Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

TECHNISCHE

UNIVERSITAT
WIEN

Diploma Thesis

A Neural Network Approach for
Differential Equations in Biomedical
Applications

Submitted in satisfaction of the requirements for the degree of
Diplom-Ingenieur (equivalent Master of Science)

of TU Wien, Institute of Analysis and Scientific Computing

submitted by
Marcel Ploner BSc

supervised by
Senior Scientist Dipl.-Ing. Dipl.-Ing. Dr.techn. Andreas Korner BSc
Projektass. Dipl.-Ing. Dr.techn. Stefanie Winkler BSc

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

ii

Affidavits

I declare in lieu of oath, that I wrote this thesis entitled "A Neural Network Approach
for Differential Equations in Biomedical Applications" and performed the associated
research myself, using only literature cited in this volume. If text passages from sources
are used literally, they are marked as such.

I confirm that this work is original and has not been submitted elsewhere for any ex-

amination, nor is it currently under consideration for a thesis elsewhere.

,/é;/!/ /%IJZ? (

Vienna, 12.12.2020 Signature

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

il

Acknowledgment

First of all, I would like to express my gratitude to my supervisors Dr. Stefanie Winkler
and Dr. Andreas Koérner. Thank you for your patience, your helpful suggestions and

the constructive feedback I received from you during the process of writing this thesis.

My deepest appreciation goes to the most important people in my life - my family.
To my parents: You have always made me feel, that I can do anything and this thesis
and graduation is one of the results of that. Thank you for filling our home with joy
and laughter and thank you for your unconditional love and support.

To my siblings: Without you and growing up with you, I would not be the person I
have become. Your opinions, your input and your support are very important to me.

The three of us will always go our path together.

Furthermore, I would like to express my gratitude to my friends. To those, I have
found during my time at university, and to those, who have been with me for a long
time.

So many of you had always listened to me and accompanied me emotionally in my
study time. In particular, I would like to thank my fellow students of mathematics. I

would not have been able to get my degree without you and your help.

The time at university has been quite demanding sometimes, but you all made it

a wonderful time and a memory, I will gladly remember. Thank youl!

Marcel Ploner

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

iv

Zusammenfassung

In den unterschiedlichsten wissenschaftlichen Disziplinen, wie Naturwissenschaften,
Wirtschaft oder im Big Data Bereich, werden kiinstliche neurale Netzwerke vielseitig
eingesetzt. Von der Bild- und Spracherkennung, iiber Wettervorhersagen, bis hin zu
Wirtschaftsmodellen spielen die durch Neuronen inspirierten Netzwerke eine wichtige
Rolle. Diese Arbeit widmet sich der numerischen Losung von gewohnlichen Differential-

gleichungen durch kiinstliche neuronale Netzwerke.

Nach einer allgemeinen Einfithrung beschéaftigt sich der erste Teil dieser Arbeit mit
der Minimierung der Kostenfunktion des jeweiligen neuronalen Netzwerkes. Zu diesem
Zweck werden die Iterationsschritte, Trainingsschritte und Aktivierungsfunktionen des
Netzwerkes variiert und verglichen. Weiters wird der Approximationsfehler von ana-
lytisch l6sbaren Differentialgleichungen ermittelt, wobei nicht nur das Trainingsintervall
betrachtet wird, sondern auch eine numerische Approximation der Losung auflerhalb
dieses getroffen wird.

Im zweiten Teil werden unterschiedliche Differentialgleichungen betrachtet und mit
anderen numerischen Verfahren verglichen. Dabei dient der Fehler zur jeweiligen ana-

lytischen Losung als Referenz fiir die Qualitédt der Approximation.

Ein Schwerpunkt in dieser Arbeit wird auf Anwendungsbeispiele in der Biomedizin
gesetzt. Die Bateman-Funktion wird durch die zuvor analysierten neuronalen Netz-
werke approximiert. Sie beschreibt das Verhaltnis zwischen der Arzneimittelkonzen-
tration im Blutplasma nach Einnahme mit der Zeit, wobei gewohnliche Differential-
gleichungen erster Ordnung und ein Kompartmentmodell zur Herleitung dienen. Ein
weiteres Beispiel einer Differentialgleichung ist durch das logistische Tumorwachstum
gegeben.

Weiters wird mit Hilfe der Schwingungsgleichung der Blutdruck wéhrend einer Herz-
muskelkontraktion innerhalb einer Sekunde naherungsweise dargestellt. Diese Schwin-
gungsdifferentialgleichung wird ebenfalls mit Losungen der neuronalen Netzwerke ver-

glichen.

Abschlieflend werden die verwendeten Methoden analysiert und Schlussfolgerung gezo-

gen. Denen anschlieend folgt ein Ausblick auf mogliche weitere Ansétze.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Abstract

Artificial neural networks are state of the art and used in a broad variety of scientific
disciplines, such as natural sciences, economics or in the field of big data. From image
and speech recognition to weather forecasts and economic models, networks inspired
by neurons have a significant impact. This thesis focuses on the numerical solution of

differential equations using artificial neural networks.

Following a general introduction, the first part of this thesis deals with the cost func-
tion of the respective neural network, which has to be minimized. For this purpose,
the iteration steps, training steps and activation functions of the network are varied
and compared. Furthermore, the approximation errors of analytically solvable differ-
ential equations are determined, considering not only the training interval, but also a
numerical approximation of the solution is made outside of the interval.

In the second part, different differential equations are studied and compared with other
numerical methods. The error to the respective analytical solution is used as a refer-

ence for the approximation capability.

A focus is given on applications in biomedical sciences and their numerical solutions.
The Bateman function describes the relation between the concentration of a drug in the
blood plasma after administration with time, using ordinary differential equations of
first order and a compartment model for deduction. Another example for a differential
equation is given by the logistic tumor growth.

Furthermore, the harmonic oscillation is used to approximate the blood pressure dur-
ing a heart muscle contraction within one second. This oscillation differential equation

is also compared with neural network solutions.

Finally, the used methods are analysed and conclusions are made, following an outlook

to further possible approaches.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Page

(1__Introductionl 1
(1.1 Modeling and Simulation|. 1
(1.2 Overview of Difterential Equations] 2
(L3 Numerical Solutionsl. L o 4
[2__The Architecture of a Neural Network| 6
2.1 Biological Neural Networkl 6
2.2 Artificial Neural Networksl 7
[2.2.1 Structure and Layers| 7

[2.2.2 Neurons, Weights and Biases|. 8

2.2.3 Activation Functionl.o 10

[2.3 Learning Algorithm|. L. 11
2.3.1 Cost Functionl 11

2.3.2 Gradient Descentl o oo 12

[2.3.3 Backpropagation|o 13

2.3.4 ADAM Algorithm|. 15

(2.4 Limitations of Artificial Neural Networks 16
(2.5 Universal Approximation Theorem| 17
2.6 Neural Network Structures tor Ordinary Difterential Equationg 19

[3 Case Study as Proof of Concept| 22
[3.1 Neural Network Approximation of |

| First Order Ordinary Diftferential Equations| 22
[3.1.1 Approximation of Elementary Functions 22

[3.1.2 lteration Steps| 25

[3.1.3 Dataset Sizel 26

[3.1.4 Selected Problems and Numerical Comparisons| 27

[3.2 Neural Network Approximation of |

| Second Order Ordinary Differential kquations| 35
[3.2.1 Approximation of Elementary Functions 35

[3.2.2 Iteration Steps| 37

[3.2.3 Dataset Sizel 38

[3.2.4 Selected Problems and Numerical Comparisons| 39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

vii

Contents

47

[4 Applications in Biomedicine|

47
51

26

[4.3 Logistic Tumor Growth|.

59

62

[Cist of Figures|

64

65

67
67
71
72
76
79
83

. ODE2-NN
- TE2-NN

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1 Introduction 1

1 Introduction

Many mathematical models based on ordinary and partial differential equations or sys-
tems of differential equations are applicable in biomedical engineering, see [I]. Such
models describe the relationship between biological, chemical and physical parameters
of biomedical systems and provide a setting for the analysis and interpretation of ex-
perimental data.

In many cases differential equations and thus the models cannot be solved analytically
and have to be approximated numerically. In this thesis an approximation approach

using neural networks is presented.

The use of state-of-the-art technologies such as artificial neural networks is being em-
ployed in an increasing number of applications since the development of artificial in-
telligence, see [2]. Inspired by the biological nervous system, artificial neural networks
can be used to solve biomedical application problems as well as problems from various
fields such as statistics, technology or economics in a computer-based way.

One particular application of neural networks is the approximation of solutions of dif-
ferential equations using a trial solution according to Lagaris et al. [3]. The work shows
the error behaviour of this trial solution on the basis of various differential equations

with respect to their respective analytical solution.

1.1 Modeling and Simulation

This section is based on [4] and [5]. Simulation has become crucial for dealing with
complex systems. Methods for modeling and simulation have been developed since
the 1920s. Starting from the first analog simulations, where only few engineers had
access to the technology, the field of modeling and simulation has grown tremendously
over the last 100 years. Major changes took place at the time when computers were
available and more engineers had access to simulation techniques. Another major step
was the replacement of analog machines by digital computers in the 60s and further,
when personal computers and computer graphics became generally available in the
90s.

The first simulators were analog, where a system of ordinary differential equations
was modeled and simulated by integrators and function generation. Nowadays, the
simulation of differential equations is still an important issue, and due to the many
possibilities, every engineer is enabled to use a preferred simulation software.

In order to facilitate the reuse of modeling knowledge, recent approaches are based
on non-causal modeling with mathematical equations and the usage of object-oriented

constructs.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1 Introduction 2

In general, a model is the simplified representation of a complex system. It is used
to represent the major properties of a system, expressing the interactions between the
system variables and the environment. A model can be used to predict the behavior
of a system in various conditions and to compare it with further measurements, which
can improve the model. This process is called validation of the model.

In general, a distinction between static and dynamic models is made. A static model
describes a state of the system at a certain point in time and a dynamic model de-
scribes the overall system behavior and the development of the system. Furthermore,
models can be distinguished according to the parameters time or space. Time contin-
uous models enable to calculate the state of a system at any point in time and are
described by differential equations. Discrete-time models are used when data can just
be obtained at certain points in time. Models that additionally include the behavior
in a continuous space are called spatially continuous models and are based on partial
differential equations.

The last type are stochastic models, which are used since not all processes are pre-

dictable. The models are based on probabilities.

The system parameters indicate the applicable model, whereby different models can
be used for the same problem. Often it is more efficient to solve a problem numerically

instead of analytically.

1.2 Overview of Differential Equations

A differential equation is an equation involving either ordinary or partial derivatives of a
function. They arise whenever it is more feasible to describe change instead of absolute
amounts. Several types of differential equations can be distinguished. Depending on
their type, the approach to a solution varies.

An ordinary differential equation (ODE) is a differential equation where the function

and its derivatives depend only on one variable. Its implicit form is given by

F (90,60, 9"(8), ... y™ (1)) = 0. (1.1)

In a partial differential equation (PDE) the considered function depends on various
variables and the differential equation includes different kinds of partial derivatives.
The implicit form of a partial differential equation for a function y depending on two

variables x and t is given as

oy(x,t) Oy(xz,t) Py(x,t
f <x7t7y(x7t)7 éx)7 (8t)7 a‘iat >7"' = 0' (1'2)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1 Introduction 3

An ordinary differential equation is linear if it can be written as
an()y™ () + ana By V(@) + o+ a(DY' () +ao(D)y(t) =b(t). (1.3)

The highest derivative, denoted in the exponents of equation ((1.3)), defines the order of
a differential equation. Considering b(¢) = 0, the linear differential equation is called
homogeneous. The linear differential equation has constant coefficients, if the functions

an(t), an_1(t), ... ,a1(t),ao(t) are constant.

Differential equations can be represented in a system of differential equations. It in-
volves differential equations in which multiple functions and their derivatives appear.
An example of a homogeneous system of linear differential equations with constant

coeflicients is

ay, (t) + bys(t), (1.4)
Yo(t) = cyr(t) + dya(2). (1.5)

<
—
Yy
~
N—
|

Furthermore, a differential equation of higher order can be converted into a system of

first order differential equations.

Depending on the type of equation, there are different approaches for solving dif-
ferential equations. If an analytical solution exists, it does not have to be unique. A
solution is specified by initial conditions or boundary conditions. An example of an

initial value problem of a first order differential equation is

{ ft @),y (1) =0, (1.6)

y(to) = Yo-

The initial value g, is the function value at ¢y, which can be any point in the domain.
In contrast, the boundary value problem is based on values given at the boundary of
the domain, and a solution to the differential equation fulfilling these boundary values
is calculated. A second order differential equation with Dirichlet boundary conditions,

for example, can be given as follows:

{f(t,y(t),y’(t)ay”(t) =0, te(ab), (1.7)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1 Introduction 4

1.3 Numerical Solutions

This chapter deals with differential equations and their solutions. The most important
definitions of differential equations are summarized in a brief overview, based on [6].
Furthermore, based on [3] and [7], the solution of differential equations by neural net-

works is discussed.

Numerical methods are used when it is not possible to solve a differential equation
analytically, or when the computational effort would be too high. This is especially
true for higher order or nonlinear differential equations. In general, the numerical so-
lution of a function can be seen as a list of points. The connection of these points
represents the approximation of the function.

Many different numerical methods for solving initial value problems have been estab-
lished [3], whereby a distinction between single-step methods and multi-step methods
can be made. Single-step methods use the current point to calculate the next point,

whereas multi-step methods additionally include several previous iteration steps.

A simple example of a one-step method is the so-called forward Euler method. Starting
at Po(xo,yo), an interval is discretized into n steps by step-size h. Along the tangent

at Py, the new point Pj(xy,%;) is determined applying
Yn = Yn—1 + hf(xnflaynfl) n e N: (18)

where z,, = xo+nh. The value f(z,_1,y,_1) represents the slope of the tangent at P,.
This procedure is repeated for each discretization point.

A spline is induced, which approximates the solution as polygon. The smaller the step
size n, the more precise the method, which results in high computational effort, see [§].
Figure [I.T]illustrates four steps of the Euler algorithm, whereby the blue line is the an-
alytical solution of a differential equation and the red line represents the spline, which

approximates the solution function.

! (@)

f2 ® - m - - A

f1 (S
fo - - - -—-——=

1

1

1

1

1

1

1

1

1

1

1
Py
o

T

I

I

|

|

1

1
Py
o

T

T

1

1

1

1
Py
@

T

o
=
(V)

Figure 1.1: Iterative calculation of function values for the solution of first order ordinary
differential equations with the explicit Euler method, see [9]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

1 Introduction)

One-step methods use one point to calculate the next one, but then all previous in-
formation is discarded before taking another step. Multi-step methods keep the infor-
mation from previous steps. Thus, multistep methods use several previous points and
their derivatives. Linear multi-step methods use a linear combination of the previous

points and their derivatives, see [10].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2 The Architecture of a Neural Network 6

2 The Architecture of a Neural Network

This chapter provides an overview of the structure and functionality of an artificial neu-
ral network, starting with the explanation of a biological neuron serving as inspiration

for building intelligent machines.

2.1 Biological Neural Network

A nerve cell or neuron is a specific type of cell in the human body that is responsible
for receiving, processing and forwarding information. Just the human brain includes
around 100 billion neurons. The setup of a nerve cell is given in figure 2.1, where
three important structures, namely the cell body (soma), dendrites and the axon are
recognizable [11].

The cell body, or soma, acts as the central unit and contains the typical organelles every
body cell has, like the nucleus or mitochondria. Many branches known as dendrites
are connected to the soma. These dendrites absorb body stimuli through the branch
system and pass them on to the cell body of the nerve cell. These stimuli are added
up in the axon hillock and if this summation exceeds a certain threshold an action
potential is provoked, and the impulse is transmitted through the axon to the next
neuron. In this way, a stimulus is transferred from one neuron to another. The same
behaviour can be found analogously in artificial neural networks, as discussed in the

next chapter.

Ceall body (soma;)

CONDUCTION \\)
ZONE Axon r
|

|

Collateral axon

b o

1Y

AN
OUTPUT ! S
ZONE 4 ; Synaptic knobs

Figure 2.1: Schematic structure of a biological neuron, see [11]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2 The Architecture of a Neural Network 7

2.2 Artificial Neural Networks

Deep learning deals with machines "learning" on its own, where artificial neural net-
works represent the intelligence of the computer. Therefore the algorithm in the human
brain is used as inspiration with neurons describing the basis of the network. In this
case, they are comparable with the soma as the central unit, illustrated as a circle in
figure[2.2] As depicted, the neuron receives a finite number of inputs, which represents
the dendrites providing information to the cell body, as described in section 2.1, The
single output arrow is the analogue to the axon, where collected and processed infor-

mation is passed on to another neuron or represents the output in general.

Xy

X2

Ay

Figure 2.2: Simple structure of an artificial neuron

For further explanations, the exact structure of neural networks are briefly discussed

in the following sections and are based on the book of Michael A. Nielsen [12].

2.2.1 Structure and Layers

There are two different kinds of neural networks that are distinguishable. On the one
hand there is the feedforward neural network structure, exemplarily shown in figure
2.3l The design of this network is straightforward, which means that the output from
a previous layer operates as an input for the next layer. Figure illustrates three
layers, the input layer on the left composed of the input neurons, the output layer on
the right consisting of output neurons and the hidden layers in between. The input
and output layer are mandatory, while the hidden ones are variable in number and
quantity of neurons.

On the other hand there is the so called recurrent neural network. This kind of network
enables loops, where the neuron input can depend on its own output or other sources

of inputs. In this thesis only feedforward neural networks are considered.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2 The Architecture of a Neural Network 8

INPUT HIDDEN OUTPUT

Figure 2.3: Illustration of a feedforward neural network with 3 layers

2.2.2 Neurons, Weights and Biases

Figure illustrates the structure of a network with n inputs and one output. In
specific, these inputs are the values of the input neurons x4, ..., x, € R and are weighted

by factors wy, ...,w, € R called weights, given as

where ¢ = 1, ..., n is the number of inputs.
As mentioned above, a neurons purpose is gathering and processing information from

all inputs, which means calculating the weighted sum given as
z=) wiw; = waz. (2.2)
i=1

In this simple case, the weights and inputs can be expressed as vectors

(%1 X1

Wa T2
w=| | and z =

W, Tn

Since a network usually has more than one neuron, the weights are represented by

a matrix, while each index describes the weight from one neuron to a neuron in the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2 The Architecture of a Neural Network 9

following layer. The inputs can be still written as vector

T
w1 .- Win
T2
w = and x = ,
Wg1 .- Wgn
:L‘n

while k£ and n represent the number of neurons in the second and first layer.
The output is the value of the vector-matrix-multiplication, which acts either as input

for the next layer or as final output.

Bias units are additional neurons which receive no inputs and represent a certain
threshold value. If the weighted sum of the inputs is greater than this threshold, a
neuron is activated. The bias units are only used in the hidden and output layers.

Figure [2.4) represents a bias unit of value 1.

X5

Xn

Figure 2.4: Schematic diagram showing a simple neuron influenced by a bias unit

This means the overall input of a neuron in the hidden or output layer can be written

as
2z = wx + b, (2.3)

where b = (by, ..., b,)" is the bias vector.

The structure of formula (2.3) reminds of the general linear equation, where w acts as
slope and b as intercept. So, the bias unit ensures more flexibility to the model, since
the values would otherwise only pass through the origin. Thus, the bias can adapt a

model to the given data.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2 The Architecture of a Neural Network 10

2.2.3 Activation Function

Up to now, the summation process of the inputs of a neuron has been described in
equation . This value depends on inputs x, weights w and the bias 0. But if
another output is desired, the input parameters have to be changed. Since small
changes in the input can lead to big changes in the output, the weighted sum has to

be passed on to a so-called activation function f, given as
output = f (wz +b). (2.4)

Then, the output range is bounded by the function.

The most common activation functions are shown in figure 2.5l Apart from identity
function the simplest is the linear function, where the output is a factor of the input.
Since biological neurons only provoke an action potential if the excitation exceeds a
certain threshold value, the so-called Heaviside function is a better alternative than
the linear function. Although it would be biologically more correct, it is not relevant
for the artificial sector, because only two states are possible.

