B Informatics

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Automated Software Verification
using Superposition-based
Theorem Proving

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften
by

Dipl. Ing. Bernhard Gleiss, BSc
Registration Number 00904987

to the Faculty of Informatics

at the TU Wien

Advisor: Univ. Prof. Dr.techn. Laura Kovacs, MSc
Second advisor: Univ. Prof. Dr. Matteo Maffei

The dissertation has been reviewed by:

Forename Surname Forename Surname

Vienna, 15" September, 2020
Bernhard Gleiss

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 » www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
ledge

b

now!

i
r

Erklarung zur Verfassung der
Arbeit

Dipl. Ing. Bernhard Gleiss, BSc

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliellich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. September 2020

Bernhard Gleiss

1ii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Abstract

This thesis explores the automated verification of software programs involving loops and
arrays using superposition-based theorem proving. It proposes new techniques at the
intersection of program semantics, software verification, and automated reasoning.

In the first part of the thesis, we introduce an expressive instance of first-order logic
modulo theories, called trace logic. We present a sound and complete axiomatic se-
mantics of software programs and use it to capture the partial correctness of program
properties as validity statements in trace logic. Our semantics describes each timepoint
in the execution of a program uniquely and keeps program locations explicit. We then
introduce a verification framework, which handles the inductive reasoning needed in the
trace logic domain in order to enable off-the-shelf first-order theorem provers to reason
about validity statements in trace logic. Our framework adds instances of an expressive
induction axiom scheme explicitly into the search space, in contrast to other approaches
which use induction axioms only on the meta-level. We then discuss how the com-
bination of explicit induction axioms and backward-reasoning enables automated loop
splitting, which is the key for verifying advanced array-properties. We conclude the first
part of the thesis by generalizing the trace-logic-based verification framework to support
multiple execution traces and relational properties.

In the second part of the thesis, we apply superposition-based theorem proving, and
in particular the state-of-the-art theorem prover VAMPIRE, to reason about the validity
statements of the trace logic domain. We introduce two techniques, layered clause selec-
tion and subsumption demodulation, which are crucial for efficient superposition-based
reasoning in the trace logic domain. Moreover, to ease the manual analysis of both
proofs and failed proof attempts, we describe a tool, which interactively visualizes proof
attempts of saturation-based theorem provers.

Finally, we provide an experimental evaluation of the trace-logic-based verification frame-
work on interesting sets of benchmarks, which cover challenging properties of soft-
ware programs including loops and arrays. The presented results suggest that our
superposition-based verification framework is an interesting alternative to existing SM'T-
based verification approaches.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Kurzfassung

Diese Arbeit untersucht die automatisierte Uberpriifung von Computerprogrammen, wel-
che Arrays und Schleifen beinhalten, durch auf Superposition basiertes Theorembewei-
sen. Sie beschreibt neue Techniken am Schnittpunkt der Forschungsfelder Semantik von
Programmiersprachen, Uberpriifung von Computerprogrammen, und Automatisiertes
Theorembeweisen.

Im ersten Teil der Arbeit beschreiben wir Trace Logic, eine ausdrucksstarke Instanz der
durch Theorien erweiterten Prédikatenlogik erster Stufe. Wir préasentieren eine korrek-
te und vollstdndige axiomatische Semantik von Computerprogrammen, und verwenden
diese, um die partielle Korrektheit von Programmeigenschaften als Giiltigkeit logischer
Formeln zu charakterisieren. Unsere Semantik beschreibt jeden Zeitpunkt der Ausfiih-
rung eines Computerprogrammes eindeutig und erhilt gleichzeitig die Programmstruk-
tur. Aufbauend auf Trace Logic fithren wir dann einen neuen Ansatz zur Uberpriifung von
Computerprogrammen ein. Dieser stellt das in Trace Logic benétigte induktive Schluss-
folgern zur Verfiigung, und ermoglicht in Folge das automatisierte Beweisen von Giil-
tigkeitsaussagen in Trace Logic durch beliebige existierende Theorembeweiser fiir Pre-
dikatenlogik. Unser Ansatz benutzt Instanzen eines ausdruckstarken Schemas von In-
duktionsaxiomen explizit im Schlussfolgern, im Gegensatz zu anderen Ansétzen, welche
Induktionsaxiome nur auf der Metaebene verwenden. Wir erortern dann, wie die Kombi-
nation von expliziten Induktionsaxiomen und riickwérts-gesteuertem Schlussfolgern das
automatische Zerteilen von Schleifen in einfachere Teile simuliert und damit das Uber-
priifen anspruchvoller Eigenschaften von Array-Programmen ermoglicht. Als Abschluss
des ersten Teils dieser Arbeit verallgemeinern wir unseren Ansatz, sodass mehrere Pro-
grammausfiihrungen dargestellt und relationale Eigenschaften iiberpriift werden kénnen.

Im zweiten Teil dieser Arbeit wenden wir das auf Superposition basierte Theorembe-
weisen, und insbesondere den fiihrenden Theorembeweiser VAMPIRE, an, um Giiltig-
keitsaussagen in Trace Logic zu beweisen. Wir beschreiben zwei Techniken, Layered
Clause Selection und Subsumption Demodulation, die unverzichtbar sind fir das effizi-
ente Schlussfolgern in Trace Logic mittels Superposition. Um die manuelle Analyse von
Beweisen und fehlgeschlagenen Beweisversuchen zu vereinfachen, beschreiben wir wei-
ters ein Tool zur interaktiven Analyse von Beweisversuchen von auf Saturation basierten
Theorembeweisern. Am Ende dieser Arbeit priasentieren wir die Ergebnisse einer expe-
rimentellen Auswertung unseres Uberpriifungsansatzes auf interessanten Benchmarks,

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

die anspruchsvolle Eigenschaften von Computerprogrammen mit Arrays und Schleifen
beinhalten. Die préisentierten Resultate legen nahe, dass unser auf Superposition basier-
ter Uberpriifungsansatz eine interessante Alternative zu existierenden SMT-basierten
Ansétzen darstellt.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Acknowledgements

Foremost, I want to thank my thesis advisor Laura Kovécs for her guidance, support,
and encouragement throughout the journey of my PhD. Laura was always available if 1
needed advice and guided me when necessary, but gave me at the same time the space to
grow as an independent researcher. Moreover, she connected me with many interesting
people from TU Wien and abroad, which lead to inspiring meetings and productive
collaborations.

Then, I want to thank my co-advisor Matteo Maffei, whose lecture on Formal Methods
for Security and Privacy initiated my interest in reasoning about security properties. 1
highly enjoyed the stimulating whiteboard group discussions on applying VAMPIRE in
various security domains, which often went on for several hours.

Next, I want to thank Stephan Schulz and Philipp Riimmer, who kindly agreed to review
this thesis. I understand that reviewing a thesis takes a substantial amount of time and
should not be taken for granted.

This thesis would not have been possible without the famous Martin Suda, who always
took the time to answer my endless stream of questions about superposition-based rea-
soning and VAMPIRE. I am grateful for the invaluable explanations and the exciting
collaborations later on in my PhD. Moreover, his insistence on well-versed prose helped
me to improve my writing style considerably. T also want to thank Max Jaroschek, whose
constructive feedback was very valuable throughout my PhD. Furthermore, he helped
me to navigate through the early academic life and reminded Martin and me occasionally
that PDR is nothing to discuss over lunch.

I want to especially thank Arie Gurfinkel, who is one of the kindest researchers I got to
know in my PhD. During my research stay with him, I not only learned a lot about pro-
gram verification and research in general, but also improved substantially as a software
engineer. Arie furthermore made my research stay a pleasant experience, and introduced
me to DVLB, the best coffeehouse in Waterloo, which developed for the time of my re-
search stay into my main workspace. I would also like to thank Rodrigo and Thorsten,
for showing me the campus life at UWaterloo, and for the many memorable moments
during that time.

Many PhD students contributed to the friendly work environment at TU Wien and made
the countless meetings, sessions, and coffee breaks both entertaining and worthwhile. For

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

this, I want in particular thank Andi, Pamina, Jakob, and Renate.

This PhD would not have been possible without the many friends, who provided a
relaxing and motivating environment outside of work as well as new perspectives on
the sometimes challenging academic life when they became necessary. Thank you Flo,
Martina, Jlu, Rolando, Conni, Maggi, Kadie, Raoul, Julian, Thomas, Phol, Reinhold,
Mors, Armin, Nina, Julia, Jakob, and Anna, for all the joyful moments and amusing
conversations that I would not want to miss.

Another important factor for finishing this thesis was my family, which always encour-
aged me on my way. I want to thank Karl and Roswitha, who are the supporting and
caring parents everyone wishes for, and Michi and Wolfi, who are the best brothers I can
imagine, for being there for me at all time.

Finally, I'm grateful that I could experience my PhD with a very special person at my
side. Thank you Chri, for being part of this journey, and for the wonderful time we are
spending together.

This work was funded by the ERC Starting Grant 2014 SYMCAR 639270, the ERC Proof of Concept
Grant 2018 SYMELS 842066, the Wallenberg Academy Fellowship 2014 TheProSE, the Austrian FWF
research projects W1255-N23 and RiSE S11409-N23, and the OMAA Grant 1016u8.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Abstract
Kurzfassung

1 Introduction
1.1 Motivation and Background
1.2 Contributions
1.3 Publications
1.4 Outline

2 Trace Logic and Semantics
2.1 Preliminaries,
2.2 Trace Logic
2.3 Small-step Operational Semantics
2.4 Axiomatic Semantics
2.5 Soundness of Axiomatic Semantics
2.6 Completeness of Axiomatic Semantics
2.7 Related Work

3 Software Verification using Trace Logic
31 Keyldeas L
3.2 A Verification Framework Based on Trace Logic
3.3 A Correctness Proof for the Running Example
3.4 Related Work,

4 Relational Trace Logic
4.1 Extending Trace Logic to Multiple Traces
4.2 Security Properties in Relational Trace Logic
4.3 Related Worko

5 Reasoning in Trace Logic using Vampire
5.1 Background on Saturation-Based Theorem Proving . .
5.2 Designof VAMPIRE
5.3 Tuning VAMPIRE to Trace Logic with Existing Options

Contents

S UL ==

14
18
22
24
26
30

33
33
37
43
45

47
47
52
95

57
o7
65
66

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Layered Clause Selection for Saturation-based Theorem Proving

6.1 Layered Clause Selection using Split Heuristics
6.2 Feature: Amount of Theory Reasoning
6.3 Feature: Positive Literals
6.4 Feature: SInE-Levels
6.5 Feature: AVATAR-Splits
6.6 Experiments.
Subsumption Demodulation in Superposition-based Theorem Prov-
ing

7.1 Introduction e
7.2 Subsumption Demodulation
7.3 Subsumption Demodulation in VAMPIRE
7.4 Experiments. e e e
7.5 Related Work
Interactive Visualization of Saturation Attempts in Vampire

8.1 Introduction. e
8.2 Analysis of Saturation Attempts of VAMPIRE
8.3 Implementation of SATVIS 1.0
8.4 Related Work
Experiments

9.1 Benchmarks e e
9.2 The Tool RAPID e
9.3 A Custom Version of VAMPIRE
9.4 Experimental Evaluation.

10 Conclusion and Future Work

10.1 Conclusion e e
10.2 Future Work e

Bibliography

69
70
73
75
76
76
77

83
83
85
88
91
94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

1.1 Motivation and Background

A need for reliable software. Our society depends on critical infrastructure, which
is automatically controlled by software. Examples of such infrastructure are (i) traffic
lights, (ii) medical devices like infusion pumps or X-ray machines, (iii) airplanes and
cars controlled by autopilots, (iv) power grids, (v) digital financial services, ranging from
traditional banking applications to distributed ledgers, and (vi) storage services for user
data, both on-premise and in the cloud, which are used by individuals, companies or
governments.

In each of these examples, the controlling software needs to fulfill certain properties.
For instance, (i) traffic lights should not signal at the same time to two participants on
conflicting lanes to enter an intersection, (ii) medical devices must avoid that a patient
is harmed by excessive doses of medication or radiation, (iii) autopilots should neither
crash the vehicle they are navigating nor crash themselves during navigation, (iv) power
grids need to ensure that global power is continuously supplied even in the presence of
local power outages, (v) digital financial services need to correctly track who owns what,
and (vi) user data has to be kept private from unauthorized access. If the software is
not implemented correctly, such properties can be violated, which can cause devastating
consequences: In the case of traffic lights, medical devices, and autopilots, human life
may be at risk. For power grids, other systems like water supply, communication, and
public transportation could be heavily affected. In the case of digital financial services,
huge financial losses may occur, and for data breaches, a multitude of financial, legal,
and social consequences could arise. It should be noted that the violation of a property
due to an incorrect implementation may either occur by coincidence or be forced by a
malicious attacker.

The standard approach to decrease the chance of implementation errors in a software
program is to perform software testing, that is, to execute the program on some inputs /

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

in some environment and check that the given properties are fulfilled for these executions.
The advantage of this approach is that we do not need to know at all how the execution
proceeds (we treat the program as a black-box), as we only need to observe the effects
of executing the program. But testing also has the big disadvantage that we can only
check a finite number of executions — and usually only a small amount of the overall
executions. We claim that if a software is used to control critical infrastructure, it is
not enough to only use testing to ensure that important properties of the software are
satisfied. As a strong argument supporting this claim, all the properties discussed above
have been violated in one or multiple real-world system(s) in the past due to incorrect
software implementations, even though presumably these systems have been extensively
tested.

A different approach, referred to as software verification, does not suffer from the men-
tioned shortcoming of testing. It ensures the absence of implementation errors in a
software program by reasoning about how the program is executed, with the goal of
concluding that the given properties are fulfilled for all inputs/environments. We can
see that humans already verify software in their heads, as part of designing and imple-
menting programs. Each programmer has developed a (custom) mental model of how
programs are executed, which he/she uses to conclude that a given program fulfills the
desired properties. Unfortunately, such human reasoning is often imprecise and some-
times flawed, as reasoning about executions of programs is both tedious and error-prone.

To overcome the problems of ad hoc and imprecise software verification, we can resort to
a refined and more disciplined approach which we refer to as formal software verification.
It is centered around a precise and unambiguous language, in which we both formulate a
description of how the execution of the program is executed (this description is referred
to as the semantics of the program), and the property whose correctness we want to
establish. We then derive a detailed step-by-step argument in that language, which
starts from the semantics of the program, ends in the given property, and explains why
any execution of the given program has to fulfill that property (such an argument is
referred to as a proof of the property). Which language should we choose to do all that
in? We do not want to use natural language, as it would be hard then to be unambiguous
and concise at the same time. Instead, we choose one of the formal languages based
on (first-order) logic. Such languages loosely correspond to very restricted versions of
natural language and have been specifically designed to be unambiguous, precise, and
concise. Moreover, we know how to write compelling and understandable proofs in these
languages. Finally, we can even automatically check proofs formulated in such languages
with a computer, to ensure that these proofs do not contain any human mistakes.

Automated software verification. Formal software verification as described so far
involves the problem that coming up with a proof is labor-intense and tedious. As a com-
puter can check whether a manually generated proof contains no mistakes, we could won-
der, whether the computer can automatically generate the proof itself in the first place.
This idea leads to so-called automated software verification. With such an approach in

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.1. Motivation and Background

place, a programmer is only left with writing the program and specifying the proper-
ties he/she wants the program to fulfill, and can then ask a computer to automatically
produce proofs, which show that the given properties hold and that no errors have been
introduced. Unfortunately, the automated generation of proofs for program properties is
a difficult task. A vast amount of research has been performed in the last 50 years, center-
ing around the questions which semantics and which automated reasoning algorithm to
use in the context of software verification [DKW08, HH19, ABB*16, CJGK 18, CC14].
It should be stressed that these two questions are closely related. A more expressive
semantics can capture more knowledge about program executions, but can make the re-
quired reasoning more difficult. On the other hand, a more powerful reasoning algorithm
can handle more expressive semantics, and in turn lead to a more powerful approach.

In recent years, SMT-solving [NOT06, Seb07, BT18] has developed into a mature rea-
soning technique for first-order logic, and has arguably become the most prominent
technology for the automated generation of proofs for software verification. Verifica-
tion frameworks based on either Hoare logic semantics [Hoa69] or Horn clause semantics
[BGMR15] utilize the efficiency of SMT-solvers [DMB08, BCD " 11], resulting in previ-
ously unseen automation for software verification, which also scales well in many cases.
As a consequence, SMT-based software verification is increasingly used in industry, in
particular for software controlling critical infrastructure [Coo18, BBDL"17].

Superposition-based theorem proving [BG94, NRO1] is another technique for reasoning
about problems formulated in first-order logic. While both SMT-solving and superposition-
based theorem proving represent state-of-the-art reasoning techniques for first-order logic
[Sut16, WCD™19], they focus on different areas. SMT-solvers excel at reasoning with
quantifier-free problems, and provide advanced support for difficult background theo-
ries. While these solvers have been extended with support for quantification [DMBO07,
RTDM14, Rey16, RBF18], it is still challenging for them to perform efficient and stable
reasoning under the presence of non-trivial quantification [LM09, Mos09, Rot16, Sut16].
Current superposition-based provers cannot compete with SMT-solvers on quantifier-free
problems, in particular, if complicated theory reasoning is required [WCD'19]. On the
other hand, these provers are natively designed with quantification in mind and provide
efficient reasoning with problems containing arbitrary quantification. It has been conjec-
tured that a superposition-based software verification approach could be an interesting
alternative to existing SMT-based approaches, as the efficient handling of quantification
inside superposition-based theorem provers could be used to support programs and prop-
erties, for which existing approaches do not provide stable and efficient reasoning yet.
In particular, efficient support for quantification could enable (i) new formalizations for
abstract program features like unbounded arrays, data structures, or function calls, and
(ii) improved reasoning about program properties, which already contain quantification
explicitly.

Surprisingly, there has not been much work exploring applications of saturation-based
theorem proving to software verification, in particular to standard while-like programs.
To apply superposition-based reasoners, it would make sense to formulate the semantics

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

of programs using standard semantics of first-order logic, in a way such that the (partial)
correctness of a property is captured directly as a validity statement in standard first-
order logic modulo suitable theories. Interestingly, for while-like programs, no such
formalization has been described in the literature yet. We are therefore interested in the
following research questions:

1.2

Is it possible to formalize the semantics of software programs including loops and
arrays directly in standard first-order logic modulo a suitable background theory?
Can we use quantification to obtain a more expressive semantics?

Is it possible to use superposition-based theorem proving to reason about software
program properties? Can we use it to establish the partial correctness of programs
containing loops and arrays which cannot be handled by current state-of-the-art
approaches? Should superposition-based software verification be considered as an
alternative to SMT-based approaches?

Contributions

This thesis provides the following main contributions:

We introduce trace logic, a new instance of standard first-order logic modulo differ-
ence logic and integer arithmetic, and formulate an axiomatic semantics of software
programs in it. Our axiomatic semantics preserves the structure of the program,
does not abstract away intermediate timepoints in the execution, and avoids us-
ing any intermediate program logic. We furthermore establish the soundness and
completeness (relative to Hoare logic) of the introduced semantics (Chapter 2).
We present a new software verification framework based on trace logic, which can
leverage any off-the-shelf theorem prover for first-order logic modulo difference
logic and integer arithmetic to reason about program properties formulated in
trace logic. To provide such a prover with the capabilities for inductive reasoning
and automated loop splitting, we identify and describe a set of lemmas covering
general inductive consequences, which are useful to establish the partial correctness
of a wide range of software program properties (Chapter 3).

We generalize the trace-logic-based software verification framework to multiple
executions and hyperproperties, to automatically establish the partial correctness
of interesting relational properties coming from security applications (Chapter 4).
We investigate in-depth how to apply superposition-based theorem proving for
reasoning in the trace-logic domain. In particular, we introduce new techniques,
including a layered clause selection heuristics and a new simplification inference
rule called subsumption demodulation, to speed up superposition-based theorem
proving on the trace logic domain (Chapters 6 and 7). Moreover, we present the
tool SATV1IS, which enables the efficient analysis of proofs and saturation attempts
of the saturation-based first-order theorem prover VAMPIRE (Chapter 8).

We implemented the ideas discussed in this thesis in the tools RAPID and VAMPIRE
and experimentally evaluate our approach on interesting sets of benchmarks. The

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.3. Publications

results suggest that our approach is a promising alternative to existing approaches
(Chapter 9).

1.3 Publications

This thesis is based on the following publications.

[GGK20]

[BEG+19]

[GKR20]

[GS20D)]

[GS20a]

[GKS19]

Pamina Georgiou, Bernhard Gleiss, and Laura Kovécs. Trace logic for in-
ductive loop reasoning. In Proceedings of the 20th Conference on Formal
Methods in Computer-Aided Design (FMCAD 2020), pages 255-263. TU
Wien Academic Press, 2020

Gilles Barthe, Renate Eilers, Pamina Georgiou, Bernhard Gleiss, Laura
Kovacs, and Matteo Maffei. Verifying relational properties using trace logic.
In Proceedings of the 19th International Conference on Formal Methods in
Computer-Aided Design (FMCAD 2019), pages 170-178. Springer, 2019

Bernhard Gleiss, Laura Kovacs, and Jakob Rath. Subsumption demodula-
tion in first-order theorem proving. In Proceedings of the 10th International
Joint Conference on Automated Reasoning (IJCAR 2020), volume 12166 of
LNCS, pages 297-315. Springer, 2020

Bernhard Gleiss and Martin Suda. Layered clause selection for theory rea-
soning (short paper). In Proceedings of the 10th International Joint Con-
ference on Automated Reasoning (IJCAR 2020), volume 12166 of LNCS,
pages 402-409. Springer, 2020

Bernhard Gleiss and Martin Suda. Layered clause selection for saturation-
based theorem proving. In Proceedings of the 7th Workshop on Practical
Aspects of Automated Reasoning (PAAR 2020). Accepted for Publication

Bernhard Gleiss, Laura Kovécs, and Lena Schnedlitz. Interactive visualiza-
tion of saturation attempts in Vampire. In Proceedings of the 15th Interna-
tional Conference on Integrated Formal Methods (IFM 2019), volume 11918
of LNCS, pages 504-513. Springer, 2019

Furthermore, the following publications are an additional result of the PhD leading up
to this thesis.

[GKS17]

[SG18]

Bernhard Gleiss, Laura Kovacs, and Martin Suda. Splitting proofs for inter-
polation. In Proceedings of the 26th International Conference on Automated
Deduction (CADE 2017), volume 10395 of LNCS, pages 291-309. Springer,
2017

Martin Suda and Bernhard Gleiss. Local soundness for QBF calculi. In Pro-
ceedings of the 21st International Conference on Theory and Applications of

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.

INTRODUCTION

Satisfiability Testing (SAT 2018), volume 10929 of LNCS, pages 217-234.
Springer, 2018

[GKR18] Bernhard Gleiss, Laura Kovécs, and Simon Robillard. Loop analysis by
quantification over iterations. In Proceedings of the 22nd International
Conference on Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR 2018), volume 57 of EPiC Series in Computing, pages 381-399.
EasyChair, 2018

1.4 Outline

This thesis is organized as follows.

In the first part, we focus on formalizing the partial correctness of properties of software
programs using first-order logic. Chapter 2, which has already occurred in simpler form
in [BEG"19] and [GGK20], develops a new semantics to formalize the partial correctness
of programs, using a novel instance of first-order logic modulo theories called trace
logic. Chapter 3 shows how to build a verification framework using the semantics from
Chapter 2 in combination with an arbitrary theorem prover supporting first-order logic.
It is based on [GGK20], except for Sections 3.1 and 3.3, which have not been published
yet. Chapter 4, which is based on [BEG"19], generalizes the ideas from Chapters 2 and
3 to multiple computation traces and hyperproperties.

In the second part, we focus on applying a superposition-based theorem prover to reason
about validity statements generated by the ideas of Chapters 3 and 4. Chapter 5 recalls
the relevant background on superposition-based theorem proving and discusses how to
tune the superposition-based theorem prover VAMPIRE to the trace-logic domain. Both
Chapter 6, based on [GS20] and [GS], and Chapter 7, based on [GKR20], develop custom
reasoning techniques to speed up superposition-based theorem proving on the trace logic
domain. Chapter 8, which is based on [GKS19], investigates how to analyze proof
attempts in order to get new insights into how to optimize both the encoding of program
correctness and superposition-based reasoning in the trace-logic domain.

Finally, Chapter 9 presents an experimental evaluation of the ideas of this thesis, followed
by a conclusion and future work in Chapter 10. Preliminary versions of the experimental
results have already been reported in [BEGT19] and [GGK20].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.4. Outline

Trace Logic

Automated Reasoning
in Trace Logic

-

~

|Chapter 1: Introduction|

e | Chapter 2: Semantics |

| Chapter 3: Veriﬁcation|

Tl | Chapter 4: Hyperproperties |

Pl | Chapter 5: Reasoning in Trace Logic with VAMPIRE

-
-

| Chapter 6: Layered Clause Selection|

| Chapter 7: Subsumption Demodulation |

~
~

[aEN - | Chapter 8: Visualizing Proof Attempts |

| Chapter 9: Experimental Evaluation|

| Chapter 10: Conclusion & Future Work |

Figure 1.1: Structure of the thesis.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Trace Logic and Semantics

In this chapter, we present a novel logical approach to formalize the semantics of imper-
ative programs containing loops and arrays, geared towards the automated verification
of functional properties. Our approach formalizes the execution of a program as well as
its functional properties in trace logic, an expressive instance of many-sorted first-order
logic with equality. Trace logic draws its expressiveness from its syntax, which allows
expressing properties over computation traces. It supports fine-grained reasoning about
intermediate steps in program executions, using explicit loop iterations.

The main advantages of trace logic over existing approaches are:

e Using trace logic, we can uniquely describe each timepoint in the execution of a
given program (including loops) with a finite language, while at the same time
keeping program locations explicit.

e Trace logic allows arbitrary quantification over iterations and values of program
variables. In particular, we can express and reason with (i) generalized induction
axioms, usable to simulate advanced loop splitting, and (ii) iterations that depend
on (possibly non-ground) expressions involving program variables.

e With trace logic, we formalize the semantics of a program directly as axioms in
standard first-order logic, using standard first-order semantics. In particular, any
execution of a program corresponds to a valid interpretation of our axiomatization.
Note that this is only possible since trace logic can express each timepoint of the ex-
ecution uniquely. Our direct encoding into first-order logic has several advantages:
(i) we avoid the use of an intermediate program logic, which would complicate our
framework, (ii) we inherit the monotonicity of entailment!, a main requirement for
modular reasoning, and (iii) we can directly apply general techniques of first-order
logic, such as automatic reasoning, proof theory, and interpolation.

LA logical sytem is called monotone with respect to entailment, if any property provable from some
axioms A remains provable if we extend A with additional axioms.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2. TRACE LOGIC AND SEMANTICS
1 func main{()
2 A
3 const Int[] a;
4 const Int alength; main
5 Int[] b; l
6 Int blength = 0;
7 main-context
8 Int i = 0; e \
9 while (i < alength) -» 3881 -->aSg ---> W --»
10 { ,,’ l .
E J{'f (afi] >=0) ,"w—context\\
13 bl[blength] = al[i]l; Y / \ /
14 blength = blength + 1; _---"""1ite ass ..
15 } ,// / : \ \\\\\\
16 else ‘ite-if-context ' ite-else-context.
17 { ' " \
18 skip; \—és‘/ \as . kl‘ K
19) 3----- > aSa __\s_ _1p o
20 i=1+ 1; o
21 }
22}
23
.) Figure 2.2: Program tree of running ex-
Figure 2.1: Running example.
ample.
We motivate our work with the simple program of Figure 2.1. This program iterates
over an integer-valued array a and copies each positive element into a new array b. Our
aim is to prove the following property: At the end of the execution of the program, for
any position bpos in b, there exists a position apos in a, such that the element in a at
position apos is equal to the element in in b at position bpos. We formalize this property
as
Vbpos'.(0 < bpos < blength — Japos'.a(apos) ~b(end, bpos)), (2.1)
where apos! and bpos' respectively specify that apos and bpos are of sort integer I.
Further, a(apos) denotes the value of the element at position apos of a, whereas end
refers to the last program location of Figure 2.1 (that is, line 23).
In the remaining part of this chapter, we will develop axiomatic semantics, which let
us prove the correctness of property (2.1) in standard first-order logic modulo difference
logic and integer arithmetic.
10

\
1
1

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

2.1. Preliminaries

2.1 Preliminaries

2.1.1 First-Order Logic

We consider standard many-sorted first-order logic with equality, where equality is de-
noted by ~. We allow all standard boolean connectives and quantifiers in the language
and write s % ¢ instead of —=(s~t), for two arbitrary first-order terms s and ¢t. A signa-
ture is any finite set of symbols. We consider equality ~ as part of the language; hence,
~ is not a symbol. Given a logical variable = and sort S, we write z° to denote that
the sort of z is S.

We write Fi,...,F, E F to denote that the formula Fi; A ... A F, — F is a tautology.
In particular, we write F F', if F' is valid.

By a (first-order) background theory, or simply just theory, we mean the set of all formulas
valid on a class of first-order structures. When we discuss a theory, we call symbols
occurring in the signature of the theory interpreted, and all other symbols uninterpreted.
In our work, we consider the combination (union) D U T of the theory D of difference logic
over natural numbers and the one I of integers. The signature of D consists of standard
function- and predicate symbols 0, succ, pred, and <, respectively interpreted as zero,
successor, predecessor, and less. Note that D does not contain interpreted symbols for
(arbitrary) addition and multiplication. We use the theory D to represent and reason
about loop iterations (see Section 2.2). The signature of I consists of the standard
integer constants 0,1,2, ..., function symbols + and *, and the predicate symbol <. We
use the theory I to represent and reason about integer-valued program variables (see
Section 2.2). Additionally, we use two (uninterpreted) sorts as two sets of uninterpreted
symbols: (i) the sort Timepoint, written as L, for denoting timepoints in the execution
of a program, and (ii) the sort Trace, written as T, for denoting computation traces of
a program.

We use standard first-order interpretations/models modulo a theory 7', and in particular
modulo D UL We write Fr F' to denote that F' holds in all models of T (and hence is
valid). If I is a model of T, we write I Fp F if F holds in the interpretation I.

2.1.2 Induction
Recall the standard induction axiom scheme for (difference logic over) natural numbers.

For any first-order formula /H with a free variable of sort D and no other free variables,
the scheme contains the induction axiom

(BO A 10) s Conl,

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2. TRACE LOGIC AND SEMANTICS
where BC, IC, and Concl are macros (the so-called base case, inductive case, resp.
conclusion), which are defined as follows:
BC :=IH(0) (2.2)
IC := Vit (IH(it) — IH (succ(it)))
Concl := Vit® . IH (it) (2.4)
Instead of this standard axiom scheme, we will use throughout this thesis the so-called
bounded induction axiom scheme, which allows us to reason inductively about a bounded
interval [ity,itgr]. For any first-order formula IH with a free variable of sort D and no
other free variables, and for any terms it; and itg of sort ID, the scheme contains the
induction axiom
(BC(itL) A IC(its,itr)) — Concl(its,itr),
where BC, IC, and Concl are defined as follows:
BC(itr) := IH(itr) (2.5)
IC (it itg) = Vit®.((it < it < itp A TH(it)) — H(succ(it))) (2.6)
Conel(ity, itg) := Vit® (ity, < it < itg — [H(it)) (2.7)
We can see that the bounded induction axiom scheme contains arbitrary (fixed) left and
right bounds, in contrast to the standard induction axiom scheme, which fixes the left
bound to 0 and does not include a right bound. Note that an instance of the bounded
induction axiom scheme is neither entailed by nor entails the corresponding instance of
the standard induction axiom scheme, as the former has both a logically weaker premise
and a logically weaker conclusion than the latter.
We will additionally also use a generalized version of the bounded induction axiom
scheme, the so-called generalized bounded induction axiom scheme, which allows univer-
sal quantification over both the interval bounds, which are used in the induction axioms,
and the free variables of the induction hypothesis.
For any first-order formula IH with a free variable of sort D and free variables x7 ...,z
of sort I (where k is allowed to be 0), the scheme contains the induction axiom
vxl{,...,x]}c,z’tﬂg,it%.<(30(z‘u) A IC(itr,itr)) — Concl(itL,z'tR)>,
where BC, IC, and Concl are defined as follows:
BC(itr) := IH(itr) (2.8)
IC(ity itg) := Vit". ((ity, < it < ity A TH(it)) — [H(succ(it))) (2.9)
Conel(ity, itg) := Vit® (ity < it < itg — [H(it)) (2.10)
12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.1. Preliminaries

program ::= func main () { context }
context ::= statement; ... ; statement
statement ::= var := expr
| array-var[expr| := expr
| skip

| if (expr) { context } else { context }

| while (expr) { context }

Figure 2.3: Grammar of statements of W.

2.1.3 Programming Model W

We consider programs written in a standard while-like programming language, denoted
as W, including arrays and arbitrary nestings of if-then-else- and while-statements.

More precisely, the language is defined as follows: W includes mutable and constant
integer- and integer-array-variables, integer constants, and standard side-effect-free ex-
pressions +, —, x, ==, <, ! && and | | over integers and booleans. On top of these vari-
ables and expressions, each program in W consists of a single top-level function main
and arbitrarily nested statements, as defined by the grammar in Figure 2.3. Note that
each statement in Figure 2.3 is either an assignment, array-assignment, skip-statement,
if-then-else-statement, or while-statement. Throughout this thesis, whenever we refer to
loops, we mean while-statements. A subprogram is either a context or a statement.

We use contexts to capture lists of statements. We furthermore use subprograms to cap-
ture parts of the program, which have a start- and an end-point of execution, even though
they might not be programs themselves (as they lack a top-level function statement).

Throughout the thesis, we will only consider terminating programs. A generalization of
our approach to non-terminating programs is out of the scope of this thesis, but should
be possible (for instance, by extending the ideas presented in [GKR18]).

2.1.4 Program Trees

Throughout this chapter, the so-called program trees will be central for describing the
execution of a program. Intuitively, a program tree corresponds to the directed syntax
tree of the program, where expressions and variables are ignored.

2.1. Definition Let pg be a program. The program tree of po is the directed tree
T, such that (i) the root of T is the (single) top-level function statement of po, (ii)
the top-level function statement func main(){ c } of po and any while-statement
while (expr) {c} of po have as only child-node the context c, (iii) any if-then-else-

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

TRACE LOGIC AND SEMANTICS

14

statement if (expr){ci} else {cy} has as only child-nodes the contexts ci and co,
and (iv) any context si; .. .; sk has as only child-nodes the statements sy, ..., sg.

The top-level context of po is the (single) child-node of the top-level function statement in
the program tree. A top-level statement of po is any child-node of the top-level context.
For a context ¢ := sy; ...; sk, we (i) say that sj follows s; for any 1 < i < j <k,
(ii) say that s; occurs in ¢ for any 1 < i < k, and (iii) define the last statement as sy.
For any subprogram p, the set of enclosing loops consists of all while-statements w, such
that w is a transitive parent of p in the program tree.

2.2. Example Consider the program pg of the running example from Figure 2.1. Let w
denote the loop starting at line 9, let ite denote the if-then-else-statement starting at
line 11, and let asy,...,ass denote the assignments at lines 6, 8, 13, 14, resp. 20. The
program tree of pg is visualized in Figure 2.2 (where solid lines denote the edges in the
tree). The top-level statements are asy, ass, and w. Assignment asg follows ass, and
both asz and as4 occur in the context of ite. Assignment asq is the last statement of
the if-context, and the only enclosing loop of as, is w. 0

We conceptually take a static outside-view of the execution of the program, where the
execution proceeds on the program tree, by moving a so-called program-pointer around
the statements in the program tree, without changing or rewriting the program tree itself.
In each step, the program-pointer is moved to a different statement and the values of
program variables are updated. Finally, the program-pointer is moved to a distinguished
end-location in the program, and the execution of the program stops. In the next two
sections, we will make this conceptual idea precise.

Program trees may appear similar to transition systems (where states denote locations
and edges denote transitions from one location to another while changing values of
program variables), since both of them allow to describe the execution of the program
as transitions on a static structure. But compared to transition systems, program trees
additionally keep the nesting of statements and loops explicit. In contrast to other
semantics, this information is important for us, as we will use it in later definitions, in
particular in Subsection 2.2.1 and Subsection 2.4.1.

2.3. Example Consider again the program tree from Figure 2.2. The possible transi-
tions of the program pointer between statements are visualized using dashed arrows. [

2.2 Trace Logic

In this section, we introduce a language to describe how a program is executed by moving
the program-counter around the program tree as explained in Subsection 2.1.4.
2.2.1 Locations and Timepoints

For each program statement s, we introduce a program location ;. We denote by lcnqg
the location corresponding to the end of the program.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.2. Trace Logic

As program locations can be revisited during program executions due to the presence of
loops, we model locations as follows. For each location Is corresponding to a program
statement s, we introduce a function symbol [s with target sort L in our language,
denoting the timepoint where the interpreter visits the location. For each enclosing loop
of the statement s, the function symbol [; has an argument of type D; this way, we
distinguish between different iterations of the enclosing loop of s. We denote the set
of all such function-symbols l; as S7,. When s is a loop, we additionally include a
function symbol ng with target sort ID and an argument of sort D for each enclosing loop
of s. This way, ns denotes the iteration in which s terminates for given iterations of the
enclosing loops of s. We denote the set of all such function symbols ng as S,.

2.4. Example Consider again Figure 2.1. We abbreviate each statement s by the line
number of the first line of s. We use lg to refer to the timepoint corresponding to the first
assignment of blength in the program. We denote by l9(0) and lg(ng) the timepoints
corresponding to evaluating the loop condition in the first and, respectively, last loop
iteration. Further, we write {11 (it) and /11 (succ(0)) for the timepoint corresponding to
the beginning of the loop body in the it-th and, respectively, second iteration of the
loop. Note that succ(0) is a term algebra expression of D. O

For simplicity, let us define macros over the most commonly used timepoints. First,
define it® to be a function, which returns for each while-statement s a unique variable
of sort ID. We use this function to consistently name variables denoting loop iterations.
Second, let s be a statement, let wy, ..., wy be the enclosing loops of s and let it be an
arbitrary term of sort D.

tps = ls(at™, ... it"F) if s is non-while statement
tps(it) = lg(it™r, ... itk it) if s is while-statement
lastlts = ng(it™, ..., it"*) if s is while-statement

Third, let p be an arbitrary subprogram, that is, let p be either a statement or a context.
We refer to the timepoint where the execution of p has started (parameterized by the
enclosing iterators) by

tpp(0) if p is while-statement
starty, == | tpp if p is non-while statement

starts, if p is context si;...;sx

Fourth, for an arbitrary subprogram p, let end, denote the timepoint which follows
immediately after p has been evaluated completely (including the evaluation of subpro-

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

2.

TRACE LOGIC AND SEMANTICS

16

grams of p):

startg if s occurs after p in a context
end. if p is last statement in context c
endy := { ends if p is context of if-branch or else-branch of s

tps(succ(it®)) if p is context of body of s

lend if p is top-level context

Fifth, let s be the first statement of the top-level context, and define
start := starts.

Finally, let s be a statement with enclosing loops wy,...,wx. We will use Venclltss. F
to denote the formula Vit“?, ... itWs. F', for an arbitrary trace logic formula F.

2.2.2 Reachability

We introduce a predicate Reach : L — B, which intuitively captures the set of time-
points reached in an execution. Note that in our work, reachability is defined as a pred-
icate over timepoints, in contrast to defining reachability as a predicate over program-
configurations. We thereby decouple the reachability of a timepoint ¢p from the values
of the program variables at that timepoint ¢tp. We use Sg to denote the set { Reach}.

