grey

scale-images after detecting the exdrute edges, again by means of the aforementioned function

edge. Importantly, all extrusion tests described in this paper were performed using a circular die.

Hence, the diameter of the extrudate suffices for completely defining the cross-sectional shape of

the extrudate.
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Tab. 2.5: Protocol followed for performing extrusion tests by means of the laboratory and
production extruders, see Figures 2.4(b) to (e) as well as Figure 2.5. Steps 1 to 7
can be considered as preparatory steps, whereas steps 8 to 12 represent the actual
extrusion test.

# Description of activity

1. Cleaning of the empty extrusion canal (exhibiting diameter dcan).
2. Heating the canal to the desired temperature Tcan.
3. Mounting the extrusion die to the exit of the canal; characterized (i) by the die diameter, ddie, and by

the die length, ldie, yielding a respective ratio Λ = (ldie/ddie); (ii) by the gradient of the tapering from
the canal diameter to the die diameter, gcd; and (iii) by the ratio of the canal diameter to the die
diameter, Ξ = (ddie/dcan).

4. Positioning the adaptive frame built for this experimental campaign close to the die, see Figures 2.4(b)
to 2.4(e).

5. Mounting of the measurement equipment, namely of high-speed cameras for recording the swelling
development and the diameter of the extruded material, dext, a thermal camera for recording the
external temperature Text, and the reference squares (exhibiting a side length of 1 cm) used for
evaluation of the high-speed camera results, onto the frame (as close as possible to the axis of extrusion
and with the plane spanned by the reference square oriented perpendicular to the line of sight of the
high-speed camera), see Figures 2.4(b) to 2.4(e).

6. Inserting the material to be tested into the filling funnel without interruption, until material is moved all
the way through the canal by the screw conveyer, and excessive material is starting to exit the die.

7. Continuing extrusion until a steady state of extrusion is reached.
8. Moving the screw conveyer inside the canal continuously to extrude material through the die at the end

of the canal, while new material is constantly added through the filling funnel.
9. Recording of the pressure in the canal, pcan, by means of a pressure transducer.
10. Measuring the development of the swelling upon extrusion, including the diameter of the extruded

material, dext, by means of the high-speed cameras, and the velocity of the extrudate, vext, by
monitoring the velocity of the conveyor belt transporting the extruded material away from the extruder.

11. Recording of values vext, pcan, and dext once they reach a steady state.
12. Proceeding with steps 8 to 11 until all required measurements are performed, or no more feeding

material is available.

2.3.3.2 Test parameters and recorded quantities

The imposed variations of Tcan, pcan, and vdie are summarized for both materials (i.e., EPDM-A

and EPDM-B, see Section 2.2), and for all three extruder facilities (see Section 2.3.3.1) in

Table 2.6. It should be stressed that vdie is not a test parameter per se, but results from the

velocity of the screw conveyer and is determined based on continuity considerations, considering

for that purpose the velocity of the rubber measured in the canal of the capillary rheometer,

see Eq. (2.5), or the velocity of the extrudate, vext, through a relation analogous to Eq. (2.5),

vdie = vext · (dext/ddie)2.

Moreover, in order to quantify the extent of the die swell and to ascertain its influences (as

is dealt with in Section 2.4 of this paper), the following quantities were considered, see also

Figure 2.5:

• the ratio of the die length, ldie, to ddie, Λ = ldie/ddie;

• the gradient of the tapering from the canal to the die, gcd;

• the ratio of ddie to dcan, Ξ = ddie/dcan; and

• the diameter of the extruded material, dext, from which the change in diameter ∆d =

dext − ddie is deduced.
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LE PE CR

∆
d

[m
m

]

0

1

2

3

4

5

Fig. 2.7: Diameter change of the extrudate, ∆d = dext − ddie, resulting from the extrusion tests
performed by means of the laboratory extruder (LE), the production extruder (PE),
and the capillary rheometer (CR); cross-shaped markers indicate the tests on EPDM-A
while circle-shaped markers indicated the tests on EPDM-B.

The actual values of those parameters used in the tests considered in this paper are summarized

in Table 2.6.

The results of the extrusion tests are illustrated in Figure 2.7, in terms of ∆d, which are

the corresponding differences between the diameters of the dies and the extrudates. These

results clearly show that the swelling of the extrudate upon leaving the die varies substantially

considering the parameter ranges summarized in Table 2.6. Studying the influences each of the

influencing parameters has on ∆d is however not straightforward, owing to the fact that several

factors need to be considered, leading to a multi-dimensional task. A remedy to this problem

is presented in Section 2.4, involving the application of a specific mode of data evaluation and

interpretation, dimensional analysis.

2.4 Dimensional analysis

2.4.1 Outline of fundamental concept

The eventual aim of dimensional analysis is to describe (complex) physical processes by a

minimum set of quantities. To that end, the quantities describing a particular process are broken

down into the underlying fundamental dimensions (or fundamental quantities), such as time (T),

length (L), mass (M), or temperature (Θ). Thereby, the fundamental quantities can also be

coupled to derived quantities, such as force, pressure, viscosity, or velocity. E.g., force follows from

the fundamental quantities through mass times length divided by the square of time, M · L · T−2.

In order to assign numerical values to the mentioned quantities, they are usually given in relation

with units of measurement; e.g., T is given in seconds (s), L in meters (m), M in kilograms (kg),

or Θ in degrees Celsius (◦C).

According to the seminal work of Barenblatt [46], dimensional analysis involves the core task

of finding relations between the quantities influencing the process of interest. A mathematical

tool which can be utilized for exactly this purpose is the so-called Buckingham Π-theorem [45,

46]. It allows for finding combinations of quantities describing the process of interest and yielding

a dimensionless constant which hence originates solely from observing the process, or which can
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26 2 Arguments from dimensional analysis

be related to other dimensionless quantities. On this basis, a (complex) process can be described

based alone on considerations related to the dimensions of the involved quantities, without

knowing the underlying mathematical format. While application of this method is demonstrated

next, more information on the theoretical basis can be found in [46].

2.4.2 Application of the Buckingham Π-theorem for evaluating extrusion tests

We hypothesize that that the absolute die swell, which is the change in diameter of the extrudate

exiting the die, ∆d = dext − ddie, is influenced by the following quantities:

∆d = ∆d(vdie, pcan, Tcan, η,K,Λ, gcd,Ξ) . (2.7)

All of these quantities can be expressed in terms of the fundamental dimensions introduced in

Section 2.4.1, see Table 2.7. Note that the influence of the geometries of the extrusion facilities,

expressed through quantities Λ, gdc, and Ξ (all of which are already dimensionless per se), can

be captured altogether through an additional quantity Γ = Γ(Λ,Ξ, gcd).

Tab. 2.7: Fundamental dimensions of the quantities hypothesized to govern the die swell in the
extrusion experiments, considering for that purpose length (L), mass (M), time (T),
and temperature (Θ).

∆d vdie pcan Tcan η K Λ gcd Ξ

L 1 1 −1 0 −1 −1 0 0 0
M 0 0 1 0 1 1 0 0 0
T 0 −1 −2 0 −1 −2 0 0 0
Θ 0 0 0 1 0 0 0 0 0

Application of the Buckingham Π-theorem suggests the following definition of a dimensionless

quantity characterizing the die swell following from the extrusion tests described in Section 2.3.3:

Π∆d =
∆d · pcan

vdie · η = f

(
Tcan

T0
,
K

pcan
,Γ
)

, (2.8)

where K = K(pcan), see Section 2.3.1, and η = η(vdie), see Section 2.3.2, and where T0 is some

kind of reference temperature. Thereby, the choice of parameters and parameter combinations

being part of the not yet defined functional relations also influencing Π∆d, see the term on

the right-hand side of Eq. (2.8), was not arbitrary, but based on the subsequently elaborated

considerations. The temperature is often suspected to exert a considerable influence on the

die swell behavior of rubber, while introducing a reference temperature is necessary in order

to obtain a dimensionless quantity. Based on the compressibility tests presented in this paper

(see Section 2.3.1) and on previous studies [15], see Appendix A, the compressibility, quantified

in terms of the bulk modulus K, appears to be of potentially great importance for the die

swell; normalizing it by the pressure in the canal is again required for obtaining a dimensionless

quantity. Furthermore, the geometries of the die and of the canal unarguably influence the

die swell behavior. For the sake of simplicity, we take this influence into account based on the

dimensionless quantity Γ.
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2.4 Dimensional analysis 27

Next, we utilize Eq. (2.8) for assessing the results of the extrusion tests, starting with elaborating

on the soundness of the Eq. (2.8) itself. For that purpose, we leave out the functional dependences

right of the second equal sign in Eq. (2.8). This would imply that Π∆d needs to be a constant,

termed C. Furthermore, we substitute η (which has been determined based on the viscosity tests

described in Section 2.3.2) by a viscosity back-calculated from the extrusion tests, termed ηext,

implying

ηext · C =
∆d · pcan

vdie
. (2.9)

Numerically evaluating Eq. (2.9) for all extrusion tests and plotting ηext · C over vdie reveals

that the viscosity back-calculated from the extrusion tests is a function of vdie and of Tcan, see

Figure 2.8.

(a)

vdie [m/s]
10−2 10−1 100

η
ex

t
·
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a
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]
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(b)
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LE / 80◦C LE / 100◦C LE / 120◦CLE / 120◦C

PE / 80◦C PE / 100◦C CR / 100◦C

Fig. 2.8: Numerical evaluation of Eq. (2.9) for all extrusion tests, comprising tests performed on
(a) EPDM-A and (b) EPDM-B (see Section 2.2), by means of the laboratory extruder
(LE), the production extruder (PE), and the capillary rheometer (CR). The obtained
data points are color-coded distinguishing between the temperatures at which the tests
were performed, with temperature-specific regression lines included for the data points
related to the laboratory extruder.
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(a)
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Fig. 2.9: Numerical evaluation of Eq. (2.9) for all extrusion tests, comprising tests performed on
(a) EPDM-A and (b) EPDM-B (see Section 2.2), by means of the laboratory extruder
(LE), the production extruder (PE), and the capillary rheometer (CR). The obtained
data points are color-coded distinguishing between the values of Λ characterizing the
geometry of the die.

On the one hand, these dependencies present themselves in a physically plausible way, corrob-

orating the soundness of Eq. (2.8), in particular when considering the results obtained for the

laboratory extruder (see the dotted graphs showing regressions of the temperature-dependent data

points), obtained through a standard least squared errors optimization considering power func-

tions for describing the functional relation between η ·C and vdie. The quality of those regressions

can be quantified through the respective coefficients of determination. For EPDM-A, R2 = 0.63

(T = 80◦C), R2 = 0.62 (T = 100◦C), R2 = 0.74 (T = 120◦C), and R2 = 0.95 (T = 160◦C);

yielding the following average value and standard deviation: R2 = 0.74 ± 0.15. For EPDM-B, in

turn, R2 = 0.96 (T = 80◦C), R2 = 0.84 (T = 100◦C), R2 = 0.98 (T = 120◦C), and R2 = 0.97

(T = 160◦C); yielding the following average value and standard deviation: R2 = 0.94 ± 0.07

(whereby R2 ≤ 1). On the other hand, the functional dependence η · C = f(vdie, Tcan), in
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2.4 Dimensional analysis 29

addition to the function given by Eq. (2.9) implies some sort of double dependence on vdie, which

contradicts however the fundamental principles of dimensional analysis. Thus, the functional

dependencies right of the second equal sign in Eq. (2.8), Π∆d = f(T/T0,K/pcan,Γ) turn out

to be (at least partially) indispensable for fully describing how Π∆d is governed. It is further-

more instructive to plot the results shown in Figure 2.8 again, but not distinguishing between

temperatures (as was done in Figure 2.8), but between different values of Λ, see Figure 2.9.

These plots show that ηext is also affected by the geometry of the die. However, regressions

featuring satisfying coefficients of determination cannot be achieved; hence, a clear and consistent

functional dependence is not observed. This suggests that more extrusion tests, involving wider

ranges of Λ (but also of gcd and Ξ, in order to introduce a suitable function and well-founded Γ)

are required for properly taking into account this dependence as well.

(a)

K/pcan [–]
0 30 60 90 120 150

Π
∆
d

[–
]

0

300

600

900

1200

(b)

K/pcan [–]
0 100 200 300 400

Π
∆
d

[–
]

0

250

500

750

1000

LE / 80◦C LE / 100◦C LE / 120◦CLE / 120◦C

PE / 80◦C PE / 100◦C CR / 100◦C

Fig. 2.10: Numerical evaluation of Eq. (2.8) for all extrusion tests, comprising tests performed
on (a) EPDM-A and (b) EPDM-B (see Section 2.2), by means of the laboratory
extruder (LE), the production extruder (PE), and the capillary rheometer (CR). The
obtained data points are color-coded distinguishing between the temperatures at
which the tests were performed.
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(a)

K/pcan [–]
0 30 60 90 120 150

Π
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d
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]

0
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900

1200

(b)

K/pcan [–]
0 100 200 300 400

Π
∆
d

[–
]

0

250

500

750

1000

LE /Λ = 0.74 PE /Λ = 0.64 PE /Λ = 0.54

CR /Λ = 10 CR /Λ = 20 CR /Λ = 2.76

Fig. 2.11: Numerical evaluation of Eq. (2.8) for all extrusion tests, comprising tests performed
on (a) EPDM-A and (b) EPDM-B (see Section 2.2), by means of the laboratory
extruder (LE), the production extruder (PE), and the capillary rheometer (CR).
The obtained data points are color-coded distinguishing between the values of Λ
characterizing the geometry of the die, with Λ-specific regression lines.

For assessing the functional relations Π∆d = f(T/T0,K/pcan,Γ), see Eq. (2.8), plotting Π∆d

over the parameters suspected to influence Π∆d is a reasonable first step. However, the function

Γ is not known, due to an insufficient amount of variations of the underlying parameters Λ, gcd,

and Ξ, whereas plotting Π∆d over (T/T0) does not yield data points which can be utilized in any

reasonable way (not shown here). This leaves us with plotting Π∆d over K/pcan, distinguishing

thereby between different temperatures, see Figure 2.10, and between different values of Λ, see

Figure 2.11. Figure 2.10 clearly shows that no reasonable regression can be achieved for the

temperature dependence of the data points, leading to surprising conclusion that the Π∆d does

actually not depend on the temperature term (Tcan/T0). In contrast, Figure 2.11 reveals that,

when distinguishing between different values of Λ, regression is indeed possible in a reasonable way,

see the respective regression lines, obtained through a standard least squared errors optimization
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2.5 Summary and concluding remarks 31

considering power functions for describing the functional relation between Π∆d and (K/pcan).

For EPDM-A, the related coefficients of determination amount to R2 = 0.82 (Λ = 0.54), and

R2 = 0.94 (Λ = 0.64), R2 = 0.91 (Λ = 0.74), R2 = 0.76 (Λ = 2.76), R2 = 0.66 (Λ = 10); leading

to a corresponding average value and standard deviation of R2 = 0.82 ± 0.11. For EPDM-B, the

related coefficients of determination amount to R2 = 0.94 (Λ = 0.54), R2 = 0.98 (Λ = 0.64),

R2 = 0.84 (Λ = 0.74), R2 = 0.93 (Λ = 2.76), R2 = 0.99 (Λ = 10), and R2 = 1.00 (Λ = 20);

leading to a corresponding average value and standard deviation of R2 = 0.95 ± 0.06 (whereby

R2 ≤ 1). In summary, the results shown in Figures 2.10 and 2.11 corroborate the arguments

concerning the potentially important role of the rubber compressibility for the die swell raised in

[15], see Appendix A. Furthermore, the die swell appears to be consistently influenced by the

geometry of the die, but not by the temperature (at least not in a consistent manner).

2.5 Summary and concluding remarks

In this paper, a comprehensive experimental campaign was presented, comprising compression

tests, viscosity tests, and extrusion tests, performed on two different kinds of rubber blends;

furthermore, the compression tests were also performed on natural rubber. The typically

encountered difficulty in reconciling test results obtained from different testing modalities was

circumvented by applying dimensional analysis. This way, a number of (otherwise inaccessible)

insights could be gained:

• The compressibility of rubber blends was confirmed to be of great importance for die swell

observed upon extrusion of such materials. Hence, it seems very likely that mathemat-

ical models serving as basis for computationally simulating the die swell must take this

constitutive feature into account.

• Surprisingly, the effect of the temperature (at which extrusion is performed) on the die

swell seems to be not as prominent as usually suspected. In particular, the results presented

in Section 2.4 of this paper suggest that temperature indeed influences the die swell,

but that this influence is actually less pronounced than the fluctuation due to potential

inconsistencies in the material mixture and the inaccuracies as regards the measurement

equipment. An analogous behavior was observed for both the compressibility tests presented

in Section 2.3.1 and the viscosity tests presented in Section 2.3.2.

• The extrusion tests consistently showed a substantial influence by geometrical parameters

related to the die and the extruders. However, the extent of this influence was rather

inconsistent, meaning that no distinct functional relations between the die swell and the

geometrical parameters could be identified. Overcoming this deficit would probably require

extending the experimental program towards consideration of a much denser “mesh” of

geometrical parameters.

From a conceptual point of view, dimensional analysis has turned out as valuable concept

for evaluation of extrusion tests, the results of which are usually influenced by a multitude of

factors whose individual influences are very difficult to disentangle. Nevertheless, dimensional

analysis does not provide a strictly defined line of action, except from the requirement of finding

combinations of parameters which yield dimensionless new quantities, see Eq. (2.8) of this paper.
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32 2 Arguments from dimensional analysis

This task can be accomplished only through intuition and a trial-and-error approach, followed

by verification through numerical evaluation. Hence, we regard the resulting quantity, Π∆d, as

quite remarkable, as it is physically reasonable, it yields plausible results, and is defined based

on quantities which can be measured straightforwardly. Extending Eq. (2.8) by an additional

term capturing the geometries of the die and the canal would potentially lead to a more or

less universally valid constant fully defining the die swell of unvulcanized rubber. For the time

being, finding such an geometry-related term is not yet possible, and would require performing

extrusion tests involving much more variations in the die and canal geometries; we consider this

as a reasonable goal for future studies.

As closing remark, it should be stressed that the methods described in this paper could be

analogously applied to more complex die geometries, but would entail a correspondingly more

complex definition of the cross-sectional shape of the extrudate.
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Appendix 2A. Nomenclature

C constant

dcan diameter of the (circular) extrusion canal

ddie diameter of the (circular) extrusion die

dext diameter of the extrudate after com-

pleted swelling

∆d difference in diameters of extrudate and

die, ∆d = dext − ddie

e1 base vector oriented in moving direction

of the piston of the rheograph

gcd gradient of the tapering from the extru-

sion canal to the die

G shear modulus

K bulk modulus

Kref fitting parameter

l current length of specimen

l0 initial length of specimen

ldie length of the extrusion die

p0 initial pressure prevailing in the extru-

sion canal

pcan pressure measured in the extrusion canal

pmax
can maximum pressure measured in the ex-

trusion canal

thold time period of holding the maximum

pressure during compression tests

T0 reference temperature

Tcan temperature measured in the extrusion

canal

v0 reference velocity

vcan velocity of the material to be extruded

in the extrusion canal

vdie velocity of the extrudate in the extrusion

die
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2.5 Summary and concluding remarks 33

vext velocity of the extrudate after exiting

the extrusion die

vPVT velocity of the piston in the extrusion

canal of a capillary rheometer

α fitting parameter

β fitting parameter

Γ geometrical parameter, functionally re-

lated to Λ, gcd, and Ξ

ε linearized strain tensor

η corrected viscosity resulting from viscos-

ity tests

ηapp apparent, uncorrected viscosity resulting

from viscosity tests

ηext viscosity back-calculated from extrusion

tests

λ Lamé parameter

Λ geometrical parameter, Λ = ldie/ddie

Ξ geometrical parameter, Ξ = ddie/dcan

Π∆d dimensional quantity aiming at captur-

ing the factors influencing the die swell

σ Cauchy stress tensor

σ0 initial Cauchy stress tensor

σm mean (hydrostatic) stress in the capillary

rheometer

τ fitting parameter
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Chapter 3

A hypoviscoelastic thermodynamics model of

soft solids, utilized for numerically simulating

the die swell of rubber

Authored by: R. Plachy1, S. Scheiner1, F. Arthofer2, A. Holzner2, C. Hellmich1

1 Institute for Mechanics of Materials and Structures, TU Wien
2 Semperit Technische Produkte GmbH

Under preparation for submission to: International Journal of Engineering Science

Abstract: The computer simulation-based prediction of rubber die swell upon extrusion has

been identified as worthwhile scientific goal several decades ago. While several attempts were

documented in open literature tackling this considerable challenge, successful methods yielding

quantitatively satisfying results have not been reported yet. In this paper, we hypothesize that

the reason for this long-lasting deficit is the fact that the software standardly used for that

purpose is based on mathematical models describing the constitutive behavior of rubber under

the premise that rubber can be considered as incompressible material. However, in a previous

publication (Plachy et al., Polymer 123, pp. 334-344, 2017) [15], see Appendix A, we have shown

that rubber indeed exhibits a compressibility of non-negligible extent. In this paper, we hence

aim at developing a simulation method for the die swell of rubber, which is regarded as soft solid,

taking its compressibility thoroughly into account. To that end, we formulate a new mathematical

framework considering objective, Gibbs energy-based, and mass-related thermodynamics, using

hypo-viscoelastic constitutive material laws. This way, we obtain a new set of seven governing

equations, covering mass conservation, momentum conservation, angular momentum conservation,

geometrical conditions, and constitutive laws. The latter involve only two material parameters,

namely the bulk modulus and the viscosity of rubber. In order to solve these equations, a new

principle of virtual power-based Finite Element scheme was developed, allowing for computing

the progress of rubber extrusion over time, and eventually of the arising die swell. Focusing in this

paper on circular extrusion dies, due to which the mathematical framework can be formulated

and numerically evaluated for the (simplifying) case of rotational symmetry, a set of benchmark

simulation was performed. The results of these simulations corroborate the soundness of the

proposed new modeling approach. On the one hand, the numerically obtained behavior rubber

during the extrusion process has turned out to be consistently plausible. On the other hand,

taking the compressibility of rubber into account was clearly confirmed to substantially influence
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36 3 A hypoviscoelastic thermodynamics model

the die swell of rubber.

Keywords: Gibbs potential, Finite Element method, Newmark algorithm, compressibility

3.1 Introduction

Although attempted many times, computer simulation-based prediction of the deformations soft

(but solid) materials undergo when subjected to mechanical loading has not been accomplished

in a satisfactory way. A prominent example of such a soft solid is rubber. One of the most

important industrial processes based on which rubber gets shaped is extrusion, which involves

squeezing of heated, (unvulcanized) rubber compounds through formative tools, usually referred

to as dies [1, 2]. Owing to the squeezing, the extruded material, called extrudate, is subjected to

high pressures (up to 200 bars). Upon leaving the die, the extrudate experiences an instantaneous

depressurization, causing the extrudate to swell; standardly, this swelling is called die swell [1, 8,

9]. The extent of the die swell depends on various factors, such as on the extrusion velocity, on the

die shape, and of course on the extruded material. Hence, reliably predicting the die swell would

allow for a straightforward production of dies, compensating the die swell, and hence making the

overall extrusion process more efficient. Respective attempts have been presented previously,

see e.g. [16, 19, 42, 51–53]. However, despite qualitatively interesting and noteworthy studies,

quantitatively accurate computational models of rubber extrusion have not been published yet.

Aiming at ascertaining the possible reasons for the above-sketched deficit, scrutinizing the

main constitutive assumptions of the state-of-the-art numerical tools used for simulation of

rubber extrusion appears to be reasonable starting point. The large majority of such numerical

tools were performed by means of software originally developed for computational fluid dynamics

computations, based on the fundamental assumption of material incompressibility, see e.g. [51,

52, 54]. A few studies, see e.g. [42, 52], derived governing equations describing mathematically

the expected behavior of the studied materials by considering (sometimes even compressible)

fluid models, such as the Oldroyd-B, Bingham, or Herschel-Bulkley models, yielding eventually

inconsistent thermodynamics formulations. Additionally, other approaches considered rubber to

be a Newtonian fluid with stick and/or slip effects [11, 55, 56], by fitting experimental results,

partly based on viscoelastic models [38–40, 57], or pseudo- and viscoelastic approaches [16, 53,

58]. While based on different assumptions and simplifications, those models have in common

that they are either severely restricted in terms of their applicability, or they do not provide

accurate results.

In this paper, we rigorously revisit the theoretical basis of rubber extrusion models. Importantly,

we thereby consider the results of compression tests performed on various kinds of natural rubber

and rubber compounds, showing that unvulcanized rubber is indeed compressible [15], see

Appendix A. We thereby somewhat tie in with studies which focused on (highly) compressible

fluids and pastes [19, 43, 44]; however, those models exhibit limited applicability to rubber. One

further key novelty of the subsequently presented model concerns the treatment of rubber as

soft solid, in contrast to the standardly employed model representations of rubber as fluid. This

leads to substantial changes in the derived governing equations. In particular, Section 3.2 of

this paper includes the main modeling assumptions and concepts, allowing for derivation of
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3.2 Fundamental theoretical considerations 37

conservation laws within an objective, mass density-related thermodynamics framework. The

governing equations are discretized based on the Finite Element method, employing for that

purpose the principle of virtual power, see Section 3.3. Numerical studies, described in Section 3.4,

corroborate the validity of our new modeling approach, whereas the main findings of this study

are discussed in Section 3.5.

3.2 Fundamental theoretical considerations

3.2.1 Volume- and mass density-related quantities

In this paper, we consider rubber as soft solid. As such, rubber naturally undergoes large

deformations during the extrusion process. Let us consider a material point within the rubber

domain, with the current position of this material point being denoted by x, while its reference

configuration is denoted by X; X = x(t = 0), with t being the time variable. Because of the

aforementioned large deformations, the volume around the material point changes significantly

over time, dV0(X) 6= dV (x), where V0 is the volume of a specific domain with the material point

in the reference configuration in its center, whereas V is the volume of the same domain in

the current (deformed) configuration. Moreover, it should be noted that X = X(t = 0) and

x = x(t > 0). Nevertheless, the mass of this material point, M , remains constant upon the

deformation. In the following, we therefore relate thermodynamic quantities to the mass of a

material point, rather than to its volume, see also [47].

Next, we relate the volume change of a material point to its corresponding mass change,

through

dM = ρ0(X) · dV0 = ρ[x(t), t] · dV = ρ[x(t), t] · det(F) · dV0 , (3.1)

where ρ0 is the initial mass density, ρ is the current mass density, and F is the deformation

gradient tensor, defined as

F =
∂x(t)

∂X
, (3.2)

with the determinant of F following as

det(F) =
dV

dV0
. (3.3)

Equation (3.1) allows for establishing a relation between reference and current volume changes

and mass densities, reading as
dV

dV0
=

ρ0(X)

ρ[x(t), t]
. (3.4)

It should be noted that, as already obvious from Eq. (3.1), we use the symbol · for scalar

multiplications consistently throughout this paper. While this is in principle not necessary, we

aim this way for a clearer and unambiguous distinction between scalar multiplications of terms

in brackets and functional dependencies (which are also indicated by brackets).

Based on Eq. (3.4), standard thermodynamics quantities can be related to mass densities

(instead of being related to the volume):

Qρ[x(t), t] =
Q[x(t), t]

ρ[x(t), t]
, (3.5)
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38 3 A hypoviscoelastic thermodynamics model

where Q represents a generic quantity, which can be substituted by, e.g., the volume-related

Helmholtz potential ψ, the volume-related internal energy density e, the volume-related internal

entropy density s, and the volume-related dissipation φ. Analogously, Qρ stands for the mass

density-related counterparts ψρ, eρ, sρ, and φρ.

3.2.2 Introduction of the Gibbs potential

Furthermore, we introduce the so-called Gibbs potential G, G = G(σ, T ), with σ = σ[x(t), t]

being the current Cauchy stress tensor and T = T [x(t), t] being the absolute temperature. The

Gibbs potential, which depends only on the current Cauchy stress (and on the temperature)

allows for derivation of viscoelastic fluid models which are thermodynamically consistent [31,

32]. While the classical and more widespread Helmholtz potential-based models depend on the

strain, and thus on the evolution of every material point’s displacement over time, the Gibbs

potential-based models are independent of the time evolution. Analogously to Eq. (3.5), the mass

density-related Gibbs potential is defined as

Gρ[x(t), t] =
G[x(t), t]

ρ[x(t), t]
. (3.6)

Considering [31, 59], ψρ, eρ, and sρ can be defined in alternative formats, namely as follows:

ψρ[x(t), t] = Gρ[x(t), t] − ∂Gρ[x(t), t]

∂σ[x(t), t]
: σ[x(t), t] , (3.7)

eρ[x(t), t] = Gρ[x(t), t] − ∂Gρ[x(t), t]

∂σ[x(t), t]
: σ[x(t), t] − ∂Gρ[x(t), t]

∂T [x(t), t]
· T [x(t), t] , (3.8)

and

sρ[x(t), t] = −∂Gρ[x(t), t]

∂T [x(t), t]
. (3.9)

3.2.3 Derivatives with respect to time and space

Next, we consider an arbitrary quantity ǫ which is position- and time-dependent, hence ǫ =

ǫ(x, t). Taking also into account the current position is actually time-dependent, we obtain

ǫ = ǫ[x(t), t]. Anticipating that in the subsequently elaborated derivations such quantities need

to be differentiated with respect to time, the so-called material derivative D/Dt is introduced

[47],

Dǫ[x(t), t]

Dt
=
∂ǫ[x(t), t]

∂t
+
∂ǫ[x(t), t]

∂x(t)
· ∂x(t)

∂t
= ǫ̇[x(t), t] + ∇ǫ[x(t), t] · v[x(t), t] , (3.10)

where v is the velocity. Furthermore, ∂( )/∂t = ˙( ) is the partial time derivative, and ∂( )/∂x = ∇( )

the partial space derivative.

