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Preface

In this thesis we study valuations. Let V be a Euclidean vector space and let A
be an Abelian semigroup. A function µ defined on the non-empty convex bodies
in V and taking values in A is called a valuation if

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B),

whenever A,B and A ∩ B are convex bodies. In [14] Hadwiger achieved a
landmark result characterizing all scalar valued continuous Euclidean motion
invariant valuations; this will be the first important result we will encounter.
Alesker, Bernig and Schuster [8] accomplished a generalization of Hadwiger’s
characterization by characterizing all continuous translation invariant SO(n)-
equivariant valuations with values in an irreducible SO(n) representation Γ.
Wannerer used this in [23] to determine the dimensions of the vector spaces of the
continuous translation invariant unitary equivariant vector valued valuations.
And from this he characterized the Steiner point map as the continuous unitary
affine transformation equivariant valuation from the convex bodies in Cn to Cn.
Recently Böröczky, Domokas and Solanes [27] provided the dimension of the
space of continuous translation invariant unitary equivariant tensor valuations,
yielding Wannerer’s result as special case. Additionally, utilizing the work of
Wannerer [28], they provided a basis for the space of continuous translation
invariant unitary equivariant vector valued valuations.

After a motivational problem from integral geometry in the first section we
recall valuations and intrinsic volumes on parallelotopes. The second section
transfers these definitions to the lattice of polyconvex sets, and we recall the
volume theorem for polyconvex sets and Hadwiger’s characterization theorem.
In the third section we summarize some definitions from convex geometry and
encounter Schneider’s Steiner point characterization [2, 3].

In sections four to seven we compile the theory of compact Lie groups, that
will be needed in the last two sections. Starting with basic definitions, we move
on to representations, Schur’s lemma and characters. Lie algebras provide a
linearization of Lie groups, and Cartan subalgebras set up the theory of root
space decompositions. This in turn will provide the highest weight classification
of irreducible Lie group representations.

In section seven we gather more foundations for the generalized Hadwiger
theorem: Frobenius reciprocity theorem and a branching theorem for SO(n).
The normal cycle map provides a way to describe the smooth translation invari-
ant valuations, and the Rumin operator enables us to fit the smooth translation
invariant valuations into an exact sequence of SO(n)-modules. With these pre-
requisites we present the statement and proof of the Hadwiger type theorem
achieved by Alesker, Bernig and Schuster in [8].

Section eight starts with results from Klimyk [20] and Helgason [24]. We
follow Schuster [22] and Wannerer [23] in order to calculate the dimension of the
vector space of continuous translation invariant and U(n)-equivariant valuations
with values in Cn. Finally the work of Böröczky, Domokas and Solanes [27]

iii
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provides the dimension of the space of translation invariant unitary equivariant
tensor valuations for n ≥ 2 and a basis for the space vector valued case.
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1 Motivation

Starting out with a classical motivational problem from integral geometry, the
Buffon needle problem, we move on to introducing valuations. We define in-
trinsic volumes on parallelotopes and see that they form a basis of the vector
space of all continuous invariant valuations on the lattice of parallelotopes. This
section is taken from [1].

1.1 The Buffon Needle Problem

We are first considering the Buffon needle problem, the classical example to
introduce and motivate integral geometry: Given equidistant parallel straight
lines across a plane. What is the probability of a needle of length L, randomly
dropped on this plane, to hit one of the lines? Answering this question and
going further to convex sets A ⊆ B, we find the conditional probability of a
randomly drawn straight line meeting A, given that it meets B.

For the Buffon needle problem let’s consider R2 with parallel straight lines,
at a distance d from each other, drawn across it. If we drop a needle of length
L at random on the plane, what is the probability of it to meet at least one of
the straight lines?

For an instructive solution let’s consider X to be the random variable count-
ing the number of intersections of a randomly dropped needle of length L with
any of the straight parallel lines. Let L < d so, X takes values in {0, 1}. De-
noting by pn the probability that the needle meets exactly n straight lines, and
by E(X) the expectation of X, we get

E(X) = 0p0 + 1p1 = p1,

making it sufficient to compute E(X).
Adding another needle rigidly bound to the first one and using the additivity

of the expectation as well as Cauchy’s functional equation we get that

E(X) = rL,

where X is a polygonal line and r ∈ R is still to be determined.
Approximating a rigid wire C of length L by a polygonal line and passing

to the limit we obtain a similar result. Plugging a circular wire of diameter d
into this equation enables us to calculate r. In the end we get

E(X) = p1 =
2L

πd
,

for a needle with L < d.
We want to apply the methods just used to find answers to problems that are

right at the center of interest of integral geometry. A subset K of R2 is called
convex if for any two points x, y in K the complete line segment connecting x
and y also lies within K. A closed curve C in R2 is called convex, given that C
is enclosing a convex set.

1
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We consider compact convex sets K1,K2 in R2 such that K1 ⊆ K2. Then
the conditional probability that a random point belonging to K2 also belongs
to K1 is given by

area(K1)

area(K2)
.

Instead of points we will now look at lines, intersecting convex sets. Let
AGr(2, 1) denote the set of all affine straight lines in R2, and let Z1 be the
random variable counting the number of intersections of a straight line taken at
random with a line segment of length L1. The integral

∫

AGr(2,1)

Z1 dλ
2
1,

where dλ21 denotes up to normalization the unique rigid motion invariant mea-
sure on AGr(2, 1), depends only on L1, therefore it can be expressed as a func-
tion f(L1). Because Z1 takes values in {0, 1}, the above integral is equal to the
measure of all affine straight lines, that meet a straight line segment of length
L1. As before, we move from line segments to polygonal lines and to arbitrary
curves. Given convex sets K1,K2 in R2 with K1 ⊆ K2, we denote the borders of
K1,K2 by C1, C2 and the set of straight lines meeting Ci by Di. Calculating the
above integral for C1, C2, we get that the conditional probability that a random
straight line meeting K2 also meets K1 is

λ21(D1)

λ21(D2)
=
L1

L2
=

length(∂K1)

length(∂K2)
. (1)

1.2 Valuations and Integrals

We are recalling the notion of a valuation, that is, a finitely additive set function
with values in an abelian semigroup. We define an integral of simple functions
with respect to a given valuation and state Groemer’s integral theorem, which
gives necessary conditions for this integral to be well defined.

Before we can define valuations we have to clarify their domains.

Definition. A partially ordered set L is called a lattice if for all x, y ∈ L there
exist a greatest lower bound x ∧ y ∈ L and a least upper bound x ∨ y ∈ L. A
lattice is said to be distributive if for all x, y, z ∈ L the following holds true:

x ∧ (y ∨ z) = (x ∨ y) ∧ (x ∨ z);
x ∨ (y ∧ z) = (x ∧ y) ∨ (x ∧ z).

Definition. A valuation on a lattice L of sets is a function µ : L→ R satisfying
the following conditions

µ(A ∪B) = µ(A) + µ(B)− µ(A ∩B); (2)

µ(∅) = 0. (3)
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By iterating equation (2) we obtain

µ(A1 ∪A2 ∪ · · · ∪An) =
∑

i

µ(Ai)−
∑

i<j

µ(Ai ∩Aj)+

∑

i<j<k

µ(Ai ∩Aj ∩Ak)− · · · ,

the inclusion-exclusion principle for a valuation µ on a lattice L.
We are interested in linear combinations of indicator functions, as we will

be able to integrate them with respect to a valuation.

Definition. Let L be a lattice, αi ∈ R, and Ai ∈ L. A finite linear combination
of indicator functions f = α1IA1

+α2IA2
+ · · ·+αnIAn is said to be an L-simple

function, or a simple function for short.

Because IA∩B = IAIB holds for indicator functions, the set of all simple
functions forms a ring under addition and multiplication.

Definition. A generating set of a lattice L is a subset G of L which is closed
under finite intersections and where every element of L is a finite union of
elements of G.

The following proposition is a consequence of the inclusion-exclusion princi-
ple for indicator functions and the equation IA∪B = IA + IB − IA∩B .

Proposition 1.1. Given a generating set G of a lattice L, every L-simple func-

tion can be written as a finite linear combination
∑n

i=1 αiIBi
with Bi ∈ G.

Definition. Given a lattice L with generating set G, we call ν : G → R a
valuation on G if it satisfies (2) and (3) for all A,B ∈ G with A ∪B ∈ G.

Because G is not required to be closed under unions, (2) might not make
sense for all A,B ∈ G. For the same reason the inclusion-exclusion principle
does not hold in general for ν if n > 2.

However, every element B ∈ L can be expressed as a union B = B1 ∪ B2 ∪
· · · ∪ Bn. So the inclusion-exclusion principle suggests that we can attempt to
extend ν to a valuation µ on all of L by setting

µ(B) =
∑

i

ν(Bi)−
∑

i<j

ν(Bi ∩Bj) + · · · . (4)

It remains to be checked that µ(B) is well defined, that is, µ(B) does not depend
on the possibly multiple ways B can be expressed as a union. This question
is strongly related to the integrability of simple functions, so we postpone an
answer until after the next definition.
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Definition. Let L be a lattice with generating set G, and ν a valuation on G.
For an L-simple function f = α1IA1

+α2IA2
+ · · ·+αnIAn , we define the integral

of f with respect to ν by

∫
fdν =

n∑

i=1

αiν(Ai),

where Ai ∈ G, and 1 ≤ i ≤ n.

In general there are infinetly many ways to express a simple function as a
sum of indicator functions of sets in G. Consequently, it remains to be checked
that the integral is well defined.

Theorem 1.2. (Groemer’s integral theorem) Let G be a generating set for a
lattice L, and let µ be a valuation on G. The following statements are equivalent:

(i) µ extends uniquely to a valuation on L;

(ii) µ satisfies the inclusion-exclusion identities

µ(B1 ∪B2 ∪ · · · ∪Bn) =
∑

i

µ(Bi)−
∑

i<j

µ(Bi ∩Bj) + · · · ;

if Bi ∈ G and B1 ∪B2 ∪ · · · ∪Bn ∈ G for all n > 2;

(iii) µ defines an integral on the vector space of linear combinations of indicator

functions of sets in L.

1.3 The Intrinsic Volumes for Parallelotopes

As a toy case for the theory of invariant valuations on the lattice of finite unions
of compact convex sets in Rn, we consider the lattice of finite unions of or-
thogonal parallelotopes. In this setting many of the central results of integral
geometry can be stated and proven with less effort. The intrinsic volumes for
parallelotopes will not just be our first but also one of the most important ex-
amples of valuations, as they form a basis of the vector space of all continuous
invariant valuations on the lattice of parallelotopes.

We first recall the definitions of the lattice of parallelotopes, continuity and
invariance for valuations on parallelotopes and close with Groemer’s extension
theorem, providing a way to construct valuations. Throughout this chapter a
Cartesian coordinate system in Rn is fixed.

Definition. Par(n) is defined to be the family of sets that are obtained by taking
unions and intersections of orthogonal parallelotopes, that is, parallelotopes
having edges parallel to a fixed basis of Rn. Given P ∈ Par(n), we say that P
is of dimension n or has full dimension if P is not contained in a finite union of
hyperplanes of Rn, that is, P has non-empty interior. Otherwise we shall say
that P is of lower dimension. In general a set P ∈ Par(n) has dimension k if P
is contained in a finite union of k-planes in Rn, but is not in any finite union of
(k − 1)-planes.
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Remark. Note that Par(n) is a distributive lattice.

By T̃n we denote the group generated by translations and permutations of
coordinates in Rn. For A ⊆ Rn and g ∈ T̃n we write gA := g(A) = {g(a) : a ∈
A}.
Definition. A valuation µ defined on Par(n) is said to be invariant if

µ(gP ) = µ(P )

for all g ∈ T̃n and P ∈ Par(n). If µ(gP ) = µ(P ) only holds for translations g of
Rn, we say that µ is translation invariant.

We want to impose a continuity condition on the valuations defined on
Par(n) to avoid pathological cases, when we determine all invariant valuations
on Par(n).

Definition. For A ⊂ Rn and x ∈ Rn the distance d(x,A) from the point x to
the set A is given by

d(x,A) : = inf
a∈A

d(x, a),

where d(a, x) = |x−a| is the usual distance between points in Rn. ForK,L ⊂ Rn,
the Hausdorff distance δ(K,L) is defined by

δ(K,L) : = max

(
sup
a∈K

d(a, L), sup
b∈L

d(b,K)

)
.

A sequence of compact subsets Kn of Rn converges to a set K ⊂ Rn, or Kn → K
if δ(Kn,K)→ 0 as n→∞.

Definition. A valuation µ on Par(n) is said to be continuous, provided that
µ(Pi)→ µ(P ), if Pi and P are parallelotopes and Pi → P .

Another useful condition is that of monotonicity.

Definition. A valuation µ is said to be increasing on Par(n), provided that
µ(P ) ≤ µ(Q), if P,Q ∈ Par(n) and P ⊆ Q. Similarly one defines decreasing
valuations. A valuation µ is said to be monotone on Par(n) if µ is either an
increasing valuation or a decreasing valuation.

Theorem 1.3. The distance δ defines a metric on the set of all compact subsets
of Rn.

Theorem 1.4. (Groemer’s extension theorem for Par(n)) A valuation µ de-
fined on parallelotopes with edges parallel to the coordinate axes admits a unique
extension to a valuation on the lattice Par(n).

Our goal is the classification of invariant valuations on Par(n). To begin we
consider the case of R1, where an element of Par(1) is a finite union of closed
intervals.
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Definition. For A ∈ Par(1) set

µ1
0(A) := number of connected components of A;

µ1
1(A) := lenght of A.

Theorem 1.5. Every continuous invariant valuation on Par(1) is a linear com-
bination of µ1

0 and µ1
1.

Definition. The k-th elementary symmetric functions of x1, x2, ..., xn are the
polynomials defined by

e0(x1, x2, ..., xn) = 1;

ek(x1, x2, ..., xn) =

n∑

1≤i1<···<ik≤n

xi1xi2 · · ·xik , 1 ≤ k ≤ n.

Theorem 1.6. For 0 ≤ k ≤ n, there exists a unique continuous valuation µk

on Par(n), invariant under translations and permutations of coordinates, such
that

µk(P ) = ek(x1, x2, ..., xn),

given that P is a parallelotope with sides of lengths x1, x2, ..., xn.

Remark. The valuation µ0 is called the Euler characteristic, and due to The-
orem 1.6 it is the only valuation on Par(n) having the value 1 on all non-
empty parallelotopes. Furthermore µn(P ) is the volume of P ∈ Par(n), and
2µn−1(P ) = surface area(P ).

Note that, if a parallelotope P has dimension k < n, the valuation µi(P )
has ambiguous sense. It might indicate the value µi(P ) in Rn, but it might
also denote the value of µi(P ) in some Rm with P ∈ Rm and k ≤ m < n.
Theorem 1.6 however implies that the two valuations coincide, that is, µn

i (P ) =
µm
i (P ). Therefore it is not necessary to indicate the dimension of the product

space of copies of R we want calculate µi in. For this reason µk is called the
k-th intrinsic volume for 0 ≤ k ≤ n. We summarize this fact in the following
corollary.

Corollary 1.7. The valuations µi on Par(n) are normalized independent of the
dimension n.

As the main result of this chapter we are now able to determine all con-
tinuous valuations that are invariant under translations and permutations of
coordinates.

Theorem 1.8. The valuations µ0, µ1, ..., µn form a basis of the vector space of
all continuous invariant valuations defined on Par(n).

Remark. The last theorem is a special case of the famous Hadwiger characteri-
zation theorem, which will be discussed later in this chapter.
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Definition. A valuation µ on Par(n) is said to be homogeneous of degree k > 0
if

µ(αP ) = αkµ(P )

for all P ∈ Par(n) and all α > 0.

Corollary 1.9. Let µ be a continuous invariant valuation defined on Par(n)
that is homogeneous of degree k for some 0 ≤ k ≤ n. Then there exists c ∈ R

such that µ(P ) = cµk(P ) for all P ∈ Par(n).
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2 The Theorem of Hadwiger

We extend the theory of valuations to the lattice of polyconvex sets, that is, the
lattice of finite unions of compact convex subsets of Rn. Defining an invariant
measure on affine Grassmannians provides an extension of the intrinsic volumes
to the lattice of polyconvex sets, that is consistent with the notion of the intrinsic
volumes on the lattice of parallelotopes. Characterizing every continuous rigid
motion invariant simple valuation on the lattice of polyconvex sets as the volume,
provides a proof of Hadwiger’s characterization theorem. This part is taken from
[1].

2.1 The Lattice of Polyconvex Sets

After our observations about valuations on parallelotopes, we turn our attention
to the lattice of polyconvex sets, which is a natural setting for the study of clas-
sical integral geometry. We extend the terminology from the previous chapter
to this new setting, including Groemer’s extension theorem.

Definition. Denote by Kn the collection of all non-empty compact convex
subsets of Rn. We call a finite union of compact convex sets a polyconvex
set. For a polyconvex set A, we say that A is of dimension n if A is not
contained in a finite union of hyperplanes in Rn. Otherwise, we say that A is of
lower dimension. By Polycon(n) we denote the distributive lattice of polyconvex
sets in Rn together with the union and intersection of sets. Note that Kn is a
generating set for Polycon(n).

Definition. For compact convex sets K and L the Minkowski sum K + L is
defined by

K + L = {x+ y : x ∈ K and y ∈ L}.

Note that K + L in the above definition is convex and, due to + being
continuous as a map from Rn×Rn → Rn and the compactness of K×L, K+L
is also compact. So the Minkowski addition maps into Kn.

In order to extend some of the definitions for valuations on parallelotopes to
polyconvex sets, denote by En the Euclidean group on Rn, that is, the group
generated by translations and orthogonal transformations. If A ⊆ Rn and g ∈
En, we write gA = g(A) = {g(a) : a ∈ A}. The subgroup of translations shall
be denoted by Tn.

Definition. A valuation µ : Polycon(n)→ R is said to be rigid motion invariant,
or simply invariant if

µ(gA) = µ(A) (5)

for all g ∈ En and all A ∈ Polycon(n). If (5) only holds when g ∈ Tn, we say µ
is translation invariant.
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Definition. A valuation µ : Kn → R is said to be continuous, provided that
µ(An)→ µ(A) if An → A with respect to the Hausdorff metric.

Due to the following result, the classification of all continuous valuations on
Polycon(n) can be reduced to the case of continuous valuations on Kn.

Theorem 2.1. (Groemer’s extension theorem for Polycon(n)) A continuous
valuation µ on Kn admits a unique extension to a valuation on the lattice
Polycon(n).

We have seen that µ0 is a functional on Par(n) and that µ0(P ) = 1 for a non-
empty parallelotope. This motivates the following theorem, where we extend
the valuation µ0 to Polycon(n).

Theorem 2.2. There exists a unique continuous invariant valuation µn
0 defined

on Polycon(n) such that µn
0 (K) = 1, given that K is a non-empty compact

convex set.

The valuation µn
0 is called the Euler characteristic. It is normalized inde-

pendent of the dimension of the space Rn and we write µ0 instead of µn
0 . This

follows from the inclusion-exclusion principle, because K ∈ Polycon(n) can be
expressed as a union of elements of Kn and µn

0 has the value 1 on all of Kn.

2.2 Invariant Measures on Grassmannians

We recall invariant measures on linear subspaces of Rn and the flag coefficients.
This will be a preparation for the next section, where we will introduce intrinsic
volumes for polyconvex sets with the help of an invariant measure on affine
linear subspaces on Rn.

Definition. Let Mod(n) denote the partially ordered set of linear subspaces of
Rn together with the inclusion relation. For x, y ∈ Mod(n) we define x ∨ y as
the linear subspace spanned by x and y, and x ∧ y as the intersection of x and
y. This defines a lattice structure on Mod(n).

Definition. An element x ∈ Mod(n) has rank k, if the dimension of x is
k. The set of elements of Mod(n) of rank k, denoted Gr(n, k), is called the
k-Grassmannian.

If G with identity element e is a group and S is a set, a left group action of
G on S is a function ϕ : G× S → S satisfying the following properties

ϕ(e, x) = x, for all x ∈ S;
ϕ(gh, x) = ϕ(g, ϕ(h, x)), for all g, h ∈ G and x ∈ S.

We say the group G acts on S.
The orthogonal group O(n) (that is, the group of rotations about the origin

and reflections across hyperplanes through the origin in Rn) acts naturally on
Mod(n).
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It is known that there exists a rotation invariant Haar measure on Gr(n, k),
which is unique up to a common factor. Our objective is to describe this Haar
measure. We start out by considering the rotation invariant measure τn on
Gr(n, 1) and denote by

[n] := τn(Gr(n, 1)) =
nκn
2κn−1

,

where κn is the n-dimensional volume of the unit ball Bn.
Let σn−1 be the invariant measure on the unit sphere Sn−1, and for any

measurable subset A of Gr(n, 1) let A′ be the subset of Sn−1 defined by

A′ =
⋃

x∈A

x ∩ Sn−1.

The measure τn then satisfies

τn(A) =
σn−1(A

′)

2κn−1
,

which is clearly invariant under rotations.

Definition. Let (L,≤) be a partially ordered set. A chain in L is a linear
ordered subset of L, that is, a subset in which for every pair x, y either x ≤ y
or y ≤ x. A flag is a maximal chain, i.e., a chain F such that if G ⊇ F and G
is a chain, then F = G.

Definition. Let Flag(n) be the set of all flags in Mod(n). For x ∈ Mod(n),
denote by Flag(x) the set of all flags containing x.

Remark. Flag(x) is the set of all sequences (x0, x1, ..., xn) with xi ∈ Mod(n)
where dim(xi) = i, x0 ⊆ x1 ⊆ · · · ⊆ xn, and xi0 = x for some 0 ≤ i0 ≤ n.

Definition. For A ∈ Gr(n, k) let Flag(A) be the set of all flags (x0, x1, ..., xn)
in Flag(n) such that xk ∈ A.

We call a sequence of orthogonal straight lines a frame. For (x0, x1, ..., xn) ∈
Flag(n) we obtain a frame (y1, y2, ..., yn) by setting

y1 = x1, y2 = x⊥1 ∩ x2, y3 = x⊥2 ∩ x3, ..., yn = x⊥n−1 ∩ xn.

Conversely, given a frame (y1, y2, ..., yn) we obtain a flag by setting

x0 = {0}, x1 = y1, x2 = y1 ∨ y2, ..., xn = y1 ∨ · · · ∨ yn.

