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Abstract

The real area of contact between two bodies is a quantity of great interest in
(nano-)tribology, due to its central role in phenomena like friction, wear and adhe-
sion. Of particular relevance is how it depends on the load pressing the two bodies
together. For estimation, models from continuum mechanics are commonly used.
However, their applicability is questionable as the atomic scale is approached.

To shed light on this, we revisit an earlier work by Wolloch et al. [Phys. Rev. B 91,
195436]. Therein, a theoretical model for the ab-initio deőnition and calculation of
contact areas on the atomic scale has been proposed and applied to an atomic force
microscope (AFM) system consisting of a tungsten tip and a graphene layer on
an iridium substrate. For the necessary electronic structure calculations, density-
functional theory is used.

In the past, for this AFM-system, the load dependence of the contact area was deter-
mined using only a small amount of data (system conőgurations). This motivated
us to extend the previous investigation, őrstly by generating more conőgurations,
secondly by trying to reőne the analysis method by which the load dependence is
determined from the data. Furthermore, we attempt an interpretation in terms of a
particular contact model from the literature that we believe is the closest continuum
analog of our atomistic AFM-system. As far as the fundamental concepts are com-
parable, our results for the load dependence of the contact area seem approximately
consistent with that obtained for the continuum model.
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Kurzfassung

Die reale Kontaktŕäche zwischen zwei Körpern ist eine Größe von hohem Inter-
esse in der (Nano-)Tribologie, wegen ihrer zentralen Rolle in der Erklärung von
Phänomenen wie Reibung, Verschleiß und Adhäsion. Insbesondere relevant ist ih-
re Abhängigkeit von der Last, mit der die beteiligten Körper aneinandergedrückt
werden. Zur Abschätzung werden gewöhnlich Modelle aus der Kontinuumsmecha-
nik verwendet. Doch deren Anwendbarkeit ist fraglich, wenn man in den Bereich
atomarer Längenskalen kommt.

Zur Beleuchtung dieser Problematik greifen wir hier eine frühere Arbeit von Wol-
loch et al. [Phys. Rev. B 91, 195436] erneut auf. Darin wurde ein theoretisches
Modell zur ab-initio Deőnition und Berechnung von Kontaktŕächen auf atoma-
rer Ebene vorgeschlagen, und auf ein Rasterkraftmikroskop(AFM)-Modellsystem,
bestehend aus einer Wolframspitze und einer Graphenschicht auf Iridiumsubstrat,
angewandt. Für die benötigten elektronischen Strukturberechnungen kommt die
Dichtefunktionaltheorie zum Einsatz.

Die für dieses AFM-System gefundene Lastabhängigkeit der Kontaktŕäche wurde
allerdings aus der Analyse von nur wenigen Daten (Systemkonőgurationen) be-
stimmt. Dies veranlasste uns zu einer Erweiterung der früheren Untersuchung, in-
dem wir erstens mehr Konőgurationen erzeugen, und zweitens auch die Analyseme-
thode zur Extraktion der Lastabhängigkeit aus den Daten zu verfeinern versuchen.
Ferner versuchen wir eine Interpretation der Ergebnisse im Hinblick auf ein speziel-
les Kontaktmodell aus der Literatur, das wir für das engste Kontinuums-Analogon
unseres atomistischen Systems halten. Soweit die Grundbegriffe als vergleichbar gel-
ten können, scheinen unsere Ergebnisse für die Lastabhängigkeit der Kontaktŕäche
im Groben zu diesem Kontinuumsmodell sehr gut zu passen.
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1 Introduction

In theories of friction, wear and adhesion, part of the wide and highly interdisci-
plinary őeld of tribology, a key quantity that has been invoked to illuminate these
phenomena is the area of contact between the involved bodies in contact. Closely
related to this is the őeld of contact mechanics, which is concerned with "the stresses
and deformations which arise when the surfaces of two solid bodies are brought into
contact" [1].

The classical laws of friction between macroscopic bodies state that the friction
force between sliding bodies is independent of their apparent (nominal) area of
contact, and proportional to the load pressing them together. The latter statement
is expressed as

𝐹f = 𝜇 · 𝐿 , (1.1)

where 𝐹f is the friction force, 𝐿 is the load, and the proportionality constant 𝜇
linking them is called the coefficient of friction. While it appears that Leonardo da
Vinci already possessed knowledge of these laws, he did not publish his works on
the subject [2]. It was not until two hundred years later that Guillaume Amontons
rediscovered and published [3] these friction laws. Additional important contri-
butions are due to Charles Augustin de Coulomb [4], who conőrmed Amontons’s
results in a series of extensive and thorough experiments, and further noted that
the friction is independent of sliding velocity, in a őrst-order approximation. These
classical laws are empirical in their nature and for a long time lacked in a convincing
explanation, especially the rather unintuitive result that the apparent contact area
seems to play no role.

This was resolved by Bowden and Tabor [5, 6], who noted the necessary distinction
between the apparent and the real contact area. Due to inevitable roughness on
the microscale, two surfaces make contact only at the peaks or summits, known
as asperities. This contact due to asperities results in a real contact area orders
of magnitude smaller than the apparent contact area. Bowden and Tabor found
experimentally that this real contact area is nearly independent of the apparent
contact area and rises linearly with load. Assuming that friction is due to the
shearing of the asperity junctions, and therefore proportional to the real contact
area, the classical macroscale friction laws could follow. The linear load dependence
of the real contact area was originally explained by plastic ŕow of the asperities.
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2 1 Introduction

Later works [7, 8] showed that purely elastic deformation, too, can produce such a
behavior in multi-asperity contacts.

These results highlight the general fact that friction arises as a complex collective
effect from many asperities. For a fundamental understanding, studies of isolated
single-asperity contacts, under precisely controllable conditions, are needed. A
review is available in Ref. [9]. A tool that allows the experimental study of single-
asperity contacts is the atomic force microscope (AFM) [10]. For the study of
nanoscale friction with AFM, the term of ’friction force microscope’ (FFM) [11] is
also common. Loosely speaking, a sharp tip attached to a compliant cantilever is
dragged across a surface, while registering both the normal deŕection and twisting
of the cantilever, from which normal and lateral forces can be determined.

Numerous experimental FFM studies [12ś18] have reported proportionality between
friction force and real contact area in nanometer-sized solid-solid contacts, i.e.,

𝐹f = 𝜏 · 𝐴(𝐿) , (1.2)

as long as no wear occurs. The factor 𝜏 is called the interfacial shear strength.
When the single-asperity contact area 𝐴(𝐿) nonlinearly depends on load, so does
the friction 𝐹f (𝐿), too, in contrast to the familiar macroscale behavior described
by Eq. 1.1.

Since direct measurement or imaging of the contact area in FFM is hard, if not
impossible, the evidence for Eq. 1.2 is only indirect. One way is to measure con-
tact conductance, which can give information about the contact area [19]. But
evidence comes mostly from comparing measured friction-vs-load curves with the-
oretical predictions for the load-dependent contact area 𝐴(𝐿) from continuum me-
chanics models. Such continuum models are a mainstay of the interpretation of
FFM experiments, and they appear to describe tip-sample contacts well even at
nanometer length scales. Despite this, it is hard to imagine that there will not
be a point where they cease to be applicable because of atomic discreteness. In-
deed, molecular-dynamics simulations have pointed out the failure of continuum
models at the atomic scale [20, 21]. To test contact models at, or extend them to
the atomic scale, it is necessary to őrst deőne what even constitutes contact (and
contact area) in an atomistic picture. Several efforts along these lines have been
made [22ś25], including quite successful attempts to link atomic-level contact areas
to friction [26ś32].

Another example of an atomic-scale contact model is the one by M. Wolloch et
al. [33], which the present thesis is based on. It is notable that for deőning the
contact in a őrst-principles approach based on density-functional theory, Bader’s
quantum theory of atoms in molecules [34] is proposed to be used, and as far as
we are aware, it is the only available őrst-principles contact model. The model was
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3

applied in Ref. [33] to the contact between a tungsten AFM tip and graphene on
an iridium substrate. A square-root dependence of the real contact area on load
was found, i.e., 𝐴(𝐿) ∝ 𝐿1/2. That result, however, was based on only a few data,
motivating us to revisit the question of the load-dependent contact area in this
system. To that end, we generate more data to better sample 𝐴 as a function of 𝐿,
and tried to reőne the method for analyzing 𝐴(𝐿), but otherwise closely followed
Ref. [33].

This thesis is structured as follows: In Chap. 2 we review some underlying theoreti-
cal concepts. Chap. 3 details the model and computational methods used. Chap. 4
summarizes the original result for 𝐴(𝐿) from Ref. [33]. Our extension of that work
is found in Chap. 5, before we present our conclusions in Chap. 6.
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2 Background

2.1 Macroscopic contact models

In this section we give an overview of some macroscopic contact models popular in
the interpretation of AFM experiments, loosely based on Sec. 3.1 of Ref. [9]. For
the most part, we restrict ourselves to stating the basic assumptions of each model
and to its prediction for the load-dependent contact area between a sphere and a
plane, as the model of an AFM-setup.

2.1.1 Hertz theory of nonadhesive contact

Modern contact mechanics was originated by Heinrich Hertz who was the őrst
to develop a full-ŕedged theory of contact between nonadhesive bodies [35]. A
more recent textbook treatment can be found in [1], which we will also partly
follow here. Development of the theory by Hertz was originally motivated by a
speciőc problem from his work. He was studying the interference patterns produced
by the gap between glass lenses (Newton’s interference fringes) and wanted to
understand how elastic deformations resulting from contact pressure between the
lenses might inŕuence the patterns. Hertzian contact theory is not just of historical
interest. It remains relevant and popular today, due to the relative simplicity of the
relationships it predicts, paired with accuracy that is nonetheless often acceptable.
We will therefore devote some space to a discussion of it.

Hertz adopted a description of the surface proőles of the two bodies in their unde-
formed state in the form of paraboloids. If we choose the origin 𝑂 of our Cartesian
coordinate system 𝑂𝑥𝑦𝑧 as the point at which the two bodies only just touch as
they are brought in contact, but are not deformed yet, and deőne the 𝑂𝑥𝑦 plane
as the two bodies’ common tangent plane at that point, we can write the surface
proőles in a vicinity of the point of contact as

𝑧1 = 𝐴1𝑥
2 +𝐵1𝑦

2 + 𝐶1𝑥𝑦, 𝑧2 = 𝐴2𝑥
2 +𝐵2𝑦

2 + 𝐶2𝑥𝑦 . (2.1)

The real proőles must be sufficiently smooth and symmetrical in the vicinity of the
contact region for such a representation to be admissible.
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6 2 Background

Each of the two paraboloidal surface proőles is characterized by two principal radii
of curvature (in terms of which the coefficients in Eq. 2.1 may be restated). Shapes
that can be approximated by this description notably include spheres (where both
radii of curvature are őnite and equal) as well as cylinders (by letting one radius of
curvature go to inőnity) and planes (by letting both radii of curvature go to inőnity).
In addition to the radii of curvature, which describe the bodies’ geometries, each
body is characterized by two further parameters related to its mechanical properties.
These are Young’s modulus 𝐸 and Poisson’s ratio 𝜈.

Hertz assumed that contact of two bodies with proőles as described above would,
in the general case, give rise to contact regions bounded by elliptical contours. This
is not self-evident from the outset but can be shown to be justiőed. On the other
hand, if both bodies are solids of revolution (i.e., both have two identical radii of
curvature), it is easy to conclude from symmetry arguments that the contact region
will be bounded by a circle. We will denote the radius of this circle as 𝑎 and refer
to it as the contact radius.

With these preliminaries out of the way, we may now state the assumptions em-
ployed in Hertz theory to solve the actual contact problem.

1. The surfaces are microscopically smooth.
Intuitively speaking, this is to say that no matter with how much magniőca-
tion one looks at the surfaces, there will never be any microscopic irregularity
detected, recall Eq. 2.1.

2. The surfaces are continuous and non-conforming.
Non-conforming means that they initially touch only in a single point or along
a line at most, but not over an extended area, and that the contact area still
remains small compared to the surfaces’ radii of curvature as a load is applied.

3. Strains are small and do not exceed the elastic limit.
This allows the linear theory of elasticity to be used, with all the obvious
advantages this entails.

4. For the purpose of calculating the local displacements relative to its unde-
formed state, each body can be treated as an elastic half-space loaded over
an elliptical surface region.
An elastic half-space is a region of space bounded by a plane and extending
to inőnity to one side of that plane. For this approximation to be valid, the
contact region must be small compared to the overall size of the two bodies
as well as compared to their surfaces’ radii of curvature. The őrst condition
justiőes the neglect of boundary effects due to the bodies’ őnite size which
the half-space approximation implies. The second condition ensures that the
surfaces outside the contact region are sufficiently ŕat to be approximated as
planar.
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2.1 Macroscopic contact models 7

5. The surfaces are frictionless.
Frictionless in this context means that no tangential forces are transmitted
through the region of contact. Given the other assumptions already made
(half-space approximation, linear elasticity) tangential forces are understood
to be only those acting in the 𝑥 and 𝑦 directions, even though strictly speaking
they will also have a small 𝑧 component due to the generally curved contact
areas.

We will now go straight to the results for our case of interest, which is the contact
between a sphere of radius 𝑅 and a plane. Hertz theory predicts that the contact
radius 𝑎 varies with the applied load 𝐿 as

𝑎Hertz(𝐿) =

(︂
𝑅𝐿

𝐾

)︂1/3

, with 𝐾 =
4

3

(︂
1− 𝜈2

1

𝐸1

+
1− 𝜈2

2

𝐸2

)︂−1

, (2.2)

where the indices 1 and 2 label the two bodies. The mutual approach 𝛿 of distant
points within the two bodies is given by

𝛿Hertz(𝐿) =
𝑎2Hertz

𝑅
=

(︂
𝐿2

𝑅𝐾2

)︂1/3

. (2.3)

In case when one body is rigid, 𝛿 can be understood as the indentation depth of the
other one. The deőnition of these quantities and the deformation resulting from
loading are shown schematically in Fig. 2.1, for the simple case of a rigid sphere.

2𝑎

𝛿

𝑅

𝐿

Fig. 2.1: Deformation of an elastic half-space upon indentation by a rigid sphere
of radius R (approximated as a paraboloid).

To obtain the actual contact area, not just the contact radius, it is necessary to take
into account the exact proőle of the surfaces in the contact region. Although this
proőle will in general not be planar, the contact area 𝐴 is commonly approximated
as

𝐴Hertz ≈ 𝜋 · (𝑎Hertz)
2 ∝ 𝐿2/3 . (2.4)

Within the assumptions made already in Hertz theory, this is a justiőable approach.
This will also remain true for the models going beyond Hertz theory discussed in
the following sections.
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8 2 Background

2.1.2 Adhesive contacts

One of the most notable features of real contacts not included in Hertz theory is the
adhesion. On the macroscale, adhesion is indeed often negligible. In microscopic
contacts, however, it can be critically important. This is due to the different scaling
behavior of surface area and bulk volume as a function of object size, which causes
surface forces to become relatively more important the smaller the length scale.

A model for adhesive contact of elastic bodies was published in 1971 by Johnson,
Kendall, and Roberts [36], known as the JKR model. It assumes that the adhesive
interactions are inőnitely short range. That means, they cause a lowering of the
energy of the system only if two surfaces are in immediate contact, but there is
no energy contribution from surfaces at any non-zero separation. The model’s
prediction for the load-dependent contact radius between a sphere of radius 𝑅 and
a plane is

𝑎JKR(𝐿) =

(︂
𝑅

𝐾

[︁
𝐿+ 3𝜋𝛾𝑅 +

√︀
6𝜋𝛾𝑅𝐿+ (3𝜋𝛾𝑅)2

]︁)︂1/3

, (2.5)

with 𝐾 as in Eq. 2.2. The quantity 𝛾 is called the work of adhesion. It is equal to
the work per unit area necessary to separate two surfaces to inőnity, and is therefore
a measure of the strength of the adhesive interactions.

In contrast to Hertz theory, the contact radius at zero load remains őnite,

𝑎0(JKR) =

(︂
6𝜋𝛾𝑅2

𝐾

)︂1/3

. (2.6)

and a negative (i.e., tensile) load

𝐿c(JKR) = −
3

2
𝜋𝛾𝑅 (2.7)

must be applied to separate the bodies, often called the critical load or the pull-off
force. These are both consequences of the presence of adhesion.