Note that so far all dependencies of all quantities (i.e. on position and time) have been

indicated explicitly. Subsequently, for the sake of conciseness, functional dependencies are only

indicated if new quantities are introduced, if those dependencies are not self-evident, or if they

need to be pointed out explicitly for better understandability.
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3.2 Fundamental theoretical considerations 39

3.2.4 Expression of quantities independent of reference frame

In order to make sure that the involved stress measures are actually independent of the chosen

reference frame, so-called objective material derivatives of the Cauchy stress tensor, Dσ/Dt, are

used throughout this paper. For that purpose, we apply the Jaumann rate, defined as [47, 60–62]

▽

σ =
Dσ

Dt
− ω · σ + σ · ω , (3.11)

where ω is the antisymmetric part of the velocity gradient,

ω = ∇Av =
1

2

[

∂v

∂x
−
(
∂v

∂x

)T
]

. (3.12)

All other quantities occurring in the later presented constitutive laws, see Eqs. (3.48) and (3.49),

are objective per se [47].

3.2.5 Conservation of mass, momentum and angular momentum

For deriving conservation laws, the Reynolds transport theorem [47, 63] is considered. It states,

that for any scalar or vectorial quantity E with density ǫ,

E =
∫

V
ǫ[x(t), t] dV , (3.13)

the material derivative is of the form

DE
Dt

=
D

Dt

∫

V
ǫ[x(t), t] dV =

∫

V

(
Dǫ[x(t), t]

Dt
+ ǫ[x(t), t] · (∇ · v)

)

dV , (3.14)

with the first term in the last integral following from Eq. (3.10).

Mass is defined through M =
∫

V ρdV , and considering that mass does not change over time

yields DM/Dt ≡ 0 [47, 59]. Equation (3.14) then yields the respective mass conservation law,

reading as
Dρ

Dt
+ ρ · (∇ · v) = 0 . (3.15)

Momentum is defined as P =
∫

V (ρ · v) dV , and the change of momentum follows from [47, 59]

DP

Dt
=
∫

V
f dV +

∫

∂V
T d(∂V ) , (3.16)

where f is the volume force vector, and T is the traction force vector acting on the surface ∂V

of volume V . Application of Eq. (3.14), while also considering Eq. (3.15), yields the momentum

conservation law, reading as

ρ · Dv

Dt
= f + ∇ · σ . (3.17)

Finally, the definition of the angular momentum reads as D =
∫

V x × (ρ · v) dV , while its

change is given by [47, 59]

DD

Dt
=
∫

V
x × f dV +

∫

∂V
x × T d(∂V ) . (3.18)
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40 3 A hypoviscoelastic thermodynamics model

Equations (3.14), (3.15), and (3.17) can be used for confirming the symmetry of the Cauchy

stress tensor,

σ = σT . (3.19)

Detailed derivations of Eqs. (3.15), (3.17), and (3.19) are provided in Sections 4.1, 4.2, and 4.3 of

the Supplementary File.

3.2.6 Conservation of energy, entropy, and the dissipation inequality

Energy is defined as the sum of internal and kinetic energy [47, 59], expressed mathematically

through

E =
∫

V
ρ · eρ dV +

∫

V

1

2
· ρ · (v · v) dV , (3.20)

while the change of energy is defined as

DE

Dt
=
∫

V
f · v dV +

∫

∂V
T · v d(∂V ) +

∫

V
ρ · rρ dV −

∫

∂V
q · n d(∂V ) , (3.21)

where rρ is the mass density-related specific body supply of heat, q is the heat flux vector, and

n is a normal vector to the surface ∂V of the considered volume V . Application of Eq. (3.14),

together with Eqs. (3.15), (3.17), and (3.19), yields the internal energy conservation law (which is

the first law of thermodynamics in mass density-related form, using material derivatives), reading

as

ρ · Deρ

Dt
= σ : d + ρ · rρ − ∇ · q , (3.22)

where d is the symmetric part of the velocity gradient,

d = ∇Sv =
1

2
·
[

∂v

∂x
+
(
∂v

∂x

)T
]

. (3.23)

Entropy is defined as S =
∫

V ρ · sρ dV , while its change over time reads as [47, 59]

DS

Dt
≥
∫

V

ρ · rρ

T
dV −

∫

∂V

q

T
· n d(∂V ) . (3.24)

Considering Eqs. (3.14) and (3.15) yields the internal entropy conservation law (which is the

second law of thermodynamics in mass density-related format, using material derivatives), reading

as

ρ · T · Dsρ

Dt
− ρ · rρ + ∇ · q − q

T
· ∇T ≥ 0 . (3.25)

Substituting eρ in Eq. (3.22) according to Eq. (3.8), substituting sρ in Eq. (3.25) according to

Eq. (3.9), and combining then the hence modified Eqs. (3.22) and (3.25) yields

− ρ · T · D

Dt

[
∂Gρ

∂T

]

− ρ · D

Dt

[

Gρ − ∂Gρ

∂σ
: σ − ∂Gρ

∂T
T

]

+ σ : d − q

T
· ∇T ≥ 0 . (3.26)

The derivatives of the Gρ-related terms with respect to time can be further evaluated by rigorously

applying the chain rule, yielding

DGρ

Dt
=
∂Gρ

∂σ
:

Dσ

Dt
+
∂Gρ

∂T
:

DT

Dt
, (3.27)
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D

Dt

[
∂Gρ

∂σ
: σ

]

=
D

Dt

[
∂Gρ

∂σ

]

: σ +
∂Gρ

∂σ
:

Dσ

Dt
, (3.28)

and
D

Dt

[
∂Gρ

∂T
T

]

=
D

Dt

[
∂Gρ

∂T

]

T +
∂Gρ

∂T

DT

Dt
. (3.29)

Inserting Eq. (3.27) to (3.29) into Eq. (3.26) allows for deriving the so-called dissipation inequality,

ρ φρ =
D

Dt

[
∂Gρ

∂σ

]

: ρσ + σ : d − q

T
· ∇T ≥ 0 , (3.30)

where φρ is the mass density-related dissipation, hence giving access to a Gibbs potential-related

alternative to the definition given by Eq. (3.5), see also [31, 32, 47].

Detailed derivations of Eq. (3.22), (3.25), and (3.30) are provided in Sections 4.4, 4.5, and 4.6

of the Supplementary File.

3.2.7 Splitting of the stress tensor and thermodynamic consistency

For the purpose of numerically solving the eventually arising equations in an efficient way, the stress

tensor σ is split into two parts σ = σ1 + σ2, with σ1 representing the instantaneous (or elastic)

responses of the material, and σ2 representing the long-term (or viscoelastic) responses [32]. The

Gibbs potential is then dependent on both parts of the stress tensor, namely G = G(σ1,σ2, T ).

Hence, Eq. (3.30) needs to be extended as follows:

ρ · φρ =
D

Dt

[
∂Gρ

∂σ1

]

: ρ · σ1 +
D

Dt

[
∂Gρ

∂σ2

]

: ρ · σ2 + σ1 : d + σ2 : d − q

T
· ∇T ≥ 0 . (3.31)

Assuming a constant temperature field, i.e. ∇T ≡ 0, yields the mass density-related mechanical

dissipation ξρ,

ρ · ξρ =
D

Dt

[
∂Gρ

∂σ1

]

: ρ · σ1 +
D

Dt

[
∂Gρ

∂σ2

]

: ρ · σ2 + σ1 : d + σ2 : d ≥ 0 . (3.32)

Next, we consider the terms in Eqs. (3.31) or (3.32) involving the material derivatives of the

partial derivatives of the Gibbs potential Gρ with respect to stress tensors σ1 and σ2. Expanding

the first of these two terms yields

D

Dt

[
∂Gρ

∂σ1

]

: ρ · σ1 =

[

∂2Gρ

∂σ1∂σ1
:

Dσ1

Dt
+

∂2Gρ

∂σ1∂σ2
:

Dσ2

Dt
+

∂2Gρ

∂σ1∂T
:

DT

Dt

]

: ρ · σ1 . (3.33)

Substituting the material derivatives of the stress tensors occurring in Eq. (3.33) by the corre-

sponding Jaumann stress rates, see Eq. (3.11), allows to rewrite Eq. (3.33) as follows:

D

Dt

[
∂Gρ

∂σ1

]

: ρ · σ1 =

[

∂2Gρ

∂σ1∂σ1
:
▽

σ1 +
∂2Gρ

∂σ1∂σ2
:
▽

σ2 +
∂2Gρ

∂σ1∂T
:

DT

Dt

]

: ρ · σ1 . (3.34)
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42 3 A hypoviscoelastic thermodynamics model

The second term after the equal sign in Eqs. (3.31) or (3.32) can be treated analogously. Ther-

modynamic consistency requires Eqs. (3.33) and (3.34) to induce the same internal energy [59],

allowing to postulate the following conditon:

∂2Gρ

∂σi∂σj
:

Dσj

Dt
: ρ · σi

?
=

∂2Gρ

∂σi∂σj
:
▽

σj : ρ · σi =
∂2Gρ

∂σi∂σj
:
(

Dσj

Dt
− ω · σj + σj · ω

)

: ρ · σi ,

(3.35)

where i, j = 1, 2. Eq. (3.35) is equivalent to

∂2Gρ

∂σi∂σj
: (σj · ω − ω · σj) : ρ · σi

?
= 0 , (3.36)

As shown in Section 4.6 of the Supplementary File, the condition scrutinized in Eq. (3.36)

turns out to hold; hence, the presented mathematical framework is indeed thermodynamically

consistent.

3.2.8 Constitutive functions

Considering that σ1 represents the elastic response of the material, that σ2 ≡ 0, and that the

temperature is constant, i.e. ∇T ≡ 0, the dissipation ξρ in Eq.(3.32) can be set to zero [32].

Thus,

0 =
D

Dt

[
∂Gρ

∂σ1

]

: ρ · σ1 + σ1 : d ⇔ d = −ρ · D

Dt

[
∂Gρ

∂σ1

]

. (3.37)

Then, in line with [32], we define a symmetric viscoelastic velocity gradient dve, as

dve = d + ρ · D

Dt

[
∂Gρ

∂σ2

]

, (3.38)

implying, because of d = de + dve, the corresponding symmetric elastic component de,

de = −ρ · D

Dt

[
∂Gρ

∂σ2

]

. (3.39)

On this basis, the dissipation inequalities given by Eqs. (3.31) and (3.32) can be reduced to

ρ · ξρ = σ2 : dve , (3.40)

and

ρ · φρ = σ2 : dve − q

T
· ∇T . (3.41)

Following the arguments of [32], the required non-negativity of φρ and ξρ implies that from any

dissipation function ξρ satisfying Eq. (3.40) an explicit expression for Eq. (3.38) is of the form

dve = µ ·
[

ρ · ∂ξρ

∂σ2

]

, (3.42)

with

µ =
ρ · ξρ

σ2 : ρ · ∂ξρ

∂σ2

. (3.43)
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3.2 Fundamental theoretical considerations 43

By definition, the Gibbs potential is defined through

ρ·Gρ(σ1,σ2, T ) = −1

2
·
[
σ1 : D1 : σ1+σ2 : D2 : σ2+A1 : σ1·(T−T0)+A2 : σ2·(T−T0)

]
, (3.44)

where D1 and D2 are fourth-order compliance tensors, A1 and A2 are second-order thermal

expansion coefficient tensors, and T0 is a reference temperature [32]. An alternative definition of

the dissipation function reads as [32]

ρ · ξρ(σ2) = σ2 : J : σ2 , (3.45)

where J is the fourth-order viscosity tensor. Owing to the stipulation that the stress tensor σ1 is

purely elastic, and hence non-dissipative, the dissipation depends on the viscoelastic response

part of the stress tensor, σ2, only.

For deriving the constitutive equations, we differentiate the definition of Gρ according to

Eq. (3.44) two times with respect to the stress tensors and to the temperature, yielding the

following three expressions:

− ρ · ∂2Gρ

∂σi∂σi
= Di , −ρ · ∂2Gρ

∂σi∂σj
= 0 , and − ρ · ∂2Gρ

∂σi∂T
= Ai . (3.46)

Differentiating Eq. (3.45) with respect to σ2 yields, under consideration of Eqs. (3.42) and (3.43),

ρ · ∂ξρ

∂σ2
= 2 · J : σ2 ⇔ dve = J : σ2 , (3.47)

whereby µ = 1/2. Combining, on the one hand, Eq. (3.37) with Eq. (3.34), and inserting

Eqs. (3.46) into the resulting equation, allows for deriving the first, purely elastic constitutive

equation, reading as

d = −ρ ·
[

∂2Gρ

∂σ1∂σ1
:
▽

σ1 +
∂2Gρ

∂σ1∂σ2
:
▽

σ2 +
∂2Gρ

∂σ1∂T
· DT

Dt

]

= D1 :
▽

σ1 + A1 · DT

Dt
. (3.48)

Combining, on the other hand, Eq. (3.38) with with Eq. (3.34), and inserting Eqs. (3.46) and

(3.47) into the resulting equation, results in the second constitutive equation, taking into account

viscoelastic behavior,

d = −ρ ·
[

∂2Gρ

∂σ2∂σ1
:
▽

σ1 +
∂2Gρ

∂σ2∂σ2
:
▽

σ2 +
∂2Gρ

∂σ2∂T
· DT

Dt

]

+ dve = D2 :
▽

σ2 + A2 · DT

Dt
+ J : σ2 .

(3.49)

Together, Eqs. (3.48) and (3.49) describe visco-hypoelastic behavior of the studied material.

Finally, we study the relations between D1 and D2, as well as between A1 and A2. For that

purpose, we introduce the fourth-order elasticity tensors C1 and C2, following from the respective

compliance tensors as C1 = D
−1
1 and C2 = D

−1
2 . Considering then DT/Dt ≡ 0 and σ2 = 0, while

▽

σi 6= 0 (i = 1, 2), Eqs. (3.48) and (3.49) yield

C1 : d =
▽

σ1 and C2 : d =
▽

σ2 . (3.50)
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44 3 A hypoviscoelastic thermodynamics model

Summation of the two expressions given by Eq. (3.50) results in

(
C1 + C2

)
: d =

▽

σ ⇔ C : d =
▽

σ . (3.51)

Furthermore, we consider a viscosity factor βv, defined such that
▽

σ1 = (1 − βv)
▽

σ and
▽

σ2 = βv
▽

σ.

Then, Eqs. (3.50) and (3.51) yield

C1 = (1 − βv) · C and C2 = βv · C . (3.52)

However, the additivity valid for the elasticity tensors is not valid for the compliance tensors.

This can be easily seen, through

D = C
−1 = (C1 + C2)−1 6= C

−1
1 + C

−1
2 = D1 + D2 . (3.53)

As for the tensors A1 and A2, we consider
▽

σ1 =
▽

σ2 = 0 and σ2 = 0. Equations (3.48) and (3.49)

provide then two definitions of d, reading as

d = A1 · DT

Dt
and d = A2 · DT

Dt
. (3.54)

Obviously, Eq. (3.54) implies that A1 = A2 = A.

3.2.9 Summary

Sections 3.2.1 to 3.2.8 deal with the development of a mathematical framework describing the

material behavior of soft solids, such that the deformations rubber undergoes during the extrusion

process can be predicted by means of numerical computations. The essential governing equations

obtained to that end comprise

1. Conservation of mass, see Eq. (3.15);

2. Conservation of momentum, see Eq. (3.17);

3. Conservation of angular momentum, see Eq. (3.19);

4. Geometrical conditions, see Eqs. (3.12) and (3.23); and

5. Constitutive equations, see Eqs. (3.48) and (3.49).

The subsequent Section 3.3 is devoted to constructing a solution strategy allowing for numerically

evaluating the governing equations.

3.3 Numerical solution

3.3.1 Simplifying assumptions

Firstly, we assume that the effects of volume forces are negligibly small; hence, f ≈ 0, Then, the

momentum conservation equation given by Eq. (3.17) reduces to

ρ · Dv

Dt
= ∇ · σ . (3.55)
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3.3 Numerical solution 45

Furthermore, the temperature field is assumed to be approximately constant in time and space;

hence ∇T ≈ 0 and DT/ ≈ Dt ≡ 0. This implies the following reductions of the constitutive

relations given by Eqs. (3.48) and (3.49):

d = D1 :
▽

σ1 , (3.56)

and

d = D2 :
▽

σ2 + J : σ2 . (3.57)

As concerns the material behavior of rubber, the results presented in [15], see Appendix A, and

Chapter 2, are taken into account, namely that the elasticity properties of rubber only depend

on the bulk modulus K, with K/G → ∞ ⇔ ν → 0.5, where G is the shear modulus and ν is

Poisson’s ratio. The viscoelastic properties of rubber, in turn, only depend on the viscosity η,

see Chapter 2, and viscoelastic effects only affect the shear behavior [15], see Appendix A. This

implies that D1 = D1(K), D2 = D2(K), and J = J(η).

3.3.2 The principle of virtual power

The solution of the governing equations is approximated numerically, based on the Finite Element

(FE) method [34, 35]. For deriving the correspondingly discretized equations, the principle of

virtual power (PVP) is employed. Essentially, the PVP reads as [33]

L = Lacc + Lext + Lint = 0 , (3.58)

where Lacc is the virtual power of acceleration forces,

Lacc = −
∫

V
ρ · Dv

Dt
· v̂ dV , (3.59)

Lext is the virtual power of external forces,

Lext =
∫

∂V
T · v̂ d(∂V ) , (3.60)

and Lint is the virtual power of internal forces,

Lint = −
∫

V
σ : d̂ dV . (3.61)

Note that Eq. (3.60) implies that volume forces are neglected, as argued in Section 3.3.1. Fur-

thermore, v̂ is the virtual velocity and d̂ is the symmetric part of the virtual velocity gradient.

3.3.3 Definition of estimator terms

Let us assume that the PVP is fulfilled at time step ti (thus, L(ti) = 0). Clearly, the PVP

requires that at the following step, L(ti+1) = 0. The unknown variables at each new time step

ti+1 are (i) density ρi+1, following from the conservation of mass, see Eq. (3.15); (ii) acceleration

vector ai+1 = ∂vi+1/∂t, velocity vector vi+1 = ∂xi+1/∂t, and position vector xi+1, related to

Eqs. (3.59) to (3.61); and (iii) stress tensor σi+1, following from the constitutive relations given

by Eqs. (3.56) and (3.57).
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46 3 A hypoviscoelastic thermodynamics model

For finding ai+1, vi+1, and xi+1, L(ti+1) is implemented employing the Newmark algorithm

[35, 37], with the unknown ai+1. With ∆t = ti+1 − ti, the Newmark algorithm involves the

estimators

vi+1 = vi + ∆t · (1 − γ) · ai + ∆t · γ · ai+1 , (3.62)

with γ ∈ [0, 1], and

xi+1 = xi + ∆t · vi + (∆t)2 · (1 − 2β)

2
· ai + (∆t)2 · β · ai+1 , (3.63)

with 2β ∈ [0, 1]. In the following, we set γ = 1/2 and β = 1/6 (which are standard choices for

those parameters). The time discretizations for ρi+1 and σi+1 are based on

∂ρ

∂t
=
ρi+1 − ρi

∆t
, (3.64)

and
∂σ

∂t
=

σi+1 − σi

∆t
. (3.65)

Expanding Eq. (3.15) and combining it with Eq. (3.64), the density estimate ρi+1 follows as

ρi+1 = ρi − ∆t ·
[

∇ρi · vi+1 + ρi ·
(

∇ · vi+1
)]

= ρi − ∆t ·
[

∇ ·
(

ρi · vi+1
)]

, (3.66)

which is valid for a sufficiently small time-step ∆t. Expanding Eq. (3.56) and combining it with

Eqs. (3.11) and (3.65), the stress tensor estimate σi+1
1 follows as

σi+1
1 = σi

1 + ∆t ·
[

C
i
1 : di+1 − ∇σi

1 · vi+1 + ωi+1 · σi
1 − σi

1 · ωi+1
]

(3.67)

Likewise, expanding Eq. (3.57) and combining it with Eqs. (3.11) and (3.65), the stress tensor

estimate σi+1
2 follows as

σi+1
2 = σi

2 + ∆t ·
[

C
i
2 : di+1 − ∇σi

2 · vi+1 + ωi+1 · σi
2 − σi

2 · ωi+1 − C
i
2 : Ji : σi

2

]

. (3.68)

Summation of Eqs. (3.67) and (3.68), while considering Eqs. (3.51) and (3.52), and setting

σ2 = βv · σ, results in

σi+1 = σi + ∆t ·
[

C
i : di+1 − ∇σi · vi+1 + ωi+1 · σi − σi · ωi+1 − β2

v · Ci : Ji : σi
]

. (3.69)

3.3.4 Development of solution algorithm

Next, we aim at combining the estimators defined in Eqs. (3.62), (3.63), (3.66), and (3.69) with

the PVP integrals given in Eqs. (3.59) to (3.61), thereby aiming at evaluating ai+1. To that end,

interpolation functions N are introduced, allowing for the following definitions:

a = N · ā , (3.70)

v = N · v̄ , (3.71)

d = ∇Sv = ∇SN · v̄ , (3.72)
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3.3 Numerical solution 47

and

ω = ∇Av = ∇AN · v̄ , (3.73)

with ā as the nodal values of a of a FE mesh, and v̄ as the nodal values of v [34, 35].

Firstly, expanding Eq. (3.59) by considering Eq. (3.10), and combining the resulting expression

with Eqs. (3.70) and (3.71), yields

Li+1
acc = −

∫

V
ρi+1 · ai+1 · v̂ + ρi+1 · ∇vi+1 · v̂ dV = −ˆ̄v · M · āi+1 − ˆ̄v · B · v̄i+1 , (3.74)

where the auxiliary tensors M and B are defined as

M =

∫

V
N · ρi+1 · N dV , (3.75)

and

B =

∫

V
N · ρi+1 · ∇vi+1 : N dV , (3.76)

while ρi+1 is inserted according to Eq. (3.66). Secondly, combining Eqs. (3.60) and (3.71) results

in

Li+1
ext =

∫

∂V
Ti+1 · v̂ d(∂V ) = ˆ̄v · P , (3.77)

where the auxiliary tensor P is defined as

P =

∫

∂V
N · Ti+1 d(∂V ) . (3.78)

And, thirdly, expanding Eq. (3.61) according to Eq. (3.69), while also considering Eqs. (3.71) to

(3.73), leads to

Li+1
int = −

∫

V

{

σi + ∆t ·
[

C
i : ∇Svi+1 − ∇σi · vi+1 + ∇Avi+1 · σi

−σi · ∇Avi+1 − β2
v · Ci : Ji : σi

]}

: ∇Sv̂ dV

= − ˆ̄v · [S − V] − ˆ̄v · [K + G + W] · v̄i+1 , (3.79)

where the auxiliary tensors S, K, G, W, and V are defined as

S =

∫

V
∇SN : σi dV , (3.80)

K =

∫

V
∆t · ∇SN : Ci : ∇SN dV , (3.81)

G = −
∫

V
∆t · ∇SN : ∇σi · N dV , (3.82)

W =

∫

V
∆t · ∇SN :

(

∇AN · σi − σi · ∇AN
)

dV , (3.83)

and

V =

∫

V
∆t · ∇SN : β2

v · Ci : Ji : σi dV . (3.84)
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48 3 A hypoviscoelastic thermodynamics model

Summation of Eqs. (3.74), (3.77), and (3.79) according to Eq. (3.58) results in

− ˆ̄v · M · āi+1 + ˆ̄v · [P + V − S] − ˆ̄v · [K + G + W + B] · v̄i+1 = 0 . (3.85)

Eq. (3.85) must hold for all compatible fields of ˆ̄v, thus implying the following equation for finding

the unknown āi+1:

āi+1 = M
−1 ·

{

P + V − S − [K + G + W + B] · v̄i+1
}

. (3.86)

Clearly, Eq. (3.86) needs to be solved numerically. In this work, this is done based on the

Newmark algorithm [35, 37]. This algorithm uses an iterative predictor-corrector scheme for

approximating the sought solution; in the present case the unknown ai+1. Based on Eqs. (3.62)

and (3.63), the predictors read as

ãi+1 = ai , (3.87)

ṽi+1 = vi + ∆t · (1 − γ) · ai , (3.88)

and

x̃i+1 = xi + ∆t · vi + (∆t)2 · (1 − 2β)

2
· ai . (3.89)

The predictors are then updated using a quantity called acceleration corrector, ∆ai+1, by means

of

ai+1 = ãi+1 + ∆ai+1 , (3.90)

vi+1 = ṽi+1 + ∆t · γ · ∆ai+1 , (3.91)

and

xi+1 = x̃i+1 + (∆t)2 · β · ∆ai+1 , (3.92)

with γ = 1/2 and β = 1/6. Thereby, ∆ai+1 is defined as follows:

∆ai+1 = [M + (K + G + W + B) · γ · ∆t]−1 · ε , (3.93)

with ε being the numerical approximation error, ε =
{
P + V − S − [K + G + W + B] · vi+1

}
−M ·

ai+1. For each time step ti → ti+1, the Newmark algorithm is then implemented as summarized

in Table 3.1.

Tab. 3.1: Implementation of the numerical solution scheme based on the Newmark algorithm
[35, 37].

# Description of step

1. Tolerance τ is chosen.
2. The predictors ai+1, vi+1, and xi+1 are computed by means of Eqs. (3.87) to (3.89).
3. Computation of ρi+1 according to Eq. (3.66) and of σi+1 according to Eq. (3.69).
4. Implementation of boundary conditions.
5. Computation of the auxiliary tensors M, B, P, S, K, G, W, V, through evalution of Eqs. (3.75), (3.76),

(3.78), and (3.80) to (3.84).

6. Computation of error measure ε =
{
P + V − S − [K + G + W + B] · vi+1

}
− M · ai+1.

7. If ||ε|| ≥ τ , the predictors are updated according to Eqs. (3.90) to (3.92), and the iteration is repeated by
going back to Step 3 (using the updated predictors). If ||ε|| < τ , the iteration is completed.
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3.3 Numerical solution 49

3.3.5 Spatial Finite Element discretization

The numerical study presented in this paper is limited to circular dies. Hence, the mathematical

framework is evaluated in terms of cylindrical coordinates, defined through base vectors er, eϕ,

and ez, and by making use of rotational symmetry, implying that all computations can be carried

out in quasi-planar (2D) fashion.

The spatial discretization of the studied domain is carried out based on triangular elements of

order o = 1, defined through the cylindrical coordinates r, ϕ, and z, while element-specifically a

natural coordinate system defined by coordinates ξ1, ξ2 is used, with ξ1, ξ2 ∈ [0, 1] ∧ ξ1 + ξ2 ≤ 1,

see Figure 3.1(a) to (c) [34]. In their initial configuration, each element features lengths of

the orthogonal sides denoted by h, see Figure 3.1(b). Notably, two mesh variants are used

simultaneously, compare Figures 3.1(d) and (e). This way, we aim for reducing any influence

stemming from the element orientations by averaging the results of the two meshes. Each mesh

is characterized by n nodes in r-direction and m of nodes in z-direction. Hence, both meshes are

characterized by nn = n ·m nodes, and by ne = 2 (n− 1) · (m− 1) elements. Furthermore, the

number of nodes along the boundary of each elements amounts to bn = 3, while the number of

nodes for numerical integration amounts to in = 1 for an element with order o = 1.

For later numerical integration, the volume of each element follows from considering an arc

in ϕ-direction, with ∆φ = 1, see Figures 3.1(d) and (e). Besides the initial mesh coordinates

r0, z0, each node is also assigned an initial density ρ0, initial accelerations ar,0 = az,0 = 0, initial

velocities vr,0 = vz,0 = 0, and initial stresses σrr,0 = σϕϕ,0 = σzz,0 = σrz,0. Links between the

local node numbers 1, 2, 3, and the global node numbers 1, ..., nn are stored in a matrix A of size

ne × 3, with each row of this matrix containing the global node numbers of one element.