Consequently, there exists a one-to-one correspondence between flags and frames,
and for a real-valued measurable function f(x0, x1, ..., xn) on flags we find a cor-
responding function f̄(y1, y2, ..., yn) on frames. Let φn be the invariant measure
on Flag(n) defined by

∫
fdφn =

∫ ∫
· · ·

∫
f̄(y1, y2, ..., yn)dτ1(yn)dτ2(yn−1) · · · dτn(y1).
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The measure of Flag(n) can be calculated to be

φn(Flag(n)) = [n][n− 1] · · · [2][1],
which is also denoted by [n]!, where [1] = 1. Note that due to the definition of
[n] we get

[n]! =
n!κnκn−1 · · ·κ1

2nκn−1κn−2 · · ·κ0
=
n!κn
2n

.

Definition. We define the rotation invariant measure νnk on Gr(n, k) by

νnk (A) =
1

[k]![n− k]!φn(Flag(A)).

2.3 The Intrinsic Volumes for Polyconvex Sets

Extending the invariant measure νnk to affine subspaces of Rn yields the mea-
sure λnk . This measure not only provides an alternative way of describing the
intrinsic volumes for parallelotopes, but also opens the door to an extension
of the intrinsic volumes to all polyconvex sets. Furthermore we will formulate
Sylvester’s theorem.

Definition. Let Aff(n) denote the partially ordered set of all affine subspaces
of Rn. The subset of elements of Aff(n) of rank k is denoted by AGr(n, k) and
is called the affine k-Grassmannian.

Remark. The minimal element of Aff(n) is the empty set. The Euclidean motion
group En, that is, the group of translations and orthogonal transformations, acts
naturally on Aff(n).

With the goal of constructing a measure on AGr((n, k), that is invariant
under the Euclidean group En, we parameterize AGr(n, k) in the following way.
For V ∈ AGr((n, k) we find the maximal linear subspace V ⊥ of Rn that is
orthogonal to V . Take note that as it is a linear subspace, V ⊥ contains the
origin. Next we find the unique maximal linear subspace of Rn or(V ) that is
orthogonal to V ⊥. or(V ) has dimension k and we say V and or(V ) are parallel.
By p(V ) we denote the point V ∩ V ⊥. We obtain a one-to-one correspondence
between AGr(n, k) and Gr(n, k)×Rn: For V ∈ AGr(n, k) we get the unique pair
(or(V ), p(V )) in Gr(n, k) × Rn, where p(V ) lies in or(V )⊥ = V ⊥. Conversely
for a pair (V0, p) ∈ Gr(n, k) × Rn we translate the subspace V by the vector p
to get a unique element of AGr(n, k).

For a measurable function f : AGr(n, k) → R let f̄ : Gr(n, k) × Rn → R be
given by f̄(V0, p) = f(V0 + p). We are now in a position to define an integral
for a measurable function f : AGr(n, k)→ R via

∫
fdλnk =

∫

Gr(n,k)

∫

V ⊥
0

f̄(V0, p) dp dν
n
k (V0),

where dp denotes the Lebesgue measure on V ⊥ ∼= Rn−k. The invariance of λnk
under En follows from the invariance of νnk and the Lebesgue measure.
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Definition. For A ⊆ Rn, AGr(A; k) denotes the set of all V ∈ AGr(n, k) such
that A ∩ V 6= ∅.

For parallelotopes we can now interpret the intrinsic volumes µn−k with the
help of the measure λnk . For now, there would appear, a yet to be determined,
factor Cn

k in Theorem 2.3. However, after calculating the intrinsic volumes of
the unit ball with the help of Hadwiger’s theorem, it can be shown that these
factors Cn

k are actually all equal to 1. For the sake of brevity and simplicity,
we will use this result already at this point, however note that of course all
following results can be proven with the Cn

k still in place.

Theorem 2.3. For a parallelotope P in Par(n)

µn−k(P ) = λnk (AGr(P ; k)). (6)

The last theorem motivates us to extend the intrinsic volumes in the following
way.

Definition. For K ∈ Kn we define

µn
n−k(K) := λnk (AGr(K; k)), (7)

where 0 ≤ k ≤ n.

It can be shown that µn
n−k is a continuous valuation on Kn, and by Groemer’s

extension Theorem 2.1 it can be uniquely extended to a valuation µn
n−k on

all polyconvex sets in Rn. Note however that (7) does not hold for arbitrary
polyconvex sets. Hadwiger’s formula is however an explicit formulation of the
extension of the intrinsic volumes to all of Polycon(n). We will later see that,
like the intrinsic volumes on Par(n), µn

n−k(K) is not actually dependent of the
dimension n of the embedding space.

Theorem 2.4. (Hadwiger’s formula) For an arbitrary A ∈ Polycon(n),

µn
n−k(K) =

∫

AGr(n,k)

µ0(A ∩ V ) dλnk (V ).

For further details check [14].
We are now able to generalize (1). For non-empty K,L ∈ Kn with K ⊆ L

and L being of dimension n, we get AGr(K; k) ⊆ AGr(L; k) and the conditional
probability that M ∈ AGr(n, k) meets K, given that it meets L, is given by

λnk (AGr(K; k))

λnk (AGr(L; k))
.

This leads us to the following theorem.

Theorem 2.5. (Sylvester’s theorem) For K,L ∈ Kn with K ⊆ L and L be-
ing of dimension n the conditional probability that an affine subspace of Rn of
dimension k meets K, assuming that it meets L, is given by

µn
n−k(K)

µn
n−k(L)

.
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2.4 The Volume Theorem for Polyconvex Sets

In this short section we will see that every continuous rigid motion invariant
simple valuation on the polyconvex sets is actually, up to a constant, the n-th
intrinsic volume. This result will play a big part in the proof of Hadwiger’s
characterization theorem.

Definition. A valuation µ on Kn or Polycon(n) is called simple if µ(K) = 0,
whenever K is not of dimension n (K is of lower dimension). It is called even if
µ(−K) = µ(K) for all K ∈ Kn and odd if µ(−K) = −µ(K) for all K ∈ Kn.

Remark. Note that every valuation µ : Kn → R can be decomposed into an
even and an odd part:

µ = µeven + µodd.

To see this, define µeven(K) := 1
2 (µ(K)+µ(−K)) and µodd := 1

2 (µ(K)−µ(−K)).

The following theorem will be of utmost importance in the proof of Had-
wiger’s characterization theorem.

Theorem 2.6. (The volume theorem for Polycon(n)) Let µ be a continuous
rigid motion invariant simple valuation on Kn or Polycon(n). Then there exists
c ∈ R, such that µ(K) = cµn(K) for all K in Kn or Polycon(n).

For the intrinsic volumes on parallelotopes we saw that they are independent
of the dimension of the embedding space. This result can be extended to the
polyconvex sets.

Theorem 2.7. The valuations µn
k are normalized independent of the dimension

n of the embedding space.

Due to the above theorem from now on we write µk for µn
k and call these

valuations the intrinsic volumes.

2.5 Hadwiger’s Characterization Theorem

We go on to the main result of this part - the famous Hadwiger characterization
theorem and its direct consequences.

Theorem 2.8. (Hadwiger’s characterization theorem) The valuations
µ0, µ1, ..., µn form a basis of the vector space of all continuous rigid motion
invariant valuations defined on polyconvex sets in Rn.

Proof. Let µ be a continuous rigid motion invariant valuation and H ⊆ Rn

a hyperplane. Because the restriction of µ to H is a continuous rigid motion
invariant valuation on an affine space of dimension n− 1, we can assume that

µ(K) =

n−1∑

i=0

ciµi(A)
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by induction on the dimension n. Note that the case n = 0 is trivial, considering
R0 = {0}. As every convex set of lower dimension can be moved into H with
a rigid motion, and because the valuations µi are invariant, we obtain that the
valuation

µ−
n−1∑

i=0

ciµi

is simple. Due to the volume theorem for polyconvex sets (Theorem 2.6)

µ−
n−1∑

i=0

ciµi = cnµn.

So µ can be expressed as a linear combination of the intrinsic volumes.

Definition. A valuation µ on Polycon(n) is said to be homogeneous of degree
k > 0 if

µ(αP ) = αkµ(P )

for all P ∈ Polycon(n) and all α > 0.

Corollary 2.9. For a continuous rigid motion invariant valuation
µ : Polycon(n)→ R of degree k there exists c ∈ R such that µ(K) = cµk(K) for
all K ∈ Polycon(n).

Theorem 2.10. (The mean projection formula) Let 0 ≤ k ≤ n and K ∈ Kn

then

µk(K) =

∫

Gr(n,k)

µk(K|V0) dνnk (V0).

To put the last theorem into words: The k-th intrinsic volume of a compact
convex subset of Rn is equal to the integral of the k-dimensional volumes of the
projections of K onto all k-dimensional subspaces of Rn.
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3 The Classical Steiner Point Map

We have considered the Hadwiger theorem for scalar valued valuations, later on
we will discuss a more general version for vector valued valuations. This will
enable us to classify the Steiner point map with a different approach; But before
that, we look at the characterization due to Schneider. Throughout this section
we denote by (·, ·) the standard inner product on Rn. We want to start out
with some basic definitions and results from convex geometry and introduce the
Steiner point map. This part is taken from [2] and [3].

3.1 Prerequisites

We begin with a few basic definitions from convex geometry.

Definition. For α ∈ R and u ∈ Rn\{0} the hyperplaneHu,α with normal vector
u is defined by

Hu,α := {x ∈ Rn : (x, u) = α}.

A hyperplane bounds two closed halfspaces

H−
u,α := {x ∈ Rn : (x, u) ≤ α};

H+
u,α := {x ∈ Rn : (x, u) ≥ α}.

Definition. We take A ⊆ Rn, a hyperplane H ⊆ Rn and the two closed
halfspaces bound by H and denoted by H− and H+. Then H is said to
support A at x if x ∈ A ∩ H and either A ⊆ H− or A ⊆ H+. H is called
a support plane of A if H supports A at some point x. Given H = Hu,α sup-
ports A and A ⊆ H−

u,α, then H−
u,α is called a supporting halfspace of A, and u is

called an exterior or outer normal vector of H as well as H−
u,α.

The following theorem is the motivation for our particular interest in sup-
porting planes and halfspaces.

Theorem 3.1. Each K ∈ Kn is the intersection of its supporting halfspaces.

We are not completely satisfied with this result and want to be more specific
about the supporting halfspaces of a closed convex set. First however, we require
some more definitions.

Definition. Let R = R ∪ {−∞,∞}. Given a function f : Rn → R and α ∈ R

we define

{f = α} := {x ∈ Rn : f(x) = α},

and the sets {f < α}, {f ≤ α},... are defined accordingly. A function f : Rn →
R is called convex, given that {f = −∞} = ∅, {f =∞} 6= Rn, and

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λy

for x, y ∈ Rn, 0 ≤ λ ≤ 1. Let f : Rn → R be convex, then domf := {f <∞}.
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Now we are ready to introduce the support function of a closed convex set
A in Rn.

Definition. For K ∈ Kn we define the support function h(K, ·) = hK by

h(K,u) := sup{(x, u) : x ∈ K}
for u ∈ Rn. Furthermore for u ∈ dom h(K, ·) we set

H(K,u) := {x ∈ Rn : (x, u) = h(K,u)};
H−(K,u) := {x ∈ Rn : (x, u) ≤ h(K,u)};
F (K,u) := H(K,u) ∩K.

H(K,u), H−(K,u), and F (K,u) are called the support plane with exterior nor-
mal vector u, the supporting halfspace with exterior normal vector u, and the
support set of K with exterior normal vector u, respectively. For bounded K the
definitions of the support plane and the supporting halfspace coincide, however
for unbounded K it might happen that F (K,u) = ∅.

In order to gain some intuition for the notion of the support function we
consider u ∈ Sn−1 ∩ dom h(K, ·). Due to the Cauchy-Schwarz inequality for
inner products, |(x, u)| is maximal for x being a scalar multiple of u. In this
case |(x, u)| = ‖u‖, so the support function is the signed distance between the
support plane with exterior normal vector u and the origin. In the case that u
is pointing into the open halfspace containing the origin, the signed distance is
negative.

The support function has various properties that follow directly from the
definition.

Proposition 3.2. Given a non-empty closed convex set K in Rn, then its
support function h(K, ·) has the following properties

(i) h(K + t, u) = h(K,u) + (t, u) for u ∈ Rn;

(ii) h(K,λu) = λh(K,u) for λ ≥ 0 and h(K,u+ v) ≤ h(K,u) + h(K, v).

For K ∈ Kn, h(K, ·) is sublinear and convex. Conversely the following
statement holds.

Theorem 3.3. If f : Rn → R is a sublinear function, then there is a unique
convex body K such that f = h(K, ·).

So a K ∈ Kn is completely determined by its support function.

3.2 Characterization of the Steiner Point Map

Our goal is to characterize the Steiner point map as the unique vector valued
continuous rigid motion equivariant valuation.

ByHk we denote the k-dimensional Hausdorff measure on Rn, and Γ denotes
the gamma function. The surface area of the unit ball is ωn = Hn−1(Sn−1) =
2πn/2

Γ(n
2
) .
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Definition. The Steiner point map s : Kn → Rn is defined by

s(K) :=
1

κn

∫

Sn−1

h(K,u)u dHn−1(u).

Definition. A function f on Kn with values in some abelian semigroup is called
Minkowski additive if

f(K + L) = f(K) + f(L), for K,L ∈ Kn.

A Minkowski additive function f with values in a real vector space or in Kn is
called Minkowski linear if it satisfies

f(λK) = λf(K), for K ∈ Kn and λ ≥ 0.

Theorem 3.4. The support function h : Kn → C(Sn−1) is Minkowski additive,
and so is the Steiner point map s : Kn → Rn.

Our special interest in the Steiner point map stems from its invariance prop-
erties.

Proposition 3.5. The Steiner point map is equivariant under rigid motions,
that is, given a rigid motion g : Rn → Rn and K ∈ Kn, it satisfies s(gK) =
gs(K).

Proof. Let g be a rotation, then h(gK, u) = h(K, g−1u). Considering the spher-
ical Lebesgue measure is rotation invariant, we get s(gK) = gs(K). Now let g
be a translation, then, due to Proposition 3.2, we need to calculate

1

ωn

∫

Sn−1

(t, u)u dHn−1(u)

for t ∈ Rn. As the integral is linear in t and invariant under rotations and
reflections fixing t, we get

1

ωn

∫

Sn−1

(t, u)u dHn−1(u) = αt

with α ∈ R independent of t. Choosing |t| = 1 and an orthogonal basis (e1, .., en)
of Rn we obtain

α =

∫

Sn−1

(t, u)2 dHn−1(u) =
1

n

n∑

i=1

∫

Sn−1

(ei, u)
2 dHn−1(u)

=
1

n

∫

Sn−1

|u|2 dHn−1(u) = ωn.

This results in

1

ωn

∫

Sn−1

(t, u)u dHn−1(u) = t

completing the proof.
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Theorem 3.6. Let n ≥ 2. If a map ϕ : Kn → Rn is Minkowski linear, equiv-
ariant under rigid motions and continuous at the unit ball Bn, then ϕ is the
Steiner point map s.

Proof. The group of rotations SO(n) is compact, therefore, given ε > 0, we can
decompose SO(n) into finitely many nonempty Borel sets ∆1,ε, ...,∆m(ε),ε of
diameter less then ε. We choose ρk,ε ∈ ∆k,ε and denote νk,ε = ν(∆k,ε), where
ν denotes the Haar measure on SO(n). For any continuous real function f on
SO(n) we have the usual estimate

lim
ε→0

m(ε)∑

k=1

f(ρk,ε)νk,ε =

∫

SO(n)

fdν.

Let K ∈ Kn, if K = {x}, then ϕ(K) = x = s(K), due to the rigid motion
invariance of ϕ. Now let us assume that dimK > 0. We choose v ∈ Rn, x ∈ Sn−1

and c > |v| and define a convex body Kε by

Kε :=

m(ε)∑

k=1

[c+ (v, ρk,εx)]νk,ερ
−1
k,εK

for ε > 0. For an arbitrary y ∈ Sn−1 we get

(ϕ(Kε), y) =

m(ε)∑

k=1

[c+ (v, ρk,εx)](ϕ(K), ρk,εy)νk,ε.

Hence

lim
ε→0

(ϕ(Kε), y) =

∫

SO(n)

[c+ (v, ρx)](ϕ(K), ρy) dν(ρ)

=

∫

SO(n)

(v, ρx)(ϕ(K), ρy) dν(ρ),

considering
∫
SO(n)

(ϕ(K), ρy) dν(ρ), as a function of y, is odd and rotation in-

variant and therefore zero.
The support function of Kε is given by

h(Kε, y) =

m(ε)∑

k=1

[c+ (v, ρk,εx)]h(K, ρk,εy)νk,ε

and hence satisfies

lim
ε→0

h(Kε, y) =

∫

SO(n)

[c+ (v, ρx)]h(K, ρy) dν(ρ).

Now, as the integral is invariant under translations of K and positive if the
origin o ∈ relint(K),

∫

SO(n)

ch(K, ρy) dν(ρ) = r
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is a positive real number that depends only on K and v. The integral

I(x, y) :=

∫

SO(n)

(v, ρx)h(K, ρy) dν(ρ)

satisfies I(x, y) = I(y, x) if n ≥ 3, as I(τx, τy) = I(x, y) for each rotation
τ ∈ SO(n), and for n ≥ 3 we can choose τ such that τx = y and τy = x.
Denoting

z :=

∫

SO(n)

ρ−1vh(K, ρx) dν(ρ)

for n ≥ 3 we thus have I(x, y) = (z, y). For n = 2, I(x, y) is not symmetric in
x and y, but in this case we can write

I(x, y) :=
1

2π

∫ 2π

0

(v, u(ξ + α))h(K,u(η + α)) dα

with u(α) := (cosα)e1+(sinα)e2, where {e1, e2} is an orthonormal basis of R2,
and x = u(ξ), y = u(η). An elementary computation yields

I(x, y) = (A1 cos ξ +A2 sin ξ) cos η + (A1 sin ξ −A2 cos ξ) sin η

where the Ai only depend on K and v; therefore again we have I(x, y) = (z, y)
with some vector z only depending on K, v and x. Thus, in both cases we get

lim
ε→0

h(Kε, y) = r + (z, y) = h(B(z, r), y),

where B(z, r) is the ball with center z and radius r. This holds for each y ∈
Sn−1, hence limε→0Kε = B(z, r) in the Hausdorff metric. (Observe that point
wise convergence of support functions implies uniform convergence on Sn−1.)
From this we get r−1(Kε − z) → Bn for ε → 0 and thus ϕ(r−1(Kε − z)) →
ϕ(Bn) by the assumed continuity of ϕ at Bn. As ϕ(Bn) = o by the rotation
equivariance of ϕ, we arrive at ϕ(Kε)→ z and thus

lim
ε→0

(ϕ(Kε), y) = (z, y)

for y ∈ Sn−1. We have proved that
∫

SO(n)

(v, ρx)(ϕ(K), ρy) dν(ρ) = (z, y),

which only depends on K, v, x, y and not on ϕ. Considering that the Steiner
point map has all the properties of ϕ, this yields

∫

SO(n)

(v, ρx)(ϕ(K)− s(K), ρy) dν(ρ) = 0.

The choices v := ϕ(K)− s(K) and x = y now result in ϕ(K) = s(K).
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Minkowski additivity and continuity imply Minkowski linearity, so we get
the following version of the characterization of the Steiner point map by Rolf
Schneider as in [3].

Theorem 3.7. For n ≥ 2 let ϕ : Kn → Rn be a map with the following
properties

(i) ϕ(K1 +K2) = φ(K1) + φ(K2), for K1,K2 ∈ Kn;

(ii) ϕ is equivariant under rigid motions;

(iii) ϕ is continuous,

then ϕ is the Steiner point map s.

Proof. Given a Minkowski additive map ϕ from Kn into Rn or R we have 2K =
K +K for K ∈ Kn, and hence ϕ(2K) = 2ϕ(K). By induction we get ϕ(kK) =
kϕ(K) for k ∈ N. For k,m ∈ N one obtains kϕ(K) = ϕ(kK) = ϕ(m(k/m)K) =
mϕ((k/m)K), and therefore ϕ(qK) = qϕ(K) for q ∈ Q with q > 0. The
continuity now leads to ϕ(λK) = λϕ(K) for real λ ≥ 0.

Definition. Let F be a family of sets and A be an abelian semigroup, then a
function ϕ : F → A is called a valuation on F if

ϕ(K ∪ L) + ϕ(K ∩ L) = ϕ(K) + ϕ(L)

if K ∪ L, K ∩ L, K, L ∈ F .

A straight cylinder is a convex body K ∈ Kn such that K = K1+K2, where
dimKi ≥ 1 and the convex hulls of K1 and K2 are orthogonal. We need the
following lemma from Hadwiger, see [3], to achieve a further characterization of
the Steiner point map.

Lemma 3.8. Let χ : Kn → R be a functional with the following properties

(i) χ(K + a) = χ(K) for a ∈ Rn;

(ii) χ(K1 ∪K2) = χ(K1) + χ(K2), if K1,K2,K1 ∪K2 ∈ Kn

and dim(K1 ∩K2) < n;

(iii) χ is continuous;

(vi) χ(Z) = 0 for straight cylinders Z ∈ Kn.

Then χ is Minkowski additive.

Theorem 3.9. For n ≥ 2 let ϕ : Kn → Rn be a map with the following
properties

(i) ϕ is a valuation on Kn;

(ii) ϕ is equivariant under rigid motions;

(iii) ϕ is continuous,

then ϕ is the Steiner point map s.

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Proof. We use induction on the dimension n. First let n = 2. For K ∈ K2 we
define χb(K) := (ϕ(K) − s(K), b), where b ∈ R2 is arbitrary. Given that K is
a line segment or a rectangle, there exists a rigid motion mapping K to K and
fixing the point s(K), and thus ϕ(K) = s(K), as ϕ is rigid motion equivariant.
It is easy to see that χb satisfies the other properties in Lemma 3.8, therefore
χb is Minkowski additive. Considering that b was arbitrary and s is Minkowski
additive, it follows that ϕ is Minkowski additive as well. So by Theorem 3.7 we
get ϕ = s.

