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We prefered not to give an introduction to cohomology theory, it would be
meaningless since the reader may refer very easily to the literature, ie Neukirch
[1], which is an excellent text, actually the reader may find out that we followed
to a great extend his approach in the section of global class field theory. Also
some structures of basic Algebra are a prerequisite for our text (for instance,
some Galois theory), finally a rigorous approach of profinite groups is given by
Neukirch [2].

The chapters of the text may be read sequentially of course, but still as
soon as we have gained a background on the language of cohomology theory,
the chapters of abstract class field theory followed by the chapter of global class
field theory, constitute the main body of this work. Of course one should have
an understanding on valuation theory. The chapter refering to L-series is an
interesting approach, but analytical methods are not used nowadays any more
in a purely algebraic topic. Also the parenthetical chapter 5 (Main theorems in
terms of ideals) is not necessary for the following chapters.
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Abstract

In this Thesis we give an introduction in Class Field Theory, proving Artin
reciprocity law. The goal of class field theory is to describe the Galois extensions
of a local or global field in terms of the arithmetic of the field itself. Apart from
a few remarks about the more general cases, these notes will concentrate on
the case of abelian extensions, which is the basic case. We give the framework
of the theory introducing Abstract class field theory and we can see how this
can be translated in the case of global class field theory using idele class groups
as modules or multiplicative groups in the case of local class field theory. The
language that we use is purely algebraic, with the exception of an analytic
approach which is mostly redundant nowadays after much effort of the pioneers
in that field to confront such a defect, as it was considered.
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I have been reading Chevalley’s new book on class field theory; I am not
really doing research, just trying to cultivate myself.

Grothendieck, 1956
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Chapter 1

Introduction

1.1 Class field theory

We first give the following definitions, before giving a short introduction of the
motivation that led to the initiation of class field theory [7], and the scope of
this thesis.

Definition 1.1.1. A number field K is a finite degree field extension of the field
of rational numbers Q. Degree means the dimension of the field considered as a
vector space over Q.

Definition 1.1.2. Let L/K be extension of number fields. This extension is
called abelian (cyclic), if L/K is Galois and Gal(L/K) is abelian (cyclic).

Class Field theory (CFT) emerged in the nineteenth century from at least
three lines of inquiry. The first was the question of solvability by radicals: which
algebraic numbers in Q could be expressed using nth roots, sums, etc.? Abel
and Galois showed that an irreducible polynomial f(x) ∈ K[x] for some number
field K, has roots that can be expressed via radicals if and only if the Galois
group of the splitting field of f is solvable, that is, the splitting field of f is an
iterated extension of abelian extensions such as

Q ⊆Z/2Z Q(ζ3) ⊆Z/3Z Q(ζ3,
3
√
2)

where we have written the Galois group of each subextension above its respec-
tive inclusion. This criterion reduces the problem of identifying which algebraic
numbers can be written in terms of radicals to understanding abelian (or even
cyclic) extensions of number fields. Unfortunately, this problem has not been
solved, though one can dream that cutting edge research is coming closer. How-
ever, abelian extensions of Q are known:

Theorem 1.1.3 (Kronecker-Weber). Every abelian extension of Q is contained
in Q(ζn) for some n, where ζn is a primitive nth root of unity.

That is, if the splitting field of f ∈ Q[x] has an abelian Galois group, then
all (equivalently, some) roots of f can be written as rational functions of ζn for
some n. As a brief reminder, [Q(ζn) : Q] = φ(n) (ie, the Euler totient func-
tion), and Gal(Q(ζn)/Q) = (Z/nZ)∗, with an element m ∈ (Z/nZ)∗ acting as

4
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ζn 7→ ζmn . CFT is essentially equivalent to the Kronecker-Weber theorem for
Q, but gives additional (though inexplicit) control of the situation for general
number fields.

The second question was that of finding identities for algebraic numbers. As
we will see, Gauss explained that non-obvious identities in Q have non-trivial
arithmetic consequences. For instance, identities like

√
2 = ζ8 + ζ−1

8 = ζ8 + ζ8 = (1 + i)/
√
2 + (1− i)/

√
2

√
−3 = ζ3 − ζ−1

3 = ζ3 + ζ3 = (−1 +
√
−3)/2 + (−1−

√
−3)/2

are predicted by the Kronecker-Weber theorem (since these numbers have an
associated abelian Galois group Z/2Z). These arithmetic consequences indicate
that we should attempt to understand such identities more fully.

Finally, the third area was solvability of Diophantine equations. The follow-
ing is an example of a typical theorem:

Theorem 1.1.4 (Hasse Principle). Let K be a number field, and

q(x1, .., xn) =
∑

i

aix
2
i +

∑

i 6=i

aijxixj

for ai, aij ∈ K. Then for any y ∈ K, the equation

q(x1, .., xn) = y

has a solution if and only if it does in R and in Qp for all primes p.

Checking for solutions over R is easy, and over Qp the problem reduces to el-
ementary congruence properties; it turns out that this problem can be solved en-
tirely algorithmically. We can recast such problems as asking if y ∈ Q is a norm
in a quadratic extension Q(

√
d)/Q, at least for the norm N(x+y

√
d) = x2−dy2

(where x, y ∈ Q), which is the hardest case of the above anyways. This question,
and the broader idea of connecting local and global, will make a reappearance.

1.2 Aim of Class field theory

The aim of class field theory is the following1:

Let K/Q be a number field, then:
• clarify all abelian extensions L of K by data which are attached to K.
• describe the splitting of primes in an abelian extension L of K by the

datum in K which is attached to L.

1The object of class field theory is to show how the abelian extensions of an algebraic
number field K can be determined by objects drawn from our knowledge of K itself; or if one
prefers to present things in dialectic terms, how a field contains within itself the elements of
its own transcending.

Chevalley 1940
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• describe the Galois group of an abelian extension L of K by the datum in
K which is attached to L, this obtained by Artin reciprocity law.

At the centre of our analysis are the Norm inequalities:

Let L/K be a cyclic extension, then:

• 1) [JK(m) : NL/KJL(m)PK(m)] > [L : K]

• 2) [JK(m) : NL/KJL(m)PK(m)] 6 [L : K]

In these, JK(m) means the group of fractional ideal ”prime to m” and PK(m)
means the group of principal ideal ”prime to m” and ≡ 1 (mod m)” (ie locally
the elements are units at all places v dividing m and are even ≡ 1 (mod vmv ),
the ideal m is defined in 5.1.1. We can also identify in our later analysis i(Km,1)
with PK(m). In chapter 5, we give the relevant details. The proof of these
inequalities lies at the centre of CFT!

Our first goal is to prove the second Norm index inequality using analytic
methods. For the first inequality we would have to use techniques from

• Ideles theoretic foundations of number theory
• (some) group cohomology
• number theory of extensions of local fields...

we will skip that second step and proceed further instead, to another ap-
proach based absolutely on cohomology theory..

Towards this task we shall give some introduction to valuation theory and
proceed further to abstract class field theory, where we introduce the notion
of ”profinite group” and define ”class formation”. The main framework of our
theory is thus established abstractly and the difficulty will be to prove that
the properties of ”class formation” can be transfered from the G-module A of
abstract class field theory, to the idele class group of global class field theory,
or multiplicatice group in the case of local class field theory. We start with..
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Chapter 2

L-series

We shall prove now the second Norm index inequality, following the ideas of
Lang [6] and a very nice lecture that I attended at the university of Vienna
by Prof. Joachim Mahnkopf [8], using analytic methods and extracting in this
framework our relevant theorem 2.2.4. Analytic methods to be given to theo-
rems that are purely algebraic in form are mostly redundant nowadays and were
considered as a defect until 1940, were purely algebraic proofs were given after
much effort by Chevalley.

Let K/Q be a number field, and OK be the ring of integers in our number
field K.

Definition 2.0.1. Let R be a commutative ring. An ideal p ∈ R is a prime
ideal if

p 6= R and

ab ∈ p ⇒ a ∈ p or b ∈ p for a, b ∈ R
Definition 2.0.2. Let m =

∏
p p

mp ≤ OK be an ideal.

A Dirichlet character of level m or modulo m is a morphism of groups

χ : J(m)/Pm → S1 = {z ∈ C : |z| = 1} (2.1)

Definition 2.0.3. : Let χ be a Dirichlet character of level m. Then the series

L(χ, s) = Lm(χ, s) =
∑

u≤OK ,(u,m)=1

χ(u)/N(u)s (2.2)

s ∈ C

is called the Dirichlet series attached to χ, (N = NK
Q ).

Remark 2.0.4. : If χ = id is the trivial Dirichlet character of level 1, then

L(χ, s) = L1(id, s) =
∑

u≤OK

1/N(u)s =: ZK(s)
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is the Dedekind zeta function ZK(s) of K.

If in addition K = Q, we obtain

L(χ, s) = L1(id, s) =
∑

n∈N

1/ns =: ζ(s)

the Riemann zeta function.

2.1 Some analytic methods

Lemma 2.1.1. Let δ ∈ R, δ > 0, then the infinite product

∏

p≤OK ,p primideal

1

1−N(p)
−s

converges absolutely and uniformly for s ∈ C satisfying Re(s) > 1 + δ.

Proof. We write s = σ + it,we have to show that the infinite series

∑

p≤OK ,p primideal

1

1−N(p)
−s − 1

converges absolutely and uniformly for s ∈ C with Re(s) > 1 + δ.

Remark:
∏∞
k=1 1+ak converges absolutely⇔

∑∞
k=1 ak converge absolutely.

and we want to show that

∑

p≤OK ,pprimideal

1

1−N(p)
−s − 1 (2.3)

converges absolutely and uniformly in {s ∈ C : Re(s) > 1 + δ, δ > 0}.

Let p ≤ OK be prime ideal with p|p, (p ∈ N) and put f = fp|p. Then we
obtain

| 1

1−N(p)
−s − 1| = | N(p)

−s

1−N(p)
−s | = |

1

N(p)
s

︸ ︷︷ ︸
pfs

−1 | = |
1

pfs − 1
| 6 | 1

pfσ − 1
| 6

1

pσ − 1
6

1

(p− 1)
σ

Since for any prime number p ∈ N there are at most n = [K : Q] many prime
ideals p ≤ OK , sth p|p, we obtain

∑

p≤OK

| 1

1−N(p)
−s − 1| (2.4)

=
∑

p∈N,p prime

∑

p|p

| 1

1−N(p)
−s − 1| 6

∑

p

∑

p|p

1

(p− 1)
σ 6
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n ·
∑

p∈N

1

(p− 1)
σ 6 n ·

∑

k∈N

1

kσ
6 n ·

∑

k∈N

1

k1+δ

The last sum converges ⇒ 2.4 converges absolutely and does not depend on
s when (Re(s) > 1 + δ) ⇒ 2.4 converges uniformly.

Proposition 2.1.2. Let χ be a Dirichlet character of level m

• 1) Let δ ∈ R, δ > 0. Then the Dirichlet series

∑

u≤OK

(u,m)=1

χ(u)

N(u)s
= Lm(χ, s)

u are integral ideals, not prime ideals

converges absolutely and uniformly in the set {s ∈ C : Re(s) > 1 + δ}

• 2) For all s ∈ C sth Re(s) > 1 we have

L(χ, s) =
∏

p≤OK ,(p,m)=1,pprimeideal

1

1− χ(p)N(p)
−s

this product localizes over prime ideals.. and is the ”Euler product expansion
of L(χ, s)”.

Proof. 1) Let AN , N ∈ N be the set of all ideals u ≤ OK sth (u,m) = 1
and u divisible only by prime ideals p ≤ OK sth N(p) 6 N . We denote by
p1, .., pr ≤ OK the prime ideals with N(pi) 6 N and (p,m) = 1
then we obtain

∏

p,(p,m)=1,N(p)6N

1

1− χ(p)N(p)
−s =

∏

p,(p,m)=1,N(p)6N

∑

k∈N

χ(p)
k
N(p)

−ks
=

∑

k1,..,kr∈N0

r∏

i=1

χ(pi)
kiN(pi)

−kis =

∑

k1,..,kr∈N0

χ(
r∏

i=1

pkii

︸ ︷︷ ︸
=:u≤OK

)N(
r∏

i=1

(pkii )−s) =

(by definition χ, N are multiplicative and the sum runs exactly over AN )

=
∑

u∈AN

χ(u)N(u)
−s

(2.5)

Let now s ∈ C with σ = Re(s) > 1 + δ, we obtain
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∑
u∈AN

|χ(u)N(u)
−s| = ∑

u∈AN
|N(u)

−σ| 6 ∑
u∈AN

N(u)
−(1+δ)

=︸︷︷︸
2.5

∏
p,(p,m)=1,N(p)6N

1

1−N(p)
−(1+δ)

This product converges absolutely and uniformly in {s ∈ C : Re(s) > 1+ δ}
by the above Lemma for N → ∞. Hence

∑
u∈AN

χ(u)N(u)−s converges abso-
lutely and uniformly for N →∞.

2)
∏

p≤OK ,(p,m)=1,N(p)6N

1

1− χ(p)N(p)
−s =

∑

u∈AN ,u≤OK

χ(u)

N(u)s
(2.6)

In the above Lemma and in part 1) we have seen that both sides of 2.6
converge for N → ∞. In fact, the left hand side converges obviously to
∏

p≤OK ,(p,m)=1

1

1− χ(p)N(p)
−s and the right hand side converges obviously to

∑
u6OK ,(u,m)=1

χ(u)

N(u)s

⇒ claim.

Corollary 2.1.3. For any Dirichlet character χ of level m it holds that the
Dirichlet series L(χ, s) represents a holomorphic function in the set Re(s) > 1

Proof. Use that

• · L(χ, s) = ∑
u

χ(u)

N(u)s
converges uniformly in any Re(s) > 1 + δ, (δ > 0)

• · uniform limit of holomorphic functions is again holomorphic.

Notation 2.1.4. : The holomorphic function in Re(s) > 1 which is defined by
L(χ, s) is called the Dirichlet L-function attached to χ.

Theorem 2.1.5. 1) Let χ : J(m)/Pm → S1 be a Dirichlet character, χ 6= id.
Then L(χ, s) has a holomorphic continuation to s ∈ C
2) If χ = id of level m then ZK(s) := L(χ, s) (”Zeta function of K”) has
a meromorphic continuation to s ∈ C with only a simple pole at s = 1 with
Residue equal to |J(m)/Pm|.

Remark 2.1.6. : The proof of 2.1.5 is long deep and difficult.
we will only need existence of an analytic continuation to a set Re(s) > 1 − δ,
(δ > 0).
Analytic continuation to some range Re(s) > 1− δ, (δ > 0) is much easier but
still difficult (we will save the time of doing this).
In particular we can study the value L(χ, s) at s = 1.

Notation 2.1.7. : If f, g are meromorphic functions in a neighbourhood of
s = 1, then we write f ∽ g to denote that there is a holomorphic function ξ(s)
sth

f(s) = g(s) + ξ(s)

(ie) f and g have the same principal part in their Laurent expansions.
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Proposition 2.1.8. For all Dirichlet characters χ of level m it holds that

logL(χ, s)︸ ︷︷ ︸
is analytic in neighbourhood of s=1

∽
∑

p≤OK ,Primideal,(p,m)=1

χ(p)

N(p)s

Proof. Applying log to Euler product of L(χ, s) we obtain for s ∈ C with
Re(s) > 1

logL(χ, s) = −
∑

p≤OK ,(p,m)=1

log(1− χ(p)N(p)−s)

since the

|χ(p)N(p)−s| = N(p)−σ = p−σf 6 p−σ 6 1 since (σ > 1)

we see that the logarithm series

log(1− z) = −
∑

k>1

1

k
zk

converges at z = χ(p)N(p)−s

plugging in the power series of log we further obtain

logL(χ, s) =
∑

p≤OK ,(p,m)=1

∑

k>1

1

k
(χ(p)N(p)−s)

k

For Re(s) > 1 the sum
∑

p≤OK
... as well as the sum

∑
k>1

1

k
zk converge

absolutely, therefore we may rearrange as follows

logL(χ, s) =
∑

(p,m)=1

χ(p)

N(p)s
+

∑

k>2

∑

(p,m)=1

1

k

χ(p)
k

N(p)sk
(2.7)

since

• 1) |1
k

χ(p)
k

N(p)sk
| 6 1

k

1

pkσ
where (p|p)

• 2) The series
∑
k>2

1

k

1

pkσ
converges (absolutely) by the quotient criterion

for σ >
1

2
+ δ, (δ > 0)

• 3) there are at most N = [K : Q] many prime ideals lying above p ∈ N

we obtain that

∑

k>2

∑

(p,m)=1

|1
k

χ(p)
k

N(p)sk
| 6 N ·

∑

k>2

1

k

1

pkσ
<∞
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hence the series converges absolutely and uniformly in Re(s) >
1

2
+ δ

Thus the second summand in 2.7 is holomorphic in Re(s) >
1

2
+ δ

⇒ claim.

2.2 The second Norm index inequality

We now come to the statement of our main theorem, the proof of the second
norm index inequality in terms of ideals using analysis, we shall prove later on
that this index is equal to the analogous index in terms of idele class groups.
For the first norm index inequaity we shall have to use techniques from ideles
theoretic foundations of number theory, (some) group cohomology and number
theory of extensions of local fields. We shall avoid to do so following the frame-
work of abstract class field theory as we develop in the next chapters, proving
both inequalities through cohomology theory.

Let L/K extension of number fields with Gal(L/K) = G and let

m =
∏

p≤OK ,prime

pmp ∈ JK (2.8)

Aim: Prove
[JK(m) : PmN

L
KJL(m)] 6 [L : K]

to simplify notation we put N(m) = NL
KJL(m)

Definition 2.2.1. : Let G be a finite abelian group. A character of G is a
morphism of groups χ : G→ S1. We denote Ĝ the set of all characters of G.

