
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Integrated HEX-Algorithms

and Applications in Machine Learning

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Tobias Kaminski, MSc.

Matrikelnummer 01528618

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: O.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Eiter

Zweitbetreuung: Privatdoz. Dipl.-Ing. Dr.techn. Nysret Musliu

Diese Dissertation haben begutachtet:

Assoc. Prof. Dr. Joohyung Lee Prof. Dr. Torsten Schaub

Wien, 21. Oktober 2020

Tobias Kaminski, MSc.

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Integrated HEX-Algorithms

and Applications in Machine Learning

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Tobias Kaminski, MSc.

Registration Number 01528618

to the Faculty of Informatics

at the TU Wien

Advisor: O.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Eiter

Second advisor: Privatdoz. Dipl.-Ing. Dr.techn. Nysret Musliu

The dissertation has been reviewed by:

Assoc. Prof. Dr. Joohyung Lee Prof. Dr. Torsten Schaub

Vienna, 21st October, 2020

Tobias Kaminski, MSc.

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der

Arbeit

Tobias Kaminski, MSc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 21. Oktober 2020

Tobias Kaminski, MSc.

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

Most of all, I am deeply grateful for the guidance and support I received from my
supervisor Thomas Eiter during the entire course of my doctoral studies. Without his
unrelenting help and encouragement, this dissertation would not have been possible. The
dedication and attention he constantly shows his doctoral students is exceptional. It was
always truly impressive how he instantly grasped the core of the different obstacles I
encountered in my research and offered invaluable advice.

I am also indebted to my colleagues and co-authors Christoph Redl and Antonius
Weinzierl, who introduced me to our common research project and guided me with their
experience throughout my doctorate. Antonius devoted a lot of time to introducing me
to our research field and the academic world in general, and Christoph’s expertise on
HEX-programs was an indispensable asset in our joint work.

In addition, I would like to extend my special thanks to Katsumi Inoue for hosting
me twice at the National Institute of Informatics in Tokyo and for a very fruitful and
gratifying collaboration. I also sincerely appreciated the backing from my co-advisor
Nysret Musliu, and the assistance and advice I received from Peter Schüller. Moreover,
I thank the examination committee, and in particular the international examiners, for
their efforts in reviewing my dissertation.

I was extremely fortunate being able to conduct my doctoral studies in the context of
the LogiCS doctoral college, which offers exceptional academic as well as social support
to students, and enabled me to present my work at a number of international conferences.
I am very thankful to the Austrian Science Fund for making this possible and for funding
my doctoral research. Many thanks to the many people who are essential for the smooth
operation of the doctoral college and the institute, in particular Anna Prianichnikova,
Eva Nedoma, Beatrix Buhl and Juliane Auerböck.

It was a unique experience and a great pleasure to work in a large international group
of kind people, which I am very grateful for. Especially, I thank my friends and doctoral
colleagues Adrian, Adrián, Anna, Jan, Marijana, Matthias and Zeynep, for countless
cheerful discussions, lunches, coffee breaks and conference trips together.

Warmest thanks go to my friends Alina, Ilina, Medina, Serge, Sopo and all other
Angels. You made me feel at home in Vienna and you made the journey truly joyful.

Finally, I am extremely grateful to my parents and my sister, who are always there
for me and support me in any new endeavour I embark on.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

Due to current trends in distributed systems and information integration, there is
an increasing need for accessing external information sources from within knowledge
representation formalisms such as answer set programming (ASP). For instance, it might
be necessary to integrate information derived from a (possibly remote) description logics
(DL)-ontology into the computation of an answer set. If the derivation in the ontology is
relative to information in the ASP-part, a bidirectional exchange between a DL-reasoner
and an ASP-solver is required. This kind of interaction is not provided by ordinary ASP,
and pre-computing all possible derivations from the ontology and adding them to the
answer set program is often not feasible. Motivated by this, the hex-formalism has been
developed, where external sources can be referenced in a program, and are evaluated
during solving. The approach is related to SAT modulo theories (SMT), but the focus
is more on techniques for evaluating general external sources represented by arbitrary
computations, i.e. it enables an API-like approach such that a user can define plugins
without expert knowledge on solver construction.

hex-programs are very expressive since the bidirectional exchange of information
between a logic program and external sources encompasses the formalization of non-
monotonic and recursive aggregates. Consequently, hex is suited for a wide range of
applications, but also requires sophisticated evaluation algorithms to deal with the com-
plexity that goes along with the high expressiveness. For this reason, this thesis work
aims at the design and implementation of novel integrated evaluation techniques with the
overall goal to improve the efficiency of the formalism in general, as well as for specific
classes of programs. Challenges regarding efficient evaluation of hex-programs comprise
the lack of a tight integration of the solving process with the evaluation of external
sources and with the grounding procedure. Accordingly, the main focus of this thesis is
the design of advanced reasoning techniques that improve the evaluation of hex-programs
by tightly integrating processes which have so far been treated as mostly independent
sub-problems. Moreover, all newly developed hex-algorithms have been implemented in
the state-of-the-art hex-solver, and their performance has been empirically evaluated
using a rich benchmark suite.

Another focus of this thesis is on new applications, which leverage the expressiveness
of the hex-formalism and capabilities of its solvers, and in turn, push the advancement of
the formalism. In this context, two innovative applications of hex-programs that utilize
external atoms for integrating as well as realizing methods from the area of machine
learning are developed.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Aufgrund aktueller Trends in Bezug auf verteilte Systeme und Informationsintegration
besteht ein zunehmender Bedarf an Zugriff auf externe Informationsquellen innerhalb von
Wissensrepräsentationsformalismen wie Antwortmengenprogrammierung (ASP). Beispiels-
weise kann es erforderlich sein, Informationen, die aus einer (möglicherweise entfernten)
Description Logics (DL)-Ontologie stammen, in die Berechnung einer Antwortmenge zu
integrieren. Wenn die Ableitung in der Ontologie von Informationen im ASP-Teil abhängt,
ist ein bidirektionaler Austausch zwischen einem DL-Reasoner und einem ASP-Solver
erforderlich. Diese Art der Interaktion wird von gewöhnlichem ASP nicht bereitgestellt,
und es besteht oft nicht die Möglichkeit, alle potenziellen Ableitungen aus der Ontologie
vorab zu berechnen und sie dem Antwortmengenprogramm hinzuzufügen. Aus diesem
Grund wurde der hex-Formalismus entwickelt, bei dem externe Quellen in einem Pro-
gramm referenziert und bei der Berechnung einer Antwortmenge ausgewertet werden
können. Der Ansatz ist mit SAT-Modulo-Theories (SMT) verwandt, der Schwerpunkt
liegt jedoch eher auf Techniken zur Auswertung allgemeiner externer Quellen, die belie-
bige Berechnungen ausführen können, d.h. er ermöglicht einen API-ähnlichen Zugang
zu externen Berechnungsquellen, so dass ein Benutzer Plugins erstellen kann ohne über
Expertenwissen im Bereich der Solver-Konstruktion zu verfügen.

hex-Programme sind sehr ausdrucksstark, da der bidirektionale Informationsaustausch
zwischen einem Logikprogramm und externen Quellen die Formalisierung nichtmonotoner
und rekursiver Aggregate umfasst. Folglich ist hex für eine Vielzahl von Anwendungen
geeignet, erfordert jedoch auch ausgefeilte Auswertungsalgorithmen, um die Komplexität
zu bewältigen, die mit der hohen Ausdrucksstärke einhergeht. Aus diesem Grund zielt
diese Doktorarbeit auf die Konzeption und Implementierung neuartiger integrierter Be-
rechnungstechniken mit dem Ziel der Verbesserung der Effizienz des hex-Formalismus
im Allgemeinen sowie für bestimmte Klassen von Programmen. Zu den Herausforde-
rungen bei der effizienten Auswertung von hex-Programmen gehört das Fehlen einer
engen Integration des Berechnungsprozesses mit der Auswertung externer Quellen so-
wie mit dem Grundierungsverfahren. Dementsprechend liegt der Schwerpunkt dieser
Arbeit auf dem Entwurf fortschrittlicher Berechnungstechniken, die die Auswertung
von hex-Programmen verbessern, indem Prozesse eng integriert werden, die bisher als
größtenteils unabhängige Unterprobleme behandelt wurden. Darüber hinaus wurden
alle neu entwickelten hex-Algorithmen in den hex-Solver dlvhex integriert und ihre
Leistung mithilfe von umfangreichen Experimenten empirisch ausgewertet.

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Ein weiterer Schwerpunkt dieser Arbeit liegt auf neuen Anwendungen, die die Aus-
druckskraft des hex-Formalismus und die Fähigkeiten seiner Berechnungssysteme nutzen
und wiederum die Weiterentwicklung des Formalismus vorantreiben. In diesem Zusam-
menhang werden zwei innovative Anwendungen von hex-Programmen entwickelt, welche
externe Atome verwenden um Methoden aus dem Bereich maschinelles Lernen zu inte-
grieren bzw. zu realisieren.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Abstract ix

Kurzfassung xi

Contents xiii

1 Introduction 1
1.1 Motivation . 2
1.2 State of the Art . 4

1.2.1 External Sources in Declarative Problem Solving 4
1.2.2 Evaluation Techniques of HEX-Solvers 6
1.2.3 Applications of HEX-Programs . 10

1.3 Goals of the Research . 12
1.4 Contributions and Outline . 13
1.5 Evolution of This Work and Relevant Publications 15

2 Preliminaries 17
2.1 Answer Set Programs . 17
2.2 HEX-Programs . 19

2.2.1 Syntax . 20
2.2.2 Semantics . 21

2.3 Evaluation of HEX-Programs . 23
2.4 External Minimality Check . 24

I Integrated Algorithms for HEX-Program Evaluation 27

3 Integration of Solving and External Evaluation 29
3.1 Extension to Partial Assignments . 31
3.2 HEX-Algorithm Based on Partial Assignments 34
3.3 Nogood Learning with Partial Assignments 36

3.3.1 Three-Valued Learning Functions 37
3.3.2 Exploiting External Source Properties 38

3.4 Nogood Minimization . 39

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4.1 Sequential Nogood Minimization 41

3.4.2 Divide-and-Conquer Strategy for Nogood Minimization 43

3.5 Empirical Evaluation . 45

3.5.1 Experimental Setup . 45

3.5.2 Hypotheses . 47

3.5.3 Experiments on Partial Evaluation and Nogood Minimization . 48

3.5.4 Discussion of Results . 56

3.6 Related Work . 57

3.7 Conclusion and Outlook . 59

4 Integration of Minimality Checking and External Evaluation 61

4.1 Interleaving External Evaluation and Unfounded Set Search 63

4.1.1 Background on Unfounded Set Search 64

4.1.2 Integrated Algorithm for Unfounded Set Detection 64

4.1.3 Properties of the Algorithm . 67

4.2 Skipping the Minimality Check Based on Semantic Dependencies . . . 70

4.2.1 Dependency Graph Pruning . 70

4.2.2 Properties of Faithful Io-Dependencies 77

4.3 Empirical Evaluation . 82

4.3.1 Experimental Setup . 82

4.3.2 Hypotheses . 84

4.3.3 Experiments on Partial Evaluation for Minimality Checking . . 85

4.3.4 Experiments on Minimality Check Skipping 90

4.3.5 Discussion of Results . 93

4.4 Related Work . 94

4.5 Conclusion and Outlook . 95

5 Integration of Grounding and Solving 97

5.1 Evaluation of External Sources Based on Partial Groundings 99

5.1.1 Safety Condition . 100

5.1.2 Relevant Grounding . 103

5.2 Lazy-Grounding HEX-Evaluation Algorithm 106

5.2.1 Program Transformation and External Source Interface 106

5.2.2 HEX-Algorithm Based on Lazy Grounding 108

5.3 Empirical Evaluation . 110

5.3.1 Experimental Setup . 110

5.3.2 Hypotheses . 112

5.3.3 Experiments on Lazy-Grounding HEX-Evaluation 112

5.3.4 Discussion of Results . 115

5.4 Related Work . 116

5.5 Conclusion and Outlook . 117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

II Applications of HEX-Programs in Machine Learning 119

6 Meta-Interpretive Learning 121
6.1 Background on Meta-Interpretive Learning 123
6.2 HEX-Encodings for Meta-Interpretive Learning 124

6.2.1 General HEX-MIL-Encoding 125
6.2.2 Forward-Chained HEX-MIL-Encoding 128
6.2.3 Top-Down HEX-MIL-Encoding 132

6.3 State Abstraction . 136
6.4 Empirical Evaluation . 141

6.4.1 Experimental Setup . 141
6.4.2 Hypotheses . 141
6.4.3 Experiments on Meta-Interpretive Learning 142
6.4.4 Discussion of Results . 148

6.5 Further Discussion . 149
6.5.1 Meta-Rules . 149
6.5.2 Limitations of State Abstraction 150

6.6 Related Work . 152
6.7 Conclusion and Outlook . 152

7 Hybrid Classification 155
7.1 Background on LP MLN . 157
7.2 LP MLN -Encoding for Hybrid Classification 159
7.3 HEX-Program for Computing HC-Solutions 164
7.4 Hybrid Classifier Construction . 165
7.5 Empirical Evaluation . 167

7.5.1 Experimental Setup . 167
7.5.2 Hypotheses . 168
7.5.3 Experiments on Hybrid Classification 168
7.5.4 Discussion of Results . 169

7.6 Related Work . 171
7.7 Conclusion and Outlook . 173

8 Conclusion 175

8.1 Summary . 175

8.2 Future Work . 176

Bibliography 179

A Proofs 193

A.1 Proofs for Complexity Results from Section 4.2 193

A.2 Proofs for Soundness and Completeness of Algorithm 5.1 195

B HEX-MIL-Encodings 207

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

Answer set programming (ASP) is a well-known declarative programming approach based
on the stable-model semantics (Gelfond & Lifschitz, 1991). Thanks to efficient and
expressive systems like clasp (Gebser, Kaufmann, et al., 2011), smodels (Simons et
al., 2002), DLV (Leone et al., 2006), and wasp (Alviano, Dodaro, et al., 2015), it has
been successfully applied to a wide range of applications in artificial intelligence and
beyond (Brewka et al., 2011; Erdem et al., 2016). In a nutshell, a problem at hand is
represented by a set of rules (an ASP-program) such that its models, called answer sets,
encode the solutions to the problem; an answer set solver is used to compute models,
from which the solutions are then extracted. The approach is a relative of SAT-solving,
but in contrast, starts from a relational language where variables range over a (finite) set
of constants, which allows for more compact formalization than in propositional logic.
Furthermore, the support of negation as failure makes ASP inherently nonmonotonic,
which allows one for instance to easily express transitive closure. Finally, a number of
language extensions that include, among others, optimization constructs, aggregates,
disjunctions, and choice rules (cf. Gebser & Schaub, 2016) have turned ASP into a very
expressive and powerful problem solving tool.

hex-programs (Eiter et al., 2008; Eiter, Kaminski, Redl, et al., 2017) are an extension
of ASP-programs aimed at the integration of heterogeneous external information sources,
such as XML/RDF data bases, SAT-solvers, route planners etc. So-called external
atoms can be used in rules and provide a bidirectional interface between the logic
program and the external sources in an API-style manner. To this end, an external
atom states an input-output relationship; it passes information from the program, given
by predicate extensions and constants, to an external source, which returns the output
values for the respective input. The external atom then evaluates to either true or
false for each output value. For example, an external atom &synonym[car](X) might
find synonyms X of car , e.g. automobile, bus, motorcar etc., by accessing a thesaurus
such as the one of Merriam-Webster (Merriam-Webster Website, 2018); that is, e.g.
&synonym[car](automobile) evaluates to true. As seen from this example, external

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

extractHEX-
Program

HEX-
Solver

encodeProblem Solution(s)

External Sources

HEX-
Grounder

Minimality
Check

Figure 1.1: Traditional evaluation of hex-programs

sources can be of non-logical nature, and without particular assumption about how the
external source is evaluated. This is facilitated by an abstract modeling of external atoms
that can exhibit nonmonotonic behavior, be used in recursive and cyclic definitions, and
introduce new constants which do not appear in the original program (known as value
invention). This rich expressiveness empowers hex-programs to subsume many other
ASP-extensions such as programs with (nonmonotonic) aggregates (Alviano, Faber, &
Gebser, 2015), constraint ASP (Ostrowski & Schaub, 2012), and DL-programs (Eiter,
Lukasiewicz, Schindlauer, & Tompits, 2004), to mention a few; furthermore, the versatility
and genericity of external atoms has been exploited for different purposes and application
domains (cf. Erdem, Gelfond, and Leone (2016) and Eiter, Kaminski, Redl, et al. (2017)).

1.1 Motivation

Due to the complexity that goes along with the high expressiveness of hex-programs,
advanced reasoning algorithms are required for hex-evaluation. These algorithms need to
take external sources into account during all phases of the solving process. hex-evaluation
is, like ordinary ASP-solving, performed in different phases, where besides the common
separation into a grounding phase, i.e. the instantiation of variables in a program, and a
solving phase, i.e. the search for answer sets, additional procedures are required to cater
for the integration of external sources. These comprise the evaluation of external sources
and a special minimality check which is necessary due to the presence of external atoms.
The traditional approach of hex-evaluation is illustrated in Figure 1.1, where a problem
is encoded by means of a hex-program, which is sequentially processed by the grounder,
the solver, and a module that eliminates non-minimal solutions. The solutions of the
original problem can then be extracted from the resulting answer sets. At this, diverse
external sources can be referenced in the hex-program, and need to be queried at each
evaluation stage.

In recent years, many sophisticated methods have been developed that aim at different
sub-processes of hex-evaluation, e.g. elaborate approaches for grounding (Eiter, Fink,
Krennwallner, & Redl, 2016) and modular program decomposition (Eiter, Fink, Ianni, et
al., 2016), as well as the integration of modern solving techniques (Eiter et al., 2012).
However, these techniques focus mainly on specific sub-tasks that have, until now, only

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.1. Motivation

extractencodeProblem Solution(s)

External

Evaluation

HEX-

Grounding

HEX-

Solving

Minimality

Check

HEX-
Program

Figure 1.2: Integrated evaluation of hex-programs

been remotely interleaved. Accordingly, previous hex-algorithms lack a global view of
the overall problem and do not achieve an optimal coupling of sub-processes, which so
far have been mostly considered independently. In practice, this leads to unsatisfactory
performance for different classes of programs and concrete use cases. Moreover, previous
approaches considered external atoms to be largely black boxes, such that new interfaces
to external sources that realize a clear box approach are essential to accomplish a tight
coupling of the different evaluation processes. For the latter, it is e.g. necessary to query
external sources with input information that is only partially available and to dispose
of approximations of the external source semantics that are as precise as possible. At
the same time, representing the exact semantics of external sources directly in the solver
would defy the goal of computation outsourcing.

Accordingly, the main motivation for our work is the fact that there is still much
room for unleashing untapped potential of the hex-formalism by devising integrated
hex-algorithms. Figure 1.2 depicts the envisaged picture of hex-evaluation, where all
sub-processes are tightly coupled and their execution is interleaved with the evaluation
of external sources; this way, external computations can effectively steer evaluation. Con-
siderable improvements w.r.t. the efficiency of state-of-the-art hex-solvers are expected
by overcoming previous limitations emerging from the separation of evaluation processes.
This is particularly important as the development of ASP has already shown that the
ASP-paradigm became popular in practice only with the emergence of efficient solvers.
Consequently, efficient algorithms and implementations are crucial for the success of
formalisms such as hex.

A further motivation for improving the core mechanisms of hex-solvers is that newly
developed techniques employed internally can to a large extent be hidden from users;
and the simple yet flexible syntax of hex can be maintained. As a result, performance
improvements can directly be leveraged by users without expert knowledge on solver
construction or advanced encoding techniques. This is in line with the goal of hex to
realize an API-like approach and to provide convenient means for incorporating general
external sources, such that a user can easily define new plugins.

Besides efficient algorithms, a powerful formalism requires innovative applications that

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

leverage the provided techniques, and in turn push its advancement. For this reason, we
additionally identify novel application areas for the hex-formalism, which can drive the
development of new evaluation methods. Even though hex-programs are well-suited for
combining diverse forms of reasoning, and many hex-applications have been developed
in the past (cf. Section 1.2.3), mostly use cases from the area of knowledge representation
and reasoning (KRR) have been considered. Hence, there is a lack of applications that
fully leverage the flexibility of hex to combine KRR-related use cases with formalisms
from other areas such as machine learning. In this thesis, we investigate such new types
of applications since new limits of the hex-formalism that can be addressed by future
research are likely to be recognized during their design.

Finally, many techniques which are developed in the context of hex are also relevant
for related areas such as SAT modulo theories and ASP-solving and therefore, new
techniques developed for hex are potentially useful for these approaches as well.

1.2 State of the Art

In this section, which contains parts from (Eiter, Kaminski, Redl, Schüller, & Weinzierl,
2017), we discuss the state of the art regarding formalisms for integrating external
sources into declarative problem solving, program evaluation inside the hex-formalism
and hex-applications.

1.2.1 External Sources in Declarative Problem Solving

Because there are many scenarios where it is more natural, and often more efficient, to
outsource some information or computation in the context of declarative problem solving,
a number of approaches have been developed for this purpose, realizing different degrees
of integration.

Motivated by the need for the integration of data in commercial relational databases,
extensions of DLV have been developed that allow to access external data. The dlvDB

system (Terracina, Leone, Lio, & Panetta, 2008; Terracina, Francesco, Panetta, & Leone,
2008) offers via an ODBC-interface access to dispersed relational databases, where both
direct (remote) execution of possibly recursive queries on databases and main memory
execution (after loading the databases) are supported. The ontodlv system (Ricca et
al., 2009), allows the user to retrieve information from OWL-ontologies, which can be
utilized in a genuine ontology representation language that extends ASP with features
such as classes, inheritance, relations and axioms.

dlv-ex programs (Calimeri, Cozza, & Ianni, 2007) represent an early generic inte-
gration approach, which enables bidirectional communication with an external source,
and allows the introduction of new terms by value invention into an answer set program.
However, the interaction is more restricted than in the case of hex since only terms
can be used as inputs to external sources and thus, e.g., recursive aggregates cannot be
expressed in this formalism.

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. State of the Art

The clingo-system also provides a mechanism for importing the extension of user-
defined predicates (Gebser, Kaminski, Kaufmann, & Schaub, 2014) via special atoms
similar to dlv-ex, but they are different from external atoms in hex in that their
evaluation is not interleaved with the solving process. For this, gringo supports custom
functions (implemented in the scripting languages Lua or Python) which are evaluated
during the program grounding and thus compiled away prior to the solving step. They
are intended to be used as customizable built-in atoms, but no cyclic dependencies are
possible.

Recently, clingo 5 has been released (Gebser et al., 2016), which provides rich generic
interfaces for integrating theory solving into ASP. A main difference between ASP modulo
theories solving in clingo 5 and the hex-framework consists in the fact that unfounded
support over theory atoms is allowed by the semantics defined for clingo, which would
violate the minimality criterion of hex. Consequently, a more sophisticated minimality
check has to be applied during the evaluation of hex-programs, lifting the computational
complexity of the formalism.1

Moreover, even though the clingo-system moves into a similar direction as hex

by facilitating the integration of external reasoners, the perspectives taken by the two
systems are different, and their roles can be viewed as somewhat orthogonal.

While theory atoms are interrelated via an external theory in clingo, where the
consistency of their truth assignments is usually checked during theory propagation,
the truth values of external atoms in hex depend on the evaluation of ordinary atoms
representing their input. Thus, the focus of the hex-approach is more on input-output
relations over external atoms, which are easy to understand from a user’s perspective
and can be used to call external sources in an API-like fashion.

As a result, external atoms have a number of distinguishing features, which are
tailored to their specific role in the hex-framework. For instance, the possibility to
declare additional properties of external source that can be exploited for solving (cf. Redl,
2016) constitutes a user-friendly high-level interface for steering the external evaluation
process, which has to be implemented manually for each theory in clingo’s propagation
methods.

The input-output structure of external atoms facilitates the introduction of constants
by value invention relying on the liberal safety condition for hex-programs (Eiter, Fink,
Krennwallner, & Redl, 2016), which is of special interest for applications in the area of
the semantic web. There is no comparable mechanism for value invention in clingo 5 as
new values cannot be imported based on a respective answer set, and theory solving is
performed w.r.t. the pre-grounded program.

On the other side, clingo 5 is well-suited for system development and offers a powerful
framework for solver building, by providing a comprehensive and rich infrastructure at
the low technical levels for integrating theory reasoning into clingo, which is accessible
through an interface. This novel interface will be exploited in future versions of the

1Deciding the existence of an answer set of a ground hex program in the presence of nonmonotonic
external atoms that are decidable in polynomial time is Σp

2-complete already for Horn programs (Eiter,
Fink, Krennwallner, Redl, & Schüller, 2014).

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

main hex-solver dlvhex, which benefits a lot from the clingo advances, and clingo 5
constitutes the foundation of the more recent and lightweight hex-solver hexlite (Schüller,
2019).

Besides clingo, the wasp-solver has recently been extended with support for general
external Python propagators (Dodaro, Ricca, & Schüller, 2016). Furthermore there
are extensions of ASP towards the integration of specific external sources. Examples
are constraint ASP as an integration of ASP with constraint programming as realized
e.g. in clingcon (Ostrowski & Schaub, 2012) lc2casp (Cabalar, Kaminski, Ostrowski,
& Schaub, 2016), ezcsp (Balduccini, 2009), and EZSMT (Susman & Lierler, 2016).
The latter is like mingo (Liu, Janhunen, & Niemelä, 2012) an SMT-based solver for
constraint ASP; other formalisms that extend ASP with SMT are dingo (Janhunen, Liu,
& Niemelä, 2011), which uses difference logic, and ASPMT (Lee & Meng, 2013). For an
overview of systems that combine ASP with constraint solving and other theories, we
refer to (Lierler, Maratea, & Ricca, 2016).

Similar to SMT (Nieuwenhuis, Oliveras, & Tinelli, 2006), where usually only specific
theories are considered, the mentioned approaches rely on a tailored integration of an
external solver and hence, can easily leverage the propagation capabilities of the respective
solver. The aim of the hex-formalism differs in that it strives to enable a broad range of
users to implement custom external sources and to harness efficient solving techniques
for hex-programs. Moreover, clingcon and approaches in SMT usually only consider
monotonic external theories, which facilitates the integration of their evaluation into the
respective solving algorithm. In contrast, hex allows for the integration of arbitrary
external sources through a general interface and their flexible combination; the other use
cases correspond to special cases thereof.

1.2.2 Evaluation Techniques of HEX-Solvers

There are two state-of-the-art systems for evaluating hex-programs, the dlvhex-system2

(Redl, 2016), and the more recent lightweight hexlite-solver3 (Schüller, 2019). Both
solvers are available for Linux, macOS and Windows, and external sources are realized
by Python-plugins, whereby dlvhex also supports sources implemented in C++. While
hexlite handles a fragment of the hex-language and delegates as much work as possible
to its backend solver clingo for reasons of efficiency and simplicity, dlvhex is fully
featured and implements all techniques for hex-solving that have been developed in
the literature, e.g. in (Eiter, Fink, Ianni, et al., 2016; Eiter et al., 2012; Eiter, Fink,
Krennwallner, et al., 2014; Eiter, Fink, Krennwallner, & Redl, 2016). Since hexlite only
implements part of the methods available for hex-program evaluation, in this section,
we focus on the state-of-the-art evaluation techniques that have been incorporated into
dlvhex and discuss how they are integrated into the solver architecture, following Redl
(2014).

2http://www.kr.tuwien.ac.at/research/systems/dlvhex
3https://github.com/hexhex/hexlite

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://www.kr.tuwien.ac.at/research/systems/dlvhex
https://github.com/hexhex/hexlite

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. State of the Art

hex-
Program

Evaluation
Framework

Answer
Sets

Model
Generators

ASP-Solver

ASP-
Grounder

hex-
Grounder

Post
Propagator

UFS-
Checker

SAT-Solver

Plugins

dlvhex core

1

2

3

4

5

6

7

8

9 10

11

12

Figure 1.3: Architecture of the dlvhex-solver (adopted from Redl (2014))

Initially, the dlvhex-system focused on semantic web applications (Eiter et al.,
2008). Early versions of dlvhex were based on DLV (Leone et al., 2006) and extended it
with higher-order and external atoms, where the name hex stems from. Higher-order
atoms allow for using variables in place of a predicate symbol, such as in the rule
C(X)← subClassOf (D, C), D(X), to model a general subclass relation; while they are
still supported, they were less emphasized in later versions as they can be compiled away.

In a nutshell, the traditional hex-algorithm based on DLV translates the hex-program
into an ordinary ASP-program which guesses the values of external atoms (disregarding
the actual semantics), evaluates this ASP-program using DLV, and performs for each
answer set a post-check to ensure that the guesses are correct. As this approach did
not scale to real applications, the evaluation algorithms were improved over time, which
required a tighter integration with the backend (such as separate access to the grounding
and the solving component of the backend, a callback interface, etc). In context of these
improvements, the default backend was replaced by gringo and clasp from the Potassco
suite (Gebser, Kaufmann, et al., 2011); the original system name dlvhex was kept as it
stands for Datalog with disjunctions, higher-order and external atoms.

The system architecture as presented by Redl (2014) is shown in Figure 1.3, where
arcs depict control flow (with the numbers showing the execution stages) as well as data
flow. The sub-processes executed during hex-solving can roughly be divided into four
groups, which we discuss in turn now.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

Program Decomposition

After the input hex-program has been read, it is passed to an evaluation framework
(stage 1©), which can decompose the non-ground program into evaluation units, using
an acyclic evaluation graph based on dependencies between program rules. The main
advantage of the program decomposition technique developed by Eiter, Fink, Ianni, et al.
(2016) consists in the fact that the resulting smaller program units can be grounded and
evaluated independently. This often significantly decreases the size of the grounding, and
since components are solved separately, guesses for the evaluation of external atoms can
be checked already after computing a model candidate for a single unit. The performance
improvements achieved by modular decomposition have, for instance, been shown to be
essential for the realization of an application for Multi-Context Systems (Schüller, 2012)
in the hex-formalism.

Subsequent to decomposing the input program, each individual unit is processed by
a model generator instance (stage 2©). The answer sets of leaf components, i.e. units
without predecessors, are computed first. The model generators for successor units then
receive as input interpretations the outputs from predecessor units, which are constituted
by the answer sets of the respective sub-programs. All output interpretations generated
by the model generators are sent back to the evaluation framework (cf. Figure 1.3), which
integrates them into the final answer sets (stage 12©).

Grounding

When processing an evaluation unit, the model generator forwards the corresponding
non-ground hex-program to the hex-grounder, from which it receives a ground pro-
gram back (stage 3©). The hex-grounder utilizes an ordinary ASP-grounder such as
gringo(stage 4©), which is called repeatedly to handle value invention and interfaces the
external sources (stage 5©) in order to retrieve new terms that need to be considered for
producing the ground hex-program. Finally, the ground hex-program is handed back to
the model generator.

Instead of importing the full domain from external sources, i.e. all possible output
values of external atoms, the ground hex-program is enlarged incrementally until all
relevant terms have been considered (Eiter, Fink, Krennwallner, & Redl, 2016). In general,
this process may not terminate for hex-programs that do not have a finite grounding,
such that some safety notion needs to be imposed that ensures finite groundability. While
strong domain-expansion safety (Eiter et al., 2006) has been employed traditionally, which
does not allow the introduction of new values by external atoms that possibly depend on
their own outputs, new safety criteria that combine syntactic and semantic conditions
have been introduced by Eiter, Fink, Krennwallner, and Redl (2016). The according
criterion of liberal domain-expansion safety can be checked efficiently and relaxes the
syntactic restrictions that need to be observed when writing a hex-program. This has,
for the first time, enabled applications that use existential quantification to introduce
new values (Eiter et al., 2013) or recursively process data structures (e.g. a map for route
planning).

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. State of the Art

Solving

Following the grounding step, the obtained propositional hex-program is transformed
into an ordinary ASP-program by replacing external atoms by fresh ordinary atoms, and
by adding guesses for their evaluation. The resulting ordinary ASP-program is then sent
to an ordinary ASP-solver (stage 6©). A crucial step for improving the efficiency of hex-
solving consisted in its integration with conflict-driven nogood learning (CDNL) (Eiter et
al., 2012), as implemented e.g. by clasp (Gebser, Kaufmann, & Schaub, 2012). For this,
the input program is translated into a set of nogoods, i.e., a set of literals that must not
all be true simultaneously in a solution. Based on this representation, techniques from
SAT-solving, such as unit propagation and conflict learning (Marques-Silva, Lynce, &
Malik, 2009), are applied to find an assignment which satisfies all nogoods.

By integrating CDNL-search into the hex-algorithm, the input-output relations
learned from external source evaluations regarding the guesses for external atoms can be
learned in form of nogoods to avoid wrong guesses in the future search. Learning of these
input-output nogoods significantly reduces the number of model candidates that need to
be checked. Moreover, known properties of external sources can be exploited for learning,
e.g. more general nogoods can be obtained for sources of which the output monotonically
depends on the input since information about false input atoms is redundant in this case.
Using such properties can have a large effect, e.g. when interfacing a DL-ontology in
which reasoning is monotonic (Eiter et al., 2004).

In the dlvhex-system, this is realized by means of solver callbacks to the post-
propagator (stage 7©) w.r.t. complete as well as partial models. The post propagator
performs checks to eliminate spurious answer set candidates, which requires calls to the
external sources. At this, the truth value assignments of input atoms are provided to
the associated plugin (stage 9©), which returns the truth value of the respective ground
external atom (i.e. for a particular output value); nogoods that encode the information
gained from these external evaluations are returned to the post-propagator and sent to
the solver.

Minimality Checking

In addition, the post-propagator calls the unfounded set checker (UFS-checker) with the
respective (complete or partial) model. The UFS-checker ensures that models satisfy
the usual minimality condition of ASP extended to hex-programs, by ensuring that
they do not contain atoms that only circularly support each other (i.e. do not contain a
so-called unfounded set). At this, the ordinary ASP-solver already performs a minimality
check w.r.t. the ordinary ASP-program obtained by replacing external atoms. However,
since the semantics of external sources are hidden from the ASP-solver, it cannot ensure
minimality of answer sets in all cases, i.e. it cannot detect cyclic justifications involving
external atoms.

The search for unfounded sets can be encoded as a SAT-problem and handed to
a SAT-solver (stage 11©), which is significantly more efficient than a direct check and
constitutes the state-of-the-art procedure for checking minimality of answer sets in hex

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

(Eiter, Fink, Krennwallner, et al., 2014). For this, a SAT-instance w.r.t. a candidate
answer set and the according values of external atoms is constructed, such that its
models represent unfounded sets. During model search, the SAT-solver needs to access
the plugins (stage 10©) in order to take the external source semantics into account; and
nogoods can be returned that are learned from detected unfounded sets (stage 8©). This
way, it can be assured that correct answer sets are returned to the model generators
(stage 6©).

Moreover, a decision criterion has been developed on the basis of cyclic dependencies
over external atoms that allows skipping the final minimality check in many cases. Eiter,
Fink, Krennwallner, et al. (2014) showed that by constructing a particular dependency
graph for a program, the check can also be skipped for subcomponents of a program,
allowing a more targeted use of the costly search for unfounded sets.

1.2.3 Applications of HEX-Programs

The hex-formalism has been applied to a wide range of use cases. Here, we provide an
overview over a number of state-of-the-art hex-applications, covering concrete application
scenarios where external atoms are used in a problem encoding, as well as additional
language features required by advanced applications which cannot be realized easily in
ordinary ASP. hex-programs can also be used as a backend for realizing formalisms that
do not resemble hex, by using appropriate translations.

One of the early applications of the hex-formalism consisted in combining description
logics (DL)-ontologies and ASP in the form of so-called DL-programs, developed by Eiter
et al. (2008). DL-ontologies constitute a logical formalism that is used to model classes
of objects and their relations, and enables reasoning tasks such as retrieving all objects
that belong to a specific class from a data store while taking class relations into account.
DL-ontologies are widely used in the area of the semantic web (Heflin & Munoz-Avila,
2002), and they have also been fruitfully employed for medical applications (Hoehndorf
et al., 2007). Special DL-atoms can be utilized in DL-programs, which are based on
external atoms of hex and enable a bi-directional interaction with a DL-ontology. This
way, default reasoning can be performed on top of DL-ontologies (Dao-Tran et al.,
2009). DL-programs have been used, e.g., for complaint management in an e-government
application (Zirtiloglu & Yolum, 2008).

hex-programs with functions symbols have been devised by Calimeri et al. (2007)
to facilitate the usage of uninterpreted functions in hex. At this, external atoms are
used for the composition and decomposition of function terms, exploiting the capability
of hex-programs to introduce new invented values from an external source. This way,
function terms can be emulated while, for instance, their nesting depths can be controlled
by the external source.

hex∃-programs (Eiter et al., 2013) also leverage the possibility of value invention in
hex-programs, in this case to realize existential quantification in rule heads, which is not
provided by standard ASP. While this is related to the formalism Datalog± (Calì, Gottlob,
& Pieris, 2012), hex∃-programs also allow domain-specific existential quantification where
external atoms can be utilized to control the structure of invented values.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. State of the Art

Nested hex-programs (Redl, Eiter, & Krennwallner, 2011; Eiter, Krennwallner, &
Redl, 2011) are able to query other hex-programs for their answer sets, for which
dedicated external atoms have been implemented. As a result, e.g. a library of hex-
programs for problems that are common in ASP such as graph problems can be created,
which can be utilized by other hex-programs.

An application of hex in the area of route planning has been considered by Eiter,
Fink, Krennwallner, and Redl (2016), where hex-programs are utilized to integrate
side constraints into route planning tasks with multiple stops. An external atom is
used to compute the shortest connections between locations. Side constraints constitute
additional semantic conditions, e.g. that some pharmacy should be on the route. The
more complex task of pair route planning has also been encoded by means of a hex-
program, where routes for two persons are computed simultaneously, with the further
constraint that the two routes need to intersect at some point (Eiter, Fink, Krennwallner,
& Redl, 2016).

Constraint hex-programs (Rosis, Eiter, Redl, & Ricca, n.d.) integrate constraint
ASP (CASP) (Mellarkod, Gelfond, & Zhang, 2008; Lierler, 2014) and hex-programs.
In contrast to implementing constraints as used in constraint programming (Apt, 2003)
directly in an ASP-encoding, the CASP-approach has the advantage that grounding issues
due to large constraint domains can be avoided by leveraging a dedicated constraint
solver. Unlike other CASP-systems such as clingcon (Ostrowski & Schaub, 2012),
constraint hex-programs also allow to combine an external constraint solver with other
background theories. At this, constraints are represented by special constraint atoms
(usually inequalities over arithmetic expressions) in a hex-program; and are handed via
an external atom to an external constraint solver, which checks consistency.

The ACTHEX-framework developed by Basol et al. (2010) allows to execute scheduled
actions in an external environment declared by so-called action atoms in rule heads.
For this, an ACTHEX-program is called repeatedly with evolving sensor information
from the environment in which it is executed. By this, ACTHEX-programs are able
to connect decisions made in an ASP-program to actual effects in (an abstraction of)
the real world outside the program. The framework has e.g. been used to implement
the action language C (Giunchiglia et al., 2004), and to enable the interaction of an
ACTHEX-program with an IMAP-server for executing operations on emails in a mailbox.

Finally, the AngryHEX agent (Calimeri et al., 2016) is able to play the physics-
based computer game Angry Birds and participates in the annual AIBirds Competition4.
As the agent is implemented in the hex-formalism, it is able to combine logic-based
reasoning and planning with geometric computations and simulations of action effects,
e.g. for simulating the trajectories of shots and the resulting damage to obstacles. Due
to the need for applying statistics and physics (e.g. for taking gravity into account)
during simulation, ordinary ASP alone is ill-suited for realizing this combination. While
planning is preformed by the ASP-part, low-level computations involving floating point
numbers can conveniently be outsourced by employing different external atoms of the
hex-formalism for different types of low-level computations.

4https://aibirds.org

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://aibirds.org

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

1.3 Goals of the Research

The overall goal of this thesis is to increase the efficiency of hex-program evaluation
by developing integrated hex-algorithms in order to promote the practical applicability
of hex. The main focus regarding efficient evaluation in the hex-formalism concerns
interleaving the grounding of programs that interface external sources (which may extend
the Herbrand universe of the program by value invention) and the solving process; as well
as integrating the search procedures applied during solving and minimality checking with
the evaluation of external sources. Moreover, we strive to develop innovative applications
of hex-programs that utilize external atoms for integrating as well as realizing methods
from the area of machine learning.

Accordingly, and in more detail, we aim to investigate and answer the following
research questions:

(RQ1) How can the search employed during hex-evaluation be interleaved with the
evaluation of external sources, and does a tighter integration of the respective
processes lead to more effective search space pruning in practice?

Our goal is to enable external evaluations based on partial input assignments to
enable theory propagation, using ideas from SAT modulo theories (Barrett et al.,
2009) and nogood minimization similar to Ostrowski and Schaub (2012).

(RQ2) In which manner can a closer approximation of the external source behavior be
integrated into existing hex-algorithms to improve the efficiency of the expensive
external minimality check?

The idea is to exploit additional semantic information declared for external sources
to allow skipping of the minimality check more frequently than previously possible
(Eiter, Fink, Krennwallner, et al., 2014).

(RQ3) Is it possible to avoid the well-known grounding bottleneck of ASP during hex-
evaluation by interleaving the grounding with the solving process as well as with
external source evaluation?

To investigate this question, our aim is to design a novel hex-algorithm based
on techniques from lazy grounding (Taupe et al., 2019), and to integrate a lazy-
grounding ASP-solver as backend into the dlvhex-system.

(RQ4) Can the hex-formalism be profitably applied to problems that require the
integration of sub-symbolic methods, and in general for use cases from the field of
machine learning?

To address this research question, two novel hex-applications are developed that
leverage the expressiveness of hex and employ the formalism in machine learning
in different ways.

Finally, an additional goal of this research is to implement all newly developed
evaluation algorithms in the hex-program solver dlvhex, and to investigate their

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.4. Contributions and Outline

performance using benchmark problems. This is also essential in order to be able to
adequately answer the above research questions.

1.4 Contributions and Outline

After introducing preliminaries on ASP, hex-programs, and hex-evaluation in Chapter 2,
which provide the formal context for subsequent chapters, we present our work on novel
algorithms for hex-evaluation in Part I of this thesis. As the main goal of this work
is to integrate different parts of hex-evaluation, we consider each of the three main
sub-processes of hex-evaluation in turn, and develop new hex-algorithms that tightly
integrate them with external evaluation as well as with other sub-processes.

• In Chapter 3, we start by considering the integration of the main search procedure
employed during hex-solving with the evaluation of external sources. A drawback
of the state-of-the-art approach is that external atoms are only evaluated under
complete assignments (i.e., input to the external source) while in practice, their
values often can be determined already based on partial assignments alone (i.e.,
from incomplete input to the external source). This prevents early backtracking
in case of conflicts, and hinders more efficient evaluation of hex-programs. We
thus extend the notion of external atoms to allow for three-valued evaluation under
partial assignments, while the two-valued semantics of the overall hex-formalism
remains unchanged. This paves the way for two enhancements: first, to evaluate
external sources at any point during model search, which can trigger learning
knowledge about the source behavior and/or early backtracking in the spirit of theory
propagation in SAT modulo theories (SMT). Second, to optimize the knowledge
learned in terms of nogoods. Shrinking nogoods to their relevant input part leads to
more effective search space pruning. We further present an experimental evaluation
of an implementation of a novel hex-algorithm that incorporates these enhancements
using a benchmark suite. Our results demonstrate a clear efficiency gain over the
state-of-the-art hex-algorithm for the benchmarks, and provide insights regarding
the most effective combinations of solver configurations.

• In Chapter 4, we develop techniques for tightly integrating evaluation of external
sources and the external minimality check of hex, which is required to prevent
cyclic justifications via external sources, in order to improve its efficiency. As this
check often accounts for a large share of the total runtime, optimization is here
particularly important. For this, we first extend methods for partial evaluation
introduced in the previous chapter to the search employed during the minimality
check of hex. Moreover, syntactic information about atom dependencies has been
used previously to detect when the check can be avoided. However, the approach
largely overapproximates the real dependencies due to the black-box nature of
external sources. In the second part of the chapter, we show how the dependencies
can be approximated more closely by also exploiting semantic information, which
significantly increases pruning of external minimality checking. Moreover, we

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

analyze checking and optimization of semantic dependency information. In the end
of the chapter, we report results of an empirical evaluation, which exhibit a clear
benefit of the new methods.

• In Chapter 5, our goal is to mitigate the well-known grounding bottleneck of ASP
during hex-evaluation by interleaving the grounding and the solving process, also
taking external evaluations into account. For achieving this goal, we exploit recent
advances in lazy-grounding ASP-solving. While ASP-solving is traditionally based
on grounding the input program first, lazy grounding generates new rule instances
on-the-fly only when they are needed. We explore this approach in the context
of hex and present a novel evaluation algorithm for hex-programs based on lazy-
grounding solving for ASP. Nonmonotonic dependencies and the import of new
constants from external sources make an efficient solution nontrivial. Accordingly,
a novel interface for evaluating external sources and special safety criteria had to
be designed for the integration. However, illustrative benchmarks show a clear
advantage of the new algorithm for grounding-intense programs, which is a new
perspective to make hex more suitable for real-world application needs.

As hex allows to integrate different formalisms, it is well-suited for combining diverse
forms of reasoning. In Part II of this thesis, the main goal is to exploit this strength for
two new applications in the area of machine learning. The first application encodes an
existing approach for logic-based machine learning in hex, while the second application
integrates an external statistical classifier and a spatial reasoner by means of external
atoms into a hex-encoding.

• In Chapter 6, we apply the hex-formalism for meta-interpretive learning (MIL),
which learns logic programs from examples by instantiating meta-rules and has been
implemented before in the Metagol-system based on Prolog. Viewing MIL-problems
as combinatorial search problems, they can alternatively be solved by ASP, which
can result in performance gains as a result of efficient conflict propagation. However,
a straightforward ASP-encoding of MIL results in a huge search space due to a lack
of procedural bias and the need for grounding. To address these challenging issues,
we encode MIL in the hex-formalism, which allows us to outsource the background
knowledge, and we restrict the search space to compensate for a procedural bias in
ASP. This way, the import of constants from the background knowledge can for a
given type of meta-rules be limited to relevant ones. Moreover, by abstracting from
term manipulations in the encoding and by exploiting the interface mechanism
of hex, the import of such constants can be entirely avoided in order to mitigate
the grounding bottleneck. To empirically evaluate the new MIL-approach, we
conducted a number of experiments, which show promising results.

• In Chapter 7, we consider the problem of classifying visual objects in scene images
by exploiting their semantic context. For this task, we define hybrid classifiers
(HC) that combine local statistical classifiers with context constraints, and can be

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.5. Evolution of This Work and Relevant Publications

applied to collective classification problems (CCPs) in general. Context constraints
are represented by weighted ASP-constraints using object relations. To integrate
probabilistic information provided by the classifier and the context, we embed our
encoding in the formalism LP MLN , and show that an optimal labeling can be
efficiently obtained from the corresponding LP MLN -program via a back-translation
from LP MLN into hex-programs and by exploiting existing hex-solvers. Moreover,
we describe a methodology for constructing an HC for a CCP, and present experi-
mental results of applying an HC for object classification in indoor and outdoor
scenes, which exhibit significant improvements in terms of accuracy compared to
using only a local classifier.

We conclude in Chapter 8 by summarizing our main contributions, and we discuss in
which regards the work developed during the doctoral research has improved the state of
hex-evaluation. Moreover, we give an overview over remaining open issues and possible
directions for future research.

1.5 Evolution of This Work and Relevant Publications

In the beginning of this doctoral project, which started in August 2015 and was mainly
conducted within the context of the research project “Integrated Evaluation of Answer
Set Programs and Extensions”5 funded by the Austrian Science Fund (project number
P27730), we considered the tighter integration of hex-solving and external evaluations.
Techniques devised for this purpose served as a basis for all subsequently developed
hex-algorithms. The results obtained during the first phase of the project have been
presented at the “25th International Joint Conference on Artificial Intelligence” in July
2016 (Eiter, Kaminski, Redl, & Weinzierl, 2016), and have subsequently been extended
and published in the “Journal of Artificial Intelligence Research” (Eiter, Kaminski, Redl,
& Weinzierl, 2018). The presentation of new techniques for tightly integrating solving
and external evaluation in Chapter 3 uses material from both publications; and parts of
Chapters 1 and 2 appear in the journal paper.

In parallel to evolving the integration of the solving and the external evaluation process,
we developed our first application of hex-programs in the area of machine learning,
which integrates a statistical classifier and ASP-constraints for image classification. The
approach has been presented at the “15th European Conference On Logics In Artificial
Intelligence” in November 2016 (Eiter & Kaminski, 2016). Chapter 7 discusses a further
developed version of the approach and is based on the corresponding material. While the
first version of this approach did not leverage the expressiveness of external atoms, they
have been integrated afterwards and their usage is discussed in this thesis.

In the second project phase, we exploited the previously developed techniques and
the novel lazy-grounding ASP-solver alpha for integrating the grounding process of hex

with the solving process (as well as with external evaluations) in order to avoid the usual
grounding bottleneck of ASP during hex-evaluation. The resulting approach encompasses

5http://www.kr.tuwien.ac.at/research/projects/inthex/

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://www.kr.tuwien.ac.at/research/projects/inthex/

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

a novel lazy-grounding hex-algorithm and has been published in the proceedings of
the “26th International Joint Conference on Artificial Intelligence” (Eiter, Kaminski,
& Weinzierl, 2017). The content of the paper has been extended with detailed proofs
for all theoretical results and is used in Chapter 5, which discusses the integration of
hex-grounding and solving.

In spring of 2017, we also created a tutorial article for the “13th Reasoning Web
Summer School” (Eiter, Kaminski, Redl, Schüller, & Weinzierl, 2017), which served as
the basis for a lecture given at the summer school in July 2017 and provides a broad
overview over the hex-formalism as well as many of its use cases. Parts of this publication
are used in Chapter 1.

The second application of hex-programs in the area of machine learning has been
developed during a research stay at the National Institute of Informatics in Tokyo in
collaboration with Prof. Katsumi Inoue. The approach differs from the firstly developed
hex-application in that external atoms are not only used to interface an external machine
learning method, but an approach for logic-based machine learning, meta-interpretive
learning, has itself been implemented by means of hex-encodings. The according results
have been published in the proceedings of the “34th International Conference on Logic
Programming” in July 2018 (Kaminski, Eiter, & Inoue, 2018b); the contribution won the
best paper award of the conference. The new hex-application is presented in Chapter 6,
which uses material from the corresponding publication. The chapter also discusses an
extension of the approach, which has been presented in the work-in-progress track of
the “28th International Conference on Inductive Logic Programming” in September 2018
(Kaminski, Eiter, & Inoue, 2018a).

In the final phase of this project, we devoted particular attention to the third main
subprocess of hex-evaluation, the external minimality check, which is special to the hex-
formalism and the reason that problems of higher computational complexity compared
to related formalisms can be encoded by hex using Horn-style programs (i.e. without
using disjunction or negation). In this regard, we integrated additional information about
the semantics of external sources into a check for the necessity of the expensive external
minimality check. A paper that introduces the new method has been presented at the
“15th International Conference on Logic Programming and Nonmonotonic Reasoning”
in June 2019 (Eiter & Kaminski, 2019), where it was awarded with the best student
paper award. Chapter 4 discusses the integration of external minimality checking and
external evaluation; besides material on extending partial evaluation to the external
minimality check published in (Eiter, Kaminski, Redl, & Weinzierl, 2018), it incorporates
the material on our new method for minimality check skipping.

In order to avoid fragmentation of the text in this thesis and according to common
practice, usage of material from the above mentioned publications is not additionally
indicated for each passage; and the results presented in this thesis correspond to the
results from the respective publications if not stated otherwise.

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Preliminaries

In this chapter, we start by introducing the necessary background regarding ASP and
hex-programs, which subsequent chapters will build on. We follow Eiter et al. (2018) for
preliminaries.

Our vocabulary consists of a set P of predicate symbols, where each predicate symbol
p ∈ P has a fixed arity ar(p), a set C of constants symbols, and a set X of (first-order)
variables symbols, where X is disjoint from the sets P and C.

An atom is of the form p(t1, . . . , tℓ), abbreviated as p(~t), with predicate p ∈ P of arity
ℓ and terms t1, . . . , tℓ ∈ C ∪ X .1 An atom p(t1, . . . , tℓ) is ground if t1, . . . , tℓ ∈ C. For a
vector ~t = t1, . . . , tℓ we write t ∈ ~t if t = ti for some 1 ≤ i ≤ ℓ.

2.1 Answer Set Programs

In ASP, problems are encoded by sets of nonmonotonic rules, which can be read as if-then
expressions, i.e. if the assertions on the right-hand side of a rule hold, then at least one
of the elements on the left-hand side must hold as well.

Definition 2.1 (Answer Set Program). An answer set program P is a finite set of
(disjunctive) rules r of the form

a1 ∨ · · · ∨ ak ← b1, . . . , bm, not bm+1., . . . , not bn, (2.1)

where all ai, 1 ≤ i ≤ k, and bj, 1 ≤ j ≤ n, are atoms. The head of a rule r is
H(r) = {a1, . . . , ak}, its body is B(r) = {b1, . . . , bm, not bm+1, . . . , not bn}, and its
positive resp. negative body is B+(r) = {b1, . . . , bm} resp. B−(r) = {bm+1, . . . , bn}.

A rule r is called a (disjunctive) fact if B(r) = ∅, and an integrity constraint if
H(r) = ∅. An answer set program P is called normal logic program if k = 1 for all r ∈ P ;

1Terms containing function symbols are not considered in this thesis.

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

and definite program if k = 1 and m = n for all r ∈ P . As usual, an atom (rule, program
etc.) is ground, if no variable occurs in it.

For a program P we let X(P) =
⋃

r∈P X(r) for each X ∈ {H, B, B+, B−} to denote
the sets of literals that occur in rule heads (H) and rule bodies (B), and the sets of
atoms that occur in the positive (B+) and the negative rule bodies (B−), respectively.

In the context of ASP, interpretations are usually Herbrand interpretations. In this
setting, programs with variables can be reduced to programs without variables, by
instantiating the variables in rules in all possible ways with constants from C. This
process, which is known as grounding (Kaufmann et al., 2016), is also adopted commonly
by solvers in practice, where in addition optimization steps are made in order to avoid
useless rules. Suitable syntactic and/or semantic safety conditions guarantee that a finite
number of rule instances suffices for answer set computation. After grounding, in a
second solving phase the answer sets of the program are then computed.

A rule r of the form (2.1) is called safe if all variables that occur in r occur in B+(r)
as well, and we assume in the following that all rules are safe. Since under this condition,
a ground program over a finite vocabulary can always be obtained from an answer set
program with variables s.t. their answer sets are identical, we can assume in the sequel
that the vocabulary (and in particular the sets of constant and predicate symbols C
and P) is finite, and that it suffices to consider ground programs for defining program
semantics; in examples, we may use rules containing variables standing for all ground
instances with respect to this set of constants. Moreover, if not stated otherwise, all
definitions are implicitly parameterized with the according finite vocabulary. By HBP,C

we denote the finite Herbrand base that contains all ground atoms constructible from P
and C; we write HB if P and C are clear from the context.

Herbrand interpretations are usually represented by the sets of ground atoms that
are true in them. However, when discussing the evaluation of answer set programs, it
is often more convenient to explicitly represent which atoms are assigned to true resp.
false. Following Drescher et al. (2008), a (signed) literal is either a positive or a negated
ground atom Ta (intuitively, a is true) or Fa (a is false), where a is a ground atom. For
σ ∈ {T, F}, we let σ = T if σ = F and σ = F if σ = T, and for a literal L = σa, we
let L = σa. A complete assignment2 over a (finite) set A of atoms is a set A of literals
such that for all a ∈ A, Ta ∈ A iff Fa /∈ A; here Ta ∈ A expresses that a is true and
Fa ∈ A that a is false. Moreover, we define that A(a) = T if Ta ∈ A, and A(a) = F
otherwise. The Herbrand interpretation I corresponding to a complete assignment A is
I = {a | Ta ∈ A}. For simplicity, we will not switch between Herbrand interpretations
and complete assignments, which can be used interchangeably when the Herbrand base
is finite; instead we only talk about assignments in the rest of this thesis.

Let A be a complete assignment. Then A satisfies a ground atom a, denoted A |= a,
if Ta ∈ A, and it does not satisfy it, denoted A 6|= a, if Fa ∈ A. Furthermore, A satisfies
a default-negated atom not a, denoted A |= not a, if A 6|= a, and it does not satisfy it,

2Here, complete refers to the fact that the complete assignment defines for each atom a ∈ A whether
it is true or false. We explicitly say complete in this section in order to distinguish it from the more
general concept of partial assignments we introduce in Chapter 3.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. HEX-Programs

denoted A 6|= not a, if A |= a. A ground rule r is satisfied by A, denoted A |= r, if either
A |= a for some a ∈ H(r) or A 6|= a for some a ∈ B(r). A ground answer set program P
is satisfied by A, denoted A |= P , if A |= r for all r ∈ P .

Answer set programs are interpreted under the answer set semantics based on the
well-known Gelfond–Lifschitz (GL-)reduct by Gelfond and Lifschitz (1991). Given a
ground answer set program P and a complete assignment A, the GL-reduct of P w.r.t.
A is the program

P A = {H(r)← B+(r) | r ∈ P, A 6|= b for all b ∈ B−(r)}.

For complete assignments A1 and A2, let A1 ≤ A2 denote that {Ta | Ta ∈ A1} ⊆ {Ta |
Ta ∈ A2} holds. A complete assignment A is an answer set of an answer set program
P if A is a ≤-minimal model of P A. The general idea of ASP is to encode a problem
by means of an answer set program and to extract corresponding solutions from the
respective answer sets.

Example 2.1. Consider the answer set program P = { a← not b.; b← not a.; ← a. } and
the complete assignment A = {Fa, Fb}. It is easy to see that A is not a ≤-minimal
model of P A = { a ← .; b ← .; ← a. } and thus, not an answer set of P . On the other
hand, A′ = {Fa, Tb} is a ≤-minimal model of P A′

= { b← .; ← a. }, and it is the only
answer set of P as A′′ = {Ta, Fb} is not a model of P A′′

= { a← .; ← a. } due to the
constraint “← a.”. △

Sets of signed literals are also utilized to formulate constraints w.r.t. assignments, i.e.
to specify combinations of signed literals that are not permitted to be part of a complete
assignment. A nogood is a set {L1, . . . , Ln} of literals; and a complete assignment A is a
solution to a nogood δ resp. a set of nogoods ∆, if δ 6⊆ A resp. δ 6⊆ A holds for all δ ∈ ∆.

Example 2.2. The complete assignment A = {Tp(a), Tp(b), Tp(c)} is a solution to the
nogood {Tp(a), Fp(b)}, but not to the nogood {Tp(a), Tp(b)}. △

Nogoods correspond to clauses as known from SAT-solving, and are utilized by ASP-
solvers that are based on conflict-driven nogood learning (CDNL) (Drescher et al., 2008)
for representing the input program and for guiding the search by learning additional
nogoods from conflicts.

2.2 HEX-Programs

In this section, we introduce hex-programs, which generalize (disjunctive) logic programs
under the answer set semantics by integrating external sources of computation; for more
details and background, cf. (Eiter et al., 2005b; Eiter, Fink, Krennwallner, et al., 2014).

As in the case of answer set programs, we can restrict our theoretical investigation
of hex-programs to ground programs because safety conditions allow for applying an
advanced grounding algorithm to compute finite groundings, cf. (Eiter, Fink, Kren-
nwallner, & Redl, 2016). However, our examples will also use variables as shortcuts for
instantiations with all possible values.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

2.2.1 Syntax

hex-programs extend ordinary ASP-programs by external atoms, which enable a bidirec-
tional interaction between a program and external sources of computation. In addition to
the sets C, P, and X introduced above, we assume a further finite set G of external pred-
icate symbols in our vocabulary, which is disjoint from C, P and X . External predicate
symbols in G are prefixed with ‘&’ to distinguish them from ordinary predicate symbols,
and each &g ∈ G has fixed input and output arity arI(&g) and arO(&g), respectively.
Again, due to our restriction of the formal discussion to ground programs, it is sufficient
to consider only a finite vocabulary.

Informally, external atoms are associated with input and output values, where
constants and the extensions of predicates in the input are provided to an external source
which computes whether the respective output values are correct.

More formally, a ground external atom is of the form &g[~p](~c), where &g ∈ G,
~p = p1, . . . , pk, with k = arI(&g), is a list of input parameters (predicate names or object
constants), called input list, and ~c = c1, . . . , cl, with l = arO(&g), are constant output
terms. More generally, a non-ground external atom is of the form &g[~Y](~X), where
~Y = Y1, . . . , Yk is a list of input terms (variables, predicate names or object constants),
and ~X = X1, . . . , Xl are output terms, i.e, variables or object constants. Given a ground
external atom &g[~p](~c), we call &g[~p] a ground external (ge-)predicate.

In contrast to answer set programs, in hex-programs external atoms can be used in
the bodies of rules to specify dependencies on external sources. Formally:

Definition 2.2 (hex-Program). A hex-program Π consists of rules r of the form (2.1),
where each ai, 1 ≤ i ≤ k, is an ordinary atom and each bj, 1 ≤ i ≤ n, is either an
ordinary atom or an external atom.

In the following, we call a program ordinary if it does not contain external atoms, i.e.,
if it is a standard ASP-program; as usual, an (ordinary or external) atom, rule, program
etc. is ground, if it is variable-free. The head H(r), the body B(r), the positive body
B+(r) and the negative body B−(r) of a rule r in a hex-program are defined as before
for ordinary programs. We let B+

o (r) resp. B−
o (r) be the set of ordinary atoms in B+(r)

resp. B−(r). Moreover, we denote by A(Π) the set of ordinary atoms that occur in a
hex-program Π.

As for ASP-programs, a rule r in a hex-program is safe, if each variable occurring in
r also occurs in B+(r), and every rule r in a hex-program Π must be safe. Moreover,
to ensure external atoms introduce only finitely many new constants, we assume Π is
liberal domain-expansion (lde)-safe (cf. (Eiter, Fink, Krennwallner, & Redl, 2016) for
more details). The notion of lde-safety allows to modularly combine syntactic and/or
semantic safety criteria to guarantee that a hex-program is finitely groundable, and it is
the most liberal safety notion that has been considered for the hex-formalism.

Like ordinary answer set programs, hex-programs can be reduced by grounding to
variable-free programs, where in a non-ground external atom &g[~Y](~X) each variable Yi

in ~Y = Y1, . . . , Yk is instantiated with a predicate name or an object constant, and each
variable Xi in ~X = X1, . . . , Xl with an object constant. The grounding grnd(r) of a rule

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. HEX-Programs

r is the set of all possible rules rσ that result from r by applying a (ground) substitution
σ :V →C; the grounding of program Π is grnd(Π) =

⋃

r∈Π grnd(r).
According to Definition 2.2, the usage of external atoms is restricted to the rule

bodies in a hex-program as they can only be queried for information. A common use
case of external atoms consists in eliminating answer sets based on external constraints
as illustrated by the following example.

Example 2.3. Consider the hex-program Π that consists of the following facts and rules:

node(a). node(b).

edge(X, Y) ∨ n_edge(X, Y)← node(X), node(Y), X 6= Y.

← &geq[edge, 2]().

Informally, the rule on the second line guesses edges (arcs) of a self-loop-free directed
graph whose vertices are given as facts on the first line. The constraint on the third line
uses an external atom &geq[edge, 2]() to check whether the number of edges is at most
one, by eliminating the guess if at least two edges exist. △

2.2.2 Semantics

Next, we discuss the semantics of ground hex-programs Π, which generalizes the answer
set semantics of Gelfond and Lifschitz (1991). In the following, if not stated otherwise,
assignments are over the set A = A(Π) of ordinary atoms that occur in the ground
hex-program Π at hand. Furthermore, we let AP,C be the set of all possible complete
assignments over predicates P and constants C; in the following we will drop P, C from
the index and denote this set just as A since the vocabulary is assumed to be fixed.

The semantics of a ground external atom &g[~p](~c) w.r.t. a complete assignment A is
given by the value of a 1+arI(&g)+arO(&g)-ary decidable two-valued (Boolean) oracle
function

f&g : A×(P ∪ C)k×Cl → {T, F}
that is defined for all possible complete assignments A ∈ A, and tuples ~p and ~c, where
k and l are the lengths of ~p and ~c, respectively. Thus, &g[~p](~c) is true relative to A
(informally, ~c is an output of &g for input ~p), denoted A |= &g[~p](~c), if f&g(A, ~p,~c) = T
and false, denoted A 6|= &g[~p](~c), otherwise.

Example 2.4. Consider the external atom &synonym[words](X), where words is an
input predicate. Its semantics is given by the oracle function f&synonym, where e.g.
f&synonym(A, words, automobile) = T and f&synonym(A, words, motorcar) = T in case
the word car is in the extension of the predicate words, i.e. if Twords(car) ∈ A. △

Importantly, external oracles support value invention such that they can be true
for output values that do not occur in a respective (non-ground) program. However,
all relevant constants are imported by available grounding algorithms (Eiter, Fink,
Krennwallner, & Redl, 2016) invoked during the grounding phase of hex-program
evaluation. In practice, oracle functions are realized as solver-plugins, which are usually
implemented in C++ or Python.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

While in general, the value of an external atom f&g(A, ~p,~c) may depend on any literal
in A, we assume in the following that its value depends only on literals over predicates
that appear in ~p; formally: f&g(A, ~p,~c) = f&g(A′, ~p,~c) for all complete assignments A
and A′ that assign the same truth values to all atoms of the form p(~c′) where p ∈ ~p.

A complete assignment A satisfies (or models) a ground atom a, denoted A |= a, if
Ta ∈ A; and it models a ground external atom &g[~p](~c) if f&g(A, ~p,~c) = T. Satisfaction
of ordinary rules and ASP-programs is then extended to hex-rules and hex-programs
in the obvious way by also taking the satisfaction of external atoms w.r.t. a complete
assignment A into account. The semantics of hex-programs is defined in terms of a
variant of the GL-reduct, which has originally been introduced by Faber, Pfeifer, and
Leone (2011) to define a semantics for programs containing arbitrary aggregates.

Definition 2.3 (FLP-Reduct). The FLP-reduct of a ground hex-program Π w.r.t. a
complete assignment A is the set fΠA = {r ∈ Π | A |= b, for all b ∈ B(r)} of all rules
whose body is satisfied by A.

The answer sets of a ground hex-program Π are then defined as follows.

Definition 2.4 (Answer Set of a hex-Program). A complete assignment A is an answer
set of a ground hex-program Π, if A is a ≤-minimal model of fΠA.

The answer sets of a non-ground hex-program Π are those of grnd(Π). For a given
ground hex-program Π we let AS(Π) denote the set of all answer sets of Π.

For ordinary ASP-programs (i.e., hex-programs without external atoms), the above
definition of answer sets based on the FLP-reduct fΠA is equivalent to the original
definition of answer sets by Gelfond and Lifschitz (1991) based on the GL-reduct. However,
for hex-programs, the FLP-reduct is more attractive than the GL-reduct as it prevents
unintuitive answer sets involving cyclic justifications. Furthermore, the stronger notion of
well-justified answer set by Shen et al. (2014) excludes any cyclic justification whatsoever,
as the whole answer must be obtained in a constructive process that involves classical
provability.

We illustrate the notion of answer set in the case of hex-programs on two simple
examples.

Example 2.5. The external atom in Example 2.3 is associated with an oracle function
f&geq(A, p, n) defined as follows:

f&geq(A, p, n) =

{

T if |{p(x, y) | Tp(x, y) ∈ A}| ≥ n,

F otherwise.

The complete assignment A1 = {Tnode(a), Tnode(b), Fedge(a, a), Fedge(a, b), Fedge(b, a),
Fedge(b, b)} is an answer set of Π if we add Tn_edge(c, c′) if Fedge(c, c′) ∈ A1, and we
add Fn_edge(c, c′) if Tedge(c, c′) ∈ A1, where c, c′ ∈ {a, b}. On the other hand, the as-
signment A2 = {Tnode(a), Tnode(b), Fedge(a, a), Tedge(a, b), Tedge(b, a), Fedge(b, b)}
is not an answer set of Π for an analogous addition. As easily seen, Π has three answer
sets that correspond to the self-loop-free directed graphs on a, b with less than two
edges. △

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Evaluation of HEX-Programs

Example 2.6. Consider as another example the program Π = {p ← &id[p]().}, where
&id[p]() is true iff p is true. Then Π has the answer set A1 = {Fp}; indeed A1 is
a ≤-minimal model of the reduct fΠA1 = ∅. We remark that using the traditional
GL-reduct, adapted to hex-programs instead of the FLP-reduct, would admit another
answer set A2 = {Tp}; constructing the latter would however involve cyclic justification,
which is intuitively not acceptable. △

2.3 Evaluation of HEX-Programs

The basic evaluation procedure for ground hex-programs uses a guess-and-check rewriting
to ordinary ASP (Eiter, Fink, Ianni, et al., 2016) and leverages available solvers such
as clasp (Gebser, Kaufmann, et al., 2011) for hex-evaluation. To this end, hex-
programs Π are transformed to ordinary programs by replacing each external atom
&g[~p](~c) in Π by an ordinary replacement atom e&g[~p](~c), and by adding a disjunctive
fact e&g[~p](~c) ∨ ne&g[~p](~c)← that represents a guess for the truth value of the respective

external atom. The answer sets of the resulting guessing program Π̂ are then computed
by an ASP-solver. The assignment encoded by such an answer set may not satisfy Π, as
f&g may yield for &g[~p](~c) a value that is different from the guess for e&g[~p](~c). Thus, the
answer set is merely a model candidate; if a check against the external sources finds no
discrepancy, it is a compatible set. Formally:

Definition 2.5 (Compatible Set). A compatible set of a program Π is an answer set Â
of the guessing program Π̂ such that f&g(Â, ~p,~c) = T iff Te&g[~p](~c) ∈ Â for all external
atoms &g[~p](~c) in Π.

As mentioned in Section 1.2.2 and described by Eiter, Fink, Krennwallner, et al.
(2014), nogoods can be learned from the external source evaluations which are performed
to ensure that a model candidate is also a compatible set. These nogoods can additionally
be provided to an ASP-solver to guide the search for model candidates and to avoid the
reoccurrence of wrong guesses for external atoms; up to exponentially many guesses can be
excluded by the learned nogoods (Eiter, Fink, Krennwallner, et al., 2014). More precisely,
a nogood is learned from the evaluation of an external atom &g[~p](~c) w.r.t. a complete
assignment A that represents that e&g[~p](~c) must be true under A if f&g(Â, ~p,~c) = T,

respectively false under A if f&g(Â, ~p,~c) = F; only the part of A relevant for evaluating

f&g(Â, ~p,~c) must be contained in the nogood. Accordingly, a nogood can be learned
independent from the correctness of the truth value guessed for e&g[~p](~c), but for incorrect
guesses the learned nogood can trigger backtracking directly.

Example 2.7. Assume we are given for the graph guessing program Π from Example 2.3 the
complete assignment A = {Tnode(a), Tnode(b), Tedge(a, b), Tedge(b, a), Fn_edge(a, b),
Fn_edge(b, a)}. After evaluating the oracle function associated with &geq[edge, 2]() under
A, the nogood {Tedge(a, b), Tedge(b, a), Fe&geq[edge,2]()} can be generated in order to
learn that A |= &geq[edge, 2](); the nogood encodes that whenever edge(a, b), edge(b, a)
are true, the external atom &geq[edge, 2]() must not be assigned the truth value F.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Preliminaries

In addition, for A′ = {Tnode(a), Tnode(b), Fedge(a, b), Tedge(b, a), Tn_edge(a, b),
Fn_edge(b, a)}, it can be learned that A′ 6|= &geq[edge, 2]() by adding the nogood
{Fedge(a, b), Tedge(b, a), Te&geq[edge,2]()}. △

Each answer set of Π is the projection A of a compatible set Â to the atoms A(Π)
in Π, but not vice versa. To discard the non-answer sets, the evaluation algorithm
calls an FLP-check to check minimality w.r.t. fΠA (Eiter, Fink, Krennwallner, et al.,
2014). This check constitutes a second (external) minimality check which intuitively is

needed in addition to the usual check that ensures minimality w.r.t. Π̂Â to prevent cyclic
justifications involving external atoms.