Now let n > 2 and assume the statement to be correct for 2 ≤ m ≤ n −
1. Further let Ep, Eq ⊆ Rn be two orthogonal plains containing the origin of
dimensions p ≥ 1 and q ≥ 1 respectively. Given convex bodies K1 ⊆ Ep and
K2 ⊆ Eq, then there exists a unique presentation

ϕ(K1 +K2) = ϕ1(K1,K2) + ϕ2(K1,K2),

where ϕ1(K1,K2) ∈ Ep and ϕ2(K1,K2) ∈ Eq. We fix a body Q ⊆ Eq, and the
above equation defines a functional ϕ1(·, Q) mapping every convex body in Ep

to a single point in Ep. Given convex bodies K1,K2 ⊆ Ep such that K1 ∪K2 is
a convex body in Ep, then ϕ being a valuation together with the trivial relations

(K1 +Q) ∪ (K2 +Q) = (K1 ∪K2) +Q,

(K1 +Q) ∩ (K2 +Q) = (K1 ∩K2) +Q

results in

ϕ1((K1 ∪K2), Q) + ϕ1((K1 ∩K2), Q) = ϕ1(K1, Q) + ϕ1(K2, Q).

Hence ϕ1 is a valuation. If A′ : Ep → Ep is a rigid motion fixing the origin,
then there exists a rigid motion A : Rn → Rn which is the identity on Eq and
such that A|Ep

= A′. Considering the rigid motion equivariance of ϕ, we get

ϕ1(A
′K,Q) = A′ϕ1(K,Q).

If A : Rn → Rn is a translation mapping Ep to itself, we again have that ϕ is
equivariant with respect to A, and thus ϕ1 is rigid motion equivariant. As ϕ is
continuous so is ϕ1, and therefore ϕ1 satisfies the same requirements on Ep as
ϕ does on Rn. In the case that p ≥ 2 the induction hypothesis now results in
ϕ1(K,Q) = s(K).

Now let us consider the case p = 1. We denote points on the straight line Ep

by their oriented distance from the origin and the line segment with end points
a and b by ab. For a convex body K ⊆ Eq we abbreviate ϕ1(ab,K) = f(a, b).
The translation equivariance and additivity of ϕ1(·,K) yield the equations

f(a+ c, b+ c) = f(a, b) + c, (8)

f(0, a+ b) + f(a, a) = f(0, a) + f(a, a+ b). (9)
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From (8) we derive f(a, a) = γ + a where γ = f(0, 0) as well as f(a, b + a) =
f(0, b) + a. With this (9) results in f(0, a + b) + γ = f(0, a) + f(0, b), and
thus the function f(0, ·) − γ satisfies Cauchy’s functional equation. With the
continuity of ϕ1(·, Q) we get f(0, a) = αa+γ with α = f(0, 1)−γ and (8) yields
f(a, b) = f(0, b− a) + a = (1− α)a+ αb+ γ. Thus we have

ϕ1(ab,K) = (1− α(K))a+ α(K)b+ γ(K),

where α(K) and γ(K) depend on the choice of K. In a similar way as above
it can be shown that the functional ϕ1(ab, ·) on Eq is additive, rigid motion
invariant and continuous for a fixed line segment ab . Considering a and b can
be chosen at will, α and γ must have these properties as well. Due to the first
functional theorem of Hadwiger, see [29] page 211, there exist real constants
ci, di such that for all convex bodies K ⊆ Eq the equations

α(K) =

q∑

i=0

ciWi(K), γ(K) =

q∑

i=0

diWi(K)

hold, where Wi denote the quermassintergrals, see [2] page 209. For 0 ≤ r ≤ q
we choose an r-dimensional convex body K ⊆ Eq that is symmetric with respect
to an (n−2)-dimensional plane En−2 containing the origin. The reflection across
the plane En−2+

1
2 (a+ b) is a rigid motion mapping the convex body ab+K to

itself. Considering ϕ is rigid motion equivariant the point ϕ(ab+K) has to lie
within the plane fixed by the reflection, thus ϕ1(ab+K) = 1

2 (a+ b). As a and b
can still be varied, we get that α(K) = 1

2 and γ(K) = 0. Now we consider that
Wi(K) = 0 for 0 ≤ i ≤ q − r − 1 and Wi(K) 6= 0 for q − r ≤ i ≤ q. Regarding
r = 0, 1, ..., q one after the other we find cqWq = 1

2 , ci = 0 for 0 ≤ i ≤ q − 1
and di = 0 for 0 ≤ i ≤ q. Thus α(K) = 1

2 and γ(K) = 0 for all convex bodies

K ⊆ Eq, and therefore ϕ1(ab+K) = 1
2 (a+ b) = s(ab).

We have shown that ϕ1(K,Q) = s(K) holds for arbitrary convex bodies
Q ⊆ Eq and K ⊆ Ep. Similarly it can be shown that ϕ2(P,K) = s(K) holds
for arbitrary convex bodies K ⊆ Eq and P ⊆ Ep and thus

ϕ(P +Q) = ϕ1(P,Q) + ϕ2(P,Q) = s(P ) + s(Q) = s(P +Q)

for P ∈ Ep and Q ∈ Eq. So we have proven ϕ(Z) = s(Z) for an arbitrary
straight cylinder Z.

Now we set

χb(K) = (ϕ(K)− s(K), b)

for an arbitrary b ∈ Rn and K ∈ Kn. Let En−1 be a hyperplane containing the
origin, then the restriction of ϕ to En−1 is a valuation, rigid motion equivariant
and continuous and thus ϕ(K) = s(K) for K ⊆ En−1 due to the induction
hypothesis and therefore χb(K) = 0. Considering χb is translation invariant we
get χb(K) = 0 for all K ∈ Kn with dim(K) < n. Due to ϕ being a valuation
and I (38) in [3], we get χb(K1 ∪K2) = χb(K1) + χb(K2) for all K1,K2 ∈ Kn
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with K1 ∪ K2 ∈ Kn and dim(K1 ∩ K2) < n. Furthermore χb is continuous
and χb(Z) = 0 for all straight cylinders Z, so due to Lemma 3.8, as b can be
varied, it is Minkowski additive. Thus, due to Theorem 3.7 ϕ(K) = s(K) for
all K ∈ Kn.

We encountered Hadwiger’s characterization theorem for continuous rigid
motion invariant valuations with values in R. The group of rigid motions in
Rn consists of translations and rotations. The group of rotations SO(n) is a
famous and important example of a so-called compact Lie group, that is, a
compact topological space endowed with a group structure, such that some ex-
tra conditions are met. In this work we will encounter a more general version of
Hadwiger’s theorem proven by Alesker, Bernig and Schuster [8], characterizing
continuous translation invariant SO(n)-equivariant valuations with values in an
irreducible SO(n) representation Γ. As well as the work of Wannerer [23], who
characterized the Steiner point map (using said generalized Hadwiger theorem)
as the continuous unitary affine transformation equivariant valuation from the
convex bodies in Cn to Cn. As background we need to recall some Lie group
theory, in particular compact Lie groups. Introducing the definition of a Lie
group and providing the compact classical Lie groups as examples, we move on
to representations, which will prove to be integral in the understanding of Lie
group structure and classification. The character of a Lie group representation
determines a representation up to isomorphism, and the Peter-Weyl theorem
will show us that every compact Lie group is indeed a closed subgroup of a uni-
tary group. We move on to Lie algebras the linearizations of Lie groups. Cartan
subalgebras will enable us to introduce the famous root space decomposition,
and highest weights will provide a classification of irreducible representations.
At last we will recall the second determinantal formula which we will directly use
in the proof of the general version of Hadwiger’s theorem. This part is mainly
taken from [4]. For background on smooth manifolds and Lie algebras see [7],
for a more detailed view of the exponential map see [6]; the root space decom-
position of the special orthogonal group is taken from [9], see [10] for details on
examples of highest weights and [19] for infinite dimensional representations.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4 Compact Lie Groups and Representations

We recall the definition of a Lie group and a notion for maps between Lie groups
and give the compact classical Lie groups as examples. The later are of particu-
lar interest because they play an integral role in the structural theory of compact
Lie groups. Furthermore the concept of a representation of a Lie group will be
discussed, that is, a way of almost (up to the kernel of a Lie group homomor-
phism) viewing a Lie group as a subgroup of the general linear group of a vector
space. We will have a look at the famous lemma of Schur, which has count-
less uses in representation theory due to its strong statement about irreducible
representations. Finally we will see that every finite dimensional representation
of a compact Lie group is a direct sum of smaller building blocks, namely ir-
reducible representations. This section is taken from [4] and the subsection on
infinite dimensional representations from [19].

4.1 Lie Groups

Definition. A topological manifold is a second countable Hausdorff topological
space, which is locally Euclidean of dimension n.

Given a topological manifold we want to add a smooth structure to it. As it
is locally Euclidean, we can move to Rn where smoothness is a familiar concept.

Definition. Let M be a topological manifold of dimension n. A smooth atlas
is a set of charts {(Uα, ϕα) : α ∈ A} on M , such that M =

⋃
α∈A Uα, and for all

α, β ∈ A with Uα ∩Uβ 6= ∅ the transition map ϕα,β := ϕβ ◦ϕ−1
α : ϕα(U ∩ V )→

ϕβ(U ∩V ) is a smooth map on Rn. A smooth manifold is a topological manifold
with a maximal smooth atlas.

Remark. Every (smooth) atlas can be completed to a unique maximal (smooth)
atlas.

We are now able to define the central object of this chapter: the Lie group.

Definition. A Lie group G is a group and a smooth manifold such that

(i) the multiplication map µ : G×G→ G mapping (g, h) 7→ gh is smooth;

(ii) the inversion ι : G→ G mapping g 7→ g−1 is smooth.

Due to the manifold structure of Lie groups, finding subgroups is a bit more
complicated.

Definition. Given a Lie group G and a subgroup H of G. H is a Lie subgroup
of G given that it is provided with a topology and smooth structure making it a
Lie group and an immersed submanifold of G. So the embedding ι : H → G is
a smooth immersion, that is, a smooth map with injective differential at every
point of H.
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Theorem 4.1. Given a Lie group G with a subgroup H, then H is a regular Lie
subgroup (a Lie subgroup the topology of which agrees with the relative topology)
if and only if H is closed.

Theorem 4.2. A closed subgroup of a Lie group is a Lie group in its own right
with respect to the relative topology.

As in every theory, when introducing objects with a certain structure, we
also want to talk about maps between these objects that are compatible with
the given structure.

Definition. A Lie group homomorphism is a smooth (group) homomorphism
between two Lie groups. A Lie group isomorphism f is a bijective Lie group
homomorphism between two Lie groups.

Definition. A Lie group is called a linear Lie group, or a matrix Lie group if
it is isomorphic to a closed subgroup of GL(n,C).

Later we will see that every compact Lie group is a linear Lie group.

4.2 The Compact Classical Lie Groups

We want to give some examples for Lie groups. Especially, due to their impor-
tance in the theory of Lie groups, we want to introduce the so called compact
classical Lie groups SO(2n), SO(2n+ 1), SU(n), and Sp(n).

Definition. The special linear group is defined by

SL(n,F) := {A ∈ GL(n,F) : det(A) = 1}

where F is a field.

As the determinant is continuous, SL(n,F) is a closed subgroup of the Lie
group GL(n,F) and thus a Lie group (see [4] for example).

Definition. The orthogonal group is the closed subgroup of GL(n,R) defined
by

O(n) := {A ∈ GL(n,R) : ATA = In}

where AT denotes the transpose of the square matrix A.

The column vectors of an orthogonal matrix have length 1. So topologically
speaking, O(n) may be viewed as a closed subset of the compact set Sn−1 ×
Sn−1 × · · · × Sn−1 ⊆ Rn2

. Therefore O(n) is a compact Lie group.

Definition. The special orthogonal group is the closed subgroup of O(n) defined
by

SO(n) := {A ∈ O(n) : det(A) = 1}.
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As a closed subgroup of a compact Lie group SO(n) is a compact Lie group
itself. Later we will see that the behavior of SO(n) depends heavily on the
parity of n, and thus SO(2n) and SO(2n + 1) are considered as two separate
infinite families of Lie groups.

Definition. The unitary group is the closed subgroup of GL(n,C) defined by

U(n) := {A ∈ GL(n,C) : A∗A = In}
with A∗ denoting the complex conjugate transpose of A.

For a unitary matrix each column vector has length 1. So U(n), topologically,

is a closed subset of S2n−1 × S2n−1 × · · · × S2n−1 ⊆ R4n2

. As before it follows
that U(n) is a compact Lie group.

Definition. The special unitary group is the closed subgroup of U(n) defined
by

SU(n) := {A ∈ U(n) : det(A) = 1}.
As a closed subgroup of a compact Lie group SU(n) is a compact Lie group

itself.

Definition. The symplectic group is the subgroup of GL(n,H) defined by

Sp(n) := {A ∈ GL(n,H) : A∗A = I}
with A∗ denoting the quaternionic conjugate transpose of A.

Sp(n) is a compact Lie group (see [4] for example).

4.3 Representations

Representations are of utmost importance in the theory of Lie groups, as they
provide a way to look at a general linear group from the point of view of a Lie
group. There are two ways to introduce a representation of a Lie group, and
considering both have their specific merit, we will discuss them both. The first
way uses the concept of a Lie group homomorphism.

Definition. A (finite-dimensional) representation of a Lie group G on a finite
dimensional complex vector space V is a Lie group homomorphism ρ : G →
GL(V ). The dimension of the representation is the dimension of V .

The second way to introduce Lie group representations, which is equivalent
to the first one, uses group actions.

Definition. A (finite-dimensional) representation of a Lie group G on a finite
dimensional complex vector space V is a map ρ : G× V→ V with the following
properties:

(i) ρ(g) : V → V, v 7→ ρ(g, v) is linear;

(ii) ρ(e, g) = g;

(iii) ρ(g1, ρ(g2, v)) = ρ(g1g2, v),

where g, g1, g2 ∈ G, v ∈ V and e is the identity element in G.
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The fact that (ρ, V ) is a representation might also be expressed by saying
that V is a G-module or that G acts on V . Instead of ρ(g, v) it is common to
write g · v or gv if the representation is clear from the context.

Definition. Let (ρ, V ) and (ρ′, V ′) be finite dimensional G-modules, then A ∈
Hom(V, V ′) (the space of linear maps V → V ′) is called an intertwining operator
or G-map if it is equivariant, i.e., it satisfies A ◦ ρ(g) = ρ′(g) ◦A for g ∈ G. The
set of all G-maps is denoted by HomG(V, V

′). Two representations V and V ′

are equivalent, we write V ∼= V ′, if there exists a bijective G-map from V to V ′.
An element v of V is called G-invariant if g · v = v for all g ∈ G. The set of
G-invariant elements of V is denoted by V G.

From given representations and their vector spaces, one can look at natural
ways to construct “new” vector spaces from given ones, i.e., the sum, tensor
product, hom-spaces, and so on and find representations on these “new” vector
spaces as well.

Theorem 4.3. Let V and W be finite dimensional representations of a Lie
group G then

(i) G acts on V ⊕W by g(v, w) = (gv, gw);

(ii) G acts on V ⊗W by g
∑

vi ⊗ wj =
∑

gvi ⊗ gwj ;

(iii) G acts on Hom(V,W ) by (gA)(v) = g(A(g−1v));

(iv) G acts on
k⊗
V by g

∑
vi1 ⊗ · · · ⊗ vik =

∑
gvi1 ⊗ · · · ⊗ gvik ;

(v) G acts on
k∧
V by g

∑
vi1 ∧ · · · ∧ vik =

∑
gvi1 ∧ · · · ∧ gvik ;

(vi) G acts on Sk(V ) by g
∑

vi1 · · · vik =
∑

(gvi1) · · · (gvik);
(vii) G acts on V ∗ by (gA)(v) = A(g−1v);

(iv) G acts on V by the same action as it does on V.

Here
∧k

denotes the k-fold exterior product , Sk the k-fold symmetric product
and V the conjugate space where the scalar multiplication is given by multiply-
ing with the conjugate.

We have seen that representations can be glued together to obtain represen-
tations on “larger” spaces. In order to build a classification of representations it
makes sense to ask two questions: What are the smallest building blocks? Can
every representation be built from these smallest building blocks? The first
question leads directly to the next definition.

Definition. Let G be a Lie group acting on the finite dimensional complex
vector space V . A subspace U ⊆ V is G-invariant (we also say a submodule or a
subrepresentation) if gU ⊆ U for all g ∈ G. A nonzero (that is, not equal to the
trivial representation {0}) representation is irreducible if the only G-invariant
subspaces are trivial, i.e., {0} or V . A representation is called reducible if it has
a proper (non-trivial) G-invariant subspace.
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Remark. A nonzero finite dimensional representation V is irreducible if and only
if V = spanC{gv : g ∈ G} for each nonzero v ∈ V .

The next lemma has a variety of applications in the structural theory of
representations.

Theorem 4.4. (Schur’s lemma) Let G be a Lie group and let V and W be finite
dimensional G-modules. If V and W are irreducible, then

dim HomG(V,W ) =

{
1 if V ∼=W

0 if V ≇W.

Definition. Let G be a Lie group and V be a finite dimensional G-module. A
bilinear form (·, ·) : V × V → C is called G-invariant if (gv, gw) = (v, w) for
all g ∈ G and for all v, w ∈ V . V is called unitary given that there exists a
G-invariant Hermitian inner product on V .

Theorem 4.5. Every representation of a compact Lie group is unitary.

Another way to describe U(n) is as {A ∈ GL(n,C) : (Av,Aw) = (v, w)},
where (·, ·) denotes the standard Hermitian inner product on Cn. This is equiv-
alent to the way we introduced U(n) considering (Av,Aw) = (Av)∗IAw =
v∗A∗Aw. As a consequence of the preceding theorem, we get that a finite di-
mensional representation (ρ : G→ GL(V ), V ) of a compact Lie group G yields
a Lie group homomorphism into a unitary group. We will see later that every
compact Lie group is isomorphic to a subgroup of a unitary group. So every
compact Lie group is a linear Lie group.

Definition. A finite dimensional representation of a Lie group is called com-
pletely reducible if it is a direct sum of irreducible submodules.

Now we can get back to the question we asked above: Can every represen-
tation be built from irreducible representations? For non-compact groups there
are reducible but not completely reducible representations, for compact groups
however we have the following result.

Corollary 4.6. Every finite dimensional representation of a compact Lie group
is completely reducible.

We are now able to write every finite dimensional representation V of a
compact Lie group G as V ∼=

⊕n
i=1 niVi where the Vi are not equivalent irre-

ducible G-modules and niVi = Vi ⊕ · · · ⊕ Vi (ni copies). The natural number
ni is called the multiplicity of Vi in V and is given by ni = dim HomG(Vi, V ).
Given an irreducible G-module V and some arbitrary G-module W we denote
the multiplicity of V in W by m(V,W ).

As a consequence of Schur’s lemma we get:
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Corollary 4.7. Let V be a finite dimensional representation of a Lie group G
then

(i) V is irreducible if and only if dim HomG(V, V ) = 1; in particular for an

irreducible V every G-map f : V → V is of the form f = λ Id for λ ∈ C;

(ii) If V is irreducible, then the G-invariant inner product on V is unique up to

multiplication by a positive real number.

4.4 Characters and the Peter-Weyl Theorem

We consider the character of a Lie group representation, an important concept,
as it determines a representation up to isomorphism. The Peter-Weyl theorem
will provide the means to see that every compact Lie group is a closed subgroup
of a unitary group.

Definition. Let G be a Lie group with finite dimensional unitary representation
(ρ, V ). The functions fVu,v : G → C mapping g 7→ (gu, v) with u, v ∈ V , where
(·, ·) denotes the G-invariant Hermitian inner product on V , are called matrix
coefficients of G. The collection of all matrix coefficients is denoted by MC(G).

Definition. Let G be a Lie group with finite dimensional representation (ρ, V ).
The character χV : G → C of G is defined by χV (g) = tr ρ(g) where tr ρ(g)
denotes the trace of the matrix ρ(g).

Theorem 4.8. Let G be a compact Lie group and Vi and V be finite dimensional
G-modules, then

(i) χV ∈ MC(G);

(ii) χV (e) = dimV ;

(iii) If V1 ∼= V2, then χV1
= χV2

;

(iv) χV (hgh
−1) = χV (g) for g, h ∈ G;

(v) χV1⊕V2
= χV1

+ χV2
;

(vi) χV1⊗V2
= χV1

χV2
;

(vii) χV ∗(g) = χV (g) = χV (g) = χV (g
−1);

(viii) χC(g) = 1 for the trivial representation C.

Theorem 4.9. 1) Let V, Vi,W be finite dimensional representations of a com-
pact Lie group G, then

∫

G

χV (g)χW (g) dg = dim HomG(V,W ).

In particular,
∫
G
χV (g) dg = dim(V G), where V Gdenotes the set {v ∈ V : gv =

v for g ∈ G}, and if V and W are irreducible, then

∫

G

χV (g)χW (g) dg =

{
0 if V ≇W

1 if V ∼=W.
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2) V is, up to equivalence, completely determined by its character, that is V ∼=W
if and only if χV = χW . In particular, V ∼=

⊕
i niVi if and only if χV =∑

i niχVi
.

3) V is irreducible if and only if
∫
G
|χV (g)|2 dg = 1.

By C(G) we denote the set of continuous functions f : G→ C and by L2(G)
the set of square integrable functions f : G→ C.

Theorem 4.10. (Peter-Weyl theorem) Let G be a compact Lie group, then
MC(G) is dense in C(G) and L2(G).

We say a representation (ρ, V ) is faithful given that ρ is injective.

Theorem 4.11. A compact Lie group possesses a finite dimensional faithful
representation.

As we have already hinted at in the last section, we obtain the following
corollary.

Corollary 4.12. Every compact Lie group is isomorphic to a closed subgroup
of a unitary group U(n) for some n ∈ N. Thus every compact Lie group is a
linear Lie group.

4.5 Infinite-dimensional Representations

We want to consider representations of compact Lie groups on infinite-dimensional
vector spaces as well, because not every representation of interest is finite. There
are some adaptions to be made to the infinite-dimensional case; adding some ad-
ditional structure to our vector spaces, we work with topological vector spaces
instead. We restrict ourselves to Banach spaces, but note that it is possible
to develop infinite-dimensional representations for locally convex vector spaces.
Most of the basic definitions for representations remain unchanged, however
some need to be tweaked. In the end we see that every irreducible represen-
tation of a compact Lie group on a Banach space is finite-dimensional. As a
reference for this subsection see [19] as well.

