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Kurzfassung

Funktionelle Magnetresonanztomographie (fMRT oder fMRI) liefert detaillierte Informati-
on über die Gehirnaktivität, die in dieser Arbeit mit Nicht-negativer Matrixfaktorisierung
(NMF) analysiert wird. Das Ergebnis ist eine Einteilung des Gehirns in Regionen, welche
reproduzierbar und interpretierbar ist. Diese Regionen spiegeln Einheiten wider, die
sich funktional ähnlich verhalten. NMF erzeugt für jede Testperson individualisierte
Ergebnisse, welche innerhalb derselben Person (within) und gegenüber den anderen
Personen (across) verglichen werden. Der Vergleich zeigt eine hohe within Reprodu-
zierbarkeit (Korrelation = 0.89) und hohe across Variabilität (Korrelation = 0.74) mit
einem signifikanten Unterschied (p < 0.001). In diesem Kontext werden Werte für die
Individualität und Dynamizität berechnet und zu bekannten Regionen in Bezug gesetzt
um den Vergleich zur State-of-the-Art Forschung zu ermöglichen. Die individualisierten
Ergebnisse werden verwendet um ein Vorhersagemodell zu erstellen, das die Hirnak-
tivierung während verschiedenen Aufgaben ausschließlich mit Daten im Ruhezustand
verhersagen kann. Die Qualität der Vorhersage ist abhängig von der jeweiligen Aufgabe
(Korrelation zwischen tatsächlicher und vorhergesagter Aktivierung 0.3 - 0.6) wobei die
Signifikanz für alle Aufgaben außer einer hoch ist (p < 0.001). Die Koeffizienten der
Individualität und Dynamizität werden verwendet um ein lineares Modell zu trainieren
welches exemplarisch fluide Intelligenz vorhersagt. Die besten Ergebnisse liefert hier der
Koeffizient der Individualität (Correlation zwischen tatsächlichem und vorhergesagtem
Wert 0.32).
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Abstract

Functional magnet resonance imaging (fMRI) scans provide detailed information of brain
activities and are analysed in this work using Non-negative Matrix Factorization (NMF)
resulting in a parcellation of the brain that is highly reproducible and interpretable. These
regions represent areas that display functional similarity. NMF creates individual-specific
results that are compared within the same subject and across different subjects. The
individualized results demonstrate high within-subject reproducibility (correlation = 0.89)
and high across-subject variability (correlation = 0.74) as well as a significant difference
(p < 0.001). In this context values for individuality and dynamicity are calculated and
the relation to known regions is established to enable a comparison to state of the art
research. The individualized results are used to create a prediction model capable of
predicting the brain activation of different tasks using solely resting-state data. The
prediction quality of the model is dependant on the task (correlation of prediction to
actual activation of 0.3 - 0.6) with high levels of significance (p < 0.001) for all but one
task. The coefficients of individuality and dynamicity are used to train a linear model
predicting fluid intelligence. The coefficient of individuality yields the best predictive
power (correlation of actual and predicted value of 0.32).
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CHAPTER 1
Introduction

The brain is the most complex human organ and "has been called the most complex piece
of matter in the universe" [1]. It controls and regulates the activity of the body and is
involved in different tasks [1] [2]. The co-activation of multiple cortical areas enables
complex cognitive functions like thought processes and emotions [2] [3]. In addition the
organization of the brain, its functional connectivity and the correlation to cognitive
activity are different for every person and highly individual specific [4] [5]. These problems
are addressed in this work and an approach that serves as a possible solution is presented.
The main focus of the thesis lies on the calculation of dynamicity of actors as their
behaviour of co-activating with different sets of other actors and individuality.

The motivation and aims of the thesis are elaborated in Section 1.1 and the contribution
is summarized in Section 1.2. The outline of the thesis is provided in Section 1.3.

1.1 Aims of the Thesis

The human brain is arranged in two cerebral hemispheres which consist of different regions
based on distinct features and diverging functions [6]. This organization of anatomical and
functional regions is individual-specific and the inter-individual differences are distributed
inconsistently across the cortex [6] [7] [8]. Knowledge of this organization is particularly
needed for applications in medicine because information on the arrangement of functional
regions in the individual subject is required for clinical procedures (e.g. surgical planning
and brain stimulation therapy) [6]. Therefore it is a fundamental goal of neuroimaging
to get an individual-level parcellation of the cerebral cortex [9].

For this purpose brain functional Magnet Resonance Imaging (fMRI) scans are used as
the basis for all calculations. fMRI scans provide information of brain activities in the
living human brain [10] [11]. Analysis of this data facilitates research of the connection
of anatomy and function and enables the creation of an atlas of brain areas [9]. The idea

1
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1. Introduction

is the extraction of all the necessary information from scans at rest as the resting-state
activity is robust and the spontaneous fluctuations at rest contain information about
functional regions [12] [13]. The networks observed at rest reflect the functional regions of
the active brain [14]. The calculation of functional networks from resting-state fMRI data
has become a "standard tool to explore the functional brain organization in neuroscience"
[15].

The goal of this work is the analysis of the human cerebral cortex by creating a parcellation
into functionally connected regions. The main focus lies on the research of individuality
and dynamicity of the brain and the comparison of the findings with existing state of
the art results. In the scope of this work the cortex is parcellated into brain actors on
a population level as well as an individual-specific level and this parcellation is used to
study the individuality and dynamicity across the cortex. The individualized results
are used to create predictive models for different tasks and the fluid intelligence as an
example of a cognitive ability linked to brain function.

1.2 Contribution

There are different methods to calculate the brain network delineation (e.g. PCA, ICA)
and in this work a novel approach is introduced using Non-negative Matrix Factorization
(NMF). The usage of NMF in this context has many benefits because it provides an
analysis that is not dependent of the geometry, can be individualized for each subject
and also allows inter-subject comparison. Additionally the non-negativity of the results
enhances the interpretibility and the dataset is concentrated in two matrices, reducing
the dimensionality which increases performance power and usability.

The calculation of the parcellation using NMF as well as the calculation of the coefficients
of individuality and dynamicity are summarized in Section 1.2.1. A brief overview of the
results is given in Section 1.2.2.

1.2.1 Methods

The calculation of an individualized parcellation consists of three steps:

Step 1. The data matrix containing the complete dataset of all subjects and all subject-
scans is factorized using NMF. A high number of iterations results in a clean and
distinguished parcellation of nc regions.

Step 2. The global results from Step 1. are used as an initialisation for a second NMF
on the data of each individual subject. The data of a single subject is factorized using
the corresponding part of the global result as initial value for the iteration. A predefined
stopping criterion prevents over-fitting and results in a parcellation that is comparable
to the global results but differs to fit the individual subject.

Step 3. The results from Step 2. have to be mapped to the global results from Step 1.
for further use and comparison. This is done using the Hungarian Algorithm [16].

2
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1.2. Contribution

The individualized results are used to calculate the coefficient of individuality by compar-
ing the correlation of the brain regions (brain actors) within the same subject and across
different subjects.

The coefficient of dynamicity defined in this work is calculated by comparing the co-
activation of the brain actors over the course of time.

1.2.2 Summary of Results

The resulting global parcellation into brain actors is highly reproducible (mean actor
correlation cor = 0.79 for nc = 60) and the individualized results are highly individual
specific (mean within-subject correlation cor = 0.89) while maintaining the global
structure (mean across-subject correlation cor = 0.74).

The individualized results are analysed in regard to individuality and dynamicity. The
coefficient of individuality is calculated as the ratio of correlations r = within

across
and averaged

over the 7 region atlas of [17]. The networks exhibiting the highest individuality are the
networks of Ventral-Attention, Fronto-Parietal and Dorsal-Attention while the Limbic,
Visual and Motor networks display lower individuality. The coefficient of dynamicity
is defined by comparing the co-active actor ids over all time points where the actor is
active. An actor that exhibits co-activation with different actors for all time points leads
to a higher coefficient of dynamicity compared to an actor that is active with the same
group of actors for all time points. The coefficient of dynamicity is averaged over the 7
regions of [17] as well, resulting in high dynamicity in the Visual and Limbic networks
(mean values of 0.573 and 0.568) and low dynamicity in the Default network (mean value
of 0.459).

The activation during task can be predicted using task-free data. For this purpose a
linear model is trained using the actor composition at each point on the cortex as features
and task activation maps as targets. The predictive model is functional and provides
higher correlation between the predicted activation of a subject with the true activation
of the same subject (diagonal) compared to the true activation of all the other subjects
(off-diagonal). The diagonal values are significantly different from the off-diagonal values
for all tasks but one (Gambling). The tasks yielding the highest quality prediction
are Language (mean diagonal correlation m̄ii = 0.666) and Working Memory (mean
diagonal correlation m̄ii = 0.660). The predictive model has the lowest quality for the
task Gambling (mean diagonal correlation m̄ii = 0.147).