In fact, the situation is a bit more complicated. The relation between 𝑎 and 𝐿 in
the JKR model actually consists of two branches, and Eq. 2.5 describes only one of
them (the upper branch in Fig. 2.2). The lower branch differs by the sign in front of
the square-root term. The two branches meet in the point where 𝐿 = 𝐿c(JKR) (point
I. in Fig. 2.2). In an experiment where one controls the applied load, the surfaces
will spontaneously separate at the pull-off force, and points along the lower branch
do not represent stable conőgurations. They are therefore inaccessible in such a
’load-control’ setup, and we will accordingly call the lower branch the unstable load
region. AFM nanofriction experiments with tips attached to a ŕexible cantilever fall
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2.1 Macroscopic contact models 9

into this ’load-control’ category, meaning that the upper branch Eq. 2.5 describes
the experimentally most relevant case. If, on the other hand, the displacement
rather than the load is controlled, part of the unstable load branch is accessible,
but there is a point at which the surfaces will separate spontaneously even in such
a ’displacement-control’ setup (point II. in Fig. 2.2) [37]. Qualitatively similar
behavior is also seen in other adhesive contact models.

Not long after the JKR model, another model was presented by Derjaguin, Muller,
and Toporov [38], known as the DMT model. They took a different approach by
assuming that there is a long-range attractive interaction acting at all separations,
and that the description of the elastic deformations by a Hertzian proőle remains
valid even in the presence of this interaction. The model’s prediction for the size
and load dependence of the contact radius is

𝑎DMT(𝐿) =

(︂
𝑅

𝐾
[𝐿+ 2𝜋𝛾𝑅]

)︂1/3

, (2.8)

which is similar to the Hertz result Eq. 2.2, except an offset along the load axis.
This load offset corresponds to the pull-off force, for which DMT theory predicts

𝐿c(DMT) = −2𝜋𝛾𝑅 . (2.9)

Unlike in the JKR model, the contact area in the DMT model goes to zero contin-
uously as the pull-of force is approached, and there is no unstable load branch (see
Fig. 2.2). At 𝐿 = 0, the contact radius takes the value

𝑎0(DMT) =

(︂
2𝜋𝛾𝑅2

𝐾

)︂1/3

. (2.10)

The apparent incompatibility of the JKR and DMT models generated a fair amount
of debate. This went on until the realization by Tabor [40] that the two models in
fact represent completely opposite limiting cases of adhesive elastic contacts, and
that they are both correct in their respective regime of validity. The JKR model
applies if the elastic deformations caused by the adhesive interactions are large
compared to the range of the interactions. This is the case for soft materials, large
tip radii, and strong, short-range adhesion forces. If, on the other hand, elastic
deformations due to adhesion are small compared to the range of the interactions
producing them, the DMT model is appropriate. This occurs for hard materials,
small tip radii and weak, long-range interaction forces. To distinguish between the
two limits, a dimensionless parameter, known as the Tabor parameter [40, 41], can
be convenient. It is given by

𝜇T =

(︂
16𝑅𝛾2

9𝐾2𝑧30

)︂1/3

, (2.11)
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10 2 Background

−2 −1 0 1 2 3

𝐿/(𝜋𝛾𝑅)

0

1

2

3

4
𝑎
2
/

(︂
𝜋
𝛾
𝑅

2

𝐾

)︂ 2
/
3

Hertz

DMT

JKR

I.

II.

interm
ediate

Fig. 2.2: Square of contact radius as a function of load in various models. Plot-
ted in Maugis’ dimensionless units [39]. Arrows on the curves indicate
increasing approach between the two bodies. For the intermediate case,
only the stable load branch is shown, which was drawn using Eq. 2.13.

with 𝑧0 being the equilibrium separation of the surfaces. As long as 𝑧0 is the only
intrinsic length scale of the interaction potential, it can be seen as a measure of the
range of the interaction. The Tabor parameter expresses the ratio between elastic
deformations induced by adhesion alone (not due to an applied load) and the range
of the adhesive interaction as measured by 𝑧0. JKR theory is appropriate in the
limit of large 𝜇T , DMT theory at small 𝜇T .

Understanding of the JKR-DMT transition was deepened by Maugis, who worked
out an analytic solution of the contact behavior in the intermediate regime. To do
so, he assumed a constant adhesive stress 𝜎0 acting between the surfaces up to a
separation 𝛿t, and no interaction at larger separations. Such a type of interaction
is known as a Dugdale potential and Maugis’ model is therefore referred to as the
Maugis-Dugdale model. The work of adhesion in this model is simply given by
𝛾 = 𝜎o · 𝛿t. Maugis introduced a transition parameter

𝜆 = 2𝜎0

(︂
𝑅

𝜋𝛾𝐾2

)︂1/3

, (2.12)

which possesses a similar interpretation as 𝜇T . JKR theory is applicable when
𝜆 > 5, DMT theory is applicable when 𝜆 < 0.1, and values in between indicate the
transition regime between the two. While Maugis’ solution in the transition regime
is mathematically exact, it is also rather unwieldy and notably does not come in the
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2.1 Macroscopic contact models 11

form of one single formula expressing 𝑎 as a function of 𝐿. This limits its application
in practice, where one typically measures the frictional force 𝐹f (related to the area
of contact, and thus to 𝑎, by Eq. 1.2) as a function of load, and wants to őt an
analytic expression to these data.

This was remedied to some extent by Carpick, Ogletree, and Salmeron [42]. They
proposed a formula for 𝑎(𝐿) that approximates (the stable load branch of) the
Maugis-Dugdale solution in the intermediate regime with high accuracy, while being
easier to use. This generalized transition equation is given by

𝑎(𝐿) = 𝑎0

(︃
𝛼 +

√︀
1− 𝐿/𝐿c

1 + 𝛼

)︃2/3

. (2.13)

It uses three őt parameters, 𝑎0, 𝐿c and 𝛼. The parameter 𝛼 governs the transition
between JKR and DMT and can be mapped onto Maugis’ 𝜆. A value of 𝛼 = 0 ⇐⇒
𝜆 = 0 corresponds to the exact DMT limit, and 𝛼 = 1 ⇐⇒ 𝜆 = ∞ to the exact
JKR limit.

The Dugdale potential used in Maugis’ analytic solution is of course still an idealiza-
tion. But it turns out that the predicted contact behavior is relatively insensitive to
the precise shape of the interaction potential [43]. This makes the Maugis-Dugdale
model quite widely applicable despite its idealizations. Furthermore, more realistic
interaction potentials can generally only be treated numerically.

2.1.3 Thin-Coating Contact Mechanics

The models covered so far all have in common that the contacting bodies are
assumed homogeneous. In many applications, however, one or both contacting
bodies are composed of multiple layers with different elastic properties. An example
of such a layered composition is when one of the surfaces is covered by a thin coating.
We will now brieŕy review one simple and easy-to-use theory for this case developed
by Reedy [44], termed Thin-Coating Contact Mechanics (TCCM).

The model considers the contact between a rigid spherical indenter and a thin,
linear elastic coating bonded to a rigid substrate. The coating is characterized by its
thickness ℎ, Young’s modulus 𝐸, and Poisson’s ratio 𝜈. The spherical indenter has
the radius 𝑅. The model assumes that the coating thickness and the contact radius
are much smaller than the indenter radius (ℎ/𝑅, 𝑎/𝑅≪ 1), and the contact radius
much larger than the coating thickness (𝑎/ℎ ≫ 1). More compactly, ℎ ≪ 𝑎 ≪ 𝑅.
Importantly, the model is not valid for incompressible coatings (𝜈 ≈ 0.5), which
require a separate analysis.
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12 2 Background

Reedy expressed his results using dimensionless variables. In a notation slightly
adapted for consistency with the previous sections, these quantities are given by

𝑎̄ =
𝑎√
𝑅ℎ

, ℎ̄ =
ℎ√
𝑅ℎ

, 𝛾 =
𝛾

𝐸uℎ
, 𝐿̄ =

𝐿

𝐸u𝑅ℎ
, (2.14)

with the so-called uniaxial strain modulus

𝐸u =
1− 𝜈

(1 + 𝜈)(1− 2𝜈)
𝐸 . (2.15)

In the absence of adhesion, TCCM predicts a square-root behavior of the contact
area as a function of applied load,

(𝑎̄TC-noadh)
2 =

(︂
4

𝜋
𝐿̄

)︂1/2

, (2.16)

in notable contrast to the 2/3-power dependence in Hertz theory. In addition to the
adhesionless case, Reedy also worked out two different versions of the thin-coating
theory that include adhesion. The őrst one assumes DMT-like adhesive behavior,
which leads to

(𝑎̄TC-DMT)
2 =

(︂
4

𝜋
[𝐿̄+ 2𝜋𝛾]

)︂1/2

. (2.17)

The second one assumes JKR-like adhesive behavior, resulting in

(𝑎̄TC-JKR)
2 = (8𝛾)1/2 ±

(︂
4

𝜋
[𝐿̄+ 2𝜋𝛾]

)︂1/2

. (2.18)

Like the standard JKR model, this also has two branches.

Strictly speaking, the formulas of TCCM only hold for ℎ/𝑅 and 𝑎/𝑅 vanishingly
small. However, Reedy proposed an extension of the nonadhesive result Eq. 2.16
even to cases where this is not strictly satisőed by assuming a general power-law

𝑎̄2 =

(︂
4

𝜋

)︂1/2

𝑐 · 𝐿̄d , (2.19)

with the őtting parameters 𝑐 and 𝑑 that are expected to be functions of 𝜈 and
ℎ/𝑅. To assess this behavior, Reedy performed őnite-element method (FEM) sim-
ulations for 𝜈 ranging from 0.00ś0.45 and ℎ/𝑅 from 0.01ś0.10. For each parameter
combination the indentation 𝛿 of the coating was limited to 𝛿/ℎ < 0.2 (considered
a plausible upper limit to linear elastic behavior). Some deviations of the FEM re-
sults from Eq. 2.16 were observed, but agreement was found to be excellent across
all parameter values considered when őtting the general power-law Eq. 2.19 to the
data.
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2.2 Density-Functional Theory 13

2.2 Density-Functional Theory

If one wants to simulate the behavior of atoms, molecules or solids without rely-
ing on empiricism, one needs to solve the many-body Schrödinger equation (SE)
𝐻̂ |Ψ⟩ = 𝑖~𝜕t |Ψ⟩ (or its stationary version 𝐻̂ |Ψ⟩ = 𝐸 |Ψ⟩). In principle, this
provides a complete description. In practice, however, an exact solution of the full
many-body SE is hopelessly out of reach for all but the smallest systems. The prob-
lem lies in the immense complexity of the central mathematical object, the wave
function Ψ. For 𝑁 particles in 3 dimensions, it is a function of 3𝑁 coordinates
(spin not considered), meaning that the memory requirements scale exponentially
with the number of particles.

To bring down the computational cost to a feasible level, while retaining acceptable
accuracy, many clever approximations have been developed. Of outstanding impor-
tance among them is density-functional theory (DFT), which manages to avoid the
scaling problem by working with the one-particle density rather than the wave func-
tion. The beneőt of this is clear, as the one-particle density is always a function of
just 3 coordinates, regardless of the number of particles.

In this section, we will give a brief overview of DFT, based on [45, 46].

2.2.1 Hamiltonian and Born-Oppenheimer Approximation

We őrst introduce the general many-body Hamiltonian and the Born-Oppenheimer
or ’adiabatic’ approximation [47], which form the starting point for our discussion
of DFT. These concepts, however, are by no means speciőc to DFT.

Without external őelds, the non-relativistic many-body Hamiltonian reads

𝐻̂ =
Nn∑︁

I=1

P̂2
I

2𝑀I

⏟  ⏞  
T̂n

+
Ne∑︁

i=1

p̂2
i

2𝑚
⏟  ⏞  

T̂e

+
∑︁

I<J

𝑍I𝑍J𝑒
2

|RI −RJ |
⏟  ⏞  

Vnn

+
∑︁

i<j

𝑒2

|ri − rj|
⏟  ⏞  

Vee

−
∑︁

I,j

𝑍I𝑒
2

|RI − rj|
⏟  ⏞  

Vne

, (2.20)

where upper-case indices iterate over nuclei, lower-case ones over electrons. 𝑁n and
𝑁e are the numbers of nuclei and electrons, respectively. PI , RI and 𝑀I denote
the nuclear momenta, positions and masses, pi, ri and 𝑚 are those of the electrons.
The 𝑍I are the atomic numbers of the nuclei, and 𝑒 is the elementary charge.

The Schrödinger equation of this Hamiltonian, in position space, reads
[︁
𝑇n + 𝑇e + 𝑉nn + 𝑉ee + 𝑉ne

]︁
Ψ
(︀
{ri,RI}

)︀
= 𝐸totΨ

(︀
{ri,RI}

)︀
. (2.21)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

14 2 Background

To simplify this equation, the Born-Oppenheimer approximation exploits the dif-
ferent time scales of electronic and ionic motion, due to the electrons’ much lower
mass, in order to decouple them. First, we write 𝐻e = 𝑇e + 𝑉ee + 𝑉ne and sup-
pose that the eigenfunctions 𝜑α

(︀
{ri,RI}

)︀
of 𝐻e, with corresponding eigenenergies

𝐸e,α

(︀
{RI}

)︀
, are known:

[︁
𝑇e + 𝑉ee + 𝑉ne

]︁
𝜑α

(︀
{ri,RI}

)︀
= 𝐸e,α

(︀
{RI}

)︀
𝜑α

(︀
{ri,RI}

)︀
. (2.22)

Note that in this equation the dependence on the nuclear positions RI is only of a
parametric kind, since 𝐻e contains no derivative w.r.t. them. Since the 𝜑α

(︀
{ri,RI}

)︀

form a complete basis set, we can, for any őxed set {RI} of nuclear positions, expand
a solution Ψ

(︀
{ri,RI}

)︀
of the full Schrödinger equation Eq. 2.21 as:

Ψ
(︀
{ri,RI}

)︀
=

∑︁

α

𝜒α

(︀
{RI}

)︀
𝜑α

(︀
{ri,RI}

)︀
. (2.23)

This ansatz, plugged into the full Schrödinger equation Eq. 2.21, together with
neglecting some terms proportional to powers of 𝑚/𝑀I , őnally leads to

[︁
𝑇n + 𝑉nn + 𝐸e,α

(︀
{RI}

)︀]︁
𝜒α

(︀
{RI}

)︀
= 𝐸tot 𝜒α

(︀
{RI}

)︀
. (2.24)

The interpretation of Eq. 2.22 is that the electrons move in the potential gener-
ated by the nuclei, and that is perceived by them as static. Eq. 2.24 expresses
that the nuclei move on the potential-energy surface generated by the electronic
eigenenergies (through their parametric dependence on {RI}), and that the elec-
tron states adapt to the nuclear motion adiabatically (i.e., the electrons do not
undergo transitions).

As a further approximation, we shall treat only the electrons quantum mechanically,
by means of Eq. 2.22, and describe the nuclei by classical equations of motion

𝑀IR̈I = −
𝜕

𝜕RI

𝐸tot

(︀
{RI}

)︀
= − 𝜕

𝜕RI

[︁
𝑉nn

(︀
{RI}

)︀
+ 𝐸e,α

(︀
{RI}

)︀]︁
. (2.25)

2.2.2 Hohenberg-Kohn Theorems

Having separated electronic and nuclear motion by means of the Born-Oppenheimer
approximation, we are now only concerned with the electronic Schrödinger equa-
tion Eq. 2.24. To reduce clutter, we drop all subscripts distinguishing nuclei and
electrons, as well as references to parametric dependences on nuclei positions, and
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2.2 Density-Functional Theory 15

write 𝑇ee ≡ 𝑇 , 𝑉ee ≡ 𝑈 , and 𝑉ne ≡ 𝑉 =
∑︀Ne

i=1 𝑣(ri). Any additional external poten-
tial the electrons may be subject to other than that generated by the őxed nuclei
is also put into 𝑣(ri). Next, we deőne the one-particle density of the electrons

𝑛(r) = ⟨𝜑|
Ne∑︁

i=1

𝛿(r− ri) |𝜑⟩ . (2.26)

With this, we are ready to review the theorems by P. Hohenberg and W. Kohn [48]
(HK) that form the basis of DFT:

Theorem 1 The external potential 𝑣(r) is, up to an additive constant, a unique
functional of the ground-state density 𝑛0(r).

