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Abstract

The main goal of this thesis is to show the Large Deviation Principle (LDP, see definition 4.2)
for a family {X¢,¢ > 0} where each X¢ is solving a stochastic Volterra integral equation of the
form

t t
X =X§ +/ b(t,s, XZ) dt + \/E/ o(t,s, X5) dW
0 0

on the same probability space where W is a Standard Brownian Motion. Chapter 2 contains
the notations which will be used and in section 2.3 the assumptions under which the statements
of this thesis hold are listed. The proof of the LDP will be done in chapter 5 by showing the
Laplace Principle. The equivalence of these two principles and the conditions under which this
equivalence holds true is stated in chapter 4 (see also [DE11]). In chapter 3 an Euler scheme
for this type of integral equation is presented.

A large part of this thesis is dedicated to giving more detailed proofs of the statements from
[Zha08], some of which are shown under stronger conditions than in the corresponding paper,
since the proofs in [Zha08| for the weaker ones were not completely clear to me.


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Contents

1 Introduction

2 Setting and Notation
2.1 General Setting . . . . . . ..
2.2 Stochastic Volterra Integral Equation . . . . . . . . ... ... ... ... ...,
2.3 Assumptions . . . ...
2.4 Existence and Uniqueness of the SVIE . . . . . .. ... ... ... ........

3 Euler Scheme

4 Equivalence of the Large Deviation Principle and the Laplace Principle
4.1 Equivalence of the Principles . . . . . . . . . .. . .. ... ... ... .. ...
4.2 Deriving the good rate function . . . . . . .. . ... Lo oL

5 Large Deviation Principle
5.1 Variational Representation Formula . . . . . .. ... ... ... ... ......
5.2 The good rate function . . . . . . . . ..o
5.3 X€satisfiesthe LDP . . . . . . . . . . . .

A Appendix

11

18
18
19

21
21
22
25

29


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 1

Introduction

In this paper we will discuss stochastic Volterra integral equations
t t
X, = Xo+ / b(t, s, XJ)dt + / o(t, 5, X)dW,
0 0

for which we will present an Euler scheme (chapter 3) and show the they satisfy the Large
Deviation Principle (see definition 4.2). To be more precise about the LDP, in chapter 5 we will
show this property for the family {X¢, & > 0} where each X¢ solves the inteqgral equation

t t
Xf:X§+/ b(t,s,X;‘)dtJr/ Vea(t,s, X5)dW
0 0

A large part of this thesis is dedicated to giving more detailed proofs of the statements from
[Zha08] in which these two topics are covered. Regarding the Euler scheme we get the same
results as in [Zha08, section 2|. For proving the latter (see theorem 5.9) we had to ask for stricter
conditions. As is done in [RZ05, Theorem 3.12] we showed the Laplace Principle with respect
to a certain good rate function I (given by (5.4)). As stated in theorem 4.4 this is equivalent to
the LDP with respect to the same good rate function. The difference of the conditions needed
arises from showing that [ is indeed a good rate function.

In [Zha08, Lemma 3.8] and [RZ05, Lemma 3.5] it is claimed that I given as a mapping from
C(]0,1] x R4 RY) to [0, 00] satisfies the required condition (see definition 4.7) that {I < a} is
compact for all a < co. But we were only able to show this property if we restrict ourselves to
C([0,1] x Dg;R?) where Dg := {x € R? : ||z||2 < R} for any R > 0 (see lemma 5.7). This is
due to lemma 5.5 where we show that for the operator S which maps h to the solution of

t t
S(h)(t) = S(h)(0) +/0 b(t,s,S(h)(s))ds+/0 o(t,s,S(h)(s))h'(s)ds

it holds that {S(h) : h € By} is relatively compact. There, we had to ask for this stricter
condition in comparison to [Zha08, Lemma 3.6] and [RZ05, Lemma 3.3]. The same goes for
lemma 5.6 in opposition to [Zha08, Lemma 3.7] and [RZ05, Lemma 3.4] where the continuity
of this mapping is shown.

We omitted the statements of [Zha08, Lemma 3.10] and [RZ05, Lemma 3.11], a technical
lemma needed to show [RZ05, Theorem 3.12]. Instead we showed a weaker statement in lemma
5.8 which we needed in the proof of theorem 5.9.

Furthermore, we give a heuristic as to how to deduce the good rate function of choice (see
section 4.2). As is shown in [Aze80] the family {¢W, e > 0} satisfies the LDP with the mapping
A given by (4.3). For a certain family of SDEs driven by the same Brownian motion (see remark
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4.11) it is then shown that its solutions satisfy the LDP with a mapping A given by (4.4) which
looks similar to our good rate function I.

In chapter 3 we give a specific bound for the paramter p for which the LP-estimate can be
shown. In [Zha08] in the corresponding section 2 it only says for p sufficiently large. Further-
more, we highlight which parameters the constants in these estimates depend on. For lemma
5.5 we give a slightly different proof than in [Zha08, Lemma 3.6] using the same techniques as
in the proofs of chapter 3.

There were a few typos in [Zha08]:
e Theorem 1.2 : It should say “A € B(C)” instead of “A € C”.
e In the definition of H at the beginning of section 3.1 the condition A(0) = 0 is missing.

e In section 3.3 it should say “X°""” instead of “X¢” in the definition of the SDE at the
beginning of the section and the lemmata 3.9 and 3.10.
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Chapter 2

Setting and Notation

2.1 General Setting

Definition 2.1.  (probability space)
We consider a probability space (2, F,P) given by
Q = {wel(0,1;R™) | w(0) =0} (2.1)
P := Wiener measure on {2
N:={AcCQ|3IBeB(N),ACB:PB)=0}
F = oc(NUB(Q))
where the o-Algebra F is the P-completion of B(2), the Borel field of  endowed with the

topology induced by the uniform norm, B(€2) = (7., ). For simplicity we will identify P with
the augmented probability measure defined in the completion.

Remark 2.2.

Endowed with the uniform norm the space (€2, - ||«) is a separable Banach space. Separability
follows from Stone-Weierstrass. To show completeness let (f,,)nen be a Cauchy sequence. Since
fn is continuous for all n € N, [0, 1] compact and (R™, || - ||2) complete, one can define a function
pointwise by f(x) = nh_}nc}o fn(x). From there it is easy to show that f, — f uniformly and f is

continuous.