3.3.6 Interpolation functions and operators

Interpolation functions link the value of a quantity ǫ(ξ), with ξ = (ξ1, ξ2), to the respective

values of this quantity at the nodes of the FE mesh. Considering triangular finite elements of

order o = 1, the nodal values are given by ǭ = (ǭ1, ǭ2, ǭ3)T, with 1, 2, 3 denoting the local node

numbers. The mathematical relation betwwen ǫ(ξ) and ǭ is given by

ǫ(ξ) = N(ξ) · ǭ , (3.94)

with N = N(ξ) as interpolation function, which is defined, when considering triangular elements

of order o = 1, as

N =






N1

N2

N3




 =






1 − ξ1 − ξ2

ξ1

ξ2




 , (3.95)

see also [34]. Equation (3.95) allows for interpolation of the value of scalar quantity ǫ known at

the elements’ nodes. However, if the quantity to be interpolated is vectorial, the interpolation

function needs to extended accordingly. For the present case, vectorial quantities exhibit in each

node r- and z-components, yielding the following interpolation function:

N∗(ξ) =

[

N1 0 N2 0 N3 0

0 N1 0 N2 0 N3

]

, (3.96)
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50 3 A hypoviscoelastic thermodynamics model

Fig. 3.1: Elements and meshes used for the implementation of the finite element solution method:
(a) triangular element of order o = 1 in a natural coordinate system, including the local
node numbers and node-coordinates in natural coordinates; (b) undistorted triangular
element of order o = 1 in a cylindrical coordinate system, including the size h of the
element; (c) arbitrarily deformed triangular element e or order o = 1 in a cylindrical
coordinate system, including the deformed natural coordinate system and the position
vector of node 1 of element e, i.e. xe

1; (d) mesh layout 1; (e) mesh layout 2; both
showing the cylindrical coordinate system, the mesh size characteristic n and m, the
local and global node numbers and the element numbers for selected elements; with
both meshes simultaneously solved and the results averaged in order to minimize
influence of the mesh layout
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3.3 Numerical solution 51

with N1, N2, and N3 defined analogously to Eq. (3.95), and with the nodal values stored in a

vector reading as (ǭ1,r, ǭ1,z, ǭ2,r, ǭ2,z, ǭ3,r, ǭ3,z)T, resulting in ǫ(ξ) = [ǫr(ξ), ǫz(ξ)]T. Additionally,

for interpolating a quantity E of arbitrary mathematical shape (including vectors of arbitrary size,

vector representations of tensors, matrices of arbitrary size, matrix representations of tensors, or

tensors of arbitrary size and order), whose value is known at the element’s nodes, here denoted

as Ēi, with i = 1, 2, 3, linear combinations of the nodal values can be used as well, reading as

E(ξ) = N1 · Ē1 +N2 · Ē2 +N3 · Ē2 . (3.97)

Derivatives of the interpolation functions follow as

∂N(ξ)

∂ξ1
=

[
∂N1

∂ξ1
,
∂N2

∂ξ1
,
∂N3

∂ξ1

]

= [−1, 1, 0] , (3.98)

and
∂N(ξ)

∂ξ2
=

[
∂N1

∂ξ2
,
∂N2

∂ξ2
,
∂N3

∂ξ2

]

= [−1, 0, 1] . (3.99)

For differentiation of N1, N2, and N3 with respect to ξ1 and ξ2, as occurring in Eqs. (3.98) and

(3.99), the chain rule needs to be employed, considering that ξ1 = ξ1(r, z) and ξ2 = ξ2(r, z),

yielding
∂Ni

∂ξj
=
∂Ni

∂r
· ∂r
∂ξj

+
∂Ni

∂z
· ∂z
∂ξj

, (3.100)

with i = 1, 2 and j = 1, 2, implying







∂Ni

∂ξ1

∂Ni

∂ξ2







=







∂r

∂ξ1

∂z

∂ξ1

∂r

∂ξ2

∂z

∂ξ2







·







∂Ni

∂r
∂Ni

∂z







= J ·







∂Ni

∂r
∂Ni

∂z






, (3.101)

and 





∂Ni

∂r
∂Ni

∂z







=







∂ξ1

∂r

∂ξ2

∂r
∂ξ1

∂z

∂ξ2

∂z







·







∂Ni

∂ξ1

∂Ni

∂ξ2







= J−1 ·







∂Ni

∂ξ1

∂Ni

∂ξ2






, (3.102)

where tensor J is standardly referred to as Jacobian. From Eqs. (3.102), the derivatives of the

interpolation functions with respect to the cylindrical coordinates r and z follow as

∂Ni

∂r
=
∂Ni

∂ξ1
· ∂ξ1

∂r
+
∂Ni

∂ξ2
· ∂ξ2

∂r
and

∂Ni

∂z
=
∂Ni

∂ξ1
· ∂ξ1

∂z
+
∂Ni

∂ξ2
· ∂ξ2

∂z
, (3.103)

while
∂N(ξ)

∂r
=

[
∂N1

∂r
,
∂N2

∂r
,
∂N3

∂r

]

and
∂N(ξ)

∂z
=

[
∂N1

∂z
,
∂N2

∂z
,
∂N3

∂z

]

. (3.104)
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3.3.7 Elasticity and viscoelasticity

For an isotropic material, the elasticity tensor, given in a cylindrical coordinate system (defined

by unit vectors er, eϕ, and ez), is of the form

C =





















Crrrr Crrϕϕ Crrzz 0 0 0 0 0 0

Cϕϕrr Cϕϕϕϕ Cϕϕzz 0 0 0 0 0 0

Czzrr Czzϕϕ Czzzz 0 0 0 0 0 0

0 0 0 Cϕzϕz 0 0 0 0 0

0 0 0 0 Crzrz 0 0 0 0

0 0 0 0 0 Crϕrϕ 0 0 0

0 0 0 0 0 0 Czϕzϕ 0 0

0 0 0 0 0 0 0 Czrzr 0

0 0 0 0 0 0 0 0 Cϕrϕr





















. (3.105)

Taking into account the assumption K/G → ∞ ⇔ ν → 0.5, see Section 3.3.1, the components of

C follow as

Ciiii = K · 3(1 − ν)

(1 + ν)
→ K , Ciijj = K · 3ν

1 + ν
→ K , and Cijij = K · 3(1 − 2ν)

2(1 + ν)
→ 0 . (3.106)

Thereby, the bulk modulus depends on the pressure, which, in turn, is location-dependent. In

particular, considering the work presented in [15], see Appendix A,

K = K[p(ξ)] = K1−β
ref · [p(ξ)]β , (3.107)

where p(ξ) = −1/3 · tr[σ(ξ)] is the hydrostatic pressure, with σ(ξ) obtained from linear combi-

nation of σ at the elements’ nodes through Eq. (3.97), while Kref and β are material-dependent

parameters obtained from compression tests [15], see Appendix A.

The viscosity (or creep) tensor, on the other hand, again formulated for an isotropic material

and considering a cylindrical coordinate system, is of the form

J =





















Jrrrr Jrrϕϕ Jrrzz 0 0 0 0 0 0

Jϕϕrr Jϕϕϕϕ Jϕϕzz 0 0 0 0 0 0

Jzzrr Jzzϕϕ Jzzzz 0 0 0 0 0 0

0 0 0 Jϕzϕz 0 0 0 0 0

0 0 0 0 Jrzrz 0 0 0 0

0 0 0 0 0 Jrϕrϕ 0 0 0

0 0 0 0 0 0 Jzϕzϕ 0 0

0 0 0 0 0 0 0 Jzrzr 0

0 0 0 0 0 0 0 0 Jϕrϕr





















. (3.108)

Considering the assumptions elaborated in Section 3.3.1, namely that viscoelastic effects depend

solely on the viscosity η, and that those effects occur only in the shear components, implies

Jiiii = 0 , Jiijj = 0 , and Jijij =
1

η
, (3.109)
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3.3 Numerical solution 53

with the viscosity η defined through Chapter 2

η = η[v(ξ)] = α ·
[
v(ξ)

v0

]−τ

, (3.110)

where the velocity [v(ξ)]2 = [vr(ξ)]2 + [vz(ξ)]2 follows from linear combination of v at the

elements’ nodes through Eq. (3.97), v0 = 1 is a scaling factor, and α and τ are material-dependent

parameters chosen as obtained in Chapter 2.

3.3.8 Finite Element implementation of auxiliary tensors

The auxiliary tensors derived in Section 3.3.4, namely M, B, S, K, G, W, and V, see Eqs. (3.75),

(3.76), and (3.80) to (3.84) need to be discretized as well. To that end, each of the integrals

contained in the definitions of those tensors is defined over one finite element e, with e = 1, ..., ne.

This implies the following element-specific definitions of the auxiliary tensors:

M
e =

∫

V
M

∗,e dV =
∫

V
[N∗(ξ)]T · ρi+1(ξ) · [N∗(ξ)] dV , (3.111)

B
e =

∫

V
B

∗,e dV =
∫

V
[N∗(ξ)]T · ρi+1(ξ) ·

[

∇N3r(ξ) · v̄i+1
]

· [N∗(ξ)] dV , (3.112)

S
e =

∫

V
S

∗,e dV =

∫

V

[

∇SN(ξ)
]T

· σi(ξ) dV , (3.113)

K
e =

∫

V
K

∗,e dV =

∫

V
∆t ·

[

∇SN(ξ)
]T

· Ci(ξ) ·
[

∇SN(ξ)
]

dV , (3.114)

G
e = −

∫

V
G

∗,e dV = −
∫

V
∆t ·

[

∇SN(ξ)
]T

·
[

∇rN(ξ) · σ̄i ⊕ ∇zN(ξ) · σ̄i
]

· [N∗(ξ)] dV , (3.115)

W
e =

∫

V
W

∗,e dV =

∫

V
∆t ·

[

∇SN(ξ)
]T

·
[

Si
ωσ(ξ) − Si

σω(ξ)
]

·
[

∇AN(ξ)
]

dV , (3.116)

and

V
e =

∫

V
V

∗,e dV =

∫

V
∆t ·

[

∇SN(ξ)
]T

· β2
v · Ci(ξ) · Ji(ξ) · σi(ξ) dV . (3.117)

Thereby, i denotes the temporal discretization, as introduced in Section 3.3.4. The term

[Si
ωσ(ξ) − Si

σω(ξ)], occurring in Eq. (3.116), allows for extraction of the antisymmetric gradient

of the interpolation functions, with Si
ωσ(ξ) and Si

σω(ξ) defined as

Si
σω(ξ) =





















0 0 0 0 0 0 0 σi
rz(ξ) σi

rϕ(ξ)

0 0 0 0 0 σi
ϕr(ξ) σϕz 0 0

0 0 0 σi
zϕ(ξ) σi

zr(ξ) 0 0 0 0

0 0 0 σi
ϕϕ(ξ) σi

ϕr(ξ) 0 0 0 0

0 0 0 σi
rϕ(ξ) σi

rr(ξ) 0 0 0 0

0 0 0 0 0 σi
rr(ξ) σi

rz(ξ) 0 0

0 0 0 0 0 σi
zr(ξ) σi

zz(ξ) 0 0

0 0 0 0 0 0 0 σi
zz(ξ) σi

zϕ(ξ)

0 0 0 0 0 0 0 σi
ϕz(ξ) σi

ϕϕ(ξ)





















, (3.118)
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and

Si
ωσ(ξ) =





















0 0 0 0 σi
zr(ξ) σi

ϕr(ξ) 0 0 0

0 0 0 σi
zϕ(ξ) 0 0 0 0 σi

rϕ(ξ)

0 0 0 0 0 0 σi
ϕz(ξ) σi

rz(ξ) 0

0 0 0 σi
zz(ξ) 0 0 0 0 σi

rz(ξ)

0 0 0 0 σi
zz(ξ) σi

ϕz(ξ) 0 0 0

0 0 0 0 σi
zϕ(ξ) σi

ϕϕ(ξ) 0 0 0

0 0 0 0 0 0 σi
ϕϕ(ξ) σi

rϕ(ξ) 0

0 0 0 0 0 0 σi
ϕr(ξ) σi

rr(ξ) 0

0 0 0 σi
zr(ξ) 0 0 0 0 σi

rr(ξ)





















, (3.119)

Furthermore, a number of operators are used in Eqs. (3.111) to (3.117). In particular ∇SN(ξ)

is defined in Section 4.7 of the Supplementary File, ∇AN(ξ) is defined in Section 4.8 of the

Supplementary File, ∇N3(ξ) and ∇N3r(ξ) are defined in Section 4.9 of the Supplementary File,

∇rN(ξ) ⊕ ∇ϕN(ξ) ⊕ ∇zN(ξ) is defined in Section 4.10 of the Supplementary File, ∇ · N(ξ) is

defined in Section 4.11 of the Supplementary File, and (∇)N(ξ) (∇·)N(ξ) is defined in Section 4.12

of the Supplementary File. The discretized version of auxiliary tensor P, see Eq. (3.78), is dealt

with in Section 3.3.10, whereas the soundness of Eqs. (3.111) to (3.117) is explained in Sections 4.13

to 4.19 of the Supplementary File.

As concerns the integrals occurring in Eqs. (3.111) to (3.117), we make use of Gauss integration.

In generic fashion, the task is to find the tensor Ie, with Ie ∈ {Me,Be,Se,Ke,Ge,We,Ve}, through

Ie =
∫

V I∗,e dV , whereby I∗,e ∈ {M∗,e,B∗,e,S∗,e,K∗,e,G∗,e,W∗,e,V∗,e}. Considering a triangular

finite element of order o = 1, the (only) Gauss integration point is at ξI = [1/3, 1/3], with ξI

being equal to the points ξ occurring in the integrals of Eqs. (3.111) to (3.117). Furthermore, we

make use of the relation dV = h(ξ) dr dz = r(ξ) · det(J) dξ1 dξ2, with r(ξ) being the r-coordinate

at integration point ξ, which is equivalent to the height h(ξ) because the angle of the considered

cylinder segment is ∆φ = 1, see Figures 3.1(c) and (d). These considerations lead to

Ie =
1

2
· det(J) · r(ξ) · I∗,e(ξ) , (3.120)

see also [34, 64].

3.3.9 Mesh assembly

Next, the tensorial quantities Me, Be, Ke, Ge, We, Se, and Ve, defined on the level of elements,

need to be assembled, in terms of a global representation of the entire FE mesh. To that end,

we make use of well-known assembly operations, using for that purpose the so-called assembly

matrix Ae [34]. The entries of the 6 × 6 matrices Me, Be, Ke, Ge, and We are relocated to the

corresponding global matrices of size 2 · nn × 2 · nn via

M
g =

ne∑

1

A
e,T · Me · Ae , (3.121)

B
g =

ne∑

1

A
e,T · Be · Ae , (3.122)
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K
g =

ne∑

1

A
e,T · Ke · Ae , (3.123)

G
g =

ne∑

1

A
e,T · Ge · Ae , (3.124)

and

W
g =

ne∑

1

A
e,T · We · Ae , (3.125)

whereas the entries of the 6 × 1 vectors Se and Ve are relocated to the corresponding global

vectors of size 2 · nn × 1 via

S
g =

ne∑

1

A
e,T · Ve , (3.126)

and

V
g =

ne∑

1

A
e,T · Se . (3.127)

Notably, the assembly matrix Ae, being of size 6 × 2nn, is based on the rows of A, as

defined in Section 3.3.5. Deducing from the e-th row of A the 1 × 3-vector Ae, the entries of

Ae are defined through Ae [1, 2 · Ae(1) − 1] = 1, Ae [2, 2 · Ae(1)] = 1, Ae [3, 2 · Ae(2) − 1] = 1,

Ae [4, 2 · Ae(2)] = 1, Ae [5, 2 · Ae(3) − 1] = 1, and Ae [6, 2 · Ae(3)] = 1.

3.3.10 Boundary conditions

Boundary conditions need to be imposed onto the borders of the FE mesh, either in terms of

traction forces or displacements [34, 35]. Traction force boundary conditions are considered in

terms of the auxiliary tensor P, see Eq. (3.78), through

P
e =

(

T̄ i+1
1,r , T̄

i+1
1,z , T̄

i+1
2,r , T̄

i+1
2,z , T̄

i+1
3,r , T̄

i+1
3,z

)T
, (3.128)

where 1, 2, 3 are the local node numbers of the considered triangular element of order o = 1,

and T̄ i+1
j,k are the traction forces acting onto the boundary. The corresponding global vector

representing the traction force boundary conditions follows from

P
g =

ne∑

1

A
e,T · Pe . (3.129)

Displacement boundary conditions, on the other hand, are taken into account through vector

Rg, which is defined directly as global vector,

R
g =

(

∆x̄i+1
1,r , ∆x̄i+1

1,z , · · · , ,∆x̄i+1
nn,r, ∆x̄i+1

nn,z

)T
, (3.130)

where 1, ..., nn are the global node numbers, and ∆x̄i+1
j,k are the displacements imposed on the

boundary, with ∆x̄i+1
j,k = ∞ in case there is no constraint in terms of the displacement. Rg causes
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56 3 A hypoviscoelastic thermodynamics model

direct changes to the position vectors xi+1, the velocity vectors vi+1, and the acceleration vectors

ai+1, as well as their estimators. For all cases ∆x̄i+1
l 6= ∞, they are redefined as

xi+1
l = xi

l + ∆x̄i+1
l , vi+1

l =
xi+1

l − xi
l

∆t
, and ai+1

l =
vi+1

l − vi
l

∆t
, (3.131)

where l = 1, ..., 2nn is the index denoting the entries of Rg. Furthermore, Rg requires, in case

of ∆x̄i+1
l 6= ∞, to replace the l-th entry of any of the global quantities Sg, Vg, and Pg, see

Eqs. (3.126), (3.127), and (3.129), or any sum of those quantities, by ∆x̄i+1
l , and the l-th row of

any of the global quantities Mg, Bg, Kg, Gg, and Wg, see Eqs. (3.121) to (3.125), or any sum of

those quantities by a null-row, with the exception of the corresponding l, l-th entry, which needs

to be set to 1.

The geometry of an extrusion die implies that boundary conditions can be applied either within

the extrusion canal (or extrusion die), or in an environment in which the studied domain exhibits

free surfaces. The boundary conditions relevant for the subsequently presented numerical studies

are illustrated in Figure 3.2, where ∆x̄ are displacement boundary conditions, T̄ are the traction

force boundary conditions, p is the internal pressure, A is the surface area, σij is a component of

the stress tensor, and µ is the friction coefficient.

Fig. 3.2: Definition of boundary conditions dependent on the actual position of the mesh, with
induced traction forces T̄ and induced displacements ∆x̄ in direction r, ϕ and z for:
(a) constant width of the die; (b) constant change of width of the die; (c) sudden
change of width of the die; and (d) free surface flow

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3.4 Numerical studies 57

3.3.11 Updates of nodal densities and stress tensors

Section 3.3.3 presents the unknown variables for each new time-step ti+1, while Section 3.3.4

shows how the Newmark algorithm is employed for obtaining the acceleration vector ai+1, the

velocity vector vi+1, and the position vector xi+1. For computing the correspondingly updated

density ρi+1, we consider the estimator defined in Eq. (3.66), by updating the values at the nodes

of the mesh. This is done by element-wise updating the values at all nodes, and (if applicable)

averaging of the results if a node is part of more than one element. In particular, the element-wise

update for each local node j = 1, 2, 3, with ξ1 = [0, 0], ξ2 = [1, 0], and ξ3 = [0, 1], follows

ρi+1(ξj) = ρi(ξj) − ∆t · ρ̄i ·
[

(∇)N(ξj)(∇·)N(ξj)
]

· v̄i+1 . (3.132)

The stress tensor σi+1, on the other hand, is updated analogously, based on the estimator defined

in Eq. (3.69), via

σi+1(ξj) = σi(ξj) + ∆t ·
{

C
i(ξj) · ∇SN(ξj) · v̄i+1

−
[

∇rN(ξj) · σ̄i ⊕ ∇zN(ξj) · σ̄i
]

· N∗(ξj) · v̄i+1

+
[

Si
ωσ(ξj) − Si

σω(ξj)
]

· ∇AN(ξj) · v̄i+1

−β2
v · Ci(ξj) · Ji(ξj) · σi(ξj)

}

. (3.133)

Further details on Eqs. (3.132) and (3.133) can be found in Sections 4.20 and 4.21 of the

Supplementary File.

3.3.12 Implementation of computations

Based on the theoretical considerations elaborated in Section 3.2, the proposed concept for

numerically evaluating the resulting governing equations, described in Sections 3.3.1 to 3.3.11,

allows for computing the development of all state variables at the nodes of the FE mesh, and

of the changes of the nodal coordinates over time. In particular, computations are initialized,

maintained, and terminated as described in Table 3.2.

3.4 Numerical studies

In order to demonstrate the application of the new model elaborated in Sections 3.2 and 3.3, we

consider a circular extrusion canal with a radius of rcan = 1 × 10−2 m, and a circular extrusion

die with a radius of rdie = 0.80 × 10−2 m. The tapering gradient between canal and die amounts

to to 1 : 3, while the length of the die ldie is equal to rdie. The studied material was chosen to be

a cylindrical block entirely filling the extrusion canal over an initial length of l0mat = 0.142 m,

see Figure 3.3. The studied material is an ethylene propylene diene monomer (EPDM), which

is typically used in rubber industry. This material has been characterized comprehensively in

Chapter 2, where it was referred to as EPDM-A. As concerns the material properties of EPDM-A

needed for numerical evaluation of our model, we consider Kref = 45.781 × 109 Pa and β = 0.51

defining the material’s compressibility, α = 30.39 Pa · s and τ = 0.8671 defining its viscosity, as

well as an initial density of ρ0 = 1445 kg/m3, cf. Chapter 2. Note that, in order to elucidate
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Tab. 3.2: Steps required for initializing, maintaining, and terminating the computations allowing
for die swell predictions.

# Description of step

1. Initialization of the FE mesh as displayed in Figure 3.3 and described in detail in Section 3.3.5.
2. The pressure inside the extrusion canal is applied incrementally at the rear end of the mesh (i.e., at the

boundary on the left-hand side) until the maximum value is reached; this is necessary in order to
properly consider the non-linear elastic behavior during compression. Until the maximum pressure is
reached, the mesh is prevented from moving forward (i.e., towards the right), but is merely allowed to
adapt to the imposed pressure based on force equilibrium, considering to that end the pressue pcan and
traction forces Tz (acting onto the top boundary of the mesh).

3. An acceleration az is imposed during a single time step, setting the mesh into motion, such that the
desired velocity vz,can is reached at the next time step.

4. All further changes of all the acceleration, velocity and position quantities, as well as of stresses and
densities, is then governed by the time step-wise implementation of the Newmark algorithm as described
in Table 3.1. Notably, most nodes at the rear end of the mesh are constantly checked for holding the
original velocity vz,can, as they are supposed to represent the continued flow of material from the back of
the extruder.

5. In order to avoid any problems related to violations concerning the integrity of the FE mesh (e.g. due to
overly large contractions, expansions, or distortions of single elements), the mesh is updated in regular
intervals. This remeshing is implemented by initialization of a new mesh with the outer boundaries
identical to the old mesh, but exhibiting a distribution of elements as uniform as possible. All nodal
values are transferred from the old to the new mesh by means of linear interpolation (using for that
purpose the introduced interpolation functions).

6. The overall aim of this study, that is computation of the die swell of (unvulcanized) rubber, suggests that
the computation is performed until the mesh at the free surface-end reaches a steady state.

the effect of taking into account the compressibility of rubber, we optionally set Kref → ∞, and

β = 0. Furthermore, the viscosity factor βv, splitting the stiffness tensor into an elastic and a

viscoelastic part, see Sections 3.2.7 and 3.2.8, was set to βv = 0.001, implying that the material’s

stiffness is considered to represent almost exclusively its elastic response, see also Eq. (3.52). The

FE mesh is defined through n = 6, m = 72, and h = 0.002 m, see Section 3.3.5 and Figure 3.3,

whereas the temporal discretization is characterized by a time-step of t = 0.001 s. The movement

of the EPDM block through the canal and through the die is initiated based on an internal

pressure pcan = 1 · 107 Pa, and an initial velocity of vcan = 0.5 m/s. Finally, it should be noted

that the FE model described in Section 3.3 was implemented in the commercial mathematics

software Matlab.

Fig. 3.3: Initial conditions for the finite element simulations: (a) undistorted geometry of the
canal and die; (b) initial position of the meshes at t = 0, with layout 1 in red and
layout 2 in blue coloring, and with an aspect ratio between the r and z-axis of 2 : 1
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Die swell simulations were performed for both constitutive scenarios, i.e. with and without

considering the experimentally ascertained compressibility of rubber, until the termination

condition was reached, see Section 3.3.12. When the studied EPDM was considered to be

incompressible (simulation A), this occurred after 0.063 s of simulated time (of which 0.001 s

passed during incremental loading, cf. Table 3.2), see Figure 3.4. In turn, when the studied

EPDM was considered to be compressible (simulation B), the computation was terminated after

0.069 s of simulated time (of which 0.015 s passed during incremental loading, cf. Table 3.2),

see Figure 3.5. For both incompressible and compressible EPDM, a distinctive swelling was

observed after exiting the extrusion die. Assessing the differences in the swelling behavior between

incompressible and compressible EPDM, it is striking that incompressible EPDM seems to return

to the geometry in the extrusion canal – Figure 3.4 shows that the eventually reached radius of

the extrudate is approximately equal to the radius of the extrusion canal. Compressible EPDM,

on the other hand, swells significantly less than incompressible EPDM, see Figure 3.5. Thus,

from a qualitative point of view, the latter results, obtained if taking the compressibility of

EPDM into account, resemble the experimentally observed die swell behavior.

From a computational point of view, it should be stressed that satisfying convergence is reached

throughout all simulations. Furthermore, a few observations are noteworthy: On the hand, the

density of the studied material increases within the die, owing to the compaction it experiences.

The velocity vr, on the other hands, is negative in the transition from the canal to the die and

positive during swelling, whereas the velocity vz increases within the die as compared to the

canal and the free surface-environment. As concerns the stress components σrr, σϕϕ, σzz, and

σrz, the computed values are higher within the die (and during the transition from the canal to

the die), whereas they converge to zero after exiting the die. Hence, we consider the plausibility

of the discussed results as a verification of the computation tool presented in this paper.

3.5 Conclusions

In this paper, a new computational tool utilizable for the prediction of the die swell of rubber

(as a result of the extrusion process) was presented. Thereby, we have, conceptually, abandoned

the state of the art in the field and explored new avenues, by introducing a hypoviscoelastic

thermodynamics model considering rubber as soft solid. The results presented in Section 3.4

clearly verify the soundness of the model. Furthermore, the key hypothesis of this work, namely

that neglecting the compressibility of rubber has potentially substantial influences on the model-

predicted die swell could be corroborated. The model can be straightforwardly applied to different

kinds of rubber, as only two material properties (the bulk modulus K and the viscosity η) are

needed for defining the material behavior. It has been shown in [15], see Appendix A, and

Chapter 2, how these properties can be determined experimentally.

For numerically implementing the governing equations derived in Section 3.2, a number of

new numerical operators needed to be defined, see Section 3.3 as well as the Supplementary File

attached to this paper. Hence, this paper contains substantial contributions useful to the broad

field of computational mechanics in general.

In this paper, the focus was on extrudates of circular cross-sectional shape, allowing for

utilization of rotational symmetry, and thus a correspondingly simplified spatial FE discretization.

However, it should be stressed that our model is certainly not limited to that. Through suitable
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60 3 A hypoviscoelastic thermodynamics model

Fig. 3.4: Results of simulation A (incompressible material) at the point of break-off, showing
the finite element simulation results of: (a) the overlapping finite element meshes, with
layout 1 in red and layout 2 in blue coloring; (b) the distribution of the density ρ in
[kg/m3]; (c) the distribution of the speed vr in r-direction in [m/s]; (d) the distribution
of the speed vz in z-direction in [m/s]; (e) the distribution of the stress component σrr

in [MPa]; (f) the distribution of the stress component σϕϕ in [MPa]; (g) the distribution
of the stress component σzz in [MPa]; (h) the distribution of the stress component σrz

in [MPa]; all figures have an aspect ratio between the r and z-axis of 2 : 1
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3.5 Conclusions 61

Fig. 3.5: Results of simulation B (compressible material) at the point of break-off, showing the
finite element simulation results of: (a) the overlapping finite element meshes, with
layout 1 in red and layout 2 in blue coloring; (b) the distribution of the density ρ in
[kg/m3]; (c) the distribution of the speed vr in r-direction in [m/s]; (d) the distribution
of the speed vz in z-direction in [m/s]; (e) the distribution of the stress component σrr

in [MPa]; (f) the distribution of the stress component σϕϕ in [MPa]; (g) the distribution
of the stress component σzz in [MPa]; (h) the distribution of the stress component σrz

in [MPa]; all figures have an aspect ratio between the r and z-axis of 2 : 1
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generalizations of the spatial FE discretization (compare Section 3.3.5), the range of possible

cross-sectional shapes can be substantially extended.
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Appendix 3A. Nomenclature

1 second order unit tensor

A thermal expansion coefficient

a acceleration vector

B body with volume V and surface ∂V

B auxiliary tensor

B a part of the Jaumann stress rate

bn number of boundary nodes

C elasticity tensor

D compliance tensor

D angular momentum

d symmetric velocity gradient

de symmetric elastic velocity gradient

dve symmetric viscoelastic velocity gradient

E arbitrary quantity

E energy

ei unit base vectors

e internal energy density

e dimensionless viscosity

F deformation gradient tensor

f volume forces

G auxiliary tensor

Gij second derivative of the Gibbs potential

with respect to σi and σj

Gi first derivative of the Gibbs potential

with respect to σi

G Gibbs potential

G shear modulus

h size of finite elements

I arbitrary integral

Iσi

k k-th invariant of the i-th stress tensor

in number of interpolation nodes

J viscosity tensor

J Jacobean

K auxiliary tensor

K bulk modulus

Kref modeling parameter of the bulk modulus

L virtual power

Lacc virtual power of acceleration

Lext virtual power of external forces

Lint virtual power of internal forces

M auxiliary tensor

M mass

m number of nodes in z-direction

N interpolation functions

n normal vector

n number of nodes in r-direction

ne number of elements

nn number of nodes

o order of an element

P auxiliary tensor

P traction force bc-s

P momentum

p hydrostatic pressure

p internal pressure

Q volume-related quantity

Qρ mass (density)-related quantity

q heat-flux vector

R arbitrary integrator
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R displacement bc-s

r specific body supply of heat

S auxiliary tensor

S entropy

s internal entropy density

T traction force

T absolute temperature

T0 reference temperature

t time

V auxiliary tensor

V current volume

V0 initial volume

v velocity vector

W auxiliary tensor

X initial position vector

x current position vector

α modeling parameter of the viscosity

β Newmark algorithm factor

β modeling parameter of the bulk modulus

βv viscosity factor

ǫ, ǫ arbitrary quantity (or their density)

η viscosity

γ Newmark algorithm factor

µ function of the mechanical dissipation

ν Poisson’s ratio

φ dissipation

ψ Helmholtz potential (or strain energy

function)

ρ current density

ρ0 initial density

σ Cauchy stress tensor
▽J
σ Jaumann stress rate

τ modeling parameter of the viscosity

τ Newmark algorithm tolerance

ω antisymmetric velocity gradient

ξ natural coordinates

ξ mechanical dissipation

∂V surface of volume V

∂/∂t partial time derivative

∂/∂x partial space derivative (or gradient)

∇() partial space derivative (or gradient)

∇ · () divergence

∇Sv symmetric velocity gradient

∇Av antisymmetric velocity gradient

D/Dt material derivative

· scalar product or multiplication

: double tensor contraction

× vector product

·× scalar-vector product

⊗ fourth order dyadic product

⊕ third order link between two-dimensional

matrices

()T transpose

det() determinant

tr() trace

(̂) virtual quantities

(̄) quantities at mesh nodes

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Chapter 4

Detailed derivations and proofs related to the

paper “A hypoviscoelastic thermodynamics

model of soft solids, utilized for numerically

simulating the die swell of rubber”

Authored by: R. Plachy1, S. Scheiner1, F. Arthofer2, A. Holzner2, C. Hellmich1

1 Institute for Mechanics of Materials and Structures, TU Wien
2 Semperit Technische Produkte GmbH

Under preparation for submission to: International Journal of Engineering Science

Preliminary remarks

For the sake of conciseness, lengthy derivations are omitted in the paper “A hypoviscoelastic

thermodynamics model of soft solids, utilized for numerically simulating the die swell of rubber”.

In order to nevertheless allow readers to understand each and every step in the development of

the mathematical framework of the mentioned paper, this supplementary file presents all omitted

derivations in appropriate detail. In the following, references to equations indicated by Arabic

numbers starting with “3.” relate to the main paper, whereas references to equations indicated

by Arabic numbers starting with “4.” relate to this detailed derivations and proofs.