This statement is proved by contradiction. Assume there exist two different external
potentials 𝑣(1)(r) and 𝑣(2)(r) that both give rise to the same ground-state density
𝑛0(r). Apart from the external potential, the Hamiltonians of the two systems are
the same, since 𝑇 and 𝑈 depend only on the number of electrons 𝑁e (which for a
given density 𝑛0(r) is őxed). They read

𝐻̂(1) = 𝑇 + 𝑈 + 𝑉 (1), with 𝑉 (1) =
Ne∑︁

i=1

𝑣(1)(ri)

𝐻̂(2) = 𝑇 + 𝑈 + 𝑉 (2), with 𝑉 (2) =
Ne∑︁

i=1

𝑣(2)(ri) .

(2.27)

Except for the trivial case 𝑣(r)(1)− 𝑣(r)(2) = const., the ground states 𝜑(1)
0 and 𝜑

(2)
0

of 𝐻̂(1) and 𝐻̂(2) cannot be the same. This allows us to compute

𝐸
(1)
0 = ⟨𝜑(1)

0 | 𝐻̂(1) |𝜑(1)
0 ⟩ < ⟨𝜑

(2)
0 | 𝐻̂(1) |𝜑(2)

0 ⟩
= ⟨𝜑(2)

0 | 𝐻̂(2) |𝜑(2)
0 ⟩+ ⟨𝜑

(2)
0 |𝑉 (1) − 𝑉 (2) |𝜑(2)

0 ⟩

=𝐸
(2)
0 +

∫︁
𝑛0(r)

(︀
𝑣(1)(r)− 𝑣(2)(r)

)︀
d3 𝑟 ,

(2.28)

where the inequality is because the expectation value of 𝐻̂(1) is minimal when
evaluated with its correct ground state, by the variational principle. The same
calculation with the roles of (1) and (2) reversed gives

𝐸
(2)
0 < 𝐸

(1)
0 +

∫︁
𝑛0(r)

(︀
𝑣(2)(r)− 𝑣(1)(r)

)︀
d3 𝑟 . (2.29)

Addition of Eq. 2.28 and Eq. 2.29 leads to a contradiction,

𝐸
(1)
0 + 𝐸

(2)
0 < 𝐸

(2)
0 + 𝐸

(1)
0 . (2.30)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

16 2 Background

The starting assumption of two different external potentials that produce the same
ground-state density must therefore have been wrong.

𝑇 and 𝑈 follow straightforwardly from 𝑛0(r) via 𝑁e =
∫︀
𝑛0(r) d

3 𝑟, and we have just
seen that 𝑣(r), too, is uniquely determined by 𝑛0(r). The Hamiltonian as a whole
is therefore uniquely determined by 𝑛0(r). Consequently, the ground state 𝜑0[𝑛0]
is also a unique functional of 𝑛0 (assuming no degeneracy), as is the ground-state
energy 𝐸0[𝑛0]. More than that, 𝑛0(r) strictly speaking determines even the entire
spectrum through its őxing of 𝐻̂.

We now introduce the density functional of the energy

𝐸[𝑛] := min
φ→n
⟨𝜑| 𝐻̂ |𝜑⟩ = min

φ→n
⟨𝜑|𝑇 + 𝑈 + 𝑉 |𝜑⟩ ≡ 𝑇 [𝑛] + 𝑈 [𝑛] + 𝑉 [𝑛] , (2.31)

where the minimization condition means the minimum out of all states 𝜑 that
produce the given density 𝑛. For this functional, it holds that:

Theorem 2 The functional 𝐸[𝑛] assumes its minimum value at the correct ground-
state density 𝑛0, for fixed particle number 𝑁e.

This is a consequence of the őrst HK Theorem in combination with the general
variational principle of quantum mechanics.

2.2.3 Kohn-Sham Equations

By virtue of the HK theorems, the problem of őnding the ground-state density and
energy becomes that of minimizing the density functional 𝐸[𝑛] given by Eq. 2.31Ðin
principle a much more manageable task than searching for the full wave function.
However, in practice one is hindered by the lack of an explicit expression for 𝐸[𝑛].
The HK theorems only establish the existence and uniqueness of 𝐸[𝑛] but do not
declare how it looks like.

Only the external potential contribution 𝑉 [𝑛] =
∫︀
𝑛(r)𝑣(r) d3 𝑟 is known explicitly

in terms of the density. A natural, but only approximate, ansatz for expressing
𝑈 [𝑛] in terms of 𝑛(r) is the Hartree [49] energy

𝑈 [𝑛] ≈ 𝑒2

2

∫︁ ∫︁
𝑛(r)𝑛(r′)

|r− r′| d3 𝑟 d3 𝑟′ ≡ 𝑈H [𝑛] . (2.32)

Expressing the remaining part, the kinetic energy 𝑇 [𝑛], in terms of the density is
particularly problematic.
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2.2 Density-Functional Theory 17

However, explicit minimization of 𝐸[𝑛] over 𝑛(r) is not the only possible approach.
There is another way, due to W. Kohn and L. J. Sham [50], that improves the
treatment of the kinetic energy by reintroducing wave functions. Kohn and Sham
considered an auxiliary system of 𝑁e non-interacting electrons moving in a őctitious
single-particle potential 𝑣eff(r) that reproduces the density of the real interacting
system. The wave function of such a non-interacting system can be written as a
Slater determinant composed of 𝑁e single-particle orbitals 𝜙i, and the density reads
simply

𝑛(r) =
Ne∑︁

i=1

|𝜙i(r)|2 . (2.33)

The kinetic energy of the non-interacting system (subscript 𝑠 for ’single-particle’)
can be expressed as

𝑇s[{𝜙i}] = −
~
2

2𝑚

Ne∑︁

i=1

∫︁
𝜙*

i (r)∇2𝜙i(r) d
3 𝑟 . (2.34)

Based on the kinetic energy of the non-interacting system, the ansatz

𝐸[{𝜙i}] = 𝑇s[{𝜙i}] + 𝑈H [𝑛] + 𝑉 [𝑛] + 𝐸xc[𝑛] (2.35)

is made for the energy of the real interacting system. The so-called exchange-
correlation term 𝐸xc[𝑛] summarizes all corrections due to the difference between
the single-particle kinetic energy 𝑇s[{𝜙i}] and 𝑇 [𝑛] of the interacting system, as
well as between the Hartree energy 𝑈H [𝑛] and the exact 𝑈 [𝑛]. It is customarily
further decomposed into 𝐸xc[𝑁 ] = 𝐸x[𝑛] + 𝐸c[𝑛], where the exchange part 𝐸x[𝑛]
is due to the Pauli exclusion principle and the correlation part 𝐸c[𝑛] is due to the
tendency of electrons to avoid each other because of Coulomb repulsion.

Variation of Eq. 2.35 w.r.t. the orbitals 𝜙*

i , under the normalization constraint∫︀
𝜙*

i𝜙i d
3 𝑟 = 1 ∀𝑖, yields the Kohn-Sham equations

(︂
− ~

2

2𝑚
∇2 + 𝑣(r) +

∫︁
𝑒2𝑛(r′)

|r− r′| d
3 𝑟′ +

𝛿𝐸xc[𝑛]

𝛿𝑛(r)⏟  ⏞  
veff(r)

)︂
𝜙i(r) = 𝜖i𝜙i(r) . (2.36)

The Kohn-Sham equations form the basis of most modern DFT applications. For-
mally, they look like 𝑁e one-particle Schrödinger equations for electrons in an effec-
tive external potential 𝑣eff(r). However, since 𝑣eff(r) depends itself on the density
and thus on the orbitals, these equations are nonlinear. To solve them, one typically
applies an iterative self-consistency procedure:

1. Start with a guess for the density 𝑛(r).
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18 2 Background

2. From the density, construct 𝑣eff(r).

3. Plug 𝑣eff(r) into the Kohn-Sham equations and solve for the orbitals 𝜙i.

4. Recompute the density from the resulting orbitals, by means of Eq. 2.33.

5. If the change in the energy 𝐸[𝑛] compared to the previous iteration is smaller
than a set threshold, halt. Otherwise, repeat from 2. with the new density.

While we have not considered it in this introduction, it is also possible to extend
this formalism to include electron spin.

2.2.4 Exchange-correlation functionals

The Kohn-Sham equations are formally exact since, by deőnition, all many-body
effects not accounted for by 𝑇s[{𝜙i}] and 𝑈H [𝑛] are contained in the exchange-
correlation energy 𝐸xc[𝑛]. However, in practice, 𝐸xc[𝑛] is unknown and one must
rely on approximations for it. The accuracy of DFT hinges thus on the quality
of these approximations. Over time, a plethora of different approximations with
varying degrees of sophistication have been developed. The choice of functional
generally depends on the problem at hand.

The simplest approximations for 𝐸xc[𝑛] are based on the homogeneous electron
gas. Starting from expressions 𝜀hom

xc (𝑛hom) for the per-volume exchange-correlation
energy derived initially for the homogeneous electron gas, one simply replaces the
constant density 𝑛hom in these expressions with a spatially varying one:

𝐸xc[𝑛] ≈
∫︁

𝜀hom
xc (𝑛(r)) d3 𝑟 . (2.37)

This approximation can be justiőed for slowly-varying densities, but gives surpris-
ingly good results even in situations where this is not the case. Since the resulting
exchange-correlation potential depends only on the value of the density at the
position r, this kind of approximation is known as a local-density approximation
(LDA).

One may imagine that the exchange-correlation energy can be more accurately
captured by incorporating not just the local value 𝑛(r) of the density, but also
its slope ∇𝑛(r). The resulting generalized-gradient approximation (GGA) has the
general form

𝐸GGA
xc [𝑛] =

∫︁
𝜀xc(𝑛(r),∇𝑛(r)) d3 𝑟 . (2.38)

Further extensions include the meta-GGA functionals, where the Kohn-Sham ki-
netic energy density 𝜏(r) = ~

2/(2𝑚)
∑︀Ne

i=1 |∇𝜙i|2 is added as another descriptor.
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2.2 Density-Functional Theory 19

So-called hybrid functionals, combine exchange-correlation density functionals with
a portion of exact Hartree-Fock exchange. Meta-GGAs and hybrid functionals are
both examples of so-called orbital functionals, since they express 𝐸xc not fully in
terms of the density but also partly in terms of the Kohn-Sham orbitals 𝜙i.

To describe long-range van-der-Waals interactions, which are related to non-local
correlations, methods are required that go beyond the (semi-)local approximations
made in LDA and GGA. An overview can be found in [51]. One successful method
that is convenient and not too costly is vdW-DF by Dion and co-workers [52]:

𝐸xc[𝑛] ≈ 𝐸GGA
x [𝑛] + 𝐸LDA

c [𝑛] + 𝐸nl
c [𝑛] . (2.39)

It uses a GGA functional for exchange, and decomposes the correlation part into a
local contribution from LDA and a non-local contribution

𝐸nl
c [𝑛] =

1

2

∫︁ ∫︁
𝑛(r)Φ(r, r′)𝑛(r′) d3 𝑟 d3 𝑟′ , (2.40)

with an interaction kernel Φ(r, r′). An important step in making vdW-DF practi-
cally useful was the development of an efficient algorithm [53] for the evaluation of
the double integral in Eq. 2.40. In this thesis, the optB86b-vdW version of vdW-DF
is used, which is obtained by setting the exchange term of Eq. 2.39 to the optB86b
functional proposed for that purpose by Klimeš and co-workers [54].

2.2.5 Geometry optimization

DFT as presented so far provides the density and energy of the electronic ground
state, for a given őxed conőguration of nuclei. The resulting electronic ground-state
energy 𝐸e,0({RI}) thus depends parametrically on the conőguration {RI} of nuclei.
The total energy of a conőguration,

𝐸tot({RI}) = 𝑉nn({RI}) + 𝐸e,0({RI}) , (2.41)

consists of the electronic contribution and the contribution 𝑉nn from the nucleus-
nucleus Coulomb interactions (see also Sec. 2.2.1). The equilibrium conőguration
of nuclei is the one that minimizes 𝐸tot. The problem of őnding this conőgura-
tion is known as geometry optimization or relaxation1. Most minimization algo-
rithms require the derivative of 𝐸tot w.r.t. the RI . For implementation purposes,
the computation of this derivative can be greatly facilitated by making use of the
Hellmann-Feynman theorem [55].

1 More generally, this may involve optimization also w.r.t. the size and shape of the simulation
cell, not just the nuclei positions.
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2.3 Quantum Theory of Atoms in Molecules

The Quantum Theory of Atoms in Molecules (QTAIM) by Richard Bader (see [56]
for an overview, [34] for a comprehensive treatise) seeks to resolve a certain mis-
match between the description of bound systems of atoms by traditional methods
of chemistry and by quantum mechanics. The prevailing notion in chemistry, form-
ing its operational basis, is that of individual atoms as building blocks of molecules
and solids, linked together by chemical bonds. In this view, each individual atom
possesses some characteristic and quantiőable properties. Quantum mechanics, on
the other hand, treats the total system, with no such intrinsic notion of individual,
delimitable atoms. If there is indeed some validity to the more local approach taken
by chemistry, which is certainly suggested by its being quite successful, it stands
to reason that a similar kind of local description is also contained within quantum
mechanics. After all, its fundamental object, the wave function Ψ, provides the
most complete information possible about a system.

QTAIM therefore asks about the possibility of formulating quantum mechanics not
just for the total system, but open subsystems of it. The central result is that
this can indeed be done, but only for subsystems that fulőll a certain boundary
condition. This condition is a topological property of the electron density 𝑛(r),
namely that the subsystems must be bounded by zero ŕux surfaces of the gradient
őeld of the electron density. Expressed mathematically, the subsystems are regions
Ω in real space such that the gradient ∇𝑛 of the electron density is orthogonal to
the surface normal vector 𝑛⃗ at all points r of the surface 𝑆(Ω) that bounds Ω,

∇𝑛(r) · 𝑛⃗(r) = 0 ∀ r ∈ 𝑆(Ω) . (2.42)

This condition is rigorously derived from Schwinger’s principle of stationary ac-
tion [57], a variational principle giving rise to the equations of motion of quantum
mechanics that is appropriately general to be extended to an open subsystem of
the total system in a nonarbitrary fashion.

Space is thus partitioned into regions Ω according to Eq. 2.42. This partitioning is
further shown to be unique and non-overlapping. Very often, each region deőned
this way contains a single nucleus [58]. The regions are therefore identiőed with
the atoms, and referred to as Bader atoms.

A number of useful properties and applications follow from the result Eq. 2.42. An
immediate consequence is that the individual Bader atoms make additive contribu-
tions to the total expectation value of an observable. This can be seen as recovering
a central principle of chemistry on the basis of quantum mechanics. Another conse-
quence is that versions of the Ehrenfest and virial theorems hold for the subsystems.
Perhaps the most common and well-known application of QTAIM is Bader charge
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2.3 Quantum Theory of Atoms in Molecules 21

analysis, where the partitioning stipulated by Eq. 2.42 is used to divide charge
densities between atoms, to study, e.g., charge redistribution in chemical reactions
or dipole moments of individual atoms.

2.3.1 Molecular structure

Within the framework of QTAIM, Bader and coworkers also developed a theory
of bonding and molecular structure based on topological properties of the electron
density, which we will brieŕy discuss. To do so, we őrst need to introduce critical
points of the charge density, and their classiőcation. Critical points of the charge
density are points where its gradient vanishes, ∇𝑛(r) = 0. Different kinds of critical
points are characterized and distinguished by a tuple (𝜎, 𝜆), where 𝜎 indicates the
rank of the Hessian matrix at the critical point, and 𝜆 is the sum of the signs of
its eigenvalues (curvatures). At the positions of nuclei, maxima of 𝑛(r), i.e. (3,−3)
critical points, are found. In the interatomic surfaces between some, but not all,
Bader atoms bordering one another, (3,−1) critical points are located. These
constitute saddle points of 𝑛(r), with a maximum along two spatial directions
(tangential to the surface) and a minimum along a third direction (perpendicular
to the surface). Two gradient paths (paths following the steepest ascent of 𝑛(r))
originate in such a critical pointÐone to either side of the surfaceÐand terminate
at the nuclei of the two Bader atoms.