Example 2.8 (cont’d). For the program Π from Example 2.3, the guessing program Π̂ is
as follows:

node(a). node(b).

edge(X, Y) ∨ n_edge(X, Y)← node(X), node(Y), X 6= Y.

← e&geq[edge,2]().

e&geq[edge,2]() ∨ ne&geq[edge,2]()← .

The answer sets of Π̂ comprise the sets Â1 = A1 ∪ {Fe&geq[edge,2]()} where A1 =

{Tnode(a), Tnode(b), Fedge(a, a), Fedge(a, b), Fedge(b, a), Fedge(b, b)}, and Â2 = A2 ∪
{Fe&geq[edge,2]()} where A2 = {Tnode(a), Tnode(b), Fedge(a, a), Tedge(a, b), Tedge(b, a),

Fedge(b, b)}. While Â1 is a compatible set of Π̂, Â2 is not. Thus, the latter cannot give rise
to some answer set of Π. Regarding Â1, it is easy to see that A1 is a minimal model of the
FLP-reduct fΠA1 = {node(a).; node(b).; edge(a, b) ∨ n_edge(a, b)← node(a), node(b),
a 6= b.; edge(b, a) ∨ n_edge(b, a) ← node(b), node(a), b 6= a.}. Hence, A1 is an answer
set of Π. △
Example 2.9. Reconsider Π = { p← &id[p](). } from Example 2.6. Then the guessing pro-
gram Π̂ = { p← e&id[p]().; e&id[p] ∨ne&id[p] ← . } has the answer sets Â1 = {Fp, Fe&id[p]}
and Â2 = {Tp, Te&id[p]}; as easily seen, both are compatible sets of Π̂. Here the projec-

tion A1 is a ≤-minimal model of fΠA1 = ∅, and thus A1 is an answer set of Π̂; on the
other hand, A2 is not a minimal model of fΠA2 = Π, and thus A2 is not an answer set
of Π̂. △

As illustrated by these examples, an additional procedure for checking external
minimality is required for finding answer sets of hex-programs, which is described in
more detail in the section below.

2.4 External Minimality Check

The basic approach for ensuring external (e-)minimality of the projection A of a compat-
ible set Â for a hex-program Π w.r.t. the FLP-reduct fΠA (called explicit FLP-check by
Eiter, Fink, Krennwallner, et al. (2014)) consists in explicitly constructing the FLP-reduct
fΠA and checking that it has no model A′ s.t. A′ ⊆ A. In general, performing the

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. External Minimality Check

e-minimality check efficiently is highly non-trivial as it is co-NP-complete already for
ground Horn programs with external atoms that can be evaluated in polynomial time
(Eiter, Fink, Krennwallner, et al., 2014).

However, a variant of the e-minimality check based on unfounded sets, which is a
semantics-based characterization of minimality for answer sets (Leone, Rullo, & Scarcello,
1997) that has been lifted to hex-programs (Eiter, Fink, Krennwallner, et al., 2014), can
be significantly faster than an explicit FLP-check as it avoids the explicit generation of
models of fΠA. An unfounded set of a hex-program Π w.r.t. an assignment A is a set
of atoms that can be jointly set to false without violating any rule in Π because they
only circularly support each other w.r.t. A. Formally:

Definition 2.6 (Unfounded Set). Let Π be a ground hex-program and let A and U be
complete assignments over A(Π). Then, U is an unfounded set for Π w.r.t. A if, for
each rule r with H(r) ∩ {a | Ta ∈ U} 6= ∅, at least one of the following holds, where
A ∪̇ ¬.U = (A \ {Ta | Ta ∈ U}) ∪ {Fa | Ta ∈ U}:

(1) some literal of B(r) is false w.r.t. A,

(2) some literal of B(r) is false w.r.t. A ∪̇ ¬.U , or

(3) some atom of H(r) \ {a | Ta ∈ U} is true w.r.t. A.

Note that different from the literature, here we define unfounded sets as complete
assignments rather than sets of atoms to make the operator ∪̇ reusable for subsequent
results. However, conceptually an unfounded set U still represents a set of atoms, given
by the true atoms Ta ∈ U .

Example 2.10. Consider again the hex-program Π from Example 2.6. The complete
assignment U = {Tp} is an unfounded set for Π w.r.t. A = {Tp}, while no unfounded
set for Π w.r.t. A = {Fp} exists. △

The answer sets of a hex-program Π correspond exactly to those complete assignments
A, with A |= Π, where the true part of A does not intersect with any unfounded set for
Π w.r.t. A, i.e. {Ta | Ta ∈ A ∩ U} = ∅ for every unfounded set U for Π w.r.t. A (Faber,
2005; Eiter, Fink, Krennwallner, et al., 2014).

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
. Part I

Integrated Algorithms for

HEX-Program Evaluation

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Integration of Solving and

External Evaluation

In this chapter, we start by considering the tight integration of the first two sub-processes
which are at the core of hex-evaluation: the solving and the external evaluation process.
The chapter is based on the conference paper (Eiter, Kaminski, Redl, & Weinzierl, 2016)
and the journal paper (Eiter, Kaminski, Redl, & Weinzierl, 2018).

As discussed in Section 1.2.2, previous evaluation algorithms for (ground) hex-
programs first compute a complete truth-assignment by guessing the truth values of
all external atoms and by evaluating an accordingly rewritten program using existing
ASP-solvers such as clasp. Only when the assignment is complete, the correctness of the
guess can be verified by calls to the external sources. Despite the enhancement of this
basic approach with conflict-driven learning techniques (Eiter et al., 2012), which learn
parts of the external source semantics while the search space is traversed, the evaluation
of external atoms over complete assignments is an obstacle to good performance in
general.

Intuitively, evaluating external sources under yet partial assignments (i.e., assignments
in which only some input atoms are set to true or false, while others remain unassigned)
may in some cases allow to decide the eventual truth value of an external atom, regardless
of how the assignment will be completed. For example, suppose an external atom
&planar [node, edge]() interfaces an external source for checking whether a graph whose
nodes and edges are captured by the unary predicate node and the binary predicate edge,
respectively, is a planar graph. If a rule edge(X, Y) ∨ not_edge(X)← connected(X, Y)
guesses the edges of a graph from a pool of connections, the external checker might detect
non-planarity even if the guess is not yet complete (i.e., some edges are missing). Early
external evaluation has the potential for significant performance gains, as wrong guesses
may be detected early on or avoided entirely. In this way, the external sources can guide
the answer set search proactively.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

This idea is in the spirit of theory propagation in SAT modulo theories (SMT) (Barrett
et al., 2009). However, adopting evaluations under partial assignments for hex-programs
is non-trivial, because – unlike in SMT, which considers only fixed theories – external
sources are largely black boxes, without much information about their structure (as in
case of privacy and data hiding, or of a wrapped web service) let alone is a propagation
machinery available. Moreover, their heterogeneity and (possibly) nonmonotonic nature,
e.g. if the external source access is to ASP engines or argumentation solvers, adds further
conceptual and computational complexity.

In this chapter, we address the issue of partial evaluation by extending external
source access via external atoms from a Boolean semantics, which is defined only under
complete assignments, to a three-valued evaluation semantics that is defined under partial
assignments. This extension is exploited for novel evaluation techniques to achieve
the main goal of efficiency improvements. In particular, learning about the behavior
of external sources during evaluation under partial assignments allows us to acquire
additional knowledge that aids in guiding the search, similar as theory propagation in
SMT. Moreover, the possibility of such early evaluation enables identifying the part
of the input that is relevant for the final value of an external atom. This allows for
minimizing the learned nogoods in order to approximate the external source semantics
more closely. Importantly, the semantics of the overall formalism remains unchanged,
i.e., the three-valued semantics of external sources is only exploited for performance
improvements during the search, while the final answer sets are still two-valued.

The rest of this chapter is organized as follows:

• In Section 3.1, we extend the notion of external atoms in two dimensions: first, that
they can be evaluated under partial assignments, which set each atom to either
true, false, or unassigned. Second, that the output of the evaluation can be either
true, false or unknown; this is because the truth value of the external atom might
be definitely known (true or false), or it is yet unknown under the current partial
input.

• In Section 3.2, we present a novel evaluation algorithm which exploits three-valued
evaluation of external sources for early detection of conflicts due to wrong guesses
for the truth values of external atoms; and by this, allows for earlier backjumping
and improved search space pruning during answer set search.

• In Section 3.3, we consider learning of input-output nogoods based on additional
knowledge about external sources using abstractly defined learning functions, similar
as done by theory propagation in SMT solving. As well-known, learning can be
much more effective if structural properties of the underlying domain are known (cf.
Valiant (1984)). We thus present also a concrete learning function for monotonic
external sources (relative to the input assignment).

• In Section 3.4, we devote particular attention to minimizing learned input-output
nogoods, given the interface for evaluation under partial assignments; as already
mentioned, small (non-redundant) nogoods are important for pruning the search

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Extension to Partial Assignments

space of candidate answer sets effectively. Furthermore, we mitigate the associated
minimization costs by exploiting the divide-and-conquer strategy that was intro-
duced by Junker (2004) for conflict set minimization in constraint programming.

• In Section 3.5, we perform an experimental evaluation of the new techniques on
a rich benchmark suite using a prototype implementation of our approach in the
dlvhex-system. It appears that each of them can yield significant performance
gains, yet the picture of their combination is more complex; in particular, heuristics
may lead to diverging (though explainable) behavior. In any case, our experimental
results show a speedup of up to two orders of magnitude in performance (in theory,
even exponential gains are possible).

• In Section 3.6, we discuss related work, and conclude the chapter in Section 3.7
with a discussion of further issues and future work.

Our techniques are related to theory propagation in SMT (Barrett et al., 2009) and
minimization techniques in constraint ASP-solvers such as clingcon (Ostrowski &
Schaub, 2012). These, however, usually rely on a tailored integration of theory solvers
crafted by experts, whereas our approach allows a broad range of users, without prior
knowledge on solver construction, to harness performance gained by the new learning
techniques. In addition, full backward compatibility with existing two-valued source
descriptions makes exploiting the new features an option but not a requirement for the
use of dlvhex on legacy and new applications.

3.1 Extension to Partial Assignments

In this section, we start by generalizing complete assignments and oracle functions,
as defined in Section 2.1, to partial assignments, which provide a means for explicitly
representing that some atom is yet unassigned. To this end, we introduce signed literals
Ua to represent that an atom a is yet unassigned in an assignment. Also oracle functions
may be extended to deal with unassigned input atoms and in turn, may also evaluate to
U to represent that the value of the corresponding external atom is yet unknown under
the given input. This allows us, in the next step, to enhance the existing evaluation
algorithm in such a way that external sources are already evaluated early during search,
which potentially allows for earlier backtracking. We note that the extended concepts are
only used by the algorithm during solving, while the semantics of the formalism remains
unchanged. That is, answer sets define the truth values of all atoms, and are thus still
two-valued.

We start with a formal definition of the required concepts:

Definition 3.1 (Partial Assignment). A partial assignment over a set A of atoms is a
set A of signed literals of the form Ta, Fa and Ua such that for every a ∈ A it holds
that |A ∩ {Ta, Fa, Ua}| = 1.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

Then, a complete assignment as defined in Section 2.1 corresponds to the special case
of a partial assignment which contains no signed literal Ua. Since the rest of this chapter
will use the more general concept of partial assignment only (with complete assignments
as special case thereof), we will drop ‘partial’ in the rest of the chapter and say only
assignment.

To avoid the introduction of further symbols and heavy notation, we let AP,C denote
the set of all three-valued assignments over the given vocabulary from now on; as before
we drop P, C from the index since the vocabulary is fixed. As we use only three-valued
assignments in the remaining part of the chapter, this is unambiguous.

For assignments A, A′ we call A′ an extension of A, denoted A′ � A, if it holds that
A \ {Ua ∈ A | a ∈ A} ⊆ A′ (i.e., some unassigned atoms in A may be flipped to true
resp. false to obtain A′). Oracle functions are then extended as follows in order to define
the semantics of an external atom &g[~p](~c) w.r.t. partial assignments.

Definition 3.2 (Three-Valued Oracle Function). A three-valued oracle function f&g for
a ground external atom &g[~p](~c) with k input and l output parameters is a 1+k+l-ary
function

f&g : A×(P ∪ C)k×Cl → {T, F, U},
where A is the set of all possible assignments A, such that f&g(A, ~p,~c) 6= U whenever A
is a complete assignment.

Thus, &g[~p](~c) is true, false or unassigned relative to A, if the value of f&g(A, ~p,~c)
is T, F or U, respectively. As in the case of two-valued oracle functions, we assume
that f&g(A, ~p,~c) = f&g(A′, ~p,~c) for all partial assignments A and A′ that assign the
same truth values to all atoms of the form p(~c′) where p ∈ ~p; i.e., the function value only
depends on the predicates in ~p.

We require that once the output of f&g is assigned to true or false for some A, the
value stays the same for all extensions.

Definition 3.3 (Assignment-Monotonicity). A three-valued oracle function f&g is assign-
ment-monotonic if f&g(A, ~p,~c) = X, X ∈ {T, F}, implies f&g(A′, ~p,~c) = X for all
assignments A′ � A.

Assignment-monotonicity guarantees that no compatible set is lost when querying
external sources on partial assignments.

Example 3.1. Reconsider the hex-program Π from Example 2.3 in Section 2.2.1 and
recall that the (two-valued) oracle function f&geq(A, edge, 2) for a complete assignment
A evaluates to true if A contains at least two literals Tedge(x, y), and to false otherwise.

We can extend the oracle to partial assignments A′ by defining an assignment-
monotonic three-valued oracle function f ′

&geq(A′, p, n) as follows:

f ′
&geq(A′, p, n) =

T if |{p(x, y) | Tp(x, y) ∈ A′}| ≥ n,

U if |{p(x, y) | Tp(x, y) ∈ A′}| < n and

|{p(x, y) | Tp(x, y) ∈ A′ or Up(x, y) ∈ A′}| ≥ n,

F otherwise.

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Extension to Partial Assignments

such that &geq[edge, 2]() can also be evaluated under partial assignments, where the three-
valued oracle function f ′

&geq(A′, edge, 2) yields true if |{edge(x, y) | Tedge(x, y) ∈ A′}| ≥
2, unassigned if |{edge(x, y) | Tedge(x, y) ∈ A′}| < 2 and |{edge(x, y) | Tedge(x, y) ∈
A′ or Uedge(x, y) ∈ A′}| ≥ 2 (i.e. when two edges can still potentially be mapped to
true by an extension of A′), and false otherwise. △

Note that the definition of answer sets carries immediately over to programs with
external atoms that use three-valued oracle functions. This is because answer sets are
complete assignments and thus, the oracle function call for an external atom &g[~p](~c)
evaluates to either T or F according to Definition 3.2. It is therefore not necessary to
extend the definitions of satisfaction of ordinary atoms, rules, and programs, and the
definition of answer sets, to partial assignments.

A two-valued oracle function, however, cannot handle partial assignments and is thus
not a special case of a three-valued oracle function that can be passed to an algorithm
expecting the latter. However, we can always obtain a three-valued from a two-valued
oracle function such that answer sets remain invariant.

Proposition 3.1. For every hex-program Π and external predicate &g defined by a
two-valued oracle function, one can redefine &g by an assignment-monotonic three-valued
oracle function without changing the answer sets of Π.

Proof. For each external predicate &g we introduce a new external predicate &g′, construct
program Π′ by replacing all occurrences of &g in Π by &g′, and define f&g′(A, ·, ·) =
f&g(A, ·, ·) if A is complete over Π and f&g′(A, ·, ·) = U otherwise. Since under complete
assignments all external atoms in Π have the same truth values as the corresponding
external atoms in Π′, and answer sets are complete assignments by definition, it follows
immediately that AS(Π) = AS(Π′).

Intuitively, we construct a three-valued oracle function which coincides with the two-
valued one for complete assignments, and returns U otherwise. Hence, Proposition 3.1
allows us to “wrap” two-valued oracle functions for use by our algorithms below; in
the implementation this is the basis for backwards compatibility with existing external
sources.

We exploit partial assignments by extending previous evaluation algorithms. In the
spirit of theory propagation in SMT solvers (Barrett et al., 2009), we use external theory
learning (ETL). It is related to external behavior learning, which encodes observed output
of external sources as nogoods (Eiter et al., 2012), but our extension works over partial
assignments such that external sources may drive early propagation of truth values
implied by the current partial assignment.

As for external behavior learning, we can associate with each external source a
learning-function Λ that yields a set of nogoods Λ(&g[~p], A) learned from the evaluation
of &g[~p] under an assignment A. Learned nogoods have to be correct, i.e., they must
not eliminate compatible sets. Formally, a nogood δ is correct w.r.t. a program Π, if all
compatible sets of Π are solutions to δ.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

Algorithm 3.1: hex-CDNL with Partial Evaluation

Input: A hex-program Π
Output: An answer set of Π if one exists, and ⊥ otherwise

Let Π̂ be the guessing program of Π

Â← {Ua | a ∈ A(Π)} // all atoms unassigned

∇ ← ∅ // set of dynamic nogoods

dl ← 0 // decision level

while true do

(a) (Â,∇)← Propagation(Π̂,∇, Â)

(b) if some nogood δ violated by Â then
if dl = 0 then return ⊥
analyze conflict, add learned nogood to ∇, set dl to backjump level

(c) else if Â is complete then

A← Â ∩
{

Ta, Fa | a ∈ A(Π̂)
}

if there is an unfounded set U of Π̂ w.r.t. Â s.t. U ∩ {Ta | Ta ∈ Â} 6= ∅ then
construct violated nogood for U and add it to ∇
analyze conflict, add learned nogood to ∇, set dl to backjump level

(d) else if Â is not compatible for Π̂ or A is not a minimal model of fΠA then

∇ ← ∇∪ {Â}
else

return A
end

(e) else if heuristics evaluates &g[~y] and Λ(&g[~y], Â) 6⊆ ∇ then

∇ ← ∇∪ Λ(&g[~y], Â)
(f) else

Guess σa ∈ {Ta, Fa} for some atom a with Ua ∈ Â
dl ← dl + 1

Â← (Â \ {Ua}) ∪ {σa}
end

end

3.2 HEX-Algorithm Based on Partial Assignments

We extend learning functions for partial assignments as follows. Let E(Π) contain all
ge-predicates &g[~p] that occur in Π, and let L(Π̂) = {Ta, Fa, Ua | a ∈ A(Π̂)} denote the
set of all signed literals on atoms that occur in Π̂.

Definition 3.4 (Three-Valued Learning Function). A (three-valued) learning function

for a hex-program Π is a mapping Λ: E(Π)× A→ 22L(Π̂)
that assigns each ge-predicate

&g[~p] and partial assignment A a set Λ(&g[~p], A) of nogoods. We call Λ correct for Π, if
for all arguments &g[~p] ∈ E and A ∈ A, every nogood δ ∈ Λ(&g[~p], A) is correct for Π.

Throughout the rest, we assume that learning functions are always correct for the
programs at hand.

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. HEX-Algorithm Based on Partial Assignments

We now present a procedure for computing an answer set of a hex-program, shown
in Algorithm 3.1 and illustrated by Figure 3.1. To compute multiple answer sets, we can
naively add previous answer sets as constraints and call the algorithm again (cf. Gebser
et al. (2007) for more elaborated techniques). The basic structure of Algorithm 3.1
resembles an ordinary ASP-solver, but has additional checks in Part (c) and external
calls to learn further nogoods in Part (e), which is based on partial assignments. Without
the extensions, it computes an answer set Â of the guessing program Π̂ and returns the
projection of Â to the atoms in Π (cf. Drescher et al. (2008)). To this end, it starts
from a void assignment and performs unit propagation in Part (a) to derive further
truth values. Part (b) backtracks and learns nogoods from conflicts. Part (c) checks
compatibility and minimality of the model candidate. To this end, the (more efficient)
check in the if -block checks minimality from the perspective of an ordinary ASP-solver
without respecting the semantics of external sources (i.e., minimality of Â w.r.t. Π̂); the
minimality check is realized using unfounded sets introduced in Section 2.4, which are
atoms that support each other only cyclically. If this check fails, the algorithm learns a
nogood and backtracks. Only if this check is passed, the else if -block in Part (d) checks
compatibility and e-minimality under consideration of external sources (i.e., e-minimality
of A w.r.t. Π), cf. Definition 2.4. We will discuss the e-minimality check in detail in
Chapter 4. If this check is also passed, an answer set has been found. Finally, without
Part (e), the algorithm makes a guess in Part (f) if no further truth values can be derived
and the assignment is incomplete.

The additional calls to external sources and nogood learning in Part (e) are not
mandatory but prune the search space, and may be executed more or less frequently
according to different heuristics; they may eliminate assignments violating known behavior
of external sources already early during the search, while the correctness of the learning
function Λ guarantees that no compatible set of Π̂ (and hence no answer set of Π) is
eliminated. Notably and in contrast to previous algorithms (Eiter et al., 2012), external
atoms are evaluated under partial assignments and use a three-valued oracle function.

We can show that this algorithm is sound and complete:

Theorem 3.1. If Algorithm 3.1 returns for an input program Π (i) an assignment A,
then A is an answer set of Π; (ii) the symbol ⊥, then Π is inconsistent.

Proof. The algorithm extends the conflict-driven algorithm for ordinary ASP as follows:

• The check for compatibility of Â and for minimality w.r.t. fΠA in the if -block of
Part (c) is added.

• The evaluation of external atoms and addition of nogoods in Part (e).

Without these changes, soundness and completeness of the algorithm for ordinary
ASP (as presented by Drescher et al. (2008)) implies that the algorithm returns the
projection of some answer set Â of Π̂ to A(Π) if Π̂ is consistent, and ⊥ otherwise. We
now show that the changes adopt the behavior as desired.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

Π
Create Guessing

Program

Main Search (CDNL) Learning Functions

Check Unverified Ex-
ternal Atom Guesses

Minimality CheckAnswer
Set(s)

External Atom
Evaluation

Π̂

Model Candidates

Compatible Sets

......... Partial Assignment

IO-Nogoods

Figure 3.1: Illustration of the workflow of Algorithm 3.1 (adapted from (Redl, 2014))

First, the added if -block in Part (c) eliminates those answer sets of Π̂ which are either
not compatible sets of Π, or not minimal models w.r.t. fΠA. The remaining answer sets
of Π̂ projected to the atoms in Π are exactly the answer sets of Π (cf. Definition 2.4).
Thus, the algorithm with the added if -block in Part (c) but without the addition of
Part (e) has exactly the desired behavior.

Second, the addition of Part (e) is only an optimization and we need to justify that it
does not eliminate answer sets of Π. But this follows from the correctness of Λ(·, ·), which
implies that assignments forbidden by such nogoods would be incompatible with the
external sources anyway; therefore they cannot be compatible sets and also not answer
sets.

Algorithm hex-CDNL describes the schematic backbone of concrete incarnations that
are obtained by choosing particular learning functions and heuristics for driving the
learning process under partial assignment evaluation. Furthermore, different procedures
for the unfounded set check might be used; we shall deal with these aspects in the next
Section as well as Chapter 4.

3.3 Nogood Learning with Partial Assignments

In this section, we discuss the generation of nogoods which partially encode the semantics
of external atoms. In contrast to previous work on external behavior learning, this

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Nogood Learning with Partial Assignments

generation however will work for partial assignments in general, and not only for complete
assignments. When certain ground instances of an external atom can already be decided,
nogoods can be learned early on, and incompatible assignments can be identified; thus,
they can guide the solver. Intuitively, nogoods learned based on partial assignments are
preferable as they are usually smaller and cut incomplete assignments.

3.3.1 Three-Valued Learning Functions

Let us first assume that we have no further knowledge about external sources and can
only observe their (partial) output under a given (possibly partial) input. We introduce
a three-valued learning function for the general case, which is a lifting of the respective
two-valued learning function defined by Eiter et al. (2012).

Definition 3.5 (Faithful Input-Output Nogood). An input-output (io-)nogood is any
nogood of the form

N = {σ1a1, . . . , σnan} ∪ {σn+1e&g[~p](~c)} where σ1, . . . , σn+1 ∈ {T, F};

we let NI = {σ1a1, . . . , σnan} be the literals over ordinary atoms (called the input part),
NO = {σn+1e&g[~p](~c)} be the replacement atom (called the output part) of N , and

σ(NO) = σn+1. We call N faithful, if f&e(A, ~p,~c) = σ(NO) for all partial assignments
A ⊇ NI , i.e., it resembles the semantics of the external source.

We note the following property.

Proposition 3.2. If N is a faithful io-nogood such that NO = {σn+1e&g[~p](~c)}, then N
is correct w.r.t. all programs Π that use e&g[~p](~c).

Proof. Consider a faithful io-nogood N = {σ1a1, . . . , σnan} ∪ {σn+1e&g[~p](~c)}. Then

faithfulness implies f&e(NI , ~p,~c) = σ(NO). Suppose an assignment A violates N . Then
A ⊇ NI and thus f&e(A, ~p,~c) = σ(NO) = σn+1. However, since σn+1e&g[~p](~c) ∈ A, it
follows that A cannot be a compatible set of any program.

As for the converse, correct nogoods w.r.t. a given program Π may be io-nogoods that
are not faithful, or simply even no io-nogoods. In particular, for inconsistent ordinary
ASP-programs, any io-nogood is trivially correct as there are no compatible sets which
could be wrongly eliminated, but e.g. the empty nogood is not an io-nogood.

When the oracle of an external atom is evaluated, the solver can create a new
nogood for the observed input-output relationship. That is, evaluating &g[~p] for a partial
assignment A, the solver learns, given all true and false literals of input predicates,
whether the output contains ~c, where f&g(A, ~p,~c) 6= U. Note that, since we only consider
ground hex-programs Π, for any partial assignment A and input list ~p there can only be
finitely many tuples ~c where f&g(A, ~p,~c) = F such that ~c occurs in a given program Π.
Hence, we only need to consider a fixed number of potential output tuples, which we call
a scope S of output tuples. In general, the scope may simply contain all output tuples
over the given finite vocabulary.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

Definition 3.6 (Input-Output Learning Function). The learning function for a ge-
predicate &g[~p] under partial assignment A and scope S is

Λu(&g[~p], A) =
{

A′ ∪ {σe&g[~p](~c)}|f&g(A, ~p,~c) = σ 6= U,~c ∈ S}

,

where A′ = {σ′p(~c′) ∈ A | p ∈ ~p, σ′ 6= U} is the relevant part of the external atom input.

Each respective nogood is an io-nogood by construction and as we have that the
oracle is assignment-monotonic, also faithful. Hence:

Proposition 3.3. Let &g[~p](·) be an external atom in a hex-program Π. Then for all
assignments A, the nogoods Λu(&g[~p], A) in Definition 3.6 are correct w.r.t. Π.

Proof. The added nogood for an output tuple ~c such that f&g(A, ~p,~c) = σ, σ ∈ {T, F},
is {σe&g[~p](~c)}∪{σ′p(~c′) ∈ A | p ∈ ~p, σ′ 6= U}. If the nogood is violated by an assignment
A′, then the guess for e&g[~p](~c) w.r.t. A′ was wrong as the replacement atom is guessed
false (resp. true) but the tuple ~c is in the output (resp. not in the output). Hence, the
assignment A′ is not compatible and cannot be extended to a compatible set anyway.

Example 3.2 (cont’d). Assume we are given for the graph guessing program Π from Ex-
ample 2.3 in Section 2.2.1 the partial assignment A = {Tnode(a), Tnode(b), Fedge(a, b),
Uedge(b, a), Tn_edge(a, b), Un_edge(b, a)}. In this case, the nogood learning func-
tion Λu(&geq[edge, 2], A) yields the single io-nogood {Fedge(a, b), Te&geq[edge,2]()}, which
is indeed faithful. On the other side, for A′ = {Tnode(a), Tnode(b), Tedge(a, b),
Uedge(b, a), Fn_edge(a, b), Un_edge(b, a)}, we find that no io-nogood can be learned
and Λu(&geq[edge, 2], A′) returns ∅ as f ′

&geq(A′, edge, 2) = U, where f ′
&geq is the three-

valued assignment-monotonic oracle functions as in Example 3.1. △

3.3.2 Exploiting External Source Properties

According to Eiter et al. (2012), given a ge-predicate &g[~p] and a complete assignment A,
an input parameter pi ∈ ~p is monotonic, if f&g(A, ~p,~c) = T implies that f&g(A′, ~p,~c) = T
for every assignment A′ ≥ A that augments A only by atoms with predicate pi. We
can refine a three-valued learning function Λu similar to two-valued learning functions,
cf. Eiter et al. (2012), and tailor it to external sources with specific properties. Here,
we show this for external atoms which are monotonic in an input predicate pi, i.e.,
the value of the external atom cannot switch from true to false if more atoms over pi

become true and, conversely, it cannot switch from false to true if more atoms over pi

become false. Accordingly, literals of the form Fpi(~c
′) may be dropped from io-nogoods

containing Fe&g[~p](~c), and literals of the form Tpi(~c
′) may be dropped from io-nogoods

containing Te&g[~p](~c). Thus, by exploiting monotonic behavior of oracle functions we are
able to obtain smaller, i.e. more general, io-nogoods than by using the general learning
function Λu.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Nogood Minimization

Definition 3.7 (Monotonic Learning Function). The learning function for a ge-predicate
&g[~p] that is monotonic in ~pm ⊆ ~p, under a partial assignment A and a scope S, yields

Λmu(&g[~p], A) =
{

A′
σ ∪ {σe&g[~p](~c) |f&g(A, ~p,~c) = σ 6= U,~c ∈ S}

,

where A′
σ = {σ′p(~c′) ∈ A | p ∈ ~p, p 6∈ ~pm, σ′ 6= U} ∪ {σp(~c′) ∈ A | p ∈ ~pm}.

As before, we can also show that nogoods learned by means of the learning function
Λmu are not violated by any compatible set:

Proposition 3.4. Let &g[~p](·) be an external atom in a hex-program Π. Then for all
assignments A, the nogoods Λmu(&g[~p], A) in Definition 3.7 are correct w.r.t. Π.

Proof. The added nogood for an output tuple ~c such that f&g(A, ~p,~c) = σ, σ ∈ {T, F},
is {σe&g[~p](~c)} ∪ {σ′p(~c′) ∈ A | p ∈ ~p, p 6∈ ~pm, σ′ 6= U} ∪ {σp(~c′) ∈ A | p ∈ ~pm}. If the
nogood is violated by an assignment A′, then the guess for e&g[~p](~c) w.r.t. A′ was wrong
as the replacement atom is guessed false (resp. true) but the tuple ~c is in the output
(resp. not in the output). The previous holds despite the fact that literals of form Tp(~c)
(resp. Fp(~c)), where p ∈ ~pm, are omitted from io-nogoods implying a false (resp. true)
evaluation of the oracle function because {Tp(~c) | Tp(~c) ∈ A′} ≥ {Tp(~c) | Tp(~c) ∈ A}
(resp. {Fp(~c) | Fp(~c) ∈ A′} ⊇ {Fp(~c) | Fp(~c) ∈ A}) must hold for all p ∈ ~pm, and we
have that f&g(A, ~p,~c) = T implies that f&g(A′′, ~p,~c) = T for every A′′ ≥ A (resp. that
f&g(A, ~p,~c) = F implies that f&g(A′′, ~p,~c) = F for every A′′ s.t. {Fp(~c) | Fp(~c) ∈ A′′} ⊇
{Fp(~c) | Fp(~c) ∈ A}), due to the definition of monotonic input parameters. Hence, the
assignment A′ is not compatible and cannot be a compatible set anyway.

Example 3.3 (cont’d). Consider again program Π from Example 2.3 in Section 2.2.1 and the
partial assignment A = {Tnode(a), Tnode(b), Fedge(a, b), Tedge(b, a), Tn_edge(a, b),
Un_edge(b, a)}. When employing the function Λu, we obtain Λu(&geq[edge, 2], A) =
{{Fedge(a, b), Tedge(b, a), Te&geq[edge,2]()}

}

. However, when employing Λmu, we obtain
Λmu(&geq[edge, 2], A) =

{{Fedge(a, b), Te&geq[edge,2]()}
}

by exploiting monotonicity of
the input parameter edge. △

The learning functions Λu and Λmu generate nogoods depending on the oracle function
given a certain input. However, an external source provider usually knows the source
semantics better and can thus provide better nogoods. The latter might include only the
necessary atoms in the input; they are thus smaller and prune more of the search space.
In such cases, it makes sense to provide custom learning functions Λl(&g[~p], A) which
generate for &g[~p] and a (possibly partial) assignment A a set of nogoods.

3.4 Nogood Minimization

In this section, we discuss a second way to exploit partial assignments for more effective
learning of io-nogoods based on three-valued oracle functions. Instead of calling three-
valued oracle functions with partial input assignments that are generated during solving, a
new partial assignment A′ can be obtained from a given assignment A, where A � A′, by

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

changing part of the truth values of literals in A from T or F to U. Then, a three-valued
oracle function can be called with the resulting assignment A′ in order to detect truth
assignments in A which are irrelevant for the evaluation of the respective external source.

By employing this strategy, we eliminate redundant (input) literals from the nogoods
in Λu and Λmu, while faithfulness of io-nogoods is retained (relying on assignment-
monotonicity of three-valued oracle functions). Recall that io-nogoods do not contain
any literals which are unassigned. Hence, we can obtain smaller and thus, more general
io-nogoods, which potentially prune larger parts of the search space. For this purpose,
we introduce two new algorithms for computing minimal io-nogoods, i.e, nogoods from
which no literal in the input part can be removed without changing the output value of
the respective oracle function to unassigned. Moreover, we show that minimization and
theory-specific learning are in fact closely related.

Definition 3.8 (Io-Nogood Minimization). Given a faithful io-nogood N with NO =
{σe&g[~p](~c)}, the set of minimized nogoods of N is

minimize&g[~p](N) =

{N ′ ⊆ N | N ′ is a faithful io-nogood, f&g(N ′′, ~p,~c)=U for all N ′′ (N ′
I}.

This extends to sets S of nogoods by minimize&g[~p](S) =
⋃

N∈S minimize&g[~p](N).
Note that exponentially many minimal nogoods in the size of N are possible. In the
following, we omit the subscript &g[~p] if the ge-predicate is clear from the context and
just write minimize(N).

Example 3.4 (cont’d). Consider the assignment A = {Tnode(a), Tnode(b), Fedge(a, b),
Fedge(b, a), Tn_edge(a, b), Tn_edge(b, a)} together with the learned faithful io-nogood
N = {Fedge(a, b), Fedge(b, a), Te&geq[edge,2]()} ∈ Λu(&geq[edge, 2], A). According to
Definition 3.8, we obtain minimize(N) = {{Fedge(a, b), Te&geq[edge,2]()}, {Fedge(b, a),
Te&geq[edge,2]()}}. △

The minimized nogoods subsume all faithful io-nogoods.

Proposition 3.5. Let A be a partial assignment and N be a faithful io-nogood for &g[~p]
over the atoms in A. Then some N ′ ∈ minimize(Λu(&g[~p], A)) exists such that N ′ ⊆ N .

Proof. The nogood N can be reduced to a subset-minimal set M such that M is a faithful
io-nogood but f&g(N ′′, ~p,~c) = U for all N ′′ with N ′′

I (MI , N ′′
O = MO. We observe that

M ∈ minimize(Λu(&g[~p], A)) and M ⊆ N .

As a subset of each faithful io-nogood occurs among all minimized nogoods, no further
faithful io-nogoods prune the search space more effectively. Still, there might be further
correct nogoods (non-io ones and/or depending on the program).

Definition 3.9 (Io-Complete and Partial Learning Functions). A theory-specific learning
function Λl(·, ·) is io-complete for an external source &g, if for every partial assignment
A′ ⊆ A and input list ~p, it holds that Λl(&g[~p], A) is the least set that contains A′ ∪
{σe&g[~p](~c)} for every output list ~c such that f&g(A′, ~p,~c) = σ ∈ {T, F}; otherwise, the
learning function Λl(·, ·) is partial.

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Nogood Minimization

That is, an io-complete theory-specific learning function Λl learns all and only io-
nogoods with a premise over the current partial assignment which resemble the semantics
of &g.

As it turns out, learning using io-complete theory-specific learning functions and
nogood minimization are closely related. Let min⊆(S) = {N ∈ S | ∄N ′ ∈ S s.t. N ′ (N}
be the restriction of S to subset-minimal nogoods.1 Then:

Proposition 3.6. Let Λl be an io-complete theory-specific learning function for an
external source &g. Then, for all partial assignments A and input lists ~p we have
minimize(Λu(&g[~p], A)) = min⊆(Λl(&g[~p], A)).

Proof. Let A be a partial assignment and let ~p be an input list.

(⇒) Let N ∈ minimize(Λu(&g[~p], A)) be an io-nogood learned from Λu after minimiza-
tion. Since f&g(NI , ~p,~c) = σ(NO) by faithfulness, it follows from completeness of Λl that
N ∈ Λl(&g[~p], A). Moreover, since N is minimal, it follows that f&g(N ′

I , ~p,~c) = U for all
N ′ = N ′

I ∪NO with N ′
I (NI . Therefore, there can be no N ′ (N with N ′ ∈ Λl(&g[~p], A),

thus N ∈ min⊆(Λl(&g[~p])).

(⇐) Let N ∈ min⊆(Λl(&g[~p], A)) be a subset-minimal nogood learned from Λl. Since
f&g(NI , ~p,~c) = σ(NO) (due to faithfulness) we have N ∈ Λu(&g[~p], A) by definition of
Λu. Moreover, since N is subset-minimal among the nogoods Λl(&g[~p], A) and Λl is
io-complete, we have that f&g(N ′

I , ~p,~c) = U for all N ′ = N ′
I ∪{σ(NO)e&g[~p](~c)}. But then

no atom from N can be removed as by Definition 3.8, thus N ∈ minimize(Λu(&g[~p], A)).

This proposition implies that we have alternative techniques to learn all io-nogoods
that prune the search space in an optimal way (cf. Proposition 3.5). As above, it
considers only faithful io-nogoods while further correct nogoods may exist. Notably,
the equality holds only under the premises of exhaustive minimization in the first case
and an io-complete theory-specific learning function in the second; otherwise, different
sets of nogoods may be produced. As both operations are expensive and impractical, it
makes sense to support both (incomplete) minimization and (incomplete) theory-specific
learning functions.

3.4.1 Sequential Nogood Minimization

In practice, we use Algorithm 3.2 to compute only one minimal io-nogood for each
learned io-nogood. Instead of minimizing each nogood separately and to avoid redundant
queries, we proceed in parallel and use a cache for the external atom output of a set
S of io-nogoods with identical input but different outputs. The algorithm works by
sequentially removing the same literal simultaneously from the premises of all N in S in
Part (a), and checking whether the output for the resulting premises is already in the
cache, in Part (b). If not, all outputs ~c′ s.t. f&g(A, ~p,~c′) 6= U are computed (this is a

1Despite similar names, minimize differs from min⊆ as it minimizes w.r.t. oracle results while min⊆

just selects the minimal sets.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

Algorithm 3.2: Simultaneous Nogood Minimization

Input: A set S of faithful io-nogoods N with NI = {σ1a1, . . . , σnan}
Output: A set of minimal faithful io-nogoods

ch ← ∅ // cache for oracle calls

for each signed literal σiai ∈ NI do
(a) for each io-nogood N ′ ∈ S with N ′

O = {σn+1e&g[~p](~c)} do
N s ← N ′

I \ {σiai} // smaller oracle input

(b) if 〈N s, ·〉 6∈ ch then

ch ← ch ∪
{〈

N s, {σe&g[~p](~c′) | f&g(N s, ~p, ~c′) = σ 6= U}
〉}

end
(c) if σn+1e&g[~p](~c) ∈ output for 〈N s, output〉 ∈ ch then

Replace N ′ by N s ∪ {σn+1e&g[~p](~c)} in S
end

end

end
return S

single call in the implementation) and stored in the cache. Otherwise, no external source
call is needed. It is then checked if the resulting nogood is still faithful in Part (c), and
N is replaced by its reduced equivalent in S in this case. Formally:

Proposition 3.7. For a set S of faithful io-nogoods with equal input parts and distinct
output parts, Algorithm 3.2 yields exactly one faithful io-nogood N ′ ∈ minimize(N) for
each N ∈ S.

Proof. Let S be a set of faithful io-nogoods with identical input parts and distinct output
parts. To distinguish between the input and the output of Algorithm 3.2, we denote by
So the altered set which is returned by the algorithm given input S.

First of all, S is only manipulated in Part (c) by replacing the input part of nogoods
in S. Hence, it holds that |S| = |So|. Moreover, all N ∈ S have different output parts
which are not changed in Part (c). As a result, after every replacement exactly one
element in the resulting set S′ can be associated with each nogood in the initial set S.
This proves that each input has a corresponding output nogood. It remains to show that
these are minimal faithful io-nogoods.

Let N ∈ S and No ∈ So be the corresponding output nogood, i.e. NO = No
O =

σn+1e&g[~p](~c). We have to show that No ∈ minimize(N). According to Definition 3.8,
this means we have to show that No ⊆ N , that No is a faithful io-nogood, and that
f&g(N ′′, ~p,~c) = U for all N ′′ (No

I . Clearly, it holds that No ⊆ N since elements are
only removed from NI by Algorithm 3.2.

Next, we prove that No is a faithful io-nogood by showing that faithful io-nogoods
in S are only replaced by faithful io-nogoods, in Algorithm 3.2. Let S′ be an arbitrary
state of S during the execution of Algorithm 3.2, and N ′ ∈ S′ a faithful io-nogood.
We need to show that N s ∪ N ′

O is also a faithful io-nogood for N s = N ′
I \ σiai where

σiai ∈ N ′
I . Since N s ⊂ N ′

I , it holds that N s ∪ N ′
O is an io-nogood. In Part (c), N ′

I

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.4. Nogood Minimization

is replaced by N s in S only if N ′
O ∈ output for 〈N s, output〉 ∈ ch, which is the case

only if f&g(N s, ~p,~c) = σ(N ′
O) 6= U, due to Part (b) of the algorithm. Note that it is

ensured in Part (b) that for N s there is exactly one 〈N s, output〉 ∈ ch. Further, we
know that σ(N ′

O) 6= U as N ′ is an io-nogood. Due to assignment-monotonicity of f&g,
we have that f&g(N s, ~p,~c) = X, X ∈ {T, F}, implies f&g(A, ~p,~c) = X for all partial
assignments A � N s, by Definition 3.3. We derive that f&g(A, ~p,~c) = σ(N ′

O) for all
partial assignments A ⊇ N s and thus, that N s ∪N ′

O is in fact a faithful io-nogood. Since
we know that N is a faithful io-nogood, we conclude that No is a faithful io-nogood as
well.

Finally, we prove that f&g(N ′′, ~p,~c) = U for all N ′′ (No
I . Assume to the contrary

that we have f&g(N ′′, ~p,~c) 6= U for some N ′′ (No
I , and let σiai ∈ No

I \ N ′′. Since
σiai ∈ No

I , we have that N s = N ′
I \ σiai holds for some N ′ that is chosen during the

execution of Algorithm 3.2 in Part (a) (i.e. in the iteration when it is tried to obtain
smaller nogoods by removing σiai), with N ′

O = σn+1e&g[~p](~c) and N ′
I ⊆ No

I . As we have
that σiai ∈ No

I , we derive that f&g(N s, ~p,~c) = U. Otherwise N ′ would be replaced
by N s ∪ N ′

O in Part (c), and we would obtain σiai 6∈ No
I . However, we obtain that

f&g(N ′′, ~p,~c) 6= U, f&g(N s, ~p,~c) = U and N s ⊃ N ′′, which together contradicts that f&g

is assignment-monotonic. This proves that indeed f&g(N ′′, ~p,~c) = U for all N ′′ (No
I

and thus, No ∈ minimize(N).

3.4.2 Divide-and-Conquer Strategy for Nogood Minimization

Even when io-nogoods with the same input parts are minimized simultaneously, removing
each literal from the respective input separately and checking the output of the corre-
sponding oracle function may result in a large number of external calls, which directly
depends on the length of the input part. In cases where io-nogoods are large or the
external evaluation requires a lot of time, the additional computational effort required
for nogood minimization may outweigh the positive effect of obtaining smaller nogoods,
or even make minimization infeasible. While in the worst case, i.e. when an io-nogood is
already minimal, this situation cannot be improved, it can be more efficient to remove
several literals from a nogood at once before evaluating the external source when the
input part contains many irrelevant literals.

The QuickXplain algorithm, which has been introduced by Junker (2004) for
efficiently computing minimal conflict sets in the context of constraint programming,
can be used for this purpose as an alternative algorithm for minimizing io-nogoods.
It implements a divide-and-conquer strategy producing a binary search tree, and can
be employed for computing a minimal nogood from a given io-nogood more efficiently
if the nogood contains many irrelevant literals, especially when the input part of the
io-nogood is large. In this way, given an io-nogood with input part of size n, instead
of n calls to the oracle function, only O(log2n) external calls are required. However,
in the worst case, i.e. when no literal can be removed from a given nogood, O(n) calls
are necessary. Consequently, the algorithm can behave either better or worse than a
sequential algorithm, depending on the properties of the io-nogoods that are minimized.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

Algorithm 3.3: QuickXplain Nogood Minimization

Input: A faithful io-nogood N = {σ1a1, . . . , σnan, σn+1e&g[~p](~c)}
Output: A minimal faithful io-nogood N ′ ∈ minimize(N)

(a) if f&g(∅, ~p,~c) = σn+1 then return {σn+1e&g[~p](~c)}
(b) return quickXplain(∅, ∅, NI) ∪ {σn+1 e&g[p̃](c̃)}

function quickXplain(B, D, N ′)
(c) if D 6= ∅ and f&g(B, ~p,~c) = σn+1 then return ∅
(d) if |N ′| = 1 then return N ′

(e) Partition N ′ into two non-empty sets N1 and N2

D1 ← quickXplain(B ∪N2 , N2 , N1)
D2 ← quickXplain(B ∪D1 , D1 , N2)
return D1 ∪D2

Algorithm 3.3 is a variant of the QuickXplain-algorithm by Shchekotykhin et al.
(2015), adapted to our specific setting of io-nogood minimization. The algorithm receives
a faithful io-nogood N = {σ1a1, . . . , σnan, σn+1e&g[~p](~c)} and first checks whether the
literal in the output part NO depends on a non-empty input part NI , in Part (a).
Subsequently, a recursive function is called in Part (b), which during its execution checks
if different subsets of NI imply the same external replacement literal in NO as NI .

The first argument B of the function quickXplain(B, D, N ′) contains the current
subset of the input part NI w.r.t. which the oracle function f&g(B, ~p,~c) is evaluated in
Part (c). The second argument D indicates if the oracle function needs to be evaluated
for a given B, which is only the case if D is non-empty as only then B has changed
since the last external evaluation. If B is determined to imply the same truth value for
e&g[~p](~c) as NI in Part (c), no further literals from N ′ need to be added to B and thus,
the empty set is returned. In case the subset N ′ of the input part NI of literals that
can still be added to B to obtain the correct value for f&g(B, ~p,~c) is a singleton, it is
returned in Part (d). Finally, in Part (e), the provided subset N ′ of the input part NI

is partitioned into two nonempty sets N1 and N2, and the function is called recursively,
once for each partition N1 and N2 of N ′. The result D1 of the first call, where N1 is
provided as new subset of the input part NI , contains all literals from N1 that need
to be added to B ∪N2 such that the oracle function still evaluates to σn+1. Similarly,
all literals from NI that need to be added to B ∪D1 such that the oracle function still
evaluates to σn+1 are stored in D2. As a result, no literal can be removed from D1 or
D2 such that f&g(B ∪D1 ∪D2, ~p,~c) = σ still holds, and the input part D1 ∪D2, which
together with {σn+1e&g[~p](~c)} yields a minimal io-nogood, is returned.

The computation of a minimal io-nogood by Algorithm 3.3 is illustrated by the
following example.

Example 3.5. Reconsider f ′
&geq from Example 3.1 and the faithful io-nogood N =

{Fedge(a, a), Tedge(b, b), Tedge(a, b), Tedge(b, a), Fe&geq[edge,2]()}. When Algorithm
3.3 is executed with input N , the function call quickXplain(∅, ∅, NI) is performed
with NI = {Fedge(a, a), Tedge(b, b), Tedge(a, b), Tedge(b, a)}. Since D = ∅ and

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Empirical Evaluation

|N | 6= 1 hold w.r.t. the first call, N ′ = NI is partitioned into two sets, for example
N1 = {Fedge(a, a), Tedge(b, b)} and N2 = {Tedge(a, b), Tedge(b, a)}.

Subsequently, the first recursive call of the function quickXplain returns ∅, which is as-
signed to D1, as f ′

&geq(N2, edge, 2) = T, i.e. {Tedge(a, b), Tedge(b, a), Fe&geq[edge,2]()} ⊂
N is still a faithful io-nogood. Accordingly, the second recursive call in Part (e)
corresponds to the call quickXplain(∅, ∅, N2), in which N2 is partitioned again into
{Tedge(a, b)} and {Tedge(b, a)}. Because each of the sets has cardinality 1 but none
of them suffices to derive &geq[edge, 2](), N1 and N2 are returned from the two re-
cursive calls in Part (e), respectively. Thus, N1 ∪ N2 is returned by the second re-
cursive call in the outer function call, which is assigned to D2. Consequently, ∅ ∪
{Tedge(a, b), Tedge(b, a)} is returned by the function called in Part (b). Finally, the
minimal io-nogood {Tedge(a, b), Tedge(b, a), Fe&geq[edge,2]()} is returned by Algorithm
3.3. △

Algorithm 3.3 always finds a minimal faithful io-nogood:

Proposition 3.8. Given a faithful io-nogood N , Algorithm 3.3 terminates and returns
exactly one faithful io-nogood N ′ ∈ minimize(N).

Proof. The statement follows directly from Proposition 3.6 and Theorem 1 by Junker
(2004).

Like Algorithm 3.2, Algorithm 3.3 returns exactly one minimal io-nogood for a given
input. A straightforward way to obtain multiple minimal io-nogoods consists in re-running
Algorithm 3.3 with different partition heuristics in Part (e); and every minimal io-nogood
can be obtained in this way.

3.5 Empirical Evaluation

In this section, we present the results of an experimental evaluation of our techniques.

3.5.1 Experimental Setup

We integrated the techniques for partial evaluation during hex-solving that have been
developed in this chapter into dlvhex 2.5.0 with gringo 4.4.0 and clasp 3.1.1 as
backends.

We remark that although clingo 5 is known for its theory solving capabilities (Gebser
et al., 2016), also previous versions of gringo resp. clasp had similar features, which
are exploited by dlvhex; clingo 5 makes these features more accessible.

Note that an upgrade of our backend to clingo 5, which is currently available in
version 5.42 and supports a large range of modern ASP solving techniques such as multi-
shot ASP solving (Gebser, Kaminski, Kaufmann, & Schaub, 2019) and custom heuristics,
will mainly simplify the interfaces, but will not directly enable algorithmic improvements.

2https://github.com/potassco/clingo

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/potassco/clingo

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

Hence, there is no interference with the techniques presented in this chapter. For a more
detailed discussion of the differences to clingo 5 we refer to Section 3.6.

In the following we first describe the platform used for carrying out our benchmarks
and the configurations we are going to compare. We then describe the benchmark suite
used for the evaluation. All instances and log files of the experiments can be found at
http://www.kr.tuwien.ac.at/research/projects/inthex/partialeval.

Evaluation Platform

All benchmarks were run on a Linux machine with two 12-core AMD Opteron 6238 SE
CPUs and 512 GB RAM; the timeout was 300 seconds and the memout was 8 GB per
instance. We used the HTCondor load distribution system (HTCondor Website, 2018) to
ensure robust running times (i.e., deviations of runs on the same instance are negligible).
The average running time of 50 instances per problem size is reported (in seconds) for
computing all answer sets respectively the first answer set; the number of timeouts is
shown in parentheses and furthermore, the average number of solutions of the instances
is given in the tables, where ‘≥’ respects timeouts.

Benchmark Configurations

Naturally, there is a tradeoff between the information that can be gained from additional
external evaluations under partial assignments during solving, and the running time that
has to be invested for the respective external calls. For this reason, we used different
heuristics for controlling the number of external evaluations, and investigated the impact
of 8 different solver configurations.

Initially, we tested three heuristics for additional external source calls during the main
search for compatible sets (cf. Algorithm 3.1, Part (e)) without nogood minimization,
namely

• never: external atoms are only evaluated w.r.t. candidate models (representing the
standard configuration of dlvhex without the new techniques);

• periodic: external atoms are evaluated w.r.t. partial assignments only after every
10th solver guess during the model search; and

• always: external atoms are evaluated w.r.t. partial assignments after every solver
guess during the model search.

We then tested nogood minimization instead of additional calls (i.e., only for complete
assignments), where we used the algorithm for simultaneous nogood minimization (cf.
Algorithm 3.2) and the QuickXplain algorithm (cf. Algorithm 3.3), respectively, for
minimizing either

• all nogoods in conditions ngm and qxp, respectively, or

• the currently conflicting ones, i.e. those which violate the current solver assignment
and trigger backjumping, in conditions ngm-c and qxp-c.

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://www.kr.tuwien.ac.at/research/projects/inthex/partialeval

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Empirical Evaluation

For benchmarks where external atoms have output values, we also compared si-
multaneous minimization with sequential minimization (ngm-sq), i.e. minimizing each
io-nogood separately. We omit results for minimization combined with periodic or
always, as this was always significantly slower than some other configuration (due to
many more external calls with little gain).

Benchmark Problems

We considered encodings of three different problems in the evaluation:

• Pseudo-boolean (PB-)problems, also known as 0-1 integer linear programs, repre-
senting linear constraints over Boolean variables, which are among Karp’s famous
21 NP-complete problems (Karp, 1972).

• Assignment of taxi drivers to customers under constraints, where queries to an
external ontology, expressed in the lightweight description logic (DL) DL-Lite, are
made via external atoms to find out locations and classify customers and drivers
(taxi assignment with ontology access) (Eiter, Fink, Redl, & Stepanova, 2014; Eiter,
Fink, & Stepanova, 2016). Note that despite a similar scenario, our benchmark is
different from the one used by Eiter, Fink, Redl, and Stepanova (2014), as it admits
multiple solutions due to nondeterministic guessing of customer assignments.

• The well-known strategic companies problem (Cadoli, Eiter, & Gottlob, 1997),
which is popular with ASP competitions, extended with externally stored conflicts
among companies (conflicting strategic companies).

The problems have different characteristics with regard to the computational com-
plexity and the external atoms and their usage. While query answering w.r.t. the DL-Lite
ontology used in our taxi assignment benchmark is tractable (Calvanese, De Giacomo,
Lembo, Lenzerini, & Rosati, 2007), and solving PB-problems is NP-complete, computing
strategic companies is located at the second level of the polynomial hierarchy. More-
over, the general learning function Λu is used for the PB-problems benchmark. Due to
monotonicity of external sources, the learning function Λmu can be utilized in all other
benchmarks. A further difference consists in the fact that external atoms are used to
formulate integrity constraints in the PB-problems and the conflicting strategic companies
benchmark, while output values are derived in the taxi assignment benchmark.

3.5.2 Hypotheses

We started our investigation with the following hypotheses regarding the employment of
partial evaluation in the answer set search:

(H3.1) The heuristics periodic and always decrease the runtime over never if useful
information is obtainable by early evaluation with little runtime overhead, and
increase it otherwise, whereby the effect is stronger for always.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

trueAt(X) ∨ falseAt(X)←atom(X).

←&pbCheck[trueAt, PBInst]().

Figure 3.2: Pseudo-Boolean Problems Rules

(H3.2) The heuristics periodic performs better than always if more running time needs
to be invested for each external call, mitigating the tradeoff between information
gain and running time invested in additional calls.

(H3.3) The tradeoff between information gain and runtime invested in additional calls
can be mitigated even more effectively by just minimizing io-nogoods on complete
assignments using ngm or ngm-c instead of evaluating early.

(H3.4) Using qxp or qxp-c instead of ngm or ngm-c decreases the running time when
io-nogoods contain many irrelevant literals, but does not increase it significantly
otherwise.

3.5.3 Experiments on Partial Evaluation and Nogood Minimization

In this section, we use the three benchmark problems to investigate the effect of partial
evaluations during hex-search using different heuristics. In addition, we compare the
results to the running times achieved by employing our new algorithms for nogood
minimization.

Pseudo-Boolean Problems

Pseudo-boolean (PB-)problems constitute sets of pseudo-boolean constraints of the form
C0p0 + ... + Cn−1pn−1 ≥ Cn, where all pi are literals and all Ci are integers (Roussel &
Manquinho, 2009). A solution to a PB-problem P is a truth assignment to the Boolean
variables occurring in P such that all inequalities in P are satisfied, where a true literal is
interpreted as the value 1 and a false literal as the value 0. Several dedicated PB-solvers
have been developed (cf. Manquinho & Silva, 2005), and clasp can also be employed for
efficient PB-problem solving.

Here, however, our goal is not to implement a reasoner for solving PB-problems that
can compete with tailored solvers, but to specify external constraints of a hex-program
in the form of PB-problems such that answer sets are restricted to those assignments that
also represent solutions to the respective PB-problem. This strict separation of the guess
and the check part results in benchmark instances that are well-suited for investigating
the effect of a tighter integration of the solving algorithm and the evaluation of external
constraints.3 Moreover, applying an analogous pattern for outsourcing constraints in
hex-programs is a common strategy to avoid the explicit generation of all forbidden
combinations of atoms during grounding (Eiter, Redl, & Schüller, 2016).

3Note that for the purpose of solving PB-problems as part of a hex-program (possibly in combination
with other external sources), the external source could directly interface a dedicated PB solver.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Empirical Evaluation

All Answer Sets

never periodic always ngm ngm-c qxp qxp-c av. solutions

4 0.13 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.13 (0) 0.14 (0) 0.14 (0) 2.06
8 0.34 (0) 0.33 (0) 0.22 (0) 0.24 (0) 0.22 (0) 0.26 (0) 0.23 (0) 4.82

12 4.82 (0) 3.95 (0) 0.80 (0) 0.59 (0) 0.50 (0) 0.60 (0) 0.46 (0) 10.96
16 280.02 (1) 71.99 (0) 3.28 (0) 1.29 (0) 1.11 (0) 1.23 (0) 0.94 (0) 12.66
20 300.00 (50) 300.00 (50) 18.87 (0) 2.63 (0) 2.16 (0) 2.41 (0) 1.62 (0) 24.56
24 300.00 (50) 300.00 (50) 76.75 (1) 4.28 (0) 3.58 (0) 3.69 (0) 2.42 (0) 32.00
28 300.00 (50) 300.00 (50) 247.06 (32) 9.92 (0) 7.25 (0) 9.48 (0) 4.61 (0) 82.28
32 300.00 (50) 300.00 (50) 294.05 (47) 20.49 (0) 11.18 (0) 22.03 (1) 6.94 (0) 269.24
36 300.00 (50) 300.00 (50) 300.00 (50) 36.44 (1) 17.31 (0) 39.27 (3) 10.28 (0) 519.20
38 300.00 (50) 300.00 (50) 298.99 (49) 38.66 (1) 19.48 (0) 40.86 (2) 10.90 (0) 451.78
40 300.00 (50) 300.00 (50) 300.00 (50) 37.13 (0) 23.89 (0) 36.04 (0) 12.70 (0) 233.50

Table 3.1: Results for random PB-problems with 4 to 40 variables (all answer sets)

In our benchmark implementation, we search for solutions to a PB-problem P by
guessing an interpretation of the atoms occurring in P utilizing a disjunctive rule, and we
restrict the answer sets of the program to solutions of P by employing the external atom
&pbCheck[trueAt, PBInst]() in a program constraint. This results in a simple encoding
shown in Figure 3.2, where a fact atom(a) is added for each atom a occurring in P . At
this, the variable PBInst is instantiated by a string containing the path to a file encoding
the instance P , and the true extension of the predicate trueAt w.r.t. an assignment A
represents those atoms occurring in P that are mapped to true by A. The external
atom &pbCheck[trueAt, PBInst]() evaluates to true w.r.t. a complete assignment A iff
the interpretation of the atoms occurring in P represented by A constitutes a solution for
P . We extend the semantics of the associated evaluation function to partial assignments
A as follows:

f&pbCheck′(A, trueAt, PBInst) =

T if every C0p0 + ... + Cn−1pn−1 ≥ Cn

in P fulfills
∑

{c | TtrueAt(c)∈A}|=pi
Ci ≥ Cn;

F if some C0p0 + ... + Cn−1pn−1 ≥ Cn

in P fulfills
∑

{c | FtrueAt(c)/∈A}|=pi
Ci < Cn;

U otherwise.

By exploiting this three-valued semantics, inconsistent partial assignments to the atoms
occurring in P can be detected earlier. As a result, potentially large parts of the search
space can be pruned and the inconsistent partial assignments can be learned in form of
io-nogoods to avoid revisiting the same partial assignments subsequently.

First, we tested randomly generated problems with N ∈ [4, 40] variables and 4×N
PB-constraints with n = 6 and Ci ∈ [1, 5] for 0 ≤ i ≤ n. The results are shown in
Tables 3.1 and 3.2.

The specific ratio between the number of variables and the number of constraints
ensures that only a small fraction of all assignments are answer sets. A clear improvement
over never is observed whenever external atoms are evaluated early. The configuration
always shows the best performance, with periodic falling in-between always and never;
hence learning the io-behavior of the external source as early as possible outweighs the

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

First Answer Set

never periodic always ngm ngm-c qxp qxp-c

4 0.12 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.13 (0)
8 0.23 (0) 0.22 (0) 0.16 (0) 0.18 (0) 0.18 (0) 0.18 (0) 0.18 (0)

12 2.23 (0) 1.82 (0) 0.35 (0) 0.34 (0) 0.33 (0) 0.31 (0) 0.30 (0)
16 123.32 (0) 38.42 (0) 1.32 (0) 0.83 (0) 0.81 (0) 0.70 (0) 0.67 (0)
20 259.72 (42) 237.47 (32) 7.92 (0) 1.59 (0) 1.58 (0) 1.22 (0) 1.17 (0)
24 294.30 (49) 286.30 (46) 31.13 (0) 2.90 (0) 2.84 (0) 1.96 (0) 1.89 (0)
28 300.00 (50) 300.00 (50) 96.86 (7) 5.30 (0) 5.26 (0) 3.32 (0) 3.20 (0)
32 300.00 (50) 300.00 (50) 179.38 (21) 8.05 (0) 8.00 (0) 4.71 (0) 4.60 (0)
36 300.00 (50) 300.00 (50) 272.92 (42) 12.29 (0) 12.30 (0) 6.65 (0) 6.58 (0)
38 300.00 (50) 300.00 (50) 264.80 (40) 13.66 (0) 13.76 (0) 7.23 (0) 7.10 (0)
40 300.00 (50) 300.00 (50) 289.35 (46) 17.26 (0) 17.11 (0) 8.74 (0) 8.68 (0)

Table 3.2: Results for random PB-problems with 4 to 40 variables (first answer set)

All Answer Sets

never periodic always ngm ngm-c qxp qxp-c av. solutions

2 51.59 (0) 23.31 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.13 (0) 0.13 (0) 0.00
4 61.01 (0) 29.80 (0) 0.42 (0) 0.32 (0) 0.31 (0) 0.24 (0) 0.24 (0) 0.04
6 70.69 (0) 40.36 (0) 9.87 (0) 5.32 (0) 2.21 (0) 7.20 (0) 2.18 (0) 286.58
8 75.15 (0) 58.03 (0) 66.40 (0) 72.73 (0) 14.78 (0) 98.86 (0) 15.04 (0) 6178.00

10 78.48 (0) 78.48 (0) 150.24 (0) 191.57 (0) 43.80 (0) 242.41 (0) 44.13 (0) 18297.76
12 87.54 (0) 98.84 (0) 222.71 (0) 258.52 (1) 72.83 (0) 282.77 (16) 73.49 (0) 26785.20
14 95.24 (0) 111.57 (0) 267.78 (0) 275.09 (3) 90.38 (0) 269.99 (7) 91.07 (0) 30629.80
16 103.85 (0) 123.68 (0) 299.38 (37) 281.36 (6) 103.35 (0) 245.74 (2) 103.38 (0) 32141.44
18 113.89 (0) 135.02 (0) 300.00 (50) 285.74 (5) 114.60 (0) 221.97 (0) 114.31 (0) 32538.18
20 122.84 (0) 146.10 (0) 300.00 (50) 294.55 (12) 123.51 (0) 205.68 (0) 123.65 (0) 32685.16

Table 3.3: Results for random PB-problems with PB-constraint length of 2 to 20 (all
answer sets)

running time overhead for querying it additionally. When minimizing io-nogoods only
after a complete assignment has been generated in condition ngm, the overhead of many
external calls can be reduced, while similar information can be obtained from them,
resulting in much lower running times. Nogood minimization is even more effective when
only conflicting nogoods are minimized in condition ngm-c. The reason is that in this
benchmark, the external atom is only used in a program constraint such that it must
evaluate to false w.r.t. any answer set of the program. Accordingly, the truth value of
the external atom is never guessed to be true and non-conflicting io-nogoods, i.e. those
which imply a false evaluation of the external atom, cannot prune the search space. The
conditions qxp and qxp-c perform better than ngm and ngm-c, respectively, which is
explained by the fact that in this benchmark io-nogoods typically contain many irrelevant
literals. Overall, qxp-c shows the best performance w.r.t. all instance sizes. Regarding
computing the first answer set we observe a similar pattern.

Second, to investigate the behavior when large parts of the search space contain
solutions, i.e. when there is less room for pruning it, we fixed the number of variables
and PB-constraints to 15 and 60, respectively, and tested different lengths N ∈ [2, 20].
The results are shown in Tables 3.3 and 3.4.

The solution count increases with length, and for N > 14 nearly all assignments are

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Empirical Evaluation

First Answer Set

never periodic always ngm ngm-c qxp qxp-c

2 51.91 (0) 23.21 (0) 0.12 (0) 0.14 (0) 0.14 (0) 0.13 (0) 0.13 (0)
4 60.33 (0) 29.36 (0) 0.42 (0) 0.32 (0) 0.31 (0) 0.24 (0) 0.24 (0)
6 2.48 (0) 1.87 (0) 0.31 (0) 0.50 (0) 0.48 (0) 0.48 (0) 0.45 (0)
8 0.20 (0) 0.18 (0) 0.18 (0) 0.25 (0) 0.22 (0) 0.28 (0) 0.23 (0)

10 0.14 (0) 0.14 (0) 0.16 (0) 0.19 (0) 0.16 (0) 0.22 (0) 0.17 (0)
12 0.13 (0) 0.13 (0) 0.17 (0) 0.18 (0) 0.14 (0) 0.20 (0) 0.14 (0)
14 0.13 (0) 0.13 (0) 0.18 (0) 0.17 (0) 0.13 (0) 0.19 (0) 0.12 (0)
16 0.13 (0) 0.13 (0) 0.19 (0) 0.18 (0) 0.13 (0) 0.19 (0) 0.13 (0)
18 0.13 (0) 0.13 (0) 0.19 (0) 0.18 (0) 0.13 (0) 0.19 (0) 0.13 (0)
20 0.12 (0) 0.14 (0) 0.20 (0) 0.18 (0) 0.13 (0) 0.19 (0) 0.13 (0)

Table 3.4: Results for random PB-problems with PB-constraint length of 2 to 20 (first
answer set)

answer sets. As expected, periodic and always are slower than never if many (more
than about half of) the candidates are solutions. Frequent evaluation is detrimental here,
as running time investment has no pay-off in information gain or early search termination.
Likewise, minimizing all io-nogoods in conditions ngm and qxp performs worse than
never as identical nogoods are computed for many complete assignments. However, the
configuration ngm-c is very efficient and finds valuable io-nogoods without investing
much running time because it focuses on valuable (i.e. conflicting) io-nogoods. Hence,
the overhead of ngm-c compared to never is also small for instance sizes 18 and 20,
where hardly any useful information for pruning the search space is available. In contrast
to Table 3.1, qxp-c performs slightly worse than ngm-c because conflicting io-nogoods
now contain mostly relevant literals. As the search space contains a large number of
solutions for instances with N > 6, the first answer set is always found very fast for such
instances.

Taxi Assignment with Ontology Access

To facilitate query access for logic programs to external description logics knowledge
bases (DL-KBs) was one of the early motivating applications of the hex-formalism,
which has been syntactically framed by so-called DL-programs (Eiter et al., 2008).
Common reasoning tasks w.r.t. DL-ontologies are concept and role retrieval, i.e. deriving
all individuals respectively pairs of individuals that are instances of a given concept
respectively role relationship.

For integrating concept and role queries into ASP, DL-programs provide so-called DL-
atoms, which can be represented by external atoms of the form &DL[c+, c−, r+, r−, q](~X).
Here the inputs c+ and c− are binary predicates that declare positive and negative
assertions of ontology concept instances, respectively. More specifically an atom c+(“C”, a)
(resp. c−(“C”, a)) encodes that C(a) (resp. ¬C(a)) should be asserted in the DL-KB.
Similarly, r+ and r− are ternary predicates where r+(“R”, a, b) (resp. r−(“R”, a, b))
encodes that R(a, b) (resp. ¬R(a, b)) should be asserted in the DL-KB. Evaluating the
DL-atom retrieves all instances of the query q, which is either a concept or a role name,

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

drives(X, Y)←driver(X), customer(Y), &DL[n, n, n, n, isIn](X, A), (r1)

&DL[n, n, n, n, isIn](Y, A), region(A), not ndrives(X, Y).

ndrives(X, Y)←driver(X), customer(Y), not drives(X, Y). (r2)

driven(Y)←drives(_, Y). (r3)

←not driven(Y), customer(Y). (r4)

←drives(X, Y), drives(X1, Y), X 6= X1. (r5)

r
+(“drivesEC”, X, Y)←drives(X, Y), &DL[n, n, r

+
, n, ECust](Y). (r6)

←#count{Y : drives(X, Y)} > 4, driver(X). (r7)

←drives(X, Y), not &DL[n, n, r
+

, n, ECust](Y), &DL[n, n, r
+

, n, EDrv](X). (r8)

←drives(X, Y), &DL[n, n, r
+

, n, ECust](Y), not &DL[n, n, r
+

, n, EDrv](X). (r9)

Figure 3.3: Taxi Assignment Rules

relative to the modified ontology. In this way, a bidirectional interaction between the
rules of a logic program and the DL-KB is enabled. Accordingly, DL-programs constitute
a special type of hex-programs; using the DL-Lite plug-in for dlvhex (Eiter, Fink, Redl,
& Stepanova, 2014), one can evaluate DL-programs with a DL-KB formulated in the
DL-Lite language.

For our experiments, we employ the DL-program shown in Figure 3.3, which assigns
taxi drivers to customers under constraints. Our encoding is similar to the one by
Eiter, Fink, and Stepanova (2016), but guesses assignments of drivers to customers such
that different combinations are possible, whereby non-permissible ones can possibly be
detected early by partial evaluation. An external DL-KB formulated in DL-Lite holds
part of the information, e.g. about locations of individuals, about e-customers (customers
demanding electric cars), and about e-drivers (drivers of electric cars). Here, exactly one
driver is assigned to each customer by the rules (r1)-(r5), where the respective driver
must be located in the same region as the customer. The latter condition is enforced
by using information regarding the regions in which drivers and customers are located
that is imported via the DL-atom &DL[n, n, n, n, isIn](X, A) from the external DL-KB.
Customers may share the driver, where a taxi fits at most four customers according
to rule (r7). Based on information about which customers are e-customers and which
drivers are e-drivers, which is imported via the DL-atoms &DL[n, n, r+, n, ECust](Y)
and &DL[n, n, r+, n, EDrv](X), e-customers must be assigned to e-drivers and normal
customers to normal drivers according to rules (r8) and (r9), respectively. Moreover,
drivers of e-customers are positively asserted for the concept drivesEC by rule (r6), which
affects subsequent inferences in the DL-KB.