Definition 2.3.  (Brownian Motion)
On this space a m-dimensional Brownian Motion W = (W}),¢[o,1] is defined

Wiw) = w(t) (2.2)
Fr = o(Ws,s<t)
F .= (]:t)te[o,l]

We thereby obtain a filtrated probability space (Q2, F,F,P).

Definition 2.4. (H)
If existing we denote for h € § the vector of the derivatives of the components by h'. We define

H:={heQ: |h|f < oo} (2.3)

where

1
1A = /0 1(s) [3ds (2.4)

6
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Remark 2.5.
Endowed with the scalar product

1
(f. g = /0 (f'().9/(s))ads, f.g € H (2.5)

the space H becomes a separable Hilbert space. Because for every h € H it follows that
n' € L?(]0,1];R%) and conversely for all f € L?(]0,1];R%) its “antiderivative” starting in zero
defined componentwise by Fj(t) := fg fi(s)ds is an Element of H. Hence, it exists a bijection
between H and L2, so we have H = L2. From there it follows that the space (H, (-,-)g) is
separable and complete.

Definition 2.6.
The following notations will be used in this thesis.

Ay = {H F-progressive | H(w) € H,Vw € QA3C > 0: | H||E < C} (2.6)
Dp:={zeR?: ||lz]; <R}, R>0

Definition 2.7.  (F-progressive)
Let T C R be an interval, T; := {s € T | s < t}, (5,S5) a measurable space. A process
X : T xQ — S is called F-progressive if and only if

X|r,xa B(T;) ® Fi-measureable, teT (2.8)

Remark 2.8.
We define
Epm(TF) ={ACT xQ|AN(Ty x Q) € B(T}) @ Fy, Vt € T} (2.9)

This set is a o-algebra and fulfills: a process X is F-progressive if and only if X is X,,,(T,F)
measurable. Furthermore it holds that X,,,(T,F) C B(T) ® F where t* := supT (see also
[Sch20, Def. 3.33 and Ex. 3.34].

Definition 2.9. (F-predictable)
Let T C R be an interval, V := {X : T x Q — R | Xadapted, left-continuous}. We define

Spre(T,F) = o(|J X (B®))) (2.10)
Xey

Then a process Y is F-predictable if and only if it is (T, F) measurable.

Remark 2.10.
In the setting of (2.1) and (2.2) it holds that a stochastic process X is F-progressive if and only
if it is F-predictable (see also [DM78, Ch. IV. 94-97)).
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2.2 Stochastic Volterra Integral Equation

Definition 2.11.  (Volterra Integral Equation)
Let b: Ry x Ry x R 5 R? and o : Ry x Ry x RY — R measurable, x € R?. We consider

the integral equation

t t
Xy :X0+/ b(t,s,Xs)ds+/ o(t,s, Xs)dWs (2.11)
0 0
Xo==x
For n € N we define
tn = tlgsony + 27 " oy (2.12)
sy = [2"s]27"
§n = Sn]l{sZQ*"} + 2_n_1]1{s<2—n}

The corresponding inteqral equation is given by

X, (t) :Xn(0)+/0 b(fn,§n,Xn(sn))ds+/0 o (tn, 3n, X (50))dW, (2.13)
Xn(0) ==

To highlight that a solution X, of (2.13) is starting at X,,(0) = = we use the notation X, (-, ).
The same goes for X solving equation (2.11) starting in Xy = = where we write X (-, x).

Definition 2.12.  (H Integral Equation)
For H € A, and € > 0 the process X describes the solution of

xom = x4 /0 tb(t,s,Xﬁ’H)der /O ta(t,s,Xss’H)H’(s)ds+ /0 t Veo(t, s, XoM)dw,
ngH —r (2.14)
For the special case H = 0 we write X¢ := XV, Existence and Uniqueness of a solution of
equation (2.11) and (2.14) is discussed in section 2.4.
2.3 Assumptions
Assumption 1

Jo, > 1, Ki,Ky:[0,1]2 = (0,00), C; >0Vt,s€[0,1] Yo,y e RY:  (2.15)
(@) b, s, @) = b(t,s,y)|l2 < Ki(t,s)[|z — yl2
(i) lo(t,s,2) = olt,s,9)|[F < Ka(t, s)|lz = yl3

t
(i) [ C1b(e, 0015 + lo(t.,0)[F )as < €,

(iv) /0 ( (K1(t,8)" + (Ka(t, s))" )ds < Cy

In particular, in (7i7) and (iv) the integrals of each summand of the integrands are bounded as
well by C' since they are all nonnegative
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Assumption 2

Iy >0, F1,Fy: 0,1 = (0,00), Cy >0Vt t,s €[0,1] Vo € R¢ : (2.16)
(@) ot s,2) = b(t,s,2)lla < Fi(t',t,8)(1 + ||z]l2)
(it) |lo(t',s,2) — o(t,s,2) |3 < Fa(t',t,8)(1 + ||z]3)

AN
(i) / (Fi(E,t,8) + Fo(t,t, ) Vds < Calt — ¢/
0

where ¢/ At := min{t',t}. Again as Fi, F5 > 0 it holds that the integrals of each summand of
the integrands in (ii7) are bounded as well by C|t — t/|".

Assumption 3

36 >0, F3,F;:[0,1> = (0,00), C3 >0 Vt,s,s' € [0,1] Yz € R?: (2.17)
(1) lIb(t, s,x) = b(t, 8", 2)ll2 < F3(t, 5,8 ) (1 + [|z]]2)
(i) ot s,x) —o(t, s, 2)|lF < Falt, s, ) (1 + [|z]3)

t'At
(iii) / ( Fs(fn, $,3n) + Fu(tn, s,3n) )ds < C527™
0
For (iii) the same holds as before.

Assumption 4

Ve e RYVEe[0,1]:
(i) The mapping b(t,-,z) : (0,t) — R? : s+ b(t, s, x) is continuous
(i) The mapping o(t,-,z) : (0,t) = R?: 5+ o(t,s,z) is continuous

2.4 Existence and Uniqueness of the SVIE

With these assumptions we can state the existance and uniqueness of a continuous solution.

Theorem 2.13.
There exist progressive solutions of the integral equations (2.11) and (2.14). In particular they
are unique.