The individuality and dynamicity of the brain actors of an individual subject are connected
to cognitive factors like fluid intelligence. This is proven by creating a linear model
to predict the value of fluid intelligence of a subject. The correlation of the predicted
values of fluid intelligence and the true values is highest when using the coefficient of
individuality as the feature of the model (cor = 0.32).
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1. Introduction

1.3 Thesis Outline

In Chapter 2 State of the Art - Brain fMRI the most relevant research of brain fMRI
analysis is summarized. A brief overview of all the algorithms relevant for the context of
this work is given in Chapter 3 State of the Art - Algorithms. The methodology
used for this thesis is described in Chapter 4 Methodology and the experiments that
have been conducted are depicted in Chapter 5 Experiments. The results and findings
are discussed in Chapter 6 Discussion and a final conclusion is given in Chapter 7

Conclusion. Ultimately following is the bibliography (Bibliography).
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CHAPTER 2
State of the Art - Brain fMRI

To evaluate the results of this work it is necessary to compare them to existing studies.
For this reason the state of the art research is briefly compiled in this chapter. The
biological background and histological parcellation methods are explained in Section
2.1. The studies focusing on the calculation of a parcellation into brain networks are
summarized in Section 2.2. The publications evaluating a parcellation with the main
focus on the research of individuality and the prediction of cognitive activity are recapped
in Section 2.3. A brief summary as well as the connection to this thesis are provided in
Section 2.4.

2.1 Anatomy and Biology of the Brain

This section serves to provide an overview of the biological viewpoint of brain anatomy
and parcellation. The human cerebral cortex has been researched in regard to the cellular
structure (cytoarchitecture) and the myelinated fibres (myeloarchitecture).

2.1.1 Cerebral Sulci and Gyri

Ribas [18] summarizes and reviews the literature of the cerebral sulci and gyri to provide
a clarified nomenclature of the brain surface areas. In this work 7 brain lobes are defined
on each cerebral hemisphere. The neurosurgical definition uses the specific sulci and
gyri to explain the exact position. A brief summary of the approximate location of each
region is given Figure 2.1 and described below:

1) Frontal Lobe - largest most anterior part of each hemisphere
2) Central Lobe - superolateral surface separated by the central sulcus
3) Parietal Lobe - posterior, adjacent to the central lobe
4) Occipital Lobe - most posterior part of each hemisphere
5) Temporal Lobe - inferior to the Sylvian fissure, superior adjacent to the lobes 1-3,
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2. State of the Art - Brain fMRI

Figure 2.1: Outline of the brain lobes. The approximate location of the brain lobes is
visualized in different colours.

posterior adjacent to the occipital lobe
6) Insular Lobe - embedded between frontal and temporal lobes
7) Limbic Lobe - most inferior part of the brain adjacent to the brain stem in the form
of a c-shaped ring

The description and interpretation of the results of this work use the nomenclature
provided above to describe locations and areas on the cerebral cortex.

2.1.2 Cytoarchitectonic Map of the Human Cerebral Cortex

In the context of cytoarchitectonic brain maps neuroscientists "have tended to rely almost
exclusively on Brodmann’s map" [19]. Brodmann [20] researches the cytoarchitectonics
of the cerebral cortex and describes the cellular structure of brain cross-sections as well
as its variation across the cortex. This information is used to create a map of 47 brain
areas defined by cytoarchitectonic differences. The areas are compared between different
mammals (e.g. lemurs and rodents). Von Economo and Koskinas [21] provide the first
notes on inter-individual differences of cytoarchitectonic areas [19]. They introduce a
more detailed parcellation scheme to create a cytoarchitectonic map differentiating 107
regions [22].

2.1.3 Myeloarchitectonic Map of the Human Frontal Cortex

In contrast to Brodmann, the research of Vogt focuses on the myeloarchitectonics of the
human brain. Vogt formulated the first myeloarchitectonic map of the human frontal
cortex (published 1910) [23] and is one of the "pioneers of modern neuroscience" [24].
Judas and Cepanec [24] have translated the paper into English.
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2.2. Parcellation of functional and structural Networks

Vogt creates a brain atlas of 6 regions with multiple subregions each (66 in total) by
differentiating the regional variations of three characteristics: "1) the presence and
prominence of individual layers, 2) the number and thickness of myelinated fibres, and 3)
the length of radial fibre bundles" [24].

In addition Vogt provides schematics that display the connection of the myeloarchitectonic
layers and the cytoarchitectonic layers.

2.1.4 MRI reflects Myeloarchitecture and Cytoarchitecture

Eickhoff et al. [25] research the connection between lamination patterns of myeloarchi-
tecture, cytoarchitecture and MRI images. For this purpose they focus on two regions of
the occipital lobe and compare five imaging modalities including two MRI scans (one in
vivo, one post mortem), two myeloarchitectonic staining methods (Heidenhain-Wölke
and Black-Gold) and a cytoarchitectonic staining method (Silver cell body stain). They
have applied these methods on four different subjects each. The analysis is carried out
on regions of interest by calculating a feature vector consisting of 10 parameters. The
similarity is quantified by computing the mean Euclidean distance. It is demonstrated
that the lamination patterns of the MRI scans reflect the histologic properties and that
they are more similar to the myelo- than to the cytoarchitecture. Eickhoff et al. [25]
have concluded that MRI scans are dependent on both myelo- and cytoarchitecture with
a stronger influence of the myeloarchitecture.

2.2 Parcellation of functional and structural Networks

In this section an abstract of two methods of parcellation in the context of brain MRI
data is given.

2.2.1 Clustering of fMRI data

Yeo et al. [17] use functional connectivity MRI and diffusion MRI to estimate cortical
organization. For their study the data of 1000 subjects are registered by surface-based
alignment. They use a clustering algorithm to combine 1175 uniformly sampled regions
of interest with similar functional connectivity profiles. The stability of the clustering
algorithm is analysed and used as a criteria for the choice of the number of regions of
the parcellation. A parcellation into 7 and 17 regions is calculated and analysed by
calculating a confidence map. Additionally the characteristics of the regions are further
researched.

The 7 region atlas (see Figure 2.2) is used as a comparison for this work and necessary
to enable the comparison of the results of this work with other state of the art results.
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2. State of the Art - Brain fMRI

Figure 2.2: Yeo 7 region atlas [17]. The regions are visualized in different colours. The
image displays the brain in a lateral view of the left hemisphere (left) and the right
hemisphere (right).

2.2.2 Sparse functional networks from rs-fMRI

Li, Satterthwaite and Fan [15] use a non-negative decomposition model on human brain
fMRI data to demonstrate the quality of resulting functional networks in comparison to
ICA and GIGICA. The main focus of their work lies on the subject specific variation
of brain networks. They propose a method that is flexible enough to adapt to the
individual while keeping comparability for group-level analysis. This method uses a
group sparsity regularization term to enforce common spatial structures as well as a
locality regularization term to enhance spatial smoothness. Additionally a parsimonious
regularization term is used to avoid large spatial overlap and redundant networks. The
optimization model with all the regularization terms yields subject specific networks
that are mapped using the Hungarian algorithm [16]. The quality of the parcellation
is evaluated with a classification task and a functional coherence measure. The results
demonstrate the improvement of quality of the non-negative decomposition model over
the widely used methods ICA and GIGICA.

2.3 Individuality

The state of the art research of individual brain parcellation and its application is sum-
marized in this section. The studies compiled in Section 2.3.1, Section 2.3.2, Section 2.3.3
and Section 2.3.4 provide values for comparison with this work regarding the individual
specificity of a parcellation by analysing the within- and across-subject variability. Section
2.3.5 and Section 2.3.6 recap the state of the art research focusing on the cognitive activity
prediction: the prediction of task activation (Section 2.3.5) and the prediction of fluid
intelligence (Section 2.3.6).

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.3. Individuality

2.3.1 Individual specific parcellation

Wang et al. [6] present an approach that starts with a population-based atlas and creates
an individual specific parcellation by iteratively amending it using individual subject data.
They use a dataset containing 23 subjects, with 5 scans per subject. After applying the
iterative method, the results are analysed in regard to intra-subject reproducibility. The
calculated mean dice coefficient across the five sessions is 83%. Inter-subject variability is
also researched and the mean dice coefficient is 67%. Additionally, the method is tested
on another dataset, independent of the one used for algorithm development. This dataset
consists of 100 subjects, with 2 scans per subject. The resulting dice coefficients for
intra-subject reproducibility (82.4%) and inter-subject variability (60.5%) are similar to
the preceding ones. These values are used as a comparison for the results provided in
this work.