Such a line formed by gradient paths, running from nucleus to nucleus and crossing
the interatomic surface at a (3,−1) critical point, is called an atomic interaction
line. It possesses the important property that 𝑛(r) is maximal along this path com-
pared to any neighboring path linking the same pair of nuclei. Charge is therefore
accumulated along this line, which is a necessary and, under certain additional as-
sumptions, sufficient condition that there is a force binding the two nuclei together.
In that case, the atomic interaction line is called a bond path. Note, however, that
a bond path itself is not the same thing as a ’bond’ but rather is a feature of the
electron density indicating that two atoms are bonded to each other.

The network of all atomic interaction lines between the atoms of a molecule is re-
ferred to as the molecular graph. Its topology is found to match the assignment of
chemical bonds by traditional chemistry. QTAIM regards two different conőgura-
tions of nuclear positions as the same chemical structure if their molecular graphs
are topologically equivalent. Conversely, the transition between two distinct chem-
ical structures is marked by a change in the topology of the molecular graph. This
further leads to the notion of stability in QTAIM as that of chemical structures
which do not change their molecular graph as they undergo vibrations.
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3 Model and Computational

Methods

The fundamental model and methods used in this thesis are very closely based
on the previous study by M. Wolloch et al. [33]. This includes using the model
introduced therein for the ab-initio deőnition and calculation of contact areas on the
atomic scale, and applying it to the same AFM model system as in that study. We
also did not make any signiőcant changes to the simulation parameters from back
then, which had themselves been based partly on earlier studies by A. Garhofer [59],
unless explicitly stated. We worked starting from input parameter őles and atomic
structures supplied by M. Wolloch.

Where we extend, and depart from, the previous work is mostly by trying to deepen
and reőne the analysis of the load dependence of the real contact area (which, too,
was already touched upon in the original study, but on the basis of only few data, see
Chap. 4). Our changes and extensions thus mostly do not concern the fundamental
model and methods. We will report on them when we discuss our őndings in
Chap. 5, rather than in this chapter. From the outset, it has always been the aim
of this thesis to reőne the analysis of the load-dependence of the real contact area,
building on the previous work by Wolloch et al., without overly spending time and
effort on redeveloping the fundamental method and simulation parameters. After
all, this has already been done.

3.1 General

The supercell used to study the system is depicted in Fig. 3.1. The dimensions
along the directions a, b and c are 24.61Å, 24.61Å and 26.53Å, respectively. In
the lower portion of the cell, there are four 9×9 layers of iridium (111). These form
the substrate on which a 10× 10 graphene layer is adsorbed, giving rise to a moiré
structure. The simulation cell further contains a tungsten AFM tip, modeled as a
pyramid-like structure of 10 atoms arranged in 3 layers. Its topmost layer (the ’tip
base’) has őve atoms, the middle layer has four atoms, and the bottommost layer
(the ’tip apex’) is made up of just a single atom. The tip employed is therefore
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24 3 Model and Computational Methods

of the ’atomically sharp’ kind. The total number of atoms in the supercell for the
setup described is 534: 324 iridium, 200 carbon, and 10 tungsten atoms.

The lateral placement of the tip is such that the tip apex atom is above a carbon
atom in a so-called top-hcp region of the graphene moiré structure. A top-hcp
region is one where the carbon atoms are placed directly above the atoms of the őrst
(’top site’) and the second layer (’hcp site’) of the substrate [60]. This is the only
contact site between tip and surface that was considered in this work. Conceivably,
contact behavior may depend on the contact site (i.e., the lateral tip position).
For comparison with experimental friction forces, which are typically obtained as
averages over an extended sliding path, it might be advisable to calculate contact
areas by our method for different contact sites and őnally to take an average.
However, this was infeasible in the available time, given the sizeable computational
cost of treating even a single contact site.

All simulations were performed by means of non-spin-polarized density-functional
theory (DFT), using the plane-wave-based implementation provided by the Vienna
Ab-Initio Simulation Package (VASP) [61ś64], version 5.4.4. We used the projector
augmented-wave (PAW) method [65, 66] in our calculations. Van-der-Waals (vdW)
interactions, considered relevant in the system under study, were incorporated by
choosing the optB86b-vdW functional [52ś54]. The lattice constants of graphene
and iridium2 calculated with this functional are 𝑎Gr = 2.465Å and 𝑎Ir = 2.735Å,
in good agreement with experimental values of 2.46Å and 2.71Å (values reported
from [59], we did not re-perform this calculation). The Brillouin zone was sampled
on a Γ-centered 3×3×1 𝑘 grid, with a smearing of 0.1 eV applied using the scheme
of Methfessel and Paxton [67] to őrst order. Electronic energies were converged to
10−6 eV, and ionic relaxations were terminated when the residual forces between
atoms reached less than 10−2 eV/Å. The plane-wave energy cutoff was set at 300 eV.
One small change we made to the DFT settings compared to those of the original
study is the use of the option LASPH = .TRUE. It signals to include non-spherical
contributions from the gradient of the density inside the PAW spheres, since it is
recommended by the VASP manual in case of van-der-Waals functionals.

The use of VASP entails that periodic boundary conditions (PBCs) apply in all our
simulations. The real physical system that the simulation setup aims to model is,
however, not fully periodic. PBCs can be physically motivated only for the graphene
and substrate, along the two lateral directions a and b. They are unphysical for the
AFM tip, and for the vertical direction c in general. To avoid spurious interactions
introduced by the PBCs, parts that should not interact must be decoupled. This is
achieved by choosing the lateral dimensions of the supercell sufficiently large, and
by the inclusion of an empty volume, or ’vacuum gap’, above the tip. The use of
only a single point for sampling the third 𝑘-space direction, as mentioned earlier in

2 Actually, in the case of iridium: the nearest-neighbor distance
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3.1 General 25

Fig. 3.1: Simulation cell viewed from different directions. Tungsten atoms are in
gray, carbon in brown, iridium in yellow.

this section, can also be reasoned by the lack of true physical periodicity along the
c direction.

Another consideration related to the PBCs is to make sure that the moiré formed
by the graphene on iridium is not overly distorted as a result of enforcing a lateral
periodicity of incorrect length. Experimentally, it has been found [68, 69] that the
distance 𝑙moiré between two maxima of the moiré pattern (calculated from 1/𝑙moiré =
1/𝑙Gr − 1/𝑎Ir) is about 9.3 times the iridium nearest-neighbor distance and about
10.3 times the repeat length 𝑙Gr of the corrugated structure formed by the adsorbed
graphene. The real moiré structure is therefore well represented by the supercell

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

26 3 Model and Computational Methods

used, with its 9×9 iridium and 10×10 carbon structure, so this is not a concern.

Aside from VASP which provided the main simulation capability, we also used
a number of other tools for various tasks. The VESTA program [70] was used
for visualization of conőgurations. The python module ase (Atomic Simulation
Environment) [71] was used for setting up conőgurations, and for post-processing
and analysis. For performing 1D linear and non-linear őts, the python modules
scikit-learn [72] and lmfit [73] were used. Tools used in the calculation of contact
areas will be discussed at a later point in this chapter (Sec. 3.3).

3.2 Relaxations and separation control

We simulate the approach of the AFM tip at zero temperature, in a quasi-static
fashion. This means that we are placing the tip at a number of different vertical
positions, and for each of these positions the system is relaxed into its lowest-energy
atomic conőguration. This procedure requires that the positions of a subset of all
atoms be held őxed during each relaxation, as there would be no way of controlling
tip-sample separation if all atoms were allowed to move. The atoms kept őxed
are the same for each tip position: they are those of the topmost tip layer and
those of all four iridium substrate layers. The conőguration of these őxed atoms
is unchanged for all tip positions (save for global vertical translation of the tip,
obviously). All remaining atoms (lower őve tip atoms, whole graphene layer) are
allowed to relax. This idealized description of the AFM tip’s approach notably does
not include effects of a compliant cantilever.

Note that in the case of the iridium substrate, more atoms are in fact held őxed than
necessary for separation control alone. For that, the bottommost layer would be
sufficient. Holding all substrate atoms in place is instead an approximation made
for reasons of computational cost, since, unsurprisingly, relaxations involving fewer
degrees of freedom proceed faster and converge more reliably. It is motivated by the
fact that the graphene is only weakly bound to the substrate, with a binding energy
of around 80meV per carbon atom [59]. Relaxations of the substrate during tip
movement are therefore not expected to have much of an impact on the graphene
layer and, consequently, are neglected entirely.

On a technical level, the ionic relaxations were performed using the RMM-DIIS [74]
and conjugate gradient [75] algorithms (options IBRION = 1 and IBRION = 2 in
VASP, respectively). RMM-DIIS was mostly used for conőgurations presumed al-
ready close to the minimum, while for conőgurations presumed far away from the
minimum the conjugate gradient algorithm was used for the őrst part of the relax-
ation, before őnalizing it with RMM-DIIS.
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3.2 Relaxations and separation control 27

Following Ref. [33], we adopt a scheme in which each tip position is characterized
in terms of its so-called static and relaxed distance, denoted 𝑑s and 𝑑r, and both
measured between the tip apex atom and the carbon atom directly underneath. The
static distance, conceptually, is the distance that would be observed if there was no
interaction between the tip and the graphene/substrate. For practical purposes, it
is the distance measured in conőgurations that we create by relaxing both the tip
and the graphene/substrate independently from one another (with the same atoms
kept őxed as usual), as isolated subsystems, and then putting these subsystems
together at some separation. The relaxed distance, on the other hand, is measured
in the conőguration obtained by relaxing the combined system. Thus, 𝑑r represents
the real approach between tip and graphene, but cannot be directly controlled in our
method, whereas the value of 𝑑s is less physically relevant but is what can actually
be controlled when setting up the simulations. The relation between 𝑑r and 𝑑s
gives some insight into the interaction regime that a given tip position falls into
(see Fig. 3.2). At distances larger than the interaction range, 𝑑r = 𝑑s. Attractive
interaction causes 𝑑r < 𝑑s, repulsive interaction leads to 𝑑r > 𝑑s.

Fig. 3.2: Schematic relation between relaxed and static distance in different inter-
action regimes. Taken from Wolloch et al. [33].

The static distance 𝑑s by construction never has a lateral component, because we
place the tip with its apex atom exactly above the carbon atom below. By con-
trast, 𝑑r can acquire a small lateral component because of displacements occurring
during relaxation. However, these lateral components are negligibly small (see Ap-
pendix A) and, unless stated otherwise, values for 𝑑r reported in this thesis are to
be understood as the vertical component of 𝑑r only. The lateral positions of the
őxed tip atoms (tip base) never change throughout all tip positions.

Finally note that we are using 𝑑s mostly just as a label of conőgurations. Its use does
not imply that, for all tip positions, the relaxation was actually started in the initial
conőguration described above that deőnes 𝑑s. For some tip positions, mostly ones
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far from the sample, this was indeed the procedure we used. But most relaxations
were instead started from an initial conőguration created by reusing the őnal relaxed
conőguration from another tip position relaxed earlier, and translating the tip up or
down by a small increment (leaving its internal conőguration and the conőguration
of the graphene unchanged). This was intended to reduce computation time taken
by the relaxations as one starts out in a conőguration presumably already closer to
the relaxed one. In such an initial conőguration, 𝑑s obviously cannot be measured.
What is ultimately relevant for controlling and setting the separation, however, is
not 𝑑s but the vertical position of the atoms that are held őxed during relaxation.
Since 𝑑s is uniquely related to the vertical position of the őxed tip atoms by a
simple constant offset, we can still label each tip position with an equivalent value
of 𝑑s, and choose to do so because it has a certain intuitive quality.

3.3 Definition and calculation of contact area

The model of Ref. [33] for deőning and calculating contact areas on the atomic scale
is at the heart of this thesis too. It works as follows: The contact area between
tip and sample, which is, a priori, not as well-deőned on the atomic level as in a
continuum theory, is deőned in terms of the contact area between the constitut-
ing atoms, the building blocks of the two bodies. The problem is thus shifted to
assigning a shape and spatial extent to the individual atoms, and deőning the inter-
faces between them. For this, Bader’s QTAIM (see Sec. 2.3) is used which assigns
a region of space to each atom in the system based on properties of the electron
density. The contact area between tip and sample is then naturally identiőed as
the combined area of all interfaces shared by Bader atoms belonging to the tip and
to the sample.

Having accepted this deőnition of the contact area, its identiőcation and calculation
is straightforward, in principle. But a challenge remains: the Bader atoms extend
outward from the nuclei until they either meet another Bader volume or otherwise
to inőnity, owing to the fact that the electron density formally does not exactly
fall to zero even at large distances from the nuclei. As a result, the Bader atoms
of the tip and the surface are in contact with each other at any arbitrarily large
separation, i.e., have a nonzero contact area at any separation. This is problematic
since any sensible notion of contact demands that contact is only established for
sufficiently close approach, not at all distances.

The issue is resolved by classifying regions of space with low electron densities 𝑛 as
vacuum. To that end, an electron density cut-off 𝑛cut is deőned and only points in
space r where 𝑛(r) > 𝑛cut are considered as belonging to a Bader atom, while all
others are treated as vacuum. Doing so effectively truncates the Bader atoms at
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some distance from the nucleus, with larger values of 𝑛cut resulting in smaller Bader
atoms and vice versa. The exact value of 𝑛cut is still left open to choice at this point.
Since the resulting atomic shapes and calculated contact areas directly depend on
it, it has to be be chosen based on some meaningful and unambiguous criterion.
The choice of 𝑛cut also determines at which separation the two bodies start being
in contact. It is therefore inextricably linked to the fundamental question of what
constitutes the onset of contact between two bodies.

In this context, a key idea of Wolloch et al. was to deőne the onset of contact in an
unambiguous way by equating it with the so-called ’jump-to-contact’. The jump-
to-contact, a phenomenon often seen in AFM experiments, marks the point during
approach where strong interactions between tip and sample set in and signiőcant
relaxations őrst occur. It is detected in the simulation results by analyzing the two
sets of distances 𝑑r and 𝑑s introduced in Sec. 3.2. When viewing 𝑑r as a function
of 𝑑s, the jump-to-contact will be visible as a discontinuity in that curve. Based on
this, 𝑛cut is then tuned. On the one hand, it must be large enough that contact areas
start being different from zero only after the jump-to-contact has occurred. On the
other hand, it is chosen as low as possible while satisfying the former requirement,
so as not to ’lose’ any more electrons to the vacuum region than necessary.

Note that, importantly, this method for determining the onset of contact does not
rely on external parameters. It works based on intrinsic properties extracted from
the system itself, in the form of the relaxation behavior displayed by the system.

On the technical side of things, Bader’s QTAIM has the desirable property that
it interoperates easily with DFT, as the electron density is the central quantity in
both formalisms. To perform the Bader partitioning we used a code from the Uni-
versity of Texas at Austin by Henkelman and co-workers [76ś79]. Conveniently, this
program can even operate directly on VASP charge density output őles. We used
it with the neargrid method, which is the default option. The Bader partitioning
was run on the charge densities returned from VASP for the őnal relaxed conőgura-
tions as follows. The charge densities in these őnal relaxed conőgurations were őrst
recomputed on a őne grid of 432× 432× 448 points to obtain good accuracy of the
Bader partitioning and, by extension, of the contact areas. This constitutes a dou-
bling of the number of points in each direction, compared to the default values that
were used during the relaxation runs. The partitioning code only outputs the Bader
volumes associated with each atom in the form of point clouds, but does not directly
provide the surfaces bounding them. Therefore, to extract the contacting surfaces,
those points are identiőed at which the two point clouds representing the combined
Bader atoms of the tip and of the graphene/substrate are directly adjacent to one
another. The value of the contact area is then found by őrst triangulating this set
of points representing the interface, followed by calculating the area of the resulting
surface. In carrying out these tasks of extracting and calculating the contact areas

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

30 3 Model and Computational Methods

from the Bader partitioning output, we beneőted from FORTRAN and MATLAB
code provided by M. Wolloch.

