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Kurzfassung

Diese Arbeit behandelt eine Losungsmethode fiir zeitabhingige hyperbolische Probleme,
wie zum Beispiel die Maxwell- oder Eulergleichungen. Hyperbolische Probleme haben eine
wohldefinierte Ausbreitungsgeschwindigkeit, welche im Weiteren dazu verwendet wird, das
Raum-Zeit Gebiet in zeltformige Elemente zu unterteilen. Diese zeltformigen Raum-Zeit
Elemente werden tents genannt und durch einen Tent Pitching Algorithmus erzeugt. Der
Tent Pitching Algorithmus verwendet dabei immer die lokale Ausbreitungsgeschwindig-
keit, daher passt sich der lokale Zeitschritt automatisch an diese und an die Elementgrofie
der rdumlichen Zerlegung an. Um nun Raum und Zeit getrennt voneinander diskretisie-
ren zu koénnen, werden die tents auf Raum-Zeit Zylinder, ein Tensorprodukt von Raum
und Zeit, transformiert. Auf den transformierten tents wird dann fiir die rdumliche Dis-
kretisierung eine Discontinuous Galerkin Methode verwendet. Das sich daraus ergebende
System von gewohnlichen Differentialgleichungen kann dann mittels expliziter oder implizi-
ter Zeitschrittverfahren gelost werden. Durch die Verwendung von impliziten Runge-Kutta
Verfahren ergibt sich eine speicherintensive Methode, welche durch den groflien Speicherbe-
darf nur begrenzt eingesetzt werden kann. Im Gegensatz dazu ergibt sich durch explizite
Runge-Kutta Verfahren eine Methode mit sehr geringem Speicherbedarf. In Verbindung
mit obiger Transformation fithrt dies allerdings, unabhéngig von der Polynomordnung der
rdumlichen Diskretisierung, zu linearen Konvergenzraten. Um die zu erwartende hohere
Konvergenzordnung wiederherzustellen, werden in dieser Arbeit spezielle explizite Zeit-
schrittverfahren entwickelt, welche die durch die Transformation auftretenden strukturellen
Eigenschaften beachtet. Diese Konvergenzraten werden in weiterer Folge mit numerischen
Beispielen belegt und es werden die Stabilitdtseigenschaften der resultierenden Methode
diskutiert. AbschlieBend wird die Anwendbarkeit dieser Methode anhand verschiedenster
hyperbolischer Probleme demonstriert.
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Abstract

This thesis introduces Mapped Tent Pitching (MTP) methods for hyperbolic systems.
These hyperbolic system, like the Maxwell equations or the Euler equations, have a well-
defined speed of propagation, which can be used to partition the spacetime domain using
tent-shaped elements. These spacetime elements, denoted as tents, are generated with a
tent pitching algorithm and mapped to spacetime cylinders, which allows to discretize space
and time independently. Tent pitched meshes adapt to varying speeds of propagation and
different sized spatial mesh leading to a naturally built in local time stepping.

The spatial discretization using a high order discontinuous Galerkin method leads to
a system of ordinary differential equations, which can be solved by implicit or explicit
time stepping methods. Although locally implicit MTP methods based on implicit Runge-
Kutta schemes for the temporal discretization show high order convergence, the memory
is a limiting factor for these methods.

Fully explicit methods have a low memory consumption, but they are limited to first
order when using standard methods for the temporal discretization. To overcome this
convergence order reduction, we construct suitable explicit time stepping schemes to prop-
agate hyperbolic solutions within these tent-shaped spacetime elements. These structure
aware time stepping schemes recover the high order convergence for linear and nonlinear
problems.

To demonstrate the optimal convergence rates, we apply these MTP methods using
structure aware times stepping schemes to various linear and nonlinear hyperbolic sys-
tems. Further we report the discrete stability properties of these methods applied to linear
hyperbolic equations.
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1 Introduction

In many areas of continuum physics first order partial differential equations arise when
formulating balance laws for quantities like mass, momentum or total energy for fluids or
solid materials. Written in divergence form, these equations form a hyperbolic system of
conservation laws. A famous nonlinear example is the Fuler equations which arise when
studying gas dynamics. There are many other well-known linear and nonlinear problems,
which fit into the notion of hyperbolic systems. The Maxwell equations formulated as
linear first order system can be used to describe electromagnetic wave propagation. These
electromagnetic waves propagate with a finite speed, thus the electromagnetic field at a
certain point in space and time depends only on field values within a dependency cone.
These local cones are defined by the causality condition, which is used to delineate what is
causally possible and impossible in spacetime. By subdividing spacetime into tent-shaped
regions, the causality condition in naturally imposed when numerically solving hyperbolic
systems. This allows to advance by different amounts in time at different spatial locations,
which leads to a naturally built in local time stepping. For general nonlinear hyperbolic
systems the speed of propagation is given by maximal characteristic speed, defined by a
generalized eigenvalue problem, which makes this strategy applicable to general hyperbolic
systems. Such spacetime meshing strategies were named tent pitching in [6, 33]. Methods
using tent-pitched meshes can be traced back to [25, 29] and since then there has been
active development. The dominant discretization technique is the spacetime discontinuous
Galerkin (SDG) method, which can be found in works on numerical analysis [8, 12, 25] as
well as in engineering applications [24, 27, 37].

These SDG methods formulate local variational problems within tents, for which linear
systems are set up and solved. Although these systems are local, the matrix size can grow
rapidly with the polynomial degree, especially in four-dimensional spacetime tents. The
above-mentioned research into SDG methods has abundantly clarified the many advantages
that tent pitched meshes offer. Perhaps the primary advantage they offer is a rational
way to build high order methods (in space and time) that incorporates spatial adaptivity
and locally varying time step size, even on complex structures. This local adaptivity in
spacetime is utilized in [1, 2], where they apply the asynchronous SDG (aSDG) method to
new engineering applications to track discontinuities is spacetime.

In this context it is natural to ask if one can develop explicit schemes (which usually
perform well under low memory bandwidth) that take advantage of tents. Such a method
was first introduced in [13], where the local problems within the tents are mapped to
cylindrical domains. On these cylinders, space and time can be separated, so that standard
spatial discretizations combined with time stepping can be used to solve the local problems
within the tents. To obtain high order convergence, these Mappend Tent Pitching (MTP)
methods require the use of structure aware time stepping methods within the mapped
cylindrical domains, which were developed in [11, 14].
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1 Introduction

Another recent approach to reduce the complexity of the local problems within tents was
presented in [28], where they discretize the tents using a spacetime Trefftz discontinuous
Galerkin method. Since the Trefftz method just requires surface integrals, there is no need
to build and discretize N + 1-dimensional elements like in SDG methods.

Without tent meshes, many standard methods resort to ad hoc techniques (interpolation,
extrapolation, projection, etc.) for locally adaptive time stepping [10] within inexpensive
explicit strategies. If one is willing to pay the expense of solving global systems on space-
time domains [22, 26, 34, 35|, space and time can be treated equally and is it straight
forward to obtain adaptivity in space and time. In between these options, there are inter-
esting alternative methods, without using tents, able to perform explicit local time stepping
while maintaining high order accuracy [5, 15, 16] by dividing the spatial mesh into fine and
coarse regions. In contract to tent based methods, special techniques are needed at the
interface of fine and coarse regions.

The main contribution of this dissertation is the construction of high order explicit MTP
schemes, which have a low ratio of memory movements to flops, making them highly suitable
for the newly emerging many-core processors. The presented construction of MTP schemes
is based on the work published in [13]. For the derivation of the structure aware time
stepping methods, the works [11, 14] serve as basis, which is extended in this thesis.

Structure of the thesis

The basis of tent pitching methods is the finite speed of propagation defined by the con-
sidered hyperbolic problem. We give a generic definition of hyperbolic systems in chapter
2 and derive the speed of propagation for some linear and nonlinear examples. Having the
speed of propagation at hand, we discuss tent pitching algorithms and the novel mapping in
chapter 3. Further we introduce a discontinuous Galerkin method for the spatial discretiza-
tion after the mapping and apply explicit and implicit Runge-Kutta methods to propagate
the solution in time within the tents. Chapter 4 is dedicated to the derivation of structure
aware time stepping methods, which are essential to obtain high order methods. First we
derive Structure Aware Taylor (SAT) time stepping schemes for linear problems and extent
this idea to nonlinear problems by Structure Aware Runge-Kutta (SARK) time stepping
methods. In chapter 5, we investigate discrete stability properties of these structure aware
time stepping methods. This thesis is concluded with chapter 6, where we present several
numerical examples illustrating the abilities of these explicit MTP methods.
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2 Hyperbolic systems

In this chapter, we give the generic definition of the hyperbolic problems we want to
consider in this thesis, which follows the definition in [4]. Let the integer N > 1 denote the
dimension of our spatial domain Qg C RY. Further let the integer L > 1 denote the number
of equations of our system, which are posed on the spacetime cylinder = Qg x (0, tmax)
for a final time ty,. For given functions g : Q0 x RL — RE and f:Qx RL — REXN  the
problem is to find a function u : Q@ — RZ such that

gz, t,u(z,t)) + divy f(z,t,u(x,t)) =0, (2.1)

where 0y = 0/0t denotes the time derivative and div,(-) denotes the spatial divergence
operator applied row-wise to matrix-valued functions. Using subscripts do denote the
components (e.g. g; for the ith component of g and fj; for the (I,7)th component of f), we
can write (2.1) as

N
Ogi(x, t,u(x,t)) + Z Oi (fri(z,t,u(z,t))) =0, (2.2)

i=1

for all components ! = 1...L. The differentiation along the ith direction in RY is denoted
by 0; = 0/0x;. In examples, we will supplement (2.2) by initial conditions ug on Q¢ and
boundary conditions on 92y x (0, tyax)-

To define hyperbolicity, we require that the first order derivatives of g and f;, the ith
column of f, with respect to u exit. These L x L derivative matrices are denoted by D,g
(whose (I, m)th entry is dg;/Ou,,) and D, f; for i =1,..., N.

Definition 1. The system (2.1) is called hyperbolic in t-direction if, for any fixed u € R¥,
(z,t) € Q and any direction v € S¥~!, D, g is invertible and the eigenvalue problem

N
Z viDy fi(z,t,u) — ADyg(z,t,u) | v =0 (2.3)
i=1
has real eigenvalues \i (v, x,t,u),...,A\p(v, 2, t,u) and L linearly independent eigenvectors
vi(v,x,t,u),...,vop(v,x,t,u). These eigenvalues \;,i = 1,..., L are called characteristic

speeds.

Let ¢(z,t,u) denote the maximum of these characteristic speeds for all direction v on
the N — 1 dimensional unit sphere SV ~!. For simplicity, we assume that c(x,t,u) is given
(even though it can often be computationally estimated), so that the meshing process in
the next section can use it as input. The maximal characteristic speed is often called wave
speed or speed of propagation.
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2 Hyperbolic systems

2.1 Linear examples

For linear hyperbolic systems, we can use the linearity to write the hyperbolic system in
a simpler form. Suppose that A® : Q — REXL for i = 1,...,N + 1, are symmetric
matrix-valued functions and A® = AN+ is symmetric positive definite. By setting

L L
fh:ctu:ZAl and 1(x,t,u) ZA (z,t) up , (2.4)
m=1 m=1

the system (2.1) can be written as
0p(AWDu) +> " 0;(A%u) = 0. (2.5)

The derivatives of g and f with respect to u, forming the eigenvalue problem (2.3), are
given by Dyg = A® and D, f; = A®. Next, we consider some linear examples to get a
better understanding of the abstract definition of the characteristic speeds given by the
eigenvalue problem (2.3).

Advection equation

The advection equation
Opu + divy (Bu) =0 (2.6)

describes the transport of a scalar density function u : 2 — R along a given divergence-free
vector field 8 : Qo — RY. This fits into the framework (2.5) with L = 1, A®) = [1] and
@) = [B;(x)], for i = 1,..., N. The resulting eigenvalue problem is

[Z%@ ]v—O & A=v-8.

Since v € S¥71, we obtain c(z,t,u) = ||8|. Thus the characteristic speeds are bounded by
the Euclidean norm of the vector field §(x), which is the bound we expected.

Wave equation

For a given symmetric and positive definite material coefficient o : Q9 — RY*N | the wave
equation for the linearized pressure ¢ : 2 — R is

O — divy(a Vy ¢) =0 in Q. (2.7)

To put (2.7) into the framework of (2.5), we set L = N + 1 and define

u= [Z] = [_%st ﬂ e RL. (2.8)
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2.1 Linear examples

Then (2.7) yields
a 1o+ V=0, O+ divy ¢ = 0.
With the matrices .
t) _ o 0 (i) _ 0 e
A [ 0 J and A Lz‘T ol (2.8b)

where e; € RY denotes the ith unit vector, we obtain (2.7) in the form (2.5). This allows
us to formulate the eigenvalue problem for the characteristic speed

Yo 010
IV PR LA e
i=1

0 1| {vT O
This leads to the characteristic polynomial

p(\) = det [‘VATI fﬂ = AN ),

where I € RV*N denotes the identity matrix. For an isotropic material holds a = c21,
with the speed of sound ¢, and we obtain the characteristic speeds \; € {0,+cs}, for

i =1,...,N, as solutions of p(A) = 0. For the maximum of these characteristic speeds
holds
c(x,t,u) = max. [Ai(z)] = es(x). (2.9)

Maxwell equations

A more complex example is the Maxwell system

Ot (eE) — curl H = 0, (2.10a)
O (pH) 4+ curl E =0, (2.10Db)

for the electric field £ € R? and magnetic field H € R3, where permittivity ¢ and perme-
ability p are functions on 2. With the notation

0 E -E,
skewE = |—-FE, 0 E. |,
E, —E, 0

we can rephrase the curl operator as
curl E = div, skew E .

With the definitions
E I3 ) —skew H
u=[n] aw=[5] ama s | ] (2.11a)

the Maxwell system (2.10) can be written as conservation law of the form (2.2). In the
following considerations, we assume that the material parameters € and p are independent
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2 Hyperbolic systems

of the propagation direction. Thus ¢ and u are scalar functions and to fit into the linear
framework (2.5), we define the matrices

A [0 ol and A @ o | (2.11b)
where I € R3*3 is the identity matrix and € € R3*3 the matrix whose (j, k)th entry is
the Levi-Civita alternator €;;,. The eigenvalues problem (2.3) for the characteristic speeds
reads

{51 0 } ! [ 0 skew v
v=20

0 pul —skew v 0 ]v—)\v,

N
[Z v AW — xA®)
=1

and leads to the characteristic polynomial

-l e skew v A2 9 2
p(A) = det [—M_l skew v Y ] = <5M) (epX* —1)7.

The solutions of p(\) = 0 define the characteristic speeds \; € {0, :l:(eu)*l/z}, for i =
1,...,6, and we obtain

c(x,t,u) = max [Ai(z)| = W (2.12)

2.2 Nonlinear examples

When numerically solving nonlinear hyperbolic problem, one has to use stabilization tech-
niques to handle nonsmooth artifacts, like shocks, of the solution. We will use and entropy
based artificial viscosity, which is described in detail in §6.2.1.

Recall that a real function £(u) is called an entropy [32, Definition 3.4.1] of the hyperbolic
system (2.1) if there exists an entropy flux F(u) € R such that every classical solution u
of (2.1) satisfies 0:&(u) + divy F(u) = 0. Note that this equality does not need to hold for
nonsmooth solutions u. The pair (£, F) is called the entropy pair. We say that this pair
satisfies the entropy admissibility condition on Qo C RV if

€ (u(x,t)) + divy F(u(z,t)) <0, (2.13)

holds in the sense of distributions on 2. The inequality is useful to study the violation of
entropy conservation for nonsmooth solutions (like shocks). Nonlinear conservation laws
often have multiple weak solutions and uniqueness is obtained by selecting a solution
satisfying the entropy admissibility condition. These theoretical considerations motivate
the use of numerical analogues of (2.13) in designing schemes for conservation laws.

Next, we give two examples of nonlinear hyperbolic problems and their entropy pairs.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.2 Nonlinear examples

Burgers’ equation

As first nonlinear model problem, we consider the Burgers’ equation, which we obtain by
setting L =1, N € {1,2},

1
g(z,t,u) =u R and flx,t,u) = §[u2]N e RV, (2.14)

There holds D,g = 1 and D, f; = u, for ¢ = 1,..., N, and the corresponding eigenvalue
problem (2.3) reads

N N
[Zmu(w,t)—)\]v:() & )\ZUZW.
=1 =1
For v € SV~ holds

\F|u:1:t)]

olz,tyu) = max |A| = |u(z,t)] max

N
> v
=1

In contrast to the previously discussed linear problems, we now have a solution dependent
characteristic speed.
An entropy pair (£, F) for the Burgers’ equation, satisfying the condition (2.13), is given

by the functions
3

E(u)=u?® and F(u) = % (2.15)

Euler equations

Another well-known example is the Euler equations, described by the density p : Qo — R,
the momentum m : Q9 — RY and total energy E : Q9 — R of a perfect gas occupying
Qo CRY. Set L =N +2 and let

P mT
u=|m|, glu)=u, fluy=|P[+mem/p|, (2.16a)
E (E+ P)mT/p

where m ® m = mmT € RV*Y denotes the outer product of the momentum m. Here, the
pressure P and temperature T are related to the state variables by

1 4 (F 1 Hm”2
== 2.1
5PT and T <,0 2 2 ) (2.16b)

where d, the degrees of freedom of the gas particles, is set to 5 for ideal gas. With these
settings, the system of Euler equations is given by (2.1).
For the calculation of the wave speed we refer to [18] where they derive a methodology
to obtain an upper bound of the wave speed without computing the full solution.
A well-known entropy pair (€, F) for the Euler equations, satisfying the condition (2.13),
is given by the functions
mé&

E(p,m,E)=p(lnp—2%Inr) and F(p,m,E)= e (2.17)
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3 Tents

The Mapped Tent Pitching (MTP) schemes we present later in this chapter fall into the
category of methods that use tent pitching for unstructured spacetime meshing. Accord-
ingly, in this chapter, we first give a general description of tent meshing, clarifying the
mathematical meaning of words we have already used colloquially such as tent, tent pole,
advancing front, etc. in §3.1 and then give details of specific meshing algorithms that we
have chosen to implement in §3.2. Based on such a tent mesh, we introduce a mapping in
§3.3, which allows to discretize space and time separately. In §3.4 we discuss explicit and
implicit temporal discretizations leading to fully explicit and locally implicit MTP meth-
ods. This chapter is ended by the examples of the inverse map in §3.5 which is required
during the explicit time stepping.

3.1 Overview of a tent pitching scheme

We now describe how a tent pitching scheme advances the numerical solution in time.
We mesh Qg by a simplicial conforming shape regular finite element mesh 7 = {T;,i =
1,...,N7}. The mesh is unstructured to accommodate for any intricate features in the
spatial geometry or in the evolving solution. Let P;(7) denote the set of continuous real-
valued functions on y which are linear on each element of 7. Clearly any function in
Py (T) is completely determined by its values at the vertices V = {v;,i = 1,..., Ny}, of the
mesh 7.

At the ith step of a tent pitching scheme, the numerical solution is available for all = € g
and all 0 < ¢ < 7(x). The function 7; is in P;(7) and its graph, denoted by S;, is called
the advancing front (see Figure 3.1).

s~

T .
7,\5,,' \\\\
P

Wy (i)

Figure 3.1: Advancing fronts 7;,_1 and 7; at the ith step and the tent K; over
the vertex patch w i) centered at the vertex v based on a one-
dimensional spatial mesh.
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3 Tents

We present a serial version of the algorithm first. A parallel generalization is straight-
forward as mentioned in Remark 1. A tent pitching scheme updates 7; within the general
outline of Algorithm 1.

Algorithm 1 Advancing front of tents and approximate solution

1. Initially, set 79 = 0. Then Sy = 4. The solution on Sy is determined by the initial
data on .

2. Fori=1,2,..., do:

a) Select a mesh vertex v(¥) and calculate the height (in time) k; by which we can
move the advancing front at v(?). Detailed strategies are discussed in §3.2.

b) Given the solution on the current advancing front S;_;, pitch a spacetime tent

K; by erecting a tent pole of height k; at the point (v(?), 7,_;(v())) on S;_1. Let

n; € P(T) be the unique function that equals one at v(¥) and is zero at all other
mesh vertices. Set

Ti = Tie1 + kimy . (3.1)

Define the vertex patch w, of a mesh vertex v as the (spatial) open set in RY
that is the interior of the union of all simplices in 7 connected to v. Then the
tent K; can be expressed as

Ki ={(z,t): v € wyy, Ti—1(x) <t < 1(x)}, (3.2)

see Figure 3.1.