Proof: Existence and uniqueness of a solution of the integral equation (2.11) already follows
from assumption 1 as is shown in [Wan08, Theorem 1.1]. There the assumptions are, it exists
p > 2, a concave function p : Ry — R, and functions K1, K3 as in assumption 1, such that for
all T' > 0 there is a Cp > 0 such that

(@) [lb(t, 5,2) = b(t,5.y)ll2 < CrE1(t,s)p"/P(|lz — ylb)
(0) ot s.2) = o(t, s,9)[3 < OrKa(t, s)p™*(|lz - yll5)

()A(WMMM+MWMW%%§@

)

M)A%WN@W@”H&@WM“MMS@
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We only consider 7" = 1. Obviously (7) and (i7) in assumption 1 are the same as (a) und (b)
mit Cp = 1 und p(u) = u for all u € R;. Condition (c¢) is weaker than (iii) and the exponents
in (d) are necessary to proof the statement there, which can be generalised to (iv) due to the
special choice of p. Therefore, all the assumptions for [21, Theorem 1.1] are met and we get
the existence and uniqueness for equation (2.11). From Girsanov the same follows for equation
(2.14).

Lemma 2.14.
There exists a # > 0 such that the solutions of the equations (2.11) and (2.14) A-hoelder con-
tinuous for all A € (0,6). In particular solutions are continuous.

Proof: Assumption 2 and assumption 1 together with the remarks in the proof of theorem

2.4.13 guarantee that the assumptions of [Wan08, Theorem 1.3] are met. Hence, the statement
of this lemma holds true. O

10
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Chapter 3

Euler Scheme

In this section we will prove that the solutions X, of (2.13) converge to the solution X of (2.11)

in the sense that

lim E[ sup | Xn(t,z) — X (¢, 2)|5] =
N0 tef0,1], flzl2<R

for all R > 0. This will be done in theorem 3.5. First, we need to prove some lemmata. All
constants arising from estimates will be denoted by C' and we will highlight which parameters
it is depending on by writing by subscripting those to it.

Lemma 3.1.

Under assumption 1 let X,,(-,z) be a solution of (2.13). Then for all p > 2% there exists a
constant C}, 4 > 0 such that

(i) EllXa(t,2)5] < Cpa(l+ zl),  t€0,1], z€R?, neN
(i) E[|lXn(t,2) = Xn(t, )l < Cpalle —yl5, te€[0,1], 2,y eRY, neN

Proof: For the proof of (i) we will only write X,,(¢) whenever it is clear that we consider a
solution X, starting at X, (0) = z. Then

BB O B[+ [ 65 Xt + [ 0l XalsnWi2)']
< B[ (el 1 [ 650 Xl + 1 [ ot Xalsu V]2
<" (B + B [ bl Xl
Bl [ o0, XV 1)

= Gp(llzlz + I + I2)

11
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no<  E[ /0 15 5s Xn(sn)) 2 ds)?]
= E[(/O 6(Fn, 3y Xn(8n)) — b(En, 30, 0) + b(tn, 50, 0) |2 ds)?]

< E[ /0 15 5, 0) 12 ds + /0 16 5> Xa(5n)) — b(Fn, 50, O)|]2 5]

(A.2) t L t L -
< GBI 105000 )+ B b X(50)) = bl 50,0l 5]
(2.15),(A.5) t N . t N
< GBI W50, 0018 P21 ) B[ K5 Xz ds)))
0 0
(2.15),(A.5)

PG ([ Gt a6l )
(i [ R Bs)

Cp,+C, / SupEHX )|I5]ds

IN

where ax = % is the Hoelder conjugate of «. For the last inequality we also used Jensen
on the (...)?/® -term (applicable because p > 29 hence p/ax > 1) and afterwards Fubini to

commute expectation value und integral. Jensen 1s applicable since

t 1
/0(...)d>\(s):/0 ()1 o<y dA(s)

and A is a probability measure on [0, 1].

d m
L, < Z’Z/ 0ij (tn, 8ny Xn(5n)dW, ])D }
=1 j=1
d
(Ag'z) Cp ZE ilg)’Z/ 0ij(Un, Sp, Xn(5n)dW, J)D ]
(A.3) m

.O'i'fnvgnv n\Sn s() -

S 3 (b oy R oy
d t m

~ Y E[ / S (053 (Fns 50, Xn(50))) s/
=1

0 =
t
< CdE[ / 10 (s 3 X (50)) | 3oks)P/2)
0
t
< Cpat Cpa [ swE[IX,(w)])ds
0 u<s

The last inequality follows analogously to the chain of inequalities of I7.
Let u(t) := sup,<; E[|| Xy (u)||5]. Since u > 0, we conclude

t
u(t) < Cpa(1 + [12]12) + Cpa / u(s)ds
0

12
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The claimed statement now follows from E[|| X, (¢)[[5] < sup,<; E[|| Xy (u)[/5] and Gronwall’s in-
equality. The proof of (ii) follows analogously. O

Lemma 3.2.
Under assumption 1 & 2 let Xn(-,x) be a solution of (2.13). Then there exists a § > 0 such

that for all p > max a20‘1, = 1} there exists a constant C), 4 > 0 such that

E| X, (t',x) — Xn(t,2)||5] < Cpa(L+ 2| — %, t,¢' €[0,1], 2 €R?, neN

Proof: Again we will write X,,(¢) whenever it is clear that we consider a solution X,, start-
ing at X,,(0) = . W.lo.g. let t < t’. Analogous steps to the proof of Lemma 3.1 will be
denoted by (a). Then

BlX.(t,2) - Xt )} < E / (T, 30, X (50))dls + / o (T 8, X(50)) AW,
—l—/o (b(fﬁl,én,Xn(sn)) — b(fn,én,Xn(sn)))ds

+ / (0 8 X (50)) — 0 (s s Xon(50))) AW 2]
0

Y2 (B[ 10 50 X )
VI o Xalon) sy
PRI 1750 X 50)) = s 5 Xo 50
FEIC [ otE 5 X)) = 0 X))
= Cp(li + 2+ I3+ Iy)
n MY G (w50

FEI(| KT 50)| Xn(s0)l2ds)))

(2.15),(a) . t/
2o - v, / B[] X (5, 2)|[Z]ds
t
3.1 , p/ﬁ* » ,
Gl P 1 Cpal 2l — ¢
< ol D — P 1 — )

Analogously to Iy it follows for Is

Iy < Cpa(1+ |l2llB) (|t — tP/7" + [t —])

13
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R A0 ) )]
- <E[</O Pyl o )14 1 X5 2)ds 17
([ s PR+ X0 ) 7))

(2.16),3.1 o .
< Gual+ =[] -1

Analogously to I3 it follows for I
Iy < Cpa(1 + |l2lB) [ — ¢/

In conclusion there exists a 8 > 0 such that

B Xn(t,2) = Xu(t,2)l5] < Cpa(l+ (|25 (|t — /7" + |t' =] + |t' =t 4 |¢' = ¢P/?)
< Cpa(l+ [z|B)t — ¢
Thus, the statement of this lemma is shown. ]

Remark 3.3.