Two very important and commonly used activation functions are the sigmoid function,

defined by

1
= 2.5
f@) =g 25
and the hyperbolic tangent given by
e*r — 1
tanh(r) = ——. 2.6
anh(e) = S (26)

These are two restricted functions, which have a value of almost 1 for very large positive
inputs and values close to 0 and —1 respectively, for very negative inputs. All values
in between are paired with exactly one element of the target set of these differentiable
functions.

Another alternative of the activation function is using the rectifier, whereby a unit
employing the rectifier is called “rectified linear unit” (ReLU). It is defined as the

positive part of its argument, so
f(z) = max(0, x) (2.7)
and its used in deep neural networks. Furthermore, there are also modifications, such

as “Leaky ReLLU” defined by

T x>0,
ﬂ@:{QMxng (28)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2 The Architecture of a Neural Network 11

Linear Heaviside Sigmoid
2.0 104 — —— 1.0

0.8 4 0.8
1.5
0.6 4 0.6
1.0 4
0.4 4 0.4

0.5
0.2 0.2 1

0.0 4 0.0 — 0.0 §
0o 05 10 15 20 A =3 0 3 4 a 2 0 2 2
Hyperbolic Tangent RelU Leaky RelU
1.0 4 2.0+ 2.0+

0.5 154 154

0.0 104 109

0.5 4
~0.5 4 0.5

0.0 4

~1.0 4 0.0
T T T T T T

|
ES
|
]
o
]
EN
|
8]
14
=
o
[
N
|
]
|
-
o
=
]

Figure 2.5: Illustration of different activation functions

2.3 Learning Algorithm

So far, the architecture of an artificial neural network has been described, but not its
functionality. Like the human brain, a neural network is able to learn. In this sense,
learning means changing the parameters of a network, namely w and b, so that the
output is as close as possible to the desired value. In order to do that, so-called training

sets are fed into the network. Training sets are input values where the output is known.

In the first step, the parameters of the network are set randomly. Input data from
a training set are fed into this randomly parameterized network and resulting in a
certain output value. This value is compared to the known setpoint and the network
parameters are changed accordingly. This process is repeated until convergence occurs
or the process is stopped. This learning process is described in more detail in the

following sections.

2.3.1 Cost Function

L and

To make a comparison between the output of the neural network, defined as a
the actual value described as y, the error between these two is taken into account.
This error can be described quantitatively using a so-called cost function. Several cost
functions are found in literature, but the most common is the quadratic cost function

or mean squared error (MSE), defined as

2

: (2.9)

yi(z) — a’iL

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2 The Architecture of a Neural Network 12

where n is the number of inputs x. If the output of the neural network is a good
approximation of the desired output, the value of y(x) — al is close to 0 and the cost
function is minimal. Thus, the cost function can be minimized by an appropriate choice
of weights and biases. This is done using different algorithms, such as Gradient Descent
or Adaptive Moment Estimation (ADAM).

2.3.2 Gradient Descent

If a function is described by just a few parameters, the minimum of it can be found
explicitly, but that is not always feasible for really complicated functions. The previous
defined cost function depends on the weights and biases of the neural network.
So, finding where the MSE achieves its local minimum, or even the global one, is the

goal but can not be always done easily.

Gradient descent is an algorithm to find a set of weights and biases which minimizes the
cost function. It is a flexible technique based on the gradient of a partial differentiable
function C': U — R, U C R" at point x € U defined as

(2.10)

grad C(z) = VC/(z) = (8(7(31:) aC(fc)) .

oxy =7 Oz,

The gradient describes the partial derivatives at point x, hence the direction of the
steepest ascent. Taking the negative of that gradient gives the greatest descent. Start-
ing from any input point, the aim of the algorithm is to find a local minimum going
along the gradient of the function. This is shown schematically for a function with 2
variables in figure 2.6, Thus, the gradient is calculated at a random point z, a small
step is taken in the direction of the steepest descent and this process is repeated until

a minimum is reached.

Taking a small step means to subtract the value of the calculated gradient of the

cost function VC'(x) at x following
=z —nVC(z), (2.11)
where 2’ will be the new starting point and 7 is the so-called learning rate [13].

The learning rate is a very important hyperparameter, which controls the sensitiv-
ity of a model with respect to the learning process. By choosing the rate too small, the
learning algorithm is very slow and needs much computational capacity. Nevertheless,
the learning rate can not be too large either, since it would result in an suboptimal

selection of the weights and biases.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

2 The Architecture of a Neural Network 13

Figure 2.6: Illustration of the Gradient Descent algorithm, see [14]

The aim of the gradient descent algorithm is to converge towards some minimum of the
cost function. Whether this minimum is the global minimum of the function depends

on the random initiated inputs. Often only a local minimum is being approached.

2.3.3 Backpropagation

This section is about calculating the gradient defined in section[2.3.2] Since each layer
depends on the previous layer, the last entry of the gradient vector is calculated first
and then iteratively calculated to the first layer and the first entry of the gradient
vector. This is called backpropagation and examples can be found in [12] and [15].
Assuming a simple network with L layers and one neuron per layer. The output a”
the output of the neural network. This output depends on the output of the previous
neuron a'“~Y the connecting weight matrix w® and the bias vector b%). According
to formula and the activation of the last layer neuron is

ot = f(), (2.12)
where
2B = B E=1) 4 plh), (2.13)
Furthermore, according to formula ([2.9)), the cost function of one training example is
C— 1((1@) —y)’ (2.14)
2 Y

with y denoting the desired output.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

2 The Architecture of a Neural Network 14

To obtain the minimal cost and adjusting the value of w®), the partial derivative
of

oC
owlL)

(2.15)

has to be calculated. A change in w'™ influences z), which causes a change in a(®,
which has direct impact on the cost function Cj. This chain of influences can be

described by the chain rule

oCc 920 9dP) oC
Ow®) — dwl) 9z(L) JaL)’

(2.16)

These three partial derivatives can be calculated easily according to the formulas

[B12),213) and @:14), namely

acC
2o = (@ =), (2.17)
daL) .
i =), (2.13)
(L)
SZ(L) =), (2.19)

which leads to the partial derivative of the cost function C of one training example

oC

0@ = (P —y) - o' (2P - gD, (2.20)

To obtain the partial derivative of the full cost function C' with respect to the weight

w) the average

oC 129G,
owl) — n ,;) ow®L)

(2.21)

of all n training examples must be determined, resulting in the gradient vector

ac
Ow()
ac
ow(L)
As defined in formula (2.11)), this gradient weighted by the learning rate is subtracted

from the current weight vector and then the backpropagation algorithm starts over

again.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2 The Architecture of a Neural Network 15

To obtain the partial derivative of the cost function with respect to the bias, the
first part of the chain rule in equation (2.16|) has to be replaced by

HzL)

o = L (2.22)

2.3.4 ADAM Algorithm

In addition to the gradient descent algorithm, many other possibilities of numerical op-
timization are used for deep learning. Gradient descent is the simplest, but still a very
effective optimizer. This section provides a brief overview of the ADAM algorithm,
based on the paper of Kingma and Ba [16].

The ADAM optimizer was developed based on the Gradient descent. ADAM, short
for "Adaptive Moment Estimation', is a combination of momentum-based optimization
algorithms and Root Mean Square Propagation (RMSProp).

The gradient descent optimizer finds a local minimum from any input point step by
step along the gradient of the cost function. Momentum-based optimizers also include
the previous iteration steps for calculating the gradient. So, the gradient is expressed
as acceleration, which leads to a faster algorithm.

RMSProp is a method in which the learning rate is adapting to the parameters, whereby
the learning rate is gradually reduced. Thus, the gradient vector is scaled down and
reduced following an exponential decay.

By combining these two methods, ADAM achieves a relatively fast rate of convergence,

is easy to implement and can be used in many ways.

ADAM uses estimations of moments of the gradient to adapt the learning rate. To
be more precise, it uses the first and second moment, generally defined as the expected

value of a random variable to the power of n, as stated below
m, =E[X"]. (2.23)

The first moment (n = 1) represents the mean and the second moment (n = 2) is the
uncentered variance. To estimate these values, the algorithm uses the exponentially

moving averages

my = Bim1 + (1= B1) ge, (2.24)
v = Bov1 + (1= Ba) g7, (2.25)
while m and v are the moving averages at the ¢-th iteration step and g is the gradient.

They are initialized with zero. The parameters 3; and (3, are hyperparameters, with

commonly selected values of 0.9 and 0.999.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2 The Architecture of a Neural Network 16

The moving averages m; and v; can be rewritten as

me=(1-051)>_ B g, (2.26)
=0

ve=(1—052)> B85 "g;, (2.27)
=0

and therefore the expected values are

E[m] =Elg] (1-5) +¢ (2.28)

Elo] =E[g] (1-5) + ¢ (2.29)

This is called the bias correction for the first and second momentum estimators. It

results in the final formulas for the estimators given as

my
- b
1 -5
(%

T

(2.30)

1y

A

(%

(2.31)

These two parameters are used to update the weights in the neural network as follows

A

my

Vo, +e€

where « is the step size and e the fixed or calculated error value. Further explanations

Wy = Wy — O (2.32)

and proofs can be found in the work of Kingma and Ba [16].

2.4 Limitations of Artificial Neural Networks

Fundamental problems of neural networks are the extrapolation of data and underfit-
ting/overfitting of the model. Furthermore, a neural network model requires lots of

data to be trained properly, resulting in high computational efforts.

Neural networks cannot generalize well based on their training data. They will be
trained with training sets of a defined interval. Within this interval, a neural network
can interpolate an approximated output for each input. If an unknown value outside
this interval is fed into the network, it would have to generalize this approximation.
However, since the neural network has no reference data outside of the trained interval,
it performs unsatisfactorily.

The work of Hans Lohninger [I7] has tested 15 different neural networks. These net-
works were trained in a given interval, where they performed very well, but tested

outside of this interval, the networks acted arbitrarily.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2 The Architecture of a Neural Network 17

Another limitation of machine learning and thus of neural networks, is the fitting of the
model to the data. The model fits well, if the generalization of the training data to any
other data is well. If a model learns the training data too precisely, it also includes the
noise of the data, which is called overfitting. Then, the model cannot generalize and
be applied to other data. Likewise, if the model is not able to obtain a sufficiently low
error from the training set, it results in underfitting. A compromise has to be found

to represent the model realistically without becoming too complicated [18].

underfitting appropriate fitting overfitting
—— Model —— Model —— Model
True function —— True function — True function
e Samples s Samples s Samples

Figure 2.7: Approximation of the sine function by a polynomial of degree 1 (left), 2
(middle) and 15 (right)

In figure the sine function is approximated by a polynomial of predefined degree.
It passes through 30 randomly selected points applying the least mean squared error
method. The first polynomial has a degree of one and is obviously underfitted. The
second polynomial has a degree of four and approximates the sine function appropri-
ately. The last polynomial has a degree of 15, which is much too high and therefore

overfitting occurs.

2.5 Universal Approximation Theorem

The universal approximation theorem states that a feedforward neural network can
approximate continuous functions on compact subsets of R" to any desired precision.
Furthermore, the theorem holds true if the neural network contains just one hidden
layer [12]. The only restriction concerns the activation function. It can be shown, that
the universal approximation theorem holds true if and only if the activation function
is not polynomial. The detailed theorems and proofs can be found in [19] and [20].
However, an idea of the proof is given, based on the book by Michael A. Nielson [12].
It is based on a visual proof of the universal approximation theorem, which is recapped

below.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2 The Architecture of a Neural Network 18

Output from one hidden neuron Qutput from two hidden neurons

0.8 4 0.8 4

0.6 4 0.6 1

0.4 0.4 1

0.2 4 0.2 4

0.0 1 0.0 1

0.0 0.2 0.4 0.6 0.8 Lo 0.0 0.2 0.4 0.6 0.8 Lo

Figure 2.8: Approximation of the output of one (left) and two (right) hidden neurons

2]

The output of a hidden neuron is described by formula (2.3). Hence, the output
depends on the parameters w and b, as well as the activation function f. A function
can be approximated by a step function, as shown in figure (left). If there are two
neurons in the hidden layer, even a step function as depicted in figure (right) can
be approximated.

If the hidden layer is supplemented by two neurons each and by a suitable selection of
the parameters w and b, the step function can be modified. In figure [2.9, an arbitrary
function is approximated by multiple step functions. By adding pairs of neurons into
the hidden layer, the step size of the step function can be chosen to be infinitesimally

small, resulting in an approximation of any precision.

1.5

1.0

0.5 1

0.0
7 % T

oy / \ =
-1.04 F \ / \ 7
i / \ S

\ L/ \ / \

N/ _ b4 \
154\ / 7 \ 7 s
- \ _/

T T T T
0.0 0.2 0.4 0.6 0.8 10
X

Figure 2.9: Approximation of a function by a step function, see [12]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2 The Architecture of a Neural Network 19

2.6 Neural Network Structures for Ordinary Differential Equations

So far, the architecture of a neural network and the mathematical basics of differen-
tial equations have been discussed. This section summarizes the main principles of
the work of Lagaris et al. [3], where the solution of differential equations have been
approximated using artificial neural networks.

First of all, the general approach of the method is described, followed by specific ex-

amples of ODEs and systems of coupled ordinary differential equations.

A general differential equation is given as follows
G (2, 9(), VU(7), V*¥(7)) =0, F€D, (2.33)

where # = (x1,...,z,)" € R". D C R" is the definition domain and ¥(Z) represents the
solution. In order to obtain a solution, the definition domain D has to be discretized,

denoted as ZA?, which results in
G (&, (i), VU(,), V?U(7;)) =0, Vi € D. (2.34)

Assuming W, (7, p) is a trial solution, where p denotes adjustable parameters, the prob-
lem can be rewritten as
2

min 37 (G (&, W@, §), V(& 5), VU, (7, 5))) (2.35)

CEiEﬁ
The trial solution v, (Z, p) includes a neural network, whereby the adjustable parameters

p are to be considered weights and biases. In particular, the trial solution is given as
W, (&) = A(&) + F(Z,N(@, 5)), (2.36)

whereby this form satisfies the boundary conditions by adding A(Z). The expression
N(Z,p) is a feedforward neural network with parameters p. The network has an input
vector & with n inputs. This notation provides a solution of a differential equation sat-
isfying the boundary conditions and the application of a neural network, considering a

minimization problem.

This method can be applied to first and second order ordinary differential equations
and systems of ordinary differential equations. An example for a first order initial value

problem is

= f(z,), (2.37)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2 The Architecture of a Neural Network 20

with € [0,1] and the initial condition ¥(0) = A. According to formula (2.36) the

trial solution can be written as
Uy(x) = A+ aN(x,p). (2.38)

This trial solution satisfies the initial condition and N(z,p) denotes a neural network
with input z and p'= (w, b). In this case, the cost function, which has to be minimized,

is defined as
c-¥ {8‘1’” = i wi»} , (239)

where z; are points in the interval [0,1]. The first term in the sum can be easily

computed by the chain rule

ox

— N(z,) + xaN(;i,m' (2.40)

Analogously, a solution for a second order ordinary differential equation

PV (x) ov
o =1 (mlf@x) , (2.41)

can be calculated. There are two different approaches for the trial solution, namely
Uy(z) = A+ Az + 2°N(z,p), (2.42)
with the initial conditions ¥(0) = A and 2¥(0) = 4, and
U, (x) = A(l —) + Bz + (1 —) N(z,p), (2.43)

with U(0) = A and ¥(1) = B. No matter which trial solution is chosen, the cost

function is computed as

C = :1 {M ¥ <x U, (), aqjt(%)) }2. (2.44)

0x? ox

Likewise, the method can be applied to systems of first order ODEs

oV,
ox

:fl(l', ‘Ifl,\IIQ,...,\I/K), (245)

where the initial conditions are W;(0) = A; for i = 1,..., K. In this case, each trial

solution is expressed by a neural network, namely

U, (x) = A; + xN;(z,p) Vi (2.46)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2 The Architecture of a Neural Network 21

Similar to the two cases above, the cost function for a system of first order ODEs is

given as

c=> znj {%ﬁu) — fr(xi, Uy, ...,\IftK)} . (2.47)

This approach is also applicable to partial differential equations and can be found in
Lagaris et al. [3].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3 Case Study as Proof of Concept 22

3 Case Study as Proof of Concept

The implementation of the neural networks are performed in Python with the aim to
solve ordinary differential equations, as described in chapter [2.6, The used networks
have one hidden layer with ten hidden units and one linear output unit, as mentioned

in [3]. The following software and packages were used:

« Python 3.7.0 (64-bit)
e NumPy (version 1.16.6)
« matplotlib (version 3.2.1)

« autograd (version 1.3)

3.1 Neural Network Approximation of
First Order Ordinary Differential Equations

Henceforth, networks solving ordinary differential equations of first order will be re-
ferred to as ODE1-NN. The implementation is deliberately kept very simple, whereas
machine learning frameworks like TensorFlow and PyTorch are avoided, but used for
comparisons. This provides a demonstrative approach and enables easy manipulation

of influencing variables.

3.1.1 Approximation of Elementary Functions

Three differential equation examples are used to examine the following aspects:

o FError behaviour: The ODE1-NN and the numerical solution of the differential
equation are compared to the analytical solution to determine the accuracy. Ad-

ditionally, the generalisation capabilities of the ODE1-NN are investigated.

o Number of iteration steps: The costs should decrease in each step, since the
parameters of the network are adopted to minimize the cost function. Hereby, the
saturation of the algorithm is analysed, describing the trade-off between accuracy

and computational effort.

o Number of training steps: To train the ODE1-NN, an interval is discretized serv-
ing as training input for the network. The numbers of training points is varied

to determine a possible minimum.

o Selection of the activation function: The approximation ability of a neural net-
work depends as well on the selected activation function, see section [2.2.3] A

comparison in performance between the sigmoid and hyperbolic tangent is made.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3 Case Study as Proof of Concept 23

To enable the verification process, the structure of the ODE1-NN is not changed. Like-
wise, the learning rate of the ODE1-NN is not changed but set to n = 1072. Table
3.1 shows three initial condition examples, their analytical solutions and the respective
trial solution W;(x), according to formula . The neural network is trained for 150
values equally distributed in the training interval I; using 10000 iterations. Addition-
ally, the network is executed on the interval I, to test the extrapolation capability of

the network.

2w wo) L L W (7)
linear function 1 x 0 —1,1] [-3,3] x - N(z,p)
sine function cos(x) sin(x) 0 [—2,2] [—4,4] z - N(z,p)
exponential function U(x) e’ 1 —1,2] [-3,4] 14z -N(x,p)

Table 3.1: Tllustration of three initial condition examples and their respective analytical
solutions W(x). The solutions of the different differential equations are ap-
proximated by the ODE1-NN with the respective trial solutions ¥y, trained
on the interval I; and executed on the interval 1.