¢) Numerically solve (2.1) on K; (e.g., by the methods proposed later in this thesis).
The initial data is obtained from the given solution on S;_1. If v € 89y, then
the boundary conditions required to solve (2.1) on K; are obtained from the
given boundary conditions on the global boundary 9y x (0, tmax)-

d) If 7(v) > tmax for all mesh vertices v, then exit.

The height of the tent pole k; in step 2a of Algorithm 1 should be determined using the
causality constraint so that the hyperbolic problem (2.1) is solvable on the resulting tent
K;. The choice of the vertex v(¥) should be made considering the height of the neighboring
vertices. Other authors have studied these issues [6, 33] and given appropriate advancing
front meshing strategies. In the next section, we describe the strategies we have chosen to
implement and discuss their advantages and disadvantages.

3.2 Tent pitching algorithms
We now describe strategies how to calculate the possible advance in time, e.g. the height

of the tent pole k;, such that the new advancing front satisfies the causality constraint.
Let ¢(x) denote a given (or computed) approximation to the maximal characteristic speed

10
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3.2 Tent pitching algorithms

¢ x . T
v T v T

Figure 3.2: Domain of dependence (blue filled) of light cone with slope % in the context
of tent pitching in one spatial dimensional.

at a point (z,7;,—1(x)) on the advancing front S;_1, e.g., ¢(x) = c(x, 1i—1(z), u(z, 7-1(x)),
where w is the computed numerical solution. We want to ensure that

1
Ve 7i(2)]| < EE) (3.3)
holds for all advancing fronts 7; and all € Qy. Here || - | denotes the Euclidean norm.

This is our causality condition, which is imposed even before we have discretized the hy-
perbolic problem. Note that this has also been called the cone constraint in [6], where it
is geometrically interpreted as every tent facets separates the domain of influence (light
cone opening above) from the domain of dependence (light cone opening below). Thus the
causality condition (3.3) is satisfied, if the domain of dependence lies below the new ad-
vancing front S; for every point (x, 7;(x)). Figure 3.2 compares two tents with a lower (left)
and a higher (right) advance in time at the central vertex v. While the left tent satisfies
the causality condition (3.3), the right one does not, because the domain of dependence
exceeds the advancing front, as illustrated for the point (Z, 7(Z)).

First, we present a strategy in §3.2.1, which has a low computational effort and applies
verbatim in one, two and three space dimensions. The causality condition (3.3) is enforced
on the edges of the spatial mesh. Thus, (3.3) is fulfilled up to a constant depending on the
shape regularity of the spatial mesh. The second strategy in §3.2.2 obtains the maximal
possible advance in time by solving the quadratic inequality arising from the causality
condition (3.3). This approach guarantees the bound given by (3.3), but is computationally
more expensive.

3.2.1 Edge-based tent pitching algorithm

For simplicity, we now assume that ¢ is independent of time and instead of (3.3), we impose
the more stringent condition
1
|V (7l 7)) < i forall T € T, (3.4)
T

where ¢r = max,er &(x). Since 7|p is linear, its gradient is a constant vector that is
determined by its tangential components along the edges of T'. The tangential component
on a mesh edge e of length |e| is (7;(e1) — Ti(e2))/|e|, where e; and es denote the endpoints

11
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3 Tents

of e. Due to our assumption that the initial spatial mesh is shape regular, we can guarantee
that (3.4) holds by imposing

where ¢, is the maximum of ¢p over all elements 1" which have e as an edge and Cr is a
constant that depends only on the shape regularity of the mesh 7. In one space dimension,
condition (3.5) with C7 = 1 is equivalent to (3.4), since the edge corresponds to the volume
element. Condition (3.5) is easier to work with in practice and is the same in one, two and
three space dimensions. A practical strategy is to start with a guess for C'r- like 1/3, check
if the values of V, 7; at the integration nodes (which need to be computed anyway as will
be clear later) satisfy (3.4), and revise if necessary.

To obtain an advancing front satisfying (3.5) at all stages ¢, we maintain a list of potential

(

time advance l;ll) that can be made at any vertex v; € V. Let & denote the set of all mesh
edges connected to the vertex v; and suppose edge endpoints are enumerated so that e; = v;
for all e € &. Given 7; satisfying (3.5), while considering pitching a tent at (v;, 7;(v;)) so
that (3.5) continues to hold, we want to ensure that

7.(3)
Ti(Vl)-i-k —Ti<€2)
(r) 1) e e
le] Ce le] Ce

() + ) t7ile) oy
<

hold for all e € &. The latter inequality is obvious from (3.5) since we are only interested
in l;:l(z) > 0. The former inequality is ensured if we choose

k" < min (Tz‘(€2) —7i(vi) + |€|CC’T> ) (3.6)

e€&; e

as done in the Algorithm 2 below. The algorithm also maintains a list of locations ready
for pitching a tent. There exist various approaches how to select positions where to pitch
next. In the following we want to discuss two approaches.

Relative progress criterion

For this approach, it needs the reference heights 7, = min.cg, |e|C7/ce (the maximal tent
pole heights on a flat advancing front) which can be precomputed. Set l;:l(o) =r7;. A vertex
v; is considered a location where “good” progress in time can be made if its index [ is in

the set
Ji = {l : l;:l(l) > ’yrl} . (3.7)
Here 0 < v < 1 is a parameter (usually set to 1/2). While a lower value of v identifies

many vertices to progress in time moderately, a higher value of ~ identifies fewer vertices
where time can be advanced more aggressively.

12
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3.2 Tent pitching algorithms

Local minima criterion

In this approach tents are always pitched at one of the local minima of the advancing front.
Then the neighboring vertices, which are all ahead in time of vertex v; where we want to
pitch, impose a less restrictive bound. This becomes clear when looking at (3.6), where
7i(e2) — () is guaranteed to be nonnegative for all edges e € & connected to v;. The list
J; of ready vertices at the ith step is given by

Ji={l: 7i(e2) > 7i(vy) Ve € &} . (3.8)

Algorithm 2 Updating potential pitch locations and time steps

Initially, 70 = 0, & = r; and Jo = {1,2,...,Np}. Fori > 1, given 7;_y, {k' "}, and
Ji—1, we choose the next tent pitching location v(® and the tent pole height k;, and update
as follows:

1. Pick any I, in J;_1.

2. Set v()) = vy, and k; = min <tmax — Ti—1(vy,), l;l(ffl)) .
3. Update 7; by (3.1).

4. Update /271(2) for all vertices v; adjacent to v(¥) by

= (i ) C
kl( ) = min <T7;(62) —7i(vy) + le| cT> . (3.9)

e€e&;

5. Use {INﬂl(Z)} to set J; using (3.7) or (3.8).

3.2.2 Volume-based tent pitching algorithm

Again, we assume that c¢ is independent of time and impose the element-wise condition
1
IV (i)l < —, forall T € T, (3.4)
T

where ¢ = max,er ¢(z). The simplicial elements T' € T can be represented by the convex
hull ‘
T =conv{v},j=1,...,N + 1}

of its N + 1 vertices VJT € V. Let )\Jf € P(T),j=1,...,N + 1, denote the barycentric
coordinates, which satisfy
; 1 j=k
Nowh)y =9 0T
0 j#k.
Since 7;|7 is linear, we can decompose it with respect to the barycentric coordinates and

obtain
N+1

(ril7) (z) = Y dhNp(a)

J=1

13
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3 Tents

with the coefficients dz_f = Ti(v%,) for j = 1,...,N 4+ 1. The gradient of 7|7 is then
represented by the constant vector

N+1 ' '
Ve(Tilr) = > &) Vi XNy (3.10)
j=1

We now consider pitching a tent at the advancing front (v;,7;(v;)) for any v; € V.
Therefore we have to calculate the possible tent pole heights given by the neighboring
elements T' € Ty, of v;, where T, C T denotes the collection of elements in the vertex patch
wy,. For all T € Ty, we find a k € {1,..., N + 1}, such that V’% = v;. Thus we want to find
the maximal coefficient d%, such that (3.4) holds true. Using (3.10), the quadratic norm of
the gradient reads

N+1 N+1 ) ]
IV () 1P =3 dodly Vo N Vi My
j=1 I=1
N+1 ) ‘
= |V [P (d5)° 2 (3 AV N ) - Vi AR b
j=1
J#k
N+1N+1 ' '
+ D ddy Vo Ny Vi My
j=1 =1
J#k 1#k
With the constants «, 5,7 € R defined by
N+1 ) )
o=V MlE B=2 (D N VA,
j=1
J#k
N+1N+1 ' )
Y=Y Y ddr Ve Xy Ve N
j=1 I=1
Gk 17k
we obtain the inequality
2 1
IV (rilr)|* = a(d7)” + Bdf +7 < (3.11)

T

which is equivalent to the element-wise causality condition (3.4). To obtain the allowed
advance at the vertex v%, we have to find the maximal d’% such that the quadratic inequality
(3.11) holds. By solving

1 2 1
Ve (ml) 1> — = = a(dh)” + Bdf +~v — - =0,
CT CT

_ A ij —doy (3.12)

we obtain two candidates

(47);

14
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3.2 Tent pitching algorithms

where ¥ = v — C% Due to the symmetry of the causality condition, one solution lies in the

T
“past” and one in the “future”. Thus we are interested in the maximum of these two and
we ensure the causality condition if we choose

D < min (max { (d& (dk —T1i(vy) ) -
¢ < puin (max {(dh),, (dh),} — miw))

Algorithm 2 can be easily modified by replacing (3.9) with the above derived bound

];l(i) _ 7{161171_31 (max{(déﬁ)l, (dl%)z} — T,‘(Vl)) .

3.2.3 Discussion of the presented algorithms

To generate a tent pitched spacetime mesh, one can follow the general framework described
in Algorithm 1. Based on this, one has to specify a selection criterion for the next location to
pitch, where we gave two possibilities in (3.7) and (3.8). After selecting a vertex to pitch at,
one needs an estimate for the allowed advance in time. Here we described two procedures,
one based on the gradients along the edges of the tent in §3.2.1 and one calculating the
exact gradients of the tent facets in §3.2.2. Next, we discuss the properties of the resulting
tent pitching algorithms when combining the mentioned approaches.

The criterion (3.8) to pitch tents only at local minima is very restrictive and leads to
a lower number of tents in the resulting time slab, compared to criterion (3.7) selecting
vertices where “good” progress can be made. Thinking about parallelization as described in
Remark 1, pitching at local minima results in a larger number of layers in the time slab and
hence less tents per layer. This does not favor the parallelism which performs best with as
many tents per layer as possible. How restrictive the criterion (3.8) is, becomes clear when
using it in combination with the volume-based tent pitching algorithm in §3.2.2, where
locks can occur — see Remark 2. Having all this in mind, we decided to use the “good”
progress criterion (3.7) in the remainder of this thesis.

After the selection of a vertex, we can use the volume-based or the edge-based tent
pitching algorithm to create the tent. The volume-based algorithm given in §3.2.2 pitches
more aggressively, which can cause locks as discussed in Remark 2. In comparison, the
edge-based algorithm given in §3.2.1 controls the tent height by one-dimensional gradients
along the edges and a shape regularity constant C'y. These one-dimensional problems along
the edges always allow an advance in time, since for a given vertex v;, the estimate INﬂl(Z) in
(3.6) will always be strictly positive if 7;(e2) > 7(v;) for all e € &. With a global shape
regularity constant C7, the edge-based algorithm leads to around 30% more tents in the
resulting time slab based on a two-dimensional spatial mesh than the volume-based one.
Using a local constant Cr for each vertex v € V, representing the shape regularity of the
vertex patch wy, both algorithms generate a comparable number of tents in the resulting
time slab.

Using the volume-based algorithm we rarely saw locks occurring with the “good” progress
criterion as well. Thus an artificial constant would be needed to control how “aggressive”
the volume-based algorithm pitches the tents to guarantee completion.

Overall we favor the edge-based algorithm because of its simplicity and the fact that we
can ensure completion, due to the reduction to the one-dimensional gradients in (3.5).

15
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(c¢) Tents forming layers 1, 2 and 3 (d) Tents forming layers 1, 2, 3 and 4

Figure 3.3: Parallel tents within different layers in two spatial dimensions.

Remark 1 (Parallel tent pitching). To pitch multiple tents in parallel, at the ith step,
instead of picking [, arbitrarily as in Algorithm 2, we choose [, € J;_1 with the property
that wy, = w, does not intersect w, ¢ for all j < i. As we step through 4, we continue
to pick such [, until we reach an index ¢ = 47 where no such [, exists. All the tents made
until this point, say K1, Ks,..., K;, form the layer L1. (An example of tents within such
layers are shown in Figure 3.3 — in this example one of the corners of the domain has a
singularity.) We then repeat this process to find greater indices iy < i3 < --- and layers
Ly ={K;, ,,Ki,_,+1,...,K; } with the property that w, ¢ does not intersect w, ) for any
distinct 4 and j in the range ix_1 < 14,j < ix. Computations on tents within each layer can
proceed in parallel.

Remark 2 (Lock in two spatial dimensions). To show that the criterion (3.8) is to restrictive,
we consider a single triangle and set the advancing front so that the element-wise causality
condition (3.4) does not allow any advance in time at the position of the local minimum.
This example just applies to the volume-based algorithm since the edge-based algorithm
relaxes the element-wise constraint to one-dimensional constraints along the edges.

For a general triangle T' = conv{ (a1, az), (b1,b2), (c1, c2)} with the coordinates a;, b;, ¢; €
R, i = 1,2, the advancing front 7 € P;(T) is determined by its values 74 = 7(a1,as),
78 = 7(b1,b2) and 7¢ = 7(c1,¢2) at the vertices A, B and C. Using the affine mapping

~

U : T — T, where T' = conv{(0,0), (1,0), (0,1)} denotes the reference triangle, we obtain

TA
1 —Co + bg Co — a9 —b2 + ag
V., T = 3.13
@7 detU’ | ¢t — b1 —-c1+a1 b1 —ar 77:5 ’ ( )

with det U/ = (b1 — a1)(c2 — a2) — (ba — az)(c1 — a1). For € > 0 we get an obtuse triangle
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3.3 Mapped tent pitching

T = conv{(0,0),(1,0), (—e,1)} and (3.13) yields

1 10 ZA B TR — T (3.14)
(I1+e) e 1 B~ e(tp —74) + 170 — TAl|’ '

VT = [_
C

where we used det U/ = 1. Assuming a local wave speed cp = 1, we substitute 74 = § > 0,
75 = 0 into (3.14) and solve || V, 7|| = 1 for the highest possible 7¢. For § < 1 we obtain
the solution 7¢ = v/1 — §2 4+ 6(1 + ¢) leading to a local minimum 75 = 0 at the vertex B.
The criterion (3.8) would now select the vertex B to pitch the next tent. As function of 7
the gradient of the advancing front reads

o TB— 90
i P ik

We now want to find 75 > 0, such that || V,, 7|| decreases. Therefore we consider

|27l = (75 = )° + (e +v/1 = 62)
=(1+eH)rh +2(eV/1-02-0)rp +1

and its derivative
d
—I Vorl? =21+ 75 +2(eV1— 62— 6).
B

For § < \/11? holds § < ev/1 — 62 and for any 75 > 0 follows

d 2

Thus increasing 75 to a value larger than 0 would lead to || V, 7|| > 1, violating the causality
condition. A similar calculation for 74 shows that increasing 74 leads to a decrease of
|| Vz: 7||. Hence the lock occurs for the local minima criterion (3.8) while the “good” progress
criterion (3.7) could select vertex A to proceed in time.

3.3 Mapped tent pitching

In this section we discuss a mapping technique that allows us to separate space and time
discretizations within tents. Domains like Qg x (0,7") formed by a tensor product of a
spatial domain with a time interval are referred to as spacetime cylinders. This tensor
product structure is used in many numerical methods since space and time discretizations
neatly separate. However, the tent

K ={(z,t): z € wym, ni—1(z) <t <7(x)}, (3.2)

is not of this form. Therefore, we now introduce a mapping that transforms K; one-to-one
onto the spacetime cylinder K; = w, @ % (0,1).
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3 Tents

Figure 3.4: Tent K; in two spatial dimensions mapped from a tensor product domain K;.

Define the mapping & : K; — K; (see Figure 3.4) by &(z,1) = (z, ¢(z, 1)), where
p(a,t) = (1 = mi-1(2) + tri(2), (3.15)

for all (x,7) in K;. Note that the (N 4 1) x (N + 1) Jacobian matrix of derivatives of &
takes the form

P = [(ijw)T g] : (3.16)

where 0(x) = 7;(z) — 7;,—1(x) is a linear function in space describing the tent height and I
denotes the N x N identity matrix. In analogy to the abbreviated notation 9; = 9/9z; for
spatial derivatives, we use the abbreviation 9; = 0/ Ot for the pseudo-temporal derivative
on kz

Theorem 1. The function u : K; — RY satisfies (2.1) if and only if it = uo @ : K; —» RE
satisfies

af(g(l’, tA? 'Il(.’E, i)) - f((lf, 57 "&(.T,

for all (z,t) in K;. In component form, (3.17) reads

A N

) Vi p(2,1)) + divy (5(2) f(z, %, a(z, 1)) =0 (3.17)

8£<gl( Zflz E ’& $ t)) l‘p(x t ) +26 flz( 7£7ﬂ(x7£))) =0 (318)
=1

for all (z,t) in K; and alll =1,...,L.

Proof. The proof proceeds by calculating the component-wise pull back of the system (2.2)
from K; to K; using the map ®. Using the given u, define F} : K; — RN by

fn(z, t,u(z,t))
Fi(a,t) = : ,

fin(z, t,u(z, b))
gl(xa t, u(x, t))
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3.3 Mapped tent pitching

and the pullback on K; by
Fy = (det &) (&)Y (Fy o D).

By the well-known properties of the Piola map,
divy, i Fi = (det @) (div(gy) F1) 0 &, (3.19)

where the divergence on either side is now taken in spacetime (RV*!). Note that det &’ = §
is never zero at any point of (the open set) K;. Writing equation (2.2) in these new
notations, we obtain (div(, , Fi)(z,t) = 0 for all (z,t) € K;, or equivalently,

A

(div(gs F1)(P(z,1)) =0
for all (z,%) € K;. Multiplying through by det® and using (3.19), this becomes
div, Ey(z,1) =0, on K;. (3.20)

To finish the proof, we simplify this equation. Inverting the block triangular matrix ¢’
displayed in (3.16) and using it in the definition for Fj, we obtain

R _ o1 0 5f;
Fl:detqyél[ }FZO@Z[A A:|7
( ) — (V)T 1 ( ) G — Ve fi
where fl is the vector whose ith component is f;;(x, t,4(z,t)) and §; denotes the [th compo-
nent of g(z,%,@(x,t)). Substituting these into (3.20) and expanding, we obtain (3.18). [

In the following, we consider a general tent
K ={(z,t): x € wy,op(z) <t < ()} (3.21)

over any given vertex patch wy. The functions ¢, and ¢; denote the bottom and top
advancing fronts restricted to the vertex patch w,. Theorem 1 maps the hyperbolic system
to the cylinder K = wy X (0,1), which opens up the possibility to construct tensor product
discretizations — rather than spacetime discretizations — within each tent K. For readability,
we omit the spatial variable 2 and pseudo-time  from the arguments of functions in (3.17)
and simply write

9; (g(a) — f() Va ) +divy (0f(a)) = (3.22)

0,
which describes the evolution of 4 along pseudo-time from ¢ = 0 to £ = 1. Since

A

p(x,1) = (1= D)pp(@) +tpr(z) = py(@) +10(2),

we may split g(4) — f(@) V; ¢ into parts with and without explicit dependence on pseudo-
time, allowing us to rewrite (3.22) as

0; ((9(@) — f(@) Vi pv) — £ (@) Vi 8) + divs (6f(a)) = 0. (3.23)
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3 Tents

Further we define

Mo(w) = g(w) — f(UJ) Va @b, (3.24a)
Mi(w) = f(w) Vg (3.24b)
M (t,w) = My(w) — tM1 (w). (3.24c¢)

Equation (3.22) is the starting point for our spatial discretization. Let P,(7") denote the
space of polynomials of degree at most p in x, restricted to the N-simplex T. We use a
discontinuous Galerkin method based on

Vi = {’U € [LQ(Q())] ’U|T S [ ( )] VT € T}
When restricted to the vertex patch w, we obtain
ViV = {0, 1 v € Vi} = {v € [La(Q0))" : 0|1 € [P(T)* VT € o}, (3.25)

where 7, C T denotes the spatial mesh of the vertex patch wy. Multiplying (3.22) by a
test function vy, € V}] and integrating by parts over the patch w,, we obtain

Z/éf : Vop, — Z/dfn ,07) - [ual, (3.26)

oM (t,a) vy =
Wy TeT, FeF,

for all v, € V;} and all t € [0,1]. The set of facets F, i.e., (N — 1)-subsimplices, of the
simplicial mesh 7, of the vertex patch w, is denoted by F,. Here and throughout, every
facet F'is assigned a unit normal, simply denoted by n, whose direction is arbitrarily fixed,
except when F' C 99, in which case it points outward. The traces 4™ and @~ of 4 from
either side are defined by
o7 = lim 4(x+sn) and 4 = lim a(x — sn).
s—07t s—07t

In (3.26), we also used a numerical flux f, on each facet F' (that takes values in R
depending on values 4,4~ from either side) and the jump [05] = @Z — 0, . Further we
define the mean value on the facet F by {4} = $(4* + @~). In these definitions, whenever

4™ falls outside €, it is prescribed using some given boundary conditions.