2.3.2 Individual Variability in Functional Connectivity

Müller et al. [26] study the inter-subject variability of resting-state functional connectivity.
The fMRI data used consists of 23 subjects with 5 scans per subject. The resulting
inter-subject variability is non-uniformly distributed across the cortex with high values
in the lateral prefrontal lobe and the border area of the temporal and parietal lobes. Low
values of variability are most notable in the sensory and motor areas. Additionally the
functional variability is averaged among specific brain networks (Yeo-7). These results
are important for the comparison with the findings of this work.

Furthermore a connection between the individual variability and the evolutionary expan-
sion is assessed and the correlation between functional variability and different brain
attributes (e.g. sulcal depth) are researched as well.

2.3.3 Identifying Shared Brain Networks in Individuals by

Decoupling Functional and Anatomical Variability

Langs et al. [8] examine resting-state fMRI data of 23 subjects with 5 scans per subject
and calculate a functional embedding map to assign regions to the brain vertices based on
their functional connectivity. The functional networks are defined by clustering the points
in the embedding space and translating back into the anatomical space. The results
are individual-specific and the individuality is analysed. The areas demonstrating high
individuality are the frontal, parietal and temporal regions whereas the motor, sensory
and visual cortices display low individuality. These findings are used for the comparison
with the results of this work.

Additionally the method is compared to other state of the art methods and the clinical
relevance of the result is discussed as well.
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2. State of the Art - Brain fMRI

2.3.4 Highly sampled individual human brain

Laumann et al. [27] examine resting-state fMRI data of a single subject and compare
their results to group data. The data is parcellated with a resting-state functional
connectivity gradient based procedure and the within-subject correlation variability is
observerd using the 84 sessions obtained in over more than a year. It is shown that the
quality of the parcellation (evaluated by within-subject correlation) is dependent on the
number of sessions used. The approximate dependency has the form 1/

√

1 + ξ2 with ξ2

being inversely proportional to the quantity of data. This result is important for the
choice of the number of sessions used for the calculations in this work.

The within-subject variability observed is unevenly distributed on the cortex, it is higher
in the somato-motoric and visual regions and lower in the medial, fronto-parietal and
default mode regions. The results for the across-subject correlation on the contrary
demonstrate higher variability in the fronto-parietal and default mode regions with lower
variability in the visual and somato-motoric regions. This indicates a high individuality
of the former regions. These results are relevant for comparison with the findings of this
work.

2.3.5 rs-fMRI predicts task activation

Tavor et al. [28] use functional connectivity at rest to predict individual variations in
task responses. They use a HCP dataset consisting of 98 subjects including resting-
state measurements, diffusion-weighted MRI and structural MRI. A regression based
model in a leave-one-out approach is calculated using 107 predictors and the results are
correlated to the true task activations. The prediction quality is measured by comparing
the correlations between all the predicted activations and all the true activations. The
resulting correlation matrix is diagonal dominant for all but one task (Gambling). These
results serve as a comparison for the results in this work.

2.3.6 Functional connectome fingerprinting

Finn et al. [29] research the individuality of activation patterns during rest and tasks of
healthy subjects. They use a HCP dataset consisting of 126 subjects and a functional
brain atlas with 268 nodes. For each subject a connectivity matrix is calculated by
correlating the time courses of each node with the time courses of all other nodes. It
is proven that a comparison to a different set of scans of the same subjects allows the
identification of individual subjects with a success rate of up to 94.4%. Furthermore it
is shown that the most relevant networks for individuality are the medial frontal and
the frontoparietal network located in the frontal, temporal and parietal lobes, while
the motor and primary visual networks show significantly lower individuality and high
consistency across subjects. This is a relevant result for comparison with this work.

The influence on the choice of parcellation, i.e. the number of nodes/networks is researched
by using an atlas with 68 nodes and seven networks. The result of this research concludes
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2.4. Summary

that a higher resolution of the parcellation leads to better individual specificity, which is
a relevant result for the parameter choice in this work.

Additionally the connectivity profiles are used to predict values of fluid intelligence for
the individual subjects using linear regression in a leave-one-out fashion resulting in a
correlation score of r = 0.5. The most relevant networks for individuality turn out to
also be the most relevant for the prediction of this cognitive factor.

2.4 Summary

The human cerebral cortex consists of regions that differ in their cytoarchitecture and/or
their myeloarchitecture. These properties are reflected in MRI scans. There is a connection
between anatomy and function which is difficult to analyse in the laboratory (e.g. elctro-
motorcortex can be electrically stimulated). While this has been the only way of research
in the past, nowadays MRI scans can visualize the brain activity in the living human
brain and the data can be processed by computers.

The calculation of the parcellation into functionally different regions is not trivial and
different methods are used for this purpose. It is necessary for the parcellation to
be comparable across subject populations as well as individual subjects while being
reproducible within the same subject. The method introduced in this work uses the
mathematical concept of NMF and is capable of creating a parcellation that is sparse
and can be easily interpreted because of the non-negativity of the result.

The individual-specificity is analysed by calculating the intra-subject and inter-subject
reproducibility. This way individuality is defined and compared over the cortical surface.
This work proposes a method of calculating the coefficient of individuality and it is
researched across the cortex.

Brain activation during task performance and cognitive factors like fluid intelligence can be
predicted using individualized data. This is proven by predicting task activation using task-
free data and predicting values of fluid intelligence using functional connectivity. These
experiments are reproduced with the results of this work to showcase the functionality
of the methods. In addition the connection between dynamicity, individuality and fluid
intelligence is researched.
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CHAPTER 3
State of the Art - Algorithms

The algorithms used or referred to in this thesis are introduced in this chapter. The state
of the art parcellation methods used are briefly explained first: Principal Component
Analysis in Section 3.1 and Independent Component Analysis in Section 3.2. These
methods are used in the reference work for the creation of a parcellation of the brain
fMRI data. The mathematical basics of the algorithm used for this work is described in
Section 3.3 and the specific version used is illustrated in Section 3.4. Sections 3.5 and
3.6 disclose two different methods to fit a linear model and are used in this work for the
application and evaluation of the brain parcellation. A brief summary of the state of the
art algorithms is given in Section 3.7.

3.1 Principal Component Analysis

The central idea of Principal Component Analysis (PCA) is the reduction of the dimension
of a data set into the k main components. For a data vector x with p variables a principal
component is given as a vector v1 that has maximum variance in the linear function vT

1 x.
The same is done for v2 uncorrelated to v1 and this is repeated j-times, with j = 1, ..., p.
The goal is to find k components that contain most of the variation in x.

The principal components vj can be found by solving the eigenvalue problem

(C − λIp)vj = 0 (3.1)

Where C is the covariance-matrix Cij = cov[xi, xj ] and Ip the (p × p) identity matrix.
Thus λ is an eigenvalue of C and vj the corresponding eigenvector. The derivation and
proof are given in [30].

A reconstruction of the data x̃ using the k most relevant components is calculated as
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3. State of the Art - Algorithms

x̃ = Px + x̄ (3.2)

with the projection matrix P =
k

∑

j

vjvT
j and the mean of the data x̄ = mean(x).

PCA is a useful tool for the analysis of neuroimaging data [31] that has been applied to
fMRI data [31] as well as Positron Emission Tomography (PET) data [32] [33]. In the
context of neuroscience PCA is also used to identify neuronal signal spikes and action
pontentials [34] [35] [36]. The method of PCA is not limited to the application in the field
of neuronal data analysis. It is used in other scientific fields as well and e.g. a common
tool for face analysis and facial recognition [37] [38] [39]. The performance and results of
PCA are compared to the algorithm of this work explained in Section 3.4 in [40].

3.2 Independent Component Analysis

The main idea of Independent Component Analysis (ICA) is the reconstruction of a
mixed signal with independent components. If x is a vector containing n mixtures of
independent components sj , then each element xi is defined as

xi =
n

∑

j

aijsj (3.3)

using the parameters aij . This can be formulated in matrix notation for the vector x as

x = As (3.4)

with the parameter matrix A = [aij ]. For the calculation of the independent components
the matrix A is estimated and its inverse W is computed. The components s are calculated
as

s = Wx (3.5)

A detailed explanation is given in [41].

This method is employed in the works of [13] and [42]. It is used as a comparison in [15]
explained in Section 2.2.2. In the context of neuroscience ICA is used for the analysis
of electroencephalogram and magnetoencephalogram data as well - especially for the
removal of ocular artifacts [43] [44]. In addition to the application in biomedical signal
analysis ICA is used in other scientific fields [45] [46] e.g. for the separation of speech
mixtures [47] or image de-noising [48]. The algorithm of this work explained in Section
3.4 is i.a. compared to ICA in [40].
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3.3. Non-negative Matrix Factorization

3.3 Non-negative Matrix Factorization

The basic idea of Non-negative Matrix Factorization (NMF) is the factorization of a
non-negative matrix into two non-negative matrices.