Figure [3.1] shows the approximation of the ODEI-NN, executed with the activation
functions sigmoid and tanh, of the respective example, as well as the absolute error
to the analytical solution. The ODEI-NN fits very well within the trained interval
(greyshaded area) where the error is minimal. The extrapolation capability of the net-
works is not satisfactory. Outside the trained interval, the networks act arbitrarily for

both activation functions.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

3 Case Study as Proof of Concept 24

— Analytical Sclution i \ —— Error (Anayticel Soluzion!
PE Numerical Solution by ODE-NN (Sigmoid) p d 20 \ Error (Sigmoid)
—= Numerical Solution by ODE-NN tann) 3 \ —-= Ertor (tanh)
)
3-
\
\
2- = \
\)
L A (
2) ¥
= o \ /
5 4 \ /
0- 2 \ 4
< \ /
\
=14 X 4
e 7
' /
05 \‘ Vi
= \ ;
8, £
b /
\ i
3- N 7
i, =
0.0
-3 -2 -1 0 2 3 -3 -2 -1 0 H 3
x x
104 — Analytical Solution 0.40 1 — Emor (Analytical Solution) |
Numerical Solution ky ODE-NN {Sigmoid) Error (Sigmoid) j
—= Numerical Solution by ODE-NN (tanh) 435] = Eror) i
!
!
05 030 i
]
!
025 ;
; |
00 g
2 2020 -~ 1
2 2 N, |
§ 1 !
015 \ !
\
\]
- \ /
010 "
\ !
\ i
& /
005 '\ /
-10 N y
N 7
aco —
- -3 -2 -1] 1 2 3 4 -4 - -2 -1 0 1 2 3 4
X «
— Analytical Solution 301 — Error (Anajytical Solution)
Numerical Solution by ODE-NN (Sigmcid) Error (Sigmoid) g
50 —-= Numerical Solution by ODE-NN (tanh; —-= Error (tanh))I
2 y
!
]
@ d
1
20 i
- Y
5 !
el g i
S g5 !
5 2 !
] i
§ I
!
2
0 i
i3
il
/
e 5 Vi
7
7
e X
’’’’’ o~
s, =
a o =
- -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4

(c)

Figure 3.1: ODE1-NN approximation (right) and the respective error to the analyti-
cal function (left) for (a) linear function (b) sine function (c) exponential
function

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3 Case Study as Proof of Concept 25

3.1.2 Iteration Steps

After each iteration step, the network parameters are changed, resulting in a decrease
of costs, as shown in table[3.2] In all examples the cost value decreases with increasing
number of iteration steps, independent of the selected activation function. The costs
decrease within a very short period of time and after a few steps the value of the cost
function is close to zero.

The reduction of the costs becomes smaller with increasing number of iterations. There-
fore, for such simple differential equations, it is quite reasonable not to perform 10000
iteration steps to save computational effort.

In all examples the costs of the ODE1-NN (tanh) are smaller than the costs of the
ODEI1L-NN (sigmoid) after 10000 iterations.

Iteration step Costs (Sigmoid) Costs (tanh)

0 (Initial) 7.09 13.2
1 6.12 7.33
10 2.12 2.80-107%
Linear function 100 1.04 - 10792 8.97-1072
1000 2.48 1079 5.15-107%
2500 1.49 - 10793 2.91.107%
5000 8.32-107% 1.86-107%
7500 5.50 - 107% 1.44-107%
10000 3.95-107% 1.21-107%
0 (Initial) 6.48 17.8
1 5.53 4.22
10 1.49 6.81 107
Sine function 100 2.79-10~% 7.48 - 10702
1000 1.19 - 10792 3.59-107%
2500 2.68-107% 4.30-107%
5000 1.38 10793 1.66 - 107
7500 8.11-107% 7.68-107%
10000 5.18 -107% 3.97-107%
0 (Initial) 7.94 14.9
1 6.67 7.65
10 1.70 2.85-107%
Exponential function 1000 155107 170 - 107
2500 5.74 10702 4.26-1079
5000 2.83-10792 1.63-107%
7500 1.74 - 10792 8.98.107%
10000 1.21-10792 5.75-107%

Table 3.2: Costs of the ODE1-NN approximation in various iteration steps for the linear
function, sine function and exponential function

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3 Case Study as Proof of Concept 26

3.1.3 Dataset Size

Since the training of the network is crucial for its performance, it is important that
enough training steps are fed into the ODE1-NN, to learn sufficiently.

Based on 150 training steps (100%), the network was trained with 30%, 50% and 80%
of the training data of the interval I; to evaluate and compare the cost function of the

network.

Table [3.3] shows the progress of the cost function value of the ODE1-NN, executed
with the activation functions o(x) and tanh(z). In both cases the costs quickly be-
come almost zero. Already at 30 percent of the training data the costs are minimal.

In example 1 and 2, in the case of the sigmoid activation function, and in example
3, in the case of the tanh activation function, the costs increase with further training
steps. In the other cases the costs decrease with increasing number of datasets in the
interval I;. The optimal number of training steps cannot be determined and must be

individually adapted for each example.

Number training steps Costs (Sigmoid) Costs (tanh)

45 3.01.10~% 1.33-1070

Linear fincti 75 3.04 .10 1.26 - 1004
mear tuncetion 120 3.95. 1070 1.22 .10~
150 3.95. 100 1.21-10%

45 4.82. 10704 4.04- 10705

Sine function 75 5.03 - 1004 4.00 - 10795
¢ HICEUo 120 5.15 - 10704 3.97.107%
150 5181070 3.97.1070

45 1.24 .10702 5.65 - 1004

. il funct 75 1.23 10702 5.71 1070
xponentiat Hhetion 120 1.22-1092 5.74 - 10~
150 1.21 10792 5.75 . 1004

Table 3.3: Costs at various numbers of training steps of the ODE1-NN for the linear
function, sine function and exponential function

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3 Case Study as Proof of Concept 27

3.1.4 Selected Problems and Numerical Comparisons

So far, the neural network ODE1-NN, implemented in Python, was presented. Inter-
nal comparisons between the parameters were discussed, and solutions of three simple
differential equations were approximated by the network.

In this chapter the network ODE1-NN is compared with other numerical methods. For
this purpose, solutions of differential equations are approximated by these numerical
methods and compared with the analytical solutions of the differential equations, sim-
ilar to the chapter before. The average and maximum errors to the analytical solution
for each approximation method are presented in table [3.4. The following numerical

methods are used for comparison:

o Euler Method:
This method, described in chapter [1.3] is a very simple but still a very good
possibility to solve a differential equation approximately. Both, the explicit and

implicit Euler methods are applied.

o ODEA45:
MATLAB?® provides various functions for the numerical solution of ordinary dif-
ferential equations, including the ODE45 solver. It is based on the Dormand-
Prince method, which approximates an ODE explicitly. For implementations,
the version R2020a (9.8) was used.

o Multi-Layer Perceptron:
MLP is short for Multi-Layer Perceptron and stands for a multi-layer, feedfor-
ward network that uses supervised learning methods, such as gradient descent,
as described in chapter 2 Such networks can approximate any function with
an arbitrary accuracy, as shown in chapter [2.5] In this case, the function which
describes the solution of the differential equation is approximated. Meanwhile,
the ODE1-NN approximates the given differential equation by a trial solution,

and this trial solution is compared with the analytical solution.

o TensorFlow:
TensorFlow is an open source platform for machine learning. It provides easy
deployment of applications based on machine learning. A neural network was
implemented in Python using TensorFlow to approximate a numerical solution
of an ordinary differential equation according to Lagaris et al. [3] similar to the
ODE1-NN. Hereby, the TensorFlow version 1.15.0 was used. Henceforth, the net-
work using TensorFlow will be referred to as TF1-NN. In contrast, the ODE1-NN

was implemented deliberately omitted such packages.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3 Case Study as Proof of Concept 28

In order to be consistent with chapter |[3.1.1| and to guarantee comparability of the
numerical methods, the structure of the network is not changed. It is still a three
layer network with one hidden layer containing 10 neurons. This holds true for the
ODE1-NN, the MLP and the TF1-NN.

Furthermore, in this evaluation the tested interval corresponds to the training interval.
This means that generalisation capabilities of the neuronal networks are not tested.
The number of training steps and the number of iteration steps remain the same being
150 and 10000. The ODE1-NN is executed again with the activation functions sigmoid
and hyperbolic tangent. The two differential equations, which are analysed in the fol-

lowing, are quoted from Lagaris et al. [3].

The first example is an initial value problem represented by the linear first order dif-

ferential equation

o o 14322 1+ 322
AR B e 3.1
Ox v I+x1+z+x3 T lye+ras) (3.1)
with ¥(0) = 1. The analytical solution, which is to be approximated is
)
U(x) = SR (3.2)
1+ 2+ 23 ’
and the trial solution according to the approach defined in section [2.0] is
Uy(x) =1+ N(z,p). (3.3)

The trained and tested interval is [0, 2] and the number of training and test steps is

150 (100%).

Figure (left) shows the analytical function , compared to the approximation of
the ODE1-NN, executed with the activation functions sigmoid and tanh, and the ex-
plicit and implicit Euler method. The Euler method and the ODE1-NN were executed
at 150 steps. The learning rate n was set to n = 1072 for the ODE1-NN (sigmoid)
and to n = 1072 for the ODEI-NN (tanh). Since the difference between the different
methods is difficult to see, figure (right) shows the absolute error to the analytical
solution of the differential equation. All four approximations achieve very good results.
The error between the four approaches can hardly be distinguished on the given inter-
val. Nevertheless, the error of the explicit Euler method is bigger, than the error of
the implicit Euler method and the ODE1-NN. Since the error of the ODE1-NN can be
reduced even further, e.g. by changing the way of implementation of the network, this
method is more advantageous. The ODE1-NN produces an oscillating error, probably

due to the approximation inaccuracy of the trial solution to the analytical solution.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3 Case Study as Proof of Concept 29

— Analytical Solution — Emor (Analytical Solution)
Numerical Sclution by ODE-NN (Sigmaid) Ermor (5 gmoid)

— = Numerical Sclution by ODE-NN (tanhi —-= Emr ftanh)

-+ Euler Method (explict) 05 Emor (Edler Method expliit]

351 v Euler Method (implcit - Error (Ealer Method implicit)

Absolute error

Figure 3.2: ODE1-NN and Euler method approximation (left) and the error to the
analytical solution (right) of the first problem

Likewise, figure [3.3] shows the approximation of the solution of the given differential
equation of the ODE1-NN and the MLP and the respective error to the analytical
function. Both methods were executed with the activation functions sigmoid and tanh.
To compare both methods, the MLP has the same structure as the ODE1-NN. Hence,
the MLP is a three layer network with one hidden layer with 10 neurons. Also the
learning rate has not been changed and is still n = 1072 for sigmoid and n = 1073
for tanh. The only difference is, that the number of iterations was set to 20000, since
otherwise the MLP would not have performed well. For the ODE1-NN it is still set
to 10000. The illustration shows, that the MLP does not approximate the function as
well as the ODE1-NN. The error of the MLP to the analytical solution is larger than
the error of the ODE1-NN. Both methods result in an oscillating error, probably due
to the approximation inaccuracy to the analytical solution.

The performance of MLP would be better with increasing number of layers and neurons.
However, for comparison purposes with the ODE1-NN, the structure of the MLP is
fixed.

_ — Analytical Solution — Error (Analytical Solution)
Nunmerical Solut on by ODE-NN (ODE-NN Sigmoid) / Error (ODE-NN Sigmoid) 1
—= Numerical Solut on by ODE-NN (ODE-KN tanh) —-- Ermor (ODE-NN tanh) [
-+ Numerical Solut on by WLP (Sigmoid) -+ Eor (MLP Sigmoid) i
3.5~ —.- Numerical Soluton by MLP (tanh) —-- Error (MLP tanh) i

025

020 !

Absolute error

000 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200
X

Figure 3.3: ODE1-NN and MLP approximation (left) and the error to the analytical
solution (right) of the first problem

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3 Case Study as Proof of Concept 30

In the following, the numerical method ODE45, implemented in MATLAB® is com-
pared to the ODE1-NN. The approximation approaches and the error to the analytical
solution are shown in figure 3.4l Clearly, the predefined ODE45 solver approximates
the desired function very well. However, the error of the self-programmed network is

also very minimal. Both variants perform very satisfactorily.

40- — Anslytica Solution 0016 oy — Error (Analytica’ Solution)
Kumerical Solutian by ODE-NN (Sigmid) il Eror (s gmeid)
—-~ Numerical Soluton by ODE-NN (tarh oy == Ermor (tanh)
. ODE4S A 0014 / X ==+ Ermor (ODZ45)
35 / \
/ % 7 \ s
/ 0012 I/ \\ i \ 7N
J ! i \ / \ N
30 / [i i \ j \ I
_ o010 ! i i \ / \ / \
a g ! L i \ / \ /! |
523 / M ! d i \ / i \
z / E 0008 ,’ \‘ i \ h \‘ ’/ i
2 I) ! i \
20- // < g006 ! A | \ 1 \ i |
i Voo \ ! i \
i L v \ i
LI I !
15- 0004 | Vg Vo \ i \
i L Lo Mo i
I L L Y \
0002 i 1 Vi \ i s
L0- o~ i i \/ \/ i’
Tt i i v v i
0.0C0

000 025 050 075 1.00 125 150 175 200 000 025 050 078 100 125 150 175 200
X

Figure 3.4: ODE1-NN and ODE45 approximation (left) and the error to the analytical
solution (right) of the first problem

The error of the ODE1-NN, which does not use any predefined machine learning pack-
ages, is very small, as the previous comparisons have shown. The following analysis is
about the TF1-NN, which uses TensorFlow in its implementation.

The TF1-NN was executed with the two activation functions sigmoid and hyperbolic
tangent. To ensure comparability, the structure of the TF1-NN is still a three-layer
network with 10 neurons in the hidden layer. Also, the learning rate is chosen to be
n = 1072 for the TF1-NN (sigmoid) and = 1073 for the TF1-NN (tanh). The only
difference to the ODE1-NN is the learning algorithm. In order to approximate the
function as closely as possible, TF1-NN uses the ADAM algorithm, as described in

chapter 2.3.4]

— Analytical Sclution — Eror (Analytica’ Solution)

4.0
Numerical Solution by TFL-NN (Sigmoid) i Error TFL-AN (Sigmaic)
—- Numerical Solution by TF1-KN (tanh) — = ETor TEL-AN (tanh)
%
35 74
7
£
/ 0003
30
74
rd :
228 ;
5 2 0002 g 7R
3 # -~ LN
3 £ 70y v 4 ¥
H i i \ i \ / \ &
20 & 3 ! %) X N
[i \ / \ / /o
\ 7 A i A / \ !
TV \ / \ | \ / i
oy { / \ ! \ [i
15 0,001 | \ ; \ / \ / \
: / py v i W |
2 i] oy T A W i
IRTAY \ \ g N i
0 ~—e i i \\/I \f ¥ }
i il 0,000 L ! ¥ v

000 025 050 075 100 125 150 175 200 0co 025 050 075 100 125 150 175 200
x x

Figure 3.5: TF1-NN approximation (left) and the error to the analytical solution (right)
of the first problem

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3 Case Study as Proof of Concept 31

Figure |3.5 shows the approximation of the solution of the differential equation and the
error to the analytical solution. This error is very small. The error of the TF1-NN
(tanh) is smaller than the error of the TF1-NN (sigmoid). The average and maximum
values are presented in table [3.4]

In table [3.4] the absolute maximal error and the absolute average error of the pre-
viously described and shown approximation methods for the analytical solution of the
differential equation (3.1)) on the interval [0, 2] are summarised.

The ODE1-NN, where machine learning frameworks were deliberately avoided, shows
an average error in the order of 107% and an absolute maximum error of 107°% for
both activation functions. The same network structure implemented with TensorFlow,
shows a smaller absolute and average error. Here, the maximal error decreases to
a magnitude of 107%. This proves that machine learning approaches approximate
the problem more closely, although the approach is less descriptive. The explicit and
implicit Euler method show an error of the same magnitude as the ODE1-NN. The
implicit Euler method approximates the problem better than the explicit method. Of
all tested methods, the MLP approximates the solution of the differential equation with
the worst accuracy, independent of the selected activation function. Due to comparison
purposes, all settings of the ODE1-NN were used for the MLP. With a maximum ab-
solute error in the order of 107%, the resulting approximation is not satisfactory. The
solution of the differential equation is approximated best by the ODE45 solver from
MATLAB?®. In this case, the error of the analytical solution has a magnitude of 107%.

Method Average error Maximal error
ODEI-NN (sigmoid) 4.70-107% 1.30- 10792
ODEI-NN (tanh) 8.59-107% 1.59 - 10792
Euler (explicit) 2.17-107% 5.79 - 10792
Euler (implicit) 5.91-107% 7.83-107%
MLP (sigmoid) 3.46 - 10792 1.87-107%
MLP (tanh) 4.74-107%2 2.76 - 107
ODEA45 2.48 1079 5.52-107%
TFI-NN (sigmoid) 2.28 10703 42110708
TF1-NN (tanh) 1.23-1079 2.05-107%

Table 3.4: Average and maximal approximation errors of the previous shown numerical
methods of the first problem

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3 Case Study as Proof of Concept 32

The second example is the initial value problem

ov

. 1
5 = ¢ cos(z) — 5\11, v(0) =0, (3.4)

and the analytic solution of this differential equation is
U(z) = e 5 sin(z). (3.5)

As in the previous examples trial solution for the approximation of the solution of this

differential equation can be given as
Vy(z) =z - N(z,p). (3.6)

The following approximations are given on the interval [0,4]. As in the previous ex-
ample, the ODE1 is trained and tested at 150 (100%) data steps on the given interval.

Similar to the previous example, the ODE1-NN and the explicit and implicit Euler
method are compared with the analytical solution of the differential equation, illus-
trated in figure |3.6|

In this case, the learning rate of the ODE1-NN (sigmoid) was set to n = 1072, as well
as the learning rate of the ODEI-NN (tanh). All approaches result in a very good
approximation. Although the error of the Euler method is higher than the error of the
ODEI1-NN, it is still at the magnitude of 1072, With these settings,the average error
of the neural network hardly differs from the Euler method.

Similar to the previous example, the error of the ODE1-NN to the analytical solution
results in an oscillating behaviour, probably as a result of the approximation inaccuracy

of the trial solution.

E
Numne: n by ODE-NN (Sigmoid) 0025 En
n by ODE-NN (zarh) == Eror itanh)
- Eue pliciz e Error (Euler Method explicit)
- Euler Method (implicit) -+ Error (Euler Method impl cit)

0020
£ 0015
]

2
0010

0,005
-02

0,000

-04

00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40

Figure 3.6: ODE1-NN and Euler method approximation (left) and the error to the
analytical solution (right) of the second problem

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3 Case Study as Proof of Concept 33

Figure 3.7 shows the comparison of the approximations of the ODE1-NN and the MLP.
In this example all four learning rates are set to n = 1072 and the number of iterations
are increased to 20000 as in the example before. Although the absolute error for the
analytical solution of both methods is small, the error of the MLP is larger than the
error of the ODE1-NN and does not approximate the function as well as the ODE1-NN.

tion by ODE-NN (ODE-N Sigmoid)
= Y ODE-NN (ODE-NN tanh)

. Y MLP (5 gmoid)
—-= Numerical Solution by WLP (tant)

Figure 3.7: ODE1-NN and MLP approximation (left) and the error to the analytical
solution (right) of the second problem

As in the first example, the neural network is compared with the ODE45 solver from
MATLAB®. Figure [3.8| shows the solution of the differential equation of the ODE1-
NN with sigmoid and tanh compared to the ODE45 approximation and the error of
both variants to the analytical function. Again, the ODE45 solver approximates the
function very well and the small error of ODE1-NN is high compared to the ODE45

error.

™
oluticn by ODE-NN (Sigmoid)
oluticn by ODE-NN {tarh)

Figure 3.8: ODE1-NN and ODE45 approximation (left) and the error to the analytical
solution (right) of the second problem

The solution of the differential equation is approximated by a trial solution using
a neural network using TensorFlow. The TF1-NN is executed with the activation
functions sigmoid and tanh, a learning rate of 7 = 1072 and the ADAM learning
algorithm. Figure[3.9[shows the approximation and the error to the analytical function.
This error is very small for both networks and the analytical function is approximated

very accurately.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

3 Case Study as Proof of Concept 34

— Aralytical Solution
Numerical Soluton by TFL-NN {Sigmoid)
—-= Numerical Soluton by TFL-NN itanh)

— Eror {Analytical Solution)
Error TFL-NN (Sigmoid)
0,0005 - —-- Eror TFL-NN (tanh)

/ N 00004 -

/ \ § 0,0003- / \ !
u \

Wix

8
£ 2
/i \. 00002- i

Y A N v i |
00201 - LTS / ke 14] |
i 1]

™ 00000 -

Figure 3.9: TF1-NN approximation (left) and the error to the analytical solution (right)
of the second problem

Similar to the previous example, table [3.5] shows the absolute maximal error and the
absolute average error of each method for approximating the analytical solution of the
differential equation on the interval [0.4].