Let m = dim V)] and let v;, ¢ = 1,...,m denote any standard local basis for V}’. Intro-
ducing u : [0,1] — R™, we obtain the basis expansion

=3 wiiila). (3.27)
i=1

Further we define the maps Mg, M;, and A on R™ by

Mo(w)]; = /w v Mo<§wiwi(x)>wj(a:), (3.280)
My ()] = /w v M1<§;wi¢i(x)>z/)j(x), (3.28D)

m

=1
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3.4 Time stepping within tents

with

A(w,vp) Z/éf : Voy, — Z/(an wt,w7) - [on] - (3.29)

TeT FeF,

With these notations, (3.26) becomes the semi-discrete problem of finding u : [0,1] — R™

satisfying
d_ . . .
St u(t)) = Alu(t)), (3.30)

given some u(0) =ug € R™. Here M: [0,1] x R™ — R™ is defined by
M(E,w) := Mg(w) — £ My (w), 0<t<1, weR™
The nonstandard feature of (3.30) is that M is an affine-linear function of the pseudo-time
t, since our mapping enters through V, ¢ in (3.24).
3.4 Time stepping within tents

To get a better understanding of the nonstandard feature of the semi-discrete ODE (3.30),
we considering a general linear problem, as described in (2.5). The functions ¢ and f can
be expressed by symmetric matrix-valued functions A®@ : Q@ — REXL fori=1,...,N +1,
where A® = AN+ is symmetric positive definite — see (2.4). The linear hyperbolic
problem takes the form

N
Du) +> 0 (A%u) =0 (2.5)
i=1
on the tent K. By Theorem 1, we obtain the mapped problem

0| (4 - gj ADgip)a] + i 8,(5AV4) = 0 (3.31)
i=1 1=1

on the cylinder K. In this linear setting M (£, ) defined in (3.24) reads

M(i, ) < Z A® > (3.32)

Thus we obtain M(f,u()) = M(f)u(f), where M(f) € R™*™ corresponds to a mass matrix
whose entries are

() = [ Ml nte)yite) = [ (40 ZA o) (@ Dvn(en(e). (3.39)

Then, (3.30) yields
2 (u(Epu(d)) = Aa(d). (330

This allows the usage of either explicit of implicit Runge-Kutta methods for the temporal
discretization. In §3.4.1, we apply explicit Runge-Kutta methods to the system (3.34),
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which do not give the expected orders of convergence. This was first reported in [11],
where we introduced a Structure Aware Taylor (SAT) time stepping to overcome this issue
for linear problems. The idea of structure aware time stepping methods was then extended
to nonlinear problems by Structure Aware Runge Kutta (SARK) methods in [14]. These
structure aware time stepping methods will be discussed in chapter 4. In §3.4.2, we apply
implicit Runge-Kutta methods to the system (3.34). These methods do not show the
reduced convergence order, but they are memory intensive due to the rather large local
problems.

3.4.1 Explicit time stepping

With the local discontinuous Galerkin space
V¥ = {4 € [LAwo))" - |y € [By(T))* VT € To},

we obtain the semi-discrete ODE (3.34). Introducing the new variable Y(£) := M(f)u(t), we

can rephrase (3.34) as

d_ . T
d—gY(t):A(M(t) Y(#)). (3.35)

This form allows the direct application of standard ODE solvers, such as explicit Runge-
Kutta methods. As model problem, we consider the two-dimensional wave equation

Byt — dive(a Ve ¢) =0 (3.36a)

on the spacetime cube = [0, ]2 X [0, tmax], With tmax = v/27. The material parameter o
is set to the identity matrix, such that the speed of propagation is ¢, = 1. It is easy to see
that the classical standing wave

p(z,t) = cos(z1) cos(xz) sin(tv/2) /V/2, (3.36b)
is a solution of (3.36a). Written as hyperbolic system — see (2.8) — we obtain

sin(z1) cos(xo) sin(tv/2) /v/2
u(z,t) = a(@, )| _ |=(Va9)(@,0)| _ cos(x1) sin(xo) sin(tv/2)/v/2| . (3.36¢)
|:,u($,t):| |: (atﬁb)(x?t) :| COS(ﬂjl)COS(fL‘Q) COS(t\/i)
The initial data gp and pg is set to
qo =0, o = cos(x) cos(xz), (3.36d)

for (x1,x2) € Qp. Further we set the boundary conditions ¢-n = 0 on 9Q X (0, t;ax), where
n denotes the spatial component of the outward unit normal and we set the numerical flux
frn in (3.29) to the upwind flux

fn(fﬁ,a—):[o g] {a}+;["(’)ﬂ (1’] [al. (3.37)

nT
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3.4 Time stepping within tents

Before we apply the time stepping, we subdivide the interval [0, 1] into r subintervals
P - k
[ty tht1], k=0,1,...r—1, where t, = —.
r

Thus we obtain subintervals of the size 7(F = £k+1 — #. Then we set the initial data
YO = M(0)u(0) and perform the time stepping for k = 0,1,...,7 — 1:

i—1
kgk] = A(YW + ¥l ZaijAkE.k]>, 1<4<s,
=1
v =yl 7S s,
i=1

After the final step, we obtain YI"! as approximation to Y(1) at the tent top. The explicit
Runge-Kutta method is determined by the coefficient matrices

0
asy 0

b=(by,...,bs) eR> and A=| T . € RS,
as1 ... Ggs-1 0

usually expressed by the standard Butcher tableau i‘% The remaining coefficients

c € R? are set by the consistency condition

i—1
C; = E Qg -
J=1

Based on a spatial mesh with mesh size h, we generate a tent pitched mesh using the edge-
based algorithm in §3.2.1 with ¢, = 2 and C, = % The maximal slope || V; ¢|| is bounded
by 0.494 and we apply a discontinuous Galerkin method in space using polynomials of
degree p, with 1 < p < 4. On each cylinder we perform the classical fourth order Runge-
Kutta (RK4) method, given by the coefficients in Table 3.1, with r = 2p subintervals.
Letting g, (x) and pp(x) denote the computed solution at the final time t,ax, we measure
the spatial Lo-error ey of all field components by

& 1= (e tma) = (@), 0) + 1 tma) = (@)1 (339)

The errors are reported in Figure 3.5, where we observe that the convergence rates drop to
first order after showing slightly higher rates for the first refinement steps. For 2 < p < 4,
the error goes to zero at the rate of O(h), where the rate drops earlier for higher polynomial
degree p. In the case p = 1, we see a reduction of the convergence rate to 1.48 in the last
refinement step. We observe higher rates for larger mesh sizes because the error of the
spatial discretization dominates, while the error arising from the temporal discretization
comes into play when h tends to 0, causing the drop in the convergence rate.
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00 0 0 0

1 1

113 0 0 o0

1 1

o 3 0 o

10 0 1 0
1111
6 3 3 6

Table 3.1: Butcher tableau of the classical forth order
Runge-Kutta (RK4) method.

o p=1 =+ p=2 = p=3 —«+— p=4 - O(h)
100 T T T T

1072

10—8— (| Ll | -
102 10°1 10°

Figure 3.5: Spatial Lo-error ej of all field components for a two-
dimensional standing wave over the mesh size h when using
the RK4 method.
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3.4 Time stepping within tents

3.4.2 Implicit time stepping

For linear problems, implicit Runge-Kutta methods can be used to solve the local problem
on each tent. In the following, we consider the two-dimensional wave equation as described
in (3.36) and discuss the construction of locally implicit MTP methods. Here we use the
Brezzi-Douglas-Marini (BDM) mixed method and set

Vv = { = (r,n) € H(div,wy) x L} (wy) : 7|7 € [Py(T)N,nlr € Py(T) VT € Ty}

Using the definitions (2.8), the system (3.31) reads

0; [_%;T _vl”“’ 90] m + [ deinggJ — 0. (3.39)

Multiplying (3.39) by ¢ = (r,n) and integrating the first equation by parts, we obtain

il (B TVED L= L Lol %]

for all (r,n) € VY. Using a basis ¢; = (r4,m), ¢ = 1,...,m, of V)Y, we can define the

matrices -
Mi; () = /w ([—%mlgﬂ o SO] [ZZD . [;j ’

B — 577j . divx T
N w, = diva(07)) |’

(M(t)u(f)) =Bu(t) 0<i<1, (3.40)

to obtain the ODE system

for the coefficient vector u(f) € R™ of the basis expansion iy, (x,t) = >, u;(£)¥i(x). The
ODE in (3.40) has the same structure as (3.34), which we would have obtained using a
space V¥ C [La(wy)]* for the spatial discretization. The advantages of the mixed method
are that it does not require a numerical flux and the sparsity pattern allows a more efficient
inversion of the arising matrices in the implicit Runge-Kutta scheme.

For the temporal discretization of (3.40), we use an implicit high order s-stage Runge-
Kutta method of Radau ITA type [20, Chapter IV.5]. Note that due to the implicit nature of
the scheme, there is no CFL constraint on the number of stages (within the mapped tent),
irrespective of the polynomial degree p of the spatial discretization. These Runge-Kutta
methods are characterized by coefficients aj,, and ¢ for [,m = 1,...,s (forming entries of
a Butcher tableau) with the property that ¢s = 1. The remaining ¢; are determined by the
roots of appropriate Jacobi polynomials. With MY = M(#;) and the approximation u! to
u(t;), we obtain the linear system

Mol = w0l 4+ N " gy Bul™, 1 =1,0 s, (3.41)

m=1
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3 Tents

which can be easily solved for the final stage solution ul*!, given ul?.

We report the results obtained for (3.39) applied to the standing wave described in (3.36).
The final time tmayx = V27 and the spatial domain Qg = [0, 7]? is meshed by simplices using
a mesh size h. The parameters to be varied in each experiment are the spatial mesh size
h=27'1=0,...,7 and the polynomial degree 1 < p < 4 of the space discretization. The
tent meshing algorithm in §3.2.1 is driven by an input wave speed ¢, = 1 and C; = %
(leading to maximal slope || V., ¢|| = 0.722) to mesh a time slab of size .y - 27!/8. This
time slab is stacked in time to mesh the entire spacetime region of simulation Qg X (0, ¢yax)-
Letting gp(x) and pp(x) denote the computed solutions at time ¢ = tyax, we measure the
error norm ey, defined by

& = (- tme) — 220y + 11 ) — p1a 3z -

Figure 3.6a shows the convergence history for a fixed polynomial degree p = 3. We observe
that the rate is limited by the number of stages s of the Radau IIA method and the
polynomial degree p. Thus we set the number stages s = p for further observations. These
are compiled in Figure 3.6b, where the values of e; as a function of degree p and h are
plotted. We observe that ep, appears to go to 0 at a rate of O(hP).

Next, we consider the case of three spatial dimensions, where Qg = [0, 7]? is spatially
meshed with tetrahedral elements of size h = 27!+ for [ = 0,...,lnax, with
57 b= 17
Imax = 44, p=2,
3, p=3

Here, the number of refinement levels /.« is limit by the available 320GB shared memory.
Again, we use the algorithm in §3.2.1 with wave speed c. = 1 and C; = % to generate the
tents in the time slab of size tyay-27!/8, leading to maximal slope || V. ¢|| = 0.979. The final
time tymax = V37 and the exact solution is ¢(z,t) = cos(x1) cos(z2) cos(x3) sin(tv/3)/v/3.
This leads to the system

sin(z1) cos(x2) cos(z3) sin(tv/3) /v/3

w(w, ) = [q(w,t)] | cos(z1) sin(w2) cos(zs) sin(tv/3)/v/3

’ ] cos(1) cos(xo) sin(z3) sin(tv/3) /v/3
cos(x1) cos(xo) cos(z3) cos(tv/3)

w

(3.42)

which is used to set the initial values go = ¢(-,0) and po = p(-,0). The convergence history
plotted in Figure 3.7 shows that e, just as in the previous case, goes to zero at a rate of
O(hP). Note that the spacetime mesh of tents is now formed by four-dimensional simplices.
They are represented by the (three-dimensional) spatial mesh and the time coordinates of
the tent pole endpoints. Hence the storage requirements are those of a three-dimensional
mesh and not of an general four-dimensional simplicial mesh.

Although seeing high order rates O(hP) for the spatial error e, at the final time for these
locally implicit MTP methods, we observe that the available memory is a limiting factor.
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—o— §=1 - $§=2 5 s=3 —— s=4
e O(h) - O(h?) - O()

100 |

10—2 -

108 1

L1l | |
102 1071 10
mesh size h

(a) Rates for spatial polynomial degree p = 3 and an implicit
Radau ITA method with s =1,...,4 stages.

100 |
1073
<

10—6 |

1077}

10—12 | | |
102 101 10

mesh size h

(b) Rate for spatial polynomial degrees p = 1,...,4 and an im-
plicit Radau ITA method with s = p.

Figure 3.6: Convergence rates for a standing wave in two spatial dimen-
sion using implicit Radau ITA methods for the time stepping.
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- O) - O(?) - O

10!

10°

107!

€h
T T T 1T
Ll

1072

1073

| L
107! 10°
mesh size h

Figure 3.7: Convergence rates for a standing wave in three spatial dimen-
sion using implicit Radau ITA methods for the time stepping.

3.5 Inverse map

An important detail of the fully explicit MTP schemes, we did not discuss so far, is the
inversion of M. This could be done by solving Y(¢) = M(, u(f)) for u(#), but in many cases it
is possible to calculate an explicit inverse. Therefore we introduce the function § = M(t, )

and its basis expansion
m

In(x,t) = yilb)i(x).

=1

With the mass matrix
6= [ wi@ve),  1<ig<m,
Wy

we obtain the relation Gy(f) = Y(f) for the vectors y(#) and Y({). At any pseudo-time £,
given a ), € V¥ whose coefficient vector in the basis expansion is y(f) = G~1Y(#), we have
to solve Y(#) = M(Z,u(t)) for u(t). This equation, in variational form, is

M(t, ) - v, = / Uh - Uh, for all vy, € V. (3.43)

Wy Wy

This variational form is used in §3.5.1 to prove the existence of a solution 4; € V)’ for
linear problems on a tent K satisfying the strict causality condition

1
IVaoll < (3.44)
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3.5 Inverse map

with the maximal characteristic speed ¢. The causality condition clearly holds for the
function ¢, defined as convex combination of two advancing fronts in (3.15). The strict
bound in (3.44) can be guaranteed by choosing ¢ in (3.3) so that ¢ > ¢ when pitching the
tent K.

Whenever the inverse M1 (#,-) of M(Z,-) is at hand in closed form or some other com-
putationally convenient form, we use this form to obtain the solution u = M _1(f, 7). We
then perform a projection into V}' to obtain the coefficients u(#). For uncurved elements,
this just involves the inversion of a diagonal mass matrix. For the small number of curved
elements, we use a highly optimized algorithm which uses an approximation instead of the
exact inverse mass matrix. These inverse maps for some important nonlinear problems are
discussed in §3.5.2.

3.5.1 Linear examples

Before we show the existence of a solution of the variational form (3.43), we recall the no-
tation for linear hyperbolic problems introduced in §2.1, where we used symmetric matrix-
valued functions A®@ : Q — REXL j = 1,... N + 1, to describe the hyperbolic problem.
Further the matrix A® = AN+ is assumed to be symmetric positive definite. The
corresponding eigenvalue problem (2.3) reads

N
[Z yAD — xA®)
i=1

and we obtain the real eigenvalues Aj,...,Ar, which still depend on the direction v €
SN=1 on the N — 1 dimensional unit sphere. The accompanying L linearly independent

v =0, veRE,

eigenvectors e; € RE satisfy

N
(Z I/iA(i)>6j = )\jA(t)ej. (345)
i=1
Since the matrices AW, i =1,....,N 4+ 1, are symmetric, it is easy to see that the eigen-

vectors e; must be orthogonal in the (x,y) 4oy = yTA®x inner product.

Using this setting, we show that the strict causality condition (3.44) implies the existence
of a solution of (3.43) in Theorem 2, which implies that the inverse map M~!(%,-) is well
defined.

Lemma 1. For a linear hyperbolic system given by symmetric matriz-valued functions
AW o Q — REXL 4 = 1,... N 4+ 1, where AD = AN+ s assumed to be symmetric
positive definite, holds
N
UT(Z ul-A(i)>v <cvTAWy, Yu e RE, (3.46)
i=1

where ¢ denotes the mazimal characteristic speed of the system and v € SN, Further
there exists a constant C1 > 0, so that

N
ot <A<f> - Z@icpA(i))u <O |ulllvll,  Vu,v e RE. (3.47)
i=1
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Proof. Expanding any vector v € RL in the eigenbasis e; as follows,

V= Z’Uj(ij with v; = <U, €j>A(t)7

and by (3.45) we see that

UT<ZV7, )v—vTZv])\A ej = Z)\ |vj]2.

The maximum of the eigenvalues \;, j = 1,... L, over all possible directions v defines our
maximal characteristic speed c¢. Hence we obtain

N L
vT(Z l/Z‘A(i))’U < CZ 012 = ¢ (v,0) 40 = ¢ VT Ay
i=1 j=1

for all v € RE.
To show the second inequality, we expand any vectors u,v € R” in the eigenbasis

L L
U = g uje; and v = g vje;,
Jj=1 Jj=1

with u; = (u, e;) 40 and v; = (v, €;) 4. Using the expansion of uw and (3.45), there holds
N .
ol (A(t) - Z aiQDA(Z))u = TAWy — o7 Z (Z Bip AL ))
i=1

L
— 0T (1= || Vo pll ) A
j=1
Since |Aj| < ¢, for j = 1,..., L, the causality condition implies 0 < (1 — ||V ¢||A;) < 2
Together with the expansion of v, we obtain
L

N L
oT(AD =" 0 AD Ju= 3 (1 = | Vo el gy <23 sl
=1

j=1 7j=1

Using the Cauchy-Schwarz inequality, we get

L L L
S fullogl < (| D Jul2y | D o2 = Vur ADuyu1 A0y
J=1 j=1 j=1

Since A® is symmetric positive definite, there exits p > 0, so that wTA®w < pwTw for all
w € RE. Combining these inequalities, we obtain

N
vT (A(t) — Z &-g@/ﬂ“)u < 2V uT A/ pT Ay < 2uvuTuvvTv,
i=1

and setting C1 = 2u concludes the proof. O
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3.5 Inverse map

Theorem 2. Assuming the strict causality condition (3.44) on a tent K, there exists an
unique solution @ of the mapped equation § = M(t,4).