4.1 Derivation of Equation (3.15)

Derivation of Eq. (3.15) is achieved through evaluation of the material derivative DM/Dt of the

mass density integral M =
∫

V ρdV by using Eq. (3.14) and setting the result to 0:

DM

Dt
=

D

Dt

∫

V
ρdV

=
∫

V

Dρ

Dt
+ ρ · (∇ · v) dV = 0 .

(4.1)

Eq. (4.1) has to be valid for any volume V , allowing for the removal of the integral, and hence

implies Eq. (3.15).
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66 4 Detailed derivations and proofs

4.2 Derivation of Equation (3.17)

For derivation of Eq. (3.17), the material derivative DP/Dt of the momentum density integral

P =
∫

V (ρ · v) dV is evaluated, using Eq. (3.14) and setting the result equal to Eq. (3.16). The

left-hand side of this equation, making use of Eq. (3.15), yields

DP

Dt
=

D

Dt

∫

V
(ρ · v) dV

∫

V

D(ρ · v)

Dt
+ (ρ · v) · (∇ · v) dV

=
∫

V
ρ · Dv

Dt
+

Dρ

Dt
· v + ρ · (∇ · v) · v dV

=
∫

V
ρ · Dv

Dt
dV ,

(4.2)

and the right-hand side, i.e. Eq. (3.16), can be transformed, using T = σ · n, into

∫

V
f dV +

∫

∂V
T d(∂V ) =

∫

V
f + ∇ · σ dV . (4.3)

Equating Eqs. (4.2) and (4.3) results in

∫

V
ρ · Dv

Dt
dV =

∫

V
f + ∇ · σ dV . (4.4)

Eq. (4.4) has to be valid for any volume V , allowing for the removal of the integral, and hence

implies Eq. (3.17).

4.3 Derivation of Equation (3.19)

Applying the material derivative DD/Dt to the angular momentum density integral D =
∫

V x × ρv dV , using for that purpose Eq. (3.14) and equating the result with Eq. (3.18) leads to

an equation whose left-hand side, considering Eqs. (3.15) and (3.17), together with the identities

v × v = 0 and ∇x = 1, where 1 is the second-order unit tensor, yields

DD

Dt
=

D

Dt

∫

V
[x × (ρ · v)] dV

=
∫

V

D

Dt
· [x × (ρ · v)] + [x × (ρ · v)] · (∇ · v) dV

=
∫

V

Dx

Dt
× (ρ · v) + x ×

[
Dρ

Dt
v

]

+ x ×
[

ρ · Dv

Dt

]

+ {x × [ρ · (∇ · v) · v]} dV

=
∫

V
ρ · v × v + ρ · (∇x) · v × v + x ×

{
Dρ

Dt
· v + [ρ · (∇ · v) · v] + ρ · Dv

Dt

}

dV

=
∫

V
x × f + x × (∇ · σ) dV ,

(4.5)

while the right-hand side of the aforementioned equation, i.e. Eq. (3.18), can be transformed

using T = σ · n and x × (σ · n) = (x × σ) · n in
∫

∂V x × T d(∂V ) =
∫

V ∇ · (x × σ) dV and
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4.4 Derivation of Equation (3.22) 67

∇ · (x × σ) = ∇x · ×σ − (∇ · σ) × x = 1 · ×σ − (∇ · σ) × x, where 1 · ×σ =
∑3

i=1

∑3
j=1 σij · ei × ej

with ei and ej being the unit base vectors, and −(∇ · σ) × x = x × (∇ · σ), yielding

∫

V
x × f dV +

∫

∂V
x × T d(∂V ) =

∫

V
x × f + ∇ · (x × σ) dV

=
∫

V
x × f + 1 · ×σ + x × (∇ · σ) dV .

(4.6)

Equating Eqs. (4.5) and (4.6), while canceling out identical terms on both sides of the equal sign,

results in

0 =
∫

V
1 · ×σ dV ⇔ 0 = 1 · ×σ =






σ23 − σ32

σ31 − σ13

σ12 − σ21




 . (4.7)

Obviously, this condition is only met if Eq. (3.19) is true.

4.4 Derivation of Equation (3.22)

Eq. (3.22) is derived through evaluating the material derivative of the energy integrals, DE/Dt,

see Eq. (3.20), considering Eq. (3.14) and equating the result with Eq. (3.21). When also taking

into account Eqs. (3.15), (3.17), and (3.19), the left-hand side of the resulting equation yields

DE

Dt
=

D

Dt

∫

V
ρ · eρ dV +

D

Dt

∫

V

1

2
· ρ · (v · v) dV

=
∫

V

D(ρ · eρ)

Dt
+ ρ · eρ(∇ · v) +

1

2
· D [ρ · (v · v)]

Dt
+

1

2
· ρ · (v · v) · (∇ · v) dV

=
∫

V

Dρ

Dt
· eρ + ρ · Deρ

Dt
+ ρ · (∇ · v) · eρ +

1

2
· Dρ

Dt
· (v · v)

+ ρ · Dv

Dt
· v +

1

2
· ρ · (∇ · v) · (v · v) dV

=
∫

V
ρ · Deρ

Dt
+ ρ · Dv

Dt
· v dV

=
∫

V
ρ · Deρ

Dt
+ f · v + (∇ · σ) · v dV ,

(4.8)

while the right-hand side, i.e. Eq. (3.21), can be transformed using T = σ ·n in
∫

∂V T ·v d(∂V ) =
∫

V ∇ · (v · σ) dV and ∇v : σ = σ : d in ∇ · (v · σ) = v · (∇ · σ) + (∇v) : σ = (∇ · σ) · v + σ : d,

yielding ∫

V
f · v dV+

∫

∂V
T · v d(∂V ) +

∫

V
ρ · rρ dV −

∫

∂V
q · n d(∂V )

=
∫

V
f · v + ∇ · (v · σ) + ρ · rρ − ∇ · q dV

=
∫

V
f · v + (∇ · σ) · v + σ : d + ρ · rρ − ∇ · q dV

(4.9)

Equating Eqs. (4.8) and (4.9), while canceling out identical terms on both sides of the equal sign,

results in ∫

V
ρ · Deρ

Dt
dV =

∫

V
σ : d + ρ · rρ − ∇ · q dV . (4.10)
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68 4 Detailed derivations and proofs

Eq. (4.10) has to be valid for any volume V , allowing for the removal of the integral, and hence

implies Eq. (3.22).

4.5 Derivation of Equation (3.25)

We start with considering Eq. (3.24), and evaluate the material derivative of the entropy density

integral S =
∫

V ρ · sρ dV , occurring on the left-hand side of this equation, DS/Dt, according to

Eq. (3.14). When considering additionally Eq. (3.15), this yields

DS

Dt
=

D

Dt

∫

V
ρ · sρ dV

=
∫

V

D(ρ · sρ)

Dt
+ ρ · sρ · (∇ · v) dV

=
∫

V

Dρ

Dt
· sρ + ρ · Dsρ

Dt
+ ρ · sρ · (∇ · v) dV

=
∫

V
ρ · Dsρ

Dt
dV .

(4.11)

Rhe right-hand side of Eq. (3.24) can be transformed into

∫

V

ρ · rρ

T
dV −

∫

∂V

q

T
· n d(∂V ) =

∫

V

ρ · rρ

T
− ∇ ·

(
q

T

)

dV

=
∫

V

ρ · rρ

T
+

(∇T ) · q

T 2
− (∇ · q)

T
.

(4.12)

Inserting Eqs. (4.11) and (4.12) into Eq. (3.24), multiplying the resulting expression by T , allows

for deriving
∫

V
ρ · T · Dsρ

Dt
− ρ · rρ + ∇ · q − q

T
· (∇T ) dV ≥ 0 . (4.13)

Again, requiring that Eq. (4.13) is valid for any volume V allows for removal of the integral,

resulting in Eq. (3.25).
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4.6 Theorem related to and proof of Equation (3.36) 69

4.6 Theorem related to and proof of Equation (3.36)

Theorem:

Let G be the Gibbs potential of some homogeneous and isotropic, possibly viscoelastic body B.

Furthermore, σ1 and σ2 are two symmetric stress tensors and ω is the antisymmetric part of

the velocity gradient, see Eq. (3.12). Then, G = G(Iσ1

1 , Iσ1

2 , Iσ1

3 , Iσ2

1 , Iσ2

2 , Iσ2

3 ), with the invariants

Iσi

1 = tr(σi), I
σi

2 = 1/2 [(tr(σi))2 − tr(σi · σi)] and Iσi

3 = det(σi) for i = 1, 2, and

∂2G

∂σi∂σj
: (σj · ω − ω · σj) : σi = 0 , (4.14)

for i, j = 1, 2.

Proof:

The idea and main steps of the proof are as follows: We define

Bj = (σj · ω − ω · σj) , (4.15)

and

Gi :=
∂G

∂σi
, (4.16)

with i = 1, 2, and evaluate all components of the resulting second order-tensors. Using Eq. (4.16),

we obtain

Gij =
∂Gi

∂σj
=

∂2G

∂σi∂σj
(4.17)

with i, j = 1, 2, and evaluate all components of the resulting fourth-order tensors. Inserting

Eqs. (4.15) and (4.16) into Eq. (4.14) yields

Gij : Bj : σi
?
= 0 . (4.18)

The concise form of Gij follows as

Gij = [1 ⊗ 1] · a− [1 ⊗ σj ] · b− [σi ⊗ 1] · c+ [1 ⊗ σjσj ] · d+ [σiσi ⊗ 1] · e
+ [σi ⊗ σj ] · f − [σi ⊗ σjσj ] · g − [σiσi ⊗ σj ] · h+ [σiσi ⊗ σjσj ] · k ,

(4.19)

where a, b, c, d, e, f , g, h, and k are scalars resulting from the invariants and from differentiations

of the Gibbs potential with respect to the invariants, 1 is the second-order unit tensor and

⊗ represents the fourth-order dyadic product. The fourth-order dyadic products occurring in

Eq. (4.19) can be separately contracted with Bj from Eq. (4.15), with all contractions resulting

in 0. It furthermore follows that

(Gij : Bj) = 0 ⇔ (Gij : Bj) : σi = 0 , (4.20)

completing the proof. Note that the above theorem and proof are analogously applicable for Gρ,

i.e. for a mass density-related formulation.
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70 4 Detailed derivations and proofs

4.7 Derivation of ∇SN(ξ)

The symmetric gradient of a vector operator, introduced in Section 3.3.8 of the main paper, is

defined as

∇SN(ξ) =






























∂N1

∂r
0

∂N2

∂r
0

∂N3

∂r
0

N1

r
0

N2

r
0

N3

r
0

0
∂N1

∂z
0

∂N2

∂z
0

∂N3

∂z
0 0 0 0 0 0

1

2
· ∂N1

∂z

1

2
· ∂N1

∂r

1

2
· ∂N2

∂z

1

2
· ∂N2

∂r

1

2
· ∂N3

∂z

1

2
· ∂N3

∂r
0 0 0 0 0 0

0 0 0 0 0 0

1

2

∂N1

∂z

1

2

∂N1

∂r

1

2

∂N2

∂z

1

2

∂N2

∂r

1

2

∂N3

∂z

1

2

∂N3

∂r
0 0 0 0 0 0






























. (4.21)

Multiplying Eq. (4.21) by (∂ǭ1/∂r, ∂ǭ1/∂z, ∂ǭ2/∂r, ∂ǭ2/∂z, ∂ǭ3/∂r, ∂ǭ3/∂z)T from the right

yields the following vector representation of a second-order tensor:

[
∂ǫr
∂r

∂ǫϕ
∂ϕ

∂ǫz
∂z

∂ǫϕ
∂z

∂ǫr
∂z

∂ǫr
∂ϕ

∂ǫz
∂ϕ

∂ǫz
∂r

∂ǫϕ
∂r

]T

er,eϕ,ez

. (4.22)

As basis for defining Eq. (4.21), we consider the symmetric gradient of a vector. If taking into

account rotational symmetry, this gradient is defined as follows:

∇Sǫ =











∂ǫr
∂r

0
1

2
·
(
∂ǫr
∂z

+
∂ǫz
∂r

)

0
ǫr
r

0

1

2
·
(
∂ǫz
∂r

+
∂ǫr
∂z

)

0
∂ǫz
∂z











er,eϕ,ez

, (4.23)

and evaluate the components of Eq. (4.23) by using interpolation functions and their derivatives,

namely Eqs. (3.95), (3.97), and (3.104), resulting in

∂ǫr
∂r

=
∂N(ξ)

∂r
· ǭr , (4.24)

∂ǫϕ
∂ϕ

=
ǫr
r

=
N(ξ)

r
· ǭr , (4.25)

∂ǫz
∂z

=
∂N(ξ)

∂z
· ǭz , (4.26)

1

2

(
∂ǫr
∂z

+
∂ǫz
∂r

)

=
1

2

∂N(ξ)

∂z
· ǭr +

1

2

∂N(ξ)

∂r
· ǭz , (4.27)
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4.8 Derivation of ∇AN(ξ) 71

and
1

2

(
∂ǫz
∂r

+
∂ǫr
∂z

)

=
1

2

∂N(ξ)

∂r
· ǭz +

1

2

∂N(ξ)

∂z
· ǭr . (4.28)

Considering Eqs. (4.24) to (4.28) allows for deriving the components of the operator ∇SN(ξ), as

shown in Eq. (4.21).

4.8 Derivation of ∇AN(ξ)

The antisymmetric gradient of a vector operator, introduced in Section 3.3.8 of the main paper,

is defined as

∇AN(ξ) =



























0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1

2
· ∂N1

∂z
−1

2
· ∂N1

∂r

1

2
· ∂N2

∂z
−1

2
· ∂N2

∂r

1

2
· ∂N3

∂z
−1

2
· ∂N3

∂r
0 0 0 0 0 0

0 0 0 0 0 0

−1

2
· ∂N1

∂z

1

2
· ∂N1

∂r
−1

2
· ∂N2

∂z

1

2
· ∂N2

∂r
−1

2
· ∂N3

∂z

1

2
· ∂N3

∂r
0 0 0 0 0 0



























. (4.29)

Multiplying Eq. (4.29) by (∂ǭ1/∂r, ∂ǭ1/∂z, ∂ǭ2/∂r, ∂ǭ2/∂z, ∂ǭ3/∂r, ∂ǭ3/∂z)T from the right

yields the vector representation of a second-order tensor shown in Eq. (4.22). As basis for defining

Eq. (4.29), we consider the antisymmetric gradient of a vector. If taking into account rotational

symmetry, this gradient is defined as follows:

∇Aǫ =










0 0
1

2
·
(
∂ǫr
∂z

− ∂ǫz
∂r

)

0 0 0

1

2
·
(
∂ǫz
∂r

− ∂ǫr
∂z

)

0 0










er,eϕ,ez

, (4.30)

and evaluate the components of Eq. (4.30) by using interpolation functions and their derivatives,

namely Eqs. (3.95) and (3.104), resulting in

1

2
·
(
∂ǫr
∂z

− ∂ǫz
∂r

)

=
1

2
· ∂N(ξ)

∂z
· ǭr − 1

2
· ∂N(ξ)

∂r
· ǭz (4.31)

and
1

2
·
(
∂ǫz
∂r

− ∂ǫr
∂z

)

=
1

2
· ∂N(ξ)

∂r
· ǭz − 1

2
· ∂N(ξ)

∂z
· ǭr . (4.32)

Considering Eqs. (4.31) and (4.32) allows for deriving the components of the operator ∇AN(ξ),

as shown in Eq. (4.29).
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4.9 Derivation of ∇N(ξ), ∇N3(ξ), and ∇N3r(ξ)

Next we deal with specific gradients of a vector operator, all of which are introduced in Section 3.3.8

of the main paper, starting with the standard gradient of a vector operator, ∇N(ξ), defined as

∇N(ξ) =






























∂N1

∂r
0

∂N2

∂r
0

∂N3

∂r
0

N1

r
0

N2

r
0

N3

r
0

0
∂N1

∂z
0

∂N2

∂z
0

∂N3

∂z
0 0 0 0 0 0

∂N1

∂z
0

∂N2

∂z
0

∂N3

∂z
0

0 0 0 0 0 0

0 0 0 0 0 0

0
∂N1

∂r
0

∂N2

∂r
0

∂N3

∂r
0 0 0 0 0 0






























. (4.33)

As in the previous sections, multiplying Eq. (4.29) by (∂ǭ1/∂r, ∂ǭ1/∂z, ∂ǭ2/∂r, ∂ǭ2/∂z, ∂ǭ3/∂r, ∂ǭ3/∂z)T

from the right yields the vector representation of a second-order tensor shown in Eq. (4.22).

Furthermore, the (second) gradient of a vector operator, ∇N3(ξ), is defined as

∇N3(ξ) =










∂N1

∂r
0

∂N1

∂z

0
N1

r
0

0 0 0










⊕










0 0 0

0 0 0

∂N1

∂r
0

∂N1

∂z










⊕










∂N2

∂r
0

∂N2

∂z

0
N2

r
0

0 0 0










⊕










0 0 0

0 0 0

∂N2

∂r
0

∂N2

∂z










⊕










∂N3

∂r
0

∂N3

∂z

0
N3

r
0

0 0 0










⊕










0 0 0

0 0 0

∂N3

∂r
0

∂N3

∂z










,

(4.34)

where ⊕ denotes the third-order link between the two-dimensional matrices, and each ma-

trix, before summation over all of them, has to be multiplied by the corresponding element

of (∂ǭ1/∂r, ∂ǭ1/∂z, ∂ǭ2/∂r, ∂ǭ2/∂z, ∂ǭ3/∂r, ∂ǭ3/∂z)T. This operation results in a matrix

representation of a second-order tensor, reading as












∂ǫr
∂r

∂ǫr
∂ϕ

∂ǫr
∂z

∂ǫϕ
∂r

∂ǫϕ
∂ϕ

∂ǫϕ
∂z

∂ǫz
∂r

∂ǫz
∂ϕ

∂ǫz
∂z












er,eϕ,ez

. (4.35)
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And, finally, the (third) gradient of a vector operator, ∇N3r(ξ), directly originating from

Eq. (4.34), but restricted to cases where components involving direction ϕ are not involved, is

defined as

∇N3r(ξ) =






∂N1

∂r

∂N1

∂z
0 0




⊕






0 0

∂N1

∂r

∂N1

∂z




⊕






∂N2

∂r

∂N2

∂z
0 0






⊕






0 0

∂N2

∂r

∂N2

∂z




⊕






∂N3

∂r

∂N3

∂z
0 0




⊕






0 0

∂N3

∂r

∂N3

∂z




 ,

(4.36)

where each matrix, before summation over all of them, has to be multiplied by the corresponding

element of (∂ǭ1/∂r, ∂ǭ1/∂z, ∂ǭ2/∂r, ∂ǭ2/∂z, ∂ǭ3/∂r, ∂ǭ3/∂z)T, resulting in a reduced matrix

representation of a second-order tensor, namely







∂ǫr
∂r

∂ǫr
∂z

∂ǫz
∂r

∂ǫz
∂z







er,eϕ,ez

. (4.37)

As basis for defining Eqs. (4.33), (4.34), and (4.36), we consider the gradient of a vector. If taking

into account rotational symmetry, this gradient is defined as follows:

∇ǫ =










∂ǫr
∂r

0
∂ǫr
∂z

0
ǫr
r

0

∂ǫz
∂r

0
∂ǫz
∂z










er,eϕ,ez

, (4.38)

and evaluate the components of Eq. (4.30) by using interpolation functions and their derivatives,

namely Eqs. (3.95), (3.97), and (3.104), resulting in

∂ǫr
∂r

=
∂N(ξ)

∂r
· ǭr , (4.39)

ǫr
r

=
N(ξ)

r
· ǭr , (4.40)

∂ǫz
∂z

=
∂N(ξ)

∂z
· ǭz , (4.41)

∂ǫr
∂z

=
∂N(ξ)

∂z
· ǭr (4.42)

and
∂ǫz
∂r

=
∂N(ξ)

∂r
· ǭz . (4.43)

Considering Eqs. (4.39) to (4.43) allows to derive the components of the gradients given in

Eqs. (4.33), (4.34), and (4.36).
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4.10 Derivation of ∇rN(ξ) ⊕ ∇ϕN(ξ) ⊕ ∇zN(ξ)

The gradient of a second-order tensor operator, introduced in Section 3.3.8, is defined as

∇rN(ξ) ⊕ ∇ϕN(ξ) ⊕ ∇zN(ξ)

=































∂N1

∂r
0 0 0

∂N2

∂r
0 0 0

∂N3

∂r
0 0 0

0
∂N1

∂r
0 0 0

∂N2

∂r
0 0 0

∂N3

∂r
0 0

0 0
∂N1

∂r
0 0 0

∂N2

∂r
0 0 0

∂N3

∂r
0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
∂N1

∂r
0 0 0

∂N2

∂r
0 0 0

∂N3

∂r
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
∂N1

∂r
0 0 0

∂N2

∂r
0 0 0

∂N3

∂r
0 0 0 0 0 0 0 0 0 0 0 0































⊕






























0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
N1

r
0 0 0

N2

r
0 0 0

N3

r
0 0 0 0 0 0 0 0 0 0 0 0

N1

r
−N1

r
0 0

N2

r
−N2

r
0 0

N3

r
−N3

r
0 0

0 0 0
N1

r
0 0 0

N2

r
0 0 0

N3

r
0 0 0 0 0 0 0 0 0 0 0 0

N1

r
−N1

r
0 0

N2

r
−N2

r
0 0

N3

r
−N3

r
0 0






























(4.44)

⊕































∂N1

∂z
0 0 0

∂N2

∂z
0 0 0

∂N3

∂z
0 0 0

0
∂N1

∂z
0 0 0

∂N2

∂z
0 0 0

∂N3

∂z
0 0

0 0
∂N1

∂z
0 0 0

∂N2

∂z
0 0 0

∂N3

∂z
0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
∂N1

∂z
0 0 0

∂N2

∂z
0 0 0

∂N3

∂z
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0
∂N1

∂z
0 0 0

∂N2

∂z
0 0 0

∂N3

∂z
0 0 0 0 0 0 0 0 0 0 0 0































.
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Multiplying each of the three matrices from the right by the second-order tensor at some

elements’s nodes in vectorial format, reading as (ǭ1,rr, ǭ1,ϕϕ, ǭ1,zz, ǭ1,rz, ǭ2,rr, ǭ2,ϕϕ, ǭ2,zz, ǭ2,rz, ǭ3,rr,

ǭ3,ϕϕ, ǭ3,zz, ǭ3,rz)T, yields the following matrix representation of a third-order tensor:











∂ǫrr

∂r

∂ǫϕϕ

∂r

∂ǫzz

∂r

∂ǫϕz

∂r

∂ǫrz

∂r

∂ǫrϕ

∂r

∂ǫzϕ

∂r

∂ǫzr

∂r

∂ǫϕr

∂ϕ
∂ǫrr

∂ϕ

∂ǫϕϕ

∂ϕ

∂ǫzz

∂ϕ

∂ǫϕz

∂ϕ

∂ǫrz

∂ϕ

∂ǫrϕ

∂ϕ

∂ǫzϕ

∂ϕ

∂ǫzr

∂ϕ

∂ǫϕr

∂ϕ
∂ǫrr

∂z

∂ǫϕϕ

∂z

∂ǫzz

∂z

∂ǫϕz

∂z

∂ǫrz

∂z

∂ǫrϕ

∂z

∂ǫzϕ

∂z

∂ǫzr

∂z

∂ǫϕr

∂z











T

er,eϕ,ez

. (4.45)

As basis for defining Eq. (4.44), we consider the gradient of a second-order tensor. If taking into

account rotational symmetry, this gradient is defined as follows:

∇ǫ =










∂ǫrr

∂r
0

∂ǫrz

∂r

0
∂ǫϕϕ

∂r
0

∂ǫrz

∂r
0

∂ǫzz

∂r










⊕










0
ǫrr − ǫϕϕ

r
0

ǫrr − ǫϕϕ

r
0

ǫrz

r

0
ǫrz

r
0










⊕










∂ǫrr

∂z
0

∂ǫrz

∂z

0
∂ǫϕϕ

∂z
0

∂ǫrz

∂z
0

∂ǫzz

∂z










,

(4.46)

and evaluate the components of Eq. (4.46) by using interpolation functions and their derivatives,

namely Eqs. (3.95), (3.97), and (3.104), resulting in

∂ǫrr

∂r
=
∂N(ξ)

∂r
· ǭrr , (4.47)

∂ǫϕϕ

∂r
=
∂N(ξ)

∂r
· ǭϕϕ , (4.48)

∂ǫzz

∂r
=
∂N(ξ)

∂r
· ǭzz , (4.49)

∂ǫrz

∂r
=
∂N(ξ)

∂r
· ǭrz , (4.50)

∂ǫrϕ

∂ϕ
=
∂ǫϕr

∂ϕ
=
ǫrr − ǫϕϕ

r
=

N(ξ)

r
· ǭrr − N(ξ)

r
· ǭϕϕ , (4.51)

∂ǫzϕ

∂ϕ
=
ǫrz

r
=

N(ξ)

r
· ǭrz , (4.52)

∂ǫrr

∂z
=
∂N(ξ)

∂z
· ǭrr , (4.53)

∂ǫϕϕ

∂z
=
∂N(ξ)

∂z
· ǭϕϕ , (4.54)

∂ǫzz

∂z
=
∂N(ξ)

∂z
· ǭzz , (4.55)

and
∂ǫrz

∂z
=
∂N(ξ)

∂z
· ǭrz . (4.56)

Considering Eqs. (4.47) to (4.56) allows for deriving the components of the operator ∇rN(ξ) ⊕
∇ϕN(ξ) ⊕ ∇zN(ξ), as shown in Eq. (4.44).
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4.11 Derivation of ∇ · N(ξ)

The divergence of a second-order tensor operator is defined as

∇ · N(ξ) =












































∂N1

∂r
+
N1

r
0 0

−N1

r
0 0

0 0
∂N1

∂z
∂N1

∂z
0

∂N1

∂r
+
N1

r
∂N2

∂r
+
N2

r
0 0

−N2

r
0 0

0 0
∂N2

∂z
∂N2

∂z
0

∂N2

∂z
+
N2

r
∂N2

∂r
+
N2

r
0 0

−N3

r
0 0

0 0
∂N3

∂z
∂N3

∂z
0

∂N3

∂z
+
N3

r












































T

, (4.57)

Multiplication by (ǭ1,rr, ǭ1,ϕϕ, ǭ1,zz, ǭ1,rz, ǭ2,rr, ǭ2,ϕϕ, ǭ2,zz, ǭ2,rz, ǭ3,rr, ǭ3,ϕϕ, ǭ3,zz, ǭ3,rz)T from the

right results in a vector reading as











∂ǫrr

∂r
+
∂ǫrϕ

∂ϕ
+
∂ǫrz

∂z
∂ǫϕr

∂r
+
∂ǫϕϕ

∂ϕ
+
∂ǫϕz

∂z
∂ǫzr

∂r
+
∂ǫzϕ

∂ϕ
+
∂ǫzz

∂z











er,eϕ,ez

. (4.58)

As basis for Eq. (4.57), we consider the divergence of a second-order tensor. If taking into account

rotational symmetry, this operator is defined as follows:

∇ · ǫ =










∂ǫrr

∂r
+
ǫrr − ǫϕϕ

r
+
∂ǫrz

∂z
0

∂ǫrz

∂r
+
ǫrz

r
+
∂ǫzz

∂z










, (4.59)

and evaluate the components of Eq. (4.59) by using interpolation functions and their derivatives,

namely Eqs. (3.95), (3.97), and (3.104), resulting in

∂ǫrr

∂r
+
ǫrr − ǫϕϕ

r
+
∂ǫrz

∂z
=
∂N(ξ)

∂r
· ǭrr +

N(ξ)

r
· ǭrr − N(ξ)

r
· ǭϕϕ +

∂N(ξ)

∂z
· ǭrz (4.60)
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and
∂ǫrz

∂r
+
ǫrz

r
+
∂ǫzz

∂z
=
∂N(ξ)

∂z
· ǭzz +

∂N(ξ)

∂r
· ǭrz +

N(ξ)

r
· ǭrz . (4.61)

Considering Eqs. (4.60) and (4.61) allows for deriving the components of the operator ∇ · N(ξ),

as shown in Eq. (4.57).

4.12 Derivation of (∇)N(ξ) (∇·)N(ξ)

The divergence of a vector operator multiplied by a scalar is defined as

(∇)N(ξ) (∇·)N(ξ) =






a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36




 , (4.62)

with

a11 =
∂N1

∂r
·N1 +N1 · ∂N1

∂r
+

1

r
·N1 ·N1 , a12 =

∂N1

∂z
·N1 +N1 · ∂N1

∂z
,

a13 =
∂N1

∂r
·N2 +N1 · ∂N2

∂r
+

1

r
·N1 ·N2 , a14 =

∂N1

∂z
·N2 +N1 · ∂N2

∂z
,

a15 =
∂N1

∂r
·N3 +N1 · ∂N3

∂r
+

1

r
·N1 ·N3 , a16 =

∂N1

∂z
·N3 +N1 · ∂N3

∂z
,

a21 =
∂N2

∂r
·N1 +N2 · ∂N1

∂r
+

1

r
·N2 ·N1 , a22 =

∂N2

∂z
·N1 +N2 · ∂N1

∂z
,

a23 =
∂N2

∂r
·N2 +N2 · ∂N2

∂r
+

1

r
·N2 ·N2 , a24 =

∂N2

∂z
·N2 +N2 · ∂N2

∂z
,

a25 =
∂N2

∂r
·N3 +N2 · ∂N3

∂r
+

1

r
·N2 ·N3 , a26 =

∂N2

∂z
·N3 +N2 · ∂N3

∂z
,

a31 =
∂N3

∂r
·N1 +N3 · ∂N1

∂r
+

1

r
·N3 ·N1 , a32 =

∂N3

∂z
·N1 +N3 · ∂N1

∂z
,

a33 =
∂N3

∂r
·N2 +N3 · ∂N2

∂r
+

1

r
·N3 ·N2 , a34 =

∂N3

∂z
·N2 +N3 · ∂N2

∂z
,

a35 =
∂N3

∂r
·N3 +N3 · ∂N3

∂r
+

1

r
·N3 ·N3 , a36 =

∂N3

∂z
·N3 +N3 · ∂N3

∂z
.