If we would not have chosen 1 as our time horizon for simplicity reasons the estimation constant
of lemma 3.2 would also depend on the arbitrary but fixed time horizen T'. To be more precise
we should denote that constant by Cp, 4.

Theorem 3.4.

Under assumptions 1 - 4 let X, (-, z) be a solution of (2 13) and X (-, z) a solution (2.11). Then
there exists an 7 > 0 such that for all p > max{ T 5o 1} there exists a constant Cp 4 > 0 such
that

sup E[[|Xn(t, ) — X (¢, 2)[[3) < Cpa(l + [|2]2)27""7, n €N
t€[0,1]

Proof: Again we will write X,,(¢) and X (¢) respectively whenever it is clear that we consider
solutions starting in z. Analogous steps to the proof of Lemma 3.1 and 3.2 will be denoted by
(a). Then

EllXa(t,2) - X(t,2)|2] = E| / (b s Xa(sn)) — b(t,5X (5)) )ds
t
4 / (0B s Xa(5n) — (2, 5X (5)) )W, |12
0
(A.2) t
< o (el / (b(t,5, X(5)) — b(t, 5, Xn(s)) )ds]]
0
LE[| / (B(t, 5, Xn(s)) — b(t, 8, Xn(s2)) s

B[ / (b(t, 5, Xn(50)) — b(Fn, 8, Xn(50)) )ds][2)
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(2.12)

—
INe

—
)

IA =
[\~]
N

—
INS

—
INS

(2.17),(a)
<

(a)
<

S [ bl X)) = b5 X)) D)
FEI) [ (ot X(5) = ot X)) Wi
VR [ Coltss, Xals) = o1t 5, Xasa)) JaWA[}
FEIL [ Coltss, Kalon) = ol Xalon) WL
VR [ ol X)) = 50 o)) Y5
Co(hh+ 1o+ I3+ Iy + Is + Is + I7 + Iy)

Cp [ EIX (6.2 Xo(o.) B

Cp [ Bl (s.) = Xl 12

Cp [ Bl (512 Xo o)

Cpa | 1+ 2lg)ls — sal?

Cpa(1+ |[2]|5)27""ds
Cpa(L + ||z][5)27"%

t ~
CpE[(/O Fi(tn, £, 8)(1+ ([ Xn(sn)l2)ds)"]

Cpa(1+ al))lEn — 1|
Cpa(l+ |lll)27"%
Cpa(1 + [l2l5)27"

t ~
CpE[(/O Ey(tn, b, 8n) (1 + || Xn(sn)ll2)ds)"]

Cpa(l+ |l2ll5)27"P

Cpa(L+ ||z ][5)27"%"

In conclusion there exists an 1 > 0 such that

E[[[Xn(t, 2) = X (&, 2)[I5] < Cpa(l + [|z]2)27""

and since the right hand side is independent of ¢ it holds that

t€(0,1]

sup E[| Xn(t, x) — X (¢, 2)[3] < Cpa(l + ||2[|5)27""

Thus, the statement of this theorem is shown.
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Theorem 3.5.
Under assumptions 1 - 4 let X (-,z) and X (-, x) be a solution of (2.13) and (2.11) respectively.
Then for all p > max{2%, = 1} and all R > 0 it holds that

() 3Cpar>0n>0:E  sup  [Xu(t,2) ~ X(t,2)[3] < Cpap2 ™™
te[0,1], [lzll2<R

(13) P( lim sup | Xn(t,z) — X(t,x)]|]2=0) =1
" e(0,1], flzl2<R

Proof: To prove (i) we will show that the statements of lemma 3.1 and theorem 3.4 also hold

for
E[  sup [ Xn(t,2) — X(t2)[5]
tel0,1], |lz||2<R
Therefore we show their validity for the first part of the proof of lemma 3.1, the rest follows
analogously. Again, analogous steps of the proof will be highlighted by (a). For T € [0,1] it
holds that

(a)
B[ sw | Xa(t,2)|] < Cp(E[sup |l
tel0,T], [|z[2<R t,x
t
+E [StUPH ) msn;Xn(Snax))dsug]
t
AELsup|| | o(n, 50, Xn(sn,2) V5 ]

< Cp(Rp + 1) + Iz)

(a)
L < [sup / 16, 30, 0) |2dls)?]
sup/ 15(Fns 3y X (5, ))—b(fn,En,O)Hgds)p])

(a)
< O+ CoE[ sup( / (K (F, 50)) s )P/ / 1 X (s 2) 1§ ds)?/® ]

t,x
(a)
< Cp+C,E[ sup /HX Sn, T H2d5]

tel0,T),z
< Cp+GE] / sup [ Xo(sn, 2)2ds]

0 Jz][2<R
< o+C / sup || Xn(u, 2)|[2)ds

€[0,s], [|z]]2<R

Consequently, we get the analogous results

(1) E[ sup [ Xn(t,2)[5] < Cpa(l + RP), neN
tE[O,T], ||$H2§R
2) B[ suwp | Xa(t,2) — Xa(t.g)l}] < Cpu2?R?, neN
tE[O,T], ”xH2§R
(3) E| sup | X0 (t,z) — X (¢, 2)|5] < Cpa(l+ RP)27™P neN

te[0.T], [lzllo<R
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With (3) and the choice 7' = 1 statement (7) is shown. From (i) and the Markov inequality (M)
it follows that for all € > 0

M) 1
P( sup || Xp(t,2) - X(tz)a>e) < - E| sup [ Xn(t,z) — X(t 2)]2]
tel0,1], ||lz|l2<R € tel0,1], ||lz|2<R
(A5) 1 PN /p
S (E] sup [ Xn(t, ) — X(t, 2)|5])
tE[Ovl]v HZHZSR
(2_‘) vadvRQ—nn
g

Then

ZP( sup HXn(tyx)—X(t,x)”z >8) < 00
neN  tE[01] flzll2<R

and from Borel-Cantelli we get

P( lim sup sup | Xn(t,z) — X(t,x)|]]2 >€) =0
n—oo tef0,1], [lzf2<R

The validity of the last equality for all € > 0 is equivalent to the P-as convergence (see also
[Kusl4, Lemma 7.78]), thus statement (i7) is shown. O

Theorem 3.6.