X = WH (3.6)

The n × m matrix X is represented by the product of an n × nc matrix W and an
nc×m matrix H, where nc denotes the number of components. The energy minimization
problem that has to be solved is formulated as

min
W,H

||X −WH||2

subject to W ≥ 0, H ≥ 0
(3.7)

The solution of this problem is acquired by applying a multiplicative update following
the rules

Haµ ← Haµ
(W T X)aµ

(W T WH)aµ
Wia ←Wia

(XHT )ia

(WHHT )ia
(3.8)

A proof of convergence is given in [49].

NMF is used in the research of nuclear medicine for the analysis of PET images [50] [51].
Apart from the application in biomedical signal analysis NMF is employed in astronomical
image analysis for pan-sharpening and classification [52] [53] as well as computer vision
studies e.g. for facial recognition [54] [55].

This method serves as the basis for the specific method used in this work explained in
Section 3.4.

3.4 Orthonormal Projective NMF

Sotiras et al. [40] display the benefit of using NMF on neuroimaging data in regard
to interpretibility and adaptability. They introduce the use of Orthonormal Projective
Non-negative Matrix Factorization (OPNMF) in the context of brain analysis. The
quintessence of OPNMF denotes the load matrix H as the projection

H = W T X (3.9)

thereby implicating the reduction of the overlap across the estimated components and the
facilitation of high sparsity within the estimated components. The energy minimization
problem is therefore remodeled as
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3. State of the Art - Algorithms

min
W

||X −WW T X||2F

subject to W ≥ 0, W T W = I
(3.10)

with the squared Frobenius norm ||X||2F = trace(XT X) and the identity matrix I. The
solution to this problem is calculated iteratively as

W ′
ij = Wij

(XXT W )ij

(WW T XXT W )ij
(3.11)

In the work of Sotiras et al. [40] this algorithm is applied to two different datasets: 1. DT
images of mouse brains and 2. human sMR images. The interpretibility of the results is
analyzed by calculation of component sparsity and component incoherence. A comparison
to two other methods (ICA and PCA) demonstrates the quality and the potential of
OPNMF in this field (see Figure 3.1). For this reason this algorithm is adapted for the
calculation of this work.

(a) (b)

Figure 3.1: Comparison of the results on the human sMR data set. The mean squared
error is plotted in (a) and the component sparsity in (b). The images are taken from [40]
with permission from the author.

3.5 Linear Regression

The use of linear regression enables the formation of a linear model that fits target values.
The data matrix X contains the individual features xi for each sample and the targets for
the regression are the elements of the vector y. A single target value y is approximated
as ỹ in a linear fashion:

ỹ = α +
∑

i

βixi (3.12)

with the intercept α, the coefficients βi and the individual features xi. To compute the
coefficients βi the ordinary least squares method solves the problem
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3.6. Stochastic Gradient Descent

min
β
||Xβ − y||22 (3.13)

Linear regression is used in this work to create a linear model capable of predicting the
fluid intelligence of an individual subject. This is explained in more detail in Section 4.8.

3.6 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is another approach to fit a linear model that is
especially useful for a high number of samples (and features) [56]. Similar to (3.12) the
training data consists of the features xi and targets yi and the linear approximation f(x)
is formulated as:

f(x) = wT x + b (3.14)

with the model parameters w and the intercept b. These parameters are computed by
minimizing the regularized training error function E(w, b).

E(w, b) =
1
n

n
∑

i=1

L(yi, f(xi)) + αR(w) (3.15)

where L(yi, f(xi)) is the loss function and αR(w) is the regularization term. For this work
the least squares and the L2 norm are chosen for the loss function and regularization.

This method has advantages over Linear Regression for a high number of samples (and
features) and is therefore used in this work to create a linear model for the prediction of
task activation. A detailed explanation is given in Section 4.7.

3.7 Summary

There are different parcellation methods and three of them are described. The first one
is PCA and calculates the principal components by solving an eigenvalue problem. ICA
reconstructs a mixed signal with independent components calculated with a parameter
matrix. The third method introduced is used for the calculations of this work: NMF.
NMF approximates a non-negative matrix with the product of two non-negative matrices
W and H that are iteratively calculated. OPNMF derives H as the projection of W on
the original data thereby enhancing the sparsity.

Two methods to fit a linear model are used in this work: 1. linear regression using the
ordinary least squares method and 2. SGD which minimizes a regularized training error
function. The use of SGD is beneficial for a high number of samples (and features). In
this work linear regression is used to predict fluid intelligence and SGD is used to predict
task activation.

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

CHAPTER 4
Methodology

This chapter provides a detailed description of the methodology used in this work. An
overview of all the notation is given in Section 4.1 and a definition of the problem is given
in Section 4.2. In the following Section 4.3, the usage of NMF is showcased by generating
group-level results and the process of individualization is explained in Section 4.4. The
individual-specific results contain information about the dynamicity and individuality.
The introduction of a coefficient of individuality is given in Section 4.5 and the dynamicity
is researched in Section 4.6. Section 4.7 and 4.8 depict the possibility of predictive models
using the prior results: Section 4.7 describes the prediction of task activation and Section
4.8 the prediction of fluid intelligence. A brief summary of the methodology is given in
Section 4.9.

4.1 Notation

To present a transparent notation throughout the equations of this work the most
important features of all of the mathematical objects used are briefly explained below.
Further explanation and context is provided in the equations where they are introduced
in the following sections.
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4. Methodology

n .... Number of points of measurement
m .... Number of time points
nc .... Number of components
mi .... Number of time points for a single subject scan
X .... dataset matrix of all subjects with size n×m
W .... matrix of all subjects with size n× nc

H .... matrix of all subjects with size nc ×m
Xi .... dataset matrix of individual subject i with size n×mi

Wi .... matrix of individual subject i with size n× nc

Hi .... matrix of individual subject i with size nc ×mi

Zi .... vector of task activation for individual subject i with length n
fi .... cognitive data (fluid intelligence) of individual subject i

4.2 Problem Definition

fMRI scans provide information of brain activities in the living human brain [57]. Analysis
of this data facilitates research of the connection of anatomy and function and enables
the creation of an atlas of brain areas. This organization of anatomical and functional
regions is individual-specific and the differences are distributed inconsistently across
the cortex [6]. Therefore the algorithm used has to be flexible enough to adapt to the
individual while keeping comparability for group-level analysis.
There are different tools and algorithms to calculate a parcellation (e.g. PCA, ICA, NMF).
In this work NMF is used because it provides non-negative results that are reproducible
and interpretable. In contrast to other techniques that result in positve and negative
values (e.g. PCA), the non-negative results are confined without overlap and can be
interpreted in the context of brain activations. The parcellation is used to answer the
following research questions:

• Does the use of NMF on brain fMRI data yield a parcellation into functional
regions?

• What is the optimal number of brain regions and how reproducible are they?

• Can NMF be used on the global brain atlas to create a map of regions that is
specific for an individual subject?

• Are there specific differences in the individualized brain actors and can they be
quantified by a coefficient of individuality?

• What does the distribution of individuality across the cortex look like and are there
areas with lower or higher individuality?

• How can the dynamics of brain actor co-activation be quantified and is it possible
to calculate a coefficient of dynamicity?
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4.3. Identifying Actors with NMF

• What does the distribution of dynamicity across the cortex look like and are there
areas with lower or higher dynamicity?

• Can the individualized brain actors (that are task-free) be used to train a linear
model capable of predicting task activation of unseen subjects?

• Can the individualized results be used to train a linear model capable of predicting
cognitive factors e.g. fluid intelligence of unseen subjects?

• Is there a connection between dynamicity, individuality and fluid intelligence?

4.3 Identifying Actors with NMF

The focus of this work is the analysis of fMRI data. Each scan Xi contains the data
of all the points of measurement on the cortex (in this case 5124) at each given point
in time over a set duration (1200 time points) for a single subject. It is necessary for
the data to be normalised and non-negative, it has to be preprocessed accordingly. For
the purpose of this work it is useful to include more than one scan per subject (i.e. 2).
The matrices of two scans X1

i and X2
i are combined to a new matrix X12

i with the size
n× 2mi and treated like a single scan with twice the amount of time points. To enable a
population-level analysis it is necessary to include multiple subjects. Thus the individual
subject data X12

i (abbreviated as Xi) are combined to create the data matrix X:

X = (X1X2 · · ·Xi · · ·Xs) , (4.1)

containing the individual scans of all subjects i = 1, ..., s with the number of subjects
s. Hence the data matrix X has the size n ×m with the total number of time points
m = s · 2mi.