2.2.3 Program Variables and Expressions

In our setting, we reason about program behavior by expressing properties over program
variables v. To do so, we capture the value of program variables v at timepoints (from
L) . Hence, we model program variables v as functions v : L — I, where v(tp) gives the
value of v at timepoint ¢p. If the program variable v is an array, we add an additional
argument of sort I, which corresponds to the position at which the array is accessed. We
denote by Sy the set of such introduced function symbols denoting program variables.
We finally model arithmetic constants and program expressions using integer functions.

Note that our setting can be simplified for non-mutable variables — in this case, we omit
the timepoint argument in the function representation of the variable.

2.5. Example Consider again Figure 2.1. By blength(lg) we refer to the value of program
variable blength at the moment before i is first assigned. We write b(l11(it), i(l11(it)))
for the value of array b at timepoint [11(it) at position pos, where pos is the value of
i at timepoint l11(it). As a is unchanged in the program, we write a(i(l11(it))) for the
value of array a at position pos. We denote by i(l¢nq(it)) + 1 the value of the expression
i+1 at the end of the execution. O

From now on, for an arbitrary program expression e, define [e](¢p) to denote the value
of e at timepoint tp.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.2. Trace Logic

2.2.4 Trace Logic £
We now have all ingredients to define our trace logic L.

The signature of £ contains the symbols of the theories D and I together with the
symbols introduced in Subsection 2.2.1-2.2.3, that is, symbols denoting timepoints, last
iterations in loops, the reachability of timepoints, and program variables.

Formally,
Sig(ﬁ) = (S]D) U S]I) U (STp usS,uUSgU Sv).

We define trace logic, denoted by L, as the instance of many-sorted first-order logic with
equality modulo D U T with signature Sig(L).

2.2.5 Definitions of Commonly used Formulas

We finally introduce definitions to express how the values of program variables evolve be-
tween two timepoints. These definitions will be used heavily while defining the semantics
in Section 2.3 and Section 2.4.

Consider v € Sy, that is a function denoting a program variable v, let e, e, and eg be
program-expressions, and let ¢p1, tp2 denote two timepoints. First define:

Vpos'. v(tpi, pos) ~v(tps, pos), if v is array

Eq(v,tp1,tp2) := { (2.11)

v(tpr) ~v(tpa), otherwise

That is, Eq(v,tp1,tpe) in (2.11) states that the program variable v has the same values
at tp1 and tpo. Second, define

EqAll(tpy, tpa) := /\ Eq(v,tp1,tp2), (2.12)

vESYy

asserting that all program variables have the same values at the timepoints tp; and tps.
Third, define

Update(v, e, tp,tp2) := v(tp2) ~[e](tp1) A /\ Eq(V tp1,tp2), (2.13)
v'€Sy \{v}

Fourth, define

UpdateArr(v, e1, e2,tp1,tps) = Vpos.(pos 2 [e1] (tp1) —
v(tp2, pos) = v(tp, pos)) (2.14a)
v(tpa, [e1] (tp1)) = [e2] (tp1) (2.14D)
N Ea(W tp1,tp2) (2.14c)

v'eSy\{v}

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

TRACE LOGIC AND SEMANTICS

18

2.3 Small-step Operational Semantics

In this section, we present standard small-step operational semantics of W [Plo04],
rephrased in trace logic. We will use these small-step operational semantics in Sec-
tion 2.4 for establishing the soundness of the axiomatic semantics (also introduced in
Section 2.4).

Our presentation is semantically equivalent to standard small-step operational seman-
tics [Plo04], but differs syntactically in several points, to simplify later definitions and
theorems: (i) we annotate while-statements with counters to ensure the uniqueness of
timepoints during the execution, (ii) we reference nodes in the program-tree to keep
track of the current location during the execution instead of using strings to denote
the remaining program (iii) we avoid additional constructs like states or configurations
(iv) we keep the timepoints in the execution separated from the values of the program
variables at these timepoints, and (v) we evaluate expressions on the fly.

2.3.1 Transition Rules

First, we formalize single steps of the execution of the program as transition rules, as
defined in Figure 2.4. Intuitively, the rules describe (i) how we move the location-pointer
around on the program-tree and (ii) how the state changes while moving the location-
pointer around. Each rule consists of (i) a premise Reach(tp;) for some timepoint ¢p;,
(ii) an additional premise F' (omitted if F'is T), the so-called side-condition, which is an
arbitrary trace-logic formula referencing only the timepoint ¢p;, (iii) the first conjunct
of the conclusion of the form Reach(tps) for some timepoint ¢p2, and (iv) the second
conjunct of the conclusion, which again is an arbitrary trace-logic formula G referencing
only the timepoints tp; and tpy. Note that each rule which is applied to a statement s
contains a free variable it“ for each enclosing loop w of s. A transition rule instance is
the result of substituting each such variable with a concrete integer value.

2.3.2 Execution Interpretations and Partial Correctness

Next, we now formalize the possible executions of the program as a set of first-order
interpretations, the so-called execution interpretations.

In a nutshell, execution interpretations can be described as follows. Each possible exe-
cution of the program induces an interpretation. For each such execution, the predicate
symbol Reach is interpreted as the set of timepoints reached during the execution. The
function symbols denoting values of program variables are interpreted according to the
transition rules at the timepoints reached during the execution, and are interpreted
arbitrarily at all other timepoints.?

We construct execution interpretation iteratively, as follows: We move around the pro-
gram as defined by the transition rules. Whenever we reach a new timepoint, we choose

2This is the standard way to encode partial functions in first-order logic.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

2.3. Small-step Operational Semantics

> 'tSOS
[init**] Reach(start)

Let s be a skip.

Reach(starts)
Reach(ends) N\ EqAll(starts, ends)

SOS]

[skip

Let s be an assignment v = e.

[asg*® Reach(starts)
as
g Reach(ends) N Update(v, e, starts, ends)
Let s be an array-assignment vie;] = es.
Reach(start
asg32) otorts)

Reach(ends) A UpdateArr(v, ey, ea, starts, ends)

Let s be if (Cond) {c1}lelse{cy}.

Reach(starts) [Cond](starts)

t 808
lite”] Reach(start.,) N EqAll(starts, start.,)
. Reach(starts) —[Cond](starts)
[ite}?”]

Reach(start.,) N EqAll(starts, start.,)
Let s be while (Cond) {c}.

Reach(tps (it®)) [Cond](tps(it?))

h 'l S0S
[whilef?®] Reach(start.) N EqAll(tps(it®), start.)
(whilegos] Feech(tps(it) lCond](tp. (it?))

Reach(ends) N EqAll(tps(it®), ends)

Figure 2.4: Small-step operational semantics using tp, start, end.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

2.

TRACE LOGIC AND SEMANTICS

20

a program state J', such that the side-conditions of the transition rule are fulfilled, and
extend the current interpretation J with J’. We furthermore collect all timepoints that
we already reached in 1. We stop as soon as we reach end. We then construct an execu-
tion interpretation as follows: we interpret Reach as I, extend J to an interpretation of
Sy by choosing an arbitrary state at any timepoint which we did not reach, and choose
an arbitrary interpretation of the theory symbols according to the background theory.

2.6. Definition (Program state) A program state at timepoint tp is a partial inter-
pretation, which exactly contains (i) for each non-array variable v an interpretation of
v(tp) and (ii)) for each array variable a and for each element pos of the domain Sy an
interpretation of a(tp, pos).

2.7. Definition (Execution-interpretation) Let pg be a fixed program. Let I, .J be any
possible result returned by the algorithm in Algorithm 1. Let M be any interpretation,
such that 1) Reach(tp) is true iff tp € I, 2) M is an extension of J, and 3) M interprets
the symbols of the background theory according to the theory. Then M is called an
execution interpretation of po.

Algorithm 1 Algorithm to compute execution interpretation.

J = choose program state at start
I = {start}
curr = start
while curr # end do
o Reach(curr) oF
o Reach(next) N oG
if 7 is [while}?®] for some statement s then
J = JU{olastlts — oit®}
choose a program state J’ such that JUJ' E oG.
J=JuJ
I =T1U{next}
curr = next
return 7, J

choose a transition rule instance r := , such that J F oF

With the definition of execution interpretations at hand, we now define the (partially)
correct properties of a program as the properties, which hold in each execution interpre-
tation.

2.8. Definition Let pg be a fixed program. Let F' be a trace logic formula. Then F is
called partially correct with respect to po, if F' holds in each execution interpretation of

Po.
2.3.3 Simple Properties of Execution Interpretations

We conclude this subsection by stating simple properties of execution interpretations,
which will be used in Section 2.5 and Section 2.6. The first property states that whenever

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.3. Small-step Operational Semantics

we reach the start of the execution of a subprogram p, we also reach the end of the
execution of p. The second property states that whenever we reach the start of the
execution of a context c, we also reach the start of the execution of each statement
occurring in c. The third property states that whenever we reach the start of the
execution of a while-statement s, then (i) we also reach the loop-condition check of s
in each iteration up to and including the last iteration, and (ii) we also reach the start
of the execution of the context of the loop body of s in each iteration before the last
iteration.

2.9. Lemma Let pg be a fixed program and let M be an execution interpretation of py.
Let further p be an arbitrary subprogram of pg and o be an arbitrary grounding of the
enclosing iterations of p such that o Reach(start,) holds. Then:

1. oReach(endy) holds in M.
2. If p is a context, o Reach(starts,) holds in M for any statement s; occurring in p.
3. If p is a while-statement while (Cond) {c}, then
a. oReach(tpy(itP)) holds in M for any iteration it? < o(lastlty).
b. oo’ Reach(start.) holds in M for any iteration with o’it? < o(lastlt,), where
o’ is any grounding of it?.

We prove all three properties using a single induction proof.

Proof. We proceed by structural induction over the program structure with the induction
hypothesis
Vencllts,.(Reach(start,) — Reach(endy)).

Let p now be an arbitrary subprogram of po. For an arbitrary grounding o of the
enclosing iterations assume that o Reach(start,) holds in M. To show that o Reach(end)
holds in M, we perform a case distinction on the type of p:

e Assume p is skip, or an integer- or array-assignment: Since o Reach(starty) holds

in M, the rule skip®®® resp. asg®®® resp. asg;o applies, so o Reach(endy) holds in
M too.
e Assume p is a context si;...;sg. By definition, we know start, = start,, there-

fore oReach(starts,) holds in M. By the induction hypothesis, we know that
o Reach(starts,) — oReach(ends,) holds in M for any 1 < ¢ < k. Using a trivial
induction, we conclude that o Reach(ends,) holds in M for any 1 <i < k.

e Assume p is if (Cond) {c1} else {cz}. Assume w.lo.g. that o[Cond](starty)
holds in M. Then the rule ite’?® applies, so o Reach(start.,) holds in M. Using the
induction hypothesis, we get o Reach(start.,) — o Reach(end.,), so o Reach(end.,)
holds in M. By definition, end. = endy, so o Reach(endy) holds in M.

e Assume p is while (Cond) {c}. We perform a bounded subinduction over itP from
0 to olastlt, with the induction hypothesis o Reach(tpy (it?)).

The base case holds, since o Reach(starty) is the same as o Reach(tp,(0)).

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

TRACE LOGIC AND SEMANTICS

22

For the inductive case, assume that both oo’ Reach(tp, (itP)) and o' (it?) < o(lastlty)
holds for some grounding o’ of it? with the goal of deriving oo’ Reach(tp, (succ(itP))).
Then rule while$?® applies, so oo’ Reach(start.) holds in M. From the induction

hypothesis, we conclude oo’ Reach(start.) — oo’ Reach(end..), so oo’ Reach(end..)

holds. By definition, we know that end. = tp,(succ(it?)) holds in M, so we

conclude that oo’ Reach(tp,(succ(it?))) holds in M.

We have established the base case and the inductive case, so we apply bounded

induction to derive that
VitP (o (it?) < o(lastlt,) — o Reach(tp,(it?)))

holds in M. In particular, o Reach(lastlt,) holds in M. Since, by definition, also
o-[Cond](lastlt,) holds in M, we deduce that while;?* applies, so o Reach(endy)
holds too.

O]

2.4 Axiomatic Semantics

In this section, we state an axiomatic semantics of WW. We first define Reach, and then
use Reach to define the semantics of an arbitrary program.

2.4.1 An Axiomatization of Reach

The following definition axiomatizes Reach using trace logic formulas. We will use Reach
to define our semantics. Moreover, the predicate is useful for specifying properties about
intermediate timepoints (since those properties can only hold if the referred timepoints
are reached) and for reasoning about which locations are reached (which could be used
in future work to reason about which functions are called in an execution).

2.10. Definition (Reach-predicate) For any context c, let

true if ¢ is toplevel-context
Reach(starts) A [Conds](starts) if ¢ context of if-branch of s
Reach(starts) A =[Cond,](starts) if c context of else-branch of s
Reach(starts) N it® < lastlts if ¢ context of body of s,

Reach(start.) :=

For any non-while statement s occurring in context c, let

Reach(starts) := Reach(start,),

and for any while-statement s occurring in context c, let

Reach(tps(it®)) := Reach(start.) N it® < lastlts.

Finally, let Reach(end) := true.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.4. Axiomatic Semantics

2.4.2 Non-Recursive Axiomatic Semantics using Reach

We now define the axiomatic semantics. Our semantics are not defined using recursion.
We define axioms for each statement of the program and define the semantics of the
program as the conjunction of all these axioms.

Let po be a fixed program. The semantics of pg consists of a conjunction of one impli-
cation per statement, where each implication has the reachability of the start-timepoint
of the statement as the premise and the semantics of the statement as the conclusion:

Ie] := A Vencllts,.(Reach(starts) — [s])

s statement of p
The semantics of the statements are defined as follows.

Skip. Let s be a statement skip.

[s] := EqAll(ends, starts) (2.15)

Integer assignments. Let s be an assignment v = e, where v is an integer program
variable and e is an expression. We reason as follows. The assignment s is evaluated in
one step. After the evaluation of s, the variable v has the same value as e before the
evaluation, and all other variables remain unchanged. Hence:

[s] := Update(v, e, ends, starts) (2.16)

Array assignments. Let s be an assignment a[e;] = es, where a is an array variable
and ey, ey are expressions. We consider that the assignment is evaluated in one step.
After the evaluation of s, the array a has the same value as before the evaluation, except
for the position pos corresponding to the value of e; before the evaluation, where the
array now has the value of e; before the evaluation. All other program variables remain
unchanged and we have:

[s] := UpdateArr(v, ey, e, ends, starts) (2.17)

Conditional if-then-else Statements. Let s be the statement if (Cond) {c;} else {cs}.
The semantics of s states that entering the if-branch and/or entering the else-branch
does not change the values of the variables:

[s] := [Cond](starts) — EqAll(start.,, starts) (2.18a)
A —[Cond](starts) — EqAll(start.,, starts) (2.18Db)

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

TRACE LOGIC AND SEMANTICS

24

While-Loops. Let s be the while-statement while (Cond) {c}. We refer to Cond as
the loop condition. We use the following three properties to define the semantics of s:
(i) the iteration lastlts is the first iteration where the loop condition does not hold, (ii)
entering the loop body does not change the values of the variables, (iii) the values of
the variables at the end of evaluating s are the same as the variable values at the loop
condition location in iteration lastlts. We then have:

[s] := Vit (it* < lastlts — [Cond](tps(it®))) (2.19a)
A —[cond](tps(lastits)) (2.19Db)
A Vit*P, (it* < lastlty — EqAll(start., tps(it®)) (2.19¢)
A EqAll(ends, tps(lastits)) (2.19d)

2.4.3 Partial Correctness using Axiomatic Semantics

Let po be a program, and let F' be a property of po expressed in £. We use the axiomatic
semantics [po] to establish that F' is partially correct with respect to po, by proving

[[Po]] Fpur F.

2.5 Soundness of Axiomatic Semantics

In this subsection, we show that the axiomatic semantics introduced in Section 2.4 is
sound with respect to the operational semantics introduced in Section 2.3. Soundness is
captured as follows:

2.11. Definition (JV-Soundness) Let po be a program and let F' be a trace logic formula.
Then F is called W-sound, if for any execution-interpretation M of po we have M E F'.

The following theorem states that the axioms defining the predicate (Reach) are sound.

2.12. Theorem (W-Soundness of axioms defining Reach) For a given terminating pro-
gram pg, the axioms defining Reach are VW-sound.

Proof. Let M be an execution interpretation.

First, let ¢ be a context. Case distinction:

t°°¢ we conclude that Reach(start.)

e Assume c is the top-level context. From ing
holds in M.

e Assume c occurs in an if-then-else-statement s := if (Cond) {c} else {c’} and
assume that both o Reach(starts) and o[Cond](starts) hold in M for some ground-
ing o of the enclosing iterations of s. Then rule ite’?® applies, from which we

conclude that o Reach(start.) holds in M.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.5. Soundness of Axiomatic Semantics

e Assume c occurs in an if-then-else-statement s := if (Cond) {c’} else {c}.
Analogously to the previous case.

e Assume c is the context of the body of a while-statement s, and assume that
o Reach(starts) and o'it® < olastlts hold in M for some grounding o of the enclos-
ing iterations of s and some grounding ¢’ of it*. Using Lemma 2.9.3b and the fact
o'it® < olastlts we conclude that oo’ Reach(start.) holds in M.

Second, let s be a non-while-statement occurring in context c. Assume further that
o Reach(start.) holds for some grounding o of the enclosing iterations of ¢. Using
Lemma 2.9.2, we conclude that oReach(starts) holds in M.

Third, let s be a while-statement occurring in context c. Assume further that both
o Reach(start.) and o’it® < olastlts hold in M for some grounding o of the enclosing
iterations of ¢ and some grounding o of it®. Using Lemma 2.9.2 we conclude that
oo’ Reach(starts) holds in M.

Finally, consider the last statement s of the top-level context c. From init**® we
conclude that Reach(start.) holds in M. From this, we conclude Reach(starts) using
Lemma 2.9.2. Finally, we apply Lemma 2.9.1 to conclude Reach(ends), which is the
same as Reach(end). O

We will now show that the axiomatic semantics of trace logic is WW-sound.

2.13. Theorem (W-Soundness of Axiomatic Semantics of W) For a given terminating
program po, the semantics [po] is WW-sound.

Proof. Let M be an execution-interpretation of po. We have to show that for each
statement s of pg, the formula

Venclltss.(Reach(starts) — [s])

holds in M. Let s now be an arbitrary statement of po. For an arbitrary grounding o
of the enclosing iterations assume that o Reach(starts) holds in M. To show that o[s]
holds in M, we perform a case distinction on the type of the statement s:

505 s0 we know

e Let s be skip. Then oReach(starts) has been derived using skip
that o EqAll(starts, ends) holds in M, which is the same as o[s].

o Let s be v = e. Then oReach(starts) has been derived using asg®®, so we know
that o Update(v, e, starts, ends) holds in M, which is the same as o[s].

e Let s be ale;] = es. Then oReach(starts) has been derived using asg
o UpdateArr(v, e1, e, starts, ends) holds in M, which is the same as o[s].

e Let s be if (Cond) {ci}else{ca}. Assume that o[Cond](starts) holds in M.
Using ite’?®, we conclude that oEqAll(start.,,tps) holds in M. In particular,
(2.18a) holds.
Analogously, we prove that (2.18b) holds in M. Combining both results, we con-

clude that o[s] holds in M.

S0S8

S08

arr> SO

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2. TRACE LOGIC AND SEMANTICS
e Let s be while (Cond) {p1}. Formulas (2.19a) and (2.19b) define olastlts as the
smallest iteration it where o[Cond](tps(it) does not hold in M. Since we assume
termination, such an iteration needs to exist, and in particular the definition is
well-defined, so (2.19a) and (2.19b) hold in M.
Now let it be an arbitrary iteration such that it < olastlts; holds in M. Using
Lemma 2.9.3a, we conclude that oReach(tps(it)) holds in M from the fact that
o Reach(starts) holds in M. Since o[Cond](tps(it)) holds in M by the assumption
it < olastlts, we know that o Reach(starts) has been derived using while?®, and in
particular that o EqAll(start.,tps(it) holds in M, which is the same as (2.19¢).
Finally, we obtain that o Reach(tps(lastlts)) holds in M from the fact that o Reach(starts)
holds in M using Lemma 2.9.3a. By definition of lastlts, the formula o[Cond](tps(lastlts))
does not hold in M, so o Reach(starts) has been derived using while;’*. In partic-
ular, o EqAll(ends, tps(lastlts)) holds in M, which is the same as (2.19d).
O
2.6 Completeness of Axiomatic Semantics
Developed more than 50 years ago, Hoare logic [Hoa69] is the standard framework
to reason axiomatically about programs and forms the basis of several verification
frameworks, including ESC/Java [FLL702], Spec# [BLS04], HAVOC [CLQRO07], and
VCC [CDH™'09].
In this section, we clarify the relation between Hoare logic and the axiomatic semantics
of trace logic. We present a meaningful and simple translation, which maps for any
given program po Hoare triples to trace logic formulas, with the property that for any
valid Hoare triple, the resulting trace logic formula follows from [po] in DUIL As a
consequence, we obtain that trace logic is complete with respect to Hoare logic (for a
meaningful definition of completeness). In other words, whenever we can conclude the
validity of a given program property using Hoare logic, we can also conclude the validity
of that property using trace logic.
2.6.1 Hoare Logic
In this subsection, we recall the standard definition of Hoare logic [Hoa69].
2.14. Definition (Hoare logic) Let po be a fixed program.
e The single-state-language of pg is an instance of first-order logic, with a signature
consisting of Sy and a nullary function symbol x for each program variable x of pg.
e The language of Hoare logic of po consists of so-called Hoare triples of the form
{F}p{G}, for any subprogram p of po and single-state-language formulas F' and
G.
e A Hoare triple is called walid, if it can be derived from the rules of the Hoare logic
calculus, denoted in Figure 2.5.
26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.6. Completeness of Axiomatic Semantics

ass

{Flz — €]}z :=e{F}

P Y skip(F)

Fy— F {F{}p{F5} F3—F
{F1}p{Fo}

Weakening

{Giip{G2} ... {Gr}pi{Gry1}
{Gi}pr:- i pe{Grr }

Concatenation

{[[Cond]] A Fl}pl{FQ} {ﬁ[[Cond]] A Fl}pQ{FQ}
{F1} if (Cond) {p1}else{ps}{Fa}

{[Cond] A Fipi{F}
{F}while (Cond) {p1}{—[Cond] A F}

while

Figure 2.5: Proof system of Hoare logic.

If we compare how program variables are formalized in the single-state-language of Hoare
logic and in trace logic, we see that timepoints are missing in the single-state-language.
To compensate for keeping timepoints only implicit and still being able to refer to values
of the program variables at (two) different timepoints, Hoare logic uses Hoare triples
{F}p{G}, with the intuitive meaning that if F' holds at the timepoint where we start
to execute p, then G holds at the timepoint after the execution of p. Note that the
language of Hoare triples itself is not an instance of first-order logic. In particular, the
rules weakening and concatenation are explicitly needed to simulate the transitivity of
entailment in first-order logic.

2.6.2 Translating Hoare Triples to Trace Logic Formulas

We will now present a translation from Hoare triples to trace logic formulas. Recall that
a Hoare triple {F;}p{F>} denotes that if F; holds at the start of p, then F5 holds at
the end of F». We write such a fact in trace logic as [Fi](start,) — [F2](endy), where
the expressions [Fi](start,) and [F»](endy) denote the result of adding to each program
variable in Fy resp. F» the timepoint start, resp. endy as first argument. For example,
consider the program po := i=i+1. We can derive the Hoare triple {i~2}po{i~3}.
Similarily, we can derive the trace logic formula

i(startyy) ~2 — i(endy,) ~ 3.

Additionally, we have to deal with the technical complication that Hoare logic overspec-
ifies unreachable subprograms: Consider a program pg, containing p := i=i+1 as an

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

TRACE LOGIC AND SEMANTICS

28

unreachable subprogram. As Hoare logic does not take the context of a subprogram into
account, we can again derive the Hoare triple {i ~2}p{i~3}, even though p is never
executed. In contrast, in trace logic we will only derive the more precise

Venclltsy. (Reach(startp) — (i(starty) ~2 — i(endy) ~ 3)),

which takes the reachability of the subprogram p into account. Note that this difference
only occurs for (strict) subprograms, as the start of a program is by definition always
reachable.

2.15. Definition (Completeness with respect to Hoare logic) Let po be a fixed program.

e Let [] be a function which translates any Hoare logic formula F' to the trace logic
formula F’, where F’ is obtained by adding to each symbol v denoting a program
variable in F as first argument the free variable ¢tp. For any background theory
T, let further [T] := {Vtp“.[F] | F € T} be the translation of T

e Trace logic is called complete with respect to Hoare logic, if for any fixed background
theory 7T, for any subprogram p of po and for any Hoare triple { F} }p{ F>} provable
in T, the trace logic formula

Vencl[tsp.<Reach(sta7"tp) — ([F1](starty,) — [Fg](endp))>

follows from the axiomatic semantics [po] of trace logic in [T].

2.16. Theorem Trace logic is complete with respect to Hoare logic.

Proof. Let po be a fixed terminating program. We proceed by structural induction on
the Hoare calculus derivation with the induction hypothesis that for any subprogram p
of po and for any formulas F, Fy, if {F}}p{F»} is derivable in the Hoare Calculus, then

Vencl[tsp.(Reach(startp) — ([F1](starty) — [Fg](endp))>

is entailed by the trace logic semantics.

Consider now an arbitrary subprogram p of po such that {F}p{F>} is derivable in
Hoare logic. For an arbitrary grounding o of the enclosing iterations assume that
o Reach(start,) holds. This fact together with the definition of the trace logic semantics
implies that o[p] holds. We now use a case distinction to show the implication

o[Fi](starty) — o[Fb](endy). (2.20)

Since the grounding o is arbitrary, this then concludes the proof.

e Skip: Assume the last rule is

{F1 }Sk?ip{Fl}

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.6. Completeness of Axiomatic Semantics

We have to show o[Fi|(start,) — o[Fi](endy). The semantics o[p] state that
oEqAll(start,, endy) holds. Using this formula, we can rewrite o[F1](start,) into
o[Fi](endy), which shows that (2.20) holds.

Assignment: Assume that the last rule is

{Falz — €]}z = e{Fy}

We have to show the implication o[Fs|[z — €|(start,) — o[F>](endy). By defini-
tion, o[p] consists of o(x(endy)) = o([e] (starty)) and of o (v(endy)) = o(v(starty))
for all other variables v. Using these equations, we rewrite o[Fs][xz — €](starty)
into o[F3](endy), which shows that (2.20) holds.

Weakening: Assume the last rule is

Fi — Fy {F{}p{F3} Fy— By
{F1}p{Fa}

First, the formulas F; — F| and Fj — F» are tautologies in Hoare logic. Since
we assume that [] maps Hoare logic tautologies to trace logic tautologies, we get
that [Fy — F{](tp) and [F} — Fb|(tp) hold for arbitrary ground timepoints ¢p.
In particular, [F; — FJ|(o(starty)) and [Fy — Fb](o(endy)) hold, which can be
written as o[F1](starty) — o[F{|(start,) and o[Fy](endy) — o[Fs(endy). Second,
we use the induction hypothesis and the assumption oReach(starty) to conclude
that the trace logic axioms imply o[F]|(start,) — o[F3](endy). Combining the
three implications shows that (2.20) holds.

Concatenation: Assume the last rule is

{Gilpm{G1y .. {Geip{Gl}
{G1}p1; .. ioe{GY}

where G; = F; and G}, = F5. Using Lemma 2.9.2, we conclude from o Reach(starty)
that o Reach(start,,) holds for any 1 < i < k. Combining these facts with applica-
tions of the induction hypothesis yields that o[G;](starts,) — o[G}](endy,) holds
for any 1 < i < k. Since o(endy,) = o(starty,) for any 1 < i < k, we use a trivial
subinduction to conclude

o|G1](starty) — o[Gy](endy).

In particular, since Gy = F; and G}, = F», we conclude that (2.20) holds.
ITE: Assume that the last rule is

{[cond] A Fy1}p1{F>} {=[cond] A F1}p2{F>}
{F1} if (Cond) {pi}else{pz}{F2}

W.lo.g. assume that o[Cond](start,) holds. We assume that o[Fy](starty) holds
with the goal of deriving o[F3](endy). First, we combine o[p] with o[Cond](starts)

to derive o EqAll(starty, starty,). From this we derive o[Cond](starty,) and o[F1](starty,).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.

TRACE LOGIC AND SEMANTICS

30

Second o Reach(starty) and o[Cond](start,) imply o Reach(starty,). We then com-
bine the induction hypothesis

o Reach(starty,) — (o([Cond]] A [F1]) (starts,) — U[Fg](endpl))

with o Reach(starty,), o[Cond](starty,) and o[F1](starty,) to obtain o[Fb](endy,).
Since endy, = endy, we conclude o[F](endy), which shows that (2.20) holds.
e While: Assume that the last rule is

{[Cond] A F}pi {F}
{F}while (Cond) {p1}{—[Cond] A F'}

We again assume that o[F1](starty) holds with the goal of deriving o[F](endy).
We perform a bounded sub-induction on t” from 0 to olastlt, with the induction
hypothesis o[F](tpy (it?)).

Base Case: The formula o[F}](starty) holds and can be written as o[F1](tpp(0)).
Inductive Case: We have to show the implication

oVit? ((it? < lastlt, A [F](tpo (it?))) — [Fi] (tpp (suce(it?)))).

Let o’/ be an extension of o with an arbitrary grounding of it?, and assume that

o' (itP < lastlt,) and o' [F1](tpy (itP)) hold. We now have to show o’[F1](tpy (succ(it?))).
Combining o'[p] and o’ (it? < lastlt,) yields both o’ [Cond](tpy (itP)) and o’ EqAll(start,, , tp (it?).
We use the latter fact first to rewrite the former fact to o’[Cond](start,,) and sec-

ond to rewrite o’[F1|(tpy (it?)) to o' [Fi](starty,). Third, we obtain o’ Reach(starty,)

using Lemma 2.9.3b.

The induction-hypothesis now states

Venclltsy. <Reach(startp1) — (([[Cond]] A [F1])(starts,) — [Fl](endpl)))

For the grounding ¢’ we have already established the three premises of this for-
mula, therefore we conclude o'[Fi](endy,). Since endy,, = tpy(succ(it?)), we get
o' [Fi](tpp(succ(it?)), which concludes the inductive case.

We now have established the base case and the inductive case, so we use bounded
induction to conclude o [F1](tpy(lastity)). Finally, we rewrite this fact to o[F1](end,)
using o’[p], which shows that (2.20) holds.

O

2.7 Related Work

Most frameworks, which enable formal proofs about software program properties, are
based on a reasoning language that encodes single states/configurations and properties
about them. This includes Hoare’s seminal work on axiomatic semantics [Hoa69], and

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

2.7. Related Work

the state-of-the-art approach from [RES10]. To prove properties about (potentially un-
bounded) executions, these approaches introduce meta-level proof rules [Hoa69, RS12],
in a way such that each property, which is derivable for a given program, is (partially)
correct for that program. In contrast to these approaches, trace logic formalizes the se-
mantics of (potentially unbounded) executions directly as first-order axioms using stan-
dard first-order logic semantics, without introducing any meta-level proof rules. This
is possible since trace logic captures each program variable as a function whose value
depends on the current timepoint in the execution, in combination with universal quan-
tification over iterations. As a result, (i) each model of our axiomatization corresponds
to a single (potentially unbounded) execution of the program, and (ii) we can leverage
general-purpose techniques of first-order logic, including off-the-shelf automated theorem
provers and proof theory.

In [BSO1, BB13], the semantics of programs are encoded into an instance of first-order
modal logic. Afterwards, the correctness of properties is established in a custom sequent
calculus. Compared to [BS01, BB13], modal operators are not needed in trace logic, and
properties in trace logic can be proven in any sound proof system for first-order logic.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Software Verification using Trace
Logic

In this chapter, we present a new verification framework for software programs including
loops and arrays based on trace logic. We will first motivate the design of our framework
by highlighting the challenges of verifying properties of programs containing loops and
arrays on the running example. In particular, we will argue that advanced loop splitting
is necessary to verify the given property, and we will highlight how the expressiveness
of trace logic in combination with explicit induction axioms enables such advanced au-
tomated loop splitting. Afterwards, we will present our verification framework in detail,
including a formal presentation of the inductive consequences we use in our work, the
so-called trace lemmas. Finally, we show how to formally prove the property of the
running example in our verification framework.

3.1 Key Ideas

3.1.1 Motivating Example

Recall the property (2.1), which we want to prove correct with respect to our running
example from Figure 2.1. This property is challenging to verify, since it requires theory-
specific reasoning over integers and it involves an alternation of quantifiers, as the length
of the array b is unbounded and the position apos is arbitrary.

To understand the difficulty in verifying such kind of properties, let us first illustrate how
humans would naturally prove property (2.1). First, prove that for each position bpos
of the array b there exists a loop iteration ity at which bpos is visited. In particular,
the value of b at bpos at the beginning of the successor-iteration of ity is v, where v
is the value of a at the position corresponding to the value of i in the loop iteration
itp. Then, split the iterations of the loop into two intervals: (i) The interval from the

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

SOFTWARE VERIFICATION USING TRACE LocIc

34

first iteration of the loop to the successor-iteration of itg, and (ii) the interval from the
successor-iteration of ity to the last iteration of the loop. Finally, prove that the value
v of b at position bpos is preserved throughout the second interval: In particular, one
uses (bounded) inductive reasoning, to conclude the preservation of v across the whole
second interval from the step-wise preservation of v in that interval.

While the above proof might be natural for humans, it is challenging for automated
verifiers for the following reasons:

(C1) one needs to express and relate different iterations in the execution of the loop in
Figure 2.1,

(C2) one needs to automatically synthesize loop iteration terms, which depend on val-
ues of program variables and therefore potentially denote different iterations for
different program executions, and

(C3) one needs to split the loop into intervals using the synthesized loop iteration terms
and reason about the resulting loop intervals separately.

In the remainder of this chapter, we will introduce a new verification framework based
on trace logic, which addresses these challenges.

Trace logic is able to express and relate iterations of loops, and therefore able to address
the challenge (C1), as follows. First, in trace logic, program variables are encoded
as unary and binary functions over program execution timepoints. This way, we can
precisely express the value of each program variable at any program execution timepoint,
without introducing abstractions. For Figure 2.1, for example, we write i(l9(0)) to denote
the value of i at timepoint lg(0). Secondly, trace logic allows arbitrary quantification
over iterations and values of program variables. In particular, we can express and reason
about iterations that depend on (possibly non-ground) expressions involving program
variables.

Moreover, trace logic can express induction axioms, including bounded and generalized
bounded induction axioms as described in Section 2.1. It therefore enables reasoning
with these induction axioms directly in the language. In the following two subsections,
we will show that this is the key to enable automated loop splitting, that is, to address
the challenges (C2) and (C3).

3.1.2 Synthesizing Loop Iteration Terms

We will now show how to use (generalized) bounded induction axioms to synthesize
complex loop iteration terms, which can be used as interval-boundaries for splitting
loops. Consider an induction hypothesis IH with free variable it, and two terms it; and
itp of sort . Recall from Section 2.1 the bounded induction axiom for /H, which is

(BC(itL) A IC(its,itg)) — Concl(ity, itg). (3.1)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.1. Key Ideas

Assume now that BC(it) and —Concl(itr,itg) hold. We can then combine these two
facts with (3.1) to derive
~IC(ity, itR),

as follows: Since the conclusion Concl(ity,itr) of (3.1) does not hold, we use backward-
style reasoning to conclude that one of the two premises of (3.1) must not hold. As we
also know that the first premise BC(itr) holds, we conclude that the second premise
IC(it,itg) must not hold. Note that we were able to use the induction axiom (3.1)
even though the inductive case does not hold, by reasoning backward. It would not have
been possible to apply the induction axiom (3.1) using forward-style reasoning, as the
inductive case does not hold.

We see the actual power of deducing the consequence —Concl(itr,itg) as soon as we
inline its definition, which gives us

3t} (IH (itr) A ~IH (succ(it1))).

By applying backward reasoning, we were able to automatically synthesize a new exis-
tentially quantified iteration term it1, for which we know that the inductive step does
not hold. Note that i¢t; can denote different iterations in different executions of the
program. In particular, if we use it; to split the loop, then the loop is potentially split
at different iterations for different program executions.

3.1. Example Let w be a top-level while-statement, and let v be an integer program
variable which is incremented at most by 1 in each iteration of w. Recall the defini-
tions of tp, and lastlt, from Subsection 2.2.1. Consider now the induction-hypothesis
v(tpy(it)) < 1 with free variable it, the two terms 0 and lastlt,, and the corresponding
bounded induction axiom

(BC(O) N IC(0, last]tw)) — Concl(0, lastlt,),
where BC, IC, and Concl are defined as follows:

BC(0) := v(tp,(0)) < 1 (3.2)

1C(0, lastlt,) := Vit", ((o < it < lastlt, AN v(tp,(it)) < 1) — v(tp,(succ(it))) < 1)
(3.3)
Conel(0, lastlt,) = ¥it”.(0 < it < lastlt, — v(tp,(it)) < 1) (3.4)

Assume now that v(tp,(0)) ~0 and v(tp,(lastlt,)) £ 1 hold. From these two facts we
immediately conclude that BC(0) and —~Concl(0, lastlt,) hold. Combining those facts
with the induction axiom gives —IC(0, lastlt,), which, by definition, is

3t} (0 < ity < lastlt, Av(tp,(it1)) < 1A v(tp,(suce(itr))) £ 1).

We then use further integer theory reasoning to conclude Jit?.v(tp, (it1)) ~ 1. Taking a
step back, we see that we were able to combine an induction axiom with basic facts to
synthesize the iteration it, for which we know that v has value 1. O

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

SOFTWARE VERIFICATION USING TRACE LocIc

36

3.1.3 General Lemmas and Instantiating Them to Parts of Loops

Next, we will show how generalized bounded induction axioms can be used to reason
about loop intervals separately, by instantiating universally quantified variables over
iterations with concrete interval bounds. Consider an induction hypothesis TH with free
variables it, z1,..., 2, and recall from Section 2.1 the generalized bounded induction
axiom for IH, which is

vzl .. ,xi,it”ﬁ,it%.((BC(z‘tL) NIC(ity, itg)) = Concl(itL,itR)>

Assume now that it; and ite denote two iterations such that BC(tp1) and IC(tp1,tp2)
hold. We can then instantiate ity and itr in the generalized bounded induction axiom
to tpy resp. tpa, and resolve it with BC(tp1) and IC(tp1,tp2) to conclude Concl(ity,its).
While the generalized induction axiom is formulated for arbitrary intervals, we apply it
only to the interval with bounds ¢p; and tps. This allows us to use the induction axiom,
even though the inductive case might not hold for the whole loop. In our experience, it
is often the case that the induction case holds for each timepoint in a given interval of
a loop, but does not hold for each timepoint of the whole loop.

Note that we do not need to add the right instantiations of these induction axioms upfront
to the search space. Instead, we add universally quantified versions of these induction
axioms and instantiate them on demand during proof search. This is important, as the
terms, which we instantiate these axioms with, are usually only synthesized during proof
search, and therefore not available upfront.