Proof. To prove the solvability of § = M (%, 1), we use its variational form (3.43) and show
that

ali,v) = / M 4)- b

defines a coercive, continuous bilinear form on [Ls(wy)]” for any ¢ € [0, 1].
Inserting M (t,), given by (3.32), into a(a, @) yields

a(a, i) = /w [(A@—ZA(")@-@)@} @

1=1

(40— ¢ 49|V, o)) -

where we used (3.46) with v = ”gf;i‘g”. The causality condition (3.44) for ¢ implies

—c|| Vz > 0 and together with the positive definiteness of the matrix , we get
1 Ve @ 0 and together with th itive defini f th ix A® g
that there exists constant C' > 0, such that

a(ii, @) > / (1=l Vael) (AY2) - @ > Cllit]| yuy, Vo€ [La(wy)]™. (348)

To show continuity, we apply (3.47) to a(,v) and obtain
N .
aw5) = [ (40 =3 a%0)a] -0 <01 [ Vaave s < Ol ol
“v i=1 Wy

where we used the Cauchy-Schwarz inequality to conclude the proof. O

As consequence of the proof of Theorem 2, we obtain the positive definiteness of the
matrix

Mij() = a(¥i,vy),  1<4,5<m, (3.49)
with 1); € V)Y, as defined in (3.33).

In the following we give explicit inverse maps for some linear hyperbolic systems, which
are then used in our numerical examples later in this thesis.

Advection equation

The advection equation is described by a divergence-free vector field 3 : Q¢ — R, which
leads to the functions A®) = [1] and A®) = [B;], for i = 1,..., N. For a given § = M (£, 0),
(3.32) reads

i=(01-8 V).
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3 Tents

The causality condition ||B|||| Vel < 1 implies (1 — 8-V, ¢) > 0 and we obtain the

solution )
Yy
1-B-Vpo

U =

(3.50)

Wave equation

We recall the definitions in (2.8) and restrict to an isotropic material, e.g. a = ¢2I, for the
following inverse map. Then, (3.32) yields

Yu Ve q+p)’
for a given § = [fiy, 9] € RY x R. We now have to solve (3.51) for ¢ € R, i € R. The
inner product of g, and V, ¢ reads

Jg - Ve =c52(G- Vo) — il Ve oll? = 52 (= 9) — 2]l Vi 1%, (3.52)

where we used the second component of (3.51) to substitute V, ¢ - . Rephrasing (3.52)

leads to . -
ﬂ _ y# +Cs(yq ) Vz(P)
L= Vepl?

which is well-defined due to the causality condition ¢|| V, ¢|| < 1. Further we obtain
G=c2(Gg+iVaep). (3.53D)

(3.53a)

Maxwell equations

For the derivation of the inverse map for the Maxwell equations, we recall the definitions in
(2.11). We split the given function § = M(f,a) € RS into §g,gx € R®, with § = [Jg, 9x].
Thus we have to find E, H € R3, such that

()= G eis), 534
The outer product of g and V, ¢ reads
Jp % Vop =B x Vo — (H x Yy 0) x Vo
=eEx Vo= (H-Vaog) Vo — (Vap- Vup)H)
= e — pnH) — (Vo (Vo @) H — || Vi o|*H), (3.55)

where we used the identity (a x b) x ¢ = (a-c)b— (b-c) a, for any a, b, c € R3, and expressed
E x V, ¢ by known quantities and H using (3.54). Rephrasing (3.55) leads to

[ = 1| Ve @l + Ve o(Va )T H = (e — G5 % Vi ),
with the identity matrix I € R3*3. This allows us to express the solution H by

- 1

1
= | I—-—V, o) T Nrr — ). .
ep— || Vaol? e Ve o (Vo p) ](EyH JE X Vi @) (3.56a)
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3.5 Inverse map

Repeating this derivation for E , we obtain

1 1
T — — Vo o(Ve )T (uiE — 9 Ve ). 3.56b
” HVMHQ[ o o(Vz ©) ](uyE Ju % Vz ¢) ( )

The solution (E, H) of (3.54) is well defined for || V, ¢|| < \/fi — our causality condition.

E:

3.5.2 Nonlinear examples

In this section, we present example of inverse maps for nonlinear problem, which we will
discuss later in this thesis. For a general nonlinear hyperbolic problem (2.1) defined by the
functions g and f, we have to find 4 for a given g, such that

= M(ta)=g(a) - f(@) Vayp. (3.57)

Burgers’ equations

Using the functions g and f in (2.14), defining the Burgers’ equation for N € {1,2}, the
nonlinear equation (3.57) reads

N1
§=1a-— Z;f&w.
=1

With the constant b = Zf\i 1 0ip, we are left to solve the quadratic equation

S

§u2—ﬂ—{—g}:0, (3.58)

which has the solutions

14+ +/1-2b7 _ 2y (3.59)

b 171207 '
We will now show that the causality condition (3.3) implies that these roots are real and
only one of the two roots is valid. Recall that the maximal characteristic speed is ¢ = /N |u|
and the causality condition reads

U=

1 1
V. <==—.
1926l < 3 =
For the constant b holds |b| < v/N|| V, ¢||, which implies
Ibi| < 1. (3.60)
Rewriting (3.58) as 2by = bi(2 — bit), we obtain
1—2bj=1—bua(2—ba)=(1—-ba)*>>0
and hence the existence of the roots in (3.59). To choose the correct sign in (3.59), we
rewrite the same as
b — 1 = £+/1 — 2bg. (3.61)
From (3.60), we conclude ba — 1 < |bu| — 1 < 0, i.e., we must choose the negative sign in
the + on the right hand side of (3.61). Thus we obtain the correct root
) 2
=Ml ) = —2 3.62
" 9= T = (362)
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3 Tents

Euler equations

For the Euler equations, using the definitions in (2.16), we want to find an explicit solution
4 = [p,m, E|T of (3.57) for a given § = [§,, Ym,yr]T. Thus we have to solve

@p p . ml'vﬂcso
Jm | = | M| — [P Ve + 500 Vap)m (3.63)
UE E (E+P)5(m- Vi)

for p € R,/ € RN and E € R. The system (3.63) is equivalent to

Uo _q Ve (3.64)

p p

) m-Vep\ . . o . -

Jm = (1— F m—PVx¢:?m—PVx<p, (3.65)

gE_<1_m wa)E_ﬁm Vet _Vepp plVew (3.66)
p p p p

A 112
H'anII , (3.67)
p

ood. . 1|m|?
E=— - . .
A (3.68)
Substituting (3.68) into (3.66) yields
. d.. 1|ml?9, .m- -V
o = Spg,+ 1] p"z o pr ot (3.69)

Next, we want to eliminate |||, 7 - V,, ¢ and p in (3.69). Thus, we rewrite (3.69) as

Iml?9 e P
7 = [|Gmll” + 2P (G - Vo ) + P7|| Vo |- (3.70)

The inner product of ¢, and V, ¢ reads

I Voo = i Voo = Pl Ve g,
and we obtain . .
m - R .
T = = (- Ve + P Val). (3.71)
P Yp
Using (3.70) and (3.71), we can rephrase (3.69) to
A d. . 1, . . . o .
Goie = 5 Pgp + 5 (1Gmll? + 20(Gm - Vi 0) + P2 Vo @ll) = P (I - Ve o + PI| Vo 0]?),
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3.5 Inverse map

which solely depends on P and known quantities. This leads to a quadratic equation in P,
which reads

0= 31 ol = 5328+ By — 3l (3.72)
The roots of (3.72) are given by
5o EVaE — [ VeglPar _ a2 (3.73)
I Ve o2 a1 F /af — || Vi o]%as’
where
ay = g@z, ag = 2057, — [|9m|*.

To choose the correct sign in (3.73), we consider the limit V, ¢ — 0, e.g. flat advancing
front, for which holds

9o | v, ©—0 p
Ym| — |M
UE E
Further we obtain
dA Vz p—0 d R
o = iy = 0%

R “ Ve ©—0 A ~
as = 29, — ||[gm||? ~—— 2Ep — [|ri]|?,

and therefore .
a Vo0 2Ep — ||m?
a ¥ v/af — [ Ve olPaz 20° F 50
To obtain a well defined P agreeing with the definition (3.67), we must choose the positive
sign in the F on the right hand side of (3.73) and the correct root is

P =

~ ag
P = . (3.74a)
ar +/ai — [ Vag|Paz
Substituting (3.71) into (3.64) yields
Y 1. R
L=1-— (ym'Vx<P+PHVz<P||2),
P Yo
and we get
2-72
p=- £ (3.74b)

Gp— (Gm - Vo + P| Vo)

The solutions 7 and E can be expressed using (3.65) and (3.66), respectively, and we
obtain

. D .

= 2= (- Voo + P Ve ) (3.74¢)
p

A

E="L <yE — (- V, (p)) . (3.74d)
Yp P

35


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4 Structure aware time stepping schemes

In the previous chapter we observed high order, but still suboptimal, convergence rates
O(h?) for locally implicit MTP methods when using polynomials of degree at most p for
the spatial discretization. Another limiting factor of these locally implicit methods is the
available memory, while fully explicit schemes have, using a matrix-free implementation, a
very low memory consumption. Thus our focus lies on fully explicit MTP methods and we
construct suitable time stepping schemes to recover the high order convergence.

Due to the mapping introduced in §3.3, the temporal discretization has a direct influence
on the spatial convergence. This becomes clear with the following lemma.

Lemma 2. The function 4. = u o @ satisfies

oka, .
ﬁ(x,t)—é(x) W(ﬂ?at)

at almost every point (x,t) = &(x,t) in the tent K.

Proof. Let e denote the spacetime unit vector in the time direction i.e., all its components
are zero except for the last (time) component which is 1. Then, at some fixed spacetime
point P = (x,t) and P = (z,t) = ¢(P), we have

oM
otk

(P) = 0™ (P)(e,e, ..., e€).
Here, in the argument list of the multilinear form representing the Frechet derivative 4%,
the vector e is repeated k times. By standard arguments [3] for affine maps,
oFu - .
=~ (P)=(uod)®)(P €, e, ...,e
g (D) = (wo @) (P)( )
=uB)(P)(Pe,Pe,... De)
= u®)(P)(be, be, . .., be)

where we have used (3.16) in the last step. Since the last term above equals the product
of 6¥ and the derivative 0%u/0tF at P, the proof is complete. O

The causality condition (3.3) implies that the tent height § < h. Since we perform the
time stepping for & = wo® in ¢, it is crucial that the time stepping scheme approximates the
Taylor expansion of @ properly. Otherwise the remainder term would introduce a scaling
with the mesh size h leading to reduced convergence rates, as we observed in §3.4.1.

With this knowledge, we want to design time stepping schemes that are aware of this
structure. In §4.1, we construct the Structure Aware Taylor (SAT) time stepping scheme
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4 Structure aware time stepping schemes

for linear problems and extend this idea to nonlinear problem in §4.2, where we derive
Structure Aware Runge-Kutta (SARK) methods. Both methods are applied to numerical
examples in §4.3 showing the recovered high order convergence rates.

The starting point for the temporal discretization is the semi-discrete ODE (3.30) recon-
sidered as differential-algebraic system

d_ - . . SO

(0 =a(u®),  ¥() =M u)). (4.1)
Recall that A is independent of pseudo-time ¢, and M is an affine-linear function of %, i.e.,

M(t, ) = Mg(-) — tMy(-), 0<t<I1. (4.2)

4.1 Structure aware Taylor time stepping

In this section, we develop a structure aware time stepping for linear problems, using the
notation introduced in §2.1. For any w € R™, the maps defined in (3.28) can be expressed
by the matrices A, Mg and My in R™*™ and the holds

A(w) = Aw, Mo(w) = Mg w, My (w) = My w, and M(t) =My — £ My.
With this notation, (4.1) simplifies to
Y (t) = Au(f), (4.3a)
Y(t) = M(£) u(). (4.3b)
Here and throughout we use primes () to abbreviate d/df. Further we subdivide the
interval [0, 1] into r subintervals
[trs tral], k=0,1,...r —1, where fk:é

This subdivision of the interval is done to obtain stability when using higher polynomial
degrees p for the spatial discretization, which we discuss in detail in chapter 5. Using the
subintervals, the matrix M(f) can be expressed by

ME) =M — (F—foMy, € [ fpa] (4.4)

where M([)k] = M(fy).
Remark 3. Subdividing the interval [0, 1] into r subintervals corresponds to splitting the

tent K into r “subtents”, as illustrated in Figure 4.1.

Consider the approximations to Y,u on [fy,{r41] in the form of Taylor polynomials
vl ulk ] of degree s and s — 1, respectively, defined for £ € [ty t,41] by

Y[k+1] (f) _ Z (t - fk) Y[k,n] 7 (4.5&)
n:
n=0
s—1 ,» 2 \n
W) = 3 @—Tj'c)u[w 7 (4.5D)
n=0 ’
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4.1 Structure aware Taylor time stepping

where Yl = (Y[k“])(n)(fk) and ulFn = (u[k+1])(n)(fk). To find these derivatives, we
differentiate both equations of (4.3) n times to get

For the second equation we used Leibniz’ formula ( f g)(”) =30 (7:) @ g(n=0) "and the fact
that M() = My — £M; is affine-linear. Evaluating these equations for the Taylor polynomials
Y1 wlk+1] gt § = §;., we obtain a recursive formula for Y*7 and u*" in terms of ulk-n—11
namely

ylknl = pylkn-1] 1<n<s,

4.
W gtk gl gl 1 <p<s—1, (4.5¢)

for all 0 < k < 7 — 1. Given Y0 = y({y), Myul®0 = y[00 applying (4.5¢) with k = 0
gives the approximate functions Y!!(£), ulll(#) in the first subinterval [fo,#1]. The recursive
formulas are initiated for later subintervals at n = 0 by

R0l = vk (7,), Ml olk0 =yl 1<k<r—1. (4.5d)

After the final subinterval, we get Y"!(£,), our approximation to Y(1). We shall refer to the
new time-stepping scheme generated by (4.5) as the s-stage SAT (structure aware Taylor)
time stepping.

Remark 4. Note that Y"!(£,) is our approximation to Y = Mu at the top of the tent. This
value is then passed to the next tent in time. The time dependence of M arises from the time
dependence of V. This gradient is continuous along spacetime lines of constant spatial
coordinates. Therefore, when passing from one element of a tent to the same element
within the next tent in time, Y is continuous (since the solution u is continuous). Of course,
on flat fronts Vi = V7 = 0, so there M is just a diagonal matrix containing the material
parameters.

4.1.1 Propagation operator of SAT methods

For the later use, we define the linear propagation operator on the tent T, , : R™ — R™,
which relates input Y(fy) and output Y')(£,) of the scheme described in (4.5) by

YU(E,) =T, Y(io). (4.6)

)

Further we introduce a partial propagation operator Tij . gm R™ relating the inter-

mediate quantities

v (dhg1) = Ti v 47

at the kth step of the scheme and there holds

r—1
Trs = H T[Tts_l]
=0
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4 Structure aware time stepping schemes

Given Y*0 and M([)k] ul0 = yI0l solving (4.5¢) leads to the coefficients
ylen] — ilk] H ( A 4 [k]> ylk0] 1<n<s,

with Al = A(Mgﬂ)f1 and M[lk] =M (M([)k])fl. The resulting Taylor polynomial (4.5a) at 41

for a s-stage SAT method reads
Alk] H ( By ( Uﬂ))y[lﬁo]’

Y (F, 1) (I + Z

where I € R™*™ denotes the identity matrix and Tkl = that1 — ty = % This leads to the
partial propagation operator

T[k]

kﬂ_¢+2: an(wu« — ). (4.8)

=1

[k+1]

Concluding this section, we give examples of Ty s ~ for s = 2, 3,4, for which we will discuss
discrete stability properties in chapter 5:

TL’fJ” T4 HER 2( 725K (R ) (4.9)
T = 1 R g (2R Y ) (4.10)
+ é(#kl)w (& ¢ 2 (5 4 ),
T = 1 4 7 HEH 2( 728 (R 4 i) (4.11)
o L (59 4 ) (59 4 )
1

o (PR (AW 4 3l (B 4 omlMy (R 4 wiMy.

4.2 Structure aware Runge-Kutta methods

In this section, we develop specialized Runge-Kutta type schemes that do not show the
above mentioned convergence order loss of classical Runge-Kutta schemes when being used
in explicit MTP methods.

We motivate the definition of the new scheme by reformulating (4.1) in terms of two
variables Z(f) and Y(f), defined by

z(f) =Mo(u(®)),  Y() =Mt u(®)) = 2(F) — tM (u(D)).

Then (4.1) implies
YA, 7 = AGu(d) + () (4.12)
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4.2 Structure aware Runge-Kutta methods

together with the initial conditions Y(0) = Z(0) = My(ug). The key idea is to avoid the
inversion of the time-dependent M at all £, limiting the inversion to just that of My. Assuming
we can compute the time-independent inverse My ! we define

A=aoMt M =M oMyt

Then, (4.12) yields the following ODE system for Y and Z on 0 < £ < 1:

A~

(2(1)) + (tM(z(2))), z(0) = Yo, (4.13a)
(z(1)), Y(0) = Yo, (4.13Db)

where Yo = My(up). The Integrating the equations of (4.13) from 0 to 7, we obtain

Il
=1

Zl
YI

I
=

Z(t) = Z(0) + 7™ (2(7)) + /OT A(Z(s)) ds, (4.14a)
Y(7) =Y(0) + /OT A(Z(s)) ds. (4.14Db)

The new scheme, defined below, may be thought of as motivated by quadrature approxima-
tions to the integrals above. Note that we are only interested in such quadratures that result
in explicit schemes. Moreover, we must also approximate 7M;(Z(7)) by an extrapolation
formula that uses prior values of Z, in order to keep the scheme explicit.

Definition 2. Given an initial condition Yo, an s-stage structure aware Runge-Kutta
(SARK) scheme for (4.13) computes

i—1 i—1
Z; =Yg+ TZdijlgll(Zj) + TZaijA(Zj), 1 <1< s, (415&)
j=1 j=1
s
Yo =Yo+7 Y biA(Z). (4.15b)
=1

This explicit method is determined by the coefficient matrices b € R$*1, A4 € R**¢, and
D € R**%, taking the form

0 0
a1 0 do1 0
b:(bla""bS)v A= . . , D= .
: . 0 0
as1 ... GQgs—1 0 dsl NN ds,s—l 0

D
Hence we use — 'Zt instead of the standard Butcher tableau i‘% to express our

scheme. Here we restrict ourselves to schemes where ¢ € R? is set by the consistency
condition

i—1
C; = Zaij. (4'16)
j=1
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4 Structure aware time stepping schemes

In §4.2.1, we shall develop a theory to choose appropriate values of a;;, d;;, and b;. Specific
examples of SARK scheme tableaus can be found in §4.2.2.

Recall that we need to solve the ODE system (4.13) for 0 < £ < 1 within each mapped
tent. Since the ¢ interval is not small, we subdivide it into r subintervals and use the
previously described s-stage SARK scheme within each subinterval, as described next.
This is done to enforce stability when using higher polynomial degrees p for the spatial
discretization, similar to the p-dependence of the CFL-condition for standard time stepping
schemes.

Application of multiple steps within a tent

As for the SAT time stepping, we subdivide the unit interval [0, 1] into 7 subintervals
I ~ k
[tky tes], k=0,1,...,r—1, where t = —,
r

and apply (4.15) within each subinterval as described next.
First observe that the above splitting of the unit ¢-interval corresponds to subdividing
the original tent K, as given by (3.21), into r “subtents” (see Figure 4.1) of the form
K ={(z,t): ©€wy, M <t < iy (4.17)
0] —

oy and ol = ;.

where ol = ©(#;). Clearly ¢l

Wy

Figure 4.1: lllustration of the subtent Kj, (shaded) defined in (4.17). It is the
image under @ of the tensor product domain Kj = wy X (fg, txr1)-

We then apply (4.15) to each of these subtents. Accordingly, let M[Ok] be defined by (3.24)
after replacing ¢ by w[k]. Keeping the same definition of A and My, let 1\71[1k] =M; o0 (Mgd)_l,
Ak = a0 (Ml[)k])_l, and 7I¥ = {; | — {,. Then the application of (4.15) on each interval
[tr, try1] results in Algorithm 3.

We conclude this section by defining the propagation operators of the above algorithm,
which we shall use later. At step k, we define the (generally nonlinear) partial propagation

operator Tij U, gm R™ using the intermediate quantities in the algorithm so that

TP (vIH) =yl (4.18a)

r
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4.2 Structure aware Runge-Kutta methods

Algorithm 3 SARK time stepping with subtents

1. If the input is Yo, an approximation to Y(0) at the tent bottom, then set Y% = y.
If the input is ug, an approximation to %(0) at the tent bottom, then set Y =y, =

MO(UQ).
2. For k=0,1,...,r — 1 do:
a) Fori=1,2,...,s, compute
i—1 i—1
ng] — ylK 4 K] Zdijﬁ[lk](zgk]) + K] Zaijﬁ’“](zg’“])-
j=1 j=1
b) Compute
ylE+1] — ylk] 4 (K] Z b; K] (ZE’“]).
i=1
3. Set

TS
Yr® =yl

Output this as the approximation to Y(1) at the tent top.