Remark 2.2.2. :

• 1) Dirichlet characters are characters of the (finite abelian) group JK(m)/Pm

• 2) Ĝ is group wrt (χ1χ2)(g) := χ1(g)χ2(g)

Lemma 2.2.3. 1) Let g ∈ G then

∑

χ∈Ĝ

χ(g) =

{
|G| if g = 1

0 else

2) Let χ ∈ Ĝ, then

∑

g∈G

χ(g) =

{
|G| if χ = id

0 else
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Proof. : we omit the first proof, we will not need it.. as to the second we have..

assume χ 6= id. Then there is h ∈ G sth χ(h) 6= 1, we then obtain trivially

∑
g∈G χ(g) =︸︷︷︸

g 7→gh

∑
g∈G χ(gh)︸ ︷︷ ︸

runs again over the whole group

= χ(h)︸︷︷︸
6=1

∑
g∈G χ(g)

⇒∑
g∈G χ(g) = 0

and now we can come to our final

Theorem 2.2.4. Let L/K be any extension of number fields and assume that
the cycle m =

∏
p≤OK

pmp is divisible by all prime ideals p ≤ OK which ramify
in L. Then

[JK(m) : PmN
L
KJL(m)] 6 [L : K]

Proof. We put H := PmN
L
KJL(m) ≤ JK(m) and h := [JK(m) : H]

Let χ be an arbitrary character of the (finite and abelian) group JK(m)/H.
Then χ induce a character of the generalized class group JK(m)/Pm of level m.
We assume χ 6= id, hence the L-series L(χ, s) is holomorphic at s = 1. Thus we
can write

L(χ, s) = (s− 1)mχ · g(s, χ) mχ > 0 (because it is holomorphic)

where g(s, χ) is holomorphic at s = 1.

Applying log we obtain

logL(s, χ) = mχ log(s− 1) + log(g(s, χ))︸ ︷︷ ︸
holomorphic

∼ −mχ · log
1

s− 1
(χ 6= id)

On the other hand we have seen in the Proposition of the previous section
that for all characters χ

logL(s, χ) ∼
∑

p≤OK ,prime,(p,m)=1

χ(p)

N(p)s
=

∑

p∈JK(m),p prime ideal

χ(p)N(p)−s =

∑

k∈JK(m)/H︸ ︷︷ ︸
sum over cosets

∑

p∈k, prime ideals

χ(p)︸︷︷︸
constant on k = p ·H

·N(p)−s =

∑

k∈JK(m)/H

χ(k)
∑

p∈k,primeideal

N(p)−s

Summing over all characters χ ∈ ̂JK(m)/H we thus obtain
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log ζK(s) +
∑

χ 6=id

logL(χ, s) ∼

∑

χ∈ ̂JK(m)/H

∑

k∈JK(m)/H

χ(k)
∑

p∈k,primeideal

N(p)−s =

{
h k = 1 = H(∈ JK(m)/H)

0 k 6= 1 = H

= h ·
∑

p∈H,p prime ideal

N(p)−s

Combining now we have.. (note that log ζK(s) ∼ 1

s− 1
)

(1−
∑

χ 6=id

mχ) log
1

s− 1
∼ h ·

∑

p∈H,p primeideal

N(p)−s (2.9)

we denote by SL/K = Sm
L/K the set of all prime ideals p ≤ OK sth (p,m) = 1

and p is fully decomposed in L.

Then

• p ∈ SL/K ⇔ degk := ek|pfk|p = 1 for all k|p
• if p ∈ SL/K and k|p then NL

K(k)(= pfk|p) = p

Thus p ∈ NL
KJL(m) ≤ H

⇒ SL/K ⊆ H

ie H contains all fully decomposed prime ideals.

Using this we obtain

h ·
∑

p∈H,p prime

N(p)−s > h ·
∑

p∈SL/K(⊆H)

N(p)−s =
h

N

∑

k≤OL,degk=1,(k,m)=1

N(k)−s

(2.10)
where N := [L : K], note that over any p ∈ SL/K there are precisely

N−many prime ideals k ≤ OL and any such k has degree degk = 1.

As in Proposition in previous section (and its proof) we see that the follow-
ing holds

log
1

1− s ∼ log ζL(s) ∼
∑

k≤OL,k prime

N(k)−s

=
∑

k≤OL,degk=1

N(p)−s +
∑

k≤OL,degk>2

N(p)−s︸ ︷︷ ︸
p−fs,f>2︸ ︷︷ ︸

holomorphic in Re(s) >
1

2
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Thus we obtain ∑

k≤OL,degk=1

N(k)−s ∼ log
1

s− 1

if we plug this in equation 2.10 we obtain

h ·
∑

p∈H,p prime ideal

N(p)−s >
h

N
· log 1

s− 1
+ g1(s)︸ ︷︷ ︸
holomorphic at s=1

Together with 2.9 this yields

(1−
∑

χ 6=id,χ∈ ̂J(m)/H

mχ) log
1

s− 1
>

h

N
log

1

s− 1
+ g2(s)︸ ︷︷ ︸
holomorphic at s=1

we obtain

(1−
∑

χ 6=id

mχ) >
h

N
− g2(s)

log(s− 1)

we now let s→ 1+, thus log(s− 1)→ −∞, but g2(s) is holomorphic in the
neighborhood of s = 1 thus bounded and we further obtain

g2(s)

log(s− 1)
→ 0

⇒ (1−
∑

χ 6=id,χ∈ ̂J(m)/H

mχ) >
h

N︸︷︷︸
>0

since
h

N
> 0 (strictly bigger) and mχ > 0 for all χ 6= id, this implies that

mχ = 0 for all χ 6= id and thus we find

1 >
h

N
or N > h

ie
[L : K] > [JK(m) : PmN

L
KJL(m)]

The ideal-theoretic versions of these inequalities were already used in the
proof of the main theorems of class field theory by Takagi. These analytic
methods are redundant when working with ideles.

2.3 Artin map

The goal of class field theory is to describe the Galois extensions of a local or
global field in terms of the arithmetic of the field itself. For abelian exten-
sions the theory was developed between roughly 1850 and 1930 by Kronecker1,

1KRONECKER (1823–1891). He developed an alternative to Dedekind’s ideals. He
also had one of the most beautiful ideas in mathematics for generating abelian extensions of
number fields (the Kronecker liebster Jugendtraum)
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Weber2, Hilbert3, Takagi4, Artin5, Hasse6 and others, we refer to [4]. For non-
abelian extensions the first indication of the shape the theory should take is in
a letter from Langlands to Weil in 1967. In recent years there has been much
progress in the nonabelian local and function field cases, but less in the number
field case. Beginning about 1980, abelian class field theory has been succesfully
extended to higher dimensional fields. Throughout by an extension L of a num-
ber field K we mean that L is contained in some fixed algebraically closed field
containing K. For this and the next section we can refer to Milne [4] for more
details.

Let’s recall that a prime p of OK factors in an extension L of K as

pOL = Fe11 ..F
eg
g

where Fi are the prime ideals of OL such that Fi ∩OK = p and ei ≥ 1 moreover
n = e1f1 + ..+ egfg, n = [L : K], fi = [OL/Fi : OK/p] called the inertia degree
and ei the ramification index. When ei > 1 for some i, the prime p is said to
ramify in L, when ei = fi = 1 ∀i : p = F1..Fn the prime p is said to split in L
(completely).
When L/K is Galois the ei

′s are equal to say e and fi
′s to say f , and

pOL = (F1..Fg)
e, n = efg

Let Spl(L/K) be the set of primes of K splitting in L. Towards the end of the
19th century Frobenius proved the following statement:

Theorem 2.3.1. when L/K is Galois, the set Spl(L/K) has density 1/[L : K]
in the set of all primes

Note: For any Galois extension L/K of number fields, Frobenius attached a
conjugacy class (p, L/K) of elements in G = Gal(L/K) to each prime ideal p of
K unramified in L and conjectured that the density of the primes giving a fixed
conjugacy class C is |C|/|G|. By construction the elements in (p, L/K) have
order f(p) in G and so the statement applied to the trivial conjugacy class gives
2.3.1. Frobenius was only able to prove a weaker statement than his conjecture
(sufficient for 2.3.1), in which certain conjugacy classes are grouped together,
and the conjecture was proved by Chebotarev in 1926.

If K is a finite algebraic number field, we mean by the primes p of K, the
classes of equivalent valuations of K, where we distinguish between the finite
p associated with the nonarchimedean valuations of K, that correspond bijec-
tively to the prime ideals of K (we use the same symbol p), and the infinite

2WEBER (1842–1913). He found the correct generalization of “class group” to allow for
ramification. Made important progress in class field theory and the Kronecker Jugendtraum

3HILBERT (1862–1943). He wrote a very influential book on algebraic number theory
in 1897, which gave the first systematic account of the theory. Some of his famous problems
were on number theory, and have also been influential

4TAKAGI (1875–1960). He proved the fundamental theorems of abelian class field theory,
as conjectured by Weber and Hilbert

5ARTIN (1898–1962). He found the “Artin reciprocity law”, which is the main theorem
of class field theory (improvement of Takagi’s results). Introduced the Artin L-series

6HASSE (1898–1979). He gave the first proof of local class field theory, proved the Hasse
(local-global) principle for all quadratic forms over number fields, and contributed to the
classification of central simple algebras over number fields

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

primes,that distinguish further between the real and complex ones.
The real primes correspond bijectively to the different embeddings of K into R,
and the complex primes correspond bijectively to the pairs of complex conju-
gate embeddings of K into C, we observe that two conjugate embeddings of K
into C produce the same valuation of K (we write p|∞, p ∤∞ for infinite, finite
respectively).

2.3.1 Density theorems

We want now to prove 2.3.1 for cyclotomic extentions of Q. Let m > 2 (∈ Z)
and (a,m) = 1, consider now the sequence

..a−m, a, a+m, a+ 2m, .., a+ km.. (2.11)

clearly there are ϕ(m) = |(Z/mZ)∗| distinct sequences. Dirichlet showed that
the prime numbers are equidistributed among these sequences.
We want to interpret this in terms of Galois groups. Let L/K be a finite ex-
tention of number fields with Galois group G. For every prime ideal F in OL,
there exists a unique σ ∈ G, called the Frobenius element sth

a) σ ∈ G(F) ie σ(F) = F

b) ∀α ∈ OL , σα ≡ αqmod F, where q=number of elements in the residue
field OK/p , p = F ∩K

it is denoted as (F, L/K) ≡ σ, when F is unramified over p, because in this
case σ is uniquely determined by these conditions.

Let now τF a second prime dividing p, τ ∈ G , then G(τF) = τG(F)τ−1

and (τF, L/K) = τ(F, L/K)τ−1, the proof is easy... Thus if Gal(L/K) is abelian
we have (F, L/K) = (F′, L/K) ∀F,F′ | p, we write thus (p, L/K).

If Gal(L/K) is not abelian we denote by (p, L/K), the conjugacy class in G
{(F, L/K) : F|p}

Now consider Q[ζm]/Q , m either odd integer > 1 or a positive integer di-
visible by 4. We have the result Gal(Q[ζm]/Q) ∼= (Z/mZ)∗

with [n] acting as ζ 7→ ζn. A prime p not dividing m is unramified in Q[ζm] and
(p,Q[ζm]/Q) = [p]

Now let τ = [α] ∈ Gal(Q[ζm]/Q) ,then (p,Q[ζm]/Q) = [τ ] has density
1/ϕ(m) in the set of prime numbers.

As we mentioned Frobenius conjectured that for every conjugacy class C in
G, the density of {p | (p, L/K) = C} is |C|/|G|.

2.3.2 Local class field theory and infinite extentions

By 1930 the abelian extentions of both number fields and local fields had been
classified. However there were aspects of the theory that were considered un-
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satisfactory, which Chevalley with his new notion of an idele was able to solve.
Let Kab denote the composite of all finite abelian extentions of K. The full
statement of local class field theory is that for every p-adic field K, there exists
a well defined homomorphism ϕ : K∗ → Gal(Kab/K) (now called the local
Artin map) that induces the isomorphism

K∗/Nm(L∗)
∼−→ Gal(L/K)

for every finite abelian extention L/K; moreover all (open) subgroups of finite
index are norm groups. This suggests that it might be possible to define a global
Artin map whose components are the local Artin maps, in the sense that the
following diagram commutes for all primes p of K

K∗
p

φp
//

��

Gal(Kab
p /Kp)

��∏
pK

∗
p

φ ??
// Gal(Kab/K)

One problem is that
∏

pK
∗
p is not locally compact, this would be true only

for compact groups, and the groups K∗
p are only locally compact. In fact

∏
pK

∗
p

is too big for there exist a φ. Chevalley solved this by defining the group of ide-
les IK to be the subgroup of

∏
pK

∗
p sth it consists of families (ap), ap ∈ O∗

p for
almost all nonarchimedean primes.

When endowed with the topology for which
∏

p|∞

K∗
p ×

∏

p∤∞

O∗
p

is an open subgroup, IK becomes a locally compact group. Embed K∗ in IK as
the diagonal subgroup.

In the Chevalley7 approach, one proves first local class field theory directly,
then defines a global Artin map ϕK : IK → Gal(Kab/K) whose components are
the local Artin maps and shows that K∗ is contained in the kernel of ϕK and
that the homomorphism

IK/K
∗ → Gal(Kab/K)

induced by ϕ is surjective with kernel equal to the identity connected compo-
nent of the group IK/i(K

∗). In other words the homomorphism ϕK fits into a
commutative diagram

K∗
p

φp
//

��

Gal(Kab
p /Kp)

��

IK
φK
// Gal(Kab/K)

7CHEVALLEY (1909–84). The main statements of class field theory are purely algebraic,
but all the earlier proofs used analysis; Chevalley gave a purely algebraic proof. With his
introduction of idèles he was able to give a natural formulation of class field theory for infinite
abelian extensions
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for all primes p of K and ϕK induces an isomorphism

CK/C
◦
K

∼−→ Gal(Kab/K) CK , IK/K
∗

we can interpret this as follows:

there is a canonical isomorphism C/C◦ ≃ lim←−m
Cm, and for every finite

abelian extension L of K and sufficiently large modulus m there is a commuta-
tive diagram

C
φK
//

��

Gal(Kab/K)

τ 7→τ |L

��

Cm

ψL/K
// Gal(L/K)

By 1950 the local Artin map could be characterized locally, or it could be de-
scribed as the local component of the global Artin map, but it was not until
1965 that Lubin and Tate found an explicit local description of it.

Notation 2.3.2. .. in the previous, we define

i : K∗ → J

a 7−→ (a)

sending a ∈ K∗ to the principal ideal (a).

Note: Mac Lane recalls that Artin (about 1948) pointed out in conversations
that the cohomology of groups should have use in class field theory. Hochschild
(1950) and Hochschild and Nakayama (1952) showed how the Brauer group ar-
guments of class field theory could be replaced by cohomological arguments. In
1952, Tate proved that the homology and cohomology groups for a finite group
G could be suitably combined in a single long exact sequence. He used this
sequence, together with properties of transfer and restriction, to give an elegant
reformulation of class field theory.

2.4 Non Abelian Class Field Theory

In the same talk at the ICM 1920 in which he announced his proof of the main
theorems of abelian class field theory to the world, Takagi raised the question
of a nonabelian class field theory.. Non abelian class field theory is part of
Langland’s program, which is a vast interlocking series of conjectures, and some
progress has been made, especially in the local case and the function field case
[4].
The norm limitation theorem shows that the subgroups of the (ray) class groups
do not distinguish between an extension field and its largest abelian subexten-
sion.
For several decades it was unclear what form a nonabelian class field theory
should take, or even whether it existed. In 1946, Artin speculated that finding
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the correct statements was the only problem: once we knew what they were, it
would be possible to deduce them from abelian class field theory. Weil8 relates
that, a year later, Artin said that he had lost faith in the existence of a non-
abelian class field theory.

Instead of studying the set SplS(L/K), we should study the Artin L-series
L(s, ρ) of a representation ρ of Gal(L/K). The problem of describing the sets
SplS(L/Q) then becomes that of describing the set of analytic functions that
arise in this fashion. Langlands9 has constructed a class of L-series, called au-
tomorphic L-series, and conjectures that each LS(s, ρ) is automorphic, and
specifies which automorphic L-series arise in this fashion. Thus, the conjecture
answers the original question for all finite Galois extensions of Q. For n = 1 (so
G is abelian) and all K, Artin proved all Artin L-series are automorphic. For
n = 2, Langlands (and Tunnell) have proved the conjecture in some cases.
In 1967 Langlands stated his conjectural functoriality principle, which includes
a nonabelian class field theory as a special case. For a local field K this can be
stated as follows..
The Weil group WK of K is defined to be the subgroup of Gal(Kab/K) con-
sisting of the elements that act on the residue field as an integer power of the
Frobenius element. The local Artin map in abelian local class field theory can
be regarded as an isomorphism φK from K∗ onto the largest abelian quotient
W ab
K of WK . Langlands conjectures that the homomorphisms from WK into

GLn(C) correspond to certain representations of GLn(K). For n = 1, the rep-
resentations of GL1(K) = K∗ are just characters, and the correspondence is
given by composition with φK . For n > 1 the representations of GLn(K) are
typically infinite dimensional.

On the automorphic side, let An(K) be the set of equivalence classes of
irreducible representations of GLn(K) on complex vector spaces for which the
stabilizer of each vector is open. On the Galois side, let Gn(K) be the set of
equivalence classes of pairs (r,N) where r is a semisimple representation of WK

on an n-dimensional complex vector space V , trivial on an open subgroup, and
N is a nilpotent endomorphism of V such that conjugating N by r(σ) (σ ∈WK)
multiplies it by the absolute value of φ−1

K (σ). The local Langlands conjecture
for K asserts that there is a family of bijections (σn)n≥1.