3.2. Example Let w be a top-level while-statement, let a be a constant array vari-
able, and let b be a (mutable) array variable. Consider now the induction-hypothesis
b(tp,(it), bpos) ~v with free variables it?, bpos' and v', and the corresponding general-
ized bounded induction axiom

prosﬂ,vﬂ,itﬂg,it%.((BC(itL) A IC(itL,itR)) — Concl(itL,itR)>

where BC, IC, and Concl are defined as follows:
BC(itr,) == b(tpy(itL), bpos) ~v (3.5)
IC(ity,, itg) := VitP. ((itL < it < itr A b(tpy(it), bpos) ~v) — b(tp,(succ(it)), bpos) ~ v)

(3.

3.6)
Conel(ity, itg) := Vit® (ity, < it < ity — b(tp,(it), bpos) ~v) (3.7)

Assume now that we already know for some (previously synthesized) timepoint it; and
positions posi,pose that the following two facts hold:

b(tpy(it1), posi) ~ a(poss)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.2. A Verification Framework Based on Trace Logic

WtD((ih < it < lastlt, Ab(tpy(it), posi) =~ a(pos2)) — b(tpy(succ(it)), posy) ~ a(posz)).

We can then instantiate ity, itg, bpos and v in the induction axiom to itq, lastlt,, posi,
and a(poss), to derive

VitD.(itl < it < lastlt, — b(tp,(it), posi) ~ a(p082)>,

from which we finally conclude b(tp,(lastit,), posi) ~ a(poss). O

3.2 A Verification Framework Based on Trace Logic

Recall from Section 2.4 that trace logic formulates the axiomatic semantics of a pro-
gram as a set of axioms in standard first-order logic modulo the combined background
theory D U T of difference logic and integers. This way, establishing the correctness of a
property of a program is reduced to a validity check in standard first-order logic modulo
D UI. We can therefore use any off-the-shelf first-order theorem prover, which supports
validity-queries over (fully-quantified) standard first-order logic modulo D U I, to reason
about the correctness of program properties. In particular, we can use saturation-based
theorem provers, including those implementing the superposition-calculus [KV13, Sch02,
WDFEFT09], and SMT-solvers, for instance, solvers based on some refinement of CDCL
[DMB08, BCD*11].

Unfortunately, we cannot expect a theorem prover in practice to establish the correct-
ness of a property if we only pass it the axiomatic semantics of the program and the
property without any further information: As we have motivated in Section 3.1, induc-
tive reasoning over loop iterations and automated loop splitting are required to derive
many relevant consequences of the semantics, since we target programs containing un-
bounded loops. Automating such kind of induction is however challenging: state-of-
the-art theorem-provers, including both saturation-based provers and SMT-solvers, are
not able to automatically infer the (generalized) bounded induction axioms needed in
the setting of trace logic. To address this problem, we (i) identified some of the most
important applications of induction that are useful for many programs, (ii) formulated
the corresponding inductive properties in trace logic as trace lemmas, and (iii) use these
trace lemmas to guide the reasoning of the theorem prover while reasoning about the
correctness of a given property.

Summing up, our verification framework works as follows. Assume we are given a W-
program po and a property F' formulated in trace logic. The workflow to establish the
(partial) correctness of F' is visualized in Figure 3.1. First, we generate the axiomatic
semantics [po] of po in trace logic, as described in Section 2.4. Secondly, we generate
a set of lemmas L formulated in trace logic — the so-called trace lemmas — in order to
cover the inductive reasoning necessary to prove the correctness of F. Thirdly, we pass
the semantics [po], the trace lemmas L and the property F' to a theorem prover and
ask the prover to prove the validity of [po] A L Fpur F. If the prover finds a proof, we
conclude that F' is partially correct with respect to po.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3. SOFTWARE VERIFICATION USING TRACE LoGIC
[eo]
Po \ \
Trace lemmas 3 Theorem Prover
Property
Figure 3.1: Workflow of the verification framework.
3.2.1 Trace Lemmas for Reasoning About Arrays
In this subsection, we describe the set of trace lemmas we use to reason about the partial
correctness of properties of programs including loops and arrays. Each trace lemma is a
consequence of the (generalized) bounded induction axioms of difference logic and other
axioms of the combined theory D U I, except for the At-Least-One-Iteration trace lemma,
which is a consequence of the axiomatic semantics. We generate the trace lemmas for
each applicable variable and each loop of the program using a simple static analysis of
the given program. In the remainder of this subsection, we describe each lemma, prove
it formally, and motivate its usefulness.
Value-Evolution trace lemma. Let w be a while-statement, v be a mutable program
variable, and < be a reflexive and transitive predicate (e.g. ~, <or >). If v is an integer
program variable, then the Value-FEvolution trace lemma for w, v and < is
Vencllts. Vit it <
vit? (it < it < itp A v(tpy(itn)) < v(tp.(it)) —
v(tpy(ity)) < v(tpy(succ(it)))
—)
(it < itr — vitp,(itr)) < U(tpw(itR))>)
38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.2. A Verification Framework Based on Trace Logic

If v is an array variable, then the Value-Evolution trace lemma for w, v and < is

Vencl]ts.WtIg, it pos'. (
VitD.<(itL < it <itrp N v(tpy(itr), pos) < v(tp,(it), pos)) —

v(tpy(itr), pos) < U(tpw(succ(it)),pos))

—

(it < it = 09, (i12). pos) 2 0(tpit).pos))

The Value-Evolution lemma instantiated with the equality predicate ~ is very useful,
as it allows us to conclude that the value of a variable does not change during an interval
if it does not change at any point in that interval. Instantiating the lemma with the
predicates < and > is not as useful, but still needed in some situations.

3.3. Theorem Let w be a while-statement, let v be a mutable program variable, and let
< be a reflexive and transitive predicate (e.g. ~, < or >). Then the Value-Evolution
trace lemma for w,v and < is valid in D U .

Proof. To simplify the presentation, we only prove the lemma for integer program vari-
ables. Adapting the proof to array program variables is straightforward. Let o be an
arbitrary grounding of both the enclosing iterations of w and of ity and itg, such that the
instantiation of the premise of the Value-Evolution trace lemma with o holds. Consider
now the instance

BC: o(v(tp.(itr)) < v(tp.(itr))) (3.8a)
IC: ot (it < it < itp A v(tpy(itn)) < o(tp(it))) — v(tpa(itr)) < v(tp,(suce(it))))

(3.8b)

Con: o¥it”. (ity, < it < it — v(tp(its)) D v(tp.(it))), (3.8¢)

of the generalized bounded induction axiom scheme with (it) := v(tp,(itr)) < v(tp,(it)),
where additionally the grounding o is applied. The base case (3.8a) holds since < is
reflexive, and the inductive case (3.8b) holds since it is equal to the grounded premise
of the Value-Evolution lemma. We therefore know that the conclusion (3.8¢) holds. We
next instantiate it in the conclusion (3.8¢) to citgr, which yields o (it < itp < itp —
v(tpy(ity)) < v(tpy(itr))). Since < is reflexive, we know that o(itg < itg) holds, from
which we conclude o (it < itp — v(tp.(itr)) < v(tpy(itr))). O

Dense program variables. The following two lemmas apply to integer program vari-
ables, which act as iterators. Such program variables are dense, defined as follows: Let

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

SOFTWARE VERIFICATION USING TRACE LocIc

40

w be a while-statement, let v be a mutable program variable and define
Densey y 1= VitD(it < lastlt, —
(v(tpw(succ(it))) = v(tpy(it)) V v(tpy(succ(it))) = v(tp,(it)) + 1))

In our work, we assume that no array program variables are used as iterators. It would
be straightforward, though, to generalize our approach to cover this corner case too.

Intermediate-Value trace lemma. Let w be a while-statement and v be a mutable
integer program variable. Then the Intermediate- Value trace lemma for w and v is

Vencl[ts.VxH.((Densewm Av(tpw(0)) < z Az < v(tpy(lastlty,)))

— FitP. (it < lastlt, Av(tp,(it)) ~x A v(tp,(succ(it))) = v(tp,(it)) + 1))

The Intermediate-Value lemma lets us conclude that if the (iterator-) variable v is dense,
and if the value x is between the value of v at the beginning of the loop and the value of
v at the end of the loop, then there exists a loop iteration itg, in which v has exactly the
value x and gets incremented. The value x usually denotes some position in an array.
One can see this lemma as a discrete version of the Intermediate-Value Theorem for
continuous functions.

3.4. Theorem Let w be a while-statement and let v be a mutable program variable.
Then the Intermediate-Value trace lemma for w and v is valid in D U L.

Proof. We prove the following equivalent formula obtained from the Intermediate-Value
lemma by modus tollens.

Vencllts.Va'. <<Densew7v Av(tp,(0)) < x A
Vit (it < lastIt, A v(tp,(succ(it))) = v(tp,(it)) + 1) — v(tp.(it)) # CC))

— v(tpy(lastlt,)) < x>

(3.9)
Let o be an arbitrary grounding of both the enclosing iterations of w and of z, such that
the instantiation of the premise of (3.9) with o holds. Consider now

BC: o(v(tpw

(0)) < =) (3.10a)
IC: oVit. ((O
0

)
< it < lastlt, A v(tp.(it)) < x) — v(tpy(succ(it))) < x) (3.10b)

Con: o¥it”.(0 < it < lastlt, — v(tp,(it)) < z), (3.10¢)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.2. A Verification Framework Based on Trace Logic

obtained from the instance of the generalized bounded induction axiom scheme with
IH (it) := v(tp,(it)) < x by instantiating ity and ity to O resp. lastlt,, and applying the
grounding o.

The base case (3.10a) holds, since it occurs as the second premise of (3.9) instantiated
with o. For the inductive case (3.10b), assume o(0 < it < lastlt,) and o(v(tp,(it)) < z).
We proceed with a case distinction (which covers all cases, since o Dense,,,, holds):

e Assume o (v(tp.(succ(it))) = v(tp.(it))). Since we also assume o (v(tp,(it)) < z),
we immediately get o (v(tpy(succ(it))) < z).

e Assume o (v(tpy(succ(it))) = v(tpy(it)) + 1). Combined with the assumption
o(it < lastlt,) and the third premise of (3.9) instantiated with o, we get o (v(tp, (it)) %
), which combined with o (v(¢py(it)) < x) and the totality-axiom of < for integers
gives o(v(tp.(it)) < z). Finally, we combine this fact with o (v(tp(succ(it))) =
v(tpy(it)) + 1) and the integer-theory-lemma z < y — z + 1 < y to derive
o (v(tpy(succ(it))) <).

Since we have concluded o (v(tp,(succ(it))) < x) for all cases, we conclude that the
inductive case (3.10b) holds. We therefore know that also the conclusion (3.10c) holds.
Since the theory axiom Vit”.0 < it holds, (3.10c) implies the conclusion of (3.9) instan-
tiated with o, which concludes the proof. O

Iteration-Injectivity trace lemma. Let w be a while-statement and v be a mutable
integer program variable. Then the Iteration-Injectivity trace lemma for w and v is

Vencllts Vit? it (
(Densey » A v(tpy(succ(ity))) = v(tpy(ity)) + 1 A ity < itr Nitg < lastlt,)

= o(tpa(itL)) # v(tp. (itr)))

Iterator variables often have the property that they visit each element of the data struc-
ture at most once. This lemma states that a strongly-dense variable visits each array-
position at most once. As a consequence, if each array-position is visited only once in a
loop, we know that its value is not changed after the first visit, and in particular, that
its value at the end of the loop is the same as its value after the first visit.

3.5. Theorem Let w be a while-statement and let v be a mutable program variable.
Then the Iteration-Injectivity trace lemma for w and v is valid in D U IL.

Proof. Let o be an arbitrary grounding of both the enclosing iterations of w and of ity
and itg, such that the instantiation of the premise of the Iteration-Injectivity lemma

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

SOFTWARE VERIFICATION USING TRACE LocIc

42

with o holds. Consider now

BC: o (v(tpa(itr)) < v(tpy(succ(ity)))) (3.11a)
IC: JVitD.((succ(itL) < it < lastlt, A v(tpy(itr)) < v(tpy(it))) (3.11Db)

= v(tpa(itr)) < v(tp.(succ(it))))

Con: JVitD.<succ(itL) < it < lastlt, — v(tp,(ity)) < v(tpw(z't))), (3.11c)

obtained from the instance of the generalized bounded induction axiom scheme with
IH (it) := v(tp,(itr)) < v(tp,(it)), by instantiating ity and it to succ(ity) resp. lastlt,,
and applying o.

Combining the instantiated second premise o(v(tp,(succ(itr))) = v(tpy(ity)) + 1) of
the lemma with the integer-theory-axiom Va'.x < x + 1 yields that (3.11a) holds. For
the inductive case, we assume for arbitrary but fixed it that o (v(tp,(itr)) < v(tpa(it)))
holds. Combined with o Dense,,, and the integer theory axiom Val(z <y —az<y+1)
this yields o(v(tpy(itr)) < v(tps(succ(it)))), so (3.11b) holds. Since both premises
(3.11a) and (3.11b) hold, also the conclusion (3.11c) holds. Next, o(it; < itr) implies
o(succ(ity) < itg) (using the monotonicity of succ). We therefore know o(succ(ity) <
it < lastlt,), and instantiate the conclusion (3.11¢) to obtain o (v(tp.(itr)) < v(tp.(itr))).

Finally, we use the integer theory axiom Val, y!.(x < y — z % y) to conclude o (v(tp,(itL)) #

v(tPW(itR)))' O

At-Least-One-Iteration trace lemma. Let w be a while-statement while (Cond) {c}.
Then the At-Least-One-Iteration trace lemma for wis

Vencllts,.([Cond](tp,(0)) — Jit”.succ(it) ~ lastlt,)

In contrast to the other trace lemmas, this lemma does not cover any inductive con-
sequence that we could not conclude from other axioms. It is still useful for theorem
provers, which do not propagate disequality eagerly. Note that superposition-based
provers do not conclude 0 % olastlt,, from [Cond](ctp,(0)) and =[Cond](ctp,(lastity)),
due to the used inference system.

3.6. Theorem Let pg be a program with a while-statement w := while (Cond) {c}.
Then the At-Least-One-Iteration trace lemma for w follows from [po] in D UL

Proof. Let o be an arbitrary grounding of the enclosing iterations of w, such that
the premise of the At-least-One-Iteration lemma holds. From o[Cond](otp,(0)) and
—[cond](otpy(lastit,)) we conclude 0 2 olastlt,. We then use the difference logic
axiom VitD.(0 o ity — FitY.succ(its) = it1) to conclude it .succ(it) ~ olastlt,,. O

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.3. A Correctness Proof for the Running Example

Semantics

(_I

F1: Densey, piength

IntermediateValueTh || Semantics |
o~ \
F2: blength(ly(ito(bpos))) =~ bpos A .
Semantlcs |In]e(t1\ ity |

F4: Vit? (ity bpos) < Zt <n—

blength(ly(it) 7 blength(la(ito (bpos)))))

F3: b(lg(succ(ito(bpos))), bpos) ~ a(i(lg(ito(bpos))))
‘alueEvolution
—

F5: b(lg(ng), bpos) ~ b(lg(succ(ity(bpos))), bpos)

/

F6: b(lg(ng), bpos) ~ a(i(lg(ito(bpos)))

Semantics

I

F7: 3apos’.b(end, bpos) ~ a(apos)

Figure 3.2: High-level proof sketch for the property of the running example.

3.3 A Correctness Proof for the Running Example

In Section 3.1, we discussed how to informally prove property (2.1) of the running
example. In this section, we will show how to prove this property formally, using the
verification framework introduced in Section 3.2.

An outline of the formal proof is visualized in Figure 3.2. Our presentation focuses on
the important steps of the proof (that is, formulas F1-F7) and the trace lemmas needed

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

SOFTWARE VERIFICATION USING TRACE LocIc

44

in the proof (that is, the formulas abbreviated as IntermediateValueTh, Injectivity, and
ValueEvolution), and highlights the steps in the proof, which use (some part of) the
program semantics.

The proof proceeds as follows. We start from the semantics of the program and from
the trace lemmas, and additionally assume, for some nullary (skolem) function bpos,
the premise of property (2.1), that is, Prem := 0 < bpos < blength. First, we use the
program semantics to derive formula F1, which denotes that blength is dense during
the execution of the loop lg. We then use the Intermediate-Value trace lemma for the
loop at location lg and the variable blength. We combine it with F1, the semantics,
and Prem, to conclude Formula F2, which in its full form is

blength(ly(ito(bpos))) =~ bpos N
ito(bpos) < ng A
blength(lg(succ(ito(bpos)))) ~ blength(lg(ito(bpos))) + 1.

The formula F2 denotes that for each position bpos in b, there exists a loop iteration
ito(bpos), such that (i) we visit bpos in iteration itg(bpos), (ii) the iteration ity(bpos)
happens before the last loop iteration ng, and (iii) we increment blength by 1 in that
iteration ito(bpos). Note that the application of the Intermediate-Value trace lemma
effectively synthesizes the term ity(bpos), as discussed in Subsection 3.1.2. Moreover, the
term ito(bpos) represents a quantifier alternation, as it encodes an existentially quantified
variable which depends on the universally quantified variable bpos'.

Next, we combine Formula F2 with the semantics to derive Formula F3. The latter
formula denotes that in the iteration succ(itg(bpos)) following the iteration ity(bpos),
the value of b at position bpos is equal to the value of a at the position corresponding
to the value of i in the iteration ito(bpos). Note that the previously synthesized term
ito(bpos) occurs in F3 as a subterm of the term succ(itg(bpos)). It would be very hard to
guess the importance of the latter term from the syntax of the program and the property,
as it contains both a quantifier alternation and the successor symbol of the background
theory D.

Then, we use the Iteration-Injectivity trace lemma for lg and blength, by combining
it with F1, F2, and the semantics. As a result, we obtain formula F4, which intuitively
denotes that after iteration ity(bpos), the position bpos is not visited again by blength.
Afterwards, we combine the Value-Evolution trace lemma for lg and b with F4 and the
semantics. This yields the formula F5, which denotes that the value of b at position
bpos at the end of the loop ng is the same as the value of b at position bpos at iteration
succ(itg(bpos)). Note that we instantiated the bounds ity, ity of the Value-Evolution
trace lemma with succ(itg(bpos)) and ng as part of applying the trace lemma to de-
rive the formula F4. These instantiations exemplify the specialization of a generalized
bounded induction axiom to a part of the loop, as described in Subsection 3.1.3.

"While bpos occurs as a universally quantified variable in the conjecture, it is transformed into an
existentially quantified variable as part of negating the conjecture, and is therefore encoded by a skolem
function, which we here also refer to as bpos.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.4. Related Work

Finally, we combine formulas F3 and F5 to conclude formula F6, from which we imme-
diately conclude F7. The latter formula corresponds to the conclusion of property (2.1)
and denotes that there exists a position apos, such that the value of b at position bpos
at the end of the loop is equal to the value of a at that position apos.

3.4 Related Work

Most verification approaches use a reasoning language without an explicit notion of
timepoints to express programs and properties, and use invariants to establish program
correctness [BGMR15, CC92]. Such invariants correspond to a fragment of trace logic
restricted to formulas of the form Vit?. P(it), where P contains no existentially quantified
variable of sort D and the only universally quantified variable of sort ID contained in P
is it. The lack of existential, and thus alternating, quantification makes this fragment
suitable for automation via SMT-solving [BDW18, HB12, FQ02, ALGC12, DHKRI11,
KGC16], for programs where full first-order logic is not needed, for instance programs
involving mainly integer variables and function calls. For program properties expressed in
full first-order logic, such as over unbounded arrays, existing methods [GSV18, FPMG19,
HR18, DDA10, CCL11, KFG20, CGU20, AGS14, DHK16, RL17] are not able yet to
automatically verify program correctness. We argue that the missing expressiveness
is the problem here. In particular, invariant-based languages are not able to express
generalized bounded induction axioms, as those axioms include existentially quantified
variables of sort D and multiple universally quantified variables of sort ID. As a result,
these languages are not able to synthesize timepoints for loop splitting, as discussed in
Subsection 3.1.2, and they are not able to specialize general trace lemmas to parts of the
loop, as discussed in Subsection 3.1.3. In contrast, trace logic can express generalized
bounded induction axioms and supports the automated loop splitting highlighted in
Subsections 3.1.2 and 3.1.3.

Our approach to automate induction using trace lemmas is related to template-based
invariant generation methods [CSS03, GR09]. Our trace lemmas are however more
expressive than existing templates, as they contain existentially quantified variables of
sort D and multiple universally quantified variables of sort ID. In particular, we use trace
lemmas to enable automated loop splitting, which is not supported by template-based
methods.

Recent efforts in using first-order theorem provers for proving software properties [KV09a,
GKR18] are closely related to our work. While [KV09a, GKR18] only handle simple
loops, our work supports a standard while-language with explicit locations and arbi-
trary nestings of statements. Furthermore, we prove the soundness and the Hoare-
completeness of our reasoning language, and introduce and prove trace lemmas to auto-
mate inductive reasoning based on bounded induction over loop iterations. Finally, we
are able to automate the verification of properties with arbitrary quantification, which
could not be effectively achieved in [GKR18].

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.

SOFTWARE VERIFICATION USING TRACE LocIc

46

First-order reasoning for program analysis is also addressed in [BS01, BB13], by intro-
ducing dynamic trace logic, an extension of dynamic logic with modalities for reasoning
about traces. A custom sequent calculus is proposed in [BS01, BB13], implying that
automating the work would require the design of specialized sequent calculus provers.
Unlike [BS01, BB13], our work is fully automated. Further, our work preserves the
control-flow structure of programs by introducing function symbols and automates in-
ductive reasoning using trace lemmas.

Several theorem provers implement basic techniques for inductive reasoning [RV19,
Crul7, RK15], by applying instances of the standard induction axiom scheme during
proof-search. None of these provers can provide the inductive reasoning needed for the
trace logic domain. In particular, it is far beyond the capabilities of these provers to effi-
ciently identify the instances of the generalized bounded induction axiom scheme needed
to prove most examples from the trace logic domain.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Relational Trace Logic

Many interesting properties from security applications can be expressed as properties
over multiple computation traces. In this chapter, we will generalize trace logic, in-
troduced in Chapter 2, and the trace-logic-based verification approach, introduced in
Chapter 3, to handle such properties.

4.1 Extending Trace Logic to Multiple Traces

4.1.1 Extending the Language

In Section 2.2, we introduced the trace logic language £, consisting of symbols Stp,
which denote program locations in the program tree, and symbols S,, Sy, Sgr, which
denote for an arbitrary execution the last loop iterations, values of program variables,
and reachable timepoints. In this subsection, we generalize the trace logic language £
to the relational trace logic language £* (parameterized by the number of traces k), by
introducing additional symbols to denote execution traces, and by extending the symbols
in S,,, Sy, and Sg to explicitly state the trace they apply to. As a result, we will be able
to use these symbols to describe values of multiple execution traces separately. Note
that we do not need to generalize the symbols in S7, describing program locations, since
these locations are independent of execution traces.

We use the following symbols in the relational trace logic £*. First, let T be an uninter-
preted sort denoting computation traces, let ¢1, ..., ¢; be nullary function symbols of sort
T denoting k£ computation traces, and let Séir denote the set of all these function symbols
ti. Secondly, we reuse the existing symbols S, and the macros tps, tps(it), starty, end,
and start defined on top of the symbols St,. Thirdly, we extend each symbol in S,,, Sy
and Sk with an additional argument of sort T (we add the argument as last argument of
the symbol). This results in sets S}, 5{, and S%. Furthermore, we adapt the definition
of the macro lastlt,, by adding again an additional argument of sort T. In particular,

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

RELATIONAL TRACE LOGIC

48

for any loop w and any argument ¢; of sort T we define
lastIt,(t) := ny (it ... it).

4.1. Example Recall the running example from Figure 2.1. As before, we use lg to
refer to the timepoint corresponding to the first assignment of blength in the program,
and use l9(0) to denote the timepoint corresponding to evaluating the loop condition
in the first iteration. We now use lg(ng(t1)) and lg(ng(t2)) to denote the timepoint
corresponding to evaluating the loop condition in the last loop iteration of the execution
trace tq resp. ta, and use Reach(lg(succ(zero)),t1) to denote that the execution trace t;
reaches the timepoint lg(succ(zero)). Furthermore, we now use blength(lg,t2) to refer
to the value of program variable blength in execution trace to at the moment before
i is first assigned, and write b(l11,4(l11(it),t1),t1) for the value of array b in execution
trace ¢1 at timepoint l11(it) at position pos, where pos is the value of i in execution
trace t; at timepoint /1 (it). Finally, we now write a(0,¢1) to denote the value of the
array a in execution trace t; at position 0, and write i(l¢pq,t1) + 1 to denote the value
of expression i+1 at the end of execution trace t. O

Finally, we define the signature Sig(£") of the generalized trace logic £* as
Sig(L*) = (SpUSH) U (SppUS,USRUS) U Sk,

and define relational trace logic, denoted by £¥, as the instance of many-sorted first-order
logic with equality modulo D U T with signature Sig(LF).

To simplify the presentation in the following subsections, we introduce the following
macro. For an arbitrary program variable v, let EqTr,(tp) denote that v has the same
value(s) in both traces ¢;,t; at timepoint tp, that is

Vpost.v(tp, pos, ;) ~v(tp, pos, tj)) if v is mutable array

iy Vpost.v(pos, t;) ~v(pos, t; if v is constant arra,
EqTrf}htJ (tp) = p (p ’ Z) (p])) ‘)) Y
v(tp, t;) ~v(tp, t;)) if v is mutable variable
v(t;) ~v(t)) if v is constant variable

We will sometimes omit to denote the traces t1,to that EqTr applies to, if they are clear
from the context.

4.1.2 Extending the Axiomatic Semantics

We now generalize the axiomatic semantics, which we presented in Section 2.4 for the
non-relational setting, to relational trace logic £¥. Consider the transformation R, which
maps an arbitrary trace logic formula F' and an arbitrary execution trace t; to a relational
trace logic formula R(F,t;), by (i) replacing each symbol in F; which is contained in Sy,
Sy, or Sg, with the corresponding symbol contained in S;,, Si,, or S%, and (ii) adding
t; as the last argument to all occurrences of the symbols contained in S, S}, and S%.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

4.1. Extending Trace Logic to Multiple Traces

1 func main{()
2 A

3 Int x;

4 if(x > 0)
5 {

6 X = x - 1;
7 }

8 else

9 {

10 skip;
11 }

12}

Figure 4.1: A simple program.

Given a program pg and a trace t;, we then define the axiomatic semantics of po with
respect to t; as

[po, ti] == R([po], t:)-

4.2. Example Consider the program po denoted in Figure 4.1. Recall from 2.4 that the
axiomatic semantics of pg is defined in trace logic £ as

[po] := x(ly) >0 — x(lg) ~x(lsg) A
x(lg) >0 = x(lepg) ~x(lg) — 1 A
x(ly) # 0 — x(lio) ~x(ls) A
z(la) # 0 = x(lend) ~ z(l10)

The axiomatic semantics of po with respect to the execution trace ¢1 is defined in rela-
tional trace logic £ as

>

lo,t1) ~x(la, t1)

lend, t1) ~x(lg,t1) — 1
lio,t1) ~x(lg, t1) A
Lend; t1) = x(l10, 1)

[po, t1] := x

>

&
N TN N TN
~
Ny
~
—
— — ~— ~—
vV
)
&
TN TN N N

O

We finally adapt the formalization of the partial correctness of a program property, given
in Subsection 2.4.3, to the setting of hyperproperties as follows. Let po be a program,
and let F' be a property of po expressed in £¥. Using £*, we formally capture the partial
correctness of I with respect to po as the entailment

[po,ti] A -+ Alpo, te] Epur F.

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

RELATIONAL TRACE LOGIC

50

4.1.3 Extending the Verification Framework

Using relational trace logic, we establish the partial correctness of a relational property
of a program using a validity check in first-order logic modulo D U 1. Analogously to the
non-relational setting, we can therefore use any off-the-shelf first-order theorem prover
to reason about the partial correctness of relational properties, and can use any off-
the-shelf first-order proof system supported by the theorem prover to certify the partial
correctness of the given property. Similar to the non-relational setting, existing the-
orem provers are not able to handle the inductive reasoning required to reason about
relational properties. To address this challenge, we (i) reuse the existing trace lem-
mas presented in Subsection 3.2.1, and (ii) add two additional trace lemmas specific to
relational properties, as follows.

Relational-Equality-Preservation trace lemma. Let w be a while-statement, v be
a mutable program variable, and let ¢; and t; be two different symbols denoting traces.

If v is an integer program variable, then the Relational-Equality-Preservation trace
lemma for w, v, t;, and t; is the instance of the generalized bounded induction axiom
scheme

Vencl]tsw.VitD,it%.((BC(itL) A IC’(itL,itR)) — Concl(itL,itR)>,

where BC(itr,), IC(itr,, itr), and Concl(itr, itg) are defined according to Formulas (2.8)-
(2.10), for the induction hypothesis IH (it) := v(tpy(it), t;) >~ v(tp.(it), ;).

If v is an array program variable, then the Relational-Equality-Preservation trace lemma
for w, v, t;, and t; is the instance of the generalized bounded induction axiom scheme

Vencllts, Vpos', it?, it ((BC(itL) A IC’(itL,itR)) — Concl(ity, itR)),

where BC(ity), IC(ity,itg), and Concl(ity,itr) are defined according to Formulas (2.8)-
(2.10), for the induction hypothesis IH (it) := v(tpy(it), pos,t;) ~v(tp,(it), pos,t;).

This lemma is central for reasoning about relational properties, as it often allows us to
conclude that a variable has the same value in traces ¢; and t; at a certain loop iteration,
or even at all loop iterations.

4.3. Theorem Let w be a while-statement, let v be a mutable program variable, and
let ¢; and t; be two different symbols denoting traces. Then the Relational-Equality-
Preservation trace lemma for w, v, ¢;, and ¢; is valid in D UL

Proof. The Relational-Equality-Preservation trace lemma is an instance of the general-
ized bounded induction axiom scheme and therefore valid in D U I. O

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.1. Extending Trace Logic to Multiple Traces

Simultaneous-Termination trace lemma. Letw be a while-statement while (Cond) {c}

and let ¢; and t; be two different symbols denoting traces. Let further V' denote the set
of function-symbols denoting program variables occurring in the loop condition of w.
Finally, consider the macro

EqV (it) :== N\ EqTry™" (tp,(it)). (4.1)
veV

Intuitively, FqV (it) denotes that each variable occurring in the loop condition has the
same value in the traces ¢; and ¢; in the iteration it of the loop w. Note that EqV (it)
is a sufficient condition to conclude that the loop condition check of w in iteration it
evaluates to the same value in ¢; and ¢;.

Then the Simultaneous-Termination trace lemma for w, t1 and ts is

Vencllts,,. ((Reach(startw, ti) A Reach(start,,t;) N EqV(0) A
wit? (it < lastlty(t:) A it < lastlty(t;) A EqV (it)) — EqV (suce(it))))
— lastlt,(t;) ~ last[tw(tj))

The Simultaneous-Termination trace lemma represents a sufficient condition to conclude
that both loops terminate in the same number of iterations, which is usually the first
step in a correctness proof for hyperproperties. The lemma is based on the observation
that the variables used in the loop condition check often have the same value in both
traces.

4.4. Theorem Let pg be a program containing a while-statement w := while (Cond) {c},
and let ¢; and ¢; be two different symbols denoting traces. Then the Simultaneous-
Termination trace lemma for w, ¢;, and t; follows from [po] in DU L

Proof. First note that it < lastlt,(t;) A it < lastlt,(t;) is equivalent to
it < min(lastlt,(t;), lastlt,(t;)).

Let now ¢ be an arbitrary grounding of both the enclosing iterations of w, such that the
instantiation of the premise of the Simultaneous-Termination trace lemma with o holds.
Consider

BC: 0 EqV(0) (4.2a)
1C: oit? (0 < it < min(lastlty (L), lastlty(t;)) A EqV (it)) (4.2b)
— EqV(succ(z’t)))

Con: o¥it” (0 < it < min(lastlty(t:), lastltu(t;)) — EqV (it)), (4.2¢)

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

RELATIONAL TRACE LOGIC

52

obtained from the instance of the induction axiom scheme with IH(it) := EqV (it) by
instantiating it7, and itg to O resp. min(lastit,(t;), lastit,(t;)), and applying o. Both
the base case (4.2a) and the inductive case (4.2b) hold, since they occur as part of the
instantiated premise of the lemma. Therefore also the conclusion (4.2¢) holds, and in
particular o EqV (min(lastlt,(t;), lastlt,(t;))) holds. Using the definition of EqV, we
then derive

o[cond](min(lastit,(t;), lastlt,(t;)),t;) <
o[cond](min(lastit,(t;), lastlt,(t;)),t;).

Next we show that neither o(lastlt,(t;) < lastlt,(t;)) nor o(lastlt,(t;) < lastlt,(t;))
holds.

e Assume that o(lastlt,(t;) < lastlt,(t;)) holds: Since oReach(start,,t;) holds,
we conclude that [w,¢;] holds. In particular the fact o—[Cond](lastlt,(t;),t;)
holds (formula (2.19b)), which we rewrite to o—=[Cond](lastlt,(t;),t;). The latter
fact contradicts o[Cond](lastlt,(t;),t;), which follows from the semantics [w, t;],
by instantiating (2.19a) with o and combining the result with the assumption
o (lastlty(t;) < lastlt,(t;)).

e Assume that o(lastlt,(t;) < lastlt,(t;)) holds: Analogously to the previous case.

By the totality of <, we therefore know that o(lastit,(t;) = lastlt,(t;)) holds, which
concludes the proof. O

4.2 Security Properties in Relational Trace Logic

In this section, we showcase the expressiveness of trace logic £* by formalizing the two
fundamental security properties non-interference [SM03] and sensitivity [DMNSO06] in it.

4.2.1 Non-Interference

For many application scenarios, data can be partitioned into private and public data.
In such a context, we are often interested in programs, which preserve the privacy of
the private data, but at the same time interact with the environment using the public
data. Non-interference [GM82] is a security property, which intuitively ensures that no
information flow from private data to publically observable data occurs while executing a
given program. In other words, non-interference ensures that publically observable data
is independent from private data, that is, it only depends on the publically observable
data itself.

We capture non-interference as a property in the relational trace logic £2, as follows. Let
Po be a program, let H be a set of high confidentiality variables to capture private data
and confidential variables, and let L be a set of low confidentiality variables to capture
publically observable data, variables and outputs. Recall further from Section 2.2 that
start and [.,q denote the first resp. last timepoint of the execution.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

4.2. Security Properties in Relational Trace Logic

1 func main () ; func main ()
2 A
I ;
3 const Int hi; 3 nt[] output
4 const Int length;
4 Int low;
5 5 const Int low;
6 Int hi =1 ;
6 if(hi > 0) : n i ow
; { low = low + 1; 8 Int 1 = 0;
9 } B ' 9 while (hi < length)
10 {
10 else | .
11 { 11 output [i] = hi;
12 hi = hi + 1;
12 low = low + 1; : .
13 i=1+1;
13 } > }
14
} 15}

(a) Branching on high confid. variable. (b) Explicit flow.

Figure 4.2: Examples with non-interference behavior.

Non-interference then expresses that given the same values for all low confidentiality
variables L at the beginning start of two arbitrary execution traces ti,ts, the values of
all low confidentiality variables L at the end l.,4 of these execution traces are the same.

(/\ EqTr,(start)) — (/\ EqTr,(lend))- (4.3)
veEL veEL

4.5. Example Consider the program illustrated in Figure 4.2a, containing a high confi-
dentiality variable hi € H, and a low confidentiality variable 1ow € L. For this program,
non-interference, defined in (4.3), corresponds to the property

EqTr;,,,(start) = EqTrp,(Lend)- (4.4)

This example is interesting, since in general a high confidentiality variable occurring
in a branching condition of an if-then-else-statement, could potentially prevent non-
interference. However, in the given program, the variable 1ow is updated in the same
way in both branches. As a result, non-interference still holds for the given program. [

4.6. Example Consider the program presented in Figure 4.2b, which contains a high
confidentiality variable hi and the low confidentiality variables 1ength, output, i and
low. The program iteratively leaks values to the publically observable variable output.
For the given program, non-interference corresponds to the property

(EqTryepgp(start) A EqTry,,, (start) A BqTr ., (start))
— (4.5)
EqTroutput(lend)

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

RELATIONAL TRACE LOGIC

54

This example is interesting, as an explicit flow from the high confidentiality variable
hi to the low confidentiality variable output occurs. The program nonetheless fulfills
non-interference, as hi was already assigned the value of the low confidentiality variable
low at line 5, before executing the loop at line 9. O

4.2.2 Sensitivity

Sensitivity is a property describing how much a program maximally amplifies differences
in its inputs. It is part of the core of the Laplace mechanism used to enforce differential
privacy [DMNSO06]. For simplicity, we investigate the special case where (i) the difference
in the input is limited to a single variable, (ii) the output consists of a single variable,
and (iii) the program is required not to amplify the differences in the input at all.

For this special case, we capture sensitivity as a property in the relational trace logic
L2, as follows. First, consider the macro Diff,(tp, z). For an integer program variable
v, it denotes that v differs by at most z between traces t1,t2 at timepoint ¢p. Formally,

Diff ,(tp, z) := |v(tp, t1) — v(tp, t2)| < z.

For an array program variable v, it denotes that v differs at some position by at most z
between traces t1,to at timepoint ¢p and has the same value in traces t1, to for all other
positions at timepoint tp, that is,

Diff ,(tp,2) = 3post.(u(tp, posi,t1) — v(tp, pos, 1a)| < 2 A

Vposy.(posy # posa — v(tp, posa, t1) = v(tp, pos, tg))).

Secondly, let po be a program, let V' denote the variables occurring in pg, and let ¢; and
to denote two execution traces. Let further v be a variable of pg. Let finally v/ be an
integer variable, which intuitively denotes the output of pog.

Then the sensitivity of po with respect to v is defined as

VZH.((Diﬁv(start, z) A /\ EqTr,(start)) — Diﬁvl(lend,z)) (4.6)
veV\{v}

4.7. Example In Figure 4.3, the contents of an array a are summed up into a variable
x. For this program, sensitivity corresponds to the trace logic property

2 ((Diﬁy(start, z) N EqTr,(start) A EqTr jengun (start)) — Diff . (Iena, z)) (4.7)
stating that if the values of the variable y differ by at most z between two traces while

all other array elements are equal, then the final values of x in these two traces will differ
from each other by at most z as well. O

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.3. Related Work

1 func main ()

2 {

3 const Int[] a;

4 const Int alength;
5 const Int y;

6 Int x = 0;

-

8 Int 1 = 0;

9 while (i < alength)
10 {
11 X = X alil;
12 i =1+ 1;
13 }
14 X = x + y;
15 }

Figure 4.3: Example adhering sensitivity.
4.3 Related Work

Verification of relational- and hyperproperties is an active area of research, with ap-
plications in programming languages and compilers, security, and privacy; see [BUL1S|
for an overview. Various static analysis techniques have been proposed to analyze non-
interference, such as type systems [SM03] and graph dependency analysis [GHM13].
Type systems proved also effective in the verification of privacy properties for crypto-
graphic protocols [EM13, BFGT14, CEK"15, CGLM17, CGLM18]. Relational Hoare
logic was introduced in [Ben04] and further extended in [BCK11, BCK13] for defining
product programs to reduce relational verification to standard verification. All these
works closely tie verification to the syntactic program structure, thus limiting their ap-
plicability and expressiveness. For instance, the existing syntax-driven, non-interference
verification techniques from [SM03, GHM13] would consider the examples presented in
Figure 4.2a and Figure 4.2b insecure. In contrast, our value-sensitive approach proves
these examples to be secure. Recently, [GMFT 18] encodes relational properties through
refinement types in F* [SHK " 16]. While still being syntax driven, [GMF 18] can poten-
tially verify semantic properties by using SMT solving, although this typically requires
the manual insertion and proof of program-dependent lemmas, which is not the case for
us.