Let the total propagation operator on the tent T, : R™ — R™ be defined by

Trs =T o...0oTE o T (4.18b)
Clearly, the input and output of the algorithm are related to T, s by
Y7 =T, 5(Yo). (4.19)

4.2.1 Order conditions for the scheme

Appropriate values of a;;, d;j, and b; can be found by order conditions obtained by matching
terms in the Taylor expansions of the exact solution Y(7) and the discrete solution Y. To
derive these order conditions we follow the general methodology laid out in [19]. For this,
we need to first compute the derivatives of the exact flow, then the derivatives of the
discrete flow, followed by the formulation of resulting order conditions.

Derivatives of the exact solution

Continuing to use primes (/) for total derivatives with respect to a single variable like
d/dr, to ease the tedious calculations below, we shall also employ the nth order Frechet
derivative of a function g : D C R™ — V, for some vector space V. It is denoted by
g™ (w) : R™ x .-+ x R™ — V and defined by the symmetric multilinear form

n S " g(w)

11,8250y in =1
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4 Structure aware time stepping schemes

for any vi,...,v, € R™. Whenever g and w : (0,1) — R™ are sufficiently smooth for the
derivatives below to exist continuously, we have the following formulae:

2 g(u(r) = gV @) (7)), (1.20a)

2

& aw(r) = g () (7). (7)) + g () (), (4.20b)

3

& aw(7)) = ¢ ) (). (7). (7)) (4.200)
+ 3¢ () (7(7), (7)) + gD (7)) (" (7)),

d4

—19(w(7)) = g (w(r)) (W (1), (7),w(7),W (7)) (4.20d)
+ 693 (w(r) (W' (7), W (1), 9" (7)) + 49 ((7)) (w' (1), w" (7))
+39® (7)) (@ (), 9" (1)) + g (u(r)) (" (7)).

These formulae can be derived by repeated application of the chain rule (or by applying
the Faa di Bruno formula). We will also need to use

k k k—1
%(TQ(W(T))) = T%g(w(r)) + k%g(w(ﬂ), (4.21)

which is a simple consequence of the Leibniz rule.

We start by computing the derivatives of Z(7) at 7 = 0. To express such derivatives
concisely, we introduce the notation

o = A(z(0)), o™ (v, .. v,) =8 (Z(0) (v, ..., vn),
1= M,(2(0)), 1M (v, vy) =M (Z(0) (v, .. vn).

From (4.13a), it is immediate that z’(0) = A(Z(0)) + M(z(0)). Thus,
Z/(0) = a+ u. (4.22a)
For the next derivative, we differentiate (4.13a) and with (4.21) we get
2(r) = Kz(r)) + (7 (2(7)))" = K(z(r)Y + ity (2(r))" + 200 (2(7))'
Simplifying Z”(7) using (4.20) yields

2"(r) = K (2(r))(Z'(r)) + 20" (2(7))(Z' (7))
+7 (1P (2(n)(Z'(r),Z/(1) + 1 (2(r)) (2" (7))

and by evaluating at 7 = 0, we obtain

z"(0) = (o™ + 24 (a + p). (4.22D)
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4.2 Structure aware Runge-Kutta methods

By the same procedure, starting with 2" (7) = A(Z(7))” + (7M1 (Z(7)))"” and using (4.21)
and (4.20), we obtain

Evaluating at 7 = 0 leads to

2"(0) = (a® +3u®) (a + p, o + p) (4.22¢)
+ (a(l) + 3,u(1)) ((a(l) + 2u(1)) (o + ).

Armed with (4.22), we proceed to compute the derivatives of Y. The first derivative Y'(7) =
A(Z(7)) is given by (4.13b). Using (4.20), we obtain the higher derivatives

Y'(7) = A9 (2(r))(Z (7)),
Y (r) = B (2(7))(Z(7), 2/ (7)) + AV (2(7)) (2" (7)),
Y"(r) = A (2(r)(Z' (), 2 (7),Z (7))
+3A4)(2(7))(Z'(7), 2" (7)) + A1 (2(7))(2"(7))
Evaluating these derivatives at 7 = 0 using the previously computed derivatives of Z
in (4.22), we get
Y'(0) = A(Z(0)) = «, (4.23a)
Y'(0) = aV(a + p), (4.23D)
Y"(0) = P (a + p, o + ) + oY ((a(l) + 2,u(1)) (a+p)), (4.23c)
Y"(0) = a®(a + p,a + p,a + p) (4.23d)
(

+3a®(a+ p, (V) +2p0) (@ + )
+aM ((@® + 3P (o + p,a + p))
+ oM ((@® +3uM) (@ + 2uM) (o + ).

Derivatives of the discrete flow

The next task is to compute the coefficients of the Taylor expansion of the function Y,
defined in (4.15b). The arguments Z; in (4.15b) are also functions of 7, as given by (4.15a).
Therefore, in what follows, we first differentiate Z; = Z;(7) and then Y.

Obviously, Z;(0) and Z(0) coincide, so we will focus on the first and higher derivatives of
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4 Structure aware time stepping schemes

; at 7 = 0. To this end, we differentiate (4.15a) k times, using (4.21), to get

k. k k
LZIJZZ [dz]ddk(TMl( ( )))+allddk( A(Z(T)))]

dr
]’L

_Z[ (del i(7 ))+aijﬂ(2j(7)))

1<t
dk-1 _ -
ke (At (2i0) + bz ()]
The kth derivatives vanish when evaluating at 7 = 0, thus we introduce

dk

0u(r) = o (i (25(7)) + aigh(z;(7)) ).

containing the vanishing terms. The kth derivative of Z; reads

d*z; :Z [kcii_ll<dijp[1( (7)) + ai;A(z;( ))> 7Ok )}

drk —
1<t
The first derivative

Z(r) =Y [dijwzm) T ayh(z;(r) + Telm}

j<i

is directly given by (4.24) for k = 1. Using (4.20), we obtain the higher derivatives

Z/ (1) = Z Q(dijl‘N’h (Z; (1)) + a;;A(Z; (7’))’) + 7'92(7')]
j<i b

= Q(dijﬂgl)(zj (T))(Zz (7‘)) + aijZ\(l)(Zj(T))(Zg (T))) + 7—92(7'):| .

j<i -
20/(r) = 3 |3 (4@ () + sz (r))') + 763(7)
Jj<i -
=" |3y (M7 (M)(Z (). 2(7) + 1 (2,(r) (2 (7))
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4.2 Structure aware Runge-Kutta methods

Evaluating (4.25) at 7 = 0, we get

Z:(0) = Z dijp + agja,
7<i
Zg(O) =2 Z Z (diju(l) + aija(l)) (djk,u + ajka),
7<i k<j
Z;”(O) =3 Z Z Z (dz‘ju(z) + aija(z)) (djk,u + ajra, djl,u + ajloz),
I<t k<j l<j

+6 > > (digu +ayaD) ((djpn'™ + ajraV) (dp + awa)).

j<i k<j I<k
Next, we focus on Y,. By (4.15b), using (4.21), we obtain

k s k s k—1 k
=Y b (rhzi(r) = S b (RE(0) + T Rz ()]

Using (4.27) for k = 1,2,3,4 and (4.20), the derivatives of Y, read
Y (r) = 3 b [A(zi(7) + rh(zi(0)'|,
i=1

v(r) = 370 [3(AC) @) (Z(), Z(7) + AV @) (Z(7)) + Th(zi())"
=1

v () = b [4(R9 (2i(r)) (), Zi(r), Zi(7)) + 3B 2i(7) (Z4(7), 2 (7))
=1

(4.26a)

(4.26b)

(4.26¢)

(4.27)
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4 Structure aware time stepping schemes

Evaluating the resulting terms at 7 = 0 by means of (4.26), we obtain

=> b, (4.28a)
=1

" 0) =2 Z Z bia(l)(dij,u + aijoz), (4.28b)
i=1 j<i
Y (0) =3 Z Z Z bia? (dijp + ajjo, digpe + aip) (4.28¢)
i=1 j<i k<t
+6222b oW ((dijp™ + aijoW) (djpp + ajra)),
=1 5<i k<j

Y(0) = 422221} a wu—i—aija,dikﬂ—l—aika,duu—i-aua) (4.28d)

i=1 j<i k<i I<i

+24 Z Z Z Z bia P (dijp + agjer, (dipp™ + aia™D) (dgp + aga))

i=1 j<i k<i l<k

+12 Z D> i ((dip® + aija®) (djpn + ajper, djp + aja))

i=1 j<i k<j I<j

+24 Z Y20 b ((digp® + aiaD) ((djep™ + apaD) (dupn + ana))).

i=1 j<i k<j I<k

Formulation of order conditions

To obtain a specific method, we find values for a;;,d;; and b; by matching the coefficients
in the Taylor expansions of Y(7) and Y,. Note that Y,(0) = Yo = Y(0), so the Oth order
coefficients match.

The next terms in the Taylor expansions will match if Y/(0) = Y.(0). For this it is
sufficient that

i b =1, (4.29)
=1

because of (4.23a) and (4.28a). To match the third terms in the Taylor expansions, equat-
ing (4.23b) and (4.28Db),

aW(a) + oM ZZ%dma 1) + 2biaijaM (a).

=1 j<i

Equating the coefficients of a(M) () and oM (1), we conclude that Y”(0) = Y/(0) if

22832@-%-:1 and 228321)1-%:1. (4.30)

i=1 j<i i=1 j<i
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4.2 Structure aware Runge-Kutta methods

To match the next higher order terms, Y”(0) = Y”(0), the expressions in (4.23c) and

(4.28¢) must be equated, i.e.,

a®(a,0) +20® (o) + o (p,p)

+aB(a(a)) +aV (@D ) + 20D (0 (@) + 200 (D (1)

- Z Z Z I:Bbidijdika@) (,U/nu) + Gbidijaika(2) (M, a) + 3biaijaika(2)(o¢, 04):|

i=1 j<i k<i

+6 Z Z Z [bidijdjka(ﬂ (D (1)) + bidijazua® (M (@)

i=1 j<i k<j

+ biagjdjpa ™ (@M (p)) + biaz’jajka(l)(o‘(l)(a))] '

For this equality to hold, the following seven conditions are sufficient as can be seen by
equating the coefficients of a® (o, ), a® (u, 1), @ (a, 1), M (@M (), a® (M (n)),

oW (M (a)), and a® (M (1)), respectively:

3ibi(2aij>2 =1,
i=1

i<t
32831%-(2%)2 —1,
i=1 Jj<i
32@(2%;’) <Zdij) =1,
i=1 J<i Jj<i
6 Z Z Z biaijajk = 1,
i=1 j<i k<j
6 Z Z Z biaijdjk = 1,
=1 j<i k<j
3 Z Z Z bidijajk = 1,
=1 j<i k<j
33 D) bidijdip =1.
=1 j<i k<j

(4.31a)

(4.31D)

(4.31c)

(4.31d)

(4.31e)

(4.31f)

(4.31g)

If one desires to further match the next higher order terms, Y/ (0) = Y"”(0), the expres-
sions in (4.23d) and (4.28d) must be equated. By equating the coefficients of a® (o, a, a),
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4 Structure aware time stepping schemes

a®(a, a, 1), a® (a, i, 1), and o3 (, 1, 1), we get the conditions

421) <Zam> —1, (4.32a)

7<t
4ibi(z%.) (X)) -1 (4.320)
i=1 j<i j<i
D (Ya) (T ) =1 (4.320)
i=1 j<i j<i
4Zb (Zdw) ~1 (4.32d)

The next eight conditions are obtained by equating the coefficients of o®(a, a(a)),
0 (a,a) (1)), a® (0, uD(@)), 0@ (@, (1)), 10,0 (@), 1u (e, (),
1 (0, 5V (), and 5@ (o, 1D (1)):

8 Z bl Qs Z Z aijajk = 1, (4326)
i=1 j<i j<i k<j

8> b aij ) (Y- aidi) =1, (4.32f)
i=1 j<i j<i k<j

83 b aij ) (Y- dijaz) =1, (4.32g)
i=1 1<t 7<t k<j

83 b g Z Z dijajr ) =1, (4.32h)

42[% dij ZZaijajk = 1, (4.321)
i=1 J<i 1<t k<j
s
4251 dij Zzaijdjk = 1, (4~32j)
=1 j<t 7<t k<j
s
42()1 dij szijajk = 1, (4.321{)
=1 j<t 1<t k<j
s
A b (D dig) (D0 dijaz) =1. (4.321)
=1 7<i 7<i k<j

Equating the coefficients of o (a?(a, a)), M (@ (a, 1)), oM (a® (u, 1)),
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4.2 Structure aware Runge-Kutta methods

oM (u®(a, a)), e (P (a,n)), and oM (1@ (u, 1)) leads further six conditions

12i2biaij(zajk)2 —1, (4.32m)

i=1 j<i k<j

1253 biag (D o) (D die) = 1, (4.32n)

i=1 j<i k<j k<j
1222biazj(2d3~k>2 =1, (4.320)

=1 j<i k<j
4ZZbidij<Zajk)2 —1, (4.32p)

i=1 j<i k<j
4zzbidij(zajk> <Zdjk> = 1, (4.32(1)

=1 j<i k<j k<j
4§:Zbidij(zczjk)2 ~1. (4.32r)

i=1 j<i k<j

The final eight conditions are obtained by equating the coefficients of a(M) (a(V)(aV(a))),
aM(aM(aM(w))), aM (@D (uM(a))), oM (@M (uD (1)), oM (M (M (a))),
o (M (@M (), oM (D (1M (a))), and o™ (@ (D (1))):

24 ZS: Z Z Z biaijajkakl = 1, (4.325)

i=1 j<i k<j I<k

24 ES: Z Z Z bia;ja;rdy = 1, (4.32t)

i=1 j<i k<j i<k

12 i Z Z Z biaijdjrar = 1, (4.32u)

i=1 j<i k<j I<k

12izzzbiaijdjkdkl =1, (4.32v)

i=1 j<i k<j <k

SZZZZbidija]‘kakl == 1, (432W)

i=1 j<i k<j I<k

8 Z Z Z Z bidijajkdkl == 1, (432X)

i=1 j<i k<j I<k

4 Z Z Z Z bidijdjkakl == 1, (432y)

=1 j<i k<j I<k

A3 NN bidijdpdi = 1. (4.32z)

=1 j<i k<j I<k
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4 Structure aware time stepping schemes

Matching the coefficients of the fourth order derivatives of Y and Y/ at 7 = 0 leads to a
total number of 26 conditions.

Thus, we have proved the following result, which summarizes our discussions on order
conditions.

Theorem 3. Whenever A and M are smooth enough for the derivatives below to exist con-
tinuously,

1. the condition (4.29) implies Y'(0) = Y.(0),
2. the conditions of (4.30) imply Y"(0) = YZ(0),
3. the conditions of (4.31) imply Y"(0) =Y (0), and

4. the conditions of (4.32) imply Y""(0) = Y"(0).

4.2.2 Examples of methods up to third order

Observe that the standard order conditions of Runge-Kutta methods are a subset of the
order conditions (4.29) - (4.31). Thus we base our SARK methods on existing Runge-
Kutta methods. Below, we shall refer to an s-stage SARK method based on an existing
Runge-Kutta method called “RKname” as “SARK(s, RKname)”.

A second order two-stage SARK method can be derived from a second order Runge-Kutta
method once we find d;; satisfying the additional condition

2
1
2221)2(11] =1 & body = 5, (4.33)

i=1 j<i

which was introduced in (4.30). For example, one may start with the standard explicit
midpoint rule and select dg; = 1/2 to satisfy (4.33), thus arriving at the “SARK(2, mid-
point)” method, listed first in Table 4.1. The table continues on to display further such
methods obtained from other well-known second order Runge-Kutta schemes.

The third order SARK methods in Table 4.2 are based on known third order Runge-
Kutta methods with three stages. The additional coefficients d;; are chosen, such that
(4.30)-(4.31) are satisfied.

0]0 0[O0 O 010 0[O0 O 00 00 O
1 1 1 2 2 2
i old o 212 02 o 1|1 0|1 0
1 3 1 1
o 1] I 5 4]
(a) SARK(2, midpoint), (b) SARK(2, Ralston), (c) SARK(2, Heun),
based on the explicit based on Ralston’s based on Heun’s sec-
midpoint rule second order method ond order method

Table 4.1: Examples of two-stage SARK methods.
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4.2 Structure aware Runge-Kutta methods

0 0 0 O 0 0 O 0]0 0 O 0O 0 O
1 1 1 1 1 1
3 5 0 O 5 0 O 5|3 0 O 3 0 O
2 2 2 !

1|-1 2 0|-3 4 0 2o 2 o|-2 4 0

1 2 1 1 3

6 3 © 1 0 3

(a) SARK(3, Kutta) method, based (b) SARK(3, Heun) method, based

on Kutta’s third order method on Heun’s third order method

Table 4.2: Examples of three-stage SARK methods.

4.2.3 Fourth order methods

In the previous section we constructed s-stage SARK methods of order s. As we will see
in this section, such methods do not exist for s = 4. Finally we discuss the construction of
5-stage SARK method of fourth order.

Nonexistence of 4-stage, fourth order SARK methods

Since the standard Runge-Kutta order conditions are a subset of the SARK order condi-
tions, we start with a set of coefficients a;j, ¢, = 1,...,4 and b;,¢;, i = 1,...,4 forming
an explicit fourth order Runge-Kutta method with s = 4 stages. This class of methods is
derived in [19, Chapter II.1] and has to satisfy the conditions ¢; = 0 and ¢4 = 1. Further
considerations show, that all possible sets of Runge-Kutta coefficients can be represented
by one of the following four cases.

RKA4.I ¢ # c3 with 0 < ¢; < 1,4 € {2,3} and

1 —2(cg + ¢3) + 6cacs 2c3 — 1
bl = 5 b2 = )
12c9c3 12¢c9(ca — 1)(c3 — ¢2)
1—2c¢o 3 —4(cg + ¢3) + 6eacs

12¢3(c3 — 1)(cg — ¢3)’ 12(1 — ¢2)(1 — ¢3)
with co, c3 such that b3 # 0 and by # 0.