The answer sets of the program with the rules in Figure 3.3 and further facts driver(d),
customer(c) and region(r) for drivers d, customers c and regions r encode legal assignments.
For a complete assignment A, a ground DL-atom &DL[c+, c−, r+, r−, q](~c) evaluates as

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Empirical Evaluation

All Answer Sets

never periodic always ngm-sq ngm ngm-c qxp qxp-c av. solutions

4 0.20 (0) 0.18 (0) 0.22 (0) 0.19 (0) 0.18 (0) 0.17 (0) 0.18 (0) 0.17 (0) 7.88
6 0.33 (0) 0.26 (0) 0.32 (0) 0.29 (0) 0.26 (0) 0.22 (0) 0.26 (0) 0.22 (0) 17.44
8 1.13 (0) 0.41 (0) 0.60 (0) 0.57 (0) 0.47 (0) 0.33 (0) 0.41 (0) 0.33 (0) 36.08

10 7.61 (0) 0.89 (0) 1.42 (0) 1.60 (0) 1.15 (0) 0.66 (0) 0.88 (0) 0.65 (0) 93.76
12 228.44 (18) 2.19 (0) 3.98 (0) 5.50 (0) 2.98 (0) 1.49 (0) 2.65 (0) 1.75 (0) 329.92
14 300.00 (50) 9.25 (0) 12.71 (0) 24.52 (1) 15.44 (1) 5.15 (0) 6.78 (0) 6.45 (0) 651.52
16 300.00 (50) 15.34 (1) 24.22 (1) 55.81 (2) 33.73 (1) 12.31 (1) 16.89 (1) 13.27 (1) ≥964.68
18 300.00 (50) 67.38 (5) 79.43 (4) 131.03 (12) 87.58 (9) 47.30 (3) 51.88 (4) 58.43 (3) ≥2767.34
20 300.00 (50) 79.94 (6) 108.65 (7) 186.26 (21) 139.49 (14) 50.26 (3) 76.36 (5) 67.77 (6) ≥3783.20
22 300.00 (50) 146.88 (15) 201.91 (23) 265.82 (42) 209.16 (27) 160.66 (17) 167.53 (17) 178.43 (18) ≥5665.76
24 300.00 (50) 194.62 (25) 243.07 (32) 286.70 (46) 249.06 (34) 216.56 (28) 212.44 (25) 209.65 (26) ≥5840.56
26 300.00 (50) 265.54 (41) 284.26 (45) 294.01 (49) 290.69 (47) 261.73 (39) 275.54 (43) 265.89 (40) ≥5743.16
28 300.00 (50) 248.42 (39) 253.66 (42) 258.08 (43) 254.46 (42) 243.08 (39) 252.00 (41) 247.76 (40) ≥5057.28
30 300.00 (50) 293.90 (48) 294.02 (49) 294.01 (49) 294.01 (49) 292.78 (48) 294.02 (49) 294.01 (49) ≥5322.62

Table 3.5: Results for taxi assignment with ontology access (all answer sets)

follows:

f&DL(A, c+, c−, r+, r−, q) =

{

T if q(~c) is derivable from KB ∪Assrt(A),
F otherwise,

where Assrt(A) consists of all assertions c(i) such that Tc+(“C”, i) ∈ A, all assertions
¬c(i) such that Tc−(“C”, i) ∈ A, all assertions r(i1, i2) such that Tr+(“r”, i1, i2) ∈ A
and all assertions ¬r(i1, i2) such that Tr−(“r”, i1, i2) ∈ A. Exploiting monotonicity of
DLs, the evaluation of the associated three-valued oracle function is as follows:

f&DL′(A, c+, c−, r+, r−, q) =

T if q(~c) is derivable from KB ∪Assrt(A),
F if q(~c) is not derivable from KB ∪Assrt(Amax),
U otherwise,

where Amax ⊇ A is the (unique) assignment leading to the largest addition set of
assertions.

For instance, the atom &DL[n, n, r+, n, EDrv](d) is true w.r.t. a partial assignment
A if KB ∪ {r(i1, i2) | Tr+(“r”, i1, i2) ∈ A} |= EDrv(d); it is false if KB ∪ {r(i1, i2) |
Fr+(“r”, i1, i2) 6∈ A} 6|= EDrv(d); and it is unassigned otherwise. The input parameters
n in Figure 3.3 are dummies that, as they do not occur in rule heads or in facts added,
have empty extent in every answer set.

In our tests, we increased the number N of drivers and customers gradually from 4
to 30, which were put in N/2 regions randomly, where the drivers were balanced among
regions. Furthermore, half of the customers were e-customers. The results are shown in
Tables 3.5 and 3.6.

As DL-atoms have output constants, simultaneous minimization (ngm) and sequential
minimization (ngm-sq) yield different results in this benchmark and we tested both
configurations. All configurations that exploit partial evaluations are significantly faster
than never. The configuration periodic now shows better results than always because
the external DL calls are costly, and waiting a bit until issuing the next one can pay

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

First Answer Set

never periodic always ngm-sq ngm ngm-c qxp qxp-c

4 0.15 (0) 0.15 (0) 0.16 (0) 0.15 (0) 0.16 (0) 0.15 (0) 0.16 (0) 0.15 (0)
6 0.18 (0) 0.16 (0) 0.18 (0) 0.18 (0) 0.18 (0) 0.17 (0) 0.18 (0) 0.18 (0)
8 0.36 (0) 0.17 (0) 0.20 (0) 0.22 (0) 0.21 (0) 0.22 (0) 0.21 (0) 0.22 (0)

10 1.24 (0) 0.18 (0) 0.23 (0) 0.25 (0) 0.25 (0) 0.33 (0) 0.25 (0) 0.32 (0)
12 23.56 (0) 0.22 (0) 0.27 (0) 0.33 (0) 0.33 (0) 0.44 (0) 0.30 (0) 0.43 (0)
14 139.70 (16) 0.25 (0) 0.32 (0) 0.41 (0) 0.44 (0) 1.10 (0) 0.36 (0) 1.08 (0)
16 273.78 (40) 0.29 (0) 0.37 (0) 0.49 (0) 0.63 (0) 7.39 (1) 0.42 (0) 7.50 (1)
18 300.00 (50) 0.40 (0) 0.42 (0) 0.59 (0) 0.73 (0) 23.39 (2) 0.50 (0) 26.53 (3)
20 300.00 (50) 0.34 (0) 0.46 (0) 0.66 (0) 2.00 (0) 2.12 (0) 0.56 (0) 9.62 (1)
22 300.00 (50) 0.43 (0) 0.69 (0) 0.64 (0) 0.53 (0) 61.87 (4) 0.67 (0) 53.99 (3)
24 300.00 (50) 0.46 (0) 0.76 (0) 0.72 (0) 0.60 (0) 113.78 (12) 0.77 (0) 88.03 (9)
26 300.00 (50) 0.52 (0) 0.86 (0) 0.85 (0) 0.68 (0) 59.02 (6) 0.85 (0) 84.77 (10)
28 300.00 (50) 0.56 (0) 1.00 (0) 0.90 (0) 0.74 (0) 76.59 (5) 0.88 (0) 95.74 (14)
30 300.00 (50) 0.63 (0) 1.10 (0) 1.04 (0) 0.83 (0) 112.02 (11) 1.05 (0) 103.03 (11)

Table 3.6: Results for taxi assignment with ontology access (first answer set)

off. Since the premise of an io-nogood can be large but the output often depends only
on a small part, minimization can drastically shrink io-nogoods. However, this comes
at the price of many external calls due to the large size of the io-nogoods, such that
ngm-sq is slower than periodic and always. The costs of minimization can be reduced
by minimizing nogoods with the same premise simultaneously, or applying binary search
in form of the QuickXplain algorithm. Accordingly, both ngm and qxp perform
better than ngm-sq. Moreover, we observe that qxp is slightly faster than ngm, even
though io-nogoods with identical input parts are not minimized simultaneously by the
QuickXplain algorithm. As for the previous benchmark, minimizing only conflicting
nogoods in conditions ngm-c and qxp-c yields the best results.

Notably, by employing partial evaluations, the first solution can be found rapidly and
much faster than in condition never, except for the configurations ngm-c and qxp-c.
In contrast to the PB-problems benchmark, here the use of external atoms is not limited
to constraints such that minimal nogoods obtained from non-conflicting io-nogoods may
contain valuable information. As a result, the missing information leads to timeouts
for certain instances even before the first answer set is found, while for other instances
the set of all answer sets can be computed faster by ngm-c and qxp-c than by other
configurations.

Conflicting Strategic Companies

Strategic Companies is a business problem that is a popular benchmark for ASP com-
petitions, located at the second level of the polynomial hierarchy (Cadoli et al., 1997;
Leone et al., 2006). The scenario is that a set C = {c1, ..., cm} of companies and a set
G = {g1, ..., gn} of goods are given, where each company ci ∈ C produces some goods
Gi ⊆ G and is possibly controlled by a consortium of owner companies Oi ⊆ C. A set
of companies C ′ ⊆ C constitutes a strategic set if (1) the companies in C ′ produce all
the goods in G, (2) if Oi ⊆ C ′ for some 1 ≤ i ≤ m, then ci is in C ′ as well, and (3)
C ′ is subset-minimal w.r.t. conditions (1) and (2) (Leone et al., 2006). The knowledge

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Empirical Evaluation

All Answer Sets

never periodic always ngm ngm-c qxp qxp-c av. solutions

5 0.15 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.15 (0) 0.14 (0) 0.14 (0) 1.72
10 0.13 (0) 0.13 (0) 0.14 (0) 0.13 (0) 0.13 (0) 0.13 (0) 0.13 (0) 3.22
15 0.20 (0) 0.19 (0) 0.21 (0) 0.16 (0) 0.16 (0) 0.15 (0) 0.15 (0) 8.08
20 0.65 (0) 0.49 (0) 0.51 (0) 0.25 (0) 0.21 (0) 0.20 (0) 0.20 (0) 23.42
25 3.49 (0) 1.60 (0) 1.35 (0) 0.43 (0) 0.31 (0) 0.29 (0) 0.27 (0) 53.50
30 26.79 (0) 7.61 (0) 5.30 (0) 1.09 (0) 0.55 (0) 0.50 (0) 0.44 (0) 105.32
35 193.38 (0) 33.34 (0) 17.46 (0) 5.72 (0) 1.05 (0) 1.07 (0) 0.87 (0) 282.26
40 300.00 (50) 135.66 (0) 46.70 (0) 45.95 (3) 1.82 (0) 2.03 (0) 1.53 (0) 507.08
45 300.00 (50) 297.18 (49) 139.51 (5) 131.44 (15) 5.46 (0) 13.53 (1) 4.97 (0) 1794.60
50 300.00 (50) 300.00 (50) 267.27 (33) 227.98 (31) 10.25 (0) 27.46 (1) 9.59 (0) 3453.50
55 300.00 (50) 300.00 (50) 295.25 (46) 262.83 (42) 35.64 (0) 108.24 (14) 35.15 (0) 5419.98
60 300.00 (50) 300.00 (50) 300.00 (50) 297.71 (49) 56.68 (1) 147.00 (16) 55.26 (1) ≥6300.94
65 300.00 (50) 300.00 (50) 300.00 (50) 295.89 (49) 151.06 (11) 242.18 (35) 150.19 (11) ≥7531.40
70 300.00 (50) 300.00 (50) 300.00 (50) 293.64 (48) 194.48 (21) 267.46 (41) 192.18 (22) ≥7005.06

Table 3.7: Results for conflicting strategic companies (all answer sets)

s(C1) ∨ s(C1) ∨ s(C3) ∨ s(C4)←producedBy(_, C1, C2, C3, C4).

s(C)←controlledBy(C, C1, C2, C3, C4), s(C1), s(C2), s(C3), s(C4).

←&stratConflict[s]().

Figure 3.4: Conflicting Strategic Companies Rules

about which companies belong to a strategic set can be crucial for a holding owning the
companies in C, e.g. if it has to sell some of its companies and does not want to suffer a
loss in economic power. The problem can be encoded concisely in ASP by exploiting the
minimality of answer sets, so that each answer set corresponds to one strategic set.

In our benchmark setting, we assume that each product is produced and each company
is controlled by at most four companies in C. We further assume an additional conflict
relation R ⊆ C×C, such that companies which are related by R cannot occur together
in a strategic set. This constraint makes sense when certain companies cannot be kept
simultaneously, e.g. due to legislation. The program in Figure 3.4 encodes the strategic
sets that satisfy the conflict relation in its answer sets. In this program, we check the
conflict constraint on strategic sets via the external atom &strategicConflict[strategic](),
where strategic contains all companies in the strategic set; on complete assignments,
it evaluates to true if some companies ci, cj in strategic are in conflict, i.e., (ci, cj) ∈ R
holds (where R is externally stored).

Since finding a strategic set is computationally hard, excluding candidate strategic
sets with a conflict early in the search by partial evaluations should noticeably de-
crease the running time. We use for such evaluations a three-valued oracle function
f&strategicConflict′(A, s), defined as follows:

f&strategicConflict′(A, s) =

T if Ts(ci), Ts(cj) ∈ A holds for some (ci, cj) ∈ R,
F if Fs(ci) ∈ A or Fs(cj) ∈ A for every (ci, cj) ∈ R,
U otherwise.

We ran tests on instances with N ∈ [5, 70] companies, at most N randomly assigned

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

First Answer Set

never periodic always ngm ngm-c qxp qxp-c

5 0.14 (0) 0.14 (0) 0.15 (0) 0.14 (0) 0.14 (0) 0.15 (0) 0.15 (0)
10 0.12 (0) 0.12 (0) 0.13 (0) 0.12 (0) 0.12 (0) 0.12 (0) 0.12 (0)
15 0.14 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.14 (0) 0.13 (0)
20 0.24 (0) 0.20 (0) 0.17 (0) 0.16 (0) 0.16 (0) 0.15 (0) 0.15 (0)
25 0.76 (0) 0.36 (0) 0.21 (0) 0.20 (0) 0.20 (0) 0.18 (0) 0.18 (0)
30 4.60 (0) 1.03 (0) 0.41 (0) 0.29 (0) 0.29 (0) 0.23 (0) 0.23 (0)
35 26.05 (0) 2.71 (0) 0.54 (0) 0.39 (0) 0.37 (0) 0.27 (0) 0.27 (0)
40 118.70 (12) 10.67 (0) 1.47 (0) 0.54 (0) 0.54 (0) 0.34 (0) 0.33 (0)
45 158.24 (22) 21.35 (0) 1.38 (0) 0.56 (0) 0.55 (0) 0.34 (0) 0.34 (0)
50 230.00 (32) 43.29 (3) 6.19 (0) 0.76 (0) 0.75 (0) 0.40 (0) 0.40 (0)
55 287.99 (47) 131.69 (15) 5.67 (0) 1.05 (0) 1.04 (0) 0.51 (0) 0.51 (0)
60 291.70 (47) 187.90 (26) 10.10 (0) 1.47 (0) 1.45 (0) 0.64 (0) 0.63 (0)
65 294.49 (49) 229.99 (35) 15.06 (0) 1.85 (0) 1.86 (0) 0.76 (0) 0.77 (0)
70 300.00 (50) 244.27 (39) 52.26 (1) 2.32 (0) 2.26 (0) 0.85 (0) 0.83 (0)

Table 3.8: Results for conflicting strategic companies (first answer set)

control relations, 5×N products with randomly assigned producers, and N/2 randomly
created conflicts. The results are shown in Tables 3.7 and 3.8.

The external conflict constraint cuts more than 90% of the strategic sets (i.e., solution
candidates). Thus, like in the first PB-problems benchmark, only a small part of the
search space contains solutions. Accordingly, we observe a similar pattern as in Tables 3.1
and 3.2, where partial evaluation significantly decreases the running time in all conditions.
The configuration qxp-c again exhibits the best results. Since strategic sets are minimal,
io-nogoods learned on complete assignments do not provide any valuable information,
such that we did not observe a difference when the learning function Λu is used instead
of Λmu in this case. Notably, for computing strategic sets containing a specific company
(which is ΣP

2
-hard in general) we obtain similar results.

Regarding the results for finding the first answer set, the larger difference between
never and always in comparison to Table 3.2 is due to the higher computational effort
required for finding compatible sets, where learning based on partial assignments is able
to guide the search towards a compatible set which is also an answer set.

3.5.4 Discussion of Results

In our experiments, we found that early evaluation in conditions always and periodic
increased the performance for all benchmarks, except for the case where nearly all
candidate solutions correspond to answer sets such that no useful information is obtainable
from additional oracle calls. This finding is in line with hypothesis (H3.1). Moreover, in
the case of the taxi assignment benchmark, where external calls require more running
time than in the other benchmark implementations, periodic performed better than
always due to less runtime overhead, which supports our hypothesis (H3.2). Similar
improvements could be achieved by minimizing all io-nogoods that are learned based on
complete assignments with configuration ngm. However, regarding hypothesis (H3.3),
the results are mixed because minimization performs worse when io-nogoods are large
or contain many relevant literals (cf. Tables 3.3 and 3.5). This overhead is avoided

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.6. Related Work

by only minimizing nogoods that directly trigger backjumping in condition ngm-c.
The configuration ngm-c performs well for all benchmark problems and has only little
overhead when no useful information is available, as can be observed in Table 3.3.

Finally, the fact that qxp performed better than ngm in the taxi assignment bench-
mark, where io-nogoods typically contain many irrelevant literals, and did not increase
the running time much when nearly all literals are relevant (as it is the case for the second
experiment using PB-problems) provides supporting evidence for hypothesis (H3.4). This
effect results from the number of external calls that have to be performed in the best
respectively the worst case by the QuickXplain algorithm compared to sequential
minimization.

Overall, minimization of conflicting nogoods by configuration ngm-c or qxp-c in
most cases yielded the best results with only small differences between the two conditions.
Hence, they are suggested as the default configurations.

3.6 Related Work

As mentioned in the introduction of this chapter, our work is most closely related to
SMT solving, in particular to theory propagation there (Nieuwenhuis et al., 2006), and
naturally to constraint ASP solving, as developed by Gebser, Ostrowski, and Schaub
(2009), and theory solving in clingo 5 (Gebser et al., 2016).

As for the relation to SMT solving, we observe that the latter typically considers fixed
types of theories, while hex is more general and geared towards supporting heterogeneous
theories. Using a fixed type of theory is a characteristics of several extensions of ASP with
SMT, such as dingo (Janhunen et al., 2011), which uses difference logic, NLP-DL (Eiter,
Ianni, Schindlauer, & Tompits, 2005a), which uses description logics, and ASPMT (Lee
& Meng, 2013).

Moreover, the abstract level of semantics in terms of input-output relations accom-
modates even arbitrary non-logical theories. However, there is closer similarity regarding
integration schemas and learning techniques. Typical integration schemas for SMT have
been identified (Balduccini & Lierler, 2013b), which apply to ASP modulo theories as
well (a comparison is given by Balduccini and Lierler (2013a)):

• In black-box integration, the SAT-solver blindly generates a model and passes it
for checking to the theory solver. If it passes the check, the model is returned,
otherwise it is added in constraint form to the instance and the solver restarts.
This allows for easy coupling with arbitrary theories but does not enable search
space pruning.

• In grey-box integration, the theory solver is only called for complete models of the
SAT-instance, but the SAT-solver is merely suspended during checking and can
continue its search afterwards; integration is still relatively simple.

• Only in clear-box integration, the SAT-solver is interleaved with the theory solver,
which is called already for partial assignments and in turn may propagate further

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

truth values or detect inconsistencies. However, the integration is much more
challenging as the theory solver must identify atoms implied by the given partial
assignment, or by inconsistency reasons, respectively.

Examining hex, the grey-box schema corresponds to the evaluation algorithms in use
before external behavior learning was introduced by Eiter et al. (2012); black-box
integration, i.e. resorting to complete restarts, has never been used for hex solving. With
incorporation of such learning, the algorithms fit an intermediate schema between grey-
and clear-box integration: external sources were still only evaluated under complete
assignments, but the learned nogoods possibly pruned the search space.

Compared to constraint ASP-solving, the hex-formalism is more general as it supports
access to arbitrary external sources which are largely black boxes, and without (implicit)
assumptions of their properties. In this respect, constraint ASP can be considered as a
special case of hex with theory-specific knowledge. There are a number of integrations
of ASP with constraint programming, as realized e.g. in clingcon (Ostrowski & Schaub,
2012), lc2casp (Cabalar et al., 2016), ezcsp (Balduccini, 2009), and EZSMT (Susman
& Lierler, 2016); we refer to Lierler et al. (2016) for an overview of systems. Here, we
focus on the work of Ostrowski and Schaub (2012), who considered nogood minimization
as we do, but used different algorithms that avoid expensive resets of the constraint solver.
However, this is only possible by exploiting properties of the specific theory at hand
(monotonic constraint satisfaction), which in our more general setting do not always apply
(e.g., for nonmonotonic external atoms); furthermore, the user-friendly plug-and-play
integration of external sources does not provide control over the external algorithms. On
the other hand, other possibilities for optimizations arise, e.g., simultaneous io-nogood
minimization since external atoms can have multiple output values for the same input.

Unlike hex-programs, theory solving in clingo 5 (and constraint ASP as a special
instance thereof) does not support external atoms with dedicated input and output.
Instead, certain atoms in the logic program are declared as theory atoms whose truth
values are set via the external theory. In that, clingo 5 follows a global perspective where
theory atoms may be shared by different rules, rather than the local one of external atoms
in hex-programs where the scope is the rule body (as customary in logic programming).

Related to techniques for nogood minimization, nowadays most SAT-solvers integrate
techniques for learned clause minimization, which remove redundancies from learned
clauses by computationally inexpensive procedures (Sörensson & Biere, 2009). However,
the role of io-nogoods learned from external source evaluations in hex and the role
of nogoods learned from conflicts by a respective ASP-solver, even though both serve
the purpose of guiding the search procedure, are very different. While conflict nogoods
are usually obtained by resolution based on an available implication graph such that
minimization techniques as the ones by Sörensson and Biere can be applied, io-nogoods are
not learned using an implication graph but from single oracle calls. Due to the black box
nature of these oracles, they can only be used to retrieve all correct outputs for external
atoms w.r.t. a given assignment. Hence, techniques for learned clause minimization are
not directly applicable for learning smaller io-nogoods. Nevertheless, such techniques
can still be exploited in our approach for conflict nogood minimization, depending on

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.7. Conclusion and Outlook

whether the respective solver used for performing the main CDNL-search implements
them.

Other related work comprises alternative solving techniques, such as the one by Eiter,
Fink, Redl, and Stepanova (2014), where the semantics of external atoms is captured
by so-called support sets, which are similar to our faithful io-nogoods and related to
implicants of logical theories (Darwiche & Marquis, 2002; Reiter & de Kleer, 1987).
However, different from our approach, the main idea there is to learn all or sufficiently
many support sets at the beginning of the solving process, such that satisfaction and
unsatisfaction of an external atom under given input is completely covered. External
atom evaluation can then be accomplished by matching the support sets against the
interpretation; this eliminates external calls during solving entirely, but comes at the
price of learning up to exponentially many support sets. A related support-set based
approach goes a step further and encodes the semantics of external atoms straight into
the ASP-program (Redl, 2017b). The exponential worst-case blowup suggests to use these
approaches only for external atoms with a compact and small representation by support
sets. Moreover, since they genuinely depend on exhaustive learning of support sets at
the beginning, they cannot directly benefit from the possibility of partial evaluation as
presented in the previous sections.

The notion of three-valued oracle functions has also been used to extend hex with
lazy-grounding techniques (Eiter, Kaminski, & Weinzierl, 2017), where not only the
evaluation of external atoms is postponed, but also the grounding of the hex-program
itself, by employing as backend-solver the lazy-grounding ASP-solver alpha (Weinzierl,
2017). This approach is presented in Chapter 5.

Finally, Antic et al. (2013) considered partial hex-semantics before, by employing
Approximation Fixpoint Theory (AFT) (Denecker et al., 2000, 2004) that works on
intervals in the power set lattice. While our partial oracle functions amount to their
three-valued oracle functions, we only consider two-valued answer sets and we do not
apply a fixpoint construction to define the answer set semantics. Similarly, Pelov et
al. (2004) have defined a family of partial stable model semantics for logic programs
with aggregates using AFT. Assignment-monotonic oracle functions are also related to
their approximating aggregate relations which must be precision-monotone and generalize
ordinary aggregate relations to a three-valued semantics.

3.7 Conclusion and Outlook

In this chapter, we have pushed efficient evaluation techniques for ASP with external
source access, by introducing three-valued evaluation of external atoms under partial
(incomplete) truth value assignments. The techniques we introduced yield a full-fledged
clear-box integration. Moreover, due to automatic nogood minimization, developers of
external sources do not need to manually describe implied truth values or inconsistency
reasons, but only need to implement a three-valued oracle function, which keeps the
integration of sources simple.

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Integration of Solving and External Evaluation

In our experiments, the new techniques yielded a speedup of up to two orders of
magnitude; unsurprisingly, their ranking depends on the instances. This is similar to the
observations by Ostrowski and Schaub (2012), who reported mixed results for different
propagation delays. Our results are also in line with results in SMT, where theory
propagation, if doable with small overhead, is crucial for performance (Dutertre & de
Moura, 2006; Lahiri, Nieuwenhuis, & Oliveras, 2006; Nieuwenhuis & Oliveras, 2005). We
observed that in most cases learning from complete assignments plus minimization of
conflicting nogoods (based on partial assignments) outperforms learning during search;
hence, this setting is suggestive as a default. This is explained by the fact that in this case,
learning focuses on nogoods that are useful for conflict resolution, thus the information
gain is similar and the overhead much smaller. This is in line with the observation by
Nieuwenhuis et al. (2006) that conflict analysis uses only a small fraction of the lemmas
learned by theory propagation, which can be addressed with lazy explanations (Gent,
Miguel, & Moore, 2010). The speedup can be exponential, as evidenced by an external
atom whose truth value is definite after assigning a single input atom, e.g. &empty[p]() to
check whether an atom over p is true. Each naive nogood eliminates one of exponentially
many assignments, but a linear number of minimized ones eliminate all wrong guesses.

There are different directions for ongoing and future work. One topic is to include
further heuristics for deciding whether external evaluation is invoked or skipped at some
point. This decision might be based, for instance, on the past information gain; other
criteria are conceivable. Another topic is further improvement of nogood minimization.
To this end, the divide-and-conquer strategy borrowed from Junker’s QuickXplain

algorithm (2004) might be replaced by a more sophisticated one, e.g. the one that
Shchekotykhin et al. (2015) developed for their MergeXplain algorithm. By the latter,
multiple minimal conflict sets (resp., nogoods) can be found during one program run;
this could be integrated into our approach for obtaining multiple minimal io-nogoods.

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Integration of Minimality

Checking and External Evaluation

After having developed techniques for tightly integrating external evaluation with the
main search of hex-solving in the previous chapter, we now focus on achieving a tighter
integration of the special minimality check required for evaluating hex-programs (cf.
Section 2.4) and external evaluation. Accordingly, in this chapter, which is based on the
papers (Eiter et al., 2018) and (Eiter & Kaminski, 2019), we extend partial evaluation
to the search for unfounded sets applied for ensuring e-minimality of answer sets, and
introduce a novel pruning technique for detecting cases where e-minimality checking is
not required.

As described in Section 2.3, not every compatible set is also an answer set of a
hex-program, due to the possibility of cyclic support involving external atoms. Hence, a
notable difference to ordinary ASP is that an additional e-minimality check (cf. Part (d)
in Algorithm 3.1) is required to avoid unfounded support by external atoms in order to
find answer sets of hex-programs.

For instance, an external atom &closeTo[city](X) that outputs all cities located close
to cities in the extension of the predicate city might be utilized in a rule closeCity(X)←
&closeTo[city](X), location(X). Now, if the locations in the domain are osaka, kobe,
bratislava and vienna, and the rule city(X)← closeCity(X) as well as the fact city(osaka)
are added, only the atom city(kobe) should be contained in an answer set in addition. Even
though Bratislava and Vienna are located close to each other, the atoms city(bratislava)
and city(vienna) can only cyclically support each other via the two rules and the external
atom. The e-minimality check of hex eliminates spurious answer sets containing the
latter two atoms.

So far, we have only considered external evaluations based on partial assignments
which are performed during the search for compatible sets. In general, it is also necessary
to evaluate external atoms again for finding smaller models of the FLP-reduct because
their truth value might change when the truth value of some ordinary atom is switched

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

from true to false. In previous approaches for hex-evaluation, similar as in the case of
the main search, this evaluation could only be performed after the complete input to
an external atom in a potential smaller model had been decided since input atoms were
not allowed to be unassigned. This is particularly important as the minimality check
accounts for a major share of the overall running time, and usually involves significantly
more external evaluation calls than the search for candidates itself.

Furthermore, note that if the rule city(X)← closeCity(X) is not added above, cyclic
support via the external atom can be ruled out independent of the external semantics.
Based on this observation, also a syntactic criterion was presented in (Eiter, Fink,
Krennwallner, et al., 2014) for deciding whether the e-minimality check can be skipped
for a program, which often results in significant speedups. Alternatively, if the external
atom &closeWest[city](X) is used in the example (only retrieving cities close to the
west of input cities), cyclic support can also be excluded. This cannot be detected by
a syntactic criterion, such that the e-minimality check needs to be performed in any
case by the previous approach. Moreover, applying a semantic criterion is challenging,
as previously external atoms have largely been considered as black boxes that conceal
semantic dependencies.

For this reason, in addition to extending techniques for partial evaluation to the
e-minimality check, we develop a new approach for pruning e-minimality checking that
also exploits semantic dependencies. It relies on additional information about input-output
(io-)dependencies of external atoms, which may be provided by a user, or even generated
automatically. Hidden io-dependencies are common in applications involving recursive
processing, e.g. over external graphs or semantic web data. In this context, supplied
dependency information can be incomplete and added flexibly.

The content of this chapter is structured as follows:

• In Section 4.1, we exploit the possibility for evaluation under partial assignments
for e-minimality checking. In particular, we discuss how three-valued external
evaluation can be interleaved with the search for an unfounded set. As in the
previous chapter, learning from external source calls is used for guiding the search;
notably, the nogoods learned can be pooled with those in the main search, and
thus speed up the latter as well.

• In Section 4.2, we provide a novel formalization of io-dependencies that encode
semantic dependency information, and we show under which condition they can
safely be used for pruning the e-minimality check. In addition, we state theoretical
properties crucial for checking and optimizing io-dependencies, and show when the
associated costs can be reduced.

• In Section 4.3, we present an experimental evaluation using illustrative benchmark
problems that confirms the advantage of utilizing partial evaluation during the
unfounded set search and of exploiting io-dependencies for reducing the number of
e-minimality checks that need to be performed.

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Interleaving External Evaluation and Unfounded Set Search

• In Section 4.4, we discuss related work; and conclude by summarizing and discussing
future work in Section 4.5.

Our new approach not only applies to the hex-formalism, but may also be employed
analogously for other approaches that integrate external sources into ASP, such as
clingo (Gebser et al., 2016), if external cyclic support is not desired.

4.1 Interleaving External Evaluation and Unfounded Set

Search

In this section, we discuss how, based on three-valued assignments, the evaluation of
external atoms can be interleaved with the search performed during the e-minimality
check. As in Chapter 3, the goal is to increase the efficiency by evaluating external atoms
as early as possible and thus, to potentially avoid many wrong guesses. In addition,
the models of the FLP-reduct (built for a complete assignment) often outnumber the
compatible sets of the program (cf. Eiter, Fink, Krennwallner, et al., 2014), and for each
such set the guesses for the truth values of external atoms need to be verified.

We consider a more sophisticated variant of the FLP-check that utilizes the concept
of unfounded sets, introduced in Section 2.4, in order to ensure e-minimality of answer
sets in hex, i.e., that they amount to minimal models of the FLP-reduct with the
complete interpretation encoded by a compatible set. Eiter, Fink, Krennwallner, et al.
(2014) showed that ensuring the absence of unfounded sets is a more efficient strategy
for verifying e-minimality than applying the explicit FLP-check, due to the fact that
smaller models of the FLP-reduct do not have to be generated explicitly in the former
case. However, truth values of external atoms still need to be checked as described above
to verify that candidate unfounded sets that have been detected actually constitute
unfounded sets.

Example 4.1. Reconsider the program Π = {p ← &id[p]().} from Example 2.6. As
observed, A = {Tp} is not an answer set of the program since it is not a subset-minimal
model of fΠA = Π. This is because there is an unfounded set U = {Tp}, which intersects
with the true atoms in A: the only rule whose head intersects with {a |Ta ∈ U} is
p← &id[p](), for which condition (2) of Definition 2.6 is satisfied. △

To enable external checks at any point during the search for unfounded sets, even
before a candidate unfounded set has been detected, we introduce a novel algorithm for
unfounded set checking that exploits external evaluations based on partial assignments.
Subsequently, we show the correctness and completeness of the new algorithm. Hereby,
interleaving unfounded set search with external evaluations can initiate backjumping as
soon as it can be determined that guesses for external atoms violate the conditions for
unfounded sets. So far, this could only be detected by means of a post-check. As before,
input-output relations learned from oracle calls w.r.t. partial assignments can also be
exploited to avoid wrong guesses in the further unfounded set search.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

We start by providing background on the previous unfounded set check for hex-
programs (Eiter, Fink, Krennwallner, et al., 2014), which we extend to partial evaluations
in the following.

4.1.1 Background on Unfounded Set Search

For detecting unfounded sets of a hex-program Π w.r.t. a complete assignment A, Eiter,
Fink, Krennwallner, et al. (2014) introduced an encoding ΩΠ that is represented by a set
of nogoods such that solutions to the encoding that are compatible with the semantics of
external sources used in the program Π correspond exactly to the unfounded sets of Π
w.r.t. A. The encoding is uniform w.r.t. all executions of the unfounded set check, i.e. it
does not depend on the current assignment and thus, only needs to be generated once.
Accordingly, a compatible set A for which the check is performed needs to be injected
by adding a set of so-called assumptions AA, represented by a consistent set of signed
literals, that fix the truth values of dedicated atoms. In this way, the encoding does not
have to be regenerated for each compatible set from scratch, and in an implementation,
assumptions can be treated in a special way such that part of the solver state can be
maintained when assumptions are changed. As a result, a SAT-solver can be utilized to
detect unfounded set candidates by searching for a solution to ΩΠ with assumptions AA.

Because external replacement atoms in ΩΠ do not encode the truth values of external
atoms w.r.t. a solution S of the SAT encoding, but relative to a compatible set modified
by S, faithful io-nogoods learned w.r.t. S cannot be added directly to the encoding. For
this reason, Eiter, Fink, Krennwallner, et al. (2014) defined a nogood transformation TΩ

that ranges over io-nogoods and yields corresponding nogoods that imply the correct
truth value for external replacement atoms in ΩΠ. We do not go into the details of the
particular encoding and the nogood transformation here, as they are not relevant for our
purposes; we refer to (Eiter, Fink, Krennwallner, et al., 2014) for more information.

4.1.2 Integrated Algorithm for Unfounded Set Detection

As in the search for compatible sets, we can also add the input-output relations that are
learned from external evaluations based on partial assignments for the SAT encoding
in form of nogoods to the SAT-solver. However, here we have to take into account that
external replacement atoms do not encode the truth values of external atoms under a
partial assignment in the solver, but represent their evaluation relative to the current
compatible set modified by the respective partial assignment for ΩΠ with assumptions
AA. For this reason, we generalize the definition of A ∪̇ ¬.X as follows, considering also
partial assignments for the SAT encoding.

Definition 4.1 (Partial Assignment Operator). Given a complete assignment A and
a partial assignment X, let A ∪̇ ¬.X = (A \ {Ta | Ta ∈ X or Ua ∈ X}) ∪ {Fa | Ta ∈
X} ∪ {Ua | Ua ∈ X and Ta ∈ A}.

In contrast to Definition 2.6, where U is considered to be a complete assignment,
atoms which are unassigned in X and true in A remain unassigned in A ∪̇ ¬.X; those

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Interleaving External Evaluation and Unfounded Set Search

Algorithm 4.1: hex-UFSCheck

Input: A ground hex-program Π, a complete assignment A, a set of nogoods ∇ of Π
Output: true if the true part of A intersects with an unfounded set for Π w.r.t. A and

false otherwise, learned nogoods added to ∇
Ω′

Π ← ΩΠ ∪ AA ∪ {TΩ(N) | N is an io-nogood in ∇} // SAT instance with

// assumptions and

// io-nogoods from main

// search

S← {Ua | a ∈ A(Ω′

Π)} // all atoms unassigned

dl ← 0 // decision level

while true do
(a) S← Propagation(Ω′

Π, S)
(b) if some nogood in Ω′

Π violated by S then
if dl = 0 then return false
Analyze conflict, add learned nogood to Ω′

Π, set dl to backjump level

(c) else if S is complete then
isUFS ← true
for all external atoms &g[~p](~c) in Π do
∇ ← ∇∪ Λ(&g[~y], A ∪̇ ¬.S)
Ω′

Π ← Ω′

Π ∪ {TΩ(N) | N ∈ Λ(&g[~y], A ∪̇ ¬.S)}
if Te&g[~p](~c) ∈ S, A 6|= &g[~p](~c) and A ∪̇ ¬.S 6|= &g[~p](~c) then

isUFS ← false
end
if Fe&g[~p](~c) ∈ S, A |= &g[~p](~c) and A ∪̇ ¬.S |= &g[~p](~c) then

isUFS ← false
end

end
if isUFS then

Let N be a nogood learned from the UFS
∇ ← ∇∪ {N}
if {Ta | Ta ∈ A ∩ S} 6= ∅ then return true

else
Ω′

Π ← Ω′

Π ∪ {S}
end

(d) else if Heuristics evaluates &g[~y] and Λ(&g[~y], A ∪̇ ¬.S) 6⊆ ∇ then
∇ ← ∇∪ Λ(&g[~y], A ∪̇ ¬.S)
Ω′

Π ← Ω′

Π ∪ {TΩ(N) | N ∈ Λ(&g[~y], A ∪̇ ¬.S)}
(e) else

Guess σa with σ ∈ {T, F} for some variable a with Ua ∈ S
dl ← dl + 1
S← (S \ {Ua}) ∪ {σa}

end

end

atoms can potentially be set to false in A ∪̇ ¬.X′ w.r.t. some assignment X′ � X. Atoms
that are true in X and A are false under A ∪̇ ¬.X as before.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

Example 4.2. Consider the complete assignment A = {Tp, Tq, Tr} and the assignment
X = {Tp, Fq, Ur}. We then obtain A ∪̇ ¬.X = {Fp, Tq, Ur}. △

We note that due to assignment monotonicity of three-valued oracle functions, ex-
tending in a partial assignment A ∪̇ ¬.X the set X does not change the value of an oracle
function call that is determined (i.e., yields true or false). Formally:

Proposition 4.1. Let A be a complete assignment, let X be a partial assignment, and let
f&g be an assignment monotonic three-valued oracle function. Then, f&g(A ∪̇ ¬.X, ~p,~c) =
X, X ∈ {T, F}, implies for every assignment X′ � X that f&g(A ∪̇ ¬.X′, ~p,~c) = X.

Proof. Let A be a complete assignment, X a partial assignment, and f&g an assignment
monotonic three-valued oracle function. Further let f&g(A ∪̇ ¬.X, ~p,~c) = X, where
X ∈ {T, F}, and let X′ be an arbitrary partial assignment s.t. X′ � X. We need to
show that f&g(A ∪̇ ¬.X′, ~p,~c) = X. First, we show that A ∪̇ ¬.X′ � A ∪̇ ¬.X. Recall
that A ∪̇ ¬.X = (A \ {Ta | Ta ∈ X or Ua ∈ X}) ∪ {Fa | Ta ∈ X} ∪ {Ua | Ua ∈
X and Ta ∈ A}, according to Definition 4.1. Since X′ � X, we have that {Ta ∈
X} ∪ {Fa | Fa ∈ X} ⊆ X′, according to the definition of “�”. Hence, we derive
that {Ta | Ta ∈ X or Ua ∈ X} � {Ta | Ta ∈ X′ or Ua ∈ X′}. It follows that
(A \ {Ta | Ta ∈ X′ or Ua ∈ X′}) � (A \ {Ta | Ta ∈ X or Ua ∈ X}). It is also easy to
see that {Fa | Ta ∈ X′} � {Fa | Ta ∈ X} and {Ua | Ua ∈ X′ and Ta ∈ A} � {Ua |
Ua ∈ X and Ta ∈ A}. Consequently, we infer that A ∪̇ ¬.X′ � A ∪̇ ¬.X. Because we
have that f&g(A ∪̇ ¬.X, ~p,~c) = X, and due to assignment monotonicity according to
Definition 3.3, from A ∪̇ ¬.X′ � A ∪̇ ¬.X it follows that f&g(A ∪̇ ¬.X′, ~p,~c) = X.

The proposition implies that early external evaluations during the unfounded set
search w.r.t. an assignment A ∪̇ ¬.X yield nogoods N s.t. f&e(A ∪̇ ¬.X′, ~p,~c) = σ(NO)
for all extensions X′ of X. The fact that faithful io-nogoods added via the transformation
TΩ to the encoding ΩΠ do not remove unfounded sets, as stated in Proposition 15 by
Eiter, Fink, Krennwallner, et al. (2014), is based on the latter property.

We are now ready to present our new algorithm for detecting unfounded sets which
also exploits learning w.r.t. partial assignments and is formalized by Algorithm 4.1. It
extends the unfounded set check The algorithm is used in Part (d) of Algorithm 3.1 in
order to check whether a compatible set A for a hex-program Π is an answer set, i.e. its
true part does not intersect with an unfounded set for Π w.r.t. A.

Algorithm 4.1 receives as input a hex-program Π, a complete assignment A rep-
resenting a compatible set of Π, and a set ∇ of nogoods that have been generated by
Algorithm 3.1. It returns true if Π has an unfounded set w.r.t. A that intersects with
the true part of A, and false otherwise, i.e. when A is an answer set of Π. At first,
the assumptions AA and the transformations of io-nogoods already learned in the main
search are added to the encoding ΩΠ. In our implementation, elements in AA are marked
as assumptions and hence, they can be removed from the encoding without the need to
reinitialize the SAT-solver completely.

Similar to Algorithm 3.1, Algorithm 4.1 explores the search space in one loop based
on the well-known CDCL procedure (Marques-Silva et al., 2009), where unit propagation

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Interleaving External Evaluation and Unfounded Set Search

is performed in Part (a), conflict learning and backjumping in Part (b), and guessing
in Part (e). However, to take the semantics of external atoms into account, there are
two additional parts integrated into the CDCL procedure, where the first is necessary to
ensure correctness of the algorithm, while the second potentially increases its efficiency.

On the one hand, in Part (c), after a solution S to Ω′
Π has been found, it is checked

for each &g[~p](~c) in Π whether the truth value assigned to the replacement atom e&g[~p](~c)
is compatible with the evaluation of the corresponding oracle function under A ∪̇ ¬.S.
It has been shown that when the truth value of an external atom &g[~p](~c) under A
coincides with the one for e&g[~p](~c) assigned by S, this check can be skipped (cf. Eiter,
Fink, Krennwallner, et al., 2014).

If a solution S passes the external checks, an unfounded set for Π w.r.t. A has been
detected and the algorithm returns true in case S intersects with the true part of the
complete assignment A; otherwise, S is added to Ω′

Π and the search continues. The
io-nogoods learned from the external evaluations are added to the nogood store ∇ for
use in the search for compatible sets and to Ω′

Π via the nogood transformation TΩ, in
order to avoid wrong guesses for replacement atoms in the further unfounded set search.

On the other hand, external evaluations can also be performed based on partial
assignments for Ω′

Π, which are triggered by a heuristics in Part (d). Accordingly, the
respective oracle function is evaluated in Part (c) under an assignment A ∪̇ ¬.S as in
Definition 4.1. As before, learned nogoods N are added to ∇ and (via the nogood
transformation) to Ω′

Π, respectively.

While the details of how the learned nogoods N are constructed are not relevant in
the following, we stress that using the unfounded set itself as learned nogood is in general
not correct.

Example 4.3. Consider the program Π = {a ∨ b←; c← b; b← c}, which has two answer
sets A1 = {Ta, Fb, Fc} and A2 = {Fa, Tb, Tc}. Note that U = {b, c} is an unfounded
set of Π w.r.t. A = {Ta, Tb, Tc}. Using {Tb, Tc} as learned nogood (constructed from
the atoms in U) would eliminate the answer set A2. Informally, this is the case because
U is unfouneded only w.r.t. the current assignment, which must be respected in nogood
learning. In this case, the nogood learned from U is N = {Ta, Tb} (or, alternatively,
N ′ = {Ta, Tc}). △

For details on the construction of N we refer to (Eiter, Fink, Krennwallner, et
al., 2014). Note that Algorithm 4.1 is parametric on the learning function Λ used in
Parts (c) and (d). Because the nogood transformation TΩ that has been employed by
Eiter, Fink, Krennwallner, et al. (2014) can only be applied to faithful io-nogoods, we
assume that Λ only returns faithful io-nogoods in Algorithm 4.1. That is, all other
nogoods returned by the learning function Λ are simply ignored. In practice, we employ
the learning functions Λu and Λmu.

4.1.3 Properties of the Algorithm

The following proposition, adapted from Theorem 10 in (Eiter, Fink, Krennwallner, et al.,
2014), states that by the checks in Part (c) of Algorithm 4.1, we can determine whether

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

a complete solution S corresponds to an unfounded set for Π w.r.t. A:

Proposition 4.2. Let Π be a ground hex-program and let A be a complete assignment
over A(Π). If there is a solution S for ΩΠ with assumptions AA such that for all external
atoms &g[~p](~c) in Π it holds that

(1) Te&g[~p](~c) ∈ S and A 6|= &g[~p](~c) implies A ∪̇ ¬.S 6|= &g[~p](~c), and

(2) Fe&g[~p](~c) ∈ S and A |= &g[~p](~c) implies A ∪̇ ¬.S |= &g[~p](~c),

then U =
{

Xa | a ∈ A(Π), Xa ∈ S, X ∈ {T, F}} is an unfounded set for Π w.r.t. A.

Proof. The proof is identical to the proof for Theorem 10 by Eiter, Fink, Krennwallner,
et al. (2014) modulo the different representation of assignments by sets of ground atoms
used by Eiter, Fink, Krennwallner, et al. (2014).

Moreover, we can show that for every unfounded set U for Π w.r.t. A where U
intersects with the true part of A, a solution to ΩΠ with assumptions AA can be
generated that passes the checks in Part (c) of Algorithm 4.1, and that the nogoods
added in Part (d) of Algorithm 4.1 do not eliminate the solution:

Proposition 4.3. Let Π be a ground hex-program, let A be a complete assignment over
A(Π) and suppose Algorithm 4.1 is executed with Π and A as inputs. If there is an
unfounded set U for Π w.r.t. A s.t. {Ta | Ta ∈ A ∩ U} 6= ∅, then there is a solution S
for ΩΠ with assumptions AA, s.t. {Ta | Ta ∈ A ∩ S} 6= ∅, that satisfies conditions (1)
and (2) of Proposition 4.2 and all transformed nogoods TΩ(N) added to Ω′

Π in Part (d)
of Algorithm 4.1.

Proof. Let Π be a ground hex-program, let A be a complete assignment over A(Π) and
suppose Algorithm 4.1 is executed with Π and A as inputs. Further, let there be an
unfounded set U for Π w.r.t. A s.t. {Ta | Ta ∈ A ∩ U} 6= ∅. According to Proposition 8
by Eiter, Fink, Krennwallner, et al. (2014), there is a solution S for ΩΠ with assumptions
AA s.t. {Ta | Ta ∈ A ∩ S} 6= ∅. In addition, it follows directly from Proposition 11
in (Eiter, Fink, Krennwallner, et al., 2014) that S satisfies conditions (1) and (2) of
Proposition 4.2.

It is easy to see that any faithful io-nogood as defined in Definition 3.5 is also a
valid input-output-relationship according to Definition 9 in (Eiter, Fink, Krennwallner,
et al., 2014). Moreover, we only consider faithful io-nogoods returned by the learning
function Λ. Consequently, we infer that S also satisfies all transformed nogoods TΩ(N)
added to Ω′

Π in Part (d) of Algorithm 4.1 according to Proposition 15 by Eiter, Fink,
Krennwallner, et al. (2014).

We remark that in case the learning function Λu is used in Part (d), backjumping is
triggered by the added nogoods as soon as it can be determined that a partial assignment
cannot be extended to a solution satisfying conditions (1) and (2). However, we refrain
from a formal statement and proof of this behavior in the special case, as it would
require to delve into the very details of the uniform encoding and the particular nogood
transformation (the respective conflict involves a transformed nogood).

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Interleaving External Evaluation and Unfounded Set Search

Example 4.4. Consider the hex-program Π = {r ← &id[q](). ; q ← . ; p← &id[p]().}, the
complete assignment A = {Tp, Tq, Tr} and a partial assignment S s.t. S ⊇ {Fe&id[~q](),
Fe&id[~r](), Tr, Fq, Up}. Note that S cannot be extended s.t. it corresponds to an
unfounded set of Π w.r.t. A. Accordingly, by performing external evaluations w.r.t. S, we
find that it violates condition (2) of Proposition 4.2 as Fe&id[q]() ∈ S, A |= &id[q]() and
f&id(A ∪̇ ¬.S, q) = T. This demonstrates that we can detect that S cannot be extended
to a solution corresponding to an unfounded set without constructing a complete solution
to Ω′

Π. △

Correctness and completeness of Algorithm 4.1 can be derived from the facts that it
returns only solutions for ΩΠ with assumptions AA that satisfy conditions (1) and (2)
of Proposition 4.2, and that no such solution is removed due to the nogoods learned in
Part (d).

Theorem 4.1. Given a ground hex-program Π and a complete assignment A over A(Π)
as inputs, Algorithm 4.1 returns true if there is an unfounded set U for Π w.r.t. A s.t.
{Ta | Ta ∈ A ∩ U} 6= ∅, and false otherwise.

Proof. Let Π be a ground hex-program, let A be a complete assignment over A(Π) and
suppose Algorithm 4.1 is executed with Π and A as inputs.

We first show that Algorithm 4.1 returns true if there is an unfounded set U for Π
w.r.t. A such that {Ta | Ta ∈ A∩U} 6= ∅. Consider the case that there is an unfounded
set U for Π w.r.t. A such that {Ta | Ta ∈ A ∩ U} 6= ∅. According to Proposition 4.3, a
solution S for ΩΠ with assumptions AA exists, such that {Ta | Ta ∈ A ∩ S} 6= ∅, which
does not violate any nogood added to Ω′

Π in Part (d) of Algorithm 4.1. Consequently,
the complete assignment S is generated by Algorithm 4.1 and Part (c) is executed. Since
S satisfies conditions (1) and (2) of Proposition 4.2, according to Proposition 4.3, the
variable isUFS is not set to false in Part (c), and because {Ta | Ta ∈ A ∩ S} 6= ∅ the
algorithm returns true.

Now we show that Algorithm 4.1 returns false if there is no unfounded set U for
Π w.r.t. A such that {Ta | Ta ∈ A ∩ U} 6= ∅. Towards a contradiction, suppose that
there is no unfounded set U for Π w.r.t. A such that {Ta | Ta ∈ A ∩ U} 6= ∅ and
that Algorithm 4.1 does not return false. This means that false is not returned in
Part (b) because true is returned before the search space has been completely explored.
Accordingly, a complete assignment S is generated by Algorithm 4.1 and Part (c) is
executed, which satisfies conditions (1) and (2) of Proposition 4.2. Moreover, it must hold
that {Ta | Ta ∈ A ∩ S} 6= ∅ because otherwise true would not be returned in Part (c).
However, from Proposition 4.2 we know that U =

{

Xa | a ∈ A(Π), Xa ∈ S, X ∈ {T, F}}

is an unfounded set for Π w.r.t. A. Since we have that {Ta | Ta ∈ A ∩ S} 6= ∅, we have
that {Ta | Ta ∈ A ∩ U} 6= ∅ and hence, we infer that there is an unfounded set U for Π
w.r.t. A such that {Ta | Ta ∈ A ∩ U} 6= ∅. Thus, we derive a contradiction, and infer
that Algorithm 4.1 returns false if there is no unfounded set U for Π w.r.t. A such that
{Ta | Ta ∈ A ∩ U} 6= ∅.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

Thus, by employing Algorithm 4.1, we are now also able to exploit partial assignments
for evaluating external sources at any point during the unfounded set search, and
for learning corresponding io-nogoods that can decrease the number of unfounded set
candidates which need to be generated.

4.2 Skipping the Minimality Check Based on Semantic

Dependencies

Since an answer set Â of a guessing program Π̂ must be a minimal model of the FLP-
reduct fΠ̂Â, an e-minimality check is under certain conditions redundant. The criterion
by Eiter, Fink, Krennwallner, et al. (2014) for deciding its necessity relies on an atom
dependency graph induced by the hex-program. Informally, an e-minimality check is only
needed for programs that allow cyclic support via external atoms, which can be checked
efficiently. For instance, the program Π1 = { p← &id[p]() } allows cyclic support for the
atom p via &id[p](), while this is not the case for Π2 = { p ← &id[q](); q ← r; r ← q },
where the truth value of &id[q]() is independent of the value of p. If cyclic support via
external atoms can be ruled out as for Π2, the e-minimality check can be skipped for a
program, potentially avoiding to invest many resources into a redundant check. Note,
however, that an ordinary minimality check is still needed for computing the answer sets
of Π̂.

In this section, we introduce a new technique for skipping the e-minimality check
w.r.t. a wider class of programs than previous approaches. More precisely, given Π, we
present a new sufficient1 criterion for deciding if every projection A of a compatible set
Â for Π̂ is an answer set of Π. The criterion exploits that output values of external
atoms often do not depend on the complete extensions of their input predicates, which
can be determined given additional information concerning dependencies between the
inputs and outputs of external atoms.

4.2.1 Dependency Graph Pruning

We start by defining so-called io-dependencies, which specify that certain outputs of
external atoms only depend on specific argument values of their inputs. For instance,
whether a city c is in the output of &closeWest[city](X) from the beginning of this
chapter only depends on cities c′ that are located close to the east of c. Hence, the truth
value of &closeWest[city](kobe) clearly only depends on the atom city(osaka), and we
want to encode that kobe as first output of &closeWest[city](X) only depends on the
element osaka as first argument of the first input predicate city.

Definition 4.2 (Io-Dependency). An io-dependency for a ge-predicate &g[~p] is a tuple
δ = 〈i, j : J, k : e〉 where 1 ≤ i ≤ arI(&g), 1 ≤ j ≤ ar(pi), 1 ≤ k ≤ arO(&g), J ⊆ C and
e ∈ C. The set of all δ for &g[~p] is denoted by dep(&g[~p]).

1Deciding the sufficient and necessary criterion is Πp
2-complete for polynomial-time decidable external

atoms and thus ill-suited for our aim to improve performance.

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Skipping the Minimality Check Based on Semantic Dependencies

In the sequel, io-dependencies will be used to constrain the possible dependencies
between inputs and outputs of external atoms &g[~p](~c). Intuitively, an io-dependency
〈i, j : J, k : e〉 states that if constant e occurs as the kth output of &g[~p](~c), then only
those input predicates at position i are relevant for its evaluation where the jth argument
matches some e′ ∈ J . Thus, the io-dependency δ = 〈1, 1 : {osaka}, 1 : kobe〉 could be
specified for the example above. Io-dependencies induce atom sets relevant for evaluating
respective external atoms:

Definition 4.3 (Compliant Atoms). A ground ordinary atom pi(~d), with ~d = d1, ..., dl,
is compliant with a set D ⊆ dep(&g[~p]) of io-dependencies for a ground external atom
&g[~p](~c) if dj ∈ J for all 〈i, j : J, k : e〉 ∈ D with e = ck. The set of all atoms compliant
with D for &g[~p](~c) is denoted by comp(D, &g[~p](~c)).

For our example, we have comp({δ}, &closeWest[city](kobe))={city(osaka)}. The
semantics of external atoms is related to io-dependencies as follows.

Definition 4.4 (Faithfulness). A set D ⊆ dep(&g[~p]) is faithful, if for any assignments
A, A′ and ground external atom &g[~p](~c), either A(pi(~d)) 6= A′(pi(~d)) for some pi(~d) ∈
comp(D, &g[~p](~c)) or f&g(A, ~p,~c) = f&g(A′, ~p,~c).

Thus, io-dependencies D ⊆ dep(&g[~p]) constrain the set of atoms that potentially
impact the evaluation of &g[~p](~c), i.e. if D is faithful, changing only truth values of atoms
pi(~d) that are not in comp(D, &g[~p](~c)) has no effect on the value of &g[~p](~c).

In the following, we denote by D(&g[~p]) ⊆ dep(&g[~p]) a set of io-dependencies specified
for &g[~p]. By default, we assume that D(&g[~p]) is empty, but it can be utilized to supply
additional dependency information. To ensure correctness of an algorithm that skips
e-minimality checks based on D(&g[~p]), it is important that D(&g[~p]) is faithful; and we
assume in the following that this is the case. Simultaneously, the goal is to approximate
the real dependencies between atoms as close as possible for maximal performance gains.
Note that while an extensional specification of D(&g[~p]) might be very verbose, they
can often also be specified more concisely in an intensional manner, as in the following
example.

Example 4.5. Consider &setDiff [dom, set](c), which is true for c ∈ C and assignment A iff
{Tdom(c), Fset(c)} ⊆ A. Thus, the presence of an output value c only depends on atoms
with predicate dom or set that have c as first argument. Hence, D(&setDiff [dom, set]) =
{〈1, 1:{c}, 1:c〉, 〈2, 1:{c}, 1:c〉 | c ∈ C} is faithful. △

We now introduce a notion of atom dependency in hex-programs that accounts for
io-dependencies and generalizes the corresponding notion from (Eiter, Fink, Krennwallner,
et al., 2014).

Definition 4.5 (Atom Dependency). Given a ground hex-program Π, a set D(&g[~p])
for each &g[~p] in Π, and ordinary ground atoms p(~d) and q(~e), we say

• q(~e) depends on p(~d), denoted q(~e) →d p(~d) if for some rule r ∈ Π it holds that
q(~e) ∈ H(r) and p(~d) ∈ B+(r); and

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

• q(~e) depends externally on p(~d), denoted q(~e)→e p(~d) if some rule r ∈ Π and some
external atom &g[~p](~c) ∈ B+(r)∪B−(r) with p ∈ ~p exist such that q(~e) ∈ H(r) and
p(~d) ∈ comp(D(&g[~p]), &g[~p](~c)).

Note that Definition 4.5 generalizes the corresponding one from (Eiter, Fink, Kren-
nwallner, et al., 2014) in that an external dependency is only added if the specified
io-dependencies are satisfied. The definitions coincide if D(&g[~p]) = ∅ for all ge-predicates
&g[~p] in Π.

Example 4.6. Consider &suc[node](n), which evaluates to true w.r.t. an assignment A and
an external directed graph G = (V, E) iff n′ → n ∈ E for some node n′ s.t. Tnode(n) ∈ A.
It is utilized in the following hex-program Π:

node(a). node(X)← &suc[node](X).

Intuitively, the program computes all nodes reachable from node a via the edges in
G. If the external graph has nodes V = {a, b, c, d} and directed edges E = {a → b,
a→ c, c→ d, e→ d}, the grounding of Π produced by the grounding algorithm of the
hex-program solver dlvhex contains the following rules (omitting facts):

node(b)←&suc[node](b). node(c)←&suc[node](c). node(d)←&suc[node](d).

Without specifying io-dependencies for &suc[node], it holds, e.g., that node(a) →e

node(b) and node(b)→e node(a). However, we can specify D(&suc[node]) =
{〈1, 1 : {c1 |

c1 → c2 ∈ E}, 1 : c2〉 | c2 ∈ C
}

, exploiting that the presence of output nodes only depends
on input nodes to which they are successors. In this case, node(a)→e node(b) does not
hold according to Definition 4.5 as b→ a 6∈ E. △

The following lemma states that external dependencies according to Definition 4.5
still cover all atoms relevant for deciding the truth value of an external atom, which
follows directly from the definition of faithful io-dependencies.

Lemma 4.1. Let Π be a hex-program, let r be a rule in Π, and let A and A′ be
two assignments. If a ∈ H(r) and &g[~q](~c) ∈ B+(r) ∪ B−(r), then A |= &g[~q](~c) iff
A′ |= &g[~q](~c) given that A(q(~e)) = A′(q(~e)) for all atoms q(~e) where a→e q(~e).

Proof. Let Π be a hex-program, let r be a rule in Π, and let A and A′ be two assignments.
Furthermore, let a ∈ H(r) and &g[~q](~c) ∈ B+(r) ∪B−(r), and suppose that A(q(~e)) =
A′(q(~e)) holds for all atoms q where a →e q(~e). According to Definition 4.5, for all
q(~e) where a →e q(~e) it holds that q(~e) ∈ comp(D(&g[~q]), &g[~q](~c)). Furthermore,
it holds that a →e q(~e) for every q(~e) ∈ comp(D(&g[~q]), &g[~q](~c)) because q(~e) ∈
comp(D(&g[~q]), &g[~q](~c)) is only possible if q ∈ ~q. Hence, A |= &g[~q](~c) iff A′ |= &g[~q](~c)
follows by Definition 4.4, and since we assume all sets of io-dependencies to be faithful
w.r.t. the given hex-program.

We are now ready to introduce the atom dependency graph for a given program Π.
From this graph, a property of Π can be derived which is subsequently employed to
decide the necessity of the e-minimality check w.r.t. Π.

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Skipping the Minimality Check Based on Semantic Dependencies

Definition 4.6 (Dependency Graph). Given a ground hex-program Π, the dependency

graph Gdep
Π = (V, E) has the vertices V = A(Π) and directed edges E =→d ∪ →e; Π has

an e-cycle, if Gdep
Π has a cycle with an edge →e.

In the remainder of this subsection, our goal is to show that the e-minimality check
can be skipped for all those hex-programs that do not have an e-cycle. Notably, while the
inverse of→d was additionally included in Gdep

Π by Eiter et al. (Eiter, Fink, Krennwallner,
et al., 2014), we improve their results by showing that our more general definition suffices.

For proving the main result of this section, i.e. correctness of our new decision criterion,
we first need to introduce two lemmas from (Eiter, Fink, Krennwallner, et al., 2014),
which are used subsequently in the proof of Theorem 4.2; and the concept of a cut, which
intuitively represents a set of atoms that do not belong to the core of an unfounded set.
The following definition is a generalization of Definition 13 by Eiter, Fink, Krennwallner,
et al. (2014):

Definition 4.7 (Cut). Let U be an unfounded set of Π w.r.t. A. A set of atoms

C ⊆ {a | Ta ∈ U} is a cut of Gdep
Π , if

(i) b 6→e a, for all a ∈ C and b ∈ {a | Ta ∈ U} (C has no incoming e-edge from U),

(ii) b 6→d a, for all a ∈ C and b ∈ {a | Ta ∈ U} \ C (there are no ordinary edges →d

from {a | Ta ∈ U} \ C to C).

Next, we reproduce the lemmas and the according proofs from (Eiter, Fink, Kren-
nwallner, et al., 2014) (corresponding to Lemmas 18 and 19 there). The proofs of the
lemmas are modifications of the according proofs by Eiter, Fink, Krennwallner, et al.
(2014), which account for our more general definitions of cuts and external dependencies.

The first lemma states that atoms in a cut of an unfounded set can be removed while
the resulting set still constitutes an unfounded set.

Lemma 4.2. Let U be an unfounded set of Π w.r.t. A, and let C be a cut. Then,
Y = {a | Ta ∈ U} \ C is an unfounded set of Π w.r.t. A.

Proof. If Y = ∅, then the result holds trivially. Otherwise, let r ∈ Π with H(r) ∩ Y 6= ∅.
Observe that H(r) ∩ {a | Ta ∈ U} 6= ∅ because {a | Ta ∈ U} ⊇ Y . Since U is an
unfounded set of Π w.r.t. A, according to Definition 2.6, either

(i) A 6|= b for some b ∈ B(r); or

(ii) A ∪̇ ¬.U 6|= b for some b ∈ B(r); or

(iii) A |= h for some h ∈ H(r) \ {a | Ta ∈ U}.

In case (i), the condition also holds w.r.t. Y . In case (ii), let a ∈ H(r) such that a ∈ Y ,
and b ∈ B(r) such that A ∪̇ ¬.U 6|= b. We make a case distinction: either b is an ordinary
literal or an external one.

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

If b is an ordinary default-negated atom not c, then A ∪̇ ¬.U 6|= b implies Tc ∈ A and
c 6∈ {a | Ta ∈ U}, and therefore also A ∪̇ ¬.Y 6|= b. So assume b is an ordinary atom. If
b 6∈ {a | Ta ∈ U} then A 6|= b and case (i) applies, so assume b ∈ {a | Ta ∈ U}. Because
a ∈ H(r) and b ∈ B(r), we have a →d b. By assumption a ∈ Y , and therefore b ∈ Y
because there are no ordinary edges →d from Y to C according to Definition 4.7. Hence
A ∪̇ ¬.Y 6|= b.

If b is an external literal, then there is no q ∈ {a | Ta ∈ U} with a →e q and
q 6∈ Y . Otherwise, this would imply q ∈ C and C would have an incoming e-edge, which
contradicts the assumption that C is a cut. Hence, for all q ∈ {a | Ta ∈ U} with a→e q,
also q ∈ Y , and therefore the truth value of b under A ∪̇ ¬.U and A ∪̇ ¬.Y is the same,
according to Lemma 4.1. Hence A ∪̇ ¬.Y 6|= b.

In case (iii), then also A |= h for some h ∈ H(r) \ Y because Y ⊆ {a | Ta ∈ U} and
therefore H(r) \ Y ⊇ H(r) \ {a | Ta ∈ U}.

The second lemma states that for each unfounded set U of a hex-program Π, U
is detected before Part (d) of Algorithm 3.1 when Π̂ is evaluated if no input to some
external atom is contained in U .

Lemma 4.3. Let U be an unfounded set of Π w.r.t. A. If there are no x, y ∈ {a | Ta ∈ U}
such that x→e y, then U is an unfounded set of Π̂ w.r.t. Â.

Proof. If {a | Ta ∈ U} = ∅, then the result holds trivially. Otherwise, suppose r̂ ∈ Π̂
and H(r̂) ∩ {a | Ta ∈ U} 6= ∅. Let a ∈ H(r̂) ∩ {a | Ta ∈ U}. Observe that r̂ cannot be
an external atom guessing rule because {a | Ta ∈ U} contains only ordinary atoms. We
show that one of the conditions in Definition 2.6 holds for r̂ w.r.t. Â.

Because r̂ is no external atom guessing rule, there is a corresponding rule r ∈ Π
containing external atoms in place of replacement atoms. Because U is an unfounded set
of Π and H(r) = H(r̂), according to Definition 2.6, either:

(i) A 6|= b for some b ∈ B(r); or

(ii) A ∪̇ ¬.U 6|= b for some b ∈ B(r); or

(iii) A |= h for some h ∈ H(r) \ {a | Ta ∈ U}.

In case (i), let b ∈ B(r) such that A 6|= b and b̂ the corresponding literal in B(b̂) (which
is the same if b is ordinary and the corresponding replacement literal if b is external).
Then also Â 6|= b̂ because Â is compatible.

In case (ii), we make a case distinction: either b is ordinary or external.
If b is ordinary, then b ∈ B(r̂) and A ∪̇ ¬.U 6|= b holds because A and Â are equivalent

for ordinary atoms. If b is an external atom &g[~q](~c) or a default-negated external atom
not &g[~q](~c), then q(~e) 6∈ {a | Ta ∈ U} for all atoms q(~e) where a→e q(~e); otherwise we
would have a contradiction to our assumption that {a | Ta ∈ U} has no internal e-edges.
Hence, we have that A ∪̇ ¬.U(q(~e)) = A(q(~e)) for all atoms q(~e) where a→e q(~e). But
then A ∪̇ ¬.U 6|= b implies A 6|= b according to Lemma 4.1. Therefore we can apply
case (i).

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Skipping the Minimality Check Based on Semantic Dependencies

In case (iii), also Â |= h for some h ∈ H(r̂) \ {a | Ta ∈ U} because H(r) = H(r̂)
contains only ordinary atoms and A is equivalent to Â for ordinary atoms.

The following theorem represents the main result of this section, and differs from the
previous result for e-minimality check skipping by Eiter, Fink, Krennwallner, et al. (2014)
in that it is based on our generalized definition of external dependencies. Consequently,
it can be applied to a larger class of hex-programs.

Theorem 4.2. If a ground hex-program Π contains no e-cycle, then every projection A
of a compatible set Â for Π̂ is an answer set of Π.

Proof. The core of the following proof mirrors exactly the proof for Theorem 20 by Eiter
et al. (Eiter, Fink, Krennwallner, et al., 2014), but it has been adapted to our more

general definition of the atom dependency graph Gdep
Π .

Since the answer sets of a hex-program Π are exactly the projections A of compatible
sets Â where {a | Ta ∈ A ∩ U} = ∅ for every unfounded set U of Π w.r.t. A (cf.
Section 2.4), we can prove the theorem by showing that the following statement holds:

If a ground hex-program Π contains no e-cycle, and no unfounded set U of Π̂ w.r.t.
an assignment Â s.t. {a | Ta ∈ Â ∩ U} 6= ∅ exists, then no unfounded set U ′ of Π w.r.t.
A such that {a | Ta ∈ A ∩ U ′} 6= ∅ exists, where A is the projection of Â.

We prove the contrapositive. Let Π be a hex-program that contains no e-cycle,
and let A be the projection of an assignment Â s.t. an unfounded set U ′ for Π w.r.t.
A s.t. {a | Ta ∈ A ∩ U ′} 6= ∅ exists. Since U ′ is an unfounded set for Π w.r.t. A
s.t. {a | Ta ∈ A∩U ′} 6= ∅, the set U ′′ = {Ta | Ta ∈ A∩U ′} is also a nonempty unfounded
set for Π w.r.t. A. The previous holds because no atom in {a | Ta ∈ A} \ {a | Ta ∈ U ′}
is true under A anyway and hence, conditions (i) to (iii) from the definition of unfounded
sets must be satisfied w.r.t. {a | Ta ∈ A ∩ U ′} as well. We need to show that an
unfounded set U of Π̂ w.r.t. Â s.t. {a | Ta ∈ Â ∩ U} 6= ∅ exists as well.

Let ←d be the inverse of →d. We define the reachable set R(a) from some atom a as

R(a) = {b | (a, b) ∈←∗
d},

i.e. the set of atoms b ∈ {a | Ta ∈ U} reachable from a using edges from ←d only but no
e-edges.

We first assume that {a | Ta ∈ U ′′} contains at least one e-edge, i.e. there are
x, y ∈ {a | Ta ∈ U ′′} such that x→e y. Now we show that there is a u ∈ {a | Ta ∈ U ′′}
with outgoing e-edge (i.e. u →e v for some v ∈ {a | Ta ∈ U ′′}), but such that R(u)
has no incoming e-edges (i.e. for all v ∈ R(u) and b ∈ {a | Ta ∈ U ′′}, b 6→e v holds).
Suppose to the contrary that for all a with outgoing e-edges, the reachable set R(a) has
an incoming e-edge. We now construct an e-cycle under →d ∪ →e, which contradicts our
assumption. Start with an arbitrary node with an outgoing e-edge c0 ∈ {a | Ta ∈ U ′′}
and let p0 be the (possibly empty) path (under ←d) from c0 to the node d0 ∈ R(c0)
such that d0 has an incoming e-edge, i.e. there is a c1 such that c1 →e d0; note that

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

node(a) node(b)

node(c) node(d)

node(a) node(b)

node(c) node(d)

Figure 4.1: Full and pruned dependency graph for Π from Example 4.6 (all arrows are
“→e”)

c1 6∈ R(c0)2. By assumption, also some node d1 in R(c1) has an incoming e-edge (from
some node c2 6∈ R(c1)). Let p1 be the path from c1 to d1, etc. By iteration we can
construct the concatenation of the paths p0, (d0, c1), p1, (d1, c2), p2, . . . , pi, (di, ci+1), . . .,
where the pi from ci to di are the paths within reachable sets, and the (di, ci+1) are the
e-edges between reachable sets. However, as {a | Ta ∈ U ′′} is finite, some nodes on this
path must be equal, i.e., a prefix of the constructed sequence represents an e-cycle (in
reverse order).