In [GS13] bounded model checking is proposed for program equivalence. Program equiva-
lence is reduced in [FGK™14] to proving a set of Horn clauses, by combining a relational
weakest precondition calculus with SMT-based reasoning. However, when addressing
programs with different control flow as in [FGK™14], user guidance is required for prov-
ing program equivalence. Program equivalence is also studied in [ZHH17, KHE17] for
proving information flow properties. Unlike these works, we are not limited to SMT
solving and target the verification of relational properties expressed in full first-order

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.

RELATIONAL TRACE LOGIC

56

theories, possibly with alternations of quantifiers.

Motivated by applications to translation validation, the work of [NS16] develops pow-
erful techniques for proving the correctness of loop transformations. Relational meth-
ods for reasoning about program versions and semantic differences are also introduced
in [PY14, LHKR12]. Going beyond relational properties, an SMT-based framework for
verifying k-safety properties is introduced in [SD16] and further extended [SDL18] for
proving the correctness of 3-way merge. While these works focus on high-level lan-
guages, many others consider low-level languages, see [SD08, STL11, SSCA13, BDG14]
for some exemplary approaches. Further afield, several authors have introduced logics
for modeling hyperproperties. Unlike these works, trace logic allows expressing first-
order relational properties and targets reasoning about such properties using arbitrary
off-the-shelf first-order theorem provers, overcoming thus the SMT-based limitations of
quantified reasoning.

Finally, in [CFK " 14] HyperLTL and HyperCTL* is introduced to model temporal and re-
lational properties. However, these logics support only decidable fragments of first-order
logic and thus cannot handle relational properties with non-constant function symbols.
As such, security and privacy properties over unbounded data structures/uninterpreted
functions cannot be encoded or verified.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Reasoning in Trace Logic using
Vampire

The previous chapters 2, 3, and 4 showed how to formulate the correctness of soft-
ware program properties as validity statements in standard multi-sorted first-order logic
with equality modulo the background theory DUI. In the following chapters 5, 6, 7,
8, and 9, we turn our attention to reasoning about the resulting formalizations using
superposition-based theorem proving, and in particular the state-of-the-art superposition-
based theorem prover VAMPIRE.

We start this chapter by recalling the main ideas from superposition-based theorem
proving. Afterwards, we describe the concrete design used in VAMPIRE, including the
options surfaced to the user for controlling proof search. Finally, we discuss how to tune
VAMPIRE to the trace logic domain by leveraging the existing user options.

5.1 Background on Saturation-Based Theorem Proving

5.1.1 Automated Theorem Proving

We consider standard many-sorted first-order logic with equality modulo D U I, as de-
scribed in Section 2.1, and recall additional standard definitions used in automated
theorem proving.

A literal is an atomic formula or its negation. A literal s~t is called an equality literal.
A clause is a (not necessarily binary) disjunction of literals. We often consider clauses as
multisets of literals and denote by Cj,s the subset relation among multisets. The empty
clause, denoted by L, is the nullary disjunction of literals, and always evaluates to false.
A clause that only consists of one equality literal is called a unit equality clause.

o7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

REASONING IN TRACE LOGIC USING VAMPIRE

58

An ezxpression E is a term, literal, or clause. We write E[s] to mean an expression E
with a particular occurrence of a term s. A substitution, denoted by o, is any finite
mapping of the form {1 — t1,..., 2, — t,}, where n > 0. Applying a substitution o to
an expression F yields another expression, denoted by Eo, by simultaneously replacing
each x; by t; in E. We say that Fo is an instance of E. For two substitutions o; and
09, we say that o1 is more general than oo, if there exists a substitution o3, such that
the composition of o1 and o3 yields 3. A unifier of two expressions F; and FEs is a
substitution ¢ such that Ei0 = Fyo. If two expressions have a unifier, they also have
a most general unifier (mgu). The most general unifier is interesting, as it minimizes
the amount of instantiation necessary to unify two terms. A match of expression Ey
to expression F5 is a substitution o such that Fyo = FE5. Note that any match is a
unifier (assuming the sets of variables in £ and Fs are disjoint), but not vice-versa, as
illustrated below.

5.1. Example Let E; and E; be the clauses Q(z,y) V R(z,y) and Q(c,d) V R(c, 2),
respectively. The only possible match of Q(z,y) to Q(c,d) is o1 = {x — ¢,y — d}. On
the other hand, the only possible match of R(z,y) to R(c,z) is o2 = {x — ¢,y — z}.
As 01 and o9 are not the same, there is no match of £y to Ey. Note however that F;
and Es can be unified; for example, using o3 = {x — ¢,y — d, z — d}. O

5.1.2 Superposition Inference System

We assume basic knowledge in first-order theorem proving and superposition reason-
ing [BGMLO1, NRO1]. We adopt the notations and the inference system of superposition
from [KV13]. We recall that first-order provers perform inferences on formulas' using
inference rules, where an inference is usually written as:

13 F,
F

with n > 0. The formulas Fi, ..., F,, are called the premises and F' is called the con-
clusion of the inference above. An inference rule is a set of (concrete) inferences and an
inference system is a set of inference rules. Given an inference system Z, a derivation
from axioms A is a finite acyclic directed graph (DAG), where (i) each node is a formula
and (ii) each node either is an axiom in A and does not have any incoming edges, or is a
formula F' ¢ A, such that the incoming edges of F' are exactly (Fi, F),...,(F,, F) and
there exists an inference (F1,..., F,, F) € I, for some inference rule I € Z. A proof of
a formula F' from axioms A is a derivation from axioms A which contains a node F. A
refutation of axioms A is a proof of the empty clause L from axioms A.

Let 7 be some fixed background theory. An inference is sound (for T), if its conclusion
is a logical consequence of its premises in first-order logic with equality (modulo 7).
An inference system is sound (for 7)) if all its inference rules are sound (for 7). As a

'During saturation, inferences are only performed on clauses.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.1. Background on Saturation-Based Theorem Proving

consequence, if there exists a refutation of a set of clauses C' in an inference system,
which is sound (for 7"), then C is unsatisfiable in first-order logic with equality (modulo
7). From now on, we will only consider inferences which are sound (for the theory we
reason in). An inference system Z is complete resp. complete for T, if for any set C
of clauses, which is unsatisfiable in first-order logic with equality resp. first-order logic
with equality modulo 7, there exists a refutation from the clauses in C' in Z.

Modern first-order theorem provers implement the superposition inference system for
first-order logic with equality. This inference system is parameterized by a simplification
ordering over terms and a literal selection function over clauses. In what follows, we
denote by >~ a simplification ordering over terms, that is, > is a well-founded partial
ordering satisfying the following three conditions:

o stability under substitutions: if s = t, then sf > t0;
e monotonicity: if s = t, then I[s] = [[t];
e subterm property: s > t whenever t is a proper subterm of s.

From now on, we only consider simplification orderings that are total on ground terms.
The provided simplification ordering > on terms is extended to a simplification ordering
on literals, using a multiset extension of orderings, which ensures that (i) negative literals
are always larger than their positive counterparts, (ii) if L1 > Lo, where Ly and Lo are
positive, then =Ly = L; > —Ly = Lo, and (iii) any equality literal is smaller than
any literal using a predicate different than ~. The simplification ordering on literals is
extended to a simplification ordering on clauses using another multiset extension. For
simplicity, the extension of > to literals and clauses will also be denoted by . Whenever
FEy > E» for expressions F1, Fo, we say that Fy is larger than Es and Es is smaller than
FEq1 w.r.t. >=. We say that an equality literal s ~t is oriented, if s =t or t > s.

A literal selection function selects at least one literal in every non-empty clause. In what
follows, selected literals in clauses will be underlined: when writing LV C, we mean that
(at least) L is selected in LV C. In what follows, we assume that selection functions are
well-behaved w.r.t. »=: either a negative literal is selected or all maximal literals w.r.t.
> are selected [KV13].

In the sequel, we fix a simplification ordering > and a well-behaved selection function
and consider the superposition inference system, denoted by SUP, parametrized by these
two ingredients. The inference system SUP for first-order logic with equality consists
of the inference rules of Figure 5.1. It is both sound and complete (with respect to
first-order logic with equality).

5.1.3 The Given-Clause Algorithm

We now overview the main ingredients in organizing proof search within first-order
provers, using the superposition calculus. For details, we refer to [BGMLO1, NROI,
KV13).

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.

REASONING IN TRACE LOGIC USING VAMPIRE

D
@)

e Resolution and Factoring

Lv(Cy oLV Cy LvLvC
(C1V Co)o (LV C)o

where L is not an equality literal and o = mgu(L, L)
e Superposition
s~tVCy L[s'| v Cy

(Cl V L[t] Vv 02)9

s>tV Oy I8 =1V Cq s>tV Oy Is'| 21UV Cy

(CL VI =1V Cy)f (CL VIt 21V Ca)l
where s’ not a variable, L is not an equality, 6 = mgu(s, s’), t0 s0 and I'0 i 1[s']0

e Equality Resolution and Equality Factoring

sts'vC s~tVs ~t'vC
co (s~tvitt vC)o

where 6 = mgu(s, s'), t0 % s and t'0 # t0

Figure 5.1: The superposition calculus SUP.

Superposition-based provers use saturation algorithms: applying all possible inferences
of SUP in a certain order to the clauses in the search space until (i) the empty clause
has been derived, (ii) no more inferences can be applied, or (iii) a timeout is reached.

All state-of-the-art superposition-based theorem provers realize saturation using some
variant of the given-clause algorithm [VorO1l, Sch13]. The algorithm maintains two sets
of clauses, referred to as Active resp. Passive. Intuitively, Active contains all clauses
of the current proof attempt at which we can further extend the proof attempt, while
Passive represents a one-step lookahead consisting of clauses, which can be derived from
active clauses using a single inference step in the superposition calculus.” The given-
clause algorithm now works as follows. Initially, Passive contains all input clauses and
Active is empty. The algorithm then proceeds in rounds. In each round, a single clause
C is selected from the one-step lookahead Passive using the so-called clause selection
heuristics. The clause C' is then moved to Active (this step intuitively adds C to the
current proof attempt). Afterwards, the one-step lookahead is updated, by generating
all possible inferences in the superposition calculus between C' and clauses in Active.
If at some point the empty clause L is selected,” saturation finishes, and reports that
a proof was found. If at some point no further clause can be selected since Passive is

?We will later on introduce variants of the given-clause algorithm, called Discount and Otter. For these
variants, Passive has a slightly different interpretation, as clauses in Passive are potentially derived
using additional inferences.

3 As an optimization, it is sufficient to stop as soon as L is generated, without adding it to Passive and
selecting it.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.1. Background on Saturation-Based Theorem Proving

empty, then saturation finishes, and reports that no proof was found although all clauses
have been saturated. Finally, if the time limit is reached, saturation aborts, and reports
that no proof was found.

5.1.4 Clause Selection Heuristics

One of the most important choices in the given-clause algorithm is which clause selection
heuristics to use. For a comprehensive description and evaluation of existing clause
selection heuristics, see [SM16].

To ensure that the given-clause algorithm is complete — in the sense that the empty
clause can be derived (given enough time) if the set of input axioms is unsatisfiable and
a complete inference system is used — we require the clause selection heuristics to be fair
[NRO1], which intuitively means that no clause stays for an infinite number of rounds in
Passive without being selected.

Most clause selection heuristics order clauses with respect to one or more features of the
clause and/or its derivation. Two such features are the number of symbols in a clause
(also known as the weight of the clause) and the timepoint at which the clause was derived
(also known as the age® of the clause). The de facto standard clause selection heuristic
used in modern saturation-based theorem proving is the age-weight-based clause selection
heuristics [RV03], which alternates between selecting the clause with the smallest age
and selecting the clause with the smallest weight using a fixed ratio (we assume that
no value in the ratio is 0). The basic understanding of age-weight selection is that it
performs a blend between the best-first and the breadth-first search paradigms. Clauses
of small weight are considered better, because they are closer to the ultimate goal — the
empty clause of weight zero — than the larger ones. They also tend to produce small
clauses as children, serve as stronger simplifiers on average, and are computationally
cheaper to process. In contrast, the age feature performs a breadth-first exploration and
ensures fairness.

5.1.5 Redundancy

The presented naive version of the given-clause algorithm would be very inefficient as
applications of all possible inferences will quickly blow up the search space. It can
however be made efficient by exploiting a powerful concept of redundancy: deleting so-
called redundant clauses from the search space while preserving completeness of Sup. A
clause C' in a set S of clauses (i.e., in the search space) is redundant in S, if there exist
clauses C4,...,C, in S, such that C' = C; and Cy,...,C, E C. That is, a clause C is
redundant in S if it is a logical consequence of clauses that are smaller than C' w.r.t.
>. It is known that redundant clause can be removed from the search space, without
affecting the completeness of superposition-based proof search [BG94, WTRB20]. For

“While the term age is commonly used in the literature to refer to this feature, date-of-birth would be
more appropriate. In particular, following the existing literature, clauses, which are earlier generated,
confusingly have smaller age.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

REASONING IN TRACE LOGIC USING VAMPIRE

62

this reason, state-of-the-art saturation-based theorem provers not only generate new
clauses using the inference rules from SuP (we call these rules from now on generating
inference rules), but also delete redundant clauses during proof search by using so-called
simplifying inference rules and deletion inference rules. We use the term reduction
inference rule to refer to both simplifying and deletion inference rules.

Simplification Rules. A simplifying inference is an inference in which one premise C;
becomes redundant after the addition of the conclusion C to the search space, and hence
C; can be deleted. In what follows, we will denote deleted clauses by drawing a line
through them and refer to simplifying inferences as simplification rules. The premise C;
that becomes redundant is called the main premise, whereas other premises are called
side premises of the simplification rule. Intuitively, a simplification rule simplifies its
main premise to its conclusion by using additional knowledge from its side premises.

Deletion Rules. Even when simplification rules are in use, deleting more/other redun-
dant clauses is still useful to keep the search space small. For this reason, in addition to
simplifying and generating rules, theorem provers also use deletion rules: a deletion rule
checks whether clauses in the search space are redundant due to the presence of other
clauses in the search space, and removes redundant clauses from the search space.

One example of a simplification rule is demodulation, also called rewriting by unit equal-
ities. Demodulation is the following inference rule:

l~r LT
L{ro]v C

where lo = t, lo > ro, and L[t] V C > (I ~ 7)o, for some substitution o. It is easy to see
that demodulation is a simplification rule. Moreover, demodulation is a special case of
a superposition inference where the main premise of the inference is deleted. However,
unlike a superposition inference, demodulation is not restricted to selected literals.

5.2. Example Consider the clauses C; = f(f(z))~ f(z) and Co = P(f(f(c))) V Q(d).
Let o be the substitution o = {z +— c¢}. By the subterm property of >, we have
f(f(e)) = f(c). Further, as equality literals are smaller than non-equality literals, we
have P(f(f(c))) VvV Q(d) = f(f(c))~ f(c). We thus apply demodulation and Cj is sim-
plified into the clause C3 = P(f(c)) vV Q(d):

O]

An example of a deletion rule is subsumption, which removes subsumed clauses from the
search space. Given clauses C' and D, we say C subsumes D if there is some substitution
o such that Co is a submultiset of D, that is Co Cy; D.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.1. Background on Saturation-Based Theorem Proving

5.3. Example Let C = P(z) V Q(f(z)) and D = P(f(c)) V P(g(c)) V Q(f(c)) V
Q(f(g(c)) V R(y) be clauses in the search space. Using 0 = {x — g(c)}, it is easy
to see that C subsumes D, and hence D is deleted from the search space.]

Saturation with redundancy. There exist different strategies to extend the given-
clause algorithm with reduction rules [Vor0O1]. The two main approaches are variants of
the Otter algorithm and the Discount algorithm. The Otter approach keeps the invariant
that all reductions between clauses in Active U Passive have been performed. This
approach spends a lot of time with simplifications (in particular with reducing passive
clauses by passive clauses’), but allows more simplifications and ensures that clause
selection acts on the simplified clauses. Variants of the Discount approach keep the
invariant that all reductions between clauses in Active have been performed. In contrast
to the Otter approach, variants of the Discount approach process clauses much faster,
but have the disadvantages that (i) fewer simplifications are performed, and (ii) clause
selection might pick suboptimal clauses as clauses in Passive are not fully simplified yet.

Forward- and backward-reductions. Let the reduction set be Active U Passive for
Otter and Active for Discount. Both for Otter and Discount the invariants on the
reduction set are maintained as follows: Whenever we insert a new clause C into the
reduction set, we first reduce C' by clauses C1, ..., C) which are already in the reduction
set. We call such a reduction a forward reduction, as the clauses C1, ..., C) were added
to the reduction set before C' is added to the reduction set, so the reductions proceed
forward in time. Secondly, we use C to reduce existing clauses C', ..., Cj in the reduction
set. We call such a reduction a backward reduction, as the clause C' was added to
the reduction set after Cq,...,C) were added to the reduction set, so the reductions
proceed backward in time. The distinction between forward and backward reduction
rules is important: The main bottleneck for an efficient implementation of reduction
inference rules is to retrieve the simplifying clauses in the former case and to retrieve
the simplified clauses in the latter case. Both these retrievals are implemented using
advanced indexing techniques [SRV01]. Their implementation and efficiency can differ
a lot, and in particular backward-reduction rules can sometimes be significantly slower
compared to the corresponding forward-reduction rules. As a result, state-of-the-art
implementations sometimes realize a given reduction rule by default only as a forward-
reduction rule.

5.1.6 Reasoning with Background Theories

The superposition-calculus introduced in the previous subsections is sound and complete
(with respect to first-order logic with equality). To reason in first-order logic with
equality modulo some background theory T, we modify the approach as follows: (i) we
extend the set of input clauses with a (best-effort) axiomatization of 7, that is, with

5The number of clauses in Passive is often magnitudes larger than the number of clauses in Active.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

REASONING IN TRACE LOGIC USING VAMPIRE

64

a set of (clausal) axioms, the so-called theory azioms, and (ii) we introduce theory-
aware simplification rules’. We require that each theory axiom is a tautology in 7, and
we require that each introduced simplification rule is sound in 7. As a consequence,
the resulting calculus is sound for first-order logic with equality modulo 7. While the
resulting calculus is complete (with respect to first-order logic with equality), it is not
necessarily complete for 7. In particular, we are most interested in the background
theory D UT of difference logic and integer arithmetic, for which it is known that no
complete calculus can exist [G6d31].

5.1.7 Validity Checking

We now recall how superposition-based theorem proving is used to reason about validity,
and in particular conclude that a given conjecture formula Conj is a consequence from
a set of axiom formulas A4 in first-order logic with equality modulo 7.

We know that a conjecture Conj follows from a set of axioms A in T, if and only if
the conjunction of the axioms in A and —Conj is unsatisfiable in 7. Furthermore, we
can use a CNF-transformation [PG86, AW13, RSV16] to transform any formula into
an equisatisfiable set of clauses. We therefore use the following approach to establish a
validity claim: (i) we start with the formula F consisting of the conjunction of the axioms
in A and = Conj (ii) we execute the preprocessing phase, where we transform F into a
set of clauses C using a CNF-transformation, extend C with an axiomatization of 7, and
potentially perform other preprocessing steps, and (iii) we perform the saturation phase,
where we use the given-clause algorithm to show that C is unsatisfiable. The saturation
phase terminates in either of the following three cases: (i) the empty clause L is derived
(hence, a refutation of AU —{Conj} was found, which means that Conj follows from A
in first-order logic with equality modulo 7), (ii) no more clauses are derived and the
empty clause | was not derived (hence, there exists no refutation of AU—{Conj}, which
means that Conj does not follow from A in first-order logic with equality modulo T, if
the used inference system together with the used axiomatization is complete for 7), or
(iii) an a priori given time/memory limit on the VAMPIRE run is reached (hence, it is
unknown whether Conj follows from A in first-order logic with equality modulo 7).

We can also look at reasoning about validity statements from the perspective of the
generated derivations. In the preprocessing phase, a superposition-based prover gener-
ates a derivation from AU —{Conj}, such that each sink-node” of the DAG is a clause®.
Then, the prover enters the saturation phase, where it incrementally extends the existing
derivation with the given clause algorithm using the sink-nodes from phase (ii) as input
clauses.

SFor such inferences, we modify the notion of redundancy to use logical consequence modulo T .
TA sink-node is a node such that no edge emerges out of it.
8Note that preprocessing inferences do operate on formulas, which are not necessarily clauses.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.2. Design of VAMPIRE

5.2 Design of Vampire

In this section, we discuss how the design of the state-of-the-art superposition-based
theorem prover VAMPIRE [KV13] realizes the abstract design ideas of superposition-
based theorem proving. In particular, we emphasize the parts where VAMPIRE offers a
choice of algorithmic solutions.

VAMPIRE supports two simplification orderings: a transfinite version [KMV11] of the
Knuth-Bendiz Ordering (KBO) [KB83, Loc06al, and the Lexicographic Path Ordering
(LPO) [Kam80, BN99, Loc06b]. In both orderings, equality literals are fixed to be
always smaller than any other literals.

For literal selection, VAMPIRE uses several heuristics [HRSV16], from which we now
highlight the most important ones. The heuristics referred to as 10 in [HRSV16] repre-
sents the default literal selection strategy, which is (i) well-behaved”, (ii) stable against
small changes in the search space, and (iii) works well in practice. As an alternative, one
can use the lookahead-selection strategy, referred to as 11 in [HRSV16]. This heuristics
is interesting, as it sometimes outperforms the heuristics 10. While it is well-behaved,
it has the disadvantage that its computation depends on the current state of the search
space, which makes it very unstable against small changes to the order in which the
search space is explored. Furthermore, there are two not-well-behaved variants of the
heuristics 10 resp. 11, which are referred toas 1010 resp. 1011 in [HRSV16]. While the
heuristics 1010 is not well-behaved, it is still quite stable in our experience. The heuris-
tics is interesting, as it is not affected by the (in our context not necessarily optimal)
choice in VAMPIRE to force equalities to be always smaller in the literal ordering than
other literals. Finally, the heuristics 1011 is another heuristics which works very well
for many examples. It has the huge disadvantage, that it is not only not well-behaved
but also highly unstable against small changes to the search space, which makes it hard
to control while tuning other options.

VAMPIRE uses the superposition calculus SUP, denoted in Figure 5.1. As an optimization,
it realizes the superposition inference rule as Simultaneous superposition [Sch13, DK20].
Furthermore, VAMPIRE provides an additional generating inference rule unit resulting
resolution [OMW?76]. This rule is redundant from the perspective of completeness, but
can still be useful to discover proofs quickly.

The given-clause algorithm is realized in VAMPIRE in three variants: The already dis-
cussed approaches Otter and Discount, and an optimization of Otter, called the Limited
Resource Strategy (LRS) [RV03], which should be seen as the default variant of the
given-clause algorithm used in VAMPIRE. LRS almost always outperforms Otter. While
it also often outperforms Discount, there are still many examples, where the roles are
switched, with Discount outperforming LRS.

VAMPIRE provides various reduction inference rules and supports to use arbitrary combi-
nations of them. On the one hand, several unary reduction inference rules are provided,

9As defined in Subsection 5.1.2.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

REASONING IN TRACE LOGIC USING VAMPIRE

66

the most important ones being tautology deletion, duplicate literal removal, condensation,
trivial inequality removal, interpreted simplification, and distinctness- and injectivity-
simplification for term algebras. These rules can be applied very efficiently, therefore
VAMPIRE applies them exhaustively as soon as a clause is generated, independently
from the chosen variant of the given-clause algorithm. On the other hand, VAMPIRE uses
several binary reduction inference rules: forward- and backward-demodulation [BG94],
forward- and backward-subsumption'® [BG94], and forward- and backward-subsumption
resolution [BGMLO1].

To control clause selection, VAMPIRE uses a variant of the standard age-weight based
clause selection heuristics, where the age of a clause C' is measured as the depth of the
derivation of C' (simplification inferences are ignored during the depth computation).
Furthermore, several experimental features can be used to modify the clause weight
used for clause selection. In particular, one can choose to multiply the weight of each
clause, which is not derived from the conjecture, by some fixed constant value.

VAMPIRE provides native support for several background theories, in particular for (lin-
ear and nonlinear) integer arithmetic and term algebras. For these theories, VAMPIRE
(i) adds a set of theory axioms to the input axioms, and (ii) uses custom unary reduction
inference rules. The theory axioms used for integer arithmetic and term algebras are
described in [RS17] resp. [KRV17]. For integer arithmetic, several other experimental
approaches can additionally be used [RS17, RSV18].

Finally, VAMPIRE provides an advanced architecture [Vorl4] to interleave saturation
with clause splitting [WeiO1, RVO1].

5.3 Tuning Vampire to Trace Logic with Existing Options

Tuning a superposition-based prover to a given domain can dramatically improve its per-
formance, in particular, if there exists domain-specific knowledge, which can be exploited
to guide proof search. In this section, we discuss how to tune VAMPIRE to the trace logic
domain, using appropriate choices for the techniques presented in Section 5.2. While
some of these choices are currently only available in VAMPIRE, we argue that most of
our choices should also apply to other state-of-the-art saturation-based theorem provers.

We use the (transfinite) KBO ordering, as it works well together with other parts of the
prover, in particular with (age-) weight-based clause selection.

To handle literal selection, we employ the heuristics 10 and 1010. The heuristics 10
is appealing, as it is well-behaved and stable, and works well on the trace logic domain.
Surprisingly, we encountered many examples in the trace logic domain, which were only
provable using the heuristics 1010. We suspect that for these examples, the heuristics 10

0Technically, subsumption is not a reduction inference rule, as it is not covered by the standard re-
dundancy criterion from [BG94]. It is possible to adapt the redundancy criterion so that it covers
subsumption too [WTRB20].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.3. Tuning VAMPIRE to Trace Logic with Existing Options

encountered the problem that an important clause was not selected by clause selection,
as its weight was too large, which was caused by several equality literals, which piled
up in the clause during the derivation, as the literal ordering makes all equality literals
smaller than any non-equality literals. We suspect that in contrast, the heuristics 1010
could resolve away these equality literals earlier, and therefore kept the relevant clauses
smaller, which in turn led to an earlier selection of these clauses by the clause selection
heuristics. We also experimented with the heuristics 11 and 1011. While they worked
reasonably well, in our experience they did not fundamentally improve proof search.
As their instability against small changes to the search space would have made it very
difficult to optimize the choices for other options, we did not explore them further.

As our application domain is "nearly-Horn", in the sense that only a few case distinctions
are required, we use the redundant generating inference rule unit resulting resolution.
In our experience, unit resulting resolution is very beneficial in the trace logic domain.

We use the LRS algorithm, which in our experience consistently outperforms Otter. We
also tried to use Discount, but could not improve on LRS with Discount on the trace
logic domain, even though we optimized Discount by varying several other options. We
conjecture that one reason for the better performance of LRS compared to Discount is
that LRS can backward simplify clauses in Passive by clauses added to Active. Such
simplifications occur frequently in our domain. As a result, weight-based clause selection
is more accurate in LRS than in Discount, since it is computed on exhaustively simplified
clauses.

To fight the explosion of the search space, we use all reduction inference rules discussed
in Section 5.2. While in general there exist benchmarks, where the evaluation of some of
these inferences rules takes an excessive amount of time, we did not observe this problem
for the trace logic domain.

We use the age-weight-based clause selection heuristics and alternate between selecting
the clause with the smallest age and selecting the clause with the smallest weight using a
ratio of 1:1. Furthermore, we focus proof search towards the conjecture by doubling the
weight used for clause-selection for all clauses, which do not derive from the conjecture.
That way, clauses, which derive from the conjecture, will be preferred whenever the
clause selection heuristics selects by weight.

Interestingly, in our experiments on the trace logic domain, it did not help to use the
AVATAR architecture, even though we spent a lot of time optimizing strategies so that
AVATAR could shine. This result might seem surprising. We argue that it is reasonable,
as (i) the trace logic domain contains a lot of quantification, which limits the amount of
splitting possible by AVATAR, and (ii) we carefully introduce definitions in the trace logic
encodings (which amounts to a manual upfront splitting of clauses) and therefore already
handle the most important splittings without depending on AVATAR. Not having to use
AVATAR is highly beneficial from a user perspective, as (i) proof search is much more
stable and predictable if AVATAR is not used, (ii) we can manually inspect the proofs
found by VAMPIRE efficiently, in contrast to the proofs produced by AVATAR, which can

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5. REASONING IN TRACE LOGIC USING VAMPIRE

VitP. (it ~0 V succ(pred(it)) ~it)

VitP. 0 7 succ(it)

Vit itD. (itq ~ ity — succ(it) ~ succ(ita))

vit?. 0 < succ(it)

vit? itD. (it < succ(ity) ¢ (ity ity V ity < ity))

Vit itD. (it1 < ity > succ(ity) < succ(itz))

Vit itD ity ((ity < ity Nty < itg) — ity < it3)

Vit ztD,ztD. ((it1 < succ(ite) Aty < itg) — ity < it3)

Vit?, ztD. ((it1 < ity Nty < succ(its)) — ity < it3)

Vit? it 2,zt]§). ((it1 < succ(ite) A ity < succ(itz)) — it; < succ(its))

ity ity (ity < ity V ity =ity \V ity < ity)

VitP. it £ it
Figure 5.2: List of theory axioms used to specify difference logic over natural numbers.
not be inspected in a reasonable amount of time, and (iii) we can visualize saturation
attempts (cf. Chapter 8), which allows us to get useful insights for further tuning even
from failed proof attempts.
To enable integer reasoning, we use the theory axioms and reduction inference rules for
integer arithmetic provided by VAMPIRE. To support the background theory of difference
logic, we use the term algebra (N, 0, succ) of natural numbers, extend it with a symbol <
to denote the standard order relation on natural numbers, and extend the theory axioms,
which are already internally added by VAMPIRE for this term algebra, with additional
axioms for the order relation <. A list of the additionally added axioms is presented in
Figure 5.2.

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Layered Clause Selection for
Saturation-based Theorem
Proving

In Chapter 5, we discussed how to apply the superposition-based theorem prover VAM-
PIRE to reason in the trace logic domain, by tuning it using existing options (Section 5.3).
In initial experiments with this tuned setup, we observed that VAMPIRE would still fail
to prove most of the examples of the trace logic domain. While manually inspecting
some of the failed proof attempts, we realized that VAMPIRE’s high-level exploration of
the proof space was ineffective. In particular, VAMPIRE would heavily focus on searching
for proofs containing (i) almost only theory reasoning, and/or (ii) an excessive amount
of case-distinctions. In contrast to the proofs VAMPIRE was searching for, most proofs in
the trace logic domain only require light-weight theory reasoning and light-weight reason-
ing with case distinctions. We conjecture that the key ingredient to efficient reasoning
in the trace logic domain is to guide the prover using this domain-specific knowledge.

In this chapter, we will realize this idea, as follows. First, we will introduce a framework
for layered clause selection, which uses split heuristics to adapt existing clause selection
heuristics with arbitrary clause features, by ensuring that for a fixed percentage of clause
selections, clauses are selected which have small values for the given clause features.
Secondly, we will identify clause features, which heuristically approximate (i) the amount
of theory reasoning in the derivation of a clause (Section 6.2), and (ii) the number of
case distinctions in the derivation of a clause (Section 6.3), and instantiate the layered
clause selection with these features.

Afterwards, we will introduce an additional feature, which heuristically approximates the
relevance to the conjecture of a clause (Section 6.4), to focus proof search towards the
conjecture. Additionally, we will describe a feature to improve proof search in the setting

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

6.

LAYERED CLAUSE SELECTION FOR SATURATION-BASED THEOREM PROVING

70

of AVATAR (Section 6.5). While the resulting clause selection heuristics does not perform
up to our initial expectations, we still include it for completeness of the presentation.
We conclude the chapter by evaluating the described heuristics on standard benchmark
sets (Section 6.6).

While the techniques described in this chapter are motivated by the trace logic domain,
they should also be beneficial in other domains that have characteristics similar to the
trace logic domain. In particular, we conjecture that the techniques of this chapter
should be highly effective in many verification domains, e.g. on the examples from
[BBC*19].

6.1 Layered Clause Selection using Split Heuristics

6.1.1 The Age-Weight-Based Heuristic

We start with a formal definition of the age-weight clause selection heuristics, which was
already introduced in Subsection 5.1.4.

6.1. Definition (Age-weight clause selection heuristic) For any clause C, define the age
age(C) as the depth of the derivation tree of C'' and define the weight weight(C) as the
number of symbols® of C. Let further 7, : 7, be a list of two positive integer values.
Then the age-weight clause selection heuristic aw(rq : T,) alternates between selecting a
clause C with the smallest age age(C) and selecting a clause C' with the smallest weight
weight(C') using the ratio rq : 7.

6.1.2 Split Heuristics

6.2. Definition (Split heuristics) Let p be a real-valued clause evaluation feature such
that preferable clauses have a low value of (C), and let the cutoffs c1, ..., c, be mono-
tonically increasing real numbers with ¢ = co. Furthermore, let the ratio r1 : ... : rg
be a list of positive integer values, and let finally cs be an arbitrary clause selection
heuristic.

A split heuristic groups clauses into sets G, ..., G, and selects clauses by alternating
selection from G1, ..., Gy using the ratio r1 : ... : rg. The selection from each such set
G; is performed using cs. We define two modes of split clause selection heuristic, which
differ in how they group clauses:

e The monotone split heuristic mono-split(u,c1,...,Ck, 1 @ -+ : Tk, CS) uses sets
G ={C | pulC)<c¢}fori=1,... k.

e The disjoint split heuristic disj-split(p,c1,...,Ck,71 ¢ -+ : Tg,cS) uses sets Gy :=
{C(C) <ear},and G :={C' | ¢i—1 < u(C) < ¢} for 2 <i < k.

!This corresponds to how age is defined in VAMPIRE. More precisely, one uses only the depth with
respect to generating inferences. Reductions do not alter the age of a reduced clause.

?Including multiplicities. As a variation, different kinds of symbols (such as the variables, the predicate
symbols, or the constants) may weigh more than others [SM16].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

6.1. Layered Clause Selection using Split Heuristics

6.3. Example Consider the clause selection heuristic mono-split(u,0,1,00,3 : 1 : 1, aw(1 :
1)). This heuristic will select 3 out of 5 times a clause C such that u(C) < 0, 1 out of
5 times a clause C such that x(C) < 1, and 1 out of 5 times an arbitrary clause. On
“layer one”, e.g., 3 out of 10 times the clause C with the smallest age among the clauses
C with p(C) < 0 is selected, or 1 out of 10 times the clause with the smallest weight out
of all clauses is selected. O

Split heuristics allow to adapt an existing clause selection heuristic c¢s to take into account
the clause feature u. We now discuss how to pick the mode, the cutoffs, and the ratios.
We observed two kinds of clause features:

First, there are features where clauses with low feature value are more likely to con-
tribute to the proof search (this is the case for the features disty,, distgorn, and distsmg,
discussed in Section 6.2, Section 6.3, resp. Section 6.4). For features of this kind, one
can use a monotone split heuristic. A good starting point for cutoffs and ratios is ¢y, o0
and 1: 1, resp., where ¢ is the feature value we expect to obtain for the empty clause L
(based on domain knowledge and experience). One can extend the cutoffs by introducing
one or two additional cutoffs close to ¢y, in order to smooth the transition between ¢y and
oo, and extend the ratio accordingly. It can also make sense to vary the ratio, although,
in our experience, it is more important to identify good cutoffs than to fine-tune the
ratio.

Secondly, there are features where clauses with low feature value are not necessarily more
likely to contribute to the proof search, but are less likely to have low weight (this is the
case for the feature dist 4y discussed in Section 6.5). As a consequence, it does not make
sense to compare clauses, which have different feature values, by weight. In such a case,
one can use a split heuristic in disjoint mode. Varying the cutoffs and ratios of disjoint
split heuristics has a less predictable effect than for the monotone split heuristics and
needs to be fine-tuned on a case-by-case basis.

6.1.3 Nesting Split Heuristics

As split heuristics are parameterized by an arbitrary clause selection heuristic, we can
build clause selection heuristics containing nestings of split heuristics. Such clause se-
lection heuristics are powerful, as they allow us to easily combine different features.

6.4. Example Consider the nested split heuristic

mono-split(p1,0,1,00,15:4 : 1,
mono-split(ug,1,00,5 : 1,
aw(l:1))).

The resulting clause groupings and frequencies to pick from these groups are visualized in
Figure 6.1. The nested split heuristics form a tree. Each leaf node of the tree represents
a set of clauses, from which clauses are selected using aw(1 : 1). We can see that the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.

LAYERED CLAUSE SELECTION FOR SATURATION-BASED THEOREM PROVING

72

all clauses

15/2 4/20 20

ui1(C) <0 all clauses

T

C)<0
m(C) < (C)<0) <1) <1 all clauses

/«LZ(C) S 1 lu]. < 1 /J/].

Figure 6.1: Demonstrating nested split heuristics.

leftmost leaf node of the tree represents all clauses C' with 11(C) < 0 and p2(C) < 1.
We pick clauses from this leaf using aw(1 : 1) in 15/20 % 5/6 = 5/8 of the cases. O

Note that each split heuristic h provides a horizontal dimension consisting of the groups
of h. The nesting of different split heuristics itself provides a vertical dimension.

6.1.4 Implementation

In this subsection, we briefly discuss how to implement clause selection heuristics. As
typical runs of saturation algorithms can include several million clause selections, we
strive to implement these heuristics efficiently.

An aw-heuristic with ratio rege : Tweight can be implemented as a container AW as
follows. The container AW internally keeps two priority queues® Q,, @, where both
Q. and Q,, store all the clauses of AW, @, keeps its clauses ordered by age and @,
keeps its clauses ordered by weight. The container AW determines whether it should
select the next clause from Quge 0T Queight by using a weighted round-robin scheme with
ratio r4 : ry, and the selection from the chosen queue proceeds by popping the first
element (i.e. a clause) from that queue and deleting the corresponding record (of that
clause) from the other queue.

The heuristic mono-split(u,c1, ..., ¢k, @ -+ : Tk, CS), resp. disj-split(p,c1,...,cL,m1 -

. Tk,cS), can be implemented as a container SH as follows. Assume that cs is
implemented using a container CS. The container SH keeps k instances CSi,..., CSg
of CS, where container CS; contains all clauses of group G; of SH. The container
SH determines from which of the sub-containers CSq, ..., CS) it should select the next

3In VAMPIRE, these priority queues are implemented as skip lists.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.2. Feature: Amount of Theory Reasoning

clause using a weighted round-robin scheme with ratio r; : --- : rg, and then delegates
clause selection to that CS;.

6.1.5 Discussion

We believe that the nesting of split heuristics is a great conceptual tool for composing
independent ideas on how to improve clause selection into a single compound heuristic.
This can be already seen with two layers, where the time-tested age-weight selection
serves as a building block for more powerful /refined heuristics, and can get further pro-
nounced with additional nestings, as demonstrated by our experiments (see Section 6.6).