As shown in Section 3.3, the basic idea of NMF is the factorization of a non-negative
matrix into two non-negative matrices. In this case the equation is formulated as:

X = WH (4.2)

The n×m matrix X is represented by the product of an n×nc matrix W and an nc×m
matrix H, where nc denotes the number of components (See Figure 4.1). In the context
of fMRI analysis, W and H are interpreted as follows:

The non-negative matrix W consists of a set of nc values per measurement point. The
column vectors in W are therefore interpreted as weights on each point of measurement
on the brain and form actors aj, that are interpreted as basis vectors in the functionality
space of the brain (see Figure 4.2 for a schematic visualization). This means that all
possible brain activities can be reconstructed by a sum of these actors.
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4. Methodology

Figure 4.1: Visualization of the matrices involved in the global NMF calculation.

W =







| | | |
a1 a2 · · · aj · · · anc

| | | |






, (4.3)

with the index j = 1, ..., nc.

Figure 4.2: Schematic visualization of brain actors.

The non-negative matrix H consists of a set of nc values for each time point in the
measurement. These values are interpreted as weights for the individual actors, therefore
columns ht contain the information about the co-activation of the actors at a given time
point t.
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4.4. Individualization

H =







| | | |
h1 h2 · · · ht · · · hm

| | | |






, (4.4)

with the index t = 1, ..., m.

The product of one row in W and one column in H is the reconstruction of the original
data at a single point of measurement and of time.

To calculate the factorization it is necessary to provide nc as an input for the algorithm.
The value represents the number of resulting brain regions. For the context of this work
it is necessary to have the right amount of brain regions and therefore a specific value
nc. The results are used for model calculation hence a higher number increases the
dimensionality of the model and the quality of the prediction. The parcellation of the
brain signal is aimed to result in functionally and anatomically distinct regions. Thus
there is an upper limit of nc, where regions with the same function are split into multiple
parcels (e.g. a split of a symmetric region into two regions for the two hemispheres).
This limits the range of nc; to get the final value used for the calculations in this work,
the reproducibility of the result is used as a measure of quality.

In this section the (pre-processed) fMRI data is used to compute the non-negative
factorization into two matrices W and H. The original data dimension n×m is reduced
to n × nc and nc × m. The matrix W contains information of the brain actors i.e.
connected functional areas while the matrix H encloses the knowledge of their activation
in time. The results are called global because they include all subjects.

4.4 Individualization

The resulting matrices W and H represent the data of all subjects used for the calculation.
To get an individual specific result the NMF algorithm is applied a second time using
the global results as an initialisation. This time the data of every single subject Xi is
factorized:

Xi = WiHi (4.5)

In this calculation the initialisation for Wi is the global W , and for Hi the submatrix
of the global H containing the information related to a single subject (with the size
nc ×mi).

The algorithm approximates the factorization iteratively until a point of convergence is
reached. This point is predefined by a stopping criterion. Possible choices for a stopping
criterion are the number of iterations or the tolerance of change between iterations. The
choice of the correct criterion is not trivial and requires additional research (see Section
5.3.1). This is especially true in this case because the algorithm tends to diverge from
the initialisation which is an undesired event in the context of this work.
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4. Methodology

The resulting matrices Wi have the same dimension and interpretation as the global W
from (4.3), while being individual specific. Albeit the latter is true for Hi, the former
is not: the information of a single subject is contained in a fraction of all time points,
therefore the dimension of Hi is nc ×mi, with mi being the time points of the scan for a
single subject (See Figure 4.3).

Hi =







| | | |
h1 h2 · · · ht · · · hmi

| | | |






, (4.6)

with the index t = 1, ..., mi.

Figure 4.3: Visualization of the matrices involved in the individualization NMF calcula-
tion.

The amount of data used for each individual calculation is significantly lower compared
to the global calculation, as the second dimension of Xi (and Hi) is only a fraction of the
global X (and H). Therefore the algorithm tends to overfit the data by scattering the
global brain actors into noisy regions that have no functional or anatomical interpretation.
To avoid this effect it is necessary to limit the number of iterations and find a suitable
stopping criterion. To this end two values are examined: the within-subject and across-
subject correlation. The number of iterations chosen as a stopping criterion has a high
ratio of these values while retaining a high difference.

To enable a comparison of the results of different individuals, the Wi and Hi have to be
mapped. The Hungarian Algorithm [16] and a Euclidean distance between the individual
actors a

global
j and aindividual

j (with j = 1, ..., nc) is used for this purpose. This method
allows a comparison of individual subjects, but also of groups of subjects.

In summary the global results W and H are used as an initialisation of a second NMF
to compute individual specific results Wi and Hi. These matrices are different for each
subject and fitted to the individual characteristics. The individual brain actors maintain
the gross structure of the global result and are mapped to them to enable a comparison
of different individuals.
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4.5. Quantifying Individuality

4.5 Quantifying Individuality

The within-subject and across-subject correlation can be calculated for each brain actor
and compared across the cortex. The correlation of each actor pair aj , ak is calculated as

within = cor(aj , aj) (4.7)

across =
1

nc − 1

∑

k

cor(aj , ak 6=j) (4.8)

for all j, k = 1, ..., nc. This calculation results in one within value for each actor, therefore
the across values are averaged over all nc− 1 co-actors to get one value per actor as well.

There are areas exhibiting correlation across subjects whereas others are specific to
each individual subject. This enables the research of individuality by regarding both
correlations withina and acrossa of an actor a as well as their ratio ra given as

ra =
withina

acrossa
. (4.9)

The coefficient of individuality ri is defined as a vector with one entry for each actor
specific to an individual subject i.

ri =























r1

r2
...

ra

...
rnc























(4.10)

ri contains the ra of all actors a = 1, ..., nc and therefore the complete information of
individuality for one individual subject i.

In this section the individualized results Wi are used to define the within- and across-
subject correlations and to calculate the coefficient of individuality ra. A high value of
ra translates to a high value of individuality i.e. an actor that is different across subjects
and similar within the same subject. In contrast a low value of ra indicates that the actor
is similar across different subjects and has low individual specificity. The coefficients of a
single subject i are compiled into the vector ri.

4.6 Dynamicity of Actors

Actor activation is dynamic and changes in time. At each point in time different actors
are active and have intrinsic patterns of co-activation. A schematic visualization of actor
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4. Methodology

co-activation patterns is given in Figure 4.4. These patterns are varied: there are actors
that stick to a specific pattern of co-activation by being active with the same co-actors for
all time points (see Figure 4.4 (b) and (c)) and there are actors that are more dynamic
by being part of different patterns of co-activation (see Figure 4.4 (a)).

(a) high dynamicity (b) low dynamicity (c) low dynamicity sorted

Figure 4.4: Schematic plot of the actor co-activation. The first row (blue) symbolizes the
chosen actor and the other rows below the actors with the highest co-activation. The
columns represent different time points. (a) and (b) show the top 6 actors ranked by
co-activation strength, (c) displays the co-actors of (b) sorted by actor id.

The dynamicity of actors is estimated by examining the co-activation of the actor with
all the other actors at each point in time. This is done via comparison of the entries of
ht from (4.6) at all time points where the investigated actor is active, i.e. the activation
is above a predefined threshold. The threshold is calculated for each actor separately
according to the maximum activation of the actor. This way exclusively the time points
with in comparison high activation are examined to reduce the number of irrelevant
activations due to noise. The assessment of the co-activations allows the calculation of a
coefficient of dynamicity for each actor. For one actor a the coefficient of dynamicity is
calculated as:

cdyn
a =

1
mi

mi
∑

j





1
mi − j

mi−j
∑

k

(1− ojk)



 =
2

mi(mi + 1)

mi
∑

j





mi−j
∑

k

(1− ojk)



 , (4.11)

with ojk being the overlap between time points j and k, i.e. the fraction of actors with
the same id. In this work the top 10% are used (i.e. 6 actors) and therefore ojk can have
the values:

ojk ∈

[

0,
1
6

,
2
6

,
3
6

,
4
6

,
5
6

, 1
]

(4.12)

An actor with high values of overlap ojk (e.g. ojk > 2
6) between multiple time points

exhibits low dynamicity cdyn
a because it is active with the same group of actors over
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4.7. Predicting Task Activation from Actors

the course of time. If the overlap ojk is low (e.g. ojk < 2
6) the actor demonstrates

co-activation with multiple different actors and therefore higher dynamicity cdyn
a . Thus

actors with low cdyn
a display co-activation with specific other actors and exclusively with

these actors whereas actors with high cdyn
a exhibit co-activation with (in comparison)

many different other actors and change these co-actors during the course of time. This
implies that actors with high dynamicity are part of multiple and/or more complex
networks compared to the actors with low dynamicity.