Given topological vector spaces V, V ′, let Hom(V, V ′) denote continuous
linear maps from V to V ′ and let GL(V ) denote the invertible elements of
Hom(V, V ).

Definition. A representation of a Lie group G on a topological vector space
V is a Lie group homomorphism ρ : G → GL(V ) such that the map G ×
V → V defined by (g, v) 7→ ρ(g)v is continuous. Given two infinite-dimensional
representations (V, ρ), (V ′, ρ′) on a topological vector space f ∈ Hom(V, V ′) is
called an intertwining operator or G-map if it is equivariant, i.e., it satisfies f ◦
ρ(g) = ρ′(g) ◦ f for g ∈ G. A closed G-invariant subspace is called a submodule.
A representation of a Lie group G on a topological vector space V is called
irreducible if the only submodules are {0} and V . It is called reducible given
that it has a non-trivial submodule.
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Next up are some specific definitions needed to acquire a decomposition for
infinite-dimensional representations.

Definition. Let V be an infinite-dimensional representation of a Lie group on
a complex Banach space. A vector v ∈ V is called G-finite if it is contained
in a finite-dimensional G-invariant subspace of V . The linear subspace of V
spanned by all G-finite vectors is denoted by V f . For an infinite-dimensional
complex irreducible representation W of G, we define the W -isotopic component
VW ⊆ V as the space of all v ∈ V for which there is a G-map ϕ : W → V with
v ∈ im(ϕ).

Note that VW is a linear subspace of V . Given v ∈ VW the image of the
corresponding G-map ϕ is a finite-dimensional G-invariant subspace of V , so
VW ⊆ V . Now let us consider a compact Lie group G and a vector v ∈ V f ,
so there exists a finite-dimensional G-invariant subspace W ⊆ V containing v.
We already know that finite-dimensional G-modules decompose into irreducible
submodules, so W ∼=

⊕n
i=1 niWi with irreducible Wi. Thus v can be written as

a linear combination of vectors each contained in some Wi-isotopic component,
and V f =

⊕
U∈Ĝ VU where Ĝ denotes the set of all isomorphism classes of

finite-dimensional irreducible G-modules.

Theorem 4.13. For any representation of a compact Lie group G on a complex
Banach space V , the subspace V f is dense in V .

As a direct consequence we get:

Corollary 4.14. Given a compact Lie group G, then any irreducible represen-
tation on a Banach space is finite-dimensional.
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5 Lie Algebras

Although in general not being linear objects, it is possible to approximate Lie
groups by their tangent spaces at the identity. Such a tangent space is linear
and we call it a Lie Algebra. As we did before with representations, we try to
gain more insight into the theory of Lie groups by looking at simpler objects, in
this case vector spaces, that are still closely related to Lie groups. After some
basic definitions we will introduce the exponential map, a smooth map from the
Lie algebra of a Lie group to the Lie group itself and compute the Lie algebras
of the compact classical Lie groups. Besides [4] some results were taken from
[6]. For more background on manifolds see [7] for example.

5.1 Basic Definitions

We introduce the very basic concepts: a Lie algebra, Lie subalgebras and Lie
algebra homomorphisms.

Definition. A Lie algebra g is a vector space over a field K with a bilinear
product [·, ·] : g × g → g, called the Lie bracket, if the lie bracket additionally
satisfies

(i) [X,Y ] = −[Y,X];

(ii) [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

The second equation is called the Jacobi identity.

As with any new structures we want to define maps that preserve the given
structure and its substructures.

Definition. A Lie algebra homomorphism is a linear map ϕ : g → h between
Lie algebras g and h such that

ϕ([X,Y ]) = [ϕ(X), ϕ(Y )]

for all X,Y ∈ g.

Definition. A Lie subalgebra h of a given Lie algebra g is a subspace that is
closed under the Lie bracket. An ideal i of a Lie algebra g is a subspace satisfying
[g, i] ⊆ i. A Lie algebra g is called Abelian if [g, g] = 0.

Remember that given a smooth manifold M the tangent bundle TM is
the disjoint union of all tangent spaces to points in M . That is, TM :=⊔

p∈M TpM =
⋃

p∈M{(p, v) : v ∈ TpM}, and the projection π from TM onto
M is given by π(p, v) = p. A vector field X : M → TM is a smooth section
of the tangent bundle, i.e., a smooth right inverse to the projection π. Given
a vector field X, we write the value of X at p as Xp. For a Lie group G the
diffeomorphism lg : G → G is defined by lg(h) = gh. A vector field X is called
left invariant given that dlgX = X or d(lg)hXh = Xgh at a point h ∈ G where
d(lg) : TpM → TgpM denotes the differential of lg. It can be shown (see [7] for
example) that the set of left invariant vector fields together with the Lie bracket
for vector fields is a Lie algebra.
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Definition. The Lie algebra of smooth left invariant vector fields of a Lie group
G is called the Lie algebra of G and is denoted by g.

For a Lie group G and v ∈ TeG we get a vector field that is left invariant
by setting vlg := d(lg)ev ∈ TgG. A fundamental fact is that this map gives an
isomorphism between g and TeG.

Theorem 5.1. Let G be a Lie group. The map ε : g→ TeG defined by ε(X) =
Xe is a vector space isomorphism with inverse τ : TeG→ g defined by τ(v) = vl.
Thus, g is finite-dimensional with dimension equal to dim G.

For a compact Lie group G we already know that G is a closed subgroup
of GL(n,C), so TeG can be viewed as a subspace of TIn(GL(n,C)). We define
gl(n,F) := Mn,n(F), the space of n × n matrices over the field F. Remember
that for a smooth manifold M tangent vectors in TpM can also be understood
as equivalence classes of curves γ in M such that γ(0) = p.

Theorem 5.2. Let G be a Lie subgroup of GL(n,C), then

g ∼= {γ′(0) : γ(0) = In and γ : (−ε, ε)→ G, ε > 0, is smooth} ⊆ gl(n,C)

where the Lie bracket is given by

[X,Y ] = XY − Y X.

For Xi = γ′i(0) ∈ g and r ∈ R consider the smooth curve γ = γ1(rt)γ2(t)
mapping some neighborhood of 0 ∈ R to G. Then γ′(0) = (rγ′1(rt)γ2(t) +
γ1(rt)γ

′
2(t))|t=0 = rX1+X2. So g is a real vector space, but not a complex one.

Remark. In the same way TpG can be identified with {γ′(0) : γ(0) = g and γ :
(−ε, ε)→ G, ε > 0, is smooth} ⊆ gl(n,C).

5.2 The Exponential Map

The exponential map is a smooth map from the Lie algebra of a Lie group to
the Lie group itself with interesting properties; it commutes with the differential
of a Lie group homomorphism and provides a way to compute the Lie algebra
of a Lie group.

Remember that for v ∈ TeG we get a smooth vector field vl and the integral
curve γ : J → G, J ⊆ R of vl through e, that is, the unique maximally defined
smooth curve in G satisfying γ(0) = e and γ′(t) = vlγ(t).

Theorem 5.3. Let G be a linear Lie group, X ∈ g ,and γ be the integral curve
of X through e. Then

γ(t) = etX =

∞∑

n=0

tn

n!
Xn.

Moreover γ is defined for all t ∈ R and a homomorphism.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Definition. Let G be a linear Lie group, X ∈ g and γ be the integral curve of X
through e. The exponential map of G exp : g→ G is defined by exp(X) = γ(1).

Theorem 5.4. Let G be a linear Lie group, then:

(i) The exponential map is a smooth map from g to G;

(ii) The exponential map restricts to a diffeomorphism from some

neighborhood of 0 in g to some neighborhood of e in G ;

(iii) g = {X ∈ gl(n,C) : etX ∈ G for t ∈ R};
(iv) When G is connected, exp g generates G.

Definition. Let ϕ : H → G be a Lie group homomorphism between linear Lie
groups H and G. The differential of ϕ, dϕ : h→ g is defined by

dϕ(X) =
d

dt
ϕ(etX)|t=0.

Theorem 5.5. Suppose ϕ,ϕi : H → G are Lie group homomorphisms between
linear Lie groups H and G, then:

(i) The following diagram is commutative

h
dϕ−−−−→ g

exp

y
yexp

H
ϕ−−−−→ G

that is, edϕ(X) = ϕ(eX) for X ∈ g;

(ii) The differential dϕ is a Lie algebra homomorphism;

(iii) If H is connected and dϕ1 = dϕ2, then ϕ1 = ϕ2.

Definition. Let G be a linear Lie group. For g ∈ G the conjugation cg :
G → G is the Lie group homomorphism given by cg(h) = ghg−1. The adjoint
representation of G on g, Ad : G → GL(g), is defined by Ad(g) = dcg. The
adjoint representation of g on g, ad : g → End(g), is defined by ad(g) = dAd,
that is, ad(X)Y = d

dt (Ad(etX)Y )|t=0 for X,Y ∈ g.

Remark. Note that

Ad(g)X = dcg(X) =
d

dt
(getXg−1)|t=0 = gXg−1,

and

ad(X)Y =
d

dt
(Ad(etX)Y )|t=0 =

d

dt
(etXY e−tX)|t=0 = XY − Y X = [X,Y ].

We calculate the Lie algebra of U(n) using Theorem 5.4. Let X be an
element of the Lie algebra of U(n), then In = etX(etX)∗ = etXetX

∗

holds for
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t ∈ R. Differentiating with respect to t at 0, implies X +X∗ = 0. Conversely,
X = −X∗ implies etXetX

∗

= etXe−tX = In. So the Lie algebra of U(n), denoted
by u(n), turns out to be

u(n) = {X ∈ gl(n,C) : X∗ = −X}.
For the special unitary group SU(n) we get an additional condition: 1 =
det(etX) = ettrX for t ∈ R, implying, after differentiation, that trX = 0. Con-
sidering trX = 0 implies det(etX) = 1, we get that

su(n) = {X ∈ gl(n,C) : X∗ = −X, trX = 0}.
In a similar way the Lie algebras of O(n), SO(n) and Sp(n) can be calculated
to be

o(n) = {X ∈ gl(n,R) : Xt = −X};
so(n) = {X ∈ gl(n,R) : Xt = −X, trX = 0} = o(n);

sp(n) = {X ∈ gl(n,H) : X∗ = −X}.

5.3 Abelian Lie Subgroups and Lie Algebra Structure

The idea of a Cartan subalgebra is introduced, which we will later use to de-
compose a Lie algebra into root spaces. We have seen that every compact Lie
group G is isomorphic to a Lie subgroup of U(n). Thus every element in G
can be diagonalized via conjugation in U(n). However, it is even possible to
diagonalize every g ∈ G using conjugation in G. Furthermore we will see that
every Lie algebra of a compact Lie group can be decomposed into a semisimple
and an Abelian part.

Definition. Let G be a compact Lie group. A maximal torus of G is a maximal
connected Abelian Lie subgroup of G. A Cartan subalgebra of g is a maximal
Abelian Lie subalgebra of g.

Theorem 5.6. Given a compact Lie group G and a connected Lie subgroup T
of G, then T is a maximal torus if and only if t is a Cartan subalgebra of g. In
particular, maximal tori and Cartan subalgebras exist.

Theorem 5.7. (Maximal torus theorem) For a compact connected Lie group G
with maximal torus T and h ∈ G,

(i) there exists g ∈ G such that ghg−1 ∈ T ;
(ii) the exponential map is surjective, i.e., G = expg.

Example. We want to examine the Lie group SO(n) which behaves differently
in odd and even dimensions. For SO(2l) a maximal torus is given by

T =








cos θ1 sin θ1
− sin θ1 cos θ1

. . .

cos θl sin θl
− sin θl cos θl




: θi ∈ R





,
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and the corresponding Cartan subalgebra is given by

t =








0 θ1
−θ1 0

. . .

0 θl
−θl 0




: θi ∈ R





.

For odd dimension we get a maximal torus of SO(2l + 1) by

T =








cos θ1 sin θ1
− sin θ1 cos θ1

. . .

cos θl sin θl
− sin θl cos θl

1




: θi ∈ R





,

and the corresponding Cartan subalgebra is given by

t =








0 θ1
−θ1 0

. . .

0 θl
−θl 0

0




: θi ∈ R





.

Definition. Let g be the Lie algebra of a linear Lie group. Then g is called
simple if it has no proper ideals and dim g > 1, that is, g has no ideals besides
{0} and g and it is not Abelian. g is called semisimple if it is a direct sum of
simple Lie algebras. g is called reductive if it is the direct sum of a semisimple
Lie algebra and an Abelian Lie Algebra. By g′ we denote the ideal of g spanned
by [g, g] and by z(g) := {X ∈ g : [X, g] = 0} the center of g.

Theorem 5.8. Let g be the Lie algebra of a compact Lie group, then

g = g′ ⊕ z(g),

so g is reductive, considering g′ is semisimple and z(g) is Abelian.
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6 Roots, Highest Weights and Highest Weight

Classification

After introducing the concept of a representation of a Lie algebra, we define
weight spaces as a way to decompose a given Lie algebra representation. The
well known root space decomposition is a weight space decomposition with re-
spect to the adjoint representation, and it provides tremendous insight in the
structural theory of Lie algebras. The Killing form, a symmetric complex bi-
linear form on the complexification of a Lie algebra, provides, inter alia, an
identification of roots with elements of the Cartan subalgebra. We see that the
root space decomposition decomposes a representing vector space into triples of
one dimensional subspaces isomorphic to sl(2,C). And the lattice of analyti-
cally integral weights will play an important role in the classification of highest
weights of irreducible representations. This part was taken from [4] and the
part on the second determinantal formula from [8].

6.1 Representations and Complexification of Lie Algebras

Similarly to Lie groups we want to define a morphism from a Lie Algebra to a
vector space of endomorphisms. This will turn out to be a useful tool in the
study of Lie algebras.

Definition. Let g be the Lie algebra of a linear Lie group, V a finite-dimensional
complex vector space and ρ : g → End(V ) linear. The pair (ρ, V ) is a repre-
sentation of g if ρ is compatible with the Lie bracket, that is, ρ([X,Y ]) =
ρ(X) ◦ ρ(Y )− ρ(Y ) ◦ ρ(X) for X,Y ∈ g. A representation is called irreducible if
there are no proper ρ(g)-invariant subspaces. Otherwise it is said to be reducible.

Remark. Again, depending on the context, we simply write V or ρ for a rep-
resentation and X · v or Xv instead of ρ(X)(v) for v ∈ V . For a finite dimen-
sional vector space V of dimension n, we can view a representation as a map
ρ : g→ gl(n,C).

Definition. Let (ρ, V ) and (ρ′, V ′) be finite-dimensional representations of a
Lie algebra g, then φ ∈ Hom(V, V ′) is called an intertwining operator if it is
equivariant, i.e., it satisfies φ◦ρ(X) = ρ′(X)◦φ for X ∈ g. Two representations
V and V ′ are equivalent, we write V ∼= V ′, if there exists a bijective intertwining
operator from V to V ′.

In the next theorem we see that Lie group and Lie algebra representations are
strongly interconnected, and this connection is compatible with the exponential
map.

Theorem 6.1. Let G be a linear Lie group with a finite-dimensional represen-
tation (ρ, V ), then (dρ, V ) is a representation of g such that edρX = ρ(eX). If G
is connected, ρ is completely determined by dρ, and a subspace W ⊆ V is ρ(G)-
invariant if and only if it is dρ(g)-invariant. In particular, for connected G, V
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is irreducible under G if and only if it is irreducible under g. For a connected
compact G, V is irreducible if the only endomorphisms of V commuting with all
the operators dρ(g) are scalar multiples of the identity map.

In the previous chapter we saw that g is a real vector space. However, our
representations map into endomorphism spaces of complex vector spaces. So we
need to expand g to become a complex vector space in order to get the vector
space of a representation.

Definition. For a real vector space V the complexification of V , VC, is defined
by VC = V ⊗R C with the scalar multiplication z′(v ⊗ z) := v ⊗ (z′z).

The complexification of a real vector space is a complex vector space, and it
is isomorphic to V ⊕ iV . Given a Lie algebra g we can extend the Lie bracket to
gC by C-linearity and get a Lie algebra gC. A representation (ρ, V ) of g can be
extended, again by C-linearity, to a representation of gC. So given a Lie algebra
g of a compact Lie group, we can identify gC with g⊕ ig where the Lie bracket
is the C-linear extension of the Lie bracket in gl(n,C).

Example. The complexification of so(n) can be realized by so(n)C = {X ∈
gl(n,C) : Xt = −X} and will be denoted by so(n,C).

Lemma 6.2. Let g be the Lie algebra of a linear Lie algebra, then a represen-
tation V of g is irreducible if and only if it is an irreducible representation of
gC.

6.2 Weights

The weights of a representation provide a decomposition of a representing vector
space indexed by elements of the dual space of a Cartan subalgebra.

Let (ρ, V ) be a finite-dimensional representation of a compact Lie group
G. Every representation of a compact Lie group is unitary, so there exists a G-
invariant inner product (·, ·) on V . Because d

dt |t=0 applied to (ρ(etX)Y1, ρ(e
tX)Y2) =

(Y1, Y2) results in (dρ(X)Y1, Y2) + (Y1, dρ(X)Y2) = 0, we see that dρ is skew-
Hermitian on g and Hermitian on ig. Now let us consider a Cartan subalgebra t

and its complexification tC. Then tC acts as a family of commuting normal oper-
ators on V . Due to the spectral theorem each of these operators dρ(H), H ∈ tC is
diagonalizable, and as they all commute they are simultaneously diagonalizable.
So the following is well defined.

Definition. Let g be the Lie algebra of a compact Lie group G with finite-
dimensional representation (ρ, V ) and t a Cartan subalgebra of g. There is a
finite set ∆(V ) = ∆(V, tC) ⊆ t∗

C
called the weights of V such that

V =
⊕

α∈∆(V )

Vα,

where

Vα = {v ∈ V : dρ(H)v = α(H)v,H ∈ tC}
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is nonzero. This decomposition of V is called the weight space decomposition of
V with respect to tC.

Let (ρ, V ) and (ρ′, V ′) be two equivalent finite-dimensional Lie algebra repre-
sentations of a Lie algebra g with φ : V → V ′ being the corresponding bijective
intertwining operator and v ∈ Vα for some α ∈ ∆(V ). Then ρ′(H)φ(v) =
φ(ρ(H)(v)) = φ(α(H)v) = α(H)φ(v), so the weights of (ρ, V ) are weights of
(ρ′, V ′) as well. The same argument can be made for φ−1 and therefore equiva-
lent representations of a Lie algebra have the same weights. Given a Lie algebra
isomorphism φ : a→ b and a finite-dimensional representation (ρ, V ) of a, then
ρ ◦ φ−1 is a representation of b. So isomorphic Lie algebras have the same
finite-dimensional representing vector spaces.

Example. The trivial representation of a Lie group G is given by ρ : G →
GL(1,C), ρ(g) = 1. The corresponding Lie algebra representation dρ(H) =
d
dtρ(e

Ht)|t=0 = 0 is the zero map on C. So we get C as the weight space of the
trivial map 0 ∈ t∗

C
.

Example. We have found a Cartan subalgebra for so(n)C, however, in the real-
ization we utilized, there is no Cartan subalgebra consisting of diagonal matrices.
Considering it will be easier to work with diagonal matrices, we introduce an
isomorphic realization of SO(n) that gives rise to a Cartan subalgebra consisting
of diagonal matrices. Define

T2l :=
1√
2

(
Il Il
iIl −iIl

)
and E2l :=

(
0 Il
Il 0

)

for even dimensions n = 2l and

T2l+1 :=

(
T2l 0
0 1

)
and E2l+1 :=

(
E2l 0
0 1

)

for odd dimensions n = 2l+1. Then our new realization of the special orthogonal
group is defined by

SO(En) = {g ∈ SL(n,C) : g = EngEn, g
tEng = En}

with the corresponding Lie algebra

so(En) = {X ∈ gl(n,C) : X = EnXEn, X
tEn + EnX = 0}

and complexification

so(En)C = {X ∈ gl(n,C) : XtEn + EnX = 0}.

Note that En = T t
nTn and Tn

t
= T−1

n . It can be shown that SO(En) is a
compact subgroup of SU(n), the map g → T−1

n gTn is a Lie group isomorphism
from SO(n) to SO(En), and the mapX → T−1

n XTn is a Lie algebra isomorphism
from so(n) to so(En) and from so(n)C to so(En)C.
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For even dimensions a maximal torus of SO(2l) is given by

T = {diag(eiθ1 , ..., eiθl , e−iθ1 , ..., e−iθl), θi ∈ R}
with the corresponding Cartan subalgebra

t = {diag(iθ1, ..., iθl,−iθ1, ...,−iθl), θi ∈ R}
and complexification

tC = {diag(a1, a2, ..., al,−a1,−a2, ...,−al) : ai ∈ C}.
For odd dimensions n = 2l + 1 we get a maximal torus

T = {diag(eiθ1 , ..., eiθl , e−iθ1 , ..., e−iθl , 1), θi ∈ R}
with the corresponding Cartan subalgebra

t = {diag(iθ1, ..., iθl,−iθ1, ...,−iθl, 0), θi ∈ R}
and complexification

tC = {diag(a1, a2, ..., al,−a1,−a2, ...,−al, 0) : ai ∈ C}.
The standard representation of SO(En) on Cn is given by the matrix multipli-
cation from the left by X ∈ SO(En), ρ(X) = X and dρ(H) = d

dte
Ht|t=0 = H

because H ∈ tC is a diagonal matrix. Define εi ∈ t∗
C

via εi(H) being the i-th
entry of the diagonal of H ∈ tC, then the weights of the standard representation
of SO(En) on Cn for even n are given by {±εi : 1 ≤ i ≤ ⌊n/2⌋} and the weight
spaces by Vεi = spanC{ei} and V−εi = spanC{ei+⌊n/2⌋}. In the case that n
is odd we have to add the weight 0 with weight space V0 = spanC{en} to the
previously obtained.

Theorem 6.3. Let G be a compact Lie group, with maximal torus T and a
finite-dimensional representation (ρ, V ), and let V =

⊕
α∈∆(V ) Vα be the weight

space decomposition with respect to tC. Then every α ∈ ∆(V ) is imaginary
valued on t and real valued on it. For t ∈ T choose H ∈ t such that eH = t,
then tvα = eα(H)vα for vα ∈ Vα.