This proves that u is a node with outgoing e-edge but such that R(u) has no incoming
e-edges. We next show that R(u) is a cut. Condition (i) of Definition 4.7 is immediately
satisfied by definition of u. Condition (ii) is shown as follows. Let u′ ∈ R(u) and
v′ ∈ {a | Ta ∈ U ′′} \ R(u). We have to show that v′ 6→d u′. Suppose, towards a
contradiction, that v′ →d u′. Because of u′ ∈ R(u), there is a path from u to u′ under
←d. But if v′ →d u′, then there would also be a path from u to v′ under ←d and v′

would be in R(u), a contradiction.
Therefore, R(u) is a cut of U ′′, and by Lemma 4.2, it follows that {a | Ta ∈ U ′′}\R(u)

is an unfounded set. Observe that {a | Ta ∈ U ′′} \ R(u) contains one e-edge less than
{a | Ta ∈ U ′′} because u has an outgoing e-edge. Further observe that {a | Ta ∈
U ′′} \ R(u) 6= ∅ because there is a w ∈ {a | Ta ∈ U ′′} such that u→e w but w 6∈ R(u).
By iterating this argument, the number of e-edges in the unfounded set can be reduced to
zero in a nonempty core. Eventually, Lemma 4.3 applies, proving that the remaining set
is an unfounded set of Π̂. Hence, we infer that there is a nonempty unfounded set U of
Π̂ w.r.t. Â. Moreover, we have that {a | Ta ∈ U} ⊆ {a | Ta ∈ U ′′} by construction of U
and since {a | Ta ∈ U ′′} ⊆ {a | Ta ∈ A}, we also have that {a | Ta ∈ Â ∩ U} 6= ∅.

Example 4.7 (cont’d). Figure 4.1 shows the dependency graphs for Π from Example 4.6,
with and without specified io-dependencies. The full dependency graph has an e-cycle,
but the pruned graph does not. Hence, Π does not require e-minimality checks (cf.
Theorem 4.2), but this can only be detected using the pruned graph. △

As a result, we obtain a flexible means for increasing the efficiency of evaluating a class
of hex-programs where the e-minimality check is performed due to an overapproximation
of the real dependencies between atoms.

2Whenever x→e y for x, y ∈ {a | Ta ∈ U ′′}, then there is no path from x to y under ←d, because
otherwise we would have an e-cycle under →d ∪ →e.

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Skipping the Minimality Check Based on Semantic Dependencies

4.2.2 Properties of Faithful Io-Dependencies

We now consider checking, generating and optimizing io-dependencies.

Informally, given D1, D2 ⊆ dep(&g[~p]), D1 is better than D2 if it induces less compliant
atoms. We thus say that D1 tightens D2, denoted D1 ≤ D2, if comp(D1, &g[~p](~c)) ⊆
comp(D2, &g[~p](~c)) holds for all tuples ~c. We call D1 tight if no D2 strictly tightens D1,
i.e., D2 ≤ D1 but D1 6≤ D2; furthermore D1 and D2 are equally tight, denoted D1 ≡ D2,
if D1 ≤ D2 and D2 ≤ D1. We then have:

Proposition 4.4. Suppose D1, D2 ⊆ dep(&g[~p]) are such that D1 ≤ D2. If D1 is faithful,
then D2 is also faithful.

Proof. Towards a contradiction, suppose that D1 ≤ D2 and D1 is faithful, but D2

is not. Then there exist assignments A, A′ and a tuple ~c such that A and A′ co-
incide on comp(D2, &g[~p](~c)) but f&g(A, ~p,~c) 6= f&g(A′, ~p,~c). Because it holds that
comp(D1, &g[~p](~c)) ⊆ comp(D2, &g[~p](~c)), it follows that A and A′ coincide also on
comp(D1, &g[~p](~c)); but this contradicts that D1 is faithful.

As a consequence, faithfulness is anti-monotonic w.r.t. set-inclusion, and it is mono-
tonic w.r.t. adding subsumed io-dependencies, where δ = 〈i, j : J, k : e〉 subsumes
δ′ = 〈i, j : J ′, k : e〉, if J ⊆ J ′ holds.

Corollary 4.1. If D⊆ dep(&g[~p]) is faithful, then (i) each D′⊆D is faithful and (ii)
each D′ = D ∪D′′ where each δ′′ ∈ D′′ is subsumed by some δ ∈ D is faithful.

Proof. As for (i), that D′⊆D implies D′ ≤ D: each atom p(~d) that is compliant for D′

is also compliant for D, as dj ∈ J for all 〈i, j : J, k : e〉 ∈ D′ with e = ck trivially implies
that dj ∈ J for all 〈i, j : J, k : e〉 ∈ D with e = ck. For (ii), we likewise conclude for
D′ = D ∪D′′ where each δ′′ ∈ D′′ is subsumed by some δ ∈ D, that D′ ≤ D as dj ∈ J
for all 〈i, j : J, k : e〉 ∈ D′ with e = ck implies that dj ∈ J for all 〈i, j : J, k : e〉 ∈ D with
e = ck. As D is faithful, (i) and (ii) follow thus from Proposition 4.4.

Consequently, we can tighten a faithful set D by sequentially dropping constants c
from io-dependencies δ = 〈i, j : J, k : e〉 in D, i.e., check whether D ∪ δ′ for δ′ = 〈i, j :
J \ {c}, k : e〉 is faithful and if so, replace D with (D \ {δ}) ∪ {δ′}.

We can simplify D by exploiting the following equivalences; let δ∗(i, j, k:e) = 〈i, j :
C, k : e〉 for any possible i, j, and k : e.

Proposition 4.5. For D ⊆ dep(&g[~p]) and 〈i, j : J, k : e〉 ∈ dep(&g[~p]), we have (i)
D ≡ D ∪ {δ∗(i, j, k:e)} ≡ D \ {δ∗(i, j, k:e)}, and (ii) for any δ = 〈i, j : J, k : e〉,
δ′ = 〈i, j : J ′, k : e〉 ∈ D that D ≡ D ∪ {〈i, j : J ∩ J ′, k : e〉}.

Proof. Let D ⊆ dep(&g[~p]) for a ge-predicate &g[~p], and let 〈i, j : J, k : e〉 ∈ dep(&g[~p]).

(i) First, we have that pi(~d) ∈ comp(D, &g[~p](~c)) if and only if pi(~d) ∈ comp(D ∪
{δ∗(i, j, k:e)}, &g[~p](~c)) because dj 6∈ J ′ for some 〈i, j : J ′, k : e〉 ∈ D implies that

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

dj 6∈ J ′′ for some 〈i, j : J ′′, k : e〉 ∈ D ∪ {δ∗(i, j, k:c)}, and it holds trivially that
dj ∈ C for every dj ∈ J ′ and every 〈i, j : J ′, k : e〉 ∈ D ∪ {δ∗(i, j, k:e)}.
We can also show that pi(~d) ∈ comp(D, &g[~p](~c)) if and only if pi(~d) ∈ comp(D \
{δ∗(i, j, k:e)}, &g[~p](~c)). First, dj 6∈ J ′ for some 〈i, j : J ′, k : e〉 ∈ D implies that
dj 6∈ J ′ for some 〈i, j : J ′, k : e〉 ∈ D \ {δ∗(i, j, k:c)} because dj ∈ C. Moreover, if
dj ∈ J ′ for every 〈i, j : J ′, k : e〉 ∈ D, then dj ∈ J ′′ for every 〈i, j : J ′′, k : e〉 ∈
D \ {δ∗(i, j, k:c)} since D \ {δ∗(i, j, k:c)} ⊆ D.

(ii) Next, let δ = 〈i, j:J, k:e〉, δ′ = 〈i, j:J ′, k:e〉 ∈ D be arbitrary io-dependencies in D.
We prove that pi(~d) ∈ comp(D, &g[~p](~c)) if and only if pi(~d) ∈ comp(D ∪ {〈i, j:J ∩
J ′, k:e〉}, &g[~p](~c)). Let pi(~d) ∈ comp(D, &g[~p](~c)) be a compliant atom. Then,
dj ∈ J ∩ J ′ because dj ∈ J and dj ∈ J ′, which shows that pi(~d) ∈ comp(D ∪
{〈i, j:J ∩ J ′, k:e〉}, &g[~p](~c)). Finally, let pi(~d) be a ground ordinary atom s.t.
pi(~d) 6∈ comp(D, &g[~p](~c)). But then pi(~d) 6∈ comp(D ∪ {〈i, j:J ∩ J ′, k:e〉}, &g[~p](~c))
as dj 6∈ J ′′ for some 〈i, j : J ′′, k : e〉 ∈ D.

That is, δ∗(i, j, k:e) is like a tautology, and we can replace all dependencies for i, j
and k : e in D by one which contains the intersection of all their J-sets. We thus can
normalize D into nf(D) such that for each i, j, and k : e exactly one io-dependency
occurs, and then start tightening. We then obtain:

Proposition 4.6. Given a faithful D ⊆ dep(&g[~p]), exhaustive tightening of nf(D)
results in a tight faithful D′.

Proof. First, D′ is faithful because faithfulness is checked each time before an io-
dependency δ = 〈i, j : J, k : e〉 is replaced by δ′ = 〈i, j : J \ {c}, k : e〉 during tightening.
We need to show that D′ is also tight.

Towards a contradiction, suppose that D′ is exhaustively tightened but that it is not
tight, i.e. that there is a set D′′ ⊆ dep(&g[~p]) s.t. D′′≤D′ and D′ 6≤D′′. This implies
that there is some pi ∈ ~p s.t. pi(~d) ∈ comp(D′, &g[~p](~c)) and pi(~d) 6∈ comp(D′′, &g[~p](~c))
for some output ~c of &g[~p]. Thus, for some 1 ≤ j ≤ ar(p) we have that dj ∈ J
for all 〈i, j : J, k : e〉 ∈ D′ with e = ck but dj 6∈ J for some 〈i, j : J, k : e〉 ∈ D′′

with e = ck, according to the definition of compliant atoms. But then, D′ ∪ {δ′} for
δ′ = 〈i, j : J \ {dj}, k : e〉 with e = ck, where 〈i, j : J, k : e〉 ∈ D with e = ck, is also
faithful due to Proposition 4.4 because it holds that D′′ ≤ D′ ∪ {δ′}, and D′′ is faithful.
This means that D′ is not exhaustively tightended, which contradicts our assumption.

The set D = ∅ is trivially faithful, and nf(∅) consists of all δ∗(i, j, k:c); thus even
without user input, a tight faithful set D′ for &g[~p] is constructible. Moreover, semantically
faithful sets of compliant atoms have the intersection property.

Proposition 4.7. If D1, D2⊆ dep(&g[~p]) are faithful, then D1 ∪D2 is faithful, and for
every ~c, comp(D1 ∪D2, &g[~p](~c)) = comp(D1, &g[~p](~c)) ∩ comp(D2, &g[~p](~c)).

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Skipping the Minimality Check Based on Semantic Dependencies

Proof. Let ~c be an arbitrary output tuple of &g[~p], let D1, D2⊆ dep(&g[~p]), and let
CD = comp(D, &g[~p](~c)) for any D⊆ dep(&g[~p]).

We begin by showing that CD1∪D2 = CD1 ∩ CD2 . For a ground atom p(~d), with
~d = d1, ..., dl, it holds that p(~d) ∈ CD1∪D2 iff dj ∈ J for all 〈i, j : J, k : e〉 ∈ D1 ∪ D2

with e = ck. The previous holds iff dj ∈ J for all 〈i, j : J, k : e〉 ∈ D1 and dj ∈ J ′ for all

〈i, j : J ′, k : e〉 ∈ D2 with e = ck, which holds iff p(~d) ∈ CD1 and p(~d) ∈ CD2 . This proves
that p(~d) ∈ CD1 ∩ CD2 iff p(~d) ∈ CD1∪D2 .

Now, we prove that if D1 and D2 are faithful, then D1 ∪D2 is faithful. Recall that
according to Definition 4, a set of io-dependencies D⊆ dep(&g[~p]) is faithful iff:

(*) for any assignments A, A′ and ground external atom &g[~p](~c), either A(pi(~d)) 6=
A′(pi(~d)) for some pi(~d) ∈ CD or f&g(A, ~p,~c) = f&g(A′, ~p,~c).

Suppose that statement (*) holds w.r.t. CD1 and CD2 ; we show that it also holds w.r.t.
CD1∪D2 = CD1 ∩ Cd2 .

Towards a contradiction, suppose that CD1∪D2 does not satisfy (*). Hence there
exist assignments A, A′ such that A(pi(~d)) = A′(pi(~d)) for all pi(~d) ∈ CD1∪D2 and
f&g(A, ~p,~c) 6= f&g(A′, ~p,~c).

Let A1 be the assignment such that

A1(pi(~d)) =

A(pi(~d)) if pi(~d) ∈ CD1 ,

A′(pi(~d)) if pi(~d) ∈ CD2 \ CD1 ,
T otherwise.

Then, as A1 and A coincide on CD1 and the latter satisfies (*), it follows f&g(A1, ~p,~c) =
f&g(A, ~p,~c).

Let A′
1 be similarly the assignment such that

A′
1(pi(~d)) =

A′(pi(~d)) if pi(~d) ∈ CD2 ,

A(pi(~d)) if pi(~d) ∈ CD1 \ CD2 ,
T otherwise.

Then, as A′
1 and A′ coincide on CD2 and the latter satisfies (*), it follows f&g(A′

1, ~p,~c) =
f&g(A′, ~p,~c). As A and A′ coincide on CD1∪D2 = CD1 ∩ CD2 , by construction A1 = A′

1,
and it follows f&g(A, ~p,~c) = f&g(A1, ~p,~c) = f&g(A′

1, ~p,~c) = f&g(A′, ~p,~c); however, this
contradicts the assumption that f&g(A, ~p,~c) 6= f&g(A′, ~p,~c).

Consequently, every ge-predicate has a semantically unique tight set of faithful
io-dependencies. However, syntactically different tight faithful sets may exist.

Example 4.8. Consider a ge-predicate &g[p] which is true for output (a, b) w.r.t. an
assignment A iff Tp(c) ∈ A, and false for all other output tuples. Then {〈1, 1 : {c}, 1 : a〉}
and {〈1, 1 : {c}, 2 : b〉} are faithful, and both are tight. △

To check faithfulness of a set D ⊆ dep(&g[~p]), formally the oracle function f&g(A, ~p,~c)
must be evaluated for all evaluations of predicates p ∈ ~p and output tuples ~c, which
naively is often not feasible in practice.

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

Example 4.9. Reconsider &suc[node](X) from Example 4.5. To check faithfulness of the
specified io-dependencies w.r.t. output a, the oracle function needs to be evaluated under
all possible assignments to atoms with predicate node. △

In the worst case, this cannot be avoided by the following result, where we assume
that &g[~p](~c) is decidable in polynomial time.

Proposition 4.8. Checking faithfulness of a given set D ⊆ dep(&g[~p]) is co-NEXP-
complete in general, and co-NP-complete for fixed predicate arities.

Proof. See Appendix A.1, page 193.

When certain properties of external sources are known, less external calls are needed
for faithfulness checking, e.g. for monotonic functions. An input pi ∈ ~p of a ge-predicate
&g[~p] is monotonic, if for any assignment A and output ~c, f&g(A, ~p,~c) = T implies

f&g(A′, ~p,~c) = T for every A′ ≥ A s.t. A(pj(~d)) = A′(pj(~d)) for all predicates pj ∈ ~p
with pj 6= pi (cf. (Eiter et al., 2018)). Based on monotonicity, the number of assignments
to consider in a faithfulness check can be decreased.

Proposition 4.9. If pi ∈ ~p for &g[~p] is monotonic, a set D ⊆ dep(&g[~p]) is faithful
for &g[~p] iff for any assignments A, A′ s.t. Tpi(~d) ∈ A and Fpi(~d) ∈ A′ for every
pi(~d) 6∈ comp(D, &g[~p](~c)) and A(pi(~d)) = A′(pi(~d)) for every pi(~d) ∈ comp(D, &g[~p](~c)),
it holds that f&g(A, ~p,~c) = f&g(A′, ~p,~c).

Proof. Let pi be a monotonic input parameter of a ge-predicate &g[~p], and D ⊆ dep(&g[~p]).
We need to show that D is faithful for &g[~p] iff for any two assignments A, A′ s.t.
Tpi(~d) ∈ A and Fpi(~d) ∈ A′ for every atom pi(~d) 6∈ comp(D,~c), and A(pi(~d)) = A′(pi(~d))
for every atom pi(~d) ∈ comp(D,~c), it holds that f&g(A, ~p,~c) = f&g(A′, ~p,~c).

(⇒) The only-if direction follows directly from Definition 4.4.
(⇐) To prove the if-direction, (*) assume that for any two assignments A, A′ s.t.

Tpi(~d) ∈ A and Fpi(~d) ∈ A′ for every atom pi(~d) 6∈ comp(D,~c), and A(pi(~d)) = A′(pi(~d))
for every atom pi(~d) ∈ comp(D,~c), it holds that f&g(A, ~p,~c) = f&g(A′, ~p,~c). We need
to show that D is faithful for &g[~p] according to Definition 4.4, i.e. that for any two
assignments A∗, A′

∗ and any possible output tuple ~c for &g[~p] it holds that if A∗(pi(~d)) =
A′

∗(pi(~d)) for every atom pi(~d) ∈ comp(D,~c), then f&g(A∗, ~p,~c) = f&g(A′
∗, ~p,~c).

First consider the case that f&g(A∗, ~p,~c) = T. Let A be an assignment s.t. A∗(pj(~d)) =

A(pj(~d)) for all atoms pj(~d) with pj ∈ ~p where pj 6= pi and all atoms pj(~d) ∈ comp(D,~c)

where pj = pi, and Tpi(~d) ∈ A for every atom pi(~d) 6∈ comp(D,~c). Furthermore, let

A′ be an assignment s.t. A′
∗(pj(~d)) = A′(pj(~d)) for all atoms pj(~d) with pj ∈ ~p where

pj 6= pi and all atoms pj(~d) ∈ comp(D,~c) where pj = pi, and Fpi(~d) ∈ A′ for every atom

pi(~d) 6∈ comp(D,~c). Since f&g(A∗, ~p,~c) = T, we obtain f&g(A, ~p,~c) = T according to
the definition of monotonic input parameter. Moreover, it follows from our assumption
(*) that f&g(A′, ~p,~c) = T. Finally, f&g(A′

∗, ~p,~c) = T follows again from the definition of
monotonic input parameter because we have that f&g(A′, ~p,~c) = T, which proves that
f&g(A∗, ~p,~c) = f&g(A′

∗, ~p,~c).
The case for f&g(A∗, ~p,~c) = F works analogously.

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Skipping the Minimality Check Based on Semantic Dependencies

Example 4.10 (cont’d). As node is a monotonic input parameter of &suc[node], for
checking faithfulness w.r.t. a it suffices to evaluate f&suc(A, node, a) under two assign-
ments At and Af , s.t. At ⊆ {Tnode(a), Tnode(b), Tnode(c), Tnode(d)} and Af ⊆
{Fnode(a), Fnode(b), Fnode(c), Fnode(d)}. △

Under additional conditions, we obtain tractability:

Corollary 4.2. If all pi ∈ ~p for &g[~p] are monotonic and |comp(D, &g[~p](~c))| is bounded,
then checking faithfulness is polynomial for fixed predicate arities.

Proof. See Appendix A.1, page 195.

The same holds for computing a tight faithful set D for &g[~p]. In practice, this applies
to Example 4.5, if the external graph has bounded degree.

We can under the assertions of the previous corollary compute some tight faithful
set for an output ~c, by cycling through all sets S of input atoms of size i = 0, 1, 2 etc.
up to the limit ℓ; for each S, we can test whether S satisfies the faithfulness condition
in polynomial time (as argued above), and whether S is represented by some set D
of io-dependencies. To this end, we collect in D = D(S, &g[~p](~c)) all dependencies
〈i, j:Jj , k:ck〉 where Jj is the set of all constants dj that appear in atoms pi(d1, . . . , dl) in
S for input pi as j-th argument, and ck is the k-th argument of ~c, for all k; we then check
whether S = comp(D, &g[~p](~c)) holds, by inspecting all possible ground input atoms.
Overall, this can be done in polynomial time.

Relativized io-dependencies

So far, the context of a given hex-program has not been exploited for specifying respective
io-dependencies. However, without considering how dependencies in an external source
may be affected by input parameters, all io-dependencies that may hold under any
possible extension of input predicates must be respected. This is illustrated by the
following example.

Example 4.11. Consider &suc[edge, node](X), where edges from edge are inserted into
G before successor nodes are output. If it is unknown which edges can be added, io-
dependencies must account for the complete graph (all edges), which is a maximal
overapproximation. Now, consider the following hex-program.

edge(b, c) ∨ n_edge(b, c). node(a). node(b)← &suc[edge, node](b).

As edge(b, c) is the only atom with predicate edge that can potentially be true in the
input of &suc[edge, node](b) in any answer set, it suffices to specify io-dependencies w.r.t.
the graph G′ = (V, E ∪ {b→ c}) to ensure e-minimality. △

To account for the inputs to external sources that are possible in answer sets, we
define faithfulness w.r.t. a hex-program Π. Let env(Π) denote the set of all atoms for Π
that are true in some compatible set of Π.

Definition 4.8 (Relativized Faithfulness). A set D ⊆ dep(&g[~p]) is faithful w.r.t. a
hex-program Π, if for any assignments A, A′ s.t. {a | Ta ∈ A ∪A′} ⊆ env(Π), and

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

for any output tuple ~c for &g[~p], either A(pi(~d)) 6= A′(pi(~d)) for some atom pi(~d) ∈
comp(D, &g[~p](~c)) or f&g(A, ~p,~c) = f&g(A′, ~p,~c).

We show that skipping e-minimality checks based on the relativized definition of
faithful io-dependencies is still safe.

Proposition 4.10. Theorem 4.2 still holds if the specified io-dependencies are faithful
w.r.t. to the hex-program Π at hand according to Definition 4.8.

Proof. The proof of Theorem 4.2 can be directly adopted because, in order to ensure
that the projection A of a compatible set Â for a hex-program Π is a ≤-minimal model
of fΠA, one only needs to consider assignments A′ s.t. A′ ≤ A; and we have that
A′ ≤ {Ta | a ∈ env(Π)} for every projection A′ of a compatible set Â′ for Π.

The properties of above can be adjusted to this setting.

4.3 Empirical Evaluation

In this section, we present an empirical evaluation regarding the usage of partial evaluation
during the unfounded set search, discussed in Section 4.1, and pruning e-minimality
checks based on semantic dependency information as discussed in Section 4.2.

4.3.1 Experimental Setup

To experimentally test our new techniques for tightly integrating the e-minimality check
and external evaluation, we implemented them in the hex-solver dlvhex 2.5.0, which uses
gringo 4.4.0 and clasp 3.1.1 as backends (Gebser, Kaufmann, et al., 2011), and tested
it on randomly generated instances. Io-depencendies for external atoms are specified by
plugin-methods that compute whether a dependency between given input and output
values exists.

Next, we first describe the evaluation platform and the different configurations we are
comparing. We then describe the benchmarks used for the evaluation. All instances and
log files of the experiments in Section 4.3.3 can be found at http://www.kr.tuwien

.ac.at/research/projects/inthex/partialeval, and the data of the experiments
in Section 4.3.4 is available at www.kr.tuwien.ac.at/research/projects/inthex/
dep-pruning.

Evaluation Platform

We used a Linux machine with two 12-core AMD Opteron 6238 SE CPUs and 512
GB RAM; the timeout was 300 seconds and the memout 8 GB per instance. The
average running times of 50 instances for the experiments in Section 4.3.3, respectively 10
instances for the experiments presented in Section 4.3.4, per problem size is reported (in
seconds) for computing all answer sets; timeouts are shown in parentheses in the result
tables.

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://www.kr.tuwien.ac.at/research/projects/inthex/partialeval
http://www.kr.tuwien.ac.at/research/projects/inthex/partialeval
www.kr.tuwien.ac.at/research/projects/inthex/dep-pruning
www.kr.tuwien.ac.at/research/projects/inthex/dep-pruning

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Empirical Evaluation

Benchmark Configurations

First, we tested two heuristics for interleaving external evaluations with the search
for unfounded sets (cf. Algorithm 4.1, Part (d)). For comparison, we also used the
configurations never, always and qxp-c introduced in Section 3.5.3. Accordingly, our
configurations for testing partial evaluation during the unfounded set search are the
following:

• never: external atoms are only evaluated w.r.t. candidate models (representing the
standard configuration of dlvhex without the new techniques);

• always: external atoms are evaluated w.r.t. partial assignments after every solver
guess during the model search;

• ufs-a: external atoms are evaluated w.r.t. partial assignments after every solver
guess during unfounded set search; and

• ufs-p: external atoms are evaluated w.r.t. partial assignments only after each 10th

solver guess during unfounded set search.

Furthermore, we investigated the effect of enabling external evaluations based on
partial assignments both during the main search and the unfounded set search, i.e.
combining configurations always and ufs-a.

We then investigated the effect of applying dependency graph pruning based on
specified io-dependencies by adding the configuration io-dep. To gain insights into how
dependency graph pruning and partial evaluation interact, we considered the frequency of
external calls also in our experiments w.r.t. e-minimality check skipping; this is of interest
as early external evaluation can speed up model search as well as the e-minimality check
and can thus potentially influence the impact of our new technique. More specifically,
we compared three different configurations, never, always and ufs-a, each with and
without adding dependency pruning (io-dep). In the result tables, we show combinations
of configurations where interactions are expected.

Benchmark Problems

In our benchmark programs used in Chapter 3, the one for the taxi assignment problem
contains cyclic dependencies through external atoms that can be detected syntactically,
while this is not the case for the pseudo-boolean and conflicting strategic companies
programs. The absence of such cyclic dependencies means that compatible sets of a
hex-program already correspond to its answer sets and the e-minimality check can be
skipped even when no io-dependencies are specified. Consequently, partial evaluation
during the search for unfounded sets did not have an impact on the performance results for
the pseudo-boolean and conflicting strategic companies benchmarks from Section 3.5.3.

For investigating the effect of partial evaluation during the unfounded set search, we
thus considered the following two benchmark problems:

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

• The Taxi Assignment with Ontology Access benchmark from Section 3.5.3.

• Two variants of the Strategic Companies problem (Cadoli et al., 1997), which
is popular with ASP competitions and was already employed in Section 3.5.3,
extended with externally computed control relations among companies based on
shares (Strategic Companies (with Nonmonotonic) External Controls Relation).

In addition, we utilized two further problems for our experiments on minimality check
skipping in Section 4.3.4, where the absence of cyclic dependencies involving external
atoms can be exploited when io-dependencies are specified:

• A User Access Selection problem concerning the assignment of access rights w.r.t.
nodes of a computer network, where constraints are imposed based on reachability
of nodes within the network.

• Sequential Allocation of Indivisible Goods as considered by Kalinowski et al. (2013),
where agent preferences over a set of goods are interfaced via an external atom.

The learning function Λu was used for the strategic companies benchmark with
nonmonotonic external control relation and the sequential allocation benchmark. Due to
monotonicity of external sources, the learning function Λmu can be utilized for the other
two benchmarks (cf. Section 3.3.2).

4.3.2 Hypotheses

Our hypotheses concerning the use of partial evaluation in the unfounded set search were
the following:

(H4.1) The heuristics ufs-a and ufs-p decrease the runtime over never if useful in-
formation is obtainable by early evaluation during the unfounded set search with
little runtime overhead, and increase it otherwise, whereby the effect is stronger for
ufs-a.

(H4.2) The heuristics ufs-p performs better than ufs-a if external calls need more
time or less information can be gained from them, mitigating the tradeoff between
information gain and running time invested in additional calls.

(H4.3) If the heuristics ufs-a or ufs-p are combined with the heuristics always, there
is a further speedup in case many io-nogoods learned during the unfounded set
search are not already learned during the main search. Thus, the combination is
expected to be more effective when for learning, the function Λu is used instead of
the function Λmu.

Regarding our technique for dependency graph pruning based on semantic dependen-
cies, we made the following predictions:

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Empirical Evaluation

All Answer Sets

never always ufs-p ufs-a always +
ufs-a qxp-c

4 0.19 (0) 0.22 (0) 0.20 (0) 0.48 (0) 0.53 (0) 0.17 (0)
6 0.35 (0) 0.35 (0) 0.38 (0) 1.64 (0) 1.78 (0) 0.22 (0)
8 1.27 (0) 0.70 (0) 1.02 (0) 8.70 (0) 8.31 (0) 0.33 (0)

10 7.86 (0) 1.41 (0) 3.67 (0) 33.22 (0) 30.28 (0) 0.65 (0)
12 228.11 (17) 4.16 (0) 37.50 (1) 139.01 (10) 93.41 (3) 1.75 (0)
14 300.00 (50) 12.25 (0) 186.79 (20) 281.62 (42) 190.64 (21) 6.45 (0)
16 300.00 (50) 24.42 (1) 292.14 (47) 300.00 (50) 273.96 (40) 13.27 (1)
18 300.00 (50) 81.46 (4) 300.00 (50) 300.00 (50) 295.59 (49) 58.43 (3)
20 300.00 (50) 110.71 (8) 300.00 (50) 300.00 (50) 300.00 (50) 67.77 (6)
22 300.00 (50) 203.06 (24) 300.00 (50) 300.00 (50) 288.02 (48) 178.43 (18)
24 300.00 (50) 243.39 (32) 300.00 (50) 300.00 (50) 294.02 (49) 209.65 (26)
26 300.00 (50) 284.93 (45) 300.00 (50) 300.00 (50) 294.01 (49) 265.89 (40)
28 300.00 (50) 253.71 (42) 300.00 (50) 300.00 (50) 258.15 (43) 247.76 (40)
30 300.00 (50) 294.02 (49) 300.00 (50) 300.00 (50) 294.02 (49) 294.01 (49)

Table 4.1: Results for taxi assignment with ontology access w.r.t. partial evaluation
during unfounded set search (all answer sets)

(H4.4) Configuration io-dep decreases the running time if e-cycles can be removed
from the dependency graph.

(H4.5) The speedup is larger when io-dep is combined with always and smaller when
combined with ufs-a, whenever partial evaluation is beneficial.

(H4.6) If pruning does not skip e-minimality checks, no significant overhead in terms of
running time with io-dep is incurred.

4.3.3 Experiments on Partial Evaluation for Minimality Checking

In this section, we begin our empirical investigation by testing the impact of partial
evaluations during the unfounded set search, using different heuristics.

Taxi Assignment

For testing the effect of partial evaluation during the unfounded set search w.r.t. the
taxi assignment benchmark, we used the same set of problem instances as before (cf.
Table 3.5). The results are shown in Tables 4.1 and 4.2, where we also report the running
times of the conditions always and qxp-c for comparison with partial evaluation during
the main search.

For this benchmark, the compatible sets are identical to the answer sets, such that
no unfounded sets are detected during unfounded set search. However, due to cyclic
dependencies through external atoms, minimality w.r.t. the FLP-reduct still needs to
be verified for each instance by means of the unfounded set check. We observe that
configurations ufs-p and ufs-a slightly improve the efficiency over never, where ufs-p
yields better results since calls to the external oracle are costly in this benchmark.
However, performing early evaluations during the main search in condition always is

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

First Answer Set

never always ufs-p ufs-a always +
ufs-a

qxp-c

4 0.16 (0) 0.17 (0) 0.16 (0) 0.20 (0) 0.21 (0) 0.15 (0)
6 0.20 (0) 0.19 (0) 0.20 (0) 0.28 (0) 0.28 (0) 0.18 (0)
8 0.39 (0) 0.22 (0) 0.37 (0) 0.55 (0) 0.38 (0) 0.22 (0)

10 1.27 (0) 0.22 (0) 1.16 (0) 1.65 (0) 0.46 (0) 0.32 (0)
12 22.60 (0) 0.27 (0) 21.88 (0) 25.55 (1) 0.59 (0) 0.43 (0)
14 137.84 (15) 0.32 (0) 134.38 (14) 139.96 (15) 0.79 (0) 1.08 (0)
16 273.70 (40) 0.37 (0) 267.38 (39) 270.47 (40) 1.04 (0) 7.50 (1)
18 300.00 (50) 0.43 (0) 300.00 (50) 300.00 (50) 1.32 (0) 26.53 (3)
20 300.00 (50) 0.47 (0) 300.00 (50) 300.00 (50) 1.61 (0) 9.62 (1)
22 300.00 (50) 0.69 (0) 300.00 (50) 300.00 (50) 2.92 (0) 53.99 (3)
24 300.00 (50) 0.78 (0) 300.00 (50) 300.00 (50) 3.78 (0) 88.03 (9)
26 300.00 (50) 0.89 (0) 300.00 (50) 300.00 (50) 4.56 (0) 84.77 (10)
28 300.00 (50) 1.04 (0) 300.00 (50) 300.00 (50) 5.05 (0) 95.74 (14)
30 300.00 (50) 1.29 (0) 300.00 (50) 300.00 (50) 8.12 (0) 103.03 (11)

Table 4.2: Results for taxi assignment with ontology access w.r.t. partial evaluation
during unfounded set search (first answer set)

s(C1) ∨ s(C1) ∨ s(C3) ∨ s(C4)←producedBy(_, C1, C2, C3, C4).

s(C)←&majority[s](C), company(C).

Figure 4.2: Strategic Companies with External Controls Relation Rules

much faster resulting in less timeouts; and combining early evaluation in the main and
the unfounded set search does not result in an additional speedup. This is expected:
as reasoning in a DL ontology is monotonic and for DL-Lite ontologies the io-nogoods
are small, the information that is obtained by early evaluation in the respective parts is
largely overlapping.

Strategic Companies with External Controls Relation

We considered a variant of the strategic companies problem from Section 3.5.3, where the
controls relation is derived by means of an external atom of the form &majority[strategic](c),
based on the company shares that other companies own (cf. Figure 4.2). A company is
then controlled by a suite of other companies if their combined shares exceed 50 %. No
conflict relations are added in this benchmark as they only remove compatible sets and
do not have a direct influence on the minimality check, while the aim of this experiment
is to investigate the effect of partial evaluation on the unfounded set search.

Let shares(c1, c2) denote the fraction of shares of company c2 that company c1 owns.
Given a partial assignment A, a company c, and a predicate strategic representing a set
of companies, the corresponding three-valued oracle function f&majority(A, strategic, c)
is defined as follows:

f&majority(A, strategic, c) =

T if
∑

Tstrategic(ci)∈A shares(ci, c) > 50 %;

F if
∑

Tstrategic(ci),Ustrategic(ci)∈A shares(ci, c) ≤ 50 %;

U otherwise.

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Empirical Evaluation

All Answer Sets

never always ufs-p ufs-a always +
ufs-a qxp-c solutions /

compatible sets

2 0.13 (0) 0.14 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.14 (0) 1.18 / 1.68
4 0.15 (0) 0.17 (0) 0.16 (0) 0.19 (0) 0.21 (0) 0.17 (0) 1.70 / 2.96
6 0.19 (0) 0.25 (0) 0.21 (0) 0.31 (0) 0.36 (0) 0.26 (0) 2.56 / 4.46
8 0.29 (0) 0.41 (0) 0.33 (0) 0.58 (0) 0.71 (0) 0.50 (0) 4.20 / 6.42

10 0.63 (0) 0.81 (0) 0.76 (0) 1.27 (0) 1.49 (0) 0.95 (0) 7.44 / 10.10
12 1.80 (0) 1.56 (0) 1.91 (0) 2.86 (0) 2.95 (0) 1.89 (0) 9.30 / 13.62
14 4.97 (0) 3.14 (0) 5.09 (0) 6.96 (0) 6.31 (0) 3.49 (0) 18.08 / 24.46
16 15.88 (0) 5.98 (0) 15.03 (0) 16.97 (0) 12.81 (0) 6.65 (0) 26.96 / 35.04
18 59.10 (0) 13.52 (0) 50.48 (0) 47.16 (0) 26.65 (0) 13.86 (0) 36.52 / 47.56
20 169.77 (1) 30.46 (0) 132.65 (0) 124.17 (0) 55.99 (0) 31.44 (0) 64.30 / 79.58
22 297.81 (46) 59.32 (0) 285.57 (40) 275.11 (32) 108.75 (0) 61.88 (0) 97.02 / 116.22
24 300.00 (50) 128.94 (0) 300.00 (50) 300.00 (50) 210.98 (11) 127.59 (4) ≥154.66 / 195.84
26 300.00 (50) 255.72 (20) 300.00 (50) 300.00 (50) 269.39 (36) 235.22 (17) ≥242.22 / 366.26
28 300.00 (50) 292.88 (43) 300.00 (50) 300.00 (50) 295.10 (46) 279.55 (41) ≥121.64 / 402.66
30 300.00 (50) 300.00 (50) 300.00 (50) 300.00 (50) 300.00 (50) 298.91 (49) ≥102.06 / 548.94

Table 4.3: Results for strategic companies with external controls relation (all answer sets)

First Answer Set

never always ufs-p ufs-a always +
ufs-a qxp-c

2 0.13 (0) 0.14 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.14 (0)
4 0.14 (0) 0.16 (0) 0.15 (0) 0.16 (0) 0.17 (0) 0.15 (0)
6 0.16 (0) 0.18 (0) 0.16 (0) 0.20 (0) 0.21 (0) 0.21 (0)
8 0.19 (0) 0.22 (0) 0.20 (0) 0.26 (0) 0.29 (0) 0.32 (0)

10 0.25 (0) 0.29 (0) 0.29 (0) 0.39 (0) 0.43 (0) 0.55 (0)
12 0.51 (0) 0.46 (0) 0.55 (0) 0.71 (0) 0.67 (0) 1.01 (0)
14 0.72 (0) 0.55 (0) 0.77 (0) 0.98 (0) 0.79 (0) 1.45 (0)
16 2.03 (0) 0.85 (0) 2.46 (0) 2.13 (0) 1.25 (0) 2.67 (0)
18 5.01 (0) 2.00 (0) 7.49 (0) 5.06 (0) 2.05 (0) 5.87 (0)
20 14.15 (0) 2.31 (0) 15.46 (0) 12.55 (0) 2.41 (0) 11.64 (0)
22 54.07 (2) 5.10 (0) 54.66 (3) 49.00 (3) 4.19 (0) 21.82 (0)
24 73.45 (3) 10.84 (0) 99.72 (4) 64.73 (2) 4.92 (0) 48.33 (1)
26 144.56 (12) 23.70 (1) 155.93 (15) 124.87 (10) 7.13 (0) 73.96 (7)
28 189.26 (21) 34.27 (2) 190.98 (25) 169.98 (22) 9.29 (0) 153.97 (20)
30 222.31 (31) 86.92 (7) 230.87 (35) 190.72 (27) 11.35 (0) 172.17 (22)

Table 4.4: Results for strategic companies with external controls relation (first answer
set)

As the oracle function behaves monotonically, we can employ the learning function Λmu.

For testing, we randomly generated instances with N ∈ [2, 30] companies, randomly
distributed 50 % to 100 % of the shares of each company over 1 to 4 other companies,
and added 5×N products with randomly assigned producers. The results are shown in
Tables 4.3 and 4.4, again with the running times of always and qxp-c.

In contrast to the taxi assignment benchmark, where all compatible sets were answer
sets, now around 20 % of the solution candidates are eliminated by the unfounded set
check. While always again significantly increases the performance, there is no clear
winner among the conditions never, ufs-p and ufs-a. For instance sizes smaller than
16, configuration never is faster than ufs-a, with ufs-p falling in between. However,

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

for instances with more than 16 companies, this pattern is inverted and ufs-a exhibits
a slightly better performance than the other two configurations. The reason is that
for larger instances, the unfounded set search requires a larger fraction of the overall
solving time. Thus, triggering backjumping earlier has a higher impact on the overall
running time of the unfounded set search w.r.t. larger instances. Overall, the effect of
employing partial evaluations only in the unfounded set search is small since monotonicity
of the external source already allows to learn small io-nogoods that are exploited by the
unfounded set search. The fact that conditions always and qxp-c are still very efficient
indicates that nogoods learned in the main search help to speed up the unfounded set
search as well, but not the other way around. This is also supported by the observation
that exploiting early evaluations based on partial assignments both in the main and
in the unfounded set search in condition always + ufs-a decreases the performance
compared to always.

Notably, configuration always + ufs-a significantly outperforms all other conditions
for computing the first answer set. This is explained by the fact that in this case, different
io-nogoods are learned in the main and the unfounded set search, respectively, while the
overlap increases when more answer sets are computed. Accordingly, nogoods learned in
each of the two search procedures are more likely to complement each other, resulting in
lower running times.

Strategic Companies with Nonmonotonic External Controls Relation

In order to test the effect of early external evaluation during the unfounded set check
when the external source behaves nonmonotonically, we considered another variant of
the strategic companies problem with an external controls relation. In this case, the
general learning function Λu has to be used instead of Λmu. As a result, io-nogoods are
less general because they also contain the negative input part (cf. Definition 3.7) and
thus, nogoods learned in the main search are less likely to be also useful in the unfounded
set search.

Here, the same problem instances as in the previous monotonic case are used, but the
semantics of the oracle function associated with the external atom &majority[strategic](c)
is modified as follows:

f&majority′(A, strategic, c) =

T if
∑

Tstrategic(ci)∈A shares(ci, c) > 50 %, and
∑

Tstrategic(ci),Ustrategic(ci)∈A shares(ci, c) < 100 %;

F if
∑

Tstrategic(ci),Ustrategic(ci)∈A shares(ci, c) ≤ 50 %,

or
∑

Tstrategic(ci)∈A shares(ci, c) = 100 %;

U otherwise.

Accordingly, a company is only added to a candidate strategic set via the external
atom if its shares owned by other companies in the set exceed 50 %, but are less than
100 %. This is motivated by the fact that selling the full shares, i.e., the entire company,
might result in a higher payoff than selling only bits; hence a holding might be inclined to
not keep a company that it owns fully. The corresponding results are shown in Tables 4.5
and 4.6.

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Empirical Evaluation

All Answer Sets

never always ufs-p ufs-a always +
ufs-a qxp-c solutions /

compatible sets

2 0.13 (0) 0.13 (0) 0.13 (0) 0.14 (0) 0.14 (0) 0.13 (0) 1.18 / 1.68
4 0.14 (0) 0.17 (0) 0.15 (0) 0.18 (0) 0.20 (0) 0.17 (0) 1.70 / 2.96
6 0.19 (0) 0.24 (0) 0.21 (0) 0.30 (0) 0.34 (0) 0.28 (0) 2.56 / 4.46
8 0.41 (0) 0.43 (0) 0.44 (0) 0.63 (0) 0.66 (0) 0.56 (0) 4.20 / 6.42

10 1.48 (0) 1.03 (0) 1.65 (0) 1.91 (0) 1.66 (0) 1.31 (0) 7.44 / 10.10
12 5.48 (0) 2.31 (0) 5.65 (0) 5.68 (0) 3.33 (0) 3.14 (0) 9.30 / 13.62
14 21.73 (0) 5.42 (0) 21.90 (0) 18.82 (0) 8.16 (0) 8.85 (0) 18.08 / 24.46
16 82.33 (0) 10.30 (0) 85.19 (1) 62.76 (0) 16.58 (0) 16.81 (0) 26.96 / 35.04
18 295.92 (38) 27.77 (0) 276.44 (25) 223.77 (5) 31.65 (0) 51.90 (2) 36.52 / 47.56
20 300.00 (50) 66.34 (1) 300.00 (50) 300.00 (50) 66.86 (0) 104.89 (7) 64.30 / 79.58
22 300.00 (50) 128.22 (6) 300.00 (50) 300.00 (50) 130.16 (1) 141.36 (13) ≥96.84 / 116.22
24 300.00 (50) 216.67 (15) 300.00 (50) 300.00 (50) 237.73 (15) 234.66 (27) ≥143.32 / 195.74
26 300.00 (50) 291.04 (43) 300.00 (50) 300.00 (50) 277.07 (39) 278.78 (38) ≥131.10 / 311.74
28 300.00 (50) 295.25 (47) 300.00 (50) 300.00 (50) 295.78 (46) 286.65 (45) ≥120.28 / 280.04
30 300.00 (50) 300.00 (50) 300.00 (50) 300.00 (50) 299.88 (49) 300.00 (50) ≥108.38 / 267.14

Table 4.5: Results for strategic companies with nonmonotonic external controls relation
(all answer sets)

We did not observe a difference regarding the number of solutions compared to the
previous benchmark as 100 % of controlled shares are usually not reached w.r.t. the used
instances. Nevertheless, the external source needs to ensure that this limit cannot be
reached, before returning the truth value T for a particular company in the output.
Consequently, the learning function Λu has to be utilized such that nogoods are typically
larger than in the previous benchmark. Due to the altered semantics of the external
source, running times in general increase, while the overall pattern remains similar to the
one encountered for the previous benchmark. However, we observe that the running times
for configuration never increase to a higher degree relative to the other conditions. This
indicates that exploiting external evaluations w.r.t. partial assignments has an additional
benefit when the external source behaves nonmonotonically. Now, for instances containing
more than 12 companies we always observe an advantage of ufs-a and ufs-p over never,
whereby ufs-a is faster than ufs-p.

Again, condition always + ufs-a proved to be very efficient for computing only the
first answer set. Even though the running times for computing one solution in all other
conditions significantly increase compared to the previous benchmark setting, the running
times for configuration always + ufs-a are similar to before. This is because, on the
one hand, less information about the external source semantics is available to the solver
from the preceding search before the first answer set has been computed. On the other
hand, io-nogoods learned in conditions always and ufs-a, respectively, are now less
likely to be useful for the main search and the unfounded set search simultaneously, due
to nonmonotonicity of the external source. In contrast, configuration always + ufs-a
enables the learning of io-nogoods tailored to each of the two search procedures.

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

First Answer Set

never always ufs-p ufs-a always +
ufs-a qxp-c

2 0.13 (0) 0.13 (0) 0.12 (0) 0.13 (0) 0.14 (0) 0.13 (0)
4 0.14 (0) 0.15 (0) 0.14 (0) 0.15 (0) 0.16 (0) 0.15 (0)
6 0.15 (0) 0.17 (0) 0.16 (0) 0.19 (0) 0.20 (0) 0.21 (0)
8 0.22 (0) 0.22 (0) 0.23 (0) 0.27 (0) 0.27 (0) 0.33 (0)

10 0.46 (0) 0.35 (0) 0.49 (0) 0.55 (0) 0.43 (0) 0.70 (0)
12 1.51 (0) 0.63 (0) 1.57 (0) 1.53 (0) 0.73 (0) 1.62 (0)
14 3.79 (0) 1.11 (0) 3.77 (0) 3.49 (0) 0.98 (0) 4.11 (0)
16 13.33 (0) 2.91 (0) 20.98 (1) 10.42 (0) 1.51 (0) 10.99 (0)
18 47.45 (0) 10.23 (0) 74.04 (5) 38.08 (0) 2.49 (0) 41.02 (2)
20 147.18 (8) 27.06 (0) 154.22 (12) 129.44 (6) 3.18 (0) 79.82 (6)
22 241.06 (31) 58.19 (5) 242.13 (32) 237.55 (29) 5.53 (0) 104.79 (12)
24 280.97 (45) 90.34 (7) 280.88 (44) 277.49 (42) 6.14 (0) 179.49 (23)
26 294.46 (48) 125.64 (16) 294.04 (48) 294.23 (48) 8.90 (0) 153.72 (21)
28 300.00 (50) 154.06 (22) 300.00 (50) 300.00 (50) 10.48 (0) 210.73 (33)
30 300.00 (50) 194.76 (29) 300.00 (50) 300.00 (50) 12.76 (0) 198.39 (31)

Table 4.6: Results for strategic companies with nonmonotonic external controls relation
(first answer set)

All Answer Sets

never
never +
io-dep

always
always +

io-dep
ufs-a

ufs-a +
io-dep

#cyclic

10 0.46 (0) 0.43 (0) 0.60 (0) 0.58 (0) 1.53 (0) 1.36 (0) 7/10
15 2.64 (0) 2.18 (0) 4.58 (0) 3.91 (0) 7.41 (0) 4.43 (0) 3/10
20 16.43 (0) 14.71 (0) 44.90 (0) 41.93 (0) 43.87 (0) 31.03 (0) 5/10
25 43.85 (0) 38.25 (0) 102.39 (1) 93.65 (1) 81.51 (0) 67.59 (0) 5/10
30 110.24 (2) 91.01 (2) 192.48 (4) 180.58 (4) 168.80 (2) 99.53 (2) 4/10
35 111.62 (1) 79.69 (1) 217.58 (4) 178.62 (2) 161.86 (2) 83.18 (1) 3/10
40 189.64 (2) 141.12 (2) 262.35 (6) 231.22 (5) 202.95 (3) 143.12 (2) 5/10
45 264.04 (5) 216.89 (4) 269.49 (6) 227.88 (5) 263.40 (5) 202.55 (4) 5/10
50 300.00 (10) 227.15 (4) 300.00 (10) 249.55 (6) 300.00 (10) 220.61 (3) 2/10

Table 4.7: Results for user access selection (all answer sets; few cycles)

y_nd(X) ∨ n_nd(X)←domain(X).

nd(X)←y_nd(X).

nd(X)←&hasAccess[nd](X).

←nd(X), nd_f(X).

←not nd(X), nd_a(X).

←#count{X:y_nd(X)} > 3.

Figure 4.3: User Access Selection Rules

4.3.4 Experiments on Minimality Check Skipping

In this section, we discuss the experiments on pruning e-minimality checks by exploiting
semantic dependencies, and report the according results.

User Access Selection

Consider a computer network (C, A) represented by a set of computer nodes C and a
set of directed access connections A between nodes, where n1 → n2 ∈ A, for n1, n2 ∈ C,
holds if and only if node n1 has access to node n2. Hence, a node can be accessed directly,

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Empirical Evaluation

All Answer Sets

never
never +
io-dep

always
always +

io-dep
ufs-a

ufs-a +
io-dep

#cyclic

10 0.41 (0) 0.41 (0) 0.35 (0) 0.36 (0) 0.46 (0) 0.46 (0) 10/10
15 7.55 (0) 7.61 (0) 6.17 (0) 6.38 (0) 7.95 (0) 8.15 (0) 10/10
20 44.03 (1) 43.92 (1) 6.52 (0) 6.57 (0) 44.54 (1) 44.66 (1) 10/10
25 107.50 (2) 107.95 (2) 51.60 (1) 51.62 (1) 87.53 (1) 87.51 (1) 10/10
30 84.97 (0) 84.64 (0) 44.23 (0) 44.73 (0) 85.64 (0) 85.42 (0) 10/10
35 223.56 (5) 222.95 (5) 111.29 (1) 110.98 (1) 223.26 (5) 224.26 (5) 10/10
40 268.27 (7) 268.73 (7) 152.53 (1) 153.28 (1) 268.86 (7) 269.44 (7) 10/10
45 284.12 (8) 284.33 (8) 251.08 (4) 252.54 (4) 286.90 (8) 286.56 (8) 10/10
50 300.00 (10) 300.00 (10) 300.00 (10) 298.61 (9) 300.00 (10) 300.00 (10) 10/10

Table 4.8: Results for user access selection (all answer sets; many cycles)

or indirectly via a sequence of intermediate nodes. Now, suppose the task of a network
administrator is to assign access rights by selecting a subset Cg of C to which some user
will be granted access, whereby the user requires access to a set of nodes Ca ⊆ C and is
not permitted to access nodes from a set Cf ⊆ C disjoint from Ca. Thus, the problem
formally consists in selecting nodes Cg ⊆ C s.t. every node in Ca is reachable from some
node in Cg and no node in Cf is reachable from any node in Cg via edges in A.

In our problem setting, we assume the network is not known initially, but each node
can be queried for the set of nodes it can access directly. For this, we use an external
atom &hasAccess[nodes](n), which interfaces external network information, and outputs
all nodes that can be accessed by some node in the extension of nodes. Accordingly, it
evaluates to true for an output node n2 w.r.t. an assignment A iff Tnodes(n1) ∈ A for
some (n1, n2) ∈ A. Moreover, we specify D(&hasAccess[nodes]) =

{〈2, 1 : {n1 | n1 →
n2 ∈ A}, 1 : n2〉 | n2 ∈ C

}

, i.e. there is a dependency of an output on an input node
whenever the latter has access to the former. The hex-program in Figure 4.3 with facts
domain(n) for n ∈ C, facts node_a(n) for n ∈ Ca, and facts node_f(n) for n ∈ Cf

encodes user access selection, where at most three nodes can be accessed directly.

First, we randomly generated networks with N ∈ [10, 50] nodes, where each node has
access to another node with probability 1

2×N (cf. Table 4.7). As visible from the rightmost
column in Table 4.7, this yields networks roughly half of which have no cyclic access
relations and thus, dependency pruning can have an effect on the number of required
e-minimality checks. Next, we increased the access probability to 2

N (cf. Table 4.8), which
effects that all generated instances contain cycles. This allowed us to investigate the
effect of pruning when this does not impact the need for an e-minimality check.

Finally, we generated instances again with access probability 1
2×N , but removed all

cyclic instances (cf. Table 4.9). The goal was to test instances where the e-minimality
check can always be skipped, in order to ascertain the maximum speedup obtainable by
pruning the dependency graph. The rightmost column in the tables shows the fraction of
instances where the computer network contains a cycle.

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

All Answer Sets

never never +
io-dep always always +

io-dep ufs-a ufs-a +
io-dep #cyclic

10 0.37 (0) 0.30 (0) 0.52 (0) 0.45 (0) 0.82 (0) 0.29 (0) 0/10
15 1.48 (0) 0.98 (0) 2.62 (0) 2.05 (0) 3.16 (0) 0.99 (0) 0/10
20 5.82 (0) 3.28 (0) 14.11 (0) 12.51 (0) 10.98 (0) 3.37 (0) 0/10
25 42.02 (1) 8.59 (0) 88.35 (1) 55.00 (0) 39.17 (0) 8.87 (0) 0/10
30 29.32 (0) 18.83 (0) 124.64 (2) 115.18 (2) 84.21 (0) 18.88 (0) 0/10
35 73.73 (0) 42.48 (0) 167.40 (3) 155.55 (3) 135.24 (3) 43.23 (0) 0/10
40 182.62 (2) 100.21 (0) 238.41 (5) 209.27 (4) 189.40 (3) 103.89 (0) 0/10
45 226.40 (2) 131.75 (1) 253.80 (5) 205.97 (5) 230.21 (3) 131.95 (1) 0/10
50 226.55 (5) 187.30 (2) 223.71 (5) 198.84 (3) 222.62 (5) 179.50 (2) 0/10

Table 4.9: Results for user access selection (all answer sets; no cycles)

turn(a_1, P) ∨ turn(a_2, P)←position(P).

picked(A, P, G)←&pick[alreadyP icked](A, P, G), turn(A, P), item(G).

alreadyP icked(P, G)←position(P), position(P 1), P 1 < P, picked(_, P 1, G).

←not &envyFree[picked]().

Figure 4.4: Sequential Allocation Rules

Sequential Allocation of Indivisible Goods

Next, we considered a problem from social choice, namely dividing a set G of m items
among two agents a1 and a2 by allowing them to pick items in specific sequences
σ = o1o2...om ∈ {a1, a2}m (Kalinowski et al., 2013). Each agent ai has a linear preference
order >i over G; and the utility of g ∈ G for ai is ui(g) = |{g′ | g >i g′ ∈ G}|. We assume
that an agent always picks the remaining item with maximal utility. The goal is to find
a sequence σ resulting in an envy-free division of items, i.e. where no agent prefers the
items of the other agent over its own items.

We use an external atom to obtain the choices of the agents, while their complete pref-
erences are hidden, and a further one that checks whether an allocation is envy-free. The
atom &pick[alreadyP icked](ai, p, g) evaluates to true w.r.t. assignment A iff p ∈ [1, m]
and g >i g′ for all g′ such that TalreadyP icked(p−1, g) 6∈ A, where p represents the posi-
tions in a respective sequence. Furthermore, let G(A, i, j) =

∑

g∈{g|Tpicked(ai,p,g)∈A} uj(g).
Then, the atom &envyFree[picked]() is true iff G(A, 1, 1) < G(A, 2, 1) and G(A, 2, 2) <
G(A, 1, 2). The encoding is shown in Figure 4.4. Together with facts position(p) and
item(g) for all p, g ∈ [1, m], its answer sets encode all sequences that induce an envy-free
allocation.

We specified the io-dependencies D(&pick[alreadyP icked]) =
{〈1, 1:{p}, 2:p + 1〉 |

1 ≤ p < m
}

, i.e. items already picked at a sequence position only depend on the previous
positions. The io-dependencies eliminate all cyclic dependencies via external atoms in the
problem instances; thus e-minimality checks can always be skipped. We tested instances
with random preference orders and N ∈ [3, 10] items. The results are shown in Table 4.10.

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Empirical Evaluation

All Answer Sets

never
never +
io-dep

always
always +

io-dep
ufs-a

ufs-a +
io-dep

3 0.19 (0) 0.19 (0) 0.25 (0) 0.24 (0) 0.38 (0) 0.19 (0)
4 2.74 (0) 1.73 (0) 0.74 (0) 0.64 (0) 2.54 (0) 1.72 (0)
5 300.00 (10) 78.28 (0) 152.33 (5) 2.42 (0) 141.76 (1) 78.02 (0)
6 300.00 (10) 300.00 (10) 300.00 (10) 8.22 (0) 300.00 (10) 300.00 (10)
7 300.00 (10) 300.00 (10) 300.00 (10) 26.63 (0) 300.00 (10) 300.00 (10)
8 300.00 (10) 300.00 (10) 300.00 (10) 89.97 (0) 300.00 (10) 300.00 (10)
9 300.00 (10) 300.00 (10) 300.00 (10) 284.17 (4) 300.00 (10) 300.00 (10)

10 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10)

Table 4.10: Results for sequential allocation of indivisible goods (all answer sets)

4.3.5 Discussion of Results

In this section, we first summarize our insights regarding experiments on partial evaluation
during the unfounded set search w.r.t. hypotheses (H4.1) to (H4.3). Afterwards, our
findings regarding minimality check skipping based on the results from Section 4.3.4 are
discussed.

Findings Regarding Partial Evaluation in the Unfounded Set Search

In all benchmarks considered for testing partial evaluation in the unfounded set search, we
found that at least one of the configurations ufs-p and ufs-a improved the performance
over never, except for smaller instances where the differences are generally small (cf.
Tables 4.1 to 4.6). However, the improvement was not as significant as the one we found
for partial evaluation in the main search in Chapter 3, and depends on how much room
there is for decreasing the running time of the unfounded set search by detecting conflicts
early. Thus, hypothesis (H4.1) is partly supported by our experimental results.

In the experiments employing strategic companies problems, where external calls are
inexpensive, condition ufs-a showed lower running times than ufs-p for larger instances
(cf. Tables 4.3, 4.4, 4.5 and 4.6), while for the taxi benchmark with more costly external
evaluations, it was the other way around (cf. Tables 4.1 and 4.2). This is in line with
hypotheses (H4.1) and (H4.2). In support of hypothesis (H4.2), ufs-p also performs
better than ufs-a for small instances of the strategic companies benchmarks, where the
information obtained from external calls is less useful due to less time required by the
minimality check and low usefulness of learned nogoods w.r.t. the main search.

Finally, we found that for computing all answer sets, the combination always +
ufs-a mostly decreased the efficiency compared to always. However, Tables 4.2, 4.4
and 4.6 show that the combination can be very efficient when only the first answer set
is computed, where the sets of io-nogoods learned in the main and the unfounded set
search, respectively, are less likely to overlap. Moreover, we observe in Table 4.6 that
the combination always + ufs-a has an even higher advantage for computing the first
answer set when a nonmonotonic external source is accessed as this as well increases the
chance of learning different nogoods in the main search and the unfounded set search,
respectively. Accordingly, our experiments confirm hypothesis (H4.3).

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

We conclude that even when partial evaluation during the unfounded set search does
not increase the efficiency for computing all answer sets compared to other configurations,
it can be highly effective in combination with partial evaluation during the main search
in case only one solution is required.

Findings Regarding Minimality Check Skipping

We observed that when dependency graph pruning skips e-minimality checks, io-dep
significantly improves the running times for all instance sizes and independent from the
configuration it is combined with (cf. Tables 4.7, 4.9 and 4.10). Accordingly, the results
support hypothesis (H4.4).

In Table 4.9, we observe an increased benefit of io-dep due to the absence of cyclic
instances. As expected, by testing single instances, we found that io-dep reduces
the running times roughly by the amount required for redundant e-minimality checks.
In Table 4.8, only a negligible impact on the running time is visible when io-dep is
added. Since io-dep has no advantage for cyclic instances, this shows that pruning the
dependency graph yields no significant overhead and provides evidence for the correctness
of (H4.6).

Partial evaluation was only beneficial both in the model search and the e-minimality
check for the sequential allocation benchmark, while only configuration always resulted
in a speedup in the second experiment. The reason for partial evaluation increasing the
running time in all other cases is that the overhead that results from additional external
calls did not outweigh the benefit in terms of additional information gain. As predicted
by hypothesis (H4.5), the speedup for always+io-dep is larger than for ufs-a+io-dep
because ufs-a already reduces the running time required for e-minimality checks, while
condition always needs to invest more time in the e-minimality check. The running
times for never+io-dep and ufs-a+io-dep are similar; this is expected as min-part
only applies to the e-minimality check, which is skipped in both conditions.

In summary, even though there is no clear winner among the conditions, adding
io-dep is suggestive as a default when io-dependencies can be specified.

4.4 Related Work

To the best of our knowledge, external minimality has not been considered in other
approaches that integrate external theories into declarative problem solving (cf. Sec-
tion 1.2.1), such as clingo (Gebser et al., 2016), SMT (Barrett et al., 2009) and constraint
ASP (Lierler, 2014). Accordingly, a distinguishing difference between hex and theory
solving as realized in clingo 5 concerns the actual semantics of programs. Roughly
speaking, clingo 5 fixes a valuation of the theory atoms and computes then an answer
set of the program relative to this valuation; this amounts to using a GL-style reduct
where theory atoms are removed from rules. In contrast, for evaluating hex-programs, all
external atoms remain in the rules, according to the FLP-reduct. While clingo 5 makes
no further minimality check, the e-minimality check for hex-programs may eliminate

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Conclusion and Outlook

candidate answer sets. For example, clingo 5 would return A2 = {Tp} as an answer
set for the program Π = {p← &id[p]()} (adapted to the different formalism), which is
eliminated by the e-minimality check of hex.

Nevertheless, our techniques could also be employed directly by related rule-based
formalisms if minimality involving external theories is required. Moreover, cyclic support
may arise from external propagators, e.g. in the WASP-solver (Dodaro et al., 2016), where
our approach could be applied as well.

In ordinary ASP-solving, one can distinguish unfounded sets due to positive cycles
and unfounded sets due to disjunctions with head cycles. The check for the former is
done a priori over partial assignments and is feasible in linear time; the check for the
latter is coNP-hard and typically done a posteriori under complete assignments only. We
performed some experiments with searching for unfounded sets over partial assignments,
i.e., running Algorithm 4.1 also over partial input assignments, but it soon turned out that
the additional cost of more e-minimality checks exceeded the benefits by far. Also Gebser,
Kaufmann, and Schaub (2013) conducted some experiments with unfounded set checking
for disjunctive ordinary ASP over partial assignments. However, they also reported only
moderate computational benefits, although their minimality check is cheaper than ours
due to absence of external calls. Therefore, we did not pursue the idea of searching for
unfounded sets over partial assignments further.

Finally, our technique for pruning e-minimality checks based on semantic dependency
information is related to domain independence techniques in (Eiter, Fink, & Krennwallner,
2009), where external atoms are evaluated w.r.t. subsets of the domain while correct
outputs are retained. This is similar to our notions of compliant atoms and faithfulness.
Yet, io-dependencies are more general because in (Eiter et al., 2009), only disjoint domain
partitions for external inputs are considered, and dependencies are not used for argument
positions. Another important difference is that their approach employs dependencies for
program splitting as in (Lifschitz & Turner, 1994), while we aim at detecting redundant
e-minimality checks. They do not analyze the costs for generating dependencies.

4.5 Conclusion and Outlook

In this chapter, we have first extended external evaluations based on partial assignments,
introduced in Chapter 3, to the unfounded set search, which constitutes an efficient
realization of the e-minimality check of hex. For this, we have developed a new variant
of the algorithm for e-minimality checking of hex-programs, which can now also evaluate
external atoms w.r.t. partial model candidates.

Subsequently, we introduced io-dependencies to formalize semantic dependencies over
external atoms that approximate the real dependencies more closely than previously
possible. Based on this, more e-minimality checks can be skipped, which proved to
be beneficial in practice. We also stated properties for checking and optimizing io-
dependencies important for automatically constructing tight faithful dependency sets.
While faithfulness checking is intractable in general, we identified cases where the costs
can be reduced for certain oracles, or where checking is polynomial.

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Integration of Minimality Checking and External Evaluation

While we only exploited semantic dependencies for e-minimality checking, additional
dependency information is also useful for other parts of hex-solving such as grounding
and external behavior learning (Eiter et al., 2018). By limiting oracle calls to compliant
input atoms, the number of external calls during hex-evaluation could potentially be
reduced significantly, where oracle calls could be restricted to compliant atoms. This
has the potential to significantly reduce the number of external calls required during
hex-evaluation; this is expected to be especially beneficial when computing the values of
oracle functions takes long. In addition, partial evaluation could in turn be leveraged to
learn io-dependencies on-the-fly from external calls.

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Integration of Grounding and

Solving

As for propositional solving and minimality checking, which require a tight integration
with external evaluation as described in Chapters 3 and 4, efficient grounding of hex-
programs is also more challenging than in the case of ordinary ASP. This is mainly due
to the generic (previously often black-box) nature of external atoms and value invention,
i.e., the import of new constant symbols from the sources into the program. In this
chapter, we present an approach that improves the grounding of hex-programs by tightly
integrating the grounding with the solving process as well as with external evaluation,
which was developed in (Eiter, Kaminski, & Weinzierl, 2017).

hex-programs inherit the well-known grounding bottleneck of state-of-the-art ASP-
solving, as e.g. by clingo (Gebser et al., 2016), which may show up in the grounding
phase, i.e. during the computation of a propositional program equivalent to the input
program, and can cause an exponential blowup. This makes ASP and likewise hex

incapable of solving a number of real-world problems with larger data volume. To
mitigate this problem, several advanced optimization methods and techniques have been
developed, cf. (Kaufmann et al., 2016), but the grounded program can still be (too) large.

Since grounding of hex-programs is due to external atoms an even bigger challenge,
special program decomposition and component grounding techniques for hex have been
developed as well (cf. Section 1.2.2), which mitigate grounding issues in many cases (Eiter,
Fink, Ianni, et al., 2016). However, program decomposition has still a tradeoff with
efficient solving because it may split integrity constraints from guesses in a hex-program
such that the former cannot be propagated effectively during solving; thus, the grounding
bottleneck is often replaced by a solving bottleneck (Redl, 2017a). At the same time,
while monotonic external atoms can be grounded efficiently, exponentially many inputs
to a nonmonotonic external atom may have to be considered during grounding when
program decomposition is not applied.

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Integration of Grounding and Solving

For instance, similar to an example by Redl (2017a), consider the following hex-
program for configuring a server cluster:

comp(a). comp(b). comp(c).

config(X) ∨ n_config(X)← comp(X).

prop(P)← &prop[config](P).

← prop(high_cost), not prop(low_availability).

For a set C of selected components in the extension of the predicate config in a candidate
solution, the external atom &prop[config](P) retrieves from an external property checker
each property P of C. At this, properties may depend nonmonotonically on the input
configuration, e.g. adding components might make the cluster more powerful but may
also decrease maintainability. Here, a cluster configuration is desired that does not have
low availability and high costs at the same time.

As the external atom used in the example is nonmonotonic, it has to be evaluated
w.r.t. all possible combinations of components during grounding (each configuration might
produce a new output value). Hence, when more components need to be considered,
this quickly results in an explosion of the grounding costs. However, for finding only
one solution or when certain combinations of components are excluded by an additional
constraint, usually not all configurations have to be tested. Accordingly, the program
decomposition by Eiter, Fink, Ianni, et al. (2016) splits the first and the second rule into
two components that are solved and grounded separately, exploiting the fact that the
first rule does not depend on the second.

More precisely, answer sets of the program consisting of only the first rule and the facts
are computed in a first step, and the rest of the program is then evaluated by separately
extending it with each of the answer sets. Simultaneously, the integrity constraint is also
split from the first guessing rule, while many configurations may not be relevant because a
(small) subset of its components already induces some undesired property. Consequently,
this fact cannot be exploited for efficient solving anymore after splitting, such that novel
evaluation algorithms that avoid the corresponding tradeoff by integrating grounding
and solving of hex-programs more tightly are needed.

To overcome the grounding bottleneck of ASP, lazy-grounding algorithms were devised,
that ground rules on-the-fly (Palù et al., 2009; Lefèvre & Nicolas, 2009a, 2009b; Dao-Tran
et al., 2012; Lefèvre et al., 2017). In an interleaved grounding and solving process, only
rules are grounded that are currently useful and thus space explosion is avoided. In this
way, problems can be solved that traditional ASP-solving cannot handle. Recent advances
in lazy grounding, available in prototype solvers, suggest to explore this approach for
evaluating hex-programs. However, an extension to this setting is non-trivial, due to
nonmonotonic dependencies of external atoms on absent information, and in particular
due to unknown constants from value invention.

In order to overcome the tradeoff between solving and grounding discussed above,
we extend the lazy-grounding approach to hex-programs by integrating the recent lazy-
grounding solver alpha (Weinzierl, 2017) into dlvhex. While earlier lazy-grounding

98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1. Evaluation of External Sources Based on Partial Groundings

ASP-solvers are lacking effective conflict-driven learning techniques, which makes them
less promising for our purpose, the alpha-solver combines lazy-grounding with modern
ASP-solving techniques. By employing alpha as an alternative backend-solver, which
requires the design of a new evaluation algorithm, the usual grounding step can be
omitted. The integration enables hex to handle new classes of problems which could not
be solved efficiently before due to the grounding bottleneck.

The rest of this chapter is structured as follows follows:

• In Section 5.1, we show under which conditions an assignment that is defined over
an incomplete domain is input-complete, i.e. when it can safely be used to evaluate
external atoms during lazy-grounding evaluation. Moreover, we introduce input-safe
domains, which are used to ensure input-completeness of assignments, and show
that one can always be obtained by computing a partial relevant grounding.

• In Section 5.2, we first develop a novel external source interface to incrementally
extend a hex-program grounding, where new output terms can be generated on-the-
fly during solving. Subsequently, we present our novel lazy-grounding evaluation
algorithm for hex-programs that can leverage lazy-grounding ASP-solvers such as
alpha.

• In Section 5.3, we show experimental results which confirm the benefit of the
novel algorithm and the integration of alpha as backend-solver on illustrative
benchmarks. To this end, we also compare the new approach with program
decomposition techniques and show that the previous tradeoff between grounding
and solving can effectively be avoided.

• In Section 5.4, we discuss related work and conclude in Section 5.5.

The unprecedented integration of lazy-grounding, external source evaluation and
value invention is a new perspective to make hex and ASP more suitable for real-world
applications.

5.1 Evaluation of External Sources Based on Partial

Groundings

Lazy-grounding means that the grounding grnd(Π) of a program Π is computed lazily,
i.e., only ground rules deemed necessary are computed. In the following, let GΠ ⊆ HB
denote the set of all atoms occurring in the grounding of Π. Then, partial assignments in
the case of lazy-grounding are given with respect to a set of ground atoms A ⊆ GΠ ⊆ HB.