π 7→ σn(π) : An(K)→ Gn(K)

such that

• (a) the determinant of σn(π), viewed as a character of WK , corresponds
under φK to the central character of π.

• (b) the map σn preserves L-factors and ε-factors of pairs of π’s (as defined
by Jacquet, Piatetskii-Shapiro, and Shalika on the automorphic side, and by
Langlands and Deligne on the Galois side)

8WEIL (1906–1998). Defined the Weil group, which enabled him to give a common
generalization of Artin L-series and Hecke L-series

9LANGLANDS (1936– ). The Langlands program is a vast series of conjectures that,
among other things, contains a nonabelian class field theory
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• (c) for χ ∈ A1(K), σn(π ⊗ (χ ◦ det)) = σn(π)⊗ σ1(χ)

• (d) σn commutes with passage to the contragredient, π 7→ π∨

For each K, Henniart showed there exists at most one such family. The
conjecture itself was proved by Harris and Taylor (2001). Several months later,
Henniart(2000) found a simpler proof.
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Chapter 3

The theory of valuations

3.1 Definition of p-adic numbers

We would like to introduce the p-adic numbers following the ideas of Neukirch
[3], Milne [4] and Lang [6]. The valuation theory is our starting point to the de-
velopment of our theory which started with the invention of the p-adic numbers
at the beginning of the 20th century by the mathematician Kurt Hensel(1861-
1941) with a view to introduce into number theory the powerful method of
power series expansion, which plays in function theory a predominant role. We
associate to the integer f ∈ Z its ”value” at prime p ∈ Z, ie

f(p) := f mod p ∈ κ(p), κ(p) = Z/pZ

This suggests the further question, whether not only the value of f ∈ Z at p,
but also the higher derivatives of f can be reasonably defined. This leads us to
the definition of a p-adic integer.

Definition 3.1.1. For a fixed prime p, a p-adic integer is a formal infinite series

a0 + a1 p + a2 p
2 + ... 0 ≤ ai < p, ı = 0, 1, 2...

The set of p-adic integers is denoted by Zp.

In the specific case of a positive integer n ∈ N, we have

n = a0 + a1 p + ...+ ak p
k

Proposition 3.1.2. The residue classes amod pn ∈ Z/pnZ can be uniquely
represented in the form

a ≡ a0 + a1 p + ...+ an−1 p
n−1mod pn

where 0 ≤ ai < p

Proof. we use induction on n...
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Every integer f and more generally every rational number

f ∈ Z(p) = {g/h, g, h ∈ Z, p ∤ h}

defines a sequence of residue classes

sn = fmod pn ∈ Z/pnZ, n = 1, 2, ...

and by the preceding proposition

s1 = a0 mod p

s2 = a0 + a1p mod p2 etc

where
a0, a1, ... ∈ {0, 1, ..., p− 1}

are unique.

The sequence

sn = a0 + a1p+ ..+ an−1 p
n−1 n = 1, 2...

defines a p-adic integer
∞∑

ν=0

aνp
ν ∈ Zp

we call it the p-adic expansion of f

Now if f ∈ Q we write f = g/h p−m sth (gh, p) = 1 and we have the
analogy with the Laurent series ie we attach to f the p-adic number

a0p
−m + a1p

−m+1 + ..+ am + am+1p+ .. ∈ Qp

so that we can define addition and multiplication of p-adic numbers, which turn
Zp into a ring and Qp into its field of fractions, we have to view f ∈ Zp not
as sequences of sn n = 1, 2, .. as has been defined, but rather as sequences of
residue classes:

sn = sn mod p
n ∈ Z/pnZ

we have the canonical projections between different rings Z/pnZ

Z/pZ
λ1←− Z/p2Z

λ2←− Z/p3Z
λ3←− ...

and
λn(sn+1) = sn

In the direct product

∞∏

n=1

Z/pnZ = {(xn)n∈N , xn ∈ Z/pnZ}
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we consider (xn)n∈N sth λn(xn+1) = xn n = 1, 2, .. this set is called the
projective limit of the rings Z/pnZ ie

lim←−nZ/p
nZ = {(xn)n∈N ∈

∞∏

n=1

Z/pnZ λn(xn+1) = xn}

and we have our result:

Proposition 3.1.3. There is a bijection

Zp
∼−→ lim←−nZ/p

nZ

The projective limit is a subring of the direct product
∏∞
n=1 Z/pnZ where

we can add and multiply componentwise. We thus have the ring of p-adic
integers Zp.

3.2 The p-adic absolute value

The representation of a p-adic integer

a0 + a1 p + a2 p
2 + ... 0 ≤ ai < p

resembles very much the decimal fraction representation

a0 + a1 (
1

10
) + a2 (

1

10
)
2

+ ... 0 ≤ ai < 10

of a real number. But it does not converge as the decimal fraction does.
Nonetheless the field Qp of p-adic numbers can be constructed from the field Q
in the same fashion as the field of the real numbers R. In that sense we have
to replace the ordinary absolute value by a new p-adic absolute value | |p with
respect to which the above series converge so that the p-adic numbers appear
in the usual manner as limits of Cauchy sequences of rational numbers. This
approach was proposed by J Kurschak. It is defined as follows

Let a =
b

c
b, c ∈ Z be a nonzero rational number, we extract from b, c as

high a power of the prime number p as possible, ie a = pm
b
′

c′
(b

′

c
′

, p) = 1 and

we set

|a|p =
1

pm

we can see now that the summands of a p-adic series a0 +a1 p +a2 p
2 + ... form

a sequence converging to 0 with respect to | |p.

The exponent m in this representation is denoted by vp(a) and we put for-
mally vp(0) =∞. This gives the function

vp : Q→ Z ∪ {∞}
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which can be checked to satisfy the properties

• vp(a) =∞⇔ a = 0

• vp(ab) = vp(a) + vp(b)

• vp(a+ b) ≥ min{vp(a), vp(b)}

where x+∞ =∞ , ∞+∞ =∞ and ∞ > x, ∀x ∈ Z

The function vp is called the p-adic exponential valuation of Q. The
p-adic absolute value is given by

| |p : Q→ R , a 7→ |a|p = p−vp(a)

In view of the 3 properties above it satisfies the conditions of a norm on Q.
One can show that the absolute values | |p and | | essentially exhaust all norms

on Q, any further norm is a power | |sp or | |s for some real s > 0. The usual
absolute value | | is denoted by | |∞, this gives the following product formula

Proposition 3.2.1. For every rational number a 6= 0 we have

∏

p

|a|p = 1

where p varies over all prime numbers as well as the symbol ∞.

We want now to give an alternative definition for the field of p-adic numbers.
For this we define:

A Cauchy sequence with respect to | |p is by definition a sequence {xn}
of rational numbers such that for every ε > 0, there exists a positive integer n0
satisfying

|xn − xm|p < ε for all n,m ≥ n0

example: Every formal series

∞∑

ν=0

aνp
ν 0 ≤ aν < p

provides a Cauchy sequence via its partial sums

xn =

n−1∑

ν=0

aνp
ν

because for n > m one has

|xn − xm|p = |
n−1∑

ν=m

aνp
ν |
p

≤ maxm≤ν<n{|aνpν |p} ≤
1

pm
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A sequence {xn} in Q is called a nullsequence with respect to | |p if |xn|p
is a sequence converging to 0 in the usual sense.

The Cauchy sequences form a ring R, the nullsequences form a maximal
ideal m, and we define the field of p-adic numbers to be the residue class field

Qp := R/m

we embed Q in Qp by associating to every element a ∈ Q the residue class of
the constant sequence (a, a, ...). The p-adic absolute value | |p on Q is extended
to Qp by giving the element x = {xn} mod m ∈ R/m the absolute value

|x|p := limn→∞|xn|p ∈ R

This limit exists because {|xn|p} is a Cauchy sequence in R and it is inde-
pendent of the choice of the sequence {xn} within its class mod m because any
p-adic nullsequence {yn} ∈ m satisfies limn→∞|yn|p = 0.

3.3 Extensions of valuations

For every valuation v of K we consider the completion Kv and an algebraic
closure Kv of Kv. The canonical extension of v to Kv is again denoted by v
and the unique extension of this latter valuation to Kv by v.

Let L/K be an algebraic extension. Choosing a K-embedding

τ : L→ Kv

we obtain by restriction of v to τL an extension

w = v ◦ τ
of the valuation v to L. In other words, if v resp v are given by the absolute
values | |v resp | |v onK, Kv respKv, where | |v extends precisely the absolute
value | |v of Kv, then we obtain on L the multiplication valuation

|x|w = |τx|v
The mapping τ : L→ Kv is obviously continuous with respect to this valuation.
It extends in a unique way to a continuous K-embedding

τ : Lw → Kv

where in the case of an infinite extension L/K, Lw does not mean the completion
of L with respect to w, but the union Lw =

⋃
i Liw of the completions Liw of

all finite subextensions Li/K of L/K. This union will be henceforth called the
localization of L with respect to w. When [L : K] <∞, τ is given by the rule

x = w − limn→∞xn 7→ τ x := v − limn→∞τ xn
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where {xn}n∈N is a w-Cauchy sequence in L and hence {τ xn}n∈N a v-Cauchy

sequence in Kv. We note here that the sequence τ xn converges in the finite
complete extension τ L ·Kv of Kv. We consider the diagram of fields

L Lw

K Kv

The canonical extension of the valuation w from L to Lw is precisely the
unique extension of the valuation v from Kv to the extension Lw/Kv, We have

Lw = L Kv

because if L/K is finite then the field L Kv ⊆ Lw (is complete) contains the
field L and therefore has to be its completion. If Lw/Kv has degree n < ∞,
then the absolute values corresponding to v and w satisfy the relation

|x|w = n

√
|NLw/Kv

(x)|
v

The above field diagram is of central importance in algebraic number theory. It
shows the passage from the global extension L/K to the local extension Lw/Kv

and thus represents one of the most important methods of algebraic number
theory, the local-to-global principle.

We saw that every K-embedding τ : L→ Kv gave us an extension w = v ◦ τ
of v. For every automorphism σ ∈ Gal(Kv/Kv) of Kv over Kv we obtain with
the composite

L
τ−→ Kv

σ−→ Kv

a new K-embedding τ
′

= σ◦τ of L. It will be said to be conjugate to τ over Kv.
The following result gives us a complete description of the possibe extensions of
v to L.

Theorem 3.3.1 (Extension Theorem). Let L/K be an algebraic field exten-
sion and v a valuation of K. Then:

(i) Every extension w of the valuation v arises as the composite w = v ◦ τ
for some K-embedding τ : L→ Kv

(ii) Two extensions v ◦ τ and v ◦ τ ′

are equal if and only if τ and τ
′

are
conjugate over Kv

Proof. we shall prove the second statement..

(ii) Let τ and σ◦τ with σ ∈ Gal(Kv/Kv) be two embeddings of L conjugate
over Kv. Since v is the only extension of the valuation v from Kv to Kv, one
has v = v ◦σ and thus v ◦ τ = v ◦ (σ ◦ τ). The extensions induced to L by τ and
by σ ◦ τ are therefore the same.
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Conversely: Let τ, τ
′

: L→ Kv be two embeddings such that v ◦ τ = v ◦ τ ′

and let σ : τL→ τ
′

L be the K-isomorphism σ = τ
′ ◦ τ−1. We can extend σ to

a Kv-isomorphism

σ : τL ·Kv → τ
′

L ·Kv

Indeed, τL is dense in τL ·Kv, so every element x ∈ τL ·Kv can be written as
a limit

x = limn→∞τxn

for some sequence xn which belongs to a finite subextension of L. As v◦τ = v◦τ ′

,
the sequence τ

′

xn = στxn converges to an element

σx = limn→∞στxn

in τ
′

L ·Kv. Clearly the correspondence x 7→ σx does not depend on the choice
of a sequence {xn} and yields an isomorphism τL ·Kv

σ−→ τ
′

L ·Kv which leaves
Kv fixed. Extending σ to a Kv-automorphism σ ∈ Gal(Kv/Kv) gives τ

′

= σ ◦τ
so that τ and τ

′

are indeed conjugate over Kv.
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Chapter 4

Abstract class field theory

4.1 Definition of class formation

The cohomological algebra behind the reciprocity law is common to both the lo-
cal and global class field theory of number fields and function fields. Abstracting
it led to the definition of a new algebraic structure, ”class formation”, which
embodies the common features of our theories. The difference is in the proofs
that the idele classes globally and the multiplicative groups locally, satisfy the
axioms of a class formation. The relevant information can be found among oth-
ers in Neukirch [1] and [2] (for a rigorous definition of profinite groups) and in
Artin and Tate [5].
The mathematics we cover is the result of roughly a century of development,
1850-1950. The high point came in 1920’s with Takagi’s proof that the finite
abelian extensions of a number field are in natural one to one correspondence
with the quotients of the generalized ideal class groups of that field, and Artin’s
proof several years later that an abelian Galois group and the corresponding
ideal class group are canonically isomorphic, by an isomorphism which implied
all known reciprocity laws. Around 1950 the systematic use of the cohomology
of groups by Hochschild, Nakayama, Artin and Tate shed new light. It enabled
many theorems of the local class field theory of the 1930’s to be transferred
to the global theory, and led to the notion of class formation embodying the
common features of both theories. At about the same time, Weil conceived the
idea of Weil groups and proved their existence. With those two developments
it is fair to say that the classical one-dimensional abelian class field theory had
reached full maturity. There were still a few things to be worked out, such as
the local and global duality theories, and the cohomology of algebraic tori, but
it was time for new directions.
They soon came. For example:

Higher dimensional class field theory
Non-abelian reciprocity laws and the Langlands program
Iwasawa theory1

Leopold’s conjecture

1IWASAWA (1917–1998). He introduced an important new approach into algebraic num-
ber theory which was suggested by the theory of curves over finite fields
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Abelian (and non-abelian) l-adic representations
Lubin-Tate2 local theory, Hayes explicit theory for function fields, Drinfeld

modules
Stark conjectures
Serre conjectures (now theorems).

Local and global class field theory, as well as a series of further theories
for which the name class field theory is similarly justified, have the following
principle in common. All of these theories invole a canonical bijective corre-
spondence between the abelian extensions of a field K and certain subgroups of
a corresponding module AK associated with the field K. This correspondence
has the property that if the subgroup I ⊆ AK corresponds to an abelian field
extension L/K (the ”class field associated with I”), then there exists a canon-
ical isomorphism between the Galois group GL/K and the factor group AK/I.
This so called reciprocity law is the main theorem of class field theory.

This main theorem can be tracked back to a common system of axioms
for the concrete theories mentioned above which essentially consists of the as-
sumptions in Tate’s Theorem; in fact one can view Tate’s Theorem itself as
the abstract version of the main theorem of class field theory. The notion of a
class formation is based on this idea. It separates the purely group theoretic
machinery, which is characteristic of class field theory, from the specific consid-
erations of field theory, and gives in an easily comprehensible and elegant way
information about the goal and function of the theory.

First we will make a small parenthesis to introduce the decomposition group
that we shall use later on, based on our theory of valuations.

If L/K is a finite extension of a number field K and F a prime of L lying
above the prime p of K, then we write F|p. In this case the completion LF of L
by F contains Kp, since the restriction of the valuation associated with F from
L to K yields the valuation of the field K associated with p.

We illustrate this diagrammatically as follows..
the transition from the global extension L/K to the local extensions LF|Kp at
the individual primes is the fundamental principle behind class field theory.

L LF

K Kp

Let’s consider the prime decomposition

p = Fe..F
′e

′

2TATE (1925– ). He proved new results in group cohomology, which allowed him to
give an elegant reformulation of class field theory. With Lubin he found an explicit way of
generating abelian extensions of local fields
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of p in L, then p̂ = F̂e, where p̂ ( or F̂) denotes the prime ideal of the field Kp

(resp LF). If F runs through all the primes of L over p, then we have

∑

F|p

[LF : Kp] = [L : K]

Let L/K be finite normal field extension with G = Gal(L/K) (= GL/K), if
σ ∈ G, then if F|p⇒ σF|p and we say σF is conjugate to F wrt σ.
We have that Kp is contained in LF as well as LσF since p lies under F and σF.

There is a canonical Kp-isomorphism

LF
σ−→ LσF

In fact if a ∈ LF, ie a = F− limai for some sequence ai ∈ L, then the sequence
σai ∈ L converges in LσF wrt σF, and the canonical isomorphism is obtained
from

a = F− lim ai ∈ LF 7→ σa = σF− lim σai ∈ LσF
Under this isomorphism, Kp is fixed elementwise.
In particular if σF = F, then we have the Kp-automorphism

LF
σ−→ LF

and therefore an element of the Galois group GLF/Kp
, ie GF ⊆ GLF/Kp

. The
above automorphism is the continuous extension of the automorphism σ of L
to the completion LF, GF is the decomposition group of F over K.
Conversely every automorphism of GLF/Kp

yields an automorphism in GF by
restriction to L, so we have a canonical isomorphism

GF
∼= GLF/Kp

and we can identify these two groups in the following text.

Our main reference towards the proof of reciprocity law is Tate’s theorem
[1], which is stated as:

Theorem 4.1.1 (Tate’s Theorem). Assume that A is G-module with the
properties: For each subgroup g ⊆ G

• H1(g,A) = 0

• H2(g,A) is cyclic of order |g|

If a generates the group H2(G,A), then the map

a ∪ : Hq(G,Z)→ Hq+2(G,A)

is an isomorphism.
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We shall make use of this theorem later on..