RKAIl co=1%,¢c5=0,by=¢ — b3, bp=3,b3#0, by = ¢

RKAII cp=c3=1%,by =3, by =3 —b3, b3 #0, by = ¢

RKAIV cp=1,c3=13,by=%,bo=¢ — by, bg =13, by #0

Note that there holds b3 # 0 and by # 0 for all cases. For s = 4, the conditions (4.32s) and
(4.32t) yield

2454@43@320,21 =1 and 24b4a43a32d21 = 1,
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4 Structure aware time stepping schemes

which implies, using the consistency condition (4.16), that there holds
d21 — ag1 = C2. (4.34&)

The conditions (4.31d) and (4.31e) read
=c3
6 [b3aszaz1 + baassany + baags (asz +az1) ] =1,
6 [bsazadar + baasadar + baass(dzz + dz1)] = 1,

where we again used the consistency condition (4.16). Subtracting these two equations
leads to

6bsays(c3 — (dsg +d31)) =0,

and we obtain
dsz + d31 = cs, (4.34Db)

since b4 and a43 have to be nonzero to satisfy the order conditions of the underlying Runge-
Kutta method. Proceeding with the conditions (4.30), we obtain

2[baca + bges + baca] =1,
2[ba do1 +b3 (ds2 + ds1) +ba(das + dao + da1)] =1,
| I—

=cC2 =c3
which leads to the condition
daz + dag +dan = ca = 1. (4.34¢)

Using the consistency condition (4.16) and the corresponding condition (4.34) for the addi-
tional coefficients d;;, 4,7 = 1,...,4, the order conditions for second order SARK methods
reduce to the standard Runge-Kutta conditions

Z b =1, (4.35a)

! 1
> bici = 5 (4.35b)
=1

For the extension to third order, they have to fulfill the standard Runge-Kutta conditions

1 1
> bick = -, (4.35¢)
i=1 3
4 1
Z Z biaijc; = 5 (4.35d)
i=1 j<i
and one additional condition A
Z Z bidz‘jCj = é (4.356)
i=1 j<i
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4.2 Structure aware Runge-Kutta methods

Going to fourth order, the conditions separate into the standard Runge-Kutta conditions

1
R R
szcl T (4.35f)
=1
. 1
ZZbiciaijcj = g, (435g)
=1 j<i
& 1
D S
Zsza,] =T (4.35h)
=1 j<i
& 1
Z Z Zbiaijajkck = ﬁ’ (4.35i)
i=1 j<i k<j

and five additional SARK conditions

4
1 .
Z Z bicidijCj = 1, (4'35.])
=1 j<1
4
1
Z Z bidijcjz = 1, (4.351()
=1 j<i
4
1
Z Z Z bidijdjkck = Z’ (4.351)
i=1 j<i k<j
4
1
Z Z Z bidijajkck = é, (4.35m)
i=1 j<i k<j
4
1
Z Z Z biaijdjkck = ﬁ (4.3511)
i=1 j<i k<j

Based on a 4-stage, fourth order Runge-Kutta method, given by RK4.I-RK4.IV, we now
have to find a set of coefficients d;;, i,j = 1,...,4 satisfying

bsdsacy + ba(dazca + dazes) = %, (4.35¢)
baczdzacy + byca(daoca + dyzes) = i, (4.357)
bsdzach + by(daach + dyzc3) = i, (4.35k)
badazdzacy = i, (4.351)

badszazaco = i, (4.35m)

biaszdzacy = i, (4.35n)
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4 Structure aware time stepping schemes

and the consistency condition (4.34) to obtain a 4-stage, fourth order SARK method. The
conditions (4.35¢), (4.35j) and (4.35k) lead to the linear system

bsca  byca bycs\ [ds2 1 (4
b36302 b402 b463 d42 = E 3 y (436)
b3 C% b4 C% b4 C% d43 3

where we substituted the condition ¢4 = 1. The determinant of the linear system (4.36)
yields

bgcg b402 b403
det | bgcgea byco bycs | = bgbic%c;g(c;; — 02)(1 — Cg). (4.37)

bgc% b4c% b4c§
For the cases RK4.IT and RK4.ITI, with c3 = 0 and ca = c3 respectively, the determinant
of the linear system is zero, which implies the nonexistence of a solution for these cases.

The determinant (4.37) is nonzero for the other cases, since there holds b3 # 0 and by # 0.
Based on the coefficient in RK4.1, the solution of (4.36) is

—1

dzg = —— —— 4.38
32 12b362(63 — 1)7 ( a)
—2¢3(2¢3 —3) +c2— 3
dyo = 4.38b
42 12b4CQ(CQ — Cg)(Cg — 1)’ ( 38 )
4e3— 3
dyg = ——2 72 (4.38¢)

12b463(62 - 63) ’

Substituting (4.38a) and (4.38c¢) into the order condition (4.351), using the definition of b3
given in RK4.I, we obtain

1 402 -3

— = badyzd = & =0

g Pada3dzcy 1202 — 1) ) )
contradictory to our assumption co > 0. For the final case RK4.IV, we get the coefficients

1 1

32 4’ 42 ; an 43 3b4 )
as solution of (4.36). Again, these coefficients lead to a contradiction with the order con-
dition (4.351), which reads

1 1
badazd =—# —.
4043032C2 123‘&4

Thus we can conclude, that there exists no fourth order SARK method with s = 4 stages.

SARK methods of fourth order

As discussion previously in this section, there exists no solution of the order conditions
(4.29)—(4.32) for fourth order SARK methods with four stages. Thus we set s = 5 and
assume

i—1
c; = Z dijv (439)
j=1
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4.2 Structure aware Runge-Kutta methods

similar to the consistency condition of Runge-Kutta methods (4.16). For these consistent
methods the conditions (4.29)—(4.32) reduce to 14 conditions (4.40). Given ¢;, i =1,...,5,
we want to solve (4.40) for b;, i =1,...,5, a;j, 4,5 =1,...,5and d;, i,j =1,...,5.

The conditions (4.29) and (4.30) for second order reduce to the standard Runge-Kutta
conditions

5
> bi=1, (4.40a)
=1

> 1
> bic; 5 (4.40D)
=1

The third order conditions (4.31) split into two standard Runge-Kutta conditions

> 1
> bicf =<, (4.40c)
, 3
=1
> 1
Z Z biaijcj = 6, (4.40d)

and one additional condition

5
Zzbidijcj = % (4.406)

i=1 j<i

Finally, the fourth order conditions (4.32) separate into the standard Runge-Kutta condi-
tions

1
> bidf =, (4.40f)
; 4
i=1
5
1
Z Z biciaijcj == g, (440g)
i=1 j<i
5
S syt = oo, (4.40n)
i=1 j<i
5
1 .
Z Z Z biaijajkck = ﬂ7 (4.401)
i=1 j<i k<j
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4 Structure aware time stepping schemes

and five additional SARK conditions

5
Z Z bicidijCj = i, (4.40j)

=1 j<i
5
1
2
Z Z bidijcj = Z’ (4.40k)
=1 j<1
5
1
Z Z Z bidijdjkck = 1, (4401)
1=1 j<i k<j
5
1
Z Z Z bidijajkck = g, (440m)
i=1 j<i k<j
5
1
Z Z Z biaijdjkck = ﬁ (440n)
i=1 j<i k<j

To obtain an explicit method, we set ¢; = 0 and solve the standard Runge-Kutta conditions
(4.40a)—(4.40d) and (4.40f)—(4.401) using a computer algebra software. There is set of well
defined solution for distinct coefficients 0 # ¢;, ¢ = 2,...,5. In the following we give two
examples of fourth order SARK methods based on two of these solutions.

For the first solution the coefficient co has to satisfy co # % Further we have the
freedom to choose aq3 € R and b5 # 0. Substituting these Runge-Kutta coefficients into
the remaining conditions (4.40e) and (4.40j)-(4.40n), there exists a solution for d;j, i,j =
1,...,5 when c5 # 1. Thus we choose

1 2 1 1
Cy = —, c3 = —, cy = 1, cs = —,
2 =3 3= 3 4 5= 5
and set by = % to obtain positive weights b;, ¢ = 1,...,5. Furthermore we set a43 = d43 =0

to define the SARK(5) method of fourth order presented in Table 4.3.
The second solution of the Runge-Kutta conditions is well-defined for any 0 # ¢;, i =

2,...,5 and we have the freedom to choose ass,as2 € R and b5 # 0. Therefore we set
1 1 3
02217 0325, 04217 s =1,
and b5 = é, again leading to positive weights b;, i = 1,...,5. Setting ags = % and aq2 = 0,
we obtain a solution for all d;j;, 4,5 = 1,...,5, except of ds2, which we set to 0. The

coefficients of the second fourth order SARK(5) method are presented in Table 4.4.
4.2.4 Propagation operator of SARK methods

After the derivation of the order conditions in §4.2.1, we can specify the partial propagation
operators of s-stage SARK methods defined in (4.18a) for linear problems.
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4.2 Structure aware Runge-Kutta methods

ol o o o 0o ol o 0o 0 0 o0
1 1 1
L9 0 0 oL 0 0 0 0
2 1 4
2L 1 0 o of-4 0 0 0
2 7 9 14
1/-2 7 0 0 0|-2 % 0o 0 o0
1 3 1 1 11 13 5 5
2l s s 1 0 0]l %—-% 1 16 O
5 3 3 5 1
32 32 32 32 2

Table 4.3: First example of a five-stage SARK method of fourth order.

0 O 0 0o 0 O O 0O O 0 O
1 1 1
Ll 90 0 0o oL 0 0 0 0
1 1 1 1
119 0 oflo L 0o 0 0
3 5 11 11
312 o L o o|-2 0 U 0 o0
2 1 1 1 17 31 2
1135 5 % 35 Ol3—-3% 5 3 0
L1 5 11
8 6 12 6 8

Table 4.4: Second example of a five-stage SARK method of fourth order.

Propagation operator of second order SARK methods

For an arbitrary two-stage SARK method the only nonzero coefficients are by, ba, as1, do.

In the kth step of Algorithm 3, given Y¥I = M([)k}u[k], we obtain

AU

2[2/.3} _ylH T[k]d21l\7l[1k]z[lk] 4 T[k}aglﬁ[k}z[lk}

= <I + 1kl <d211‘7l[1k] + amﬂk])) ik,
with the identity matrix I € R™*™. The propagation from t to fk+1 reads
ylk+1] — ylk] (K] (61 KMz 4 p,RlH Z[le)
- (1 M by 4 by)A) 4 (7 [)2E K] (demM[{“] n bgamfx[’f])) ylkl
- (1 + 7R - L (k2R (M[f] n g[k])) vl

where we used the order conditions (4.29) and (4.30) for second order methods. This results
in the partial propagation matrix

T = T+ R )R (il B (4.41)

such that YF+1 = T[Tk;”Y[k}.
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4 Structure aware time stepping schemes

Propagation operator of third order SARK methods

A similar calculation for three-stage SARK methods, using the order conditions (4.29)-
(4.31), leads to the partial propagation matrix

o = 1 7 WA 4 L (7 k)25 M (M[f] + A[k]) (4.42)

+ L(71H)35H (254[1’“1 + AW) (M[f] + AW) .

Propagation operator of fourth order SARK methods

Extending this to fourth order using the conditions (4.29)-(4.32), the partial propagation
matrix yields

Tq[fjﬂ = 14 P WAK | LR (M[lk] +A[k]) (4.43)
1130 (21‘71[1k] +;\[k‘}) (M[l’f] +g[k})

+ L (YR (:mg’“] + AM) (mg’ﬂ + AM) (M[ﬂ + .z\[kl) .

4.3 Numerical examples - convergence rates

In this section we apply these structure aware time stepping methods to linear and nonlinear
problems to investigate to convergence rates. First, we reconsider the example of the
wave equation discussed in §3.4.1 and §3.4.2 and apply an appropriate SAT time stepping
schemes. Then, we construct a nonlinear model problem and apply SARK time stepping
methods to observe the high order rates also for nonlinear problems.

4.3.1 SAT time stepping

Recall the example of the two-dimensional standing wave (3.36), where we observed a
reduced convergence order in §3.4.1. We use the same tent mesh, generated by the edge-
based algorithm in §3.2.1 with ¢, = 2 and C; = 3, resulting in a maximal slope || V, ¢|| ~
0.494. For the spatial discretization, we apply the same discontinuous Galerkin method
using polynomials of degree p, with 1 < p < 4. On each cylinder we perform a (p+ 1)-stage
SAT time stepping, described in §4.1, with r = 2p subintervals. The spatial errors at the
final time are measured in the norm e defined in (3.38) and they are reported in Figure
4.2. We observe that the error goes to zero at the optimal rate of O(hP*1) until we are
close to machine precision.

Compared to the implicit time stepping in §3.4.2, where we observed the suboptimal rate
O(hP), the explicit (p + 1)-stage SAT time stepping yields to the optimal rate O(hPT1).
Furthermore, the explicit time stepping uses less than 9GB of memory at the refinement
step [ = 8, while the implicit method would exceed the available 320GB.

Next, we consider the three-dimensional standing wave, with the exact solution given
by (3.42). The domain Qy = [0, 7]® is spatially meshed with tetrahedral elements of size
h=2""for I =0,...,5 and the final time tmayx is set to tmax = V/37. The tents in the
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4.3 Numerical examples - convergence rates

o p=1 -+ p=2 = p=3 —— p=4
- O() === O) - O(hY) -~ O()

1071 |
1074 |
&

1077+

10—10 -

107137 | - | | |

1072 1071 100
mesh size h

Figure 4.2: Spatial Lo-error ep of all field components for a two-
dimensional standing wave over the mesh size h using a
(p + 1)-stage SAT time stepping.

time slab of size tmay - 27'/8 are generated using the algorithm in §3.2.1 with wave speed
ce =2 and C; = %, leading to maximal slope ||V, ¢|| = 0.53. Again, we observe that the
spatial error ey, at tmax goes to zero at the optimal rate of O(hP*!), as reported in Figure
4.3.

Using the implicit time stepping in §3.4.2, we were limited to refinement level [ = 3 for
spatial polynomial degree p = 3. A comparable 4-stage SAT time stepping with p = 3 uses
less than 1GB memory for the refinement level | = 4, while the implicit method would
exceed the available 320GB.

4.3.2 SARK time stepping
We consider the example of the one-dimensional Burgers’ equation
dpu(z,t) + dpu(z,t)> =0, V(z,t) €[0,1] X (0, tmax), (4.44a)
with initial values set by
u(z,0) = exp (—50(z — 1)), vz e[0,1], (4.44b)

an inflow boundary condition an x = 0, and an outflow boundary condition at x = 1. The
semi-discretized ODE system (3.30) is obtained using a discontinuous Galerkin method
with polynomial degree p in (3.28). Further we use the upwind flux

1 {(u‘)2, {u}-n>0,

fulwtyu”) =3 (wh)?, {u}-n <0,
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4 Structure aware time stepping schemes

—o— p=1 + p=2 —=w p=3

S O() - O < oY)

10—1 -

€h
—_
2
w
T

L L
107! 10°
mesh size h

Figure 4.3: Spatial Ls-error e of all field components for a three-
dimensional standing wave over the mesh size h using a
(p + 1)-stage SAT time stepping.

where {u} = $(u~ +u™). Let up(x) be the numerical solution of (4.44) at ¢ = tyax. The
final time tp,ax = 0.1 is chosen such that the exact solution is still a smooth function (before
the onset of shock). Therefore no regularization or limiting is expected to be essential to
witness high order convergence. The exact solution at ¢,,.x shown in Figure 4.4a is obtained
by the method of characteristics together with a Newton method. Thus one would expect
the error

en = |lu(-,0.1) — upl 20,1 (4.44c)

to go to zero at a rate of O(hPt1).

Again, the standard reformulation to the variable Y() = M(Z, u(#)), as discussed in §3.4,
combined with standard time stepping methods leads to first order convergence. Figure 4.4b
reports the rates we observed when two standard time stepping schemes were used to solve
the reformulated ODE obtained with a polynomial degree p = 2, namely the two-stage
Ralston (RK2) and the three-stage Heun (RK3) time stepping schemes. The Butcher
tableaus can be found in Tables 4.1b and 4.2b. The tents were built such that (3.3) is
satisfied with ¢ = 2 and based on spatial meshes with mesh size h = 27¢/10 for i =
0...12. Although we see third order convergence for the first few refinement steps, the
rate eventually drops to first order for both methods.

Now we show that SARK methods do not suffer from the previously described conver-
gence order reduction. The tents in the slab of size 0.1 are generated with the same wave
speed ¢ = 2 as before. We apply Algorithm 3 with SARK schemes of s = 2 and s = 3 stages
using the same spatial mesh size h = 27¢/10 for i = 0...12 and r = 4 and r = 10 substeps
within each tent for s = 2 and s = 3 respectively. The values of ej, are plotted in Figure 4.5
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4.3 Numerical examples - convergence rates

—=— RK2 —— RK3 ---- O(h)
— u(z,t=0) ---- u(z,t=0.1) --- O(h?) - O(h?)
T T T T T T T T T T T T T T T T T T ,100
110-3
1 10-6
<
\)
110-°
| 10712
| | | | e ol Lol Lol Lol 710—15
0 0.2 0.4 0.6 0.8 1 10~4 1073 10~2 10—t
T mesh size h
(a) Initial values (4.44b) (solid) and exact solu- (b) Convergence rates of the spatial error at
tion of (4.44) at tmax = 0.1 (dashed). tmax for Ralston’s method (RK2) and Heun’s

method (RK3).

Figure 4.4: Exact solution u and convergence rates of the error ey, defined in (4.44c),
for the example of the Burgers’ equation described in (4.44).

for both methods. As h decreases, in Figure 4.5a we eventually see quadratic convergence
for the two-stage SARK method (although the convergence rate seems to be slightly higher
in a preasymptotic regime), while the rate of the underlying standard Runge-Kutta method
drops to first order. The three-stage SARK method in Figure 4.5b shows cubic convergence
while the rate of the underlying standard Runge-Kutta method drops to first order again.

To observe fourth order convergence, we have to use polynomials of degree p = 3 for
the spatial discretization and a SARK(5) method given by the coefficients in Table 4.3 or
Table 4.3, with r = 12 substeps. The tents were built with ¢ = 4, based on a spatial mesh
with mesh h = 27%/10 for i = 0...10. The values of ej, obtained by the SARK(5) and the
underlying RK(5) method are shown in Figure 4.6. As expected, we see the convergence
order reduction for the Runge-Kutta method, while the both SARK methods converges at
fourth order until we are close to machine precision.

These plots clearly show the benefit of SARK schemes over the corresponding standard
Runge-Kutta schemes.
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4 Structure aware time stepping schemes

—=— SARK(s) —— RK(s) ---—-0O(h) ---0(h?) ----O(h3)
T T T T 100 T T T T 100
B | 107? B 1107?
B 1107 - 1107
B ~107° - 4107° )
S 102 | 1107
L v J1075 L RIS 10718

-t 107 107 107"
mesh size h
(a) Convergence rates obtained from SARK(2,
Ralston) method (see Table 4.1b) and the
standard Ralston method.

Figure 4.5: Plots of the error e; defined in
methods applied to the Burgers

—= SARK(5) —— RK(5) ---- O(h)

TTTT T T TT1TT] T T T 1111 T T T 1111 ,100
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(a) SARK(5) method given in Table 4.3.

9

1074 1073 1072 107!
mesh size h

(b) Convergence rates obtained from SARK(3,
Heun) method (see Table 4.2b) and the stan-
dard Heun scheme.

(4.44¢) for SARK and Runge-Kutta (RK)
example described in (4.44).

O() o) - oY

TTTT T T T T T T T TTTT] T T T TTTT] ,100
,10—3
,10—6
5

- 10—9

- 10712

| Lol Lol Lol *10715

1074 1073 1072 107!
mesh size h

(b) SARK(5) method given in Table 4.4.

Figure 4.6: Plots of the error ej defined in (4.44c) for SARK(5) methods and the
underlying RK(5) methods applied to the Burgers’ example described in

(4.44).
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5 Investigation of discrete stability

This chapter is devoted to remarks on the stability of the new structure aware time stepping
schemes. While it is common to study stability of ODE solvers by applying them to a simple
scalar ODE, keeping our application of spatially varying hyperbolic solutions in mind, we
consider changes in an energy-like measure on the solution u(#). Recall that u(f) € R™ is the
coefficient vector of the basis expansion of the mapped finite element solution @(x,t) € Vi
as defined by (3.27). We limit ourselves to the case where the energy-like quantity

il = [ MG awd) i d = [ (@) - DA@) @ G

is a norm and (the generally nonlinear operators) M, My and M; defined in (3.24) are linear,
so that we may rewrite M(f,4) = M(f)@ using the linear operator M(f) = My — tM :
V¥ — V', For linear hyperbolic systems, the causality condition (3.3) implies that M (%)
is identifiable with a symmetric positive definite matrix M(f) — see (3.49) — so that (5.1)
indeed defines a norm. For the coefficients u(#) of the basis expansion of (-, ) holds

il ) = B2 5, = ) ™(Eu(E). (5.2)

In the special case of g(v) = v, e.g. that on flat advancing fronts, where o(z, ) is indepen-
dent of z for some fixed #, (5.1) reduces to

H'E‘”?w({) —/ o -,
Wy

S0 ||@[ ps(z) becomes the familiar spatial L? norm of (-, ).

5.1 Our procedure to study linear stability

Stability of the scheme within a tent can be understood by studying the discrete analogue
of the ratio ||12(~,f)HM(I)/Hﬁ(-,f)HM(O) for all possible initial data @(0). This amounts to
studying the norm of the discrete propagation operator for u, which we proceed to formu-
late. First, recall the connection between u and Y, namely Y({) = M({)u(f) — see (3.33).
Algorithm 3, takes as input an approximation ug to 4(0) at the tent bottom and outputs
Y}®, an approximation to Y(1) at the tent top. Hence the associated approximation to (1)
is
up® = M(1) Yy

Next, recall the discrete propagation operator defined by (4.18). It is now a linear operator
that maps Yo = M(0)ug to Y;” according to (4.19). Define the tent propagation matriz
Srs : R™ — R™ by

Sy.s = M(1) 71T, 4 M(0). (5.3)
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5 Investigation of discrete stability

Clearly, (4.19) implies that

u)® =S, s up. (5.4)
The discrete analogue of [|@(-, )| ar¢1y/l|a(-, 0)llarcoy is [0y llucr)/Ilwollueo) which can be
bounded using the following norm of S, ,:

S, sWHM(l)
Sys = sup oot 5.5
|| ||L(M(0),M(1)) O£ucm ||W”M(0) ( )

It is immediate from (5.4) that [[u}*[lua) < Srsll (o) m)) [2ollmo). Thus the study of sta-
bility of these structure aware schemes is reduced to computing estimates for the norm of
Srs- When being applied to linear problems, the partial propagation matrices TLk: U of the
structure aware time stepping methods are identical. This becomes clear when comparing
Tyf;l} in (4.9) and (4.41) for s = 2, Tyf;” in (4.10) and (4.42) for s = 3 and T[lerl] in (4.11)
and (4.43) for s = 4. In §5.2, we prove an upper bound for the discrete propagation matrix
Sy of two-stage structure aware schemes in the norm defined in (5.5).