Remark. Note that because α ∈ ∆(V ) is completely determined by its values
on either t or tC by C-linearity, we can view α as an element of t∗ or (it)∗ as
well.

6.3 Roots

The weight space decomposition applied to the adjoint representation of a Lie
algebra results in the root space decomposition, an integral part of the structural
theory of Lie algebras.

Let us consider a compact Lie group G, then the domain of Ad(g) ∈ GL(g)
can be extended to gC via C-linearity. This provides a representation (Ad, gC)
with the differential ad : gC → End(gC) (extended by C-linearity) being a rep-
resentation of gC. This leads to a weight space decomposition that is important
enough to get its own name.
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Definition. Let g be the Lie algebra of a compact Lie group and t a Cartan
subalgebra. The elements of the finite set ∆(gC) = ∆(gC, tC) ⊆ t∗

C
, that satisfies

gC = tC ⊕
⊕

α∈∆(gC)

gα,

where

gα = {Z ∈ gC : [H,Z] = α(H)Z,H ∈ tC}
is nonzero, are called roots of gC. This decomposition of gC is called the root
space decomposition of gC with respect to tC.

Note that tC = g0 = {Z ∈ gC : [H,Z] = 0, H ∈ tC} as t is a maximal abelian
subspace in g.

Example. For so(E2l+1)C the condition XtEn + EnX = 0 leads to a block
form for its elements

so(E2l+1)C =








0 ct −bt
b m p
−c q −mt


 : p = −pt, q = −qt



 ,

where m, p, q are complex l × l matrices and b, c ∈ Cl. A basis for the elements
of so(E2l+1)C where the only nonzero matrix entries are contained in b and c
is given by bi := ei,0 − e0,l+i and ci := e0,i − el+i,0 for 0 ≤ i ≤ l, where ei,j is
the matrix having all zeros except a single 1 in i-th row and j-th column. To
calculate the corresponding roots, we look at

[H, bi] = aibi, [H, ci] = −aici
for H ∈ tC. We extend to a basis of all of so(E2l+1)C via

mi,j :=ei,j − el+j,l+i for 1 ≤ i 6= j ≤ l;
pi,j :=ei,l+j − ej,l+i for 1 ≤ i < j ≤ l;
qi,j :=el+j,i − el+i,j for 1 ≤ i < j ≤ l,

and again we see that our basis elements are simultaneous eigenvectors under
the ad(H) for H ∈ tC as

[H,mi,j ] =(ai − aj)mi,j ;

[H, pi,j ] =(ai + aj)pi,j ;

[H, qi,j ] =− (ai + aj)qi,j .

So we obtain the roots of so(E2l+1)C given by

∆(so(E2l+1)C) = {±εi:1≤ i ≤ l} ∪ {±(εi ± εj) : 1 ≤ i ≤ j ≤ l}.
For even dimensions the situation is just a simplification and the roots are given
by

∆(so(E2l)C) = {±(εi ± εj) : 1 ≤ i ≤ j ≤ l}
(see [30] and [9] for details).
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6.4 The Killing Form, the Standard sl(2,C) Triple and Lat-

tices

The Lie algebra of a linear Lie group can be equipped with a symmetric bilinear
form: the Killing form. Given that the Lie algebra is semisimple, the Killing
form yields an inner product. We will see that the Lie algebra of a compact
Lie group consists of copies of sl(2,C), and the lattice of analytically integral
weights will be of particular interest in the highest weight theory.

Definition. Let g be the Lie algebra of a compact Lie group. The Cartan
involution θ : gC → gC is given by θ(X⊗z) = X⊗z,X ∈ g, z ∈ C. Equivalently
if Z ∈ gC is given by X + iY for X,Y ∈ g⊗ 1, then θ(Z) = X − iY .

Lemma 6.4. Let g be the Lie algebra of a compact Lie group. If α ∈ ∆(gC),
then −α ∈ ∆(gC) and g−α = θgα.

Definition. Let g be the Lie algebra of a linear Lie group. The Killing form
is the symmetric complex bilinear form B : gC × gC → C defined by B(X,Y ) =
tr(ad(X) ◦ ad(Y )) for X,Y ∈ gC.

Theorem 6.5. Let g be the Lie algebra of a compact Lie group G, then

(i) For X,Y ∈ g, B(X,Y ) = tr(ad(X) ◦ ad(Y )) on g;

(ii) B is Ad-invariant, i.e., B(Ad(g)X,Ad(g)Y ) = B(X,Y ) for g ∈ G
and X,Y ∈ gC;

(iii) B is skew ad-invariant, i.e., B(ad(Z)X,Y ) = −B(X, ad(Z)Y )

for X,Y, Z ∈ gC;

(iv) B restricted to g′ × g′ is negative definite;

(v) B restricted to gα × gβ is zero when α+ β 6= 0 for α, β ∈ ∆(gC) ∪ {0};
(vi) B is nondegenerate on gα × g−α. If g is semisimple with a Cartan

subalgebra t, then B is also nondegenerate on tC × tC;

(vii) The radical of B, radB = {X ∈ gC : B(X, gC) = 0}, is the center of gC;

(viii) If g is semisimple, the form (X,Y ) = −B(X, θY ) is an Ad-invariant

inner product on gC;

(ix) Let G be simple and choose a linear realization of G such that g ⊆ u(n).

Then there exists a positive c ∈ R such that B(X,Y ) = c tr(XY ) for

X,Y ∈ gC.

Due to Theorem 6.5, given a semisimple Lie algebra of a compact Lie group
B is a nondegenerate form on tC ∼= t⊕ it, and as such it induces an isomorphism
between it and (it)∗ in the following way.

Definition. Let g be the Lie algebra of a compact Lie group, t be a Cartan
subalgebra of g and α ∈ (it)∗. Assume that g is semisimple and let uα ∈ it be
uniquely determined by the equation

α(H) = B(H,uα)
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for all H ∈ it, and given that α 6= 0, let

hα =
2uα

B(uα, uα)
.

If g is not semisimple, that is, g = g′ ⊕ z(g) with a nonzero center, define
uα ∈ it′ ⊆ it by restricting B to it′. Given α ∈ ∆(gC), as discussed before, α
can be viewed as an element of (it)∗. Now we can find uα and hα as above, and
by C-linear extension α(H) = B(H,uα) holds for H ∈ tC.

The Lie algebra of a compact Lie group contains many copies of sl(2,C). In
fact root spaces come in pairs (gα, g−α), and together with hα ∈ t, where hα
is given by the Lie bracket of the basis vectors of gα and g−α, they span an
isomorphic copy of sl(2,C).

Theorem 6.6. Let g be the Lie algebra of a compact Lie group, t be a Cartan
subalgebra of g and α ∈ ∆(gC). For a nonzero Eα ∈ gα let Fα = −θEα ∈
g−α. Then Eα and Fα can be rescaled such that [Eα, Fα] = hα and sl(2,C) ∼=
spanC{Eα, Fα, hα} with {Eα, Fα, hα} corresponding to the standard basis

E =

(
0 1
0 0

)
, F=

(
0 0
1 0

)
, and H=

(
1 0
0 −1

)

of sl(2,C).

Corollary 6.7. Let g be the Lie algebra of a compact Lie group, t be a Cartan
subalgebra of g and α ∈ ∆(gC), then:

(i) The only multiple of α is ±α;

(ii) dim gα = 1;

(iii) If β ∈ ∆(gC), then α(hβ) = ±{0, 1, 2, 3};
(iv) If (ρ, V ) is a finite-dimensional representation of G and λ ∈ ∆(V ),

then λ(hα) ∈ Z.

So the root space decomposition decomposes V into tC and the one-dimensional
subspaces gα, where a triple Eα ∈ gα, Fα = θEα ∈ g−α and [Eα, Fα] ∈ tC is
isomorphic to sl(2,C).

It is possible to transport the Killing form to (it)∗ by setting

B(λ1, λ2) = B(uλ1
, uλ2

)

for λ1, λ2 ∈ (it)∗.
In the following paragraphs we define lattices of a Lie algebra and the lattice

of analytically integral weights will be of particular importance in the highest
weight theory.

Definition. Let g be the Lie algebra of a compact Lie group with maximal torus
T and t the corresponding Cartan subalgebra of g. The root lattice, R = R(t)
is the lattice in (it)∗ defined by

R = spanZ{α : α ∈ ∆(gC)}.
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The set of algebraically integral weights, P = P (t), is the lattice given by

P = {λ ∈ (it)∗ : λ(hα) ∈ Z for α ∈ ∆(gC)},

where λ ∈ (it)∗ is extended to an element of (tC)
∗. The set of analytically integral

weights, A = A(T ), is the lattice given by

A = {λ ∈ (it)∗ : λ(H) ∈ 2πiZ whenever exp(H) = I for H ∈ t}.

Example. The root lattice of so(E2l)C is given by

R(so(E2l)C) = spanZ{±(εi ± εj) : 1 ≤ i ≤ j ≤ l}

=

{
l∑

i=i

λiεi : λi ∈ Z,

l∑

i=1

λi ∈ 2Z

}
,

where the second equality holds because the roots are given by pairs of εis.
Let Ei denote the 2l × 2l matrix with all zeroes except a single 1 in the

i-th diagonal position. Then hα for α ∈ ∆(so(E2l)C) is given by hεi−εj =
(Ei−Ej)− (Ei+l −Ej+l), hεi+εj = (Ei +Ej)− (Ei+l +Ej+l) and h−α = −hα.
The algebraically integral weights can be calculated as

P (so(E2l)C) =

{
l∑

i=i

(
λi +

λ0
2
εi

)
: λi ∈ Z

}
.

Recall that a Cartan subalgebra of so(E2l) is given by t =
{diag(iθ1, ..., iθl,−iθ1, ...,−iθl) : θi ∈ R} so the condition exp(H) = I for H ∈ t

boils down to iθi ∈ 2πiZ. Therefore the set of analytically integral weights for
so(E2l)C is given by

A(so(E2l)C) =

{
l∑

i=i

λiεi : λi ∈ Z, λi ∈ Z

}
.

For odd dimensions, we get in a similar way that

R(so(E2l+1)C) = A(so(E2l+1)C) =

{
l+1∑

i=i

λiεi : λi ∈ Z, λi ∈ Z

}

and

P (so(E2l+1)C) =

{
l+1∑

i=i

(
λi +

λ0
2

)
εi : λi ∈ Z

}
,

(see [30]).

Definition. Given a compact Lie group G with maximal torus T the character
group on T , χ(T ), is the group of all Lie homomorphisms ξ : T → C \ {0}.
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Theorem 6.8. Given a compact Lie group G with maximal torus T , then

(i) R ⊆ A ⊆ P ;
(ii) Given λ ∈ (it)∗, λ is in A if and only if there exists ξλ ∈ χ(T ) satisfying

ξλ(exp(H)) = eλ(H) for H ∈ t, where λ ∈ (it)∗ is extended to an element

of (tC)
∗by C− linearity. The map λ→ ξλ establishes a bijection

A←→ χ(T ).

6.5 The Weyl Group, Simple Roots and Weyl Chambers

The Weyl group is introduced in an algebraic and in a geometric way. Further-
more we introduce systems of simple roots, a concept that in some way can be
compared to that of the basis of a vector space.

Definition. Given a compact Lie group G with maximal torus T . The normal-
izer of T in G is defined by N(T ) := {g ∈ G : gTg−1 = T}. The Weyl group of
G is defined by W (G, T ) := N/T .

It can be shown, that this definition is up to isomorphism independent of
the choice of a maximal torus.

For g ∈ N,H ∈ t and λ ∈ t∗ we can define an action of N on t and t∗ by

g(H) =Ad(g)H;

g(λ)(H) =λ(g−1(H)) = λ(Ad(g−1)H).

As before this action can be extended to an action on tC, it, (tC)
∗ and (it)∗ by

C-linearity.
We want to consider the realization of the Weyl group as a reflection group

as well.

Definition. Given the Lie algebra g and Cartan subalgebra t to a compact Lie
group for α ∈ ∆(gC), rα : (it)∗ → (it)∗ is defined by

rα(λ) := λ− 2
B(λ, α)

B(α, α)
α = λ− λ(hα)α.

By W (∆(gC)) we denote the group generated by {rα : α ∈ ∆(gC)}.
As usual the action of W (∆(gC)) on (it)∗ is extended to an action on t∗

by C-linear extension. rα acts on (it′)∗ as the reflection across the hyperplane
perpendicular to α.

Definition. Given a Cartan subalgebra t of the Lie algebra g of a compact Lie
group, let t′ := t ∩ g′. A system of simple roots, Π = Π(gC), is a subset of the
set of roots ∆(gC) that is a basis of (it′)∗ and furthermore satisfies the property
that any root β ∈ ∆(gC) can be written as

β =
∑

α∈Π

kαα,
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with the set {kα : α ∈ Π} being completely contained either in Z≥0 := {k ∈ Z :
k ≥ 0} or in Z≤0 := {k ∈ Z : k ≤ 0} . The elements of Π are called simple roots.
Given a system of simple roots Π, the set of positive roots with respect to Π is

∆+(gC) :=

{
β ∈ ∆(gC) : β =

∑

α∈Π

kαα such that kα ∈ Z≥0∀α ∈ Π

}
.

The set of negative roots with respect to Π is

∆−(gC) :=

{
β ∈ ∆(gC) : β =

∑

α∈Π

kαα such that kα ∈ Z≤0∀α ∈ Π

}
.

So ∆(gC) is the disjoint union of ∆+(gC) and ∆−(gC), and ∆−(gC) =
−∆+(gC).

Example. For so(E2l)C a system of simple roots is given by {εi − εi+1 : 1 ≤
i ≤ l− 1}∪{εl−1+ εl}, and for odd dimensions, we get a system of simple roots
for so(E2l+1)C as {εi − εi+1 : 1 ≤ i ≤ l − 1} ∪ {εl}.

In order to see that systems of simple roots exist we need the definition of a
Weyl chamber and the next theorem.

Definition. Given a Cartan subalgebra t of the Lie algebra g of a compact
Lie group the connected components of (it′)∗ \ ⋃α∈∆(gC)

α⊥ are called Weyl

chambers of (it)∗. Let C be a Weyl chamber, then α ∈ ∆(gC) is called C-
positive if B(C,α) > 0. Furthermore α ∈ ∆(gC) is called indecomposable with
respect to C if α cannot be expressed as α = β+γ with C-positive β, γ ∈ ∆(gC).

Given a Weyl chamber C of (it)∗ we define a system of roots as

Π(C) := {α ∈ ∆(gC) : α is indecomposable and C-positive}.

Conversely, given a system of simple roots Π the associated Weyl chamber of
(it)∗ is defined by

C(Π) := {λ ∈ (it)∗ : B(λ, α) > 0 for α ∈ Π}.

This correspondence establishes a bijection between Weyl chambers and systems
of simple roots, thus guaranteeing the existence of the latter.

Theorem 6.9. Given a Cartan subalgebra t of the Lie algebra g of a compact
Lie group G there is a one-to-one correspondence between

{systems of simple roots} ←→ {Weyl chambers of (it)∗}

mapping a system of simple roots Π to the associated Weyl chamber C(Π) and
a Weyl chamber C to the system of simple roots Π(C). Furthermore W (G) ∼=
W (∆(gC)) and W (G) acts simply transitively on the set of Weyl chambers.
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6.6 Highest Weights

We recall highest weights, which will lead to a classification of irreducible rep-
resentations.

Given a compact Lie group G with maximal torus T and a system of simple
roots Π(gC), the decomposition of the roots of ∆(gC) into positive and negative
roots leads to

gC = n− ⊕ tC ⊕ n+,

where

n± :=
⊕

α∈∆±(gC)

gα.

With this in mind we are prepared to define highest weights.

Definition. Given a representation of a compact Lie group G with Lie algebra
g, a system of positive roots ∆+(gC) and weight space decomposition V =⊕

λ∈∆(V ) Vλ, a nonzero v ∈ Vλ0
is called a highest weight vector of weight λ0

with respect to ∆+(gC) if Xv = 0 for all X ∈ n+. We then call λ0 a highest
weight of V . A weight λ ∈ ∆(gC) is called dominant given that B(λ, α) ≥ 0
for all α ∈ Π(gC). That is, λ lies within the closed Weyl chamber associated to
Π(gC).

Highest weights are of particular interest considering they determine irre-
ducible representations up to isomorphism. As we have seen in Theorem 6.1,
for a compact connected Lie group G a representation of its Lie algebra deter-
mines a representation on G.

Theorem 6.10. Given a connected compact Lie group G and an irreducible
representation V of G the following statements hold true:

(i) V has a unique highest weight λ0;

(ii) The highest weight is dominant and analytically integral;

(iii) Up to scalar multiplication there is a unique highest weight vector;

(iv) Any weight λ ∈ ∆(V ) is of the form

λ = λ0 −
∑

αi∈Π(gC)

niαi

with ni ∈ Z≥0;

(v) For w ∈W (G), wVλ = Vwλ and therefore dimVλ = dimVwλ;

(vi) Using the norm induced by the Killing form, ‖λ‖ ≤ ‖λ0‖
with equality if and only if λ = wλ0 for a w ∈W (G);

(vii) V is uniquely determined by λ0 up to isomorphism.

Because for a compact connected Lie group G an irreducible representation
V is uniquely determined by its highest weight λ, we write Vλ for V and χλ for

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

its character. With the help of Theorem 6.15, which states that we can compute
highest weights as analytically integral weights, we want to give some examples
of highest weights.

Example. For so(E2l)C a Cartan subalgebra is given by tC =
{diag(a1, a2, ..., al,−a1,−a2, ...,−al) : ai ∈ C}. The corresponding roots are
given by ∆(so(E2l)C) = {±(εi ± εj) : 1 ≤ i 6= j ≤ l} and a system of simple
roots by Π(so(E2l)C) = {αi = εi − εi+1 : 1 ≤ i ≤ l − 1} ∪ {αl = εl−1 + εl}. As

the highest weight λ0 is also analytically integral we get that λ0 =
∑l

i=1 λiεi
with λi ∈ Z, so we can also think of λ0 as an l-tuple of integers. Because λ0 is
also dominant and so(E2l)C is simple ([25] page 94)

B(λ0, α) = c tr(λα) = c tr(uλuα) ≥ 0

for α ∈ Π(so(E2l)C). In order to calculate uαi ∈ it, we take a look at its defining
equation αi(H) = B(H,uαi

) for H ∈ it. For the right side we get

B(H,uαi) = c tr(diag(a1, ..., al,−a1, ...,−al) diag(u1, ..., ul,−u1, ...,−ul))

= 2c
l∑

i=1

aiui.

For 1 ≤ i ≤ l − 1 this leads to ai − ai+1 = 2c
∑l

i=1 aiui and therefore

uαi
=

1

2c
(ei,i − ei+1,i+1 − el+i,l+i + el+i+1,l+i+1).

For i = l we obtain

uαl
=

1

2c
(el−1,l−1 + el,l − e2l−1,2l−1 − e2l,2l).

For uλ0
we get

λ0(H) =

l∑

i=1

λiai = ctr(H,uλ0
) = 2c

l∑

i=1

aiui

and, thus,

uλ0
=

1

2c
diag(λ1, ..., λl,−λ1, ...,−λl).

Now we are able to calculate

B(λ0, αi) = ctr(uλ0
uα) =

c

4c2
(λi − λi+i + λi − λi+1) =

1

2c
(λi − λi+1)

for 1 ≤ i ≤ l − 1 and

B(λ0, αl) =
1

2c
(λi + λi+1).
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Considering λ0 is dominant these values of the Killing form are greater or equal
to 0 and therefore we obtain

λ1 ≥ · · · ≥ λl−1 ≥ |λl|
as a condition for the highest weight of an irreducible representation of SO(E2l).
For odd dimensions it can be calculated in the same fashion that for the highest
weight of an irreducible representation of SO(E2l+1),

λ1 ≥ · · · ≥ λl ≥ 0.

To sum this up, the highest weights of irreducible representation of SO(En) are
given by tuples of integers such that

{
λ1 ≥ ... ≥ λl ≥ 0 for odd n,

λ1 ≥ ... ≥ λl−1 ≥ |λl| for even n.
(10)

Example. For the trivial representation of the Lie group SO(n), ρ : SO(n) →
GL(1,C), ρ(g) = 1, the only weight 0 is also the highest weight. As an ⌊n/2⌋-
tuple it is given by λ0 = (0, ..., 0).

Example. Let’s consider the case of the standard representation of SO(En) on
Rn, then the highest weight is given by λ0 = (1, 0, ..., 0).

Example. Let Γ be the standard representation SO(n) on Rn, then ΛkΓC is
an irreducible representation with the highest weight (1, ..., 1, 0, ..., 0) where 1
appears k times for 1 ≤ k ≤

⌊
n
2

⌋
− 1 . For odd n this is also true for k =

⌊
n
2

⌋
.

However, in case that n is even Λn/2ΓC is the direct sum of two irreducible
representations Λn/2ΓC = Γ(1,...1)⊕Γ(1,...,1,−1) (See [10] for more details). From

the identification of exterior powers we get a natural isomorphism ΛkΓC
∼=

Λn−kΓC.

6.7 The Weyl Integration and Character Formulas and the

Highest Weight Classification

Our goal in this subsection is to establish a highest weight classification for
irreducible representations of a compact connected Lie group. We come across
the Weyl integration formula and the Weyl character formula, both important
results for the proof of this classification. Furthermore we get to know another
consequence of the Weyl character formula, the so called second determinantal
formula which will be used in the proof of the generalized Hadwiger theorem.
For more details see [4] and for more details on the second determinantal formula
see [8, 10].

Definition. Let G be a compact Lie group with maximal torus T and Lie
algebra g. X ∈ g is called a regular element of g if z(X) := {Y ∈ g : [X,Y ] = 0}
is a Cartan subalgebra. Let ZG(g) := {h ∈ G : gh = hg} be the centralizer of
g ∈ G, and given a subgroup H of G denote by H0 the connected component of
H containing e. An element g ∈ G is called regular if ZG(g)

0 is a maximal torus.
For the sets of regular elements of G and g we write Greg and greg, respectively.
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The sets of regular elements have a couple of useful properties, in particular
they are dense in a connected Lie group and its Lie algebra.

Theorem 6.11. Given a compact connected Lie group G, then greg is open
dense in g, and Greg is open dense in G.

For the following theorem, recall Theorem 6.8 and the bijection between
analytically integral weights A and the character group mapping λ ∈ A to the
character ξλ.