Under assumptions 1 - 4 let Dp := {x € R?: ||lz|l2 < R}, z € Dg, X,(-,z) a solution of (2.13)
and X (-,z) a solution of (2.11). If we look at X,, and X as mappings from [0, 1] x R? to R?, it
holds that they are continuous.

Proof: Let p > max{%, %, d, %}. From lemma 3.1 and lemma 3.2 if follows that

E[[| Xn(t',2) = Xn(t,9)|5] < CLE[|Xn(t,2) — Xn(t, 2)|5 + || Xn(t, 2) — Xn(t, y)|5]
< Cpallt' =t + ||z — y|Ip)

< Cpall(¥) + (815

From Kolmogorov’s continuity theorem A.11 it follows that X,, € C([0, 1] x R% R?). In addition,
by theorem 3.5 we have
E[|X(,2) - Xyl < GRE[IX(H, 2) = Xn(t, 2) |5+ [ Xn(t', 2) — Xu(t,y)l
+ [ Xn(t y) = X (8 9)|5]
< Cpa@ P+ | =t + ||z — yllb)

Sending n to infinity and again using Kolmogorov’s continuity theorem A.11 we get the state-
ment of this theorem. O
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Chapter 4

Equivalence of the Large Deviation
Principle and the Laplace Principle

As indicated in the title we will state the equvalence of the LDP and the Laplace Principle in
this section. Afterwards we will present a representation formula of the good rate function for
certain families of random variables (see also [Aze80]).

4.1 Equivalence of the Principles

Definition 4.1.  (good rate function)
Let E be a Polish space. A mapping [ : E — [0, 00| is called a good rate function if and only if
the set {I < a} is compact for all a < co.

Definition 4.2.  (Large Deviation Principle)

Let E be a Polish space, I a good rate function and {X¢, e > 0} a family of F-valued random
variables. Then this family is said to satisfy the Large Deviation Principle with rate function I
if and only if

(1) limsupeP(X® € F)< —J(F), F CE closed

e—0

(i) limi(?fd[”(X‘3 €G)<-J(G), GCE open
E—
where J(A) :=inf e I(2).

Definition 4.3.  (Laplace Principle)
Let E be a Polish space, I : E — [0,00] a good rate function and {Y¢,¢ > 0} a family of
FE-valued random variables. Then this family satisfies the Laplace Principle with good rate
function [ if and only if for all continuous, bounded functions h : E — R it holds that

lim e InE[exp(—h(Y*®)/e)] = — inf {h(z) + I(x)} (4.1)

e—0 el

Theorem 4.4. Equivalence of the Principles
Let E be a Polish Space. The Laplace Principle is equivalent to the Large Deviations Principle
(with respect to the same good rate function).

Proof: According to the remark at the beginning of [DE11, section 10.2] the proof follows
analogously to the discrete case proven in [DE11, Th. 1.2.1 and Th. 1.2.3].

18


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Lemma 4.5. Uniqueness of the good rate function
Let E be a Polish space. A family of probability measures defined on E can satisfy the LDP
with at most one good rate function.

Proof: see also [DZ10, Lemma 4.1.4]. O

4.2 Deriving the good rate function

Definition 4.6. (Cramer transform and functional)
Let (E, || [|) be a separable Banach space, 1 a probability measure on (£, 7). Let £’ denote
the dual space of E and [ |(t, z)|du(x) < oo for all t € E/. We define

i E 5 [0,00] 1 £ / exp((t, 2))du(z)
E
A:E—[0,00] : z+— sup{(t,z) —Inj(t)} (Cramer transform)
teE’
A:P(E)—[0,00] : A ing)\(x) (Cramer functional)
TE

Remark 4.7.
Obviously, those mappings are also well defined in a more general setting (see also [Aze80, Ch.
I. 2.1, Def. 4.6 and 5.2]) but for our application we will need a separable Banach space.

Theorem 4.8.

Let E be separable Banach space, u ~ N(0,0) a probability measure on F and A, A as given
in definition 4.6. Let X : Q@ — FE be a random variable with X ~ u. Then A is a good rate
function and {y/X,e > 0} satisfies the LDP with A. For all A C FE it holds that

—A(A°) <liminfe?InP(eX € A) < liminfe?InP(eX € A) < —A(A) (4.2)

e—0 e—0

where A° denotes the interior and A the closure of the set A.

Proof: see also [Aze80, Ch. II. Th. 1.6 and Ch. I. Lemma 6.1]. O

From definition 2.1 und 2.2 and remark 2.3 it follows that {\/eW} satisfies the LDP. The
next two lemmata will give us a representation of the Cramer transform.

Lemma 4.9.
Let 5 : 2 — R™ be a centered, quadratic integrable process on the interval [0, 1] with indepen-
dent increments, p(s,t) := E[(8s, B)2]. Then for all f,g € L%([0,1]; R™) it holds that

]E[<fa B)L2 <ga /8>L2] = <f> ]%g>L2

where R: L2 — L? : g — fol p(-, t)g(t)dt.
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Proof: Let s,¢ € [0,1]. Then

(f(s), Bs)2(g(t), Br)2

ST H:()80Y " gi(1)8Y)
i=1 j=1
= Y Jils)gi(t)8D8Y

2,j=1

From the centeredness (Z) and independence of the increments (I) it follows that p(s,t) is a
diagonal matrix p(s,t); = E[ﬁﬁ,%ﬁ”]. From Fubini (F') it follows that

F)

E((f,B)2(g, B)re] & / / Vo (g(), Biba] dt ds

= // g (OEBP8Y) dt ds

//Zf, B8D)gs(t) dt ds
= (f.Rg)r

Thus, the statement of this lemma is shown. ]

Lemma 4.10.

Let W : Q — E be a m-dimensional Brownian motion, E the space of all continuous, R"*-valued
functions on [0, 1] starting in zero - hence F is a separable Banach space - and p the law of W
on FE. The the Cramer transform A is given by

A(f) = fo |f/(t)||3dt, f absolutely continuous (4.3)
00 otherwise '
Proof: see also [Aze80, Ch. II. Prop. 3.6]. O

Remark 4.11.
In [Aze80, Ch. II. Prop. 3.6] the statement is only proven for the real case, but with lemma 4.9
it follows analogously that the statement holds also for the multidimensional case.