Next, we describe how we compute the norm of S, ; for some examples in §5.3. With the
m X m symmetric positive definite matrix M(£) holds

(ST’SW)TM(l)(STSW)
Srsl? = sup - 7
18751100y 1) i wTM(0)w
T SlsM 1 S’I‘S
— Wl (SrsM(1)S, s )w

O£weR™ wTM(0)w
= sup{[A| : 30 # X € R™ satisfying (S} M(1)S; 5)X = AM(0)X}.

Thus, to investigate the stability of a scheme, we compute ij 1 by (4.18b), then T, g

by (4.18b), followed by S, s per (5.3), and finally, the square root of the spectral radius of
M(0)~ (8] sM(1)S,.5), which equals ||Sr,8”%(1~4(0) u(1)) as shown above. Numerical estimates for
1S5l Lu(0),m(1)) are reported for an example at the end of this chapter.

5.2 Discrete stability of two-stage structure aware time stepping
schemes

Suppose that A® : Qy — REXL §=1,... N+ 1, are symmetric matrix-valued functions,
where A® = AN+ ig symmetric positive definite. Following the notation introduced in
§2.1, a general hyperbolic system of L equations in L unknowns u € R” takes the form

N
Op(ADu) +> 0 (A%u) = 0. (2.5)

i=1
We impose boundary conditions of the following form studied by Friedrichs [9],

(D" —B)u=0 on 099 X (0, tmax), (5.6)
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5.2 Discrete stability of two-stage structure aware time stepping schemes

where

N
D" =Y n;AY). (5.7)
j=1

Here n denotes the unit outward normal on 9, and later it will be used to generically
denote the outward unit normal of other domain boundaries. The operator B : 9Qy — RL*L
must satisfy certain well-studied conditions for the boundary condition to be admissible.
For our purposes, we recall one of these conditions,

B+B">0 on 999 X (0, tmax), (5.8)

which we shall use. Inequality (5.8) means that at every point x € 9, the matrix B(x)
satisfies (B + BT)y -y = 2B(x)y -y > 0 for all vectors y € RY. Of course, the system must
also be supplemented with an initial condition,

u(z,0) = up(z) V€ Q, (5.9)

at time ¢t = 0 for some given initial data ug. Thus we have restricted the model problem to
the simple case of a linear hyperbolic system driven solely by the nonzero initial data wug.
To avoid some technicalities, we assume

N .
> 0,49 =0 (5.10)
j=1

in the sense of distributions, i.e., jumps in AY)(z) are allowed so long as (5.10) holds.
The discontinuous Galerkin discretization of the mapped equation for & = u o ®,

o (4 - ZN: ADdip)a] + ZN: 0;(6AD4a) =0, (5.11)
=1 =1

discussed in §3.3, can be seen as simplified version of the framework presented in [7], which
we discuss next. Recall, that T, denotes the collection of elements in the vertex patch w, of
a mesh vertex v. Let V7 denote the restriction of the spatial discontinuous Galerkin space
on wy and let ¢;(x) denote a basis for V}’. The semi-discrete approximation of @ is of the

form
tp(z, 1) = Z w; ()1 ().

We consider a discontinuous Galerkin semi-discretization of (5.11) of the following form:

N N
/wv 0| (4® —;A@)aﬁo)ah} o=y /T;((SA(i)ﬁh) -aivh—/aT Sfin vy, (5.12)

TeT,

for all v, € V}/, where the numerical flux f& on an element boundary 9T is defined using
the values of 4y, from the element T as well as from the neighbouring element T, as follows.
For any w € V)7, at a point « € 9T N 9Ty, letting w, = w|7,, define

o) = w+w),  [ule) =w - w,
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5 Investigation of discrete stability

Then, f is assumed to take the form

o= {Dn{w} + S[w]  on 9T\ 99, (5.13)

" (D" + B)w on 9T N 0.
Here, D" is defined by (5.7) with the n now denoting the outward unit normal on 07, and
S: | J or —» RMF
TeT,

is a uniformly bounded stabilization matrix of the particular discontinuous Galerkin dis-
cretization under consideration. We assume that S is single-valued on facets shared by two

elements and that
S+8T>0. (5.14)

The following examples show a variety of equations and their well-known discretizations
that conform to this framework.

Advection equation

The advection equation dyu + div,(Bu) = 0 with some vector field 8 : Qg — RY fits
the above setting with L = 1 (and arbitrary spatial dimension N), AU) = [3;] € R,
A® = [1] and D* = B -n. A boundary condition u = 0 on the inflow boundary 8;,Qy =
{z € Q9 : n- B(x) < 0} can be represented in the form (5.6) using B = |5 - n|. With this
choice, (5.6) trivially holds on the outflow boundary, while at the inflow boundary points,
it takes the form (D" — B)u = 2(f - n)u = 0. Finally, if we choose

§=38n

in this example, the scheme (5.12) at once reduces to the well-known upwind discontinuous
Galerkin scheme. Obviously, the condition (5.14) holds for this choice of S.
Wave equation

The wave equation 0y — A¢ = 0 in N space dimensions can be written as a first order
hyperbolic system for L = N 4+ 1 variables comprised of the components of the flux ¢ =
—V, ¢ and p = 8;¢. To match the prior abstract setting, we set A®) to identity, and

. 0 e
(J9) — J
4= [ i)

using the standard unit basis vectors e; of RY. Thus we get

N ; 0 n
ngwmuLTJ.
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5.2 Discrete stability of two-stage structure aware time stepping schemes

Dirichlet boundary conditions can be imposed using
0 —n

B= [nT 2 } :

For this choice of B, we clearly have (5.8). Moreover,

(D" — B)u = 2 [_”1] "

on the boundary, thus allowing us to impose Dirichlet conditions on the variable uy41 =
= Op. We set S by
1{nnT 0O
=3 [ 0 1] ’

for which the condition (5.14) obviously holds. The resulting scheme is the discontinuous
Galerkin scheme with upwind fluxes for the wave equation. Clearly, the definition of S does
not depend on the choice of the orientation of the normal vector n, i.e., it is single-valued
on element interfaces.

Maxwell equations
The Maxwell system for the electric field E(z,t) and magnetic field H(x,t) consists of

O(eF) —curl H = 0,
Oy(uH) + curl E = 0,

with the permittivity e(x) and permeability u(x). To fit this into the prior setting, we
choose N = 3 and L = 6 and write the unknowns in the block form v = [E, H|T. As
discussed in §2.1, we set

G _ [0 ¢ w_[eL 0
A _[[GJ]T 0 and AV = 0 Il

where ¢/ is the 3 x 3 matrix whose (I,m)th entry equals the value of the Levi-Civita
alternator €j;,,,. With these settings and N' = Z?Zl n;e € R3X3, we get

il 0
D= n;AV) = [NT A(ﬂ . (5.15)
j=1

It is easy to see that NNH = H x n and there holds

Z[E] [Hxn
o] = | B0
Next, we set
El  [2NTNV [E] _[2E,+Hxn
sl = [ 3Ll =[50 619
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5 Investigation of discrete stability

with the tangential component E; = n x (E x n) and there holds

=8 {g] = [adsem]

Therefore equation (5.6) imposes the Dirichlet boundary condition corresponding to elec-

trical isolation by a perfect electric conductor. Also note that since NT = —N, we have
INTN 0]
T pu—
BT+ B [ 0 0|
o (5.8) holds. For the discontinuous Galerkin discretization, we set
s 1[NV 0
20 0 NTN|T

Clearly, S + ST = 2S. Furthermore, ETNTA'E = |N'E||3 > 0, which implies S + ST > 0.
Note that the sign of the normal vector n is immaterial while computing the entries of S,
i.e., S is single-valued on element interfaces, as required by our general setting. This choice
of § leads to the upwind flux used in [11, 21].

Turning back to general linear hyperbolic system, we define A : V;7 x V)7 — R, Mj :
Vi = Vy,and My : V) — V)7 by

N .
A(w,v) = Z/Z(M@w)-aw— SfY v, (5.17)
Ti=1

TeT, or

N
/ Myw -v = / (A(t) — Z A(i)ﬁicpb)w ‘v, (5.18)
v v N i=1
/ Mw-v= / (ZA(Z')(?Zﬁ)w -, (5.19)
Wy Wv =1

for all w,v € V}/. Using these definitions, the semi-discrete problem (5.12) reads
/ af[(Mo — £M1>ah} o = A, vn) (5.20)

for all v, € V). Now, let

d(w,v) = — [2 A(w,v) + /w Myw - U] (5.21)

for w,v € V;. Recall that 7, denotes the set of facets F, i.e., (N — 1)-subsimplices, of
the simplicial mesh 7T, of the vertex patch w,. This set is partitioned into facets on the
boundary dw, of the vertex patch denoted by F,’, and the remaining facets are collected
into F,?, the set of interior facets of Ty. We assume that each facet F' of the entire spatial
mesh 7 is endowed with a unit normal n whose orientation is arbitrarily fixed, unless if F’
is contained in the global boundary 9€)y, in which case it points outward. Then, for any
x € F, set [ul(z) = lim.,o u(x 4+ en) — u(x — en).
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5.2 Discrete stability of two-stage structure aware time stepping schemes

Lemma 3. For all v,w €V},

d(w,w) = Z 2/1:58[[w]]-[[w]]+ Z /F(SBw-w. (5.22)

FeF? FeF,

Proof. Integration by parts on an element T' € T,

N N N
Z/ (5A(j)w) -Ojw = Z/ (5A(j)w) Cw — Z/ 0; (5A(j)w) Cw.
=T mJer =T

Applying the product rule to expand the derivative in the last term and using (5.10), we
obtain

N N N
Z/ (6AYw) -ajw:Z/ (6AYw) -w—Z/ ((0;6)ADw + 5AD9;w) - w
=T =1 /or =T

and the symmetry of AU) implies

N

N N
D) - Goww — Dew) - w — SVADw - w. .
2]2::1/T(5A ) - 0 ;/@T (6AWw) Z/(aja)A (5.23)

j=1"T

Substituting the definitions of A(w,w) and M in (5.17) and (5.19), respectively, into (5.21),
we get

N N
d(w,w) =Y (—/TJZ;(Q(sA(])w)-ajw+LT25fﬁ-w—A<ZA(J)8j5>w-w>

TeT, J=1

=) (/aTzaf;;f-w— 8T57>”w.w>, (5.24)

TeTy
using (5.23) and the definition of D™ in (5.7). With the numerical flux f} defined in (5.13),
we have

28(D" {w} + S[w]) - w / 5D"w - w)

T \d

dww)= Y ([

Ter. o\

+</ 5('Dn—|—l3)w-w—/ 5D”w-w>.
oTNONy oTNONy

Rearranging to sums over interior and boundary facets completes the proof and (5.22)
holds. O

Corollary 1. Let m = dimV}) and let ¢, k = 1,...,m, denote any standard local basis
for V7. For the matrices Ay = A(r, 1) and (My)m = fwv My -y, for k1l =1,...,m,
holds

wl(244+M)w<0 Vwe R™. (5.25)
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5 Investigation of discrete stability

Proof. Recalling the definition of d(w,w) in (5.22), we obtain

d(Yr, 1) = — (28 + (M1)ke)
for ¥y, € V¥ and the result follows by (5.22). O

Theorem 4. For the propagation matriz S,2, defined in (5.3), of a two-stage structure
aware scheme holds

ISr2ll Loy w1y =1+ O ™2), (5.26)
where r € N denotes the number of substeps used to obtain u7£’2 = S,2ug.
Proof. Using the notation introduced in §4.2.4 for SARK methods, the partial propagation

of YI¥! reads -
+1
ylE+1] Ty Y[k}’

and with the relation Y = M([)k]u[k}, we obtain

Mgk-l—l]u[k-&-l] _ TLi’c;uMék]u[kL

This allows us to express the partial propagation of ulf] by

a1 — S%rﬂu[k]

9

with S[rk; U — (M([)k+1]) T[kH}M[k] For a given input ul¥ = ug, the propagation to the

solution u’f2 =ull at £, = 1 yields
u§’2 ="l = Sy ull]

]

where S, 9 = SLT,Q 0...0 S?}Q o S[Tl]2 denotes the propagation matrix.

Using (4.41), we express the partial propagation from ulfl to ulk+1l by
L Syf;”u[k] — (M([)k+1]) T[k+1] gf}u[k]

Further, utilizing the definition (4.4) of M(f), we rewrite Mgﬂ_” in terms of Mgd and obtain

A W) M (1)) )
For its inverse holds
(Mgk+1])—1 _ (M([)k])—1 (I _ T[k]Ml [k] 1) 1

= (") "+ 7 0) " () (528)
+ (72 (M“f])l (") () o+ O,
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5.2 Discrete stability of two-stage structure aware time stepping schemes

Next, we relate the [| - ||y norms of the intermediate solutions ulfl at £ = #;, and ul*+1 at
t= tk+1 Using the representation (5.27) of ul**1 and the symmetry of M[ ] , we get

[k+1] Hz (u[k+1])TM[0k+1]u[k+1]

Hu tk+1)

= (aP)T (g AT 372 0y 4 )T () A7) (5.29)

(M%k+1])—1 (M([)k] Ry 4 %(T[k])zA(M[[)k])—l (M, + A)> k!
Substituting (5.28) into (5.29) and gathering the powers of 71 yields

[ulk+1) ||r24(£k+1) — (u[k])ngk]u[k} + ¥ (u[k})T(AT + A+ Ml)u[k} (5.30)

(k])2
N (72) () Teul + O((+ ),

with the matrix

C= (M + A)T ()]

+ 247 (M)

)T (
)T (

) AT 28T () Ty 4 o] (M)

A+ 20T (07) "ty + Al T (4 4 A)

M) AT 2 (0 + )T () T Oy +A)+A(M[k]) (M; + A)
DT AT My A) (] AT A) (D) Ty 4 a)

1

M1+A

k]
IV[O

M1 —+ A T
Thus, (5.30) simplifies to
|[ulk+1) 2 — ()Tl B T (AT 4 A 4 by )l (5.31)

()

M(tht1) —

_l’_

(@)™ 4+ 2)T (7) T (AT 20y + ) ul

—~~
p
= N

_l’_

5 F (W )T My 4+ A7+ 8) () y + )l 1+ O((71H)3),

where we used the symmetry of M;. To obtain a complete square, we add and subtract

My 4 &) (D AT+ ) () T 0y + a)

in (5.31) an get

[k+1] H (u[k])TM[[)k]u[k] + K] (u[k])TDu[k] + O((T[k])?;)’

||u M(Eri1) —

where D = (I 4+ T 2 (M1 +A)T (M ¥ }) 1)(AT +A+M)(I+ Ll 5 (M [k]) (M; +4) ). Corollary 1
implies wT (AT + A+ Ml)w < 0, for any w € R™, and there holds (u[ ])TDu[k] < 0. For the
intermediate solutions ul at the bottom and ul**t1l at the top of the subtent, we obtain
the relation

a2, < @) o((r M) = [ul)2 4 o((rH)?). (5.32)

M(tk+1 -
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5 Investigation of discrete stability

Thus we can bound ||S;2||7,m0),u(1)) using (5.32) multiple times to obtain

ez, = [ulF+

H|M 3
(tkt1)
T _ (5.33)
HOMD T Wy g TPl
< (1 o) = 1+0672), (534
where we used 7l¥ = % :

5.3 Discrete stability measure for a model problem

We report the practically observed values of the previously described stability measure
(namely the norm [|S; s|| Luo)m(1))) for some structure aware schemes applied to the two-
dimensional convection equation

opu(z,t) + divy (bu(x,t)) =0, V(x,t) € Qo x (0, tmax],

with Qo = [0, 1]?, tmax = 0.05, the flux field b = (1,1) " and periodic boundary conditions.
The time slab Q = Qg x (0, tyax) is filled with tents. Within each such tent Kj, let C;
denote the norm ||S; s|| rm)m(1)) computed with S, s,M(0), and M(1) specific to that tent.
We expect C; to be close to one for a stable method. Let

C :=max {C; — 1}, (5.35)

where the maximum is taken over all tents in the time slab. To gain an understanding of
practical stability, we examine the values of C' as a function of the number of stages (s),
polynomial degree (p), and more importantly, the number of substeps per tent (r).

In all our numerical experiments, we observed that on each tent, for a fixed s, the
norm S, s|| u(o)m(1)) tends to 1 with increasing number of substeps r, and moreover, we
discovered a dependence of the following form

1Srsll Lauoymry) = 1+ O (r77)

on each tent K;. Therefore, we organize our report on numerical stability observations into
plots of values of C' as a function of 7. We do so for s-stage methods with s = 2 in Figure
5.1, s = 3 in Figure 5.2 and s = 4 in Figure 5.3. After a prominent preasymptotic region,
we observe that C, as a function of r, exhibits a rate of at least O (r—%).

The preasymptotic region also depends on the wave speed ¢ used to build the tents.
When comparing the values of C for a two-stage method using a wave speed ¢ = 4 in
Figure 5.1a and ¢ = 8 in Figure 5.1b, we observe that the curves are shifted to the bottom
left. Thus a higher wave speed favors the stability properties due to smaller tents and the
resulting smaller subtents. This behavior can also be observed for three- and four-stage
methods in Figures 5.2 and 5.3.

Note that all curves plotted in Figures 5.1-5.3 shift to the top and right as p increases,
i.e., the number of substeps r required to keep the same stability measure C increases
with p. This behavior is akin to the p-dependence of the CFL-conditions of standard time
stepping schemes.
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5.3 Discrete stability measure for a model problem
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(a) Wave speed ¢ =4
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(b) Wave speed ¢ = 8
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Figure 5.1: Observed dependence of C on r for a two-stage structure aware method
with 2 <p <T.
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(a) Wave speed ¢ =4
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(b) Wave speed ¢ = 8
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Figure 5.2: Observed dependence of C on r for a three-stage structure aware method
with 2 <p < 7.

75


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5 Investigation of discrete stability

—-—p=2 —-—p=3 ——p=4 ——p=5 = p=6 ——p=7 ---- O(T_4)
[TTTT T T TTT] T T TTT] ,108 [TTTT T T TTT] T T TTT] ,108
- | 10° - 1 10°
L)
- 11wt b 107"
- _ 10—10 - _ 10—10
Ll Lol Lol —16 [ L1l Lol —16
10 10
10° 10' 10 10° 10" 10?
substeps r substeps r
(a) Wave speed ¢ =4 (b) Wave speed ¢ = 8
Figure 5.3: Observed dependence of C' on r for a four-stage structure aware method
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6 Numerical examples

In this chapter we present numerical examples for linear and nonlinear hyperbolic systems
to illustrate the applicability of MTP methods. These methods were implemented within
the finite element library Netgen/NGSolve — see [30, 31] and www.ngsolve.org.

6.1 Linear examples

The first example in §6.1.1 shows how MTP methods adapt to varying speeds of propagation
leading to a naturally built in local time stepping. Local time stepping also plays an import
role for locally refined meshes as in §6.1.2, where we solve a large three-dimensional problem
and discuss the speed up compared to SDG methods.

6.1.1 Wave equation with heterogeneous material

In the following example we show how tent pitching methods handle varying material
parameters. We consider an example where a wave is partially reflected at an interface of
two different materials, which was also performed in [28].

We consider the wave equation (2.7) on the spatial domain €y = [0,2]? and the final
time is set to tmax = 0.4. The speed of propagation ¢, is given by the piecewise constant

function
1, <12,
cs(z) =
3, x1>1.2,

which defines the material parameter a = c2I, where I € R?*2 denotes the identity matrix.
The initial condition qq, uo is given by

=[] - [T 0] 6.1)

where ¢ is defined as Gaussian peak
¢(x,t) = exp (—e 2|z — 20]?) ,

at zo = (1,1), with the constant ¢ = 0.01.