Theorem 6.12. (Weyl integration formula) Let G be a compact connected Lie
group with maximal torus T and f ∈ C(G). Then

∫

G

f(g) dg =
1

|W (G)|

∫

T

d(t)

∫

G/T

f(gtg−1) dgT dt,

where d(t) =
∏

α∈∆+(gC)
|1− ξ−α(t)|2 for t ∈ T .

Definition. Given a compact Lie group G with maximal torus T let f : t→ C

be a function. We say f descends to T if f(H + Z) = f(H) for H,Z ∈ t

with Z ∈ ker(exp). In that case we write F : T → C for the function given
by F (eH) := f(H). F : T → C is called W-invariant if F (cwt) = F (t) for
w ∈ N(T ).

Definition. Let G be a compact Lie group with maximal torus T . Then ∆ :
t→ C is defined by

∆(H) =
∏

α∈∆+(gC)

(eα(H)/2 − e−α(H)/2)

for H ∈ t.

Definition. Let G be a compact Lie group with maximal torus T and λ be an
analytically integral weight. Let Ξ := {H ∈ t : α(H) /∈ 2πiZ for all α ∈ ∆(gC)}
(this is open dense in t) and ρ := 1

2

∑
α∈∆+(gC)

α, then we define Θλ : Ξ→ C by

Θλ(H) =

∑
w∈W (∆(gC))

det(w)e[w(λ+ρ)](H)

∆(H)

=

∑
w∈W (∆(gC))

det(w)e[w(λ+ρ)−ρ](H)

∏
α∈∆+(gC)

(1− e−α(H))

for H ∈ Ξ.

Lemma 6.13. For a compact Lie group G with maximal torus T and an an-
alytically integral weight λ the function Θλ descends to a smooth W-invariant
function on T reg, and this function uniquely extends to a smooth class function
on Greg.
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Theorem 6.14. (Weyl character formula) Given a compact connected Lie group
G with maximal torus T and Vλ, an irreducible representation of G with highest
weight λ, then χλ, the character of Vλ, satisfies

χλ(g) = Θλ(g)

for g ∈ Greg.

With the help of Weyl’s integration and character formulas the highest
weight classification can be proven. Recall that we have already established
the well-definedness and injectivity of the correspondence between irreducible
representations and highest weights in Theorem 6.10.

Theorem 6.15. (Highest weight classification) Given a compact connected Lie
group G with maximal torus T , then there is a one-to-one correspondence be-
tween irreducible representations and dominant analytically integral weights given
by the mapping Vλ → λ.

We will close this section with the second determinantal formula, which will
be used in the proof of the general version of Hadwiger’s theorem.

Given a tuple of non-negative integers λ = (λ1, ..., λ⌊n/2⌋) satisfying (10) we
define an SO(n) module Γ̄λ by

Γ̄λ :=

{
Γλ ⊕ Γλ′ for even n and λn/2 6= 0,

Γλ otherwise,
(11)

where λ′ = (λ1, ...,−λ⌊n/2⌋). The second determinantal formula expresses the
character of Γ̄λ as a polynomial of the characters Fi of the fundamental repre-
sentations ΛiΓC for i ∈ Z. Note that F0 = Fn = 1, and we set Fi = 0 for i < 0
and i > n. Given a highest weight λ the conjugate µ of λ is given by the tuple
µ = (µ1, ..., µs) where s = λ1, and µj is the number of λis in λ such that λi ≥ j.
Theorem 6.16. (Second determinantal formula) Let λ = (λ1, ..., λ⌊n/2⌋) be
a tuple of non-negative integers satisfying (10) and let µ = (µ1, ..., µs) be the
conjugate of λ. The character of Γ̄λ equals the determinant of the s× s matrix
the i-th row of which is given by
(
Fµi−i+1 Fµi−i+2 + Fµi−i Fµi−i+3 + Fµi−i−1 ... Fµi−i+s + Fµi−i−s+2

)
.

Sometimes we allow s to be greater than λ1, but this only adds more zeros
to the end of the conjugate not changing the determinant of the matrix defined
above. Let #(λ, j) be the number of λis that are equal to j. We can formulate a
corollary which we will need in the proof of the generalized Hadwiger theorem.

Corollary 6.17. If i, j ∈ N are such that n/2 ≤ i ≤ n and i+ j ≤ n, then

FiFj − Fi−1Fj−1 =
∑

λ

char(Γ̄λ),

where the sum ranges over all ⌊n/2⌋-tuples of non-negative integers λ =
(λ1, ..., λ⌊n/2⌋) satisfying (10) and

λ1 ≤ 2, #(λ, 1) = n− i− j, #(λ, 2) ≤ j.
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7 The Generalized Hadwiger Theorem by Alesker,

Bernig and Schuster

We recall the Frobenius reciprocity theorem and a branching theorem for SO(n).
The normal cycle map provides a way to describe the smooth translation invari-
ant valuations, and the Rumin operator enables us to fit the smooth transla-
tion invariant valuations into an exact sequence of SO(n)-modules. With these
prerequisites we are able to generalize Hadwiger’s theorem for valuations with
values in a finite-dimensional irreducible SO(n)-modules. This section is largely
based on [8].

7.1 Prerequisites

We give an overview of the foundations needed in the proof and formulation of
the generalized Hadwiger theorem. Given a Lie group G and a representation
of a closed Lie subgroup H, there exists an induced representation on G itself,
and the Frobenius reciprocity theorem gives a connection between those two
representations. For an arbitrary Lie subgroup H the branching theorem is
about achieving a decomposition of a G-module into irreducible H-modules.
The natural action on the space of smooth translation invariant valuations Val∞

turns it into an SO(n)-module. The Rumin operator enables us to describe the
kernel of the normal cycle map and to fit Val∞ into an exact sequence of SO(n)-
modules. This subsection is based on [8] and [11].

7.1.1 Induced Representations and Frobenius Reciprocity Theorem

For this subsubsection we want to give [4] and [8] as references. Let G be a
Lie group with closed subgroup H. Given a representation of G or H it only is
natural to wonder if this induces a representation of the other. The first part
of this question can be answered effortlessly: Given a representation Θ of G,
a representation ResGHΘ of H is obtained by restriction. For the converse, let
Γ be a finite dimensional complex vector space and C∞(G; Γ) be the space of
all smooth functions from G to Γ. Furthermore let Γ be a representation of H,
then IndH

GΓ ⊆ C∞(G; Γ) is defined by

IndH
GΓ := {f ∈ C∞(G; Γ) : f(gh) = h−1f(g) for all g ∈ G, h ∈ H},

and the action of G on IndH
GΓ is given by left translation

(gf)(u) = f(g−1u)

for g, u ∈ G. The Frobenius reciprocity theorem gives a connection between
these two induced representations.

Theorem 7.1. Let G be a Lie group and H a closed subgroup of G. If Θ is a
representation of G and Γ is a representation of H, then

HomG(Θ, IndH
GΓ) ∼= HomH(ResGHΘ,Γ)
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as vector spaces.

Due to Schur’s lemma the multiplicity of an irreducible representation V of G
in an arbitrary representation of G is given by m(V,W ) = dim HomG(V,W ) =
dim HomG(W,V ). So for irreducible Γ and Θ the Frobenius reciprocity theorem
results in

m(Θ, IndH
GΓ) = m(ResGHΘ,Γ). (12)

7.1.2 Branching Theorem for SO(n)

Let G be a Lie group, V a G-module that decomposes into irreducible sub-
modules V ∼=

⊕n
i=1 niVi and H be a subgroup of G. In general an irreducible

G-module Vi is not an irreducible H-module. However, in some settings such
as G being compact and V being finite dimensional, Vi can be decomposed
into irreducible H-modules. So V itself can be decomposed into a sum of irre-
ducible H-modules. There exist various formulas describing the multiplicities of
those subgroup modules for classical groups and subgroups, and they are called
branching theorems or formulas. Here we are interested in a branching theorem
in the case of an SO(n) representation restricted to SO(n − 1). See [10] page
426 for further details.

Theorem 7.2. Let Γλ be an irreducible SO(n)-module with highest weight λ =
(λ1, ..., λ⌊n/2⌋), so λ satisfies (10). Then

Res
SO(n)
SO(n−1)Γλ =

⊕

µ

Γµ,

where the sum ranges over all µ = (µ1, ..., µk) with k := ⌊(n− 1)/2⌋ and
{
λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ ... ≥ µk−1 ≥ λ⌊n/2⌋ ≥ |µk| for odd n,

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ ... ≥ µk ≥ |λn/2| for even n.
(13)

7.1.3 Valuations and Normal Cycles

We will define a norm on the space of continuous translation invariant complex
valued valuations turning it into a Banach space. This Banach space becomes a
GL(n)-module under the natural action. O(n) finite and smooth valuations are
defined, and the normal cycle map establishes an SO(n)-module isomorphism
between the space of smooth translation invariant valuations of degree i and
those of degree n− i.

First we make some slight adjustments and generalizations to the setting
in which we consider valuations. Let A be an abelian semigroup and V be an
n-dimensional Euclidean vector space. Denote by K(V ) the set of all nonempty
convex compact subsets of V .

Definition. A function φ : K(V )→ A is called a valuation if it satisfies

φ(K ∪ L) + φ(K ∩ L) = φ(K) + φ(L)

for K,L,K ∪ L ∈ K(V ).
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We have already come across the following notions in the first part.

Definition. A valuation φ is called translation invariant given that φ(K+v) =
φ(K), it has degree i, or is homogeneous of degree i, if φ(tK) = tiφ(K), and
it is called even if φ(−K) = φ(K) and odd if φ(−K) = −φ(K) for all v ∈ V ,
K ∈ K(V ) and t > 0. φ is called continuous given that it is continuous with
respect to the Hausdorff metric on K(V ).

By Val we denote the vector space of all continuous translation invariant
complex valued valuations and by Val±i its subspace of valuations of degree i
of even/odd parity. The dimensions of Val0 and Valn are given by

dim Val0 = dim Valn = 1, (14)

where the first claim is easy to check, the second one was shown by Hadwiger
in [14].

Due to an important result by McMullen, see [12], Val can be decomposed:

Val =
n⊕

i=0

(Val+i ⊕Val−i ). (15)

A well known consequence of McMullen’s decomposition is the following corol-
lary.

Corollary 7.3. Let C ∈ K(V ) be a fixed convex body with non-empty interior.
Then under the norm

‖φ‖ = sup{|φ(K)| : K ⊆ C}

the space Val becomes a Banach space. Moreover, a different choice of C yields
an equivalent norm.

There is s natural continuous action of SO(n) on Val defined by

A · φ(K) = φ(A−1K), A ∈ SO(n),K ∈ K(V ),

turning Val into an SO(n)-module.
The following theorem, known as the irreducibility theorem, was shown by

Alesker [13].

Theorem 7.4. The natural action of GL(n) on Val±i is irreducible for every
i ∈ {1, ..., n}.

We want to introduce two subsets of Val which will turn out to be dense.

Definition. A valuation φ ∈ Val is called O(n) finite if the O(n) orbit of φ,
i.e., the subspace span{Aφ : A ∈ O(n)}, is finite-dimensional. φ ∈ Val is called
smooth if the map GL(n)→ Val defined by A 7→ Aφ is infinitely differentiable.
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The space of continuous translation invariant O(n) finite valuations is de-
noted by Valf , the space of smooth translation invariant valuations by Val∞,
and the subspaces of given parity and degree are denoted by Val±,f

i and Val±,∞
i .

In [6] on page 141 it is shown that Val±,f
i is a dense O(n)-invariant subspace

of Val±i and that Val±,∞
i is a dense GL(n)-invariant subspace of Val±i . Fur-

thermore, Valf ⊆ Val∞ and from (15) a decomposition of the spaces Valf and
Val∞ can be deduced:

Valf =

n⊕

i=0

(Val+,f
i ⊕Val−,f

i );

Val∞ =

n⊕

i=0

(Val+,∞
i ⊕Val−,∞

i ).

The smooth translation invariant valuations can be equivalently described by
the normal cycle map. Let SV = V × Sn−1 denote the unit sphere bundle on
V . The product structure of SV induces a bigrading on Ω∗(SV ), that is, the
space of all smooth differential forms on SV . ω ∈ Ω∗ is translation invariant
given that

t∗yω = ω

for y ∈ V , where t∗y is the pullback of the map ty : SV → SV given by

ty(x, u) = (x+ y, u).

Definition. Given K ∈ K(V ), the tangent cone to K at x is the set T (K,x) :=
cl{y ∈ V : ∃ε > 0 x+ εy ∈ K}, where cl denotes the closure. The normal cone
to k at x is defined by N(K,x) = {f ∈ V ∗ : f(y) ≥ 0 for all y ∈ T (K,x)} (see
[17]). The normal cycle is the Lipschitz submanifold of SV defined by

nc(K) ={(x, u) ∈ SV : x ∈ ∂K, u ∈ N(K,x)}

(see [8]). Let Ωk,l denote the space of smooth translation invariant differential
forms on SV with bidegree (k, l). Considering a special case of Theorem 5.2.1
in [17] we get the following lemma.

Lemma 7.5. For 0 ≤ i ≤ n− 1 the map ν : Ωi,n−i−1 → Val∞i defined by

ν(ω)(K) =

∫

nc(K)

ω,

is surjective.

In the next subsection we will discuss the kernel of this map.
Lemma 7.5 is the main tool used in [16] to establish a Hard Lefschetz theorem

for translation invariant valuations. A direct consequence of this result is the
following theorem.

Theorem 7.6. For 0 ≤ i ≤ n the spaces Val∞i and Val∞n−i are isomorphic as
SO(n)-modules.
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7.1.4 The Rumin-de Rham Complex

Describing the unit sphere bundle as a contact manifold yields the Rumin op-
erator. This operator enables us to describe the kernel of the normal cycle map
and fit the space Val∞i into an exact sequence of SO(n)-modules.

We start by introducing the notion of a contact manifold (see [18]). Let M
be a differentiable manifold of dimension n, TM its tangent bundle and ξ ⊂ TM
be a smooth field of hyperplanes , that is, at p ∈M ξp ⊂ TpM is of codimension
1. Locally ξ induces a 1-form up to multiplication by a smooth non-vanishing
function f : M → R via ξp = kerαp with αp ∈ T ∗

pM \ {0}. Note that for α to
be globally defined in this way, some extra condition has to be met, namely ξ
has to be coorientable.

Definition. Let M be a differentiable manifold of dimension 2n+1. A contact
structure is a maximally non-integrable hyperplane field ξ = kerα ⊂ TM , that
is, the (locally) defining differential 1–form α is required to satisfy α∧(dα)n 6= 0.
Such an α is called a contact form, and the pair (M, ξ) is called contact manifold.

Note that the condition α ∧ (dα)n 6= 0 is independent of the choice of α, as
(fα) ∧ (dfα)n = fn+1α ∧ (dα)n.

Returning to our setting, we have the (2n − 1)-dimensional manifold SV ,
which becomes a contact manifold with the canonical contact form

α(x,u)(w) =
〈
u, d(x,u)π(w)

〉

for w ∈ T(x,u)SV , where π : SV → V is the canonical projection (see [8], [11]
and [16]).

Lemma 7.7. Let M be a smooth (2n − 1)-dimensional contact manifold with
global contact form α. If ω ∈ Ωn−1(M), then there exists a unique differential
form Dω ∈ Ωn(M) such that Dω annihilates the contact distribution and such
that there exists ζ ∈ Ωn−2(M) with Dω = d(ω + α ∧ ζ) and Dω ∧ α = 0. D is
called the Rumin operator.

With the Rumin operator we are able to describe the kernel of the normal
cycle map. As stated in [15], the following theorem is a special case of Theorem
1 in [16].

Theorem 7.8. Given the normal cycle map ν : Ωi,n−i−1 → Val∞i , then for
0 ≤ i ≤ n− 1, ω ∈ ker ν if and only if Dω = 0 and π∗ω = 0.

Our goal is to fit Val∞i into an exact sequence of SO(n)-modules. The
product structure of SV induces a bigrading on Ω∗(SV ), the space of all complex
valued smooth differential forms on SV . By Ωk,l(SV ) we denote the space
of smooth differential forms on SV of bidegree (k, l). Therefore we get the
decomposition

Ω∗(SV ) =
⊕

Ωk,l(SV ).
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Recall that Ωk,l ⊆ Ωk,l(SV ) is the subspace of translation invariant forms.
Furthermore we introduce to following subspaces:

The ideal generated by α and dα where α is the contact form of SV

Ii,j :={ω ∈ Ωi,j : ω = α ∧ ξ + dα ∧ φ, ξ ∈ Ωi−1,j , φ ∈ Ωi−1,j−1};
the subspace of vertical forms

Ωi,j
v :={ω ∈ Ωi,j : α ∧ ω = 0};

and the subspace of horizontal forms

Ωi,j
h :=Ωi,j/Ωi,j

v .

We fix a point u0 ∈ Sn−1 and let SO(n − 1) be realized as the stabilizer of
SO(n) at u0, that is, SO(n − 1) ∼= SO(n)u0

:= {A ∈ SO(n) : Au0 = u0}. Let
W0 = Tu0

Sn−1 ⊗C be the complexification of the tangent space of Sn−1 at u0.

Lemma 7.9. For i, j ∈ N there is an isomorphism of SO(n)-modules

Ωi,j
h
∼= Ind

SO(n)
SO(n−1)(Λ

iW ∗
0 ⊗ ΛjW ∗

0 ).

Corollary 7.10. If i, j ∈ N are such that i + j ≤ n − 1, then there is an
isomorphism of SO(n)-modules

Ωi,j
p ⊕ Ind

SO(n)
SO(n−1)(Λ

i−1W ∗
0 ⊗ Λj−1W ∗

0 )
∼= Ind

SO(n)
SO(n−1)(Λ

iW ∗
0 ⊗ ΛjW ∗

0 ).

The subspace of primitive forms is defined by

Ωi,j
p :=Ωi,j/Ii,j .

The primitive forms are of particular interest, considering the space Vali fits
into an exact sequence of spaces of primitive forms, as shown in [15]. Note that
dIi,j ⊆ Ii,j+1, thus the exterior derivative induces a linear operator

dQ : Ωi,j
p → Ωi,j+1

p .

Theorem 7.11. For 0 ≤ i ≤ n there exists an exact sequence

0→ ΛiV ∗
C →֒ Ωi,0

p

dQ−−→ Ωi,1
p

dQ−−→ · · · dQ−−→ Ωi,n−i−1
p

ν−→ Val∞i → 0.

The natural smooth action of SO(n) on SV is given by

lϑ(x, u) = (ϑx, ϑu)

with ϑ ∈ SO(n). The vector spaces Ωk,l become SO(n)-modules under the
continuous action

ϑ · ω = l∗ϑ−1ω

for ϑ ∈ SO(n) and ω ∈ Ωk,l. As dQ and ν are both SO(n)-equivariant, we get
the following corollary:

Corollary 7.12. For 0 ≤ i ≤ n there is an exact SO(n)-equivariant sequence
of SO(n)-modules

0→ ΛiV ∗
C →֒ Ωi,0

p

dQ−−→ Ωi,1
p

dQ−−→ · · · dQ−−→ Ωi,n−i−1
p

ν−→ Val∞i → 0.
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7.2 Statement and Proof

Following Alesker, Bernig and Schuster (see [8]) we formulate and proof the gen-
eralized Hadwiger characterization theorem and see that the Hadwiger theorem
is indeed a special case of this result.

Before we can prove the generalized Hadwiger characterization theorem we
prove an equivalent result, that describes the decomposition of Vali into irre-
ducible SO(n)-modules.

Theorem 7.13. Let 0 ≤ i ≤ n. The vector space Vali is the direct sum of
the irreducible representations of SO(n) with highest weights (λ1, λ2, ..., λ⌊n/2⌋)
precisely satisfying the following conditions:

(i) λj = 0 for j > min{i, n− i}; (16)

(ii) |λj | 6= 1 for 1 ≤ j ≤ ⌊n/2⌋ ;
(iii) |λ2| ≤ 2.

In particular, under the action of SO(n) the space Vali is multiplicity free.

Proof. We have seen that any representation of a compact group decomposes
into irreducible summands, so Vali ∼=

⊕
mλΓλ where mλ is the multiplicity

of the irreducible SO(n)-module Γλ in Vali and the direct sum ranges over all
highest weights. Denote by S the set of highest weights satisfying the conditions
(16), then we need to show that m(Vali, λ) = 1 for λ ∈ S and m(Vali, λ) = 0
otherwise. The cases i = 0 and i = n are trivial (see equation (14)). Due to
Theorem 7.6 we only need to deal with the cases where n/2 ≤ i < n.

Let Γλ be an arbitrary SO(n)-module with highest weight λ = (λ1, ..., λ⌊n/2⌋).

ΛiW ∗
0 ⊗ ΛjW ∗

0 is finite-dimensional, so the multiplicity m(Ind
SO(n)
SO(n−1)(Λ

iW ∗
0 ⊗

ΛjW ∗
0 ), λ) is finite-dimensional due to (12), and therefore the multiplicity of Γλ

in the modules Ωi,j is finite as well. Because the spaces Val∞i are quotients of
Ωi,n−i−1

p according to Corollary 7.12 the multiplicity of Γλ in Val∞i is finite too.

According to the exact sequence in Corollary 7.12, Val∞i
∼= Ωi,n−i−1

p / ker(ν) =

Ωi,n−i−1
p /dQ(Ω

i,n−i−2
p ). For an arbitrary G-module A with submodule B and

an irreducible G-module Γ we have HomG(A/B,Γ) = HomG(A,Γ)/HomG(B,Γ)
and therefore

dim(HomG(A/B,Γ)) = dim(HomG(A,Γ))− dim(HomG(B,Γ)).

So we get

m(Vali, λ) =m(Ωi,n−i−1
p , λ))−m(dQ(Ω

i,n−i−2
p , λ)

and repeating this procedure for

dQ(Ω
i,n−i−k
p ) ∼= Ωi,n−i−2

p / ker(dQ) = Ωi,n−i−k
p /dQ(Ω

i,n−i−k−1
p )

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

results in

m(Vali, λ) = (−1)n−im(ΛiVC, λ) +
n−i−1∑

j=0

(−1)n−1−i−jm(Ωi,j
p , λ). (17)

Let W ∼= W ∗ be the complex standard representation of SO(n − 1), then by
Corollary 7.10 and χV1⊕V2

= χV1
+ χV2

we get

m(Ωi,j
p , λ) = m(Ind

SO(n)
SO(n−1)(Λ

iW ⊗ ΛjW ), λ)

−m(Ind
SO(n)
SO(n−1)(Λ

i−1W ⊗ Λj−1W ), λ).