Considering a SDE of the form

AYF = B(YF)dt + Eo (YF)dW;
Yi =a

it is shown in [Aze80, Ch. III. Th. 2.13] that the family {Y°} of the solutions satisfies the LDP
with the good rate function

No)= inf, Xf) (44)

where B maps an absolutely continuous f € F to the solution of ¢'(t) = b(g(t)) + o(g(t))f'(t)
with g(0) = z. In theorem 5.9 we will generalise this result to the stochastic Volterra integral
equation case with varying starting value.
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Chapter 5

Large Deviation Principle

In this section we will prove that the family {X¢, e > 0} satisfies the Large Deviation Principle
where each X¢ solves the integral equation (2.14) with H = 0. This will be done in theorem 5.9
by showing that this family satisfies the Laplace Principle, the equivalence of which has already
been stated in theorem 4.4.

5.1 Variational Representation Formula

Theorem 5.1.
Let g : C([0,1];R?) — R be a bounded Borel measurable function, A as defined by (2.6). Then

~ In(Blexp(~g(W)))) = jnt. Elg(W + H) + 3 | )

Proof: In the statement of [BD98, Theorem 3.1] the infimum is taken over the set A of all
H-valued, F-progressive processes H but if you look at the proof in detail the statement is even
shown for Ay. O

Theorem 5.2.

Let f: C([0,1];R%) — R be a bounded Borel measurable function, X, X the solution of (2.11)
and (2.14) respectively. Then

~ In(Blexp(—f(X)]) = jnf ELAX) + S| HIE

Proof: Per definition of W (see (2.2)) it holds that

(X oW)(w) = X(W(w)) = X(w)
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With this representation we have for X o (W + H) where H € A,
X(W+H)(t) = X(0)+ /t b(t,s, X(W + H)(s))ds
0
+/0 o(t,s, X(W + H)(s))d(W(s) + H(s))
= X(0)+ /t b(t,s, X(W + H)(s))ds
0
+/ o(t,s, X(W + H)(s))H'(s)ds + / o(t,s, X(W + H)(s))dW (s)
0 0

Hence, X o (W + H) solves the same SDE as X. Since solutions of (2.14) are unique they
have to coincide. Therefore we get

—In(E[exp(=f(X))]) = —n(E[exp(=f(X o W))])

s -
2 int E[f(X o (W + H)) + 5 |1HIE

1
. Hy , L 2
= ot E[f(X")+ 2| HIR)

Thus, the statement of this theorem is shown. ]

5.2 The good rate function

In this section we will show that the mapping I as defined in lemma 5.7 is indeed a good rate
function.

Lemma 5.3.
Let By C H be the ball with radius N.

By :={hcH] |z <N} (5.1)

Then, the space (Bn, 7).,/ By) is @ compact Polish space where 7., denotes the induced topol-
ogy from || - ||z and 7j.,|By the corresponding trace topology.

Proof: We have to prove the following properties: (i) metrisable, (ii) separable, (iii) complete,
(iv) compact. (i) The metrisability is clear since || - || induces the metric dy

dH(Q? h) = Hg - hHHa 9, h € H (52)

74) Since (H, 7. is separable this also holds for (By,7j.|.|By) as its subspace. (iii) Let
[l-[1e [l | B

(hn)nen be a Cauchy sequence in By (and in particular in H too). Because H is complete,

there exists a h € H such that h,, — h in H. Since

t t
rw&a/mw%ﬁ:hm/um@ﬁwgw
0 n—oo 0

it follows that h € By. Thus, By is complete. (iv) Since the topology is induced by a metric
the compactness of By follows from its completeness and boundedness. O
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Definition 5.4.
Let h € H, z € R%. We consider the ODE

t t
S(h)(t) = S(h)(0) +/0 b(t,s,S(h)(s))ds+/0 o(t,s,S(h)(s))h'(s)ds (5.3)
S(h)(0) ==
To highlight that a solution S(h) of (5.3) is starting at S(h)(0) = = we will write S(h)(-, z).

Lemma 5.5.
For all N > 0 the set {S(h): h € By} is relatively compact in C([0,1] x Dg;R%).

Proof: By Arzela-Ascoli we only need to prove that the set is uniformly equicontinuous and

that {S(h)(t,x) : h € By} is uniformly bounded for all (¢,z) € [0,1] x Dg. Let p > 0 suffi-
ciently large. Then

(A2) !
ISWEa)E < Colllell+ ( / 1b(t, 5, S()(5, 2))||ads)”
T ( / lo(t, 5, S(h) (s, ) ()]|2ds)P)
S G ([ 100t S(0)(5.2))ads)?
0
t
([ Nt S0 s, 2) s 1)
0
2 G+ Con / 1S (1) (s, ) |Bds

The uniformly boundedness now follows from Gronwall and || - |2 = (|| - |[5)'/?. Furthermore it
holds that

(A.2)
ISR (E.2) — S S CllSh)(Ea) — SR @)+ S (E ) — S(R)(E, ) 2)
(a
2 — 1P 1 e -yl

Hence, for all € > 0 and (¢,z) € [0,1] x Dg there is 6 > 0 such that for all (¢',y) € [0,1] x Dg
satisfying ||(t — ¢/, 2 — y)||2 < & the p-th root of the last inequality is not bigger than . Thus,
we have shown that {S(h) : h € By} is uniformly equicontinuous. O

Lemma 5.6.
The mapping ® : H — C([0,1] x Dg;R?) : h + S(h) is continuous.

Proof: Let (hp)nen,h € H, hy, — h, and N := ||h|lg. For all £ > 0 there exists a nyp € N
such that for all n > ng

[hn —hllz<e = |hnllz <e+|hln < oo
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Then
(A.2) t
1S(hn)(t, ) = S(R)(t,2)[5 < Cp((/o [6(t, s, S(hn)(s,2)) = b(t, s, S(h)(s,2))|[2ds)"
+(/ [(o(t, 5, S(hn)(s,2)) — a(t,s,S(h)(s,2)))hy(s)]l2ds)”
/ lo(t, s, S(h) (s, 2))(hy,(s) — 1'(s))[l2ds)P)

20y [ 15t s.0) = (1) s, 2) B
£y [ 1801a)6s2) — S5, 2) 8 (N <
#0580 o) s —
20y [ 1500, - SR, s

e / IS(h S(h) (s, ) [ds (N + )"

e / (k) (s, 2)) 15ds) 1 — B,
<Gy [ 10 6.2) — 8015, s

+C) / IS (h S(h)(s,z)|bds (N + &)P

+C( +Hpr )7 hHﬁ

The statement of lemma 3.1 can be shown analogously for S(h). This is used at the (a)
inequality. It now follows from Gronwall and ||z|j2 < R that

1S (hn) (t, ) — S(R)(t, 2)[ls < Cpronllhn — bl
Hence

IS (ha) (£, ) = S(R) (¢, )[l2 = (IS(hn)(t,2) — S(R)(t, 2)|[5) "/
< Cprpllhn — BI%)YP = Cp rallhn — Rl

This upper bound is independent of (¢,x) and so the inequality still holds true if we build the
supremum over [0, 1] x Dr. We then get

lim — sup  [[S(h)(t,2) = S(R)(t,2)ll2 < lim  sup  Cppallhn —hllz =0
"7 (t,2)€[0,1]x Dp n00 (¢ 4)e[0,1]x Dy
Thus, the mapping ® is continuous. O

Lemma 5.7.
For each R > 0 the mapping

1
: RY :
I':C([0,1] x Dp;RY) = [0,00] : f = 5 ng(fh) 11y (5-4)
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is a good rate function (see definition 4.1).