Nevertheless, it is not hard to see that computationally, the layered scheme can be es-
sentially “compiled down” to multiple level-one queues. More precisely, one needs an
extension of the typical level-one queue arrangement, such as the one implemented in
E [Sch13], to allow clause queue content filtering by clause properties. This means that
one needs to be able to set up a clause queue that only contains those clauses that satisfy
a given property P. Such property P could be, e.g., P(C) = u1(C) < 0A u2(C) <1
to define the age and weight level-one queues corresponding to the left-most leaf in
Figure 6.1. The reason why clause queue content filtering has until now not been used (to
the best of our knowledge) in saturation-based provers is probably that in the standard
perspective each clause queue is meant to provide an independent view of the whole set
of passive clauses and not just a subset thereof (which would complicate reasoning about
completeness if left further unconstrained).*

6.2 Feature: Amount of Theory Reasoning

Many domains, including the trace logic domain and the examples from [BBC'19], re-
quire a prover to perform quantified reasoning in a given (background) theory. The
standard solution to provide a prover with support for reasoning in such a theory is to
extend the input axioms of the problem with an explicit axiomatization of the corre-
sponding theory. There are two related problems caused by this approach: First, the
theory axioms generate a huge number of consequences, as the theory axioms are repeat-
edly combined either with themselves or with other axioms, and therefore blow up the
search space. Secondly, many of these generated consequences have a small weight. If a
standard age-weight-based heuristic is used for clause selection, those consequences are
therefore often selected, as selection by weight will favor them. While manually inspect-
ing proofs for problems of the trace logic domain and for problems from [BBC'19], we
observed that the amount of theory reasoning actually required to prove these problems
is small. As a result, the prover spends most of its proof search in a part of the search
space, where the chances to find a clause relevant for the proof are low. We are therefore
facing the challenge of guiding the proof search, so that the prover does not spend too

4We note that clause priority functions of E [Sch02] allow the user to order clauses on a particular queue
such that those clauses satisfying a given property P are all considered smaller than those that satisfy
-P.

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.

LAYERED CLAUSE SELECTION FOR SATURATION-BASED THEOREM PROVING

74

much time with theory reasoning, but at the same time still finds proofs containing a
small amount of theory reasoning.

In the remainder of this section, we present a solution for this challenge. In a nutshell,
our solution consists of a clause feature disty,, which measures the amount of theory
reasoning in the derivation of a clause, and a corresponding clause selection heuristic
based on split heuristic and disty,. We assume that the input problem is given as a
set of axioms, where the axioms corresponding to the axiomatization of the theory are
distinguished.

We start by formalizing the amount of theory reasoning in the derivation of a clause
C as the ratio of the number of theory axioms and the number of all axioms in the
derivation-DAG of C'. Computing these numbers exactly for the derivation of each clause
is potentially expensive, since it requires for each clause a traversal of the derivation-DAG
of the clause. We instead approximate those numbers by treating the derivation-DAG
as a tree, for which we can compute the numbers using running sums, as follows.

6.5. Definition For a theory axiom C, define both thAz(C) and allAz(C) as 1. For a
non-theory axiom C, define thAz(C) as 0 and allAz(C') as 1. For a derived clause C' with
parent clauses C, . .., Cy, define thAz(C') as), thAz(C;) and allAz(C) as Y, allAz(C;).
Finally, we set frac(C) := thAz(C)/allAz(C).

With these notations at hand, we identify proofs that only need a small amount of theory
reasoning with the proofs where frac(L) is at most 1/d, for some small positive integer
value d (L here denotes the empty clause).

Next, we present a clause feature dist‘tih which approximates the likeliness that a given
clause C' occurs in a proof where frac(L) is at most 1/d. The clause selection feature
distfh is parameterized by the value d and measures the number of non-theory axioms
which the derivation of C' would need to contain additionally to achieve a ratio of at
most 1 : d.

6.6. Definition Let d be a positive integer value. Then dist$, : Clauses — N is defined

as
dist%, (C) := maz(thAz(C) - d — allAz(C),0).

The feature dist}, satisfies several properties, which we think are favorable: (i) if the
derivation of a clause C' consists only of several axioms, then dist},(C) is small, (ii)
if derivations of clauses Ci,Cy are combined into a derivation of clause C, and if
both distd, (C1) > 0 and dist%, (Cy) > 0, then dist},(C) > dist% (Cy) and dist$,(C) >
dist® (Cy), and (iii) if derivations of clauses C},Cy are combined into a derivation of
clause C, and if frac(Cy) = 1/d, then dist%, (C) = dist%, (Cy). Note that frac itself does
not fulfill these properties.

6.7. Example Consider a clause Cj, such that thAz(C;) = 3 and allAz(Cy) = 5.
Consider further a clause Cy, such that thAz(Cs) = 100 and allAz(Cy) = 200. In-

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

6.3. Feature: Positive Literals

tuitively, C; is much more likely to occur in a proof with frac(Ll) = 1/4. We have
dist},(C1) = 7 < 200 = dist},(Cs), but frac(Cy) = 0.6 > 0.5 = frac(Cy). O

Finally, we construct a clause selection heuristic, which addresses the challenges pre-
sented at the beginning of this section, using the split heuristic from Section 6.1.2 as

/7. d
mono-split(distyy,, c1, ..., Ch—1,00,71 i =+ i Tk, [4),

where d is the positive integer such that 1/d is the expected fraction of the proof which
we want to find, u is some clause selection strategy, ci,...,cp_1,00 are cutoff values,
and 71 : -+ : 71 is a ratio. In our experience, varying d has a bigger effect than varying
cutoffs and ratios, and setting d to 8 is a reasonable starting point for fine-tuning d. In
our experiments, other useful values of d were between 4 and 50.

6.3 Feature: Positive Literals

Saturation-based theorem provers are known to work well on benchmarks where each
axiom is a Horn clause, that is, a clause with at most one positive literal. We would like
to extend the efficiency of these provers to problems which are nearly Horn, in the sense
that there exists a proof of the conjecture of the problem, where the number of positive
literals for each clause is small. We can formalize this as follows: The Horn-distance
dist forn (C) is defined as

dist rorn (C') := maz(posLits(C) — 1,0),
where posLits(C) denotes the number of positive literals of C'. For a given proof P define

distgorn(P) = Y distom(C).

C clause in P

We claim that for many application domains, including the trace logic domain and the
examples from [BBCT19], most examples are provable using a proof with a small Horn-
distance. But if we run a saturation-based theorem prover on such a problem, it can still
generate a lot of consequences that contain several positive literals. Such consequences
would typically be classified as highly unlikely to contribute to the refutation by human
inspection.

We can guide clause selection towards finding proofs with small Horn-distance by in-
stantiating the split heuristic from Section 6.1 as

disj'split(diStHOTna Cly. . 3 Cp—1,00,T1 1+ 1Tk, :u)7

for a given clause selection function p, cutoffs ¢i,...,cr_1,00 and ratio r1 : -+ : rg.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

6.

LAYERED CLAUSE SELECTION FOR SATURATION-BASED THEOREM PROVING

76

6.4 Feature: SInE-Levels

Several techniques in saturation-based theorem proving [WRC65, RS17, Sch13, SM16]
are based on the intuitive idea, that clauses, which are closer related to the conjecture,
have a higher probability to participate in a proof of the conjecture. The Sumo Inference
Engine (SInE) [HV11] is a well-established algorithm for selecting premises for first-order
theorem proving, i.e. for the task of reducing—before the start of the search—the possibly
large set of input axioms to a more manageable subset of those ones estimated to be most
promising for proving a given conjecture. SInE is an iterative algorithm that takes the
conjecture’ and iteratively adds axioms that appear to be most related to the conjecture
or to previously added axioms by a similarity metric based on sharing symbols. We
define, for every input axiom A, a heuristical distance distgp,p(A) from the goal G as
the iteration number i at which A would be added by SInE to the included axioms for
proving G. By definition, distsy,g(G) = 0 for the conjecture itself and typically ranges
between 1 up to approximately 10 for the non-conjecture input axioms [Sud20]. We will
informally refer to the value distgp,g(F') for a particular formula F' as its SInE-level.

So far, we defined SInE-levels only for the input axioms and the conjecture. To use
them as a feature of arbitrary clauses in proof search, we further define dists,gz(C) of a
derived clause as the minimum of distgp,g(P;) over the parents P; of C. While the choice
of the minimum operation may appear arbitrary, note that it has the nice property that
distsrp(C) = 0 if and only if C' has the conjecture among its ancestors. This is an
important “flag” of a clause, typically tracked by a theorem prover for use in various
conjecture-directed heuristics, and SInE-levels therefore naturally generalize this flag.

Finally, we derive a clause selection heuristic using the split heuristic from Section 6.1
as
mono-split(distsipp, Cly ..., Ch—1,00,T1 =+ Tk, [4),

for a given clause selection function u, cutoffs ¢y, ..., cx_1,00 and ratio 1 : -+ : ri. For
instance, we can use cutoffs 0,00 and ratio 1 : ro to ensure that from ro 4+ 1 clauses at
least one clause is selected which has the conjecture among its ancestors.

6.5 Feature: AVATAR-Splits

AVATAR [Vorl4, RSV15, RBSV16] is a theorem prover architecture in which a saturation
algorithm is augmented with a SAT (or an SMT) solver to facilitate an efficient version
of clause splitting [Wei0Ol, RVO1]. In a nutshell, a first-order clause C' is called splittable
if it can be written as C = C1 V...V Cy, k > 1, such that the individual components
C; are pairwise variable-disjoint. The main idea behind splitting is that one can reason
about the individual components separately, since for every set of clauses IV and every
such splittable clause C, N U{C'} is unsatisfiable if and only if N U{C;} is unsatisfiable
for every i = 1,..., k. This is advantageous, as the individual components C; are smaller
than the original clause C' and thus promise a strictly faster search.

®Also called the goal in [TV11] and [Sud20].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.6. Experiments

While the exact details of how AVATAR works are out of the scope of this chapter, the
key aspect important here is easy to explain. First-order clauses in AVATAR need to
keep track of the dependencies on splits from which they were derived. This is done
by assigning to each clause C' a set of dependencies D¢, denoted C' < D¢, where a
dependency d € D¢ is some identifier of a performed split registered elsewhere in the
architecture. Clauses from the input have their dependency set initialized as empty and
the dependency set of a derived clause is computed as the union of the dependencies
of its parents. Then, when a clause such as C7 V Cy < D¢ is split, with C; and Cy
variable-disjoint, the prover may continue reasoning with C; < D¢ U {[C1]} where [C]]
is the identifier of the dependency on the performed split. Intuitively, each dependency
d € D¢ is a choice point for which the prover might need to consider alternatives in
the future. This means that a clause with many dependencies corresponds to a logically
weaker fact than a clause with fewer ones.

Because the basic setup of AVATAR is oblivious to the size of the dependency set of a
clause, there is a danger of a strong preference for clauses of small weight (which arise
easily with splitting) that nevertheless depend on many splits and are therefore not the
best for closing the overall search fast. To potentially mitigate this effect, we propose
here to use the size of the dependency set of a clause, distqy(C < D¢) = |D¢l, as a
feature for split heuristics.

We then construct a clause selection heuristic using the split heuristic from Section 6.1
as

disj-split(dist Ay, 1y« .y Ch—1,00,T1 &+ + : Ty 1),

for a given clause selection function p, cutoffs ¢i,...,cr_1,00 and ratio r1 : -+ : rg.

6.6 Experiments

The techniques developed in this chapter have initially been motivated by the trace logic
domain. To understand the effect layered clause selection has for reasoning in the trace
logic domain, we will experimentally evaluate layered clause selection on the trace logic
domain later as part of a broader experimental evaluation in Chapter 9.

In this section, we will evaluate layered clause selection on the two general domains of the
standard benchmark libraries TPTP [Sut17] and SMT-LIB [BFT16]. As the introduced
clause selection heuristics encode domain-specific knowledge, we expect them to work
well on domains like the trace logic domain or the examples from [BBC'19], where
the required proofs share similar characteristics regarding the clause selection features
introduced in this chapter. Maybe surprisingly, we will show that even on the general
domains of TPTP and SMT-LIB, which by design cover many different reasoning
problems of varying characteristics, layered clause selection improves the efficiency of
VAMPIRE.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.

LAYERED CLAUSE SELECTION FOR SATURATION-BASED THEOREM PROVING

78

Implementation. We implemented the heuristics described in Sections 6.2—6.5 in the
state-of-the-art theorem prover VAMPIRE [KVIS]. Our implementation consists of about
1000 lines of C++ code and is part of VAMPIRE® starting from version 4.5.

We added the following options to control layered clause selection in VAMPIRE. The
options —thsq, -plsqg, —slsq, and —avsq control whether a split heuristic with fea-
ture disty,, distporn, distgmp resp. dist gy is used (with possible values on and of £ and
default value off). For each of these heuristics, we furthermore added options to con-
trol the cutoff (options —thsqgc, —-plsqgc, —slsqgc, resp. —avsqgc), the ratio (options
—-thsqgr, -plsqr, —slsqr, resp. —avsqgr), and the mode of splitting (options —thsql,
-plsgl, —-slsgl, resp. —avsql, with values on and off encoding the usage of the
monotone resp. disjoint split mode). The default values for these more fine-grained
options are described in Table 6.1.

Benchmarks. We evaluated the extended implementation of VAMPIRE on two sets of
problems coming from the TPTP library [Sut17] and from SMT-LIB [BFT16], respec-
tively. In detail, we selected all the first-order problems of the form CNF, FOF, and
TFO (including those with arithmetic) from TPTP version 7.3.0. This gave us 18294
problems. Additionally, we picked a subset of a recent version (release 2019-05-06) of
SMT-LIB consisting of all the problems from the sub-logics that contain quantification
and theories, such as ALTA, LRA, NRA, UFDT, ..., except for those requiring bit-vector
(BV) or floating-point (FP) reasoning, currently not supported by VAMPIRE. For this
SMT-LIB benchmark we obtained 68 234 problems.

Experimental setup. Our experiments were run on our local server with two Intel
Xeon Gold 6140 Processors (i.e., with 72 processor threads) and 188GB RAM. We
were running 30 instances of VAMPIRE in parallel with no other significant load on
the server. To obtain a baseline strategy, denoted as base, we modified the default
VAMPIRE strategy (which uses AVATAR) to use the Discount saturation loop (for stability
of results”) and the clause selection heuristic aw(1 : 10) (which in our experience leads in
VAMPIRE to good performance with Discount). All other tested strategies extend base
by applying one or more split heuristics for clause selection on top this setup. With the
exception of Experiment 4 we used a time limit of 10s per problem.®

6.6.1 Experiment 1: Testing the Initial Defaults

Searching for good values of the cutoffs, the ratio, and other parameters of split heuris-
tics is rewarding, but requires some experience and a certain amount of experimental
“tuning”, in particular for general domains. We picked certain default values for the

Shttps://github.com/vprover/vampire

"The default Limited Resource Strategy [RV03] is sensitive to timing measurements and repeated runs
on the same benchmark under essentially the same conditions may vary a lot.

8 A list of the selected problems along with other information needed to reproduce our experiments can
be found at https://github.com/quickbeaml123/LCS4ShbTP-materials.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/vprover/vampire
https://github.com/quickbeam123/LCS4SbTP-materials

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.6. Experiments

Table 6.1: Default parameters for the heuristics presented in Experiment 1.

tag feature d-value cutoffs ratio mode of split
th distd, 8 (0,32,80,00) 20:10:10:1 monotone
av distay - (0,00) 1:1 disjoint
sl distsmge - (0,1, 00) 1:2:3 monotone
pl distHom — (0, 00) 1:4 disjoint

Table 6.2: Results of Experiment 1: on the TPTP benchmark (left) and the SMT-LIB
one (right).

strategy solved Abase uniques strategy solved Abase uniques

base 9108 0 9 base 39943 0 45

th 9204 96 22 th 41841 1898 321

av 9160 52 89 av 39906 —37 116

sl 9525 417 109 — — — —

pl 9289 181 42 pl 40442 499 95

th+av+sl+pl 9526 418 147 th4+av+pl 40952 1009 287
union 10297 1189 union 43169 3226

parameters of the heuristics introduced in the previous chapters and used these defaults
(presented in Table 6.1) in the first experiment, the purpose of which is to demonstrate
the basic improvements we obtain from using the presented heuristics and their combi-
nations.

Table 6.1 assigns a tag, typeset in the typewriter font, to each of our four heuristics
when understood as VAMPIRE options used for defining a strategy. Thanks to the pos-
sibility of nesting split heuristics, these options can be turned on and off independently
from one another. Although a particular fixed order is employed in VAMPIRE to build up
the nestings (namely the order, from inside out: th, av, s1, pl), we use the operator +
to denote possible combinations to suggest that this order is actually irrelevant for the
proof search (cf. Section 6.1.5).

The results of the first experiment are shown in Table 6.2, separately for TPTP and
for SMT-LIB. We observe that in the case of TPTP all the four new heuristics lead
to an improvement in the number of solved problems. This is easiest to see from the
always positive column Abase, which shows the difference of the number of problems
solved between the current strategy and base. The same success is not fully repeated
on SMT-LIB where th shows a great improvement, but av performs worse than base.
(Note that we did not run s1 on SMT-LIB, since the format used in the library does
not support specifying the goal.”)

It should be pointed out that even a strategy that does not improve over base in terms

9There is, however, interesting work on “guessing the goal” for SMT-LIB problems [RR18], which one
could experiment with in the future.

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6. LAYERED CLAUSE SELECTION FOR SATURATION-BASED THEOREM PROVING

Table 6.3: Combined strategies run on TPTP: number of solved problems and aver-
age time spent (on the commonly unsolved problems) maintaining the passive clause
container.

strategy solved Abase || #queues avg. time on unsolved

base 9108 01| 2 0.32s

pl 9289 181 || 2(*2) 0.32s

av+pl 9179 71 || 2(*2)(*2) 0.32s

av 9160 52 || 2(*2) 0.33s

sl 9525 417 || 2*3 0.58s

sl+pl 9594 486 || 2*3(*2) 0.58s

sl4+av+pl 9511 403 || 2*3(*2)(*2) 0.58s

sl4av 9560 452 || 2*3(*2) 0.59s

th+av+pl 9181 73 || 2*%4(*2)(*2) 1.04s

th+pl 9338 230 || 2*4(*2) 1.06s

th 9204 96 || 2*4 1.06s

th+av 9234 126 || 2*4(*2) 1.08s

th+av+sl+pl 9526 418 || 2*4(*2)*3(*2) 1.75s

th+sl+pl 9601 493 || 2*4*3(*2) 1.76 s

th4+av+sl 9584 476 || 2*4(*2)*3 1.79s

th+sl 9557 449 || 2%4*3 1.80s
of the number of solved problems could still be valuable for the potential participation
in strategy schedules, because of the problems it solves uniquely (as reported in the last
column in the tables). For another view of this effect, the last line in the two tables
shows the number of problems solved by at least one of the listed strategies, again also
compared against base. We can see that the use of split heuristics allows us to solve
almost 1200 (more than 3200) problems not solved by base on the two benchmarks,
respectively.
6.6.2 Experiment 2: Nesting of the Heuristics
When looking in Table 6.2 at the performance of the combination of the four heuris-
tics (strategy th+av+sl+pl) one can ask why it does not get better at achieving a
combined benefit of its constituents. In Experiment 2, we look at this trend closer and
especially try to estimate how much time is typically spent on computing the clause
selection heuristic and how this depends on the number of heuristics combined.
The report in Table 6.3 is based on TPTP runs of all the 16 possible strategies which
combine between zero to four of the heuristics introduced in this chapter. The middle
part of the table reports on their performance in terms of the number of solved problems
and is comparable to (in fact, a super-set of) the results in Table 6.2 (left). One can
notice here that combinations indeed sometimes do not outcompete their constituents.

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.6. Experiments

E.g., *+av+pl is always worse than just «+pl, which could indicate some unfavorable
interactions of the two heuristics (we leave a more detailed study of this phenomenon
for future work).

Our main focus in this experiment, however, is on the right part of the table. There,
we took the runs on those problems which none of the strategies could solve'’ (i.e., on
which they ran for the full 10s) and measured how much time was spent (on average)
on interacting with the passive clause container (this includes insertions, deletions and
the popping of the selected clauses). This average time is reported in the last column,
from which we can see that, indeed, the more complex combined strategies are more
expensive to execute.

Additionally, for comparison, the #queues column in the table reminds us how many
“layer one” clause queues each strategy maintains (recall Section 6.1.3 and the number
of “horizontal” splits each heuristic uses, as shown in Table 6.1). The multiplier (*2)
corresponding to av and pl is rendered in brackets, because these two heuristics use the
disjoint split mode. This means that when deciding on dist gy (or distgem), each clause
is strictly inserted only into one of two possible sub-containers (rather than possibly to
more than one, as with the monotone mode). Correspondingly, the strategies are clearly
separated into four groups in terms of average interaction time, where the monotone
splits of s1 and th are the costly ones (and maintaining the 4 queues of th costs more
than the 3 queues of s1) whereas the disjoint split of the other two heuristics does not
seem to be adding any measurable overhead.

We remark that the reported average times are not directly proportional to the speed of
clause processing as each run was terminated after 10s no matter how many selections
were performed. Moreover, quite different search spaces could have been traversed by
each of the strategies.

0There were 7808 such problems.

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Subsumption Demodulation in
Superposition-based Theorem
Proving

7.1 Introduction

For the efficiency of organizing proof search during saturation-based first-order theorem
proving, simplification inference rules are of critical importance. These rules do not add
new formulas to the search space, but simplify formulas by deleting (redundant) clauses
from the search space. As such, simplification rules reduce the size of the search space
and are crucial in making automated reasoning efficient.

When reasoning about properties of first-order logic with equality, one of the most com-
mon simplification rules is demodulation [KV13] for rewriting (and hence simplifying)
formulas using unit equalities [~r, where [and r are terms and ~ denotes equality. As
a special case of superposition, demodulation is implemented in first-order provers such
as E [SCV19], Spass [WDF109], and VAMPIRE [KV13].

The trace logic domain, introduced in Chapter 2, demands, however, new and efficient
extensions of demodulation to reason about and simplify upon conditional equalities C' —
l~r, where C is a first-order formula. Such conditional equalities arise, for example,
from the axiomatic semantics (introduced in Section 2.4) of software programs expressed
in the standard while-like language W (described in Section 2.1), with C' denoting a
branching condition (such as a loop condition) and [~r encoding equational properties
over program variables. We illustrate the need for generalized versions of demodulation
in the following example.

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

7. SUBSUMPTION DEMODULATION IN SUPERPOSITION-BASED THEOREM PROVING

84

7.1. Example Consider the following formulas expressed in the combined theory D U I
of difference logic and linear arithmetic:

f(i) ~g(i)
0% i<m— P (7.1)

Here, ¢ is an implicitly universally quantified logical variable of sort D, and n is a nullary
function of sort D. First-order reasoners will first clausify formulas (7.1), deriving:

f(i)~g(i)
04ivignvP(f(i) (7:2)

By applying demodulation over (7.2), the formula 0 £ i Vi ¢ n VvV P(f(i)) is rewritten'
using the unit equality f(i)~g¢(i), yielding the clause 0 £ i Vi £ nV P(g(i)). That is,
0 <i<n— P(g(i)) is derived from (7.1) by one application of demodulation.

Let us now consider a slightly modified version of (7.1), as below:

0<i<n-— f(i)~g(i)

0<i<n— P(f(i)) (73)
whose clausal representation is given by:
0LiVignV f(i)~g(i) (7.4)

0%iVignVP(f(i))

It is again obvious that from (7.3) one can derive the formula 0 < i < n — P(g(i)), or
equivalently the clause:

0% iVignVP(g(i)) (7.5)
Yet, one cannot anymore apply demodulation-based simplification over (7.4) to derive
such a clause, as (7.4) contains no unit equality. O

In this chapter, we propose a generalized version of demodulation, called subsumption
demodulation, allowing to rewrite terms and simplify formulas using rewriting based on
conditional equalities, such as in (7.3). To do so, we extend demodulation with subsump-
tion, that is, with deciding whether (an instance of a) clause C' is a submultiset of a clause
D. In particular, the non-equality literals of the conditional equality (i.e., the condition)
need to subsume the unchanged literals of the simplified clause. This way, subsumption
demodulation can be applied to non-unit clauses and is not restricted to have at least
one premise clause that is a unit equality. We show that subsumption demodulation is a
simplification rule of the superposition framework (Section 7.2), allowing for example to
derive the clause (7.5) from (7.4) in one inference step. By properly adjusting clause in-
dexing and multi-literal matching in first-order theorem provers, we provide an efficient
implementation of subsumption demodulation in VAMPIRE (Section 7.3). We conclude
this chapter with an experimental evaluation of our work against state-of-the-art rea-
soners, including E [SCV19], Spass [WDFT09], CVC4 [BCD"11], and Z3 [DMBO08], on
the general domains of TPTP [Sut07] and SMT-LIB [BET16] (Section 7.4).

! Assuming that g is simpler/smaller than f.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

7.2. Subsumption Demodulation

7.2 Subsumption Demodulation

In this section, we introduce a new simplification rule called subsumption demodulation,
by extending demodulation to a simplification rule over conditional equalities. We do so
by combining demodulation with subsumption checks to find simplifying applications of
rewriting by non-unit (and hence conditional) equalities.

7.2.1 Subsumption Demodulation for Conditional Rewriting

Our rule of subsumption demodulation is defined below.

7.2. Definition (Subsumption Demodulation) Subsumption demodulation is the infer-

ence rule:
l~rvC L[t]v D

(7.6)
L[ro]Vv D
while requiring the following side conditions:
lo=t (7.7)
CoCy D (7.8)
lo = ro (7.9)
Lit]VD > (I~r)oVCo (7.10)

We call the equality [~ r in the left premise of (7.6) the rewriting equality of subsumption
demodulation.

Intuitively, the side conditions (7.7) and (7.8) of Definition 7.2 ensure the soundness of
the rule: It is easy to see that if [~7 Vv C and L[t] V D are true, then L[rc]V D also
holds. We thus conclude:

7.3. Theorem (Soundness) Subsumption demodulation is sound.

On the other hand, side conditions (7.9) and (7.10) of Definition 7.2 are vital to en-
sure that subsumption demodulation is a simplification rule (details follow in Subsec-
tion 7.2.2).

Detecting possible applications of subsumption demodulation involves (i) selecting one
equality of the side clause as rewriting equality and (ii) matching each of the remaining
literals, denoted C in (7.6), to some literal in the main clause. Step (i) is similar to
finding unit equalities in demodulation, whereas step (ii) reduces to showing that C
subsumes parts of the main premise. Informally speaking, subsumption demodulation
combines demodulation and subsumption, as discussed in Section 7.3. Note that in step
(ii), matching allows any instantiation of C' to C'o via substitution o; yet, we do not
unify the side and main premises of subsumption demodulation, as illustrated later in
Example 7.6. Furthermore, we need to find a term ¢ in the unmatched part D\ Co of

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

7. SUBSUMPTION DEMODULATION IN SUPERPOSITION-BASED THEOREM PROVING

86

the main premise, such that ¢ can be rewritten according to the rewriting equality into
ro.

As the ordering = is partial, the conditions of Definition 7.2 must be checked a posteriori,
that is after subsumption demodulation has been applied with a fixed substitution and
revise the substitution if needed. Note however that if [> 7 in the rewriting equality,
then lo > ro for any substitution, so checking the ordering a priori helps, as illustrated
in the following example.

7.4. Example Let us consider the following two clauses:
flg(x)) ~g(z) v Q(x) vV R(y)
P(f(g(c))) v Q(c) vV Q(d) v R(f(g(d)))

By the subterm property of >, we conclude that f(g(x)) = g(x). Hence, the rewriting
equality, as well as any instance of it, is oriented.

Cq
Co

Let o be the substitution ¢ = {x — ¢,y — f(g(d))}. Due to the previous para-
graph, we know f(g(c)) > g(c). As equalities are smaller than non-equality ones, we
also conclude P(f(g(c))) = f(g(c))~g(c). Thus, we have P(f(g(c)))V Q(c) V Q(d) V

R(f(g9(d))) > f(g(c))~g(c)V Q(c)V R(f(g(d))) and we can apply subsumption de-
modulation to C7 and Cy, deriving clause C3 = P(g(c)) V Q(c) V Q(d) V R(f(g(d))).

We note that demodulation cannot derive Cs from C] and C5, as there is no unit equality.
O

Example 7.4 highlights the limitations of demodulation when compared to subsump-
tion demodulation. Next, we illustrate different possible applications of subsumption
demodulation using a fixed side premise and different main premises.

7.5. Example Consider the clause C; = f(g(z)) ~g(y) V Q(z) V R(y). Only the first
literal f(g(z))~g(y) is a positive equality and as such eligible as rewriting equality.
Note that f(g(z)) and ¢g(y) are incomparable w.r.t. > due to occurrences of different
variables, and hence whether f(g(z))o > g(y)o depends on the chosen substitution o.

(1) Consider the clause Co = P(f(g(c))) V Q(c) V R(c) as the main premise. With the
substitution o1 = {x — ¢,y — ¢}, we have f(g(z))o1 > g(x)o1 as f(g(c)) > g(c) due to
the subterm property of -, enabling a possible application of subsumption demodulation
over C7 and C5.

(2) Consider now C5 = P(g(f(g(c)))) V Q(c) vV R(f(g(c))) as the main premise and the
substitution oy = {x — ¢,y — f(g(c))}. We have g(y)o2 > f(g(x))oa, as g(f(g(c)) >
f(g(c)). The instance of the rewriting equality is oriented differently in this case than
in the previous one, enabling a possible application of subsumption demodulation over
C4 and Cj.

(3) On the other hand, using the clause Cy = P(f(g(c))) V Q(c) V R(z) as the main
premise, the only substitution we can use is o3 = { + ¢,y — z}. The corresponding

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

7.2. Subsumption Demodulation

instance of the rewriting equality is then f(g(c))~g¢g(z), which cannot be oriented in
general. Hence, subsumption demodulation cannot be applied in this case, even though
we can find the matching term f(g(c)) in Cy. O

As mentioned before, the substitution o appearing in subsumption demodulation can
only be used to instantiate the side premise, but not for unifying side and main premises,
as we would not obtain a simplification rule.

7.6. Example Consider the clauses:

As we cannot match Q(d) to Q(z) (although we could match Q(z) to Q(d)), subsumption
demodulation is not applicable with premises C; and Cs. O

7.2.2 Simplification using Subsumption Demodulation

Note that in the special case where C' is the empty clause in (7.6), subsumption demod-
ulation reduces to demodulation and hence it is a simplification rule. We next show that
this is the case in general:

7.7. Theorem (Simplification Rule) Subsumption demodulation is a simplification rule,
and can therefore be written as

l~rvC Lt D
L[ro]Vv D

while requiring the following side conditions:

lo =t (7.11)
Co Cyr D (7.12)
lo = ro (7.13)
Lit|vD > (I~r)oV Co (7.14)

Proof. Because of the second condition of the definition of subsumption demodulation,
L[t] vV D is clearly a logical consequence of L[ro|V D and [~V C. Moreover, from the
fourth condition, we trivially have L[t] V D = (I~r)o V Co. It thus remains to show
that L{ro| V D is smaller than L[t] V D w.rt. =. Ast = lo > ro, the monotonicity
property of > asserts that L[t] = L[ro], and hence L[t]V D > L[rc|V D. This concludes
that L[t] V D is redundant w.r.t. the conclusion and left-most premise of subsumption
demodulation. O

7.8. Example By revisiting Example 7.4, Theorem 7.7 asserts that clause Cy is simpli-
fied into C3, and subsumption demodulation deletes C from the search space. O

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

7. SUBSUMPTION DEMODULATION IN SUPERPOSITION-BASED THEOREM PROVING

88

7.2.3 Refining Redundancy

The fourth condition defining subsumption demodulation in Definition 7.2 is required
to ensure that the main premise of subsumption demodulation becomes redundant.
However, comparing clauses w.r.t. the ordering > is computationally expensive; yet,
not necessary for subsumption demodulation. Following the notation of Definition 7.2,
let D' such that D = Co VvV D’. By properties of multiset orderings, the condition
Lit]v D = (I~r)o V Co is equivalent to L[t] V D' = (I~r)o, as the literals in Co
occur on both sides of . This means, to ensure the redundancy of the main premise of
subsumption demodulation, we only need to ensure that there is a literal from L[t] V D
such that this literal is bigger that the rewriting equality.

7.9. Theorem (Refining Redundancy) The following conditions are equivalent:

LtlvD > (I~r)oVvCo (7.15)
Lit]vD = (I~r)o (7.16)

As mentioned in Subsection 7.2.1, the application of subsumption demodulation involves
checking that an ordering condition between premises holds (side condition (7.10) in
Definition 7.2). Theorem 7.9 asserts that we only need to find a literal in L[t] v D’ that is
bigger than the rewriting equality to ensure that the ordering condition is fulfilled. In the
next section we show that by re-using and properly changing the underlying machinery
of first-order provers for demodulation and subsumption, subsumption demodulation
can efficiently be implemented in superposition-based proof search.

7.3 Subsumption Demodulation in Vampire

We implemented subsumption demodulation in the first-order theorem prover VAMPIRE.
Our implementation consists of about 5000 lines of C++ code and is part of VAMPIRE?
starting from version 4.5.

As for any simplification rule, we implemented the forward and backward versions of sub-
sumption demodulation separately. Our new VAMPIRE options controlling subsumption
demodulation are —fsd and —bsd, both with possible values on and of £, to respectively
enable forward and backward subsumption demodulation.

As discussed in Section 7.2, subsumption demodulation uses reasoning based on a com-
bination of demodulation and subsumption. Algorithm 2 details our implementation for
forward subsumption demodulation. In a nutshell, given a clause D as main premise,
(forward) subsumption demodulation in VAMPIRE consists of the following main steps:

1. Retrieve candidate clauses C' as side premises of subsumption demodulation (line 2
of Algorithm 2). To this end, we design a new clause index with imperfect filtering,
by modifying the subsumption index in VAMPIRE, as discussed later in this section.

2 Available at https://github.com/vprover/vampire.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/vprover/vampire

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

7.3. Subsumption Demodulation in VAMPIRE

Algorithm 2 Forward Subsumption Demodulation — FSD.

Input: Clause D, to be used as main premise
Output: Simplified clause D’ if (forward) subsumption demodulation is possible

// Retrieve candidate side premises
candidates := FSDIndex. Retrieve(D)
for each C € candidates do
while m := FindNextMLMatch(C, D) do
o' := m.GetSubstitution()
E := m.GetRewritingEquality()
// E is of the form [~r, for some terms [, r
if exists term ¢ in D\ C'o’ and substitution o O ¢’ s.t. t = lo then
if CheckOrderingConditions(D, E,t, o) then
D’ := BuildSimplifiedClause(D, E,t,0) return D’

H
@

2. Prune candidate clauses by checking the conditions of subsumption demodulation
(lines 4-9 of Algorithm 2), in particular selecting a rewriting equality and matching
the remaining literals of the side premise to literals of the main premise. After this,
prune further by performing a posteriori checks for orienting the rewriting equality
E, and checking the redundancy of the given main premise D. To do so, we revised
multi-literal matching and redundancy checking in VAMPIRE (see later).

3. Build the simplified clause by simplifying and deleting the (main) premise D of
subsumption demodulation using (forward) simplification (line 10 of Algorithm 2).

Our implementation of backward subsumption demodulation requires only a few changes
to Algorithm 2: (i) we use the input clause as side premise C' of backward subsumption
demodulation and (ii) we retrieve candidate clauses D as potential main premises of sub-
sumption demodulation. Additionally, (iii) instead of returning a single simplified clause
D', we record a replacement clause for each candidate clause D where a simplification
was possible.

Clause Indexing for Subsumption Demodulation. We build upon the indexing
approach [SRV01] used for subsumption in VAMPIRE, where a subsumption index stores
and retrieves candidate clauses for subsumption. Each clause is indexed by exactly one
of its literals. In principle, any literal of the clause can be chosen. To reduce the number
of retrieved candidates, the best literal is chosen in the sense that the chosen literal
maximizes a certain heuristic (e.g., maximal weight). Since the subsumption index is
not a perfect index (i.e., it may retrieve non-subsumed clauses), additional checks on the
retrieved clauses are performed.

Using the subsumption index of VAMPIRE as the clause index for forward subsumption
demodulation would however omit to retrieve clauses (side premises) in which the rewrit-
ing equality is chosen as key for the index, omitting this way a possible application of
subsumption demodulation. Hence, we need a new clause index in which the best literal

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. SUBSUMPTION DEMODULATION IN SUPERPOSITION-BASED THEOREM PROVING

90

can be adjusted to be the rewriting equality. To address this issue, we added a new
clause index, called the forward subsumption demodulation index (FSD indez), to VAM-
PIRE, as follows. We index potential side premises either by their best literal (according
to the heuristic), the second-best literal, or both. If the best literal in a clause C is a
positive equality (i.e., a candidate rewriting equality) but the second-best is not, C' is
indexed by the second-best literal, and vice versa. If both the best and the second-best
literal are positive equalities, C' is indexed by both of them. Furthermore, because the
FSD index is exclusively used by forward subsumption demodulation, this index only
needs to keep track of clauses that contain at least one positive equality.

In the backward case, we reuse VAMPIRE’s index for backward subsumption. Analogously
to the forward case, we need to query the index by the best literal, the second-best literal,
or both.

Multi-literal Matching. Similarly to the subsumption index, our new subsumption
demodulation index is not a perfect index, that is, it performs imperfect filtering for re-
trieving clauses. Therefore, additional post-checks are required on the retrieved clauses.
In our work, we devised a multi-literal matching approach to (i) choose the rewriting
equality among the literals of the side premise C, and (ii) check whether the remain-
ing literals of C' can be uniformly instantiated to the literals of the main premise D of
subsumption demodulation. There are multiple ways to organize this process. A simple
approach is to (i) first pick any equality of a side premise C' as the rewriting equality
of subsumption demodulation, and then (ii) invoke the existing multi-literal matching
machinery of VAMPIRE to match the remaining literals of C' with a subset of literals
of D. For the latter step (ii), the task is to find a substitution o such that Co be-
comes a submultiset of the given clause D. If the choice of the rewriting equality in step
(i) turns out to be wrong, we backtrack. In our work, we revised the existing multi-
literal matching machinery of VAMPIRE to a new multi-literal matching approach for
subsumption demodulation, by using the steps (i)-(ii) and interleaving equality selection
with matching.

We note that the substitution o in step (ii) above is built in two stages: first we get a
partial substitution ¢’ from multi-literal matching and then (possibly) extend ¢’ to o by
matching term instances of the rewriting equality with terms of D \ Co.

7.10. Example Let D be the clause P(f(c,d)) V Q(c). Assume that our (FSD) clause
index retrieves the clause C' = f(z,y) ~y V Q(x) from the search space (line 2 of Algo-
rithm 2). We then invoke our multi-literal matcher (line 4 of Algorithm 2), which matches
the literal Q(z) of C to the literal Q(c) of D and selects the equality literal f(x,y)~y of
C as the rewriting equality for subsumption demodulation over C' and D. The matcher
returns the choice of rewriting equality and the partial substitution o’ = {x — ¢}. We
arrive at the final substitution ¢ = {z — ¢,y — d} only when we match the instance
f(z,y)o’, that is f(c,y), of the left-hand side of the rewriting equality to the literal f(c, d)
of D. Using o, subsumption demodulation over C' and D will derive P(d) V Q(c), after
ensuring that D becomes redundant (line 10 of Algorithm 2). O

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.4. Experiments

We further note that multi-literal matching is an NP-complete problem. Our multi-
literal matching problems may have more than one solution, with possibly only some (or
none) of them leading to successful applications of subsumption demodulation. In our
implementation, we examine all solutions retrieved by multi-literal matching. We also
experimented with limiting the number of matches examined after multi-literal matching
but did not observe relevant improvements. Yet, our implementation in VAMPIRE also
supports an additional option allowing the user to specify an upper bound on how many
solutions of multi-literal matching should be examined.