The resulting vector of dynamicity of an indvidual subject i is given as c
dyn
i defined as

c
dyn
i =

























cdyn
1

cdyn
2
...

cdyn
a
...

cdyn
nc

























, (4.13)

and contains the cdyn
a of all actors a = 1, ..., nc and therefore the complete information of

dynamicity for one individual subject i.

To summarize, the individualized results Hi are used to define the coefficient of dynamicity
cdyn

a by comparison of the actor co-activation and calculating the overlap between time
points. If the coefficient of dynamicity is high the actor is co-active with many different
other actors whereas an actor with low dynamicity is co-active with the same actors over
all (or most) time points. The coefficients of a single subject i are compiled in the vector
c

dyn
i .

4.7 Predicting Task Activation from Actors

There are two kinds of fMRI scans that differentiate in the activity of the examined
subject: 1. resting-state fMRI (subject is at rest) and 2. task fMRI (subject has to
perform specific tasks). There is a connection between brain activity at rest and at task
activation [28]. Because of this connection the task activation can be predicted using the
resting-state data. This means the activation during a specific task is simulated using
task-free data.

The activation of tasks is predicted using individual actors matrix Wi (calculated using
only data at rest) and their corresponding subject specific task activation maps Zi

(obtained from scans of subjects performing different tasks). A schematic visualization is
given in Figure 4.5. The training of the model is done point-wise: the rows of Wi contain
the features and the values in Zi the corresponding targets for a linear regression model.
Thus the necessary objects are
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4. Methodology

Zi =



















z1

z2
...

zk

...



















and Wi =



















− w1 −
− w2 −

...
− wk −

...



















. (4.14)

The row vectors wk (i.e. the rows of Wi) contain the actor activation of each actor at
the point on the cortex k. This combination of actors is specific for each individual and
therefore connected to the corresponding task activation of the same individual. The
task activation zk at the point of measurement k is estimated as

zk = α + βwk , (4.15)

with the model parameters α and β. Since the number of samples is high (n · number of
subjects) the SGD algorithm is used to fit the linear model.

Figure 4.5: Schematic visualization of the task prediction using the resting-state actor
footprint co-activation (wk).

In summary the individualized results Wi and the subject specific task activation maps
Zi are used to create a linear model to predict the task activation of an unseen subject
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4.8. Predicting Cognitive Data from Actors

using task-free data. For this purpose the SGD algorithm is used in a leave-one-out
fashion.

4.8 Predicting Cognitive Data from Actors

The coefficients corresponding to individuality and dynamicity are plausible features for
the prediction model of cognitive data. Similar to (4.15) a linear model is trained using
the cognitive data fi as targets and the coefficients ci as features:

fi = α + βci (4.16)

Figure 4.6: Schematic visualization of the cognitive data prediction using the coefficient
of dynamicity (value indicated by the colour bar) of the chosen actors (in this case two
actors).

In this work the cognitive data is the value of fluid intelligence for each subject. This
value is taken from a table of HCP data and has been calculated using Raven’s Matrix
Test [58]. Two different features are used for model training and prediction:

1. The coefficient of individuality ri defined by (4.10). In this case the model is formulated
as

fi = α + βri , (4.17)

with the fluid intelligence fi and the coefficient of individuality ri of the subject i as well
as the model parameters α and β.
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4. Methodology

2. The coefficient of dynamicity c
dyn
i defined by (4.13). The corresponding model is given

as

fi = α + βc
dyn
i , (4.18)

with the fluid intelligence fi and the coefficient of dynamicity c
dyn
i of the subject i as

well as the model parameters α and β.

To improve the quality of the model the coefficients of the most relevant actors are
determined by calculating the correlation with the cognitive data. A number of k values
is selected (with 1 ≤ k ≤ nc) and similar to [29] the values are added up, this way the
features ci are scalars ci:

ci =
k

∑

j

[ci]j
(4.19)

The values of the actors with the highest correlation are used for a prediction model, the
positive feature model f+

i , and the same is done for the ones with the lowest (negative)
correlation, the negative feature model f−

i .

f+
i = α + βci

(+)

f−
i = α + βci

(−) (4.20)

Here the sign in the exponents indicates the difference in the feature selection for the
calculation of ci. For ci

(+) the k highest features and for ci
(−) the k lowest features are

summed up.

To summarize, the fluid intelligence is used as the prediction target of a linear predictive
model. Two different features are used for the model training and prediction: the
coefficient of individuality c

dyn
i and the coefficient of dynamicity ri. For both methods

the features are restricted to the most relevant ones, i.e. the ones displaying the highest
correlation for the positive feature model f+

i and the ones with the lowest correlation for
the negative feature model f−

i .

4.9 Summary

To analyse the activity in the human brain the data of fMRI scans is used for the
calculations in this work. For this purpose NMF is employed to create a parcellation into
nc functional brain regions. The combination of the datasets of all subjects enables the
calculation of the global matrices W and H. W contains the information of the spatial
distribution of the regions on the cortex and the column vectors in W can be interpreted
as brain actors. H contains the temporal information and the columns in H comprise
the co-activation of the actors.
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4.9. Summary

To calculate individual specific results Wi and Hi for each subject the global W and H
are used as an initialisation for a second NMF. The individualized matrices Wi and Hi

have the same interpretation as the global matrices W and H. The individual actors are
mapped to the global result using the Hungarian Algorithm [16] to enable a comparison
of the results.

The individualized brain actors are correlated and the coefficient of individuality ri

is defined as the ratio of within- and across-subject correlations. The coefficient of
dynamicity c

dyn
i is introduced and calculated by comparing the co-activation patterns of

brain regions.

The task-free individual specific results can be used to predict task activation. The
individualized brain actor composition at each point on the cortex (rows in Wi) are the
features and the task activations at each point are the targets for the training of a linear
model. After the model training the task activation of an unseen subject can be predicted
using the (task-free) brain actor matrix Wi.

To find out if it is possible to predict cognitive data from individualized brain actors, a
linear model is trained using the fluid intelligence fi as targets. Potential features for the
model training are the coefficient of individuality ri and the coefficient of dynamicity
c

dyn
i . To enhance the quality of the model the values of each actor are correlated to

the values of fi and the ones demonstrating the highest correlation are selected for the
positive feature model while the ones displaying the lowest (negative) correlation are
chosen for the negative feature model. After the model training the fluid intelligence of
an unseen subject can be predicted using the the selected model feature.
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CHAPTER 5
Experiments

The experiments conducted for this work are described in this chapter. First the
dataset used is examined in Section 5.1. The application of NMF and the resulting
brain parcellation are depicted in Section 5.2. Section 5.3 focuses on the research of
individuality and the dynamicity is examined in Section 5.4. The cognitive activity
prediction is performed in Section 5.5 in the case of task prediction and in Section 5.6
for the prediction of fluid intelligence. A brief summary of the experiments is given in
Section 5.7.

5.1 Dataset

The dataset used is part of the HCP S1200 release [59] and contains 914 subjects with 4
scans per subjects. For this work the dataset is split into two groups for the purpose of
stability analysis: SubjectGroupA containing the first 453 subjects and SubjectGroupB
containing the other 461 subjects. To examine the subject stability, the data in
SubjectGroupA is divided into the MainDatasetA and the ReproductionDatasetA1
each consisting of two scans per subject. The fMRI data for all subjects includes two
different scan methods: scans at rest and while performing tasks. The HCP data itself is
preprocessed by the HCP standard preprocessing pipeline [60]. The signals are Gauss-
distributed with a mean of zero. To enable the application of NMF the data has to be
non-negative. There are two different approaches to enforce this criterion: 1. shift the
distribution so that all values are positive and 2. cut off all negative values. For this
work method 2 is chosen because it utilises the symmetry of the data distribution and
increases the calculation speed.

In addition to the fMRI data the HCP dataset includes a table with supplementary
values, one of them is the value for fluid intelligence and is used in this work.
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5. Experiments

5.2 NMF Results

The regions of the brain parcellation have to be sparse and interpretable. To realize
these features the NMF algorithm is applied to the dataset containing all subjects
(MainDatasetA or ReproductionDatasetA1 respectively). The population-based result
fulfils these criteria, which is demonstrated by analysing the actor reproducibility and by
comparison of the actor footprints on the cortex with existing state of the art results.

The results for the global NMF are displayed in Section 5.2.1 and the identification of the
optimal number of components used for all the calculations is described in Section 5.2.2.

5.2.1 Global Results

To demonstrate that NMF can be used to produce a sparse and interpretable brain
parcellation, it is applied on a HCP dataset containing multiple subjects. The resulting
population-based atlas can be compared to existing state of the art of brain parcellations
and further used to calculate individual-specific results.