Definition 5.1 (Partial Assignment Over a Set of Atoms). A partial assignment over a
set A ⊆ HB of atoms is a set AA of signed literals Ta, Fa, and Ua with a ∈ A s.t. for
every a ∈ A, |A ∩ {Ta, Fa, Ua}| = 1; it is complete (w.r.t. A), if no Ua occurs in it.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Integration of Grounding and Solving

For partial assignments AA, A′
A′ we call A′

A′ an extension of AA, denoted A′
A′ � AA,

if {Ta ∈ AA} ∪ {Fa ∈ AA} ⊆ A′
A′ and A ⊆ A′, i.e., some atoms a ∈ HB not present in

AA may be present in A′
A′ and some unassigned atoms in AA may be flipped to true or

false.

Lazy-grounding ASP-solving is founded on the notion of a computation sequence,
cf. (Lefèvre & Nicolas, 2009a), which is a monotonically growing sequence (A0, . . . , An) of
partial assignments such that whenever a (lazily grounded) rule of the input program fires
at Ai, it is guaranteed to fire in all later assignments Aj , i.e., 0 ≤ i ≤ j ≤ n. Furthermore,
a grounded rule r only fires in Ai if it is applicable, which means that its positive body
B+(r) is completely true, i.e., Ai |= B+(r). Given that ordinary ASP rules are safe,
the whole negative body of a ground rule is known once it fires, such that focusing on
positive rule bodies is sufficient for completeness of solving under lazy-grounding. For
example, if the rule p(a) ← q(a), not r(a) fires in a computation sequence at Ai, then
{Tq(a), Fr(a)} ⊆ Ai and monotonicity guarantees the same for all later Aj , i ≤ j.

5.1.1 Safety Condition

For (ground) external atoms, it is much harder to ensure that once an output becomes
true, it will stay true even for larger input. Recall the notion of assignment-monotonic
oracle-function from Chapter 3, which has been used to ensure the former in the case
where the grounding of a program is generated prior to solving. Formally, a three-valued
oracle function f&g is assignment-monotonic, if f&g(AGΠ

, ~p,~c) = X, X ∈{T, F}, implies
f&g(A′

GΠ
, ~p,~c) = X for all partial assignments A′

GΠ
�AGΠ

. Intuitively, this guarantees
that the oracle-function cannot treat Ta /∈ AGΠ

as being equivalent to Fa ∈ AGΠ
.

Observe that all atoms a ∈ HB \ GΠ must be false in every answer set, simply because
there is no rule in the grounding of Π whose head is a. As all assignments for the latter
program are over GΠ, it is thus guaranteed that each atom a relevant for the external
source also occurs in AGΠ

, either as Ta, Fa, or Ua. For an AA with A ⊂ GΠ and
a ∈ GΠ \A, however, an oracle-function treats a as false, i.e., AA equals (A∪{Fa})A∪{a}

from the perspective of any oracle-function, even for assignment-monotonic ones.

As oracle-functions are black-boxes, hex cannot determine the relevant input of
an assignment-monotonic oracle-function, i.e.: if f&g(AA, ~p,~c) = T for an assignment
AA, then, without knowing the set of ground atoms GΠ that occur in the grounding
of a hex-program Π, we cannot determine whether some atom a ∈ GΠ \ A exists s.t.
f&g((A ∪ {Ua})A∪{a}, ~p,~c) 6= T.

Example 5.1. Consider the program Π =
{← &size[p](0); p(X)← d(X); a← not d(c);

d(c)← not a
}

where the external atom &size[p](Z) computes the cardinality of p, i.e.,
f&size(A, p, Z) = U if Up(X) ∈ A for some X, f&size(A, p, Z) = T if |{p(X) |Tp(X) ∈
A}| = Z and Up(X) 6∈ A for every X, and f&size(A, p, Z) = F otherwise. The single
answer set of Π is {Td(c), Tp(c), Fa}, because it satisfies the first rule, which expresses
that the extension of predicate p must not be 0.

Now, assume that &size[p](0) is evaluated before the first guess. Then, &size[p](0)
is true under AA = {Ud(c), Ua} with A = {d(c), a}. However, guessing Td(c) and

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1. Evaluation of External Sources Based on Partial Groundings

grounding the second rule for X = c yields A′ = A ∪ {p(c)}. For A′
A′ = AA ∪ {Up(c)},

we obtain f&size(A′
A′ , p, 0) = U, which shows that AA was insufficient for deciding the

value of &size[p](0). △
To address this issue, we must ensure that external atoms are evaluated only with

assignments being complete for their input predicates. Intuitively, an assignment is
input-complete for a program, if it contains all relevant input to every external atom; a
ground atom that occurs in no answer set and is not an input-predicate of any external
atom is irrelevant for the truth of external atoms and thus ignored. For a partial
assignment AA, let its completion w.r.t. HB be ÂA = (A∪{Fa | a ∈ HB \A})HB. Then
input-completeness is as follows:

Definition 5.2 (Input-Completeness). A partial assignment AA is input-complete for
an external atom &g[~p](~c) occurring in a ground hex-program Π, if f&g(ÂA, ~p,~c) = T
only if every answer set A′

HB of Π s.t. A′
HB�A~p,A fulfills f&g(A′

HB, ~p,~c) = T, where
the assignment A~p,A = {Xa∈AA | a has predicate p∈ ~p} constitutes the relevant input
to &g. A partial assignment AA is input-complete w.r.t. a hex-program Π, if it is
input-complete for each external atom &g[~p](~c) occurring in grnd(Π).

Without the restriction to answer sets, in Example 5.1 no input-complete assignment
AA on A⊂HB for &size[p](0) would exist with f&size(A, p, 0) = T, as infinitely many
constants could be added to p′s extension when the domain is expanded.

Example 5.2 (cont’d). There is no partial assignment defined over {d(c), a} that is
input-complete for Π, but the partial assignment {Td(c), Tp(c), Fa} is input-complete
for Π. △

In the following, we syntactically characterize sets of ground atoms that are sufficient
for input-completeness, resorting to nonmonotonic inputs to external atoms; monotonic
inputs cannot cause issues with atoms a∈HB \A that do not yet occur in an assignment
AA. Recall that, formally, an input predicate p∈ ~p of an external atom &g[~p](~c) is mono-
tonic, if f&g(AA, ~p,~c) = T implies f&g(A′

A′ , ~p,~c) = T for any A′
A′ � AA that augments a

given AA only by atoms with predicate p, cf. (Eiter, Fink, Krennwallner, & Redl, 2016).

It can be shown that if an external atom which only has monotonic input predicates
evaluates to T w.r.t. any partial domain, then this output is correct since by extending
the respective domain, it cannot be changed from T to F. This is formalized by the
following proposition.

Proposition 5.1. Let &g[~p](~c) be an external atom occurring in a ground hex-program
Π and let each p∈ ~p be monotonic. Then, any partial assignment AA is input-complete
for &g[~p](~c).

Proof. Let &g[~p](~c) be an external atom as in the hypothesis. Further, let AA be an
arbitrary partial assignment. To show that AA is input-complete for &g[~p](~c), we need to
show that f&g(ÂA, ~p,~c) = T only if every answer set A′

HB of Π s.t. A′
HB�A~p,A fulfills

f&g(A′
HB, ~p,~c) = T.

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Integration of Grounding and Solving

Here, we prove a stronger result, namely, that for every subset A′
A′ of an answer set

of Π with A′
A′ �A~p,A the following holds: (*) f&g(Â′

A′ , ~p,~c) = T if f&g(ÂA, ~p,~c) = T.
Let A′

A′ be an arbitrary subset of an answer set of Π. We prove this by induction on
the cardinality n = |A′

A′ | of A′
A′ . It is not possible that |A′

A′ | < |A~p,A| as we have that
A′

A′ �A~p,A; hence, we only need to consider n ≥ |A~p,A|.
The base case is n = |A′

A′ | = |A~p,A|. In this case, (*) follows directly due to

assignment monotonicity, and because the value of f&g(ÂA, ~p,~c) only depends on the

extension of predicates p ∈ ~p in ÂA (cf. Section 2).
Now, we assume that (*) holds for size n, for some natural number n ≥ |A~p,A|

(induction hypothesis), and show that it also holds for A′′
A′′ with |A′′

A′′ | = n + 1. So,
let A′′

A′′ be a subset of an answer set of Π s.t. |A′′
A′′ | = n + 1. Further, let A′′′

A′′′ be a
partial assignment obtained from A′′

A′′ by removing an arbitrary element Xa from A′′
A′′ ,

X ∈ {T, F, U}, s.t. Xa 6∈ A~p,A for any X ∈ {T, F, U}. Such an element must exist

since |A′′
A′′ | > |A~p,A|. Then, it holds that f&g(ÂA, ~p,~c) = T implies f&g(Â′′′

A′′′ , ~p,~c) = T,
according to the induction hypothesis. In case the atom a does not have a predicate
occurring in ~p, proposition (*) holds because the value of f&g(ÂA, ~p,~c) only depends on

the extension of predicates p ∈ ~p in ÂA.
If a has a predicate occurring in ~p, we have that A′′

A′′ � A′′′
A′′′ and that A′′

A′′ augments
A′′′

A′′′ only by an atom with a predicate p occurring in ~p. Because p is a monotonic input

predicate, we derive that f&g(Â′′′
A′′′ , ~p,~c) = T implies f&g(Â′′

A′′ , ~p,~c) = T and thus, that
proposition (*) holds.

Many external atoms have only monotonic input (e.g., string concatenation, DL-
atoms, and the RDF-atom in the dlvhex-library). Regarding nonmonotonic input, let
the set pm(Π) contain all predicates occurring as an input to some external atom in
program Π that are not monotonic, i.e.,

pm(Π) = {p ∈ P | &g[~p](~c) occurs in Π, p ∈ ~p, p is not monotonic}.

Using the set pm(Π), we can specify domains which are not only safe for evaluating
external atoms with monotonic input parameters, but which can also safely be used to
evaluate external atoms with input parameters that are not monotonic; i.e. the truth
value of an external atom cannot change from T to F when the domain is expanded by
atoms with predicate in pm(Π).

Definition 5.3 (Input-Safe Domain). For a hex-program Π, a (finite) set A⊆HB
of ground atoms is an input-safe domain of Π, if it contains each atom p(X) where
p ∈ pm(Π) and Tp(X) ∈ A for some answer set A of Π.

Next, we establish the relation between input-complete assignments and input-safe
domains, which will be exploited subsequently for ensuring that external atoms are not
spuriously assigned the truth value T during lazy-grounding hex-evaluation.

Proposition 5.2. A partial assignment AA is input-complete w.r.t. a hex-program Π,
if A is an input-safe domain of Π.

102

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1. Evaluation of External Sources Based on Partial Groundings

Proof. Given a partial assignment AA and a hex-program Π, let AA be over an input-safe
domain A of Π. This means that A contains each p(X) s.t. Tp(X) ∈ A for some answer
set A of Π and p ∈ pm(Π).

We need to show that AA is input-complete w.r.t. Π, i.e. that for each external
atom &g[~p](~c) occurring in grnd(Π) we have that f&g(ÂA, ~p,~c) = T only if every answer
set A′

HB of Π s.t. A′
HB�A~p,A fulfills f&g(A′

HB, ~p,~c) = T. Let &g[~p](~c) be an arbitrary
external atom occurring in grnd(Π).

As in the proof for Proposition 5.1, we prove a stronger result, namely, that for every
subset A′

A′ of an answer set of Π with A′
A′ �A~p,A the following holds:

(*) f&g(Â′
A′ , ~p,~c) = T if f&g(ÂA, ~p,~c) = T.

Let A′
A′ be an arbitrary subset of an answer set of Π s.t. A′

A′ �A~p,A. Again, we
prove this by induction on the cardinality n = |A′

A′ | of A′
A′ , and only need to consider

n ≥ |A~p,A|.
The base case is n = |A′

A′ | = |A~p,A|. In this case, (*) follows directly due to

assignment monotonicity, and because the value of f&g(ÂA, ~p,~c) only depends on the

extension of predicates p ∈ ~p in ÂA (cf. Section 2).

For the induction hypothesis, we assume that statement (*) holds for size n, and
prove the same for A′′

A′′ with |A′′
A′′ | = n + 1. Let A′′

A′′ be a subset of an answer set of Π
s.t. |A′′

A′′ | = n + 1 and A′′
A′′ �A~p,A. As before, we obtain A′′′

A′′′ by removing an arbitrary
element Xa from A′′

A′′ , X ∈ {T, F, U}, s.t. Xa 6∈ A~p,A for any X ∈ {T, F, U}. Then,

it holds that f&g(ÂA, ~p,~c) = T implies f&g(Â′′′
A′′′ , ~p,~c) = T, according to the induction

hypothesis. In case the atom a does not have a predicate occurring in ~p, statement (*)
holds because the value of f&g(ÂA, ~p,~c) only depends on the extension of predicates

p ∈ ~p in ÂA.

If a has a predicate p ∈ ~p and p is a monotonic input predicate, the induction step of
the proof for Proposition 5.1 applies. So, consider the remaining case, namely, that a has
a predicate p ∈ ~p and p is not a monotonic input predicate, i.e. p ∈ pm(Π).

It cannot be the case that Ta ∈ A′′
A′′ because then Ua ∈ A~p,A or Ta ∈ A~p,A would

also hold, while we have chosen a s.t. Xa 6∈ A~p,A for any X ∈ {T, F, U}. The latter is
true as A′′

A′′ �A~p,A holds, A′′
A′′ is a subset of an answer set of Π, and A contains each

p(X) s.t. Tp(X) ∈ A for an answer set A of Π for p ∈ pm(Π).

It cannot be the case that Ua ∈ A′′
A′′ because A′′

A′′ is a subset of an answer set, which
is a complete assignment. So, it is only left to consider the case that Fa ∈ A′′

A′′ . But

then, it holds that Fa ∈ Â′′′
A′′′ according to the definition of the completion Â′′′

A′′′ of A′′′
A′′′

w.r.t. HB, and Â′′
A′′ = Â′′′

A′′′ . By the induction hypothesis, f&g(Â′′′
A′′′ , ~p,~c) = T implies

f&g(ÂA, ~p,~c) = T and consequently, f&g(Â′′
A′′ , ~p,~c) = T implies f&g(ÂA, ~p,~c) = T. Thus,

we obtain that statement (*) holds.

5.1.2 Relevant Grounding

In our novel hex-algorithm introduced in Section 5.2, we utilize input-safe domains to
ensure correctness in the context of incremental domain expansion by lazy grounding.
Notably, Definitions 5.3 and 5.2 are in semantic terms, relying on answer sets of a given

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Integration of Grounding and Solving

program. Accordingly, these semantic concepts are not suited for generating input-safe
domains in our algorithm. Thus, we now capture the respective notions syntactically by
the relevant grounding G∞

relΠ(p,∅)(∅) for an input predicate p of some external atom that
is not monotonic. To this end, we compute a partial grounding of a given hex-program
by only considering the subset of (non-ground) rules that is relevant for obtaining all
ground instances of p.

Definition 5.4 (Relevant Rules). Given a predicate name p, a hex-program Π, and a
set S of predicate names, the relevant rules of Π w.r.t. p and S are

relΠ(p, S) =
⋃

r∈Πp

{r} ∪ {r′ ∈ relΠ(p′, S′) | p′ ∈ PB+(r), p′ 6∈ S′},

where S′ = S ∪ {p}, Πp contains all rules of Π where p occurs in the head, and PB+(r)
consists of all predicate names that occur in B+(r) either as ordinary atom predicate or
as an input to an external atom. Furthermore, the relevant rules of Π w.r.t. p are defined
by relΠ(p, ∅).

In order to obtain all instances of a predicate that are possibly true in some answer
set of a program, we employ the following monotone grounding operator GΠ by Eiter,
Fink, Krennwallner, and Redl (2016):

GΠ(Π′) =
⋃

r∈Π{rθ | ∃I ⊆ A(Π′), Î |= B+(rθ)},

where rθ is the ground instance of r under variable substitution θ : V → C, Î = {Ta | a ∈
I} ∪ {Fa | a ∈ HB \ I}, and A(Π′) is the set of all ordinary ground atoms occurring in
Π′. The least fixpoint of G∞

Π (∅) contains all atoms that are true in some answer set of Π.

Example 5.3 (cont’d). We have G∞
relΠ(p,∅)(∅)={d(c)← not a; p(c)← d(c)}, and a partial as-

signment AA is input-complete w.r.t. Π, if A ⊇ {p(c)}. Note that in general, G∞
relΠ(p,∅)(∅)

would not contain further rules on which p does not depend. △
The rules in G∞

relΠ(p,∅)(∅) contain all ground instances over p that occur in the

grounding grnd(Π) of Π. Since all atoms that occur in some answer set of Π also occur in
grnd(Π), the relevant grounding thus indicates all such atoms, as stated by the following
proposition.

Proposition 5.3. Let Π be a hex-program. If Tp(X) ∈ A, for some answer set A of
Π, then p(X) occurs in G∞

relΠ(p,∅)(∅).

Proof. Given a hex-program Π, we assume that A is an answer set of Π s.t. Tp(X) ∈ A,
for some ground atom p(X), and prove that (*) p(X) occurs in G∞

relΠ(p,∅)(∅).
From (Eiter, Fink, Krennwallner, & Redl, 2016), we know that G∞

Π (∅) has the same
answer sets as Π. Consequently, it can only hold that Tp(X) ∈ A if p(X) occurs in
G∞

Π (∅). We prove (*) by showing that p(X) occurs in G∞
relΠ(p,∅)(∅) whenever p(X) occurs

in G∞
Π (∅).

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.1. Evaluation of External Sources Based on Partial Groundings

For a hex-program Π, we say that a predicate p positively depends on a predicate
q, written p→+ q, if there is a rule r ∈ Π s.t. p occurs in the head of r and q occurs in
B+(r) as ordinary atom predicate or as an input to an external atom. The associated
positive dependency graph D+(Π) has as nodes all predicates occurring in Π and contains
all directed edges corresponding to the dependency relation →+ (and nothing else).1

With →∗
+ we denote the relation corresponding to the transitive closure of the relation

→+, i.e. a→∗
+ b holds iff b is reachable from a in D+(Π).

Given a predicate p, it is easy to see that if p(X) occurs in G∞
Π (∅), and we obtain

Π′ by only removing rules that do not contain a predicate q in the head where p→∗
+ q,

then it must still hold that p(X) occurs in G∞
Π′(∅) since only the positive rule bodies are

considered when deriving new rules by means of the GΠ-operator and because the value
of a ground external atom only depends on the extension of predicates in its input.

Now, it is left to show that given a predicate p, relΠ(p, ∅) contains all rules from Π
that have a predicate q in the head s.t. p →∗

+ q. We show that relΠ(p, ∅) contains all
such rules by induction on the minimum distance n between p and q in D+(Π).

For the base case, let n = 0. The only predicate that has distance 0 from p in D+(Π)
is p itself, and it follows directly from Definition 5.4 that relΠ(p, ∅) contains all rules
from Π that have p in the head.

Next, we assume that relΠ(p, ∅) contains all rules from Π that have a predicate q
in the head where p →∗

+ q s.t. q has distance smaller or equal to n from p (induction
hypothesis). We prove that the same holds for n + 1. Let q′ be a predicate s.t. p→∗

+ q′

and q′ has distance n + 1 from p. We need to prove that relΠ(p, ∅) contains all rules
where q′ occurs in the head. Because we have that p→∗

+ q′, we know that there is a rule
r ∈ Π where q′ occurs in B+(r) as ordinary atom predicate or as an input to an external
atom. Let p′ be the predicate of the atom in the head of r. It holds that p′ has distance
n from p. Thus, due to the induction hypothesis, we know that relΠ(p, ∅) contains all
rules from Π that have p′ in the head. However, for every rule r′ ∈ relΠ(p, ∅) also all
rules with predicate q′′ in the head are contained in relΠ(p, ∅), where q′′ occurs in B+(r)
as ordinary atom predicate or as an input to an external atom, according to Definition
5.4. Thus, relΠ(p, ∅) also contains all rules from Π that have predicate q′ in the head.
Consequently, relΠ(p, ∅) contains all rules from Π that have a predicate q in the head s.t.
p→∗

+ q. We conclude that p(X) occurs in G∞
relΠ(p,∅)(∅).

Considering the relevant grounding of those predicates p that occur in Π as a not
monotonic input to some external atom, i.e., considering the relevant grounding of all
p ∈ pm(Π), we can obtain an input-safe domain of Π and thus obtain input-complete
partial assignments. More formally:

Theorem 5.1. A partial assignment AA is input-complete w.r.t. a hex-program Π if
for all p ∈ pm(Π) it holds that p(~X) ∈ A whenever p(~X) occurs in G∞

relΠ(p,∅)(∅).

1Note that this dependency graph is different from the dependency graph introduced in Section 4.2
as it is defined w.r.t. predicates and only takes the positive rule body into account.

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Integration of Grounding and Solving

Proof. Let Π be a hex-program and AA a partial assignment s.t. for all p ∈ pm(Π) it
holds that p(~X) ∈ A whenever p(~X) occurs in G∞

relΠ(p,∅)(∅). From Proposition 5.3, we

obtain that A contains each p(X) where p ∈ pm(Π) and Tp(X) ∈ A for an answer set A
of Π. Due to Definition 5.3, it follows that A is an input-safe domain of Π. According to
Proposition 5.2, we derive that AA is input-complete w.r.t. Π, which concludes the proof.

5.2 Lazy-Grounding HEX-Evaluation Algorithm

In this section, we present the new evaluation algorithm that interleaves the steps taken
by a lazy-grounding solver with the evaluation of external sources, which incrementally
introduce new output constants into the program.

Given an input-safe domain A, the algorithm operates on top of a transformation
from a hex-program Π to an ordinary logic program α(Π,A), such that an ordinary
lazy-grounding solver for ASP can be employed as a host to incrementally ground the
rules in α(Π,A). Moreover, via a novel interface to external sources, lazy-grounding may
import input-output relations over external atoms in form of additional rules.

5.2.1 Program Transformation and External Source Interface

In the program transformation α(Π,A), external atoms are replaced by ordinary atoms,
and the program is extended by rules that allow to explicitly derive the negative extension
of a given input-safe domain of Π.

Definition 5.5 (Program Transformation). Given a hex-program Π and an input-safe
domain A of Π, the ordinary program α(Π,A) results from Π by replacing each (non-
ground) external atom &g[~p](~t) with an ordinary (non-ground) replacement atom e&g[~p](~t),
and by adding for each predicate symbol of some atom in A the rule

p(X)← pd(X), not p(X),

and for each p(X) ∈ A a domain fact pd(X)←.

Without loss of generality, we assume that atoms of form e&g[~p](~t), p(X) and pd(X)
do not occur in Π, i.e. they are fresh atoms.

The purpose of the program extension is twofold. On the one hand, it ensures that
each atom p(X) in A is either derived to be true or explicitly false (via p(X)), so that in
the end, nonmonotonic external atoms are always evaluated under complete assignments.
On the other hand, enabling guessing the values of atoms in A early during the solving
process potentially allows that outputs of nonmonotonic external atoms are derived
earlier during search.

Example 5.4 (cont’d). Reconsider Π from Example 5.1. Given A = {p(c)}, the first rule
is replaced by ← e&size[p](0) in α(Π,A), and we add the rules {p(X)← pd(X), not p(X).;
pd(c)← .}. △

106

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Lazy-Grounding HEX-Evaluation Algorithm

For interleaving the solving algorithm with the evaluation of external sources, we first
define a means for constructing a partial assignment which is input-complete w.r.t. the
given program, from an assignment A derived by the ASP-solver.

Values of atoms that are true w.r.t. A are taken directly and false atoms are obtained
based on atoms of form p(~X), which represent falsity of p(~X) according to Definition 5.5.
All other atoms in the domain are considered unassigned. Formally:

Definition 5.6 (External Input Assignment). Given a partial assignment A and a
domain A, the corresponding external input assignment is the set

i(A,A) ={Tp(~X) ∈ A} ∪ {Fp(~X) | Tp(~X) ∈ A}∪
{Up(~X) | p(~X) ∈ A, Tp(~X) 6∈ A, Tp(~X) 6∈ A}.

Intuitively, the construction of an external input assignment from a given solver
assignment ensures that atoms which have not been assigned a truth value during solving
but which are in the given input-safe domain, are explicitly declared to be unassigned
whenever an external source is queried. This is necessary because the external source
requires information about all atoms which can potentially become true in the search later
on, in order to only yield outputs that remain correct when the grounding is extended.

Note that if there is no atom p(~X) s.t. Tp(~X) ∈ A and Tp(~X) ∈ A, then i(A,A) is a
partial assignment. We assume that the previous holds for all external input assignments
used in the following.

Example 5.5. Consider the partial assignment A = {Ta, Ub, Fc, Fd, Te} and domain
A = {d, e, f}. According to Definition 5.6, the corresponding external input assignment
is i(A,A) = {Ta, Ud, Fe, Uf}. Observe that i(A,A) only depends on the T-part of A
and that i(A,A) is an assignment. △

The external source interface amounts to a function that yields rules representing the
corresponding input-output relations of external atoms. These rules are added to the
input program processed by the solver. Accordingly, whenever an output value is obtained
based on a solver assignment, a rule is generated that implies the ground replacement
atom representing the respective output value relative to the current assignment of the
relevant input atoms.

Definition 5.7 (External Evaluation Function). Given &g[~p], a partial assignment A
and a domain A, the external evaluation function η yields

η(&g[~p], i(A,A)) =
{

e&g[~p](~c)← BA,~p | f&g(i(A,A), ~p,~c) = T
}

,

where BA,~p =
{

p′(~X) | Tp′(~X) ∈ A, p′ ∈ {p, p}, p ∈ ~p
}

is a rule body corresponding to
the external atom’s input.

Given a hex-program Π and an input-safe domain A of Π, we denote all possible
external evaluations by η(Π) =

{

r | ∃A s.t. r ∈ η(&g[~p], i(A,A)), &g[~p] occurs in Π
}

.

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Integration of Grounding and Solving

Example 5.6. Consider Π from Example 5.1 again. For input-safe domain A = {p(c)}
and A = {Td(c), Fa}, the external input assignment i(A,A) = {Td(c), Up(c)} is input-
complete for Π, and we obtain that η(&size[p], i(A,A))=∅. For the partial assignment
A′={Td(c), Fa, Tp(c)}, we obtain the external input assignment i(A′,A)={Td(c), Fp(c)}
and η(&size[p], i(A′,A)) = {e&size[p](0)← p(c)}. △

5.2.2 HEX-Algorithm Based on Lazy Grounding

Algorithm 5.1 allows us to evaluate a hex-program using lazy grounding. It is based on
the lazy-grounding ASP-solver alpha, which incorporates ideas from Omiga (Dao-Tran
et al., 2012; Weinzierl, 2017). The algorithm combines conflict-driven nogood-learning
(CDNL) search (Gebser et al., 2012) with lazy grounding. As mentioned before, CDNL
applies techniques from SAT-solving to ASP, by translating a ground program into a set
of nogoods, corresponding to clauses in SAT-solving, and running a DPLL-style search
algorithm. In every iteration of the CDNL search procedure, deterministic consequences
are propagated first, and in case some nogood is violated, a conflict nogood is added
to the nogood store to avoid running into the same conflict again and backjumping is
performed. Whenever no deterministic assignments are possible during CDNL-search,
but the solver assignment is still incomplete, an unassigned atom is guessed to be true or
false.

Algorithm 5.1 receives as input an ordinary program constructed according to Defini-
tion 5.5 from a hex-program Π and an input-safe domain of Π. In practice, we obtain an
input-safe domain based on Definition 5.3 and Proposition 5.3, by computing G∞

relΠ(p,∅)(∅)
for all p ∈ pm(Π). Note that requesting an input-safe domain of the input program is not
a severe restriction on the class of programs that our approach can handle, as an input-safe
domain can be obtained for any hex-program. After initializing, Algorithm 5.1 explores
the search space in one loop, where the first step at each iteration is propagation from the
currently known nogoods ∇ and the current assignment A in Part (a). If some nogood
δ is violated, in Part (b), a new nogood is learned from the conflict and backjumping
is triggered. If propagation at Part (a) derived new assignments, lazy-grounding of the
input program is performed in Part (c).

In Part (d) of Algorithm 5.1, all external sources are queried, employing external
evaluation functions and external input assignments. Note that, at this point, it cannot be
the case that Tp(~X) ∈ A and Tp(~X) ∈ A both hold for any atom p(~X), because atoms
of the form p(~X) are only defined by the rules added in the program transformation of
Definition 5.5 and those rules only fire if Tp(~X) 6∈ A. In Part (e), guessing is done, which
is different from ordinary CDNL-based guessing: due to lazy grounding, not all atoms
may be guessed upon, but only those corresponding to ground instances of applicable
rules (cf. Section 5.1). Heuristics may be employed for selecting good guesses. Upon
reaching Part (f), the iterations of lazy grounding, guessing, and propagating do not
yield any more information, i.e., a fixpoint has been reached. In order to complete the
assignment (w.r.t. known atoms), all atoms being unassigned in A are assigned to false.
In Part (g), the assignment is tested for only containing true or false assignments. This

108

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Lazy-Grounding HEX-Evaluation Algorithm

Algorithm 5.1: Lazy-Grounding hex-Evaluation

Input: The ordinary program α(Π,A) corresponding to a hex-program Π, given
input-safe domain A of Π

Output: All answer sets AS(α(Π,A) ∪ η(Π)) of α(Π,A) ∪ η(Π)

AS ← ∅ // found answer sets

A← {Ua | a ∈ A} // all known atoms unassigned

∇ ← ∅ // dynamic nogood storage

Run lazy grounder (obtain initial nogoods ∇ from facts)
while search space not exhausted do

(a) (A,∇)← Propagation(A,∇)
(b) if some nogood δ ∈ ∇ violated by A then

analyze conflict, add learned nogood to ∇, backjump
(c) else if A changed then

run lazy grounder w.r.t. A and extend ∇
(d) else if external sources not queried for current A then

extend ∇ w.r.t. η(&g[~p], i(A,A)) for each &g[~p] in Π
(e) else if there are guesses left then

select a guess
(f) else if exists Ua ∈ A then

replace each Ua by Fa in A
(g) else if all atoms assigned T or F in A then

AS ← AS ∪ {Â}
add enumeration nogood and backtrack

(h) else
backtrack

end

end
return AS

is necessary, because the alpha solver internally works with must-be-true as additional
truth value for increased efficiency. For evaluation of external atoms, must-be-true is
treated as true. If the check succeeds, then the current assignment is an answer set of
the hex-program and recorded as such.2 If the check fails, some must-be-true remained
and the current assignment is not an answer set, hence backtracking occurs in Part (h).

If an external input-cycle would exist, i.e., an input predicate of an external atom
depends on the atom itself, cf. (Eiter, Fink, Krennwallner, et al., 2014), an additional
minimality check is required in Part (g), i.e. a variant of the e-minimality check described
in Chapter 4 adapted to the setting of lazy grounding, which is outside the scope of this
work. Hence, in the following we assume programs Π do not have such cycles.

Algorithm 5.1 returns the answer sets of the program transformation together with
all rules encoding possibly relevant input-output relations of external atoms:

Proposition 5.4. For any hex-program Π and input-safe domain A of Π, Algorithm
5.1 yields the answer sets of α(Π,A)∪η(Π).

2In the implementation, false atoms of an answer set Â are not stored explicitly.

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Integration of Grounding and Solving

Proof. See Appendix A.2, page 202.

Given a hex-program Π and an input-safe domain A of Π, if Algorithm 5.1 returns
an answer set of α(Π,A)∪η(Π), we obtain an answer set of Π by using for ordinary
atoms occurring in Π the respective truth value and by setting all other atoms in HB to
false. Observe that the resulting assignment maps all atoms of the form e&g[~p](~t), p(X)
or pd(X) to false as they do not occur in Π. Moreover, each answer set of Π is obtained
this way.

Theorem 5.2. For a hex-program Π and an input-safe domain A of Π, the answer sets
returned by Algorithm 5.1 correspond exactly to the answer sets of Π; i.e. the set AS
contains one assignment A′ for every answer set A of Π s.t. A and A′ coincide regarding
ordinary atoms in GΠ.

Proof. See Appendix A.2, page 205.

To show this result, we rely on the correctness and completeness of ordinary lazy-
grounding ASP-solving (cf. Theorem 1 in (Weinzierl, 2017)), which needs to be extended
to also take external evaluations into account. As external atoms are evaluated under
input-complete assignments only, it is ensured that input-output relations returned by
the external evaluation function at any point during search are not contradicted by later
external evaluations. Since no cyclic dependencies involving external atoms are allowed,
their evaluation only depends on a subprogram that does not contain the respective
external atom itself. Because of this, the Splitting Theorem from (Eiter, Fink, Ianni,
et al., 2016) can be applied for proving correctness of Algorithm 5.1. Completeness
intuitively follows from completeness w.r.t. ordinary programs and the fact that the truth
values computed for replacement atoms by Algorithm 5.1 coincide with the outputs of
the respective oracle functions, given identical assignments to ordinary atoms.

5.3 Empirical Evaluation

In this section, we experimentally evaluate the new algorithm for lazy-grounding hex-
solving introduced in Section 5.2.2.

5.3.1 Experimental Setup

To evaluate the performance of the new hex-algorithm, we have integrated the alpha3

lazy-grounding solver, which is freely available, with the dlvhex reasoner (Redl, 2016).
The two components communicate via the interface in Section 5.2, where dlvhex bridges
to external sources and handles program decomposition, while alpha acts as ordinary
ASP-solver. The program transformation in Definition 5.5 allows us to omit the usual
guessing program (Eiter, Fink, Ianni, et al., 2016) in the implementation. For comparison,
we used dlvhex with gringo and clasp (Gebser, Kaufmann, et al., 2011) as backends.

3https://github.com/alpha-asp/Alpha

110

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/alpha-asp/Alpha

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Empirical Evaluation

The benchmark instances and all results are available at http://www.kr.tuwien
.ac.at/research/projects/inthex/lazyhex.

Evaluation Platform

The tests were performed on a Linux machine with two 12-core AMD Opteron 6176 SE
CPUs and 128 GB RAM. The timeout for each run was 300 seconds and the memory limit
12 GB. We used the HTCondor load distribution system4 to ensure a stable environment
that minimizes running time variations between runs on the same problem instance.

Average running times of 10 instances per size (respectively 30 in case of the third
benchmark) are reported in seconds for computing all answer sets respectively only the
first answer set; timeouts are in parentheses.

Benchmark Configurations

As discussed at the beginning of this chapter and in Section 1.2.2, decomposition
techniques have been developed before in order to mitigate grounding issues that arise
due to nonmonotonic external atoms (Eiter, Fink, Ianni, et al., 2016). On the other
side, program decomposition is often detrimental for solving because it may split guesses
from integrity constraints in a program. Since our goal is to overcome this tradeoff
between grounding and solving by employing lazy-grounding techniques, we compared
our algorithm to traditional hex-evaluation with and without program decomposition.

We used the following three configurations in our experiments:

• splitting: the program is decomposed into independently groundable components,
which are processed by an ordinary solver;

• monolithic: a grounding of the complete program is generated, and an ordinary
solver is run; and

• alpha: no program splitting happens and the novel algorithm using the lazy-
grounding solver alpha as backend is employed.

Benchmark Problems

We considered three different benchmark problems for the experimental evaluation, where
the second and the third problem have first been considered by Redl (2017a):

• A problem in the context of social choice, where individual preferences need to be
aggregated into acyclic preference sets such that a non-empty choice set (Duggan,
2007) can be obtained (Consistent Preferences).

• A generic problem setting which is applicable whenever some configuration needs
to be generated by selecting items from a set such that their combined properties
satisfy a given set of constraints (Generic Configuration).

4http://research.cs.wisc.edu/htcondor

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://www.kr.tuwien.ac.at/research/projects/inthex/lazyhex
http://www.kr.tuwien.ac.at/research/projects/inthex/lazyhex
http://research.cs.wisc.edu/htcondor

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Integration of Grounding and Solving

• Failure Diagnosis using abductive reasoning (Kakas, Kowalski, & Toni, 1992),
where the necessary causes of a machine failure need to be determined.

All three problems have in common that pre-grounding of the respective encodings
is challenging, either because a nonmonotonic external atom needs to be called with
exponentially many inputs under monolithic evaluation while decomposition splits a
program constraint from a relevant guess (in case of benchmarks two and three); or due
to the import of a large number of constants by an external atom (in the consistent
preferences benchmark).

The benchmark problems used in this evaluation have many parameters, and randomly
generated instances easily turn out to be either over- or under-constrained (i.e. constraints
either eliminate all answer sets or none). Hence, by choosing the particular parameters
used in our experiments, we aimed to avoid both cases, which arguably are of less interest
in the view of realistic application scenarios.

5.3.2 Hypotheses

Our hypotheses regarding the comparison of lazy-grounding hex-solving and previous
evaluation algorithms in terms of performance were the following:

(H5.1) Configuration alpha performs better than splitting, in case many guesses
violate constraints and decomposition splits the latter from the guessing part.

(H5.2) Configuration alpha performs better than monolithic, if generating the re-
spective grounding before solving requires a lot of resources due to nonmonotonic
external atoms.

5.3.3 Experiments on Lazy-Grounding HEX-Evaluation

In this section, we discuss each of the experiments performed for evaluating lazy-grounding
hex-evaluation in detail and present the according results.

Consistent Preferences

This benchmark considers a problem where many new constants are imported by an
external atom based on a guess, which obstructs intelligent grounding techniques. An
important task in social choice consists in producing choice sets (Duggan, 2007) from
sets of preferences, i.e. determining the maximal elements w.r.t. the given preferences. If
preferences are cyclic and thus, not consistent, the construction of a non-empty choice
set may fail since the corresponding preference relation, e.g. obtained by aggregating the
preferences of a group of individuals, may not possess maximal elements.

Accordingly, the purpose of the benchmark encoding considered here is to aggregate
preferences of a group of individuals into a consistent preference set, i.e. one that allows
the construction of a non-empty choice set. In this regard, a hex-program selects a
subset P ′ of a pool P of persons p and checks if the union of individual preferences

112

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Empirical Evaluation

All Answer Sets First Answer Set
splitting monolithic alpha splitting monolithic alpha

4 0.16 (0) 0.16 (0) 1.22 (0) 0.13 (0) 0.13 (0) 1.13 (0)
6 0.80 (0) 0.43 (0) 1.68 (0) 0.61 (0) 0.31 (0) 1.43 (0)
8 7.62 (0) 4.09 (0) 2.48 (0) 5.95 (0) 3.76 (0) 1.98 (0)

10 67.52 (0) 88.54 (0) 4.82 (0) 55.31 (0) 85.11 (0) 3.43 (0)
12 300.00 (10) 189.79 (6) 9.15 (0) 295.73 (9) 158.15 (5) 5.47 (0)
14 300.00 (10) 300.00 (10) 17.37 (0) 300.00 (10) 300.00 (10) 9.52 (0)
16 300.00 (10) 300.00 (10) 27.79 (0) 300.00 (10) 300.00 (10) 14.93 (0)
18 300.00 (10) 300.00 (10) 54.00 (0) 300.00 (10) 300.00 (10) 25.44 (0)
20 300.00 (10) 288.67 (9) 132.08 (0) 300.00 (10) 288.27 (9) 50.67 (0)
22 300.00 (10) 300.00 (10) 225.47 (0) 300.00 (10) 300.00 (10) 66.91 (0)
24 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 300.00 (10) 119.20 (0)

Table 5.1: Results for consistent preferences

sel(X)←not n_sel(X), person(X).

n_sel(X)←not sel(X), person(X).

preferred(X, Y)←&prefs[sel](X, Y).

preferred(X, Y)←preferred(X, Z), preferred(Z, Y).

←preferred(X, X).

Figure 5.1: Consistent preferences rules

pref(p, I) ⊆ I×I over items I is consistent (i.e., acyclic). The answer sets of the rules
from Figure 5.1 plus the facts {person(p) | p ∈ P} correspond to all P ′ ⊆ P where this
holds. The item set I and the preferences pref(p, I) are not part of the hex-program,
but imported via an external atom &prefs[sel](X, Y) for the selected persons. Given a
partial assignment A and an output tuple (i, i′), its oracle function f&prefs(A, sel, i, i′)
evaluates to

• true, if some p fulfills Tsel(p) ∈ A and (i, i′) ∈ pref(p, I);

• false, if Fsel(p) ∈ A holds for all p s.t. (i, i′) ∈ pref(p, I);

• and to unassigned otherwise.

Thus, the input parameter sel is monotonic, but evaluating the external atom under
its maximal extension may cause a large amount of constants to be imported into the
program.

We ran tests for randomly generated instances with N ∈ [4, 24] persons and 2×N
items, where each individual preference (i, i′) uniformly occurs with 5% probability. The
results are presented in Table 5.1.

Generic Configuration

We consider configuration problems such as the assembly of a committee or a server
cluster (cf. the example at the beginning of this chapter) (Redl, 2017a). At this, the
properties of a particular configuration usually depend on the properties of its parts,

113

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Integration of Grounding and Solving

All Answer Sets First Answer Set
splitting monolithic alpha splitting monolithic alpha

10 2.06 (0) 0.40 (0) 1.62 (0) 1.05 (0) 0.31 (0) 1.38 (0)
12 8.71 (0) 1.05 (0) 1.87 (0) 6.67 (0) 0.88 (0) 1.44 (0)
14 39.29 (0) 4.04 (0) 4.56 (0) 22.20 (0) 3.17 (0) 1.83 (0)
16 200.54 (0) 14.83 (0) 3.91 (0) 126.96 (0) 13.89 (0) 2.87 (0)
18 300.00 (10) 57.20 (0) 7.29 (0) 249.94 (8) 55.49 (0) 3.83 (0)
20 300.00 (10) 300.00 (10) 128.01 (4) 233.52 (7) 300.00 (10) 7.42 (0)
22 300.00 (10) 300.00 (10) 133.87 (4) 190.75 (6) 300.00 (10) 5.60 (0)
24 300.00 (10) 300.00 (10) 214.84 (7) 257.36 (8) 300.00 (10) 37.51 (1)
26 300.00 (10) 300.00 (10) 300.00 (10) 212.42 (7) 300.00 (10) 37.96 (1)
28 300.00 (10) 300.00 (10) 243.17 (8) 109.73 (3) 300.00 (10) 6.67 (0)
30 300.00 (10) 300.00 (10) 272.53 (9) 240.28 (8) 300.00 (10) 38.66 (1)

Table 5.2: Results for generic configuration

as well as their interplay; i.e. the dependency may be of nonmonotonic nature in the
case that adding some part eliminates a property of the configuration. Using ASP for
configuration has a long tradition (e.g. Soininen, Niemelä, Tiihonen, and Sulonen (2001)
considered product configuration and more recently Gebser, Ryabokon, and Schenner
(2015) the railway domain). Here, we address a generic formalization5 that is likely to
occur in real-world scenarios as those mentioned.

A configuration is a subset C ′ of a set C of components, which has an associated
set m(C ′) ⊆ P of properties from a set P . An admissible C ′ must fulfill a set R of
requirements (e.g. costumer demands) of the form (R+, R−) ∈ 2P×2P , which means
that R+ 6⊆m(C ′) or R− ∩m(C ′) 6= ∅ holds. For example, w.r.t. the concrete problem
of assembling a committee of employees as discussed by Redl (2017a), C is a set of
employees, P are properties such as “has technical expertise” or “has financial authority”
and a requirement could be that the committee should be able to decide in technical as
well as financial affairs, but should not have more than five members.

In the hex-program, we guess a configuration C ′ ⊆ C in a predicate config and
compute its properties with an external atom &prop[config](P). As config is a non-
monotonic input parameter, traditional grounding must evaluate the oracle function
f&prop for all possible inputs. For a partial configuration C ′ and property p, f&prop is

• true, if p ∈ m(C ′′) for every C ′′ ⊇ C ′;

• false, if p /∈m(C ′′) for every C ′′⊇C ′; and

• unassigned otherwise.

We tested random instances with N ∈ [10, 30] components, N/5+1 properties and up
to 2×N positive constraints as requirements, where a property occurs in a requirement
with probability 30% and depends on a component with probability 10%; each requirement
was added with probability 50 %. The results are shown Table 5.2.

5We exploit the benchmark implementation from https://github.com/hexhex/core/

tree/master/benchmarks/genericmapping.

114

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/hexhex/core/tree/master/benchmarks/genericmapping
https://github.com/hexhex/core/tree/master/benchmarks/genericmapping

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Empirical Evaluation

All Answer Sets First Answer Set
splitting monolithic alpha splitting monolithic alpha

5 0.18 (0) 0.38 (0) 1.39 (0) 0.14 (0) 0.37 (0) 1.13 (0)
10 2.64 (0) 6.33 (0) 9.30 (0) 1.25 (0) 5.89 (0) 1.61 (0)
15 54.54 (1) 224.03 (2) 56.14 (3) 36.38 (0) 218.92 (1) 2.10 (0)
20 273.95 (23) 300.00 (30) 96.49 (9) 262.49 (21) 300.00 (30) 3.40 (0)
25 300.00 (30) 300.00 (30) 111.42 (11) 300.00 (30) 300.00 (30) 8.65 (0)
30 300.00 (30) 300.00 (30) 102.14 (10) 300.00 (30) 300.00 (30) 15.02 (0)
35 300.00 (30) 300.00 (30) 83.31 (8) 300.00 (30) 300.00 (30) 23.92 (0)
40 300.00 (30) 300.00 (30) 55.88 (5) 300.00 (30) 300.00 (30) 27.74 (0)
45 300.00 (30) 300.00 (30) 88.35 (8) 300.00 (30) 300.00 (30) 63.07 (2)
50 300.00 (30) 300.00 (30) 81.79 (7) 300.00 (30) 300.00 (30) 80.34 (6)

Table 5.3: Results for failure diagnosis

Failure Diagnosis

Another classical use-case of ASP is abduction-based diagnosis (Kakas et al., 1992), i.e.
the problem of finding possible explanations for the observed effects of a system. Suppose
possible causes of a machine failure should be given from certain (Boolean) measurement
values that are only partially available. The task is to compute, respecting the open
measurement values, all necessary causes that entail the measurement values. In that,
information about combinations of failure causes that can be excluded may be available.

According to Redl (2017a), a further use case of this problem setting is medical
diagnosis based on reported symptoms and lab results. In this context, certain lab tests
may be inconclusive such that measurements are partial, but the tests still have a fixed
set of possible outcomes. Moreover, certain diagnoses may be excluded due to additional
information provided by a patient. By computing sets of measurements that would imply
specific diagnoses, the open lab tests could be performed in a goal-oriented manner.

The problem can be modeled6 using sets M and M ′ of known respectively unknown
measurements, a set H of possible causes, a logic program P relating measurements
and possible causes, and a set C of constraints that exclude specific combinations of
causes. We want to compute the intersection D of all possible diagnoses D ⊆ H w.r.t.
measurement values M = M ∪M ′′ with M ′′ ⊆ M ′, s.t. D 6⊆ C for all C ∈ C. For this,
we guess M ′′ ⊆ M ′ in the hex-program and employ a nonmonotonic external atom
&diagnosis[P,M](D) to obtain the necessary failure causes.

In the tests, we used random instances with N ∈ [5, 50] measurement values, each
available at 20 % (e.g. due to unfinished measurements), and up to 2×N constraints to
exclude combinations of causes, where each occurs in a constraint with probability 30 %.
The results are shown in Table 5.3.

5.3.4 Discussion of Results

In all three benchmarks, lazy grounding (setting alpha) exhibits a significant advantage
in running time over splitting and monolithic. This matches our hypotheses (H5.1) and

6We adopt the implementation from https://github.com/hexhex/core/tree/master/

benchmarks/diagnosis.

115

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/hexhex/core/tree/master/benchmarks/diagnosis
https://github.com/hexhex/core/tree/master/benchmarks/diagnosis

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Integration of Grounding and Solving

(H5.2) as under monolithic, the external atom must be grounded for exponentially many
input combinations in the last two benchmarks, and under splitting, the search space
cannot be pruned effectively due to the separation of guesses and constraints. We observe
that splitting outperforms monolithic for failure diagnosis because computing the
diagnoses is resource-intense and must be executed for every input during the grounding
step. Here, this outweighs the costs related to less search space pruning in configuration
splitting. Note that in general, alpha finds the first answer set much faster than the
other configurations, and notably, was very fast when no answer set exists. However,
in computing all answer sets it often timed out when instances have a large number
of solutions. Hence, with increasing instance size, the number of instances with many
solutions has a stronger impact on the average running times for alpha. Methodologically,
this suggests to restrict the solution space of a problem by adding further constraints
when using lazy grounding.

Somewhat surprising, alpha outperformed monolithic for consistent preferences,
despite feasible grounding for the instance sizes. Our analysis explains this by the large
number of guesses usually added for evaluation of external atoms in hex during grounding.
Hence, considerably more time is required for solving. In contrast, no additional guesses
must be introduced in our program transformation (cf. Definition 5.5) as here the external
atom only has monotonic input parameters and new constants can be imported on-the-fly.

5.4 Related Work

Our work builds on partial evaluation of external atoms (Eiter, Kaminski, et al., 2016)
as discussed in Chapter 3, and on the recently developed alpha solver (Weinzierl, 2017).
It is the first time that lazy grounding has been considered for the hex-framework. We
are not aware of similar approaches for related systems, such as clingo (Gebser et al.,
2016), which however, supports no value invention based on the respective answer set
as the hex-formalism. Lazy-grounding ASP-solvers like asperix (Lefèvre & Nicolas,
2009b), gasp (Palù et al., 2009), and omiga (Dao-Tran et al., 2012) could in theory be
employed, but likely result in worse performance, as they are not based on CDNL-search.

Since grounding is a central bottleneck of ASP-solving, several other strategies for
tackling grounding issues have been developed. Techniques for incremental grounding
have been developed based on module theory (Oikarinen & Janhunen, 2006), and have
been deployed in the ASP-systems iclingo (Gebser et al., 2008) and oclingo (Gebser,
Grote, et al., 2011). Both systems are based on clasp and gringo (Gebser, Kaufmann,
et al., 2011). At this, iclingo is the first system that incrementally solves and grounds
extensions to a problem while avoiding to re-process the whole problem; and oclingo
enriches iclingo with online capabilities for reactive solving and grounding. The advantage
of these systems with respect to grounding has been shown, e.g., in the area of planning
and other domains where a parameter determines the maximum size of a solution. For
instance, in the case of planning, a set of time steps can incrementally be extended in
case no solution can be found for a given time frame.

116

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.5. Conclusion and Outlook

Multi-shot ASP-solving (Gebser et al., 2019) is a recent paradigm for handling problem
specifications that evolve over time, and it has been implemented in the clingo system
(Gebser et al., 2016). The approach is very flexible and also incorporates incremental
grounding; at this, it supersedes the previous formalisms realized by oclingo and iclingo.
To this end, clingo 5 provides a rich API for controlling the grounding and the solving
process using scripting languages. However, leveraging these broad capabilities requires
quite some experience on the user side, while lazy grounding can be applied directly for
evaluating ordinary ASP- and hex-programs. At the same time, sophisticated solving
and grounding techniques used in the background remain hidden from the user in our
approach.

Furthermore, it is important to note that often grounding an encoding on a large
domain can be avoided by outsourcing grounding-intense subtasks. For instance, the
theory interface of clingo 5 or external atoms of hex can be utilized for this purpose.
This method is also at the core of constraint-ASP systems such as clingcon (Ostrowski
& Schaub, 2012), which avoid the import of large constraint domains. We employ the
strategy for our hex-application presented in Chapter 6, where we limit the domain of
an encoding for logic-based machine learning by outsourcing the background knowledge
of a learning task.

5.5 Conclusion and Outlook

We have introduced a new algorithm for hex-programs that interleaves external evaluation
plus value invention with lazy-grounding ASP-solving. It employs a tailored interface
between the two components with a program transformation based on input-safe domains
and a novel evaluation function that adds rules for input-output relations over external
atoms to the program. Monotonic external atoms are directly evaluated on partial
groundings, with the benefit that no additional guesses are needed. Due to the black-box
nature of external atoms, computing a restricted grounding w.r.t. inputs that are not
monotonic is necessary; however, this usually involves only a small subset of the complete
grounding.

The benchmark results of our prototype implementation are promising, and show
the potential of the new algorithm based on the alpha-solver. In the special setting of
hex-programs, lazy grounding exhibits a significant benefit already for relatively small
instances since program splits and guessing for monotonic external atoms can be avoided.

We plan to integrate an advanced e-minimality check, similar to the one described in
Chapter 4, into the new lazy-grounding hex-algorithm, so that cycles over nonmonotonic
external atoms can be handled as well. However, previous algorithms for e-minimality
checking operate on the ground program, such that they need to be lifted to the setting
of lazy grounding. Moreover, an evaluation mixing full grounding and lazy grounding,
each for different parts of a given hex-program, may increase overall performance.

117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
. Part II

Applications of HEX-Programs in

Machine Learning

119

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Meta-Interpretive Learning

In this chapter, which is mainly based on the papers (Kaminski et al., 2018b, 2018a),
we introduce the first of two applications of hex-programs in the area of machine
learning. More precisely, we apply the hex-formalism to meta-interpretive learning (MIL)
(Muggleton et al., 2015), an approach for relational machine learning, and show that
external atoms are essential for realizing MIL in ASP.

MIL has recently attracted a lot of attention in the area of inductive logic programming
(ILP). The formalism learns definite logic programs from positive and negative examples
given some background knowledge by instantiating so-called meta-rules. The latter can
be viewed as templates specifying the shapes of rules that may be used in the induced
program. The formalism is very powerful as it enables predicate invention, i.e. to use
new predicate symbols in the induced program, and it supports learning of recursive
programs, while the hypothesis space can be constrained effectively by using meta-rules.

MIL has been implemented in the Metagol system (Cropper & Muggleton, 2016b),
which is based on a classical Prolog meta-interpreter. The system is very efficient by
exploiting the query-driven procedure of Prolog to guide the instantiation of meta-rules
in a specific order. In contrast (and complementary) to a common declarative bias in
ILP which constrains the hypothesis space, this constitutes a procedural bias that may
affect efficiency (or even termination).

While traditionally most ILP-systems are based on Prolog, the advantages of ASP for
ILP were recognized and several ASP-based systems have been developed, e.g. (Otero,
2001; Ray, 2009; Law et al., 2014). Some benign features of ASP are its pure declarativity,
which allows to modularly restrict the search space by adding rules and constraints to
an encoding without risking non-termination, and that enumeration of solutions is easy.
Furthermore, the efficiency and optimization techniques of modern ASP-solvers as well
as conflict propagation and learning can be exploited. Muggleton et al. (2014) already
considered an ASP-version of Metagol, which used only one specific meta-rule and was
tailored to inducing grammars. The authors observed that ASP can have an advantage

121

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

for MIL over Prolog due to effective pruning, but that it performs worse when the
background knowledge is more extensive or only few constraints are present.

Implementing general MIL by ASP comes with its own challenges; and solving MIL-
problems efficiently by utilizing a straightforward ASP-encoding turns out to be infeasible
in many cases. The first challenge is the large search space as a result of an unguided
search due to a lack of procedural bias. Consequently, the search space must be carefully
restricted in an encoding in order to avoid many irrelevant instantiations of meta-rules.
The second and more severe challenge concerns the grounding bottleneck of ASP, which
is not present in Prolog, where only relevant terms are taken into account by unification.
Finally, a third challenge are recursive manipulations of structured objects, such as strings
or lists, that are common for defining background knowledge in Metagol and easy to
realize in Prolog, but are less supported in ASP.

In this chapter, we address the mentioned challenges for a class of MIL-problems
that is widely encountered in practice, by developing different hex-encodings for solving
MIL-problems.

The content of this chapter is structured as follows:

• In Section 6.1, we introduce the problem setting by defining MIL-problems and
their solutions.

• In Section 6.2.1, we introduce our novel MIL approach based on hex-programs for
general MIL-problems. In the first encoding, Π(M), we restrict the search space
by interleaving derivations at the object level and the meta level such that new
instantiations of meta-rules can be generated based on pieces of information that
are already derived w.r.t. partial hypotheses of rules. Furthermore, we outsource
the background knowledge and access it by means of external atoms, which enables
the manipulation of complex objects such as strings or lists.

• In Section 6.2.2, we then define the class of forward-chained MIL-problems, for
which the grounding can be restricted. Informally, in such problems the elements
X, Y in the binary head p(X, Y) of a rule must be connected via a path p1(X1, X2),
p2(X2, X3), . . . , pk(Xk, Xk+1) in the body, where X = X1 and Xk+1 = Y . This
allows us to guard the import of new terms from the background knowledge in a
second encoding, Πf (M), by using already imported terms in an inductive manner.

• In Section 6.2.3, we additionally develop a top-down variant, Πtd
f (M), of the

Πf (M)-encoding, where a query-driven search as performed by Prolog is simulated
in order to derive positive examples in a more goal-directed manner.

• In Section 6.3, we develop a technique to abstract from object-level terms in a fourth
encoding, Πsa(M), by externally computing sequences of background knowledge
atoms that derive all positive examples, and by checking non-derivability of negative
examples with an external constraint.

122

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.1. Background on Meta-Interpretive Learning

• In Section 6.4, we present results of an empirical evaluation based on known
benchmark problems; they provide evidence for the potential of using a hex-based
approach for MIL.

• In Section 6.5, we discuss further aspects of our approach, along with its limitations
and possible future mitigations thereof.

• In Section 6.6, we discuss related work; and conclude the chapter in Section 6.7.

While our encoding is inspired by the implementation presented in (Muggleton et al.,
2014), to the best of our knowledge, a general implementation of MIL using ASP has
not been considered in the literature so far, and neither strategies to compensate for the
missing procedural bias nor to mitigate grounding issues have been investigated. Despite
the use of the hex-formalism, our results may be applied to other ASP-formalisms and
approaches as well.

6.1 Background on Meta-Interpretive Learning

In addition to the sets of predicate symbols P, constant symbols C, and first-order
variable symbols X introduced in Chapter 2, we assume a further set H of higher-order
variables, which is disjoint from the sets P, C and X . A higher-order atom a is of the
form p(t1, ..., tn), where ti ∈ C ∪ X for 1 ≤ i ≤ n and p ∈ H; its arity is n. While we
usually denote first-order variables by upper-case letters X, Y and Z (possibly with
indices), we will use upper-case letters P , Q, and R to denote higher-order variables from
H in order to distinguish them from elements in X .

The meta-interpretive learning (MIL) approach by Muggleton et al. (2015) learns
definite logic programs from examples by instantiating so-called meta-rules. Here, we
focus on meta-rules of the form

P (X, Y)← Q1(X1, Y1), ..., Qk(Xk, Yk), R1(Z1), ..., Rn(Zn), (6.1)

where P , Qi, 1 ≤ i ≤ k, and Rj , 1 ≤ j ≤ n, are higher-order variables, and X,Y ,Xi,Yi,
1 ≤ i ≤ k, and Zj , 1 ≤ j ≤ n, are first-order variables s.t. X and Y also occur in the body.
That is, we consider meta-rules with binary atoms in the head and with binary and/or
unary atoms in the body. Meta-rules with unary head atoms can be simulated by using
atoms of the form p(X, X), and we allow meta-rules of arbitrary (finite) length, such that
the program class H2

m is covered (cf. Cropper and Muggleton (2014)). A meta-substitution
of a meta-rule R is an instantiation of R where all higher-order variables are substituted
by predicate symbols.1 Examples of concrete meta-rules with names as used by Cropper
and Muggleton (2016a) are shown in Figure 6.1.

We are now ready to formally introduce the setting of MIL, adapted to our approach.

1Even though we do not consider constants in meta-substitutions, they can easily be simulated by
using e.g. a dedicated atom =X (X) in the body, where =X is defined in the background knowledge and
binds X to a specific constant.

123

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

Precon: P (X, Y)← Q(X), R(X, Y) Postcon: P (X, Y)← Q(X, Y), R(Y)
Chain: P (X, Y)← Q(X, Z), R(Z, Y) Tailrec: P (X, Y)← Q(X, Z), P (Z, Y)

Figure 6.1: Examples of Meta-Rules

Definition 6.1 (MIL-Problem). A meta-interpretive learning (MIL-)problem is a
quadruple M = (B, E+, E−,R), where

• B is a definite program, called background knowledge;

• E+ and E− are finite sets of binary ground atoms called positive resp. negative
examples;

• R is a finite set of meta-rules.

We say that B is extensional if it contains only ground atoms. A solution for M is a
hypothesis S consisting of a set of meta-substitutions of meta-rules in R s.t. B ∪ S |= e+

for each e+ ∈ E+ and B ∪ S 6|= e− for each e− ∈ E−.

In order to obtain solutions that generalize well to new examples, by Occam’s Razor,
simple solutions to MIL-problems are desired; thus Metagol computes a minimal solution
containing a minimal number of meta-substitutions (i.e. rules).

Example 6.1. Consider the MIL-problem M = (B, E+, E−,R), with B = {m(ann, bob),
f(john, bob), m(sue, ann), f(tim, ann)}, E+ = {a(sue, bob), a(tim, bob), a(john, bob)},
E− = {a(bob, tim)}, abbreviating mother, father and ancestor, and meta-rules R =
{P (X, Y) ← Q(X, Y); P (X, Y) ← Q(X, Z), R(Z, Y)}. A minimal solution for M is
S = {p1(X, Y) ← f(X, Y); p1(X, Y) ← m(X, Y); a(X, Y) ← p1(X, Y); a(X, Y) ←
p1(X, Z), a(Z, Y)}, where p1 is an invented predicate intuitively representing the concept
parent. △

Muggleton et al. (2015) showed that MIL-problems as in Definition 6.1 are decidable
if no proper function symbols (i.e., only constants) are used, and P and C are finite, but
are undecidable in general. Yet, in practice, complex terms such as lists are often used for
MIL. Hence, we assume some suitable restriction, e.g. to consider only a finite set of flat
lists, s.t. in slight abuse of notation, complex ground terms (e.g., [a, b, c]) are technically
regarded as constants in C.

6.2 HEX-Encodings for Meta-Interpretive Learning

In this section, we first introduce our main encoding for solving general MIL-problems,
where the background knowledge is stored externally and interfaced by means of external
atoms. Subsequently, we present a modification of the encoding which reduces the number
of constants that need to be considered during grounding in case only a certain type of
meta-rules is used, as well as a top-down variant of this encoding.

124

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. HEX-Encodings for Meta-Interpretive Learning

A major motivation for developing an ASP-based approach to solve MIL-problems is
that constraints given by negative examples can be efficiently propagated by an ASP-
solver, while Metagol checks them only at the end. This can be shown by simple synthetic
examples; e.g. consider the background knowledge of facts qj

i (i), q11
i (i) and qj

i (0), for
1 ≤ i, j ≤ 10. For the positive examples p(1), . . . , p(10) and the negative example
p(0), Metagol finds no solution within one hour using the meta-rule P (X)← Q(X). In
contrast, the problem can be solved by a simple ASP-encoding instantly. The reason is
that e.g. p(1) can only be derived by the rule p(X)← q11

1 (X) given the negative example
p(0), and Metagol explores a huge number of rule combinations before this is detected.

While the issue of negative examples can be tackled by using ordinary ASP, we employ
here hex-programs as they enable us to outsource the background knowledge from the
encoding. This allows us to conveniently specify intensional background knowledge using,
e.g. string or list manipulations, which are usually not available in ASP. Another advantage
of outsourcing the background knowledge is that the approach becomes parametric w.r.t.
the formalization of the background knowledge, as it is in principle possible to plug
in arbitrary (monotonic) external theories (e.g. a description logic ontology). Beyond
this flexibility provided by hex, external atoms are essential to limit the background
knowledge that is imported as described in Section 6.2.2, and for realizing our state
abstraction technique in Section 6.3.

6.2.1 General HEX-MIL-Encoding

As we consider meta-rules using unary and binary atoms, we introduce external atoms
for importing the relevant unary and binary atoms that are entailed by the background
knowledge in an encoding.

Definition 6.2 (Background Knowledge Atoms). For MIL-problemM = (B, E+, E−,R),
we call the external atom &bkUnary[deduced](X, Y) unary background knowledge (BK)-
atom and the external atom &bkBinary[deduced](X, Y, Z) binary background knowl-
edge (BK)-atom, where the associated oracle functions, given an assignment A, fulfill
that f&bkUnary(A, deduced, X, Y)=T iff B ∪ {p(a, b) | Tdeduced(p, a, b) ∈ A} |= X(Y),
resp. that f&bkBinary(A, deduced, X, Y, Z)=T iff B ∪ {p(a, b) | Tdeduced(p, a, b) ∈ A} |=
X(Y, Z).

The BK-atoms receive as input the extension of the predicate deduced, which repre-
sents the set of all atoms that can be deduced from the program that results from the
meta-substitutions of the current hypothesis. Their output constants represent unary,
resp., binary atoms that are entailed by the background knowledge augmented with the
atoms described by deduced.

In theory, MIL can be encoded by applying the well-known guess-and-check method-
ology, i.e. by generating all combinations of meta-substitutions from the given meta-rules
and available predicate symbols, deriving all entailed atoms, and checking compatibility
with examples using constraints. However, this results in a huge search space due to the
many possible combinations of meta-substitutions, on top of many meta-substitutions

125

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

that can be generated by different combinations of predicate symbols. At the same
time, a large fraction of meta-substitutions is irrelevant for inducing a hypothesis as the
resulting rule bodies can never be satisfied based on atoms that are deduced using other
rules from the hypothesis and the background knowledge.

For this reason, we interleave guesses on the meta level and derivations on the object
level, i.e. deductions using meta-substitutions already guessed to be part of the hypothesis,
and we model a procedural bias ensuring that meta-substitutions can only be added if
their body is already satisfied by atoms deducible on the object level. Note that while
Metagol’s top-down mechanism effects that only meta-substitutions necessary for deriving
a goal atom are generated, our basic encoding works bottom-up such that the procedural
bias is inverted. Guarding the guesses of meta-substitutions in this way has not been
considered by Muggleton et al. (2014); this constitutes the basis for techniques that
restrict the size of the grounding discussed later on.

As in the Metagol implementation of MIL (Muggleton et al., 2015), given a MIL-
problemM = (B, E+, E−,R), we associate each meta-rule R ∈ R with a unique identifier
Rid and a set of ordering constraints Rord ⊆ {ord(P, Q) | P, Q ∈ H occur in R}; and we
assume a predefined total ordering �P over the predicate symbols in P. The ordering
constraints can be utilized to constrain the search space, and are necessary in Metagol in
order to ensure termination. A meta-substitution of a meta-rule R with head predicate
p instantiated for the higher-order variable P satisfies the ordering constraints Rord in
case p �P q for every binary body predicate q instantiated for a higher-order variable
Q s.t. ord(P, Q) ∈ Rord. Here, we apply ordering constraints only to pairs of head and
body predicates, but in general this can be extended to arbitrary pairs of predicates in a
meta-substitution. Moreover, we assume that a set SK ⊆ P of Skolem predicates can be
used for predicate invention, where no element in SK occurs in M.

We are now ready to present our main encoding for solving MIL-problems using hex.
In the hex-encodings presented in this chapter, we make use of choice atoms of the form
{a} in the heads of rules (Calimeri et al., 2013), which syntactically can be replaced by a
disjunctive head a ∨ a, where a is a fresh atom.

Definition 6.3 (hex-MIL-Encoding). Given a MIL-problem M = (B, E+, E−,R) and
a finite set of Skolem predicates S, let Sig be the set that contains each p ∈ SK and
each predicate symbol p that occurs either in E+ ∪ E− or in a rule head in B. The
hex-MIL-encoding for M is the hex-program Π(M) containing

(1) a fact sig(p) ← for each p ∈ Sig, and a fact ord(p, q) ← for all p, q ∈ Sig s.t.
p �P q

(2) the rules unary(X, Y)← &bkUnary[deduced](X, Y) and
deduced(X, Y, Z)← &bkBinary[deduced](X, Y, Z)

(3) for each meta-rule
R = P (X, Y)← Q1(X1, Y1), ..., Qk(Xk, Yk), R1(Z1), ..., Rn(Zn) ∈ R
and {ord(P, Qi1), ..., ord(P, Qim)} =

{

ord(P, Qi) ∈ Rord | i ∈ {1, ..., k}},

126

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. HEX-Encodings for Meta-Interpretive Learning

(a) a rule

{meta(Rid,XP , XQ1 , ..., XQk
, XR1 , ..., XRn)} ←

sig(XP), sig(XQ1), ..., sig(XQk
), sig(XR1), ..., sig(XRn),

ord(XP , XQi1
), ..., ord(XP , XQim

),

deduced(XQ1 , X1, Y1), ..., deduced(XQk
, Xk, Yk),

unary(XR1 , Z1), ..., unary(XRn , Zn)

(b) and a rule

deduced(XP , X, Y)←meta(Rid, XP , XQ1 , ..., XQk
, XR1 , ..., XRn),

deduced(XQ1 , X1, Y1), ..., deduced(XQk
, Xk, Yk),

unary(XR1 , Z1), ..., unary(XRn , Zn)

(4) a constraint ← not deduced(p, a, b), for each p(a, b) ∈ E+, and
a constraint ← deduced(p, a, b), for each p(a, b) ∈ E−

In the encoding, the predicate meta contains meta-substitutions added to an induced
hypothesis, and deduced captures all atoms that can be deduced from a guessed hypothesis
together with the background knowledge. As we consider examples to be binary atoms
and only binary atoms can be derived from meta-substitutions, those binary atoms
entailed by the background knowledge are directly derived to be in the extension of
deduced, while unary atoms can only be derived from the background knowledge such
that they do not need to be added to the extension of deduced and are imported via the
predicate unary in item (2).

Item (3) constitutes the core of the encoding, which contains the meta-level guessing
part (a) and the object-level deduction part (b). A meta-substitution can be guessed to
be part of the hypothesis only if first-order instantiations of its body atoms can already
be deduced, i.e. only if it is potentially useful for deriving a positive example. At this,
predicate names must be from the signature Sig and the ordering constraints must be
satisfied as stated by the facts in item (1). Finally, item (4) adds the constraints imposed
by the positive and negative examples.

For a given MIL-problem, solutions constituted by induced logic programs can directly
be obtained from the answer sets of the respective hex-MIL-encoding. The induced logic
program represented by the meta-atoms in an assignment is extracted as follows:

Definition 6.4 (Induced Program). Given a set of meta-rules R, the definite logic
program induced by an assignment A consists of all rules obtained from a signed literal
of the form Tmeta(Rid, XP , XQ1 , ..., XQk

, XR1 , ..., XRn) ∈ A such that the meta-rule
R = P (X, Y) ← Q1(X1, Y1), ..., Qk(Xk, Yk), R1(Z1), ..., Rn(Zn) is in R, by substituting
P by XP , Qi by XQi

for 1 ≤ i ≤ k, and Rj by XRj
for 1 ≤ j ≤ n.

In the following, we assume that the set of meta-rules R is given by the respective
MIL-problem at hand.

127

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

Every answer set of a hex-MIL-encoding represents a solution for the respective
MIL-problem, and all solutions S that only contain productive rules, i.e. rules such that
all atoms in the body of some ground instance are entailed by B ∪ S, can be generated
in this way.

Theorem 6.1. Given a MIL-problem M, (i) if A is an answer set of Π(M), the logic
program S induced by A is a solution for M; and (ii) if S is a solution for M s.t. all
rules in S satisfy Rord and are productive, then there is an answer set A of Π(M) s.t. S
is the logic program induced by A.

Proof. (i) The program S must be a solution for M according to Definition 6.1 because
the constraints in item (4) of Definition 6.3 ensure that every positive example e+ ∈ E+

is derivable by rules generated by the background knowledge imported in item (2), the
rules generated by item (3b) and meta-substitutions corresponding to signed literals
Tmeta(Rid, XP , XQ1 , ..., XQk

, XR1 , ..., XRn) ∈ A obtained from guesses added by item
(3a), and that no negative example e− ∈ E− is derivable. In addition, atoms not
imported from the background knowledge by item (2) are not relevant for deriving
examples according to Definition 6.2 as they are not entailed by B ∪ S. Moreover, the
facts generated by item (1) are only used in the positive bodies of guessing rules generated
by item (3a) such that they only constrain the guesses for meta-substitutions.