Based on the spatial mesh with simplicial elements of size h = 0.05, we pitch tents in
the time slab of height 0.1 using the wave speed ¢ = ¢; and the constant C'+ = % The
resulting time slab is shown in Figure 6.1. We observe that the tents height, e.g. the
local time step, adapts to the local speed of propagation resulting in larger tents in the
subdomain with smaller ¢; and smaller tents in the subdomain with larger ¢;. When using

standard discontinuous Galerkin methods combined explicit time stepping, one would have
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6 Numerical examples

Figure 6.1: Time slab showing tents pitched on a spatial mesh with varying wave speed.

to enforce the more stringent condition globally. For the spatial discretization we choose
fourth order polynomial and set the local spaces V| to

Vi ={v € [L(w)) : ¢lr € [P(T)]° VT € T},

and use the upwind flux f,, in (3.37). The solution of the scalar component pp at the
final time tax = 0.4 is shown in Figure 6.2. We see that after reaching the interface, the
transmitted part of the wave travels at higher speed than the superposition of the initial
and the reflected wave.

6.1.2 Maxwell equations

To illustrate the abilities of MTP schemes, we present a large scale problem in three space
dimensions, as discussed in [11]. We solve the Maxwell equations in conservation form

) [eE] + div, [—skewH] o,
I skew

as defined in (2.11), on a domain Qg C [0,1196.8] x [—133,133] x [—133, 133] similar to the
resonator shown in [22]. The geometry is given as body of revolution of smooth B-spline
curves with the first inner rounding located at x = 217.6 and a distance of 108.8 to the
next inner rounding. The mesh consisting of is 489k curved elements is shown in Figure
6.3, which has a ratio of largest to smallest element of approximately 5 : 1.

The initial data is set to

0 0
uoz[?], Eo=| 0 |, Ho=|o|.
0 Eo,. 0

where the third component of the electrical field Ep ,(x) = exp(—1073((x1 —21)? + 23 +23))
is set to a Gaussian peak located at the axis of revolution and the position z; = 625.8 of
the fifth inner rounding — see Figure 6.4. Further we set the material parameters e = =1,
which leads to the constant characteristic speed ¢ = 1, as derived in (2.12).
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max = 0.4.

Figure 6.2: Scalar component uj of a wave traveling through
heterogeneous media at the final time ¢
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6 Numerical examples

To obtain the ODE system (3.30), we have to specify
Vi = {9 € [L2(w)]® 1 ¢l € [B(D)° VT € To},

and the numerical flux f, in (3.26). On interior facets F' € F,*, we used the upwind flux
21, p. 434]

fatatar) = | e L
—{E} xn+ [H]

with the tangential components E, = n x (E x n), H; = n x (H x n) and the mean values

(By=YF+*+E),{H}=YH"+H )of E=Eo®and H=H o®. This numerical

flux coincides with the general definition in (5.13), which is we also used on the boundary

facets F' € F,°, with D™ and B given in (5.15) and (5.16).

The H, component of the solution at fyax = 260 shown in Figure 6.5 was computed
with polynomials of degree p = 3 in space and time slabs of height 1, each slab composed
of Nients = 149072 tents. On each tent we used a (p + 1)-stage SAT time-stepping with
r = 2p intervals. With the spatial degrees of freedom Ngo; of the ith tent and the number
of stages ¢ = p + 1, we obtain the total spacetime degrees of freedom per time slab

Ntents Ntents
S Mot — ( 3 N) 2y +1)
=1

i=1

The corresponding numbers of degrees of freedom and the simulation times are shown in
Table 6.1. In [22] a similar problem is solved using a discontinuous Galerkin method with
quadratic elements, combined with a polynomial Krylov subspace method in time. Using
96 cores it took them 7:10 hours to reach the final time. Our simulation with polynomial
order p = 3, which has a comparable number of unknowns, took 3:33 hours on 64 cores.
This significant speed up is an illustration of the capability of the new method.

p=2 p=3
number of spatial dof 2.938 x 107 5.875 x 107
number of spacetime dof per slab 1.908 x 10 7.632 x 10°
simulation time per slab 4.6 s 49.2 s
total simulation time 20 min 3 h 33 min

Table 6.1: Number of degrees of freedom and simulation times for spatial polynomial de-
grees p = 2,3. This data was generated using a shared memory server with 4
E7-8867 CPUs with 16 cores each.
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Figure 6.3: Tetrahedral mesh with 489k curved elements
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(x) set as initial data.

Figure 6.4: Third component of the electrical field Fj .
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6 Numerical examples

Figure 6.5: Second component Hy(z) of the magnetic field at t = 260 solved with
spatial polynomial degree p = 3.

6.2 Nonlinear examples

In this section we construct an explicit MTP scheme including an entropy viscosity regulari-
zation — described in §6.2.1 — to handle occurring shocks and discontinuities while solving
nonlinear hyperbolic problems. This is then applied to the Euler equations in §6.2.2, where
we consider the well-known benchmark of the Mach 3 wind tunnel.

Suppose that on a tent K, we are given a solution u(z,t) of (2.1) and an entropy pair
(€,F). The mapped solution, as before, is & = u o ®. Define

E(w) = E(w) — F(w) Vi @, (6.2a)

Flw) = 6F(w). (6.2b)

Theorem 5. Suppose u solves (2.1) on K and i = uo® solves the mapped equation (3.17).
Then, whenever (€,F) is an entropy pair for (2.1), (é,]:') is an entropy pair for (3.17).
Moreover, if £(u) and F(u) satisfies the entropy admissibility condition (2.13) on K, then
E(0) and F (i) satisfies the entropy admissibility condition on K.

Proof. Repeating the calculations in the proof of Theorem 1, with g = £ and f = F, we
obtain

(OE (1) + divy F(u)) o ® = % (9:6(a) + div,, F(i)

from which the statements of the theorem follow. O

6.2.1 Entropy viscosity regularization

The addition of “artificial viscosity” (a diffusion term) to the right hand side of nonlinear
conservation laws makes their solutions dissipative. When the limit of such solutions, as
the diffusion term goes to zero, exist in some sense, it is referred to as a vanishing viscosity
solution. It is known [4, Theorem 4.6.1] that the vanishing viscosity solution satisfies the
entropy admissibility condition for entropy pairs satisfying certain conditions. Motivated
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6.2 Nonlinear examples

by this property, the entropy viscosity regularization method of [17], suggests modifying
the numerical scheme by selectively adding small amounts of artificial viscosity, to avoid
spurious oscillations near discontinuities of the solutions. We borrow this technique and
incorporate it into the MTP schemes as follows.

Consider the problem on the tent K mapped to K. We set the spatial discretization space
to Vi = {u € [L*(wy)]* : ulr € P(T) VT € Ty} and consider a discontinuous Galerkin
discretization

(9Mtuh vh—Z/5f ap) : Vup — Z/éfn uh,uh - Jon], (3.26)

TeT FeF,

of the mapped equation (3.22). Let (-,-), denote integral over the vertex patch wy, such

that
(wh,vh)h = / WHVL = Z / WHUR th,vh c Vh
Wy TCUJV

Recalling the definition (3.29) of A(-,-) and using the variable g, = M (£, y,), as discussed
in §3.5, the semi-discretization takes the form

(0 s va)n = AM ™ (g), vn) (6.3)

for all v, € V.

Suppose that an entropy pair (£, F) is given for (2.1). On the mapped tent K, let (é, .7:")
be defined by (6.2). Suppose a numerical approximation 7 (z,#1) has been computed at
some time 0 < #; < 1 and we want to compute a numerical approximation at the next time
stage, say at £ = t; + At < 1. The entropy residual of the approximation 4, = M~ (g,) to
@ is a weak form of the quantity 8£é () 4 divy F(dis), which by Theorem 5, is nonpositive.
The discrete entropy residual at time #; is Ry = min(ry,0) where 7, € Vy) is defined by

Z/}"uhVUh—i—Z/d}"

TeT, FeF,

—Z/ 5°M_ yhuh—Z/fuhvuh+Z/5f

TeT: TeT: FeFy

(5rh,vhh— /85 uh Vhp —
TeTy

for all v, € V), where 4, = M *l(gjh). Here F,, is a numerical flux prescribed by a
discontinuous Galerkin approximation to the entropy conservation equation. The term
0; yp, can be replaced by its approximation available from (6.3) while computing rp,.

Next, following [17], we quantify the amount of viscosity to be added to (6.3). Define
the entropy viscosity coefficient on one spatial element T € T, by

| Rpll poe (7
VE,T:C?)( ‘g| ( )7 (64)

where € is the mean value of £(M~1(4,)) on T and cx is an effective local grid size of vy,
typically chosen as cx = k1 diam(7")/p for some fixed number x; and the spatial polynomial
degree p. To limit the viscosity added based on the local wave speed, define

Ve T = K2 diam(T) HDuf(l', 51, ﬁh(.ilf, fl)) HLoo(T), (6.5)
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6 Numerical examples

where k9 is another fixed number and set

v= jrpea% min(vy 1, Ve r)- (6.6)

This artificial viscosity coefficient proposed in [17] leads to generous viscosity at discon-
tinuities (where the entropy residual is high) and little viscosity in smooth regions. To
apply this artificial viscosity, we first solve (6.3) in t; <t < {1 + Al = 5 to obtain g (z, {2)
and iy, (z,19) = M~Y(Jn(x,t2)) which allows us to calculate viscosity coefficient v. Then
we proceed by solving

O;wp, — 0 div, (v Vywp) =0 (6.7)

in w, x (t1,%2), with initial data and boundary conditions set to

Wy (z, 1) = Gp(z, t2), Yz € wy,
if)h(l‘,f) = ﬂh(l‘,fg), V(CE,E) € Jwy X (1?1,7?2).

Note, that the viscous term — div, (v V, wy,) is weighted with the tent height 6. The semi-
discretization takes the form

(67 Optup, vn), + v Arp (in, vp) = 0, (6.8)
for all v, € V)Y, where Arp(-,-) is the standard interior penalty discontinuous Galerkin

approximation of the viscous term — div, (v V, w) defined below. On an interface F with
the unit normal n, set

[w] =w™ —w™ and {w} = % (w+ + w*) ,

with the understanding that w(z,t) is set to the boundary condition if x is outside the
vertex patch w,. Then

Arp(w,v) = Z/TVMUVIU— Z /F(wa-nv+[[w]] va-n—%[[w]] v)

TeT, FeFb
) [ (9w} BT+ [ul (%0} - = S ulle]).

Here, as usual, the penalization parameter o must be chosen large enough to obtain coer-
civity. Again, the set F,* denotes the facets F' on the boundary dw, of the vertex patch
wy and F,* consists of the remaining inner facets in 7.

To obtain the approximation wy,(z,f2) to @ at 2, we solve (6.8) using a standard time
stepping method. Finally, we apply the mapping M to obtain the regularized approxima-
tion gy, (x,t2) = M (t2, 10y (x, t2)), which is then used as input for the next time step.

Remark 5. The weight ¢ in (6.7) leads to a consistent partition of the viscous term over
the whole time slab. Consider a constant viscosity coefficient v for all tents in the time
slab of height At illustrated in Figure 6.6.
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6.2 Nonlinear examples

Considering the spatial domain {2y, the discontinuous Galerkin semi-discretization of
Owu — divy (v V u) = 0 takes the form

d
g(Gu) = —Au,

where we used a basis 1 € V3,(Q0) C [La(20)]*, 1 = 1,...m’ = dim V},(Qp). The matrix G
represent the mass matrix

Gr= Y /wwz, 1<kl<m,
T

TeQo

and the matrix A the interior penalty discretization of the viscous term. The solution for
the coefficient vector u € R™ of the basis expansion at At reads

u(At) = exp(—(At) G~ 1A)u(0). (6.9)

Now we consider a time slab with final time At with tents K; pitched at the vertex v(® for
i=1,..., Nients — see Figure 6.6. For the mapped variable @(z,t) = uo ®(z,t) on the tent
K;, we spatially discretize (6.7) reformulated to

1
578511 —divy(rVz4) =0

on w,@). Using the basis ¢ € V,z’m C Vi(Q), 1l = 1,...m = dim sz’(i), we obtain the
semi-discrete ODE

d
N GZ'A - _Ai
dt( a) i

for the local coefficient vector 4 € R™ of the basis expansion on K;. The matrix

1
Gl =) st 1<kil<m,

denotes the weighted mass matrix on the tent K; and A; the viscous term on the vertex
patch w, ). Then the solution at the top of the tent, e.g. at t =1, is given by

a(f = 1) = exp(—G; '4;)4(0), (6.10)
for the local coefficient vector 4 € R™. By defining the matrix
Gl =) / o, 1<k l<m,
TeQy T

which is zero for elements T' € 7 ) due to the scaling by the tent height §; = 7, — 7;_1.
The nonzero entries of G™1G;G™! correspond to the entries of Gi—1 and we can rewrite (6.10)
using the global space V},(€y) by

u; = eXp(—G_lciG_lA)Ui_l,
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6 Numerical examples

At

-z
Figure 6.6: Time slab in one spatial dimension with the tent Kj; filled in red.

where u;,u;_1 € R™ represent the coefficient vector of the solution at the top and bottom
advancing fronts 7; and 7;_1 of the tent K;. Further we observe that

Ntents

> G = Atg, (6.11)
=1

since the tent heights §; add up to the time slab height At - see Figure 6.6. Given the
initial coefficients ug € R™ | we obtain the solution after proceeding trough all tents by
UNonts — H eXp(—GilciGilA) uQ

Ntents

~ exp(—G! Z (G)G1A) ug
=1
= exp(—AtGT14) uy,

where we used (6.11) in the last step. This solution uy,,,. is an approximation to the
solution of dyu — div, (v V,) = 0 derived in (6.9) for the whole time slab.

6.2.2 Euler equations

Recall that the Euler system fits into (2.1) with

p mT
u=|m|, g =u, fu=|Pl+mem/p|, (6.12)
E (E+P)mT/p

as discussed in (2.16). Here, the functions p : Q9 — R, m : Qg — R? and E : Qg — R

denote the density, momentum, and total energy of a perfect gas in the spatial domain 2.
4(E _ 1]m|?

Furthermore, we use P = % pt for the pressure, 7 = 3 (; — 5/)—2) for the temperature and

d =5 denotes the degrees of freedom of the gas particles.
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6.2 Nonlinear examples

Convergence rates for a 2D Euler system

Now we apply SARK methods to the Euler system. Similar to the Burgers’ example, which
we discussed in §4.3.2, we choose smooth initial data and fix a final time before the onset
of shocks so that no limiting is needed.

The initial values on the spatial domain Qg = [0, 1]? are set by

po =1+ 67100((m170.5)2+(1270.5)2)7

mo = [0,0]T, (6.13)

Po=1+ 67100((m170.5)2+(1270.5)2)7
and the final time ¢, = 0.1.

The data shown in Figure 6.7 was generated with polynomial degree p = 2 in space and
mesh sizes h = 0.1 x 27% for i = 0...6. For the tent generation ¢ in (3.3) was set to 8 and
the number of substeps to r = 4. Since we do not have an exact solution in closed form,
we compare the numerical solution computed using ¢ with a “reference solution” computed
with the higher characteristic speed 2 - ¢. The latter requires many more tents to reach the
final time. Let the former and latter approximations to u(-,tmax) be denoted by uj and

ref

u;®, respectively. We define the error by

ref

ep = Huh — up (6.14)

L2(Q0)

which is the quantity plotted in Figure 6.7.

The errors of the two-stage SARK method and the underlying Runge-Kutta method
is seen to diverge already for the first refinement level in Figure 6.7a. While the SARK
method shows the expected quadratic convergence, the rate of the Runge-Kutta method
drops to first order. For the three-stage methods in Figure 4.5b, we see cubic convergence
for both method for the first few refinements. The convergence rate of the Runge-Kutta
method eventually drops to first order while the SARK converges at third order.

Mach 3 wind tunnel

We conclude with the well-known benchmark example [36] of the wind tunnel with a
forward-facing step onto which gas flows at Mach 3, which was also discussed in [13, 14].
The situation is modeled by the already described Euler system (6.12), but now with the
initial values

PO — 1.4, mo = p0(3, O)T, Py = 1, (615)

on a spatial domain Qg with a re-entrant corner at the edge of the forward-facing step.
The boundary conditions are set such that (0,z2) is an inflow boundary and (3, z3) is a
free boundary, which has no effect on the flow. All other boundaries are solid walls. The
domain and the boundary conditions are illustrated in Figure 6.8a.

Our numerical experience with this problem shows that it is beneficial to use high order
local time stepping. As in our prior study [13], we use a spatially refined mesh near the
re-entrant corner and let the tents adapt — see Figure 6.8b, providing automatic local time
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6 Numerical examples

s SARK(s) — RK(s) ---O(h) ---O(h2) - O3
T L] T L]
B q107t b 107"
5
B | 107° B | 107°
B AR |107°®
Lol [ Lol Lol
1072 107! 1072 107!
mesh size h mesh size h
(a) Convergence rates obtained from SARK(2, (b) Convergence rates obtained from SARK(3,
Ralston) method (see Table 4.1b) and the Heun) method (see Table 4.2b) and the stan-
standard Ralston method. dard Heun scheme.

Figure 6.7: Error e;, as defined in (6.14) over mesh size h for SARK and standard
Runge-Kutta (RK) methods applied to the Euler equations (6.12) with the
initial data (6.13).

stepping. In contrast to the standard time stepping used in [13], we now use one of the
newly proposed SARK schemes.

We shall apply the SARK(3, Heun) method. Unlike in the previous convergence study,
now we must handle multiple shocks that develop over time, so it is necessary to add some
stabilization to the system. This is done by adding artificial viscosity based on the entropy
residual as suggested by [17]. For computational convenience, we use a slight variation
of the entropy viscosity regularization described in §6.2.1. Namely, the entropy viscosity
coefficient on one element T' € 7T, is set by

Ver = cx||Rnll o1y,
and the limiting artificial viscosity is set by

Ve = iz diam(T) [[[[m|| + pv/3T Lo (1) »

with v = %2 = 1.4 for an ideal gas and the temperature T. The constants in the calculation

of the entropy viscosity coefficient were chosen as k1 = 1, ko = % and the penalization

parameter « in the artificial viscosity term is set to 2.
A kinetic flux (see [23]) was used for the numerical flux f,, in (3.26) while F,, was set by

n, mt-n>0,
F(p~,m™, E‘) -m, otherwise,
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6.2 Nonlinear examples

where pt, mt and ET denote the traces of p, m and E, respectively, from within the
element which has n as outward unit normal vector.

The logarithmic density of the computed solution is shown in Figure 6.9. This was
generated with polynomial degree p = 4 in space, maximal characteristic speed ¢ = 10
and r = 16 substeps within each tent. Figure 6.8b shows the spatial mesh with the
locally refined corner. The zoom in illustrates the local refinement of the tents which
comes in naturally through the causality constraint while pitching the tents. The solution
component (logarithmic density) shown in Figure 6.9a is comparable with the solution we
previously obtained using standard methods in [13], but now due to the higher accuracy
of the new SARK time integration, we obtained a similar quality solution faster (with the
overall simulation time on the same processor reduced by a factor of 10). We also observed
that the entropy residuals calculated off the computed solution with SARK schemes led
to a significantly reduced addition of artificial viscosity. The artificial viscosity coefficients
generated by the entropy residual are shown in Figure 6.9b, which is about half the size of
what is shown in the corresponding plot in our earlier work [13, Figure 5.
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(a) Geometry and boundary conditions

T

(b) Locally refined spatial mesh (top) used for the Mach 3 wind tunnel example and a zoomed in
view of the spacetime tents at the refined corner showing the automatic local time stepping.

(In the spacetime figure, vertical direction represents time.)

Figure 6.8: Geometry, mesh and tents of the Mach 3 wind tunnel.
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6.2 Nonlinear examples

0 0.45 0.9 1.35 1.8

(a) Logarithmic density

(b) Entropy viscosity coefficient v

Figure 6.9: Solution of the Mach 3 wind tunnel with a forward-facing step at the final
time tmax = 4 solved on 4128 triangles with the SARK(3, Heun) scheme
and spatial polynomials of degree p = 4.
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