3.4 Calculation of the load

Following the original approach of Ref. [33], we deőne the normal load as

𝐿 := −𝜕𝐸

𝜕𝑑r
, (3.1)

where 𝐸 is the total energy of the system and 𝑑r is the relaxed distance introduced
in Sec. 3.2. From our DFT simulations, we have 𝐸(𝑑r) available at a set of dis-
crete distances 𝑑r. The simplest way to calculate the 1st derivative 𝐸 ′(𝑑r) of the
energy from this would be by a őnite-differences scheme. Instead, our approach is
to őrst őt some closed-form model function to the data points 𝐸(𝑑r), and then to
take its derivative analytically. This is likely more accurate than a őnite-differences
derivative because it is not as sensitive to data noise. Additionally, some physi-
cal insight might be gained from the values obtained for the model function’s őt
parameters.
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4 Overview of the previous result

As mentioned in Chap. 1, a power-law behavior with an exponent of approximately
1/2 was found for the dependence of the real contact area on load in Ref. [33]. In
this chapter, we brieŕy show how this was obtained for readers unfamiliar with the
previous work, and also to better be able to later contrast our re-analysis with the
original approach and őndings.

The őrst step was to őnd an analytic expression for the dependence of 𝐴 on 𝑑r. It
was proposed that 𝐴(𝑑r) can be described by an exponential function

𝐴(𝑑r) = 𝐴∆ e−λr(dr−∆r) , (4.1)

where the parameters 𝜆r and ∆r were determined from a őt to the seven data points
with a nonzero value of 𝐴, i.e., below the ’jump-to-contact’, that were available at
the time. The constant 𝐴∆ = 1Å

2
is not a őt parameter, it serves only to ensure

dimensional consistency.

The second step is the computation of the load, deőned via the negative derivative
of the energy-distance, recall Eq. 3.1. To compute the requisite derivative, a Morse
potential [80]

𝐸M(𝑑r) = 𝐸0

(︁[︀
1− e−γ(dr−d0)

]︀2 − 1
)︁

(4.2)

was őrst őt to the energy-distance curve. Only a few data points in a vicinity of
the equilibrium distance were used in this őt. The only őt parameter is 𝛾, while the
depth 𝐸0 of the potential and the equilibrium distance 𝑑0 were őxed as the energy
and the distance of the data point with the lowest energy. The load can be then
computed by means of the differentiation of this őt function,

𝐿(𝑑r) = −
𝜕𝐸M(𝑑r)

𝜕𝑑r
= −2𝛾𝐸0

[︀
1− e−γ(dr−d0)

]︀
e−γ(dr−d0) . (4.3)

Solving Eq. 4.3 for 𝑑r leads to

𝑑r(𝐿) = 𝑑0 −
1

𝛾
ln 𝜉±(𝐿) , (4.4)
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32 4 Overview of the previous result

with 𝜉±(𝐿) a shorthand for3

𝜉±(𝐿) =
1±

√︀
1 + (2𝐿)/(𝛾𝐸0)

2
. (4.5)

Having now expressions for 𝐴(𝑑r) in Eq. 4.1 as well as for 𝑑r(𝐿) in Eq. 4.4, it is
simply a matter of inserting the latter into the former to get an expression for
𝐴(𝐿),

𝐴(𝑑r(𝐿)) ≡ 𝐴(𝐿) = 𝐴∆ e−λr(dr(L)−∆r)

= 𝐴∆ e−λr(d0−
1

γ
ln ξ±(L)−∆r)

= 𝐴∆ e−λr(d0−∆r)

⏟  ⏞  
:=C, indep. of L

e(λr/γ) ln ξ±(L)

⏟  ⏞  
=[ξ±(L)]λr/γ

.
(4.6)

With the values 𝛾 = 4.11Å
−1

and 𝜆r = 4.19Å
−1

obtained from the őts, the ratio
𝜆r/𝛾 is close to 1 and therefore 𝐴 is approximately proportional to 𝜉,

𝐴(𝐿) = 𝐶[𝜉±(𝐿)]
λr/γ ≃ 𝐶𝜉±(𝐿) =

𝐶

2

[︁
1±

√︀
1 + (2𝐿)/(𝛾𝐸0)

]︁
, (4.7)

with 𝐶 = 24.15Å
2
. This corresponds to a power-law dependence of 𝐴 on 𝐿 with

an exponent of ≃ 1/2, which is inferred by simply reading it from the expression.

Note that this result for 𝐴(𝐿) has been derived for distances close to the equilibrium
distance, so may be assumed valid only for values of 𝐿 close to zero.

3 In Ref. [33], there is a typo, namely a minus instead of a plus sign is in front of the second
term under the square root. However, this typo does not affect the fundamental finding of a
1/2-power dependence for the contact area.
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5 Results and discussion

5.1 Ionic relaxations

Before discussing the contact area and its load dependence, we őrst give a brief
overview of the behavior seen during the ionic relaxations, and of the resulting
optimized conőgurations, at the different separations. While there is nothing fun-
damentally new about this compared to the original study in Ref. [33], we can give
a fuller picture since we ran calculations at a more őnely-spaced set of distances.
Knowledge of the results from ionic relaxation will also be useful when later dis-
cussing the load-dependent contact areas, which is another reason to include it at
this point.

At large separations, 𝑑s and 𝑑r are essentially equal since there are not yet any
signiőcant interactions between tip and graphene/substrate that would cause re-
laxations. Below around 𝑑s = 4Å there start to be some slight deviations from
this linearity, with 𝑑r going below 𝑑s. A large and sudden decrease in 𝑑r by about
0.7Å then occurs between 𝑑s = 3.63Å and 𝑑s = 3.59Å (see Fig. 5.1a), which we
identify as the jump-to-contact as laid out in Sec. 3.3. At distances below the
jump-to-contact, the dependence of 𝑑r on 𝑑s is again approximately linear, save for
some nonlinearity in the vicinity of the jump-to-contact. However, 𝑑r no longer
decreases at the same rate as 𝑑s, with 𝑑r now varying more slowly. Consequently,
there is a point where 𝑑r, which after the jump-to-contact was initially smaller
than 𝑑s, becomes larger than 𝑑s. Around this point, located at 𝑑s ≈ 𝑑r ≈ 2.3Å,
the graphene transitions from bulging up toward the tip to being depressed down
toward the substrate (see Fig. 5.3).

Analyzing separately the displacements of the tip apex and carbon atom below
during relaxation (see Fig. 5.1b), it is seen that the carbon is responsible for most
of the change in distance when passing from 𝑑s to 𝑑r. This is not surprising given
that the graphene is only weakly bound to the substrate.

The equilibrium position of the tip over the sample, identiőed by the minimum of
the relaxed conőgurations’ energy as a function of distance (see Fig. 5.2), is found
at 𝑑r ≈ 2.25Å, corresponding to 𝑑s ≈ 1.85Å. Note that this is not exactly the
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34 5 Results and discussion

1 2 3 4 5

𝑑s (Å)

2

3

4

5

𝑑
r
(Å

)

(a)

1 2 3 4 5

𝑑s (Å)

−1.0

−0.5

0.0

0.5

𝐷
(Å

)

tip apex atom
carbon atom below

(b)

Fig. 5.1: Distances in the relaxed system as a function of static distance 𝑑s. The
approximate location of the jump-to-contact is indicated in both images
by the vertical gray dotted line. (a) Relaxed distances 𝑑r between the tip
apex and the carbon atom situated directly beneath. The black dashed
line visualizes the relation 𝑑r = 𝑑s which describes the behavior at large
separations. (b) Vertical displacements 𝐷 of the tip apex atom and
the carbon atom situated directly beneath, respectively, relative to their
positions in the static conőguration.
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5.1 Ionic relaxations 35

1 2 3 4 5

𝑑s (Å)

−2.0

−1.5

−1.0

−0.5

0.0
𝐸

(e
V
)

Fig. 5.2: Energy of the system in relaxed conőgurations, but shown as a function of
static distance to be comparable with Fig. 5.1. The approximate location
of the jump-to-contact is indicated by the vertical gray dotted line. Note
that the energy is zero at the largest distance.

same position as where the graphene layer changes from arching up toward the tip
to being indented by it, at 𝑑s ≈ 𝑑r ≈ 2.3Å, but very slightly below it.

When reducing 𝑑s by only 0.02Å, from 𝑑s = 3.63Å (our smallest successfully re-
laxed distance that is still above the jump-to-contact) to 𝑑s = 3.61Å, we apparently
entered a highly unstable region where we failed to obtain a relaxed conőguration,
i.e., fulőll the convergence criterion applied throughout that forces on all atoms are
< 10−2 eV/Å within a reasonable amount of time. At the point when we decided
to abandon the relaxation attempt for this distance, the tip-carbon distance was at
2.82Å and still continuing to fall. The distance 𝑑s = 3.61Å is thus not included in
any of the results shown. We had initially believed that by reusing relaxed conőgu-
rations as initial conőgurations for relaxing the next smaller distance, as described
in Sec. 3.2, and by proceeding in small increments of 𝑑s, we would be able to resolve
in more detail the relaxation happening at the jump-to-contact. Instead, what we
conclude is that the jump-to-contact is very sudden and indeed deserving of its
name, and that there is a range of relaxed distance values that is not feasible to
access, in terms of computation time and required smallness of 𝑑s increments.

Within our calculations, there were a few distances which displayed the behavior
that when going from one static distance value 𝑑s to the next smaller one, the re-
laxed distance 𝑑r actually increased compared to the previous one, even if just by a
few hundredths of an Ångström. Since this is highly counterintuitive, we suspected
it might be a sign of an imperfect relaxation that got stuck in a metastable mini-
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36 5 Results and discussion

(a) ds = 5.51Å, dr = 5.51Å (b) ds = 3.63Å, dr = 3.48Å

(c) ds = 3.59Å, dr = 2.77Å (d) ds = 3.02Å, dr = 2.43Å

(e) ds = 2.29Å, dr = 2.30Å (f) ds = 1.85Å, dr = 2.25Å

(g) ds = 1.20Å, dr = 2.18Å

Fig. 5.3: Side view at selected stages of approach. The axes apply to all plots.
The depicted conőgurations are relaxed but labeled with both static and
relaxed distance. (a) Large distance where essentially no interaction
occurs. (b) Smallest distance at which still no jump-to-contact occurred.
(c) Directly after jump-to-contact. (d)-(g) Upon further approach the
bulging upward of the graphene reduces until it starts being depressed
toward the substrate. The conőguration in (f) is close to the equilibrium,
whereas that in (g) is compressed beyond it.
This őgure was created using VESTA [70].
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mum. To investigate and alleviate this, for a few distances we reran the relaxations
starting from a different initial conőguration than during the őrst attempt. Indeed,
more sensible results and lower energies were obtained. Due to time constraints,
we performed this kind of sanity check only for a few distances. However, in light
of this observation we must certainly keep in mind the possibility that some results
may be affected by imperfect relaxations. Candidates where we suspect this may be
the case are the two sets of three distances each, directly below the jump-to-contact,
which seem to behave in a ’stepwise’ manner (see Fig. 5.1a).

Precise values for static and relaxed distances at all tip positions can be found in
Appendix A.

5.2 Contact areas

Having done calculations at a larger number of distances than in the original study
means we also narrowed down the location of the jump-to-contact a bit more.
Since the cutoff electron density in the Bader partitioning is chosen based on
the requirement that contact areas be nonzero only below the jump-to-contact
(see Sec. 3.3), we found we had to slightly adapt its value to still be consis-
tent with our additional data. The old value of 𝑛cut = 5.0× 10−2 electrons/Å

3

from Ref. [33] led to a őnite contact area even at our smallest distance above
the jump-to-contact (at 𝑑s = 3.59Å). We settled for a minimally larger cutoff at
𝑛cut = 5.25× 10−2 electrons/Å

3
to ensure that contact areas are nonzero only below

the jump-to-contact. This is the value that will be used throughout the remainder
of this thesis. Raising the cut-off of course slightly enlarges the vacuum region and
therefore increases the number of electrons assigned to it. However, the change is
small and across all distances studied, the largest number of electrons assigned to
the vacuum region was 33.7 out of a total of 3776 electrons, which we deem still
very acceptable. Contact areas also become slightly smaller as a result. Precise
values for both cutoff densities can be found in Appendix A.

Otherwise our computation of the contact areas follows that in the original study,
and we have nothing new to report about it. The contact areas are displayed as a
function of distance in Fig. 5.4, and their surface proőles at selected distances are
depicted in Fig. 5.5.
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Fig. 5.4: Contact area as a function of (a) static and (b) relaxed distance. The
vertical gray dotted line indicates the approximate location of the jump-
to-contact.
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Fig. 5.5: Surface proőles 𝑧(𝑥, 𝑦) of the contact areas, shown relative to the highest
point 𝑧max of each surface. The distances included are all those from
Fig. 5.3 with a nonzero contact area. The cartesian coordinate 𝑥 corre-
sponds to direction a from Fig. 3.1, the 𝑧 coordinate to direction c. The
color scale included at the bottom right applies to all plots.
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5.3 Load calculations

As laid out previously in Sec. 3.4, we calculate the load as the negative 1st derivative
of 𝐸 w.r.t. 𝑑r, and to evaluate the derivative we őrst őt a model function to the
discrete data points 𝐸(𝑑r). So, the problem of calculating the load is essentially that
of choosing a suitable őt function and obtaining a good őt to the data. Naturally,
to decide what őt function(s) might be appropriate, we őrst took a look at the
shape of 𝐸 as a function of 𝑑r. This curve is shown in Fig. 5.6.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

𝑑r (Å)

−2.0

−1.5

−1.0

−0.5

0.0

𝐸
(e
V
)

III. II. I.

2.20 2.25
−2.4

−2.2

−2.0 III. II.

Fig. 5.6: Different regimes identiőable in the relation between energy and relaxed
distance. The inset shows the region of transition between II. and III.

Broadly, we identify three regimes in the 𝐸(𝑑r) curve:

In the distance range above the jump-to-contact (labeled I. in Fig. 5.6), there
is a region of attractive interaction that we attribute mainly to long-range van-
der-Waals interactions. Below the jump-to-contact, there is a region (labeled II.
in Fig. 5.6) where the interaction could (qualitatively) be called ’Lennard-Jones-
like’, in the sense that it consists of an attractive and a repulsive section, with
an equilibrium in between. At the transition between regions I. and II., a gap
along the 𝑑r axis can be seen in the data points. This is due to the sudden strong
relaxations at the jump-to-contact, which make it hard to control 𝑑r in this region:
For tip positions slightly above the jump-to-contact, there is no strong relaxation
yet, causing the data points to remain to the right of the transition region in
Fig. 5.6. But for tip positions even just slightly below the jump-to-contact, strong
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relaxations occur and cause the corresponding data points to move far to the left
of the transition region in Fig. 5.6, as the system seeks on its own to reduce the
separation.

Lastly, there is a third region at smaller distances (labeled III. in Fig. 5.6), that
we did not probe into very far. It is marked őrst by a slowdown of the increase of
𝐸(𝑑r) with decreasing distance 𝑑r (seen in our data in Fig. 5.6), before 𝐸(𝑑r) then
levels out and even starts to fall again with decreasing 𝑑r (not seen in our data
because we did not go to distances that small, but found in the past in Ref. [33]).
This behavior has been attributed in Ref. [33] to the formation of chemical bonds
between the tip and the iridium substrate. This is in contrast to a Lennard-Jones-
like or similarly shaped interaction potential that would continue to increase more
and more steeply as the distance is reduced below the equilibrium.

Knowing the values of 𝐿 in region I. is not required for the analysis of the load-
dependent contact area 𝐴(𝐿) since, by deőnition, the contact areas are identically
zero above the jump-to-contact, anyway. So, strictly speaking, we do not need to
calculate the derivative of 𝐸(𝑑r) in this region, and therefore do not need to make
a őt to the data. This is not to say the behavior of 𝐸(𝑑r) in region I. is irrelevant
to us, since insight about the physics of the system might still be gained from it.