(ii) We know that S is a solution for M s.t. all meta-substitutions in S satisfy the
respective ordering constraints and are productive. Let A be the assignment that
assigns T to all atoms corresponding to facts generated by item (1) of Definition 6.3
w.r.t. M, the atoms unary(p, a) and deduced(p, a, b) for all p(a) and p(a, b), resp., s.t.
B ∪ S |= p(a) and B ∪ S |= p(a, b), and the atom meta(Rid, p, q1, ..., qk, r1, ..., rn) for
every rule p(X, Y) ← q1(X1, Y1), ..., qk(Xk, Yk), r1(Z1), ..., rn(Zn) ∈ H that is a meta-
substitution of the meta-rule R, and F to all other atoms. It can be shown that A is an
answer set of Π(M) s.t. S is the logic program induced by A.

6.2.2 Forward-Chained HEX-MIL-Encoding

Although the general hex-MIL-encoding in Definition 6.3 works well when only a small
number of constants is introduced by the BK-atoms, the grounding can quickly become
prohibitively large when many constants are generated (e.g. due to list operations). This
results from the fact that constants produced by item (2) in Definition 6.3 are also
relevant for instantiating the rules defined in items (3a) and (3b), which contain many
variables, causing a combinatorial explosion.

Example 6.2. Consider a MIL-problemM = (B, E+, E−,R), with background knowledge
B = {remove([X|R], R) ←}, and the positive examples E+ = {remove2([a, a, a], [a]),
remove2([b, b], [])}. Here, the definition of the background knowledge should be read
as an abbreviation for a set of facts, e.g. containing remove([a, a], [a]), remove([a], []),
etc., using the list notation of Prolog. Accordingly, the predicate remove drops the first
element from a list, and a corresponding hypothesis intuitively needs to remove the first
two elements from the list in the first argument of an example to yield the second one.

128

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. HEX-Encodings for Meta-Interpretive Learning

Now, assume that C contains lists with letters from the set {a, b, c} up to some length n.
Then, the background knowledge contains, e.g., remove([c, c], [c]), remove([c, c, c], [c, c]),
etc., up to length n, which are imported via the BK-atoms. However, lists containing the
letter c are irrelevant w.r.t. M because they cannot be obtained from lists appearing in
the examples using the operations in the background knowledge. △

Next, we introduce a class of meta-rules that allows us to restrict the number of
constants imported from the background knowledge, based on the observation from the
previous example.

Definition 6.5 (Forward-Chained Meta-Rule). A forward-chained meta-rule is of the
form

P (Z0, Zk)← Q1(Z0, Z1), . . . , Qi(Zi−1, Zi), . . . , Qk(Zk−1, Zk), R1(X1), . . . , Rl(Xl),

where 1 ≤ i ≤ k, 0 ≤ l, and Xj ∈ {Z0, . . . , Zk} for all 1 ≤ j ≤ l. A MIL-problem M is
forward-chained if R only contains forward-chained meta-rules.

Intuitively, all first-order variables in the body of a forward-chained meta-rule are
part of a chain between the first and second argument of the head atom. Viewing binary
predicates in the background knowledge as mappings from their first to their second
argument, only atoms from an extensional background knowledge are relevant that occur
in a chain between the first and the second argument of examples. Hence, atoms from
the background knowledge only need to be imported when their first argument occurs
in the examples or in a deduction w.r.t. background knowledge that has already been
imported. However, when the derivable background knowledge depends on guessed meta-
substitutions, additional atoms might be relevant, and thus, we only consider extensional
background knowledge in the following.

For restricting the import of background knowledge, we introduce a modification of
the external atoms from Definition 6.2, where the output is guarded by an input constant.

Definition 6.6 (Forward-Chained BK-Atoms). Given a forward-chained MIL-problemM
with extensional B, we call the external atoms &fcUnary[Y](X) and &fcBinary[Y](X, Z)
unary and binary forward-chained BK-atom, resp., where, for arbitrary assignment A, it
holds that f&fcUnary(A, Y, X) = T iff X(Y) ∈ B, resp., f&fcBinary(A, Y, X, Z) = T iff
X(Y, Z) ∈ B.

As we assume the background knowledge to be extensional, the input parameter
deduced is not needed for forward-chained BK-atoms. Based on the previous definition,
we can modify our hex-MIL-encoding such that only relevant atoms from the background
knowledge are imported, where forward-chained BK-atoms receive as input all constants
that already occur in a deduction or the examples.

Definition 6.7 (Forward-Chained hex-MIL-Encoding). Given a forward-chained MIL-
problem M where B is extensional, the forward-chained hex-MIL-encoding for M is the
hex-program Πf (M) containing items (1), (3) and (4) from Definition 6.3, and the rules

(f1) unary(X, Y)← &fcUnary[Y](X), s(Y)

129

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

unary(X, Y) ←&fcUnary[Y](X), s(Y). (B1)

deduced(X, Y, Z) ←&fcBinary[Y](X, Z), s(Y). (B2)

s(X) ← pos_ex(_, X, _). (B3)

s(X) ←neg_ex(_, X, _). (B4)

s(Y) ← deduced(_, _, Y). (B5)

deduced(P, X, Y) ←meta(postcon, P, Q, R), deduced(Q, X, Y), unary_bg(R, Y). (B6)

deduced(P, X, Y) ←meta(chain, P, Q, R), deduced(Q, X, Z), deduced(R, Z, Y). (B7)

{meta(chain, P, Q, R)} ← sig(P), sig(Q), sig(R), ord(P, Q), ord(P, R),

deduced(Q, X, Z), deduced(R, Z, Y). (B8)

{meta(postcon, P, Q, R)} ← sig(P), sig(Q), ord(P, Q), deduced(Q, X, Y), unary(R, Y). (B9)

← pos_ex(P, X, Y), not deduced(P, X, Y). (B10)

←neg_ex(P, X, Y), deduced(P, X, Y). (B11)

Figure 6.2: Illustration of the forward-chained hex-MIL-encoding

(f2) deduced(X, Y, Z)← &fcBinary[Y](X, Z), s(Y)

(f3) s(a)← for each p(a, _) ∈ E+ ∪ E−

(f4) s(Y)← deduced(_, _, Y)

The main difference between Πf (M) and Π(M) is that the import of background
knowledge is guarded by the predicate s in items (f1) and (f2), whose extension contains
all constants appearing as first argument of an example, due to item (f3), and all constants
that appear in deductions based on the already imported BK, due to item (f4).

Figure 6.2 shows a concrete instance of the forward-chained hex-MIL-encoding
(omitting the facts generated by item (1) of Definition 6.3) for a MIL-problem M with
meta-rules R = {P (X, Y) ← Q(X, Z), R(Z, Y); P (X, Y) ← Q(X, Y), R(Y)}, where
positive and negative examples are assumed to be given by ground atoms of the form
pos_ex(p, a, b) and neg_ex(p, a, b), respectively.

The rules (B1) and (B2) import all terms that can be derived from unary and binary
predicates defined by the background knowledge w.r.t. already imported terms in an
inductive manner via rule (B5) by utilizing external atoms. At this, the import starts
from terms that occur as the first argument of an example according to rules (B3) and
(B4), and new terms are added incrementally to the extension of the predicate s. The
predicate meta contains all meta-substitutions added to an induced hypothesis. The
rules (B6) and (B7) define the predicate deduced, which captures all atoms that can be
deduced from the meta-substitutions in a guessed hypothesis together with the imported
background knowledge. In turn, new meta-substitutions are guessed by rules (B8) and
(B9), where (B8) generates substitutions of the first (chain) meta-rule in R, and (B9)
of the second (postcon) meta-rule; and the heads of the rules encode that an arbitrary
number of instances of the head may be true whenever the rule body is satisfied.

Every answer set of the forward-chained hex-MIL-encoding still corresponds to a so-
lution of the respective MIL-problem, but not all solutions may be obtained. Nonetheless,

130

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. HEX-Encodings for Meta-Interpretive Learning

it is ensured that a minimal solution (i.e., with fewest meta-substitutions) is encoded by
some answer set if it exists:

Theorem 6.2. Let M be a forward-chained MIL-problem with extensional B. Then, (i)
for every answer set A of Πf (M), the logic program S induced by A is a solution for
M; and (ii) there is an answer set A′ of Πf (M) s.t. the logic program induced by A′ is
a minimal solution for M if one exists.

Proof. (i) Compared to the general hex-MIL-encoding of Definition 6.3, only item (2) is
changed by the encoding Πf (M) such that the import of background knowledge is guarded
by the predicate s. As before, item (4) ensures that every positive example e+ ∈ E+ is
derivable. It is only left to show that if a negative example e− ∈ E− is entailed by B ∪S,
then it can also be derived w.r.t. the background knowledge imported via items (f1)
and (f2) of Definition 6.7. Since all meta-rules are assumed to be forward-chained, only
meta-substitutions of the form p(X, Y)← p1(X1, Y1), . . . , pk(Xk, Yk), r1(X1), . . . , rl(Xl)
are usable for deriving examples in which X is connected to Y by a chain of atoms
pi(Xi, Yi) in the body, where Yi = Xi+1, for 1 ≤ i ≤ k − 1, X = X1 and Y = Yk.
Furthermore, (f2) imports every binary atom in the background knowledge where the
first argument already occurs as first argument in an example or as second argument in
an atom previously imported from the background knowledge, due to items (f3) and (f4).

Similarly, all unary atoms in the background knowledge are imported by (f1) where
the single argument occurs in a binary atom from the background knowledge that has
already been imported. Hence, all background knowledge that is relevant for derivations
by means of meta-substitutions w.r.t. forward-chained meta-rules is imported, and the
second constraint of item (4) is violated in case a negative example is entailed by B ∪ S.

(ii) Every minimal solution S forM contains only productive rules as defined right before
Theorem 6.1 because rules which are not productive are not necessary for deriving a
positive example. Since we only consider forward-chained meta-rules, an answer set A
of Πf (M) such that S is the logic program induced by A only needs to assign T to
those binary atoms from the background knowledge that occur in a chain that connects
the first argument of each positive example e+ ∈ E+ to its second argument; because
only those atoms are necessary for ensuring that each rule in S is productive. Now,
answer sets of Πf (M) are modulo the guess in (3a) least models that can be constructed
bottom-up incrementally in a fixpoint iteration, and that contain the atoms they logically
entail. Hence, all atoms in the corresponding chain are incrementally imported from the
background knowledge by the rules in items (f2) and (f4). Accordingly, there is an answer
set A of Πf (M) s.t. the induced logic program S w.r.t. A is a minimal solution for M.

Note that this suffices for finding minimal solutions in practice as our implementation
finds any productive solution that is encoded by Πf (M).

Since, in practice, we employ iterative deepening search for computing a minimal
solution, any minimal solution encoded by an answer set of Πf (M) is guaranteed to
be found. Thus, we can obtain minimal solutions while grounding issues are mitigated

131

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

by steering the import of background knowledge. An additional search space reduction
results from the pruning of the grounding.

6.2.3 Top-Down HEX-MIL-Encoding

The hex-MIL-encodings introduced so far guess new meta-substitutions based on facts
which are already derivable in a bottom-up fashion from a partial candidate solution.
While this limits the search to those meta-substitutions that can potentially derive new
facts (starting with the given background knowledge), the generation of the search space
differs from the query-driven generation employed by Metagol, which steers the search
towards instantiations of only those meta-rules that are needed for deriving positive
examples.

Accordingly, even though conflicts resulting from negative examples can be propagated
effectively by using the forward-chained hex-MIL-encoding, the query-driven procedure
of Metagol still has an advantage w.r.t. finding derivations of positive examples as it
generates exactly one instantiation of a meta-rule for proving the next subgoal during
SLD-resolution. This difference is particularly relevant for MIL-problems where the set
of negative examples is empty. Ideally, an approach would combine the effective top-down
derivation of positive examples of Metagol with the propagation of conflicts resulting
from negative examples for early backtracking.

In this section, we describe a modification of the forward-chained hex-MIL-encoding
from the previous section, which simulates a top-down derivation of positive examples
with the aim to prune the search space more effectively. We start by informally describing
the main ideas behind our top-down hex-MIL-encoding, and provide its formalization
subsequently.

First of all, note that the forward-chained hex-MIL-encoding in Figure 6.2 generates
guesses over all meta-substitutions in rules (B8) and (B9) based on pieces of information
that are derived in a bottom-up fashion, but independent from the concrete positive
examples that must be derived. This has the disadvantages that (i) missing rules for
deriving some subgoal in the derivation of positive examples are only detected late after
checking the constraint, and (ii) more meta-substitutions than necessary may be added to
a solution. The latter increases the sizes of candidate solutions, and makes the derivability
of negative examples more likely. In order to better target the guesses, the variant of the
forward-chained hex-MIL-encoding presented next selects exactly one ground instance of
a meta-substitution for each subgoal that needs to be proven in the derivation of positive
examples.

Now, a straightforward approach would generate all possible instances of meta-
substitutions during grounding and select one of them for each subgoal. However, this
would make grounding infeasible because it would not take into account that many
meta-substitutions can never be productive. Hence, we need to limit the number of
ground meta-substitutions produced during grounding. To this end, we first compute
all relevant instances that can be obtained from the imported background knowledge
and meta-rules in a bottom-up fashion, similar as done by the rules (B6) and (B7) of
the previous encoding. The difference is that the introduction of rule instances does not

132

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. HEX-Encodings for Meta-Interpretive Learning

depend on a guess as in the previous encodings, but all relevant ground rules are generated
in a first step. Accordingly, an envelope for the ground instances of meta-substitutions
that are used for the top-down derivation of positive examples is produced.

Our modified encoding that simulates backward-chaining as performed by Metagol is
constructed for a MIL-problem as follows.

Definition 6.8 (Top-Down hex-MIL-Encoding). Given a forward-chained MIL-problem
M = (B, E+, E−,R) and a finite set SK of Skolem predicates, let Sig ⊇ SK contain
each predicate symbol p that occurs either in E+ ∪E− or in a rule head in B, and let η
and ρ be the maximum numbers of binary, respectively unary, atoms in any meta-rule
in R. Furthermore, let ǫi, i ∈ N, be fresh constants that are used as placeholders. The
top-down hex-MIL-encoding for M is the hex-program Πtd

f (M) containing

(1) a fact sig(p) ← for each p ∈ Sig, and a fact ord(p, q) ← for all p, q ∈ Sig s.t.
p �P q

(2) the rules
unary(X, Y)← &fcUnary[Y](X), s(Y),
deduced(X, Y, Z)← &fcBinary[Y](X, Z), s(Y),
s(a)← for each p(a, b) ∈ E+ ∪ E−,
s(Y)← deduced(_, _, Y) and
deduceda(bg, X, ǫ1, ..., ǫη, ǫ1, ..., ǫρ, Y, Z, ǫ1, ..., ǫη−1)← &fcBinary[Y](X, Z), s(Y)

(3) for each R = P (Z0, Zk) ← Q1(Z0, Z1), ..., Qk(Zk−1, Zk), R1(X1), ..., Rn(Xn) ∈ R
and {ord(P, Qi1), ..., ord(P, Qim)} =

{

ord(P, Qi) ∈ Rord | i ∈ {1, ..., k}}, where
~XQ = XQ1 , ..., XQk

, ~XR = XR1 , ..., XRn, ~Z = Z1, ..., Zk−1, and _j, j ≥ 0, repre-
sents a sequence of j anonymous variables _,2

(a) a rule

deduceda(Rid, XP , ~XQ, ǫk+1, ..., ǫη, ~XR, ǫn+1, ..., ǫρ, Z0, Zk, ~Z, ǫk+1, ..., ǫη−1)←
sig(XP), sig(XQ1), ..., sig(XQk

), sig(XR1), ..., sig(XRn), ord(XP , XQi1
), ...,

ord(XP , XQim
), deduceda(_, XQ1 , _η+ρ, Z0, Z1, _η−1), ...,

deduceda(_, XQk
, _η+ρ, Zk−1, Zk, _η−1), unary(XR1 , X1), ...,

unary(XRn , Xn),

(b) a rule

deduced(XP , Z0, Zk)← meta(Rid, XP , XQ1 , ..., XQk
, XR1 , ..., XRn),

deduced(XQ1 , Z0, Z1), ..., deduced(XQk
, Zk−1, Zk), unary(XR1 , X1), ...,

unary(XRn , Xn),

2For instance, _3 = _, _, _.

133

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

unary(X, Y) ←&fcUnary[Y](X), s(Y). (T1)

deduced(X, Y, Z) ←&fcBinary[Y](X, Z), s(Y). (T2)

s(X) ← pos_ex(_, X, _). (T3)

s(X) ←neg_ex(_, X, _). (T4)

s(Y) ← deduced(_, _, Y). (T5)

deduced(P, X, Y) ←meta(postc, P, Q, R), deduced(Q, X, Y), unary_bg(R, Y). (T6)

deduced(P, X, Y) ←meta(chain, P, Q, R), deduced(Q, X, Z), deduced(R, Z, Y). (T7)

← pos_ex(P, X, Y), not deduced(P, X, Y). (T8)

←neg_ex(P, X, Y), deduced(P, X, Y). (T9)

deduceda(bg, P, n, n, X, Y, n) ←&fcBinary[Y](X, Z), s(Y). (T10)

deduceda(postc, P, Q, R, X, Y, n) ← ord(P, Q), deduceda(_, Q, _, _, X, Y, _), unary_bg(R, Y). (T11)

deduceda(chain, P, Q, R, X, Y, Z) ← ord(P, Q), ord(P, R), deduceda(_, Q, _, _, X, Z, _), (T12)

deduceda(_, R, _, _, Z, Y, _).

goal(P, X, Y) ← pos_ex(P, X, Y). (T13)

goal(Q, X, Z) ← deducedu(chain, _, Q, _, X, _, Z). (T14)

goal(R, Z, Y) ← deducedu(chain, _, _, R, _, Y, Z). (T15)

goal(Q, X, Y) ← deducedu(postc, _, Q, _, X, Y, _). (T16)

{deducedu(M, P, Q, R, X, Y, Z) : deduceda(M, P, Q, R, X, Y, Z)} = 1 ← goal(P 1, X, Y). (T17)

meta(M, P, Q, R) ← deducedu(M, P, Q, R, X, Y, Z), M 6= bg. (T18)

Figure 6.3: Illustration of top-down hex-MIL-encoding

(c) and the rules

goal(XQ1 , Z0, Z1)← deducedu(_, ~XQ, _η+ρ, Z0, Zk, ~Z, ǫk+1, ..., ǫη−1),

...,

goal(XQk
, Zk−1, Zk)← deducedu(_, ~XQ, _η+ρ, Z0, Zk, ~Z, ǫk+1, ..., ǫη−1)

(4) a fact goal(p, a, b)←, for each p(a, b) ∈ E+,
a constraint ← not deduced(p, a, b), for each p(a, b) ∈ E+, and
a constraint ← deduced(p, a, b), for each p(a, b) ∈ E−

(5) the rules

{deducedu(M, XP , XQ1 , ..., XQη , XR1 , ..., XRρ , X, Y, Z1, ..., Zη−1) :

deduceda(M, XP , XQ1 , ..., XQη , XR1 , ..., XRρ , X, Y, Z1, ..., Zη−1)} = 1←
goal(XP , X, Y), and

meta(M, XP , XQ1 , ..., XQη , XR1 , ..., XRρ)←
deducedu(M, XP , XQ1 , ..., XQη , XR1 , ..., XRρ , _η+1), M 6= bg

Compared to the hex-MIL-encodings presented in Sections 6.2 and 6.2.2, items (1)
and (3b) of Definition 6.8 correspond exactly to the ones in Definition 6.3, where the latter

134

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. HEX-Encodings for Meta-Interpretive Learning

derives all facts deducible w.r.t. a candidate hypothesis; and the first four rules in item
(2) of Definition 6.8 are the same as used in the forward-chained hex-MIL-encoding from
Definition 6.7 to import all relevant atoms from the background knowledge. Moreover,
item (4) of Definition 6.8 adds the constraints imposed by positive and negative examples
as before, but additionally declares positive examples to be ‘goals’. On the other side, the
essential difference to the previous encodings consists in the fact that meta-substitutions
which are contained in an induced hypothesis are not guessed as by the rules generated
by item (3a) of Definition 6.3, but added via the rules in item (5) when some respective
ground instance is selected in a recursive derivation of subgoals that are generated by
item (3c).

The top-down variant of the hex-MIL-encoding from Figure 6.2 is shown in Figure 6.3.
We now use this instance of the encoding to illustrate concretely how a top-down search is
simulated by our top-down hex-MIL-encoding. First, the rules (T10)-(T12) produce all
ground instances of meta-subsitutions that can be derived, starting from the background
knowledge using all possible meta-substitutions, and store them in the extension of the
predicate deduceda. Second, to simulate the top-down search for proving the positive
examples, rule (T13) defines positive examples as initial goals by adding goal-atoms for all
positive examples. Rule (T17) states that for each new subgoal there needs to be exactly
one ground instance of a meta-substitution that allows to derive it, where used instances
are stored in the extension of the predicate deducedu. The rules (T14)-(T16) recursively
add new subgoals to the predicate goal, based on the rule instances selected by rule
(T17). Finally, rule (T18) accumulates all meta-substitutions representing a computed
hypothesis in the extension of the predicate meta. Negative and positive examples are
then checked as before by generating all facts deducible from a candidate hypothesis via
the rules (T6) and (T7), and by checking the corresponding constraints (T8) and (T9).

As for the forward-chained hex-MIL-encoding, we can show that the top-down hex-
MIL-encoding is correct and always yields a minimal solution of the given MIL-problem
in case it has a solution:

Theorem 6.3. Let M be a forward-chained MIL-problem with extensional B. Then, (i)
for every answer set A of Πtd

f (M), the logic program induced by A is a solution for M;

and (ii) there is an answer set A′ of Πtd
f (M) s.t. the logic program induced by A′ is a

minimal solution for M if one exists.

Proof. (i) Let M = (B, E+, E−,R) be a forward-chained MIL-problem with extensional
B, and A an answer set of Πtd

f (M). Let S be the logic program induced by A according
to Definition 6.4. We need to show that S is a solution forM. According to Definition 6.1,
S is a solution forM iff B∧S 6|= e− for each e− ∈ E− and B∧S |= e+ for each e+ ∈ E+.
By the same reasoning as in the proof for Theorem 6.2, item (3b) of the top-down hex-
MIL-encoding from Definition 6.8 ensures that Tdeduced(p, a, b) ∈ A iff B ∧ S |= p(a, b)
for every ground atom p(a, b), under the restricted import of background knowledge.
Moreover, due to the constraints in item (4), we know that Tdeduced(p, a, b) ∈ A for all
p(a, b) ∈ E+ and Tdeduced(p, a, b) 6∈ A for all p(a, b) ∈ E−. It follows that B ∧ S 6|= e−

for each e− ∈ E− and B∧S |= e+ for each e+ ∈ E+ and thus, that S is a solution forM.

135

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

(ii) Let M = (B, E+, E−,R) be a forward-chained MIL-problem that has a minimal
solution S. We show that there is an answer set A of Πtd

f (M) s.t. S is the logic program
induced by A.

Since S is a solution of M, according to Definition 6.1, we have that B ∧ S |= e+ for
each e+ ∈ E+, and hence, as B ∧S is a definite logic program, there must be a top-down
derivation for each e+ ∈ E+, which we denote by td(e+, B ∧ S), that only uses instances
of rules in B ∧ S. Moreover, S only contains rules of which at least one instance occurs
in the top-down derivation of some e+ ∈ E+ because otherwise, such a rule could be
removed while S would still be a solution, which would contradict that S is minimal.

Now, the instantiations of meta-substitutions represented by the deduceda-atoms of
item (3a) in Definition 6.8 are an envelope for all ground rules that can possibly occur
in a top-down derivation of some e+ ∈ E+. The previous holds because the rules of
item (3a) generate all instances of all possible meta-substitutions w.r.t.M in a bottom-up
fashion, starting from the background knowledge B (cf. the last rule of item (2)). In
this context, the atom s(Y) in the body of the last rule of item (2) prevents the import
of background knowledge atoms that do not occur in a chain that connects the first
argument of a positive example e+ ∈ E+ to its second argument; such atoms cannot
occur in a top-down derivation due to our restriction to forward-chained meta-rules.

In addition, the first rule of item (5) selects exactly one deducedu-atom corresponding
to some deduceda-atom for each subgoal represented by a goal-atom. Consequently, for
each e+ ∈ E+ and any top-down derivation td(e+, B∧S) of e+, the set of deducedu-atoms
matching the rule instances used in td(e+, B ∧ S) can be generated by recursively adding
subgoals to the extension of the predicate goal in item (3c) and selecting the corresponding
deducedu-atoms. Then, the corresponding meta-substitutions are aggregated in the
resulting answer set A by the second rule of item (5), and we obtain that S is the logic
program induced by A.

Finally, note that the constraints generated by item (4) only eliminate answer sets A′

where Tdeduced(p, a, b) ∈ A′ for some p(a, b) ∈ E−, or Tdeduced(p, a, b) 6∈ A′ for some
p(a, b) ∈ E+, i.e. answer sets where the induced logic program S ′ is not a solution for M
because B ∧ S ′ |= e− for some e− ∈ E−, or B ∧ S ′ 6|= e+ for some e+ ∈ E+. Therefore,
S′ is not eliminated by the integrity constraints.

6.3 State Abstraction

Based on the observation that operations represented by binary background knowledge
predicates can be applied sequentially when only forward-chained meta-rules are used,
we introduce in this section a further technique that eliminates object-level constants
from the encoding entirely. While the Πf (M)-encoding focuses the import of constants
to those obtainable from constants that already occur in deductions, the number of
relevant constants can still be large if many binary background knowledge atoms share
the first argument; and all of them must be considered during grounding. However, only
one background knowledge atom is needed for each element in a chain that derives a
positive example p(X, Y) by connecting X and Y . In fact, the Πf (M)-encoding solves

136

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. State Abstraction

two problems at the same time: (1) finding sequences of binary background knowledge
predicates that derive positive examples; and (2) inducing a (minimal) program that
calls the predicates in the respective sequences, and prevents the derivation of negative
examples.

Example 6.3. Consider the MIL-problem M where B contains the extension of remove
from Example 6.2, and extensional background knowledge represented by the pred-
icates switch([X, Y |R], [Y, X|R]) ← and firstA([a|R]) ←. Furthermore, let E+ =
{p([c, a, b, a, b], [c])}, E− = {p([c, b, a, b, b], [c])}, and R = {P (X, Y)← Q(X, Z), R(Z, Y);
P (X, Y)← Q(X, Y), R(Y); P (X, Y)← Q(X, Y)}. Intuitively, a solution program needs
to memorize c and delete the rest; this requires to repeatedly switch the first two elements
and remove the first element. For success, the input list must have ‘a’ at position 2. This is
captured by the hypothesisH = {p(X, Y)← p1(X, Z), p(Z, Y); p(X, Y)← remove(X, Y);
p1(X, Y) ← switch(X, Y), firstA(Y); p1(X, Y) ← remove(X, Z), switch(Z, Y)}, where
p1 is an invented predicate; this is in fact a minimal solution for M. In addition, any
program which enables derivations that alternate between calling switch and remove and
prevents to derive the negative example using firstA as a guard would be a solution.
Notably, the search space of Metagol also contains hypotheses that have no alternation
between switch and remove and thus cannot be solutions. △

The previous example illustrates that the derivability of positive examples depends
on the sequences by which binary background knowledge predicates are called in the
induced program. Here, finding a correct sequence for a given example can be viewed
as a planning problem, where object-level constants represent states, binary background
knowledge predicates are viewed as actions, and unary background knowledge predicates
constitute fluents. The state abstraction technique described in the sequel exploits the
insight that the tasks of (1) solving the planning problem and (2) finding a matching
hypothesis can be separated, where the hex-program encodes task (2), and computations
involving states are performed externally. The advantage of task separation and state
abstraction increases with the number of actions that are applicable in a state, as usually
more actions not occurring in a derivation of a positive example can be ignored; this
reduces the search space and the size of the grounding.

We represent possible plans to derive positive examples by sequences of binary
background knowledge atoms. To this end, cyclic sequences (or plans) have to be
excluded by requiring that constants (states) occur only once because otherwise, we may
obtain infinitely many sequences for a positive example:

Definition 6.9 (Derivation Sequences). Given a forward-chained MIL-problemM where
B is extensional, the function Seq maps each positive example p(c1, ck) ∈ E+ to the set
Seq(p(c1, ck)) containing all sequences p1(c1, c2), . . . , pk−1(ck−1, ck), where pi(ci, ci+1) ∈
B for all 1 ≤ i < k, and ci 6= cj if i 6= j.

Example 6.4 (cont’d). Reconsider M from Example 6.3. Then Seq(p([c, a, b, a, b], [c])) =

137

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

{seq}, (s = switch, r = remove),

seq = s([c, a, b, a, b], [a, c, b, a, b]), r([a, c, b, a, b], [c, b, a, b]), s([c, b, a, b], [b, c, a, b]),

r([b, c, a, b], [c, a, b]), s([c, a, b], [a, c, b]), r([a, c, b], [c, b]), s([c, b], [b, c]), r([b, c], [c]).

△
In order to make information about action sequences that derive positive examples

and fluents that hold in states available to the hex-encoding, we next introduce two
external atoms that import such information. States are simply represented by integers
in the output as their structure is irrelevant for combining sequences into a hypothesis
that generalizes the plans.

Definition 6.10 (State Abstraction Atoms). For a forward-chained MIL-problem M
where B is extensional, let e+

id and seqid be unique identifiers for each positive example
e+ ∈ E+ and derivation sequence seq ∈ ⋃

e+∈E+ Seq(e+), respectively. The external
atoms &saUnary[](X, Y) and &saBinary[](X, Y, Z) are called unary and binary state
abstraction (sa-)atoms, resp., where, for arbitrary assignment A,

• f&saUnary(A, X, Y) = T iff X = r, Y = (e+
id, seqid, i), and r(ci) ∈ B; resp.

• f&saBinary(A, X, Y, Z) = T iff X = pi, Y = (e+
id, seqid, i), and Z = (e+

id, seqid, i+1),

with e+ ∈ E+, seq = p1(c1, c2), . . . , pk−1(ck−1, ck) ∈ Seq(e+), and i ∈ {1, . . . , k − 1}.

For instance, forM from Example 6.3, &saBinary[](switch, (e+
id, seqid, 1), (e+

id, seqid, 2))
is true, where e+

id is the identifier of the positive example, seqid is the identifier of the
sequence shown in Example 6.4, and the integers 1 and 2 represent the states [c, a, b, a, b]
and [a, c, b, a, b], respectively, where the second state can be reached from the first state
by applying the action switch.

In our encoding with state abstractions we also need information about the start
and end states of sequences associated with positive examples, as a hypothesis needs to
encode a plan for each positive example. This information is accessed via an external
atom as well.

Definition 6.11 (Sequence Import). For a forward-chained MIL-problem M, we define
the external atom &checkPos[](X1, X2, Y, Z) which fulfills f&checkP os(A, X1, X2, Y, Z) = T
iff X1 = e+

id, X2 = p, Y = (e+
id, seqid, 1), and Z = (e+

id, seqid, k + 1) for some p(a, b) =
e+ ∈ E+ and seq = p1(a, c2), . . . , pk(ck, b) ∈ Seq(e+), for arbitrary assignment A.

Finally, it can only be determined w.r.t. the background knowledge whether a
candidate hypothesis derives a negative example, s.t. the corresponding check cannot
be performed in an encoding without importing relevant atoms from the background
knowledge. As our goal is to abstract from explicit states in the background knowledge,
we also need to outsource the check for non-derivability of negative examples by means
of an external constraint.

138

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.3. State Abstraction

Definition 6.12 (External Check w.r.t. Negative Examples). Given a MIL-problem M,
the oracle function f&failNeg(A, meta) associated with the external atom &failNeg[meta]()
returns T iff B ∪ S |= e− for some e−∈E−, where S is the logic program induced by
{Tmeta(Rid, xP , xQ1 , ..., xQk

, xR1 , ..., xRn)∈A}.

In the implementation, the external atom &failNeg[meta]() receives information about
meta-substitutions already guessed by the solver to be in the respective hypothesis. It
can be evaluated to true as soon as a negative example is derivable w.r.t. its input, as
definite logic programs are monotonic; as this may violate a constraint, backtracking in a
solver can be triggered.

Example 6.5. Consider MIL-problem M with B = {q(a, b), q(a, c), r(a, b)}, E+ =
{p(a, b)}, E− = {p(a, c)}, and R = {R = P (X, Y) ← Q(X, Y)}. For any assignment
A ⊇ {Tmeta(Rid, p, q)}, we obtain that f&failNeg(A, meta) = T as the negative example
can be derived from B ∪ {p(X, Y)← q(X, Y)}; a solver can exploit the information that
p(X, Y)← q(X, Y) cannot belong to any solution. △

Utilizing the external atoms introduced in this section, we define an encoding which
separates the planning from the generalization problem and contains no object-level
constants.

Definition 6.13 (State Abstraction hex-MIL-Encoding). Given a forward-chained MIL-
problem M where B is extensional, its state abstraction (sa-)hex-MIL-encoding is the
hex-program Πsa(M) that contains all rules in items (1) and (3) of Definition 6.3, where
Sig additionally contains e+

id for each e+ ∈ E+, and the rules

(s1) unary(X, Y)← &saUnary[](X, Y)

(s2) deduced(X, Y, Z)← &saBinary[](X, Y, Z)

(s3) ← not pos1 (e+
id), for each e+ ∈ E+

(s4) {pos(Xid, X, Y, Z)} ← &checkPos[](Xid, X, Y, Z)

(s5) pos1 (Xid)← pos(Xid, _, _, _)

(s6) ← not deduced(X, Y, Z), pos(_, X, Y, Z)

(s7) ← &failNeg[meta]()

Items (s1) and (s2) in Πsa(M) import the fluents for all relevant states and state
transitions w.r.t. sequences that derive positive examples, where states are abstracted.
The external atom &checkPos[](X1, X2, Y, Z) in item (s4) imports all tuples representing
the start and end state of each sequence for each positive example. The choice atom
in the head of (s4) enables each tuple representing a sequence to be guessed to be in
the extension of the predicate pos, which represents all sequences that are modeled by
the induced program. While a minimal hypothesis is guaranteed when the guess is over
all possible sequences, in practice, we can preselect sequences returned by the atom

139

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

&checkPos[](X1, X2, Y, Z). Moreover, the guess can be omitted if the planning problem
is deterministic, i.e. if for each positive example there is exactly one sequence of binary
atoms from the background knowledge that derives its second argument from its first
argument. Items (s3) and (s5) ensure that at least one sequence for each positive example
is selected such that the corresponding end state can be derived from the start state
by the induced program. Finally, (s6) and (s7) state the constraints regarding positive
respectively negative examples.

As can be shown, Πsa(M) only yields correct solutions, and a minimal one if all
sequences that derive positive examples are acyclic. More formally:

Theorem 6.4. Let M be a forward-chained MIL-problem with extensional background
knowledge B. Then, (i) for every answer set A of Πsa(M), the logic program induced
by A is a solution for M; and (ii) there is an answer set A′ of Πsa(M) s.t. the logic
program induced by A′ is a minimal solution for M if one exists and every sequence of
binary background knowledge atoms that derives a positive example in E+ is acyclic.

Proof (Sketch). This result can be shown similarly as the previous Theorem 6.2. Each
unary and binary atom introduced via the items (s1) and (s2) of Definition 6.13, respec-
tively, whose arguments occur in an acyclic sequence of binary atoms from the background
knowledge that connects the first argument a of each positive example p(a, b) ∈ E+ to its
second argument b, can be mapped to exactly one unary and binary atom, respectively,
that is introduced by items (f1) and (f2) of Definition 6.7. In this regard, the only
difference is that object-level constants in (f1) and (f2) are replaced by abstract states
of the form (e+

id, seqid, i) according to Definition 6.10 in (s1) and (s2). Furthermore, all
acyclic sequences representing a possible chain that connects the first argument of each
positive example to its second argument are imported by the external atom in item (s4).

Then, the only essential remaining differences between Πf (M) and Πsa(M) consist
in the facts that sequences that are modeled by a solution and correspond to derivations
of positive examples are guessed in item (s4), and that instead of the second constraint
from item (4) of Definition 6.3, the derivability of negative examples is checked by means
of the external atom in item (s7). However, a minimal solution for M needs to model
at least one sequence for deriving each positive example, which is ensured jointly by
items (s3), (s5) and (s6). Moreover, no minimal solution w.r.t. the restriction to acyclic
sequences of Part (ii) of Theorem 3 is lost by excluding cyclic sequences in Definition 6.9.
Finally, item (s7) removes like the second constraint from item (4) all hypotheses that
entail a negative example.

Hence, we have an alternative means to find solutions for forward-chained MIL-
problems where planning and generalization are separated in a way such that the
background knowledge can be outsourced completely. It is also straightforard to combine
state abstraction with the top-down hex-MIL-encoding from Section 6.2.3, in order to
search for sequences of binary background knowledge predicates that derive positive
examples in a top-down manner instead of bottom-up. For this, we combine the rules
(s1)-(s7) from Definition 6.13 with items (1), (3) and (5) from Definition 6.8, and add

140

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Empirical Evaluation

the rules deduceda(bg, X, ǫ1, ..., ǫη, ǫ1, ..., ǫρ, Y, Z, ǫ1, ..., ǫη−1)← &saBinary[](X, Y, Z) and
goal(X, Y, Z) ← pos(_, X, Y, Z), so that sequences are induced using the abstracted
states.

6.4 Empirical Evaluation

In this section, we evaluate our approach by comparing it to Metagol in terms of efficiency.

6.4.1 Experimental Setup

For experimentation, we utilized an iterative deepening strategy which incrementally
increases a limit for the maximal number of guessed meta-substitutions imposed via a
constraint to obtain minimal solutions. In addition, we incrementally increased the number
of invented predicates w.r.t. each limit, which proved to be beneficial for performance.

We computed answer sets of our encodings with hexlite3 0.3.20, which is based on
clingo 5.1.0. For comparison, we used SWI-Prolog 7.2.3 to run Metagol 2.2.0 (Cropper
& Muggleton, 2016b). Experiments were run on a Linux machine with 2.5 GHz dual-core
Intel Core i5 processor and 8 GB RAM; the timeout was 600 seconds per instance. The
results w.r.t. the average running times in seconds are shown in Figures 6.4, 6.6, 6.8, and
6.10, where error bars indicate the standard error of the mean (= s/

√
n, where s is the

standard deviation and n the number of instances) per instance size. In addition, the
average running times required for the grounding step are shown in Figures 6.5, 6.7, 6.9,
and 6.11. We compared the encodings Πf (M), Πtd

f (M) and Πsa(M) to Metagol for the
first two benchmarks, and only used Πsa(M) for the third benchmark as discussed below.

For each MIL-problem in this section, we used the meta-rules shown in Figure 6.1,
and we implemented it in Metagol and used our hex-MIL-encodings. External atoms
are realized as Python-plugins in our implementation. For operations defined by the
background knowledge, we utilized custom list manipulations. The external atoms
&checkPos[](X1, X2, Y, Z) and &failNeg[meta]() in Πsa(M) employ breadth-first search
for computing all sequences w.r.t. positive examples and for checking the derivability of
negative examples, respectively.

The encodings for the benchmark problems and all instances used in the experiments
are available at
www.kr.tuwien.ac.at/staff/kaminski/thesis/hexmil-experiments.zip.

6.4.2 Hypotheses

The starting hypotheses which we aimed to test with our experiments were the following:

(H6.1) The Πf (M)- and Πtd
f (M)-encoding perform better than Metagol as well as the

Πsa(M)-encoding for problems where only few binary predicates are defined by the
background knowledge, due to propagation of negative examples by the ASP-solver
and since grounding is expected to be feasible in this case.

3https://github.com/hexhex/hexlite/

141

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
www.kr.tuwien.ac.at/staff/kaminski/thesis/hexmil-experiments.zip

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

5 6 7 8 9 10 11 12 13 14 15

0

100

200

300

400

500

instance size (length of examples)

av
er

ag
e

ru
n
n
in

g
ti

m
e

(s
ec

.)

Πsa(M)

Πf (M)

Πtd
f (M)

Metagol

Figure 6.4: Average overall running times for String Transformation (BM1)

(H6.2) The Πsa(M)-encoding performs best when more binary predicates from the
background knowledge are applicable to the states of the underlying planning
problem because this increases the number of terms that need to be imported from
the background knowledge by the Πf (M)- and Πtd

f (M)-encoding; separating the
planning from the induction problem is expected to be beneficial in this case.

(H6.3) The Πtd
f (M)-encoding has an advantage over the Πf (M)-encoding for MIL-

problems that do not contain negative examples as it models a goal-driven search for
proofs of positive examples as also employed by Metagol. However, the grounding
of the Πtd

f (M)-encoding is expected to be larger than the grounding of the Πf (M)-
encoding since all ground instances of meta-substitutions are generated.

6.4.3 Experiments on Meta-Interpretive Learning

We employed four different benchmark problems based on problems from the literature
on MIL and ILP. The respective problems have varying properties regarding the amount
of available background knowledge, the number and lengths of training examples and the
presences of negative examples; and instances were generated randomly.

String Transformation (BM1)

Our first benchmark is based on Example 6.3, and akin to inducing regular grammars
as considered by Muggleton et al. (2014). Learning grammars is a suitable use case
for MIL as it enables recursive string processing and predicate invention to represent
substrings. In contrast to Muggleton et al. (2014), we also allow switching the first two

142

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Empirical Evaluation

5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

6

7

8

9

instance size (length of examples)

av
er

ag
e

ru
n
n
in

g
ti

m
e

(s
ec

.)
Πsa(M)

Πf (M)

Πtd
f (M)

Figure 6.5: Average grounding times for String Transformation (BM1)

letters in a string in addition to removing elements, which increases the search space
and makes conflict propagation and state abstraction more relevant. For the instances
used by Muggleton et al. (2014), Metagol performs much better due to limited branching
in the search space. We used positive and negative examples of the form p([c|X], [c]),
where X is a random sequence of letters a and b. The predicates contained in the
background knowledge are remove, switch, firstA, firstB and firstC (cf. Example 6.3).
For this experiment, we used problems containing one positive and one negative example
of the same length, and tested lengths n ∈ {1, ..., 15}. The average overall running
times of 20 randomly generated instances per n are shown in Figure 6.4 and the average
grounding times are shown in Figure 6.5.

East-West Trains (BM2)

The East-West train challenge by Larson and Michalski (1977) is a popular ILP-
benchmark. The task is to learn a theory that classifies trains based on features (e.g.
shapes of cars and types of loads) to be either east- or westbound. In our benchmark,
eastbound trains are positive and westbound trains are negative examples, where trains
are represented by lists. The background knowledge defines the operation removeCar
which removes the first car from a train; and we declare 50 different unary predicates,
e.g. shape_rectangle or load_3_triangles, for checking properties of the remaining part
of a train. We used a data set of 10 eastbound and 10 westbound trains proposed by
Michie et al. (1994) that was also considered by Muggleton et al. (2015). We generated
instances of size n ∈ {4, 6, 8, 10, 12, 14, 16} by randomly selecting n from the 20 trains,
s.t. n/2 were eastbound, and averaged the running times of 10 instances for each problem
size. The results w.r.t. the overall running times can be found in Figure 6.6 and the

143

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

4 6 8 10 12 14 16

0

100

200

300

400

500

600

instance size (number of examples)

av
er

ag
e

ru
n
n
in

g
ti

m
e

(s
ec

.)

Πsa(M)

Πf (M)

Πtd
f (M)

Metagol

Figure 6.6: Average overall running times for East-West Trains (BM2)

2 4 6 8 10

0

1

2

3

4

5

6

7

8

9

10

instance size (number of examples)

av
er

ag
e

ru
n
n
in

g
ti

m
e

(s
ec

.)

Πsa(M)

Πf (M)

Πtd
f (M)

Figure 6.7: Average grounding running times for East-West Trains (BM2)

grounding times are shown in Figure 6.7.

Robot Waiter Strategies (BM3)

For our third experiment, we used a problem by Cropper and Muggleton (2016a) that
consists in learning robot strategies: customers sit at a table in a row, and a waiter
robot serves each customer her desired drink, which is either tea or coffee. Initially, the

144

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Empirical Evaluation

1 2 3 4 5 6 7 8

0

50

100

150

200

250

300

350

400

instance size (number of positive examples)

av
er

ag
e

ru
n
n
in

g
ti

m
e

(s
ec

.)
Πsa(M)
Metagol

Figure 6.8: Average overall running times for Robot Waiter Strategies (BM3)

robot is located at the left end of the table and each customer has an empty cup. In the
goal state, each cup contains the desired drink and the robot is at the right end of the
table. States are represented using lists, and positive examples map an initial state to a
goal state considering different numbers of customers and preferences for drinks. The
actions are defined by binary background knowledge predicates move_right, pour_coffee
and pour_tea, and the fluents by unary background knowledge predicates wants_coffee,
wants_tea and at_end.4 A solution constitutes a planning strategy by generalizing a
plan for each positive example.

For this benchmark, solutions are constrained to be functional, i.e. to map an initial
state only to the unique respective goal state and not to any non-goal state. Accordingly,
negative examples are implicitly given by all binary atoms that map an initial state
to a non-goal state. In Metagol, solutions can be restricted to functional theories by
means of a property declaration, and we also integrated a corresponding check in the
implementation for the external atom &failNeg[meta]().

We generated random instances similar to Cropper and Muggleton (2016a), where
each positive example has a random number of i ∈ [1, 10] customers with random drink
preferences, and the instance size is measured in terms of the number of positive examples
ranging from 1 to 8. For each instance size we averaged the running times of 20 problem
instances. Figure 6.8 shows the average overall running times, and Figure 6.9 the average
amounts of time required for grounding.

4In contrast to Cropper and Muggleton (2016a), we omitted the action turn_cup_over , as otherwise
we obtained timeouts for the majority of instances and all conditions, as it is also the case for Metagol in
(Cropper & Muggleton, 2016a).

145

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

70

80

90

100

instance size (number of positive examples)

av
er

ag
e

ru
n
n
in

g
ti

m
e

(s
ec

.)

Πsa(M)

Πsa(M) (overall running times)

Figure 6.9: Average grounding running times for Robot Waiter Strategies (BM3). The
solid line shows the overall running times for comparison; grounding the encodings Πf (M)
and Πtd

f (M) was infeasible for this benchmark.

Drop Lasts (B4)

Our final benchmark problem consists in learning a definite logic program that, given a
list of lists, removes the last element from each sublist. For instance, the binary atom
drop([[a, b, a], [b, a, b], e], [e, [a, b], [b, a]]) is a positive example of the learning task, where
the list element e marks the end of the list5. The second argument of the positive example
is a list constituting the correct output for the input list in the first argument since each
sublist is reduced by one element from the right side. A similar benchmark was also
employed by Cropper and Muggleton (2016a), who used it to evaluate the learning of
solution programs containing higher-order predicates. Since we do not consider learning
of higher-order programs here, we defined background knowledge predicates different from
the ones used by Cropper and Muggleton (2016a) in order to make the task learnable
without higher-order definitions. We used the binary background knowledge predicates
tail, reverse and shift, which replace the first sublist in a list by its tail, reverse the first
sublist, and shift the elements in the outer list, respectively, as long as the end of the
outer list is not reached. In addition, we defined the unary background knowledge atom
end, which is true for lists that have e as first element.

A peculiarity of this benchmark is that instances only contain positive examples
such that the search space is not constrained by negative ones. This means, on the one
hand, that conflict propagation performed by the ASP-solver is not expected to yield
a significant advantage since conflicts due to the violation of negative examples cannot

5Here, it is necessary to mark the end of the list since otherwise grounding of our hex-encodings was
not feasible.

146

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.4. Empirical Evaluation

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

instance size (number of positive examples)

av
er

ag
e

ru
n
n
in

g
ti

m
e

(s
ec

.)
Πsa(M)

Πf (M)

Πtd
f (M)

Metagol

Figure 6.10: Average overall running times for Drop Lasts (BM4)

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

instance size (number of positive examples)

av
er

ag
e

ru
n
n
in

g
ti

m
e

(s
ec

.)

Πsa(M)

Πf (M)

Πtd
f (M)

Figure 6.11: Average grounding running times for Drop Lasts (B4)

occur. On the other hand, the top-down hex-MIL-encoding Πtd
f (M) might be better

suited in this case because it models a direct derivation of positive examples similar to
the Prolog meta-interpreter exploited by Metagol.

We generated instances containing n ∈ [1, 10] positive examples, where each list has
two sublists containing random sequences of the letters a and b of length 2 ≤ l ≤ 4. Due
to scaling issues of the encodings Πf (M) and Πtd

f (M), we could only use lists of short
lengths because otherwise, combining the different background knowledge predicates that

147

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

all derive new terms resulted in an explosion of the grounding. We averaged the running
times of 10 instances for each n, which are shown in Figure 6.10. The average grounding
times for each instance size are shown in Figure 6.11.

6.4.4 Discussion of Results

Regarding the benchmarks (B1) and (B2), we found that instances can be solved signifi-
cantly faster by employing either the Πf (M)-encoding or the Πtd

f (M)-encoding than by
using Metagol due to conflict propagation in ASP. However, the running times for Πf (M)
and Πtd

f (M) are very similar, which indicates that simulating a top-down derivation of
positive examples yields no significant advantage when there are also negative examples
that need to be taken into account during search. The encoding Πsa(M) performed
similar to Metagol for these benchmarks since only two binary predicates, resp. one, are
defined by the background knowledge such that solving the planning problem externally
does not yield a significant advantage, and the advantage of efficient conflict propagation
in ASP is outweighed by the overhead that goes along with outsourcing constraints for
negative examples in Πsa(M). The Πsa(M)-encoding performed slightly better in (B1),
where two actions are available instead of only one in (B2). Accordingly, the results
support hypothesis (H6.1).

For benchmark (B3), we did not obtain results by using the encoding Πf (M) or
Πtd

f (M) for many instances as the grounding was too large due to the imported background
knowledge. For instance size 5, the import from the background knowledge already
consumed around 100 MB of memory due to the high number of states, and the grounding
of the encoding exceeded the available memory. However, the grounding problem could
effectively be avoided by using state abstractions with Πsa(M), which yielded a significant
speed-up compared to Metagol, which provides evidence for the correctness of hypothesis
(H6.2). This is due to the fact that by using the Πsa(M)-encoding, the planning problem
is split from the generalization problem such that only one precomputed plan per positive
example is considered, which largely reduced the search space. Overall, the performance
could be improved by one of our encodings w.r.t. Metagol in all benchmarks where
negative examples are propagated by the ASP-solver, whereby state abstraction was
crucial when many different actions are defined by the background knowledge, but may
decrease efficiency otherwise.

Regarding benchmark (B4), where the MIL-problems contain only positive examples,
we found that Metagol is much faster than our encodings since using ASP does not
provide any advantage w.r.t. the propagation of negative examples here. The results
also show that the Πtd

f (M)-encoding can have an advantage over Πf (M), supporting

our hypothesis (H6.3). However, the difference between Πtd
f (M) and Πf (M) is relatively

small. As mentioned before, benchmark (B3) uses three binary background knowledge
atoms, which can be applied in different orders to produce a large number of new terms
that need to be imported by Πtd

f (M) and Πf (M). For this reason, the Πsa(M)-encoding,
which does not need to import constants from the background knowledge, performs much
better here and nearly matches the performance of Metagol in this experiment. Hence,

148

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Further Discussion

the results are also in line with hypothesis (H6.2).

With respect to the grounding step, we found that grounding the Πf (M)-encoding
required significantly more resources in terms of running time as well as the size of
the grounding than grounding Πsa(M), in the case of both benchmarks (B1) and (B2).
The reason is that only states need to be considered which occur in a sequence of
binary background knowledge atoms that derives a positive example for grounding the
encoding Πsa(M), while Πf (M) also imports all constants that are potentially relevant
for deriving some positive or negative example. However, the advantage of Πsa(M) w.r.t.
the grounding step is canceled out for benchmarks (B1) and (B2) due to the overhead
that goes along with outsourcing the check for negative examples and the small advantage
in terms of search space pruning. Moreover, the grounding time required for (B1) and
(B2) in general is negligible compared to the solving time.

In contrast, we observed that the running time required for grounding the encoding
Πsa(M) in the case of (B3) makes up more than half of the overall running time. This is ex-
plained by the fact that the external atoms &checkPos[](Xid, X, Y, Z), &saUnary[](X, Y)
and &saBinary[](X, Y, Z) need to be evaluated during grounding due to value invention,
which accounts for the major fraction of the overall grounding time.

In general, we observe that the grounding time is less for the Πf (M) than for Πtd
f (M),

while the overall solving time is similar, or slightly better for Πtd
f (M) in the case of

benchmark (B4). This indicates that there is a tradeoff between the resources required
for solving and grounding, respectively, and the Πtd

f (M)-encoding requires significantly
less time after the grounding step.

We also tested the effect of fixing the number of invented predicates, and obtained
timeouts for many instances which could be solved otherwise. The reason is that the
availability of additional predicate symbols blows up the search space at the last iteration
of the iterative deepening search. Consequently, the advantage of finding solutions with
fewer invented predicates faster compensates for the time invested in restarting the solver
many times during iterative deepening.

6.5 Further Discussion

In this section, we first discuss the practical implications of constraining the shapes of
meta-rules that can be employed for learning, and the limitations of our state abstraction
technique. Additionally, we discuss some possible mitigations w.r.t. these limitations,
which are the subject of future work.

6.5.1 Meta-Rules

In this chapter, we focused on meta-rules according to Equation 6.1, and restricted the
form of meta-rules and of the background knowledge for the encodings Πf (M), Πtd

f (M)
and Πsa(M). At this, the fragment of dyadic Datalog, i.e. the class of Datalog-programs
with predicates of arity at most two, is extremely important in practice as it is suitable
whenever input data is given in the form of a graph. Moreover, the seminal paper on

149

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

MIL mainly focused on the program class H2
2 and shows that it has Universal Turing

Machine expressivity (Muggleton et al., 2015). Accordingly, considering only hypotheses
from the class H2

m does not constitute a severe restriction.
On the other hand, the set of hypotheses that can be learned by the encodings

based on forward-chained meta-rules and extensional background knowledge is restricted
compared to the solutions that can be obtained by using the general encoding. In
particular, as e.g. the meta-rule P (X, Y) ← Q(Y, X) is not forward-chained, it is not
possible to learn the inverse of binary predicates from the background knowledge. For
instance, when a predicate move_right is contained in the background knowledge, it is
not possible to learn a predicate move_left. In this case, the inverses of binary predicates
could be added to the background knowledge explicitly. Furthermore, the restriction to
extensional background knowledge prevents dependencies of the background knowledge
on the induced hypothesis, i.e. predicates in the background knowledge cannot be defined
in terms of predicates defined by a solution. However, the majority of MIL-problems
considered in the literature are forward-chained, and they do not employ background
knowledge that depends on the respective hypothesis as usually only invented predicates
are used for rule heads in a hypothesis.

Intuitively, forward-chained meta-rules are natural for applications where binary
examples represent a mapping from their first to their second argument, e.g. of an
initial state to a goal state in a planning scenario or a string transformation, and where
sequences of operations need to be applied to obtain the second from the first argument.
Many MIL-problems resulting from practical applications fall into this class. Previous
applications of MIL have been mainly considered in three different areas: Robot Planning,
e.g. by Cropper and Muggleton (2014, 2015, 2016a); String/Language Processing, e.g.
by Lin et al. (2014) and by Cropper et al. (2015); and Computer Vision, e.g. by Dai et
al. (2017). We found that most of the MIL-problems considered in the first two areas
solely employ forward-chained rules and extensional background knowledge, or in some
cases can easily be transformed to forward-chained rules. However, there are also some
applications of MIL in the literature where a mapping to forward-chained meta-rules is
not (easily) possible (Tamaddoni-Nezhad et al., 2014; Farquhar et al., 2015; Dai et al.,
2017).

6.5.2 Limitations of State Abstraction

With respect to the degree of nondeterminism of the planning problems associated with
a forward-chained MIL-problem, we can distinguish two factors that impact the size of
the search space. First, many different (potentially nondeterministic) actions may be
applicable in the different states of a planning problem while there are only few valid
plans. Second, there may also be many different action sequences constituting solutions
to the respective planning problem.

In the first case, the size of the search space can be reduced compared to Metagol by
precomputing correct plans in the encoding Πsa(M), which also reduces the size of the
grounding. While Metagol generates meta-substitutions based on all applicable actions,
Πsa(M) only considers actions and states that are part of a correct plan. In the second

150

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.5. Further Discussion

case, the size of the search space generated by Πsa(M) is closer to the size of the search
space explored by Metagol because all possible plans need to be computed and considered
during induction. This is necessary since it cannot be decided beforehand which selection
of plans allows for a minimal solution w.r.t. the number of rules. Note that, for the same
reason, the search space of Metagol also must contain all possible plans w.r.t. positive
examples.

Accordingly, the effectiveness of the encoding Πsa(M) depends on a tradeoff between
the number of actions applicable to states and the number of plans that can be generated
for positive examples, and it has an advantage when there are many possible actions but
only few plans. Due to the grounding bottleneck, the encoding Πsa(M) is likely to be
less efficient than Metagol when there are many possible plans and according states that
need to be imported. It is an open challenge to tackle problems of this type efficiently by
using state abstraction.

As noted in Section 6.3, our approach could be extended by filtering techniques to
preselect plans by the external atom in order to avoid the import of all possible plans for
positive examples. At the same time, this would be difficult to realize in Metagol where
planning and generalization are performed simultaneously. For instance, the number of
plans could be restricted by analyzing them, and filtering those that are redundant for
obtaining a minimal solution. Furthermore, only a limited number of plans could be
imported and the impact on the accuracy investigated to find a good balance between
efficiency and compactness of the hypothesis.

When computing sequences that derive positive examples according to Definition 6.9,
cyclic sequences need to be avoided. At the same time, cyclic sequences potentially
allow to induce a smaller hypothesis for a given MIL-problem, such that part (ii) of
Theorem 6.4 is restricted to acyclic sequences as well. However, note that in general, a
shorter sequence that derives the second argument of a positive examples from its first
argument is obtained by removing cycles. Hence, in practice, the prevention of cyclic
plans is often reasonable as, e.g. considering a robot planning scenario, one does not
want the robot to loop many times between the same states. Furthermore, one is usually
interested in learning a strategy that generalizes minimal (or at least reasonably short)
plans. Consequently, there is a tradeoff between the lengths of plans that are considered
for learning a strategy, and the size of a hypothesis that generalizes them. Potentially
more compact hypotheses can be obtained by allowing cyclic plans, but infinite loops
must be prevented.

One way to relax the acyclicity condition would be to allow for a fixed number of
cycles in Definition 6.9, which may enable the induction of a smaller hypothesis. To
empirically investigate the effect of allowing different numbers of cycles in sequences w.r.t.
the accuracy that can be achieved is subject to future work. Moreover, the possibility
of cyclic sequences also poses a problem for termination in Metagol, where a different
approach is taken to avoid infinite loops. It relies on ordering constraints over predicate
arguments of meta-rules w.r.t. a total ordering over terms, which constrain the hypothesis
space as well. Similar ordering information could alternatively be employed in our
approach to prevent the generation of infinitely many sequences.

151

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Meta-Interpretive Learning

6.6 Related Work

As already discussed at the start of this chapter, our approach is most closely related
to the work by Muggleton et al. (2014) which also applies ASP to MIL. However, the
ASP-encoding there is tailored to the induction of grammars, and grounding issues or
modeling a procedural bias are not considered.

In addition, several other ILP systems based on ASP have been developed, e.g. (Otero,
2001; Ray, 2009; Law et al., 2014), which also mainly rely on an ASP-solver for computing
solutions. Different from our approach, default negation is allowed in the background
knowledge and hypotheses, and induced programs are interpreted under the stable model
semantics. Moreover, examples are partial interpretations in the approach by Law et
al. (2014). The declarative bias is defined by mode declarations instead of meta-rules
in the mentioned approaches, which enables a more fine-grained specification of the
hypothesis space; but, to the best of our knowledge, none of them models a procedural
bias w.r.t. rule introduction in ASP itself. The XHAIL system bounds the search space
by splitting the learning process into phases, where a Kernel set of ground rules is
computed deductively and generalized in an induction phase. However, in contrast to
the integration of object-level deduction and meta-level induction in our encoding, the
phases are executed sequentially.

Compared to ASP-based systems, the MIL-approach has the advantage that meta-rules
effectively limit the search space and, in particular, can guide the process of predicate
invention, which is regarded as a very hard problem due to its high combinatorial
complexity (Dietterich et al., 2008). In addition, intensional background knowledge
that manipulates complex terms is difficult to integrate in ASP, while the query-driven
procedure exploited by Metagol is well-suited for this.

6.7 Conclusion and Outlook

In this chapter, we presented a general hex-encoding for solving MIL-problems that
interacts with the background knowledge via external atoms and restricts the search space
by interleaving derivations on the object and the meta level. In addition, we introduced
modifications of the encoding for certain types of MIL-problems and a state abstraction
technique to mitigate grounding issues that are hard to tackle otherwise.

Our approach combines several advantages of Metagol and ASP-based approaches,
and it is very flexible as it allows to plug in arbitrary (monotonic) theories as background
knowledge. Moreover, our encodings can easily be adjusted, e.g. by adding further
constraints to limit the import of background knowledge. For instance, we also tried to
delay the import of background knowledge by restricting the initial import to chains of
a limited length. This resulted in a significant speed-up for many MIL-problems, but
minimality of solutions is not guaranteed. Nevertheless, in our tests, solutions that were
not considerably larger than solutions of other instances could be obtained instead of
timeouts. To investigate how this and similar modifications affect the accuracy w.r.t. a
test data set remains for future work.

152

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.7. Conclusion and Outlook

The potential of an ASP-based approach for MIL is supported by our empirical
evaluation; and our techniques could also be exploited in future implementations. Here,
we use the hex-formalism because it is very convenient for prototype implementations.
Other formalisms could be used as well, e.g. the theory interface of Clingo 5 (Gebser
et al., 2016), which would potentially increase performance. In particular, employing
optimization of weak constraints is expected to be beneficial for efficiency as currently
the solver needs to be restarted many times during iterative deepening.

In the further development of our implementation, our goal is also to employ more
sophisticated planning algorithms for computing the sequences used by our state ab-
straction technique, and to interface a Prolog-interpreter for processing the background
knowledge and for checking negative examples.

153

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Hybrid Classification

In this chapter, we present a second application of hex-programs in the area of machine
learning, based on the paper (Eiter & Kaminski, 2016). While the approach developed
in Chapter 6 implements a method for logic-based learning itself by utilizing the hex-
formalism, an external statistical machine learning model is integrated by means of
external atoms in the approach described here.

For several decades, huge efforts have been devoted to automate logical reasoning
and to develop methods for statistical learning and inference in different research areas.
While these areas are rather mature, it became evident that many real-world domains
require both logical and statistical reasoning as they comprise complex relational as well
as uncertain information. Consequently, statistical relational learning (SRL) has gained
momentum, and many approaches which combine statistical and logical methods have
been developed (see (Getoor, 2007) for an overview).

One of the basic tasks in SRL is collective classification, which is simultaneously
finding correct labels for a number of interrelated objects; this has applications in many
concrete domains, e.g. classification of interlinked documents, part-of-speech tagging and
optical character recognition (Sen et al., 2010). A further such application is to predict
the labels (i.e., class memberships) of objects in a complex visual scene that contains
many objects of different classes. Even if advanced and robust algorithms for object
recognition have been developed, e.g. SIFT descriptors (Lowe, 1999) and the bag of
keypoints approach (Csurka et al., 2004), they may fail unavoidably and yield ambiguous
results due to few training data, noisy inputs, or inherent ambiguity of visual appearance
(e.g. a lemon and a tennis ball might be indistinguishable in a low resolution image
(Rabinovich et al., 2007)). It is then still possible to draw on further information from
the scene in which an object occurs to disambiguate its label.

For an example, consider the street scene in Figure 7.1, where object 2 is wrongly
labeled as ‘building’ in the center image. This misclassification could be resolved by
considering all object labels simultaneously and drawing on background knowledge that

155

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Hybrid Classification

Figure 7.1: Objects in a scene from the LabelMe dataset (Russell et al., 2008) with
predicted labels

wheels normally appear at the bottom of a car. When taking such background knowledge
into account, the probability for labeling object 2 as ‘car’ could be increased.

Using logical reasoning, a natural approach to formalize admissible labelings of objects
respecting their interrelations would consist in imposing logical constraints on labelings
and using constraint programming techniques to compute possible worlds represented
by complete labelings. While this approach yields all consistent labelings, it neglects
(hidden) features of the concrete classification problem. Hence, it is desirable to combine
constraints over label assignments with the output of a statistical classifier processing
(low-level) object features.

A naive way to integrate the output of a classifier with a set of logical constraints
would be to use a ranking over all labels for each object induced by the probability
distributions given by the classifier, and to compute the labeling that maximizes the rank
of the assigned labels while satisfying all constraints. However, in real-world domains this
approach turns out to be too restrictive. First, real data necessarily has exceptions that
cannot all be modeled, which may prevent that a consistent solution is found. Second, this
approach retains no information about the metric distance between label probabilities,
which is essential for deciding whether a label should be changed to a less likely one in
order to satisfy some constraint.

In this chapter, we bridge the gap between combinatorial and statistical object
classification by encoding the context of a concrete collective classification problem (CCP)
in a set of ASP-rules and constraints that formalize restrictions over admissible label
assignments w.r.t. the given relational structure; and we assign a probabilistic semantics
to our encoding by employing the LP MLN -formalism (Lee & Wang, 2016). Using ASP to
formalize context knowledge, we can combine multiple context relations in even complex
constraints and utilize closed world reasoning to express e.g. that objects not containing
car parts should not be labeled as cars. Moreover, by employing hex-programs1 instead
of ordinary ASP for computing solutions of the resulting LP MLN -encoding, we are able
to integrate a statistical object classifier and modules for computing relations between
objects in a scene image using external atoms.

1In the first version of our work on hybrid classification (Eiter & Kaminski, 2016), ordinary ASP was
used instead of the hex-formalism, where the integration of external sources such as a statistical classifier
and a spatial reasoning module was created ad-hoc, relying on an additional pre-processing step. Here,
we present a further developed approach based on hex-programs.

156

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.1. Background on LP MLN

The content of this chapter is structured as follows:

• In Section 7.1, we start by providing the necessary background on LP MLN .

• In Section 7.2, we define a general framework for solving CCPs that combines a
generic local classifier and context constraints into a hybrid classifier, which is given
semantics via an embedding into LP MLN .

• In Section 7.3, we then show how solutions can be obtained efficiently with a back-
translation from LP MLN into hex-programs with weak constraints (Buccafurri,
Leone, & Rullo, 2000), and by leveraging combinatorial optimization capabilities of
state-of-the-art ASP-solvers.

• In Section 7.4, we describe a methodology for constructing a hybrid classifier for a
specific domain by designing and tuning a context encoding. To the best of our
knowledge, this has not been considered before.

• In Section 7.5, we examine the usefulness of our methodology with an extensive
empirical evaluation in the domain of visual object classification in indoor as well as
outdoor scenes. The results provide evidence that hybrid classifiers can significantly
improve accuracy, provided that the local classifier works reasonably well, given the
outset of few training data, noisy data or ambigous data. Furthermore, they show
that constraint selection and the use of a validation set are important elements for
increasing accuracy gains.

• In Section 7.6, we discuss related work, before we conclude this chapter in Section 7.7.

Notably, in our approach, logical knowledge representation and reasoning is a first-
class citizen, while SRL-approaches often rely on statistical formulations and probabilistic
solving methods; this seems less geared towards combinatorial problem solving. Moreover,
our encoding can be easily extended by spatial reasoning via rules over extracted facts,
as well as by a component for taxonomical reasoning over label categories.

7.1 Background on LP
MLN

We assign a probabilistic semantics to the encoding developed in this chapter by utilizing
the LP MLN -formalism (Lee & Wang, 2016), which employs weighted rules for combining
ASP with probabilistic graphical models based on Markov Logic Networks (MLNs)
(Richardson & Domingos, 2006). LP MLN -programs generalize answer set programs by
assigning a weight w to each rule in a program. The weight w is either a real number or
α, representing the infinite weight. When grounding an LP MLN -program, every ground
weighted rule w : grnd(r) is mapped to the same weight w as its non-ground counterpart
w : r. A probabilistic semantics is defined for LP MLN -programs as follows.

157

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Hybrid Classification

Definition 7.1 (Unnormalized Weight, adapted from (Lee & Wang, 2016)). For an
LP MLN -program P and an assignment A, the unnormalized weight of A under P is
given by

WP(A) =

exp
(

∑

w:r∈PA

w
)

if A ∈ SM [P],

0 otherwise,
(7.1)

where PA represents all weighted rules w : r in P s.t. A |= r, and SM [P] contains all
assignments A s.t. A is a classical answer set of PA, omitting the weights.

In order to obtain a probability distribution over all assignments w.r.t. an LP MLN -
program, the corresponding weights have to be normalized.

Definition 7.2 (Normalized Weight (Lee & Wang, 2016)). For an LP MLN -program P
and an assignment A, the normalized weight of A under P is given by

PP(A) = lim
α→∞

WP(A)
∑

A′∈SM [P] WP(A′)
. (7.2)

Lee and Wang (2016) define a (probabilistic) stable model of an LP MLN -program Π
to be an assignment A s.t. PP(A) 6= 0. Our goal is to use LP MLN -programs for finding
a global best labeling for a set of objects, i.e. an answer set encoding a label assignment
with maximal probability; we do not discuss conditional probability queries here.

Lee and Wang show a close relationship between ASP with weak constraints (Buccafurri
et al., 2000) and LP MLN -programs, such that under certain conditions the answer set
with the highest normalized probability can be computed directly by an ordinary ASP-
solver that exhibits optimization capabilities. We exploit this relationship by utilizing
weak constraints of ASP to obtain solutions of our encoding for solving CCPs developed
in this chapter. A weak constraint is of the form

:∼ b1, ..., bm, not bm+1, ..., not bn [w], (7.3)

where all bj , 1 ≤ j ≤ n, are atoms, and the weight w of a weak constraint c, denoted
weight(c), is either an integer constant or a variable occurring in the positive body of
the constraint. The positive respectively negative body of a weak constraint c is defined
by B+(c) = {b1, . . . , bm} and B−(c) = {bm+1, . . . , bn} as for ordinary ASP constraints.
A ground weak constraint has the same weight as the constraint it originates from. For
an assignment A and a set C of weak constraints, the violation cost of C w.r.t. A is
costA(C) =

∑

c′∈C′ weight(c′), where C ′ = {c′ | c′ ∈ C, A |= a for all a ∈ B+(c), A 6|=
a for all a ∈ B−(c)}. Given an answer set program P , the answer sets of P ∪ C are all
those answer sets A of P such that no answer set A′ of P with costA′(C) < costA(C)
exists. The semantics of weak constraints can be extended straightforwardly to hex-
programs, and the hexlite-solver is able to solve hex-programs with weak constraints by
leveraging the optimization capabilities of clasp (Gebser, Kaminski, et al., 2015).

Lee and Wang define a translation from an answer set program with weak constraints P
to an LP MLN -program P , which we denote here by τ(P) (= P). The translated program

158

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. LP MLN -Encoding for Hybrid Classification

τ(P) can be obtained from an answer set program with weak constraints P by assigning
the infinite weight α to all standard ASP-rules in P , and by transforming weak constraints
as in Equation 7.3 to two LP MLN -rules −α : H ← not b1, ..., bm, not bm+1, ..., not bn and
−w :← not H, where H is a fresh atom not occurring elsewhere.2 Then, the following
correspondence holds.

Proposition 7.1 (adapted from (Lee & Wang, 2016)). For an answer set program
with weak constraints P that has an answer set, its answer sets are the assignments
{A |6 ∃A′ : PP(A′) > PP(A)}, where P = τ(P).

Proof. The statement follows directly from Proposition 3 in (Lee & Wang, 2016).

For translating an LP MLN -program into an answer set program with weak constraints,
we apply τ−1, which is only applicable to LP MLN -programs in which all rules are
assigned the infinite weight α and only constraints of the form (2) are assigned arbitrary
weights. The translation τ−1 works by omitting the weight of rules with non-empty
head and by replacing constraints of the form w : ← b1, ..., bm, not bm+1, ..., not bn by a
rule H ← b1, ..., bm, not bm+1, ..., not bn together with the weak constraint :∼ not H [−w],
where H is a fresh atom.3 Under the mentioned restrictions, Proposition 7.1 still holds.