The first step in computation of the parcellation is the application of the NMF algorithm
on the dataset containing the data of all subjects. The number of components nc is the
one most relevant input parameter. For the following calculations a value of nc = 60 is
used, the reason for choosing this specific value is explained in Section 5.2.2. The results
for the MainDatasetA and the ReproductionDatasetA1 are visualized in Figure 5.1 (a)
and Figure 5.1 (b). The correlation of the matching actors is calculated and plotted in
Figure 5.1 (c). The mean correlation is 0.789 with a standard deviation (std) of 0.268.
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5.2. NMF Results

(a) Global actor footprints of MainDatasetA

(b) Global actor footprints of ReproductionDatasetA1

(c) Global actor footprint cor-
relation

Figure 5.1: Winning actor plot of the global result with nc = 60 for two differ-
ent sets of scans on the same subject group: The MainDatasetA in (a) and the
ReproductionDatasetA1 in (b). The actors are visualized in different colours and only
the actor with the highest activation is plotted per point. The images show a lateral view
of the left hemisphere (left) and the right hemisphere (right). In (c) the distribution of
actor correlation is visualized.

5.2.2 Number of components nc

As stated in Section 4.3 it is important to find the correct value for nc. The method
is used for both the MainDatasetA and the ReproductionDatasetA1 to calculate two
global results. The resulting actors are mapped using the Hungarian algorithm [16] and
the actor correlation is analysed. This is repeated for different values of nc and the results
are compared (see Figure 5.2). The mean actor correlation is high for nc = 7 (cor = 0.971)
and nc = 20 (cor = 0.891). As expected there is a drop in actor correlation for higher
values of nc and the mean for nc = 40 is 0.709, however there is a local maximum for
nc = 60 (cor = 0.789). The mean values for all tested values of nc are given in Table 5.1.
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5. Experiments

Figure 5.2: Actor correlation of the global NMF results for different nc.

The global results for nc = 7, nc = 60 and nc = 120 are depicted in Figure 5.3 as winning
actor plots. In this plot the cortex is parcellated by visualizing the different actor ids in
different colours and each point on the cortex is assigned to the single actor with the
highest activation at this point.
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5.3. Individuality

nc correlation (mean ± std)
7 0.971 ± 0.016
20 0.891 ± 0.224
40 0.709 ± 0.301
50 0.764 ± 0.268
60 0.789 ± 0.268
70 0.773 ± 0.280
80 0.708 ± 0.280
100 0.744 ± 0.293
150 0.728 ± 0.283

Table 5.1: Mean actor correlation of the global parcellation for different values of nc.

(a) nc = 7 (b) nc = 60 (c) nc = 120

Figure 5.3: Winning actor plot of the global result for different nc. The actors are
visualized in different colours and only the actor with the highest activation is plotted
per point. The images show a lateral view of the left hemisphere.

5.3 Individuality

It is a major goal of this work to provide an individual-specific parcellation while retaining
group-level comparability. The individualized results have to be reproducible within the
same subject and at the same time different across subjects. For this reason a second
NMF is performed and the results realize the requirements stated above. This is validated
by investigating the within- and across-subject correlation.

An overview of the computation of the individualized results is given in Section 5.3.1.
The individualized results demonstrate significant difference when comparing the within-
subject and across-subject correlation. This is the requirement for an individual-specific
result and examined in Section 5.3.2. The difference is not uniformly distributed across all
actors and their footprints on the cortex. To visualize this phenomenon it is imperative
to calculate the individuality of the actors. For this purpose a measure of individuality is
introduced and visualized in Section 5.3.3.
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5. Experiments

5.3.1 Individualization

As explained in Section 4.4 the global W and H are used as an initialisation of a second
NMF to get individual specific results. For this computation one of the two available scans
is used. Hence it can be repeated for the second scan to obtain two individual-specific
results per subject. This is relevant to examine the variability within and across subjects.
To find the optimal stopping criterion the tolerance of the algorithm is examined as
it limits the number of iterations. The quality of the individualization is evaluated
by mapping the results and calculating the actor correlation on an intra-subject and
inter-subject level. The resulting within-subject and across-subject correlations as well
as their difference and ratio are visualized in Figure 5.4 for tolerances between 10−1 and
10−5.

Figure 5.4: Correlation in dependence of tolerance (logarithmic). The mean values of
within-subject and across-subject correlations are plotted as well as their ratio r = within

across

and their difference dif = within− across.

There is a visible drop in quality (i.e. within-subject and across-subject correlation)
for tolerances below 10−2. The cause for this drop in quality is a loss of functional
and anatomical interpretibility due to scattering of the actor footprints (see Figure 5.5).
While the results with a tolerance between 10−1 and 8 ∗ 10−2 are strongly correlated to
each other (correlation > 0.8), the results with a tolerance of 10−2 show a significant
difference for within-subject and across-subject correlation. For this reason the tolerance
of 10−2 is chosen as a stopping criterion for the individualization.
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5.3. Individuality

(a) Global actor footprints

(b) Actor footprints for tol = 10−1

(c) Actor footprints for tol = 10−2

(d) Actor footprints for tol = 10−3

(e) Actor footprints for tol = 10−4

Figure 5.5: Actor footprints of two randomly chosen actors for different individualization
stopping criteria. Each column shows one actor footprint in a lateral view of the left
hemisphere (left) and the right hemisphere (right).
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5. Experiments

To visualize the individual subject differences four actor footprints are plotted for three
subjects and compared to the global actor footprints in Figure 5.6. All of the actors of the
individualized result for one subject are plotted in Figure 5.7 (a) for the MainDatasetA
and for the ReproductionDatasetA1 in Figure 5.7 (c) as well as the corresponding actor
correlation of matching actors in Figure 5.7 (b) and Figure 5.7 (d). The same plots are
given in Figure 5.8 for a different subject. The correlation of matching actors is calculated
for both subjects and the mean actor correlation as well as the standard deviation (std)
are given in Table 5.2. The values indicate high reproducibility independent of the dataset
used. The mean within-subject correlation of the results of the subject in Figure 5.7
is 0.895 for the MainDatasetA and 0.890 for the ReproductionDatasetA1. The mean
actor correlations for the subject plotted in Figure 5.8 are 0.905 for the MainDatasetA
and 0.906 for the ReproductionDatasetA1.
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5.3. Individuality

A

A1

A

A1

A

A1

A

A1

(a) global (b) subject 1 (c) subject 2 (d) subject 3

Figure 5.6: Comparison of actor footprints on the cortex. The same actor is plotted in
one row for the global (a) and individualized results of three different subjects (b),(c),(d).
The first row shows the results of MainDatasetA (A) and the second row the results of
ReproductionDatasetA1 (A1). Each image displays the lateral view of the left hemisphere
(left) and the right hemisphere (right).
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5. Experiments

(a) MainDatasetA (b)

(c) ReproductionDatasetA1 (d)

Figure 5.7: Winning actors plot of the individualized results for a single subject.
The results for the same subject are visualized for the MainDatasetA (a) and the
ReproductionDatasetA1 (c). For both datasets the results for the first scan (left column)
and the second scan (right column) are shown. Each picture shows a winning actor
plot in a lateral view of the left hemisphere (left) and the right hemisphere (right).
The distribution of correlations of matching actors is shown in (b) for the results of
MainDatasetA and in (d) for ReproductionDatasetA1.

(a) MainDatasetA (b)

(c) ReproductionDatasetA1 (d)

Figure 5.8: Winning actors plot of the individualized results for another single subject.
See Figure 5.7.
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5.3. Individuality

correlation (mean ± std)
subject 1 subject 2

MainDatasetA 0.895 ± 0.034 0.905 ± 0.034
ReproductionDatasetA1 0.890 ± 0.047 0.906 ± 0.026

Table 5.2: Correlation values (mean ± std) of subject 1 (Figure 5.7) and subject 2 (Figure
5.8) for the MainDatasetA and the ReproductionDatasetA1.

5.3.2 Individual Specificity

To obtain a measure of quality for the individual specificity of the parcellation the
within- and across-subject correlation defined by (4.7) and (4.8) are calculated. For each
correlation value 1000 randomly chosen subject-couples are selected and the correlation
of each actor is determined. This way for each actor 1000 values are measured for both
within- and across subject correlation. The distribution of the results is visualized in
Figure 5.9.