We shall now introduce a structure, ie the profinite group. In the course
of the years since the 1950s, the point of view of class field theory has slightly
changed. The classical approach describes the Galois groups of finite extensions
using arithmetic invariants of the local or global ground field. An essential fea-
ture of the modern point of view is to consider infinite Galois groups instead,
ie one investigates the set of all finite extensions of the field k at once, via
the absolute Galois group GK . These groups intrinsically come equipped with
a topology, the Krull topology, under which they are Hausdorff, compact and
locally disconnected topological groups. It proves to be useful to ignore, for
the moment, their number theoretical motivation and to investigate topological
groups of this type, the profinite groups, as objects of interest in their own right.
For this reason an extensive ”algebra of profinite groups” has been developed
by number theorists, not as an end in itself but always with concrete number
theoretical applications in mind. Nevertheless, many results can be formulated
solely in terms of profinite groups and their modules, without reference to the
number theoretical background.

Let G be a profinite group, ie a compact group with the normal-subgroup
topology. We may think of G as the Galois group (endowed with the Krull
topology) of an infinite Galois field extension, although the abstract notions
in this section do not use this interpretation. The open subgroups of G are
precisely the closed subgroups of finite index. In fact, the complement of an
open subgroup is the union of (open) cosets, thus open, and since G is com-
pact, finitely many of these cosets cover the group G, hence the index is finite.
Conversely, a closed subgroup of finite index is open, because it is the union of
finitely many cosets, hence its complement is closed.

Given a profinite group G, we consider the family {GK : K ∈ X} of all
open subgroups of G ie the closed subgroups of finite index. We label each such
subgroup with the index K, and call these indices ”fields”.

The ”field” K0 with GK0
= G is called the base field. If GL ⊆ GK , we write

formally K ⊆ L and define the degree of such an extension L/K as

[L : K] = (GK : GL)

The extension L/K is called normal if GL ⊆ GK is a normal subgroup of
GK . If L/K is normal, then the Galois group of L/K is defined as the quotient
group

GL/K = GK/GL

An extension L/K is called cyclic, abelian, solvable etc, if its Galois group
GL/K = GK/GL is cyclic, abelian, solvable etc. We define the intersection and
the compositum of such fields Ki by setting

K =

n⋂

i=1

Ki
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if GK is (topologically) generated by the GKi
in G, and

K =

n∏

i=1

Ki

if GK =
⋂n
i=1GKi

If GL′ = σGLσ
−1 for σ ∈ G, then we write L

′

= σL and we call two exten-

sions L/K and L
′

/K conjugate in case L
′

= σL for some σ ∈ GK . With these
notions, we obtain for each profinite group G a formal Galois theory.

In the following we consider modules A on which a profinite group G acts.
In this context it is important to keep the topological structure on G in mind.
The action of G on A should be in a certain sense continuous. More precisely,
it should satisfy one of the following equivalent conditions:

• (i) The map G × A → A with (σ, a) 7→ σa is continuous (here A is inter-
preted as a discrete module)

• (ii) For each a ∈ A the stabilizer {σ ∈ G : σa = a} is open in G

• (iii) A =
⋃
U A

U where U runs through all the open subgroups of G

Definition 4.1.2. If G is a profinite group and A is a G-module satisfying the
previous equivalent conditions, the pair (G,A) is called a formation.

If G is the Galois group of a (infinite) Galois extension N/K then G acts on
the multiplicative group N∗ of the field N , and the pair (G,N∗) is a formation.
It is precisely this example that comes into play in local class field theory, and
one may use it as an orientation for what follows.

Let (G,A) be a formation. In the following we think of the module A as
multiplicatively written. Let {GK : K ∈ X} be the family of open subgroups of
G, indexed by the set of fields X. For each field K ∈ X we consider the fixed
module associated with K ie

AK = AGK = {a ∈ A : σa = a for all σ ∈ GK}
In the class field theory example mentioned above, we obviously have AK =

K∗. If K ⊆ L, then AK ⊆ AL.

If L/K is a normal extension, then AL is a GL/K-module. When we call
the pair (G,A) a formation, we basically mean by this the formation of these
normal extensions L/K together with the GL/K-modules AL.

We consider now for each normal extension L/K the cohomology groups of
the GL/K-module AL. For simplicity of notation, we set

Hq(L/K) = Hq(GL/K , AL)
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If K ⊆ L ⊆ N is a tower of normal extensions of K we have inclusions
GN ⊆ GL ⊆ GK with GN and GL normal in GK and the cohomology theory
yields the homomorphism

Hq(GL/K , AL) = Hq(GL/K , A
GN/L

N )
inf−−→ Hq(GN/K , AN )

in other words

Hq(L/K)
infN−−−→ Hq(N/K) for q ≥ 1

In addition we also have the restriction and corestriction maps

Hq(GN/K , AN )
res−−→ Hq(GN/L, AN ) and

Hq(GN/L, AN )
cor−−→ Hq(GN/K , AN )

that is, for every integer q homomorphisms

Hq(N/K)
resL−−−→ Hq(N/L) and Hq(N/L)

corK−−−→ Hq(N/K)

here we only need to assume that N/K is normal. If both N and L are
normal, then the sequence

1→ Hq(L/K)
infN−−−→ Hq(N/K)

resL−−−→ Hq(N/L)

is exact for q = 1 and exact for q > 1 if Hi(N/L) = 1 for i = 1, .., q − 1.

If L/K is normal and σ ∈ G then

τGL 7→ στσ−1GσL

defines an isomorphism between GL/K and GσL/σK and

a 7→ σa

an isomorphism between AL and AσL. Since (στσ−1GσL)σa = σ(τGL)a, these
isomorphisms are compatible and we obtain an equivalence between the GL/K-
module AL and the GσL/σK-module AσL. Thus every σ ∈ G yields an isomor-
phism

Hq(L/K)
σ∗

−→ Hq(σL/σK)

using the equivalence of the modules AL and AσL it is easy to see that the
isomorphism σ∗ commutes with inflation, restriction and corestriction.

We call a formation (G,A) a field formation when for each normal exten-
sion the first cohomology group vanishes:

H1(L/K) = 1

In a field formation we have that

1→ H2(L/K)
infN−−−→ H2(N/K)

resL−−−→ H2(N/L)

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

is always exact.

We shall see soon that when G is the Galois group of a Galois field exten-
sion and A the multiplicative group of the extension field, then we have a field
formation.

If K ⊆ L ⊆ N are normal extensions, then we can always think of the group
H2(L/K) as embedded in the group H2(N/K), since the inflation map

H2(L/K)
infN−−−→ H2(N/K)

is injective. The presentation of our ideas will become formally especially sim-
ple if we take this identification one step further. If L ranges over the normal
extensions of K, then the groups H2(L/K) form a direct system of groups with
respect to the inflation maps. We thus take the direct limit

H2( /K) = lim
−→L

H2(L/K)

and we obtain a groupH2( /K) in which all the groupsH2(L/K) are embedded
via the injective inflation maps. If we identify these groups with their images
under this embedding, then H2(L/K) become subgroups of H2( /K), and

H2( /K) =
⋃

L

H2(L/K)

In particular, if K ⊆ L ⊆ N is a tower of normal extensions of K, we have

H2(L/K) ⊆ H2(N/K) ⊆ H2( /K)

we emphasize that the inflation maps are to be interpreted as inclusions here.

Remark 4.1.3. Let GK be a profinite group and let A be a GK-module. Exactly
as for finite groups, we can define cohomology groups Hq(GK , A) for q ≥ 0 by
taking as cochains the continuous maps GK × ...×GK → A. Then

Hq(GK , A) ∼= Hq( /K) = lim
−→L

Hq(L/K)

Given any extension K
′

/K of K, we obtain a canonical homomorphism

H2( /K)
res

K
′

−−−→ H2( /K
′

)

In fact if c ∈ H2( /K), then there is an extension K ⊆ K
′ ⊆ L, so that c is

contained in the group H2(L/K), hence the restriction map

H2(L/K)
res

K
′

−−−→ H2(L/K
′

)

defines an element

resK′ c ∈ H2(L/K
′

) ⊆ H2( /K
′

)
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The fundamental assertion in both local and global class field theory is the
existence of a canonical isomorphism, the so called ”reciprocity map”

GabL/K
∼= AK/NL/KAL

for every normal extension L/K where GabL/K is the abelianization of GL/K and
NL/KAL = NGL/K

AL is the norm group of AL. Because of Tate’s Theorem, we
can force the existence of such an isomorphism in abstracto , by imposing the
following conditions on our formation (G,A): If L/K is any extension, then

I. H1(L/K) = 1

II. H2(L/K) is cyclic of order [L : K]

If this holds, then the cup product with a generator of H2(L/K) gives an
isomorphism

GabL/K
∼= AK/NL/KAL

However there is a certain arbitrariness to this isomorphism, since it depends
on the choice of the generator of H2(L/K). Therefore and in order to get a
”canonical” reciprocity law, we replace II. by the condition that there is an

isomorphism between H2(L/K) and the cyclic group
1

[L : K]
Z/Z, the so-called

invariant map, which uniquely determines the element uL/K ∈ H2(L/K) with

image
1

[L : K]
+ Z. The crucial point here is that this element uL/K remains

”correct” when passing to extension fields and subfields, which we ensure by
imposing certain compatibility conditions on the invariant map.

These considerations lead us to the:

Definition 4.1.4. A formation (G,A) is be called a class formation if it
satisfies the following axioms:

• Axiom I H1(L/K) = 1 for every normal extension L/K (field formation)

• Axiom II For every normal extension L/K there exists an isomorphism:

invL/K : H2(L/K)→ 1

[L : K]
Z/Z

the invariant map with the following properties:

• (a) If K ⊆ L ⊆ N is a tower of normal extensions, then

invL/K = invN/K |H2(L/K)

• (b) If K ⊆ L ⊆ N is a tower of extensions with N/K normal, then

invN/L ◦ resL = [L : K] · invN/K
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In order to make the property (b) obvious, we visualize with the commutative
diagram

H2(N/K)
invN/K

//

resL

��

1

[N : K]
Z/Z

·[L:K]

��

H2(N/L)
invN/L

//
1

[N : L]
Z/Z

The extension property (II a) of the invariant map implies that if

H2( /K) =
⋃

L

H2(L/K)

then there is an injective homomorphism

invK : H2( /K)→ Q/Z

we have additional formulas for the corestriction map cor and the conjugate
map σ∗.

Proposition 4.1.5. Let K ⊆ L ⊆ N be extensions with N/K normal, then

• (a) invN/K(corKc) = invN/Lc for c ∈ H2(N/L)

• (b) invσN/σK(σ∗c) = invN/Kc for c ∈ H2(N/K) and σ ∈ G

Now we can distinguish a ”canonical” generator in each group H2(L/K)

Definition 4.1.6. Let L/K be a normal extension. The uniquely determined
element uL/K ∈ H2(L/K) such that

invL/K(uL/K) =
1

[L : K]
+ Z

is called the fundamental class of L/K.

From the behaviour of the invariant map described in 4.1.5, we see how the
fundamental classes of different field extensions are related, ie

Proposition 4.1.7. Let K ⊆ L ⊆ N be extensions with N/K normal, then

• (a) uL/K = (uN/K)[N :L] if L/K is normal

• (b) resL(uN/K) = uN/L

• (c) corK(uN/L) = (uN/K)[L:K]

• (d) σ∗(uN/K) = uσN/σK for σ ∈ G
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Now we can apply Tate’s Theorem, to obtain the main theorem of class
formations

Theorem 4.1.8 (Main Theorem). Let L/K be a normal extension, then the
map

uL/K∪ : Hq(GL/K ,Z)→ Hq+2(L/K)

given by the cup product with the fundamental class uL/K ∈ H2(L/K) is an
isomorphism in all dimensions q.

For q = 1, 2 we immediately obtain

Corollary 4.1.9.

H3(L/K) = 1 and H4(L/K) ∼= χ(GL/K)

Since we do not have a concrete interpretation of the groups Hq(L/K) in
case q = 3, 4, or generally for all cohomology groups of higher dimensions, 4.1.9
has no immediate concrete application, however for q = −2 we have such an
interpretation, because of the canonical isomorphisms

GabL/K
∼= H−2(GL/K ,Z)

and
H0(L/K) = AK/NL/KAL

and so we obtain the following general reciprocity law:

Theorem 4.1.10. Let L/K be a normal extension. Then the cup product map

uL/K∪ : H−2(GL/K ,Z)→ H0(L/K)

yields a canonical isomorphism

θL/K : GabL/K → AK/NL/KAL

between the abelianization of the Galois group and the norm residue group of
the module.

The isomorphism θL/K in the Theorem is called Nakayama map.
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Chapter 5

Main Theorems in terms of

ideals

5.1 Definition of Artin or reciprocity map

At this point we can make a small parenthesis to see how our main theorems can
be stated in terms of ideals, instead of ideles, stating Artin reciprocity law in
that case and can shortly after return to our beautiful and intuitive cohomology
formalism which is the basis of our theory. For the ideas of this chapter we
follow mainly Milne [4]. We can begin with the following definitions:

Definition 5.1.1. A modulus for K is a function

m : {primes of K} → Z

sth:

• a) m(p) ≥ 0 for all primes p and m(p) = 0 for almost all p

• b) if p is real, then m(p) = 0 or 1

• c) if p is complex, then m(p) = 0

one writes:
m =

∏

p

pm(p)

A modulus m =
∏

p p
m(p) is said to divide a modulus n =

∏
p p

n(p) if

m(p) ≤ n(p) ∀p.

A modulus m can be written m = m∞m0 , where m∞ is a product of real
primes and m0 is a product of positive powers of prime ideals, ie can be identi-
fied with an ideal in OK .
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For a modulus m, define Km,1 to be the set of a ∈ K∗, sth

{
ordp(a− 1) ≥ m(p) all finite p|m
ap > 0 all real p|m

we note that

ordp(a− 1) ≥ m(p)⇔ πm(p)|(ap − 1)⇔

a 7→ 1 in (Op/p
m(p))∗ ∼= (Ôp/p̂

m(p))∗

where π is a prime element in the completion Kp of K at p.

Let S(m) = {primes dividing m}

For any a ∈ Km,1 and prime ideal p|m ordp(a− 1) > 0 = ordp(1) and so

ordp(a) = ordp((a− 1) + 1) = 0

therefore for any a ∈ Km,1, the ideal (a) ∈ JS(m).

..where we define JS to be the subgroup of J(= JK) (group of fractional
ideals of K), generated by prime ideals not in S , where S is any fixed finite set
of primes in K

if we set

i : Km,1 → JS(m)

with
a 7→ (a)

The quotient Cm := JS(m)/i(Km,1) is called the (ray) class group modulo
m.

Let L/K be a finite abelian extension with Galois group G. Recall that, for
a prime ideal p of K that is unramified in L, there is a Frobenius automorphism
σ = (p, L/K) of L uniquely determined by the following condition: for every
prime ideal F of L lying over p, σF = F and σa ≡ aNp mod F.
For any finite set S of primes in K containing all primes that ramify in L, we
have the homomorphism:

ψL/K : JS → Gal(L/K)

with
pn1
1 ..pns

1 7→
∏

i

(pi, L/K)ni

the global Artin map (or reciprocity map).
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Proposition 5.1.2. Let L be an abelian extension of K and K
′

, sth K ⊆ K ′ ⊆
L, then the diagram commutes (S is defined below)

JS
K′

ψ
L/K

′

//

Nm

��

Gal(L/K
′

)

inclusion

��

JSK
ψL/K

// Gal(L/K)

Proof. Let p
′ ∈ {prime ideals of K

′}, lying over a prime ideal p of K not
in S, where S is any finite set of prime ideals of K containing all those that
ramify in L and also the set of primes of K

′

lying over a prime in S. Then

NmK′/K(p
′

) = pf(p
′
/p) and we have to show that

ψL/K(pf(p
′
/p)) = ψL/K′ (p

′

)⇔

(F, L/K)
f(p

′
/p)

= (F, L/K
′

)

for every F lying over p, but this is a property of the Frobenius element for F

unramified over p as it is accepted to be.

Corollary 5.1.3. For every finite abelian extension L/K, NmL/K(JSL ) is con-
tained in the kernel of

ψL/K : JS → Gal(L/K)

Proof. we can take in the previous diagram K
′

= L

Thus the Artin map induces a homomorphism

ψL/K : JSK/Nm(JSL )→ Gal(L/K)

The group JSK/Nm(JSL ) is infinite (because infinitely many primes do not split),
so ψL/K can not be injective, to do so, we get an isomorphism as follows:

Let S be a finite set of primes in K. We shall say that the homomorphism

ψ : JS → G

admits a modulus, if there exists a modulus m with S(m) ⊇ S, sth
ψ(i(Km,1)) = 0. Thus ψ admits a modulus if and only if it factors through Cm

for some m with S(m) ⊇ S. This leads to

Theorem 5.1.4 (Reciprocity law). Let L/K be a finite, abelian extension,
S be the set of primes of K ramifying in L. Then the Artin map
ψ : JS → Gal(L/K) admits a modulus m with S(m) = S and it defines an
isomorphism

J
S(m)
K /i(Km,1) ·Nm(J

S(m)
L )

∼−→ Gal(L/K)

in that case, m is a defining modulus for L.
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Note that the Theorem does not imply that K has even a single nontrivial
abelian extension. This is guaranteed by the existence theorem.

Call a subgroup H of Jm
K a congruence subgroup modulo m, if

Jm
K ⊇ H ⊇ i(Km,1)

ImK denotes the group of S(m)-ideals in K and Jm
L the group of S(m)

′

-ideals in

L, where S(m)
′

contains the primes of L lying over a prime in S(m).

Then we state the following:

Theorem 5.1.5 (Existence). For every congruence subgroup H modulo m,
there exists a finite abelian extension L/K, such that

H = i(Km,1) ·NmL/K(Jm
L )

The field L corresponding to a congruence subgroup H is called the class
field of H, whence the name of the subject.