The ODE1-NN executed with the activation function tanh approximates the problem
better with a maximum error of 107% than using the activation function sigmoid with
a maximum error of 107°2. The network executed with TensorFlow also shows that the
tanh activation function approximates the solution better. In this case the magnitude
of the error is 107°*. The TF1-NN approximates the problem due to the ADAM
algorithm more accurately than the ODE1-NN. The ODEI1-NN results in a smaller
error than the explicit and implicit Euler method. In this case the error is in the
order of 107%2. As in the previous example, the MLP (sigmoid) and the MLP (tanh)
approximates the problem worst and the ODE45 solver from MATLAB® best. Again,

the error has a magnitude of 107,

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Method Average error Maximal error
ODEI1-NN (sigmoid) 6.88-107% 1.17-107%
ODE1-NN (tanh) 2.34-107% 4.72-107%
Euler (explicit) 1.53 - 1072 2.61-107%2
Euler (implicit) 1.08 - 1072 1.61-1072
MLP (sigmoid) 1.66 - 10792 5.83 10702
MLP (tanh) 2.09 - 10702 7.91-107%
ODE45 2.49-107% 5.00-107%
TF1-NN (sigmoid) 2.01-107% 5.43-107%
TF1-NN (tanh) 1.57-107% 4.79-107%

thele

(]
blio
nowledge

(]
|
rk

Table 3.5: Average and maximal approximation errors of the previous shown numerical
methods of the second problem

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3 Case Study as Proof of Concept 35

3.2 Neural Network Approximation of

Second Order Ordinary Differential Equations

Similar to the first order ODE, a neural network was implemented in Python to solve
ordinary differential equations of second order according to Lagaris et al. [3].

The neural network, which numerically approximates an ordinary differential equation
of second order, is henceforth called ODE2-NN.

3.2.1 Approximation of Elementary Functions

In this chapter the network is examined based on two simple, but very common differ-

ential equations. All examinations as listed in chapter namely

Error behaviour,

Number of iteration steps,

Number of training steps,

Selection of the activation function,

are executed again.

According to formula and , two different approaches are proposed to ap-
proximate a differential equation of second order. The first approach is based on the
initial conditions and the second approach on the boundary conditions. The two solu-
tions of the following differential equations are approximated using both approaches.
Additionally, the results of both methods are compared to determine if one of the two

approaches approximates the analytical solution more accurately.

Quadratic function Cosine function
g%’ 2 — cos(x)
U (z) x? cos(x)
U(0) 0 1
(0
oz : 0 0
It [) 1] [Oa 1]
I, 0, 3] 0, 7]
U, (10) z? - N(z,p) 1+2%- N(z,p)
U, (BC) r+x(l—21z) - N(z,p) (1 —z)+cos(l)x +x(1 —x) - N(z,p)

Table 3.6: Illustration of two initial condition examples and boundary condition ex-
amples and their respective analytical solutions W(z). The solutions of the
different differential equations are approximated by the ODE2-NN with the
respective trial solutions W, (/C) and V,(BC), trained on the interval I; and
executed on the interval 1.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3 Case Study as Proof of Concept 36

Table[3.6|shows both ordinary differential equations of second order g%’, their solutions
U(z) and the approximations W, for the initial condition and the boundary condition
approach. Since the trial solution of the boundary condition approach is only defined on
the interval [0, 1], the neural network was trained on this interval for both approaches.
The network was executed for the interval I, to provide a statement about the extrapo-
lation capability. Both approaches are executed twice. Once with the sigmoid and once
with the tanh activation function. The networks were trained on 150 training steps in

[0, 1] with 10000 iterations. The learning rate has been set to n = 1072 for all examples.

Figure [3.10] shows the approximations of the respective approaches of the trial so-
lutions and the respective errors to the analytical solutions for both examples, within
the training interval I; as well as the testing interval. All variants approximate the
analytical solutions of the differential equations very accurately. With increasing dis-
tance to the training interval the error increases. Hereby, the ODE2-NN extrapolation

capability is not satisfactory.

30- — Error (Analyt cal Solution)

Error C (Sigmoid) /
—-= ErmorIC (tanh) J
=== Error BC (Sigmoid) /
—-- Error BC (tanh) /

W)
N\,
N,
\
A
\
Absolute error

— Analytical Solution 05- P e
Numerical Solut on by ODE2-NN IC (Sigmoid) 7 ¢

; 2
— -~ Numerical Solut on by ODE2-NN IC (tanh) s e
-~ Numerical Solut on by ODE2-NN BE (Sigmoid) Sy
o 00- Smeeren

—-= Numerical Soluton by OD=2-NN BC (tanh)

i — Analytical Solution — Error (Analytical Solution) |
\ Numerical Sclution by ODE2-NN IC (Sigmoid) Erfor IC (Sigmoid) /
—-- Numerical Salution by ODE2-NN IC (tanh) —+= Emor IC {tanh) /
-=- Numerical Sclution by ODE2-NN BC (S gmoid) === Error BC (Sigmoid)
Numerical Sclution by ODE2-NN BC itann) —-- Erfor BC (tanh)

Wix)
L
o
/
Absolute errar

(b)

Figure 3.10: ODE2-NN approximations of the initial condition and the boundary con-
dition approach (right) and the respective error to the analytical function
(left) for (a) quadratic function (b) cosine function

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3 Case Study as Proof of Concept

37

3.2.2 Iteration Steps

The costs of the initial condition approach and the boundary condition approach were

monitored after some of the 10000 iteration steps on the training interval [0, 1] with

150 training steps and table [3.7| shows, how the costs behave with increasing number

of iterations. The costs of the initial condition approach are significantly lower than

those of the boundary condition approach for both examples.

For such simple functions, the costs are quite small after a few iteration steps and

become smaller with each step. But the decrease of the costs of all four variants be-

comes less with increasing number of iterations and computational effort could be saved

by executing a smaller number of iterations.

Iteration Costs IC (Sig.) Costs IC (tanh) Costs BC (Sig.) Costs BC (tanh)

0 (Initial) 5.19 36.7 4.27 58.1

E 1 3.63 42.3 3.59 3.81
g 10 1.70 8.47-107° 1.08 3.72-107°%
= 100 4.14 - 10702 5.16 - 10~ 4.25 1079 6.56 - 1003
=2 1000 6.94-107% 4.68 - 1079 1.53-107% 1.57-107%
_;g 2500 1.70-107% 1.51-107% 5.46 - 107 1.08-107%
g 5000 6.34-107% 4.51-107% 3.28 -107% 6.33-107%
C 7500 1.96-107% 3.83-107% 2.85-107% 3.89-107%
10000 1.67-107% 3.71-107% 2.58 -10~% 2.45-107%

0 (Initial) 3.61 73.3 11.2 45.0

o 1 1.87 o4.7 7.33 5.25
2 10 7.37-107% 5.83- 107 1.67 5.55-107%
= 100 4.43 - 10792 1.55 - 10792 1.38-107% 3.33-107%
“'E 1000 9.00 - 107 4.61-107% 5.64-107% 1.16-1079
= 2500 1.57-107% 2.31-107% 2.87-107% 9.35.107%
S 5000 1.73-107% 7.81-107% 2.23 .10 6.94 - 104
7500 5.86-107% 7.17-107% 2.03-107% 5.40 - 107%™

10000 4.68 -107% 6.74 - 107% 1.87-107% 4.34-107%

Table 3.7: Costs of the ODE2-NN approximation in various iteration steps for the

quadratic function and cosine function

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3 Case Study as Proof of Concept 38

3.2.3 Dataset Size

The ODE2-NN was trained on the training interval [0, 1] with a different number of
training steps and the respective final costs were determined after 10000 iterations.
Table 3.8 shows the value of the cost function of the four variants of the ODE2-NN
with 45 (30%), 75 (50%), 120 (80%) and 150 (100%) training steps for both examples.

In example 1, in the case of the boundary condition approach and executed with the
activation function tanh, the costs increase with increasing number of training steps.
Therefore, in this case, it is reasonable to use less training steps to approximate the
function. For the other cases and example 2, the costs decrease as the number of train-
ing steps increases.

This decrease becomes smaller as the number of training steps increases and therefore,
computational effort can be saved if the training is not performed with all 150 training
steps but for example with 50 — 80% of the data.

% Steps Costs IC (Sig.)

Costs IC (tanh)

Costs BC (Sig.)

Costs BC (tanh)

£ = 30 1.85-1079° 4.76 - 10796 2.74-107% 2.18-107%
=2 50 1.74-1079 4.10 - 10796 2.65 - 10~ 2.33.10-%
T O
g 5 80 1.69 - 1079 3.80- 10796 2.60 - 10704 2.42.107%4
Can 100 1.67 1070 3.71-107%6 2.58 - 10704 2.45 . 10704
oe 30 5.03-1079 8.46 - 107 2.00-107% 4.36-10"%
g% 50 4.83-1079 7.46 - 107 1.93-107% 4.36- 10794
SF 80 4.71-107% 6.91-107% 1.89-107% 4.35-107"
- 100 4.68-107% 6.74-1079 1.87-107% 4.34-107%

Table 3.8: Costs at various numbers of training steps of the ODE2-NN of the initial
condition and the boundary condition approach for the quadratic function,
cosine function

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3 Case Study as Proof of Concept 39

3.2.4 Selected Problems and Numerical Comparisons

In this chapter the ODE2-NN is compared to other numerical methods. The respec-
tive maximum and average error in relation to the analytical solution of a differential
equation is determined. The ordinary differential equation of second order

U 10w

5 = € ° cos(x) F , (3.7)

with ¥(0) = 0 and 8?—560) = 1 is discussed in this chapter. The analytical solution of

this differential equation is given as
U(x) = e 5 sin(z). (3.8)

The trial solution can be defined by the initial conditions or the boundary conditions on
the interval [0, 1]. Thus, the solution of the differential equation ({3.7) is approximated

once by the trial solution
U, (1) =2+ 2% N(z,p), (3.9)
and once by the trial solution
U, (z) = assin(l)e_é +xz(1l —x) - N(z,p). (3.10)

The boundary condition approach is only defined on the interval [0, 1]. Therefore, the
trial solution by the neural network is executed on this interval. The initial condition
approach is examined on the interval [0, 4].

Since the function is evaluated on different intervals, it can be determined, whether
the error to the analytical solution is minimized if a trial solution is computed on a
smaller interval.

The solution of the differential equation corresponds to the analytical function in the
second example in chapter [3.1.4] There, the function is also approximated on the
interval [0,4] by the initial condition approach by the ODE1-NN or the TF1-NN.
Accordingly, it is examined, whether the function can be approximated more accurately
using the trial solution of a differential equation of first or second order.

As in chapter the ODE2-NN is compared with the following numerical methods:

Euler Method (explicit and implicit)

ODE45

« MLP

TensorFlow

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3 Case Study as Proof of Concept 40

The first example illustrates the approximation of the ODE2-NN using the initial con-
dition approach, according to . The network approaches are performed with the
activation functions sigmoid and tanh, in comparison to other numerical methods. The
neural network was trained and executed on the interval [0, 4] with 150 training steps.
Since the gradient descent algorithm terminates in case of a high learning rate, the
learning rate was set to 7 = 1073 for the sigmoid activation function and to n = 10~*
for the tanh. Due to the low learning rate, the number of iterations is increased to
20000.

Figure (left) shows the analytical function and the approximations of the
ODE2-NN and the explicit and implicit Euler method. In order to perform the Euler
method, the ordinary second-order differential equation was transformed into a system
of first order differential equations, as described in chapter [I.2]

Figure [3.11] (right) shows the errors of the different methods to the analytical solution.
The error of the ODE2-NN (tanh) is bigger than the other three analyzed methods.
The two Euler methods and the ODE2-NN (sigmoid) approximate the function with
an error of the same magnitude. The exact values of the maximum errors and the

average errors are shown in table (3.9}

hE] — Error (Analytical Solutior)

7N
ion by ODE2-NN IC (Sigmeid) 00175 Fd k5
icn by ODE2-NN IC (tanh) ' 4 \
i ;
- Euer Method (mplict) 20150 ! %
0.0125 i\
£
& 00100
o
i & \
< 0.0075 H \ i] F
00050

y
1
[
-02 00025 ! b
i s
k i o ———
P)

-04

Figure 3.11: ODE2-NN approximation using the initial condition approach and Euler
method (left) and the error to the analytical solution (right) of the third
problem

A comparison between the ODE2-NN and an MLP, which approximates the analyti-
cal function directly and does not solve the differential equation numerically, like the
ODE2-NN;, is made. All settings of the MLP were taken from the ODE2-NN and
the MLP is executed as well with the activation functions sigmoid and tanh. Figure
3.12| shows, that the MLP does not approximate the analytical function as well as
the ODE2-NN. The errors of the MLP are significantly higher than the errors of the
ODE2-NN.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3 Case Study as Proof of Concept 41

— Analytical Solution 0.08{ — Errcr {Analytical Sclution)
Numarical Solut on by ODE2-NN IC (Sigmoid) Errer ODE2-KN IC (Sigmoic) i

—-= Numerical Soluton by OBE2-NN IC (tenh) —:- Emor ODE2-NN IC (tanhj ’

-+ Numerical Solut.on by MLP (Sigmoid} 0071 ... Errer {MLP Sigmoid)

—-= Numerical Solut.on by MLF (zarh} —: Emor {MLP tanh) i

wix)

Absolute crror

Figure 3.12: ODE2-NN approximation using the initial condition approach and MLP
approximation (left) and the error to the analytical solution (right) of the
third problem

The numerical method ODE45, pre-implemented in MATLAB®, approximates ordinary
differential equations according to Dormand-Prince. Similar to the first order differ-
ential equation examples, figure [3.13| shows, that this numerical method approximates
the analytical function very accurately. The error of the ODE45 method is minimal

and the quite small error of the ODE2-NN seems large in contrast to this method.

— analytical Solutior = — Emor (Analytical Solution)
2 Numerical Soluticn by ODE2-NN (Sigmoid) @i AR Error ODE2-NN (€ (Sigmoid)
—-+ Numerical Soluticn by ODE2-VN (zanhi / 3 —:- Emor ODEZ-NN C {ranh)

& e 0 e ‘/ \ ==+ Emor (ODE45)
00150 /’ \
: Y ;
3 N i \ 7

00125 i

7 00100 (i i ;4 i] /

olute error

2 00075

AL

00050 i [S \ !

00025 I il & K

0.0000

0.0 05 w 15 20 25 30 35 40 P A 1 15 20 25 0 35 2

Figure 3.13: ODE2-NN approximation using the initial condition approach and ODE45
approximation (left) and the error to the analytical solution (right) of the
third problem

The ODE2-NN solves a differential equation using a neural network without the help
of machine learning frameworks. For comparison, a neural network was implemented
using TensorFlow, which solves, like the ODE2-NN, an ordinary differential equation of
second order using a trial solution. The network is referred to as TF2-NN. The ADAM
learning algorithm with a learning rate of n = 1072 is used and the parameters of the
network are iterated 10000 times. Figure shows the approximation of the TF2-NN
performed with the activation functions sigmoid and tanh on the interval [0, 4] and the
respective absolute error of the trial solution with respect to the analytical solution.

Both networks approximate the analytical function with a very small error.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3 Case Study as Proof of Concept 42

B — Analytical Solution . — Enor (Anaytcal Solution) s
s \\\ Numerical Sclution by TF2-NN IC (Sigmoid} 00012~ Error TF2-NN IC (Sigmoid) V.
// \\ —-- Numerical Sclution by TF2-NN IC (zanh} —+- Ermor TF2-NN IC (zanh) i \
06 g - / \
/ X 0001~ / \
/ \ f \.\
i \
o / LN i \
/ 00008 - i \
/ 5 i \
// \ g i \
2 02 2 A, / \
502 // \\ £ oocos- e i \
[/ \ P i
/ g i \ / i
// \\ 00004 !) f(\\
00 00047 i i 5
% 4 © // \'\ / 4
\ i \
/ '\ f A {
X, 00002 / oM L \
-02 \ i vk |
V] L Lt
\\ P T \
b 00000 - LS

Figure 3.14: TF2-NN approximation using the initial condition approach (left) and the
error to the analytical solution (right) of the third problem

Table [3.9) shows the absolute maximum and absolute average errors of all presented
numerical methods and neural network approaches compared to the analytical solution
of the differential equation. The presented ODE2-NN and the TF2-NN approximate
their solutions based on the initial conditions of the differential equation ([3.7)).

The ODE2-NN was executed with the activation functions sigmoid and tanh. The
resulting error of the ODE2-NN (sigmoid) appears smaller than the error of the ODE2-
NN (tanh). The variation with sigmoid activation function approximates the solution
of the differential equation much better, with a maximum error in the order of 1073.
Similar results are obtained for the TF2-NN. The approximation to the analytical
function is better using machine learning approaches, and the resulting error is less
than the error of the ODE2-NN. Nevertheless, the TF2-NN (tanh) results in a larger
error than the TF2-NN (sigmoid).

To perform the Euler method, the second order differential equation was converted
to a system of first order equations. The Euler method was evaluated explicitly and
implicitly at 150 points. The explicit method is better than the implicit method,
whereas the respective errors have an order of magnitude of 1072, the same as the
ODE2-NN. As in the examples of first-order differential equations, the MLP is the
method with the worst approximation accuracy. The resulting errors are relatively
large with an order of magnitude of 1072, The ODE2-NN, which solves the differential
equation using the trial solution, gives a better approximation.

As excepted, the ODE45 method approximates the differential equation best, with an

error of the magnitude of 1075,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3 Case Study as Proof of Concept 43

Method Average error Maximal error
ODE2-NN (sigmoid) 2.39-107% 4.84-107%
ODE2-NN (tanh) 9.72-107% 1.83-107%2
Euler (explicit) 1.87-107% 3.68-107%
Euler (implicit) 4.01-107% 8.06 - 107
MLP (sigmoid) 1.66 - 10792 5.83 - 1072
MLP (tanh) 2.09 - 1072 7.91-107°2
ODE45 2.78 - 1079 6.20 - 107
TF2-NN (sigmoid) 4.09 -107% 8.83- 107"
TF2-NN (tanh) 4.35-107% 1.23-107%

Table 3.9: Average and maximal approximation errors of the previous shown numerical
methods of the third problem on the interval [0, 4]

According to Lagaris et al. [3] the ordinary differential equation of second order
can be approximated by a trial solution using the boundary conditions on the interval
[0, 1] according to formula (2.43)). The boundary conditions at the values 0 and 1 are
¥(0) =0 and ¥(1) = sin(1)e 5.

The neural network was trained and tested on the interval [0, 1] at 150 steps (100%)
with 10000 iterations. The learning rate of the ODE2-NN for the activation functions
sigmoid and tanh were set to n = 1072. The boundary condition approach is compared

with the same numerical methods as in the first example of this chapter.

The first comparison shows the approximation of the ODE2-NN, with the activation
functions sigmoid and tanh, and the explicit and implicit Euler method. Both methods
were executed on the interval [0, 1] at 150 steps. Figure shows the approximation
capability of the different methods and the respective error to the analytical function.
The ODE2-NN with the boundary condition approach results in a very small error. In
comparison, the error of the Euler method is relatively large. Both neural networks

approximate the analytical function with an error of the same order of magnitude.