Redundancy Checking. To ensure redundancy of the main premise D after the sub-
sumption demodulation inference, we need to check two properties. First, the instance
FEo of the rewriting equality £ must be oriented. This is a simple ordering check. Second,
the main premise D must be larger than the side premise C'. Thanks to Theorem 7.9,
this latter condition is reduced to finding a literal among the unmatched part of the
main premise D that is bigger than the instance Fo of the rewriting equality FE.

7.11. Example In the case of Example 7.10, the rewriting equality F is oriented and
hence Eo is also oriented. Next, the literal P(f(c,d)) is bigger than Eo, and hence D
is redundant w.r.t. C and D’. O

7.4 Experiments

Similar to layered clause selection, the development of subsumption demodulation has
initially been motivated by the trace logic domain. We will later empirically investigate
the impact of subsumption demodulation on reasoning in the trace logic domain, using
an experimental evaluation of subsumption demodulation on the trace logic domain as
part of the broader experimental evaluation in Chapter 9.

In this section, will evaluate our implementation of subsumption demodulation in VAM-
PIRE on the general domains of the TPTP [Sut17] and SMT-LIB [BFT16] repositories.

Benchmark Setup. All our experiments were carried out on the StarExec clus-
ter [SST14]. From the 22,686 problems in the TPTP benchmark set (version 7.3.0),
VAMPIRE can parse 18,232 problems.® Out of these problems, we only used those prob-
lems that involve equalities as subsumption demodulation is only applicable in the pres-
ence of (at least one) equality. As such, we used 13,924 TPTP problems in our exper-
iments. On the other hand, when using the SMT-LIB repository (release 2019-05-06),
we chose the benchmarks from categories LIA, UF, UFDT, UFDTLIA, and UFLIA, as
these benchmarks involve reasoning with both theories and quantifiers and the back-
ground theories are the theories that VAMPIRE supports. These are 22,951 SMT-LIB
problems in total, of which 22,833 problems remain after removing those where equality
does not occur.

3The other problems contain features, such as higher-order logic, that have not been implemented in
VAMPIRE yet.

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

7. SUBSUMPTION DEMODULATION IN SUPERPOSITION-BASED THEOREM PROVING

92

Table 7.1: Comparing VAMPIRE with and without subsumption demodulation on TPTP,
using VAMPIRE in portfolio mode.

Configuration Total |Solved|New (SAT+UNSAT)
VAMPIRE 13,924 9,923 —
VAMPIRE, with FSD 13,924| 9,757 20 (3417)
VAMPIRE, with BSD 13,924| 9,797 14 (2+12)
VAMPIRE, with FSD and BSD|[13,924| 9,734 30 (6+24)

Table 7.2: Comparing VAMPIRE with and without subsumption demodulation on SMT-
LIB, using VAMPIRE in portfolio mode.

Configuration Total |Solved|New (SAT4+UNSAT)
VAMPIRE 22,833[13,705 -
VAMPIRE, with FSD 22,833(13,620 55 (14-54)
VAMPIRE, with BSD 22,833(13,632 48 (0+48)
VAMPIRE, with FSD and BSD||22,833|13,607 76 (0+76)

Comparative Experiments with VAMPIRE. As a first experimental study, we com-
pared the performance of subsumption demodulation in VAMPIRE for different values of
—-fsd and -bsd, that is by using forward (FSD) and/or backward (BSD) subsumption
demodulation. To this end, we evaluated subsumption demodulation using the CASC
and SMTCOMP schedules of VAMPIRE’s portfolio mode. To test subsumption demod-
ulation with the portfolio mode, we added the options —fsd on and/or ~bsd on to
all strategies of VAMPIRE. While the resulting strategy schedules could potentially be
further improved, it allowed us to test FSD/BSD with a variety of strategies.

Our results are summarized in Tables 7.1-7.2. The first column of these tables lists the
VAMPIRE version and configuration, where VAMPIRE refers to VAMPIRE in its portfolio
mode (version 4.4). Lines 2-4 of these tables use our new VAMPIRE, that is our imple-
mentation of subsumption demodulation in VAMPIRE. The column “Solved” reports,
respectively, the total number of TPTP and SMT-LIB problems solved by the consid-
ered VAMPIRE configurations. Column “New” lists, respectively, the number of TPTP
and SMT-LIB problems solved by the version with subsumption demodulation but not
by the portfolio version of VAMPIRE. This column also indicates in parentheses how
many of the solved problems were satisfiable/unsatisfiable.

While in total the portfolio mode of VAMPIRE can solve more problems, we note that this
comes at no surprise as the portfolio mode of VAMPIRE is highly tuned using the existing
VAMPIRE options. In our experiments, we were interested to see whether subsumption
demodulation in VAMPIRE can solve problems that cannot be solved by the portfolio
mode of VAMPIRE. In future work, the portfolio mode should be tuned by also taking
into account subsumption demodulation, which then ideally leads to an overall increase
in performance. The columns “New” of Tables 7.1-7.2 give indeed practical evidence of

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7.4. Experiments

Table 7.3: Comparing VAMPIRE with subsumption demodulation against other solvers,
using the “new” TPTP and SMT-LIB problems of Tables 7.1-7.2 and running VAMPIRE
in portfolio mode.

Solver /configuration TPTP problems||SMT-LIB problems
Baseline: VAMPIRE, with FSD and BSD 30 76
E with ——auto-schedule 14 -
Spass (default) 4 -
SpAss (local contextual rewriting) 6 -
SPASS (subterm contextual rewriting) 5 -
CVC(C4 (default) 7 66
Z3 (default) - 49
Only solved by VAMPIRE, with FSD and BSD 11 0

the impact of subsumption demodulation: There are 30 new TPTP problems and 76
SMT-LIB problems® that the portfolio version of VAMPIRE cannot solve, but forward
and backward subsumption demodulation in VAMPIRE can.

New Problems Solved Only by Subsumption Demodulation. Building upon our
results from Tables 7.1-7.2, we analyzed how many new problems subsumption demod-
ulation in VAMPIRE can solve when compared to other state-of-the-art reasoners. To
this end, we evaluated our work against the superposition provers E (version 2.4) and
SPASS (version 3.9), as well as the SMT solvers CVC4 (version 1.7) and Z3 (version
4.8.7). We note however, that when using our 30 new problems from Table 7.1, we could
not compare our results against Z3 as Z3 does not natively parse TPTP. On the other
hand, when using our 76 new problems from Table 7.2, we only compared against CVC4
and Z3, as E and SpASS do not support the SMT-LIB syntax.

Table 7.3 summarizes our findings. First, 11 of our 30 “new” TPTP problems can only
be solved using forward and backward subsumption demodulation in VAMPIRE; none of
the other systems were able to solve these problems.

Second, while all our 76 “new” SMT-LIB problems can also be solved by CVC4 and
73 together, we note that out of these 76 problems there are 10 problems that CVC4
cannot solve, and similarly 27 problems that Z3 cannot solve.

Comparative Experiments without AVATAR. Finally, we investigated the effect
of subsumption demodulation in VAMPIRE without AVATAR [Vorl4]. We used the de-
fault mode of VAMPIRE (that is, without using a portfolio approach) and turned off the
AVATAR setting. While this configuration solves fewer problems than the portfolio mode
of VAMPIRE, so far VAMPIRE is the only superposition-based theorem prover implement-
ing AVATAR. Hence, evaluating subsumption demodulation in VAMPIRE without AVATAR
is more relevant to other reasoners. Further, as AVATAR may often split non-unit clauses

4The list of these new problems is available at
https://gist.github.com/JakobR/605a7b7db0101259052e137ade54b32c.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://gist.github.com/JakobR/605a7b7db0101259052e137ade54b32c

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

7. SUBSUMPTION DEMODULATION IN SUPERPOSITION-BASED THEOREM PROVING

94

Table 7.4: Comparing VAMPIRE in default mode and without AVATAR, with and without
subsumption demodulation.

I TPTP problems I SMT-LIB problems
Configuration Total |Solved New Total |Solved New
(SAT+UNSAT) (SAT+UNSAT)
VAMPIRE 13,924/ 6,601 - 22,833| 9,608 -
VAMPIRE (FSD) 13,924| 6,539 | 152 (13+139) ||22,833| 9,597 | 134 (1+133)
VAMPIRE (BSD) 13,924| 6,471 | 112 (12+100) {|22,833] 9,541 87 (0+87)
VampIRE (FSD+BSD)|/13,924| 6,510 | 190 (154+175) |[22,833| 9,581 | 173 (1+172)

into unit clauses, it may potentially simulate applications of subsumption demodulation
using demodulation. Table 7.4 shows that this is indeed the case: With both FSD and
BSD enabled, subsumption demodulation in VAMPIRE can prove 190 TPTP problems
and 173 SMT-LIB examples that the default VAMPIRE without AVATAR cannot solve.
Again, the column “New” denotes the number of problems solved by the respective
configuration but not by the default mode of VAMPIRE without AVATAR.

7.5 Related Work

While several approaches generalize demodulation in superposition-based theorem prov-
ing, we argue that subsumption demodulation improves existing methods either in terms
of applicability and/or efficiency. The AVATAR architecture of first-order provers [Vorl4]
splits general clauses into components with disjoint sets of variables, potentially enabling
demodulation inferences whenever some of these components become unit equalities.
Example 7.1 demonstrates that subsumption demodulation applies in situations where
AVATAR does not. In each clause of (7.4), all literals share the variable i, and hence
none of the clauses from (7.4) can be split using AVATAR. That is, AVATAR would not
generate unit equalities from (7.4), and therefore cannot apply demodulation over (7.4)
to derive (7.5).

The local rewriting approach of [Wei01] requires rewriting equality literals to be maxi-
mal® in clauses. However, following [KV13], for efficiency reasons we consider equality
literals to be “smaller” than non-equality literals. In particular, the equality literals of
clauses (7.4) are “smaller” than the non-equality literals, preventing thus the application
of local rewriting in Example 7.1.

To the extent of our knowledge, the ordering restrictions on non-unit rewriting [Wei0O1] do
not ensure redundancy, and thus the rule is not a simplification inference rule. Subsump-
tion demodulation includes all necessary conditions and we prove it to be a simplification
rule. Furthermore, we show how the ordering restrictions can be simplified which en-

SWith respect to the clause ordering.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

7.5. Related Work

ables an efficient implementation, and then explain how such an implementation can be
realized.

We further note that the contextual rewriting rule of [BG94] is more general than our
rule of subsumption demodulation, and has been first implemented in the SATURATE
system [NN93]. Yet, efficiently automating contextual rewriting is extremely challenging,
while subsumption demodulation requires no radical changes in the existing machinery
of superposition provers (see Section 7.3).

To the best of our knowledge, except SPAss [WDF09] and SATURATE, no other state-
of-the-art superposition provers implement variants of conditional rewriting. Subterm
contextual rewriting [WWO08] is a refined notion of contextual rewriting and is imple-
mented in SPASS. A major difference of subterm contextual rewriting when compared
to subsumption demodulation is that in subsumption demodulation the discovery of the
substitution is driven by the side conditions whereas in subterm contextual rewriting the
side conditions are evaluated by checking the validity of certain implications by means
of a reduction calculus. This reduction calculus recursively applies another restriction
of contextual rewriting called recursive contextual ground rewriting, among other stan-
dard reduction rules. While subterm contextual rewriting is more general, we believe
that the benefit of subsumption demodulation comes with its relatively easy and efficient
integration within existing superposition reasoners, as evidenced also in Section 7.4.

Local contextual rewriting [HPWW13] is another refinement of contextual rewriting
implemented in SPASS. In our experiments, it performed similarly to subterm contextual
rewriting.

Finally, we note that SMT-based reasoners also implement various methods to efficiently
handle conditional equalities [RWB*17, BGMR15]. Yet, the setting is very different as
they rely on the DPLL(T) framework [GHN'04] rather than implementing superposi-
tion.

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Interactive Visualization of
Saturation Attempts in Vampire

8.1 Introduction

The performance of saturation-based theorem provers crucially depends on the logical
representation of its input problem and the deployed reasoning strategies during proof
search. As such, users and developers of saturation-based theorem provers, and auto-
mated reasoners in general, typically face the burden of analyzing (failed) proof attempts
produced by the prover, with the ultimate goal to refine the input and/or proof strategies
making the prover succeed in proving its input. Understanding (some of) the reasons
why the prover failed is however very hard and requires a considerable amount of work
by highly qualified experts in theorem proving, hindering thus the use of theorem provers
in many application domains.

In this chapter, we address this challenge and introduce the SATVIS tool to ease the task
of analyzing failed proof attempts in saturation-based reasoning. We designed SATVIS
to support interactive visualization of the saturation algorithm used in VAMPIRE, with
the goal to ease the manual analysis of VAMPIRE proofs as well as failed proof attempts
in VAMPIRE. Inputs to SATVIS are proof (attempts) produced by VAMPIRE. Our tool
consists of (i) an explicit visualization of the DAG-structure of the saturation proof (at-
tempt) of VAMPIRE and (ii) interactive transformations of the DAG for pruning and
reformatting the proof (attempt). In its current setting, SATVIS can be used only in the
context of VAMPIRE. Yet, by parsing/translating proofs (or proof attempts) of other
provers into the VAMPIRE proof format, SATVIS can be used in conjunction with other
provers as well.

When feeding VAMPIRE proofs to SATV1S, SATVIS supports both users and developers
of VAMPIRE to understand and refactor VAMPIRE proofs, and to manually proof check

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

8.

INTERACTIVE VISUALIZATION OF SATURATION ATTEMPTS IN VAMPIRE

98

soundness of VAMPIRE proofs. When using SATV1IS on failed proof attempts of VAMPIRE,
SATV1S supports users and developers of VAMPIRE to analyze how VAMPIRE explored its
search space during proof search, that is, to understand which clauses were derived and
why certain clauses have not been derived at various steps during saturation. By doing
s0, the SATVIS proof visualization framework gives valuable insights on how to revise the
input problem encoding of VAMPIRE and/or implement domain-specific optimizations
in VAMPIRE. We therefore believe that SATVIS improves the state-of-the-art in the
use and applications of theorem proving at least in the following scenarios: (i) helping
VAMPIRE developers to debug and further improve VAMPIRE, (ii) helping VAMPIRE
users to tune VAMPIRE to their applications, by not treating VAMPIRE as a black-box
but by understanding and using its appropriate proof search options; and (iii) helping
inexperienced users in saturation-based theorem proving to learn using VAMPIRE and
first-order proving in general.

Contributions. The contribution of this paper comes with the design of the SATVIs
tool for analyzing proofs, as well as proof attempts of the VAMPIRE theorem prover.
SATVIS is available at:

https://github.com/gleiss/saturation-visualization.

We discuss the challenges we faced for analyzing proof attempts of VAMPIRE (Sec-
tion 8.2), describe implementation-level details of SATVIS 1.0 (Section 8.3), and overview
related work (Section 8.4)

8.2 Analysis of Saturation Attempts of Vampire

We now discuss how to efficiently analyze saturation attempts of VAMPIRE in SATVIS.

Analyzing saturation attempts. To understand saturation (attempts), we have to
analyze the generating inferences performed during saturation (attempts).

On the one hand, we are interested in the useful clauses, that is, the derived and activated
clauses that are part of the proof we expect VAMPIRE to find. In particular, we check
whether these clauses occur in Active. (i) If this is the case for a given useful clause (or
a simplified variant of it), we are done with processing this useful clause and optionally
check the derivation of that clause against the expected derivation. (ii) If not, we have to
identify the reason why the clause was not added to Active, which can either be the case
because (ii.a) the clause (or a simplified version of it) was never chosen from Passive
to be activated or (ii.b) the clause was not even added to Passive. In case (ii.a), we
investigate why the clause was not activated. This involves checking which simplified
version of the clause was added to Passive and checking the value of clause selection
in VAMPIRE on that clause. In case (ii.b), it is needed to understand why the clause
was not added to Passive, that is, why no generating inference between suitable premise
clauses was performed. This could for instance be the case because one of the premises

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/gleiss/saturation-visualization

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

8.2. Analysis of Saturation Attempts of VAMPIRE

] passive: 160. v = a(lll(s(nl8)),S$sum(i(main_end),1l)) [superposition 70,118]
[SA] active: 163. i(main_end) != -1 [term algebras distinctness 162]
[SA] active: 92. ~’'Sub’ (X5,p(X4)) | ’'Sub’ (X5,X4) | zero = X4 [superposition 66,44]
[SA] new: 164. "Sub’ (p(p(X0)),X0) | zero = X0 | zero = p(X0) [resolution 92,94]
[SA] passive: 164. ’'Sub’ (p(p(X0)),X0) | zero = X0 | zero = p(X0) [resolution 92,94]
[SA] active: 132. v = a(lll(s(s(zero))),2) [superposition 70,124]
[SA] new: 165. v = a(l8(s(s(zero))),2) | 1(18(s(s(zero)))) = 2 [superposition 132,72]
[SA] new: 166. v = a(l8(s(s(zero))),2) | 1(18(s(s(zero)))) = 2 [superposition 72,132]
[SA] active: 90. s(X1) != X0 | p(X0) = X1 | zero = X0 [superposition 22,44]
[SA] new: 167. X0 != X1 | p(X0) = p(X1l) | zero = X1 | zero = X0 [superposition 90, 44]
[SA] new: 168. p(s(X0)) = X0 | zero = s(X0) [equality resolution 90]

] new: 169. p(s(X0)) = X0 [term algebras distinctness 168]

Figure 8.1: Screenshot of a saturation attempt of VAMPIRE.

was not added to Active, in which case we recurse with the analysis on that premise, or
because clause selection in VAMPIRE prevented the inference.

On the other hand, we are interested in the useless clauses: that is, the clauses which
were generated or even activated but are unrelated to the proof VAMPIRE will find. These
clauses often slow down the proof search by several magnitudes. It is therefore crucial
to limit their generation or at least their activation. To identify the useless clauses that
are activated, we need to analyze the set Active, whereas to identify the useless clauses,
which are generated but never activated, we have to investigate the set Passive.

Saturation output. We now discuss how SATVIS reconstructs the clause sets Active
and Passive from a VAMPIRE saturation (attempt). VAMPIRE is able to log a list of
events, where each event is classified as either (i) new C (ii) passive C, or (iii) active
C, for a given clause C. The list of events produced by VAMPIRE satisfies the following
properties: (a) any clause is at most once newly created, added to Passive and added
to Active; (b) if a clause is added to Passive, it was newly created in the same iteration,
and (c) if a clause is added to Active, it was newly created and added to Passive at
some point. Figure 8.1 shows a part of the output logged by VAMPIRE while performing
a saturation attempt (SA).

Starting from an empty derivation and two empty sets, the derivation graph and the
sets Active and Passive corresponding to a given saturation attempt of VAMPIRE are
computed in SATVIS by traversing the list of events produced by VAMPIRE and iteratively
changing the derivation and the sets Active and Passive, as follows:

(i) new C: add the new node C to the derivation and construct the edges (C;, C),
for any premise C; of the inference deriving C. The sets Active or Passive remain
unchanged;

(ii) passive C: add the node C to Passive. The derivation and Active remain un-
changed;

(iii) active C: remove the node C from Passive and add it to Active. The derivation
remains unchanged.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

8.

INTERACTIVE VISUALIZATION OF SATURATION ATTEMPTS IN VAMPIRE

100

Interactive Visualization. The large number of inferences during saturation in VAM-
PIRE makes the direct analysis of saturation attempts of VAMPIRE impossible within a
reasonable amount of time. To overcome this problem, in SATV1S we interactively visu-
alize the derivation graph of the VAMPIRE saturation. The graph-based visualization of
SATVIS brings the following benefits:

e Navigating through the graph visualization of a VAMPIRE derivation is easier for users
rather than working with the VAMPIRE derivation encoded as a list of hyperedges. In
particular, both (i) navigating to the premises of a selected node/clause, and (ii) search-
ing for inferences having a selected node/clause as premise is performed fast in SATVIS.

e SATVIS visualizes only the nodes/clauses that are part of a derivation of an activated
clause, and in this way ignores uninteresting inferences.

e SATVIS merges the preprocessing inferences, such that each clause resulting from pre-
processing has as direct premise the input formula it is derived from.

Yet, a straightforward graph-based visualization of VAMPIRE saturations in SATVIS
would bring the following practical limitations on using SATVIS:

(i) displaying additional meta-information on graph nodes, such as the inference rule
used to derive a node, is computationally very expensive, due to the large number of
inferences used during saturation;

(ii) manual search for particular/already processed nodes in relatively large derivations
would take too much time;

(iii) subderivations are often interleaved with other subderivations due to an imperfect
automatic layout of the graph.

SATVIS addresses the above challenges using its following interactive features:

e SATVIs displays meta-information only for a selected node/clause;

e SATVIS supports different ways to locate and select clauses, such as full-text search,
search for direct children and premises of the currently selected clauses, and search
for clauses whose derivation contains all currently selected nodes;

e SATVIS supports transformations/fragmentations of derivations. In particular, it
is possible to restrict and visualize the derivation containing only the clauses that
form the derivation of a selected clause, or visualize only clauses whose derivation
contains a selected clause.

e SATVIs allows to (permanently) highlight one or more clauses in the derivation.

Figure 8.2 illustrates some of the above features of SATV1IS, using output from VAMPIRE
similar to Figure 8.1 as input to SATVIS.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

8.3. Implementation of SATVIS 1.0

o5 4+ v
\M-WIth ‘ VA Select Nodes
i n
Subl(p(p(X0)).X0) | zero = X0 | zero = p(X0) Node #92

Superposition

Sub(X5,X4) |
~Sub(X5,p(X4}) | zero = X4
zero = p(X1) | zero = p(p(X1)) | Sub(p(R(B(X1)))X1) | Zero = X1

Figure 8.2: Screenshot of SATVIS showing visualized derivation and interaction menu.

8.3 Implementation of SatVis 1.0

We implemented SATVIS as a web application, allowing SATVIS to be easily used on
any platform. Written in Python3, SATVIS contains about 2,200 lines of code. For
the generation of graph layouts, we rely on pygraphviz', whereas graph/derivation
visualizations are created with vis.js?. We experimented with SATVIS on examples
from the trace logic domain (see Chapters 2-4) using an Intel Core i5 3.1Ghz machine
with 16 GB of RAM, allowing us to refine and successfully generate VAMPIRE proofs for
functional properties of software programs over (unbounded) arrays and loops.

SatVis workflow. SATVIS takes as input a text file containing the output of a VAM-
PIRE saturation attempt. An example of a partial input to SATVIS is given in Figure 8.1.
SATVIS then generates a DAG representing the derivation of the considered VAMPIRE
saturation output, as presented in Section 8.2 and discussed later. Next, SATVIS gener-
ates the graph layout of for the generated DAG, enriched with configured style informa-
tion. Finally, SATVIS renders and visualizes the VAMPIRE derivation corresponding to
its input, and allows interactive visualizations of its output, as discussed in Section 8.2
and detailed below.

DAG generation of saturation outputs. SATVIS parses its input line by line using
regex pattern matching in order to generate the nodes of the graph. Next, SATVIS uses a
post-order traversal algorithm to sanitize nodes and remove redundant ones. The result
is then passed to pygraphviz to generate a graph layout. While pygraphviz finds
layouts for thousands of nodes within less than three seconds, we would like to improve
the scalability of the tool further. It would be beneficial to preprocess and render nodes
incrementally, while ensuring stable layouts for SATV1S graph transformations. We leave
this engineering task for future work.

"Mttps://pygraphviz.github.io.
2https://visjs.org/.

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://pygraphviz.github.io
https://visjs.org/

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

8.

INTERACTIVE VISUALIZATION OF SATURATION ATTEMPTS IN VAMPIRE

102

Interactive visualization The interactive features of SATVIS support (i) various
node searching mechanisms, (ii) graph transformations, and (iii) the display of meta-
information about a specific node. We can efficiently search for nodes by (partial) clause,
find parents or children of a node, and find common consequences of a number of nodes.
Graph transformations in SATVIS allow to only render a certain subset of nodes from
the SATV1s DAG, for example, displaying only transitive parents or children of a certain
node.

8.4 Related Work

While standardizing the input format of automated reasoners is an active research topic,
see e.g. the SMT-LIB [BFT17] and TPTP [Sut07] standards, coming up with an
input standard for representing and analyzing proofs and proof attempts of automated
reasoners has received so far very little attention. The TSTP library [Sut07] provides
input /output standards for automated theorem proving systems. Yet, unlike SATVIS,
TSTP does not analyze proof attempts but only supports the examination of first-order
proofs. We note that VAMPIRE proofs (and proof attempts) contain first-order formulas
with theories, which is not fully supported by TSTP.

Using a graph-layout framework, for instance Graphviz [GN00], it is relatively straight-
forward to visualize the DAG derivation graph induced by a saturation attempt of a
first-order prover. For example, the theorem prover E [Sch02] is able to directly output
its saturation attempt as an input file for Graphviz. The visualizations generated in this
way are useful however only for analyzing small derivations with at most 100 inferences,
but cannot practically be used to analyze and manipulate larger proof attempts. We note
that it is quite common to have first-order proofs and proof attempts with more than
1,000 or even 10,000 inferences, especially in applications of theorem proving in software
verification. In our SATVIS framework, the interactive features of our tool allow one to
analyze such large(r) proof attempts.

The framework [Rot16] eases the manual analysis of proof attempts in Z3 [DMBO8] by
visualizing quantifier instantiations, case splits, and conflicts. While both [Rot16] and
SATVIS are built for analyzing (failed) proof attempts, they target different architectures
(SMT-solving resp. superposition-based proving) and therefore differ in their input for-
mat and in the information they visualize. The frameworks [BBET09, LRR14] visualize
proofs derived in a natural deduction/sequent calculus. Unlike these approaches, SATVIS
targets clausal derivations generated by saturation-based provers using the superposition
inference system. As a consequence, our tool can be used to focus only on the clauses
that have been actively used during proof search, instead of having to visualize the entire
set of clauses, including clauses unused during proof search. We finally note that proof
checkers, such as DRAT-trim [WHH14], support the soundness analysis of each inference
step of a proof, and do not focus on failing proof attempts nor do they visualize proofs.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Experiments

In the first part of the thesis (chapters 2-4), we formalized the correctness of software
program properties in trace logic, and in the second part of the thesis (chapters 5-8), we
described how to reason about the resulting formalizations with the superposition-based
theorem prover VAMPIRE. The combination of these two parts yields a fully automatic
approach to establish the correctness of software program properties. In this chapter,
we demonstrate the effectiveness of this approach, using an experimental evaluation on
a large number of benchmarks.

We will first discuss in Section 9.1 the two sets of benchmarks we use in our experiments.
Then, we will describe in Section 9.2 the tool RAPID, which implements the ideas from
chapters 2—4. Afterwards, we will discuss in Section 9.3 the custom version of VAMPIRE
used for the experiments, obtained by extending VAMPIRE with further optimizations
specific to the trace-logic domain. Finally, we will present an experimental evaluation
in Section 9.4.

9.1 Benchmarks

Arrays. We consider a first set of benchmarks ARRAYS', which focuses on functional
properties over programs including arrays and loops, and contains 45 programs with a
total of 103 properties. It was obtained as follows. We started from interesting and
challenging Java- and C-like verification examples from the SV-Comp benchmark repos-
itory [Bey20] and manually transformed them into our input language. Note that SV-
Comp benchmarks encode properties featuring universal quantification by extending the
corresponding program with an additional loop containing a standard C-like assertion.
For instance, the property

Vil. 0 < i < alength — P(a(leng, 1))

! Available at https://github.com/gleiss/rapid/examples/arrays.

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/gleiss/rapid/examples/arrays

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

9.

EXPERIMENTS

104

func main ()

{

func main ()

{

1

2 1

3 const Int[] a; 2

4 const Int[] b; 3 Int[] a;

5 Int[] c; 4 const Int alength;
6 const Int length; 5

7 6 Int i = 0;

8 Int 1 = 0; 7 while (i < alength)
9 while (i < length) 8

(b) Increment each position.
(a) Pointwise addition.

Figure 9.1: Examples from ARRAYS.
would be encoded by extending the program with a loop
for(int 1 = 0; 1 < alength; i++){ assert(P(alil)); }.

While this encoding loses explicit structure and results in a harder reasoning task, it
is necessary in the context of the SV-Comp benchmark set, as other tools do not sup-
port explicit universal quantification in their input language. In contrast, our approach
can handle arbitrarily quantified properties over unbounded data structures. We there-
fore directly formulated universally quantified properties, without using any program
transformations. To improve the obtained set of benchmarks, we furthermore added
challenging programs and additional functional properties to it.

We already presented an example copy-positive from ARRAYS in Figure 2.1, with
a corresponding property (2.1). In Figure 9.1, two further examples from ARRAYS are
presented, named vector—-addition resp. inc-by-1l-harder, with accompanying
properties (9.1) resp. (9.2).

Vpos'. ((0 < pos < length A 0 < length) — c(end, pos) ~ a(pos) + b(pos)) (9.1)

Vpos'. ((0 < pos < alength A0 < alength) — a(end, pos) ~ a(l12, pos) + 1) (9.2)

The benchmark set ARRAYS is challenging. Not only do most examples require reasoning
with theories and universal quantification, but many of them also require reasoning with
existential or even alternating quantification. The need for such quantification is obvious
for the 7 resp. 23 properties included in ARRAYS, as they already contain existential resp.
alternating quantification explicitly. But we want to emphasize that also many other
properties of ARRAYS require reasoning with existential or alternating quantification,
even though the properties themselves do not contain such quantification explicitly. For

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

9.2. The Tool RAPID

instance, consider the following two (correct) properties of the running example from
Figure 2.1.

Vbpos'.(0 < bpos < blength — Japos'.a(apos) ~ b(end, bpos))
Vbpos'.(0 < bpos < blength — 0 < b(end, bpos))

The former property contains alternating quantification, while the latter does not. But
a proof of the latter property involves a subproof of the former property, and therefore
also requires reasoning with alternating quantification.

Relational benchmarks. To compensate for the lack of general benchmarks for first-
order hyperproperties, we collected a second benchmark set RELATIONAL?, for evaluating
our verification framework on relational properties. It contains 32 examples coming
from security applications with a total of 64 properties. In a nutshell, RELATIONAL
contains examples with (i) non-interference properties (Subsection 4.2.1), (ii) sensitivity
properties (Subsection 4.2.1), and (iii) functional properties about comparators (see also
[SD16]).

In Section 4.2, we already presented examples from RELATIONAL, which involve non-
interference- and sensitivity-properties. As an example for comparators, consider the
program comp-lex—array denoted in Figure 9.2. It implements a lexicographic com-
parator for two (potentially unbounded) arrays. The benchmark set RELATIONAL con-
tains for this program several properties, which involve 2 and 3 traces and capture some
form of symmetry, antisymmetry, and transitivity of the comparator. These properties
are both interesting and challenging, as they require advanced loop splitting in combi-
nation with reasoning about multiple executions of the program.

9.2 The Tool Rapid

We implemented the trace-logic-based verification framework, which we introduced in
Chapter 3 and generalized in Chapter 4, in the tool RAPID®. Our implementation consists
of nearly 13,000 lines of C++ code.

RAPID takes as input a program po written in W (described in Section 2.1) and one or
more properties expressed in trace logic £ (introduced in Section 2.2). It then generates
the axiomatic semantics [po] (introduced in Section 2.4) of the program po and a set of
trace lemmas Ly, ..., L, specific to the program pg (as introduced in Subsection 3.2.1
and generalized in Subsection 4.1.3). Finally, it produces two sets of validity statements,
with each validity statement written in trace logic £ using extended SMT-LIB syntax
(see Subsection 9.2.2), and being output into a separate file: On the one hand, to
establish the correctness of the generated trace lemmas L1, ..., Ly, RAPID generates
for each trace lemma L; a validity statement containing (i) the axioms corresponding

2 Available at https://github.com/gleiss/rapid/examples/relational.
3 Available at https://github.com/gleiss/rapid.

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/gleiss/rapid/examples/relational
https://github.com/gleiss/rapid

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

9. EXPERIMENTS

1 func main()
2 A
3 const Int[] a;
4 const Int[] b;
5 const Int length;
6 // return value: 20 encodes a<b,
7 // 10 encodes a=b, 30 encodes b<a
8 Int ret;
9
10 Int i = 0;
11 while (i < length && a[i] == b[il])
12 {
13 i =1+ 1;
14 }
15
16 if (i < length)
17 {
18 if (af[i] < b[i])
19 {
20 ret = 20;
21 }
22 else
23 {
24 ret = 30;
25 }
26 }
27 else
28 {
29 ret = 10;
30 }
31}

Figure 9.2: Example from RELATIONAL.

to relevant instances of the induction axioms schemes of difference logic*, and (ii) the
conjecture L;. On the other hand, RAPID assumes the already-established correctness
of the trace lemmas, and generates for each property of the input a validity statement,
containing (i) [po] and Ly,..., L, as axioms, and (ii) the property as conjecture.

This way, to establish the partial correctness of a given property, we first prove the
correctness of each trace lemma L;, and then prove the partial correctness of the given
property while assuming the correctness of all trace lemmas L, ..., Ly,.

4For the At-Least-One-Iteration trace lemma and for the Simultaneous-Termination trace lemma, also
the semantics of the program are added as axioms.

106

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

9.2. The Tool RAPID

9.2.1 Optimizations to the Encoding

Similar to standard SSA-style compiler optimizations [App98, App04, WG12], RAPID
heuristically simplifies the axiomatic semantics and the trace lemmas, by inlining (con-
ditional) equalities occurring in the axiomatic semantics. In particular, while generating
the axiomatic semantics and trace lemmas, RAPID keeps track of (i) the current (sym-
bolic) program expression assigned to each integer variable and (ii) the last timepoint
where each array-variable was assigned to. It then uses these cached values to heuristi-
cally simplify later program expressions. We will showcase the effect of this simplification
using two examples.

9.1. Example Consider the program denoted in Figure 9.3a, and the property z(end) <
z(end). The original axiomatic semantics, as defined in Section 2.4, contains an equality
for each of the variables x, y, and z, for each of the locations g, lg, and end. In contrast,
the inlined axiomatic semantics generated by RAPID are

xz(end)~xz(lg) +1 A
z(end) ~ (x(lg) + 1) + 2.

The semantics defines the values of the program variables x and z at the end of the
program, as these values occur in the property. Note that the definition of the value
of the program variable z at the end of the program inlines the values of the program
variables x and y at the timepoint of the last assignment. The variable y is not defined
at all, although it is used to define the value of z in the last assignment, as its value
is not used in the property. Similarly, the equalities defining the values of all program
variables at the locations I7 and lg as well as the equalities defining the values of y and
z at location lg are inlined, as these values are irrelevant to the property. O

9.2. Example As a second example, consider the program denoted in Figure 9.3b, and
the property x(end) > 1, for which the inlined axiomatic semantics is

x(lg) <1 — x(l34,0) =1 A
.’L‘(l@) <1 — x(l14, O) 2:E(l6) AN
x(end) ~x(l14,0).

The former two conjuncts are included in the semantics, as the value of x(l14) differs for
the two branches of the if-then-else-statement at line 6. The latter conjunct is included,
as x occurs in the property. Note that the values of x for all iterations different from
the first iteration are not defined, as these values are irrelevant to the property. O

The above inlining of (conditional) equalities is computed by RAPID during the gener-
ation of the axiomatic semantics, using a simple and efficient analysis of the program
tree.” It reduces the size of the resulting axiomatization considerably. In our experience,

5Tt would be more expensive to perform such inlining as a post-processing step on the formula level.

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

9. EXPERIMENTS
1 func main ()
2 {
3 Int x;
4 Int y;
1 func main () 5
2 { 6 if (x < 1)
3 Int x; 7 {
4 Int vy; 8 x = 0;
5 Int z; 9 }
6 10 else
7 Xx = x + 1; 11 {
8 y = 2; 12 skip;
9 z = x + y; 13 }
10 } 14 while (y > 0)
11 15 {
16 y = v ~ 1;
(a) Multiple assignments. 17 }
18 }
19

108

(b) Unassigned mutable variable in loop.

Figure 9.3: Examples showcasing SSA-style inlining.

the size of the encoding was reduced by 25 to 45 percent. The smaller axiomatization
produced this way has two benefits. On the one hand, the performance of VAMPIRE
is increased, as many (conditional) equalities are omitted, which are irrelevant to the
proof of the property. On the other hand, the manual inspection of proofs produced by
VAMPIRE is tremendously simplified, since many trivial rewriting-inferences are omitted.

As a second optimization, RAPID inlines all occurrences of the predicate Reach in the
axiomatic semantics of the program. The main motivation for this optimization is that
the proofs of the resulting encodings are easier to inspect manually.

9.2.2 Extended SMT-LIB Syntax

RAPID outputs validity statements in trace logic using SMT-LIB syntax [BFT17] (ver-
sion 2.6). To preserve as much high-level structure as possible, it utilizes three custom
extensions not covered by standard SMT-LIB syntax: First, it denotes the conjecture
F of a given validity statement using the statement (assert-not F'), to enable goal-
directed reasoning (see also Section 6.4 and [RR18]). Secondly, RAPID uses the custom
statement (declare—-nat Nat 0 s p Sub) to denote that the sort Nat, with zero
symbol 0, successor symbol s, predecessor symbol p, and ordering relation Sub, should
be interpreted as theory I of difference logic over natural numbers. Thirdly, to dis-
tinguish lemma literals (which will be introduced in Section 9.3) from ordinary literals,
RAPID uses the keyword declare-lemma-predicate, which should be understood

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

9.3. A Custom Version of VAMPIRE

as an alias of declare—function, except that it additionally conveys the information
that each occurrence of the declared symbol should be treated as a lemma literal.

9.3 A Custom Version of Vampire

In Section 5.3, we discussed how to tune VAMPIRE for the trace logic domain using
existing options. In this section, we tune VAMPIRE further by extending it with custom
techniques specific to the trace logic domain. This way, we provide VAMPIRE with custom
domain knowledge, which cannot be provided using the existing options. The techniques
explained in this section are straightforward and easy to implement, and are at the same
time important for efficient reasoning of VAMPIRE on the trace logic domain.

9.3.1 Adapting the Literal Selection Heuristics for Trace Lemmas

We now show how to control in which way VAMPIRE uses the trace lemmas from Sub-
section 3.2.1 to derive consequences during proof search. Intuitively, there are different
possibilities to use lemmas: (i) try to prove the premises of a lemma L, and then, if
this step succeeded, use the conclusion of L to derive further consequences, (ii) use the
conclusion of a lemma L without establishing the premises first, and only aim to prove
the premises of L, if the conclusion was used to derive an interesting subgoal, or (iii)
interleave the proving of premises of a lemma L with the exploration of consequences of
the conclusion of L. We refer to choice (i) as forward reasoning, choice (ii) as backward
reasoning, and choice (iii) as combined forward- and backward reasoning. We argue that
forward reasoning should be preferred for the trace lemmas of the trace logic domain:
For most examples, the premises of only a few trace lemmas are fulfilled. Moreover, the
conclusions of most trace lemmas are logically strong facts, and can therefore be used
to derive many consequences, which are all unusable, if the premises of the trace lemma
do not hold.

We now discuss how to force VAMPIRE to use forward reasoning for trace lemmas as
often as possible (without giving up completeness): Consider a trace lemma L of the
form

(PL A+ A Py) — Conclusion,

where Py, ..., P, are arbitrary literals, and Conclusion denotes an arbitrary conclusion
literal.® For any trace lemma L, we first introduce a naming literal Premy, denoting that
the premises of L hold, and replace L by the two formulas

(Pl JANRERIVAN Pk) — Premp, (93)
Premj, — Conclusion (9.4)

5To simplify the presentation, we only discuss the case where the premises and the conclusion of the trace
lemma consist of a single literal. The general case, where the premises and conclusions are arbitrary
formulas, can be handled in a similar way, but requires a non-trivial CNF-transformation.