(4.63)

Multiplication of Eq. (4.62) by (ǭ1, ǭ2, ǭ3)T, representing the scalar quanities at the elements’

nodes, from the left, and by (ǭ1,r, ǭ1,z, ǭ2,r, ǭ2,z, ǭ3,r, ǭ3,z)T from the right, representing the vectors

at the elements’ nodes, yields the following scalar quantity:

ǫ · ∂ǫr
∂r

+ ǫ · ∂ǫϕ
∂ϕ

+ ǫ · ∂ǫz
∂z

. (4.64)

As basis of Eq. (4.62), we consider the divergence of a vector multiplied by a scalar. If taking

into account rotational symmetry, this operator is defined as follows:

∇ · (ǫ · ǫ) =
∂ǫ

∂r
· ǫr + ǫ · ∂ǫr

∂r
+
ǫ · ǫr
r

+
∂ǫ

∂z
· ǫz + ǫ · ∂ǫz

∂z
, (4.65)
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78 4 Detailed derivations and proofs

and evaluate the components of Eq. (4.65) by using interpolation functions and their derivatives,

namely Eqs. (3.95), (3.97), and (3.104), resulting in

∂ǫ

∂r
· ǫr = ǭT ·

(
∂N(ξ)

∂r

)T

· N(ξ) · ǭr , (4.66)

ǫ · ∂ǫr
∂r

= ǭT · [N(ξ)]T · ∂N(ξ)

∂r
· ǭr , (4.67)

ǫ · ǫr
r

= ǭT · [N(ξ)]T · N(ξ)

r
· ǭr , (4.68)

∂ǫ

∂z
· ǫz = ǭT ·

(
∂N(ξ)

∂z

)T

· N(ξ) · ǭz , (4.69)

and

ǫ · ∂ǫz
∂z

= ǭT · [N(ξ)]T · ∂N(ξ)

∂z
· ǭz , (4.70)

where ǭ = (ǭ1, ǭ2, ǭ3)T. Considering Eqs. (4.65) to (4.70) allows for deriving the components of

the operator (∇)N(ξ) (∇·)N(ξ), as shown in Eq. (4.62).

4.13 Derivation of Equation (3.111)

For Eq. (3.111) to be valid, the following condition needs to be fulfilled:

ˆ̄v · M · āi+1 = ˆ̄v · Me · āi+1 , (4.71)

whereby M is defined in Eq. (3.75), and the respective volume integrals have been omitted.

Considering rotational symmetry, as well as Eqs. (3.70), (3.71), (3.96) and (3.97), Eq. (4.71) can

be extended as follows:

ˆ̄v · M · āi+1 = ˆ̄v · N · ρi+1 · N · āi+1

= v̂ · ρi+1 · ai+1

= ρi+1 ·
∑

k=r,z

v̂k · ai+1
k

= ρi+1 ·
[

v̂r · ai+1
r + v̂z · ai+1

z

]

= ˆ̄v · [N∗]T · ρi+1 · [N∗] · āi+1 = ˆ̄v · Me · āi+1 ,

(4.72)

hence confirming Eq. (3.111).

4.14 Derivation of Equation (3.112)

For Eq. (3.112) to be valid, the following condition needs to be fulfilled:

ˆ̄v · B · v̄i+1 = ˆ̄v · Be · v̄i+1 , (4.73)
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whereby B is defined in Eq. (3.76), and the respective volume integrals have been omitted.

Considering rotational symmetry, as well as Eqs. (3.71), (3.96), (3.97), and (4.36), Eq. (4.73) can

be extended as follows:

ˆ̄v · B · v̄i+1 = ˆ̄v · N · ρi+1 · ∇vi+1 : N · v̄i+1

= v̂ · ρi+1 · ∇vi+1 : vi+1

= ρi+1 ·
∑

k=r,z

∑

l=r,z

v̂k · ∂v
i+1
k

∂l
· vi+1

l

= ρi+1 ·
[

v̂r ·
(

∂vi+1
r

∂r
· vi+1

r +
∂vi+1

r

∂z
· vi+1

z

)

+ v̂z ·
(

∂vi+1
z

∂r
· vi+1

r +
∂vi+1

z

∂z
· vi+1

z

)]

= ˆ̄v · [N∗]T · ρi+1 ·
[

∇N3r · v̄i+1
]

· [N∗] · v̄i+1 = ˆ̄v · Be · v̄i+1 ,

(4.74)

hence confirming Eq. (3.112).

4.15 Derivation of Equation (3.113)

For Eq. (3.113) to be valid, the following condition needs to be fulfilled:

ˆ̄v · S = ˆ̄v · Se , (4.75)

whereby S is defined in Eq. (3.80), and the respective volume integrals have been omitted.

Considering rotational symmetry, as well as Eqs. (3.72), (3.96), (3.97), and (4.21), Eq. (4.75) can

be extended as follows:

ˆ̄v · S = ˆ̄v · N : σi

= d̂ : σi

=
∑

k=r,ϕ,z

∑

l=r,ϕ,z

d̂kl · σi
kl

= d̂rr · σi
rr + d̂ϕϕ · σi

ϕϕ + d̂zz · σi
zz + d̂rz · σi

rz + d̂zr · σi
zr

= ˆ̄v ·
[

∇SN
]T

· σi = ˆ̄v · Se ,

(4.76)

hence confirming Eq. (3.113).

4.16 Derivation of Equation (3.114)

For Eq. (3.114) to be valid, the following condition needs to be fulfilled:

ˆ̄v · K · v̄i+1 = ˆ̄v · Ke · v̄i+1 , (4.77)
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whereby K is defined in Eq. (3.81), and the respective volume integrals have been omitted.

Considering rotational symmetry, as well as Eqs. (3.72), (4.21), and (3.105), Eq. (4.77) can be

extended as follows:

ˆ̄v · K · v̄i+1 = ˆ̄v · ∆t · ∇SN : Ci : ∇SN · v̄i+1

= ∆t · d̂ : Ci : di+1

= ∆t ·
∑

k=r,ϕ,z

∑

l=r,ϕ,z

∑

m=r,ϕ,z

∑

n=r,ϕ,z

d̂kl · Ci
klmn · di+1

mn

= ∆t ·
(

d̂rr · Ci
rrrr · di+1

rr + d̂rr · Ci
rrϕϕ · di+1

ϕϕ + d̂rr · Ci
rrzz · di+1

zz + d̂ϕϕ · Ci
ϕϕrr · di+1

rr

+ d̂ϕϕ · Ci
ϕϕϕϕ · di+1

ϕϕ + d̂ϕϕ · Ci
ϕϕzz · di+1

zz + d̂zz · Ci
zzrr · di+1

rr

+d̂zz · Ci
zzϕϕ · di+1

ϕϕ + d̂zz · Ci
zzzz · di+1

zz + d̂rz · Ci
rzrz · di+1

rz + d̂zr · Ci
zrzr · di+1

zr

)

= ˆ̄v · ∆t ·
[

∇SN
]T

· Ci ·
[

∇SN
]

· v̄i+1 = ˆ̄v · Ke · v̄i+1 ,

(4.78)

hence confirming Eq. (3.114).

4.17 Derivation of Equation (3.115)

For Eq. (3.115) to be valid, the following condition needs to be fulfilled:

ˆ̄v · G · v̄i+1 = ˆ̄v · Ge · v̄i+1 , (4.79)

whereby G is defined in Eq. (3.82), and the respective volume integrals have been omitted.

Considering rotational symmetry, as well as Eqs. (3.71), (3.72), Eqs. (3.96), (4.21), and (4.44),

Eq. (4.79) can be extended as follows:

ˆ̄v · G · v̄i+1 = ˆ̄v · ∆t · ∇SN : ∇σi · N · v̄i+1

= ∆t · d̂ : ∇σi · vi+1

= ∆t ·
∑

k=r,ϕ,z

∑

l=r,ϕ,z

∑

m=r,z

d̂kl · ∂σ
i
kl

∂m
· vi+1

m

= ∆t ·
[

d̂rr ·
(

∂σi
rr

∂r
· vi+1

r +
∂σi

rr

∂z
· vi+1

z

)

+ d̂ϕϕ ·
(

∂σi
ϕϕ

∂r
· vi+1

r +
∂σi

ϕϕ

∂z
· vi+1

z

)

+ d̂zz ·
(

∂σi
zz

∂r
· vi+1

r +
∂σi

zz

∂z
· vi+1

z

)

+ d̂rz ·
(

∂σi
rz

∂r
· vi+1

r +
∂σi

rz

∂z
· vi+1

z

)

+ d̂zr ·
(

∂σi
zr

∂r
· vi+1

r +
∂σi

zr

∂z
· vi+1

z

)]

= ˆ̄v · ∆t ·
[

∇SN
]T

·
[

∇rN · σ̄i ⊕ ∇zN · σ̄i
]

· [N∗] · v̄i+1 = ˆ̄v · Ge · v̄i+1 ,

(4.80)

hence confirming Eq. (3.115).
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4.18 Derivation of Equation (3.116)

For Eq. (3.116) to be valid, the following condition needs to be fulfilled:

ˆ̄v · W · v̄i+1 = ˆ̄v · We · v̄i+1 , (4.81)

whereby W is defined in Eq. (3.83), and the respective volume integrals have been omitted.

Considering rotational symmetry, as well as Eqs. (3.72), (3.73), (3.118), (3.119), (4.21), and

(4.29), Eq. (4.81) can be extended as follows:

ˆ̄v · W · v̄i+1 = ˆ̄v · ∆t · ∇SN :
(

∇AN · σi − σi · ∇AN
)

· v̄i+1

= ∆t · d̂ :
(

ωi+1 · σi − σi · ωi+1
)

= ∆t ·
∑

k=r,ϕ,z

∑

l=r,ϕ,z

∑

m=r,ϕ,z

d̂kl ·
(

ωi+1
km · σi

ml − σi
km · ωi+1

ml

)

= ∆t ·
[

d̂rr ·
(

ωi+1
rz · σi

zr − σi
rz · ωi+1

zr

)

+ d̂rz ·
(

ωi+1
rz · σi

zz − σi
rr · ωi+1

rz

)

+d̂zr ·
(

ωi+1
zr · σi

rr − σi
zz · ωi+1

zr

)

+ d̂zz ·
(

ωi+1
zr · σi

rz − σi
zr · ωi+1

rz

)]

= ˆ̄v · ∆t ·
[

∇SN
]T

·
[

Si
ωσ − Si

σω

]

·
[

∇AN
]

· v̄i+1 = ˆ̄v · We · v̄i+1 ,

(4.82)

hence confirming Eq. (3.116).

4.19 Derivation of Equation (3.117)

For Eq. (3.117) to be valid, the following condition needs to be fulfilled:

ˆ̄v · V = ˆ̄v · Ve , (4.83)

whereby V is defined in Eq. (3.88), and the respective volume integrals have been omitted.

Considering rotational symmetry, as well as Eqs. (3.72), (3.105), (3.108), and (4.21), Eq. (4.83)

can be extended as follows:

ˆ̄v · V = ˆ̄v · ∆t · ∇SN : β2
v · Ci : Ji : σi

= ∆t · d̂ : β2
v · Ci : Ji : σi

= ∆t · β2
v ·

∑

k=r,ϕ,z

∑

l=r,ϕ,z

∑

m=r,ϕ,z

∑

n=r,ϕ,z

∑

p=r,ϕ,z

∑

q=r,ϕ,z

d̂kl · Ci
klmn · J i

mnpq · σi
pq

= ∆t · β2
v ·
[(

d̂rr · Ci
rrrr + d̂ϕϕ · Ci

ϕϕrr + d̂zz · Ci
zzrr

)

·
(

J i
rrrr · σi

rr + J i
rrϕϕ · σi

ϕϕ + J i
rrzz · σi

zz

)

+
(

d̂rr · Ci
rrϕϕ + d̂ϕϕ · Ci

ϕϕϕϕ + d̂zz · Ci
zzϕϕ

)

·
(

J i
ϕϕrr · σi

rr + J i
ϕϕϕϕ · σi

ϕϕ + J i
ϕϕzz · σi

zz

)

+
(

d̂rr · Ci
rrzz + d̂ϕϕ · Ci

ϕϕzz + d̂zz · Ci
zzzz

)

·
(

J i
zzrr · σi

rr + J i
zzϕϕ · σi

ϕϕ + J i
zzzz · σi

zz

)

+d̂rz · Ci
rzrz · J i

rzrz · σi
rz + d̂zr · Ci

zrzr · J i
zrzr · σi

zr

]

= ˆ̄v · ∆t ·
[

∇SN
]T

· β2
v · Ci · Ji · σi = ˆ̄v · Ve ,

(4.84)

hence confirming Eq. (3.117).
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4.20 Derivation of Equation (3.132)

For Eq. (3.132) to be valid, the following condition needs to be fulfilled:

ρi − ∆t ·
[

∇ · (ρi · vi+1)
]

= ρi − ∆t · ρ̄i · [(∇)N(∇·)N] · v̄i+1 . (4.85)

Considering rotational symmetry and Eq. (4.62), Eq. (4.85) can be extended as follows:

ρi − ∆t ·
[

∇ · (ρi · vi+1)
]

= ρi − ∆t ·
[

∂ρi

∂r
· vi+1

r + ρi · ∂v
i+1
r

∂r
+
ρi · vi+1

r

r
+
∂ρi

∂z
· vi+1

z + ρi · ∂v
i+1
z

∂z

]

= ρi − ∆t · ρ̄i · [(∇)N(∇·)N] · v̄i+1 ,

(4.86)

hence confirming Eq. (3.132).

4.21 Derivation of Equation (3.133)

For Eq. (3.133) to be valid, the following condition needs to be fulfilled:

σi + ∆t ·
[

C
i : di+1 − ∇σi · vi+1 + ωi+1 · σi − σi · ωi+1 − β2

v · Ci : Ji : σi
]

= σi + ∆t ·
{

C
i · ∇SN · v̄i+1 −

[

∇rN · σ̄i ⊕ ∇zN · σ̄i
]

· N∗ · v̄i+1

+
[

Si
ωσ − Si

σω

]

· ∇AN · v̄i+1 − β2
v · Ci · Ji · σi

}

,

(4.87)

whereby the right-hand side of Eq. (4.87) is equivalent to Eq. (3.69). Considering rotational

symmetry, as well as Eqs. (3.96), (4.21), (4.29), (4.44), (3.105), (3.108), (3.118), and (3.119),

both the left-hand side and the right-hand side of Eq. (4.87) yield a symmetric second-order

tensor with its components representing the directions in a base frame spanned by unit vectors

er, eϕ, and ez. Let us denote this tensor by X; then the components Xrr, Xϕϕ, Xzz, Xrϕ = Xϕr,

Xrz = Xzr, and Xϕz = Xzϕ read as

Xrr =σi
rr + ∆t ·

{

Ci
rrrr · di+1

rr + Ci
rrϕϕ · di+1

ϕϕ + Ci
rrzz · di+1

zz − ∂σi
rr

∂r
· vi+1

r − ∂σi
rr

∂z
· vi+1

z + ωi+1
rz ·

· σi
zr − σi

rz · ωi+1
zr − β2

v ·
[

Ci
rrrr ·

(

J i
rrrr · σi

rr + J i
rrϕϕ · σi

ϕϕ + J i
rrzz · σi

zz

)

+ Ci
rrϕϕ ·

(

J i
ϕϕrr·

· σi
rr + J i

ϕϕϕϕ · σi
ϕϕ + J i

ϕϕzz · σi
zz

)

+ Ci
rrzz ·

(

J i
zzrr · σi

rr + J i
zzϕϕ · σi

ϕϕ + J i
zzzz · σi

zz

)]
}

,

(4.88)
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4.21 Derivation of Equation (3.133) 83

Xϕϕ =σi
ϕϕ + ∆t ·

{

Ci
ϕϕrr · di+1

rr + Ci
ϕϕϕϕ · di+1

ϕϕ + Ci
ϕϕzz · di+1

zz −
∂σi

ϕϕ

∂r
· vi+1

r −
∂σi

ϕϕ

∂z
· vi+1

z

− β2
v ·
[

Ci
ϕϕrr ·

(

J i
rrrr · σi

rr + J i
rrϕϕ · σi

ϕϕ + J i
rrzz · σi

zz

)

+ Ci
ϕϕϕϕ ·

(

J i
ϕϕrr · σi

rr

+ J i
ϕϕϕϕ · σi

ϕϕ + J i
ϕϕzz · σi

zz

)

+ Ci
ϕϕzz ·

(

J i
zzrr · σi

rr + J i
zzϕϕ · σi

ϕϕ + J i
zzzz · σi

zz

)]
}

,

(4.89)

Xzz =σi
zz + ∆t ·

{

Ci
zzrr · di+1

rr + Ci
zzϕϕ · di+1

ϕϕ + Ci
zzzz · di+1

zz − ∂σi
zz

∂r
· vi+1

r − ∂σi
zz

∂z
· vi+1

z + ωi+1
zr ·

· σi
rz − σi

zr · ωi+1
rz − β2

v ·
[

Ci
zzrr ·

(

J i
rrrr · σi

rr + J i
rrϕϕ · σi

ϕϕ + J i
rrzz · σi

zz

)

+ Ci
zzϕϕ ·

(

J i
ϕϕrr·

· σi
rr + J i

ϕϕϕϕ · σi
ϕϕ + J i

ϕϕzz · σi
zz

)

+ Ci
zzzz ·

(

J i
zzrr · σi

rr + J i
zzϕϕ · σi

ϕϕ + J i
zzzz · σi

zz

)]
}

(4.90)

Xϕz = 0 , (4.91)

Xrz =σi
rz + ∆t ·

{

Ci
rzrz · di+1

rz − ∂σi
rz

∂r
· vi+1

r − ∂σi
rz

∂z
· vi+1

z + ωi+1
rz · σi

zz − σi
rr · ωi+1

rz

− β2
v ·
[

Ci
rzrz · J i

rzrz · σi
rz

]}

,

(4.92)

and

Xrϕ = 0 . (4.93)

Hence, Eq. (3.133) is indeed confirmed.

Appendix 4A. Nomenclature

1 second order unit tensor

A thermal expansion coefficient

a acceleration vector

B body with volume V and surface ∂V

B auxiliary tensor

B a part of the Jaumann stress rate

bn number of boundary nodes

C elasticity tensor

D compliance tensor

D angular momentum

d symmetric velocity gradient

de symmetric elastic velocity gradient

dve symmetric viscoelastic velocity gradient

E arbitrary quantity

E energy

ei unit base vectors

e internal energy density

e dimensionless viscosity

F deformation gradient tensor

f volume forces

G auxiliary tensor

Gij second derivative of the Gibbs potential

with respect to σi and σj

Gi first derivative of the Gibbs potential

with respect to σi

G Gibbs potential

G shear modulus

h size of finite elements

I arbitrary integral

Iσi

k k-th invariant of the i-th stress tensor

in number of interpolation nodes

J viscosity tensor
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J Jacobean

K auxiliary tensor

K bulk modulus

Kref modeling parameter of the bulk modulus

L virtual power

Lacc virtual power of acceleration

Lext virtual power of external forces

Lint virtual power of internal forces

M auxiliary tensor

M mass

m number of nodes in z-direction

N interpolation functions

n normal vector

n number of nodes in r-direction

ne number of elements

nn number of nodes

o order of an element

P auxiliary tensor

P traction force bc-s

P momentum

p hydrostatic pressure

p internal pressure

Q volume-related quantity

Qρ mass (density)-related quantity

q heat-flux vector

R arbitrary integrator

R displacement bc-s

r specific body supply of heat

S auxiliary tensor

S entropy

s internal entropy density

T traction force

T absolute temperature

T0 reference temperature

t time

V auxiliary tensor

V current volume

V0 initial volume

v velocity vector

W auxiliary tensor

X initial position vector

x current position vector

α modeling parameter of the viscosity

β Newmark algorithm factor

β modeling parameter of the bulk modulus

βv viscosity factor

ǫ, ǫ arbitrary quantity (or their density)

η viscosity

γ Newmark algorithm factor

µ function of the mechanical dissipation

ν Poisson’s ratio

φ dissipation

ψ Helmholtz potential (or strain energy

function)

ρ current density

ρ0 initial density

σ Cauchy stress tensor
▽J
σ Jaumann stress rate

τ modeling parameter of the viscosity

τ Newmark algorithm tolerance

ω antisymmetric velocity gradient

ξ natural coordinates

ξ mechanical dissipation

∂V surface of volume V

∂/∂t partial time derivative

∂/∂x partial space derivative (or gradient)

∇() partial space derivative (or gradient)

∇ · () divergence

∇Sv symmetric velocity gradient

∇Av antisymmetric velocity gradient

D/Dt material derivative

· scalar product or multiplication

: double tensor contraction

× vector product

·× scalar-vector product

⊗ fourth order dyadic product

⊕ third order link between two-dimensional

matrices

()T transpose

det() determinant

tr() trace

(̂) virtual quantities

(̄) quantities at mesh nodes
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Chapter 5

Prediction of rubber die swell during the

extrusion process based on a hypoviscoelastic

thermodynamics model considering rubber as

soft solid

Authored by: R. Plachy1, S. Scheiner1, F. Arthofer2, A. Holzner2, C. Hellmich1

1 Institute for Mechanics of Materials and Structures, TU Wien
2 Semperit Technische Produkte GmbH

Under preparation for submission to: Applications in Engineering Science

Abstract: This paper presents the consolidation of recently gained new insights related to the

die swell of rubber as it occurs in the course of the extrusion process. On the one hand, we

employ a new, thermodynamically consistent, mass (density)-related mathematical model of

rubber mechanics, derived by considering the notion of the Gibbs free energy, and by introducing

the Jaumann stress rate for ensuring stress objectivity. This model is fed by constitutive laws

describing how the compressibility of rubber depends on the hydrostatic pressure it is exposed to,

and how its viscosity depends on the velocity at which it is moving, based on compression and

viscosity tests performed on different types of ethylene propylene diene monomer rubbers. Solving

the governing equations for the special case of extrusion dies exhibiting circular cross-sectional

shapes allows for comparing model predictions to corresponding experimental data, yielding small

deviations ranging from −7.5% to +4.6%. The such obtained satisfying agreements corroborate

the soundness and meaningfulness of the modeling considerations. From a practical point of

view, this works bears the potential of being an important contribution to making the rubber die

swell predictable by means of computer simulations for arbitrary cross-sectional shapes of the

extrudate, in a quantitatively accurate way. The results of a series of numerical studies further

underline the plausibility of the model, and allow for working out the model’s potentials and

limitations, as well as promising future research directions.

Keywords: model validation, sensitivity studies, compressibility, Finite Element simulation
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86 5 Prediction of rubber die swell

5.1 Introduction

Formulating physically well-founded mathematical models for describing the mechanical behavior

of rubber has been a long-aspired goal in engineering mechanics. Such models bear the potential of

paving the way to reaching a (quantitatively satisfying) predictability of processes or phenomena

involving mechanically induced deformations of rubber. This would be particularly beneficial in

the field of rubber extrusion, which is the process where heated (unvulcanized) rubber blends

are squeezed through so-called extrusion dies [1, 2]. The cross sections of the latter govern the

eventual cross-sectional shapes of the finally obtained products. However, directly after leaving

the die, the extrudate undergoes an unintended, hardly predictable shape change caused by

depressurization of the formerly highly pressurized material, known as Barus effect or die swell

[1, 7–9]. It is not surprising that reproducing the experimentally observed die swell of rubber in

silico – i.e., by means of computer simulations – has been identified as promising strategy as soon

as computers became powerful enough to handle such a demanding computational task. Pertinent

literature offers a series of respective works, see e.g. [16, 19, 42, 51–53]. However, experimentally

validated and technologically relevant modeling approaches have not been reported yet.

When scrutinizing the aforementioned and similar computational approaches, in order to pin

down the reason(s) for the insufficiently accurate die swell predictions, a number of key model

assumptions, considered by most (if not all) previous approaches, are striking. Namely, rubber

has been standardly modeled as incompressible, viscous fluid, allowing for utilizing commercial

computational fluid dynamics (CFD) software for solving the governing equations. We claim

that revisiting these assumptions is obligatory for improving the accuracy of the related die swell

predictions. On the one hand, it is evident that the raw material used in extrusion, usually

some kind of unvulcanized rubber blend, is not a fluid but rather a soft solid. This is certainly

also true if such a material is heated to approximately 100◦C (as it occurs in the course of the

extrusion process). On the other hand, it has been shown in [15], see Appendix A, as well as

Chapter 2, based on a comprehensive set of compression tests, that unvulcanized rubber blends

are not incompressible but significantly compressible. Unfortunately, these findings cannot be

taken into account when relying on commercial CFD software.

As a remedy, we have developed a new mathematical framework which does take into ac-

count that unvulcanized rubber blends are soft and compressible solids, see Chapters 3 and 4.

Furthermore, in the same paper, we have presented a new Finite Element (FE) method-based

numerical scheme for solving the governing equations. In order to test the meaningfulness of this

new approach, we have performed a series of die swell simulations, the results of which basically

corroborated all model assumptions.

In the present paper, we aim at bringing the theoretical concept elaborated in Chapters 3

and 4 closer to the eventually targeted application, as outlined in the following. After defining

the considered types of rubber blends (see Section 5.2), we briefly present the aforementioned

modeling concept developed for compressible soft solids, cf. Chapters 3 and 4, see Section 5.3.

Section 5.4 is devoted to describing the numerical method employed for solving the set of

governing equations. In Section 5.5 the model and the solution scheme are adapted such that

the conditions of the extrusion tests described in Chapter 2 are reproduced as accurately as

possible. On the basis of comparing the results of the correspondingly performed computational

studies to the experimentally obtained results, the validity of the new modeling strategy is

critically assessed. Furthermore, a series of sensitivity studies, presented in Section 5.6, allow for
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5.2 Materials 87

thoroughly investigating its potentials and limitations. The paper is completed by a discussion

of this study’s results, as well as by concluding remarks, see Section 5.7.

5.2 Materials

In the present study, we considered the two rubber blends that were already studied in Chapter 3,

namely two kinds of ethylene propylene diene monomer rubbers (EPDM), referred to as EPDM-A

and EPDM-B. EPDM-A consists of mainly crystalline EPDM with a high content of white filler,

an ML(1+4) between 47.2 and 48.1 MU, and exhibits a density of 1.445 g/cm3, whereas EPDM-B

consists of mainly crystalline EPDM with a high content of white filler, and ML(1 + 4) between

21.8 and 25.1 MU, and exhibits a density of 1.288 g/cm3.

5.3 Mathematical model describing mechanics of compressible soft

solids

The model employed in this work (for describing the mechanical behavior of rubber) was

elaborated in minute detail in Chapters 3 and 4. Here, we refrain from reiterating the derivations

presented in Chapters 3 and 4, and merely present the key model assumptions (in Section 5.3.1),

as well as the resulting set of governing equations (in Section 5.3.2). Furthermore, Section 5.3.3

is devoted to briefly explaining how experimental data on the constitutive behavior of rubber is

taken into account.

5.3.1 Fundamental model considerations

Rubber is considered to be a soft solid, and consequently undergoes large deformations. In order

to appropriately describe the kinematics of this material, we, firstly, distinguish between the

reference position of a material point, X = X(t = 0), with t being the time variable, and the

current position, x, with x(t = 0) = X. Secondly, we take into account that the deformations

rubber undergoes may lead to significantly changing volumes of the domains around specific

material points, whereas the corresponding masses remain constant. Hence, the mass of such an

infinitesimal domain around a material point, dM , is defined as

dM = ρ0(X) · dV0 = ρ[x(t), t] · dV = ρ[x(t), t] · det(F) · dV0 , (5.1)

where ρ0 and dV0 are the mass density and the volume of the infinitesimal domain in the reference

configuration, while ρ[x(t), t] and dV are the same quantities in the current configuration, and

det(F) is the determinant of the deformation gradient tensor F, with F = ∂x(t)/∂X. Importantly,

all thermodynamics quantities considered in this work are related to the mass (density) of a

material point, see [47]; e.g., introducing a volume-related quantity Q, the mass (density)-related

counterpart of Q reads as Qρ = Q/ρ.

Furthermore, all model considerations are based on an Eulerian description. This implies that

the differentiation of a position- and time-dependent quantity ǫ = ǫ(x, t) = ǫ[x(t), t], with respect
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88 5 Prediction of rubber die swell

to time, needs to be carried out considering the definition of the so-called material derivative

D/Dt [31, 47, 59],

Dǫ[x(t), t]

Dt
=

∂ǫ[x(t), t]

∂t
+
∂ǫ[x(t), t]

∂x(t)
· ∂x(t)

∂t
= ǫ̇[x(t), t] + ∇ǫ[x(t), t] · v[x(t), t] , (5.2)

with v denoting the velocity, ∂( )/∂t = ˙( ) denoting the partial time derivative, and ∂( )/∂x = ∇( )

denoting the partial space derivative.

In order to describe the (mechanical) behavior of rubber thermodynamically, a suitable

potential is needed. Tying in with [31, 32], we consider for that purpose the Gibbs free energy, or

Gibbs potential G, G = G(σ, T ), with σ = σ[x(t), t] being the current Cauchy stress tensor and

T = T [x(t), t] being the absolute temperature. Notably, the Gibbs potential allows for derivation

of viscoelastic fluid models which are thermodynamically consistent [31, 32]. Furthermore,

the standardly used Helmholtz potential-based models depend on the strain, and thus on the

evolution of every material point’s displacement over time, whereas Gibbs potential-based models

are independent of the time evolution. Clearly, the mass density-related Gibbs potential is

defined as Gρ[x(t), t] = G[x(t), t]/ρ[x(t), t].