07 e 200200 { — Eror (Analytcal Soluior)
tion by ODE2-NN BC (Sigmoid) e Error ODE2-NN BC (Sigmaid)
¥ ODE2-NN BC (tanh) s — NN BC (tznh]
0.6 - Euler Method (exoliciz // 0001754 === Error (Euler Methcd expl cit)
-~ Euler Method (implicit // ++Eror (Euler Methed imolicit
000150
05
e
/ 0.00125
04 5
- ©
% o
2 y pd £ o000
s
03 e 2
o 2
000075 A
/ 2.00050 B
o Ve e S
’ / 0.00025 ™ ,_’./ S
' ‘.-ﬁ“‘ e P o ¥ oy .
// e S P <o @ NN
00 g 0.00000 — = = =

Figure 3.15: ODE2-NN approximation using the boundary condition approach and Eu-
ler method (left) and the error to the analytical solution (right) of the third
problem

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3 Case Study as Proof of Concept 44

The MLP, which approximates the analytical function, is compared to the ODE2-NN as
shown in figure [3.16| The neural networks are executed with the two known activation
functions. Clearly, the MLP approximates the solution of the differential equation on
the interval [0, 1] poorly compared to the ODE2-NN;, especially when using the function
sigmoid. The resulting maximum and average errors related to the analytical solution

are large, as shown in table [3.10]

— Analytical Solutior
0= Numerical Solution by ODE2-NN BC (Sigmoid)
—-= Numerical Solution by ODE2-NN BC (tanh)
-+ Numerical Solution by MLP (Sigmaid)
06 —.- Humerical Solution by MLP (tanh;

— Emor (Analyzcal Solution)
Eror ODE2-NN 3C (Sigmcid)

—-= Emor ODE2-VN 5C ftanh)

e+ Emmor (ML? Sigmoid)

== Emor [ML? tanh)

0025

0020

Absolute error

0,005

0.000

Figure 3.16: ODE2-NN approximation using the boundary condition approach and
MLP approximation (left) and the error to the analytical solution (right)
of the third problem

The ODE45 method approximates the second order differential equation using a vari-
ation of the Runge-Kutta method. Figure [3.17]shows the approximation of the ODE2-
NN and the ODE45 method from MATLAB® on the interval [0,1] on 150 training
steps and the error of the respective methods in relation to the analytical solution of
the differential equation. Although the ODE2-NN error is very small, the ODE45 error

is much smaller in comparison.

071 — Anaiyticel Soluzion i #0040 — Error (Anelytical Soluton)
Numerical Sclution by ODEZ-NN BC (Sigmoid) / Error ODE2-NN BC (Sigmoid)
— - Numerical Sclution by ODEZ-NN BC (tanf) — — —-- Error ODE2-NN BC (&znh;
064 = ODE45 /’ . « « 1 Eror (ODEA3) =
s £
7 0.00030 / \.\
L o i \
. 200025 / \v\
7 N /
04 o E II X
2 / ¢ 000020 i Y
5 P 3 ST XN A \
03 / 2 7 \ 7 3 ! i
! \ \
/ < noots i % / \ i \
/ /) if \ ! \
02 / \ ! \ ; i
g / \ / \ i)
0.00010 / \ ! \ H \
/ o
/ .
\ Vo
01 ; \ \
/// 2.00005 o v
/ i ;
J At
// \‘\v, Vi k
00 L2 2.00000

Figure 3.17: ODE2-NN approximation using the boundary

00

condition approach and

ODE45 approximation (left) and the error to the analytical solution (right)

of the third problem

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3 Case Study as Proof of Concept 45

The ODE2-NN, which solves the differential equation numerically using the boundary
conditions, approximates the analytical solution with a very small error, despite the
fact that it does not use machine learning frameworks. The TF2-NN, implemented
in Python, which approximates the problem in the same way, is supported by the
TensorFlow package. Figure [3.18 shows how this network approximates the function
on the interval [0, 1]. The TF2-NN, executed with the activation functions sigmoid and
tanh, approximates the analytical function very accurately and with a very small error

using the boundary condition approach.

0.7+ — Analytical Solution
Numerical Solution by TF2-NN BC (Sigmoid) T
—+= Numerical Solution by TF2-N\ BC (tanh) T

— Error (Analytical Solution)
Error TF2-NN EC (Sigmoid;
—:- EMmor TF2-NN EC (tank)

00 02 04 06 08 Lo 0¢ 02 04 06 08 10

Figure 3.18: TF2-NN approximation using the boundary condition approach (left) and
the error to the analytical solution (right) of the third problem

All errors of all methods are summarized in table [3.10, The boundary condition ap-
proach on the interval [0, 1] results in lower errors for all approximations than the initial
condition approach on the interval [0, 4].

The ODE2-NN (sigmoid) hardly differs from the ODE2-NN (tanh), because both vari-
ants approximate the function with an average error and maximum error in the order
of 1074,

Method Average error Maximal error
ODE2-NN (sigmoid) 2.11-107% 3.88-107™
ODE2-NN (tanh) 1.49-107% 3.35-107%
Euler (explicit) 1.47-107% 2.00-107%
Euler (implicit) 4.39-107% 6.16 - 107
MLP (sigmoid) 9.66 - 1079 2.53-107%2
MLP (tanh) 1.92-107% 4.30-107%
ODE45 1.37-107% 4.22-107%
TF2-NN (sigmoid) 3.43-107% 7.25-107%
TF2-NN (tanh) 3.15-107% 5.97-107%

Table 3.10: Average and maximal approximation errors of the previous shown numeri-
cal methods of the third problem on the interval [0, 1]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3 Case Study as Proof of Concept 46

The trial solution based on the boundary condition approach, which is approximated
using the TensorFlow package, results in a lower error than the ODE2-NN. With an
error to the analytical function in the order of 1076, the TF2-NN approximates the
differential equation very accurately, independent of the selected activation function.

The Euler method also results in a smaller error on the interval [0,1] than in the
previous example. This is due to the fact, that the number of steps has remained
constant at 150. Therefore, 150 points are calculated on the interval [0,1] and the
step size is much smaller than in the previous example, where the interval [0, 4] was
discretized in 150 steps. Again, the MLP shows the worst performance and the ODE45
method the best. In this case the maximum and average error to the analytical function

is in the magnitude of 1077.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4 Applications in Biomedicine 47

4 Applications in Biomedicine

Up to now, general differential equations of first and second order have been discussed
lacking practical relevance. This chapter describes three application examples with
biomedical background, where two first order and one second order differential equa-
tion are considered. The respective neural networks with and without the help of
TensorFlow solve the differential equations using their respective trial solution. The
errors for the respective analytical function are used as criteria for the approximation
ability, as in the previous chapter.

The described approach in chapter is actually just defined for small intervals. Since
the biomedical applications are presented on larger intervals, the number of neurons of
the neural networks and the number of iterations must be increased to ensure a good

approximation.

4.1 Bateman Function

Pharmacokinetics describes the relationship between drug concentrations in the body
and time, whereby the absorption, distribution, metabolism and elimination of a drug
in the human body is studied, see [21].

This is based on a compartment model. A compartment is an element of an exchange
system which is homogeneous and delimited by itself. Thus, interactions of an exchange

system can be depicted, independent of physiology and anatomy.

A common example is the oral administration of drugs with subsequent absorption

in the gastrointestinal tract, which is defined by the differential equations

DA(t)

o = —kar Al), (4.1)
aX(t)

5 = ka Alt) = ke X(0), (4.2)
0E(t) _
o = ke X(0), (4.3)

and can be depicted as compartment model with 3 compartments, see figure [4.1}

D D

O O=20
Figure 4.1: Compartment model of drug resorption in the gastrointestinal tract, see
21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4 Applications in Biomedicine 48

The amount A(t) is the available amount of a drug for resorption at the resorption
site at time ¢t. D represents the administered dose and F'- D = A(0) the bioavailability,
which describes the actual absorbed dose entering the system. The amount X (¢) is the
amount of the drug at time t in the human body. It depends on the absorption rate
constant k, and the amount of the available drug A(t). Likewise, X () is dependent
on the already, by the urine, excreted amount of the drug F(t), weighted by the elim-

ination constant k..

The differential equation (4.1)) is similar to example 3 in chapter and its solu-

tion is the exponential function
A(t) = A(0) - ekt = . D . e ket (4.4)

Thus, the differential equation (4.2)) is

AX (1)

o =ky - F-D-e™ —k, - X(1), (4.5)

and the analytical solution of this differential equation is

k,EF'D

X(t) = ra— (e‘ket — e_k“t> . (4.6)

After oral administration of a drug and resorption in the gastrointestinal tract, it en-
ters the blood and is distributed throughout the human body. The measured drug
concentration in the blood plasma is proportional to the total amount of drug in the
organism and is described by the proportionality factor V.

Division of equation by the distribution volume V; results in the plasma concen-

tration

Ct) = m (et —ehet) (4.7)

called Bateman function. It is used in medicine to predict the time when the maxi-
mum drug concentration is reached or when the concentration falls below a minimum
threshold.

The ordinary differential equation of first order (4.5)) is approximated by the neural
networks ODE1-NN and TF1-NN. Since X (0) = 0, the trial solution, X;(t), according

to formula (2.38)), is

X,(t) = t- N(t,), (4.8)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4 Applications in Biomedicine 49

and division by the distribution volume yields in the approximation of the plasma

concentration of the drug as

X

Cy(t) 7

(4.9)

The example below shows the concentration of a drug in the blood plasma after intake
over a period of 25 hours. In this example F'- D = 300 mg, V; =25 L, k, = 0.5 h™*
and k. = 0.15 h™! are given.

The neural networks ODE1-NN and TF1-NN were trained on the interval [0, 25]. The
networks has still a three layer structure and the hidden layer consists 150 neurons.
Chapter [3| shows that an increasing number of iteration steps minimizes the value of
the cost function and thus the error of the approximation to the analytical solution.
Accordingly, the neural networks were iterated 10° times, whereby the trade-off between
accuracy and computational effort was not considered. The ODE1-NN and the TF1-
NN were executed with the activation functions sigmoid and tanh, whereby the learning
rate was set to 7 = 1073 in the case of sigmoid and to n = 10~* in the case of tanh.
The networks were trained on 150 (100%), 120 (80%) and 75 (50%) steps, in order to

determine if just a few data points are sufficient to obtain a precise approximation.

— Analytical Solution . — Eror |Analytical Solution)

ODEL-NN {Sigmcid) - 100 ¢ Error ODEL-N (Sigmoid)-100
=== ODEL-NN (tenh) - 100 0.020 i ~=~ Error ODEL-\N {tanh]-100
—-= ODEL-N Sigmeid) - 80 it —-= Ermor ODEL-\N (Sigmoid)-80
—-- ODEL-NN tanh) - 80 ! —-- Ermor ODEL-\H {tanh]-80
<=+ ODEL-NN [Sigmeid) - 50 <o Error ODEL-\N [Sigmoeid)-50
i - Ermor ODEL-\N {tanh]-50

++-- ODEL-NN [tanh) - 50

0015

0010

Absolute crror

Concentration [ma/L]
w

0,005

0,000

Time [h] Time [h]

—— Analytical Solution 0005 i —— Ermor [Analytical Solutior)
TF1-NN (Sigmoid) - 100 Error TFL-NN {Sigmaic}-100
=== TF1-NN (tanh) - 100 i ~=~- Emor TFL-NN itanh}-100
—= TFI-NN (Sigmoid) - 80
—:= TFI-NN {tanh) - 80 0004
wwee+ TFL-NN (Sigmoid) - 50
-+ TFI-NN (tanh) - 50

—-- Emor TFL-NN [Sigmoic)-80
—-- Emor TFL-NN itanh}-80
. Emor TFL-NN [Sigmoic)-50
- Emor TFL-NN {tanh}-50

Absolute error

Concentration [mg/L]

Tmeh; Time]

(b)

Figure 4.2: Approximation of the Bateman function (left) and the error to the analyt-
ical function (right) using the (a) ODE1-NN (b) TF1-NN

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4 Applications in Biomedicine 50

Figure [4.2| shows the respective approximations of the ODE1-NN and the TF1-NN and
the respective error to the analytical function . Both neural networks approximate
the solution of the differential equation very well. The TF1-NN results in a smaller
error than the ODE1-NN. The absolute average error and the maximum error of the
respective methods are given in table . The TF1-NN (tanh) approximates the
equation with a maximum error of 1.00 - 10~%* most accurately.

As given, a decrease in data points results in a decrease of accuracy to the analytical

solution, since the maximal errors become larger with fewer data points.

Training steps Average error Maximal error
Z2 100% 2.02-107% 3.05-107%
= §D 80% 2.02- 10~ 3.06 - 10~
8) 50% 1.23-1079 5.68 - 1070
g _ 100% 5.72 - 10~ 2.85-107%
[
== 80% 9.34-107% 4.07-1079
5= 50% 4791079 2.17 - 10792
= 100% 4.38-107% 1.70 - 10
z 3
g gﬂ 80% 1.34-107% 5.51 . 10704
=2 50% 1.10- 10798 4.48-1079
- 100% 3.05- 1079 1.00- 10
Z. o
- = 80% 1.10- 10 3.36 - 107
B 50% 1.08 - 10798 4.91-1079

Table 4.1: Average and maximal approximation errors of the Bateman function approx-
imation to the analytical solution using the ODE1-NN and the TF1-NN

In addition, the extrapolation capability of ODE1-NN was tested. The first 50% of the
data, meaning data in the interval [0,12.5], were used for training and the following
values in the interval [12.5,25] were predicted. The networks were trained on the first
interval on 75 training steps with 10° iterations. Figure shows this approximation
and the respective error to the analytical function.

Furthermore, the network structure was changed to might improve extrapolation. In-
stead of a network with only one hidden layer with 150 neurons, table also shows
the error values of a network with two hidden layers with 150 neurons each. It is clearly
evident that the network structure has a large impact on the extrapolation. However,

both structures are unsatisfactory and result in a significant error.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

4 Applications in Biomedicine 51

s — Analyticel Solution
7 T \ ODEL-NN (S gmoid) - 1 layer
"\ --- ODEL-NN (tanh) - 1 layer 30 == Em

—= ODEL-NN (S gmoid) - 2 layers - Em
5 —:- ODEL-KN (tanh) - 2 layers -
25
5

] 5 10 15 20 25 4 5 10 15 20 25

Figure 4.3: (left) Bateman function approximation using the ODE1-NN; trained with
the first 50% of data. The other 50% were predicted to test the extrapola-
tion capability of the network. (right) Approximation error of the network
to the analytical solution.

Method Number of layers Average error Maximal error
‘ ‘ 1 1.19. 10701 5.94-107%

ODEI-NN (sigmoid) 2 3.42 1002 1.91-10"%
1 6.05 - 1070 3.28

ODEI-NN (tanh) 9 775 . 1002 6.27 - 107

Table 4.2: Average and maximal approximation errors of the Bateman function approx-
imation to the analytical solution using the ODE1-NN for extrapolating the
last 50% of the values

4.2 Harmonic Oscillator

Oscillations are periodic and time dependent changes of variables within a system.
Oscillations are mostly applied in mechanics and physics but can also be a biological
phenomenon. They occur on the molecular level but also in the human body in general.
For example, hearing and speaking can be described by oscillations, as well as the
heartbeat and breathing using so-called simple harmonic motion. It is a special periodic
oscillation which lasts indefinitely without being inhibited by friction or other energy
dissipation, see [22] and [23].

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

F=—-kx

m

\ITTITZ .

Figure 4.4: Illustration of the spring pendulum, see [23]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4 Applications in Biomedicine 52

Based on a spring pendulum, see figure |4.4], a differential equation of second order is
deduced, which describes the simple harmonic motion. The force F' acts in the opposite

direction to the elongation z if a spring is extended. This is defined by the law of Hook
F=—-Fk-x, (4.10)

where k is a spring constant. If a mass m is attached to the extended spring and

released, the mass accelerates according to Newton’s second law of motion, given as

d*z .
F:m-a:m~@:m-x. (4.11)
The two forces are equal, following
m-i=-k-rei=-w-x (4.12)

with the frequency w = \/% of the spring pendulum.

The analytical function solving equation (4.12) is
x(t) = o - sin (wt + ¢y) , (4.13)
with the amplitude xy and the phase angle ¢.

The heart pumps blood through the body periodically and has to generate pressure,
which can be described by a simple harmonic motion. The pressure is generated ac-
cording to the principle of a pressure-suction pump. The heart muscle contracts and
oxygen-rich blood is pumped into the body. When the heart muscle relaxes, oxygen-
poor blood is sucked back into the ventricles, where it is oxygenated.

Therefore, blood pressure is always described by two values. During contraction, the
pressure is defined by the upper, systolic value, which is 120 mmHg in the optimum
case. When the heart relaxes, a pressure remains in order to keep the blood flowing.
The pressure is defined by the lower, diastolic value, with 80 mmHg as the optimum
value. The heart beats 72 times per minute on average, in other words with a frequency
of 1.2 Hz, see [11].

The following example shows the blood pressure within one second, where w = 27 -1.2,
the amplitude zy = 20 and the phase angle ¢y = 0.57.

The ordinary differential equation of second order is approximated by the ODE2-
NN and the TF2-NN. In chapter [3 two possible approaches are compared and it was
shown that the boundary condition approach results in a better approximation on the

interval [0, 1]. Therefore, the following example is approximated using this approach

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4 Applications in Biomedicine 53

and according to formula the trial solution is
xi(x) = 20(1 — t) + 20sin(1.2 - 27 + 0.57)t + t(1 — t) N (¢, p), (4.14)
since 2(0) = 20 and z(1) = 20sin(1.2 - 27 + 0.57).

The trial solutions of the neural networks and the analytical function are adjusted
by a value of 100 mmHg to be in the interval of the optimal average blood pressure
values.

The ODE2-NN and the TF2-NN are three layer neural networks with 100 neurons in
the hidden layer. They were trained and executed on the interval [0, 1] at 150 (100%),
120 (80%) and 75 (50%) training steps and iterated 10° times. The networks were
executed with the two known activation functions, where the learning rate was set to

n = 10~* for both cases.

Figure shows the respective approximations of the ODE2-NN and the TF2-NN
and the errors of these approximations with respect to the analytical function. Similar
to the application example above, the TF2-NN approximates the analytical solution
of the differential equation better than the ODE2-NN. Nevertheless, both approxima-
tions are accurate. The ODE2-NN (tanh) approximates the function not as well as the
ODE2-NN (sigmoid).

The respective absolute maximum and average errors for all different data size ex-
amples are shown in table The ODE2-NN (sigmoid) performs better than the
ODE2-NN (tanh) in all cases of data size. The networks executed with TensorFlow act

very similar, independent of the selected activation function.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4 Applications in Biomedicine 54

— Enmor (Analytical Solution)
Error ODE2-NN (Sigmoid)-100

06
-~ Eror ODEZ-NN (tanh)-100
us —:- Ermor ODE2-NN (Sigmoid)-80
== Emor ODE2-NN (tanh)-80
05) -+ Error ODE2-NN (Sigmoid)-50
ue- "o <+ Eror ODE2-NN (tanh)-50
04

Absolute crror

_ — Aralyticel Solution
GDEZ-NN (Sigmid) - 100
--- ODEZ-NN (zanh] - 100
g5~ —= ODE2-NN (Sigmcid) - 80
== ODEZ-NN (zanh] - 80
-+ ODE2-NN (Sigmeid) - 50
80- ... ODE2-NN (tanh}-50

Time [Sec] Time [sec

120- P — Erer (Anaytical Salutior)
006 7N Errar TF2-NN (Sigmoid-100
/ b -~ Emor TR-KN (tznh)-100
15+ / \ —-= Emcr TF2-NN (Sigmoid -80
005 // —-= Emor TF2-NN (tznh)-80
e Enar TF2-NN (Sigmoid}-50
ey / \ e EOT TF2-NN (t2nh)-50
i: 105 0.04 / \
£ /
H 100 - ; / \
z 5003 |
¢ 3 \
L < \
g o5- < / \
z 002 / \
o0 — Araltical soluon i \
TEZ-NN (Sigmoid) - 100 / \
-=- TF2-tiN [tanh) - 100 0a1 | \
85~ —-= TF2-NN [Sigmoid) - 80 l \
2N tank) - 80 1 \
2N {sigmoid) - 50 i
2NN (tanh) - 50 0.00
0C 02 04 0.6 08 Q 0.0 02 04 05 0.8 10
Time [sec Time [Sec]

(b)

Figure 4.5: Approximation of the blood pressure curve (left) and the error to the ana-
lytical function (right) using the (a) ODE2-NN (b) TF2-NN

Training steps Average error Maximal error

100% 2.25-107% 6.35- 1072
80% 2.34-107% 6.20 - 107
50% 2.39- 107 6.14 - 1072

(sigmoid)

100% 1.80- 107 5.21-107%
80% 2.21-107% 6.34-107%
50% 9.76 - 10792 3.12-107%

100% 2.40 - 10792 6.14 - 1072
80% 2.39 - 1072 6.14 - 10792
50% 2.38 - 10702 6.14 - 1070

TF2-NN |ODE2-NN [ODE2-NN
(tanh)

(sigmoid)

100% 2.39 - 107 6.15-107%2
80% 2.39 - 1072 6.14 - 1072
50% 2.38 10702 6.14 - 10702

TF2-NN
(tanh)

Table 4.3: Average and maximal approximation errors of the blood pressure curve ap-
proximation to the analytical solution using the ODE2-NN and the TF2-NN

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4 Applications in Biomedicine 55

Again, the extrapolation capability of the ODE2-NN was tested. Since the boundary
condition approach is defined on the interval [0, 1], the network was trained on this
interval on 75 training steps with 10° iterations and a prediction for the interval [1,1.5]
was made. Also, the structure of the network was changed. The ODE2-NN was trained
and executed with one and two hidden layers with a constant number of 100 neurons per
layer. Figure[d.6]shows the extrapolation and table[d.4] the error values to the analytical
function. The structural change barely changes the output of the extrapolation. Both

variants show a very poor extrapolation capability.