Theorems 5.1.4 and 5.1.5 show that, for any number field K, there is a
canonical isomorphism lim←−m

Cm → Gal(Kab/K). Rather than studying lim←−m
Cm

directly, it turns out to be more natural to introduce another group that has
it as a quotient; this is the idele class group, which is the main object of our
cohomology theory.
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I will tell you a story about the Reciprocity Law. After my thesis, I had
the idea to define L-series for non-abelian extensions. But for them to agree
with the L-series for abelian extensions, a certain isomorphism had to be true.
I could show it implied all the standard reciprocity laws. So I called it the Gen-
eral Reciprocity Law and tried to prove it but couldn’t, even after many tries.
Then I showed it to the other number theorists, but they all laughed at it, and
I remember Hasse in particular telling me it couldn’t possibly be true. Still, I
kept at it, but nothing I tried worked. Not a week went by — for three years
! — that I did not try to prove the Reciprocity Law. It was discouraging, and
meanwhile I turned to other things. Then one afternoon I had nothing special to
do, so I said, “Well, I try to prove the Reciprocity Law again.” So I went out and
sat down in the garden. You see, from the very beginning I had the idea to use
the cyclotomic fields, but they never worked, and now I suddenly saw that all
this time I had been using them in the wrong way — and in half an hour I had it.

Emil Artin, as recalled by Mattuck (in Recountings: Conversations with
MIT Mathematicians 2009).
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Chapter 6

Global class field theory

6.1 Ideles and Idele classes

In the following we will consider ideles as in Neukirch [1], [3], Milne [4] and
Lang [6] which were first intoduced by Chevalley, in the first two sections we
use extensively [6],[8]. The notion of ideles is a slight modigication of the notion
of ideals, or more precisely of divisors and its significance lies in the fact that
it permits a transition between global and local number theory, and therefore
represents a suitable mean for applying the local-global principle, which is a
method to obtain theorems and definitions in global class field theory from lo-
cal class field theory1. The development of the global theory using ideles with
cohomological methods is particularly transparent and has led to a plethora of
far reaching results. The analytic methods, ie Dirichlet series and their gener-
alizations which were necessary in the classical ideal theoretic treatment have
subsequently disappeared.

Let K be an algebraic number field. An idele a of K is a family a = (ap)
of elements ap ∈ K∗

p such that p ranges over all primes of K, but ap is a unit in
Kp for almost all primes p.

Definition 6.1.1. Let S be a finite set of primes of K. The group

ISK =
∏

p∈S

K∗
p ×

∏

p/∈S

Up ⊆
∏

p

K∗
p

is called the group of S-ideles. The union

IK =
⋃

S

ISK ⊆
∏

p

K∗
p

where S runs through all finite sets of primes of K, is the idele group of K.
If a = (ap) ∈ IK , ap ∈ K∗

p , then the ap are the local components of the idele
a, an ap ∈ K∗

p is an essential component of a if ap is not a unit.

1Class field theory has a reputation for being difficult, which is partly justified. But it is
necessary to make a distinction: there is perhaps nowhere in science a theory in which the
proofs are so difficult but at the same time the results are of such perfect simplicity and of
such great power.
J. Herbrand 1936
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We now want to define the idele class group of K as the factor group
CK = IK/K

∗. To do so we use the following definition

Definition 6.1.2. Let L/K be Galois with G = Gal(L/K), we define a norm
map

N = NL
K : IL → IK

x = (xw) 7→ y = (yv)

by yv :=
∏
w|v N

Lw

Kv
(xw) (where v, w are primes.. we use these symbols

instead of the usual p, F interchangeably)

(..., xw1
, ...

N
Lw1
Kv

((

..., xwn , ...) = x

N
Lwn
Kv

��

(..., yv, ...) = y

Lemma 6.1.3. (Properties of the norm map)

1 If K ≤ L ≤ M , then NM
K = NM

L ·NL
K

2 If L/K is Galois, then NL
K(x) =

∏
σ∈Gal(L/K) σx

3 NL
K(x) = x[L:K] ∀x ∈ IK

4 The diagram

L∗
NL

K
//

ι

��

K∗

ι

��

IL
NL

K
// IK

commutes.

Proof. we prove the 4th property, assuming more specifically that L/K is Galois.
Let x ∈ L∗, we choose a place (ie prime) v and fix a place w0|v, we obtain

{w : w|v} = {σw0, σ ∈ G} = {σw0, σ ∈ G/Gw0
}

where
Gw0

= {σ ∈ G : σw0 = w0}
the decomposition group of w0. For any x ∈ L∗ we obtain the v-component
of NL

K((x, .., x)︸ ︷︷ ︸
ι(x)

) as

∏

w|v

NLw

Kv
(x) =

∏

σ∈G/Gw0

N
Lσw0

Kv
(x) =

∏

σ∈G/Gw0

∏

τ∈Gal(Lσw0
/Kv)

τx =
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∏

σ∈G/Gw0

∏

τ∈σGal(Lσw0/Kv)σ−1

τx =
∏

σ∈G/Gw0

∏

τ∈Gal(Lσw0/Kv)

στσ−1x

∏

σ∈G/Gw0

σ
∏

τ∈Gal(Lw0/Kv)

τσ−1x

︸ ︷︷ ︸
N

Lw0
Kv

(σ−1x) ∈
∏
K∗

v

(the field in the last bracket is a base field, hence invariant under σ, and
therefore can be omitted)

=
∏

σ∈G/Gw0

∏

τ∈Gw0
(L/K)

τσ−1x =
∏

σ∈G

σx = NL
K(x)

which implies that

NL
K((x, .., x)) = (NL

K(x), .., NL
K(x))

or
NL
K ◦ ι(x) = ι ◦NL

K(x)

Lemma 6.1.4. The following diagram commutes

IL
NL

K
//

ψL

��

IK

ψK

��

JL
NL

K
// JK

Reminder:

x = (xv)v 7→ψ

∏
p≤OK

pvp(xp) (in this way we get from an Idele to an ideal).

Proof. Let x = (xw)w ∈ IL. Since

vp(N
Lk

Kp
(xk)) = fk|pvk(xk)

(because N(k) = pfk|p ⇒ vp(N(k)) = fk|pvk(k) )

ψK(NL
K(x)) = ψK((

∏

k|p

NLk

Kp
(xk))p, ...︸︷︷︸

archimedean−places

) =

∏

p≤OK

∏

k|p

pfk|pvk(xk) =
∏

k≤OL

NL
K(k)vk(xk) = NL

K(
∏

k≤OL

(k)vk(xk)) =

NL
K(ψL( x︸︷︷︸

(xk)k

) )
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Corollary 6.1.5. The norm induces a mapping

NL
K : IL/L

∗

︸ ︷︷ ︸
CL

→ IK/K
∗

︸ ︷︷ ︸
CK

an idele class group.

6.2 Generalized idele class group

In this section we deduce from the norm index inequalities based on ideals (we
proved the second norm index inequality with analytic methods), the ones based
on idele class groups and see that the indices are equal. Let K/Q be a number
field, for any valuation v (of the field K) and any integer m ∈ N0 we define a
subgroup Uv(m) ≤ K∗

v as follows:

Uv(m) :=

{
1 +mmv m ≥ 1

Uv = O∗
v m = 0

for v = p nonarchimedean

Let A be the integral closure of Z in K, ie the ring of algebraic integers of K.
Denote by Av the closure of A in Kv, and let o = Ap be the local ring at p. All
the elements of o have a p-adic absolute value ≤ 1 because their orders at p are
≥ 0. Hence o lies in the closure of A, and hence the closure of o in Kv is the
same as the closure of A. It is called the ring of p-adic integers in Kv and mv is
the maximal ideal in the complete local ring ov. We may say that Wm(v) (see
below) is a disc of center 1 in the p-adic field.

Uv(m) :=

{
R∗
>0 m ≥ 1

R∗ m = 0
for v archimedean and real

Uv(m) := C∗ for all m for v archimedean and complex

For all v we set

O∗
v := Uv(0) =





O∗
v v nonarchimedean

R∗ v real

C∗ v complex

Notation 6.2.1. An index ”J(m)” is the ”group of fractional ideals” ”prime
to m; an index Pm, Wm, Im means ”prime to m and ≡ 1 (mod m)” (ie locally
the elements are units at all places v dividing m and are even ≡ 1 (mod vmv ),
where P is the group of principal ideals, the rest are defined below..

we can use ”c” instead of ”m” as a cycle, and also refer to [6] for more details.

Notation 6.2.2. Uv(m) ≤ K∗
v is called the subgroup of m-units in K∗

v
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Let now m =
∏
v v

mv be a cycle in K, we define the following subgroups:

• Wm(v) := Uv(mv) ≤ K∗
v

• Wm :=
∏
v|mWm(v)×

∏
v∤m O∗

v︸︷︷︸
Wm(v) (=Uv(mv))

≤ IK

because mv = 0 for v ∤ m

• Im := {x = (xv)v ∈ IK : xv ∈Wm(v) for all v | m} ≤ IK =

∏

v|m

Wm(v)×
∏

v∤m

K∗
v

Remark 6.2.3. 1) Im ≤ I is the subgroup consisting of all ideles x = (xv)v
whose components at all v | m are mv-units.

2) Wm ≤ Im consists of all ideles x = (xv)v whose components are mv-units
at all places v.

3) we have
Km = K∗ ∩ Im (K∗ →֒ I)

Lemma 6.2.4. We have

Im/Km
∼= I/K∗ (idele class group)

Proof. we define the mapping

φ : Im/Km → I/K∗

xKm 7→ xK∗

since Km = K∗ ∩ Im the map φ is injective.. and we prove surjectivity.

Let x = (xv)v ∈ I be arbitrary. By the approximation theorem there is an
element α ∈ K∗ such that v(α− xv) < ǫ for all v | m

⇒ v(1− α−1xv) <
ǫ

v(α)
for all v | m

⇒ α−1xv ∈ Uv(mv) for all v | m if ǫ is chosen sufficiently small

⇒ α−1x ∈ Im

since φ(α−1x)︸ ︷︷ ︸
Im

= α−1x K∗ = xK∗

we find that φ is surjective.
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Definition 6.2.5. The quotient

Cm := Im/KmWm

is called the (generalized) idele class group attached to the cycle m in K.

Proposition 6.2.6. (idele theoretic interpretation of generalized ideal

class group)

For any cycle m there is an isomorphism

Im/KmWm
∼= J(m)/Pm

Proof. consider the mapping

ψ : Im → J(m)

x 7→ (x)

since ψ vanishes on Wm (elements in Wm are units at all places),
we obtain

ψ(KmWm) = ψ(Km) ⊆ Pm (by definition of Pm)

Thus we obtain a mapping

ψ : Im/KmWm → J(m)/Pm

surjectivity of ψ is immediate because ψ is obviously surjective.. we prove there-
fore injectivity.

Let x ∈ Im and assume that ψ(x) ∈ Pm

(ie xKmWm ∈ ker ψ)

⇒ (x) = ψ(x) = ( α︸︷︷︸
∈Pm

) for some α ∈ Km

⇒ (α−1x) = (1)

⇒ α−1x = b for some(any) b ∈ IS∞ (⇒ (b) = (1) )

since α−1
︸︷︷︸
∈Km

, xv︸︷︷︸
∈Im

∈ Uv(mv) for all v|m

we obtain b even is contained in Wm. This implies

x = ab ∈ KmWm

since x was arbitrary this shows that

ψ−1(Pm) = KmWm

⇒ ψ is injective.
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6.2.1 The norm residue group

Let L/K be an extension of number fields.

Definition 6.2.7. A cycle m =
∏
v v

mv in K is called admissible for the exten-
sion L/K iff

Wm(v)︸ ︷︷ ︸
≤K∗

v

⊆ NLw

Kv
L∗
w

for all places v|m and all places w|v.

Aim: Idele theoretic interpretation of the norm residue group

JK(m)/PmN
L
KJL(m)

Proposition 6.2.8. Let m be an admissible cycle in K for the extension L/K.
Then

IK/K
∗NL

KIL︸ ︷︷ ︸
I consider things locally(without K∗) and then insert K∗

∼= JK(m)/PmN
L
KJL(m)︸ ︷︷ ︸

here things are hopelessly mixed

Proof. we consider the mapping

ψ : Im → J(m)

x 7→ (x)

By Proposition in the previous subsection we already know that
ψ−1(Pm) = KmWm and Im/KmWm

∼= J(m)/Pm.

Im J(m)

? PmN
L
KJL(m)

KmWm Pm

ideles ideals

we claim
ψ−1(PmN

L
KJL(m)) = K∗NL

KIL ∩ Im

this implies the assertion of the Proposition. To prove this equation we verify
both implications.

” ⊇ ”
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Let α NL
Ky ⊆ Im where α ∈ K∗ and y = (yw)w ∈ IL ie α NL

Ky is contained
in the rHS of our eq.

By approximation Theorem there is β ∈ L sth βyw is sufficiently close to
1 ∈ O∗

w for all w|m

⇒ NL
Kβyw is sufficiently close to 1 ∈ O∗

v (≤ K∗
v )

⇒ NL
K( βy︸︷︷︸

full idele

) ∈ Im

we obtain αNy︸ ︷︷ ︸
∈Im

= αNβ−1 N (βy)︸ ︷︷ ︸
∈Im

which implies αN(β−1) ∈ Im

⇒ αN(β−1) ∈ Im ∩K∗

︸ ︷︷ ︸
Km

(α ∈ K∗ and β ∈ L∗)

we therefore obtain

ψ(αN(y)) = ψ(αN(β)−1)ψ(N(βy)) =

ψ(αN(β−1)︸ ︷︷ ︸
Km

) N ψ( βy︸︷︷︸
∈Im︸ ︷︷ ︸

JL(m)

) ⊆

⊆ Pm NL
KJL(m)

in other words

αN(y) ∈ ψ−1(Pm NL
KJL(m))

we now want to prove the opposite direction..

” ⊆ ”

Let x ∈ Im and assume that x ∈ ψ−1(Pm NL
KJL(m)), then

ψ(x) = (α)NL
Ku

where α ∈ Km and u ∈ JL(m), we select an idele A = (Aw)w ∈ IL sth

vk( Ak︸︷︷︸
∈Lk

) = vk(u) for all k ∤ m (k ≤ OL) and

Ak = 1 for all k|m

then we obtain that ψL(A) = u

which implies that
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(x) = ψ(x) = (α)NL
Ku = (α) (NL

KA) = (αNL
KA)

This shows that
x = αNL

KA · w
by an element w ∈ IS∞ . Since furthermore x ∈ Im and

α︸︷︷︸
∈Km

NL
K(A)︸ ︷︷ ︸

Im because Ak=1 for all k|m

∈ Im

we see that w ∈ Im hence w ∈ Im ∩ IS∞ =Wm

Since m is admissible for L/K we know that all elements in Wm are norms
of elements, thus there is an idele B ∈ IL sth NL

K(B) = w

Altogether we obtain

x = αNL
K(A) · w = αNL

K(A) NL
K(B) = αNL

K(AB︸︷︷︸
∈IL

) ∈ K∗ NL
KIL

Therefore our equation is proven.

Corollary 6.2.9. Let m be admissible for L/K. Then we have

[IK : K∗NL
KIL] ≤ [L : K]

Proof. IK/K
∗NL

KIL
∼= J(m)/PmN

L
KJL(m) and the claim is shown above.

Remark 6.2.10. For any extention L/K it holds that

IK/K
∗NL

KIL
∼= CK/N

L
KCL

Proof. CK/N
L
KCL

∼= (IK/K
∗)/(NL

KIL K
∗/K∗) ∼= IK/K

∗NL
KIL

Altogether we obtain:

Corollary 6.2.11.

[CK : NL
KCL] = [IK : K∗NL

KIL] = [J(m) : PmN
L
KJL(m)] ≤ [L : K]

Note: we can use the idele theoretic formulation of the norm residue group
to prove the remaining 1st norm index inequality, we will save the time of doing
so, by following the guidelines of abstract class field theory instead which we
developed earlier.

both inequalities will supply us with the isomorphism

J(m)/PmN
L
KJL(m)

∼−→ Gal(L/K)

After this small parenthesis we continue our formulation:
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6.3 Continuation of the formulation based on

ideles and idele classes

Proposition 6.3.1. Let S∞ be the set of infinite primes of K and IS∞

K the
group of ideles which have units as components at all finite primes, then

IK/I
S∞

K
∼= JK

IK/(I
S∞

K ·K∗) ∼= JK/PK

JK ,PK are the group of ideals and principal ideals respectively.

Proof. Let p be a finite prime of the field K and vp be the valuation of Kp

normalized with minimal positive value 1. If a ∈ IK ⇒ ap ∈ Up for almost all
finite primes, thus vpap = 0, so we have the well defined map

φ : a 7→
∏

p∤∞

pvpap

as a canonical homomorphism from IK to JK , obviously kerφ = IS∞

K , which
proves the first assertion. The second is analogous.

Remark 6.3.2. IK/I
S∞

K is the well known group of fractional ideals of K.

Proposition 6.3.3. Let S be a sufficiently large finite set of primes. Then

IK = ISK ·K∗

, and therefore
CK = ISK ·K∗/K∗

Remark 6.3.4. The embedding (ie injective homomorphism) of a ∈ IK in
a′ ∈ IL is as follows

a′F = ap ∈ Kp ⊆ LF

for F|p.

where we mention again that p,F are primes denoted also by v,w without
distinction. This allows us to think of IK as a subgroup of IL.