Proof: From Lemma 4.10 we already now that I is a good rate function if we restrict it to
C(]0,1] x {x};R%) for any x € Dr. We will now prove that this can be “generalised” as stated
in this lemma. Let f € C([0,1] x Dg;R?). Per definition of I there exists a sequence (hy)nen in
H such that ||h,||% — 2I(f). Let N := sup,cy ||hn|lm and w.l.o.g. N < co. Then h,, € By for
all n € N. By lemmab.3 there exists a h € By and a subsequence (hy, )ren such that h,, — h.
This h then satisfies

[Pl = lim A [ = 21(f)
—00
As shown in lemma 5.6 the mapping h — S(h) is continuous, hence it holds that

S(h) = lim S(n,) = f

From there 21(f) = ||h||Z follows. Let a < oo, A := {f € C([0,1] x Dgr;R%) | I(f) < a?}. Since
A C {S(h) : h € By}, which is relatively compact by lemma 5.5, we only need to prove that A
is closed. Let (fy,)nen be a sequence in A converging to an f € C([0,1] x R% R?). For each f,
there exists a h,, € Ba, satisfying 21(f,) = ||hn||% and S(hy,) = f,.. Again there exists a h € By
and a subsequence (hp, )ken such that h,, — h. Since f,, = S(h,,) — S(h) it follows that
f = S(h) and thus I(f) < 1/2||h||% = a?, which shows that f € A. As a subset of a relatively
compact set the compactness of A now follows from its completeness. O

5.3 X°¢ satisfies the LDP

Lemma 5.8.

For e > 0, N > 0 let H° € Ay such that the mapping ¢ — H€ is continuous in the sense
that € — H¢(w) is countinuous with respect to || - |g for all w € Q. Let €9 > 0. Then for any
sequence (ey)nen in (0,ep] there exists a subsequence (e, ) and €* € [0,e9], H € Ay such that

lim E[ sup HX‘Z"’HM (t,x) — Xa*’H(ta@”g] =0
T tefo,], [l <R

In particular, {H®, ¢ € (0,¢0]} and {X=H" ¢ € (0,e¢]} are tight families in By and C([0,1] x
Dpr; R?) respectively.

Proof: Let (&,,)nen be a sequence in (0, ] and w.l.o.g. there exists a €* € [0,0] and a H € Ay
such that ¢, — &* and H°» — H (otherwise there would be a subsequence satisfying this
statement). Then
lim E[|[H ~ Hl,] < lim E[|H* — H]jg]
= E[lim [|H* — H|z]
= 0

lim
n—oo

From there it follows that the laws of H*" are converging in distribution to the law of H. Since
By is a Polish space we get that { H¢} is a tight family by lemma A.7. Next, we want to show
the same result for {X="}. Let (£,)nen as before. Then for all p sufficiently large and using
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the notation X" := XeH™" and X* .= X H it follows that
t
B (10 = X*(ta)lf) < GBIl [ (b, X760 — bt 5. X (5,2) s}
t
+ / (VEno(t,s, X"(s,2)) — Vera(t, s, X*(s,2)) )W)
0

# Bl [ Cotts, X (s, 0) (), o(t.5, X" (5, )) ] s )
=: Cp(Il + Iy + I3)

Analogously to the steps in the proof of theorem 3.1 and lemma 5.6 we get the estimate for I
t
1< Gy [ B (s0) = X (s,
0
Denoting analogous steps again by (a) we get for I and I3
t
b2 Cpan( [ BIX(s2) X (s, f)ds
0

+ I lott s, X (o)) sl 1 — ")

IN

oot (BL1+ ([ ot (s,2)) ) V2 75 = )
t
<" G (EL+EI( | lolt,s. X (s.a)) sy B o — 1))
< Cpan( [ BIX"(s.2) = X (s )l + (1+ ) L= = HE)?)

t
I Cp,d]E[(/O IVEno(t s, X" (s,2) = Verol(t,s, X* (s, 2))|[hds)"/?]

t t
< Cp,d(eﬁE[(/o Hff(t,S,X”(S,x))llfvdS)p/Z]+(6*)”E[(/0 IIU(taS,X*(S,w))II%dS)p/Q])

t t
< Cpalew =< Pmax (B[ (e, X" ) [ 2L B[ (e 5. X (s, fras)]

< Cpalen e (1 max { [ BN, [ B 0810 )

Analogously to lemma 3.1 and lemma 5.5 it can be shown that E[HXS’g(t, z)||5] < Coam(l+
|z||5) for all € > 0 and H € A,. Putting all the parts together and using Gronwall

E[  swp  [[X"(t,x) = X*(t,2)[3) < Cpamrlen — P+ (B[IH™ — H[F)'?)
te[o’lL ”‘ZHQSR

and in conclusion

lim EJ sup | X T () — X () ||5] = 0
"0 telo ], flzll2<R
In particular, {X=#"} is a tight family too. O
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Theorem 5.9.
The family {X¢,e > 0}, X¢ € C([0,1] x Dg;R?) satisfies the Laplace Principle with good rate
function I as given in lemma 5.7.