120 - — Ermor [Analytical Solution)

Error ODE2-NN (8
=== Efor ODE2-NN (t:
—-- Error ODE2-KN (i
100 - —:- Error ODE2-NN (t:

20 — Analytical Sclution
ODE2-KN (igmoid) - 1 layer ;
~=- ODE2-NN (tarh} - 1 layer ‘\\ ’/’ - o
—-- ODE2-NN (Sigmoid) - 2 layers % 7
0 == ODE2-NN (tanhi - 2 layers . 0

00 02 04 06 08 10 12 14 00 02 04 06 08 10 12 14
Time [Sec. Time [Sec]

Figure 4.6: (left) Blood pressure approximation using the ODE2-NN, trained on the
interval [0, 1] and the values on the interval [1,1.5] were predicted to test
the extrapolation capability of the network. (right) Approximation error
of the network to the analytical solution.

Method Number of layers Average error Maximal error
‘ ‘ 1 8.45 87.19

ODE2-NN (sigmoid) 9 7.95 85.28
1 10.76 106.1

ODE2-NN (tanh) 9 10.24 104.2

Table 4.4: Average and maximal approximation errors of the blood pressure approxima-
tion to the analytical solution using the ODE2-NN for extrapolating values
on the interval [1,1.5]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4 Applications in Biomedicine 56

4.3 Logistic Tumor Growth

This example focuses on the approximation of tumor growth on the basis of the logistic
equation, see [24].

A tumor is a benign or malignant new formation of body tissue, which is caused by
a defective regulation of cell growth. Malignant tumors are called cancer and grows
usually uncontrolled, see [25]. Nevertheless, the growth rate of many tumors stops at
a certain point. One reason is the lack of blood supply, because without blood vessels
to carry nutrients into tumor cells, the cells are not able to continue to divide or grow.
Another reason why a tumor cannot grow further in the affected tissue is due to spatial
reasons. Accordingly, tumor growth can be approximated by logistic growth.

The logistic equation is a popular equation, used in many other applications beside
medical engineering, like simulating the development in acquiring the mother tongue.
The concentration of tumor cells in a target organism is defined by the first order

ordinary differential equation

mgt(t) — EN() (- Néﬁ) , (4.15)

where k is the reproduction rate of the tumour and C' denotes the saturation threshold

which states the limited growth.
The analytical solution of the differential equation (4.15)) is

NoC

N(t) = 4.16
where Ny = N(0) denotes the initial condition.
Considering the Ehrilch ascites tumor in mice with a reproduction rate k = 1, a

capacity C' = 1 and an initial condition of Ny = 0.05, equation (4.15]) can be rewritten

as initial condition problem

ON(t)
S =N - (1= N(W), (4.17)
Ny = N(0) = 0.05, (4.18)

which can be approximated by the known neural networks.

In contrast to the examples before, this application has to be approached differently.
Empirical tests have shown that the network structure has to be changed to a 5-layer
network with 100, 50 and 25 neurons in the three hidden layers. Furthermore, instead
of 150 training steps, 1000 steps have to be used for calculation within the interval.

These changes lead to a significant increase of computational effort, nevertheless they

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4 Applications in Biomedicine o7

are necessary to provide a good approximation. The neural networks ODE1-NN and
TF1-NN were trained and tested on the interval [0, 6] using 10° iterations. The learning
rates have been set to 1075 in case of the sigmoid networks and to 107 for the tanh

networks.

Figure [£.7 shows the ODE1-NN and the TF1-NN approximations and their respective
errors to the analytical solution . Obviously, the ODE1-NN with the gradient
descent algorithm does not approximate the function as well as the TF1-NN with the
ADAM algorithm. The high number of training steps leads to a very accurate approx-
imation of the TensorFlow networks, independent of the selected activation function.
Again, the periodic behavior of the network is clearly shown. The ODE1-NN (sigmoid)
approximates the function quite poorly despite the parameter changes and the ODE1-
NN (tanh) results in an almost arbitrary approximation of the analytical function.
This demonstrates that network structure, network parameters and learning algorithm
have to be adapted individually for each application example.

Table [4.5] shows the average and the maximum error of the approximations. The max-
imum errors of the TF1-NN are in the magnitude of 107°. In contrast, the error of the
ODE1-NN (sigmoid) seems very large with an order of 1072. The ODE1-NN (tanh) is

not comparable to the others with these network settings.

Method Average error Maximal error
ODE1-NN (sigmoid) 7.64-107% 221109
ODEL-NN (tanh) 3.05 4.92
TF1-NN (sigmoid) 5.06 - 107% 1.23-107%
TFI-NN (tanh) 4.24-107% 9.47 100

Table 4.5: Average and maximal approximation errors of the logistic tumor growth
approximation to the analytical solution using the ODE1-NN and the TF1-
NN

Similar to the previous example, the extrapolation capability was evaluated. The
ODE1-NN was trained with 50 percent of the data, hence at 500 training steps on the
interval [0, 3], and the values on the interval [3,6] were predicted. As shown in figure
and table [£.6] the error to the analytical solution is significant and the prediction
of the data is unsatisfactory, especially for the ODE1-NN (tanh) extrapolation.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4 Applications in Biomedicine

o8

" — Analytical Solutior e 05 — Error (Anaytical Soluticn]
ODEL-NN (Sigmoid} e /./ y, Error ODEL-NN (Sigmoid)
—-= ODE1-NN (tanh) ” 1 . —-= Error ODEL-NN (tanh]
08- ®
04 ,/ AN
. Py y
g 5
= V; 3
Fos- # \
H /
£ i ¥ Y
I3 £ 3
£ 5 ¢ N,
i 2 4 <
£o04- 2 7 >
i 2 #
5 02
£
£ ~ i
025 Al]
o\
ot ! v
el {
00- 1\ S . !
./ |
e 20 Le=a
o 1 2 3 4 5 6 0 1 3 5 6
Time e
10 le~5
— Al soliog — — Emor (Analytical Solutior) ;
TFI-NN (Sigmoid) /// Eror TF-NN {Sigmaid) A
—-= TF1-N (tanh) ,// —-- Emor TF1-NN {tenh] { \'\
< I\ ¥
08 /] I i \\ i\
g I % / i \ A
o I Py ol Iy
[I i | i
5 7 | i I
g / I i I A i [
< 06 7 o2 i i [[
£ v 5 ! v Lo [A
H S 2 -~ % - Vo Voo
g] iy I i i i ! i
3 \ L :
§ // 84 i\ A (| Vo Wi i i
g // i T T i [N (] i
¢ 7 I W] b A
o Aand vy W
i Y L L i L4 i i
P 2 A i P ii v i
0. i I i] !
s AV il] i 1 I i
o7 g Rl i ! i !
=< Vi i i il 1l il i
T P -l ii ii i § i i
2 il i { i i i I i
0 1 3 4 5 6 2 1 2 3 4 5 6
Time Tine

(b)

Figure 4.7: Approximation of the logistic tumor growth (left) and the error to the
analytical function (right) using the (a) ODE1-NN (b) TF1-NN

Maximal error

4.46 - 107
6.74

Method

ODEI1-NN (sigmoid)
ODEI1-NN (tanh)

Average error

1.13-107%
2.34

Table 4.6: Average and maximal approximation errors of the logistic tumor growth ap-
proximation to the analytical solution using the ODE1-NN for extrapolating
the last 50% of the values

— Eror (Analytical Solution]
Error ODEL-NN {Sigmoid) s
—-- Eor ODEL-NN (tanh) £ N\

S5 — Analyticel Solution
/ >y ODEL-NN (Sigmoid)
! .= ODEL-NN (tann)
\

i ;
/ T !/ %,

»

Tumer Concentration [%]1
Tumor Concentration [%]

Time Time

Figure 4.8: (left) Logistic tumor growth approximation using the ODE1-NN, trained
with the first 50% of data. The other 50% were predicted to test the
extrapolation capability of the network. (right) Approximation error of the
network to the analytical solution.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5 Conclusion and Outlook 59

5 Conclusion and Outlook

Machine learning and neural networks are state of the art in data modelling and big
data. Neural networks are used in many ways including to approximate solutions of
differential equations, as described in this thesis. For this purpose, neural networks
were implemented and evaluated using different examples. Among academic examples

applications in biomedicine were in the focus.

First of all, the cost functions of the implemented networks ODE1-NN and ODE2-NN
were studied in chapter and chapter [3.2.1 Hereby, simple differential equations
of first and second order were solved numerically with the ODE1-NN and ODE2-NN
respectively. The errors of these approximations were compared with the respective
analytical solutions. It was shown, that the ODE1-NN and the ODE2-NN approximate
the functions in the training interval very precise, with a minimal error.

Furthermore, the ODE1-NN and the ODE2-NN were tested on a larger interval than
the training interval, in order to test the approximation ability of the networks. The
results from chapter [2.4] were clearly confirmed since the proposed neural networks
cannot extrapolate and act more or less arbitrarily outside the training interval.
Additionally, the costs of the networks were monitored in each iteration step. For sim-
ple functions a cost value close to zero is reached after a few iteration steps. Thus, in
relation to the computational effort, the results suggest that, depending on the exam-
ple, about 2500-5000 iterations are sufficient to reach the best possible approximation.
Considering more complex differential equations, a higher number of iterations is nec-
essary.

Another comparison focused on the number of training steps and the resulting costs.
For this purpose, the ODE1-NN and ODE2-NN were trained on different numbers of
training steps within the same training interval and the respective costs were evaluated.
Chapter [3.1.3 and chapter [3.2.3| show, that the networks provide a good approximation
even with a few number of training steps and thus, a lot of computational effort can
be saved.

The activation function of a network determines the output of a neuron. Thus, differ-
ent activation functions lead to different results. In this thesis the activation functions
sigmoid and hyperbolic tangent were compared. The results have shown that it de-
pends on the differential equation which activation functions achieves better results.

However, both are very similar and differ only in details.

After studying simple differential equations and the cost functions of the neural net-
works, the ODE1-NN and the ODE2-NN were compared with other numerical methods,
as discussed in chapter|3.1.4/and chapter|3.2.4. In each case, the absolute error relative

and the analytical solutions of the differential equations were compared.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5 Conclusion and Outlook 60

It was shown, that the learning rate 7 is crucial for the performance of the networks,
since chosen too low, the network learns too fast. For each function the learning rate
has to be adjusted individually.

The implemented networks were compared with the explicit and implicit Euler method.
In general, the ODE1-NN and the ODE2-NN approximate more precisely than the Eu-
ler method. Nevertheless, the approximations, and thus the errors of both methods,
are nearly similar on the tested intervals.

Furthermore, the neural networks were compared with an MLP. It was shown, that
the networks performs better than the MLP. However, it should be noted, that for
comparison purposes all parameters of the MLP, are inherited from the ODE1-NN and
ODE2-NN; respectively.

Additionally, the two networks were compared with the ODE45 solver provided in
MATLAB?®. The respective errors of the neural networks seem large compared to the
very small errors of the ODE45.

The implementation of the ODE1-NN and ODE2-NN were deliberately kept very sim-
ple and machine learning frameworks were avoided. In order to compare, whether
an implementation with this approach leads to a better result, two networks were
implemented in Python, which use the same concept, but apply TensorFlow. These
implemented networks TF1-NN and TF2-NN show better approximation capabilities
and result in a lower error. This proves that the TensorFlow package is a good alter-
native for the implementation of the neural networks.

The investigated differential equations were given by Lagaris et al. in [3]. The solution
of the first order differential equation of the second problem from chapter [3.1.4] and
the second order differential equation of the third problem from chapter are ex-
pressed by the same analytical function. Both differential equations are solved on the
same interval by their respective networks using their trial solution, which considers
the initial conditions of the differential equations. Thus, the two networks ODE1-NN
and ODE2-NN were compared and it was determined whether one of the two methods
approximates the function better. Both neural networks approximate the function with

an error of the same magnitude.

The ODE2-NN which solves differential equations of second order can be performed
by two different trial solutions. The first one is based on the initial conditions and
the second one on the boundary conditions of the differential equation. The boundary
condition approach is defined on the interval [0,1]. The same differential equation was
approximated using both approaches in chapter [3.2.4] and it was examined, whether
the smaller interval of the boundary condition approach reduces the error to the an-
alytical solution, compared to the initial condition approach. Clearly, the boundary
condition approach leads to a smaller approximation error. Therefore, it is better to

test functions on a smaller interval.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5 Conclusion and Outlook 61

As shown in chapter [4] the presented neural networks approximate differential equa-
tions with biological background very well. The TensorFlow models approximate the
functions better than the ODE1-NN or the ODE2-NN, because of the ADAM learning
algorithm. Also, the extrapolation capabilities of the given networks were evaluated,
whereby the approximation is inaccurate outside the training interval. The addition of
a further hidden layer result in better extrapolation capabilities.

In particular, the third example showed that each application has to be examined
individually, since the parameter settings of the previous two examples could not be

adopted.

Although other numerical methods provide almost the same approximation, the ad-
vantage of the neural network approach is, that it is a general method for solving

differential equations.

In this thesis, only ordinary differential equations of first and second order were dis-
cussed. The method is also applicable to higher orders and partial differential equa-
tions, as discussed in [3].

Especially in biomedical applications, systems of differential equations or partial dif-
ferential equations are used to represent the relationship between various parameters.
Therefore, it would be interesting to investigate further research concerning these two
types. Furthermore, the resulting knowledge could be enhanced by studying other

methods of implementation, for instance the machine learning framework PyTorch.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Figures

62

List of Figures

II.1 [terative calculation of function values for the solution of first order

[ordinary differential equations with the explicit Euler method| 4
[2.1 Schematic structure of a biological neuron| 6
[2.2 Simple structure of an artificial neuron|o 7
(2.3 Illustration of a feedtorward neural network with 3 layers| 8
[2.4 Schematic diagram showing a simple neuron influenced by a bias unit |. 9
2.5 Illustration of different activation functionsl 11
[2.6 Illustration of the Gradient Descent algorithm| 13
[2.7 Approximation of the sine function by a polynomial of degree 1 (left) ,2 |

| (middle) and 15 (right)| 17

[2.8 Approximation of the output of one (left) and two (right) hidden neurons| 18

[2.9 Approximation of a function by a step function| 18
(3.1 ODEI1-NN approximation (right) and the respective error to the analyti-
| cal function (left) for (a) linear function (b) sine function (c¢) exponential
[functionl L 24
(3.2 ODEI-NN and Euler method approximation (left) and the error to the |
| analytical solution (right) of the first problem| 29
(3.3 ODEI1-NN and MLP approximation (left) and the error to the analytical |
| solution (right) of the first problem| 29
(3.4 ODEI-NN and ODE45 approximation (left) and the error to the ana- |
| lytical solution (right) of the first problem| 30
(3.5 TF1-NN approximation (left) and the error to the analytical solution |
| (right) of the first problem| 30
(3.6 ODEI-NN and Euler method approximation (left) and the error to the |
| analytical solution (right) of the second problem|. 32
(3.7 ODEI-NN and MLP approximation (left) and the error to the analytical |
| solution (right) of the second problem|. 33
(3.8 ODEI1-NN and ODE45 approximation (left) and the error to the ana- |
| lytical solution (right) of the second problem|. 33
(3.9 TFI-NN approximation (left) and the error to the analytical solution |
| (right) of the second problem| 34
[3.10 ODE2-NN approximations of the initial condition and the boundary
condition approach (right) and the respective error to the analytical
function (left) for (a) quadratic function (b) cosine function| 36
[3.11 ODE2-NN approximation using the initial condition approach and Fuler
| method (left) and the error to the analytical solution (right) of the third
| problem| 40
[3.12 ODE2-NN approximation using the initial condition approach and MLP
| approximation (left) and the error to the analytical solution (right) of
[the third problem| o o 41
[3.13 ODE2-NN approximation using the initial condition approach and OD k45
| approximation (left) and the error to the analytical solution (right) of
| the third problem| o oo 41
[3.14 TF2-NN approximation using the initial condition approach (left) and

the error to the analytical solution (right) of the third problem|

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Figures 63

[3.15 ODE2-NN approximation using the boundary condition approach and |

Euler method (left) and the error to the analytical solution (right) of |

the third problem| oo oo 43

[3.16 ODE2-NN approximation using the boundary condition approach and |

MLP approximation (left) and the error to the analytical solution (right) |

of the third problem| 44

[3.17 ODE2-NN approximation using the boundary condition approach and |

ODE45 approximation (left) and the error to the analytical solution |

right) of the third problem| 44
[3.18 TF2-NN approximation using the boundary condition approach (left) |
| and the error to the analytical solution (right) of the third problem| . . 45
[4.1 Compartment model of drug resorption in the gastrointestinal tract| . . 47
4.2 Approximation of the Bateman function (left) and the error to the an- |
| alytical function (right) using the (a) ODEI-NN (b) TFI-NN| 49
4.3 (left) Bateman function approximation using the ODEI-NN, trained
| with the first 50% of data. The other 50% were predicted to test the
| extrapolation capability of the network. (right) Approximation error of |
[the network to the analytical solution.| 51
[4.4 lIllustration of the spring pendulum| o1
4.5 Approximation of the blood pressure curve (left) and the error to the |
| analytical function (right) using the (a) ODE2-NN (b) TF2-NN| 54
4.6 (left) Blood pressure approximation using the ODE2-NN| trained on the
interval [0, 1] and the values on the interval [1, 1.5] were predicted to test
the extrapolation capability of the network. (right) Approximation error
| of the network to the analytical solution.,| 55
4.7 Approximation of the logistic tumor growth (left) and the error to the |
| anayltical function (right) using the (a) ODEI-NN (b) TF1-NN|] 58
4.8 (left) Logistic tumor growth approximation using the ODE1-NN] trained

with the first 50% of data. The other 50% were predicted to test the

extrapolation capability of the network. (right) Approximation error of |

the network to the analytical solution.| 58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

List of Tables

64

List of Tables

B

Illustration of three initial condition examples and their respective an-

alytical solutions W(z). The solutions of the different differential equa-

tions are approximated by the ODEI-NN with the respective trial so-

lutions W,, trained on the interval [; and executed on the interval I..

B2

Costs of the ODE1-NN approximation in various iteration steps for the

linear function, sine function and exponential function|.