As a őt function in region II. we intend to use a generalized 𝑚-𝑛 Lennard-Jones (LJ)
potential4

𝑈m-n
LJ (𝑑r) = −

𝐸0

𝑚− 𝑛

[︂
𝑚

(︂
𝑑0
𝑑r

)︂n

− 𝑛

(︂
𝑑0
𝑑r

)︂m]︂
, (5.1)

where 𝑑0 denotes the equilibrium distance and 𝐸0 > 0 the depth. The generalized
LJ potential has the exponents 𝑚 and 𝑛 as adjustable parameters. This distin-
guishes it from the more common ’standard’ LJ potential, most often referring to
the special case of Eq. 5.1 with (𝑚,𝑛) őxed to (12, 6). It is our hope that this
potential, having two shape-controlling parameters rather than only one, will allow
us to capture the behavior of 𝐸(𝑑r) a bit more fully than the Morse potential used
in the past in Ref. [33].

Finally, the region III. will not be included in our analysis. There are multiple lines
of reasoning behind this:

1. From a purely practical point of view, inclusion of region III. in our analysis
would complicate the search for a suitable őt function for 𝐸(𝑑r). For energy-
distance curves qualitatively like that in region II., functional forms are well-
established, e.g. Lennard-Jones-like potentials or the Morse potential used in
the past in Ref. [33]. But the behavior seen in our system at small distances
would require a different description, which we want to avoid for now.

4 Sometimes also referred to as a Mie potential [81].
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2. One of the main questions of this thesis is the comparison of 𝐴(𝐿), found with
the ab-initio approach, with classical continuum models of contact mechanics
widely used in the interpretation of atomic-scale FFM measurements. Now,
it is already clear from the outset that the behavior of 𝐴(𝐿) in region III. does
not őt common continuum models: An interaction potential 𝐸(𝑑r) like that
in region III. leads to a third branch of the 𝐴(𝐿) curve. This is illustrated
schematically in Fig. 5.7. Common continuum model predictions for 𝐴(𝐿)
lack this feature (cf. Fig. 2.2). For comparison with continumm models, we
therefore restrict ourselves only to the region where the behavior of 𝐴(𝐿) may
be expected in the őrst place to be (at least qualitatively) similar to these
models. This means restriction to region II.

3. More fundamentally, we believe that there will be a point at small separations
where it no longer makes sense to think of the tip and graphene/substrate
as two distinct bodies. One may still use the Bader partitioning scheme to
calculate contact areas between the individual involved atoms. But the notion
of the tip and the graphene/substrate as conceptually separate bodies, and
thus that of a contact area between them, probably stops being meaningful
at some point. And while at this time we do not offer a deőnition of when
this occurs, the onset of chemical bonding between the tip and the iridium,
and the related behavior seen in 𝐸(𝑑r) in region III., seem like a possibility.

For the transition between regions I. and II. there is an unambiguous criterion,
namely the jump-to-contact (see Secs. 3.3 and 5.1). It is comparatively less clear
where exactly the transition from region II. to III. should be located. For now,
we choose the point where the slope of 𝐸(𝑑r) starts to decrease when reducing 𝑑r
(i.e., the point of inŕection, corresponding to point c in Fig. 5.7), and we identify
this point only roughly by eye. This choice amounts to excluding the two lowest
values of 𝑑r in our data from the őts (see the inset of Fig. 5.6). However, we do not
őnd this entirely satisfactory. For future studies, a more objective criterion would
be desirable, based perhaps on an analysis of charge accumulation upon chemical
bond formation between tip and substrate.

5.3.1 A first fitting attempt

In this section, we brieŕy report on an attempt to make őts to the energy-distance
data, from a very early stage of our work. This is only to illustrate our thought
process, as this early attempt was based on an initial belief about the shape of the
𝐸(𝑑r) curve that turned out to be incorrect, and we ultimately did not pursue it.

Early on Ð when there were much fewer data points available than shown in the
plots included in this thesis Ð it had looked to us as if there might be a second,
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Fig. 5.7: Schematic correspondence between special points on the 𝐸(𝑑r), 𝐿(𝑑r)
and 𝐴(𝐿) curves. Shown for an assumed exponential form of 𝐴(𝑑r), and
two different prototype interaction potentials 𝐸(𝑑r), a LJ-like one with
depth 𝐸0 and equilibrium distance 𝑑0 (blue), and one that deviates from
the LJ-like form and turns attractive again at small distances (orange).
a, b: Point of most negative load and equilibrium position in LJ-like
potential. c: Point of most positive load for potential deviating from LJ-
like form. d: Point where deviating potential becomes again attractive.

shallower, minimum in 𝐸(𝑑r) somewhere around 𝑑r ≈ 3Å, in addition to the main
minimum at 𝑑r ≈ 2.25Å. At the time we had also still intended to őt 𝐸(𝑑r) both
above and below the jump-to-contact with one single őt function. It was believed
that the presence of such a second minimum, which is not present in common
model potentials, like the 𝑚-𝑛 Lennard-Jones or Morse potential, would be the
main challenge in describing 𝐸(𝑑r) with a reasonably simple őt function. This led
us to search for tip-surface interaction potentials with a second minimum perhaps
already proposed in the literature.

Our brief search did not turn up any such potential that had been speciőcally
proposed as a surface interaction potential. However, a class of potentials that
can produce the desired shape, termed Lennard-Jones-Gauss (LJG) potentials,
was found in the context of a different application. Potentials of this type were
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44 5 Results and discussion

introduced in Refs. [82, 83] as model interparticle pair potentials for studying self-
assembly and stability of crystalline and quasi-crystalline structures. In this original
context, LJG potentials could be motivated as being an approximation to the őrst
few oscillations of the characteristic oscillatory tails (Friedel oscillations [84]) seen
in interatomic pair potentials in metals. For our needs we repurpose them as tip-
surface interaction potentials.

In general, LJG potentials are obtained by combining a Lennard-Jones-type poten-
tial with one or several additional Gaussian terms. For our application we use a
variation of LJG potential given by

𝑈m-n
LJG(𝑑r) := 𝑈m-n

LJ (𝑑r)− 𝐸G exp

(︂
−(𝑑r − 𝑑G)

2

2𝜎2
G

)︂
. (5.2)

It consists of the generalized 𝑚-𝑛 Lennard-Jones potential 𝑈m-n
LJ (𝑑r), given by

Eq. 5.1, and a Gaussian-well term with parameters 𝐸G, 𝑑G and 𝜎G. A őt of such
a LJG potential to our data (including also all our more recent data) is shown in
Fig. 5.8.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

𝑑r (Å)

−2.0

−1.5

−1.0

−0.5

0.0

𝐸
(e
V
)

II. I.

Fig. 5.8: Fit of a Lennard-Jones-Gauss potential Eq. 5.2 to the 𝐸-vs-𝑑r curve.
Regions I. and II. from Fig. 5.6 were included in this őt. Vertical dotted
line indicates approximate location of jump-to-contact.

But as said already at the beginning, we did not pursue the LJG route further.
There are indeed several issues with it. With more data becoming available as our
calculations progressed, we did not actually observe the initially expected second
minimum. What we had interpreted as a hint at a second minimum is instead the
discontinuity in the data around the jump-to-contact. There is therefore no real
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need for the LJG description in the őrst place. Moreover, the LJG őt suffers from
a lack of interpretability, because of the large number of őt parameters and the
lack (at least in the context where we apply it) of a theoretical justiőcation for
the Gaussian form. We are also more generally skeptical about using one single
function for őtting across the jump-to-contact at all, given the observed abruptness
of the jump-to-contact (see Sec. 5.1) and the fundamental change in interaction
regime that this points to.

5.3.2 Van-der-Waals background

Given our belief that the jump-to-contact signals a profound shift in the tip-surface
interaction regime, we do not expect that indiscriminately using a single őt func-
tion for 𝐸(𝑑r) across the jump-to-contact, as in the early őtting attempt made in
Sec. 5.3.1, will lead to a very good or physically interpretable parameterization of
𝐸(𝑑r). Therefore, we hoped to reőne the analysis by treating the region below
the jump-to-contact separately, while still incorporating possibly relevant physical
information from the region of large tip-sample separations, as outlined below.

Above the jump-to-contact, we assume that the interaction is dominated by long-
range van-der-Waals interactions. Below the jump-to-contact, where tip and surface
are in contact, we expect that additional short-range interactions are present, at
least partly of chemical type. There is, however, no reason to believe that van-der-
Waals interactions stop being relevant at small distances. So the total interaction
potential 𝐸(𝑑r) in this region will be due to a combination of both the still-present
’van-der-Waals background’ 𝐸vdW-bg(𝑑r) and short-range interactions superimposed
on top of it. We assume that an improved description and understanding of 𝐸(𝑑r)
at small distances may be obtained by subtracting the ’van-der-Waals background’
from it so that the remaining short-range contributions to 𝐸(𝑑r) can then be ana-
lyzed and interpreted on their own. Of course, this assumption of clear separability
into long-range van-der-Waals and short-range contributions involves some degree
of idealization. To decide whether the attraction below the jump-to-contact (with
or without having subtracted some sort of background) is of van-der-Waals type,
one can look at whether the attractive exponent obtained from őtting the 𝑚-𝑛 LJ
potential Eq. 5.1 in this region is consistent with a van-der-Waals interaction.

In our attempt to extract and remove this ’van-der-Waals background’, we intended
to do the following: We őrst separately consider the region of large tip-sample
separations 𝑑r, where we expect van-der-Waals interactions to be dominant. To
infer the functional form and magnitude of 𝐸vdW-bg(𝑑r), we then wanted to őt some
theoretically known functional form of a van-der-Waals interaction energy to our
data points in this distance region. The obtained van-der-Waals energy contribution
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46 5 Results and discussion

𝐸vdW-bg(𝑑r) can then be extrapolated to small distances and subtracted from 𝐸(𝑑r)
in that region.

In practice, this approach requires making a choice for the van-der-Waals function
used for őtting the data at large distances. Unfortunately, we realized that we are
not entirely conődent as to what is the most appropriate choice, and that there
is some ambiguity involved. The following is a brief overview of some considera-
tions.

The simplest theory for obtaining van-der-Waals interaction energies of extended
bodies is that by Hamaker [85, 86], which is based on the assumption of pairwise
additivity of the interatomic van-der-Waals pair potential 𝑤(𝑟) = −𝐶/𝑟6 for all
atoms. For the interaction energy between two spheres with radii 𝑅1 and 𝑅2, at a
separation 𝑑 between their surfaces, this theory gives

𝐸sph-sph
vdW (𝑑) = −𝐻

6

{︂
2𝑅1𝑅2

(2𝑅1 + 2𝑅2 + 𝑑)𝑑
+

2𝑅1𝑅2

(2𝑅1 + 𝑑)(2𝑅2 + 𝑑)

+ ln

[︂
(2𝑅1 + 2𝑅2 + 𝑑)𝑑

(2𝑅1 + 𝑑)(2𝑅2 + 𝑑)

]︂}︂
,

(5.3)

with the Hamaker constant 𝐻 := 𝜋2𝐶𝜌1𝜌2, where 𝜌1, 𝜌2 are the numbers of atoms
per unit volume within the two spheres. If one now considers a sphere of radius 𝑅
and a ŕat surface (i.e., 𝑅1 ≡ 𝑅 and 𝑅2 → ∞), as a model for the AFM tip and
sample, Eq. 5.3 simpliőes to

𝐸sph-surf
vdW (𝑑) = −𝐻

6

{︂
𝑅

𝑑
+

𝑅

2𝑅 + 𝑑
+ ln

[︂
𝑑

2𝑅 + 𝑑

]︂}︂
, (5.4)

with the limiting-case behavior 𝐸(𝑑) ∝ −1/𝑑3 for 𝑑 ≫ 𝑅 and 𝐸(𝑑) ∝ −2/𝑑 for
𝑑 ≪ 𝑅. If we were to use Eq. 5.4 as the model function to őt to our data, we
would set 𝑑 = 𝑑r, and the Hamaker constant 𝐻 would naturally take the role of a
őt parameter that characterizes the interaction. Now, one may say that the shape
of the tip in the model system under study is not optimally described by a sphere
at all. One alternative might be a conical tip, for which, too, expressions for the
van-der-Waals interaction with ŕat surfaces have been derived [87]. But even so,
accounting for the tip shape is not the only problem in choosing an appropriate őt
function for extracting the van-der-Waals background. A perhaps greater issue is
the layeredness of the sample. From this, additional complications arise regarding
the choice of őt function, the interpretation of the resulting őtted van-der-Waals in-
teraction energy, and how to correctly extrapolate the different layers’ contributions
to below the jump-to-contact.

While these may be solvable problems in principle, we deemed it probably not worth
the effort. So, instead of explicitly extrapolating 𝐸vdW-bg(𝑑r) to below the jump-
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5.3 Load calculations 47

to-contact in the form of a 𝑑r-dependent function, we went for a more pragmatic
strategy, which will be the topic of the next section.

5.3.3 Approximate treatment of van-der-Waals background

In the previous section we have said that we are not sure about the correct func-
tional form to use for extracting the van-der-Waals background from the long-range
behavior of 𝐸(𝑑r) and extending it to below the jump-to-contact. But we still be-
lieve that there is merit to using such a description for 𝐸(𝑑r). We therefore took
a more pragmatic approach for taking the inŕuence of the van-der-Waals interac-
tions below the jump-to-contact into account. It consists simply of complementing
the 𝑚-𝑛 LJ potential Eq. 5.1 with a constant offset 𝐸vdW-bg, to approximately
account for any remaining inŕuence of van-der-Waals interactions below the jump-
to-contact, before we őt it to the data in region II. We őx the value of this offset to
the energy of our last data point above the jump-to-contact, at 𝑑r = 3.48Å. This
gives 𝐸vdW-bg = −0.57 eV (as always measured relative to the energy at our largest
distance). For the nonlinear least-squares őts performed in this section, Python’s
lmfit module [73] was used. See Appendix C for more technical details on the őts.

At őrst, in order to keep down the number of őt parameters, we did a őt with
only the exponents 𝑚 and 𝑛 as őt parameters, with the depth 𝐸0 and equilibrium
distance 𝑑0 of the LJ potential őxed to the values taken directly from the lowest-
energy data point. This őt led to the curious result of almost identical values for
𝑚 and 𝑛, at 𝑚 ≈ 𝑛 ≈ 18 (see Tab. 5.1). Due to the unusualness of 𝑚 ≈ 𝑛 in a
LJ-type potential, and since for 𝑚 close to 𝑛 the denominator in Eq. 5.1 becomes
very small, which could create numerical issues, we initially suspected this to be an
unphysical result caused by some problem with the nonlinear optimization routine.
However, visually, the őt looked reasonable (see Fig. 5.10). So, as a plausibility
check, we simply manually varied 𝑚 and 𝑛 in integer steps within some range and
evaluated the deviation of the őt function from the data points for each parameter
combination. Having only two adjustable parameters 𝑚 and 𝑛, this is very doable.
The result is shown in Fig. 5.9 and also points to 𝑚 ≈ 𝑛 and a value around 17 or
18. In light of this, we considered the possibility that the best description of our
data in terms of an 𝑚-𝑛 LJ potential really is provided by 𝑚 = 𝑛. Indeed, if we
calculate the limit5

𝑈n
LJ-lim(𝑑r) := lim

m→n
𝑈n

LJ-lim(𝑑r) = −𝐸0 ·
[︂
1− 𝑛 ln

(︂
𝑑0
𝑑r

)︂]︂
·
(︂
𝑑0
𝑑r

)︂n

, (5.5)

5 The idea of m = n in a LJ-like potential may seem bewildering at first. However, the key point
is that Eq. 5.1 is formulated explicitly in terms of the depth E0 and equilibrium distance d0,
which forces the prefactors to be not independent of m and n. A meaningful limit m → n,
while keeping E0 and d0 constant, can therefore be calculated.
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and then do the same őt as before with this new function 𝑈n
LJ-lim, we őnd the results

from őtting the full 𝑈m-n
LJ reproduced (see Tab. 5.1). The calculation of the limit

𝑈n
LJ-lim is shown in detail in Appendix B.
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Fig. 5.9: Root mean square (RMS) of residuals between 𝑈m-n
LJ (𝑑r) + 𝐸vdW-bg and

the DFT data points 𝐸(𝑑r) in region II. Exponents 𝑚, 𝑛 varied, while 𝐸0,
𝑑0 őxed to values taken directly from the data. Includes only 𝑛 < 𝑚. The
case 𝑛 > 𝑚 is equivalent due to symmetry of Eq. 5.1 under exchanging
𝑚 and 𝑛, and 𝑚 = 𝑛 would lead to division by zero in Eq. 5.1.
Note that the color representation goes into saturation for larger RMS
values in order to make differences at small values more easily visible.