For ensuring that the stress tensor is quantified independently of the reference frame, we

consider the so-called Jaumann rate as material derivative of the Cauchy stress tensor σ, defined

as [47, 60–62]
▽

σ =
Dσ

Dt
− ω · σ + σ · ω , (5.3)

with ω as the antisymmetric part of the velocity gradient,

ω = ∇Av =
1

2

[

∂v

∂x
−
(
∂v

∂x

)T
]

. (5.4)

5.3.2 Governing equations

Based on the considerations described in Section 5.3.1, a number of governing equations was

derived in Chapters 3 and 4, involving the following mass conservation law:

Dρ

Dt
+ ρ · (∇ · v) = 0 . (5.5)

The momentum conservation law, in turn, reads as

ρ · Dv

Dt
= f + ∇ · σ , (5.6)

with f denoting the volume forces, whereas the angular momentum conservation law implies

σ = σT , (5.7)

thus requiring the symmetry of the Cauchy stress tensor σ. Furthermore, the constitutive

behavior of rubber is taken into account through splitting the stress tensor into an elastic and a

viscoelastic part, for the purpose of a simpler subsequent numerical implementation [32]. This
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5.3 Mathematical model describing mechanics of compressible soft solids 89

allows for deriving one equation relating the symmetric velocity gradient, d, generally defined

through

d = ∇Sv =
1

2
·
[

∂v

∂x
+
(
∂v

∂x

)T
]

, (5.8)

to the elastic material behavior, via

d = D1 :
▽

σ1 + A · DT

Dt
, (5.9)

and one equation relating d to the viscoelastic material behavior, via

d = D2 :
▽

σ2 + A · DT

Dt
+ J : σ2 . (5.10)

In Eqs. (5.9) and (5.10), D1 and D2 are the fourth-order compliance tensors representing the elastic

and viscoelastic material behavior of rubber, related to the corresponding elasticity tensors via

C1 = (D1)−1 and C2 = (D2)−1, A is the second-order thermal expansion tensor, J is the fourth-

order viscosity tensor, σ1 and σ2 are the elastic and viscoelastic parts of the overall stress tensor

σ, σ = σ1 + σ2, while
▽

σ1 = C1 : d and
▽

σ2 = C2 : d are the corresponding Jaumann stress rates.

Notably, the Jaumann stress rates are additive; hence
▽

σ =
▽

σ1 +
▽

σ2 = (C1 + C2) : d. Introducing

the viscosity factor βv allows for calculating C1 and C2 from C, as follows: C1 = (1 − βv) ·C and

C2 = βv · C, implying
▽

σ1 = (1 − βv) · ▽

σ and
▽

σ2 = βv · ▽

σ.

5.3.3 Consideration of experimentally obtained rubber compressibilities and

viscosities

The experimental results presented in [15], see Apendix A, as well as in Chapter 2, obtained

from compression and viscosity tests, suggest that the elasticity properties of rubber only depend

on the bulk modulus K, with K/G → ∞ ⇔ ν → 0.5, where G is the shear modulus and ν is

Poisson’s ratio. The viscoelastic properties of rubber appear to depend solely on the viscosity η,

see Chapter 2, whereas viscoelastic effects influence only the shear behavior [15], see Appendix

A.

Thus, the components of the elasticity tensor C, Cijkl, depend on K as follows:

Ciiii = Ciijj = K and Cijij = 0 . (5.11)

Furthermore, the following relation between K and the hydrostatic pressure p was proposed in

[15], see Appendix A, as well as in Chapter 2, with p = −1/3 · tr(σ):

K = K1−β
ref · pβ , (5.12)

with parameters Kref and β obtained through evaluation of a series of compression tests, see

Table 5.1 for the results.

As for the viscosity tensor J, its components Jijkl depend on η as follows:

Jiiii = Jiijj = 0 and Jijij =
1

η
. (5.13)
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90 5 Prediction of rubber die swell

Tab. 5.1: Material parameters obtained from the compression and viscosity tests performed on
EPDM-A and EPDM-B, see Section 5.2, as described in Chapter 2.

Kref [MPa] β [–] α [Pa·s] τ [–]

EPDM-A 45781 0.5100 30.39 0.8671
EPDM-B 6838 0.3168 25.17 0.8729

In Chapter 2, the following relation between η and the velocity v was proposed:

η = α ·
( |v|
v0

)−τ

, (5.14)

with parameters α and τ obtained through evaluation of a series of viscosity tests, see also

Table 5.1 for the results, and where v0 = 1 is a scaling parameter.

5.4 Finite Element method-based discretization and solution of

rubber model

In order to solve the equations presented in Section 5.3.2 numerically, we consider the following

simplifications. Firstly, the influence of volume forces is deemed to be negligible; hence f ≈ 0. And,

secondly, the temperature field to which the simulated rubber domain is exposed is considered

to be uniform in time and space; hence ∇T ≈ 0 and DT/Dt ≈ 0. Importantly, we focus in

this paper on extrusion canals and dies which are exclusively of circular cross-sectional shapes.

This allows for presuming rotational symmetry in all computed solution fields, due to which the

mathematical framework needs to be reformulated in terms of cylindrical coordinates. On this

basis, the below sketched numerical solution scheme is implemented.

5.4.1 The principle of virtual power as theoretical concept for discretization of

governing equations

The principle of virtual power dictates that the overall virtual power, L, being the sum of the

virtual powers performed by acceleration forces, Lacc, by external forces, Lext, and by internal

forces, Lint, is equal to zero [33],

L = Lacc + Lext + Lint = 0 , (5.15)

with

Lacc = −
∫

V
ρ · Dv

Dt
· v̂ dV , (5.16)

Lext =
∫

∂V
T · v̂ d(∂V ) , (5.17)

and

Lint = −
∫

V
σ : d̂ dV . (5.18)
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5.5 Model validation 91

Thereby, v̂ and d̂ are the virtual velocity vector and the symmetric part of the virtual velocity

gradient, while V is the volume of the studied domain, and ∂V its surface.

5.4.2 Approximative solution by means of the Finite Element method

The goal of the numerical solution scheme developed in Chapters 3 and 4 is to find the unknowns

– namely, the density ρ, the position vector x, the velocity vector v = ∂x/∂t, and the acceleration

vector a = ∂v/∂t – throughout the considered spatial domain and throughout the considered

time domain. To that end, the time span of interest is discretized by dividing it into respective

increments, and the time courses of the quantities of interest are found in approximative manner

by utilizing the Newmark algorithm [35, 37]. Furthermore, the spatial domain is also discretized,

by dividing it into triangular finite elements of first order, defined in terms of cylindrical

coordinates. The distributions of the aforementioned unknowns are approximated by means of

linear interpolations functions [34, 35]. The FE model is completed by assembling the meshes,

and by taking into consideration boundary conditions (formulated in terms of traction forces or

in terms of displacements) representing the real-life scenario which is supposed to be reproduced

by the FE model as well as possible. The FE model is then implemented as sketched in Table 5.2,

using for that purpose the commercial mathematics software Matlab.

Notably, aiming at improved numerical efficiency and accuracy, we realize the Finite Element

(FE) mesh twice, considering both possible orientations of the triangular elements, see Figure 5.1.

By averaging the results of the two meshes after each time step, and using the averaged nodal

values as input for the next time step, the influence of numerical artefacts due to the mesh

orientation is substantially reduced, leading to much faster convergence. For further details

concerning the implementation of the above-sketched FE method, see Chapters 3 and 4.

5.5 Model validation

While the benchmark studies presented in Chapters 3 and 4 have already corroborated the key

model assumptions, the model still remains to be assessed quantitatively. This task is dealt

lcan ldie

r d
ie

lrubber,ini

extrudate in initial position

r c
an

ltap
r

z

Mesh 1

Mesh 2

Fig. 5.1: Schematic illustration of the studied domain, showing the rubber located initially in
the extrusion canal (being of circular cross-sectional shape), defined geometrically
through radius rcan and length lrubber,ini. While moving along the canal in direction
of the coordinate r, the rubber gets compressed due to tapering over length ltap and
reaches the die, exhibiting radius rdie and length ldie, after which it exits the die, being
exposed to a free surface from this moment onwards. The two meshes by which the
rubber body is discretized in the framework of the FE method are indicated generically
in blue and red color.
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92 5 Prediction of rubber die swell

Tab. 5.2: Steps required for initializing, maintaining, and terminating the computations allowing
for die swell predictions.

# Description of step

1 Initialization of the FE mesh.

2 The pressure inside the extrusion canal, pcan, is applied incrementally at the rear end of the mesh (i.e.,
at the boundary on the left-hand side of Figure 5.1) until the maximum value is reached, in order to
realize non-linear elastic behavior during compression. Until the maximum pressure is reached, the mesh
is prevented from moving forward (i.e., towards the right), but is merely allowed to adapt to the imposed
pressure based on force equilibrium, considering to that end the pressure pcan and traction forces Tz

(acting onto the top boundary of the mesh).

3 An acceleration az is imposed during a single time step, setting the mesh into motion, such that the
desired velocity inside the canal, vz,can, is reached at the next time step.

4 All further changes of the acceleration, velocity and position quantities, as well as of stresses and
densities, are then governed by the time step-wise implementation of the Newmark algorithm. The nodes
at the rear end of the mesh are continuously checked for maintaining the original velocity vz,can, as they
are supposed to represent the continued flow of material from the back of the extruder.

5 In order to avoid any problems related to violations concerning the integrity of the FE mesh (e.g. due to
overly large contractions, expansions, or distortions of single elements), the mesh is updated in regular
intervals. This remeshing is implemented by initialization of a new mesh with the outer boundaries
identical to the old mesh, but exhibiting a distribution of elements as uniform as possible. All nodal
values are transferred from the old to the new mesh by means of linear interpolation (using for that
purpose the introduced interpolation functions).

6 The overall aim of this study, that is computation of the die swell of (unvulcanized) rubber, suggests that
the computation is performed until the mesh at the free surface-end reaches a steady state.

with below, starting with briefly describing recently published experimental extrusion studies, cf.

Chapter 2, see Section 5.5.1, followed by an elaboration as to the numerical representation of

the experimentally used extruders (see Section 5.5.2), and by a quantitative comparison of the

model-predicted die swells to the experimentally obtained ones (see Section 5.5.3).

5.5.1 Experimental extrusion studies

The experimental campaign described in Chapter 2 involved the design and implementation of

extrusion tests. For that purpose, several types of extrusion facilities were used, out of which a

capillary rheometer, namely the Göttfert Rheograph 50 [30], is relevant for the present validation

study, see als Figure 5.2. While the experimental protocols are described in Chapter 2, the

relevant parameters of the extrusion tests are briefly outlined in the following:

• The velocity of the rubber inside the die, vdie, is not measured directly, but follows from

the velocities of the rubber inside the extrusion canal, vcan, or of the extrudate after exiting

the die (when the swelling is completed), vswell, through continuity considerations, vdie =

vswell · (dswell/ddie)2 = vcan · (dcan/ddie)2, with dswell being the diameter of the extrudate after

completed swelling.

• The temperature inside the canal, Tcan, was measured by means of temperature sensors.

• The pressure inside the canal, pcan, was measured by means of pressure sensors.
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5.5 Model validation 93

Fig. 5.2: Photograph of the Göttfert Rheograph 50 [30] used for performing the extrusion studies
the results of which served as basis for model validation.

• The diameter of the extrudate after completed swelling, dswell was measured using the built-in

laser measurement system, allowing for calculation of the diameter change between the die

and the extrudate, ∆d = dswell − ddie.

• The geometries of extrusion canal and die were captured by the tapering gradient governing

the transition from the canal to the die, gcd = (rcan − rdie)/ltap, see Figure 5.1; by the die

length-to-die diameter ratio, Λ = ldie/ddie; and by the die diameter-to-canal diameter ratio,

Ξ = ddie/dcan.

The parameter values actually considered for model validation are summarized in Table 5.3.

5.5.2 Finite Element model employed for simulating rubber extrusion

The FE method proposed in Chapters 3 and 4 and briefly summarized in Section 5.4 of this paper,

was specified according to the boundary conditions and requirements established in Section 5.5.1.

The initial rubber domain, before starting to simulate the extrusion process, completely filled

the extrusion canal with radius dcan = 15 mm, and was considered to be 131.25 mm long. Hence,

taking into account rotational symmetry, the domain to be discretized by means of finite elements

was 7.5 mm (= rcan) high (and, of course, 131.25 mm wide). For the discretization, we used, as

depicted in Figure 5.1, isosceles triangles, exhibiting cathetus lengths of 3.75 mm, implying that

each FE mesh consisted of 140 finite elements.

While the chosen discretization can be regarded as quite coarse, previous studies have revealed

already such a coarse discretization implies an indeed satisfying mesh convergence, see Chapters 3
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94 5 Prediction of rubber die swell

Tab. 5.3: Materials and parameters characterizing the extrusion tests performed for the sake of
model validation. Note that the geometrical parameters Λ, gcd, and Ξ follow from
ddie = 9 mm, dcan = 15 mm, ldie = 24.8 mm, and a tapering angle from the canal to
the die of 30◦; hence, Λ = 24.8/9, gcd = arctan 30, and Ξ = 9/15.

Extrusion run I II III IV

Material EPDM-A EPDM-A EPDM-B EPDM-B
vdie [m/s] 0.014 0.028 0.014 0.028
Tcan [◦C] 100 100 100 100
pcan [MPa] 7.26 8.07 5.30 5.62
Λ [–] 2.76 2.76 2.76 2.76
gcd [–] 1.73 1.73 1.73 1.73
Ξ [–] 0.6 0.6 0.6 0.6

and 4. It should be noted that the important issues of mesh convergence and respective refinements

are further discussed in Section 5.7 of this paper.

5.5.3 Model-predicted versus experimentally obtained die swells

A comparison of the model-predicted diameters of the rubber extrudate after completed swelling

resulting from the numerical extrusion simulations described in Section 5.5.2 to the corresponding

results of the extrusion tests described in Section 5.5.1 is shown in Figure 5.3(a). In order to

better assess the deviation between the model predictions and the experimental data, we also

compute the respective relative errors, according to

Rswell =
dmodel

swell

dexp
swell

− 1 , (5.19)

where dmodel
swell is the model-predicted diameter of the extrudate after competed swelling, and dexp

swell

is the corresponding experimentally obtained diameter of the extrudate after completed swelling.

Figure 5.3(b) shows the resulting values for the four extrusion runs considered in this study. The

relative errors are consistently below 10%, ranging from −7.52% (obtained for extrusion run IV)

to +4.63% (obtained for extrusion run I). Hence, we observe that the deviations between the

model predictions and the experimental data are, on the one hand, satisfyingly small, and, on

the other hand, do not follow any systematic trend.

5.6 Sensitivity studies

In order to study how the model predictions change upon variation of the underlying model

parameters, a series of sensitivity studies was carried out. In particular, the following parameter

variations were considered: vcan = {0.5 m/s, 1 m/s}, pcan = {5 MPa, 10 MPa}, Λ = {0.1, 0.5, 1},

and gcd = {1, 3, 5}, whereby rcan = 10 mm was considered throughout all sensitivity studies.

Furthermore, in order to also study the effect of different materials, we performed all numerical

studies for the material parameters relating to EPDM-A and EPDM-B, see Sections 5.2 and

5.3, as well as for a fictitious incompressible material, exhibiting K → ∞. As for the latter

https://www.tuwien.at/bibliothek
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Fig. 5.3: Experimentally obtained versus model-predicted die swells related to the extrusion
runs defined in Table 5.3, presented in terms of (a) the absolute values of the extrudate
diameters after completed swelling, and (b) the corresponding relative errors, according
to Eq. (5.19).

material, we have chosen a density equal to the average density of EPDM-A and EPDM-B,

namely ρ = 1350 kg/m3.

The influence of the velocity inside the extrusion canal on the diameter of the extrudate after

completed swelling is shown in Figure 5.4, whereby Figure 5.4(a) shows the respective results

of pcan = 5 MPa and Figure 5.4(b) shows the respective results of pcan = 10 MPa. It can be

observed that the incompressible material yields the largest die swell, throughout all parameter

combinations. Moreover, the die swells predicted for EPDM-A and EPDM-B, with the rubber

compressibility taken into account in both cases, appear to be strongly influenced by the model

parameters. Increasing vcan causes an increase in the die swell experienced by EPDM-A, whereas

the die swell decreases for EPDM-B. The pressure in the canal influences the extent of die swell

increase and decrease, respectively, between the studied velocities, compare Figures 5.4(a) and

(b).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

96 5 Prediction of rubber die swell
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Fig. 5.4: Comparison model-predicted diameters of the extrudate after completed swelling,
dmodel

swell , depending on the velocity in the canal, vcan, and on the extruded material;
numerical studies were performed for (a) pcan = 5 MPa and for (b) pcan = 10 MPa.

No clear trend can be observed for the influence of the geometrical parameter Λ on dmodel
swell .

Among all studied materials, the largest die swells are observed for the incompressible material,

see Figure 5.5. However, for pcan = 5 MPa, dmodel
swell slightly increases when increasing Λ from 0.1 to

0.5, but decreases when decreasing Λ from 0.5 to 1, see Figure 5.5(a), whereas for pcan = 10 MPa

the model predictions suggest the opposite trend – hence, dmodel
swell decreases when increasing Λ

from 0.1 to 0.5, but increases (and reaches the maximum value) when decreasing Λ from 0.5 to 1,

see Figure 5.5(b). For EPDM-A, increasing Λ always leads to decreasing model-predicted values

of dmodel
swell . The same trend is observed for EPDM-B when applying a pressure of pcan = 5 MPa,

whereas the opposite trend if observed when applying a pressure of pcan = 10 MPa. Furthermore,

the extent of die swell variations due to variations in Λ depend on pcan.

The influence of the tapering gradient from the extrusion canal to the die on the model-

predicted diameters of the extrudate after completed swelling is illustrated in Figure 5.6, again

considering three different materials and two different pressures in the extrusion canal. Then,

the model-predicted die swells resulting for the incompressible material are the largest, with one

exception; when considering pcan = 5 MPa and gcd = 1, the maximum value of dmodel
swell is obtained

for EPDM-B, see Figure 5.6(a). As for EPDM-B, increasing gcd leads to a decreasing die swell,

for both pcan = 5 MPa and pcan = 10 MPa.

The above-presented sensitivity studies clearly show that the parameters characterizing the

configuration of an extruder influence the eventually obtained die swell. However, it is striking
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Fig. 5.5: Comparison model-predicted diameters of the extrudate after completed swelling,
dmodel

swell , depending on the geometrical parameter Λ = ldie/ddie, and on the extruded
material; numerical studies were performed for (a) pcan = 5 MPa and for (b) pcan =
10 MPa.

that the influences of the pressure and the velocity at which the extrusion is performed, and

of the geometrical parameters Λ and gcd, are in some cases surprisingly small and do not

necessarily follow consistent trends. Nevertheless, the numerical results are qualitatively similar

to corresponding experimental studies, see Chapter 2. This study once more confirms the

importance of accounting for the compressibility of rubber – when performing the simulations

for an incompressible material, the model-predicted diameters of the extrudate after completed

swelling almost consistently overestimate the results obtained for compressible materials; by up

to 25%, see Figure 5.5(b). Also, the model-predicted diameters dmodel
swell reflect the experimentally

obtaining finding that EPDM-B swells in a more pronounced way than EPDM-A, see Chapter 2.

5.7 Discussion

5.7.1 Quality of model predictions

The numerical studies presented in this paper confirm the soundness of the modeling approach

proposed in Chapters 3 and 4. This concerns both the model validation studies presented in

Section 5.5 and the sensitivity studies presented in Section 5.6. As for the former, the agreement

between model predictions and corresponding experimental data is considered to be remarkably

good, with relative errors amounting to only a few percent. While the sensitivity studies do
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Fig. 5.6: Comparison model-predicted diameters of the extrudate after completed swelling,
dmodel

swell , depending on the geometrical parameter gcd = (rcan − rdie)/ltap, and on the
extruded material; numerical studies were performed for (a) pcan = 5 MPa and for (b)
pcan = 10 MPa.

not clearly show consistent qualitative trends when varying extrusion velocities and pressures,

as well as geometrical parameters, the obtained results largely comply with the results of the

experimental extrusion studies presented in Chapter 2.

Next, we subject the numerical results to critical scrutiny. In this context, it should be

noted that in the validation studies, the model-predicted velocities in the die turned out to be

quite low; this resulted from the experimental setup considered for model validation. In further

consequence, the overall extrusion time was comparably long. In order to keep the numerical

studies nevertheless feasible, we chose a rather large time step size. Hence, slight numerical

errors cannot be ruled out. It is however perfectly possible that a reduction of those potential

errors would lead to even better agreements between the model predictions and the experimental

data. A related discussion is the topic of the following Section 5.7.2.

5.7.2 Comments on numerical convergence

In the present study, the FE method is employed for solving, in approximative fashion, a set of

partial differential equations. It is thus natural that the accuracy of obtained numerical solutions

is the closer to the (per se unknown) exact solution of the studied set of equations the finer the

spatial discretization and the smaller the chosen time steps. In order to assess if the obtained

results can be considered to be sufficiently converged or not, convergence studies were performed,
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investigating both the effects of increasing the number of finite elements for discretization of the

studied spatial domain, and of decreasing the time step size for discretization of the studied time

period.

The convergence studies were based on the following model parameters: vcan = 0.50 m/s,

pcan = 10 MPa, and the geometry parameters rcan = 7.5 mm, Λ = 0.50, gcd = 3, and Ξ = 0.80.

Furthermore, the fictitious, incompressible material defined in Section 5.6 was considered. The

reason for this choice was that we merely wanted to focus on the effects of spatial and temporal

discretization, without additionally taking into account the influence of compressibility (which

would further complicate the convergence behavior). As for the spatial discretization, on the one

hand, the rubber domain was discretized by nel elements, with nel = {30, 92, 186, 312, 470}. As

for the temporal discretization, on the other hand, the simulated time period was discretized

using a time step ∆t, with ∆t = {0.001, 0.002, 0.004, 0.008} s.

The obtained convergence behavior of the model is illustrated in Figures 5.7 and 5.8. Essentially,

both Figures 5.7 and 5.8 confirm the expected behavior, namely that convergence of both

dmodel
swell and vmodel

die is reached when reducing the time step and increasing the number of finite

elements. Nevertheless, some numerical “instabilities” are observed – e.g., setting the time step

to ∆t = 0.008 and the number of element to nel = 470 does not yield a reasonable value for dswell,

see Figure 5.7(a). Clearly, convergence of the model-predicted velocities in the canal is much

more distinctive than the convergence of the model-predicted diameters of the extrudate after
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Fig. 5.7: Convergence behavior of (a) dmodel
swell and (b) vmodel

die , with respect to the number of finite
elements making up the FE meshes, for different different time steps.
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Fig. 5.8: Convergence behavior of (a) dmodel
swell and (b) vmodel

die , with respect to the considered time
steps, for different numbers of finite elements making up the FE meshes.

completed swelling. This is certainly due to the fact that, after leaving the die, the extrudate is

exposed to free surfaces, which increases the proneness to numerical instabilities in the obtained

solutions. As a remedy, both spatial and temporal discretizations could be set substantially

finer. However, doing this would cause computational costs which cannot be handled anymore

by the software platform that was chosen for implementing the here-presented numerical studies

(i.e., the commercial mathematics software Matlab). It needs to be stressed though that the

practical implications of the slight inaccuracies inherent to the numerical studies presented in

this paper should not be overrated. Figures 5.7 and 5.8 clearly show that the fluctuations of the

obtained approximative results around the exact solutions are in the range of only a few percent

(which is roughly the same a the scatter observed in experimental extrusion studies). Hence,

the very positive assessments of the obtained numerical results, see Sections 5.5 and 5.6, remain

undisputed.

5.7.3 Concluding remarks

This paper constitutes an important further step towards the predictability of the rubber die

swell as it occurs in the course of the extrusion process. While its experimental and theoretical

basis was laid elsewhere, cf. Chapters 2 to 4, a comprehensive set of numerical studies was

presented. On the one hand, the latter allowed for successful validation of the underlying model,

through comparison of model predictions to corresponding experimental results. On the other
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hand, sensitivity studies highlighted the various dependencies on model parameters. Once again,

the results of the numerical studies corroborated the importance of accurately taking into account

the (experimentally observed) constitutive behavior of rubber. In particular, we here refer to

the compressibility of rubber – very often, this feature is erroneously neglected in models of

rubber extrusion, for the sake of a simpler numerical implementation of the correspondingly

simplified governing equations. Furthermore, the key model assumptions, briefly elaborated in

Section 5.3.1, could be confirmed.

Nevertheless, the limitations of the presented modeling approach should not be concealed. This

concerns mainly, as discussed in detail in Section 5.7.2, the computational limitations related to

the software platform (i.e., Matlab) on which an in-house code was developed for the numerical

implementation of the model. Finer discretizations, smaller time steps, and longer simulation

time spans would probably yield more accurate model predictions and eradicate some of the

inconsistencies reported in Sections 5.5 and 5.6. The correspondingly increased computational

costs exceed however the respective capabilities of Matlab; resorting to an alternative, more

powerful software platform would be certainly necessary to resolve this issue. Extending the

range of cross-sectional shapes of extrusion dies implies similar problems, owing to the fact that

full 3D simulations (instead of rotational symmetric 2D simulations, as described in this paper)

would also lead to a substantial increase in computational costs. However, the transition to a

more powerful software for implementation of the numerical solution goes beyond the scope of

this paper.

Nevertheless, despite the above-described limitations, the obtained numerical results are

accurate enough for concluding that the model assumptions, the derivation of respective governing

equations, as well as their numerical solution based on the principle of virtual power are major

contributions in the field of numerical simulation of rubber extrusion. The theoretical framework

described briefly in this paper, and elaborated in minute detail in Chapters 3 and 4, bears

the potential of making an sustainable impact in the field, and being a stepping stone for new

respective simulation tools yielding unprecedented accuracies.
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Appendix 5A. Nomenclature

A second order thermal expansion coeffi-

cient

d symmetric velocity gradient

dcan diameter of the extrusion canal

ddie diameter of the extrusion die

dswell diameter after finished swelling

F deformation gradient tensor

f volume forces

gcd gradient of transition between canal and

die

G shear modulus

G Gibbs potential

Gρ mass (density)-related Gibbs potential

K bulk modulus

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

102 5 Prediction of rubber die swell

Kref bulk modulus fitting parameter

lcan length of the canal

ldie length of the extrusion die

ltap length of the tapering

lini initial length of simulated rubber speci-

men

M mass

p pressure

pcan pressure inside extrusion canal

Q volume-related quantity

Qρ mass (density)-related quantity

rcan radius of the canal

rdie radius of the die

T temperature

Tcan temperature inside extrusion canal

t time

V (current) volume

V0 initial volume

v velocity

v0 velocity scaling parameter

vcan velocity inside extrusion canal

vdie velocity inside extrusion die

vswell velocity after finished swelling

X initial position vector

x current position vector

C fourth order elasticity tensor

D fourth order compliance tensor

L virtual power

Lacc virtual power of acceleration

Lext virtual power of external forces

Lint virtual power of internal forces

J fourth order viscosity tensor

R relative error

α viscosity fitting parameter

β bulk modulus fitting parameter

βv viscosity factor

η viscosity

ǫ arbitrary quantity

Λ length to diameter ratio of the die

ν Poisson’s ratio

ρ (current) density

ρ0 initial density

σ Cauchy stress tensor
▽J
σ Jaumann stress rate of the Cauchy stress

tensor

τ viscosity fitting parameter

Ξ ratio of die diameter over canal diameter

ω antisymmetric velocity gradient

Dǫ/Dtmaterial derivative of an arbitrary quan-

tity

∇Sv symmetric velocity gradient

∇Av antisymmetric velocity gradient

∇ · ǫ divergence operator of an arbitrary quan-

tity

∇ǫ partial space derivative of an arbitrary

quantity

ǫ̇ partial time derivative of an arbitrary

quantity

()T transpose

det() determinant

tr() trace

(̂) virtual quantities
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Chapter 6

Summary and outlook

The overall goal of the project leading to this thesis, that is reaching a better understanding

of the die swell of rubber upon extrusion, was tackled by both experimental and theoretical

methods. In the following, the main achievements of the project are briefly summarized:

1. Based on compression and viscosity tests, the constitutive behavior of different rubber blends

and of natural rubber was studied and mathematically captured by simple constitutive

laws, see Chapter 2.

2. Extrusion tests revealed how the die swell of rubber is influenced by several (somewhat

interacting) factors. Employing the theoretical concept of dimensional analysis, the rubber

compressibility and geometrical parameters defining the extrusion canal and the extrusion

die were identified as key parameters, see also Chapter 2.

3. Remarkably, throughout all experimental studies, the role of the temperature at which the

tests were performed was not as prominent as expected.

4. A new mathematical framework describing the material behavior of soft solids (which is the

class of materials rubber can be assigned to) was developed. The eventually obtained set of

equations is objective, mass (density)-related, thermodynamically consistent, and derived

based on the Gibbs potential (instead of the more frequently used Helmholtz potential),

see Chapter 3.

5. Solving these equations required the development of a new Finite Element method-based

solution scheme, derived by means of the principle of virtual power, see Chapters 3 and 4.

6. This modeling approach was specialized for extrusion dies of circular cross-sectional shape.

On the one hand, the simulation results turned out to be qualitatively plausible, while, on

the other hand, comparison of the model predictions with corresponding experimental data

allowed for successful experimental validation, see Chapter 5.

Despite this respectable list of achievements and of the (partly) fundamentally new methods

developed during the project eventually leading to this thesis, the obtained results motivate to

pose a number of new research questions, which may be incentives for future research endeavors.

Firstly, this concerns the extrusion tests described in Chapter 2. It was mentioned above (and in

Chapter 2) that the die swell depends strongly on several geometrical parameters defining the

extrusion canal and the extrusion die. However, formulating respective mathematical relations

requires performing a large number of additional extrusion tests, comprising a reasonably fine grid
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104 6 Summary and outlook

of variations (in terms of these geometrical parameters). Secondly, while the new mathematical

modeling approach described in Chapters 2 to 4 is in principle applicable to a wide range of

different cross-sectional shapes of the extrusion die, the numerical studies performed so far were

restricted to the simplest case, namely to circular cross-sectional shapes. This was mainly due

to the computational restrictions of the chosen programming platform, i.e. the commercial

mathematics software Matlab. Hence, for actually investigating the theoretically available

application range of the presented modeling approach, transferring all of the developed codes to

a more efficient programming language is most likely mandatory.