Although we employ hex-programs instead of ordinary answer set programs for
computing the answer sets of an LP MLN -encoding P with the highest normalized weights
in Section 7.3, it is not necessary here to lift the translation τ−1 from answer set programs
to hex-programs. The reason is that for computing such answer sets for P, we will first
employ the translation τ−1, and then modify τ−1(P) by integrating external atoms for
interfacing an external classifier and a module for computing relations between objects.
Importantly, we will show that the resulting hex-program π(τ−1(P)) has the same answer
sets as τ−1(P) and thus, can be used instead of τ−1(P).

7.2 LP
MLN-Encoding for Hybrid Classification

We aim at applying LP MLN -programs for simultaneously classifying all objects in a
visual scene. In order to obtain a complete labeling that is as close as possible to the
ground truth, we exploit two sources of probabilistic information regarding the most
likely label for a given object. On the one hand, we use a classifier that is trained
on vectors of object features and predicts the probability of each local label given the
features of a single new object. On the other hand, we exploit the relational context
defined by relations between several objects, by learning the probability of certain label
combinations for sets of objects that are related in specific ways, e.g. some objects in
an image may be contained in some other objects more or less frequently. In this way,

2The logic program rules here are more restricted than in (Lee & Wang, 2016), where rule bodies may
also contain negative formulas, such that a weak constraint can be translated to a single LP MLN -rule
−w :← ¬(b1, ..., bm, not bm+1, ..., not bn). Accordingly, we adapt the translation defined by Lee and Wang
using two rules instead.

3Real-valued weights can be approximated by integers in weak constraints.

159

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Hybrid Classification

the notion of the best label for some object is probabilistically constrained from two
sides, and we strive for an optimal label on the basis of all probabilistic information
available. We refer to our combination of local classifier and relational context as hybrid
classifier (HC); notably, the relational component has a richer structure than in most
related approaches on collective classification.

In this section, we define an HC in form of an LP MLN -encoding that combines a
local classifier with a set of weighted context constraints over label assignments w.r.t.
the relational structure. We start by defining collective classification problems (CCPs)
based on the definition in (Sen et al., 2010), but we generalize the neighborhood function
used there to arbitrary relations between objects. First, we introduce a schema, on the
basis of which a group of CCPs can be defined.

Definition 7.3 (Collective Classification Schema). A collective classification schema
(CCS) is represented by a pair S = 〈L, R〉 consisting of

• a set L = {l1, ..., lm} of possible object labels,
• a family R = {R0, ..., Rk} of sets of 0- to k-ary context relation names.

The sets Ri ∈ R contain names for i-ary relations between objects that can, for
instance, be extracted from a scene image, e.g. a binary relation entailing all pairs of
objects where the first object is contained in the second object, or a ternary relation
stating that an object is located in-between two other objects. The set L contains possible
object labels, e.g. ‘car’ and ‘tree’ for objects in a street scene.

A CCS is instantiated by a CCP, by fixing the set of objects that need to be classified
together with their local object features as well as the concrete relations occurring between
them, as follows.

Definition 7.4 (Collective Classification Problem). A collective classification problem
(CCP) is represented by a triple C = 〈S, O, e〉 consisting of

• a CCS S = 〈L, R〉,
• a set O = {o1, ..., on} of objects with associated features f(oi) for each oi ∈ O,
• a function e :

⋃

Ri∈R → Ok that maps each i-ary relation name to a concrete i-ary
relation over objects.

A solution for a CCP is a complete labeling represented by a mapping λ : O → L,
assigning a label from L to each object in O.

Next, we introduce local classifiers, where we abstract from the level of particular
object features and assume a classifier that is able to return a probability distribution
over all labels for each object by processing their corresponding features. Subsequently,
we draw on the information provided by a local classifier c for hybrid classification by
integrating c with a context encoding into an HC.

Definition 7.5 (Local Classifier). Given a CCS S = 〈L, R〉, a local classifier c is
a function that maps the feature vector f(o) of an object o to a discrete probability
distribution P c

o over all labels in L (on the basis of their associated feature vectors).

160

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. LP MLN -Encoding for Hybrid Classification

Due to the generality of the approach, different kinds of classifiers, e.g. Logistic
Regression or Neural Networks, can be utilized to instantiate the local classifier c.

Example 7.1. For the scene in Figure 7.1, we construct a corresponding CCP C = 〈S, O, e〉
with S = 〈{car, building, wheel}, {∅, ∅, {contains}}〉, O = {o1, o2} (omitting ‘object 3’)
and e(contains) = {〈o1, o2〉}. We assume that the classifier c for C yields, based on
the object features f(oi) extracted from the image, P c

o1
(car) = 0.4, P c

o1
(building) = 0.5,

P c
o1

(wheel) = 0.1, P c
o2

(car) = 0.1, P c
o2

(building) = 0.1 and P c
o2

(wheel) = 0.8. △
In other approaches (Galleguillos et al., 2008; Rabinovich et al., 2007; Angin &

Bhargava, 2013), relations between objects are often used to conditionalize the probability
distribution of label combinations of the involved objects. As we use ASP-constraints
to describe the relational context, we use the relations in the sets Ri differently, i.e. to
state restrictions over expected label assignments via relations that may be derived from
further relations together with other supposed label assignments.

Following Richardson and Domingos (2006), the weight of a context constraint in
LP MLN can be interpreted as the logarithm of the odds between a possible world where
it is satisfied and one where it is not (called the log odds), other things being equal. In
general, context constraints are not independent from each other, thus changing their
truth value also changes the value of other constraints. However, as we consider cases
with only few training data (such that the classifier output can still be improved by
considering the context), it is unfeasible to learn all interactions between constraints
from it. Thus, we assume bona fide independence of context constraints and straight use
the log odds for the constraints calculated from the training instances as weights.

The restrictions over label assignments in terms of the relational context are formalized
by a context encoding as follows:

Definition 7.6 (Context Encoding). Given a CCS S = 〈L, R〉, we use the following
designated predicates: context relation predicates R=

⋃

Ri∈R Ri and helper predicates
H ranging over tuples of objects, and the label assignment predicate a_label ranging
over pairs of objects and labels. A context encoding E for S is an LP MLN -program that
consists of rules of the form

α : h(~X)← b1(~X), . . . , bk(~X), not bk+1(~X), . . . , not bm(~X), (7.4)

where h ∈ H and b1, . . . , bm ∈ R ∪H ∪ {a_label}; and constraints of the form

w : ← b1(~X), . . . , bk(~X), not bk+1(~X), . . . , not bm(~X), (7.5)

where b1, . . . , bm ∈ R ∪ H ∪ {a_label}, and w is the log odds for the constraint being
satisfied given the extensions of the predicates in R∪H (as learned from training data).

The helper predicates in H are used to recursively aggregate relations and label
assignments into new relations, which can be utilized to restrict permissible assignments.

161

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Hybrid Classification

Example 7.2 (cont’d). We define a simple context encoding E for S from Example 7.1,
using the context relation predicate contains and the helper predicate has_car_part:

α : has_car_part(X)← contains(X, Y), a_label(Y, wheel) (7.6)

1.95 : ← not a_label(X, car), has_car_part(X) (7.7)

The particular weight is chosen for the context constraint because we suppose here that
we have observed 28 cases in our training data where an object that has a car part is
actually a car, and four cases where it is not, i.e. the log odds for the constraint being
true given the extension of the predicate has_car_part are ln(28/4) ≈ 1.95.

Taxonomic reasoning can easily be added by introducing, e.g., a rule that derives all
labels representing car parts. Likewise, spatial reasoning can be implemented by inferring
further relations from the given relations (e.g., an object overlaps with another object if
one contains the other). △

We combine a local classifier for a CCS S = 〈L, R〉 and a context encoding for S into
an HC that yields a solution for a CCP C = 〈S, O, e〉 as follows:

Definition 7.7 (Hybrid Classifier Encoding). Given a CCP C = 〈S, O, e〉 for a CCS
S = 〈L, R〉, a local classifier c, and a context encoding E for S, the hybrid classifier
(HC) for C is represented by an LP MLN -program ΠC(c, E) = E ∪A(c, O) ∪ I(C) where
the classifier assignment encoding A(c, O) contains

(1) the weighted facts

α : label(l) for each label l ∈ L,

α : clf(o, l, p) for each o ∈ O and l ∈ L, where p = ln
(

P c
o (l)

1−P c
o (l)

)

,

(2) the two guessing rules

α : a_label(O, L)← object(O), label(L), not n_a_label(O, L),

α : n_a_label(O, L)← object(O), label(L), not a_label(O, L),

(3) the unique assignment constraint

α : ← #count{L : a_label_prob(X, L, P)} 6= 1, object(X),

(4) the weighted classifier constraint

P : ← not a_label_prob(O, L, P), clf(O, L, P)

and the rule

α : a_label_prob(O, L, P)← a_label(O, L), clf(O, L, P),

and the CCP instance encoding I(C) contains

(5) the weighted facts

162

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.2. LP MLN -Encoding for Hybrid Classification

α : object(oi) for each object oi ∈ O, and

α : ri(o1, . . . , oi) for each ri ∈ Ri and each 〈o1, . . . , oi〉 ∈ e(ri).

Here, item (5) represents the input part of the HC, while items (2) to (4) are fixed;
items (2) and (3) ensure that each object gets exactly one label, and item (4) assigns the
weights obtained from the local classifier to the separate label assignments. Again, we
use the log odds between a complete label assignment where a label is assigned vs. not
assigned as computed from the output of the local classifier as weight.

Intuitively, a solution of an HC should minimize the violation costs of context
constraints, but at the same time maximize the joint classifier probability of the label
assignment. As the two optimization criteria may be opposite in general, the goal is a
good compromise that yields a better label assignment than the one of the local classifier
alone. As it is not clear a priori how much influence the classifier and the context
constraints should have on a solution, the probabilities returned by the local classifier in
item (4) could be scaled by an influence factor such that its impact on a solution can be
varied for tuning an HC.

A solution for a CCP w.r.t. an HC is defined as follows.

Definition 7.8 (HC-Solution). A solution for a CCP C provided by an HC ΠC(c, E) is a
solution λ for C such that, for some assignment A, no assignment A′ with PΠC(c,E)(A

′) >
PΠC(c,E)(A) exists and a_label(oi, li) ∈ A iff λ(oi) = li.

Definition 7.7 encodes the optimization problem by an LP MLN -program that can be
translated into an ordinary answer set program with weak constraints, such that a solution
according to Definition 7.8 can be extracted from any answer set (cf. Proposition 7.1).

Example 7.3 (cont’d). The LP MLN -program ΠC(c, E) representing the HC for C, c
and E from the previous examples contains E, weighted facts α:obj(o1), α:obj(o2),
α:label(c), α:label(b), α:label(w), α:clf(o1, c,−0.41), α:clf(o1, b, 0), α:clf(o1, w,−2.2),
α:clf(o2, c,−2.2), α:clf(o2, b,−2.2), α:clf(o2, w, 1.39) and α:contains(o1, o2) (abbrevi-
ating the labels), and items (2) to (4) from Definition 7.7.

Without the context encoding E, the single stable model of the program with the
highest normalized weight would contain a_label(o1, b) and a_label(o2, w); this does
not correspond to the correct labeling of the scene shown rightmost in Figure 7.1. The
previous assignment would not satisfy the constraint in E. Hence, when considering E,
there are three ways to satisfy it by changing the assigned labels: changing (a) the label
of o1 to car; or the label of o2 to either (b) building or (c) car. As the constraint has
weight 1.95 and the label adaptations result in a weight difference of −0.41 for (a) and
−3.59 for (b) and (c) for the classifier constraints, only (a) would yield an overall weight
improvement. Thus, labeling o1 as car and o2 as wheel is the only solution for C via
ΠC(c, E) according to Definition 7.8; this is the correct labeling of the scene.

Note that if the difference between the probability that o2 is a wheel and e.g. a
building would be small enough, satisfying the constraint (7) in E by changing the label
of o2 could actually result in a higher overall weight. Thus, context constraints can

163

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Hybrid Classification

also decrease the accuracy of the resulting labeling, depending on the quality of the
probabilities provided by the classifier. △

7.3 HEX-Program for Computing HC-Solutions

As mentioned above, we exploit Proposition 7.1 to obtain an answer set with maximum
normalized weights of an LP MLN -program constituting an HC-encoding, i.e. we apply
the backtranslation τ−1, whereby floating-point values are approximated by integers, and
utilize an ASP-solver. In practice, given an HC ΠC(c, E), we transform τ−1(ΠC(c, E))
into a hex-program π(τ−1(ΠC(c, E))), such that the local classifier and, e.g., a spatial
reasoning module, can be interfaced directly from within the encoding, which yields a
modular and highly configurable approach. At this, additional options can be provided
as inputs to the corresponding external atoms. For instance, the specific type of classifier
could be selected or the context relations that should be taken into account could be
specified this way.

Furthermore, using external atoms allows information to flow from the program back
to the classifier as well as restricted queries to the classifier. Hence, this lays the ground
for orienting the classifier based on information derived in the ASP-part in the future,
which could be of interest for abductive reasoning. For instance, if there are two rules
stating that the object attached to a ‘car’ or a ‘bicycle’ is a ‘wheel’, and the label ‘wheel’
is assigned to some object, abduction could be used to find that the object is either
attached to a ‘car’ or a ‘bicycle’. Subsequently, the classifier could be queried to find the
most likely explanation for discovering a ‘wheel’.

We define two kinds of external atoms, which are used in the encoding π(τ−1(ΠC(c, E)))
introduced subsequently. The purpose of the first external atom is to interface the local
classifier.

Definition 7.9 (External Classifier Atom). Given a CCP C = 〈S, O, e〉 for a CCS
S = 〈L, R〉 and a local classifier c, we call the external atom &classifier [File, X](Y, P)
an external classifier atom, where File is replaced by a resource locator, e.g. an URI or
a file path, of a file that implements c, and f&classif (A, F ile, X, Y, P) = T iff X ∈ O,

Y ∈ L and P = ln

(

P c
oi

(lj)

1−P c
oi

(lj)

)

.

The file that implements the classifier can be an arbitrary machine learning model,
and in our implementation is realized by a pickle-file “model.pkl” that stores a Logistic
Regression model as produced by the Python library scikit-learn.

The second external atom definition constitutes a generic interface to context relations
of different kinds and arities, and, e.g. in the setting of object classification in scene
images, the external atom can compute spatial relations between objects based on the
pixel data of a scene image.

Definition 7.10 (External Context Atom). Given a CCP C = 〈S, O, e〉 for a CCS S =
〈L, {R0, ..., Rk}〉, and i ∈ {0, ..., k}, we call the external atom &context[File](X, Y0, ..., Yi)

164

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.4. Hybrid Classifier Construction

an i-ary external context atom, where File is replaced by a resource locator, e.g.
an URI or a file path, of a file containing information needed for computing e, and
f&context(A, F ile, X, Y0, ..., Yi) = T iff X ∈ Ri and 〈Y0, ..., Yn〉 ∈ e(X).

A concrete instance of a 2-ary external context atom for importing binary spatial
relations for object classification is &context[File](contains, o1, o2), which would evaluate
to true w.r.t. the CCP from Example 7.1. However, the same external atom could also
be used to retrieve other kinds of relations between objects, e.g. links between websites
that should be classified according to their topics.

Given an HC ΠC(c, E), we obtain a hex-program π(τ−1(ΠC(c, E))) from the ordinary
answer set program τ−1(ΠC(c, E)) by removing all facts of the forms clf(o, l, p) and
ri(o1, ..., oi), and adding the rule clf(X, Y, P)← &classifier [File, X](Y, P), object(X), as
well as the rule ri(Y0, ..., Yi)← &context[File](ri, Y0, ..., Yi) for each ri ∈ Ri.

Proposition 7.2. Given a CCP C = 〈S, O, e〉 for a CCS S = 〈L, R〉, a local classifier
c, and a context encoding E for S, the answer set program τ−1(ΠC(c, E)) and the hex-
program π(τ−1(ΠC(c, E))) have the same answer sets.

Proof. It follows from Definition 7.7 and the definition of the oracle function for the
external atom &classifier [File, X](Y, P) in Definition 7.9 that clf(o, l, p) ∈ A for every
A ∈ AS(π(τ−1(ΠC(c, E)))) if and only if the weighted fact α : clf(o, l, p) ∈ ΠC(c, E).
The previous holds because α : clf(o, l, p) ∈ ΠC(c, E) if and only if clf(o, l, p) is derived
by the rule clf(X, Y, P) ← &classifier [File, X](Y, P), object(X) and since there is no
other rule that defines the predicate clf . In addition, according to the definition of the
back-transformation τ−1 (cf. Section 7.1), α : clf(o, l, p) ∈ ΠC(c, E) holds if and only if
the fact clf(o, l, p) is contained in τ−1(ΠC(c, E)). The same reasoning applies to atoms
of form ri(Y0, ..., Yi) for ri ∈ Ri.

Hence, the answer sets of τ−1(ΠC(c, E)) and π(τ−1(ΠC(c, E))) contain the same
atoms of the forms clf(o, l, p) and ri(Y0, ..., Yi) for ri ∈ Ri. Moreover, τ−1(ΠC(c, E)) and
π(τ−1(ΠC(c, E))) coincide w.r.t. to all other rules that do not define atoms of the forms
clf(o, l, p) and ri(Y0, ..., Yi) for ri ∈ Ri. Consequently, we obtain that the answer set
program τ−1(ΠC(c, E)) and the hex-program π(τ−1(ΠC(c, E))) have the same answer
sets.

As a result, we have a means for obtaining HC-solutions by employing a hex-solver
and by interfacing a local classifier and modules for computing context relations via
external atoms, without extending the underlying LP MLN -semantics.

7.4 Hybrid Classifier Construction

After having defined HCs abstractly above, we now describe a methodology for construct-
ing a concrete HC for a given CCP, which we also employ in our empirical evaluation.
We suggest the following strategy for obtaining a good HC, where the objective is high
accuracy of the corresponding solution.

165

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Hybrid Classification

1. Data and local classifier preparation. We assume that we are given a set of CCPs
that are all defined over the same CCS for training the HC, together with a solution
λ for each CCP representing the ground truth. Obviously, the concrete relations e
are usually different in each CCP and first must be extracted from the raw data.
For testing the influence of different context constraints, it is crucial to use part
of the data for validation to avoid overfitting of the designed constraint encoding.
Hence, we split the initial data set into a training set, a validation set and a test
set. The local classifier is trained on the associated features of all objects in the
CCPs in the training set separately.

2. Designing the context encoding. Although context constraints theoretically could
be learned, e.g. by ILP techniques, the current approach assumes that a domain
expert with background knowledge on the particular task for the HC has designed
the context encoding. However, failure patterns in the output of the local classifier
can be used to guide the design process. For this purpose, the local classifier is
first used to classify all objects in the validation set and a confusion matrix is
compiled, which reveals objects that are difficult to classify for the local classifier
and the pairs of labels confused most often. This way, the constraint encoding can
be tailored to counter the shortcomings of the local classifier that might result from
few, noisy or ambiguous data.

For a constraint c of the form (6) (see Definition 7.6), its weight w is computed as
follows. Determine in the training set the number of ground instances where the
label assignment specified by atoms in L is false (resp., true), denoted by fc (resp.,
tc), provided the context described by the atoms in R∪H of (6) is satisfied. If we
would not fix these atoms for counting, e.g. in Example 7.2 for (8) each object not
containing a car part would count as positive instance. However, in this case we
are interested in the odds for an object being a car if it has a car part. The weight
w of the constraint c is then ln(fc/tc).

3. Constraint selection and influence tuning. After having designed the constraint
encoding, the resulting HC could be evaluated already on the test set and used on
new CCP instances. However, as discussed in Example 7.3, context constraints may
also decrease the overall accuracy of the results. Hence, the constraint encoding
E should be evaluated on the validation set first. As constraints may interact, in
general each subset C of constraints must be tested to single out the optimal one
w.r.t. the validation set. As there are exponentially many C, a heuristics is to
assess the influence of each constraint c separately and keep it if the accuracy does
not decrease if c is applied alone resp. increases if c is dropped from the set of all
constraints, whereby constraints can also be dropped incrementally. In addition,
the validation set can be used to tune the influence of the local classifier and the
context encoding on the solution, by testing different influence factors.

Example 7.4 (HC in visual scenes). In the context of visual object classification in scene
images, a CCS S = 〈L, R〉 is created by defining the set L of possible labels for the objects

166

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.5. Empirical Evaluation

in a class of scenes, e.g. ‘car’, ‘building’ and ‘tree’ for outdoor scenes, and ‘table’, ‘chair’
and ‘shelf’ for indoor scenes, and by fixing the considered set R of relations between
objects. Spatial relations such as ‘contains’, ‘intersects’ and ‘touches’ are arguably most
prevalent in visual scenes, but R may include also other relations, even relating local
features of different objects, such as the binary relation ‘has_same_color’.

To turn a set of scene images into a set of CCPs, the image first must be segmented
into regions containing single objects. Many procedures for image segmentation exist
(see e.g. the survey in (Zhang et al., 2008)); we assume here that the image is already
segmented. The visual features of the separate segments represent the input to the local
classifier, which needs to be trained on a training set of segments representing objects
O from training CCPs 〈S, O, e〉 and the corresponding set L of labels. The extension
e of the relations R must be extracted for each CCP separately from the information
provided by the scene image and its segmentation, e.g. by computing spatial relations
w.r.t. their bounding boxes or polygon coordinates. Further, implicitly entailed spatial
relations can be derived e.g. by employing a spatial reasoning calculus such as RCC8
(Randell et al., 1992).

Suppose we examine the confusion matrix for the local classifier on the validation
set for indoor scenes, and we observe that doors are often misclassified as tables (their
surfaces look nearly identical). We then could add a constraint c to the encoding E which
states that tables are not contained in walls. We compute fc and tc by counting the
objects in the training set contained in a wall that are non-tables resp. tables; presumably
the resulting weight ln(fc/tc) is quite high. After having added several constraints to
E, we test how removing single constraints (or sets of them) affects the accuracy on the
validation set. In that, we might observe that the constraint prohibiting tables in walls
actually decreases the overall accuracy, even if it is mostly satisfied on the training data.
Indeed, possibly some doors are still wrongly labeled as ‘table’ while the correct label
‘wall’ of a wall is changed to an incorrect one. This might have further implications; e.g.
if a constraint states that windows only occur in walls, many windows are misclassified
too. This illustrates the importance of constraint selection for HC construction. △

7.5 Empirical Evaluation

In this section, we evaluate two concrete HCs for two different sets of benchmark instances
in order to empirically investigate the effect of applying context constraints.

7.5.1 Experimental Setup

For experimentation, we implemented an HC framework in Python that enables construc-
tion and evaluation of HCs for object classification in scene images. As local classifier, we
used a Logistic Regression classifier implemented in the scikit-learn library (Pedregosa et
al., 2011), which is interfaced by means of the external atom &classifier [File, X](Y, P).
We trained the local classifier on features extracted from image segments obtained by
the bag of keypoints approach (Csurka et al., 2004) using vector quantization of invariant

167

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Hybrid Classification

Figure 7.2: Example of a typical indoor and outdoor scene from the LabelMe dataset
(Russell et al., 2008)

image descriptors. For creating the visual vocabulary, we employed k-means clustering
and Scale Invariant Feature Transform (SIFT) descriptors (Lowe, 1999); they are suited
for our purpose as they are invariant w.r.t. transformations, varying illumination and
overlapping objects. To detect and compute SIFT descriptors, we used the OpenCV 4

library.

Furthermore, we used the Shapely5 package for Python to calculate concrete spatial
relations between object-polygons by an external atom &context[File](X, Y0, Y1) for each
scene, based on the DE-9IM model (Strobl, 2008). Moreover, for computing the optimal
solution of an HC encoding, we utilized hexlite6 0.3.20, and used clingo 5.1.0 as back-end
solver.

7.5.2 Hypotheses

Our goal was to ascertain the following hypotheses.

(H7.1) HCs improve the accuracy provided that the local classifier yields sufficiently
many correct labels as a basis to correct other labels.

(H7.2) The accuracy gain achieved by employing an HC compared to only using a local
classifier can be increased by tuning an HC on a validation set.

(H7.3) HCs perform worse than local classifiers in case the latter classify most objects
incorrectly because usually accurate labels cannot be inferred from incorrect labels
using context constraints.

7.5.3 Experiments on Hybrid Classification

The experiments have been conducted on two sets of scene images from the LabelMe
dataset (Russell et al., 2008). We used a custom segmentation obtained manually, as for
testing the impact of context constraints the quality of the available segmentations as
well as the user-defined labels varied considerably. The data sets used in our experiments,

4http://opencv.org/
5https://pypi.python.org/pypi/Shapely
6https://github.com/hexhex/hexlite/

168

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.5. Empirical Evaluation

Table 7.1: Results for local classifier and HC with (+sel) or without (-sel) constraint
selection

data set local classifier HC -sel HC +sel

(E1) validation 51.8 % 63.3 % 64.5 %
(E1) test 48.3 % 61.1 % 61.8 %
(E2) validation 56.9 % 71.3 % 72.7 %
(E2) test 56.0 % 72.2 % 72.8 %

the segmentation data, the constraint encodings and all results are available at http://
www.kr.tuwien.ac.at/staff/kaminski/thesis/hc-experiments.zip.

We used (E1) a set of indoor office scences and (E2) a set of outdoor street scenes,
each containing 120 images, which we split into a training set and validation set of 30
images each, and a test set of 60 images. A typical scene from each data set is shown in
Figure 2. For both types, we defined 12 labels for the objects that occur most frequently:

• indoor: ‘chair’ (c), ‘monitor’ (mn), ‘keyboard’ (k), ‘mouse’ (ms), ‘table’ (t), ‘book’
(bk), ‘shelf’ (s), ‘wall’ (wl), ‘board’ (br), ‘person’ (p), ‘door’ (d) and ‘window’ (wi),

• outdoor: ‘sign’ (sg), ‘person’ (p), ‘tree’ (tr), ‘window’ (wi), ‘door’ (d), ‘street’ (st),
‘car’ (c), ‘sky’ (sk), ‘building’ (b), ‘sidewalk’ (si), ‘wheel’ (wh) and ‘trunk’ (trn).

Indoor scenes contain 7 to 23 objects, outdoor scenes 7 to 28. In total, (E1) contains 2046
objects, and (E2) has 2276 objects. We extracted the binary spatial relations ‘contains’,
‘close_to’, ‘above’, ‘under’, ‘overlaps’, ‘contains_in_bottom_part’ and ‘higher’ from
the images for use in our constraint encodings, from which we created an HC for each
dataset.

7.5.4 Discussion of Results

After training the local classifiers on all objects in the training sets, we applied them to
the validation sets; for indoor scenes, the average accuracy was 51.8 % and for outdoor
scenes 56.9 %. We then constructed HCs, following the methodology from Section 7.4, by
setting up 20 constraints in each case and selecting a subset of 13 constraints using the
validation sets. The accuracy increased for the indoor validation set to 64.5 % and for
the outdoor validation set to 72.7 %.

In addition, we tested different influence factors, viz. 0.1, 1, 10, and 100 for the
classifier weights; for both data sets, factor 1, i.e. having a balanced impact of the local
classifier and the context constraints, yielded the best results. We thus fixed the influence
factors to this value.

We then applied the final HCs to the test sets. Overall, for indoor scenes the accuracy
increased from 48.3 % to 61.8 %, and the HC was better than the local classifier on 48
scenes and worse on 3 out of 60 scenes. For outdoor scenes, the accuracy increased from
56.0 % to 72.8 %, and the HC was better than the local classifier in 56 cases and worse

169

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://www.kr.tuwien.ac.at/staff/kaminski/thesis/hc-experiments.zip
http://www.kr.tuwien.ac.at/staff/kaminski/thesis/hc-experiments.zip

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Hybrid Classification

Figure 7.3: Confusion matrices of local classifier and HC test results for indoor and
outdoor scenes

in 1 case. Thus our hypothesis (H7.1) could be confirmed w.r.t. our use cases. The test
results are summarized in Table 7.17.

Regarding (H7.2), simply adding all 20 constraints increased the accuracy for indoor
scenes from 48.3 % to 61.1 % and for outdoor scenes from 56.0 % to already 72.2 %;

7The results presented here differ from the results in (Eiter & Kaminski, 2016) because we used an
improved version of our implementation, which is now based on hex-programs, and re-trained the local
classifier using a more recent version of the Python-library scikit-learn. This improves the accuracy of
the local classifier for (E1) and slightly worsens it for (E2). Moreover, in (Eiter & Kaminski, 2016), an
influence factor of 10 instead of 1 yielded the best results for both data sets. This difference is due to the
fact that the new classifier used for the experiments in this chapter returns probabilities that are more
concentrated on a single label.

170

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.6. Related Work

this confirms that constraint selection can further improve accuracy, even though, the
difference is relatively small for our use cases (cf. Table 7.1). Influence tuning did not
make a difference in our tests since the standard influence factor of 1 proved to work best
on the validation set. However, higher or lower influence factors might be more suited in
other cases.

To provide more details on the effect of the context constraints on the particular
labels, Figure 7.3 shows the confusion matrices of the local classifiers and the final HCs
w.r.t. both test sets. As can be seen e.g. from the rows for books and shelves in the
matrix for the indoor local classifier, it misclassifies nearly half of the books and many
shelves. By adding a constraint that books are contained in shelves (weight 5.067) and
that shelves contain books (weight 3.967), the number of correctly classified shelves
increased from 62 to 66, and for books from 43 to 69. Similarly, considering the matrix for
the outdoor local classifier, adding a constraint that windows are contained in buildings
or in the upper parts of cars (weight 3.863) decreases wrong window classifications from
139 to 40.

For testing hypothesis (H7.3), we artificially decreased the quality of the local classifier
by training it on a gradually shrunken training set. Notably the benefit of adding context
constraints decreased with the accuracy of the local classifier, and when it was below
≈35 % for indoor resp. ≈45 % for outdoor scenes, the local classifier outperformed the
HC.

Finding the optimal solution for an HC encoding for a given scene by hexlite usually
took just a few seconds, on a Linux machine with an 3.2 GHz Intel Core i7 CPU and
8 GB RAM.

7.6 Related Work

As context information is valuable for simultaneous classification of visual objects, many
approaches—mainly in computer vision—exploit scene information and provide either a
statistical summary of the image (also called gist) as additional input to the classifier,
or exploit relationships between particular objects in a scene (often called the semantic
context) (Rabinovich & Belongie, 2009). Rabinovich and Belongie (2009) argue that
by considering semantic context, stronger contextual constraints can be imposed (e.g.
also spatial relations), and show empirically that they can greatly improve recognition
performance. Most approaches using semantic context for label prediction employ some
kind of graphical model, e.g. conditional random fields (Rabinovich et al., 2007) or Markov
logic networks (Chechetka et al., 2010; Tran & Davis, 2008; Marton et al., 2009) in
which the mutual influence of labelings is directly encoded by conditional probabilities.
Another approach that is very effective for object classification in complex scenes (Angin
& Bhargava, 2013) and for collective classification in general (Sen et al., 2008) is the
iterative classification algorithm (ICA) (Sen et al., 2010), which iteratively predicts and
updates the label of each object based on the current labeling.

Clearly, our approach is related to approaches that consider semantic context or
use graphical models. Those above are different from ours as they usually employ

171

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Hybrid Classification

probabilistic inference methods such as Markov chain monte carlo and do not use
combinatorial optimization techniques. In addition, often only simple relations such as
the co-occurrence frequency of objects were addressed (Rabinovich et al., 2007; Angin &
Bhargava, 2013). In contrast, we consider diverse relations between objects extracted
from an image (e.g. their position, height and spatial relation to other objects) and
they can be combined into more complex relations. Notably, closed world reasoning can
directly be employed in our approach. In Markov logic, this is not straightforward since
in the worst case an exponential number of loop formulas has to be computed in order to
translate LP MLN to Markov logic (Lee & Wang, 2016).

An approach similar to ours is presented in (Saathoff & Staab, 2008), where spatial
context is also formalized as constraints to increase collective classification accuracy.
However, fuzzy CSPs and branch and bound are used instead of probabilistic semantics,
and only basic relation types are considered. From a bird’s eye view, our probabilistic
approach achieves a higher accuracy gain with considerably less training data, but
further research (requiring an implementation of (Saathoff & Staab, 2008) and suitable
benchmarks) is needed for a clear picture.

Regarding semantic representations of scene images, scene graphs have recently been
introduced as a means for encoding the context of objects in scenes (Johnson et al., 2015).
Formally, a scene graph consists of three sets that capture the semantic contents of a scene
image: a set of objects, a set of object attributes, and a set of (binary) relations between
objects. The objects hereby represent the vertices of a scene graph, their relations are
represented by its edges and vertices are labelled with attributes. Scene graphs have
attracted a lot of interest in the areas of computer vision as well as natural language
processing in the last years and are used in a large number of different approaches as
witnessed by two recent surveys (P. Xu et al., EasyChair, 2020; Agarwal, Mangal, &
Vipul, 2020). They have been exploited for a variety of tasks, such as semantic image
retrieval (Johnson et al., 2015), visual question answering (Tang, Zhang, Wu, Luo, & Liu,
2019; Ghosh, Burachas, Ray, & Ziskind, 2019), image captioning (Y. Li, Ouyang, Zhou,
Wang, & Wang, 2017; X. Li & Jiang, 2019) and image generation (Johnson, Gupta, &
Fei-Fei, 2018).

Besides the many applications of scene graphs for different downstream tasks, the
foundational task explored in the literature consists in producing a visually-grounded
scene graph for a given image, which is referred to as scene graph generation (SGG)
(P. Xu et al., EasyChair, 2020). Many approaches for SGG jointly predict object and
relation labels by passing messages between the different prediction modules along the
edges of a graph neural network. For instance, D. Xu, Zhu, Choy, and Fei-Fei (2017)
generate a scene graph using recurrent neural networks by iteratively passing messages
between object and relation nodes to refine the respective label predictions. Y. Li et al.
(2017) also exploit message passing between three semantic levels of their novel multi-level
scene description network model, which are used for object detection, detecting relations
between objects and captioning of image regions, respectively.

Similar to our approach, recognizing object and relation labels in orchestration has the
advantage that detected relations can act as contextual cues to improve object recognition.

172

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.7. Conclusion and Outlook

However, the primary focus of SGG is not to improve object recognition since object
and relation labels are inferred simultaneously, while in our case, relation groundings
are part of the input. Accordingly, the performance w.r.t. object recognition alone is
often not reported for SGG, and instead of predictive accuracy, different metrics such
as specific recall measures are commonly reported in this area (Agarwal et al., 2020).
Moreover, usually the complete SGG-pipeline is evaluated monolithically, starting from
a region proposal network for detecting regions likely to contain objects and resulting
in a visually-grounded scene graph. This makes a direct comparison with our approach
difficult.

Since approaches for SGG tackle a more difficult task than we consider in our work,
i.e. detecting objects as well as relations from raw images, they normally require huge
amounts of labelled training data (Agarwal et al., 2020). For instance, the Visual Genome
dataset (Krishna et al., 2017), which is widely used for measuring performance in the
literature on scene graphs, contains over 108K images of which commonly about 70 % are
used for training. In contrast, one of our central goals was to improve object recognition
in view of very few training data being available; and our training sets only contain
30 scene images each. In this scenario, a hybrid approach can exploit complex context
constraints to correct wrong object labels, while it would be very hard to predict a
complete scene graph from only 30 examples. At the same time, our context constraints
can leverage the complete reasoning power of hex-programs.

7.7 Conclusion and Outlook

In this chapter, we introduced a general framework for solving CCPs and a methodology
for its application. Our tests show that classification of objects can be significantly
improved by considering their semantic context. At the same time, the achievable
improvement highly depends on the selected constraints and their interaction, as well
as on the quality of the local classifier. If the latter labels most objects incorrectly, the
context constraints intuitively lack a reasonable base for correction as wrong labels do
not help to infer correct labels of other objects. Overall, we found that best HC results
can be obtained when the local classifier performs reasonably well but there is still room
for improvement, and when the right set of constraints is selected using a validation set.

Even though we address a specific application, our framework is applicable to a
wide range of tasks. For instance, linked data (e.g. social networks or citation graphs)
has been considered as a domain for collective classification (London & Getoor, 2014).
Previous work in this area mostly focuses on uniform neighborhood relations, where
complex reasoning over context relations is not required. However, there is much room for
exploiting rich relational structures in these domains as well, similar to the one provided
by spatial relations in the visual domain. For example, an external ontology that defines
a number of properties of people and relations between them could be interfaced, and
the transitive closure of the friend-of relation could be computed in an ASP-program.

Regarding future work, a promising direction would be to improve the learning side of
our approach by utilizing more sophisticated methods. While we do not take interactions

173

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Hybrid Classification

between different context constraints into account and create context constraints manually,
such constraints and their weights could also be obtained by employing advanced learning
methods from the literature. On the one hand, for settings where the amount of training
data is sufficiently large in order to also learn interactions between context constraints,
it would be desirable to, e.g., employ the MC-ASP sampling method by Lee and Wang
(2018), instead of using the log odds. On the other hand, the meta-interpretive learning
approach discussed in Chapter 6 could be utilized to learn context constraints from
training examples.

Moreover, as mentioned in Section 7.4, the expressiveness of hex-programs, also
allowing cyclic dependencies over external atoms, could be leveraged to a larger extent.
For instance, labels which have already been fixed during the computation of an HC-
solution could be used to constrain possible labels of other objects, where the set of
possible labels for a respective object could be provided as input to the external classifier
atom, such that only a subset of all labels is assigned non-zero probability. However, for
this, questions such as how a cyclic interaction could be realized efficiently and how it
would influence the probabilistic semantics need to be investigated.

Beyond feeding back context information to the local classifier for filtering possible
labels, another promising future direction would be a deeper integration of the symbolic
and the sub-symbolic components. Yang, Ishay, and Lee (2020) recently showed that a
tight coupling of ASP with neural networks is possible by utilizing the outputs of a neural
network as probability distribution over part of the atoms in an answer set program and
reversely, by backpropagating a loss based on the answer set program for training the
neural network.

To adopt a similar method for training the local classifier with the aid of semantic
constraints in the context of our approach, however, different changes would be necessary.
Firstly, a specific model type for the local classifier, e.g. a neural network, needs to
be assumed which allows for propagating a loss computed based on the hex-program.
Secondly, since we currently apply the local classifier only to single objects in isolation,
and during training we have the ground truth for each label available, context knowledge
cannot be used to improve training of the local classifier right away. However, by
classifying all objects in a scene image simultanously using a single neural network,
the classifier could be trained to also take the context of objects into account. Then,
analogously to the approach by Yang et al. (2020), the probability of all stable models that
satisfy our context constraints could be maximized by employing gradient propagation
w.r.t. the probability distribution over the labels returned by the neural network.

Yet, since we also have the ground truth labels available, an important question is
how the different loss functions could be combined in order to improve learning in the
neural network. We expect a combination to be particularly useful when certain objects
in a scene image are hidden, i.e. covered by other objects, such that the neural network
could learn to classify objects correctly even without any relevant object features being
available. This scenario would be akin to the application of solving Sudoku puzzles as
described by Yang et al. (2020), where correct values for empty cells need to be inferred
based on the given values.

174

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 8
Conclusion

In this chapter, we conclude this thesis by going back to our initial research questions
from Section 1.3, with which we started our investigation of integrated algorithms for
hex and its application in machine learning; and we summarize the related progress that
has been achieved during the doctoral research. In the second part of this chapter, we
consider possible directions for future research.

8.1 Summary

In Part I, we developed several new techniques that tightly integrate different parts
of hex-evaluation, and the new methods have been incorporated into novel integrated
hex-algorithms. This research has thus advanced the state of hex-evaluation in a number
of ways.

Regarding our initial research question (RQ1), in Chapter 3, we achieved a tight
integration of the search procedure employed during hex-solving and external evaluation
by extending the previous two-valued semantics of external atoms to three truth values.
This enables the evaluation of external sources at any point during search under partial
assignments; as a result, conflict detection and learning can be improved. Moreover,
partial evaluation proved to have further benefits in that it allows to minimize learned
io-nogoods by calling external sources repeatedly w.r.t. reduced input assignments,
whereby our new minimization technique in fact yielded the best results in terms of
solving efficiency. Subsequently, the methods for partial evaluation have also been
extended to the search for unfounded sets employed by the external minimality check
of hex, as described in Chapter 4. Thus, our techniques based on partial evaluation
represent considerable progress compared to traditional methods for hex-evaluation and
simultaneously laid the ground for other techniques that require on-the-fly evaluation of
external sources.

With respect to research question (RQ2), i.e. the effective integration of information
about external source behavior into the special minimality check of hex, we have

175

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Conclusion

demonstrated in Chapter 4 that the external source semantics can be approximated more
closely by taking semantic dependencies over external atoms into account. We showed
that additional dependency information can in turn be leveraged to avoid unnecessary
external minimality checks and thus to reduce the running time required for checking
minimality of candidate answer sets.

We can also positively answer research question (RQ3) since our experimental eval-
uation in Chapter 5 exhibits a significant benefit of lazy-grounding hex-solving for
grounding-intense problems. In order to answer question (RQ3), we developed a novel
hex-algorithm that exploits techniques from lazy grounding. At this, it became clear
during the work on the new algorithm that further adaptations needed to be made
to the previous evaluation framework, i.e. a dedicated program transformation and a
new interface to external sources had to be designed. As a result, the lazy-grounding
ASP-solver alpha can be exploited as backend solver for evaluating hex-programs; and
hex can profit from future developments of lazy-grounding methods.

In Part II, we worked out two new use cases of the hex-formalism in the context of
machine learning. Their respective relation to machine learning differs in that the first
application presented in Chapter 6 implements a logic-based machine learning approach,
while the application developed in Chapter 7 uses external atoms to interface an external
classification algorithm. In relation to our final research question (RQ4), we conclude that
hex-programs can be fruitfully employed also for approaches that require non-logical and
sub-symbolic computations, and for implementing existing machine learning methods.
However, special attention needs to be devoted to the amount of imported information
that has to be considered during grounding.

While different parts of hex-evaluation have been integrated by our new techniques,
we also found that the different challenges encountered on the way were often interrelated.
For instance, our results regarding the evaluation of external sources using partial
assignments constituted a necessary foundation for the development of our lazy-grounding
hex-algorithm; and in order to improve the efficiency of the unfounded set search employed
for the external minimality check, partial evaluation proved to be beneficial as well.

8.2 Future Work

Since the overarching theme of this work was to tightly integrate different mechanisms
employed during hex-solving, a number of new evaluation techniques have been developed
for this purpose. However, there are several further ways in which these techniques could
be combined, extended and exploited for different parts of hex-evaluation in the future.

First, while we have only employed simple heuristics for deciding the frequency of
external evaluations during hex-solving, dynamic heuristics could also be used, where
the frequency is adjusted according to the amount of information gained from previous
calls. Second, our hex-algorithm that exploits lazy grounding could be combined with
a pre-grounding algorithm, where the respective grounding mechanisms are applied for
different modules of a hex-program based on their properties. Moreover, additional
semantic dependency information, which we used for deciding the necessity of the external

176

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8.2. Future Work

minimality check, is also valuable for reducing the number of external evaluations during
the model search and grounding, and could be utilized there as well.

In addition, our developed use cases exhibit the potential of hex for applications in
machine learning and for combining ASP with different paradigms. Hence, there is a
lot of room for exploring the integration of other machine learning methods by means
of external atoms of hex, as well as for advancing our existing applications in different
directions.

Even though grounding turned out to be a major bottleneck for our MIL-encodings
from Chapter 6, we have not made use of lazy grounding for this use case yet as
current solvers still lack many optimizations that are, e.g., implemented in clingo;
and grounding of the used external atoms themselves did not pose a problem in our
approach. Nevertheless, ASP-based approaches for MIL could exploit current and future
advancements in lazy grounding.

Finally, we have already conducted tests related to our HC-encoding from Chapter 7
where we provided additional information computed in the ASP-part back to the external
classifier. However, we found that one needs to pay particular attention to the presence of
cyclic dependencies, which may result in a large number of calls to the external classifier
and unsatisfactory solving performance. Despite our new methods for hex-evaluation,
and in particular partial evaluation of external atoms, this often cannot be avoided
without carefully designing an encoding due to the inherently high complexity of hex.

177

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

Agarwal, A., Mangal, A., & Vipul. (2020). Visual relationship detection using scene
graphs: A survey. CoRR, abs/2005.08045 .

Alviano, M., Dodaro, C., Leone, N., & Ricca, F. (2015). Advances in WASP. In F. Cal-
imeri, G. Ianni, & M. Truszczynski (Eds.), Logic Programming and Nonmonotonic
Reasoning - 13th International Conference, LPNMR 2015, Lexington, KY, USA,
September 27-30, 2015. Proceedings (Vol. 9345, pp. 40–54). Springer.

Alviano, M., Faber, W., & Gebser, M. (2015). Rewriting recursive aggregates in answer
set programming: back to monotonicity. TPLP, 15 (4-5), 559–573.

Angin, P., & Bhargava, B. (2013). A confidence ranked co-occurrence approach for
accurate object recognition in highly complex scenes. Journal of Internet Technology,
14 (1), 13–19.

Antic, C., Eiter, T., & Fink, M. (2013). Hex semantics via approximation fixpoint theory.
In P. Cabalar & T. C. Son (Eds.), Logic Programming and Nonmonotonic Reasoning,
12th International Conference, LPNMR 2013, Corunna, Spain, September 15-19,
2013. Proceedings (Vol. 8148, pp. 102–115). Springer.

Apt, K. R. (2003). Principles of constraint programming. Cambridge University Press.

Balduccini, M. (2009). Representing constraint satisfaction problems in answer set
programming. In Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP) at ICLP.

Balduccini, M., & Lierler, Y. (2013a). Hybrid automated reasoning tools: from black-box
to clear-box integration. CoRR, abs/1312.6105 .

Balduccini, M., & Lierler, Y. (2013b). Integration schemas for constraint answer set
programming: a case study. TPLP, 13 (4-5-Online-Supplement).

Barrett, C. W., Sebastiani, R., Seshia, S. A., & Tinelli, C. (2009). Satisfiability modulo
theories. In A. Biere, M. Heule, H. van Maaren, & T. Walsh (Eds.), Handbook of
Satisfiability (Vol. 185, pp. 825–885). IOS Press.

Basol, S., Erdem, O., Fink, M., & Ianni, G. (2010). HEX programs with action atoms.
In M. V. Hermenegildo & T. Schaub (Eds.), Technical Communications of the 26th
International Conference on Logic Programming, ICLP 2010, July 16-19, 2010,
Edinburgh, Scotland, UK (Vol. 7, pp. 24–33). Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik.

Brewka, G., Eiter, T., & Truszczynski, M. (2011). Answer set programming at a glance.
Commun. ACM , 54 (12), 92–103.

179

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Buccafurri, F., Leone, N., & Rullo, P. (2000). Enhancing disjunctive datalog by constraints.
IEEE Trans. Knowl. Data Eng., 12 (5), 845–860.

Cabalar, P., Kaminski, R., Ostrowski, M., & Schaub, T. (2016). An ASP semantics for
default reasoning with constraints. In S. Kambhampati (Ed.), Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016 (pp. 1015–1021). IJCAI/AAAI Press.

Cadoli, M., Eiter, T., & Gottlob, G. (1997). Default logic as a query language. IEEE
Trans. Knowl. Data Eng., 9 (3), 448–463.

Calì, A., Gottlob, G., & Pieris, A. (2012). Towards more expressive ontology languages:
The query answering problem. Artif. Intell., 193 , 87–128.

Calimeri, F., Cozza, S., & Ianni, G. (2007). External sources of knowledge and value
invention in logic programming. Ann. Math. Artif. Intell., 50 (3-4), 333–361.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Roland Kaminski, T. K., Leone, N., . . .
Schaub, T. (2013). ASP-Core-2 Input Language Format. Retrieved from https://

www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf

Calimeri, F., Fink, M., Germano, S., Humenberger, A., Ianni, G., Redl, C., . . . Wimmer,
A. (2016). Angry-hex: An artificial player for angry birds based on declarative
knowledge bases. IEEE Trans. Comput. Intellig. and AI in Games, 8 (2), 128–139.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., & Rosati, R. (2007). Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning, 39 (3), 385–429.

Chechetka, A., Dash, D., & Philipose, M. (2010). Relational learning for collective
classification of entities in images. In Statistical Relational Artificial Intelligence,
Papers from the 2010 AAAI Workshop, Atlanta, Georgia, USA, July 12, 2010 (Vol.
WS-10-06). AAAI.

Cropper, A., & Muggleton, S. H. (2014). Logical minimisation of meta-rules within meta-
interpretive learning. In J. Davis & J. Ramon (Eds.), Inductive Logic Programming
- 24th International Conference, ILP 2014, Nancy, France, September 14-16, 2014,
Revised Selected Papers (Vol. 9046, pp. 62–75). Springer.

Cropper, A., & Muggleton, S. H. (2015). Learning efficient logical robot strategies
involving composable objects. In Q. Yang & M. J. Wooldridge (Eds.), Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015 (pp. 3423–3429). AAAI
Press.

Cropper, A., & Muggleton, S. H. (2016a). Learning higher-order logic programs through
abstraction and invention. In S. Kambhampati (Ed.), Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New
York, NY, USA, 9-15 July 2016 (pp. 1418–1424). IJCAI/AAAI Press.

Cropper, A., & Muggleton, S. H. (2016b). Metagol system.
https://github.com/metagol/metagol. Retrieved from https://github.com/

metagol/metagol

Cropper, A., Tamaddoni-Nezhad, A., & Muggleton, S. H. (2015). Meta-interpretive
learning of data transformation programs. In K. Inoue, H. Ohwada, & A. Yamamoto

180

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf
https://github.com/metagol/metagol
https://github.com/metagol/metagol

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

(Eds.), Inductive Logic Programming - 25th International Conference, ILP 2015,
Kyoto, Japan, August 20-22, 2015, Revised Selected Papers (Vol. 9575, pp. 46–59).
Springer.

Csurka, G., Dance, C. R., Fan, L., Willamowski, J., & Bray, C. (2004). Visual
categorization with bags of keypoints. In In Workshop on Statistical Learning in
Computer Vision, ECCV 2004 (pp. 1–22).

Dai, W., Muggleton, S., Wen, J., Tamaddoni-Nezhad, A., & Zhou, Z. (2017). Logical
vision: One-shot meta-interpretive learning from real images. In N. Lachiche &
C. Vrain (Eds.), Inductive Logic Programming - 27th International Conference, ILP
2017, Orléans, France, September 4-6, 2017, Revised Selected Papers (Vol. 10759,
pp. 46–62). Springer.

Dao-Tran, M., Eiter, T., Fink, M., Weidinger, G., & Weinzierl, A. (2012). Omiga : An
open minded grounding on-the-fly answer set solver. In L. F. del Cerro, A. Herzig,
& J. Mengin (Eds.), Logics in Artificial Intelligence - 13th European Conference,
JELIA 2012, Toulouse, France, September 26-28, 2012. Proceedings (Vol. 7519, pp.
480–483). Springer.

Dao-Tran, M., Eiter, T., & Krennwallner, T. (2009). Realizing default logic over
description logic knowledge bases. In C. Sossai & G. Chemello (Eds.), Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, 10th European Conference,
ECSQARU 2009, Verona, Italy, July 1-3, 2009. Proceedings (Vol. 5590, pp. 602–613).
Springer.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. J. Artif. Intell.
Res., 17 , 229–264.

Denecker, M., Marek, V., & Truszczyński, M. (2000). Approximations, stable operators,
well-founded fixpoints and applications in nonmonotonic reasoning. In J. Minker
(Ed.), Logic-Based Artificial Intelligence, volume 597 of The Springer International
Series in Engineering and Computer Science (pp. 127–144). Norwell, Massachusetts:
Kluwer Academic Publishers.

Denecker, M., Marek, V. W., & Truszczynski, M. (2004). Ultimate approximation and
its application in nonmonotonic knowledge representation systems. Inf. Comput.,
192 (1), 84–121.

Dietterich, T. G., Domingos, P. M., Getoor, L., Muggleton, S., & Tadepalli, P. (2008).
Structured machine learning: the next ten years. Machine Learning, 73 (1), 3–23.

Dodaro, C., Ricca, F., & Schüller, P. (2016). External propagators in WASP: preliminary
report. In S. Bistarelli, A. Formisano, & M. Maratea (Eds.), Proceedings of the
23rd RCRA International Workshop on Experimental Evaluation of Algorithms for
Solving Problems with Combinatorial Explosion 2016 (RCRA 2016) A workshop of
the XV International Conference of the Italian Association for Artificial Intelligence
(AI*IA 2016), Genova, Italy, November 28, 2016. (Vol. 1745, pp. 1–9). CEUR-
WS.org.

Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., & Schaub,
T. (2008). Conflict-driven disjunctive answer set solving. In G. Brewka & J. Lang
(Eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the

181

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Eleventh International Conference, KR 2008, Sydney, Australia, September 16-19,
2008 (pp. 422–432). AAAI Press.

Duggan, J. (2007). A systematic approach to the construction of non-empty choice sets.
Social Choice and Welfare, 28 (3), 491–506.

Dutertre, B., & de Moura, L. M. (2006). A fast linear-arithmetic solver for DPLL(T).
In T. Ball & R. B. Jones (Eds.), Computer Aided Verification, 18th International
Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings (Vol.
4144, pp. 81–94). Springer.

Eiter, T., Fink, M., Ianni, G., Krennwallner, T., Redl, C., & Schüller, P. (2016). A
model building framework for answer set programming with external computations.
TPLP, 16 (4), 418–464.

Eiter, T., Fink, M., & Krennwallner, T. (2009). Decomposition of declarative knowledge
bases with external functions. In C. Boutilier (Ed.), IJCAI 2009, Proceedings of the
21st International Joint Conference on Artificial Intelligence, Pasadena, California,
USA, July 11-17, 2009 (pp. 752–758).

Eiter, T., Fink, M., Krennwallner, T., & Redl, C. (2012). Conflict-driven ASP solving
with external sources. TPLP, 12 (4-5), 659–679.

Eiter, T., Fink, M., Krennwallner, T., & Redl, C. (2013). Hex-programs with existential
quantification. In M. Hanus & R. Rocha (Eds.), Declarative Programming and
Knowledge Management - Declarative Programming Days, KDPD 2013, Unifying
INAP, WFLP, and WLP, Kiel, Germany, September 11-13, 2013, Revised Selected
Papers (Vol. 8439, pp. 99–117). Springer.

Eiter, T., Fink, M., Krennwallner, T., & Redl, C. (2016). Domain expansion for
ASP-programs with external sources. Artif. Intell., 233 , 84–121.

Eiter, T., Fink, M., Krennwallner, T., Redl, C., & Schüller, P. (2014). Efficient hex-
program evaluation based on unfounded sets. J. Artif. Intell. Res., 49 , 269–321.

Eiter, T., Fink, M., Redl, C., & Stepanova, D. (2014). Exploiting support sets for
answer set programs with external evaluations. In C. E. Brodley & P. Stone (Eds.),
Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July
27 -31, 2014, Québec City, Québec, Canada. (pp. 1041–1048). AAAI Press.

Eiter, T., Fink, M., & Stepanova, D. (2016). Data repair of inconsistent nonmonotonic
description logic programs. Artif. Intell., 239 , 7–53.

Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., & Tompits, H. (2008). Combining
answer set programming with description logics for the semantic web. Artif. Intell.,
172 (12-13), 1495–1539.

Eiter, T., Ianni, G., Schindlauer, R., & Tompits, H. (2005a). NLP-DL: A KR system for
coupling nonmonotonic logic programs with description logics. In R. Mizoguchi
(Ed.), Poster & Demonstration Proceedings of the 4th International Semantic Web
Conference (ISWC 2005) (p. PID 67). (System poster)

Eiter, T., Ianni, G., Schindlauer, R., & Tompits, H. (2005b). A uniform integration of
higher-order reasoning and external evaluations in answer-set programming. In
L. P. Kaelbling & A. Saffiotti (Eds.), IJCAI-05, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK,

182

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

July 30 - August 5, 2005 (pp. 90–96). Professional Book Center.

Eiter, T., Ianni, G., Schindlauer, R., & Tompits, H. (2006). Effective integration of
declarative rules with external evaluations for semantic-web reasoning. In Y. Sure &
J. Domingue (Eds.), The Semantic Web: Research and Applications, 3rd European
Semantic Web Conference, ESWC 2006, Budva, Montenegro, June 11-14, 2006,
Proceedings (Vol. 4011, pp. 273–287). Springer.

Eiter, T., & Kaminski, T. (2016). Exploiting contextual knowledge for hybrid classification
of visual objects. In L. Michael & A. C. Kakas (Eds.), Logics in Artificial Intelligence
- 15th European Conference, JELIA 2016, Larnaca, Cyprus, November 9-11, 2016,
Proceedings (Vol. 10021, pp. 223–239).

Eiter, T., & Kaminski, T. (2019). Pruning external minimality checking for ASP
using semantic dependencies. In M. Balduccini, Y. Lierler, & S. Woltran (Eds.),
Logic Programming and Nonmonotonic Reasoning - 15th International Conference,
LPNMR 2019, Philadelphia, PA, USA, June 3-7, 2019, Proceedings (Vol. 11481,
pp. 326–339). Springer.

Eiter, T., Kaminski, T., Redl, C., Schüller, P., & Weinzierl, A. (2017). Answer set
programming with external source access. In G. Ianni et al. (Eds.), Reasoning
Web. Semantic Interoperability on the Web - 13th International Summer School
2017, London, UK, July 7-11, 2017, Tutorial Lectures (Vol. 10370, pp. 204–275).
Springer.

Eiter, T., Kaminski, T., Redl, C., & Weinzierl, A. (2016). Exploiting partial assign-
ments for efficient evaluation of answer set programs with external source access.
In S. Kambhampati (Ed.), Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July
2016 (pp. 1058–1065). IJCAI/AAAI Press.

Eiter, T., Kaminski, T., Redl, C., & Weinzierl, A. (2018). Exploiting partial assignments
for efficient evaluation of answer set programs with external source access. J. Artif.
Intell. Res., 62 , 665–727.

Eiter, T., Kaminski, T., & Weinzierl, A. (2017). Lazy-grounding for answer set programs
with external source access. In C. Sierra (Ed.), Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017 (pp. 1015–1022). ijcai.org.

Eiter, T., Krennwallner, T., & Redl, C. (2011). Hex-programs with nested program
calls. In H. Tompits et al. (Eds.), Applications of Declarative Programming and
Knowledge Management - 19th International Conference, INAP 2011, and 25th
Workshop on Logic Programming, WLP 2011, Vienna, Austria, September 28-30,
2011, Revised Selected Papers (Vol. 7773, pp. 269–278). Springer.

Eiter, T., Lukasiewicz, T., Schindlauer, R., & Tompits, H. (2004). Combining answer
set programming with description logics for the semantic web. In D. Dubois,
C. A. Welty, & M. Williams (Eds.), Principles of Knowledge Representation and
Reasoning: Proceedings of the Ninth International Conference (KR2004), Whistler,
Canada, June 2-5, 2004 (pp. 141–151). AAAI Press.

Eiter, T., Redl, C., & Schüller, P. (2016). Problem solving using the HEX family. In

183

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

C. Beierle, G. Brewka, & M. Thimm (Eds.), Computational Models of Rationality,
Essays dedicated to Gabriele Kern-Isberner on the occasion of her 60th birthday
(pp. 150–174). College Publications.

Erdem, E., Gelfond, M., & Leone, N. (2016). Applications of answer set programming.
AI Magazine, 37 (3), 53–68.

Faber, W. (2005). Unfounded sets for disjunctive logic programs with arbitrary aggregates.
In C. Baral, G. Greco, N. Leone, & G. Terracina (Eds.), Logic Programming and
Nonmonotonic Reasoning, 8th International Conference, LPNMR 2005, Diamante,
Italy, September 5-8, 2005, Proceedings (Vol. 3662, pp. 40–52). Springer.

Faber, W., Pfeifer, G., & Leone, N. (2011). Semantics and complexity of recursive
aggregates in answer set programming. Artif. Intell., 175 (1), 278–298.

Farquhar, C., Grov, G., Cropper, A., Muggleton, S., & Bundy, A. (2015). Typed meta-
interpretive learning for proof strategies. In K. Inoue, H. Ohwada, & A. Yamamoto
(Eds.), Late Breaking Papers of the 25th International Conference on Inductive
Logic Programming, Kyoto University, Kyoto, Japan, August 20th to 22nd, 2015.
(Vol. 1636, pp. 17–32). CEUR-WS.org.

Galleguillos, C., Rabinovich, A., & Belongie, S. J. (2008). Object categorization using co-
occurrence, location and appearance. In 2008 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2008), 24-26 June 2008,
Anchorage, Alaska, USA. IEEE Computer Society.

Gebser, M., Grote, T., Kaminski, R., & Schaub, T. (2011). Reactive answer set program-
ming. In J. P. Delgrande & W. Faber (Eds.), Logic Programming and Nonmonotonic
Reasoning - 11th International Conference, LPNMR 2011, Vancouver, Canada,
May 16-19, 2011. Proceedings (Vol. 6645, pp. 54–66). Springer.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., & Thiele, S. (2008).
Engineering an incremental ASP solver. In M. G. de la Banda & E. Pontelli
(Eds.), Logic Programming, 24th International Conference, ICLP 2008, Udine,
Italy, December 9-13 2008, Proceedings (Vol. 5366, pp. 190–205). Springer.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., & Wanko, P. (2016).
Theory solving made easy with Clingo 5. In M. Carro, A. King, N. Saeedloei, &
M. D. Vos (Eds.), Technical Communications of the 32nd International Conference
on Logic Programming, ICLP 2016 TCs, October 16-21, 2016, New York City, USA
(Vol. 52, pp. 2:1–2:15). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., & Schaub, T. (2015). Progress in
clasp series 3. In F. Calimeri, G. Ianni, & M. Truszczynski (Eds.), Logic Programming
and Nonmonotonic Reasoning - 13th International Conference, LPNMR 2015,
Lexington, KY, USA, September 27-30, 2015. Proceedings (Vol. 9345, pp. 368–383).
Springer.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2014). Clingo = ASP + control:
Preliminary report. CoRR, abs/1405.3694 .

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2019). Multi-shot ASP solving
with clingo. TPLP, 19 (1), 27–82.

Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., & Schneider, M. T.

184

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

(2011). Potassco: The potsdam answer set solving collection. AI Commun., 24 (2),
107–124.

Gebser, M., Kaufmann, B., Neumann, A., & Schaub, T. (2007). Conflict-driven answer
set enumeration. In C. Baral, G. Brewka, & J. S. Schlipf (Eds.), Logic Programming
and Nonmonotonic Reasoning, 9th International Conference, LPNMR 2007, Tempe,
AZ, USA, May 15-17, 2007, Proceedings (Vol. 4483, pp. 136–148). Springer.

Gebser, M., Kaufmann, B., & Schaub, T. (2012). Conflict-driven answer set solving:
From theory to practice. Artif. Intell., 187 , 52–89.

Gebser, M., Kaufmann, B., & Schaub, T. (2013). Advanced conflict-driven disjunctive
answer set solving. In F. Rossi (Ed.), IJCAI 2013, Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence, Beijing, China, August 3-9, 2013
(pp. 912–918). IJCAI/AAAI.

Gebser, M., Ostrowski, M., & Schaub, T. (2009). Constraint answer set solving.
In P. M. Hill & D. S. Warren (Eds.), Logic Programming, 25th International
Conference, ICLP 2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings (Vol.
5649, pp. 235–249). Springer.

Gebser, M., Ryabokon, A., & Schenner, G. (2015). Combining heuristics for config-
uration problems using answer set programming. In F. Calimeri, G. Ianni, &
M. Truszczynski (Eds.), Logic Programming and Nonmonotonic Reasoning - 13th
International Conference, LPNMR 2015, Lexington, KY, USA, September 27-30,
2015. Proceedings (Vol. 9345, pp. 384–397). Springer.

Gebser, M., & Schaub, T. (2016). Modeling and language extensions. AI Magazine,
37 (3), 33–44.

Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive
databases. New Generation Comput., 9 (3/4), 365–386.

Gent, I. P., Miguel, I., & Moore, N. C. A. (2010). Lazy explanations for constraint
propagators. In M. Carro & R. Peña (Eds.), Practical Aspects of Declarative
Languages, 12th International Symposium, PADL 2010, Madrid, Spain, January
18-19, 2010. Proceedings (Vol. 5937, pp. 217–233). Springer.

Getoor, L. (2007). Introduction to statistical relational learning. MIT press.

Ghosh, S., Burachas, G., Ray, A., & Ziskind, A. (2019). Generating natural language
explanations for visual question answering using scene graphs and visual attention.
CoRR, abs/1902.05715 .

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., & Turner, H. (2004). Nonmonotonic
causal theories. Artif. Intell., 153 (1-2), 49–104.

Heflin, J., & Munoz-Avila, H. (2002). LCW-Based Agent Planning for the Semantic Web.
In A. Pease (Ed.), Ontologies and the Semantic Web (pp. 63–70). Menlo Park, CA:
AAAI Press.

Hoehndorf, R., Loebe, F., Kelso, J., & Herre, H. (2007). Representing default knowledge
in biomedical ontologies: application to the integration of anatomy and phenotype
ontologies. BMC Bioinformatics, 8 .

HTCondor Website. (2018). http://research.cs.wisc.edu/htcondor. (Ac-
cessed: 2018-06-27)

185

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://research.cs.wisc.edu/htcondor

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Janhunen, T., Liu, G., & Niemelä, I. (2011). Tight integration of non-ground answer
set programming and satisfiability modulo theories. In P. Cabalar, D. Mitchell,
D. Pearce, & E. Ternovska (Eds.), Informal Proceedings of the 1st Workshop on
Grounding and Transformations for Theories with Variables (GTTV’11), LPNMR,
Vancouver, BC, Canada May 16th, 2011 (p. 1-14).

Johnson, J., Gupta, A., & Fei-Fei, L. (2018). Image generation from scene graphs. In
2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018 (pp. 1219–1228). IEEE Computer
Society.

Johnson, J., Krishna, R., Stark, M., Li, L., Shamma, D. A., Bernstein, M. S., & Li,
F. (2015). Image retrieval using scene graphs. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015
(pp. 3668–3678). IEEE Computer Society.

Junker, U. (2004). QUICKXPLAIN: preferred explanations and relaxations for over-
constrained problems. In D. L. McGuinness & G. Ferguson (Eds.), Proceedings of
the Nineteenth National Conference on Artificial Intelligence, Sixteenth Conference
on Innovative Applications of Artificial Intelligence, July 25-29, 2004, San Jose,
California, USA (pp. 167–172). AAAI Press / The MIT Press.

Kakas, A. C., Kowalski, R. A., & Toni, F. (1992). Abductive logic programming. J. Log.
Comput., 2 (6), 719–770.

Kalinowski, T., Narodytska, N., Walsh, T., & Xia, L. (2013). Strategic behavior when
allocating indivisible goods sequentially. In M. desJardins & M. L. Littman (Eds.),
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, July
14-18, 2013, Bellevue, Washington, USA. AAAI Press.

Kaminski, T., Eiter, T., & Inoue, K. (2018a). Efficiently encoding meta-interpretive
learning by answer set programming (work in progress). http://ilp2018.unife.it/wp-
content/uploads/2018/08/Efficiently-Encoding-Meta-Interpretive-Learning-by-
Answer-Set-Programming.pdf.

Kaminski, T., Eiter, T., & Inoue, K. (2018b). Exploiting answer set programming with
external sources for meta-interpretive learning. TPLP, 18 (3-4), 571–588.

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller &
J. W. Thatcher (Eds.), Proceedings of a symposium on the Complexity of Computer
Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA (pp. 85–103). Plenum Press, New York.

Kaufmann, B., Leone, N., Perri, S., & Schaub, T. (2016). Grounding and solving in
answer set programming. AI Magazine, 37 (3), 25–32.

Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., . . . Fei-Fei, L. (2017).
Visual genome: Connecting language and vision using crowdsourced dense image
annotations. Int. J. Comput. Vis., 123 (1), 32–73.

Lahiri, S. K., Nieuwenhuis, R., & Oliveras, A. (2006). SMT techniques for fast predicate
abstraction. In T. Ball & R. B. Jones (Eds.), Computer Aided Verification, 18th
International Conference, CAV 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings (Vol. 4144, pp. 424–437). Springer.

186

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Larson, J., & Michalski, R. S. (1977). Inductive inference of VL decision rules. SIGART
Newsletter , 63 , 38–44.

Law, M., Russo, A., & Broda, K. (2014). Inductive learning of answer set programs.
In E. Fermé & J. Leite (Eds.), Logics in Artificial Intelligence - 14th European
Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014.
Proceedings (Vol. 8761, pp. 311–325). Springer.

Lee, J., & Meng, Y. (2013). Answer set programming modulo theories and reasoning
about continuous changes. In F. Rossi (Ed.), IJCAI 2013, Proceedings of the 23rd
International Joint Conference on Artificial Intelligence, Beijing, China, August
3-9, 2013 (pp. 990–996). IJCAI/AAAI.

Lee, J., & Wang, Y. (2016). Weighted rules under the stable model semantics. In C. Baral,
J. P. Delgrande, & F. Wolter (Eds.), Principles of Knowledge Representation and
Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape
Town, South Africa, April 25-29, 2016. (pp. 145–154). AAAI Press.

Lee, J., & Wang, Y. (2018). Weight learning in a probabilistic extension of answer set
programs. In M. Thielscher, F. Toni, & F. Wolter (Eds.), Principles of Knowledge
Representation and Reasoning: Proceedings of the Sixteenth International Con-
ference, KR 2018, Tempe, Arizona, 30 October - 2 November 2018. (pp. 22–31).
AAAI Press.

Lefèvre, C., Béatrix, C., Stéphan, I., & Garcia, L. (2017). Asperix, a first-order forward
chaining approach for answer set computing. TPLP, 17 (3), 266–310.

Lefèvre, C., & Nicolas, P. (2009a). A first order forward chaining approach for answer
set computing. In E. Erdem, F. Lin, & T. Schaub (Eds.), Logic Programming and
Nonmonotonic Reasoning, 10th International Conference, LPNMR 2009, Potsdam,
Germany, September 14-18, 2009. Proceedings (Vol. 5753, pp. 196–208). Springer.

Lefèvre, C., & Nicolas, P. (2009b). The first version of a new ASP solver : Asperix. In
E. Erdem, F. Lin, & T. Schaub (Eds.), Logic Programming and Nonmonotonic
Reasoning, 10th International Conference, LPNMR 2009, Potsdam, Germany,
September 14-18, 2009. Proceedings (Vol. 5753, pp. 522–527). Springer.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., & Scarcello, F. (2006).
The DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log., 7 (3), 499–562.

Leone, N., Rullo, P., & Scarcello, F. (1997). Disjunctive stable models: Unfounded sets,
fixpoint semantics, and computation. Inf. Comput., 135 (2), 69–112.

Li, X., & Jiang, S. (2019). Know more say less: Image captioning based on scene graphs.
IEEE Trans. Multim., 21 (8), 2117–2130.

Li, Y., Ouyang, W., Zhou, B., Wang, K., & Wang, X. (2017). Scene graph generation
from objects, phrases and region captions. In IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017 (pp. 1270–1279).
IEEE Computer Society.

Lierler, Y. (2014). Relating constraint answer set programming languages and algorithms.
Artif. Intell., 207 , 1–22.

Lierler, Y., Maratea, M., & Ricca, F. (2016). Systems, engineering environments, and

187

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

competitions. AI Magazine, 37 (3), 45–52.

Lifschitz, V., & Turner, H. (1994). Splitting a logic program. In P. V. Hentenryck (Ed.),
Logic Programming, Proceedings of the Eleventh International Conference on Logic
Programming, Santa Marherita Ligure, Italy, June 13-18, 1994 (pp. 23–37). MIT
Press.

Lin, D., Dechter, E., Ellis, K., Tenenbaum, J. B., & Muggleton, S. (2014). Bias reformu-
lation for one-shot function induction. In T. Schaub, G. Friedrich, & B. O’Sullivan
(Eds.), ECAI 2014 - 21st European Conference on Artificial Intelligence, 18-22 Au-
gust 2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent
Systems (PAIS 2014) (Vol. 263, pp. 525–530). IOS Press.