Proof: Let g be a bounded, continuous function on C([0,1] x Dr;R%), ||g|llcc =: M. We now

want to show that
lim — In Elexp(~g(X*)/2)] = inf {g(x) + 1(2))
FAS

e—0

“>”: From theorem 5.2 it follows that

—elnElexp(—g(X°)/e)] = ¢ inf Elg(X=VEr) Je +1/2 || H][f]
b
= inf E[g(X®VEH) +1/2 |VeH|?
ot Elg( ) +1/2 |VeH ]
= inf E[g(X*")+1/2 |H|3
Anfy Elg(X=7) +1/2 || H ]

where it can be shown analogously to theorem 5.2 that X© o (W + H) solves the same SDE as
XeVEH hence it follows from the uniqueness that both processes have to be identical. Since
H* =0 is an element of A, if follows that for all H satisfying ||H||% > 4M it holds that

Elg(X>") +1/2 | H|] > E[g(X>™)] + 2M > E[g(X°)]

since |g(X=H) — g(X?)| < 2M. Thus we can restrict the infimum to the set {||H||Z < 4M} =:
Aypr without changing its value. Let 6 > 0. For all H € A the mapping ¢ — H is continuous,
hence as shown in the proof of lemma 5.8 it holds that lim,_, E[|| X — XH#|}] — 0 for all
en, — 0. Hence, there exists a ng(H) such that for all n > ny(H)

E[g(X=mT) — g(XT)]] <6
= E[g(X*) +1/2 |H||E] > E[g(X™) +1/2 | H||] - 6
The value nyg is (a priori) depending on H since constant C' in the estimate of lemma 5.8 contains

the value ||H||g. Because we restrict ourselves to A4ps this dependence can be omited and we
can choose a ng independent of H. Thus we get

liminf —eInE —g(X° = liminf inf E[g(X®")+1/2 || H|?
iminf —¢In [exp(—g(X*®)/e)] im in Héﬁw [9( )+ 1/2 || H ||l

> inf liminf inf E[g(X*")4+1/2 | H|%]

en—0 n—oo HeAynm

>  inf Elg(X")+1/2 |H|Z] -6
= iof [g(X7) +1/2 || H| |z

By lemma 5.6 the mapping h +— g(X") + 1/2 ||h|| is continuous (where X" and S(h) denote
the same process), hence there exists a constant process Hy = hg € By such that

inf Elg(X")+1/2 ||[H[IE] > g(S(ho)) + 1/2 ||hollf — 6
HeAypn

In conclusion we get that

lim inf — In Efexp(—g(X*)/2)] > g(S(ho)) + 1/2 [[holl3 — 26

e—0
>t {g(f)+1/2 bl - 20
> nf{g(f) +1(f)} - 26
27


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

The statement now follows from sending & — 0.
“<”: Since I is taking finite values and ¢ is bounded it follows that inf{g(f)+ I(f)} is finite
too. Let § > 0. Then there exists a fy such that

9(fo) +1(fo) < ir}f{g(f) +I1(f)}+0

Hence, I(fp) =: N has to finite. As shown in the proof of lemma 5.7 there exists a hg € B3y
such that
1/2 [|hollfy = I(fo) A fo = S(ho)

Again, it follows from theorem 5.2 (where we identify ho with the constant process Hy)

limsup —¢ InEfexp(—g(X®)/e)] = limsup —e inf E[g(X®7) +1/2 |H|%]
e—0 e—0 HeA,
< limsup E[g(X®h0) +1/2 ||ho||Z]
e—0
= g(S(ho)) +1/2 [|hollfy
< g(fo) +1(fo)
< inf{g(f) + ()} +9
The statement now follows from sending & — 0. O
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Chapter A
Appendix

Lemma A.1.
Let a,b,r > 0. Then
(a+b)" <2"(a"4+0") (A1)

Proof: It holds that
(a+b)" <max{(2a)", (2b)"} <2"(a" +b")

which proves the statement. O

Corollary A.2.
Let d € N, a; > 0 for all i € [1,d]y and 7 > 0. Then there exists a C' > 0 such that

(Ed:a) < cgag (A.2)

i=1

A possible choice for the constant is C' = 2/leg2dIr,

Proof: The proof follows by iteratively splitting the sum into two sums with equal amount
of summands and applaying lemma A.1. O

Lemma A.3. Burkholder-Davis-Gundy inequality (BDG-inequality)
Let X[ :=sup,<; || Xs[[2. Then

Vp > 1 Jep,, € VX real local martingale, Xo = 0 V7 stopping time : (A.3)
E[IX]2?] < E[(X7)P] < GE[[X]2/?]

If we additionally require X to be continuous the statement even holds for all p > 0.

Definition A.4. (Hoelder continuity)
Let (X,dx), (Y,dy) be metric spaces. Then a function f: X — Y is called a-Hoelder continu-
ous fora a >0

& A0 > 0Vz, 20 € X i dy (f(21), f(22)) < Cdx(x1,22) (A4)
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Lemma A.5. Holder inequality
Let f € Ly(p), g € Ly(p) real valued where 1 < p,q < oo, 1/p+1/q=1. Then

[1sstdn < ( [1awan)”( [1gan)” (A5)

Definition A.6. (weakly relatively compact)

A family M of probability measures is called weakly relatively compact if and only if for all
sequences in M there exists a weakly convergent subsequence. Weakly convergent means that
for u, — u the respective cumulative distribution functions F;, converge to F' in every point of
continuity of F.

Lemma A.7. Prokhorov Kriterium

Let (E,d) be a metric space, B the respective Borel o-algebra. A family of probability measures
on (E,B) is weakly relatively compact, if it is tight. If in addition (E,B) Polish space, the
conversive statement holds true as well.

Lemma A.8. Portmanteau
Let P,, P be probability measure on the same measureable space which as given in lemma A.7
is of the form (F,B). Then the following statements are equivalent.

(i) P,*B"Pp
(i) ILm fd]P’n:/deP’, f stetig, beschrankt

Remark A.9.
In the original statement there are some more equivalent properties but this one is the only of
interest here for us.

Lemma A.10. extended Minkoski inequality
Let (S1, 1), (S2, 12) be two measure spaces, F': S; x So — R measureable and p > 1. Then

[ /S ( 5 \F(x,y)!dm(x))pduz(y)}l/pg /S ( S, !F(x,y)\pdug(y))l/pd,ul(x) (A.6)

Proof: see also [HLP88, Th. 202]. There it “only” says “dx” as the integrator but as is noted
at the start of the chapter ’Integrals’ this is meant to be read as “du(zx)”.

Theorem A.11. Kolmogorov’s continuity criterion
Let (X¢)iern be a stochastic process taking values in a complete, seperable, metric space (.59, d).
Let o, C,e > 0 such that for all s,t € R”

Eld(Xs, X1)] < Clls — 37

Then there exists a contiuous version of X which is Hoelder contiuous of order 6 for all
6 € (0,¢/al.

Proof: see also [RW00, Chapter I, Theorem 25.2]. O
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