If L/K is normal and G = GL/K denotes its Galois group, IL is canonically
a G-module: An element σ ∈ G defines a canonical isomorphism from Lσ−1F

onto LF , which we also denote by σ. Here we associate with an idele a ∈ IL
with components aF ∈ L∗

F the idele σa ∈ IL with components

(σa)F = σaσ−1F ∈ LF

Proposition 6.3.5. Let L/K be normal and G = GL/K its galois group. Then

IGL = IK
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It is well known that an ideal of a field K can very well become a principal
ideal in an extension field L without being a principal ideal in the base field K.
Ideles behave differently.2 In particular, if a ∈ IK is an idele of K that becomes
principal idele in the extension L, ie, a ∈ L∗ , then a is already principal in K.
We prove it with the following:

Proposition 6.3.6. If L/K is an arbitrary finite extension, then

L∗ ∩ IK = K∗

Proof. The inclusion K∗ ⊆ L∗∩IK is trivial. Let L be a finite normal extension
of K containing L and let G = GL/K be its Galois group. Then IK and IL are

subgroups of IL. If a ∈ L∗ ∩ IK , then the last proposition shows that a ∈ IG
L

,

ie, σa = a , for all σ ∈ G and because a ∈ L∗
we even have a ∈ (L

∗
)G =

K∗. Therefore L
∗ ∩ IK = K∗ , which implies L∗ ∩ IK ⊆ L

∗ ∩ IK = K∗.

6.4 Cohomology of the idele group

Let L/K be a finite normal extension with Galois group G = GL/K . While
working with groups Hq(G, IL) we can see that these can be localized ,ie, de-
composed into a direct product of cohomology groups over the local fields Kp.

Initially we can write

ISL =
∏

p∈S

IPL ×
∏

p/∈S

UPL

where

IpL =
∏

F|p

L∗
F

Up
L =

∏

F|p

UF

which are also G-modules since the automorphisms σ ∈ G only permute the
primes F above p.

We have the following:

Proposition 6.4.1. Let F be a prime of L above p, then

Hq(G, IpL)
∼= Hq(GF, L

∗
F)

2...to my shame, I have been unable to find the ”corollary” stating that all ideals of K

become principal in the largest abelian extension unramified at the finite primes. If it can be
explained in two words, I would be very grateful to you.

Serre responded:
Enclosed is a little paper on the ”Hauptidealsatz” explaining how the theorem can be reduced
to an (actually very mysterious) theorem in group theory. This in fact is the reduction given
by Artin himself in his paper on the subject; if you could find a beautiful cohomological proof
on the theorem, it would be so much better, but everyone has got stuck on it up to now.

”Grothendieck letter to Serre, 19.9.1956”
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GF is the decomposition group of F over K. If p is a finite, unramified prime
in L, then

Hq(G,Up
L) = 1

for all q.

Proof. IpL =
∏
σ∈G/GF

L∗
σF =

∏
σ∈G/GF

σL∗
F

Up
L =

∏
σ∈G/GF

σUF

which shows that IpL , Up
L are G/GF induced G-modules, thus applying

Shapiro’s Lemma

Hq(G, IpL)
∼= Hq(GF, L

∗
F)

Hq(G,Up
L)
∼= Hq(GF, UF)

this isomorphism is given by the composition

Hq(G, IpL)
res−−→ Hq(GF, I

p
L)

π−→ Hq(GF, L
∗
F)

π is induced by the canonical projection IpL
π−→ L∗

F that takes each idele in

IpL to its F-component. If p is unramified in L then the extension LF/Kp is
unramified and we can refer to local class field theory to obtain the result

Hq(G,Up
L)
∼= Hq(GF, UF) = 1

Theorem 6.4.2. If S is a finite set containing all finite primes of K which are
ramified in L, then

∀p /∈ S, Hq(G,Up
L) = 1

and
Hq(G, ISL)

∼=
∏

p∈S

Hq(GF, L
∗
F)

for F|p

Then IL =
⋃
S I

S
L gives us

Hq(G, IL) ∼= lim−→S
Hq(G, ISL)

∼=
⊕

p

Hq(GF, L
∗
F)

this isomorphism is given by the composition of maps

Hq(G, IL)
res−−→ Hq(GF, IL)

π−→ Hq(GF, L
∗
F)

and π is induced by the canonical projection IL
π−→ L∗

F which takes each
idele a to its F-component aF , ie

IL
π−→ L∗

F

a 7→ aF
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The above projections map each element c ∈ Hq(G, IL) to its p-components
cp ∈ Hq(GF, L

∗
F). We can see above that each c is uniquely determined by its

local components cp, which because of the direct sum are almost all equal to
1. In dimensions q > 0 the map c 7→ cp can be described in the following simple
way. Given a cohomology class c ∈ Hq(G, IL) choose a cocycle a(σ1, ..., σq)
representing c. This is a function on the group G which takes values in the idele
group IL. Restrict this function to the group GF and take the F-components
aF(σ1, ..., σq) of the idele a(σ1, ..., σq). The resulting function from GF to L∗

F is
a cocycle, and its cohomology class cp ∈ Hq(GF, L

∗
F) is the p-component of c.

When we change the field, taking local components is affected according to

Proposition 6.4.3. Let K ⊆ L ⊆ N be normal extensions of K and F′|F|p
primes of N , L, K, then

(infNc)p = infNF′
(cp)

for c ∈ Hq(GL/K , IL), q ≥ 1

(resLc)F = resLF
(cp)

for c ∈ Hq(GN/K , IN )

(corKc)p =
∑

F|p

corKp
(cF)

for c ∈ Hq(GN/L, IN )

for the last two properties it is sufficient to assume N |K normal.

In particular the isomorphism

Hq(G, IL) ∼=
⊕

p

Hq(GF, L
∗
F)

yields the following corollary Norm Theorem for ideles

Corollary 6.4.4. An idele a ∈ IK is the norm of an idele b ∈ IL iff each
component ap ∈ K∗

p is the norm of an bF ∈ L∗
F (F|p) ,ie iff it is a local norm

everywhere.

Proof. H0(G, IL) = IGL /NGIL = IK/NGIL

also H0(GF, L
∗
F) = K∗

p/NGF
L∗
F, thus we have

IK/NGIL ∼=
⊕

p

K∗
p/NGF

L∗
F

If a ∈ IK then this isomorphism takes the 0-cohomology class a ·NGIL = a to
its components ap, which can be computed as ap = ap ·NGF

L∗
F

Now since we have an isomorphism. a = 1 if and only if ap = 1, ie a ∈ NGIL if
and only if for every component ap ∈ NGF

L∗
F.
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We shall use the following results from local class field theory..

Theorem 6.4.5 (Hilbert-Noether).

H1(G,L∗) = 1

Thus from H1(GF, L
∗
F) = H1(GLF/Kp

, L∗
F) = 1, ∀F, we deduce the

Corollary 6.4.6.
H1(G, IL) = 1

This implies that the extensions L/K wrt IL form a field formation. This
allows us to think the groups H2(GL/K , IL) as the elements of

H2(GΩ/K , IΩ) =
⋃

L

H2(GL/K , IL)

where the inclusions are given by the injective (because H1(GL/K , IL) = 1)
inflation maps.

Theorem 6.4.7. Let K be a finite algebraic number field. Then

Br(K) =
⋃

L/K cyclic

H2(GL/K , L
∗)

H2(GΩ/K , IΩ) =
⋃

L/K cyclic

H2(GL/K , IL)

where L/K ranges over all cyclic cyclotomic extensions.

Remark 6.4.8. In local class field theory we have seen that the Brauer group
Br(K) =

⋃
L/K H

2(GL/K , L
∗) of a p-adic number field K is the union of the

cohomology groups H2(GL/K , L
∗) of the unramified extensions L/K, for which

it is relatively easy to prove the reciprocity law. The role of the unramified ex-
tensions in the local theory is played in the global case by the cyclic cyclotomic

field extensions, ie, cyclic extensions which are contained in a field which is
formed by adjoining roots of unity.

But before that we state the:

Lemma 6.4.9. Let K be a finite algebraic number field, S a finite set of primes
of K, and m a natural number. Then there exists a cyclic cyclotomic field L/K
with the property that:

• m|[LF : Kp], for all finite p ∈ S

• [LF : Kp] = 2, for all real-infinite p ∈ S.

Let’s now prove 6.4.7

Proof. we only give the proof for H2(GΩ/K , IΩ), the proof for Br(K) is exactly
the same if one replaces for the occuring fields L the idele group IL by the
multiplicative group L∗.
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Let c ∈ H2(GΩ/K , IΩ) say c ∈ H2(GL′/K , IL′ ), let m be the order of c and

let S be the (finite) set of primes p of K for which the local components cp of
c are not equal to 1. By the previous Lemma there is a cyclic cyclotomic field
L/K with m|[LF : Kp] for the finite p ∈ S and [LF : Kp] = 2 for the real infinite

p ∈ S. If we form the compositum N = L
′ · L, then we have

H2(GL′/K , IL′ ) and H2(GL/K , IL) ⊆ H2(GN/K , IN )

and we will show that c lies in the group H2(GL/K , IL). Since the sequence

1→ H2(GL/K , IL)→ H2(GN/K , IN )
resL−−−→ H2(GN/L, IN )

is exact, it suffices to show that resLc = 1. But by local class field theory and
our equations in 6.4.2, 6.4.3, we have resLc = 1⇔ (resLc)F = resLF

cp = 1
for all primes F of L ⇔ invN

F
′ |LF

(resLF
cp) = [LF : Kp] · invN

F
′ |Kp

cp =

invN
F
′ |Kp

c
[LF:Kp]
p = 0 for all primes p of K ⇔ c

[LF:Kp]
p = 1 for all p ∈ S.

Now the last equality holds, because cmp = 1 and m|[LF : Kp] for the finite
primes, and [LF : Kp] = 2 for the real-infinite p ∈ S.

6.5 Cohomology of the Idele Class group

The role of the multiplicative group of a field in the local theory is taken by
the idele class group in the global class field theory 3. Thus our aim is to show
that there is a canonical reciprocity isomorphism between the abelianization
of the Galois group G = GL/K of a normal extension L/K of finite algebraic
number fields and the norm residue group CK/NGCL, in other words, that the
finite normal extensions L/K of an algebraic number field K constitute a class
formation with respect to the idele class group CL.

In particular we will have to prove that H1(G,CL) = 1 and that H2(G,CL)
is cyclic of order [L : K].

In what follows we fix a normal extension L/K with a cyclic Galois group
G = GL/K of prime order p. The first fundamental inequality is the relation
[CK : NGCL] > p.

This follows immediately from the following

Theorem 6.5.1. The idele class group CL is a Herbrand module with Herbrand
quotient

h(CL) =
|H0(G,CL)|
|H1(G,CL)|

= p

From this we obtain as a

Corollary 6.5.2.

|H0(G,CL)| = [CK : NGCL] = |H2(G,CL)| = p · |H1(G,CL)| > p
3I have been reviewing a little class field theory, of which I finally have the impression that

I understand the main results(but not the proofs of course!) - Grothendieck, letter to Serre
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Let’s now prove Theorem 6.5.1,

Proof. Let S be a finite set of primes of K such that

• 1) S contains all infinite primes and all primes ramified in L
• 2) IL = ISL · L∗

• 3) IK = ISK ·K∗

Note that by Proposition 6.3.3 such a set S certainly exists. Then we have

CL = ISL · L∗/L∗ ∼= ISL/L
S

where LS = L∗∩ ISL is the group of S-units, ie the group of all those elements in
L∗ which are units for all the primes F of L which do not lie above the primes
in S. We then obtain

h(CL) = h(ISL) · h(LS)−1

in the sense that when two of these Herbrand quotients are defined, then so is
the third and equality holds.

we compute the two terms..

because of 6.4.2 the computation of h(ISL) is a local question. Let

• n the number of primes in S
• N the number of primes of L, which lie above S
• n1 the number of primes in S, which are inert in L

Since [L : K] has prime degree, a prime of K that is not inert splits com-
pletely, ie decomposes into exactly p primes of L, thus N = n1 + p · (n− n1).

To compute the quotient

h(ISL) =
|H0(G, ISL)|
|H1(G, ISL)|

, we have to determine the factors. We do this by

making use of the isomorphism

Hq(G, ISL)
∼=

∏

p∈S

Hq(GF, L
∗
F)

If q = 1 the above isomorphism immediately yields H1(G, ISL) = 1 because
H1(GF, L

∗
F) = 1. If q = 0 we have H0(G, ISL)

∼=
∏

p∈S H
0(GF, L

∗
F) and use

again local class field theory to determine the order |H0(GF, L
∗
F)|.

In fact we have H0(GF, L
∗
F) = GF , so that

|H0(GF, L
∗
F)| =

{
1 the prime p lying under F splits (becauseGF = 1)

p if p is inert (because GF = G)

Hence |H0(G, ISL)| = pn1 , and since H1(G, ISL) = 1 we have
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h(ISL) = pn1 .

For the computation h(LS) we know that the group LS = L∗∩ISL of S-units
of L is finitely generated of rankN−1 and its fixed group (LS)G = KS = K∗∩LS
is the group of S-units of K and finitely generated of rank n− 1.

We shall use without proof a Theorem from Cohomology of cyclic groups to
obtain

h(LS) = p(p(n−1)−N+1)/(p−1) = pn1−1

and then h(CL) = p.

This has the following:

Corollary 6.5.3. Let L/K be a cyclic extension of prime power degree. Then
K has infinitely many primes which are inert in L.

We now prove the second fundamental inequality [CK : NGCL] 6 p for
cyclic extensions L/K of prime degree, making the additional assumption that
K contains the p-th roots of unity. In this case L is a Kummer extension:
L = K( p

√
x0), x0 ∈ K∗. We start with the following:

Lemma 6.5.4. Let N = K( p
√
x), x ∈ K∗ be any Kummer extension over K

and let p be a finite prime of K not lying over the prime number p. Then p is
unramified in N if and only if x ∈ Up · (K∗

p)
p and p splits completely in N if

and only if x ∈ (K∗
p)
p.

Theorem 6.5.5. Let L/K be a cyclic extension of prime degree p. Assume the
field K contains the p-th roots of unity, Then

|H0(G,CL)| = [CK : NGCL] 6 p

The difficulty here is that we cannot a priori decide which idele classes in CK
are represented by a norm idele, and therefore lie in NGCL. This is completely
different from the case of idele groups, where by the Norm Theorem for idele
groups a ∈ IK is a norm if and only if it is a local norm everywhere. We
work around this by considering instead of NGCL an auxiliary group F which
is constructed such that its elements are represented by norm idele, hence F ⊆
NGCL, and which has the property that its index (CK : F ) can actually be
shown to be equal to p. Using this F , we obtain the inequality

[CK : NGCL] 6 [CK : F ] = p

Let L = K( p
√
x0), x0 ∈ K∗. Let S be a finite set of primes of K such that

• 1 S contains all the primes above p and all infinite primes of K
• 2 IK = ISK ·K∗

• 3 x0 ∈ KS = ISK ∩K∗ (ie, x0 is an S-unit)

Here 2. can be satisfied by 6.3.3 and 3 because x0 is a unit for almost all
primes.
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Together with S we choose m additional primes q1, ..qm /∈ S that split com-
pletely in L; set S∗ = S ∪ {q1, .., qm}. To construct F we have to specify an
idele group F ⊆ IK whose elements represent the idele classes of F . It must
consist of nothing but norm ideles so that F ⊆ NGCL, it must be sufficiently
large to ensure that the index [CK : F ] is finite, and it must be simple enough
so that it is possible to compute this index. These properties are satisfied by
the idele group

F =
∏

p∈S

(K∗
p)
p ×

m∏

i=1

K∗
qi ×

∏

p/∈S∗

Up

To see that F ⊆ NGIL, it suffices by the Norm Theorem for ideles to convince
ourselves that the components ap of each idele a ∈ F are norms from the ex-
tension LF/Kp, where (F|p).

This is true for p ∈ S because ap ∈ (K∗
p)
p ⊆ NLF/Kp

L∗
F (regardless of

[LF : Kp] = p or = 1); this is trivially true for p = qi, because qi splits
completely so that LF = Kp and it is true for p /∈ S∗ because x0 ∈ Up by
3, and therefore by 6.5.4 each p /∈ S∗ is unramified in L = K( p

√
x0), so that

ap ∈ Up ⊆ NLF/Kp
L∗
F. If we now set F = F ·K∗/K∗, then F ⊆ NGCL, since

each idele class a is represented by a norm idele a ∈ F . To compute the index
[CK : F ], we consider the following decomposition:

[CK : F ] = [IS
∗

K ·K∗/K∗ : F ·K∗/K∗] =

[IS
∗

K ·K∗ : F ·K∗] = [IS
∗

K : F ]/[(IS
∗

K ∩K∗) : (F ∩K∗)]

It allows us to split the computation of [CK : F ] into two parts, the com-
putation of [IS

∗

K : F ] which is of a purely local nature, and the computation of
[(IS

∗

K ∩K∗) : (F ∩K∗)] which uses global considerations.

• We have [IS
∗

K : F ] =
∏

p∈S [K
∗
p : (K∗

p)
p]; since S ⊆ S∗, the map

IS
∗

K →
∏

p∈S

K∗
p/(K

∗
p)
p

with
a 7→

∏

p∈S

ap · (K∗
p)
p

is trivially surjective, and its kernel consists precisely of those ideles a ∈ IS∗

K

for which ap ∈ (K∗
p)
p for p ∈ S lie in the kernel; ie the ideles in F . By the local

theory we have
[K∗

p : (K∗
p)
p] = p2 · |p|−1

p

so that [IS
∗

K : F ] = p2n ·
∏

p∈S |p|
−1
p where n is the number of primes in

S. Since the primes p /∈ S do not lie above the prime number p, |p|p = 1 for

p /∈ S, and the product formula
∏

p∈S |p|p =
∏

p |p|p = 1, hence (IS
∗

K : F ) = p2n.