Tab. 5.1: Parameters from őts to 𝐸(𝑑r) with Eqs. 5.1 and 5.5, for 𝐸0 and 𝑑0 őxed
to their values taken directly from the data.

őt function 𝑚 𝑛 𝐸0 (eV) 𝑑0 (Å)
𝑈m-n

LJ (𝑑r) + 𝐸vdW-bg 18.191 18.190 1.76 (őxed) 2.25 (őxed)
𝑈n

LJ-lim(𝑑r) + 𝐸vdW-bg n.a. 18.2 1.76 (őxed) 2.25 (őxed)

We also checked what happens when treating 𝐸0 and 𝑑0 as adjustable őt param-
eters as well, rather than őxing them beforehand to the values taken from the
lowest-energy datapoint 𝐸(𝑑r). We tried this for both őt functions 𝑈m-n

LJ (𝑑r) and
𝑈n

LJ-lim(𝑑r). It appears that letting 𝐸0 and 𝑑0 vary, too, leads to an improved de-
scription of the data in the repulsive region (below the minimum). Whereas the
őts with őxed 𝐸0 and 𝑑0 predict systematically larger values than the data points
in this region, this is not the case anymore when 𝐸0 and 𝑑0 are varied in addition
to 𝑚 and 𝑛 (see Fig. 5.10) The differences may not be large in absolute terms, but
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will be ampliőed when taking the derivative of 𝐸 w.r.t. 𝑑r, which is what we are
ultimately interested in. Since we see no downside to letting 𝐸0 and 𝑑0 vary as
well, we will proceed this way.

When őtting 𝑈m-n
LJ (𝑑r) to the data while letting 𝐸0 and 𝑑0 vary we no longer őnd

that the őt results in 𝑚 ≈ 𝑛 (see Tab. 5.2). But the curves resulting from 𝑈m-n
LJ (𝑑r)

and 𝑈n
LJ-lim(𝑑r) continue to be quite similar (see Fig. 5.10). An appealing feature

of the limit version 𝑈n
LJ-lim(𝑑r) is that its shape-controlling parameter 𝑛 appears to

be much less sensitive to the őxing of 𝐸0 and 𝑑0 than the two parameters 𝑚 and 𝑛
of 𝑈m-n

LJ (𝑑r) (compare Tab. 5.1 with Tab. 5.2).

Tab. 5.2: Parameters from őts to 𝐸(𝑑r) with Eqs. 5.1 and 5.5, for 𝐸0 and 𝑑0
allowed to vary in addition to 𝑚 and 𝑛.

őt function 𝑚 𝑛 𝐸0 (eV) 𝑑0 (Å)
𝑈m-n

LJ (𝑑r) + 𝐸vdW-bg 27.1 13.0 1.77 2.24
𝑈n

LJ-lim(𝑑r) + 𝐸vdW-bg n.a. 17.8 1.76 2.24

Unfortunately, we do not have much to offer in the way of interpretation of the
Lennard-Jones exponents obtained from the őts. The fact that the attractive expo-
nent 𝑛 obtained after subtracting 𝐸vdW-bg is not somewhere in the range ≤ 6 might
be interpreted as a hint that the interaction below the jump-to-contact is not, or at
least not dominantly, of van-der-Waals type. The obtained repulsive exponents 𝑚
are considerably greater than the value 12 in the standard 12-6 LJ potential, com-
monly associated with Pauli repulsion in interatomic interactions6. What needs to
be said about this is őrstly that the repulsive region within our data spans only a
fairly small range of 𝑑r values, so the estimates for the repulsive exponent might
not actually be too reliable. Secondly, it might not even make sense to apply such
an interpretation to the exponent values at all, since in our case we use the LJ
potential not to describe interatomic interactions but a tip-surface interaction in-
volving many atoms, which likely poses additional complications. Concerning the
𝑚-𝑛 LJ potential with 𝑚 = 𝑛 that we found when keeping 𝐸0 and 𝑑0 őxed, we are
unaware of any mention of such a potential in the literature (which is most likely
just a failure on our part to search in the right places), and are unsure about any
physical interpretation of it. So, ultimately, the őts must be seen as just a mostly
heuristic representation of 𝐸(𝑑r) to help with the load calculations.

6 Note, however, that there is no theoretical basis for the description of the repulsive part with
such an inverse-12th-power expression [88, 89]. It is used solely for ease and speed of computa-
tion since it can be calculated by squaring the attractive 6th-power term.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

50 5 Results and discussion
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(e
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𝐸0, 𝑑0 őxed;
𝑈n

LJ-lim + 𝐸vdW-bg

𝐸0, 𝑑0 varying;
𝑈m-n

LJ + 𝐸vdW-bg

𝐸0, 𝑑0 varying;
𝑈n

LJ-lim + 𝐸vdW-bg

data used in őt
data not used in őt

Fig. 5.10: Different őts to 𝐸(𝑑r). The bottom panel shows the same thing as the
top one, only zoomed in on the minimum to make differences between
őts better visible. The őt using 𝑈m-n

LJ with őxed 𝐸0, 𝑑0 is not shown,
but if it was it would lie perfectly on top of that where 𝑈n

LJ-lim was used.
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5.4 Load dependence of the contact area

We now proceed to analyze the load dependence of the contact area. As stated pre-
viously, our analysis is restricted to the range of distances labeled II. in Figs. 5.6 and
5.10. We decided to parameterize 𝐴(𝐿) in terms of a general (i.e., with horizontal
and vertical offset) power law

𝐴± = 𝐴c ± 𝛼 · (𝐿− 𝐿c)
β , (5.6)

where 𝐿c is the pull-off force and 𝐴c is the value of the contact area at 𝐿 = 𝐿c. The
positive and negative signs distinguish the upper and lower branch of 𝐴(𝐿). One
motivation for this Ansatz is that the predictions of common continuum models
for 𝐴(𝐿) between a plane and a spherical asperity are either power laws (as in the
Hertz and DMT models, with 𝛽 = 2/3) or more general sublinear functions of 𝐿
that, qualitatively, still resemble a power law (cf. Fig. 2.2). And while arguing
on the basis of continuum models with regard to our atomistic simulation is of
course questionable, our results for 𝐴(𝐿) also do not look too dissimilar from a
power law. Another, practical, reason is that power-law őts are comparatively easy
on a technical level. This is because, despite of the nonlinearity in the exponent
parameter, one can conveniently determine 𝛼 and 𝛽 by means of a linear regression
if one performs a logarithmic transform. To do so, we have to őrst rearrange and
nondimensionalize Eq. 5.6, resulting in

⃒⃒
⃒⃒𝐴± − 𝐴c

𝐴ref

⃒⃒
⃒⃒ = 𝛼̃ ·

(︂
𝐿− 𝐿c

𝐿ref

)︂β

. (5.7)

Here we have introduced some reference contact area 𝐴ref and load 𝐿ref, and a cor-
responding dimensionless prefactor 𝛼̃ = (𝐿β

ref/𝐴ref)𝛼. Next, logarithmizing yields

ln

(︃ ⃒⃒
⃒⃒𝐴± − 𝐴c

𝐴ref

⃒⃒
⃒⃒
)︃

= 𝛽 · ln
(︃
𝐿− 𝐿c

𝐿ref

)︃
+ ln(𝛼̃) , (5.8)

from which 𝛽 and ln(𝛼̃) are estimated using linear regression. However, from this
procedure we do not obtain the values of 𝐴c and 𝐿c. These need to be őxed before,
so we take them directly from the point in our data with the minimum value of
𝐿. The reference values 𝐴ref and 𝐿ref can be chosen arbitrarily. Their only relevant
effect on the őtting process is a vertical and/or horizontal shift of the data points
in a log-log plot, reŕected by the value of the intercept ln(𝛼̃) in Eq. 5.8. Thus, to
correctly reconstruct 𝐴(𝐿) from the regression coefficients 𝛽 and ln(𝛼̃), one needs to
keep track of the values used for 𝐴ref and 𝐿ref, but they are otherwise unimportant.
We simply set 𝐴ref = 1Å

2
and 𝐿ref = 1nN.

At this point, it is appropriate to emphasize the difference in the analysis of 𝐴(𝐿)
between Ref. [33] and our re-examination. In Ref. [33], certain functional forms
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for the description of 𝐴(𝑑r) and 𝐸(𝑑r) were chosen, from the combination of which
𝐴 ∝ 𝐿1/2 followed (see Chap. 4 for details), without having to make any Ansatz for
the functional form of 𝐴(𝐿). In this work, we start from a power-law Ansatz for
𝐴(𝐿), which in turn does not require an explicit expression for 𝐴(𝑑r).

The upper branch 𝐴+(𝐿) is the one most relevant for comparison with experiments,
since only this branch of 𝐴(𝐿) is accessible in a load-control AFM setup (cf. the
discussion in Sec. 2.1.2). In our simulations, however, this limitation does not apply.
Therefore, for completeness, we did power-law őts to the upper and lower branch
separately, as well as to both branches simultaneously. Note that in the őts to
individual branches of 𝐴(𝐿), we nonetheless always use load values obtained from
őtting to the whole region II. of the 𝐸(𝑑r) curve, of which we then take only the
subset of values corresponding to a particular branch of 𝐴(𝐿).

The load values used in this section for power-law őts to 𝐴(𝐿) were calculated from
the parameterizations of 𝐸(𝑑r) given by Tab. 5.2 and depicted in Fig. 5.10. We did
this separately for both őt functions used to parameterize 𝐸(𝑑r), i.e., 𝑈m-n

LJ (𝑑r) and
𝑈n

LJ-lim(𝑑r). If the whole procedure for calculating 𝐿 from 𝐸(𝑑r) and then analyzing
𝐴(𝐿) is robust, it should not make much of a difference to the őnal parameters
characterizing 𝐴(𝐿) which parameterization for 𝐸(𝑑r) was used. The resulting
őt parameters for 𝐴(𝐿) are listed in Tab. 5.3. The coefficients of determination
𝑅2 are also included as a measure of the goodness of őt of the linear regressions
performed.7

Tab. 5.3: Parameters of power-law őts to 𝐴(𝐿) by logarithmic transform and linear
regression. The coefficient 𝛼̃ is deőned as in Eq. 5.7 and reported here
when 𝐴ref = 1Å

2
and 𝐿ref = 1nN.

loads computed from branch of 𝐴(𝐿) 𝛽 𝛼̃ 𝑅2

𝑈m-n
LJ (𝑑r) + 𝐸vdW-bg

upper 0.44 3.67 0.94
lower 0.51 2.59 0.99
both 0.47 3.12 0.93

𝑈n
LJ-lim(𝑑r) + 𝐸vdW-bg

upper 0.62 2.55 0.99
lower 0.42 3.03 0.99
both 0.52 2.94 0.96

To visualize the division of 𝐴(𝐿) into branches as well as the general shape of the
curves, and to illustrate the procedure of őtting by logarithmic transform, the őt to
7 Note that R2 does not depend on the choice of Aref and Lref, as seen from the definition
R2 = (

∑︀
N

i=1
[f̂(xi)− ȳ]2)/(

∑︀
N

i=1
[yi− ȳ]2) [90], where yi are the data points’ dependent variable

values, ȳ their sample mean, and f̂(xi) the model predictions at the independent variable values
xi. In our case, ŷ︀= ln((A − Ac)/Aref) and x̂︀= ln((L − Lc)/Lref). Different choices of Aref and
Lref only cause a vertical/horizontal shift of the data points, which cancels out in R2.
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5.4 Load dependence of the contact area 53

𝐴(𝐿) is shown in Fig. 5.11 for the case of 𝐿 computed from 𝑈n
LJ-lim(𝑑r). The power-

law parameters corresponding to the őt curves plotted in that őgure are those in
the bottom half of Tab. 5.3. The resulting curves when using the loads calculated
from 𝑈m-n

LJ (𝑑r) (not shown) are qualitatively similar. The power-law őt is seen to
be not perfect, but we believe it is acceptable for the purpose of simply őnding a
reasonable description of 𝐴(𝐿) in terms of a small number of parameters.

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5

𝐿 (nN)

0

5

10

15

20

25

30

𝐴
(Å

2
)

𝐿c

𝐴c

2.77

2.43

2.30

2.23

2.19
𝐴+

𝐴−

−3 −2 −1 0 1 2 3

ln((𝐿− 𝐿c)/𝐿ref)

0

1

2

3

ln
(|(

𝐴
−

𝐴
c
)/
𝐴

re
f|)

𝐴+

𝐴−

Fig. 5.11: Power-law őts to different branches of 𝐴(𝐿). The őt to both branches
simultaneously (not shown) would consist of a straight-line őt to the
union of the 𝐴+ and 𝐴− data points in the log-log plot. The numbers
in the upper panel are the corresponding values of some distances 𝑑r in
Å.

As seen in Tab. 5.3, the loads calculated from 𝑈m-n
LJ (𝑑r) and 𝑈n

LJ-lim(𝑑r) do not lead
to quite the same exponents for 𝐴(𝐿). For the experimentally most relevant upper
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branch of 𝐴(𝐿), the former gives 𝛽 closer to 2/5, the latter closer to 3/5. Similarly,
for the lower branch there is also a difference, though a smaller one. Based on
𝑅2 as a criterion, the power-law description of 𝐴(𝐿) is also slightly worse when
using the loads calculated from 𝑈m-n

LJ (𝑑r). Since the parameterizations of 𝐸(𝑑r)
with 𝑈m-n

LJ (𝑑r) and 𝑈n
LJ-lim(𝑑r) are visually quite similar and by all means both look

reasonable (cf. Fig. 5.10), we have to conclude that the power-law őts to 𝐴(𝐿)
are rather sensitive to the speciőc method by which the load is calculated from
the tip-surface interaction energy. However, this difference between 𝑈m-n

LJ (𝑑r) and
𝑈n

LJ-lim(𝑑r) in the exponents found for 𝐴(𝐿) is present only when looking at the
individual branches of 𝐴(𝐿) alone. The simultaneous őts to both branches of 𝐴(𝐿)
give values of 𝛽 close to 1/2 for both 𝑈m-n

LJ (𝑑r) and 𝑈n
LJ-lim(𝑑r). It therefore appears

that the 𝐴-vs-𝐿 őts are more robust to slight differences in the load calculation
when the entire curve (i.e., both the upper and lower branch) is considered at
once.

While the exponent value of about 1/2 for 𝐴(𝐿) does in fact agree with the original
study by Wolloch et al. [33], this may be only a coincidence and not lend itself to
direct comparison. The reason is that the regions used in őtting are different. In
the present work, we obtained 𝛽 ≈ 1/2 when considering the entire upper and lower
branches of 𝐴(𝐿) at the same time. In the past study, by contrast, it was obtained
for a vicinity of the minimum of 𝐸(𝑑r), which in the 𝐴-vs-𝐿 curve corresponds to
a region around 𝐿 = 0 within the upper branch.

5.4.1 Interpretation in terms of a continuum model

Finally, we brieŕy compare our ab-initio results with continuum predictions. It is,
a priori, not clear that continuum models should be applicable at all in our case,
given that we are dealing with an atomically sharp tip and contact dimensions of
Ångström scale. That would make it noteworthy if we őnd that our results are
nonetheless consistent with a continuum description. In this context, we also point
out two studies by Lee et al. [91, 92], in which őnite-element simulations were
successfully used to interpret AFM nanoindetation and nanofriction experiments
on graphene. While these studies are not immediately related to the question of
the load-dependent contact area that we investigate in this thesis, they show that
a continuum description of nanotribological properties of graphene is at least not
without precedent.