[3.3

Costs at various numbers of training steps of the ODE1-NN for the linear

function, sine function and exponential function|

B4

Average and maximal approximation errors of the previous shown nu-

merical methods of the first problem|

[3.5

Average and maximal approximation errors of the previous shown nu-

merical methods of the second problem|

[3.6

[llustration ot two initial condition examples and boundary condition

examples and their respective analytical solutions W(x). The solutions

of the different differential equations are approximated by the ODk2-

NN with the respective trial solutions V,(/C') and W;(BC), trained on

the interval [, and executed on the interval [..|

[3.7

Costs of the ODE2-NN approximation of the initial condition and the

boundary condition approach in various iteration steps for the quadratic

| function and cosine functionlo

[3.8

Costs at various numbers of training steps of the ODE2-NN for the

quadratic function, cosine function|

[3.9

Average and maximal approximation errors of the previous shown nu-

merical methods of the third problem on the interval [0,4]|

B.10

Average and maximal approximation errors of the previous shown nu-

merical methods of the third problem on the interval [0,1]]

A1

Average and maximal approximation errors of the Bateman function

approximation to the analytical solution using the ODE1-NN and the

TEI-NNL .o

2

Average and maximal approximation errors of the Bateman function

approximation to the analytical solution using the ODEI-NN for ex-

trapolating the last 50% of the values|

3

Average and maximal approximation errors of the blood pressure curve

approximation to the analytical solution using the ODE2-NN and the

TE2-NNI - o

a}

Average and maximal approximation errors of the blood pressure approx-

imation to the analytical solution using the ODE2-NN for extrapolating

values on the interval [1,1.5] L

5

Average and maximal approximation errors ot the logistic tumor growth

approximation to the analytical solution using the ODEI-NN and the

TEI-NNL o

6

Average and maximal approximation errors ot the logistic tumor growth

approximation to the analytical solution using the ODE1-NN for extrap-

olating the last 50% of the values|,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Bibliography 65

Bibliography

[1] W.E. Schiesser. Differential Equation Analysis in Biomedical Science and Engi-
neering: Ordinary Differential Equation Applications with R. Wiley, 2014.

[2] M. Ruano and A. Ruano. On the Use of Artificial Neural Networks for Biomedical
Applications. 2012.

[3] I. E. Lagaris, A. Likas, and D. 1. Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. 1998.

[4] K.J. Astrom, H. Elmqvist, D. Ab, and S. Mattsson. Evolution of continuous-time
modeling and simulation. Proceedings of the 12th European Simulation Multicon-
ference, 1998.

[5] D. Imboden and S. Koch. Systemanalyse: Einfihrung in die mathematische Mod-
ellierung natirlicher Systeme. Springer Berlin Heidelberg, 2013.

[6] F.Hofbauer. Vorlesungsskript zu Differentialgleichungen im Uberblick. Universitit
Wien, WiSe2015.

[7] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics Informed Deep Learning
(Part 1): Data-driven Solutions of Nonlinear Partial Differential Equations. 2017.

[8] H. Schichl. Vorlesungsskript zu Numerik 1. Universitit Wien, SS2008/09.

[9] S. Gerlach. Computerphysik: FEinfihrung, Beispiele und Anwendungen. Springer
Berlin Heidelberg, 2016.

[10] W. Romisch and T. Zeugmann. Mathematical Analysis and the Mathematics of
Computation. Springer International Publishing, 2016.

[11] K.T. Patton. Anatomy and Physiology - E-Book. Elsevier Health Sciences, 2015.
[12] M.A. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.
[13] 1. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[14] A. Amini, A. Soleimany, S. Karaman, and D. Rus. Spatial Uncertainty Sampling
for End-to-End Control. 2018.

[15] Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient BackProp. Springer, 1998.
[16] D. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2014.
[17] H. Lohninger. Teach/Me Data Analysis. Springer-Verlag, 1999.

[18] J. Brownlee. Master Machine Learning Algorithms: Discover How They Work and
Implement Them From Scratch. Machine Learning Mastery, 2016.

[19] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathe-
matics of Control, Signals, and Systems (MCSS), 1989.

[20] M. Leshno, V. Ya. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function.
1993.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Bibliography 66

[21] R. Karch. Computersimulation in der Medizin. 2003.

[22] G. Karreman and C. Prood. Heart muscle contraction oscillation. International
Journal of Bio-Medical Computing, 1995.

[23] M. Erdmann. Experimentalphysik 3: Schwingungen, Wellen, Kérperdrehung
Physik Denken. Springer Berlin Heidelberg, 2010.

[24] U. For and A. Marciniak-Czochra. Logistic equation in tumour growth modelling.
2003.

[25] N. Binder. Vorlesungsskript zu Physiologie und Grundlagen der Pathologie. TU
Wien, S52017.

[26] K. Baluka Hein. Data Analysis and Machine Learning: Using Neural networks to
solve ODEs and PDEs. Department of Informatics, University of Oslo, Norway,
2018.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

© 00 N O s W N

I N T e e e e e T e
= O © 00 N O U ks W N = O

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Appendix A: ODE1-NN

Appendix

A ODE1-NN
The code was developed with the help of [26].

import autograd.numpy as np

from autograd import grad, elementwise_grad
import autograd .numpy.random as npr

from matplotlib import pyplot as plt

Routine to solve d_psy(z)/d_xz = f(z, psy), psy(0)=A, in the form
= psy(x) = A + zxN(z,w)
where N(z,w) is the output of the neural network.

changeable parameters

a = —1 # lower learning boundary
b =1 # upper learning boundary
a_extra = —3 # lower test boundary

b_extra = 3 # upper test boundary
bound = 0 # boundary condition
steps__train = 150 # number of steps
steps__test= 150

num_ iter = 10000 # number of iterations
num_ hidden neurons = [10] # Define the number of mneurons at each hidden
layer

def func(x,psy): # differential equation, d_psy(z)/d_x = f(z, psy)
return np.cos(x)

def func_analytic(x): # analytical solution
return np.sin(x)

choose activation function = 1
while choose activation function <=2:
def activation function(z):

if choose activation function = 1:
return 1/(1 + np.exp(—z)) #sigmoid
elif choose activation function — 2:

return np.tanh(z)
def neural network (params, x):
N_hidden = np.size (params) — 1 # N_hidden is the number of hidden layers

num_values = np.size (x) # Assumes input = being an one—dimensional array
x = x.reshape(—1, num_ values)

x_input = x # Input layer does mothing to the input z
X_ prev = X_input

Hidden layers:
for 1 in range(N_hidden):

w__hidden = params|[1]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

54
55

56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
7

78
79

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

104
105
106
107

Appendix A: ODE1-NN

x_prev = np.concatenate ((np.ones((1,num_values)), x_prev), axis = 0) #
Add a row of ones to include bias

z__hidden = np.matmul(w_hidden, x_prev)
x_hidden = activation_function (z_hidden)

x_prev = x_ hidden

Output layer:
w_output = params|—1]

x_prev = np.concatenate ((np.ones((1,num_values)), x_prev), axis = 0) #
Include bias

z__output = np.matmul (w_output, x_prev)
x_output = z_ output

return x_ output

def g_trial(x,params):
return bound + x*neural network (params, x)

def cost_function (P, x):

g t = g_trial(x,P) # FEvaluate the trial function with the current
parameters P

d g t = elementwise_grad(g_trial ,0) (x,P) # Find the derivative w.r.t z of
the trial function

The right side of the ODE
function = func(x,g_t)

err_sqr = (d_g t — function)*x*2
cost_sum = np.sum(err_sqr)

return cost_sum / np.size (err_sqr)

def solve ode_ deep_ neural network(x, num_neurons, num_iter, lmb, cost):
N_hidden = np. size (num_ neurons)

Set up initial weights and biases

Initialize the list of parameters:
P = [None]*(N_hidden + 1) # + [to include the output layer

P[0] = npr.randn(num_neurons[0], 2)

for 1 in range(1,N_hidden):

P[l] = npr.randn(num_neurons|[l], num_neurons[l—1] + 1) # +1 to include
bias

For the output layer
P[—1] = npr.randn(l, num neurons[—1] + 1) # +1 since bias is included

print (’Initial cost: %g’%cost_function(P, x))

Start finding the optimal weights using gradient descent
cost__function_grad = grad(cost_function ,0)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

135
136
137

139
140
141
142
143
144
145
146
147
148
149
150
151

152
153
154

156
157
158
159

161
162
163
164

Appendix A: ODE1-NN

for i in range(num_ iter):
cost_grad = cost_function_grad (P, x)

cost .append (cost__function (P, x))

for 1 in range(N_hidden+1):
P[l] =P[1l] — lmb % cost_grad[l]

print (’Final cost: %g’%cost_function (P, x))
return P

Solve the given problem

npr.seed (15)

x = np.linspace(a, b, steps_train)

x_extra = np.linspace (a_extra, b_extra, steps_test)
hidden_neurons = np.array (num_hidden_neurons)
if choose activation function =— 1:

print (’Sigmoid:)

cost_sigmoid = []

learning_rate_sigmoid = le—2

P = solve_ode_deep_neural network(x, hidden_neurons, num_ iter,
learning_rate_sigmoid ,cost_sigmoid)

res_sigmoid = g_trial(x, P)

res__analytical = func_analytic(x_extra)

res_analytical2 = func_analytic(x)

res__extra_sigmoid = g_trial(x_extra, P) # extrapolation
diff sigmoid_train = abs(res_sigmoid — res_analytical2)
diff sigmoid extra = abs(res_analytical— res_extra_sigmoid)
print (diff_sigmoid_train)

print (diff _sigmoid__extra)

print (cost_sigmoid)

if choose activation function = 2:

print (’tanh:’)

cost__tanh = []

learning_ rate_tanh = le—2

P = solve_ode_deep_neural network(x, hidden_neurons, num_ iter,
learning rate_tanh, cost_tanh)

res_tanh = g trial(x, P)

res_analytical = func_analytic(x_extra)

res_analytical2 = func_analytic(x)

res_extra_tanh = g_trial(x_extra, P) # extrapolation
diff_tanh_train=abs(res_tanh — res_analytical2)

diff tanh extra = abs(res_analytical — res_extra_tanh)

print (diff tanh_train)
print (diff tanh extra)
print (cost_ tanh)

choose activation function += 1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

165
166
167
168

169
170
171
172

173
174
175
176
177
178

180
181
182
183
184
185
186

187

188
189
190
191
192
193
194
195

197

198
199
200
201
202
203
204

Appendix A: ODE1-NN

Plot the results

f=plt.figure (1, figsize=(10, 10))

#plt. title (’Performance of neural network solving an ODE compared to the
analytical solution ’)

plt.plot (x_extra, res_analytical, color=’black’)

plt.plot (x_extra, res_extra_sigmoid[0, :],color=’orange’, linestyle="--")

plt.plot (x_extra, res_extra_tanh[0, :], color=’green’, linestyle="-.")

plt.legend ([?Analytical Solution’,’Numerical Solution by ODE-NN (Sigmoid)
> ’Numerical Solution by ODE-NN (tanh)’])

plt.xlabel (’x?)

plt . ylabel (?\u03A8(x)’)

plt.axvline (x=a_extra, color=’grey’, alpha=0.3)

plt. axvline(x-a color=’grey?)

plt .axvspan (a , alpha=0.3, color=’grey?’)

plt. axvline(x—b color=’grey’)

plt.axvline (x=b_extra, color=’grey’, alpha=0.3)

g=plt.figure (2, figsize=(10, 10))

#plt. title (’Costs compared to the number of iterations ’)

plt.xlabel (’Number of Iterations’)

plt.ylabel (’Cost?)

plt.plot (np.linspace (0,num_iter ,num_iter), cost_sigmoid, color=’orange’,

linestyle="--")
plt . plot (np.linspace (0,num_iter ,num__iter), cost_tanh, color=’green’,
linestyle="-.")

plt.legend ([’Costs (Sigmoid) ’,’Costs (tanh)’])

h = plt.figure (3, figsize=(10, 10))

#plt. title ("Error between analytical solution and ODE-NN’)
plt . xlabel (’x?)

plt.ylabel (’Absolute error’)

plt.plot (x_extra,np.zeros(len(x_extra)), color=’black’)

plt.plot (x_extra, diff sigmoid_extra[0, :], color=’orange’, linestyle="--
||)
plt . plot (x_extra, diff tanh_extra[0, :], color=’green’, linestyle="-.")

plt.legend ([’Error (Analytical Solution)’,’Error (Sigmoid)’,’Error (tanh)
1)

plt.axvline

plt.axvline

(x=a__extra, color=’grey’, alpha=0.3)
(x
plt .axvspan (
(
(x=

a, color:’grey’)
a, b, alpha=0.3, color=’grey’)
X—b color=’grey’)
_extra, color=’grey’, alpha=0.3)

plt.axvline
plt.axvline

plt .show ()

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[N

© 0w N O

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Appendix B: Euler Method

B Euler Method

import numpy as np

from matplotlib import pyplot as plt

def f1(x, psy):

return (x**3 + 2xx + x**2x((1 + 3xx**2) / (1 + x + x*x3)))—psy*(x + (1 +

3xxxx2) /(1 + x + x*%3))

def f2(x, psy):
return np.exp(—x/5)*np.cos(x)—1/5xpsy
xList =[]

yList = []

def Euler(f, xa, xb, ya, n):
h = (xb — xa) / float(n)

X = xa

y = Yya

for i in range(n):
yList .append (y)
xList .append(x)
yoA=h o £(x, y)
x +=h

Euler (f1, 0, 2, 1, 150) #Euler(f2,
print (yList)

plt.plot (xList , yList)

plt .show ()

0, 4, 0, 150)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

© 0 N9 A W N

e e S e
Ut R W N = O

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

48

49

51

Appendix C: MLP

C MLP

import autograd.numpy as np

from autograd import grad, elementwise grad
import autograd .numpy.random as npr

from matplotlib import pyplot as plt

changeable parameters

a =0 # lower learning boundary
b = 2 # upper learning boundary
a_extra = 0 # lower test boundary

b_extra = 2 # upper test boundary
bound = 1 # boundary condition
steps_train = 150 # number of steps
steps__test= 150

num__iter = 10000 # number of iterations
num_ hidden_neurons = [10] # Define the number of mneurons at each hidden
layer

def func_analytic(x): # analytical solution
return (np.exp((—xx*x2)/2)) / (1 + x + x*%3) + x*%2

choose activation function MLP =1

while choose activation function MLP <=2:
def activation_function(z):

if choose activation function MLP =— 1:
return 1/(1 + np.exp(—z)) #sigmoid

elif choose activation function MLP — 2:
return np.tanh(z)

def neural_network_MLP (params, x):
N_hidden = np.size (params) — 1 # N_hidden is the number of hidden layers

num_ values = np.size (x) # Assumes input z being an one—dimensional array
x = x.reshape(—1, num_ values)

x_input = x # Input layer does mothing to the input z
X_ prev = x_ input

Hidden layers:
for 1 in range(N_hidden):

w__hidden = params|[1]

x_prev = np.concatenate ((np.ones ((1,num values)), x prev), axis = 0) #
Add a row of ones to include bias

z_hidden = np.matmul(w_hidden, x_prev)
x__hidden = activation_function (z_hidden)

x__prev = x_ hidden

Output layer:
w__output = params|[—1]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76
s
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

108
109
110
111

Appendix C: MLP

x_prev = np.concatenate ((np.ones ((1,num_values)), x_prev), axis = 0) #
Include bias

z__output = np.matmul (w_output, x_prev)
x_output = z_ output

return x_ output

def g trial MLP (x,params):
return neural_network_MLP (params, x)

def cost_function_ MLP (P, x):
g t = g trial MLP(x,P)

err_sqr = (g_t — func_analytic(x))*%2
cost_sum = np.sum(err_sqr)

return cost_sum / np.size (err_sqr)

def solve_ode_deep_neural_network_MLP (x, num_neurons, num_iter, lmb, cost

):
N_hidden = np.size (num_ neurons)
Set up initial weights and biases

Initialize the list of parameters:
P = [None]*(N_hidden + 1) # + 1 to include the output layer

P[0] = npr.randn(num_neurons[0], 2)

for 1 in range(1,N_hidden):

P[1] = npr.randn(num neurons[l], num neurons[l—1] + 1) # +I to include
bias

For the output layer
P[—1] = npr.randn (1, num_neurons[—1] + 1) # +1 since bias is included

print (’Initial cost: %g’%cost_function_ MLP (P, x))

Start finding the optimal weights using gradient descent
cost__function_grad = grad (cost_function_MLP ,0)

for i in range(num iter):
cost__grad = cost_function_grad (P, x)

cost .append (cost_ function MLP (P, x))

for 1 in range(N_hidden+1):
P[1] =P[1] — Imb % cost_grad[l]

print (’Final cost: %g’%cost_function_ MLP (P, x))
return P

Solve the given problem

npr.seed (15)

x = np.linspace(a, b, steps_train)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

112
113
114
115
116
117
118
119
120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

138
139
140
141
142
143
144

145

146
147
148
149
150
151
152
153
154
155
156
157
158

159

161
162
163

Appendix C: MLP

x_extra = np.linspace (a_extra, b_extra, steps_test)
hidden_neurons = np.array (num_hidden_neurons)

if choose activation function MLP =— 1:

print (’Sigmoid:’)

cost__sigmoid = []

learning_rate_sigmoid = le—2

P = solve_ode_deep_ neural network MLP(x, hidden_neurons, num_ iter,
learning_rate_sigmoid , cost_sigmoid)

res_sigmoid_ MLP = g_trial MLP (x, P)

res_analytical = func_analytic(x_extra)

res__analytical2 = func_analytic(x)

res_extra_sigmoid_MLP = g_trial MLP (x_extra, P) # extrapolation

diff _sigmoid_train = abs(res_sigmoid MLP — res_analytical2)

diff sigmoid_extra_ MLP = abs(res_analytical— res_extra_ sigmoid_ MLP)
print (diff sigmoid_train)

print (diff _sigmoid__extra_ MLP)

print (cost_sigmoid)

if choose activation function MLP =— 2:

print (’tanh:?)

cost__tanh = []

learning_rate_tanh = le—3

P = solve_ode_deep_neural_network_ MLP (x, hidden_neurons, num_ iter,
learning rate_tanh, cost_tanh)

res_tanh MLP = g trial MLP (x, P)

res_analytical = func_analytic(x_extra)

res_analytical2 = func_analytic(x)

res_extra_tanh MLP = g trial MLP(x_extra, P) # exztrapolation

print (’Max absolute difference: %g’ % np.max(np.abs(res_tanh MLP —
res__analytical2)))

print (’Max absolute difference: %g’ % np.max(np.abs(res_extra_tanh_MLP —
res_analytical)))

diff tanh train=abs(res_tanh MLP — res_ analytical2)

diff tanh_extra_ MLP = abs(res_analytical — res_extra_tanh MLP)
print (diff _tanh_train)

print (diff _tanh_extra_ MLP)

print (cost__tanh)

choose activation function MLP += 1
Plot the results

f=plt.figure (1, figsize=(10, 10))
plt.plot (x_extra, res_amnalytical, color=’black’)

plt.plot (x_extra, res_extra_sigmoid MLP[0, :],color=’orange’, linestyle="
__u)
plt . plot (x_extra, res_extra_tanh_ MLP[0, :], color=’green’, linestyle="-."

)

plt.legend ([’Analytical Solution’,’Numerical Solution by MLP (Sigmoid)’,’
Numerical Solution by MLP (tanh)’])

plt.xlabel(’x?)

plt . ylabel (’\u03A8(x)’)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

164
165
166
167
168

170
171
172
173
174
175
176

178

179

Appendix C: MLP

g=plt.figure (2, figsize=(10, 10))

plt.xlabel (’Number of Iterations’)

plt.ylabel(’Cost?)

plt.plot (np.linspace (0,num__iter ,num__iter), cost_sigmoid, color=’orange’,

linestyle="--")
plt.plot (np.linspace (0,num_iter ,num_iter), cost_tanh, color=’green’,
linestyle="-.")

plt.legend ([’Costs (Sigmoid) ’,’Costs (tanh)’])

h = plt.figure (3, figsize=(10, 10))

plt.xlabel (’x?)

plt.ylabel (’Absolute error’)

plt.plot (x_extra,np.zeros(len(x_extra)), color=’black’)

plt.plot (x_extra, diff_sigmoid_extra_ MLP [0, :], color=’orange’, linestyle
)

plt.plot (x_extra, diff tanh_extra_ MLP[0, :], color=’green’, linestyle="-.