• An elementary calculation shows that

[(IS
∗

K ∩K∗) : (F∩K∗)] = [KS∗

: (F∩K∗)] = [KS∗

: (KS∗

)p]/[(F∩K∗) : (KS∗

)p]
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where KS∗

is the group of S∗-units. We know that this group is finitely gener-
ated of rank n+m−1 (n+m is the number of primes in S∗). Moreover KS∗

con-
tains the p-th roots of unity, and it easily follows that [KS∗

: (KS∗

)p] = pn+m.

Altogether we therefore have

[CK : NGCL] 6 [CK : F ] = pn−m · [(F ∩K∗) : (KS∗

)p]

and the second fundamental inequality is proved, provided that we can choose
the primes q1, .., qm splitting in L in such a way that m = n− 1, and

F ∩K∗ = K∗ ∩ (
∏

p∈S

(K∗
p)
p ×

m∏

i=1

K∗
qi ×

∏

p/∈S∗

Up) =

K∗ ∩
⋂

p∈S

(K∗
p)
p ∩

m⋂

i=1

K∗
qi ∩

⋂

p/∈S∗

Up =

K∗ ∩
⋂

p∈S

(K∗
p)
p ∩

⋂

p/∈S∗

Up = (KS∗

)p

using 6.5.4, we formulate this as follows:

Sublemma 6.5.6. There exist n − 1 primes of K, q1, .., qn−1 /∈ S that split
completely in L and satisfy the following condition:

If N = K( p
√
x) is a Kummer extension over K in which all p ∈ S split

completely and all p 6= q1, .., qn−1 are unramified, then N = K( p
√
x) = K.

In fact the desired equality

K∗ ∩
⋂

p∈S

(K∗
p)
p ∩

⋂

p/∈S∗

Up = (KS∗

)p

follows immediately from this. The inclusion ⊇ is trivial. Let x ∈ K∗ ∩⋂
p∈S(K

∗
p)
p ∩ ⋂

p/∈S∗ Up and N = K( p
√
x). By 6.5.4 every p ∈ S splits com-

pletely in N , since x ∈ (K∗
p)
p. For p /∈ S∗ we have x ∈ Up ⊆ Up · (K∗

p)
p, so

that every p /∈ S∗ is unramified in N by 6.5.4. Hence the Sublemma yields
N = K( p

√
x) = K so that x ∈ (K∗)p and because x ∈ Up for p /∈ S∗, x lies in

(K∗)p ∩KS∗

= (KS∗

)p.

and we have proven Theorem (6.5.5). From the previous Theorems we have
the following

Corollary 6.5.7. Let L/K be a cyclic extension of prime degree p, with Galois
group G = GL/K and assume the field K contains the p-th roots of unity, then

H0(G,CL) ∼= H2(G,CL) ∼= G

and
H1(G,CL) = 1
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We prove now the following more general result:

Theorem 6.5.8. If L/K is a normal extension with Galois group G = GL/K ,
then we have H1(G,CL) = 1.

Proof. We prove this by induction on the order n of the group G. The case
n = 1 is trivial. Let us assume that H1(G,CL) = 1 for every extension L/K
of degree < n. If the order n = |G| is not a p-power, then each p-Sylow sub-
group Gp of G has order smaller than n, so that by the induction hypothesis
H1(Gp, CL) = 1 and therefore H1(G,CL) = 1.

Thus it suffices to prove this for a p-group G. In this case, let g ⊆ G be a
normal subgroup of index p; g is the Galois group of an intermediate field M ,
K ⊆ M ⊆ L, g = GL/M . Now if p < n, then by assumption H1(G/g,CM ) =
H1(g, CL) = 1 and from the exact sequence

1→ H1(G/g,CM )
inf−−→ H1(G,CL)

res−−→ H1(g, CL)

we see that H1(G,CL) = 1.

L L
′

K K
′

Assume p = n. In order to be able to apply 6.5.7, we replace K by the
extension K

′

obtained by adjoining a primitive p-th root of unity to K, and set
L

′

= L ·K ′

. Obviously [K
′

: K] 6 p − 1 < p = n and [L
′

: K
′

] = p. Because
[K

′

: K] < n, we have H1(GK′/K , CK′ ) = H1(GL′/K′ , CL′ ) = 1, and from the
exact sequence

1→ H1(GK′/K , CK′ )
inf−−→ H1(GL′/K , CL′ )

res−−→ H1(GL′/K′ , CL′ )

we obtain H1(GL′/K , CL′ ) = 1. On the other hand, because the sequence

1→ H1(G,CL)
inf−−→ H1(GL′/K , CL′ ) = 1

is also exact, we see that H1(GL′/K , CL′ ) = 1 implies H1(G,CL) = 1.

For cyclic extensions Theorem 6.5.8 is just another form of theHasse Norm
Theorem mentioned earlier:

Corollary 6.5.9. If the extension L/K is cyclic, then an element x ∈ K∗ is a
norm if and only if it is locally a norm everywhere.

Proof. The sequence of G-modules 1 → L∗ → IL → CL → 1 yields the exact
cohomology sequence

H−1(G,CL)→ H0(G,L∗)→ H0(G, IL) ∼=
⊕

p

H0(GF, L
∗
F)
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Since G is cyclic, H−1(G,CL) ∼= H1(G,CL) = 1, by Theorem 6.5.8, which
implies that the canonical homomorphism

K∗/NL/KL
∗ →

⊕

p

K∗
p/NLF/Kp

L∗
F

is injective; this is precisely the assertion of the Hasse Norm Theorem.

Theorem 6.5.10. Let L/K be a normal extension with Galois group G =
GL/K . Then the order of H2(G,CL) is a divisor of the degree [L : K].

With Theorem 6.5.10 we have not yet reached our goal to show thatH2(G,CL)
is cyclic of the same order as [L : K]. To show this, we will associate with the
group H2(G,CL) an invariant homomorphism, as required by the second Axiom
of class formations.

6.6 Idele invariants

Our goal is to show that the extensions L/K form a class formation, so what
remains to be shown is that for every normal extension L/K there is an invariant
isomorphism

H2(GL/K , CL)→
1

[L : K]
Z/Z

which satisfies the compatibility properties that we referred. It is of course es-
sential that we construct the invariant isomorphism in a canonical way to also
obtain a canonical law, the Artin reciprocity law. In a certain sense we will
retrieve the invariant map, and with it the reciprocity law from the local theory,
by relating the group H2(GL/K , CL) to the group H2(GL/K , IL) formed with
the idele group IL as the underlying module.

Let L/K be a normal extension of finite algebraic number fields, and let
GL/K be its Galois group. We have already the decomposition

H2(GL/K , IL) ∼=
⊕

p

H2(GLF/Kp
, L∗

F)

For every prime p of K we have from local class field theory the isomorphism

invLF/Kp
: H2(GLF/Kp

, L∗
F)→

1

[LF : Kp]
Z/Z ⊆ 1

[L : K]
Z/Z

where (F|p)

The local invariant isomorphism invLF/Kp
is the composition of three ho-

momorphisms, however we do not need to know this map explicitly, but it is
important that it satisfies the compatibility conditions of the second axion of a
class formation.

Definition 6.6.1. If cp ∈ H2(GLF/Kp
, L∗

F), where (F|p) are the local compo-
nents of c ∈ H2(GL/K , IL), then we set

invL/Kc =
∑

p

invLF/Kp
cp ∈

1

[L : K]
Z/Z
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Note: almost all cp = 1, so that the sum contains only finitely many non-
zero summands. In particular we obtain an invariant homomorphism

invL/K : H2(GL/K , IL)→
1

[L : K]
Z/Z

Proposition 6.6.2. If K ⊆ L ⊆ N are normal extensions of the field K, then

invN/Kc = invL/Kc for c ∈ H2(GL/K , IL) ⊆ H2(GN/K , IN )

invN/L(resLc) = [L : K] · invN/Kc for H2(GN/K , IN )

invN/K(corKc) = invN/Lc for H2(GN/L, IN )

The last two formulas require only that N/K be normal.

Here we use the convention to interpret the inflation map

H2(GL/K , IL)→ H2(GN/K , IN )

as an inclusion, so that H2(GL/K , IL) ⊆ H2(GN/K , IN ).

Proof. Let c ∈ H2(GL/K , IL), then

invN/Kc =
∑

p

invN
F
′ /Kp

cp =
∑

p

invLF/Kp
cp = invL/Kc

where F
′

is an arbitrary prime of N over p and F is the prime of L lying under F
′

.

If c ∈ H2(GN/K , IN ) and F runs through the primes of L, then

invN/L(resLc) =
∑

F invNF
′ /LF

(resLc)F =
∑

F invNF
′ /LF

(resLF
cp) =

∑
F[LF : Kp] · invN

F
′ /Kp

cp =
∑

p

∑
F|p[LF : Kp] · invN

F
′ /Kp

cp

where F
′

is an arbitrary prime of N over F and p is the prime of K lying
under F.

By the fundamental equation of number theory

∑

F|p

[LF : Kp] = [L : K]

then (F
′

a fixed prime of N over p):

invN/L(resLc) =
∑

p(
∑

F|p[LF : Kp]) · invN
F
′ /Kp

cp =

[L : K] ·∑p invNF
′ /Kp

cp = [L : K] · invN/Kc

Finally, for c ∈ H2(GN/L, IN ) it follows that
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invN/K(corKc) =
∑

p invNF
′ /Kp

(corKc)p =

∑
p

∑
F|p invNF

′ /Kp
(corKp

cF) =
∑

p

∑
F|p invNF

′ /LF
cF = invN/Lc

Since H1(GL/K , IK) = 1, it follows that the extensions L/K satisfy with
respect to the idele group IL and the idele homomorphism invL/K the conditions
for a class formation, except for that the homomorphism

invL/K : H2(GL/K , IL)→
1

[L : K]
Z/Z

is not an isomorphism. To make this so, we have to pass from the idele group
IL to the idele class group CL. We now introduce the following symbol:

Definition 6.6.3. Let L/K be an abelian extension. If a ∈ IK with local
components ap ∈ K∗

p , then we set

(a, L/K) =
∏

p

(ap, LF/Kp) ∈ GL/K

For each prime p, the symbol (ap, LF/Kp) defines an element of the local
abelian Galois group GLF/Kp

which we always consider as a subgroup of GL/K ,
hence

(ap, LF/Kp) ∈ GLF/Kp
⊆ GL/K

Since ap is a unit for almost all primes p and since LF/Kp is unramified for
almost all p we have (ap, LF/Kp) = 1 for almost all p, thus the last product is
well defined and is independent of the order of factors since GL/K is abelian.
The symbol ( , L/K) and the invariant mapping are related as follows,

Lemma 6.6.4. Let L/K be an abelian extension, a ∈ IK and (a) = a·NL/KIL ∈
H0(GL/K , IL). If χ ∈ χ(GL/K) = H1(GL/K , Q/Z) then

χ(a, L/K) = invL/K((a) ∪ δχ) ∈ 1

[L : K]
Z/Z

If we denote by χp the restriction of χ to GLF/Kp
and by (ap) = ap ·NLF/Kp

L∗
F

then
χ(a, L/K) =

∑

p

χp(ap, LF/Kp) =
∑

p

invLF/Kp
((a)p ∪ δχp)

where it can be shown that the classes ((ap) ∪ δχp) ∈ H2(GLF/Kp
, L∗

F) are the
local components of (a) ∪ δχ ∈ H2(GL/K , IL)
we only need to note that ap · δχp(σ, τ) (respectively a · δχ(σ, τ)) is a 2-cocycle
of the class ((ap)∪ δχp) (resp. ((a)∪ δχ)). Thus χ(a, L/K) = invL/K((a)∪ δχ)
as claimed.

When changing from the idele invariants to the idele class invariants, the
following theorem is of central importance. From the exact cohomology sequence
associated with the exact sequence

1→ L∗ → IL → CL → 1
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we see using that H1(GL/K , CL) = 1 that the induced homomorphism

H2(GL/K , L
∗)→ H2(GL/K , IL)

is injective.

We use this injection to think H2(GL/K , L
∗) as a subgroup of H2(GL/K , IL)

ie we view the elements o H2(GL/K , L
∗) as the idele cohomology classes that

are represented by cocycles with values in the principal idele group L∗.

Theorem 6.6.5. If c ∈ H2(GL/K , L
∗), then invL/Kc = 0

Proof. We start with the simple observation that it suffices to consider the
case when K = Q and L is a cyclic cyclotomic extension of Q. In fact, if
c ∈ H2(GL/K , L

∗) and N is a normal extension of Q containing L, then

c ∈ H2(GL/K , L
∗) ⊆ H2(GN/K , N

∗) ⊆ H2(GN/K , IN )

corQc ∈ H2(GN/Q, N
∗) and invL/Kc = invN/Kc = invN/Q(corQc)

by 6.6.2. Hence to show invL/Kc = 0 it suffices to consider the case K =
Q. Since by 6.4.7 there exists a cyclic cyclotomic extension L0/Q with c ∈
H2(GL0/Q, L

∗
0), we can even assume that L/Q itself is a cyclic cyclotomis ex-

tension.

Let χ be a generator of the cyclic character group χ(GL/Q) = H1(GL/Q,Q/Z).
Then δχ is a generator of H2(GL/Q,Z) and Tate’s Theorem implies

δχ ∪ : H0(GL/Q, L
∗)→ H2(GL/Q, L

∗)

is bijective. Thus each element c ∈ H2(GL/Q, L
∗) has the form c = (a) ∪ δχ

with (a) = a ·NL/QL∗ ∈ H0(GL/Q, L
∗) with a ∈ Q∗. From 6.6.4 we obtain

invL/Qc = invL/Q((a) ∪ δχ) = χ(a, L/Q)

and we need to show that (a, L/Q) =
∏

p(a, LF/Qp) = 1.

Now L is a cyclotomic extension, ie L ⊆ Q(ζ) for some root of unity ζ.
The automorphism (a, L/Q) is precisely the restriction of (a,Q(ζ)/Q) to L; this
follows easily from the behavior of the local norm residue symbol (a,Qp(ζ)/Qp)
when passing to the extension LF/Qp. It therefore suffices to show that
(a,Q(ζ)/Q) = 1 for a ∈ Q∗. Now Q(ζ) is generated by roots of unity of prime
power order and it suffices to show the vanishing of (a,Q(ζ)/Q) for these gen-
erators, hence we may assume that ζ is a primitive ln-th root of unity (l is a
prime number). With this reduction we come to the actual core of the proof.

Let ζ be a primitive ln-th root of unity; if l = 2, we assume n > 2. If p
ranges over the prime numbers and the infinite prime over p = p∞ of Q, then
the Qp(ζ)/Qp are the local extensions associated with Q(ζ)/Q. The extension
Qp(ζ)/Qp is unramified for p 6= l and totally ramified for p = l; if p = p∞ then
Qp(ζ)/Qp means the extension C/R. We have to show that
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for each a ∈ Q∗, (a,Q(ζ)/Q) =
∏
p(a,Qp(ζ)/Qp) = 1

Here it obviously suffices to assume that a is integral. We consider the ef-
fect of the local norm residue symbol (a,Qp(ζ)/Qp) on the ln-th roots of unity ζ.

• 1 For p 6= l, p 6= p∞, we have

(a,Qp(ζ)/Qp)ζ = ϕvp(a)ζ

where vp is the valuation on Qp and ϕ is the Frobenius automorphism on
Qp(ζ)/Qp. Since the residue field of Qp has p elements, clearly ϕζ = ζp, thus

(a,Qp(ζ)/Qp)ζ = ζp
vp(a)

• 2 For p = l, we obtain, writing a = u · pm = u · pvp(a) , u a unit:

(a,Qp(ζ)/Qp)ζ = ζr

where r is a natural number which is determined mod pn by the congruence
r ≡ u−1 ≡ a−1 · pvp(a)mod pn.

• 3 For p = p∞ the automorphism (a,C/R) is either the identity or complex
conjugation, depending on whether a > 0 or a < 0. Thus

(a,Qp(ζ)/Qp)ζ = ζsgna

Combining these we obtain

(a,Q(ζ)/Q)ζ =
∏

p

(a,Qp(ζ)/Qp)ζ = ζsgna·
∏

p 6=l p
vp(a)·r

but by the product formula

sgna ·
∏
p 6=l p

vp(a) · r ≡ sgna ·
∏
p 6=l p

vp(a)lvl(a) · a−1 =
1∏
p |a|p

= 1mod ln

therefore (a,Q(ζ)/Q)ζ = ζ, ie we have (a,Q(ζ)/Q) = 1.

The last Theorem shows that the group H2(GL/K , L
∗) lies in the kernel of

the homomorphism invL/K : H2(GL/K , IL) →
1

[L : K]
Z/Z. We have to ask

further whether or not it is precisely the kernel, and in addition whether or not
invL/K is a surjective homomorphism. For the cyclic case we have:

Proposition 6.6.6. If L/K is a cyclic extension, then the sequence

1→ H2(GL/K , L
∗)→ H2(GL/K , IL)

invL/K−−−−−→ 1

[L : K]
Z/Z→ 0

is exact.