For a comparison of our results with continuum models, we will focus on the Thin-
Coating Contact Mechanics (TCCM) model by Reedy [44], introduced earlier in
Sec. 2.1.3. The graphene layer in our system corresponds to the elastic coating in
that model. Even though not all of TCCM’s assumptions are perfectly fulőlled or
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even conceptually strictly applicable in our system, it is probably still the closest
analog as far as available continuum models go:

• TCCM assumes both a rigid substrate and rigid indenter. The former as-
sumption clearly matches the conditions in our simulations, since we hold the
iridium substrate őxed. The latter is also approximately true since most of
the deformation occurs in the graphene rather than in the tip (cf. Fig. 5.1b).

• The assumption ℎ/𝑅 ≪ 1 of the coating thickness ℎ being much less than
the indenter radius 𝑅 is slightly more questionable for our system. The exact
values to be assigned to ℎ and 𝑅 are of course a matter of debate. If, e.g.,
one takes the coating thickness to be the height of the carbon atoms in the
undeformed graphene layer above the iridium substrate, then ℎ ≈ 3.42Å. As
for the radius 𝑅 of the tip, it is not perfectly well-deőned since the tip in our
system is not actually truly spherical. However, regardless of the exact values,
it can probably not be argued that 𝑅 ≫ ℎ is perfectly fulőlled, considering
the sharpness of the tip.

• In a similar vein, the assumption 𝑎/ℎ≫ 1 of the contact radius 𝑎 being much
larger than the coating thickness ℎ is also arguably not fulőlled. The lateral
dimensions of the contact regions are only a few Ångströms (cf. Fig. 5.5),
and thus of comparable size to the coating thickness ℎ (if one uses again
ℎ ≈ 3.42Å).

• TCCM was developed and numerically validated only for values of Poisson’s
ratio 𝜈 < 0.45. If one takes the Poisson’s ratio of graphene to be that of
graphite in the basal plane, i.e., 𝜈 = 0.165, as was done in the őnite-element
simulations of graphene in Ref. [91], this requirement is comfortably fulőlled.

• We did not speciőcally investigate whether the assumption of deformations
within the linear elastic regime is satisőed.

For the separate branches of 𝐴(𝐿) on their own, a reliable continuum interpretation
of our results does not seem to be possible. After all, the differences in 𝛽 between
őts where 𝐿 is taken from different parameterizations of 𝐸(𝑑r) (cf. Tab. 5.3) are
comparable to the differences in the exponents between some continuum models
(Hertz- or DMT-like contacts with 𝛽 = 2/3, TCCM with 𝛽 = 1/2). So, we would
őnd it hard to reliably distinguish between different continuum models based on
these data. But when őtting to the whole 𝐴(𝐿) curve, where our exponents are
approximately the same regardless of the parameterization used for 𝐸(𝑑r), we argue
that they are more reliable. For this case, the value of 𝛽 close to 1/2 that we found
does in fact agree with TCCM.
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6 Conclusions and outlook

Building upon previous work on the same question and system by Wolloch et al. [33],
we studied the load dependence of the atomic-scale real contact area between a
tungsten AFM tip and a graphene layer on iridium, using an ab-initio contact
model. We extended, and deviated from, the past analysis in two main ways.
Firstly, we ran calculations at a more őnely-spaced set of tip-sample separations.
Secondly, we used different őtting strategies and model functions for calculating the
load from the tip-surface interaction potential and extracting the load dependence
of the contact area.

To calculate the loads from the interaction potential 𝐸(𝑑r) as a function of the
relaxed tip-sample distance 𝑑r, we initially sought a single analytic parameteriza-
tion of 𝐸(𝑑r) that works for all distances 𝑑r. But we found this to be impractical,
given that 𝐸(𝑑r) comprises several distinct interaction regimes at different sepa-
ration ranges. So we focused only on a certain range below the ’jump-to-contact’
between tip and sample, where a description of 𝐸(𝑑r) with a generalized Lennard-
Jones potential (with variable exponents 𝑚 and 𝑛) seemed applicable. Attempts
to give a physical interpretation to the values obtained for the Lennard-Jones őt
parameters 𝑚 and 𝑛 unfortunately remained largely unsatisfactory. So we treated
this parameterization of 𝐸(𝑑r) as mostly just a tool for load calculation.

As for the central question of the load-dependent real contact area, we observed
that a power-law parameterization of 𝐴(𝐿) displays some sensitivity to the speciőc
way the loads are computed from the energy-distance curve, when only individual
branches of 𝐴(𝐿) are considered at a time. Further investigations of this apparent
sensitivity might be advisable in the future. When, however, the whole curve 𝐴(𝐿)
accessible to our simulations is considered at once, the parameterizations of 𝐴(𝐿)
appear more robust and we therefore have conődence in them. For the latter case,
we őnd an exponent close to 1/2 in a power-law description of 𝐴(𝐿). This agrees
with Reedy’s Thin-Coating Contact Mechanics, a model that we argued is the
closest equivalent to our system in terms of continuum models. Our results thus
give some tentative validation to the practice of applying continuum contact models
on atomic scales.

Although the exponent value of about ≈ 1/2 that we found matches the original
result from Ref. [33], we argued that our result is not entirely comparable to this
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58 6 Conclusions and outlook

past study, as the region of the 𝐴-vs-𝐿 curve for which it was obtained is different.
However, rather than being a limitation, this is by design, since it was our intention
from the start to capture 𝐴(𝐿) across a greater range of values of 𝐿 than in the
original study.

Ultimately, conclusive tests of our results and the ab-initio contact model in general
will have to come from comparison with friction-vs-load curves, either from other
simulations or from experiments. For better comparability in possible future tests of
the model, one may use systems with simpler tip-sample interaction potentials, since
the range of distances that can be (easily) investigated is limited in the case at hand
by the interaction becoming again attractive at small distances due to tip-sample
bonding. Another interesting avenue for future extension of the computational
model might be coupling of the tip to a more realistic, ŕexible AFM cantilever.
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A Detailed results

Tab. A.1 shows details on the relaxations for each distance. As in the rest of this
thesis, 𝑑r is to be understood as referring to the 𝑧 component of the length that
connects the tip apex and the carbon atom most directly below: 𝑑r ≡ 𝑑r,z. The
lateral component 𝑑r,lat (component that lies in the 𝑥-𝑦 plane) is included alongside
it. The energies reported are relative to that at the largest distance included.

Information on the initial conőguration, or sequence of initial conőgurations, used
in the relaxation of each distance is also included. The notation used for this is best
explained by means of an example. Consider the tip position labeled 𝑑s = 1.09Å,
with initial conőguration labeled in Tab. A.1 as ’1.40 ← static’. By this, we mean
that we őrst created a static conőguration (’static’ as deőned in Sec. 3.2) with
𝑑s = 1.40Å, and relaxed it. In the resulting relaxed conőguration, the tip was then
translated downward by 0.21Å to create the initial conőguration from which the
tip position labeled 𝑑s = 1.09Å was őnally relaxed.

Tab. A.2 shows the contact areas 𝐴 and numbers 𝑁 vac
e of electrons assigned to

the vacuum region, for two different electron density cutoffs. The lower cutoff,
5.0× 10−2 electrons/Å

3
, is what was used in Ref. [33]. The higher one is our slightly

revised value, for consistency with our additional data. Only distances up to the
őrst distance above the jump-to-contact are included, for all larger distances the
contact areas were not explicitly calculated as they are zero by construction.
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62 A Detailed results

Tab. A.1: Details on relaxation for each distance. See text at beginning of this
chapter for more explanation.

𝑑s (Å)
sequence of initial
conőgurations

𝑑r (Å) 𝑑r,lateral (Å) 𝐸 (eV)

1.09 1.40 ← static 2.17 0.05 -2.11
1.20 1.40 ← static 2.18 0.05 -2.14
1.30 1.40 ← static 2.19 0.03 -2.17
1.40 static 2.19 0.05 -2.20
1.46 1.40 ← static 2.20 0.05 -2.24
1.51 2.29 ← static 2.21 0.04 -2.26
1.60 2.29 ← static 2.22 0.04 -2.30
1.68 2.29 ← static 2.23 0.04 -2.32
1.85 2.29 ← static 2.25 0.03 -2.32
2.00 2.29 ← static 2.26 0.03 -2.31
2.18 2.29 ← static 2.29 0.02 -2.26
2.29 2.66 ← 3.14 ← static 2.30 0.03 -2.19
2.40 2.66 ← 3.14 ← static 2.31 0.04 -2.13
2.53 2.29 ← static 2.34 0.03 -2.04
2.66 3.14 ← static 2.36 0.03 -1.92
2.78 3.14 ← static 2.37 0.03 -1.80
2.90 3.14 ← static 2.38 0.03 -1.67
3.02 3.14 ← static 2.43 0.02 -1.53
3.14 static 2.49 0.02 -1.38
3.27 3.14 ← static 2.52 0.02 -1.22
3.40 3.53 ← static 2.59 0.03 -1.04
3.53 static 2.71 0.03 -0.85
3.56 3.53 ← static 2.74 0.03 -0.81
3.59 3.53 ← static 2.77 0.03 -0.77
3.63 3.65 ← static 3.48 0.00 -0.57
3.65 static 3.52 0.00 -0.55
3.71 static 3.61 0.00 -0.50
3.78 static 3.69 0.00 -0.46
3.85 static 3.78 0.00 -0.41
3.97 static 3.92 0.00 -0.34
4.07 static 4.03 0.00 -0.29
4.17 static 4.14 0.00 -0.25
4.28 static 4.25 0.00 -0.21
4.40 static 4.39 0.00 -0.16
4.60 static 4.59 0.00 -0.11
4.79 static 4.78 0.00 -0.07
4.98 static 4.98 0.00 -0.04
5.16 static 5.16 0.00 -0.02
5.34 static 5.34 0.00 -0.01
5.51 static 5.51 0.00 0.00
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Tab. A.2: Contact areas 𝐴 and vacuum charges at different distances. See text at
beginning of this chapter for more explanation.

vacuum density cutoff (electrons/Å
3
)

5.25× 10−2 5.0× 10−2

𝑑s (Å) 𝑑r (Å) 𝐴 (Å
2
) 𝑁 vac

e 𝐴 (Å
2
) 𝑁 vac

e

1.09 2.17 38.36 30.51 39.86 28.21
1.20 2.18 34.88 30.65 36.41 28.34
1.30 2.19 31.88 30.82 33.49 28.49
1.40 2.19 30.64 30.73 31.76 28.35
1.46 2.20 28.69 30.81 29.62 28.44
1.51 2.21 27.11 31.03 28.44 28.65
1.60 2.22 24.65 31.13 26.03 28.73
1.68 2.23 23.43 31.21 24.11 28.81
1.85 2.25 20.15 31.38 21.02 28.96
2.00 2.26 18.70 31.60 19.70 29.12
2.18 2.29 16.45 31.83 17.14 29.32
2.29 2.30 16.09 32.48 16.75 29.99
2.40 2.31 15.31 32.65 15.94 30.18
2.53 2.34 13.96 32.69 14.70 30.21
2.66 2.36 13.26 33.15 13.88 30.67
2.78 2.37 12.59 33.24 13.29 30.77
2.90 2.38 11.90 33.28 12.60 30.82
3.02 2.43 10.85 33.30 11.49 30.84
3.14 2.49 9.43 33.34 10.10 30.88
3.27 2.52 8.94 33.54 9.34 31.08
3.40 2.59 8.06 33.62 8.68 31.17
3.53 2.71 6.48 33.68 6.95 31.23
3.56 2.74 6.28 33.69 6.63 31.24
3.59 2.77 5.93 33.71 6.41 31.26
3.63 3.48 0.00 32.41 0.25 29.87
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B Limit of 𝑚-𝑛 Lennard-Jones

potential as 𝑚→ 𝑛

We want to calculate the limit 𝑚 → 𝑛 of the 𝑚-𝑛 Lennard-Jones potential, with
depth 𝐸0 and equilibrium distance 𝑑0 őxed,

𝑈m-n
LJ (𝑑r) = −

𝐸0

𝑚− 𝑛

[︂
𝑚

(︂
𝑑0
𝑑r

)︂n

− 𝑛

(︂
𝑑0
𝑑r

)︂m]︂
, (B.1)

𝑈n
LJ-lim(𝑑r) := lim

m→n
𝑈m-n

LJ (𝑑r) . (B.2)

First, we deőne the abbreviation 𝑠 := 𝑑0/𝑑r. Next, let us calculate the limit of the
relevant parts containing 𝑚 and 𝑛 (omitting the prefactor −𝐸0 for brevity):

lim
m→n

𝑚𝑠n − 𝑛𝑠m

𝑚− 𝑛
=

‘0
0

’

= lim
m→n

𝑑

𝑑𝑚
[𝑚𝑠n − 𝑛𝑠m]

𝑑

𝑑𝑚
[𝑚− 𝑛]

= lim
m→n

𝑠n − 𝑛
𝑑

𝑑𝑚
𝑠m

1
= lim

m→n
[𝑠n − 𝑛 ln(𝑠)𝑠m]

= 𝑠n − 𝑛 ln(𝑠)𝑠n

= [1− 𝑛 ln(𝑠)] · 𝑠n

(B.3)

In passing from the őrst to the second line, L’Hôpital’s rule was used to deal with
what would be an undeőned expression when applying the limit to numerator and
denominator separately.

Finally, adding back in the prefactor and plugging in the deőnition of 𝑠, we obtain

𝑈n
LJ-lim(𝑑r) = −𝐸0 ·

[︂
1− 𝑛 ln

(︂
𝑑0
𝑑r

)︂]︂
·
(︂
𝑑0
𝑑r

)︂n

. (B.4)
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66 B Limit of 𝑚-𝑛 Lennard-Jones potential as 𝑚→ 𝑛

For the derivative of this w.r.t. the distance, we őnd

𝜕

𝜕𝑑r
𝑈n

LJ-lim(𝑑r) = −
𝐸0

𝑑0
𝑛2 ln

(︂
𝑑0
𝑑r

)︂
·
(︂
𝑑0
𝑑r

)︂n+1

. (B.5)
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C Lennard-Jones fit details

Our őts to 𝐸(𝑑r) were done by standard nonlinear least-squares őtting, i.e., by
minimization of the quantity chi-square, written generically as

𝜒2(θ) =
N∑︁

i=1

[𝑓(𝑥i;θ)− 𝑦i]
2

𝜎2
i

. (C.1)

In this expression, the 𝑥i denote the 𝑖th value of the independent variable out of 𝑁
data points, and the 𝑦i that of the dependent variable. The 𝜎i are the uncertainties
(standard deviations) in the data 𝑦i. The model function, with 𝑃 őtting parameters
θ = (𝜃1, . . . , 𝜃P ), evaluated at 𝑥i, is denoted by 𝑓(𝑥i;θ).

The optimal őt parameters θopt are then obtained as those minimizing Eq. C.1,

θopt = argmin
θ

𝜒2(θ) . (C.2)

The lmfit package [73] that we used for this by default employs a LevenbergśMarquardt
algorithm [93, 94] to perform the required nonlinear minimization.

In our case, the 𝑥i correspond to the relaxed distance 𝑑r, the 𝑦i to the energy 𝐸, and
the model function 𝑓 is the 𝑚-𝑛 Lennard-Jones potential, either in the ’standard’
version 𝑈m-n

LJ (𝑑r) (Eq. 5.1) or the ’limit’ version 𝑈n
LJ-lim(𝑑r) (Eq. 5.5). The őtting

parameters θ correspond to (𝑚,𝑛,𝐸0, 𝑑0) in the case of 𝑈m-n
LJ , or (𝑛,𝐸0, 𝑑0) in the

case of 𝑈n
LJ-lim.

In the situation of Gaussian noise with zero mean in the data, the minimization of
𝜒2(θ) possesses an interpretation as a maximum-likelihood estimate of the parame-
ters [95], since in this case 𝜒2 is related to the so-called log-likelihood function lnℒ
by

− lnℒ(θ) = 1

2
𝜒2(θ) . (C.3)

In our case, however, the data uncertainties are not truly of statistical nature,
since our simulations results are in principle deterministic8. So we simply and

8 We believe there are some uncertainties in the data that appear random from a user’s perspec-
tive, namely due to possibly imperfect ionic relaxations, but whether these qualify as Gaussian
noise is a matter of debate.
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68 C Lennard-Jones fit details

pragmatically view 𝜒2 as mostly a convenient measure of the geometric deviation
of the model function from the data. For that purpose, the 𝜎i are treated simply
as weights, that we all set to one.
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