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

9.

EXPERIMENTS

110

We refer to all naming literals introduced in this way as lemma literals. Clausifying the
formulas (9.3) and (9.4) will produce clauses of the form

-PiV---V P,V Premy, (9.5)
—Premy, V Conclusion (9.6)
Our goal is to force VAMPIRE to (i) prove P,..., Py, so that it can conclude Premp,

using (9.5), and (ii) only afterwards resolve Premy, with —Premp, to conclude Conclusion
using (9.6). The order in which literals are proven and combined together in VAMPIRE is
controlled by the literal selection heuristics. The requirement (i) of our goal is translated
to the property of the literal selection function that a positive lemma literal should never
be the only selected literal, if another literal exists. The requirement (ii) of our goal is
translated to the property that we should always select a negative lemma literal (and no
other literals), if such a literal exists in a clause.

While manually inspecting proof attempts on the trace logic domain, we observed that
none of the literal selection heuristics discussed in Section 5.2 could realize the explo-
ration strategy discussed above.”

To solve this problem, we adapt each literal selection heuristics Is discussed in Section 5.2
as follows: Before we select any literal of a clause C, we check whether a negative lemma
literal exists in C. If this is the case, we select the negative lemma literal and no other
literal. Note that this change preserves the potential well-behavedness of Is, as we are
always allowed to select only a single negative literal. If no negative lemma literal exists,
we proceed with selecting literals according to Is. Finally, we check whether only positive
lemma literals have been selected, although at least one non-lemma-literal exists in C.
If this is the case, we select an additional non-lemma literal (using ls). This step also
preserves the well-behavedness of literal selection heuristics, as we can always select
additional literals without compromising the well-behavedness. Even though we select
in this step more literals than necessary to ensure well-behavedness, this modification
improves the performance of VAMPIRE on the trace logic domain in our experience. As
a side effect, we observed that the discussed changes to the literal selection heuristics
dramatically improve the locality® of many proof attempts in the trace logic domain,
and therefore considerably simplify their manual inspection.

9.3.2 A Custom Deletion Rule for Inequalities of Difference Logic

As discussed in Section 5.2, we extend the theory of term algebras with an ordering
relation, to enable reasoning modulo difference logic. Unfortunately, the theory axioms

"First, if a premise of a trace lemma is a disequality, it would be clausified into a positive equality, which
would not be selected earlier than Premy, by any of the complete literal selection heuristics 10 and 11.
Secondly, we observed that the literal Conclusion is often both bigger in the ordering and has higher
weight than —Premp,, so 10 and 1010 would select Conclusion instead of = Premy,. Thirdly, we observed
that resolving Premy, and —Premy, often produces only a small number of consequences, so 11 and 1011
would often select these literals.

8Intuitively, the locality of a proof corresponds to the average number of inferences a literal participates
in before it is selected (with a small number being preferable).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

9.3. A Custom Version of VAMPIRE

added in this way are problematic, as they generate a lot of useless consequences. During
a manual inspection of proof attempts for the trace logic domain, we observed that many
clauses with terms of the form succ(0) or succ(succ(t)) (for some subterm t) were
generated. We further observed that such terms are not needed in the examples from
the trace logic domain we are interested in. We therefore introduce a deletion inference
rule called custom-successor-deletion, which deletes any clause containing a term of the
form succ(0) or of the form succ(succ(t)). We want to note that this deletion rule should
be interpreted as a lightweight technique, which handles the blowup of the search space
introduced by inequality reasoning for difference logic and improves the performance of
VAMPIRE on the trace logic domain. We acknowledge that our handling of difference
logic could potentially be vastly improved by a more principled approach. However, such
an approach would require a huge effort and is out of the scope of this thesis.

9.3.3 Implementation

As already described in Chapter 6 and Chapter 7, we implemented the layered clause
selection framework resp. the subsumption demodulation simplification rule in VAMPIRE.
Starting with release 4.5, our implementation is part of the official version of VAMPIRE.

For our experiments, we extended VAMPIRE 4.5” with a custom implementation'? to
realize the ideas described in Subsection 9.3.1 and Subsection 9.3.2. The custom imple-
mentation adds a native (background) theory of difference logic to VAMPIRE, including
(i) parsing of statements (declare-nat Nat 0 s p Sub), (ii) internally added the-
ory axioms for the ordering relation of difference logic (presented in Figure 5.2), and (iii)
the deletion inference custom-successor deletion (controlled by option —csd, with pos-
sible values of £ and on, and default value of £). Moreover, it adds support for lemma
literals, including (i) parsing of the keyword declare-lemma-predicate, and (ii)
adapted literal selection heuristics with custom handling for lemma literals (controlled
by option —11s, with possible values off and on, and default value off). Finally, the
extended implementation fine-tunes the existing internal theory axioms for integers, by
adding the theory axiom x % z + 1. While this axiom does not add additional strength
logically, it enables additional simplifications in combination with subsumption resolu-
tion, as any clause of the form C'V t~t + 1 will be simplified to C' using subsumption
resolution with the side premise x % = + 1.

9.3.4 Configurations

We now describe the (portfolio) configurations of VAMPIRE used for the experimental
evaluation.

Base configuration. Recall the discussion from Section 5.3 on how to configure VAM-
PIRE for the trace logic domain. We realized these ideas in a portfolio configuration of

9Commit 57a6f78cc2bcl179¢480c¢3d47d09fbfclec8d123.
10 Available at https://github.com/vprover/vampire/tree/gleiss-rapid.

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://github.com/vprover/vampire/tree/gleiss-rapid

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

9.

EXPERIMENTS

112

two strategies, which we will refer to as CONF, as follows. Starting from VAMPIRE’s
default strategy, we set the options — —input_syntax smtlib2, - —newcnf on, -t
60, —av off, -bs on, -bsr on, —urr on. —nwc 2. Additionally, we vary the op-
tion —s between the two values 10 and 1010. The configuration CONF is interesting, as
it shows how well VAMPIRE does perform on the trace logic domain, if we tune it with
already existing options, but do not use any technique implemented in VAMPIRE as part
of this thesis.

Advanced configuration. The configuration ADV refines the configuration CONF us-
ing all the reasoning techniques developed in this thesis, and represents the most ad-
vanced configuration of VAMPIRE for reasoning in the trace logic domain. It differs from
the configuration CONF as follows.

First, it uses the layered clause selection framework introduced in Chapter 6. In partic-
ular, it uses the clause selection heuristics

mono-split(dist$,, _, _
mono-split(dist gopn, - -
mono-split(distsmp, -, -

aw(1:1)))),

consisting of three nested monotone split heuristics with features dist?h, dist gorn and
distsig, where the cutoffs and ratios of the split heuristics are varied in the portfolio. For
the split heuristics with feature dist},, we use a variant which combines cutoffs (0,8) and
ratio 20:10:1, and a variant which combines cutoffs (0,8,16,24) with ratio 20:10:10:10:1.
For the split heuristics with feature dist gy, we fix the cutoffs (1,2) and vary the ratio
between 1:1:1, 5:5:1, 10,10,1, and 20:20:1. Furthermore, we add a variant, where the
split heuristics with feature dist gy, is not used. For the split heuristics with feature
distgmp, we fix the cutoff (0) and vary the ratio between 1:1 and 30:1. Additionally, we
also add a variant, where the split heuristics with feature distgr, g is not used. Summing
up, we obtain 2 variants for the split heuristics with feature dist?h, 5 variants for the
split heuristics with feature distg,., and 3 variants for the split heuristics with feature
distsimp, yielding 30 overall variants of the clause selection heuristics.'!

Secondly, the configuration uses the simplifying inference rule subsumption demodula-
tion introduced in Chapter 7, by setting for each strategy the options —fsd on and
-bsd on.

Thirdly, it uses the simple techniques described in Section 9.3, by setting for each strategy
the options —11s on and —csd on.

"The necessary options to enable these variants in VAMPIRE are presented in Section 6.6. For
instance, one of these variants could be enabled using -thsgq on -thsgd 8 -thsgc 0,8 -thsqr
20,10,1 -thsgl on -plsg on -plsqgc 1,2 -plsgr 1,1,1 -plsgl on -slsg on —-slsqc
0 -slsgr 1,1 -slsgl on.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

9.4. Experimental Evaluation

Additional configurations. The configurations NO-MSQ and NO-SD are obtained
from the configuration ADV by turning off layered clause selection resp. subsumption
demodulation. These configurations are interesting for understanding how much the
performance of the configuration ADV depends on layered clause selection resp. sub-
sumption demodulation.

9.4 Experimental Evaluation

We now present an experimental evaluation of our tool RAPID (Section 9.2) and our
custom version of VAMPIRE (Section 9.3). All experiments were run on an Intel Core i5
3.1Ghz machine with 16 GB of RAM.

For each example and each property from the benchmark sets discussed in Section 9.1,
we first use RAPID to generate a validity problem encoding the partial correctness of the
property with respect to the given program (as discussed in Section 9.2), and then use
VAMPIRE to prove that validity problem. As discussed in Section 9.2, for each example,
RAPID additionally generates a set of validity problems encoding the correctness of the
trace lemmas used to establish the partial correctness of the properties of the given
example. We successfully prove each of these validity problems in less than 1 second by
separately invoking VAMPIRE in the configuration ADV.

9.4.1 Experiment 1 - Overall Performance

As a first experiment, we evaluated the configurations CONF and ADV on the benchmark
sets ARRAYS and RELATIONAL. The results are presented in Table 9.1 and Table 9.2.

First, we are interested in how many properties we can verify using the configuration
ADV, which utilizes all the techniques developed in this thesis. We can see that ADvV
proves 78 out of 103 examples from the benchmark set ARRAYS and that it proves 57 out
of 64 examples from the benchmark set RELATIONAL. As both sets of benchmarks contain
many challenging properties, which require reasoning with quantifier-alternations and/or
reasoning about multiple traces, we argue that our approach works quite well.

Secondly, we are interested in how many properties we could have solved using the
configuration CONF, which is obtained from tuning VAMPIRE to the trace logic domain
using only user options and in particular without using any of the reasoning techniques
introduced in this thesis. We can see that configuration CONF only proves 18 out of 103
examples from the benchmark set ARRAYS and only proves 32 out of 64 examples from
the benchmark set RELATIONAL. In particular, the configuration ADV improves over
CONF by 60 examples on ARRAYS and by 25 examples on RELATIONAL, which suggests
that the reasoning techniques developed in this thesis are essential to enable efficient
reasoning with VAMPIRE in the trace logic domain.

113

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

9. EXPERIMENTS

Table 9.1: Results of Experiment 1 on the benchmark set ARRAYS.

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

114

Benchmark CONF ADV | Benchmark CONF ADV
atleast-one-iteration-0 v v | inc-by-one-harder-0 - v
atleast-one-iteration-1 v v | inc-by-one-harder-1 - v
both-or-none-0 - v' | indexn-is-arraylength-0 v v
check-equal-set-flag-0 v v' | indexn-is-arraylength-1 v v
check-equal-set-flag-1 - v' | init-0 - v
collect-indices-0 - v | init-conditionally-0 - v
collect-indices-1 - v | init-conditionally-1 - v
collect-indices-2 - v | init-non-const-0 - v
collect-indices-3 - - | init-non-const-1 - v
copy-0 - v | init-non-const-2 - v
copy-absolute-0 - v' | init-non-const-3 - v
copy-absolute-1 - v | init-non-const-easy-0 - v
copy-nonzero-0 - v/ | init-non-const-easy-1 - v
copy-nonzero-1 - v | init-non-const-easy-2 - v
copy-partial-0 - v | init-non-const-easy-3 - v
copy-positive-0 - v' | init-partial-0 - v
copy-positive-1 - v' | init-prev-plus-one-0 - v
copy-two-indices-0 - v' | init-prev-plus-one-1 - v
find1-0 v v | init-prev-plus-one-alt-0 - v
find1-1 - v' | init-prev-plus-one-alt-1 - v
find1-2 v v | max-prop-0 - v
find1-3 v v' | max-prop-1 - v
find1-4 - v' | merge-interleave-0 - -
find2-0 v v' | merge-interleave-1 - -
find2-1 v v' | merge-interleave-2 - -
find2-2 v v' | min-prop-0 - v
find2-3 v v' | min-prop-1 - v
find2-4 v v' | partition-0 - v
find-max-0 - v/ | partition-1 - v
find-max-1 - - | partition-2 - v
find-max-2 - v' | partition-3 - v
find-max-from-second-0 - - | partition-4 - -
find-max-from-second-1 - - | partition-5 - v
find-max-local-0 - - | partition-6 - -
find-max-local-1 - - | partition-harder-0 - v
find-max-local-2 - - | partition-harder-1 - v
find-max-up-to-0 - - | partition-harder-2 - -
find-max-up-to-1 - - | partition-harder-3 - -
find-max-up-to-2 - - | partition-harder-4 - -
find-min-0 - v" | push-back-0 - v
find-min-1 - - | reverse-0 - v
find-min-2 - v’ | set-to-one-0 v v
find-min-local-0 - - | str-cpy-0 - v
find-min-local-1 - - | str-cpy-1 - v
find-min-local-2 - - | str-cpy-2 v v
find-min-up-to-0 - - | str-cpy-3 v v
find-min-up-to-1 - - | str-len-0 v v
find-min-up-to-2 - - | swap-0 - v
find-sentinel-0 v v’ | swap-1 - v
in-place-max-0 - v | vector-addition-0 - v
inc-by-one-0 - v | vector-subtraction-0 - v
inc-by-one-1 - v’ | Total 18 78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

9.4. Experimental Evaluation

Table 9.2: Results of Experiment 1 on the benchmark set RELATIONAL.

Benchmark CONF ADV | Benchmark CONF ADV
1-hw-equal-arrays-0 - v' | 8-sens-explicit-swap-0 - v
1-hw-equal-arrays-harder-0 - - | 8-sens-explicit-swap-1 - v
1-ni-assign-to-high-0 v v' | 8-sens-explicit-swap-2 - v
1-ni-equal-output-0 - v' | comp-lex-array-1-trace-0 v v
1-sens-equal-sums-0 - v' | comp-lex-array-1-trace-1 v v
10-ni-rsa-exponentiation-0 v v' | comp-lex-array-1-trace-2 - v
10-sens-equal-k-0 - v' | comp-lex-array-1-trace-3 v v
11-sens-equal-k-twice-0 - v' | comp-lex-array-2-traces-0 - v
12-sens-diff-up-to-forall-k-0 - V' | comp-lex-array-2-traces-1 - v
2-hw-last-position-swapped-0 - v' | comp-lex-array-3-traces-0 - v
2-hw-last-position-swapped-harder-0 - - | comp-lex-array-3-traces-1 - -
2-ni-branch-on-high-0 v v' | comp-lex-array-3-traces-2 - -
2-ni-branch-on-high-1 - v' | comp-lex-pair-1-trace-0 v v
2-ni-branch-on-high-twice-0 v V' | comp-lex-pair-1-trace-1 v v
2-ni-branch-on-high-twice-1 - v’ | comp-lex-pair-1-trace-2 v v
2-sens-equal-sums-two-arrays-0 - v' | comp-lex-pair-1-trace-3 v v
3-hw-swap-and-two-arrays-0 - v' | comp-lex-pair-2-traces-0 v v
3-hw-swap-and-two-arrays-harder-0 - - | comp-lex-pair-2-traces-1 v v
3-ni-high-guard-equal-branches-0 v' | comp-lex-pair-3-traces-0 v v
3-sens-abs-diff-up-to-k-0 - v' | comp-lex-pair-3-traces-1 v v
4-hw-swap-in-array-full-0 - - | comp-lex-pair-3-traces-2 v v
4-hw-swap-in-array-lemma-0 - - | comp-lex-pair-3-traces-3 - v
4-sens-abs-diff-up-to-k-two-arrays-0 - V' | comp-lex-single-1-trace-0 v v
5-ni-temp-impl-flow-0 v v' | comp-lex-single-1-trace-1 v v
5-ni-temp-impl-flow-1 v v' | comp-lex-single-1-trace-2 v v
5-ni-temp-impl-flow-2 v v' | comp-lex-single-1-trace-3 v v
5-sens-two-arrays-equal-k-0 - V' | comp-lex-single-2-traces-0 v/ v
6-ni-branch-assign-equal-val-0 - v’ | comp-lex-single-2-traces-1 v v
6-sens-diff-up-to-explicit-k-0 - v’ | comp-lex-single-3-traces-0 v/ v
7-ni-explicit-flow-0 v v' | comp-lex-single-3-traces-1 v v
7-sens-diff-up-to-explicit-k-sum-0 - V' | comp-lex-single-3-traces-2 v v
8-ni-explicit-flow-while-0 v v’ | comp-lex-single-3-traces-3 v/ v
Total 32 57

9.4.2 Experiment 2 - Contribution of New Techniques

As a second experiment, we investigated the separate contribution of layered clause
selection and subsumption demodulation - the two main reasoning techniques developed
in this thesis - to the efficient performance of VAMPIRE’s configuration ADV on the
trace logic domain. To this end, we evaluated the configurations NO-MSQ and NO-SD,
obtained from the best configuration ADV by turning off layered clause selection resp. by
turning off subsumption demodulation, on the benchmark sets ARRAYS and RELATIONAL,
and compared them with the configuration ADv. Without layered clause selection, we
prove only 19 out of 103 examples from ARRAYS and only 33 out of 64 examples from
RELATIONAL. We therefore prove only slightly more examples than we did using the
configuration CONF, suggesting that layered clause selection is a critical ingredient to
the performance of ADV. Secondly, without subsumption demodulation, we prove 76 out

115

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

9.

EXPERIMENTS

116

Table 9.3: Results of Experiment 2 on the benchmark set ARRAYS.

Benchmark

ADV NO-MSQ NO-SD

atleast-one-iteration-0
atleast-one-iteration-1
both-or-none-0
check-equal-set-flag-0
check-equal-set-flag-1
collect-indices-0
collect-indices-1
collect-indices-2
collect-indices-3
copy-0
copy-absolute-0
copy-absolute-1
copy-nonzero-0
copy-nonzero-1
copy-partial-0
copy-positive-0
copy-positive-1
copy-two-indices-0
find1-0

find1-1

find1-2

find1-3

find1-4

find2-0

find2-1

find2-2

find2-3

find2-4

find-max-0
find-max-1
find-max-2
find-max-from-second-0
find-max-from-second-1
find-max-local-0
find-max-local-1
find-max-local-2
find-max-up-to-0
find-max-up-to-1
find-max-up-to-2
find-min-0

find-min-1

find-min-2
find-min-local-0
find-min-local-1
find-min-local-2
find-min-up-to-0
find-min-up-to-1
find-min-up-to-2
find-sentinel-0
in-place-max-0
inc-by-one-0
inc-by-one-1

v v v
v v v
v - v
v v v
v - v
v - v
v - v
v - -
v - v
v - v
v - v
v - v
v - v
v - v
v - v
v - v
v - v
v v v
v v v
v v v
v v v
v - -
v v v
v v v
v v v
v v v
v v v
v - v
v - v
v - v
v - v
v v v
v - v
v - v
v - v

Benchmark ADV NO-MSQ NO-SD
inc-by-one-harder-0 v - v
inc-by-one-harder-1 v - v
indexn-is-arraylength-0 v v v
indexn-is-arraylength-1 v v v
init-0 v - v
init-conditionally-0 v - v
init-conditionally-1 v - v
init-non-const-0 v - v
init-non-const-1 v - v
init-non-const-2 v - v
init-non-const-3 v - v
init-non-const-easy-0 v - v
init-non-const-easy-1 v - v
init-non-const-easy-2 v - v
init-non-const-easy-3 v - v
init-partial-0 v - v
init-prev-plus-one-0 v - v
init-prev-plus-one-1 v - v
init-prev-plus-one-alt-0 v - v
init-prev-plus-one-alt-1 v - v
max-prop-0 v - v
max-prop-1 v - v
merge-interleave-0 - - -
merge-interleave-1 - - -
merge-interleave-2 - - -
min-prop-0 v - v
min-prop-1 v - v
partition-0 v - v
partition-1 v - v
partition-2 v - v
partition-3 v - v
partition-4 - - -
partition-5 v - v
partition-6 - - -
partition-harder-0 v - v
partition-harder-1 v - v
partition-harder-2 - -
partition-harder-3 - - -
partition-harder-4 - - -
push-back-0 v - v
reverse-0 v - v
set-to-one-0 v v v
str-cpy-0 v - v
str-cpy-1 v - v
str-cpy-2 v v v
str-cpy-3 v v v
str-len-0 v v v
swap-0 v - v
swap-1 v - v
vector-addition-0 v - v
vector-subtraction-0 v - v
Total 78 19 76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

9.4. Experimental Evaluation

Table 9.4: Results of Experiment 2 on the benchmark set RELATIONAL.

Benchmark

ADV NO-MSQ NO-SD

Benchmark

ADV NO-MSQ NO-SD

1-hw-equal-arrays-0
1-hw-equal-arrays-harder-0
1-ni-assign-to-high-0
1-ni-equal-output-0
1-sens-equal-sums-0
10-ni-rsa-exponentiation-0
10-sens-equal-k-0
11-sens-equal-k-twice-0
12-sens-diff-up-to-forall-k-0
2-hw-last-position-swapped-0
2-hw-last-position-swapped-harder-0
2-ni-branch-on-high-0
2-ni-branch-on-high-1
2-ni-branch-on-high-twice-0
2-ni-branch-on-high-twice-1
2-sens-equal-sums-two-arrays-0
3-hw-swap-and-two-arrays-0
3-hw-swap-and-two-arrays-harder-0
3-ni-high-guard-equal-branches-0
3-sens-abs-diff-up-to-k-0
4-hw-swap-in-array-full-0
4-hw-swap-in-array-lemma-0
4-sens-abs-diff-up-to-k-two-arrays-0
5-ni-temp-impl-flow-0
5-ni-temp-impl-flow-1
5-ni-temp-impl-flow-2
5-sens-two-arrays-equal-k-0
6-ni-branch-assign-equal-val-0
6-sens-diff-up-to-explicit-k-0
7-ni-explicit-flow-0
7-sens-diff-up-to-explicit-k-sum-0
8-ni-explicit-flow-while-0

\

NN N N N N NENY

Las R

SNEN

AN N N N S NN NN

SN N N NE N

AN

v

{\

ANEN

SENENENE

[N N |

SNENENEE

[N

Q\

AN

8-sens-explicit-swap-0
8-sens-explicit-swap-1
8-sens-explicit-swap-2
comp-lex-array-1-trace-0
comp-lex-array-1-trace-1
comp-lex-array-1-trace-2
comp-lex-array-1-trace-3
comp-lex-array-2-traces-0
comp-lex-array-2-traces-1
comp-lex-array-3-traces-0
comp-lex-array-3-traces-1
comp-lex-array-3-traces-2
comp-lex-pair-1-trace-0
comp-lex-pair-1-trace-1
comp-lex-pair-1-trace-2
comp-lex-pair-1-trace-3
comp-lex-pair-2-traces-0
comp-lex-pair-2-traces-1
comp-lex-pair-3-traces-0
comp-lex-pair-3-traces-1
comp-lex-pair-3-traces-2
comp-lex-pair-3-traces-3
comp-lex-single-1-trace-0
comp-lex-single-1-trace-1
comp-lex-single-1-trace-2
comp-lex-single-1-trace-3
comp-lex-single-2-traces-0
comp-lex-single-2-traces-1
comp-lex-single-3-traces-0
comp-lex-single-3-traces-1
comp-lex-single-3-traces-2
comp-lex-single-3-traces-3

V3 N N

NN N N NENENEN
NN

Total

NN N N N N N N N N N N N N N SN
R T NN N N N N N N N NN NN
R NN N N N N N N N N N NE N

of 103 examples from ARRAYS and 42 out of 64 examples from RELATIONAL. While this
suggests that subsumption demodulation does not contribute much to the performance
of ADV on the benchmark set ARRAYS, it also suggests that subsumption demodulation
considerably improves the performance of ADV on the benchmark set RELATIONAL.

117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusion and Future Work

10.1 Conclusion

We presented a new approach to software verification, which leverages superposition-
based theorem proving.

In the first part of the thesis, we developed a new verification framework for establish-
ing the partial correctness of software programs. As main feature, we introduced trace
logic, a new instance of first-order logic modulo difference logic and integer arithmetic,
and formulated an axiomatic semantics of software programs in it. Trace logic keeps
loop iterations explicit, enabling us (i) to describe each timepoint in the execution of
a program uniquely, and (ii) to formulate instances of the generalized induction axiom
scheme directly as logical formulas. To understand the theoretical foundations of the
introduced axiomatic semantics, we furthermore established its soundness with respect
to small-step operational semantics and its completeness with respect to Hoare logic.
We then captured the partial correctness of a program property as a validity statement
in trace logic, without using any intermediate program logic. We want to note that the
trade-off of our semantics between the amount of quantification and the expressiveness
of the logical language differs from the trade-off used by existing SMT-based approaches:
Our semantics does not abstract away loop iterations and thereby involves more quan-
tification, but in return is able to express generalized induction axioms, which can be
used to perform advanced loop splitting.

Building on top of trace logic, we introduced a verification framework, which focuses
on establishing the partial correctness of properties for programs involving (unbounded)
arrays and loops. Since we defined the axiomatic semantics of trace logic using the
semantics of standard first-order logic, we were immediately able to apply an arbitrary
off-the-shelf first-order theorem prover to reason about the resulting validity statements.
To overcome the problem that current state-of-the-art theorem provers do not provide

119

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

10.

CONCLUSION AND FUTURE WORK

120

inductive reasoning that is sophisticated enough to automatically identify instances of the
generalized induction axiom scheme necessary for the trace logic domain, we presented
relevant instances of the generalized induction axiom scheme, which apply to a wide
range of programs, and described how we instrumented our framework, to automatically
generate these induction axioms for any given program and provide them to the used
theorem prover as additional input axioms.

To showcase the flexibility of our approach, we then generalized trace logic and the trace-
logic-based verification framework to support multiple traces and hyperproperties coming
from security applications. We think that the presented generalization is compelling, as
it is much simpler than existing approaches, which is possible due to trace logic’s explicit
notion of loop iterations and the direct formalization in standard first-order logic.

In the second part of the thesis, we turned our focus to the efficient application of
the state-of-the-art superposition-based theorem prover VAMPIRE to the trace logic do-
main, by using VAMPIRE as reasoning engine inside the presented verification frame-
work. We chose VAMPIRE, since we conjectured that the efficient handling of quantifi-
cation in superposition-based theorem proving is sufficient to enable efficient reasoning
in the trace logic domain. Furthermore, we think that our work makes a significant
step towards understanding the potential of superposition-based software verification.
In contrast to SMT-based software verification, the boundaries of superposition-based
software verification are not understood well, as principled applications of superposition-
based theorem proving to software verification have not seen a lot of attention in the
literature so far', although software verification has been reported as a main motiva-
tion for many recently developed techniques in superposition-based theorem proving
[KRV17, Vorl4, GKKV14, KKRV16, KKV18, KV09b, BLDM11, RV19]. Moreover, we
argue that our combination of superposition-based theorem proving with trace logic (in-
stead of an existing formalization of program correctness) reveals new advantages of
superposition-based software verification, as VAMPIRE'’s efficient reasoning with quan-
tification in combination with trace logic’s explicit notion of loop iterations enables
advanced automated loop splitting.

After recalling the main ideas of superposition-based theorem proving, we described the
techniques used in VAMPIRE to realize these ideas. We then highlighted the places where
VAMPIRE offers multiple techniques from which a user can choose from, and argued which
of these techniques to choose for applying VAMPIRE to the trace logic domain.

Then, we presented two reasoning techniques that are designed to overcome inefficiencies
of superposition-based theorem proving in the trace logic domain. On the one hand, we
introduced layered clause selection heuristics to control the high-level proof search in
saturation-based theorem proving. These heuristics guide the exploration of the search
space towards proofs, which (i) are related to the conjecture we want to prove, and (ii)

!To the best of our knowledge, no verification framework has been described in the literature, which
(i) targets a while-like language, (ii) uses a superposition-based theorem prover as backend, and (iii)
formulates an axiomatic semantics in first-order logic modulo theories, which is specifically designed to
enable efficient superposition-based theorem proving.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

10.2. Future Work

only contain reasonable amounts of theory reasoning and case distinctions. Our experi-
ments show that the layered clause selection heuristics improve VAMPIRE's efficiency on
the trace logic domain drastically. Furthermore, our experience strongly suggests that
they should also be essential in many other domains originating from industrial verifica-
tion applications. On the other hand, we presented a simplification inference rule called
subsumption demodulation, which enables efficient reasoning with conditional equalities.
Our experiments show that subsumption demodulation is important in the trace logic do-
main, in particular to establish the partial correctness of hyperproperties. Moreover, we
think that it is also useful in other application domains, as it both improves the stability
of proof search and eases the human inspection of saturation attempts considerably.

Afterwards, we described the tool SATV1S, which interactively visualizes saturation at-
tempts of VAMPIRE and therefore enables us to efficiently analyze such saturation at-
tempts. SATVIS was invaluable during the development of our trace-logic-based verifi-
cation approach, as it allowed us to efficiently understand the effect of different choices
for encodings and proof search techniques on the performance of VAMPIRE in the trace
logic domain.

Finally, we evaluated our work on a large set of challenging benchmarks. Our results
show that the trace-logic-based verification framework in combination with our cus-
tomized version of VAMPIRE can automatically establish the partial correctness of many
challenging examples. They suggest that our approach could be an interesting alter-
native to SMT-based approaches to software verification, in particular for programs
involving (unbounded) arrays and loops. If we take a closer look at the results, we can
also see that the reasoning techniques introduced in this thesis are crucial to the per-
formance of VAMPIRE on the trace logic domain. In particular, the results show that
tuning VAMPIRE only with existing options would not have been sufficient. This demon-
strates that heavily customizing a superposition-based theorem prover to the software
verification domain is rewarding, and in particular suggests that conclusions about the
potential performance of a superposition-based prover should only be drawn after such
customization has been performed.

10.2 Future Work

There are several directions to improve trace-logic-based software verification in the
future, including (i) extensions of trace logic to support additional program constructs,
(ii) new reasoning techniques for VAMPIRE, and (iii) a more efficient development process
for applications of VAMPIRE to given domains. In the remainder of this section, we
describe four concrete directions for future research.

10.2.1 Trace logic - Support for Function Calls

Trace logic, as described in this thesis, focuses on the analysis of programs consisting
of a single function. In the future, it would be interesting to generalize trace logic to

121

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

10.

CONCLUSION AND FUTURE WORK

122

func main ()

{

const Int[] a;
Int[] b;
const Int len;

func positive (Int v)
if (v >= 0)

return v;

}

else

{

return 0;

}

Int 1 = 0;

while (i < len)

{

10 bl[i] = positive(ali]);
11 i=1+ 1;

12 }

13 }

O 1o U b w N

O
P O W o Jo Ul b Wb

=

Figure 10.1: Program with multiple functions.

support multiple functions and function calls, to enable an interprocedural analysis. An
example program requiring such an analysis is denoted in Figure 10.1. It contains a
function positive, which is repeatedly called by the function main.

A standard solution for extending an existing intraprocedural analysis to an interpro-
cedural analysis is to distinguish different invocations of a function by keeping track of
the calling context which led to the invocation of the function [SP*78]. To realize such
a solution, one has to (i) come up with a formalization of calling contexts, (ii) extend
variable values so that they depend on the calling context of the function call, and (iii)
define the semantics of calling a function and returning from it.

We conjecture that trace logic could offer an interesting solution to point (i). Existing
approaches usually model the calling context as a call stack, that is, as a list’ of locations.
With such an approach, any invocation of the function positive from line 10 of the
function main would be assigned the context [main,,]. With trace logic, we could in
contrast choose a more expressive formalization, where we model the context as a list
of timepoints. We would then capture the context for the invocation of the function
positive from line 10 of the function main for a given iteration ity as [main;,,(ito)].
In particular, our formalization would preserve the iteration of the loop at line 8 of
main, in which positive was called.

Taking a step back, we can see that function invocations can be uniquely described using
a combination of locations and loop iterations. Most verification approaches already
abstract away from loop iterations in the intraprocedural setting, and therefore are forced
to model calling contexts in the interprocedural setting in an imprecise way without
referring to loop iterations. In contrast, trace logic describes each timepoint in the
execution of a program uniquely in the intraprocedural setting, and can therefore model

2Lists can be modeled in first-order logic using a term algebra with constructors nil and cons. VAMPIRE
already supports efficient reasoning with such term algebras [KRV17].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

10.2. Future Work

calling contexts as lists of timepoints in the interprocedural setting. As a result, it can
refer to each function invocation uniquely.

10.2.2 Trace logic - Support for Unstructured Control-Flow
Constructions

Trace logic supports standard structured control-flow-statements, including arbitrarily
nested if-then-else- and while-statements. Extending our approach to other structured
control-flow-statements, such as if-statements (without an else-branch), C-like for-loops,
and case distinctions, would require some engineering effort, but is otherwise straight-
forward. More interestingly, one could generalize trace logic even further to support
unstructured control-flow statements, including break-, continue-, restricted forms of
goto-, and early-return-statements (we call a return-statement early, if it is not located
at the end of the program). Such statements let the execution of the program jump to
some statement® (given either implicitly or explicitly in the form of a label), which is
potentially far away in the program tree from the unstructured control-flow statement.

10.1. Example Consider the example programs denoted in Figure 10.2. While we
acknowledge that these programs could also be realized using structured control-flow
statements only, they nonetheless showcase the challenges of supporting unstructured
control-flow statements. The program in Figure 10.2a contains a break-statement in a
loop. We can see that the if-statement at line 9 is reached in any iteration gy, such that
both (i) the loop condition check at line 7 holds for all iterations it with it < ity, and
(ii) the branching condition at line 9 does not hold in any iteration it with it < itg. The
program in Figure 10.2b contains a loop with a continue-statement. The assignment
of the program variable sum at line 13 is reached in any iteration ity of the loop, such
that both (i) the loop condition check at line 7 holds for all iterations it with it < ito,
and (ii) the branching condition at line 9 does not hold in iteration itg. The program
in Figure 10.2¢ contains two goto-statements and a corresponding label end. We can
see that the expensive computation at line 18 is only reached, if both the branching
conditions at line 7 and line 12 do not hold. The program in Figure 10.2d contains an
early-return-statement at line 12, and a standard return-statement at line 16. We can
see that the return-statement at line 16 is only reached, if the branching condition at
line 10 does not hold in any iteration before the iteration where the loop condition check
at line 8 does not hold for the first time. O

Let us now consider forward gotos, restricted instances of gotos, which do neither (i)
introduce additional recursion, nor (ii) jump into contexts.

10.2. Definition For two statements s; and s, define that sy occurs later than sy in
the program tree, if there exists a context with two statements s4’,s5 in the program tree,

3More precisely, we would need to add skip-statements at the end of both while-statements and functions,
so that there is a statement (and not only a location) where a continue-statement resp. an early-return-
statement can jump to.

123

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

10. CONCLUSION AND FUTURE WORK

O J o U w N

11
12
13
14
15

1
2
3
4
5
6
5
8

9
10
11
12
13
14
15
16
17
18
19
20
21

124

func main ()

{
const Int[] a;
const Int len;

Int x;
for (Int i=0; i<len;
{
if (al[i] == x)
{
break;

return i;

}

(a) Program with a break-statement.

func main ()

{
const Int x;
const Int y;
Int z;

if (x<0)

// expensive comp. of z

end:
return 2+x + y + 3%z;

}

(¢) Program with goto-statements.

i=i+1)

1
2
3
4
5
6
5
8

9
10
11
12
13
14
15
16

func main ()

{

}

const Int[] a;
const Int len;
Int sum = 0;

for (Int i=0;
{

i<len; i=i+1)
if (afi]
{

continue;

}

sum = sum + af[i];

< 0)

}

return sum;

(b) Program with a continue-statement.

1
2
3
4
5
6
5
8

9
10
11
12
13
14
15
16
17

func main ()

{

}

const Int[] a;
const Int len;
Int x;
Int 1 = 0;
while (i1 < len)
{

if (ali]l == x)

return i;

}
i=1 o+ 1;
}

return len;

(d) Program with early-return-statements.

Figure 10.2: Programs containing unstructured control flow.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

10.2. Future Work

such that (i) so follows (not necessarily directly) s4’, (ii) s4’ is sy itself or a transitive
parent of sy, and (iii) so’ is sy itself or a transitive parent of s5. A goto-statement s in
a program is then called a forward goto, if it jumps to a statement 1, such that 1 occurs
later in the program tree than s.

Forward gotos include break-statements, continue-statements, and early-return-statements
as special-cases,’ and arguably cover almost all real-world usages of gotos.” It would
therefore make sense to gemeralize trace logic to support forward gotos. We conjecture
that this is possible. One research question is how to define the symbol n,, in the pres-
ence of forward gotos. If there are no unstructured control-flow statements, then n,,
denotes both (i) the first iteration, where the loop condition does not hold anymore, and
(ii) the iteration where the loop is exited. But in the presence of forward gotos, these two
notions do not necessarily coincide anymore. One could keep notion (i) and introduce
for each break statement in the loop an additional symbol, to denote the first iteration
where that break statement is reached. Or, one could keep notion (ii) by using a single
symbol n,, for any loop w to denote the first iteration where either the loop-condition
does not hold or one of the break statements is reached. A related research question is
how the presence of forward gotos influences inductive reasoning and the applicability
of trace lemmas, and whether new trace lemmas are needed to handle forward gotos.

10.2.3 Reasoning - Efficient Support for Difference Logic over
Natural Numbers

Trace logic utilizes the background theory of difference logic over natural numbers to
model loop iterations. As described at the end of Section 5.2, we support reasoning with
this theory inside VAMPIRE by extending the term algebra of natural numbers with an
ordering relation and corresponding axioms. While this solution enables VAMPIRE to
prove many interesting program properties, it is far from optimal. In particular, the
axioms of the ordering relation (denoted in Figure 5.2) cause a substantial blowup of
the search space.

It would be interesting to investigate a principled solution for efficient superposition-
based reasoning with difference logic over natural numbers. Such a solution would not
only be useful in the setting of trace logic, but could also help in many other application
settings, where we are interested in a notion of discrete time and the order between
timepoints. As a starting point, one could try to adapt the ideas from [BG98] to the
setting of difference logic over natural numbers.

10.2.4 Reasoning - Industrial Theorem Proving

While developing our trace-logic-based verification framework, we realized that there are
two major challenges for efficiently applying VAMPIRE to a given domain.

4To make this precise, we would again need to introduce skip-statements at the end of while-statements
and functions to capture continue-statements resp. early-return-statements.
5The usage of goto-statements, which are not forward gotos, could even be considered bad practice.

125

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

10.

CONCLUSION AND FUTURE WORK

126

First, as already discussed earlier, analyzing saturation attempts is difficult. The SATV1S
tool, introduced in Chapter 8, is a first step towards understanding saturation attempts
efficiently, and was invaluable for the development of the techniques presented in this
thesis. But if we really want to tame VAMPIRE and fully understand its behavior, we
need to develop additional techniques for the efficient analysis of saturation attempts.
In particular, we think it would be invaluable to develop (i) a profiling technique to
automatically detect any cyclic behavior in a proof attempt, caused by repeated ap-
plications of theory axioms and problematic input axioms, (ii) a technique to enable
efficient comparisons of the sets of clauses derived in two proof attempts, and (iii)
a (semi-automatic) proof transformation to translate superposition-proofs into proofs,
which can be inspected more efficiently by humans. It should be noted that the de-
velopment of such techniques would not only require engineering effort, but also new
theoretical insights in proof theory and the analysis of saturation attempts.