An application of Corollary 6.17, with n replaced by n−1 and 0 ≤ j ≤ n− i−1,
results in

m(Ωi,j
p , λ) =

∑
m(Ind

SO(n)
SO(n−1)Γ̄σ, λ), (18)

where Γ̄σ is defined by (11) and the sum ranges over all k := ⌊(n− 1)/2⌋-tuples
of non-negative highest weights σ = (σ1, ..., σk) of SO(n− 1)-modules such that

σ1 ≤ 2 #(σ, 1) = n− 1− i− j #(σ, 2) ≤ j. (19)

Denoting by Pi the set containing the k-tuples satisfying the conditions (19)
and combining (17) and (18) we get

m(Vali, λ) = (−1)n−im(ΛiVC, λ) +
∑

σ∈Pi

(−1)|σ|m(Ind
SO(n)
SO(n−1)Γ̄σ, λ), (20)

where |σ| stands for the sum over all integers of the integer tuple σ.

We want to compute
∑

σ∈Pi
(−1)|σ|m(Ind

SO(n)
SO(n−1)Γ̄σ, λ). Due to the Frobe-

nius reciprocity Theorem 7.1

m(Ind
SO(n)
SO(n−1)Γ̄σ, λ) =m(Res

SO(n)
SO(n−1)Γλ, Γ̄σ).

Now we use the branching theorem for SO(n), Theorem 7.2, and get

m(Ind
SO(n)
SO(n−1)Γ̄σ, λ) =m(

⊕

µ

Γµ, Γ̄σ),

where µ satisfies the conditions (13). In order to account for the definition of
Γ̄σ and the conditions we have derived in (19) for σ let λ∗ = (λ∗1, ..., λ

∗
⌊n/2⌋),

where λ∗1 := min(λ1, 2) and λ∗j := |λj | for 0 < j ≤ ⌊n/2⌋ and we achieve that

∑

σ∈Pi

(−1)|σ|m(Ind
SO(n)
SO(n−1)Γ̄σ, λ) =

∑

µ

(−1)|µ|,

where the sum on the right ranges over all sequences µ = (µ1, ..., µk) with
µn−i = 0 and

{
λ∗1 ≥ µ1 ≥ λ∗2 ≥ µ2 ≥ ... ≥ µk−1 ≥ λ∗⌊n/2⌋ ≥ |µk| for odd n,

λ∗1 ≥ µ1 ≥ λ∗2 ≥ µ2 ≥ ... ≥ µk ≥ |λ∗n/2| for even n.
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If λ∗n−i+1 > 0 there is no such sequence (as µn−i = 0), so we will continue with
λ∗n−i+1 = 0 and obtain

∑

µ

(−1)|µ| =
n−i−1∏

j=1

λ∗
j∑

µj=λ∗
j+1

(−1)µj .

These sums and the resulting product are zero, given that the λ∗j for 0 ≤ j ≤ n−1
have different parity. So we just consider the cases where the λ∗j have the same
parity, which leads to further simplification

n−i−1∏

j=1

λ∗
j∑

µj=λ∗
j+1

(−1)µj = (−1)(n−i−1)λ∗
1 ,

as
∑λ∗

j

µj=λ∗
j+1

(−1)µj = (−1)λ∗
j = (−1)λ∗

1 . Recall that m(Ind
SO(n)
SO(n−1)Γ̄σ, λ) =

m(Res
SO(n)
SO(n−1)Γλ, Γ̄σ), so we obtain for i > n/2

∑

σ∈Pi

(−1)|σ|m(Ind
SO(n)
SO(n−1)Γ̄σ, λ) =





(−1)n−i−1 if Γλ
∼= Λn−iVC,

1 if λ ∈ S,
0 otherwise.

In case i = n/2, so n has to be even, we get

∑

σ∈Pi

(−1)|σ|m(Ind
SO(n)
SO(n−1)Γ̄σ, λ) =





(−1)i−1 if λ = (1, ..., 1,±1),
1 if λ ∈ S,
0 otherwise.

We are now able to calculate m(Vali, λ), while differentiating between the cases
above. First we consider i > n/2:

λ = (1, ..., 1, 0, ..., 0), that is, Γλ
∼= ΛiVC ∼= Λn−iVC:

m(Vali, λ) =(−1)n−im(ΛiVC, λ)︸ ︷︷ ︸
=1

+(−1)n−i−1 = 0.

λ ∈ S:

m(Vali, λ) =(−1)n−im(ΛiVC, λ)︸ ︷︷ ︸
=0

+1 = 1.

for all other λs:

m(Vali, λ) =(−1)n−im(ΛiVC, λ)︸ ︷︷ ︸
=0

+0 = 0.

If i = n/2, we obtain:
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λ = (1, ..., 1,±1), recall that Λn/2VC ∼= Γ(1,...,1) ⊕ Γ(1,...,1,−1):

m(Valn/2, λ) =(−1)n/2m(Λn/2VC, λ)︸ ︷︷ ︸
=0

+(−1)n/2−1 = 0.

λ ∈ S:

m(Valn/2, λ) =(−1)n/2m(Λn/2VC, λ)︸ ︷︷ ︸
=0

+1 = 1.

for all other λs:

m(Valn/2, λ) =(−1)n/2m(Λn/2VC, λ)︸ ︷︷ ︸
=0

+0 = 0.

So we have shown that m(Vali, λ) = 1 if and only if λ ∈ S for 1 ≤ i ≤ n,
that is, λ satisfies the conditions (16).

Our next goal is to reformulate this theorem in terms of continuous transla-
tion invariant SO(n)-equivariant i-homogeneous valuations.

Definition. The vector space of maps f : X → Y between two G-sets X,Y
becomes a G-module with the natural action

g · f(x) := g · φ(g−1 · x), g ∈ G, x ∈ X.

Denote by ΓVal the space of non-trivial continuous translation invariant
valuations with values in Γ. This space becomes an SO(n)-module with the
natural action from above. We recall what equivariance means in our setting of
valuations: Given a Lie group G and a finite-dimensional G-module Γ, φ ∈ ΓVal
is called G-equivariant if

φ(gK) =g · φ(K), g ∈ G,K ∈ K(V ).

By ΓValG we denote the subspace of G-equivariant elements of the module
ΓVal. The above notation coincides with the notation for G-invariant elements
of a G-module, however the following lemma clarifies.

Proposition 7.14. A map f : X → Y between two G-sets X,Y is equivariant
if and only if it is invariant under the natural G-action on the space of maps
between G-modules.

Proof. Considering f is G-equivariant and evaluating at g−1K we get φ(K) =
g · φ(g−1K) = g · φ(K), where the last action is the natural action on the space
of functions between G-modules, therefore f is G-invariant. The other direction
is similar.

Lemma 7.15. Given a finite-dimensional SO(n)-module Γ, then ι : Val⊗Γ→
ΓVal defined by ι(φ ⊗ v) = φ · v is an isomorphism of vector spaces. This
statement holds true if we restrict to valuations of degree i.
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Proof. Let ι : Val⊗ Γ→ ΓVal be defined by ι(φ⊗ v) = φv. Then ι is injective
because its kernel consists only of the zero vector. To show that ι is surjective,
take φ ∈ ΓVal a basis (bi)

k
i=1 of Γ and let b∗i (φ) be defined via b∗i (φ)(K) :=

b∗i (φ(K)),K ∈ K(Γ) where b∗i is the dual element to bi. It is easy to see that the
b∗i (φ) are continuous translation invariant valuations, so an arbitrary φ ∈ ΓVal

can be expressed as φ =
∑k

i=1 b
∗
i (φ)bi, and thus ι is surjective. Given valuations

of degree i, the b∗i (φ) are of degree i as well, completing the proof.

Given a representation Γ the representation on the dual space Γ∗ is given by
the action

(A · f)(u) = f(A−1u)

for A ∈ SO(n), f ∈ Γ∗, u ∈ Γ. A representation is called self-dual given that
Γ and Γ∗ are isomorphic. The following lemma (see Lemma 3.2 in [8]) shows
that if a representation Γ satisfies the conditions (16), then Γ∗ satisfies these
conditions as well.

Lemma 7.16. Let λ = (λ1, ..., λ⌊n/2⌋) be a tuple of integers satisfying the con-
ditions (16). Given that n 6≡ 2 mod 4, then all irreducible representations Γλ

of SO(n) are self-dual. If n ≡ 2 mod 4, then the dual of an irreducible repre-
sentation Γλ is given by Γ(λ1,...,λn/2−1,−λn/2).

Now we can formulate the main theorem of this part: a Hadwiger-type
characterization theorem for continuous translation invariant SO(n)-equivariant
i-homogeneous valuations with values in a SO(n)-irreducible space Γ. It is a
consequence of Theorem 7.13 - in fact it is even equivalent.

Theorem 7.17. Let Γ be a finite-dimensional irreducible SO(n) representation
and let 0 ≤ i ≤ n. There exists a non-trivial continuous translation invariant
SO(n)-equivariant valuation of degree i with values in Γ if and only if the highest
weight of Γ satisfies the conditions (16). This valuation is unique up to scaling.

Proof. Let Γµ be a finite-dimensional irreducible SO(n)-module of dimension k
and ΓµVali be the space of non-trivial continuous translation invariant valua-
tions of degree i with values in Γµ. Theorem 7.13 states that Vali =

⊕
λ∈S Γλ

where S is the set containing all highest weights satisfying the conditions (16).
We want to calculate the dimension of the vector space of the SO(n)-equivariant
maps of ΓλVali. Due to Lemma 7.15 we get

dim(ΓµVali)
SO(n) = dim(Vali ⊗ Γµ)

SO(n) = dim(
⊕

λ∈S

Γλ ⊗ Γµ)
SO(n)

= dim(
⊕

λ∈S

Γ
SO(n)
λ ⊗ ΓSO(n)

µ ) =
∑

λ∈S

dim(
⊕

λ∈S

Γλ ⊗ Γµ)
SO(n),

where the second to last equation holds, as SO(n) acts component wise on tensor
products and sums. Because φ : V ∗⊗W → Hom(V,W ) given by f⊗w 7→ f(·)w
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is an isomorphism which translates SO(n)-invariance into SO(n)-equivariance,
we get that

∑

λ∈S

dim(
⊕

λ∈S

Γλ ⊗ Γµ)
SO(n) =

∑

λ∈S

dim HomSO(n)(Γ
∗
λ,Γµ)

=
∑

λ∈S

dim HomSO(n)(Γλ,Γµ) =

{
1 if µ ∈ S,
0 otherwise.

The second equation above holds due to Lemma 7.16 and the last one is a
consequence of Schur’s lemma, so the proof is complete.

Example. Consider the trivial representation Γ(0,...,0) of SO(n), then λ satisfies
the conditions (16), thus by Theorem 7.17 there exists a non-trivial continuous
rigid motion invariant valuation of degree i which is unique up to scaling. So
the Hadwiger characterization Theorem 2.8 is a special case of Theorem 7.17.

Example. Given the standard representation Γ(1,...,0)
∼= VC of SO(n), we see

that there is no non-trivial continuous translation invariant valuation of degree
i, because λ does not satisfy the conditions (16).
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8 Unitary Steiner Points

Klimyk [20] introduced a formula for decomposing the tensor product of irre-
ducible representations Γ1,Γ2, that is easier to calculate than the formula of
Steinberg [32], however requires the knowledge of all weights of Γ1 or Γ2. Given
a compact symmetric pair (G,K) a theorem of Helgason [24] provides a bijec-
tion from the spherical representations of (G,K) to Z-linear combinations of
specific fundamental weights. With these two results and the general Hadwiger
characterization theorem, Wannerer [23] calculated the dimensions of the spaces
of continuous translation invariant U(n)-equivariant valuations of degree i with
values in Cn for n ≥ 3. Furthermore he characterized the Steiner point map
as the continuous Minkowski additive unitary affine transformation-equivariant
map from K(Cn) to Cn. Recently Böröczky, Domokas and Solanes [27] calcu-
lated the dimensions of the space of translation invariant unitary equivariant
tensor valuations for n ≥ 2 using branching, in particular a theorem of King,
and the generalized Hadwiger theorem we encountered above. Additionally,
with the work of Wannerer [28], they were able to provide a basis for the vector
valued case.

8.1 Decomposition of Tensor Products of Irreducible Rep-

resentations - Klimyk’s Formula

In this subsection we want to decompose a tensor product of irreducible rep-
resentations into a direct sum of irreducible representations. We use a for-
mula taken from Klimyk’s Paper [20] and apply it to the SO(2n) representation
C2n ⊗ Γλ.

Let us consider a semisimple complex Lie algebra g with irreducible rep-
resentations Γλ1

and Γλ2
. Then the tensor product of these representations

is fully reducible, that is, it is decomposable into a direct sum of irreducible
representations:

Γλ1
⊗ Γλ2

=
∑

µ

mµΓµ (21)

where the summation is over all highest weights µ of g and mµ is the multiplicity
of Γµ in Γλ1

⊗ Γλ2
. There exists an explicit formula from Steinberg [32] to

calculate mµ, however given a large Weyl group, it is not easy to apply (see
[21] for more detail). Given that the weights of one of the representations are
known, the formula can be significantly simplified.

Let P be the set of algebraically integral weights and P+ be the set of
dominant weights in P . To see that our definition of algebraically integral
weights matches the one in Klimyk’s Paper see [5] Proposition 4.62. Given the
Weyl Group W = W (∆(g)) we say, elements of P are equivalent if one can
be obtained by the action of the Weyl group on the other. Denote by {ν} the
dominant element equivalent to ν ∈ P and by r := 1

2

∑
α∈∆+(g) α the half-sum

of positive roots.
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Theorem 8.1. If Γλ1
and Γλ2

are irreducible representations of a semisimple
Lie algebra g and (21) holds, then

mµ =
∑

ν
{ν+λ2+r}=µ+r

mν βν+λ2+r,

where the summation is over all weights ν of Γλ1
such that {ν+λ2+ r} = µ+ r

and

βν+λ2+r =





0 if there exists s ∈W, s 6= e such that s(ν + λ2 + r) =

ν + λ2 + r,

det t t ∈W if such s does not exist and t(ν + λ2 + r) =

{ν + λ2 + r}.

We want to apply this formula to the SO(2n) representation C2n⊗Γλ where
C2n is the standard representation of SO(2n) with the highest weight λ1 =
(1, 0, ..., 0) and Γλ is some irreducible SO(2n)-module. We have seen that the
algebraically integral weights are given by

P =

{
l∑

i=i

(
λi +

λ0
2
εi

)
: λi ∈ Z

}
.

Recall that for a simple root α ∈ Π(so(E2n)C) the hα are given by hεi−εi+1
=

(Ei−Ei+1)−(Ei+n−Ei+n+1) and hεi+εi+1
= (Ei+Ei+1)−(Ei+n+Ei+n+1). So

for λ =
∑n

i=1 λiεi the condition B(λ, α) = B(hλ, hα) = λ(hα) ≥ 0 is equivalent
to the system of equations

λi − λi+1 ≥ 0, for 1 ≤ i ≤ n− 1;

λn−1 + λn ≥ 0,

resulting in the condition

λ1 ≥ · · · ≥ λn−1 ≥ |λn| .

Therefore the dominant algebraically integral weights are given by

P+ = {λ ∈ P : λ1 ≥ · · · ≥ λn−1 ≥ |λn|}.

We take a maximal torus T = {diag(eiθ1 , ..., eiθl , e−iθ1 , ..., e−iθl), θi ∈ R} of
SO(E2n). The Weyl group W = W (SO(E2n), T ) of SO(E2n) is given by the
semidirect product

W ∼= Sn ⋉ (Z2)
n−1

and it acts on (θ1, ..., θn) ∈ it and (λ1, ..., λn) ∈ (it)∗ by all permutations and
even sign changes of the coordinates. Check [4] page 138 for further details.
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The positive roots ∆+(so(E2n)C) are given by {εi − εj : 1 ≤ i < j ≤
n} ∪ {εi + εj : 1 ≤ i < j ≤ n} and we calculate

r =
1

2

∑

α∈∆+(so(E2n)C)

α =

n∑

i=0

εi.

We are now able to calculate the multiplicities mµ in the decomposition of
C2n ⊗ Γλ =

∑
µmµΓµ into a direct sum of irreducible representations using

Theorem 8.1:

mµ =
∑

ν
{ν+λ+(1,...,1)}=µ+(1,...,1)

mν βν+λ+(1,...,1),

where the summation is over all weights of C2n, that is, {±εi : 1 ≤ i ≤ n}, and
mν is the multiplicity of ν in C2n. Using that mν is 1 it follows that

C2n ⊗ Γλ =
∑

µ

Γµ,

where the summation ranges over all highest weights µ of SO(2n) that can be
expressed as µ = λ± εi for some 1 ≤ i ≤ n.

8.2 Theorem of Helgason

We have recalled the theory for the classification of highest weights of a compact
Lie group G. In this section, we want to extend this theory to a compact Lie
group with a compact subgroup K and an involutive automorphism θ on G.
θ decomposes the Lie algebra g into a direct sum of two vector spaces, one
corresponding to the Lie algebra k ofK. A theory of weights and roots, similar to
the one we have already encountered, relative to this decomposition is described.
Our goal is the classification of spherical representations via D(G,K), which
is the equivalent to the dominant analytically integral weights relative to the
decomposition of g. This provides an additional condition for highest weights of
SO(2n) that have U(n) invariant elements. We will follow Takeuchi’s “Modern
Spherical Functions” [24] and give a rough sketch of the underlying theory.

Definition. Let G be a connected Lie group and K be a compact subgroup of
G. An irreducible representation of G with a K-invariant element is called a
spherical representation, and by D(G,K) we denote the set of all equivalence
classes of spherical representations.

Definition. Let G be a connected Lie group, and let K be a compact subgroup
of G. The pair (G,K) is called a Riemannian symmetric pair if there exists
an involutive C∞ automorphism θ of G such that G0

θ ⊆ K ⊆ Gθ where Gθ =
{x ∈ G : θ(x) = x} and G0

θ is the identity component of Gθ. Given that G is
compact, a Riemannian symmetric pair (G,K) is called a compact symmetric
pair.
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Denoting the differential of θ by θ as well and the Lie algebra of G by g, the
Lie algebra k of the subgroup K is given by

k = {X ∈ g : θ(X) = X}.

Setting

m = {X ∈ g : θ(X) = −X},

and considering θ is involutive, we get a vector space decomposition

g = k⊕m,

where m is called the canonical complement of the pair (G,K) or the pair (g, k).
Because θ is an automorphism of g, we have [k, k] ⊆ k, [k,m] ⊆ m, [m,m] ⊆ k.

Definition. Let (G,K) be a Riemannian symmetric pair. A maximal Abelian
subalgebra which is contained in the canonical complement m is called a Cartan
subalgebra of the pair (G,K).

Let a be a Cartan subalgebra of the pair (G,K) and t a Cartan subalgebra
of G containing a, then t decomposes into t = a⊕ b where b = t ∩ k. Now take
an inner product(·, ·) on g which is invariant under G and θ, and fix it. Notice
that as θ is an involution, there always exists such an inner product. Let us
denote by O(t) the group of orthogonal transformations of t with respect to the
inner product (·, ·). We define σ ∈ O(t) by

σ(H) = σ(H1 +H2) = −H1 +H2, H1 ∈ b, H2 ∈ a.

For 0 6= α ∈ t set α∗ := 2α
(α,α) which is called the inversion of α. The following

definition of the roots of g relative to the Cartan subalgebra t is, up to a constant,
equivalent to the one we used before.

Definition. For α ∈ t set

g̃α = {X ∈ gC : [H,X] = 2πi(α,H)X,H ∈ t}

the root subspace associated with α and

Σ(G) = {α ∈ t : α 6= 0, g̃α 6= {0}}

the set of roots of G relative to t. This leads to a decomposition of gC into the
root subspaces relative to t:

gC = tC +
∑

α∈Σ(G)

g̃α.

By definition (α, z(g)) = {0} and therefore, as g = z(g)⊕ g′, Σ(G) ⊆ t′ = t ∩ g′.

In a similar fashion we can define roots relative to the maximal abelian
subalgebra a contained in m .
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Definition. For γ ∈ a set

g̃γ = {X ∈ gC : [H,X] = 2πi(γ,H)X,H ∈ a}
the root subspace associated with γ and

Σ(G,K) = {γ ∈ t : γ 6= 0, g̃γ 6= {0}}
the set of roots of G relative to a. This leads to a decomposition of gC into the
root subspaces relative to a:

gC = tC +
∑

α∈Σ(G,K)

g̃α.

We set Σ0(G) = Σ(G) ∩ b, then Σ(G,K) = Σ(G) \ Σ0(G). There is a
another approach (compare to Subsection 6.5) to the concepts of positive and
simple roots: given a linear order on t, λ ∈ t is called positive (negative) if
λ > 0 (λ < 0). A positive root α is called simple if α 6= β + γ for any
β, γ ∈ Σ(G), β, γ > 0. The fundamental system is the set of all simple roots of
Σ(G) with respect to the order >.

Definition. A linear order on t is said to be a σ-order if for α ∈ Σ(G,K), α > 0
σ(α) > 0 holds.

There always exists a σ-order on t. To see that, take a basis {H1, ..., Hl} of
a and a basis {Hl+1, ..., Hm} of b and define λ > µ if

(λ,H1) = (µ,H1), ..., (λ,Hr) = (µ,Hr), (λ,Hr+1) > (µ,Hr+1)

for λ, µ ∈ t and some 1 ≤ r ≤ m. Then this order is a σ-order.

Definition. A fundamental system with respect to a σ-order > is called a
σ-fundamental system.

Let m′ = dim(t′) and Π(G) = {α1, ..., αm′} be a fundamental system with
respect to the σ-order >, then we denote Π0(G) = Π(G) ∩ Σ0(G).

Theorem 8.2. Let (G,K) be a compact symmetric pair. Then Σ(G,K) is a
root system in a′, that is:

(i) Σ(G,K) is a subset of a′ consisting of finite nonzero elements and

spans a′ over R;

(ii) Σ(G,K) is invariant under the reflection sγ for every γ∈ Σ(G,K) ;

(iii)
2(δ, γ)

(γ, γ)
∈ Z for every γ, δ ∈ Σ(G,K).