Liu, G., Janhunen, T., & Niemelä, I. (2012). Answer set programming via mixed
integer programming. In G. Brewka, T. Eiter, & S. A. McIlraith (Eds.), Princi-
ples of Knowledge Representation and Reasoning: Proceedings of the Thirteenth
International Conference, KR 2012, Rome, Italy, June 10-14, 2012. AAAI Press.

London, B., & Getoor, L. (2014). Collective classification of network data. In C. C. Ag-
garwal (Ed.), Data Classification: Algorithms and Applications (pp. 399–416). CRC
Press.

Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings
of the International Conference on Computer Vision, Kerkyra, Corfu, Greece,
September 20-25, 1999 (pp. 1150–1157). IEEE Computer Society.

Manquinho, V. M., & Silva, J. P. M. (2005). Effective lower bounding techniques for
pseudo-boolean optimization. In 2005 Design, Automation and Test in Europe
Conference and Exposition (DATE 2005), 7-11 March 2005, Munich, Germany (pp.
660–665). IEEE Computer Society.

Marques-Silva, J. P., Lynce, I., & Malik, S. (2009). Conflict-driven clause learning SAT
solvers. In A. Biere, M. Heule, H. van Maaren, & T. Walsh (Eds.), Handbook of
Satisfiability (Vol. 185, pp. 131–153). IOS Press.

Marton, Z. C., Rusu, R. B., Jain, D., Klank, U., & Beetz, M. (2009). Probabilistic
categorization of kitchen objects in table settings with a composite sensor. In 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, October
11-15, 2009, St. Louis, MO, USA (pp. 4777–4784). IEEE.

Mellarkod, V. S., Gelfond, M., & Zhang, Y. (2008). Integrating answer set programming
and constraint logic programming. Ann. Math. Artif. Intell., 53 (1-4), 251–287.

Merriam-Webster Website. (2018). https://www.merriam-webster.com/

thesaurus. (Accessed: 2018-06-27)

Michie, D., Muggleton, S., Page, D., & Srinivasan, A. (1994). To the international
computing community: A new east-west challenge (Tech. Rep.). Oxford University
Computing laboratory, UK.

Muggleton, S. H., Lin, D., Pahlavi, N., & Tamaddoni-Nezhad, A. (2014). Meta-interpretive
learning: application to grammatical inference. Machine Learning, 94 (1), 25–49.

Muggleton, S. H., Lin, D., & Tamaddoni-Nezhad, A. (2015). Meta-interpretive learning
of higher-order dyadic datalog: predicate invention revisited. Machine Learning,
100 (1), 49–73.

188

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.merriam-webster.com/thesaurus
https://www.merriam-webster.com/thesaurus

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Nieuwenhuis, R., & Oliveras, A. (2005). DPLL(T) with exhaustive theory propagation
and its application to difference logic. In K. Etessami & S. K. Rajamani (Eds.),
Computer Aided Verification, 17th International Conference, CAV 2005, Edinburgh,
Scotland, UK, July 6-10, 2005, Proceedings (Vol. 3576, pp. 321–334). Springer.

Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). Solving SAT and SAT Modulo
Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to
DPLL(T). J. ACM , 53 (6), 937–977.

Oikarinen, E., & Janhunen, T. (2006). Modular equivalence for normal logic programs.
In G. Brewka, S. Coradeschi, A. Perini, & P. Traverso (Eds.), ECAI 2006, 17th
European Conference on Artificial Intelligence, August 29 - September 1, 2006,
Riva del Garda, Italy, Including Prestigious Applications of Intelligent Systems
(PAIS 2006), Proceedings (Vol. 141, pp. 412–416). IOS Press.

Ostrowski, M., & Schaub, T. (2012). ASP modulo CSP: the clingcon system. TPLP,
12 (4-5), 485–503.

Otero, R. P. (2001). Induction of stable models. In C. Rouveirol & M. Sebag (Eds.),
Inductive Logic Programming, 11th International Conference, ILP 2001, Strasbourg,
France, September 9-11, 2001, Proceedings, series = Lecture Notes in Computer
Science (Vol. 2157, pp. 193–205). Springer.

Palù, A. D., Dovier, A., Pontelli, E., & Rossi, G. (2009). GASP: answer set programming
with lazy grounding. Fundam. Inform., 96 (3), 297–322.

Papadimitriou, C., & Yannakakis, M. (1985). A note on succinct representations of
graphs. Inform. Comput., 71 , 181–185.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .
Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. J. Mach. Learn.
Res., 12 , 2825–2830.

Pelov, N., Denecker, M., & Bruynooghe, M. (2004). Partial stable models for logic
programs with aggregates. In V. Lifschitz & I. Niemelä (Eds.), Logic Programming
and Nonmonotonic Reasoning, 7th International Conference, LPNMR 2004, Fort
Lauderdale, FL, USA, January 6-8, 2004, Proceedings (Vol. 2923, pp. 207–219).
Springer.

Rabinovich, A., & Belongie, S. J. (2009). Scenes vs. objects: A comparative study of two
approaches to context based recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR Workshops 2009, Miami, FL, USA, 20-25 June,
2009 (pp. 92–99). IEEE Computer Society.

Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., & Belongie, S. J. (2007).
Objects in context. In IEEE 11th International Conference on Computer Vision,
ICCV 2007, Rio de Janeiro, Brazil, October 14-20, 2007 (pp. 1–8). IEEE Computer
Society.

Randell, D. A., Cui, Z., & Cohn, A. G. (1992). A spatial logic based on regions and
connection. In B. Nebel, C. Rich, & W. R. Swartout (Eds.), Proceedings of the 3rd
International Conference on Principles of Knowledge Representation and Reasoning
(KR’92). Cambridge, MA, USA, October 25-29, 1992. (pp. 165–176). Morgan
Kaufmann.

189

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Ray, O. (2009). Nonmonotonic abductive inductive learning. J. Applied Logic, 7 (3),
329–340.

Redl, C. (2014). Answer set programming with external sources: Algorithms and efficient
evaluation (Unpublished doctoral dissertation). Vienna University of Technology.

Redl, C. (2016). The DLVHEX system for knowledge representation: Recent advances
(system description). CoRR, abs/1607.08864 .

Redl, C. (2017a). Conflict-driven ASP solving with external sources and program splits.
In C. Sierra (Ed.), Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017
(pp. 1239–1246). ijcai.org.

Redl, C. (2017b). Efficient evaluation of answer set programs with external sources based
on external source inlining. In S. P. Singh & S. Markovitch (Eds.), Proceedings of
the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA. (pp. 1222–1228). AAAI Press.

Redl, C., Eiter, T., & Krennwallner, T. (2011). Declarative belief set merging using
merging plans. In R. Rocha & J. Launchbury (Eds.), Practical Aspects of Declarative
Languages - 13th International Symposium, PADL 2011, Austin, TX, USA, January
24-25, 2011. Proceedings (Vol. 6539, pp. 99–114). Springer.

Reiter, R., & de Kleer, J. (1987). Foundations of assumption-based truth maintenance
systems: Preliminary report. In K. D. Forbus & H. E. Shrobe (Eds.), Proceedings
of the 6th National Conference on Artificial Intelligence. Seattle, WA, USA, July
1987. (pp. 183–189). Morgan Kaufmann.

Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., & Leone, N. (2009).
Ontodlv: An asp-based system for enterprise ontologies. J. Log. Comput., 19 (4),
643–670.

Richardson, M., & Domingos, P. M. (2006). Markov logic networks. Machine Learning,
62 (1-2), 107–136.

Rosis, A. D., Eiter, T., Redl, C., & Ricca, F. (n.d., August). Constraint answer
set programming based on HEX-programs. In Eighth Workshop on Answer Set
Programming and Other Computing Paradigms (ASPOCP 2015), August 31, 2015,
Cork, Ireland.

Roussel, O., & Manquinho, V. M. (2009). Pseudo-boolean and cardinality constraints. In
A. Biere, M. Heule, H. van Maaren, & T. Walsh (Eds.), Handbook of Satisfiability
(Vol. 185, pp. 695–733). IOS Press.

Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W. T. (2008). Labelme:
A database and web-based tool for image annotation. International Journal of
Computer Vision, 77 (1-3), 157–173.

Saathoff, C., & Staab, S. (2008). Exploiting spatial context in image region labelling using
fuzzy constraint reasoning. In Ninth International Workshop on Image Analysis
for Multimedia Interactive Services, WIAMIS 2008, Klagenfurt, Austria, May 7-9,
2008 (pp. 16–19). IEEE Computer Society.

Schüller, P. (2012). Inconsistency in multi-context systems: Analysis and efficient
evaluation (Unpublished doctoral dissertation). Vienna University of Technology,

190

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Vienna, Austria.

Schüller, P. (2019). The hexlite solver - lightweight and efficient evaluation of HEX
programs. In F. Calimeri, N. Leone, & M. Manna (Eds.), Logics in Artificial
Intelligence - 16th European Conference, JELIA 2019, Rende, Italy, May 7-11,
2019, Proceedings (Vol. 11468, pp. 593–607). Springer.

Sen, P., Namata, G., Bilgic, M., & Getoor, L. (2010). Collective classification. In
C. Sammut & G. I. Webb (Eds.), Encyclopedia of Machine Learning (pp. 189–193).
Springer.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Gallagher, B., & Eliassi-Rad, T. (2008).
Collective classification in network data. AI Magazine, 29 (3), 93–106.

Shchekotykhin, K. M., Jannach, D., & Schmitz, T. (2015). MergeXplain: Fast compu-
tation of multiple conflicts for diagnosis. In Q. Yang & M. J. Wooldridge (Eds.),
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015 (pp. 3221–3228).
AAAI Press.

Shen, Y., Wang, K., Eiter, T., Fink, M., Redl, C., Krennwallner, T., & Deng, J. (2014).
FLP answer set semantics without circular justifications for general logic programs.
Artif. Intell., 213 , 1–41.

Simons, P., Niemelä, I., & Soininen, T. (2002). Extending and implementing the stable
model semantics. Artif. Intell., 138 (1-2), 181–234.

Soininen, T., Niemelä, I., Tiihonen, J., & Sulonen, R. (2001). Representing configuration
knowledge with weight constraint rules. In A. Provetti & T. C. Son (Eds.), Answer
Set Programming, Towards Efficient and Scalable Knowledge Representation and
Reasoning, Proceedings of the 1st Intl. ASP’01 Workshop, Stanford, CA, USA,
March 26-28, 2001.

Sörensson, N., & Biere, A. (2009). Minimizing learned clauses. In O. Kullmann (Ed.),
Theory and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings (Vol.
5584, pp. 237–243). Springer.

Strobl, C. (2008). Dimensionally extended nine-intersection model (DE-9IM). In
S. Shekhar & H. Xiong (Eds.), Encyclopedia of GIS. (pp. 240–245). Springer.

Susman, B., & Lierler, Y. (2016). Smt-based constraint answer set solver EZSMT (system
description). In M. Carro, A. King, N. Saeedloei, & M. D. Vos (Eds.), Technical
Communications of the 32nd International Conference on Logic Programming,
ICLP 2016 TCs, October 16-21, 2016, New York City, USA (Vol. 52, pp. 1:1–1:15).
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

Tamaddoni-Nezhad, A., Bohan, D., Raybould, A., & Muggleton, S. (2014). Towards
machine learning of predictive models from ecological data. In J. Davis & J. Ramon
(Eds.), Inductive Logic Programming - 24th International Conference, ILP 2014,
Nancy, France, September 14-16, 2014, Revised Selected Papers (Vol. 9046, pp.
154–167). Springer.

Tang, K., Zhang, H., Wu, B., Luo, W., & Liu, W. (2019). Learning to compose dynamic
tree structures for visual contexts. In IEEE Conference on Computer Vision and

191

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019 (pp.
6619–6628). Computer Vision Foundation / IEEE.

Taupe, R., Weinzierl, A., & Friedrich, G. (2019). Degrees of laziness in grounding -
effects of lazy-grounding strategies on ASP solving. In M. Balduccini, Y. Lierler,
& S. Woltran (Eds.), Logic Programming and Nonmonotonic Reasoning - 15th
International Conference, LPNMR 2019, Philadelphia, PA, USA, June 3-7, 2019,
Proceedings (Vol. 11481, pp. 298–311). Springer.

Terracina, G., Francesco, E. D., Panetta, C., & Leone, N. (2008). Enhancing a DLP
system for advanced database applications. In D. Calvanese & G. Lausen (Eds.),
Web Reasoning and Rule Systems, Second International Conference, RR 2008,
Karlsruhe, Germany, October 31-November 1, 2008. Proceedings (Vol. 5341, pp.
119–134). Springer.

Terracina, G., Leone, N., Lio, V., & Panetta, C. (2008). Experimenting with recursive
queries in database and logic programming systems. TPLP, 8 (2), 129–165.

Tran, S. D., & Davis, L. S. (2008). Event modeling and recognition using markov logic
networks. In D. A. Forsyth, P. H. S. Torr, & A. Zisserman (Eds.), Computer Vision
- ECCV 2008, 10th European Conference on Computer Vision, Marseille, France,
October 12-18, 2008, Proceedings, Part II (Vol. 5303, pp. 610–623). Springer.

Valiant, L. G. (1984). A theory of the learnable. Commun. ACM , 27 (11), 1134–1142.
Weinzierl, A. (2017). Blending lazy-grounding and CDNL search for answer-set solving.

In M. Balduccini & T. Janhunen (Eds.), Logic Programming and Nonmonotonic
Reasoning - 14th International Conference, LPNMR 2017, Espoo, Finland, July
3-6, 2017, Proceedings (Vol. 10377, pp. 191–204). Springer.

Xu, D., Zhu, Y., Choy, C. B., & Fei-Fei, L. (2017). Scene graph generation by iterative
message passing. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017 (pp. 3097–3106).
IEEE Computer Society.

Xu, P., Chang, X., Guo, L., Huang, P.-Y., Chen, X., & Hauptmann, A. (EasyChair,
2020). A survey of scene graph: Generation and application. EasyChair Preprint
no. 3385.

Yang, Z., Ishay, A., & Lee, J. (2020). NeurASP: Embracing neural networks into answer set
programming. In C. Bessiere (Ed.), Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020 (pp. 1755–1762). ijcai.org.

Zhang, H., Fritts, J. E., & Goldman, S. A. (2008). Image segmentation evaluation:
A survey of unsupervised methods. Computer Vision and Image Understanding,
110 (2), 260–280.

Zirtiloglu, H., & Yolum, P. (2008). Ranking semantic information for e-government:
complaints management. In A. Duke, M. Hepp, K. Bontcheva, & M. B. Vilain
(Eds.), Proceedings of the First International Workshop on Ontology-supported
Business Intelligence, OBI 2008, Karlsruhe, Germany, October 27, 2008 (Vol. 308,
p. 5). ACM.

192

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX A
Proofs

This appendix contains the proofs for the complexity results from Chapter 4 and the
proofs for soundness and completeness of Algorithm 5.1 from Chapter 5.

A.1 Proofs for Complexity Results from Section 4.2

We thank Thomas Eiter for contributing the following complexity results to our joint
work in (Eiter & Kaminski, 2019).

Proposition 4.8. Checking faithfulness of a given set D ⊆ dep(&g[~p]) is co-NEXP-
complete in general, and co-NP-complete for fixed predicate arities.

Proof. Membership in co-NEXP respectively co-NP can be shown by a guess and check
algorithm for disproving faithfulness of D: to this end, we can guess assignments A, A′

to the input predicates ~p, and an output tuple ~c, such that A, A′ coincide on all atoms
in comp(D, &g[~p](~c)) and f&g(A, ~p,~c) 6= f&g(A′, ~p,~c).

The guess for A, A′ and ~c is in the general case of exponential size in the input, while
it has polynomial size if the arity of the predicates pi in ~p is bounded by a constant, as
only a polynomial number of atoms in the size of the set of constants is possible.

In order to verify the guess, one first computes the set comp(D, &g[~p](~c)); this is
feasible in exponential (resp. polynomial) time in the size of the input. Checking whether
A, A′ coincide on comp(D, &g[~p](~c)) and computing f&g(A, ~p,~c) and f&g(A′, ~p,~c) is both
feasible in exponential (resp. polynomial) time in the size of the input; overall, this
means that disproving faithfulness of D is in NEXP, from which the claimed upper bound
follows.

For the hardness parts, we provide a reduction from the complement of Graph 3-
Colorability, which is a canonical NP-complete problem. For succinct input representation,
this problem is well-known to be NEXP-complete (Papadimitriou & Yannakakis, 1985);
that is, the graph G = (V, E) is not given in the usual form (say, by the adjacency matrix

193

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Proofs

of its vertices), but by a Boolean circuit CG with 2n input bits b1, . . . , b2n such that
v = b1, . . . , bn and v′ = bn+1, . . . , b2n represent nodes (in binary coding) and the circuit
CG outputs 1 for v, v′ if and only if there is an edge between v and v′. (Note that CG

can be exponentially more succinct than the usual representation of G, which intuitively
explains the exponential complexity blowup.)

We reduce 3-Colorability to non-faithfulness checking as follows. We use an external
predicate &colG [r, g, b]/1 that has three n-ary input predicates ~p = r, g, b, where each
ground atom r(b1, . . . , bn) with all bi ∈ {0, 1} means that the vertex v = b1, . . . , bn is
colored red (analogous for b and g). The function f&colG(A, ~p, 1) evaluates to T iff
~p = r, g, b as given in A constitutes a legal 3-coloring for the graph G (this property can
be easily checked in polynomial time in the size of A and CG

1), and f&colG(A, ~p, 0) takes
the opposite value.

The set of io-dependencies is D = {δ1, δ2, δ3}, where δi = 〈i, 1 : {0}, 1 : 0〉, for
i = 1, 2, 3. Intuitively for output 0, only the color assignment to the vertices in V0 = {v =
0, b2, . . . , bn | bi ∈ {0, 1}, 2 ≤ i ≤ n} matters, i.e., those with a leading 0 in the binary
representation, as comp(D, &colG [r, g, b](0)) = {r(v), g(v), b(v) | v ∈ V0}. However, to be
sure that any 3-coloring for these vertices (which might be feasible) can not be extended
to a 3-coloring of all vertices, it must hold that the full graph is not 3-colorable.

Formally, we claim that D is faithful w.r.t. &colG [r, g, b] iff the graph G is not
3-colorable.

(⇐) Assume that G is not 3-colorable. Then, for every assignment A, we have that
f&colG(A, r, g, b, 1) = F and f&colG(A, r, g, b, 0) = T; hence D is clearly faithful, as no
counterexample to the faithfulness condition is possible.

(⇒) Assume that G is 3-colorable. Then there exists an assignment A such that
f&colG(A, r, g, b, 1) = T holds, which means f&colG(A, r, g, b, 0) = F. However, for the
assignment A′ that coincides with A on V0 and assigns no color to the remaining
vertices V \ V0 (where without loss of generality, some such vertex exists), we have
f&colG(A, r, g, b, 1) = F and thus f&colG(A, r, g, b, 0) = T; hence, D is not faithful.

This shows the co-NEXP-hardness of the problem in the general case. In the case
of bounded predicate arities, we use the nodes V as constants, and r(v) expresses that
vertex v is colored red (analogous for b and g). Then, assuming that only 0 and 1 can
be in the output of &colG [r, g, b], i.e., f&colG(A, r, g, b, c) = F for every c 6= 0, 1, we
similarly conclude that D is not faithful w.r.t. &colG [r, g, b] iff G is 3-colorable; this
proves co-NP-hardness.

We remark that the three predicates r, g, b in the above construction can be replaced
by a single predicate p using reification (i.e., represent r(~d) by p(r, ~d)); moreover, in
the case of bounded predicate arity, tuples (r, v), etc can be viewed as constants of
the domain. Consequently, the hardness parts hold for a single input predicate, which
moreover for bounded arities is unary.

1Technically, the code for this check can be realized as a Turing machine MG that cycles through all
pairs v, v′ of nodes and simulates for each pair the evaluation of CG and checks whether v, v′ are colored
differently if an edge between them exists. The machine MG is constructible in polynomial time from
CG, and it runs on input A in time polynomial in the size of A and CG. As such, MG constitutes the
implementation of f&colG

.

194

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.2. Proofs for Soundness and Completeness of Algorithm 5.1

Corollary 4.2. If all pi ∈ ~p for &g[~p] are monotonic and |comp(D, &g[~p](~c))| is bounded,
then checking faithfulness is polynomial for fixed predicate arities.

Proof. Indeed, if we have that |comp(D, &g[~p](~c))| ≤ k for a constant k, then after com-
puting comp(D, &g[~p](~c)), which can for bounded predicate arities be done in polynomial
time by cycling through all (polynomially many) atoms, we need to consider by Propo-
sition 4.9 for each assignment on comp(D, &g[~p](~c)) only the two specific assignments
that set all other ground atoms to true resp. all to false; thus, we need to evaluate and
compare 2·2k = 2k+1 function calls, which is feasible in polynomial time.

A.2 Proofs for Soundness and Completeness of

Algorithm 5.1

In this section, we work out the proof of Proposition 5.4, as well as the proof for the
main result stated in Theorem 5.2, i.e. soundness and completeness of Algorithm 5.1.
To this end, we proceed in several steps, introducing two auxiliary lemmas used in the
proofs of Proposition 5.4 and Theorem 5.2.

The overall structure of the proof is as follows:

• First, we characterize assignments b(A,A) in Definition A.1 and show, in the proof
of Lemma A.1, that all outputs of Algorithm 5.1 correspond to some b(A,A).

• Proposition 5.4 then represents the core of the soundness and completeness result,
and we show in the corresponding proof that the sets b(A,A) encode exactly the
answer sets of the respective hex-program given as input to Algorithm 5.1. For
this, we utilize the Splitting Theorem from (Eiter, Fink, Ianni, et al., 2016) and
show both directions by an induction proof.

• Accordingly, Theorem 5.2 follows directly from Lemmas A.1 and A.2.

• Finally, based on the results from Lemmas A.1 and A.2, Proposition 5.4 can be
proven by showing that given a complete assignment A, b(A,A) is an answer set
of α(Π,A) ∪ η(Π) if and only if A is an answer set of Π.

Definition A.1. Given a hex-program Π, an input-safe domain A of Π and a complete
assignment A over the set of atoms occurring in grnd(Π), we define b(A,A) = D̂, i.e.
b(A,A) is the completion of D w.r.t. HB, where D = {Tpd(~X) | p(~X) ∈ A} ∪ {Tp(~X) |
p(~X) ∈ A, Fp(~X) ∈ A} ∪ {Tp(~X) ∈ A} ∪ {Te&g[~p](~c) | f&g(A, ~p,~c) = T, &g[~p](~c) is a
ground external atom in grnd(Π)}.

Lemma A.1. Let Π be a hex-program, A an input-safe domain of Π, and res(α(Π,A))
the set returned by Algorithm 5.1 for input α(Π,A). Then, every A ∈ res(α(Π,A)) is
such that A = b(A′,A) for some complete assignment A′ that assigns T only to atoms
occurring in grnd(Π).

195

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Proofs

Proof. Let Π be a hex-program, A an input-safe domain of Π, and res(α(Π,A)) the set
returned by Algorithm 5.1 for input α(Π,A). We need to show:

(*) every A ∈ res(α(Π,A)) is such that A = b(A′,A) for some complete assignment
A′ that assigns T only to atoms occurring in grnd(Π).

Given any complete assignment A, let Aord = {Ta ∈ A | a is an ordinary atom in
grnd(Π)}. Then, Âord is a complete assignment that assigns T only to atoms occurring
in grnd(Π). We prove the statement (*) by showing that every A ∈ res(α(Π,A)) is such
that A = b(Âord,A). For this, we take an arbitrary A ∈ res(α(Π,A)) and show that
A = b(Âord,A).

It is easy to see that {Ta ∈ A | a is an ordinary atom in grnd(Π)} = {Ta ∈
b(Âord,A) | a is an ordinary atom in grnd(Π)} since assignments of the value T to atoms
in Âord are preserved in b(Âord,A), according to Definition A.1. It is left to show
that each of Tpd(~X) ∈ A, Tp(~X) ∈ A and Te&g[~p](~c) ∈ A if and only if it holds that

Tpd(~X) ∈ b(Âord,A), Tp(~X) ∈ b(Âord,A) and Te&g[~p](~c) ∈ b(Âord,A), respectively.
Note that it suffices to show that the same truth values are assinged to atoms of one of
the forms pd(~X), p(~X) and e&g[~p](~c) because A and b(Âord,A) do not assign T to any
atom not occurring in grnd(α(Π,A)).

First, we derive that Tpd(~X) ∈ b(Âord,A) implies Tpd(~X) ∈ A since the fact pd(~X)←
is contained in α(Π,A) for all p(~X) ∈ A. Moreover, we derive that Tpd(~X) ∈ A implies
Tpd(~X) ∈ b(Âord,A) because atoms of the form pd(~X) do not occur in the head of any
rule in α(Π,A) apart from the fact pd(~X)←, and guessing and propagation as performed
by Algorithm 5.1 does not assign T to ordinary atoms that are not defined by any rule.

In addition, we have that for all predicate symbols p of some atom inA the rule p(X)←
pd(X), not p(X) is contained in α(Π,A). We infer that Tp(X) ∈ A iff Fp(X) ∈ A, for all
p(~X) ∈ A, since we know that the fact pd(~X)← is contained in α(Π,A). Consequently, we
also obtain that Tp(~X) ∈ A iff Tp(~X) ∈ b(Âord,A) because {Tp(~X)|p(~X) ∈ A, Fp(~X) ∈
A} is the projection of b(Âord,A) to signed literals of the form Tp(~X), and since there
are no other rules in α(Π,A) with p(~X) in the head.

Finally, we have that Te&g[~p](~c) ∈ b(Âord,A) holds iff f&g(Âord, ~p,~c) = T, for every
ground external atom &g[~p](~c) in grnd(Π), according to Definition A.1. Moreover, we
obtain that f&g(Âord, ~p,~c) = T holds iff it also holds that f&g(A, ~p,~c) = T as Âord and
A coincide w.r.t. ordinary atoms in grnd(Π). Hence, a rule e&g[~p](~c) ← BA,~p is added

during the computation of A by Algorithm 5.1 s.t. A |= BA,~p iff f&g(Âord, ~p,~c) = T,

and we derive that Te&g[~p](~c) ∈ A iff Te&g[~p](~c) ∈ b(Âord,A).

We conclude that A = b(Âord,A). This finishes the proof and shows that the set
res(α(Π,A)) returned by Algorithm 5.1 for input α(Π,A) contains a complete assignment
A only if A = b(A′,A) for some complete assignment A′ that assigns T only to atoms
occurring in grnd(Π).

Lemma A.2. Let Π be a hex-program, A be an input-safe domain of Π, and A be a
complete assignment. The set res(α(Π,A)) returned by Algorithm 5.1 for input α(Π,A)
contains b(A,A) if and only if A is an answer set of Π.

196

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.2. Proofs for Soundness and Completeness of Algorithm 5.1

Proof. Let Π be a hex-program, A an input-safe domain of Π and res(α(Π,A)) the set
of complete assignments returned by Algorithm 5.1 for input α(Π,A). We need to prove
that for every complete assignment A, b(A,A) ∈ res(α(Π,A)) if and only if A is an
answer set of Π.

Here, we rely on the notions of rule dependency and rule dependency graph defined in
Definitions 9 and 10 of (Eiter, Fink, Ianni, et al., 2016), respectively. The rule dependency
graph of grnd(Π) is called DG(grnd(Π)). In the following, let ω ≥ 1 be the number of
strongly connected components of DG(grnd(Π)). We denote an arbitrary topological
sorting of the strongly connected components of DG(grnd(Π)) by R1, ..., Rω, where R1

is the component that has no outgoing edges, i.e. no rule in R1 depends on a rule outside
of R1.

We define that Sj = R1 ∪ ... ∪Rj , for 1 ≤ j ≤ ω. Then, according to Definition 11 of
(Eiter, Fink, Ianni, et al., 2016), every Sj is a rule splitting set for Sk, with 1 ≤ j ≤ k ≤ ω.
Thus, due to the Splitting Theorem stated in Theorem 1 of (Eiter, Fink, Ianni, et al.,
2016), we have that M is an answer set of (Sk \ Sj) ∪ facts(X) if and only if M is an
answer set of Sk, where facts(X) is a set of facts corresponding to the true atoms in some
answer set X of Sj .

Due to the restriction on cyclic dependencies over external atoms stated above, a
ground external atom in a rule contained in component Rm can only depend on rules in
components Rm′ , where m′ < m, i.e. if the ground external atom &g[~p](~c) occurs in a
rule in Rm, then all rules with head p(~X), where p ∈ ~p, are in some component Rm′ s.t.
m′ < m.

Moreover, when Algorithm 5.1 is called with input α(Sk,Ak), for any 1 ≤ k ≤ ω
and arbitrary input-safe domain Ak of Sk, the algorithm can generate the same set of
nogoods for rules corresponding to rules in Sj , with 1 ≤ j ≤ k ≤ ω, in Part (c) as when
it is called with input α(Sj ,Aj), with arbitrary input-safe domain Aj of Sj . In addition,
it can derive the same truth values for replacement atoms representing external atoms in
Sj in this case, and it can make the same guesses and propagations for ordinary atoms
in Sj in Parts (e) and (a), respectively, because the latter do not depend on rules in
Sk \ Sj . Consequently, the same set of intermediary assignments for ordinary atoms and
replacement atoms of the form e&g[~p](~c) for external atoms in Sj can be generated during
the execution of Algorithm 5.1 with input α(Sk,Ak) as when α(Sj ,Aj) is processed.

Correctness proof:

(⇒) We need to prove that for every complete assignment A it holds that if b(A,A) ∈
res(α(Π,A)), then A is an answer set of Π.

We show by induction on n that (*) for every complete assignment ASn it holds that
if b(ASn ,An) ∈ AS(α(Sn,An)), where An is an arbitrary input-safe domain of Sn, then
ASn is an answer set of Sn, for all 1 ≤ n ≤ ω.

Base case:

For the base case, consider n = 1, i.e. we need to show that the proposition (*) holds
w.r.t. S1. If there are no external atoms in S1, it follows directly from the correctness
of the alpha algorithm (cf. (Weinzierl, 2017)) that for every complete assignment AS1

and input-safe domain A1 of S1, it holds that if b(AS1 ,A1) ∈ AS(α(S1,A1)), then AS1

197

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Proofs

is an answer set of S1 since no nogoods are generated in Part (d) of Algorithm 5.1 and
no replacement atoms of the form e&g[~p](~c) occur in α(S1,A1) in this case.

So, consider the case that S1 contains external atoms. Let AS1 be an arbitrary
complete assignment s.t. b(AS1 ,A1) ∈ AS(α(S1,A1)).

We show that, for each ground external atom &g[~p](~c) occurring in S1, it holds that
Te&g[~p](~c) ∈ b(AS1 ,A1) if and only if AS1 |= &g[~p](~c). From this, it follows that AS1

is an answer set of S1 because then, b(AS1 ,A1) determines exactly the truth value of
&g[~p](~c) under AS1 for each ground external atom &g[~p](~c) occurring in S1; all external
atoms of the form &g[~p](~c) in S1 are replaced by ordinary atoms of the form e&g[~p](~c) in
α(S1,A1); and the alpha algorithm is correct w.r.t. ordinary answer set programs.

Let &g[~p](~c) be an arbitrary ground external atom in S1. We need to show that
Te&g[~p](~c) ∈ b(AS1 ,A1) if and only if AS1 |= &g[~p](~c).

First, consider the case that AS1 |= &g[~p](~c), which implies that f&g(AS1 , ~p,~c) = T.

From this, it follows that f&g(i(b(AS1 ,A1),A1), ~p,~c) = T as we have that Tp(~X) ∈
b(AS1 ,A1) iff Fp(~X) ∈ AS1 , for all p(~X) ∈ A1, due to the program transformation
defined in Definition 5.5. Consequently, the rule e&g[~p](~c)← Bb(AS1 ,A1),~p is added in Part

(d) of Algorithm 5.1. Moreover, we have that b(AS1 ,A1) |= Bb(AS1 ,A1),~p and thus, it

must be the case that Te&g[~p](~c) ∈ b(AS1 ,A1).

Second, consider the case that AS1 6|= &g[~p](~c), and suppose towards a contradiction
that Te&g[~p](~c) ∈ b(AS1 ,A1). From Te&g[~p](~c) ∈ b(AS1 ,A1), we infer that, for some

C ⊆ b(AS1 ,A1), it holds that f&g(i(C,A1), ~p,~c) = T, relying on the fact that Te&g[~p](~c) ∈
b(AS1 ,A1) can only be the case if a rule e&g[~p](~c)← BC,~p is added during the execution

of Algorithm 5.1 in Part (d) and it holds that b(AS1 ,A1) |= BC,~p. Now, it cannot be

the case that a rule with head p(~X), s.t. p ∈ ~p, is contained in S1 since R1 is a strongly
connected component of DG(grnd(Π)) where no rule in R1 depends on a rule outside
of R1 (recall that cyclic dependencies over external atoms are not allowed). Hence,
we have that for all p(~X), s.t. p ∈ ~p, the signed literal Fp(~X) must be contained in
b(AS1 ,A1). As during the evaluation of f&g(i(C,A1), ~p,~c) all atoms p(~X), s.t. p ∈ ~p and

Xp(~X) 6∈ i(C,A1) for X ∈ {T, F, U}, are treated as having the truth value F, we derive
that f&g(i(b(AS1 ,A1),A1), ~p,~c) = T and hence, that also f&g(AS1 , ~p,~c) = T holds.

However, the fact that AS1 6|= &g[~p](~c) implies that f&g(AS1 , ~p,~c) 6= T and hence, we
obtain a contradiction. We conclude that AS1 is an answer set of S1 as the truth value
of every replacement atom e&g[~p](~c) in b(AS1 ,A1) corresponds exactly to the truth value

of &g[~p](~c) under AS1 , and the alpha algorithm is correct w.r.t. ordinary answer set
programs.

This finishes the base case; we continue with the induction step.

Induction step:

Next, take an arbitrary 1 ≤ k < ω and suppose that proposition (*) holds regarding
every n with 1 ≤ n ≤ k (induction hypothesis). We show that (*) also holds for n = k +1.

Let ASk+1 be an arbitrary complete assignment s.t. b(ASk+1 ,Ak+1) is contained in
AS(α(Sk+1,Ak+1)), where Ak+1 is an input-safe domain of Sk+1. We need to prove that
ASk+1 is an answer set of Sk+1. Let ASk be a complete assignment s.t. b(ASk ,Ak) is

198

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.2. Proofs for Soundness and Completeness of Algorithm 5.1

contained in AS(α(Sk,Ak)) and b(ASk ,Ak) assigns the same truth values to atoms in
α(Sk,Ak) corresponding to ordinary and external atoms in Sk as b(ASk+1 ,Ak+1). The
complete assignment ASk must exist because we have that Sk ⊂ Sk+1, and Algorithm
5.1 can generate the same set of nogoods for rules corresponding to rules in Sk when
it is executed with input α(Sk+1,Ak+1) as when it is called with α(Sk,Ak). Further,
Algorithm 5.1 can make the same guesses and propagations for ordinary atoms in Sk, and
can derive the same truth values for replacement atoms in α(Sk,Ak) when it is executed
with input α(Sk+1,Ak+1) as when it is called with α(Sk,Ak). According to the induction
hypothesis, ASk is an answer set of Sk.

Now, we proceed with the induction step analogously to the base case.

If there are no external atoms in Sk+1 \ Sk, it follows from the correctness of the
alpha algorithm (cf. (Weinzierl, 2017)) that if it holds for a complete assignment ASk+1

that b(ASk+1 ,Ak+1) ∈ AS(α(Sk+1,Ak+1)), then ASk+1 is an answer set of (Sk+1 \ Sk) ∪
facts(ASk) because ASk+1 assigns the same truth values to atoms in Sk as ASk . According
to the Splitting Theorem, we obtain that ASk+1 is an answer set of Sk+1 as ASk is an
answer set of Sk.

Alternatively, consider the case that Sk+1 \ Sk contains external atoms. Similar to
before, we proceed by showing that, for each ground external atom &g[~p](~c) occurring in
Sk+1 \ Sk, it holds that Te&g[~p](~c) ∈ b(ASk+1 ,Ak+1) if and only if ASk+1 |= &g[~p](~c). Let
&g[~p](~c) be an arbitrary ground external atom in Sk+1 \ Sk.

First, consider the case that ASk+1 |= &g[~p](~c), which implies that f&g(ASk , ~p,~c) = T
since &g[~p](~c) only depends on rules in Sk. It follows that f&g(i(b(ASk ,Ak),Ak), ~p,~c) = T

as Tp(~X) ∈ b(ASk ,Ak) iff Fp(~X) ∈ ASk , for all p(~X) ∈ Ak. Thus, the rule e&g[~p](~c)←
Bb(ASk ,Ak),~p is added in Part (d) of Algorithm 5.1, and we have that b(ASk ,Ak) |=
Bb(ASk ,Ak),~p. Consequently, it must be the case that Te&g[~p](~c) ∈ b(ASk+1 ,Ak+1) since

{Te&g[~p](~c) ∈ b(ASk ,Ak)} ⊆ {Te&g[~p](~c) ∈ b(ASk+1 ,Ak+1)}.
Second, consider the case that ASk+1 6|= &g[~p](~c), and suppose towards contradiction

that Te&g[~p](~c) ∈ b(ASk+1 ,Ak+1). From Te&g[~p](~c) ∈ b(ASk+1 ,Ak+1), we infer that, for

some C ⊆ b(ASk ,Ak), it holds that f&g(i(C,Ak), ~p,~c) = T. The previous holds since
Te&g[~p](~c) ∈ b(ASk+1 ,Ak+1) can only be the case if a rule e&g[~p](~c)← BC,~p is added during

the execution of Algorithm 5.1 in Part (d) and it holds that b(ASk+1 ,Ak+1) |= BC,~p.
Because i(C,Ak) is input-complete w.r.t. Sk being over an input-safe domain of Sk, we
have that f&g(i(C,Ak), ~p,~c) = T implies that f&g(ASk , ~p,~c) = T. This is true according
to Definition 5.2 because ASk is an answer set of Sk, due to the induction hypothesis,
s.t. ASk � A~p,A, where A~p,A = {Xa ∈ i(C,Ak) | a has predicate p ∈ ~p}. However,
the fact that ASk 6|= &g[~p](~c) implies that f&g(ASk , ~p,~c) 6= T and hence, we obtain a
contradiction.

We infer that ASk+1 assigns the same truth values to atoms in Sk as ASk because
b(ASk+1 ,Ak+1) assigns the same truth values to atoms in α(Sk,Ak) that correspond
to ordinary and external atoms in Sk as b(ASk ,Ak). In addition, due to the induction
hypothesis, we have that ASk is an answer set of Sk. We infer that ASk+1 is an answer set
of (Sk+1 \ Sk) ∪ facts(ASk), where facts(ASk) is a set of facts corresponding to the true

199

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Proofs

atoms in ASk , because, for each ground external atom &g[~p](~c) occurring in Sk+1 \ Sk,
the truth values of e&g[~p](~c) in b(ASk+1 ,Ak+1) and &g[~p](~c) under ASk+1 coincide, and we
know from (Weinzierl, 2017) that Algorithm 5.1 is correct for ordinary answer set solving.
According to the Splitting Theorem, we obtain that ASk+1 is an answer set of Sk+1.

This finishes the induction step, and we obtain, for all 1 ≤ n ≤ ω, that for every
complete assignment ASn s.t. b(ASn ,An) ∈ AS(α(Sn,An)) it holds that ASn is an answer
set of Sn, where An is an input-safe domain of Sn. We conclude that for every complete
assignment A it holds that if b(A,A) ∈ res(α(Π,A)), then A is an answer set of Π since
Π = Sω and A is an input-safe domain of Π. Hence, Algorithm 5.1 is correct.

Completeness proof:

(⇐) We need to prove that, for every complete assignment A, if A is an answer set
of Π, then b(A,A) is contained in res(α(Π,A)).

We show by induction on n that (**) for every complete assignment ASn it holds
that if ASn is an answer set of Sn, then b(ASn ,An) ∈ AS(α(Sn,An)), where An is an
arbitrary input-safe domain of Sn, for all 1 ≤ n ≤ ω.

Base case:

For the base case, consider n = 1, i.e. we need to show that proposition (**) holds
w.r.t. S1.

If there are no external atoms in S1, it follows directly from the completeness of
the alpha algorithm (cf. (Weinzierl, 2017)) that if AS1 is an answer set of S1 and A1

an input-safe domain of S1, then the complete assignment b(AS1 ,A1) is contained in
AS(α(S1,A1)) because we have that S1 ⊆ α(S1,A1) in this case, and S1 does not contain
any atom that is defined in α(S1,A1) \ S1.

So, consider the case that S1 contains external atoms. Let AS1 be an arbitrary answer
set of S1. Let &g[~p](~c) be an arbitrary ground external atom in S1.

We need to show that b(AS1 ,A1) ∈ AS(α(S1,A1)). Note that, as stated before, there
cannot be a rule with head p(~X), s.t. p ∈ ~p, contained in grnd(Π) since R1 is a strongly
connected component of DG(grnd(Π)) where no rule in R1 depends on a rule outside of
R1 (there are no cyclic dependencies over external atoms).

Accordingly, for every atom p(~X) with p ∈ ~p, it must be the case that Fp(~X) ∈ AS1 .
Moreover, for every atom p(~X) ∈ A1 with p ∈ ~p, it must be the case that Tp(~X) is
contained in every complete assignment in AS(α(S1,A1)). Then, however, it holds
that AS1 |= &g[~p](~c) if and only if the rule e&g[~p](~c) ← B{Fp(~X)|p(~X)∈A1,p∈~p},~p is added

in Part (d) when Algorithm 5.1 is executed with α(S1,A1) as input. It follows that
b(AS1 ,A1) is contained in AS(α(S1,A1)) because then, Te&g[~p](~c) is derived by Algorithm

5.1 if and only if AS1 |= &g[~p](~c), i.e. it holds that Te&g[~p](~c) ∈ b(AS1 ,A1) if and only

if AS1 |= &g[~p](~c); and the alpha algorithm is complete w.r.t. ordinary answer set
programs.

This finishes the base case; we continue with the induction step.

Induction step:

Next, take an arbitrary 1 ≤ k < ω and suppose that statement (**) holds regarding
every n with 1 ≤ n ≤ k (induction hypothesis). We show that (**) also holds for
n = k + 1.

200

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.2. Proofs for Soundness and Completeness of Algorithm 5.1

Let ASk+1 be an arbitrary answer set of Sk+1, and Ak+1 an input-safe domain of
Sk+1. We need to show that b(ASk+1 ,Ak+1) is contained in AS(α(Sk+1,Ak+1)). Let
ASk be an answer set of Sk s.t. ASk+1 is an answer set of Sk+1 \ Sk ∪ facts(ÂSk

ord), which
must exist according to the Lifting Theorem. Then, due to the induction hypothesis, we
have that b(ASk ,Ak) ∈ AS(α(Sk,Ak)).

If there are no external atoms in Sk+1 \ Sk, it follows directly from the completeness
of the alpha algorithm (cf. (Weinzierl, 2017)) that b(ASk+1 ,Ak+1) ∈ AS(α(Sk+1,Ak+1))
since b(ASk ,Ak) ∈ AS(α(Sk,Ak)); and Algorithm 5.1 can generate the same set of
nogoods for rules corresponding to rules in Sk when it is executed with input α(Sk+1,Ak+1)
as when it is called with α(Sk,Ak), and it can make the same guesses and propagations
for atoms corresponding to atoms in Sk. Consequently, during the execution of Algorithm
5.1 with input AS(α(Sk+1,Ak+1)), an intermediary assignment is obtained that contains
all assignments to atoms corresponding to atoms in Sk from b(ASk ,Ak), and it can be
extended to b(ASk+1 ,Ak+1).

Now, consider the case that Sk+1 \ Sk contains external atoms.

We show that, for each ground external atom &g[~p](~c) occurring in Sk+1 \ Sk, it
holds that ASk+1 |= &g[~p](~c) if and only if a rule e&g[~p](~c)← BC,~p, with C ⊆ b(ASk ,Ak),
is added in Part (d) when Algorithm 5.1 is executed with α(Sk+1,Ak+1) as input.
Then, Te&g[~p](~c) is derived by Algorithm 5.1 when executed with input α(Sk,Ak) based

on an intermediary assignment C if and only if ASk+1 |= &g[~p](~c). Thus, it holds
that Te&g[~p](~c) ∈ b(ASk+1 ,Ak+1) if and only if ASk+1 |= &g[~p](~c) since an intermediary
assignment is obtained that contains all assignments to atoms corresponding to atoms in Sk

from b(ASk ,Ak) when Algorithm 5.1 is executed with input α(Sk+1,Ak+1). Furthermore,
the alpha algorithm is complete w.r.t. ordinary answer set programs and hence, it follows
that b(ASk+1 ,Ak+1) is contained in AS(α(Sk+1,Ak+1)).

Let &g[~p](~c) be an arbitrary ground external atom in Sk+1 \ Sk.

First, consider the case that ASk+1 |= &g[~p](~c), which implies that f&g(ASk , ~p,~c) = T
since &g[~p](~c) only depends on rules in Sk. It follows that f&g(i(b(ASk ,Ak),Ak), ~p,~c) = T

since Tp(~X) ∈ b(ASk ,Ak) iff Fp(~X) ∈ ASk , for all p(~X) ∈ Ak. In addition, the rule
e&g[~p](~c)← Bb(ASk ,Ak),~p is added in Part (d) of Algorithm 5.1 because the assignments to

atoms corresponding to atoms in Sk from b(ASk ,Ak) are contained in an intermediary
assignment when the algorithm is executed with input α(Sk+1,Ak+1).

Second, consider the second case, namely that ASk+1 6|= &g[~p](~c), and suppose
towards contradiction that a rule e&g[~p](~c) ← BC,~p, with C ⊆ b(ASk ,Ak), is added in
Part (d) when Algorithm 5.1 is executed with α(Sk+1,Ak+1) as input. We infer that
f&g(i(C,Ak), ~p,~c) = T. Since the assignment i(C,Ak) is input-complete w.r.t. Sk as it
is over an input-safe domain of Sk, we have that f&g(i(C,Ak), ~p,~c) = T implies that
f&g(ASk , ~p,~c) = T. The previous holds according to Definition 5.2 because ASk is an
answer set of Sk, s.t. ASk � A~p,A, where A~p,A = {Xa ∈ i(C,Ak) | a has predicate p ∈ ~p}.
However, the fact that ASk+1 6|= &g[~p](~c) implies that f&g(ASk , ~p,~c) 6= T and hence, we
obtain a contradiction.

We obtain that Te&g[~p](~c) is derived by Algorithm 5.1 based on an intermediary

assignment C when executed with input α(Sk,Ak) if and only if ASk+1 |= &g[~p](~c).

201

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Proofs

In addition, recall that due to the induction hypothesis, we have that b(ASk ,Ak) ∈
AS(α(Sk,Ak)). We infer that b(ASk+1 ,Ak+1) is contained in AS(α(Sk+1,Ak+1)) because
Algorithm 5.1 derives an intermediary assignment that contains all assignments to
atoms corresponding to atoms in Sk from b(ASk ,Ak) when it is executed with input
α(Sk+1,Ak+1), and we know from (Weinzierl, 2017) that Algorithm 5.1 is complete for
ordinary answer set solving.

This finishes the induction step, and we infer that, for all n, with 1 ≤ n ≤ ω,
and every complete assignment ASn , it holds that if ASn is an answer set of Sn, then
b(ASn ,An) ∈ AS(α(Sn,An)), where An is an input-safe domain of Sn. We conclude that
for every complete assignment A, if A is an answer set of Π, then b(A,A) is contained
in res(α(Π,A)) since Π = Sω and A is an input-safe domain of Π. Consequently, that
Algorithm 5.1 is complete.

Proposition 5.4. For hex-program Π and input-safe domain A of Π, Algorithm 5.1
yields the answer sets of α(Π,A)∪η(Π).

Proof. Let Π be a hex-program and A an input-safe domain of Π. We know from Lemma
A.2 that, given a complete assignment A, the set res(α(Π,A)) returned by Algorithm
5.1 for input α(Π,A) contains b(A,A) if and only if A is an answer set of Π. Moreover,
we know from Lemma A.1 that res(α(Π,A)) contains a complete assignment A only if
A = b(A′,A) for some complete assignment A′ that assigns T only to atoms occurring
in grnd(Π). Hence, we can prove the proposition by showing that, (*) given a complete
assignment A, b(A,A) is an answer set of α(Π,A) ∪ η(Π) if and only if A is an answer
set of Π.

(⇒) We need to show that, given a complete assignment A, if b(A,A) is an answer set
of Π′ = α(Π,A)∪η(Π), then A is an answer set of Π. Let A be a complete assignment s.t.
b(A,A) is an answer set of Π′, i.e. it is a ≤-minimal model of the FLP-reduct fΠ′b(A,A),
according to Definition 2.4. We need to show that A is a ≤-minimal model of fΠA.

First, we show that A |= fΠA by showing that TH ∈ A for all rules r of the form
H ← B in fΠA. We have that for every r ∈ Π there is a rule r′ ∈ Π′, s.t. all external
atoms of the form &g[~p](~c) occurring in r are replaced by ordinary atoms of the form
e&g[~p](~c) in r′, due to the construction of α(Π,A) according to Definition 5.5. In addition,
we know, due to Definition A.1, that b(A,A) |= Te&g[~p](~c) iff f&g(A, ~p,~c) = T, where

&g[~p](~c) is a ground external atom in grnd(Π). As A satisfies all bodies of rules in fΠA,
according to the definition of the FLP-reduct, and since external atoms only occur in
the heads of rules in Π, it must be the case that for every rule H ← B ∈ fΠA there
is a rule H ← B′ ∈ fΠ′b(A,A), s.t. all external atoms of the form &g[~p](~c) occurring in
H ← B are replaced by ordinary atoms of the form e&g[~p](~c) in H ← B′. Hence, from

b(A,A) |= fΠ′b(A,A), we derive that TH ∈ b(A,A) for all rules H ← B′ ∈ fΠ′b(A,A) and
consequently, we obtain also that TH ∈ A for all rules H ← B ∈ fΠA.

Next, we show that there is no complete assignment A′, with A′ < A, s.t. A′ |= fΠA.
Recall that for partial assignments A1 and A2, we denote by A1 < A2 that {Ta ∈ A1} ⊂
{Ta ∈ A2}. We assume towards a contradiction that there is a complete assignment A′,
with A′ < A, s.t. A′ |= fΠA.

202

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.2. Proofs for Soundness and Completeness of Algorithm 5.1

Since no external input-cycles (where an input predicate of an external atom depends
on the atom itself) are allowed, the truth value of an external atom &g[~p](~c) in the body
of a rule H ← B ∈ fΠA cannot depend on the atom H. Now, suppose that for some
rule H ← B ∈ fΠA and some external atom &g[~p](~c) in B either f&g(A, ~p,~c) = T and
f&g(A′, ~p,~c) = F, or f&g(A, ~p,~c) = F and f&g(A′, ~p,~c) = T. Let A′′ = (A′\FH)∪{TH}.
Then it must hold that A′′ < A because

1. TH ∈ A since A |= fΠA and due to the definition of the FLP-reduct, and

2. there must be some Tp(~c) ∈ A s.t. Fp(~c) ∈ A′′ which is the reason for the change
of the value of &g[~p](~c).

Hence, we can assume without loss of generality that our A′, with A′ < A, is such
that for all rules H ← B ∈ fΠA, where for some external atom &g[~p](~c) in B either
f&g(A, ~p,~c) = T and f&g(A′, ~p,~c) = F, or f&g(A, ~p,~c) = F and f&g(A′, ~p,~c) = T, it
holds that TH ∈ A′.

We derive a contradiction by showing that b(A,A) is not a ≤-minimal model of
fΠ′b(A,A). Let b(A′,A)′ be the completion of (b(A′,A) \ {Te&g[~p](~c) ∈ b(A′,A)}) ∪
{Te&g[~p](~c) ∈ b(A,A)} w.r.t. HB, i.e. we keep the truth assignments regarding replace-
ment atoms of the form e&g[~p](~c) which correspond to the evaluation of &g[~p](~c) under A.
By construction of b(A′,A)′, it holds that b(A′,A)′ < b(A,A) as b(A′,A)′ differs from
b(A,A) only in that some ordinary atoms occurring in Π which are assigned the truth
value T by b(A,A) are mapped to F by b(A′,A)′. We show that b(A′,A)′ is a model of
fΠ′b(A,A).

First, all facts of the form pd(~X) must still be satisfied under b(A′,A)′; and all
heads of rules of the form p(~X) ← pd(~X), not p(~X) in fΠ′b(A,A) are satisfied under
b(A′,A)′ because from A′ < A it follows that {p(~X) ∈ b(A,A)} ⊂ {p(~X) ∈ b(A′,A)}.
Additionally, we know that all rule heads of the form e&g[~p](~c) in fΠ′b(A,A) are satisfied
by b(A′,A)′ because of the construction of b(A′,A)′ above. Finally, let H ← B be an
arbitrary rule in fΠ′b(A,A) s.t. H ← B corresponds to a rule H ← B′ ∈ fΠA, where
all external atoms of the form &g[~p](~c) occurring in B′ are replaced by ordinary atoms
of the form e&g[~p](~c) in B. It is left to show that if b(A′,A)′ |= B, then b(A′,A)′ |= H.
So, suppose that b(A′,A)′ |= B. Now, in case A′ |= B, we obtain that b(A′,A)′ |= H
because it follows from Definition A.1 that b(A′,A)′ ⊃ {Ta | Ta ∈ A′}, and as we have
that A′ |= fΠA. In case A′ 6|= B, there must be some &g[~p](~c) occurring in B s.t. either
f&g(A, ~p,~c) = T and f&g(A′, ~p,~c) = F, or f&g(A, ~p,~c) = F and f&g(A′, ~p,~c) = T, again
because b(A′,A)′ ⊃ {Ta | Ta ∈ A′} and due to the fact that A′ < A. However, then we
have that b(A′,A)′ |= H due to our choice of A′.

Consequently, b(A′,A)′ is a model of fΠ′b(A,A), which contradicts b(A,A) being a
≤-minimal model of fΠ′b(A,A). We infer that there is no complete assignment A′, with
A′ < A, s.t. A′ |= fΠA.

(⇐) Now, we need to show that, given a complete assignment A, if A is an answer
set of Π, then b(A,A) is an answer set of Π′ = α(Π,A) ∪ η(Π). Let A be an answer set
of Π. We need to show that b(A,A) is an answer set of Π′ = α(Π,A) ∪ η(Π), i.e. that
b(A,A) is a ≤-minimal model of fΠ′b(A,A).

203

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A. Proofs

Similar to before, we first show that b(A,A) |= fΠ′b(A,A) by showing that TH(r) ∈
b(A,A) for all rules r in fΠ′b(A,A). For each rule r ∈ fΠ′b(A,A) corresponding to a rule
r′ ∈ Π, where all external atoms of the form &g[~p](~c) occurring in r′ are replaced by
ordinary atoms of the form e&g[~p](~c) in r, we have that r′ ∈ fΠA because b(A,A) |= B(r)
iff A |= B(r′), which follows from Definition A.1. We obtain that TH(r) ∈ b(A,A)
in this case since H(r) = H(r′) for all rules r ∈ fΠ′b(A,A), and because we have that
A |= fΠA. Regarding rules r ∈ fΠ′b(A,A) of the form p(X) ← pd(X), not p(X) or
pd(X) ← we also derive that TH(r) ∈ b(A,A), due to the construction of b(A,A)
according to Definition A.1. Recall that η(Π) =

{

r | ∃A′ s.t. r ∈ η(&g[~p], i(A′,A)),

&g[~p] occurs in Π
}

. Accordingly, it is left to show that for all rules r ∈ fΠ′b(A,A) of the
form e&g[~p](~c)← BA′,~p, i.e. r ∈ η(Π), it holds that TH(r) ∈ b(A,A).

Let r = e&g[~p](~c) ← BA′,~p be an arbitrary rule in fΠ′b(A,A) ∩ η(Π). Due to the

definition of the FLP-reduct, we know that r ∈ fΠ′b(A,A) implies that b(A,A) |= BA′,~p,

i.e. that {Tp′(~X) ∈ A′ | p′ ∈ {p, p}, p ∈ ~p} ⊆ b(A,A). From this, we derive that
A � A~p,A, where A~p,A = {Xp(~X) ∈ i(A′,A) | p ∈ ~p}, by Definition A.1 and the
construction of i(A′,A) according to Definition 5.5. Since e&g[~p](~c)← BA′,~p ∈ η(Π), we
know that f&g(i(A′,A), ~p,~c) = T. By Definition 5.2, we obtain that f&g(A, ~p,~c) = T
because i(A′,A) is input-complete w.r.t. Π being over an input-safe domain A of Π. By
Definition A.1, we derive that Te&g[~p](~c) ∈ b(A,A) because we have that f&g(A, ~p,~c) = T
and hence, TH(r) ∈ b(A,A).

Lastly, we show that there is no complete assignment A′, with A′ < b(A,A), s.t.
A′ |= fΠ′b(A,A). Assume again towards contradiction that A′ is a complete assignment,
with A′ < b(A,A), s.t. A′ |= fΠ′b(A,A). Then, there must also be a compete assignment
A′′, with A′′ < b(A,A) and A′′ |= fΠ′b(A,A), s.t. {Te&g[~p](~c) ∈ A′′} = {Te&g[~p](~c) ∈ A},
due to the fact that no cyclic dependencies over external atoms are allowed. Without loss
of generality, let A′′ be a compete assignment A′′, with A′′ < b(A,A) and A′′ |= fΠ′b(A,A),
s.t. {Te&g[~p](~c) ∈ A′′} = {Te&g[~p](~c) ∈ A}. We derive a contradiction by showing that

A′′
ord = {Ta ∈ A′′ | a is an ordinary atom in grnd(Π)} is a model of fΠA with A′′

ord < A.

Note that the truth values of atoms of the form p(~X) or pd(~X) cannot change from
T under A to F under A′′ due to the construction of b(A,A) and α(Π,A) according to
Definitions A.1 and 5.5. Consequently, we have that A′′

ord < A.
Now, we prove that A′′

ord |= fΠA by showing that for every rule H ← B ∈ fΠA

and the corresponding rule H ← B′ ∈ fΠ′b(A,A), where all external atoms &g[~p](~c)
occurring in B are replaced by ordinary atoms of the form e&g[~p](~c) in B′, it holds that

A′′
ord |= B implies that A′′ |= B′. Let r = H ← B be a rule in fΠA and r′ = H ← B′

be the corresponding rule in Π′b(A,A). If A′′
ord 6|= B or B does not contain any external

atoms, the implication follows straightforwardly since, in the latter case, it holds that
B = B′ and A′′

ord maps ordinary atoms to the same truth values as A′′. So, consider
the case that A′′

ord |= B, and that an external atom &g[~p](~c) occurs in B. Then,
&g[~p](~c) is replaced by e&g[~p](~c) in B′. Since we know that r ∈ fΠA iff A |= B, we
infer that A′′

ord |= &g[~p](~c) iff A |= &g[~p](~c). As we know that b(A,A) |= Te&g[~p](~c)
iff f&g(A, ~p,~c) = T, where &g[~p](~c) is a ground external atom in grnd(Π), and we
have chosen A′′ s.t. {Te&g[~p](~c) ∈ A′′} = {Te&g[~p](~c) ∈ A}, we obtain that A′′ |= B′.

204

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

A.2. Proofs for Soundness and Completeness of Algorithm 5.1

Hence, we derive that there is no complete assignment A′, with A′ < b(A,A), s.t.
A′ |= fΠ′b(A,A).

Theorem 5.2. For a hex-program Π and an input-safe domain A of Π, the answer sets
returned by Algorithm 5.1 correspond exactly to the answer sets of Π.

Proof. The theorem follows directly from Lemmas A.1 and A.2.

205

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX B
HEX-MIL-Encodings

To illustrate the concrete encodings and the instances employed for the empirical evalua-
tion in Chapter 6, we present the encodings Πf (M) and Πsa(M) as well as the input to
Metagol used for the Robot Waiter Strategies benchmark (BM3). A sample instance and
a corresponding solution of benchmark (BM3) can be found at the end of this section.

Moreover, the encodings of all benchmark problems used in Section 6 and all in-
stances used in the experiments are available at http://www.kr.tuwien.ac.at/staff/
kaminski/thesis/hexmil-experiments.zip.

Forward-Chained HEX-MIL-Encoding

binary(pour_tea,X,Y) :- &pour_tea[X](Y), state(X).

binary(pour_coffee,X,Y) :- &pour_coffee[X](Y), state(X).

binary(move_right,X,Y) :- &move_right[X](Y), state(X).

unary(wants_tea,X) :- &wants_tea[X](), state(X).

unary(wants_coffee,X) :- &wants_coffee[X](), state(X).

unary(at_end,X) :- &at_end[X](), state(X).

order(X,Y) :- skolem(X), binary(Y,_,_).

order(X,Y) :- pos_ex(X,_,_), binary(Y,_,_).

order(X,Y) :- pos_ex(X,_,_), skolem(Y).

order(X,Y) :- skolem(X), skolem(Y), X < Y.

{meta(precon,P1,P2,P3)} :- order(P1,P3), unary(P2,X), deduced(P3,X,Y).

{meta(postcon,P1,P2,P3)} :- order(P1,P2), deduced(P2,X,Y), unary(P3,Y).

{meta(chain,P1,P2,P3)} :- order(P1,P2), order(P1,P3), deduced(P2,X,Z),

deduced(P3,Z,Y).

{meta(tailrec,P1,P2,n)} :- order(P1,P2), deduced(P2,X,Z), deduced(P1,Z,Y).

deduced(P1,X,Y) :- meta(precon,P1,P2,P3), unary(P2,X), deduced(P3,X,Y).

deduced(P1,X,Y) :- meta(postcon,P1,P2,P3), deduced(P2,X,Y), unary(P3,Y).

deduced(P1,X,Y) :- meta(chain,P1,P2,P3), deduced(P2,X,Z), deduced(P3,Z,Y).

deduced(P1,X,Y) :- meta(tailrec,P1,P2,n), deduced(P2,X,Z), deduced(P1,Z,Y).

207

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://www.kr.tuwien.ac.at/staff/kaminski/thesis/hexmil-experiments.zip
http://www.kr.tuwien.ac.at/staff/kaminski/thesis/hexmil-experiments.zip

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B. HEX-MIL-Encodings

state(X) :- pos_ex(_,X,_).

state(Y) :- deduced(_,_,Y).

deduced(P,X,Y) :- binary(P,X,Y).

:- pos_ex(P,X,Y), not deduced(P,X,Y).

:- pos_ex(P,X,Y1), deduced(P,X,Y2), Y1 != Y2.

:- #count{ M,P1,P2,P3 : meta(M,P1,P2,P3) } != N, size(N).

State Abstraction HEX-MIL-Encoding

Note that even though the syntax of the external atom used for importing binary and
unary background knowledge as well as the positive examples in the encoding below
differs from the external atoms used in Definition 6.13, identical extensions are imported
for the atoms binary, unary and pos as described in Section 6.3. Hence, the encoding is
equivalent to the encoding of Definition 6.13.

binary(A,N1,N2) :- &abduceSequence[ID,ExStart,ExEnd](X,N1,N2,A),

pos_ex(ID,_,ExStart,ExEnd), X = seq.

unary(A,N) :- &abduceSequence[ID,ExStart,ExEnd](X,N,N,A),

pos_ex(ID,_,ExStart,ExEnd), X = check.

pos(ID,A,N1,N2) v n_pos(ID,A,N1,N2) :-

&abduceSequence[ID,ExStart,ExEnd](X,N1,N2,A),

pos_ex(ID,_,ExStart,ExEnd), X = goal.

:- &failNeg[meta,pos_ex]().

pos1(ID) :- pos(ID,_,_,_).

:- pos_ex(ID,_,_,_), not pos1(ID).

order(X,Y) :- skolem(X), binary(Y,_,_).

order(X,Y) :- pos(X,_,_), binary(Y,_,_).

order(X,Y) :- pos(X,_,_), skolem(Y).

order(X,Y) :- skolem(X), skolem(Y), X < Y.

{meta(precon,P1,P2,P3)} :- order(P1,P3), unary(P2,X), deduced(P3,X,Y).

{meta(postcon,P1,P2,P3)} :- order(P1,P2), deduced(P2,X,Y), unary(P3,Y).

{meta(chain,P1,P2,P3)} :- order(P1,P2), order(P1,P3), deduced(P2,X,Z),

deduced(P3,Z,Y).

{meta(tailrec,P1,P2,n)} :- order(P1,P2), deduced(P2,X,Z), deduced(P1,Z,Y).

deduced(P1,X,Y) :- meta(precon,P1,P2,P3), unary(P2,X), deduced(P3,X,Y).

deduced(P1,X,Y) :- meta(postcon,P1,P2,P3), deduced(P2,X,Y), unary(P3,Y).

deduced(P1,X,Y) :- meta(chain,P1,P2,P3), deduced(P2,X,Z), deduced(P3,Z,Y).

deduced(P1,X,Y) :- meta(tailrec,P1,P2,n), deduced(P2,X,Z), deduced(P1,Z,Y).

deduced(P,X,Y) :- binary(P,X,Y).

:- not deduced(P,X,Y), pos(_,P,X,Y).

208

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

:- #count{ M,P1,P2,P3 : meta(M,P1,P2,P3) } != N, size(N).

Metagol Input Program

metagol:functional.

func_test(Atom,PS,G):-

Atom = [P,A,B],

Actual = [P,A,Z],

\+ (metagol:prove_deduce([Actual],PS,G),Z \= B).

metarule(precon,[P,Q,R],([P,A,B]:-[[Q,A],[R,A,B]])).

metarule(postcon,[P,Q,R],([P,A,B]:-[[Q,A,B],[R,B]])).

metarule(chain,[P,Q,R],([P,A,B]:-[[Q,A,C],[R,C,B]])).

metarule(tailrec,[P,Q],([P,A,B]:-[[Q,A,C],[P,C,B]])).

prim(pour_tea/2).

prim(pour_coffee/2).

prim(move_right/2).

prim(wants_tea/1).

prim(wants_coffee/1).

prim(at_end/1).

a :-

train_exs(Pos),

Neg = [],

learn(Pos,Neg).

pour_tea([robot_pos(X),end(Y),places([place(X,A,cup(up,empty))|R])],

[robot_pos(X),end(Y),places([place(X,A,cup(up,tea))|R])]).

pour_tea([robot_pos(X),end(Y),places([E|R1])],

[robot_pos(X),end(Y),places([E|R2])]) :-

pour_tea([robot_pos(X),end(Y),places(R1)],[robot_pos(X),end(Y),places(R2)]).

pour_coffee([robot_pos(X),end(Y),places([place(X,A,cup(up,empty))|R])],

[robot_pos(X),end(Y),places([place(X,A,cup(up,coffee))|R])]).

pour_coffee([robot_pos(X),end(Y),places([E|R1])],

[robot_pos(X),end(Y),places([E|R2])]) :-

pour_coffee([robot_pos(X),end(Y),places(R1)],[robot_pos(X),end(Y),places(R2)]).

move_right([robot_pos(X1),end(Y)|R],[robot_pos(X2),end(Y)|R]) :-

X1 < Y, X2 is X1 + 1.

wants_tea([robot_pos(X),end(_),places([place(X,tea,_)|_])]).

wants_tea([robot_pos(X),end(Y),places([_|R])]) :-

wants_tea([robot_pos(X),end(Y),places(R)]).

wants_coffee([robot_pos(X),end(_),places([place(X,coffee,_)|_])]).

wants_coffee([robot_pos(X),end(Y),places([_|R])]) :-

wants_coffee([robot_pos(X),end(Y),places(R)]).

209

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
is

se
rt

at
io

n
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

is
se

rt
at

io
n

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

B. HEX-MIL-Encodings

at_end([robot_pos(X),end(X)|_]).

Sample Instance and Solution

Instance:

pos_ex([robot_pos(1),end(3),places([place(1,coffee,cup(up,empty)),

place(2,coffee,cup(up,empty))])],

[robot_pos(3),end(3),places([place(1,coffee,cup(up,coffee)),

place(2,coffee,cup(up,coffee))])]).

pos_ex([robot_pos(1),end(6),places([place(1,coffee,cup(up,empty)),

place(2,coffee,cup(up,empty)),place(3,coffee,cup(up,empty)),

place(4,tea,cup(up,empty)),place(5,coffee,cup(up,empty))])],

[robot_pos(6),end(6),places([place(1,coffee,cup(up,coffee)),

place(2,coffee,cup(up,coffee)),place(3,coffee,cup(up,coffee)),

place(4,tea,cup(up,tea)),place(5,coffee,cup(up,coffee))])]).

Solution:

robot(A,B):-robot_1(A,B),at_end(B).

robot(A,B):-robot_1(A,C),robot(C,B).

robot_1(A,B):-robot_2(A,C),move_right(C,B).

robot_2(A,B):-wants_tea(A),pour_tea(A,B).

robot_2(A,B):-wants_coffee(A),pour_coffee(A,B).

210

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	State of the Art
	External Sources in Declarative Problem Solving
	Evaluation Techniques of HEX-Solvers
	Applications of HEX-Programs

	Goals of the Research
	Contributions and Outline
	Evolution of This Work and Relevant Publications

	Preliminaries
	Answer Set Programs
	HEX-Programs
	Syntax
	Semantics

	Evaluation of HEX-Programs
	External Minimality Check

	Integrated Algorithms for HEX-Program Evaluation
	Integration of Solving and External Evaluation
	Extension to Partial Assignments
	HEX-Algorithm Based on Partial Assignments
	Nogood Learning with Partial Assignments
	Three-Valued Learning Functions
	Exploiting External Source Properties

	Nogood Minimization
	Sequential Nogood Minimization
	Divide-and-Conquer Strategy for Nogood Minimization

	Empirical Evaluation
	Experimental Setup
	Hypotheses
	Experiments on Partial Evaluation and Nogood Minimization
	Discussion of Results

	Related Work
	Conclusion and Outlook

	Integration of Minimality Checking and External Evaluation
	Interleaving External Evaluation and Unfounded Set Search
	Background on Unfounded Set Search
	Integrated Algorithm for Unfounded Set Detection
	Properties of the Algorithm

	Skipping the Minimality Check Based on Semantic Dependencies
	Dependency Graph Pruning
	Properties of Faithful Io-Dependencies

	Empirical Evaluation
	Experimental Setup
	Hypotheses
	Experiments on Partial Evaluation for Minimality Checking
	Experiments on Minimality Check Skipping
	Discussion of Results

	Related Work
	Conclusion and Outlook

	Integration of Grounding and Solving
	Evaluation of External Sources Based on Partial Groundings
	Safety Condition
	Relevant Grounding

	Lazy-Grounding HEX-Evaluation Algorithm
	Program Transformation and External Source Interface
	HEX-Algorithm Based on Lazy Grounding

	Empirical Evaluation
	Experimental Setup
	Hypotheses
	Experiments on Lazy-Grounding HEX-Evaluation
	Discussion of Results

	Related Work
	Conclusion and Outlook

	Applications of HEX-Programs in Machine Learning
	Meta-Interpretive Learning
	Background on Meta-Interpretive Learning
	HEX-Encodings for Meta-Interpretive Learning
	General HEX-MIL-Encoding
	Forward-Chained HEX-MIL-Encoding
	Top-Down HEX-MIL-Encoding

	State Abstraction
	Empirical Evaluation
	Experimental Setup
	Hypotheses
	Experiments on Meta-Interpretive Learning
	Discussion of Results

	Further Discussion
	Meta-Rules
	Limitations of State Abstraction

	Related Work
	Conclusion and Outlook

	Hybrid Classification
	Background on LPMLN
	LPMLN-Encoding for Hybrid Classification
	HEX-Program for Computing HC-Solutions
	Hybrid Classifier Construction
	Empirical Evaluation
	Experimental Setup
	Hypotheses
	Experiments on Hybrid Classification
	Discussion of Results

	Related Work
	Conclusion and Outlook

	Conclusion
	Summary
	Future Work

	Bibliography
	Proofs
	Proofs for Complexity Results from Section 4.2
	Proofs for Soundness and Completeness of Algorithm 5.1

	HEX-MIL-Encodings