Secondly, many of the recently developed techniques that contribute to VAMPIRE’s effi-
cient reasoning make VAMPIRE’s performance highly unstable against small changes to
the search space. This includes the LRS saturation strategy [RV03], most of the literal
selection functions introduced in [HRSV16], the AVATAR architecture [Vorl4], and sev-
eral other techniques. We acknowledge that it is reasonable to trade stability against
efficiency, if the only goal is to maximize the number of problems from some benchmark
set, for which (a portfolio mode of) VAMPIRE is able to find a proof. But if a predictable
and reproducible performance is also important, then the instability of the techniques
mentioned above is a big concern, as it is nearly impossible to understand whether a cer-
tain change to proof search improves the overall performance of VAMPIRE, which means
that it is nearly impossible to properly tune VAMPIRE to a given domain. To restore
stability, the simplest solution would be to turn off all instability-introducing techniques.
Unfortunately, doing so slows down VAMPIRE considerably, and is — at least on the trace
logic domain — not an option. To overcome this problem, it might be interesting to
develop restricted variants of the instability-introducing techniques mentioned above,
which trade the last bit of efficiency for better stability of VAMPIRE’s performance.

We think that solutions for the two challenges presented in this subsection would simplify
the overall interaction with VAMPIRE tremendously, and in particular could position
VAMPIRE as a more interesting option for industrial applications of first-order theorem
proving.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[ABB+16]

[AGS14]

[ALGC12]

[App9g]

[App04]

[AW13]

[BB13]

[BBC*19)

Bibliography

Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hahnle, Pe-
ter H Schmitt, and Mattias Ulbrich. Deductive software verification — The
KeY book. Lecture Notes in Computer Science, 10001, 2016.

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina. Booster: An
acceleration-based verification framework for array programs. In Proceed-
ings of the 12th International Symposium on Automated Technology for Ver-
ification and Analysis (ATWA 2014), volume 8837 of LNCS, pages 18-23.
Springer, 2014.

Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. Ufo: A
framework for abstraction-and interpolation-based software verification. In
Proceedings of the 24th International Conference on Computer Aided Veri-
fication (CAV 2012), volume 7358 of LNCS, pages 672-678. Springer, 2012.

Andrew W Appel. SSA is functional programming. ACM SIGPLAN No-
tices, 33(4):17-20, 1998.

Andrew W Appel. Modern compiler implementation in C. Cambridge Uni-
versity Press, 2004.

Noran Azmy and Christoph Weidenbach. Computing tiny clause normal
forms. In Proceedings of the 24th International Conference on Automated
Deduction (CADE 2013), volume 7898 of LNCS, pages 109-125. Springer,
2013.

Bernhard Beckert and Daniel Bruns. Dynamic logic with trace semantics. In
Proceedings of the 24th International Conference on Automated Deduction
(CADE 2013), pages 315-329. Springer, 2013.

John Backes, Sam Bayless, Byron Cook, Catherine Dodge, Andrew Gacek,
Alan J. Hu, Temesghen Kahsai, Bill Kocik, Evgenii Kotelnikov, Jure
Kukovec, Sean McLaughlin, Jason Reed, Neha Rungta, John Sizemore,
Mark Stalzer, Preethi Srinivasan, Pavle Suboti¢, Carsten Varming, and

127

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[BBDL*17]

[BBET09]

[BCD*11]

[BCK11]

[BCK13]

[BDG14]

[BDW18]

[BEGT19]

128

Blake Whaley. Reachability analysis for AWS-based networks. In Proceed-
ings of the 31st International Conference on Computer Aided Verification
(CAV 2019), volume 11562 of LNCS, pages 231-241. Springer, 2019.

Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cé-
dric Fournet, Chris Hawblitzel, Catalin Hritcu, Samin Ishtiaq, Markulf
Kohlweiss, K. Rustan M. Leino, Jay Lorch, et al. Everest: Towards a
verified, drop-in replacement of https. In Proceedings of the 2nd Summit
on Advances in Programming Languages (SNAPL 2017). Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 2017.

John Byrnes, Michael Buchanan, Michael Ernst, Philip Miller, Chris
Roberts, and Robert Keller. Visualizing proof search for theorem prover
development. In Proceedings of the 8th International Workshop on User In-
terfaces for Theorem Provers (UITP 2008), volume 226 of ENTCS, pages
23 — 38, 2009.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovié, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4.
In Proceedings of the 23rd International Conference on Computer Aided
Verification (CAV 2011), volume 6806 of LNCS, pages 171-177. Springer,
2011.

Gilles Barthe, Juan Manuel Crespo, and César Kunz. Relational verification
using product programs. In Proceedings of the 17th International Sympo-
sium on Formal Methods (FM 2011), volume 6664 of LNCS, pages 200-214.
Springer, 2011.

Gilles Barthe, Juan Manuel Crespo, and César Kunz. Beyond 2-safety:
Asymmetric product programs for relational program verification. In Pro-
ceedings of the International Symposium on Logical Foundations of Com-
puter Science (LFCS 2013), volume 7734 of LNCS, pages 29-43. Springer,
2013.

Musard Balliu, Mads Dam, and Roberto Guanciale. Automating informa-
tion flow analysis of low level code. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS 2014), pages
1080-1091. ACM, 2014.

Dirk Beyer, Matthias Dangl, and Philipp Wendler. A unifying view on SMT-
based software verification. Journal of Automated Reasoning, 60(3):299-
335, 2018.

Gilles Barthe, Renate Eilers, Pamina Georgiou, Bernhard Gleiss, Laura
Kovécs, and Matteo Maffei. Verifying relational properties using trace logic.
In Proceedings of the 19th International Conference on Formal Methods in
Computer-Aided Design (FMCAD 2019), pages 170-178. Springer, 2019.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[Ben04]

[Bey20]

[BFG*14]

[BFT16]

[BFT17]

[BGY4]

[BGOS)

[BGMLO1]

[BGMRI15]

[BLDM11]

[BLS04]

Nick Benton. Simple relational correctness proofs for static analyses and
program transformations. In Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL
2004), pages 14-25. ACM, 2004.

Dirk Beyer. Advances in automatic software verification: SV-COMP 2020.
In Proceedings of the 26th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2020), volume 12079
of LNCS, pages 347-367. Springer, 2020.

Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil
Swamy, and Santiago Zanella-Béguelin. Probabilistic relational verifica-
tion for cryptographic implementations. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL 2014), pages 193—205. ACM, 2014.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Mod-
ulo Theories Library (SMT-LIB). www.smt-1ib.org, 2016.

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB stan-
dard: Version 2.6. Technical report, Department of Computer Science, The
University of Iowa, 2017.

Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem
proving with selection and simplification. Journal of Logic and Computa-
tion, 4(3):217-247, 1994.

Leo Bachmair and Harald Ganzinger. Ordered chaining calculi for first-
order theories of transitive relations. Journal of the ACM, 45(6):1007-1049,
November 1998.

Leo Bachmair, Harald Ganzinger, David A. McAllester, and Christopher
Lynch. Resolution theorem proving. In Handbook of Automated Reasoning,
pages 19-99. Elsevier, 2001.

Nikolaj Bjgrner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Ry-
balchenko. Horn clause solvers for program verification. In Fields of Logic
and Computation II, volume 9300 of LNCS, pages 24-51. Springer, 2015.

Maria Paola Bonacina, Christopher A Lynch, and Leonardo De Moura.
On deciding satisfiability by theorem proving with speculative inferences.
Journal of Automated Reasoning, 47(2):161-189, 2011.

Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# pro-
gramming system: An overview. In Proceedings of the International Work-

shop on Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices (CASSIS 2004), volume 3362 of LNCS, pages 49—69. Springer, 2004.

129

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
www.smt-lib.org

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[BN99]

[BSO1]

[BT18]

[BU1S]

[CC92]

[CC14]

[CCL11]

[CDH*09)

[CEKT15]

[CFK*14]

130

Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
University Press, 1999.

Bernhard Beckert and Steffen Schlager. A sequent calculus for first-order
dynamic logic with trace modalities. In Proceedings of the 1st International
Joint Conference on Automated Reasoning, (IJCAR 2001), volume 2083 of
LNCS, pages 626—641. Springer, 2001.

Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Hand-
book of Model Checking, pages 305-343. Springer, 2018.

Bernhard Beckert and Mattias Ulbrich. Trends in relational program
verification. In Principled Software Development - Essays Dedicated to
Arnd Poetzsch-Heffter on the Occasion of his 60th Birthday, pages 41-58.
Springer, 2018.

Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511-547, 1992.

Patrick Cousot and Radhia Cousot. Abstract interpretation: Past, present
and future. In Proceedings of the Joint Meeting of the 23rd FACSL Con-
ference on Computer Science Logic (CSL 2014) and the 29th ACM/IEEE
Symposium on Logic in Computer Science (LICS 2014), pages 1-10. ACM,
2014.

P. Cousot, R. Cousot, and F. Logozzo. A parametric segmentation functor
for fully automatic and scalable array content analysis. In Proceedings of the
38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL 2011), pages 105-118. ACM, 2011.

Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michat
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A
practical system for verifying concurrent C. In Proceedings of the 22nd Inter-
national Conference on Theorem Proving in Higher Order Logics (TPHOLs
2009), volume 5674 of LNCS, pages 23—42. Springer, 2009.

Véronique Cortier, Fabienne Eigner, Steve Kremer, Matteo Maffei, and
Cyrille Wiedling. Type-based verification of electronic voting protocols. In
Proceedings of the 4th International Conference on Principles of Security
and Trust (POST 2015), volume 9036 of LNCS, pages 303-323. Springer,
2015.

Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K.
Micinski, Markus N. Rabe, and César Sanchez. Temporal logics for hyper-
properties. In Proceedings of the 3rd International Conference on Principles
of Security and Trust (POST 2014), volume 8414 of LNCS, pages 265-284.
Springer, 2014.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[CGLM17]

[CGLM18]

[CGU20]

[CIGK*+18]

[CLQRO7]

[Cool8]

[Crul7]

[CSS03]

[DDA10]

[DHK16]

Véronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei. A
type system for privacy properties. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS 2017), pages
409-423. ACM, 2017.

Veronique Cortier, Niklas Grimm, Joseph Lallemand, and Matteo Maffei.
Equivalence properties by typing in cryptographic branching protocols. In
Proceedings of the Tth International Conference on Principles of Security
and Trust (POST 2018), volume 10804 of LNCS, pages 160-187. Springer,
2018.

Supratik Chakraborty, Ashutosh Gupta, and Divyesh Unadkat. Verifying
array manipulating programs with full-program induction. In Proceedings
of the 26th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2020), volume 12079 of LNCS,
pages 22-39. Springer, 2020.

Edmund M Clarke Jr, Orna Grumberg, Daniel Kroening, Doron Peled, and
Helmut Veith. Model checking. MIT Press, 2018.

Shaunak Chatterjee, Shuvendu K Lahiri, Shaz Qadeer, and Zvonimir Raka-
marié¢. A reachability predicate for analyzing low-level software. In Pro-
ceedings of the 13th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2007), volume 4424 of
LNCS, pages 19-33. Springer, 2007.

Byron Cook. Formal reasoning about the security of amazon web services.
In Proceedings of the 30th International Conference on Computer Aided
Verification (CAV 2018), volume 10981 of LNCS, pages 38-47. Springer,
2018.

Simon Cruanes. Superposition with structural induction. In Proceedings
of the 11th International Symposium on Frontiers of Combining Systems
(FroCoS 2017), volume 10483 of LNCS, pages 172-188. Springer, 2017.

Michael A Colén, Sriram Sankaranarayanan, and Henny B Sipma. Linear
invariant generation using non-linear constraint solving. In Proceedings of
the 15th International Conference on Computer Aided Verification (CAV
20083), volume 2725 of LNCS, pages 420-432. Springer, 2003.

1. Dillig, T. Dillig, and A. Aiken. Fluid updates: Beyond strong vs. weak
updates. In Proceedings of the 19th FEuropean Symposium on Programming
(ESOP 2019), volume 6012 of LNCS, pages 246-266. Springer, 2010.

Przemystaw Daca, Thomas A. Henzinger, and Andrey Kupriyanov. Array
folds logic. In Proceedings of the 28th International Conference on Com-
puter Aided Verification (CAV 2016), volume 9780 of LNCS, pages 230-248.
Springer, 2016.

131

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[DHKR11]

[DK20]

[DKWO0S]

[DMBO7]

[DMBOS]

[DMNS06]

[EM13]

[FGK*14]

[FLL*02]

[FPMG19]

132

Alastair F Donaldson, Leopold Haller, Daniel Kroening, and Philipp Riim-
mer. Software verification using k-induction. In Proceedings of the 18th
International Symposium on Static Analysis (SAS 2011), volume 6887 of
LNCS, pages 351-368. Springer, 2011.

André Duarte and Konstantin Korovin. Implementing superposition in
iProver (system description). In Proceedings of the 10th International
Joint Conference on Automated Reasoning (IJCAR 2020), volume 12167
of LNCS, pages 388-397. Springer, 2020.

Vijay D’silva, Daniel Kroening, and Georg Weissenbacher. A survey of
automated techniques for formal software verification. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 27(7):1165—
1178, 2008.

Leonardo De Moura and Nikolaj Bjgrner. Efficient e-matching for SMT
solvers. In Proceedings of the 21st International Conference on Automated
Deduction (CADE 2007), volume 4603 of LNCS, pages 183-198. Springer,
2007.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2008), volume 4963 of LNCS, pages 337-340.
Springer, 2008.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Cali-
brating noise to sensitivity in private data analysis. In Proceedings of the
3rd Conference on Theory of Cryptography (TCC 2006), volume 3876 of
LNCS, pages 265-284. Springer, 2006.

Fabienne Eigner and Matteo Maffei. Differential privacy by typing in secu-
rity protocols. In Proceedings of the 26th Symposium on Computer Security
Foundations (CSF 2013), pages 272-286. IEEE, 2013.

Dennis Felsing, Sarah Grebing, Vladimir Klebanov, Philipp Rimmer, and
Mattias Ulbrich. Automating regression verification. In Proceedings of the
ACM/IEEE International Conference on Automated Software Engineering
(ASE 2014), pages 349-360. ACM, 2014.

Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson,
James B Saxe, and Raymie Stata. Extended static checking for Java. In
Proceedings of the ACM SIGPLAN 2002 Conference on Programming Lan-
guage Design and Implementation (PLDI 2002), pages 234-245. ACM, 2002.

Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar, and Aarti
Gupta. Quantified invariants via syntax-guided synthesis. In Proceedings

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

[FQO2]

[GGK20]

[GHM13]

[GHN*04]

[GKKV14]

[GKR1S8]

[GKR20]

[GKS17]

[GKS19]

of the 31st International Conference on Computer Aided Verification (CAV
2019), volume 11561 of LNCS, pages 259-277. Springer, 2019.

Cormac Flanagan and Shaz Qadeer. Predicate abstraction for software ver-
ification. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2002), pages 191-202.
ACM, 2002.

Pamina Georgiou, Bernhard Gleiss, and Laura Kovacs. Trace logic for
inductive loop reasoning. In Proceedings of the 20th Conference on Formal
Methods in Computer-Aided Design (FMCAD 2020), pages 255-263. TU
Wien Academic Press, 2020.

Jirgen Graf, Martin Hecker, and Martin Mohr. Using JOANA for informa-
tion flow control in Java programs - a practical guide. Software Engineering
2018 - Workshopband, 2013.

Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras,
and Cesare Tinelli. DPLL(T): Fast decision procedures. In Proceedings of
the 16th International Conference on Computer Aided Verification (CAV
2004), volume 3114 of LNCS, pages 175-188. Springer, 2004.

Ashutosh Gupta, Laura Kovéacs, Bernhard Kragl, and Andrei Voronkov.
Extensional crisis and proving identity. In Proceedings of the 12th Interna-
tional Symposium on Automated Technology for Verification and Analysis
(ATVA 2014), volume 8837 of LNCS, pages 185-200. Springer, 2014.

Bernhard Gleiss, Laura Kovacs, and Simon Robillard. Loop analysis by
quantification over iterations. In Proceedings of the 22nd International
Conference on Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR 2018), volume 57 of EPiC Series in Computing, pages 381-399.
EasyChair, 2018.

Bernhard Gleiss, Laura Kovéacs, and Jakob Rath. Subsumption demodula-
tion in first-order theorem proving. In Proceedings of the 10th International
Joint Conference on Automated Reasoning (IJCAR 2020), volume 12166 of
LNCS, pages 297-315. Springer, 2020.

Bernhard Gleiss, Laura Kovacs, and Martin Suda. Splitting proofs for inter-
polation. In Proceedings of the 26th International Conference on Automated
Deduction (CADE 2017), volume 10395 of LNCS, pages 291-309. Springer,
2017.

Bernhard Gleiss, Laura Kovéacs, and Lena Schnedlitz. Interactive visualiza-
tion of saturation attempts in Vampire. In Proceedings of the 15th Interna-
tional Conference on Integrated Formal Methods (IFM 2019), volume 11918
of LNCS, pages 504-513. Springer, 2019.

133

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[GMS2]

[GMF*18]

[GNOO]

[God31]

[GROY]

[GS]

[GS13]

[GS20]

[GSV18]

[HB12]

134

Joseph A. Goguen and José Meseguer. Security policies and security models.
In 1982 IEEE Symposium on Security and Privacy, pages 11-20. IEEE,
1982.

Niklas Grimm, Kenji Maillard, Cédric Fournet, Catalin Hritcu, Matteo Maf-
fei, Jonathan Protzenko, Tahina Ramananandro, Aseem Rastogi, Nikhil
Swamy, and Santiago Zanella-Béguelin. A monadic framework for rela-
tional verification: Applied to information security, program equivalence,
and optimizations. In Proceedings of the 7th ACM SIGPLAN International
Conference on Certified Programs and Proofs (CPP 2018), pages 130-145.
ACM, 2018.

Emden R. Gansner and Stephen C. North. An open graph visualization
system and its applications to software engineering. Software: Practice and
Ezperience, 30(11):1203-1233, 2000.

Kurt Godel. Uber formal unentscheidbare Sétze der Principia Mathemat-
ica und verwandter Systeme i. Monatshefte fir Mathematik und Physik,
38(1):173-198, 1931.

Ashutosh Gupta and Andrey Rybalchenko. InvGen: An efficient invariant
generator. In Proceedings of the 21st International Conference on Com-
puter Aided Verification (CAV 2009), volume 5643 of LNCS, pages 634—640.
Springer, 2009.

Bernhard Gleiss and Martin Suda. Layered clause selection for saturation-
based theorem proving. In Proceedings of the 7th Workshop on Practical
Aspects of Automated Reasoning (PAAR 2020). Accepted for Publication.

Benny Godlin and Ofer Strichman. Regression verification: Proving the
equivalence of similar programs. Software Testing, Verification and Relia-
bility, 23(3):241-258, 2013.

Bernhard Gleiss and Martin Suda. Layered clause selection for theory rea-
soning (short paper). In Proceedings of the 10th International Joint Con-
ference on Automated Reasoning (IJCAR 2020), volume 12166 of LNCS,
pages 402-409. Springer, 2020.

Arie Gurfinkel, Sharon Shoham, and Yakir Vizel. Quantifiers on demand. In
Proceedings of the 16th International Symposium on Automated Technology
for Verification and Analysis (ATVA 2018), volume 11138 of LNCS, pages
248-266. Springer, 2018.

Krystof Hoder and Nikolaj Bjgrner. Generalized property directed reacha-
bility. In Proceedings of the 15th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2012), volume 7317 of LNCS,
pages 157-171. Springer, 2012.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[HH19]

[Hoa69]

[HPWW13]

[HR18]

[HRSV16]

[HV11]

[Kam80]

[KB83]

[KFG20]

[KGC16]

[KHE17]

Reiner Héhnle and Marieke Huisman. Deductive software verification: from
pen-and-paper proofs to industrial tools. In Computing and Software Sci-
ence, pages 345—-373. Springer, 2019.

Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576-580, 1969.

Thomas Hillenbrand, Ruzica Piskac, Uwe Waldmann, and Christoph Wei-
denbach. From search to computation: Redundancy criteria and simpli-
fication at work. In Programming Logics: Essays in Memory of Harald
Ganzinger, volume 7797 of LNCS, pages 169-193. Springer, 2013.

Hossein Hojjat and Philipp Riimmer. The ELDARICA horn solver. In
Proceedings of the 18th International Conference on Formal Methods in
Computer-Aided Design (FMCAD 2018), pages 1-7. IEEE, 2018.

Krystof Hoder, Giles Reger, Martin Suda, and Andrei Voronkov. Selecting
the selection. In Proceedings of the 8th International Joint Conference on
Automated Reasoning (IJCAR 2016), volume 9706 of LNCS, pages 313-329.
Springer, 2016.

Krystof Hoder and Andrei Voronkov. Sine qua non for large theory rea-
soning. In Proceedings of the 23rd International Conference on Automated
Deduction (CADE 2011), volume 6803 of LNCS, pages 299-314. Springer,
2011.

Sam Kamin. Two generalizations of the recursive path ordering. Unpublished
manuscript, 1980.

D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras.
In Automation of Reasoning, pages 342-376. Springer, 1983.

Naoki Kobayashi, Grigory Fedyukovich, and Aarti Gupta. Fold/unfold
transformations for fixpoint logic. In Proceedings of the 26th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2020), volume 12079 of LNCS, pages 195-214. Springer,
2020.

Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. SMT-based model
checking for recursive programs. Formal Methods in System Design,
48(3):175-205, 2016.

Hyoukjun Kwon, William Harris, and Hadi Esmaeilzadeh. Proving flow
security of sequential logic via automatically-synthesized relational invari-
ants. In Proceedings of the 30th IEEE Symposium on Computer Security
Foundations (CSF 2017), pages 420-435. IEEE, 2017.

135

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[KKRV16]

[KKV18]

[KMV11]

[KRV17]

[KV09al

[KV09b)

[KV13]

[LHKR12]

[LMOY]

[Loc06al

136

Evgenii Kotelnikov, Laura Kovécs, Giles Reger, and Andrei Voronkov. The
Vampire and the FOOL. In Proceedings of the 5th ACM SIGPLAN Con-
ference on Certified Programs and Proofs (CPP 2016), pages 37-48. ACM,
2016.

Evgenii Kotelnikov, Laura Kovacs, and Andrei Voronkov. A FOOLish en-
coding of the next state relations of imperative programs. In Proceedings
of the 9th International Joint Conference on Automated Reasoning (IJCAR
2018), volume 10900 of LNCS, pages 405-421. Springer, 2018.

Laura Kovacs, Georg Moser, and Andrei Voronkov. On transfinite knuth-
bendix orders. In Proceedings of the 23rd International Conference on Au-
tomated Deduction (CADE 2011), volume 6803 of LNCS, pages 384-399.
Springer, 2011.

Laura Kovacs, Simon Robillard, and Andrei Voronkov. Coming to terms
with quantified reasoning. In Proceedings of the 44th ACM SIGPLAN Sym-
posium on Principles of Programming Languages (POPL 2017), pages 260—
270. ACM, 2017.

Laura Kovécs and Andrei Voronkov. Finding loop invariants for programs
over arrays using a theorem prover. In Proceedings of the 12th International
Conference on Fundamental Approaches to Software Engineering (FASE
2009), volume 5503 of LNCS, pages 470-485. Springer, 2009.

Laura Kovacs and Andrei Voronkov. Interpolation and symbol elimination.
In Proceedings of the 22nd International Conference on Automated Deduc-
tion (CADE 2009), volume 5663 of LNCS, pages 199-213. Springer, 2009.

Laura Kovécs and Andrei Voronkov. First-order theorem proving and Vam-
pire. In Proceedings of the 25th International Conference on Computer
Aided Verification (CAV 2013), volume 8044 of LNCS, pages 1-35. Springer,
2013.

Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Re-
bélo. SYMDIFF: A language-agnostic semantic Diff tool for imperative
programs. In Proceedings of the 24th International Conference on Com-
puter Aided Verification (CAV 2012), volume 7358 of LNCS, pages 712-717.
Springer, 2012.

K. Rustan M. Leino and Rosemary Monahan. Reasoning about compre-
hensions with first-order SMT solvers. In Proceedings of the 2009 ACM
Symposium on Applied Computing (SAC 2009), pages 615-622. ACM, 20009.

Bernd Lochner. Things to know when implementing KBO. Journal of
Automated Reasoning, 36(4):289-310, 2006.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[L&c06b)

[LRR14]

[Mos09]

[NN93]

[NOTO06]

[NRO1]

[NS16]

[OMW76]

[PG&6]

[Plo04]

[PY14]

Bernd Lochner. Things to know when implementing LPO. International
Journal on Artificial Intelligence Tools, 15(01):53-79, 2006.

Tomer Libal, Martin Riener, and Mikheil Rukhaia. Advanced proof viewing
in ProofTool. In 11th Workshop on User Interfaces for Theorem Provers
(UITP 2014), pages 35-47, 2014.

Michal Moskal. Programming with triggers. In Proceedings of the 7th In-
ternational Workshop on Satisfiability Modulo Theories (SMT 2009), pages
20-29. ACM, 2009.

Pilar Nivela and Robert Nieuwenhuis. Saturation of first-order (constrained)
clauses with the Saturate system. In Proceedings of the 12th International
Conference on Rewriting Techniques and Applications (RTA 2001), volume
2051 of LNCS, pages 436—440. Springer, 1993.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT modulo theories: From an abstract Davis—Putnam—-Logemann—
Loveland procedure to DPLL(T). Journal of the ACM, 53(6):937-977, 2006.

Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem
proving. In Handbook of Automated Reasoning, pages 371-443. Elsevier,
2001.

Kedar S. Namjoshi and Nimit Singhania. Loopy: Programmable and for-
mally verified loop transformations. In Proceedings of the 23rd International
Symposium on Static Analysis (SAS 2016), volume 9837 of LNCS, pages
383-402. Springer, 2016.

R Overbeek, J McCharen, and Larry Wos. Complexity and related enhance-
ments for automated theorem-proving programs. Computers & Mathematics
with Applications, 2(1):1-16, 1976.

David A. Plaisted and Steven Greenbaum. A structure-preserving clause
form translation. Journal of Symbolic Computation, 2(3):293-304, Septem-
ber 1986.

Gordon D. Plotkin. A structural approach to operational semantics. Journal
of Logic and Algebraic Programming, 60-61:17 — 139, 2004. Original version:
University of Aarhus Technical Report DAIMI FN-19, 1981.

Nimrod Partush and Eran Yahav. Abstract semantic differencing via spec-
ulative correlation. In Proceedings of the 2014 ACM International Confer-
ence on Object Oriented Programming Systems Languages € Applications
(OOPSLA 2014), pages 811-828. ACM, 2014.

137

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[RBF18]

[RBSV16]

[RES10]

[Rey16]

[RK15]

[RL17]

[Rot16]

[RR18]

[RS12]

[RS17]

[RSV15]

138

Andrew Reynolds, Haniel Barbosa, and Pascal Fontaine. Revisiting enumer-
ative instantiation. In Proceedings of the 24th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2018), pages 112-131. Springer, 2018.

Giles Reger, Nikolaj Bjorner, Martin Suda, and Andrei Voronkov. AVATAR
modulo theories. In Proceedings of the 2nd Global Conference on Artificial
Intelligence (GCAI 2016), volume 41 of EPiC Series in Computing, pages
39-52. EasyChair, 2016.

Grigore Rosu, Chucky Ellison, and Wolfram Schulte. Matching logic: An
alternative to Hoare/Floyd logic. In Proceedings of the 13th International
Conference on Algebraic Methodology and Software Technology (AMAST
2010), volume 6486 of LNCS, pages 142-162. Springer, 2010.

Andrew Reynolds. Conflicts, models and heuristics for quantifier instantia-
tion in SMT. In Proceedings of the 3rd Vampire Workshop (Vampire 2016),
EPiC Series in Computing, pages 1-15. EasyChair, 2016.

Andrew Reynolds and Viktor Kuncak. Induction for SMT solvers. In Pro-
ceedings of the 16th International Conference on Verification, Model Check-
ing, and Abstract Interpretation (VMCAI 2015), volume 8931 of LNCS,
pages 80-98. Springer, 2015.

Pritom Rajkhowa and Fangzhen Lin. VIAP - Automated system for veri-
fying integer assignment programs with loops. In Proceedings of the 19th
International Symposium on Symbolic and Numeric Algorithms for Scien-
tific Computing (SYNASC 2017), pages 137-144. IEEE, 2017.

Frederik Rothenberger. Integration and analysis of alternative SMT solvers
for software verification. Master’s thesis, ETH Zurich, 2016.

Giles Reger and Martin Riener. What is the point of an SMT-LIB problem?
In Proceedings of the 16th International Workshop on Satisfiability Modulo
Theories (SMT 2018), 2018.

Grigore Rosu and Andrei Stefanescu. Checking reachability using matching
logic. In Proceedings of the 2012 ACM International Conference on Ob-
ject Oriented Programming Systems Languages & Applications (OOPSLA
2012), pages 555-574. ACM, 2012.

Giles Reger and Martin Suda. Set of support for theory reasoning. In
Proceedings of the IWIL 2017 Workshop and LPAR-21 Short Presentations,
volume 1 of Kalpa Publications in Computing. EasyChair, 2017.

Giles Reger, Martin Suda, and Andrei Voronkov. Playing with AVATAR. In
Proceedings of the 25th International Conference on Automated Deduction
(CADE 2015), volume 9195 of LNCS, pages 399-415. Springer, 2015.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[RSV16]

[RSV1§]

[RTDM14]

[RVO1]

[RVO3]

[RV19]

[RWB+17]

[Sch02]

[Sch13]

[SCV19]

Giles Reger, Martin Suda, and Andrei Voronkov. New techniques in clausal
form generation. Proceedings of the 2nd Global Conference on Artificial
Intelligence (GCAI 2016), 41:11-23, 2016.

Giles Reger, Martin Suda, and Andrei Voronkov. Unification with abstrac-
tion and theory instantiation in saturation-based reasoning. In Proceedings
of the 24th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2018), volume 10805 of LNCS,
pages 3-22. Springer, 2018.

Andrew Reynolds, Cesare Tinelli, and Leonardo De Moura. Finding con-
flicting instances of quantified formulas in SMT. In Proceedings of the 14th
International Conference on Formal Methods in Computer-Aided Design
(FMCAD 2014), pages 195-202. IEEE, 2014.

Alexandre Riazanov and Andrei Voronkov. Splitting without backtrack-
ing. In Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI 2001), pages 611-617. Morgan Kaufmann, 2001.

Alexandre Riazanov and Andrei Voronkov. Limited resource strategy in
resolution theorem proving. Journal of Symbolic Computation, 36(1-2):101—
115, 2003.

Giles Reger and Andrei Voronkov. Induction in saturation-based proof
search. In Proceedings of the 27th International Conference on Automated
Deduction (CADE 2019), volume 11716 of LNCS, pages 477-494. Springer,
2019.

Andrew Reynolds, Maverick Woo, Clark W. Barrett, David Brumley, Tianyi
Liang, and Cesare Tinelli. Scaling up DPLL(T) string solvers using context-
dependent simplification. In Proceedings of the 29th International Confer-
ence on Computer Aided Verification (CAV 2017), volume 10427 of LNCS,
pages 453-474. Springer, 2017.

Stephan Schulz. E - a brainiac theorem prover. AI Communications, 15(2-
3):111-126, 2002.

Stephan Schulz. System description: E 1.8. In Proceedings of the 19th In-
ternational Conference on Logic for Programming Artificial Intelligence and
Reasoning (LPAR 2013), volume 8312 of LNCS, pages 735-743. Springer,
2013.

Stephan Schulz, Simon Cruanes, and Petar Vukmirovic. Faster, higher,
stronger: E 2.3. In Proceedings of the 27th International Conference on
Automated Deduction (CADE 2019), volume 11716 of LNCS, pages 495
507. Springer, 2019.

139

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[SDOS]

[SD16]

[SDLI18]

[Seb07]

[SG18]

[SHK*16]

[SMO3]

[SM16]

[SP+78]

[SRVO1]

[SSCA13]

140

Eric Whitman Smith and David L. Dill. Automatic formal verification
of block cipher implementations. In Proceedings of the 8th International
Conference on Formal Methods in Computer-Aided Design (FMCAD 2008),
pages 1-7. IEEE, 2008.

Marcelo Sousa and Isil Dillig. Cartesian Hoare logic for verifying k-safety
properties. In Proceedings of the 87th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI 2016), pages 57—69.
ACM, 2016.

Marcelo Sousa, Isil Dillig, and Shuvendu K. Lahiri. Verified three-way
program merge. Proceedings of the ACM on Programming Languages,
2(OOPSLA):165:1-165:29, 2018.

Roberto Sebastiani. Lazy satisfiability modulo theories. Journal on Satis-
fiability, Boolean Modeling and Computation, 3(3-4):141-224, 2007.

Martin Suda and Bernhard Gleiss. Local soundness for QBF calculi. In
Proceedings of the 21st International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2018), volume 10929 of LNCS, pages
217-234. Springer, 2018.

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine
Delignat-Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet,
Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and San-
tiago Zanella Béguelin. Dependent types and multi-monadic effects in F*. In
Proceedings of the 43th ACM-SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 2016), pages 256-270. ACM, 2016.

Andrei Sabelfeld and Andrew C Myers. Language-based information-flow
security. IEEE Journal on selected areas in communications, 21(1):5-19,
2003.

Stephan Schulz and Martin Mohrmann. Performance of clause selection
heuristics for saturation-based theorem proving. In Proceedings of the Sth
International Joint Conference on Automated Reasoning (IJCAR 2016),
volume 9706 of LNCS, pages 330-345. Springer, 2016.

Micha Sharir, Amir Pnueli, et al. Two approaches to interprocedural data
flow analysis. New York University. Institute of Mathematical Sciences,
1978.

R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov. Term indexing. In
Handbook of Automated Reasoning, pages 1853-1964. Elsevier, 2001.

Rahul Sharma, Eric Schkufza, Berkeley R. Churchill, and Alex Aiken. Data-
driven equivalence checking. In Proceedings of the 2013 ACM SIGPLAN

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[SST14]

[STL11]

[Sud20]

[Sut07]

[Sut16]

[Sutl7]

[Tan18§]
[Vor01]

[Vorl4]

[WCD*19]

[WDF+09]

International Conference on Object Oriented Programming Systems Lan-
guages & Applications, (OOPSLA 2013), pages 391-406. ACM, 2013.

Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: A cross-
community infrastructure for logic solving. In Proceedings of the 7th Inter-
national Joint Conference on Automated Reasoning (IJCAR 201/), volume
6806 of LNCS, pages 367-373. Springer, 2014.

Michael Stepp, Ross Tate, and Sorin Lerner. Equality-based translation
validator for LLVM. In Proceedings of the 23rd International Conference
on Computer Aided Verification (CAV 2011), volume 6806 of LNCS, pages
737-742. Springer, 2011.

Martin Suda. Aiming for the goal with SInE. In Proceedings of the 5th and
6th Vampire Workshops (Vampire 2018 and Vampire 2019), volume 71 of
EPiC Series in Computing, pages 38—44. EasyChair, 2020.

Geoff Sutcliffe. TPTP, TSTP, CASC, etc. In Proceedings of the 2nd Inter-
national Symposium on Computer Science in Russia (CSR 2007), volume
4649 of LNCS, pages 367-373. Springer, 2007.

Geoff Sutcliffe. The CADE ATP system competition - CASC. Al Magazine,
37(2):99-101, 2016.

Geoff Sutcliffe. The TPTP problem library and associated infrastruc-
ture. from CNF to THO, TPTP v6.4.0. Journal of Automated Reasoning,
59(4):483-502, Feb 2017.

Ole Tange. GNU Parallel 2018. Ole Tange, March 2018.

Andrei Voronkov. Algorithms, datastructures, and other issues in efficient
automated deduction. In Proceedings of the 1st International Joint Confer-
ence on Automated Reasoning (IJCAR 2001), volume 2083 of LNCS, pages
13-28. Springer, 2001.

Andrei Voronkov. AVATAR: The architecture for first-order theorem
provers. In Proceedings of the 16th International Conference on Com-
puter Aided Verification (CAV 2014), volume 8559 of LNCS, pages 696-710.
Springer, 2014.

Tjark Weber, Sylvain Conchon, David Déharbe, Matthias Heizmann, Aina
Niemetz, and Giles Reger. The SMT competition 2015-2018. Journal on
Satisfiability, Boolean Modeling and Computation, 11(1):221-259, 2019.

Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,
Martin Suda, and Patrick Wischnewski. SPASS version 3.5. In Proceed-
ings of the 22nd International Conference on Automated Deduction (CADE
2009), volume 5663 of LNCS, pages 140-145. Springer, 2009.

141

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[WeiO1]

[WG12]

[WHH14]

[WRC65]

[WTRB20]

[WWOS]

[ZHH17]

142

Christoph Weidenbach. Combining superposition, sorts and splitting. In
Handbook of Automated Reasoning, pages 1965-2013. Elsevier, 2001.

William M Waite and Gerhard Goos. Compiler construction. Springer,
2012.

Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. DRAT-trim:
Efficient checking and trimming using expressive clausal proofs. In Pro-
ceedings of the 17th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2014), volume 8561 of LNCS, pages 422-429.
Springer, 2014.

Lawrence Wos, George A Robinson, and Daniel F Carson. Efficiency and
completeness of the set of support strategy in theorem proving. Journal of
the ACM, 12(4):536-541, 1965.

Uwe Waldmann, Sophie Tourret, Simon Robillard, and Jasmin Blanchette.
A comprehensive framework for saturation theorem proving. In Proceed-
ings of the 10th International Joint Conference on Automated Reasoning
(IJCAR 2020), volume 12166 of LNCS, pages 316-334. Springer, 2020.

Christoph Weidenbach and Patrick Wischnewski. Contextual rewriting in
SPASS. In Proceedings of the 1st International Workshop on Practical As-
pects of Automated Reasoning (PAAR 2008), 2008.

Qi Zhou, David Heath, and William Harris. Completely automated equiv-
alence proofs. CoRR, abs/1705.03110, 2017.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Abstract
	Kurzfassung
	Introduction
	Motivation and Background
	Contributions
	Publications
	Outline

	Trace Logic and Semantics
	Preliminaries
	Trace Logic
	Small-step Operational Semantics
	Axiomatic Semantics
	Soundness of Axiomatic Semantics
	Completeness of Axiomatic Semantics
	Related Work

	Software Verification using Trace Logic
	Key Ideas
	A Verification Framework Based on Trace Logic
	A Correctness Proof for the Running Example
	Related Work

	Relational Trace Logic
	Extending Trace Logic to Multiple Traces
	Security Properties in Relational Trace Logic
	Related Work

	Reasoning in Trace Logic using Vampire
	Background on Saturation-Based Theorem Proving
	Design of Vampire
	Tuning Vampire to Trace Logic with Existing Options

	Layered Clause Selection for Saturation-based Theorem Proving
	Layered Clause Selection using Split Heuristics
	Feature: Amount of Theory Reasoning
	Feature: Positive Literals
	Feature: SInE-Levels
	Feature: AVATAR-Splits
	Experiments

	Subsumption Demodulation in Superposition-based Theorem Proving
	Introduction
	Subsumption Demodulation
	Subsumption Demodulation in Vampire
	Experiments
	Related Work

	Interactive Visualization of Saturation Attempts in Vampire
	Introduction
	Analysis of Saturation Attempts of Vampire
	Implementation of SatVis 1.0
	Related Work

	Experiments
	Benchmarks
	The Tool Rapid
	A Custom Version of Vampire
	Experimental Evaluation

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