To conclude this thesis, it should be once again stressed that the experimental methods and

the new modeling approach represent a twofold, substantial convergence to the overall goal

formulated at the outset of this thesis, namely reaching a better understanding of the die swell

of rubber upon extrusion, and making this phenomenon predictable, in a quantitatively accurate

manner.
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Appendix A

Compressibility of unvulcanized natural and

EPDM rubber: new experimental protocol and

data evaluation in the framework of large strain

elasticity theory

Authored by: R. Plachy1, S. Scheiner1, K.W. Luczynski2, A. Holzner2, C. Hellmich1

1 Institute for Mechanics of Materials and Structures, TU Wien
2 Semperit Technische Produkte GmbH

Published in [15]: Polymer 123, 2017, pp. 334-344.

The final publication is available at:

https://www.sciencedirect.com/science/article/pii/S0032386117306316

Abstract: Despite considerable ongoing efforts, accurate computational simulation of the flow

behavior of (unvulcanized) rubber remains an open challenge. There is growing evidence that

one of the reasons for that is insufficient consideration of, or knowledge on, the mechanical

compressibility of the material. As a contribution to tackle this open question, we here report

on a series of hydrostatic compression tests performed on natural rubber, as well as on two

types of EPDM (ethylene-propylene-diene-monomer) rubber compounds. These materials were

filled into a capillary rheometer with closed extrusion canal, and then compressed and released

through volume changes realized at different speeds, while monitoring the corresponding hydro-

static pressures acting on the investigated rubbers. The volume changes then entered various

relevant strain measures (Green-Lagrange strains, Hencky strains, linearized strains), while the

pressures were mathematically transformed into energetically conjugate stress measures (second

Piola-Kirchhoff stress, Kirchhoff stress, Cauchy stress). Insertion of these measures into the

dissipation inequality resulting from the two fundamental laws of thermodynamics, revealed

that the investigated materials behave purely elastically under hydrostatic pressure, albeit in a

non-linear fashion. Irrespective of the format chosen for elasticity theory, the elastic bulk modulus

appears as a power function of the hydrostatic pressure; the former increasing under-linearly, but

non-asymptotically, with the latter. Careful statistical evaluation of the corresponding power law

coefficients allows for derivation of upper and lower bounds of the bulk modulus as functions of

the hydrostatic pressure, an information which may prove essential for improving the accuracy of
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106 A Compressibility of unvulcanized natural and EPDM rubber

rubber extrusion simulations.

Keywords: unvulcanized rubber, pressure-dependent compressibility, statistical confidence

intervals

A.1 Introduction

Manufacturing of rubber products typically comprises pressing or squeezing of raw materials

(i.e. various polymers, such as rubber compounds and blends) through formative tools. In order

to facilitate this shaping step, the raw materials are first heated, and then exposed to high

pressures (of up to 100 MPa) [1]. However, after leaving these tools, the squeezed materials,

also called extrudates, undergo, due to depressurization, an additional, hardly predictable shape

change – typically referred to as “die swell” or Barus effect [5–8]. This renders the design of

the aforementioned formative tools as a quite time consuming and ineffective trial-and-error

procedure. For quite some time, computer simulations have been identified as a potential remedy

to this suboptimal situation. Such simulations were typically resting on the mechanics of (usually

incompressible) Newtonian, non-Newtonian, and/or viscous and viscoelastic fluids (optionally

also including thermodynamic effects, such as the temperature-dependencies of the bulk modulus

and of the viscous properties of rubber) [38–41, 57].

Tab. A.1: Material properties of natural rubber and of EPDM rubber compounds subjected
to compression tests as described in Section A.2.2; ML (1+4) denotes the Mooney
viscosity after four minutes (following one minute of preheating) [65]

property unit NR EPDM-1 EPDM-2

type [-] polymer compound compound
polymer [-] natural rubber mainly crystalline EPDM mainly amorphous EPDM
amount of filler [-] - high low
primary filler [-] - white filler carbon black
ML (1+4) [MU] 50.2 to 93.3 47.2 to 48.1 73.9 to 74.3
density [g/cm3] 0.930 1.445 1.130

However, while these simulations have confirmed principal characteristics of the extrusion

process (such as the dependency of the die swell on the length-to-diameter ratio of the extrusion

die, on wall slip, and on shear effects, including the shear rate), accurate prediction of the die

swell effect is still out of reach. In more recent times, the idea that consideration of rubber

compressibility might improve the situation, has gained more and more attention [18, 19, 42–44].

Based on linear or exponential pressure-to-density relations, the authors of the aforementioned

references indeed arrived at improved simulation results; showing in particular that elastic

compressibility, with respect to incompressible behavior, may increase the die swell by some

30%. Still, “consistency with experimental observations” rather than in-depth quantitative

experimental validation of simulation results has been reported so far. Moreover, also the

mathematical format chosen for the pressure-density relations was rather guessed than derived

from suitable experimental data.
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This is exactly the knowledge gap which the present paper wishes to close. Hence, the

present paper is devoted to specifying the actual type of compressibility, its potential elastic or

viscous nature, as well as its pressure sensitivity. This is done by investigating various types

of unvulcanized rubber (introduced in Section A.2.1), based on hydrostatic compression tests

(described in Section A.2.2). After reviewing relevant types of stress and strain measures (in

Section A.3), a dissipation analysis reveals the elastic compressive behavior of the material

(in Section A.4), hyperelastic relations are specified for the studied experimental set-up (in

Section A.5). Section A.6 deals with evaluating the experimental data by means of these

constitutive relations revealing some remarkable features of the materials’ bulk moduli. The

paper closes with a brief summary and concluding remarks (see Section A.7).

A.2 Experiments

A.2.1 Investigated materials

Three types of unvulcanized rubber were investigated: natural rubber (hereafter abbreviated

as “NR”), and two ethylene-propylene-diene-monomer-type rubber compounds, one with high

filler content and mainly crystalline polymer (hereafter abbreviated as “EPDM-1”), and one with

low filler content and mainly amorphous polymer (hereafter abbreviated as “EPDM-2”). Key

characteristics of the three materials are summarized in Table A.1.

A.2.2 Experimental protocol

In order to study the mechanical compressibility of the materials introduced in Section A.2.1,

a series of hydrostatic compression tests was carried out by means of a capillary rheometer

(Rheograph 20; Göttfert Werkstoff-Prüfmaschinen GmbH, Buchen (Odenwald), Germany [30],

see Figure A.1(a)). Rubber was filled into the extrusion canal of the capillary rheometer, and

then compressed by two different types of pistons: (i) a so-called compression piston with a

diameter slightly smaller than that of the extrusion canal, therefore allowing for the removal

of air pores from the tested material; (ii) a so-called PVT-piston (“PVT” originating from the

so-called pressure-volume-temperature test [66]) with a diameter exactly matching that of the

extrusion canal, and equipped with an additional sealing ring. The latter allows for realization of

temperature and pressure conditions which are completely independent of the ambient conditions.

The hydrostatic compression tests were carried out according to a well defined sequence of

steps. First, each specimen was prepared as follows:

P1. Cleaning of the empty extrusion canal;

P2. Heating up to 100 ◦C (constant temperature for all tests);

P3. Closing of the bottom of the canal (where the nozzle is fixed);

P4. Slow and successive filling of the entire canal almost to the top with the material to

be investigated (NR, EPDM-1, EPDM-2); between the filling steps, the material in the

extrusion canal was compressed by means of the compression piston, ensuring that no

air remains entrapped. As an additional verification that no air would influence the

experimental results, mass, volume, and corresponding density of the final specimen were
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(a) (b)

Fig. A.1: Experimental setup for hydrostatic compression tests: (a) frontal view of, and (b)
cross section through the employed capillary rheometer

recorded, and the latter was shown to agree with the know material properties (see

Table A.1);

P5. Replacing the compression piston by the PVT-piston (set on top of the material completely

filling the canal); waiting for it to adjust to the canal temperature, thereby allowing slight

extension of the piston diameter and therefore ensuring the complete insulation of the

tested sample from ambient conditions;

P6. Extrusion of excessive material, in order to arrive at the desired dimensions of the material

specimen (i.e. opening the bottom end of the canal and slowly moving the PVT-piston

downwards, until the desired sample height of 20 mm is reached);

P7. Relaxation of the material which has been slightly compressed during step P6, as long as

the the measured force did not decrease anymore; and

P8. Closing the canal, finally leaving a specimen-cylinder of 15 mm diameter and around 20 mm

height, see Figure A.2(a).

Notably, after completion of step P8, the sample was not entirely stress-free, but experienced

(a small, but not negligible) initial pressure p0. Thereafter, the actual hydrostatic compression

tests were conducted, see Figures A.2(b) to (f):

C1. The piston was moved downwards, i.e. compressing the specimen at a predefined speed

vvert, see Figure A.2(b) and Table A.2;

C2. the piston was stopped, when the force reaches a predefined value equivalent to pmax, see

Figure A.2(c) and Table A.2;
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C3. the position of the piston was held for a preallocated time thold (between 0 and 600 seconds),

see Figure A.2(d) and Table A.2;

C4. the piston was moved upwards again at speed vvert, see Figure A.2(e) and Table A.2; and

C5. the piston was stopped when the original height of the specimen (i.e. 20 mm) is reached,

see Figure A.2(f) and Table A.2.

(a) (b) (c)

(d) (e) (f)

Fig. A.2: Loading steps of mechanical test protocol (steps C1 – C5)

Notably, the maximum pressure, the loading speed, and the duration for which the maximum

pressure was held, were varied in the course of the experimental campaign, in order to study the

effects of these parameters on the stress-strain characteristics of the investigated materials (within

technologically reasonable ranges), see Table A.2. The key data gained from the hydrostatic

compression tests comprise the development of the tested specimens’ pressures p and of length

changes ∆l = (l − l0), see Figure A.3 for some exemplary results. The non-zero pressure at the

beginning of the pressure path [at t = 0 in Figure A.3(a)], relates to the aforementioned initial

pressure p0.
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110 A Compressibility of unvulcanized natural and EPDM rubber

Tab. A.2: Specification of the test parameters prescribed during the hydrostatic compression
tests: maximum pressure (pmax), loading/unloading speed (vvert), and duration for
which the pressure was held at pmax (thold); test protocols #7, #9, and #17 were
each performed twice

# pmax vvert thold

[MPa] [mm/s] [s]

1 20 0.05 0
2 20 0.10 0
3 20 0.10 120
4 20 0.20 0
5 40 0.01 0
6 40 0.05 0

7.1 40 0.10 0
7.2 40 0.10 0
8 40 0.10 30

9.1 40 0.10 120
9.2 40 0.10 120
10 40 0.10 600
11 40 0.20 0
12 60 0.05 0
13 60 0.10 0
14 60 0.10 120
15 60 0.20 0
16 80 0.05 0

17.1 80 0.10 0
17.2 80 0.10 0
18 80 0.10 120
19 80 0.20 0

A.3 Mechanical stress and strain measures

In continuum mechanics [47], various measures have been introduced for quantifying the mechan-

ical strains and stresses, which a body is subjected to [67–69]. In this work, we consider three

strain measures, all of them belonging to the so-called Seth-Hill family of strain measures, as

well as energetically conjugate stress tensors [70]. Such quantities have proven suitable for a

body that is undergoing potentially large deformations [47, 70].

Firstly, the Green-Lagrange strain tensor is defined as

EGL =
1

2

[

F · FT − 1
]

, (A.1)

where F is the deformation gradient tensor, and 1 is the second-order unit tensor, with components

δij , the latter being the so-called Kronecker-delta (δij = 1 if i = j and δij = 0 if i 6= j). The

deformation gradient tensor, in turn, is defined through

F =
∂ϕ

∂X
, (A.2)

where ϕ is the initial-to-current configuration mapping function, x = ϕ(X) is the position of a

material point in the current configuration, and X is the position vector of a material point in

initial configuration. In Cartesian coordinates, based on the orthonormal base frame e1, e2, and

e3, see Figure A.1(b), X = X1 e1 + X2 e2 + X3 e3, with X1, X2, and X3 as the components of
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Fig. A.3: Experimental data recorded during test #8 carried out on material NR, presented
in terms of (a) the temporal evolutions of the hydrostatic pressure in the extrusion
canal pexp(t), and of the respective change of length (∆l)exp(t); (b) loading curve up
to t = t(pmax) + thold , with shaded area representing the maximum work put into the
specimen, W ext

max (see Section A.4); and (c) loading-unloading curve up to t = tend ,
with shaded area representing the eventually dissipated energy Ediss (see Section A.4)
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X. A further useful quantity is the vector field u(X) = x − X. Upon compression of the rubber

specimen in the extrusion canal, the only non-zero component of u(X) is component u1, oriented

in loading direction, thus the displacement vector field then reads as

u(X) =
l − l0
l0

X1 e1 , (A.3)

see Figure A.1(b). Considering that ϕ(X) = X + u, we hence obtain

ϕ(X) =
l

l0
X1 e1 +X2 e2 +X3 e3 , (A.4)

and, inserting Eq. (A.4) into Eq. (A.2) yields

F =
l

l0
e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 , (A.5)

where the symbol ⊗ represents the dyadic vector product. Specifying Eq. (A.1) for the deformation

gradient tensor according to Eq. (A.5), yields

EGL =
l2 − l20

2l20
e1 ⊗ e1 . (A.6)

The Green-Lagrange strain tensor is energetically conjugated to the second Piola-Kirchhoff stress

tensor π, which is associated to the Cauchy stress tensor σ through [68–71]

π = J F−1 σ FT,−1 , (A.7)

where the Jacobian J is the determinant of F, J = det(F). For hydrostatic compression, σ reads

as

σ = −p
3∑

i=1

ei ⊗ ei , (A.8)

where p denotes the pressure. Insertion of Eqs. (A.5) and (A.8) into Eq. (A.7) provides the second

Piola-Kirchhoff stress tensor associated to our test set-up, as

π = −p l0
l

e1 ⊗ e1 − p
l

l0

3∑

i=2

ei ⊗ ei . (A.9)

Secondly, the so-called Hencky (or logarithmic) strain tensor is considered, defined as [68–70]

EH = ln
[√

F · FT
]

= ln
(
l

l0

)

e1 ⊗ e1 . (A.10)

The Hencky strains are energy-conjugate to the Kirchhoff stress tensor τ [72–75],

τ = J σ = −p l
l0

3∑

i=1

ei ⊗ ei . (A.11)
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Thirdly, linearization of both energy-conjugate strain and stress measures (i.e. Green-Lagrange

strains and second Piola-Kirchhoff stress, on the one hand, as well as Hencky strains and Kirchhoff

stresses, on the other hand) for the case of small displacement gradients, ||∂u/∂X|| ≪ 1, leads

to the well-known linearized strain tensor ε, reading as [47]

ε =
1

2

[

∂u

∂X
+
(
∂u

∂X

)T
]

=
l − l0
l0

e1 ⊗ e1 , (A.12)

and the Cauchy stress tensor σ.

A.4 Dissipation analysis

In literature, constitutive models for rubber-like materials are often of viscoelastic nature, see

e.g. [1, 18, 41], thus presuming that imposition of a constant stress induces deformations that

increase with time (known as creep), or that imposition of a temporally constant strain induces

stresses that decrease with time (known as relaxation). While this fundamental assumption

may be well justified for deviatoric loading [38, 39], the question arises whether it holds also

true for volumetric loading. In this context, we recall that viscoelastic materials, unlike purely

elastic materials, are dissipative, i.e. part of the mechanical work put into the tested specimen is

irreversibly converted into heat [47, 59, 76–78]. The mechanical work done on the tested material

samples up to time t can be quantified as

W ext(t) =
∫ t

0

(
∫

V (τ)
S(τ) : Ė(τ) dV

)

dτ , (A.13)

where S is the stress tensor, E is the corresponding energy-conjugate strain tensor, and V is the

volume of the investigated specimen. For the displacement history and the stress states imposed

on the investigated samples, Eq. (A.13) can be specified to

W ext(t) =
∫ t

0

(
∫

V (τ)
p(τ) ˙(∆l)(τ) dV

)

dτ (A.14)

whereby

˙(∆l)(τ) = vvert × τ for 0 < τ < τI ,

with p [∆l(τI)] = pmax

˙(∆l)(τ) = 0 for τI < τ < (τI + thold)
˙(∆l)(τ) = −vvert × τ for (τI + thold) < τ < τII ,

with p [∆l(τII)] = 0 .

Evaluating Eq. (A.14) for t = t(pmax) + thold, i.e. for the point in time up to which maximum

pressure is maintained, gives access to the maximum work put into the specimens, i.e. W ext
max =

W ext(t = t(pmax) + thold). The subsequent unloading phase corresponds to a reduction of the

pressure and an expansion of the specimen. Therefore, it is the sample which then does work on

its surroundings (rather than the surroundings doing work on the sample). During this pressure
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reduction (unloading phase), the sample consumes the elastic energy which it has stored during

the loading phase. The unloading phase is hence characterized by an external work contribution

in form of the integrand in Eq. (A.14), which becomes negative. Finally, evaluating Eq. (A.14) for

t = tend, i.e. for the point in time when the unloading of the specimen is completed, gives access

to the eventually dissipated energy

W ext(t = tend) = Ediss . (A.15)

In order to clarify whether the investigated materials undergo dissipative (viscoelastic) de-

formations when loaded as described in Section A.2.2, we have calculated, based on Eq. (A.14),

W ext
max and Ediss from the recorded pressure and deformation data, see e.g. Figure A.3, and for all

the stress and strain measures introduced in Section A.3. Interestingly, for the majority of the

test runs, the ratio of Ediss over W ext
max is below 0.1, in many cases even below 0.05, indicating

that dissipative (viscoelastic) effects are negligible under hydrostatic loading of the investigated

rubber specimens. This finding applies for any of the materials defined in Section A.2.1, as well

as for any of the employed stress and strain measures (see Section A.3).

Thus, we conclude that during the hydrostatic compression tests decribed in Section A.2.2, all

studied materials underwent virtually purely elastic deformations.

A.5 Determination of elastic compressibility

As polymers may potentially experience significant deformation gradients [1], the test data are

evaluated in the framework of large strain elasticity theory [47, 48]. If the relation between

stresses and strains can be derived from the strain energy function ψ, through

S =
∂ψ

∂E , (A.16)

then the constitutive behavior of a material is referred to as “hyperelastic” [47, 48]. In case of

isotropy, Eq. (A.16) takes the form of [47]

(S − S0) = λ(E) tr(E) 1 + 2G(E) E , (A.17)

where S0 is the initial strain, λ is the Lamé constant, G is the shear modulus, and “tr” is the

trace operation [47, 68, 69].

Replacing, in Eq. (A.17), the generic stress tensor S by the second Piola-Kirchhoff stress tensor

π, and the generic strain tensor E by the Green-Lagrange strain tensor EGL, yields

(π − π0) = λGL(EGL) tr(EGL) 1 + 2GGL(EGL) EGL . (A.18)

Specifying Eq. (A.18) for the tests described in Section A.2, for π according to Eq. (A.9), and for

EGL according to Eq. (A.6), and taking the trace of the result, yields

(πm − π0,m) = KGL 1

2

(

l2 − l20
l20

)

= −
(

l20 + 2l2

3 l l0

)

(p− p0) , (A.19)
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with the mean Piola-Kirchhoff stress πm standing for πm = [tr(π)]/3, and with the bulk modulus

KGL = (3λGL + 2GGL)/3. Eq. (A.19) gives access to the bulk (or compressibility) modulus, from

the data pairs (p, l) measured in the tests of Section A.2, performed according to the protocols of

Table A.2, through

KGL = (p− p0)
(

l0
l0 − l

)[

2 (l20 + 2l2)

3l (l + l0)

]

, (A.20)

see thin lines in Figure A.4(a,d,g).

Analogous specialization of Eq. (A.17) for the Hencky (logarithmic) strain tensor EH and the

Kirchhoff stress tensor τ yields

(τ − τ 0) = λH(EH) tr(EH) 1 + 2GH(EH) EH . (A.21)

Then we proceed as before, i.e. we insert Eqs. (A.10) and (A.11) into Eq. (A.21), and then

consider the definition of the mean stress and the bulk modulus as in Eq. (A.19). This yields

KH = (p− p0)
(

l0
l0 − l

)[
l(l − l0)

l20 ln (l/l0)

]

, (A.22)

see thin lines in Figure A.4(b,e,h) for such bulk moduli derived from tests of Section A.2.

Finally, Eq. (A.17) is also valid for the Cauchy stress tensor σ and the linearized strain tensor

ε, yielding

(σ − σ0) = λ(ε) tr(ε) 1 + 2G(ε) ε . (A.23)

Eq. (A.23) allows then to derive, via the mean hydrostatic stress σm = [tr(σ)]/3, the following

format for the bulk modulus

K = (p− p0)
(

l0
l0 − l

)

, (A.24)

see thin lines in Figures A.4(c,f,i) for such bulk moduli derived from tests of Section A.2, performed

according to the protocols of Table A.2.

A.6 Pressure-compressibility relations

The pressure dependence of the bulk moduli in Figure A.4 was fitted for all tests given in Table A.2

and for all three materials given in Table A.1, by means of a dimensionless power function of the

form
K

Kref
=
[
p− p0

Kref

]β

, (A.25)

where Kref shall be defined as reference bulk modulus, with Kref = K for p = Kref + p0, see

Figure A.5 for corresponding data pairs [Kref, β]. Fitting parameters Kref and β were obtained,

based on a standard least squares optimization analysis from the test-specific K-p-curves of

Figure A.4, for each of the investigated materials, and for each of the considered pairs of stress

and strain measures. Thereby, each of the experimental test-runs was considered to have equal

influence on the optimization independent of the number of recorded data points, resulting in

a sample of parameter pairs, whereby each parameter pair was assigned to a specific material

and a specific pair of stress and strain measures. On this basis, we computed the respective
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116 A Compressibility of unvulcanized natural and EPDM rubber

Fig. A.4: Development of the bulk modulus K over pressure p (raw data for all tests (see
Table A.2)) based on hyperelasticity as defined in Section A.5, together with the
90%-confidence region of K as derived in Appendix A; (a,b,c) natural rubber (NR),
(d,e,f) EPDM-1 rubber, (g,h,i) EPDM-2 rubber; (a,d,g) second Piola-Kirchoff stresses
π and Green-Lagrange strains EGL, see Eq. (A.20); (b,e,h) Kirchhoff stresses τ and
Hencky strains EH, see Eq. (A.22), (c,f,i) Cauchy stresses σ and linearized strains ε,
see Eq. (A.24)

90%-confidence regions for the fitted bulk moduli (explained in more detail in Appendix A), see

the gray-shaded areas in Figure A.4.

The resulting bulk moduli unequivocally evidence non-linear elasticity of unvulcanized natural

rubber and rubber compounds. Several features become apparent: Firstly, the bulk moduli of all

three materials studied in this paper increase non-linearly with increasing pressure, whereas these

increases are degressive, i.e. the bulk moduli gradients become smaller with increasing pressure

(compare with Figure A.4). Secondly, as expected, natural rubber is consistently softer than the

two EPDM compounds, compare Figures A.4(a) to (c) with Figures A.4(d) to (f) and A.4(h) to (i).

And, thirdly, the influence of the considered strain and stress measures, see Section A.3 for details,

is negligible; differences between the energy-conjugate pairs of Green-Lagrange strains and second

Piola-Kirchhoff stresses, on the one hand, and linearized strains and Cauchy stresses, on the

other hand, are hardly visible (compare Figure A.4(c) with Figure A.4(a), Figure A.4(f) with

Figure A.4(d), and Figure A.4(i) with Figure A.4(g), while Hencky strains and Kirchhoff stresses
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A.7 Summary and discussion 117

Fig. A.5: Parameter pairs Kref and β, for all materials as defined in Table A.1 and all stress-
strain measures as defined in Section A.3; (a,b,c) natural rubber (NR), (d,e,f) EPDM-1
rubber, (g,h,i) EPDM-2 rubber; (a,d,g) second Piola-Kirchoff stresses π and Green-
Lagrange strains EGL, see Eq. (A.20); (b,e,h) Kirchhoff stresses τ and Hencky strains
EH, see Eq. (A.22), (c,f,i) Cauchy stresses σ and linearized strains ε, see Eq. (A.24)

yield slightly smaller bulk moduli (compare Figure A.4(b) with Figure A.4(a), Figure A.4(e) with

Figure A.4(d), and Figure A.4(h) with Figure A.4(g).

The effects of loading speed, maximum pressure, and holding time at the maximum pressure

apparently do not influence the resulting bulk moduli which reconfirms that the employed

hydrostatic compression loading provokes elastic deformations only.

A.7 Summary and discussion

The new experimental method presented in this paper revealed remarkable compressibility of

natural and EPDM rubber. The compressibility bulk modulus appears as a power function of

the pressure applied to the material. Additionally, a dissipation analysis revealed that under

hydrostatic compression, the aforementioned materials behave non-linearly elastic, rather than

viscoelastically. Hence, viscoelasticity of rubber appears to be restricted to deviatoric strain and

stress states [19, 43, 44].

First, from a general point of view, it appears as misleading to expect the bulk modulus of

an “almost compressible” material as being “almost infinite” - an assumption often realized in
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numerical simulations, as reviewed in the Introduction of the present paper. In this context,

it should be remembered that “incompressibility” refers to the ratio of shear-to-bulk modulus

tending towards zero, which, as shown by Mott et al. [79, 80], is the result of the shear modulus

tending towards zero, while the bulk modulus, when experimentally quantified, maintains some

finite value. This is fully consistent with our results, where with increasing pressure, the

corresponding increase in bulk modulus actually decreases, see Figure A.4. A similar relationship

was presented for a wide range of polymer crystals [81], increasing the credibility of our new results

for unvulcanized rubber. Finally, oedometer tests on styrene-ethylene-co-butylene-styrene (SEBS)

with pressures applied up to 13 MPa, reported by Caro et al. [82], result in load-displacement

curves which are very similar to that seen in Figure A.3(c), with corresponding pressure-dependent

bulk moduli, which perfectly fall within the grey confidence regions seen in Figure A.4.

This deeper understanding of the compressibility of rubber is expected to have a major impact

on the development of more realistic mechanical models for rubber, far beyond the customary

CFD solutions which – as a rule – do not account for compressibility at all [38–41, 57]. This holds

the promise for a far more economic and efficient, truly computer-aided design of formative tools

for the rubber extrusion process; also implying the replacement of several material testing stages

to the virtual world – thereby saving material needs and increasing environmental standards of

the rubber production process.
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Appendix AA. Determination of two-dimensional confidence regions

Distribution of parameter pairs

The starting point for computing confidence regions for the bulk moduli determined as described

in Sections A.3 and A.6 of this paper are the parameter pairs Kref and β that were obtained by

means of a least squares optimization analysis of the resulting bulk moduli based on Eq. (A.25),

for each of the considered materials and for each of the considered pairs of stress and strain

measures. This way, we get twelve samples, each of size n = 22.

Next, an adequate distribution function must be specified. The power function given in

Eq. (A.25) is valid only for α > 0 and (1 >)β > 0, ruling out a normal distribution. Instead, we

take a log-normal distribution into consideration. A sample consisting of values Xi is represented

by a log-normal distribution if the logarithms of Xi are normally distributed. All samples of Kref

and β, as shown in Figure A.5, fulfill this condition, see Figure A.6, justifying to take log-normal

distributions as basis for the subsequently presented statistical considerations. The Shapiro-Wilk

and Royston tests together with Q-Q-Plots provided verification of normality [83–85].
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Fig. A.6: Exemplary distribution of parameter pairs (a) log(Kref), (b) log(β), for NR material,
showing results considering linearized strains ε and Cauchy stresses σ

Finding the orientation of the confidence region

Clearly, the sought-for statistical analysis is of two-dimensional nature, and the main axes of the

two dimensions are not equal to the log(Kref) and log(β) axes. Therefore, at first we have to

determine a two-dimensional, rotated confidence region for parameter pairs log(Kref) and log(β).

To that end, the covariance matrix of each sample must be considered, defined as

COV(log(Kref), log(β)) =

[

s2
Kref

sKrefβ

sKrefβ s2
β

]

. (A.26)

In Eq. (A.26), s2
Kref

and s2
β are the sample variances,

s2
X = VAR(log(X)) =

1

n− 1

n∑

i=1

[log(Xi) − x̄X ]2 , (A.27)

with X ∈ {Kref, β} and x̄X as the mean values of the sample

x̄X = E(log(X)) =
1

n

n∑

i=1

log(Xi) , (A.28)

where again X ∈ {Kref, β} [86], while sKrefβ is defined as

sKrefβ =
1

n− 1

n∑

i=1

[log(Kref,i) − x̄Kref
] [log(βi) − x̄β] . (A.29)

Subjecting Eq. (A.26) to an eigenvalue problem gives access, on the one hand, to the rotation

angle ϕ between the original coordinate system, defined by log(Kref) and log(β), and the rotated

one, defined by a and b,

tan(2ϕ) =
2 sKrefβ

s2
Kref

− s2
β

. (A.30)
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as well as to the sample variances quantified in the rotated coordinate system,

s2
a = s2

Kref
cos(ϕ)2 + 2sKrefβ cos(ϕ) sin(ϕ) + s2

β sin(ϕ)2 , (A.31)

s2
b = s2

β cos(ϕ)2 − 2sKrefβ cos(ϕ) sin(ϕ) + s2
Kref

sin(ϕ)2 , (A.32)

sab ≡ 0 . (A.33)

Notably, the mean values are invariants, i.e. they do not change between the rotated coordinate

systems defined by the main axes a and b and the original coordinate system defined by log(Kref)

and log(β).

Upscaling of samples to populations

Next, the samples (with n = 22) must be upscaled to corresponding populations. For this

purpose, we consider the 95%-confidence interval of the mean values of the populations according

to a Student’s t-distribution with n− 1 degrees of freedom [86],

x̄− sX t21,0.025√
n

︸ ︷︷ ︸

µX,low

≤ µX ≤ x̄+
sX t21,0.975√

n
︸ ︷︷ ︸

µX,upp

, (A.34)

with X ∈ {a, b}, and µX,low and µX,upp are the lower and upper expected values of the population

of X, X ∈ {a, b}. On the other hand, the lower 95%-quantile of the variances is determined

based on a χ2-distribution with n− 1 degrees of freedom as

σ2
X ≤ (n− 1) s2

X

χ2
21,0.05

= σ2
X,upp , (A.35)

with X ∈ {a, b} [86]. Eq. (A.34), evaluated for X ∈ {a, b}, gives access to the long and short axes

of an ellipse representing the 95%-confidence region of the mean value µ.