Furthermore if Π(G) is a σ-fundamental system, then there exists a permutation
p of Π(G) \Π0(G) of order 2 such that

σαi ≡ pαi mod {Π0(G)}Z, 1 ≤ i ≤ m′ − |Π0(G)| ,
where {Π0(G)}Z denotes the subgroup of t generated by Π0(G). The permutation
p is called the Satake involution of the σ-fundamental system Π(G).
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Again the positive roots are interesting enough to get their own notation

Σ+(G) = {α ∈ Σ(G) : α > 0};
Σ+(G,K) = {γ ∈ Σ(G,K) : γ > 0}.

Let {a∗1, ..., a∗m′} be the inversions of the fundamental system {a1, ..., am′} of
Σ(G) with respect to the order >, and let {Λ1, ...,Λm′} ⊆ t′ be the basis of t′

dual to the inversions, that is,

(Λi, α
∗
j ) =

2(Λi, αj)

(αj , αj)
= δij , 1 ≤ i, j ≤ m′.

Λ1, ...Λm′ are called the fundamental weights of g′ with respect to the order >.
We set a′ = a ∩ m′, l′ = dim a′, and considering the Satake involution p leaves
Π(G) invariant, we define Mi, ...,Ml′ ∈ t′ by

Mi =





2Λi if pαi = αi and (αi,Π0(G)) = {0},
Λi if pαi = αi and (αi,Π0(G)) 6= {0},
Λi + Λi′ if pαi = αi′ and αi 6= αi′ .

We call Mi, ...,Ml′ the fundamental weights for the pair (g′, t′) with respect to
the σ-order >. These fundamental weights for the pair (g′, t′) with respect to
the σ-order > will help us to describe the weight of a spherical representation
in the case that G/K is simply connected.

Theorem 8.3. Let (G,K) be a compact symmetric pair and let ρ : G→ GL(V )
be a spherical representation of G relative to K, then the multiplicity mρ of ρ
is identical to 1.

Next up we develop something comparable to the dominant analytically
integral weights we have already encountered, but this time we also have to
take the subgroup K into account. The set

Γ(G,K) = {H ∈ a : expH ∈ K}

has the structure of a geometric lattice, that is, it is a discrete subgroup (iso-
morphic to Zdim a) of the commutative additive group a which contains a basis
of a. Let Z(G,K) be the lattice given by

Z(G,K) = {λ ∈ a : (λ,H) ∈ Z, H ∈ Γ(G,K)}

and D(G,K) be the semigroup given by

D(G,K) = {λ ∈ Z(G,K) : (λ, γ) ≥ 0, γ ∈ Σ+(G,K)}.

Similarly to the role of dominant analytically integral weights in the descrip-
tion of irreducible representation, we will see D(G,K) playing its part in the
description of spherical representations.
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Theorem 8.4. Let (G,K) be a compact symmetric pair such that G/K is simply
connected, then

D(G,K) =





l′∑

i=1

miMi,mi ∈ Z,mi ≥ 0, 1 ≤ i ≤ l′


 .

Theorem 8.5. Let (G,K) be a compact symmetric pair, then the mapping

D(G,K)→ D(G,K)

sending ρ to its highest weight λ(ρ) is a bijection.

Corollary 8.6. Let (G,K) be a compact symmetric pair such that G/K is
simply connected, then the mapping that sends ρ ∈ D(G,K) to its highest weight
λ(ρ) ∈ a is a bijection into the semigroup





l′∑

i=1

miMi,mi ∈ Z,mi ≥ 0, 1 ≤ i ≤ l′


 .

We want to apply what we have achieved to our specific case of interest:
SO(2n) with the subgroup U(n). Recall that

SO(2n) = {A ∈ gl(2n,R) : ATA = I, detA = 1};
U(n) = {A ∈ gl(n,C) : A∗A = I}.

The map

i : U(n)→ gl(2n,R)

X + iY 7→
(
X −Y
Y X

)

is an injective Lie group homomorphism that maps into SO(2n), as

(
X −Y
Y X

)(
X −Y
Y X

)T

=

(
X −Y
Y X

)(
XT Y T

−Y T XT

)
=

(
In 0
0 In

)

is equivalent to (X+iY )(X+iY )∗ = In. As X+iY is unitary det(X+iY ) = ±1.
Considering the connected U(n) maps onto the connected component of O(2n)
containing the identity, det(X + iY ) = 1.Thus we will identify U(n) with the
subgroup of SO(2n) given by

{(
X −Y
Y X

)
∈ SO(2n) : (X + iY )(X + iY )∗ = In

}
.

Define

E =

(
0 −In
In 0

)
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then

ET = E−1 =

(
0 In
−In 0

)

and

θ : SO(2n)→ SO(2n)

G 7→ EGE−1

is a C∞ involutive inner automorphism of SO(2n). Because

θ(G) =

(
G4 −G3

−G2 G1

)

the fixed points of θ are given by

SO(2n)θ = {G ∈ SO(2n) : θ(G) = G} = U(n)

and (SO(2n),U(n)) is a compact symmetric pair. The Lie algebra corresponding
to SO(2n) is given by

so(2n) = {X ∈ gl(2n,R) : XT = −X}.

Then so(2n) decomposes into

k = {X ∈ so(2n) : θ(X) = X}

=

{(
X −Y
Y X

)
∈ so(2n) : XT = −X,Y T = −Y

}

and

m = {X ∈ so(2n) : θ(X) = −X}

=

{(
X Y
Y −X

)
∈ so(2n) : XT = −X,Y T = −Y

}
.

We recall that a Cartan subalgebra for so(2n) was given by

t =








0 θ1
−θ1 0

. . .

0 θn
−θn 0




: θi ∈ R





.

Set

Hθi =2π

(
0 −θi
θi 0

)
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for θi ∈ R. For even n we can decompose t into a maximal abelian subalgebra

a =








Hθ1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 Hθn/2
0 0 0

0 0 0 −Hθ1 0 0

0 0 0 0
. . . 0

0 0 0 0 0 −Hθn/2




: θi ∈ R, 1 ≤ i ≤ n/2





contained in m and

b =








Hθ1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 Hθn/2
0 0 0

0 0 0 Hθ1 0 0

0 0 0 0
. . . 0

0 0 0 0 0 Hθn/2




: θi ∈ R, 1 ≤ i ≤ n/2





.

The inner product on so(2n) given by (X,Y ) = −tr(X,Y ) is invariant un-
der θ and SO(2n) (see Theorem 6.5). We write H(θ1, ..., θn) for the matrix
diag(Hθ1 , ..., Hθn). Then the functionals ϑi ∈ t∗ are defined by

ϑi(H(θ1, ..., θn)) = θi

and the roots relative to t are given by

Σ(SO(2n)) = {±ϑi ± ϑj : 1 ≤ i < j ≤ n}
(check to [6] page 219). A basis of a and b is given by

a1 = H(1, 0, ..., 0,−1, 0, ..., 0),
a2 = H(0, 1, 0, ..., 0, 0,−1, 0, ..., 0),

...

an/2 = H(0, ..., 0, 1, 0, ...0,−1),
and

b1 = H(1, 0, ..., 0, 1, 0, ..., 0),

b2 = H(0, 1, 0, ..., 0, 0, 1, 0, ..., 0),

...

bn/2 = H(0, ..., 0, 1, 0, ...0, 1),

respectively. We combine it to a basis {t1, ..., tn} of t, where t1 = a1, .., tn/2 =
an/2, tn/2+1 = b1, ..., tn = bn/2. With this basis we define a σ-order on t: Let
λ, µ ∈ t, then λ > µ if and only if

λ(t1) = µ(t1), ..., λ(tr) = µ(tr), λ(tr+1) > µ(tr+1)
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for some 1 ≤ r ≤ n. With respect to this σ-order the positive roots are given
by

Σ+(SO(2n)) = {ϑi ± ϑj : 1 ≤ i ≤ n/2, i < j ≤ n}∪
{−ϑi ± ϑj : n/2 < i ≤ n− 1, i < j ≤ n}.

It can be shown that the application of Corollary 8.6 results in the following
conditions for the highest weight λ(ρ) = (λ1, ..., λn) of a spherical representation
ρ of the compact symmetric pair (SO(2n),U(n)):

λ(ρ) =

{
λ1 = λ2 ≥ λ3 = λ4 ≥ ... ≥ λn−1 = λn if n is even,

λ1 = λ2 ≥ λ3 = λ4 ≥ ... ≥ λn−2 = λn−1 ≥ λn = 0 if n is odd.

8.3 Unitary Vector Valued Valuations

We follow Section 6.5.3 by Schuster in [22] and Wannerer [23] and use Theorem
7.13 and the results of Klimyk [20] and Helgason [24] in order to calculate the
dimension of the vector space of continuous translation invariant and U(n)-
equivariant valuations with values in Cn. The last part follows the work of
Böröczky, Domokas and Solanes [27] calculating the dimensions of the space
of translation invariant unitary equivariant tensor valuations for n ≥ 2 and
providing a basis for the vector valued case.

Let n ≥ 3, as in the previous subsection we consider U(n) as a subgroup of
SO(n). LetK2n be the space of convex bodies in R2n and Val (Vali) be the space
of continuous translation invariant valuations Φ : K2n → R (of degree i). By
CnVal we denote the real vector space of continuous translation invariant valu-
ations Φ : K2n → Cn ∼= R2n and by CnValU(n) its subspace of U(n)-equivariant
valuations. For any of those vector spaces a subscript i denotes the subspace of
valuations of the given space of degree i. From McMullen’s decomposition [12]
we get a decomposition of CnVal into the subspaces of valuations of degree i by

CnVal =
⊕

0≤i≤2n

CnVali.

Keeping this in mind the following theorem is due to Wannerer [23].

Theorem 8.7. Suppose that 0 ≤ i ≤ 2n, then

dimR CnVal
U(n)
i = 2min

{⌊
i

2

⌋
,

⌊
2n− i

2

⌋}
.

Proof. We abbreviate V := R2n and denote by VC the complexification of V .

The dimension of VVal
U(n)
i over R is the same as the dimension of it’s complex-

ification over the complex numbers, and Lemma 7.15 together with Proposition
7.14 imply

dimRVVal
U(n)
i = dimC(VVali ⊗ C)U(n) = dimC(Vali ⊗ VC)U(n).
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Notice that the first two terms in the last equation are a statement about the
space of unitary equivariant valuations where the last term is about a unitary
invariant subspace. With the decomposition from Theorem 7.13 this leads to

dimC(Vali ⊗ VC)U(n) = dimC(
⊕

λ

Γλ ⊗ VC)U(n)

= dimC(
⊕

λ

(Γλ ⊗ VC)U(n)) =
∑

λ

dimC(Γλ ⊗ VC)U(n),

where the sum ranges over all highest weights λ = (λ1, ..., λn) of SO(2n) satis-
fying

(i) λj = 0 for j > min{i, n− i};
(ii) |λj | 6= 1 for 1 ≤ j ≤ ⌊n/2⌋ ;
(iii) |λ2| ≤ 2. (22)

The application of Klimyk’s Formula further decomposes

Γλ ⊗ VC =
⊕

µ

Γµ,

where the µs are highest SO(2n) weights that can be expressed as µ = λ±εk for
some 1 ≤ k ≤ n. Let us consider Γµ containing a U(n) invariant element, i.e., it
is a spherical representation of SO(2n) with respect to the compact symmetric
pair (SO(2n),U(n)). In this case, due to Corollary 8.6, the following additional
conditions apply to µ = (µ1, ..., µn)

{
µ1 = µ2 ≥ µ3 = µ4 ≥ ... ≥ µn−1 = µn if n is even,

µ1 = µ2 ≥ µ3 = µ4 ≥ ... ≥ µn−2 = µn−1 ≥ µn = 0 if n is odd.
(23)

Therefore we have

dimCΓ
U(n)
µ =

{
1 if µ satisfies (23),

0 otherwise.

Now we show that dimC(Γλ ⊗ VC)U(n) = 2 if λ satisfies

λ1 = 3, λ2 = ... = λ2m = 2, and λj = 0 for j < 2m

for some integer 1 ≤ m ≤ min{
⌊
i
2

⌋
,
⌊
2n−i

2

⌋
} and dimC(Γλ ⊗ VC)U(n) = 0 oth-

erwise. The conditions (22) result in λ2 being either 2 or 0, and thus the
components λ3, λ4, ... of λ are restricted to these two values as well. Therefore,
µ = λ ± εk under the condition (23) needs to be equal to λ + ε2 or λ − ε1.
This results in λ1 = 3, λ2 = 2, λ3 = ... = λ2m = 2 and λj = 0 for j > 2m.
Conclusively there are exactly min{

⌊
i
2

⌋
,
⌊
2n−i

2

⌋
} choices for m resulting in the

formula we wanted to prove.
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Denote by U(n) := U(n) ⋉ Cn the group of unitary affine transformations
of Cn. Now recall Theorem 3.7 characterizing the Steiner point map as a con-
tinuous Minkowski additive rigid motion equivariant map from Kn to Rn. For
a complex vector space, due to Theorem 8.7, we can weaken the requirements
in Theorem 3.7 to U(n)-equivariance and get the following corollary taken from
Wannerer [23].

Corollary 8.8. Let f : K(Cn)→ Cn be a continuous map which satisfies

(i) f(K + L) = f(K) + f(L) for K,L ∈ K(V );

(ii) f ◦ g = g ◦ f for g ∈ U(n),

then f = s.

Proof. Let K,L ∈ K(Cn). As K ∪ L + K ∩ L = K + L if K ∪ L is convex,
we see that f is a valuation. (i) and the continuity of f can be used to show
it is of degree 1. Because s is in particular U(n)-equivariant, f − s is unitary

equivariant and translation invariant, thus f − s ∈ Val
U(n)
1 = {0}.

Notice that the U(n)-equivariant valuations do not form a vector space,
considering they are not closed under the addition of functions. However, if
ϕ is continuous translation invariant U(n)-equivariant valuation then ϕ + s,
where s is the Steiner point map, is continuous and U(n)-equivariant. Thus,
translating the vector space of continuous translation invariant U(n)-equivariant
valuations by the Steiner point map s results in the affine space of continuous
U(n)-equivariant valuations.

Corollary 8.9. The continuous U(n)-equivariant valuations φ : K(Cn) → Cn

constitute a complex affine subspace of dimension

{
2k2 − k for n = 2k,

2k2 + k for n = 2k + 1.

Proof. Due to Theorem 8.7 and Corollary 8.8 the complex dimension of the
affine space of continuous U(n)-equivariant valuations is given by

2n∑

i=0

min

{⌊
i

2

⌋
,

⌊
2n− i

2

⌋}
=

n∑

i=0

⌊
i

2

⌋
+

2n∑

i=n+1

⌊
2n− i

2

⌋

=

n∑

i=0

⌊
i

2

⌋
+

n−1∑

i=0

⌊
i

2

⌋
= 2

n−1∑

i=0

⌊
i

2

⌋
+
⌊n
2

⌋
.

Considering

n−1∑

i=0

⌊
i

2

⌋
=

{
2
∑k−1

i=0 i for n = 2k

2
∑k−1

i=0 i+ k for n = 2k + 1
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we get that

2n∑

i=0

min

{⌊
i

2

⌋
,

⌊
2n− i

2

⌋}
=

{
2k2 − k for n = 2k,

2k2 + k for n = 2k + 1.

In contrast to the last corollary, we reformulate the Steiner point map char-
acterization (Theorem 3.9).

Theorem 8.10. Let n ≥ 2. The continuous translation equivariant SO(n)-
equivariant valuations φ : Kn → Rn constitute a real affine subspace of dimen-
sion 0 consisting of the Steiner point map s.

So the Steiner point map from Kn to Rn is the unique continuous translation
equivariant SO(n)-equivariant valuation. However, if we restrict equivariance to
the subgroup U(n) the unitary Steiner point maps from K(Cn) to Cn constitute
a complex affine subspace of dimension

{
2k2 − k for n = 2k,

2k2 + k for n = 2k + 1.

Due to the recent work of Böröczky, Domokas and Solanes, see [27], and
Wannerer [28] a basis for the C-vector space of continuous translation invari-
ant unitary equivariant vector valued valuations was found. Let ϕ be an even
valuation of degree k taking values in a finite dimensional real vector space
V . Then the Klain function, see [30], is a function Klϕ on the k-Grassmanian
Gr(dimV, k) given by ϕ(A) = Klϕ(E)volk(A) for A ⊆ E ∈ Gr(dimV, k). In

the scalar case Bernig and Fu [29] constructed a basis of ValU(n) consisting
of the so-called hermitian intrinsic volumes µk,q defined, considering they are
even, by their Klain functions µk,q for 0 ≤ k ≤ 2n and 0, k − n ≤ q ≤ k

2 . For

max(0, k−n)≤q≤
⌊
k
2

⌋
the valuations µk,q comprise a basis for the vector space

Val
U(n)
k . For k ≤ m the Klain function µk,q is given by

Klµk,q
(E) =

⌊ k
2 ⌋∑

i=q

(−1)i+q

(
i

q

)
σi(cos

2(θ1), ..., cos
2(θ⌊k/2⌋)),

where σi is the i-th elementary symmetric function, and θ1, ..., θ⌊k/2⌋ are the
Kähler angles of the k-dimensional linear subspace E. Given the endomorphism
ψE of E mapping u ∈ E to the orthogonal projection of

√
−1u to E, then ψE

has eigenvalues ±
√
−1 cos θ1, ...,±

√
−1 cos θ⌊k/2⌋, plus a zero eigenvalue for odd

k. These eigenvalues characterize the Kähler angles. For k ≥ n

Klµk,q
(E) = Klµ2n−k,n−k+q

(E⊥).

Wannerer [28] introduced the space Area(V ) of smooth area measures on an
Euclidean vector space V as certain translation invariant valuations on V taking
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values in the space of signed measures (i.e., measures that can take values in
all of R) of the unit sphere S(V ). Therefore, given Φ ∈ Area(V ) and a convex
body A ⊆ V , Φ(A, ·) is a signed measure on S(V ).

Definition. [23] (Smooth area measures) The vector space Area(V ) of smooth
area measures on V is given by all expressions of the form

Φ(K,A) =

∫

N(K)∩π−1

2
(A)

ω,

where K ∈ K(V ), ω ∈ Ωn−1(SV ) a translation invariant smooth (n − 1)-form,
A ⊆ S(V ) is a Borel set and π2 : SV → S(V ) the canonical projection.

Denote by Val(V ) the space of continuous translation invariant valuations
with values in R and by VVal(V ) the valuations in Val(V ) with values in V .
The globalization map glob : Area(V )→ Val(V ) is defined by

glob(Φ)(A) = Φ(A,S(V )),

and the centroid map by C : Area(V )→ VVal(V ) is defined by

C(Φ)(A) =

∫

S(V )

u dΦ(A, u),

where we integrate with respect to the measure Φ(A, ·). Given a linear subspace
E ⊆ V , we characterize a restriction map r : Area(V ) → Area(E) as follows.
For a Borel set U ⊆ S(V ) denote U = (U + E⊥) ∩ S(V ). Then the restriction
of Φ ∈ Area(V ) to E is given by

r(Φ)(A,U) = Φ(A,U)

for A ∈ K(E) and U ⊆ S(E).

Proposition 8.11. [28] Given 0 ≤ k < 2n, there exists a family ∆k,q ∈
Area(V)

U(n)
k with 0, k − n ≤ q ≤ k

2 such that

(i) glob(∆k,q) = µk,q;

(ii) for every polytope P and every Borel set U ⊆ S(Cn)

∆k,q(P,U) =
∑

F∈Fk

Klµk,q
(
⇀

F )
vol2n−k−1(N(P, F ) ∩ U)

vol2n−k−1(S2n−k−1)
volk(F ), (24)

where Fk is the set of k-dimensional faces, N(P, F ) is the set

of outer unit normal vectors to P at points of F , and
⇀

F is the

k-dimensional linear subspace parallel to F ;

(iii) The restriction r : Area(Cn+l)→ Area(Cn) corresponding to

the inclusion Cn → Cn+l satisfies r(∆k,q) = ∆k,q if q ≥ k −m.
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Given a p-dimensional real subspace E ⊆ Cn and the corresponding restric-
tion map r, it follows from (24) that

C(r(∆k,q))(A) = cn,p,kC(∆k,q)(A)

for a convex body A in E and cn,p,k 6= 0 only depending on n, p, k. In [28] it was
shown that the family C(∆k,q) with 0, k−n < q ≤ k

2 is R-linearly independent.

Due to Theorem 8.7 dimR CnVal
U(n)
i = 2min

{⌊
i
2

⌋
,
⌊
2n−i

2

⌋}
. In [27] it was

shown that the family C(∆k,q) with 0, k − n < q ≤ k
2 is in fact C-linearly

independent, thus the following theorem holds.

Theorem 8.12. [27] For n ≥ 2 a C-vector space basis of the complex vector
space (Valk ⊗ Cn)U(n) is given by the family C(∆k,q) where 0 ≤ k ≤ 2n and
max(0, k − n) < q ≤ k

2 .

Corollary 8.13. [27] An R-vector space basis of (Valk ⊗ R2n)U(n) is given by

{
C(∆k,q),

√
−1 · C(∆k,q)|0, k − n < q ≤ k

2

}
.

Let Sd(R2n) denote the space of symmetric rank d tensors of R2n. Using
branching, in particular a theorem of King [31] and the generalized Hadwiger
theorem (Theorem 7.17)) Böröczky, Domokas and Solanes achieved the following
theorem.

Theorem 8.14. [27] For n ≥ 2, k = 0, ..., 2n and d ≥ 0, using the notation
f :=

⌊
d
2

⌋
and l := min{k, 2n − k}, the dimensions of W := (Sd(R2n)Valk)

U(n)

is as follows:

dim(W ) =





1 +
⌊
l
2

⌋
for d = 0,

1 for d = 2f > 0, l = 0,

3lf2 + 2
⌊
l
2

⌋
− 2f2 + 2f + 1 for d = 2f > 0, 1 ≤ l ≤ n,

3nf2 + 2
⌊
n
2

⌋
− 3f2 + 2f + 1 for d = 2f > 0, l = n,

0 for d = 2f + 1, l = 0,

3lf2 + 3lf + 2
⌊
l
2

⌋
− 2f2 for d = 2f + 1, 1 ≤ l ≤ n,

3nf2 + 3mf + 2
⌊
n
2

⌋
− 3f2 − f for d = 2f + 1, l = n.
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