)

plt.legend ([’Error (Analytical Solution)’,’Error (Sigmoid)’,’Error (tanh)

1)

plt.show ()

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

© 0 N 3 os W N

e T T T
N OOk W N = O

18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Appendix D: TF1-NN

D TF1-NN

The code was developed with the help of [26].

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

Routine to solve d_psy(z)/d_xz = f(z, psy), psy(0)=A, in the form

psy(x) = A + zxN(z,w)
where N(z,w) is the output of the neural network.

changeable parameters

a =0 # lower boundary

b = 2 # upper boundary

bound = 1 # boundary condition
steps = 150 # number of steps

num__iter = 10000 # number of iterations

num_ hidden_neurons = [10] # Define the number of meurons at each hidden
layer

learning_rate = le—3

choose__activation_ function = 4 # 1 = Sigmoid, 4 = tanh

choose_optimizer = 2 # 1= GradientDescent, 2= AdamOptimizer

def func(x,psy): # differential equation, d_psy(z)/d_x = f(z, psy)
return (x**3 + 2*xx + x**2x((1 + 3xx*%2) / (1 + x + x*%3)))—psy=*(x + (1 +
3xxxx2) /(1 + x + x%%3))

def func_analytic(x): # analytical solution
return (np.exp((—xx*x%2)/2)) / (1 + x + x*%3) + x*%2

/. /. 4 /
7/ 7/ 7 7/ 7/
7 7 7) 7

The construction phase

output of the activation function

if choose activation function =— 1:
activation = tf.nn.sigmoid

elif choose activation function = 4:
activation = tf.nn.tanh

else:

activation = tf.nn.sigmoid

output of the optimizer

if choose_ optimizer = 1:

optimizer = tf.train.GradientDescentOptimizer (learning_rate)
elif choose_optimizer = 2:

optimizer = tf.train.AdamOptimizer(learning_ rate)

else:

optimizer = tf.train.GradientDescentOptimizer(learning rate)

tf.set_random_seed (15) # Set a seced to ensure getting the same results
from every run

x_space = np.linspace(a,b, steps) # z wvalues in interval [a,b]

y_space = func_analytic(x_space) # y wvalues for analytic solution

Convert the values the trial solution is evaluated at to a tensor.
x_space_tf = tf.convert_ to_tensor(x_space.reshape(—1,1) ,dtype=tf.float64)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

54

55
56
57
58
59
60
61
62
63
64
65
66

67
68
69
70

71
72
73
74
75

76
7
78
79
80

81
82
83
84

85
86
87
88
89

90
91
92
93
94
95
96
97
98
99
100
101
102
103

Appendix D: TF1-NN

zeros = tf.reshape(tf.convert_to_tensor(np.zeros(x_space.shape)), shape

=(-1,1))
num_ hidden_layers = np.size (num_hidden_neurons)

Construct the network.
with tf.name_scope(’nn’):

Input layer
previous_layer = x_space_ tf

Hidden layers

for 1 in range(num_ hidden_ layers):

current__layer = tf.layers.dense(previous_layer, num_hidden_neurons[1],
name=’hidden%d’%(1+1), activation=activation) #layers = activation (z+w
+b), adds a single layer to your network. The second argument is the
number of neurons/nodes of the layer

previous_layer = current_layer

Output layer
nn_output = tf.layers.dense(previous_layer, 1, name=’output’, use_bias=
True)

Define the cost function

with tf.name_scope(’cost?):

psy__trial = bound + x_ space_tfxnn_output # trial solution

d_psy_trial = tf.gradients (psy_trial ,x_space_tf) # gradient of trial
solution

f = func(x_space_tf, 6 psy_trial)
cost = tf.losses.mean_squared_error(zeros, d_psy_trial[0] — f)

Choose the method to minimize the cost function, along with a learning

rate
with tf.name_scope(’train’):
traning_op = optimizer.minimize (cost)

Define a node that initializes all of the other modes in the
computational graph
init = tf.global_ variables initializer ()

FErecution phase

Start a session where the graph defined from the construction phase can
be evaluated at:

with tf.Session() as sess:

Initialize the whole graph

init.run()

FEvaluate the initial cost:
print (’Initial cost: %g’%cost.eval())

The training of the mnetwork:
for i in range(num iter):
sess.run (traning_ op)

#if 0 % 1000 ——
print(cost.eval())

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

104 # Training is done, and we have an approximate solution to the ODE

105
106

Appendix D: TF1-NN

print (’Final cost: %g’%cost.eval())

107 # Store the result
g nn tf = psy trial.eval()

108
109

110 #error=np.abs (y_space—g_nn__tf)
11 #print (g_nn__tf)

12 #print (y_space)
Plot the result

113
114
115
116
117
118
119
120
121
122

plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt

figure ()

title (’Numerical solution of the ODE’)

plot (x_space, y_space, label="analytical solution")
plot (x_space, g nn_tf, "--"_ label="Neural Network")
legend ()

xlabel (’x7)

ylabel (?£(x))

.show ()

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

0o N O o A W N

11
12
13

15
16
17
18
19
20
21
22
23
24
25

Appendix E: ODE2-NN

E ODE2-NN

The code was developed with the help of [26].

import autograd.numpy as np

from autograd import grad, elementwise_grad
import autograd .numpy.random as npr

from matplotlib import pyplot as plt

Routine to solve d2_psy(z)/d_x2 = f(x, psy, d_psy/dz), in the form

psy(z) = A + A’z + x 2N(z,w), with psy(0) = A and d_psy(0) = A’ (
Euler)

OR

psy(z) = A(l-z) + Bx + z(1—xz)N(z,w), with psy(0) = A and psy(1) =
B (Dirichlet)

where N(z,w) is the output of the neural network.

changeable parameters

a =0 # lower learning boundary

b =1 # upper learning boundary

a_extra = 0 # lower test boundary

b_extra = 1 # upper test boundary
choose_trial_solution = 2 # 1 = FEuler 2 = Dirichlet
boundl = 0

bound2 = (np.exp((—1)/5))*np.sin (1)

steps_train = 150 # number of steps

steps__test= 150

num__iter = 10000 # number of iterations
num_ hidden_neurons = [10] # Define the number of neurons at each hidden
layer

def func(x,psy,d_psy): # differential equation, d_psy(z)/d_z = f(z, psy)
return —1/5xnp.exp(—(x/5))*np.cos(x)— 1/5xd_psy—psy

def func_analytic(x): # analytical solution
return (np.exp((—x)/5))*np.sin(x)

choose activation function = 1
while choose activation function <=2:
def activation_function (z):

if choose activation function = 1:
return 1/(1 4+ np.exp(—z)) #sigmoid
elif choose activation function = 2:

return np.tanh(z)
def neural network(params, x):
N_hidden = np.size (params) — 1 # N_hidden is the number of hidden layers

num_ values = np.size (x) # Assumes input = being an one—dimensional array
x = x.reshape(—1, num_ values)

x_input = x # Input layer does nothing to the input x

X__prev = x_ input

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

Appendix E: ODE2-NN

54

55 ## Hidden layers:

56 for 1 in range(N_hidden):

57

58 w__hidden = params|[1]

59

60 X_prev = np.concatenate ((np.ones ((1,num_values)), x_prev), axis = 0) #
Add a row of ones to include bias

61

62 z__hidden = np.matmul (w_hidden, x_prev)
63 x__hidden = activation_function (z_hidden)
64

65 Xx_ prev = x_ hidden

66

67 ## Output layer:

6s w_output = params[—1]

69

70 X_prev = np.concatenate ((np.ones ((1,num_values)), x_prev), axis = 0) #
Include bias

71

72 z__output = np.matmul (w_output, x_prev)

73 X_output = z_ output

74

75 return x_ output

76

77 def g_ trial (x,params):

78 if choose trial solution = 1:
79 return boundl + bound2#x + (x**2)sneural network(params, x)
g0 elif choose trial solution — 2:

s1 return boundl#(l—x) + bound2xx+x*(l—x)*neural network (params, x)

s2 else:

s3 return boundl + bound2xx + (x*%2)sneural_network (params, x)

84

s5s def cost_function (P, x):

86

s7 g t = g_trial(x,P) # FEvaluate the trial function with the current
parameters P

88

go d_g t = elementwise_grad(g_trial ,0) (x,P) # Find the derivative w.r.t x of
the trial function

90

91 d2 g t = elementwise grad(elementwise grad(g trial, 0))(x, P)

92

93 # The right side of the ODE

oa function = func(x,g t,d_g t)

95

96 err_sqr = (d2_g t — function)*x2

97 cost_sum = np.sum(err_sqr)

98

99 return cost_sum / np.size (err_sqr)

100

101 def solve ode_deep_ neural network(x, num_neurons, num_iter, lmb, cost):

102

103 N_hidden = np.size (num_ neurons)

104

105 ## Set up initial weights and biases

16 # Initialize the list of parameters:

107 P = [None]*(N_hidden + 1) # + 1 to include the output layer

108

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

140
141
142
143
144
145
146

147
148
149
150
151
152
153
154
155

157
158
159
160
161
162
163

164

Appendix E: ODE2-NN

P[0] = npr.randn(num_neurons[0], 2)

for 1 in range(1,N_hidden):

P[l] = npr.randn(num_neurons|[l], num_neurons[l—1] + 1) # +1 to include
bias

For the output layer
P[—1] = npr.randn (1, num_neurons[—1] + 1) # +1 since bias is included

print (’Initial cost: %g’%cost_function (P, x))

Start finding the optimal weights using gradient descent
cost__function_grad = grad(cost_function ,0)

for i in range(num_iter):
cost_grad = cost_function_grad (P, x)

cost .append (cost__function (P, x))

for 1 in range(N_hidden+1):
P[1] = P[1] — Imb % cost_grad[1]

print (’Final cost: %g’%cost_function (P, x))
return P

Solve the given problem

npr.seed (15)

x = np.linspace(a, b, steps_train)

x_extra = np.linspace (a_extra, b_extra, steps_test)
hidden_neurons = np.array (num_ hidden_neurons)
if choose activation function =— 1:

print (’Sigmoid:’)

cost_sigmoid = []

learning_rate_sigmoid = le—2

P = solve_ode_deep_neural network(x, hidden_neurons, num_ iter,
learning rate_sigmoid ,cost_sigmoid)

res_sigmoid = g trial(x, P)

res__analytical = func_analytic(x_extra)

res_analytical2 = func_analytic(x)

res_extra_sigmoid = g_trial(x_extra, P) # extrapolation
diff_sigmoid_train = abs(res_sigmoid — res_analytical2)
diff_sigmoid__extra = abs(res_analytical— res_extra_sigmoid)
print (diff_sigmoid__train)

print (diff sigmoid_ extra)

print (cost_sigmoid)

if choose activation function = 2:

print (’tanh:’)

cost__tanh = []

learning_ rate_tanh = le—2

P = solve_ode_deep_neural network(x, hidden_neurons, num_ iter,
learning rate_tanh, cost_tanh)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

165
166
167
168
169
170

171

172
173
174
175
176
177
178

180
181
182
183
184
185
186

187

189
190
191
192

194
195
196
197

199

200

201
202
203
204
205
206
207

209
210
211
212
213
214
215
216

Appendix E: ODE2-NN

res_tanh = g_trial(x, P)

res_analytical = func_analytic(x_extra)
res__analytical2 = func_analytic(x)
res_extra_tanh = g_trial(x_extra, P) # extrapolation

print (’Max absolute difference: %g’ % np.max(np.abs(res_tanh —
res__analytical2)))

print (’Max absolute difference: %g’ % np.max(np.abs(res_extra_tanh —
res__analytical)))

diff_tanh_train=abs(res_tanh — res_analytical2)

diff tanh_ extra = abs(res_analytical — res_extra_tanh)
print (diff tanh_ train)

print (diff tanh extra)

print (cost__tanh)

choose activation function += 1

Plot the results

f=plt.figure (1, figsize=(10, 10))

plt . plot (x_extra, res_analytical, color=’black’)

plt.plot (x_extra, res_extra_sigmoid[0, :],color=’orange’, linestyle="--")

plt.plot (x_extra, res_extra_tanh[0, :], color=’green’, linestyle="-.")

plt.legend ([’Analytical Solution’,’Numerical Solution by ODE2-NN IC (
Sigmoid)’,’Numerical Solution by ODE2-NN IC (tanh)’])

plt . xlabel (’x?)

plt.ylabel (?\u03A8(x)’)

plt.axvline (X—a extra, color=’grey’, alpha=0.3)

plt.axvline (x=a, color=’grey’)

plt.axvspan(a, b, alpha=0.3, color=’grey’)

plt.axvline(X—b color=’grey?)

plt.axvline (x=b_extra, color=’grey’, alpha=0.3)

g=plt.figure (2, figsize=(10, 10))

plt.xlabel (’Number of Iterations’)

plt.ylabel (’Cost’)

plt.plot (np.linspace (0,num_iter ,num_iter), cost_sigmoid, color=’orange’,

linestyle="--")
plt.plot (np.linspace (0,num_iter ,num_iter), cost_tanh, color=’green’,
linestyle="-.")

plt .legend ([’Costs IC (Sigmoid) ’,’Costs IC (tanh)’])

h = plt.figure (3, figsize=(10, 10))

plt.xlabel(’x?)

plt.ylabel (’Absolute error’)

plt . plot (x_extra,np.zeros(len(x_extra)), color=’black’)

plt . plot (x_extra, diff sigmoid_extra[0, :], color=’orange’, linestyle="--
u)
plt.plot (x_extra, diff tanh extra[0, :], color=’green’, linestyle="-.")

plt.legend ([’Error (Analytical Solution)’,’Error IC (Sigmoid)’])
plt.axvline (X—a extra, color=’grey’, alpha=0.3)

plt.axvline (x=a, color:’grey’)

plt .axvspan(a , alpha=0.3, color=’grey’)

plt.axvline(x—b color=’grey’)

plt.axvline (x=b_extra, color=’grey’, alpha=0.3)

plt .show ()

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

© 0 N 3 s W N

== e
N o= O

13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52

53

Appendix F: TF2-NN

F TF2-NN

The code was developed with the help of [26].

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

changeable parameters

a =0 # lower boundary
b =1 # upper boundary
steps = 150 # number of steps

num__iter = 10000 # number of iterations

num__hidden_neurons = [10] # Define the number of meurons at each hidden
layer

learning_ rate = le—2

choose__activation_ function = 4 # 1 = Sigmoid, 4 = tanh

choose_optimizer = 2 # 1= GradientDescent, 2 = AdamOptimizer

choose_trial_ solution = 2 # 1 = Euler 2 = Dirichlet

boundl = 0

bound2 = (np.exp((—1)/5))*np.sin (1)

def func(x,psy,d_psy): # differential equation, d_psy(z)/d_z = f(z, psy)
return —1/5xtf.exp(—(x/5))*tf.cos(x)— tf.cast(1/5, tf.float64)*d_psy—psy

def func_analytic(x): # analytical solution
return np.exp(—(x/5))*np.sin(x)

The construction phase

output of the activation function

if choose activation function = 1:
activation = tf.nn.sigmoid

elif choose activation function = 4:
activation = tf.nn.tanh

else:

activation = tf.nn.sigmoid

output of the optimizer

if choose_ optimizer = 1:

optimizer = tf.train.GradientDescentOptimizer(learning rate)
elif choose_ optimizer = 2:

optimizer = tf.train.AdamOptimizer(learning_rate)

else:

optimizer = tf.train.GradientDescentOptimizer (learning_rate)

tf.set_random_seed (3456) # Set a seed to ensure getting the same results
from every run

x_space = np.linspace(a,b, steps) # z values in interval [a,b]

y_space = func_analytic(x_space) # y values for analytic solution

Convert the wvalues the trial solution is evaluated at to a tensor.
x_space_tf = tf.convert_to_tensor(x_space.reshape(—1,1),dtype=tf.float64)
zeros = tf.reshape(tf.convert_to_tensor(np.zeros(x_space.shape)),shape

=(~1.1))

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

54
55
56
57
58
59
60
61
62
63
64

65
66
67
68
69
70
71
72
73
74
75

76
7
78
79
80
81
82
83
84
85
86

87
88
89
90

91
92
93
94
95

96
97
98
99
100
101
102
103
104
105

Appendix F: TF2-NN

num__hidden_layers = np. size (num_ hidden_neurons)

Construct the network.
with tf.name_scope(’nn’):

Input layer
previous_ layer = x_space_ tf

Hidden layers

for 1 in range(num_ hidden_layers):

current__layer = tf.layers.dense(previous_layer, num_hidden_neurons[1],
name=’hidden%d’%(14+1), activation=activation) #layers = activation (z*w
+b), adds a single layer to your network. The second argument is the
number of neurons/nodes of the layer

previous_layer = current_layer

Output layer
nn_output = tf.layers.dense(previous_layer, 1, name=’output’)

Define the cost function

with tf.name scope(’cost?’):

if choose trial solution = 1:

psy_trial = boundl + bound2 % x_space_tf + (x_space_tf xx 2) % nn_output

elif choose trial solution — 2:

psy_trial = boundl % (1 — x_space_tf) + bound2 x x_space_tf + x_space_tf
x (1 — x_space_tf) % nn_output

else:

psy_trial = boundl + bound2 % x_space_tf + (x_space_ tf xx 2) % nn_output

d_psy_ trial = tf.gradients(psy_trial, x_space_tf)
d2_psy_trial = tf.gradients(d_psy_trial, x_space_tf)

f = func(x_space_tf, psy_trial, d_psy_trial)
err = tf.square(d2_psy_trial[0] —)

cost = tf.reduce_sum(err)

Choose the method to minimize the cost function , along with a learning

rate
with tf.name_scope(’train’):
traning op = optimizer.minimize (cost)

Define a node that initializes all of the other modes in the
computational graph
init = tf.global_variables__initializer ()

FErecution phase

Start a session where the graph defined from the construction phase can
be evaluated at:

with tf.Session() as sess:

Initialize the whole graph

init.run()

FEvaluate the initial cost:
print (’Initial cost: %g’%cost.eval())

The training of the mnetwork:
for i in range(num_ iter):
sess.run(traning_op)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

106

Appendix F: TF2-NN

w7 #if 1 % 1000 == 0:

108
109

#

print (cost.eval())

110 # Training is done, and we have an approximate solution to the ODE
print (’Final cost: %g’%cost.eval())

111
112

113 # Store the result

g nn_tf = psy_trial.eval()
15 #error=np.abs(y_space—g_nn__tf)
print (g nn tf)
print (y_space)

114

116
117
118
119
120
121
122
123
124
125
126
127
128

Plot the result

plt.
plt.
plt.
plt.
plt.
plt.
plt.

plt

figure ()

title (’Numerical solution of the ODE’)

plot (x_space, y_space,
plot (x_space, g nn_tf,
legend ()

xlabel (’x?)

ylabel (?£(x)?)

.show ()

label= "analytical solution",linewidth=3)
"--v_ label= "Neural Network" 6 linewidth=3)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Introduction
	Modeling and Simulation
	Overview of Differential Equations
	Numerical Solutions

	The Architecture of a Neural Network
	Biological Neural Network
	Artificial Neural Networks
	Structure and Layers
	Neurons, Weights and Biases
	Activation Function

	Learning Algorithm
	Cost Function
	Gradient Descent
	Backpropagation
	ADAM Algorithm

	Limitations of Artificial Neural Networks
	Universal Approximation Theorem
	Neural Network Structures for Ordinary Differential Equations

	Case Study as Proof of Concept
	Neural Network Approximation of First Order Ordinary Differential Equations
	Approximation of Elementary Functions
	Iteration Steps
	Dataset Size
	Selected Problems and Numerical Comparisons

	Neural Network Approximation of Second Order Ordinary Differential Equations
	Approximation of Elementary Functions
	Iteration Steps
	Dataset Size
	Selected Problems and Numerical Comparisons

	Applications in Biomedicine
	Bateman Function
	Harmonic Oscillator
	Logistic Tumor Growth

	Conclusion and Outlook
	List of Figures
	List of Tables
	Bibliography
	Appendix
	A ODE1-NN
	B Euler Method
	C MLP
	D TF1-NN
	E ODE2-NN
	F TF2-NN