For the characterization of the ellipse defining the 90% confidence region of a and b, equivalent

to Kref and β after coordinate-transformation, the boundaries of a 5% to 95% confidence interval

[a0.05, a0.95] and [b0.05, b0.95] are calculated using the quantiles of the normal distribution [86]

with standard deviations σa,upp =
√

σ2
a,upp and σb,upp =

√

σ2
b,upp, thus

a0.05 = µa − z0.05 σa,upp (A.36)

a0.95 = µa + z0.95 σa,upp (A.37)

and

b0.05 = µb − z0.05 σb,upp (A.38)

b0.95 = µb + z0.95 σb,upp , (A.39)

where µa and µb are any point along the main axes of the mean value confidence region, and

z0.05 = z0.95 = 1.6449 defines the 90% confidence interval of a normal distribution. Using

Eqs. (A.36) to (A.39) to define the axes’ length of an ellipse whose center is running along the

outer boundary of the mean value confidence region, the envelope of those ellipses defines the 90%
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A.7 Summary and discussion 121

confidence region of Kref and β (compare Figure A.7(a)). Exemplary results for those regions are

shown in Figure A.7(b). In order to return to the none-logarithmic display of Kref and β, the

confidence regions are transformed using the exponential function exp (compare Figure A.7(c)).

(a)

log(Kref) [log(MPa)]
8 9 10 11 12 13

lo
g
(β

)
[-
]

-1

-0.875

-0.75

-0.625

-0.5

-0.375

-0.25

-0.125

0
(b)

log(Kref) [log(MPa)]
8 9 10 11 12 13

lo
g
(β

)
[-
]

-1

-0.875

-0.75

-0.625

-0.5

-0.375

-0.25

-0.125

0
(c)

Kref/10
5 [MPa]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

β
[-
]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Fig. A.7: Display of the 90%-confidence regions (a) including parameter pairs of the fitting
parameters log(Kref) and log(β) for NR material and use of linearized strains ε

and Cauchy stresses σ, (b) and (c) showing all confidence regions, with (b) using
logarithmic distortion and (c) undistorted

Confidence regions of bulk moduli

In order to eventually determine the upper and lower bounds of the considered bulk moduli,

Eq. (A.25) is evaluated for all possible combinations of Kref and β within the respective confidence

ellipses, i.e.

Kij = Kref,i

[

p− p0

Kref,i

]βj

. (A.40)

The such obtained maximum value for a specific pressure (p− p0) defines a point on the upper

envelope,

Kupp = max[Kij ] , (A.41)

the minimum value defines a point on the lower envelope

Klow = min[Kij ] . (A.42)

Performing this kind of analysis for the considered range of pressures finally gives access to the

90%-confidence regions depicted in Figure A.4.

Appendix AB. Nomenclature

1 second order unit tensor

EGL Green-Lagrange strain tensor

EH Hencky (logarithmic) strain tensor

F deformation gradient tensor

G shear modulus

J Jacobian
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122 A Compressibility of unvulcanized natural and EPDM rubber

K bulk modulus

Kref reference bulk modulus

l current length of specimen

l0 initial length

∆l difference between current and initial

length

p pressure

p0 initial pressure

pmax maximum pressure upon material speci-

men

s sample variance or covariance

t time

thold period of time for which pmax was hold

u displacement field or displacement vector

V volume

v speed

vvert vertical piston speed

W ext external mechanical work

W ext
max maximum of external mechanical work

w spin tensor

X initial position vector

x current position vector

x̄ mean value of the sample

E generic (not yet specified) strain tensor

Ediss dissipated elastic energy

S generic (not yet specified) stress tensor

β fitting parameter

ε linearized strain tensor

λ Lamé constant

µ mean value of the population

ϕ deformation mapping function

π second Piola-Kirchhoff stress tensor

πm mean hydrostatic Piola-Kirchhoff stress

ϕ rotation angle

ψ strain energy function

σ Cauchy stress tensor

σ standard deviation of the population

σ2 variance of the population

σm mean hydrostatic Cauchy stress

τ Kirchhoff stress tensor

τm mean hydrostatic Kirchhoff stress
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Appendix B

Curriculum vitae

Personal data:

Name: Robert Plachy

Academic degree: Dipl.-Ing., BSc

Date of birth: 5th January 1991

Place of birth: Vienna, Austria

Residence: Vienna, 23rd district

Nationality: Austrian

Marital status: married [to Dipl.-Ing. Jacqueline Plachy (Stalleker)]

Education:

09/2001-06/2005: Secondary School, Vienna, Austria

09/2005-06/2010: Technical High School for Civil Engineering, Vienna, Austria

graduation with distinction

10/2011-11/2014: Bachelor studies in Civil Engineering, TU Wien, Vienna, Austria

graduation with distinction

03/2014-ongoing: Bachelor studies in Technical Mathematics, TU Wien, Vienna, Austria

11/2014-10/2016: Master studies in Civil Engineering, TU Wien, Vienna, Austria

graduation with distinction

11/2016-10/2020: Doctoral studies in Civil Engineering, TU Wien, Vienna, Austria

Experience:

09/2010-05/2011: Civil service, Vienna, Austria

09/2011-10/2016: Structural engineer, Fa. Novotny Bauer & Partner ZT GmbH, Vienna,

Austria

11/2015-01/2016: Study assistant, Institute for Mechanics of Materials and Structures,

TU Wien, Vienna, Austria

11/2016-02/2020: Project assistant, Institute for Mechanics of Materials and Structures,

TU Wien, Vienna, Austria

01/2017-08/2020: Consultant, Fa. Novotny Bauer & Partner ZT GmbH, Vienna, Austria

03/2020-08/2020: University assistant, Institute for Mechanics of Materials and

Structures, TU Wien, Vienna, Austria

09/2020-ongoing: Structural engineer, Fa. FCP Fritsch, Chiari & Partner ZT GmbH,

Vienna, Austria
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124 B Curriculum vitae

Awards:

10/2012, 10/2013,

10/2014, 10/2015, and

10/2016: Award for excellent performance as a student, granted by the Faculty of Civil

Engineering, TU Wien, Vienna, Austria

10/2017: State Prize for the best Diploma- and Master-Degrees (Würdigungspreis),

granted by the Austrian Ministry for Science, Research, and Economy

(BMWFW), based on nomination by TU Wien, Vienna, Austria

Publications:

[ 1 ] “Erdbeben-Bemessung – Grundlagen und Bemessungsverfahren mit einer besonderen

Berücksichtigung von nicht-linearen Verfahren”, Bachelor thesis, TU Wien (2013),

advisor: Dr. C. Schranz;

[ 2 ] “Die Push-Over Methode – Aufarbeitung der Grundprinzipien und eine Erweiterung

zur Berücksichtigung der Torsion an einem Musterhaus inkl. eines Bemessungstools in

MS Excel”, Project thesis, TU Wien (2016), advisors: Dr. C. Schranz and Dr. M.

Höflinger;

[ 3 ] “On the compressibility of rubber: experiments and theoretical considerations”,

Diploma thesis, TU Wien (2016), advisors: Univ.Prof. C. Hellmich and Assistant Prof.

S. Scheiner;

[ 4 ] “Compressibility of unvulcanized natural and EPDM rubber: New experimental

protocol and data evaluation in the framework of large strain elasticity theory”,

peer-review journal paper, Polymer 123 (2017), pp. 334-344; co-authors: S. Scheiner,

K.W. Luczynski, A. Holzner, C. Hellmich

Conference papers, presentations, and posters:

[ 1 ] “On the compressibility of rubber: experiments and theoretical considerations”,

abstract and presentation, 21st Inter Institute Seminar for Young Researchers

(10/2017), Budapest, Hungary

[ 2 ] “On the compressibility of rubber: experiments and theoretical considerations”,

abstract and presentation, 16th European Mechanics of Materials Conference

(03/2018), Nantes, France

[ 3 ] “On the compressibility of rubber: experiments and theoretical considerations”,

abstract and presentation, 10th European Solid Mechanics Conference (07/2018),

Bologna, Italy

[ 4 ] “On the compressibility of rubber: experiments and theoretical considerations”,

abstract, poster and short presentation, 35th Danubia-Adria Symposium on Advances

in Experimental Mechanics (09/2018), Sinaia, Romania

[ 5 ] “Compressibility and viscosity tests on rubber, as a basis for thermodynamically
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Meeting (02/2019), Vienna, Austria

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Bibliography

[1] F. Hensen, W. Knappe, and H. Potente. Handbuch der Kunststoff-Extrusionstechnik - I:

Grundlagen [Handbook of Synthetics-Extrusion Technology - I: Basics]. Hanser Verlag,

München, Germany, 1989.

[2] F. Röthemeyer and F. Sommer. Kautschuk Technologie [rubber technology]. 3rd edition.

Carl Hanser Verlag, München, Germany, 2013.

[3] J.P. Lehnen. Kautschuk-Verarbeitung. Vogelbuch-Verlag, 1982.

[4] A.K. Bhowmick, M.M. Hall, and H.A. Benarey, eds. Rubber Products Manufacturing

Technology. Marcel Deckker Inc., New York Basel, 1994.

[5] E.B. Bagley and H.P. Schreiber. “Effect of Die Entry Geometry on Polymer Melt Fracture

and Extrudate Distortion”. In: Transactions of the Society of Rheology V (1961), pp. 342–

353.

[6] E.B. Bagley, S.H. Storey, and C.D. West. “Post Extrusion Swelling of Polyethylene”. In:

Journal of Applied Polymer Science 7 (1963), pp. 1661–1672.

[7] W.-Y. Chiu and G.-D. Shyu. “Die Swell from Capillary Die and Slit Die: A Theoretical

Study”. In: Journal of Applied Polymer Science 35 (1988), pp. 847–862.

[8] R.I. Tanner. “A theory of die-swell”. In: Journal of Polymer Science 8 (1970), pp. 2067–

2078.

[9] R.I. Tanner. “A theory of die-swell revisited”. In: Journal of Non-Newtonian Fluid Me-

chanics 129 (2005), pp. 85–87.

[10] J. Batchelor, J.P. Berry, and F. Horsfall. “Die swell in elastic and viscous fluids”. In:

Polymer 14 (July 1973), pp. 297–299.

[11] V. Ngamaramvaranggul and M.F. Webster. “Viscoelastic simulations of stick-slip and

die-swell flows”. In: International Journal for Numerical Methods in Fluids 36 (2001),

pp. 539–595.

[12] Tubeless Siphon and Die Swell Demonstration – Notes. https://nnf.mit.edu/sites/

default/files/documents/bb-4-file-A.pdf.

[13] A. Bhattacharya, J.W. Rawlins, and P. Ray. Polymer grafting and crosslinking. John Wiley

and Sons, 2008.

[14] J. Scheirs. Compositional and failure analysis of polymers. John Wiley and Sons, 2000.

[15] R. Plachy et al. “Compressibility of unvulcanized natural and EPDM rubber: New experi-

mental protocol and data evaluation in the framework of large strain elasticity theory”. In:

Polymer 123 (2017), pp. 334–344.

[16] E. Mitsoulis. “Annular extrudate swell of pseudoplastic and viscoplastic fluids”. In: Journal

of Non-Newtonian Fluid Mechanics 141 (2007), pp. 138–147.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://nnf.mit.edu/sites/default/files/documents/bb-4-file-A.pdf
https://nnf.mit.edu/sites/default/files/documents/bb-4-file-A.pdf


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

126 Bibliography

[17] X.-L. Luo and E. Mitsoulis. “Memory phenomena in extrudate swell simulations for annular

dies”. In: Journal of Rheology 33 (1989), pp. 1307–1327.

[18] I.J. Keshtiban, F. Belblidia, and M.F. Webster. “Computation of incompressible and

weakly-compressible viscoelastic liquids flow: finite element/volume schemes”. In: Journal

of Non-Newtonian Fluid Mechanics 126 (2005), pp. 123–143.

[19] E. Mitsoulis and S.G. Hatzikiriakos. “Steady flow simulations of compressible PRFE paste

extrusion under severe wall slip”. In: Journal of Non-Newtonian Fluid Mechanics 157

(2009), pp. 26–33.

[20] B.J. Omodei. “On the die-swell of an axisymmetric Newtonian jet”. In: Computers and

Fluids 8 (1979), pp. 275–289.

[21] R. Plachy. On the compressibility of unvulcanized rubber: experiments and theoretical

considerations. Diploma Thesis, TU Wien, 2016.

[22] L.R.G. Treloar. “The elasticity and related properties of rubbers”. In: Reports on Progress

in Physics 36 (1973), pp. 755–826.

[23] J.S. Bergstroem and M.C. Boyce. “Constitutive modeling of the large strain time-dependent

behavior of elastomers”. In: Journal of the Mechanics and Physics of Solids 46 (1998),

pp. 931–954.

[24] M.M. Attard. “Finite strain – isotropic hyperelasticity”. In: International Journal of Solids

and Structures 40 (2003), pp. 4353–4378.

[25] M.M. Attard and G.W. Hunt. “Hyperelastic constitutive modeling under finite strain”. In:

International Journal of Solids and Structures 41 (2004), pp. 5327–5350.

[26] P.J. Flory. “Thermodynamic relations for high elastic materials”. In: Transactions of the

Faraday Society 57 (1961), pp. 829–838.

[27] L. Anand. “A constitutive model for compressible elastomeric solids”. In: Computational

Mechanics 18 (1996), pp. 339–355.

[28] L.H. Adam and R.E. Gibson. “The compressibility of rubber”. In: Journal of the Washington

Academy of Sciences 20 (1935), pp. 213–223.

[29] R.W. Penn. “Volume changes accompanying the extension of rubber”. In: Transactions of

the Society of Rheology 14 (1970), pp. 509–517.

[30] Göttfert Rheograph specifications. https://www.goettfert.de/fileadmin/assets/

Downloads/DE/PDF/Produkte/Kapillarrheometer/DE_BRO_Kapillarrheometer_Rev.C.

pdf.

[31] K.R. Rajagopal and A.R. Srinivasa. “A Gibbs-potential-based formulation for obtaining

the response functions for a class of viscoelastic materials”. In: Proceedings of the Royal

Society A 467 (2011), pp. 39–58.

[32] K.R. Rajagopal and A.R. Srinivasa. “An implicit thermomechanical theory based on a

Gibbs potential formulation for describing the response of thermoviscoelastic solids”. In:

International Journal of Engineering Science 70 (2013), pp. 15–28.

[33] P. Germain. “The Method of Virtual Power in Continuum Mechanics. Part 2: Microstruc-

ture”. In: SIAM Journal on Applied Mathematics 25.3 (1973), pp. 556–575.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
 https://www.goettfert.de/fileadmin/assets/Downloads/DE/PDF/Produkte/Kapillarrheometer/DE_BRO_Kapillarrheometer_Rev.C.pdf
 https://www.goettfert.de/fileadmin/assets/Downloads/DE/PDF/Produkte/Kapillarrheometer/DE_BRO_Kapillarrheometer_Rev.C.pdf
 https://www.goettfert.de/fileadmin/assets/Downloads/DE/PDF/Produkte/Kapillarrheometer/DE_BRO_Kapillarrheometer_Rev.C.pdf


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Bibliography 127

[34] O.C. Zienkiewicz, R.L. Taylor, and J.Z. Zhu. The Finite Element Method: Its Basics and

Fundamentals, Seventh Edition. Butterworth-Heinemann, 2013.

[35] O.C. Zienkiewicz, R.L. Taylor, and D.D. Fox. The Finite Element Method for Solid and

Structural Mechanics, Seventh Edition. Butterworth-Heinemann, 2014.

[36] O.C. Zienkiewicz, R.L. Taylor, and P. Nithiarasu. The Finite Element Method for Fluid

Dynamics, Seventh Edition. Butterworth-Heinemann, 2014.

[37] N.M. Newmark. “A method of computation for structural dynamics”. In: Journal of the

Engineering Mechanics Division, Proceedings of the American Society of Civil Engineers

85.EM3 (1959), pp. 67–94.

[38] H.W. Müllner et al. “Back calculation of the entrance pressure of capillary dies by means

of measurement with slit dies”. In: Polymer Testing 26 (2007), pp. 426–437.

[39] H.W. Müllner, J. Eberhardsteiner, and W. Fidi. “Rheological characterization of the die

swell phenomenon of rubber compounds”. In: Polymer Testing 26 (2007), pp. 1041–1048.

[40] H.W. Müllner, J. Eberhardsteiner, and P. Mackenzie-Helnwein. “Constitutive characteriza-

tion of rubber blends by means of capillary-viscometry”. In: Polymer Testing 28 (2009),

pp. 13–23.

[41] F. Mainardi and G. Spada. “Creep, Relaxation and Viscosity Properties for Basic Fractional

Models in Rheology”. In: The European Physical Journal, Special Topics 193 (2011), pp. 133–

160.

[42] F. Belblidia, T. Haroon, and M.F. Webster. “The dynamics of compressible Herschel-

Bulkley fluids in die-swell flows”. In: Swansea University Report Series. Vol. CSR13-2008.

Swansea University, UK, 2008.

[43] E. Taliadorou, G.C. Georgiou, and E. Mitsoulis. “Numerical simulation of the extrusion of

strongly compressible Newtonian liquids”. In: Rheol Acta 47 (2008), pp. 49–62.

[44] E. Mitsoulis, G.C. Georgiou, and Z. Kountouriotis. “A study of various factors affecting

Newtonian extrudate swell”. In: Computers and Fluids 57 (2012), pp. 195–207.

[45] E. Buckingham. “On physically similar systems; illustrations of the use of dimensional

equations”. In: Physical Review 4 (1914), pp. 345–376.

[46] G.I. Barenblatt. Scaling, selfsimilarity, and intermediate asymptotics. Cambridge University

Press, 1996.

[47] J. Salencon. Handbook of continuum mechanics. Springer, 2001.

[48] K.J. Willam. “Constitutive Models for Engineering Materials”. In: Encyclopedia of Physical

Science and Technology 3 (2002), pp. 603–633.

[49] Göttfert information on correction of capillary rheometer data when evaluating viscosity.

https://www.goettfert.de/fileadmin/assets/Downloads/DE/PDF/Anwendungen/

Rheo_Info/DE_RI_Auswertung-Kapillarrheometer-Versuch.pdf.

[50] H. Kuhlmann. Strömungsmechanik (Fluid Mechanics), Second Edition. Pearson, 2006.

[51] A. Baloch, P. Townsend, and M.F. Webster. “On two- and three-dimensional expansion

flows”. In: Computers and Fluids 24.8 (1995), pp. 863–882.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
 https://www.goettfert.de/fileadmin/assets/Downloads/DE/PDF/Anwendungen/Rheo_Info/DE_RI_Auswertung-Kapillarrheometer-Versuch.pdf
 https://www.goettfert.de/fileadmin/assets/Downloads/DE/PDF/Anwendungen/Rheo_Info/DE_RI_Auswertung-Kapillarrheometer-Versuch.pdf


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

128 Bibliography

[52] M.F. Webster, H.R. Tamaddon-Jahromi, and M. Aboubacar. “Transient viscoelastic flows

in planar contractions”. In: Journal of Non-Newtonian Fluid Mechanics 118 (2004), pp. 83–

101.

[53] E. Mitsoulis. “Three-dimensional non-Newtonian computations of extrudate swell with the

finite element method”. In: Computer Methods in Applied Mechanics and Engineering 180

(1999), pp. 333–344.

[54] E.O.A. Carew, P. Townsend, and M.F. Webster. “A Taylor-Petrov-Galerkin algorithm for

viscoelatic flow”. In: Journal of Non-Newtonian Fluid Mechanics 50 (1993), pp. 253–287.

[55] V. Ngamaramvaranggul and M.F. Webster. “Simulation of coating flows with slip effects”.

In: International Journal for Numerical Methods in Fluids 33 (2000), pp. 961–992.

[56] V. Ngamaramvaranggul and M.F. Webster. “Computation of free surface flows with a

Taylor–Galerkin/pressure–correction algorithm”. In: International Journal for Numerical

Methods in Fluids 33 (2000), pp. 993–1026.

[57] H.W. Müllner. “Numerisches Vorhersagemodell für die Auslegung von Spitzköpfen und

Werkzeugen für den Extrusionsprozess von Gummi [Numerical Prediction-Model for the

Design of Extrusion Dies for the Extrusion-Process of Rubber]”. PhD thesis. TU Wien,

Austria, 2007.

[58] M. Ansari, E. Mitsoulis, and S.G. Hatzikiriakos. “Capillary Extrusion and Swell of a HDPE

Melt Exhibiting Slip”. In: Advances in Polymer Technology 32.S1 (2013), E369–E385.

[59] O. Coussy. Poromechanics. John Wiley ans Sons Ltd, 2004.

[60] G. Jaumann. Die Grundlagen der Bewegungslehre von einem modernen Standpunkt aus.

Verlag von Johann Ambrosius Barth, Leipzig, 1905.

[61] G. Jaumann. “Geschlossenes System physikalischer und chemischer Differentialgesetze”. In:

Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, Abteilung IIa 120 (1911),

pp. 385–530.

[62] H. Xiao, O.T. Bruhns, and A. Meyers. “Objective stress rates, path-dependence properties

and non-integrability problems”. In: Acta Mechanica 176 (2005), pp. 135–151.

[63] O. Reynolds. Papers on Mechanical and Physical Subjects, Vol. 3: The Sub-Mechanics of

the Universe. Cambridge University Press, 1903.

[64] P. Wriggers. Computational Contact Mechanics, Second Edition. Springer, 2006.

[65] ASTM International. Standard Test Methods for Rubber—Viscosity, Stress Relaxation, and

Pre-Vulcanization Characteristics (Mooney Viscometer). Designation D 1646-04. 2004.

[66] ISO/TC 61/SC 5. ISO17744: Plastics – Determination of specific volume as a function of

temperature and pressure (pvT diagram) – Piston apparatus method. 2004.

[67] H. Hencky. “Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen [Concerning

the form of the elasticity law for ideal elastic substances]”. In: Zeitschrift für technische

Physik 6 (1928), pp. 215–220.

[68] R. Hill. “On constitutive inequalities for simple materials - I”. In: Journal on the Mechanics

and Physics of Solids 16.4 (1968), pp. 229–242.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Bibliography 129

[69] R. Hill. “On constitutive inequalities for simple materials - II”. In: Journal on the Mechanics

and Physics of Solids 16.5 (1968), pp. 315–322.

[70] K. Farahani and R. Naghdabadi. “Conjugate stresses of the Seth-Hill strain tensors”. In:

International Journal of Solids and Structures 37 (2000), pp. 5247–5255.

[71] K. Farahani and H. Bahai. “Hyper-elastic constitutive equations of conjugate stresses and

strain tensors for the Seth-Hill strain measures”. In: International Journal of Engineering

Science 42 (2004), pp. 29–41.

[72] A. Hoger. “The stress conjugate to logarithmic strain”. In: International Journal of Solids

and Structures 23.12 (1987), pp. 1645–1656.

[73] H. Xiao, O.T. Bruhns, and A. Meyers. “Logarithmic strain, logarithmic sping and logarith-

mic rate”. In: Acta Mechanica 124 (1997), pp. 89–105.

[74] H. Xiao, O.T. Bruhns, and A. Meyers. “Existence and uniqueness of the integrable-exactly

hypoelastic equation τ̊∗ = λ(trD)I + 2µD and its significance to finite inelasticity”. In:

Acta Mechanica 138 (1999), pp. 31–50.

[75] H. Xiao and L.-S. Chen. “Hencky’s logarithmic strain and dual stress-strain and strain-

stress relations in isotropic finity hyperelasticity”. In: International Journal of Solids and

Structures 40 (2003), pp. 1455–1463.

[76] B. D. Coleman. “Thermodynamics of materials with memory”. In: Archive for Rational

Mechanics and Analysis 17.1 (1964), pp. 1–46.

[77] A. E. Green and P. M. Naghdi. “A general theory of an elastic-plastic continuum”. In:

Archive for Rational Mechanics and Analysis 18.4 (1965), pp. 251–281.

[78] P. Germain, Q. S. Nguyen, and P. Suquet. “Continuum Thermodynamics”. In: Journal of

Applied Mechanics 50 (1983), pp. 1010–1020.

[79] P.H. Mott, J.R. Dorgan, and C.M. Roland. “The bulk modulus and Poisson’s ratio of

"incompressible" materials”. In: Journal of Sound and Vibration 312 (2008), pp. 572–575.

[80] P.H. Mott and C.M. Roland. “Limits to Poisson’s ratio in isotropic materials”. In: Physical

Review B 80.132104 (2009), pp. 1–4.

[81] T. Ito. “Compressibility of the polymer crystal”. In: Polymer 23 (1982), pp. 1412–1434.

[82] A.S. Caro-Bretelle, P. Ienny, and R. Leger. “Constitutive modeling of a SEBS cast-calender:

Large strain, compressibility and anisotropic damage induced by the process”. In: Polymer

54 (2013), pp. 4594–4603.

[83] S. Shapiro and M.B. Wilk. “An Analysis of Variance Test for Normality (Complete

Samples)”. In: Biometrika 52.3/4 (1965), pp. 591–611.

[84] M.B. Wilk and R. Gnanadesikan. “Probability Plotting Methods for the Analysis of Data”.

In: Biometrika 55.1 (1968), pp. 1–17.

[85] J. P. Royston. “An Extension of Shapiro and Wilk’s W Test for Normality to Large

Samples”. In: Journal of the Royal Statistical Society. Series C (Applied Statistics) 31.2

(1982), pp. 115–124.

[86] G. Mühlbach. Stochastik - Ein Zugang über Beispiele [Stochastics - An Approach by

Examples]. Binomi Verlag, Barsinghausen, Germany, 2011.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Abstract
	Kurzfassung
	Acknowledgments
	Contents
	Introduction
	Motivation and objectives
	Progress beyond the state of the art
	Project implementation
	Remarks on the following chapters

	Compression, viscosity, and extrusion tests on unvulcanized rubber blends confirm importance of compressibility for die swell — arguments from dimensional analysis
	Introduction
	Materials under investigation
	Experimental program and data evaluation
	Compressibility tests
	Viscosity tests
	Extrusion tests

	Dimensional analysis
	Outline of fundamental concept
	Application of the Buckingham Π-theorem for evaluating extrusion tests

	Summary and concluding remarks
	Acknowledgments
	Appendix 2A. Nomenclature

	A hypoviscoelastic thermodynamics model of soft solids, utilized for numerically simulating the die swell of rubber
	Introduction
	Fundamental theoretical considerations
	Volume- and mass density-related quantities
	Introduction of the Gibbs potential
	Derivatives with respect to time and space
	Expression of quantities independent of reference frame
	Conservation of mass, momentum and angular momentum
	Conservation of energy, entropy, and the dissipation inequality
	Splitting of the stress tensor and thermodynamic consistency
	Constitutive functions
	Summary

	Numerical solution
	Simplifying assumptions
	The principle of virtual power
	Definition of estimator terms
	Development of solution algorithm
	Spatial Finite Element discretization
	Interpolation functions and operators
	Elasticity and viscoelasticity
	Finite Element implementation of auxiliary tensors
	Mesh assembly
	Boundary conditions
	Updates of nodal densities and stress tensors
	Implementation of computations

	Numerical studies
	Conclusions
	Acknowledgments
	Appendix 3A. Nomenclature

	Detailed derivations and proofs related to the paper ``A hypoviscoelastic thermodynamics model of soft solids, utilized for numerically simulating the die swell of rubber''
	Preliminary remarks
	Derivation of Equation (3.15)
	Derivation of Equation (3.17)
	Derivation of Equation (3.19)
	Derivation of Equation (3.22)
	Derivation of Equation (3.25)
	Theorem related to and proof of Equation (3.36)
	Derivation of ∇S N(bold0mu mumu ξξheadξξξξ)
	Derivation of ∇A N(bold0mu mumu ξξheadξξξξ)
	Derivation of ∇N(bold0mu mumu ξξheadξξξξ), ∇N3(bold0mu mumu ξξheadξξξξ), and ∇N3r(bold0mu mumu ξξheadξξξξ)
	Derivation of ∇r N(bold0mu mumu ξξheadξξξξ) ⊕∇N(bold0mu mumu ξξheadξξξξ) ⊕∇z N(bold0mu mumu ξξheadξξξξ)
	Derivation of ∇·N(bold0mu mumu ξξheadξξξξ)
	Derivation of (∇)N(bold0mu mumu ξξheadξξξξ) (∇·)N(bold0mu mumu ξξheadξξξξ)
	Derivation of Equation (3.111)
	Derivation of Equation (3.112)
	Derivation of Equation (3.113)
	Derivation of Equation (3.114)
	Derivation of Equation (3.115)
	Derivation of Equation (3.116)
	Derivation of Equation (3.117)
	Derivation of Equation (3.132)
	Derivation of Equation (3.133)
	Appendix 4A. Nomenclature

	Prediction of rubber die swell during the extrusion process based on a hypoviscoelastic thermodynamics model considering rubber as soft solid
	Introduction
	Materials
	Mathematical model describing mechanics of compressible soft solids
	Fundamental model considerations
	Governing equations
	Consideration of experimentally obtained rubber compressibilities and viscosities

	Finite Element method-based discretization and solution of rubber model
	The principle of virtual power as theoretical concept for discretization of governing equations
	Approximative solution by means of the Finite Element method

	Model validation
	Experimental extrusion studies
	Finite Element model employed for simulating rubber extrusion
	Model-predicted versus experimentally obtained die swells

	Sensitivity studies
	Discussion
	Quality of model predictions
	Comments on numerical convergence
	Concluding remarks

	Acknowledgments
	Appendix 5A. Nomenclature

	Summary and outlook
	Compressibility of unvulcanized natural and EPDM rubber: new experimental protocol and data evaluation in the framework of large strain elasticity theory
	Introduction
	Experiments
	Investigated materials
	Experimental protocol

	Mechanical stress and strain measures
	Dissipation analysis
	Determination of elastic compressibility
	Pressure-compressibility relations
	Summary and discussion
	Acknowledgments
	Appendix AA. Determination of two-dimensional confidence regions
	Distribution of parameter pairs
	Finding the orientation of the confidence region
	Upscaling of samples to populations
	Confidence regions of bulk moduli

	Appendix AB. Nomenclature

	Curriculum vitae
	Bibliography