Proof. • To show that invL/K is surjective, we assume first [L : K] is a prime

power pr. Because
1

[L : K]
+ Z generates

1

[L : K]
Z/Z, it suffices to find an ele-

ment c ∈ H2(GL/K , IL) with invL/Kc =
1

[L : K]
+Z. We use the decomposition

H2(GL/K , IL) ∼=
⊕

p

H2(GLF/Kp
, L∗

F)
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and determine c by its local components cp ∈ H2(GLF/Kp
, L∗

F). Since L/K is
cyclic of prime power degree, it follows from 6.5.3 that K contains a prime p0
which is inert in L. Since p0 is inert , we have [LF0

: Kp0
] = [L : K] where

F0|p0 and local class field theory yields an element cp0 ∈ H2(GLF0
/Kp0

, L∗
F0
)

with invLF0
/Kp0

=
1

[LF0 : Kp0 ]
+ Z =

1

[L : K]
+ Z. Now if c is the element in

H2(GL/K , IL) that is determined by the local components

..., 1, 1, 1, cp0 , 1, 1, 1, ...

then

invL/Kc =
∑

p

invLF/Kp
cp = invLF0

/Kp0
cp0

=
1

[L : K]
+ Z

That invL/K is also surjective in the general case [L : K] = n = pr11 · · · prss
follows easily from this. For every i = 1, ..., s there obviously exists a cyclic
intermediate field Li of degree [Li : K] = prii . Consider the decomposition

1

n
=

n1

pr11
+ · · · ns

prss

into partial fraction. By the previous case there is a ci ∈ H2(GLi/K , ILi
) with

invLi/Kci = invL/Kci =
ni
prii

+ Z

Thus if we set
c = c1 · · · cs ∈ H2(GL/K , IL)

then

invL/Kc =
s∑

i=1

invL/Kci =
s∑

i=1

ni
prii

+ Z =
1

n
+ Z

which shows that invL/K is surjective for any cyclic extension.

• We know now that H2(GL/K , L
∗) lies in the kernel of the homomorphism

invL/K . To show that the group H2(GL/K , L
∗) in fact equals the kernel of

invL/K we use a simple argument involving the orders of these groups. Since
the map invL/K is surjective, we only need to show that the order of the factor
group

H2(GL/K , IL)/H
2(GL/K , L

∗)

is at most the order of
1

[L : K]
Z/Z ie the degree of [L : K]. Using the sequence

1→ L∗ → IL → CL → 1

we obtain, using that H1(GL/K , CL) = 1 the exact cohomology sequence

1→ H2(GL/K , L
∗)→ H2(GL/K , IL)→ H2(GL/K , CL)

Therefore the order of H2(GL/K , IL)/H
2(GL/K , L

∗) divides the order of
H2(GL/K , CL). By 6.5.10 H2(GL/K , CL) divides [L : K] and we are done.
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For the following it would be very convenient if we could show that invL/K
is a surjective homomorphism in general. Unfortunately this is not the case. In

order for every element of
1

[L : K]
Z/Z to be in the image of the invariant map, we

have to enlarge the field L by forming the compositum with a cyclic extension.
For technical reasons it is best to let L range over all normal extensions of K
and to consider the union

H2(GΩ/K , IΩ) =
⋃

L

H2(GL/K , IL)

If K ⊆ L ⊆ N are two normal extensions of K, then

H2(GL/K , IL) ⊆ H2(GN/K , IN )

and since by 6.6.2 the invariant map can be extended from H2(GL/K , IL) to
H2(GN/K , IN ), we obtain a homomorphism

invK : H2(GΩ/K , IΩ)→ Q/Z

whose restriction to H2(GL/K , IL) ⊆ H2(GΩ/K , IΩ) coincides with the initial
invariant map invL/K . If we take into account that for each positive integer
m there is a cyclic extension L/K with m|[L : K], we see that Q/Z is already

covered by the groups
1

[L : K]
Z/Z coming from cyclic extension L/K. Now the

map invL/K is surjective in the cyclic case, thus we obtain for the invariant map
invK defined above the following

Theorem 6.6.7. The homomorphism

invK : H2(GΩ/K , IΩ)→ Q/Z

is surjective.

6.7 The reciprocity law

Having studied the idele invariants in the previous section, we now want to con-
struct invariants for the elements of the groups H2(GL/K , CL). We start with
the following observations:

If L/K is a normal extension, then we obtain from the exact sequence

1→ L∗ → IL → CL → 1

using H1(GL/K , CL) = 1 = H3(GL/K , IL) = 1, the exact cohomology sequence

1→ H2(GL/K , L
∗)→ H2(GL/K , IL)

j−→ H2(GL/K , CL)

δ−→ H3(GL/K , L
∗)→ 1

If c ∈ H2(GL/K , CL) and c ∈ H2(GL/K , IL) is such that c = jc, then we set

invL/Kc = invL/Kc ∈
1

[L : K]
Z/Z
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This definition is independent of the choice of the preimage c ∈ H2(GL/K , IL),
because two such preimages differ only by an element in H2(GL/K , L

∗), which
we have seen has invariant 0. Of course this only works if the element c ∈
H2(GL/K , CL) lies in the image of the homomorphism j. In this case, ie j being
surjective would be equivalent to the group H3(GL/K , L

∗) = 1 ie being trivial.
This is not true in general, but still applies to the cyclic case.

Proposition 6.7.1. If L/K is a cyclic extension, then the homomorphism

H2(GL/K , IL)
j−→ H2(GL/K , CL)

is surjective.

Proof. If L/K is cyclic, then H3(GL/K , L
∗) ∼= H1(GL/K , L

∗) = 1

In order to define an invariant map for arbitrary normal extensions L/K,
we proceed in a similar way as we did at the end of the previous section.

Let’s note that the homomorphism

H2(GL/K , IL)
j−→ H2(GL/K , CL)

commutes with the maps inf and res; ie if K ⊆ L ⊆ N are two normal exten-
sions of K, then we have

j ◦ infN = infN ◦ j
j ◦ resL = resL ◦ j

where in the last formula we only need to assume that N/K is normal. We can
define for simplicity

Definition 6.7.2.
Hq(L/K) = Hq(GL/K , CL)

Because H1(L/K) = 1, the extensions L/K form a field formation in the
sense that we have already mentioned, with respect to the idele group CL as
the module. To simplify things we will as before and in general for every field
formation, interpret the injective inflation maps

H2(L/K)
inf−−→ H2(N/K)

K ⊆ L ⊆ N

as inclusions. More precisely, this means that we form the direct limit

H2(Ω/K) = lim−→L
H2(L/K)

where L ranges over all finite normal extensions of K. We view the groups
H2(L/K) as being embedded in H2(Ω/K) via the inflation maps. Thinking of
the H2(L/K) as subgroups of H2(Ω/K) we have

H2(Ω/K) =
⋃

L

H2(L/K)
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Hence if K ⊆ L ⊆ N are two normal extensions. then we have inclusions

H2(L/K) ⊆ H2(N/K) ⊆ H2(Ω/K)

Ω denotes again the field of all algebraic numbers.

we give now the following crucial theorem

Theorem 6.7.3. If L/K is a normal extension and L
′

/K a cyclic extension of
equal degree [L

′

: K] = [L : K], then

H2(L
′

/K) = H2(L/K) ⊆ H2(Ω/K)

Since for every positive integer m there is a cyclic extension L/K of degree
m, this theorem has the following

Corollary 6.7.4.

H2(Ω/K) =
⋃

L/K cyclic

H2(L/K)

Proof. of 6.7.3

We first show that H2(L
′

/K) ⊆ H2(L/K). If N = L ·L′

is the compositum
of L and L

′

, then a simple group theoretic argument shows that if the extension
L

′

/K is cyclic, then the extension N/L is also cyclic. Now let c ∈ H2(L
′

/K) ⊆
H2(N/K). Because of the exact sequence

1→ H2(L/K)→ H2(N/K)
resL−−−→ H2(N/L)

an element c ∈ H2(N/K) is an element of H2(L/K) if and only if resLc = 1.
To show this, we use the idele invariants. By 6.7.1 the homomorphism

H2(GL′/K , IL′ )
j−→ H2(L

′

/K)

is surjective, so that c = jc, and c ∈ H2(GL′/K , IL′ ) ⊆ H2(GN/K , IN ). From
the remarks made above, we know that the map j commutes with inflation
(interpreted here as inclusion) and with restriction, hence we have the formulas

resLc = resL(jc) = jresLc

Thus resLc = 1 if and only if resLc lies in the kernel of j and therefore
in H2(GN/L, N

∗). Since N/L is cyclic, this holds by 6.6.6 if and only if
invN/L(resLc) = 0 and this holds indeed since

invN/L(resLc) = [L : K] · invN/Kc = [L
′

: K] · invL′/Kc = 0

Therefore H2(L
′

/K) ⊆ H2(L/K).

To show that the above inequality is in fact an equality we consider orders.
Because H1(L

′

/K) = 1 and H3(GL′/K , L
′∗) ∼= H1(GL′/K , L

′∗) = 1 we obtain
the exact cohomology sequence

1→ H2(GL′/K , L
′∗)→ H2(GL′/K , IL′ )→ H2(L

′

/K)→ 1

where |H2(L
′

/K)| = [L
′

: K] = [L : K]. On the other hand |H2(L/K)| divides
the degree [L : K], hence H2(L

′

/K) = H2(L/K).
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Let K ⊆ L ⊆ N be two normal extensions. Because the map

H2(GL/K , IL)
j−→ H2(L/K)

is compatible with inflation, it can be extended to a canonical homomorphism

H2(GN/K , IN )
j−→ H2(N/K)

Thus we obtain a homomorphism

H2(GΩ/K , IΩ)
j−→ H2(Ω/K)

whose restriction to the groups H2(GL/K , IL) are the initial homomorphisms
H2(GL/K , IL)→ H2(L/K). If these are not surjective, then we still have

Theorem 6.7.5. The homomorphism

H2(GΩ/K , IΩ)
j−→ H2(Ω/K)

is surjective.

Proof. If c ∈ H2(Ω/K), then it follows from the previous theorem that there
is a cyclic extension L/K such that c ∈ H2(L/K). Since for a cyclic extension
the map

H2(GL/K , IL)
j−→ H2(L/K)

is surjective, c = jc for some c ∈ H2(GL/K , IL) ⊆ H2(GΩ/K , IΩ).

Given this theorem, it is easy to obtain class invariants for the elements
of H2(Ω/K) =

⋃
LH

2(L/K) from the invariant map of the idele cohomology
classes. From the homomorphism

invK : H2(GΩ/K , IΩ)→ Q/Z

which is surjective as we have seen in the previous section, we in fact come to
the following

Definition 6.7.6. If c ∈ H2(Ω/K) and c = jc, c ∈ H2(GΩ/K , IΩ), then we
define

invKc = invKc ∈ Q/Z

Of course we have to convince ourselves that this definition is indepen-
dent of the choice of the choice of the preimage c ∈ H2(GΩ/K , IΩ). Let’s

say that there is another element c
′ ∈ H2(GΩ/K , IΩ) with c = jc

′

. then

c, c
′ ∈ H2(GL/K , IL) ⊆ H2(GΩ/K , IΩ) for a sufficiently large normal extension

L/K, where we may assume that this extension is so large that c ∈ H2(L/K),
Because c = jc = jc

′

, then of course c and c
′

differ only by an element in the
kernel of the mapping j : H2(GL/K , IL)→ H2(L/K) and thus by an element of
H2(GL/K , L

∗) as we can see by definition and this has invariant 0. We proved
it in the last section..
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From the last definition we obtain a homomorphism

invK : H2(Ω/K)→ Q/Z

the restriction of invK to the group H2(L/K) coming from a finite normal
extension L/K yields a homomorphism

invL/K : H2(L/K)→ 1

[L : K]
Z/Z

because the orders of the elements in H2(L/K) divide the degree [L : K] and

consequently are mapped to the only subgroup
1

[L : K]
Z/Z of Q/Z of order

[L : K].

We briefly recall the construction of the map

invL/K : H2(L/K)→ 1

[L : K]
Z/Z

If c ∈ H2(L/K), then we obtain the invariant invL/Kc by choosing a cyclic

extension L
′

/K of equal degree [L
′

: K] = [L : K] so that by 6.7.3 H2(L
′

/K) =
H2(L/K); in particular c ∈ H2(L

′

/K). In this cyclic case we have by 6.7.1 an
idele cohomology class c ∈ H2(GL′/K , IL′ ) with c = jc and we obtain

invL/Kc = invL′/Kc = invL′/Kc =
∑

p

invL′

F
/Kp

cp ∈
1

[L : K]
Z/Z

The detour using cyclic extensions, which we have described by introducing the
groups H2(GΩ/K , IΩ) and H

2(Ω/K) and interpreting inflations as inclusions is
necessary, because in general the map

H2(GL/K , IL)
j−→ H2(L/K)

is not surjective. However for the elements in the image of j we immediately
obtain from the last definition

Proposition 6.7.7. If c = jc,where c ∈ H2(L/K), c ∈ H2(GL/K , IL), then

invL/Kc = invL/Kc

Theorem 6.7.8. The invariant maps

invK : H2(Ω/K)→ Q/Z

and

invL/K : H2(L/K)→ 1

[L : K]
Z/Z

are isomorphisms.
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Proof. It suffices to verify that invL/K is bijective. Let L
′

/K be a cyclic ex-

tension of degree [L
′

: K] = [L : K], so that H2(L
′

/K) = H2(L/K). If

a ∈ 1

[L : K]
Z/Z, then by last section there is a c ∈ H2(GL′/K , IL′ ) with

invL′/Kc = a. Set c = jc ∈ H2(L
′

/K) = H2(L/K). Then invL/Kc =
invL′/Kc = invL′/Kc = a, ie invL/K is surjective.

That invL/K is bijective follows now easily from the fact that the order of
H2(L/K) is a divisor of the degree [L : K] and therefore a divisor of the order

of
1

[L : K]
Z/Z

..we now come to the main theorem of class field theory. Let K0 be a fixed
algebraic number field, Ω the field of all algebraic numbers, and G = GΩ/K0

the
galois group of Ω/K0. We form the union CΩ =

⋃
K CK where K runs through

all finite extensions of K0. Then CΩ is canonically a G-module: If c ∈ CΩ, say
c ∈ CL for an appropriate finite normal extension L/K0, we set

σc = σ|Lc ∈ CL ⊆ CΩ

where σ ∈ G

The pair (G,CΩ) is obviously a formation and the fundamental result of all
our constructions is the following

Theorem 6.7.9. The formation (G,CΩ) is a class formation with respect to
the invariant map introduced in the definition 6.7.6.

Proof. For the proof we have to verify the axioms,

Axiom I: H1(L/K) = 1 for every normal extension L/K of each finite ex-
tension field of K0.

Axiom II: For every normal extension L/K of each finite extension field of
K0, we have by the last Theorem the isomorphism

invL/K : H2(L/K)→ 1

[L : K]
Z/Z

• if K ⊆ L ⊆ N are two normal extensions and c ∈ H2(L/K), then c ∈
H2(N/K) and

invN/Kc = invL/Kc

since invN/K , and invL/K are defined as the restrictions of invK to H2(N/K)
and H2(L/K) ⊆ H2(N/K) respectively.

• Let K ⊆ L ⊆ N be two extension fields of K with N/K normal. If
c ∈ H2(N/K) then resLc ∈ H2(N/L). For the proof of the formula

invN/L(resLc) = [L : K] · invN/Kc
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we use the analogous formula for the idele invariants 6.6.2. By 6.7.5 there is
a c ∈ H2(GΩ/K , IΩ) with jc = c where we can assume that there is a normal
extension M/K containing N , K ⊆ L ⊆ N ⊆M such that c ∈ H2(GM/K , IM ).
From the formula in 6.6.2 and using the convention that the inflation maps are
to be interpreted as inclusions, we have by 6.7.7

invN/L(resLc) = invM/L(resLjc) = invM/L(jresLc) = invM/L(resLc) =

[L : K] · invM/Kc = [L : K] · invM/Kjc = [L : K] · invN/Kc

Because of this theorem we can now apply the entire abstract theory of class
formations to the case of algebraic number fields. If we again denote by

uL/K ∈ H2(L/K)

the fundamental class of the normal extension L/K, which is uniquely deter-

mined by the formula invL/KuL/K =
1

[L : K]
+ Z, then we have the general

Theorem 6.7.10. The homomorphism cup product with the fundamental class

uL/K ∪ : Hq(GL/K ,Z)→ Hq+2(L/K)

is bijective.

From this we immediately obtain the

Corollary 6.7.11.
H3(L/K) = 1

and
H4(L/K) ∼= χ(GL/K)

For the case q = −2 this yields Artin’s Reciprocity law:

Theorem 6.7.12. The map cup product with the fundamental class

GabL/K
∼= H−2(GL/K ,Z)

uL/K∪−−−−→ H0(L/K) = CK/NL/KCL

yields a canonical isomorphism, ie the reciprocity map between the abelianiza-
tion GabL/K of the Galois group GL/K and the norm residue group CK/NL/KCL
of the idele group CK

θL/K : GabL/K → CK/NL/KCL

The inverse of the reciprocity map θL/K is induced from the homomorphism

( ,L/K) : CK → GabL/K with kernel NL/KCL, the norm residue symbol.

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Bibliography

[1] Juergen Neukirch. Class Field Theory. -The Bonn Lectures- Edited by
Alexander Schmidt-Springer-Verlag Berlin Heidelberg (2013).

[2] Neukirch J., Schmidt A., Wingberg K. Cohomology of number fields. Second
edition. Springer-Verlag Berlin, Heidelberg, New York (2015).

[3] Juergen Neukirch. Algebraische Zahlentheorie. Springer-Verlag Berlin Hei-
delberg 1999

[4] J.S. Milne. Algebraic number theory, Class field theory.
http://www.jmilne.org/math/CourseNotes/

[5] Emil Artin and John Tate. Class Field Theory. Benjamin, New York, 1967

[6] Serge Lang. Algebraic number theory. Springer-Verlag New York, Inc. 1994

[7] Oron Propp. lecture notes on class field theory,taught by Sam Raskin at MIT
https://ocw.mit.edu/courses/mathematics/18-786-number-theory

-ii-class-field-theory-spring-2016/lecture-notes/

[8] Joachim Mahnkopf. Klassenkoerpererweiterungen. (German) [Lecture on
Class Field Theory at the University of Vienna, SS 2016.]

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