(a) MainDatasetA (b) ReproductionDatasetA1

Figure 5.9: Distribution of the within-subject and across-subject correlation for the
MainDatasetA (a) and the ReproductionDatasetA1 (b).
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5. Experiments

The actors for an individual subject have to be significantly different from the actors
of another subject to be individualized. An unpaired two-tailed t-test is performed to
check if there is a significant difference. The statistical values are given in Table 5.3. The
significance of the difference between within- and across-subject correlation is evident:
The within-subject correlation is significantly higher than the across-subject correlation.
The calculated values for the within-subject correlation are 0.887 for MainDatasetA
and 0.885 for ReproductionDatasetA1 while the mean across-subject correlation is 0.742
for MainDatasetA and 0.749 for ReproductionDatasetA1. The difference is significant
for p < 0.001 independent of the dataset used.

MainDatasetA

within-subject (mean ± std) across-subject (mean ± std) t (p)
0.887 ± 0.055 0.742 ± 0.103 302 (p<0.001)

ReproductionDatasetA1
within-subject (mean ± std) across-subject (mean ± std) t (p)

0.885 ± 0.053 0.749 ± 0.102 290 (p<0.001)

Table 5.3: Statistic values for the within- and across-subject correlations. The t and p
values correspond to an unpaired two-tailed t-test applied on the distributions of the
within- and across-subject correlations.

5.3.3 Variation in Individuality across the Cortex

While being different for each individual subject, the actors still share the properties of
the global initialisation. However the across-subject correlation is more variable (standard
deviation σ = 0.1 compared to the within-subject correlation (σ = 0.05). Consequently
there are actors with higher correlation (> 0.8) and actors with lower correlation (< 0.7),
or put in other words: actors that are similar for all subjects and actors that are more
individual-specific. To visualize this variation, the ratio r = within

across
is calculated and

serves as a measure for individuality. The mean over all subjects is plotted in Figure
5.10 as a weighted plot. The values for this ratio are greater than or equal to 1. Where
r = 1 indicates low (no) individuality (within = across) and values r > 1 indicate more
individual-specificity (within 6= across, or rather: within > across).

The reproducibility of the result is analysed by calculating the correlation of the results of
MainDatasetA an ReproductionDatasetA1. The calculated correlation is cor = 0.894
which indicates high reproducibility and stability of the result.

The individuality across the cortex is averaged over the 7 Yeo networks of [17]. The
regions are plotted in Figure 5.11 (a) and the mean individuality per network is depicted
in the bar plot of Figure 5.11 (b). The values are given in Table 5.4. The region exhibiting
the highest individuality is the network of Visual Attention with a mean value of 1.250
while the regions with the lowest individuality are the Visual (1.196) and Limbic (1.186)
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5.3. Individuality

(a) MainDatasetA

(b) ReproductionDatasetA1

Figure 5.10: Individuality plot for (a) the MainDatasetA and (b) the
ReproductionDatasetA1. The ratio of the correlations r = within

across
for each actor is

weighted by the actor activation at each point on the cortex. The images show a lateral
view of the left hemisphere (left) and the right hemisphere (right).

networks. The distributions of the individuality across the 7 Yeo regions are plotted in
Figure 5.12 to visualize the spread of the values that is caused by the comparatively big
regions that span over areas of low and high individuality.
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5. Experiments

(a) Yeo Regions

(b) Individuality

Figure 5.11: Individuality of the MainDatasetA averaged over the 7 Yeo regions. The
regions are visualized on the cortex in (a) and the mean individuality per region is plotted
in (b). The regions are defined as 7 networks: Ventral-Attention (VA), Fronto-Parietal
(FP), Dorsal-Attention (DA), Default (Def), Motor (Mot), Visual (Vis) and Limbic (Lim).

Network Coefficient of individuality (mean ± std)
VA 1.250 ± 0.098
FP 1.214 ± 0.107
DA 1.214 ± 0.100
Def 1.203 ± 0.098
Mot 1.200 ± 0.100
Vis 1.196 ± 0.109
Lim 1.186 ± 0.103

Table 5.4: Coefficients of individuality averaged over the 7 Yeo regions.
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5.4. Dynamicity & Co-Activation

Figure 5.12: Distribution of the coefficient of individuality in each Yeo network.

5.4 Dynamicity & Co-Activation

As explained in Section 4.6, the actor co-activation at each point of time is examined
to estimate the dynamicity of the actor. The columns in the matrices Hi contain the
activation strength of each actor at a given time. For each actor the time points where
the actor is active (i.e. above a threshold) are selected and the co-activation of the other
actors is examined. To calculate a coefficient of dynamicity, the top 6 actor-ids (10%) of
the co-actors are compared and the fraction of overlap is averaged over all time points.
The mean over all subjects is visualized as a weighted plot in Figure 5.13.

The dynamicity across the cortex is averaged over the 7 Yeo regions [17] and the mean
values are depicted in a bar plot in Figure 5.14. The specifc values of the mean of each
network and their standard deviation are given in Table 5.5. The Visual and Limbic
networks demonstrate the highest values of dynamicity (0.573 and 0.568) while the
Default network displays the lowest value of dynamicity (0.459). The distribution of
the dynamicity across these networks is plotted in Figure 5.15. Similar to the previous
results (Figure 5.12) the regions span areas with high and low values of dynamicity.
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5. Experiments

Figure 5.13: Dynamicity averaged over all subjects of the MainDatasetA. The dynamic-
ity of each actor is weighted by the global actor activation at each point on the cortex.
The images show a lateral view of the left hemisphere (left) and the right hemisphere
(right).

(a) Yeo Regions

(b) Dynamicity

Figure 5.14: Dynamicity of the MainDatasetA averaged over the 7 Yeo regions. The
regions are visualized on the cortex in (a) and the mean dynamicity per region is plotted
in (b). The regions are defined as 7 networks: Visual (Vis), Limbic (Lim), Motor (Mot),
Ventral-Attention (VA), Fronto-Parietal (FP), Dorsal-Attention (DA) and Default (Def).
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5.4. Dynamicity & Co-Activation

Network Coefficient of dynamicity (mean ± std)
Vis 0.573 ± 0.359
Lim 0.568 ± 0.343
Mot 0.543 ± 0.365
VA 0.537 ± 0.355
FP 0.531 ± 0.354
DA 0.522 ± 0.357
Def 0.459 ± 0.382

Table 5.5: Coefficients of dynamicity averaged over the 7 Yeo regions.

Figure 5.15: Distribution of the coefficient of dynamicity in each Yeo network.
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5. Experiments

5.5 Task Prediction

As explained in Section 4.7, the individual Wi can be used to predict the task activation
Zi. A linear model is trained and tested in a leave-one-out fashion over all subjects. To
evaluate the quality of the model, the predicted activations for each subject and the true
activations are correlated to each other, resulting in the matrix of correlations M = [mij ].
Where mij = cor(truei, predictj) with the continuous indices i, j that go through all the
subjects in the dataset used (1 ≤ i, j ≤ 453 for MainDatasetA).

This matrix is normalized for the values in the diagonal (mii = 1) to enhance the quality
of the visualization. The correlation of the following plots is colour coded using the
colour map shown in Figure 5.16 (c). A comparison of the normalized and not normalized
matrix plots for one task (Language 3) is given in Figure 5.16 (a) and (b).

(a) not normalized (b) normalized

(c) colour map

Figure 5.16: Comparison of the correlation matrix (a) and the normalized matrix (b) for
the task Language 3. A small area is magnified to enhance the visibility of the diagonal
and highlight the difference to the off-diagonal values, especially in the normalized plot.
The colour map used for the visualization of the correlation matrices is given in (c).
The warmer colours indicate high correlation whereas the cooler colours indicate lower
correlation.

The results for six other tasks are plotted in Figure 5.17 (not normalized) and Figure
5.18 (normalized).
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5.5. Task Prediction

(a) Emotion 3 (b) Gambling 2 (c) Motor 7

(d) Relational 2 (e) Social 2 (f) WM 9

Figure 5.17: Correlation matrices for different tasks.

(a) Emotion 3 (b) Gambling 2 (c) Motor 7

(d) Relational 2 (e) Social 2 (f) WM 9

Figure 5.18: Normalized correlation matrices for different tasks.
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5. Experiments

The values in the diagonal hold the information about the correlation of the predicted
and true activation of the same subject. The difference between the diagonal (mii) and
the off-diagonal values (mi6=j) is a measure of quality for the model. To evaluate if there
is a significant difference between these values, a two-tailed t-test is performed. The mean
values for both the diagonal (m̄ii) and the off-diagonal (m̄i6=j) as well as the test results
are given in Table 5.6. The mean values of the diagonal are m̄ii = 0.666 for the task
Language 3 and m̄ii = 0.660 for the task WM 9. Their corresponding mean values of the
off-diagonal are m̄i6=j = 0.576 (Language 3) and m̄i6=j = 0.621 (WM 9). The difference
has the highest significance for these two tasks with t = 23.6 (Language 3) and t = 10.6
(WM 9). The results for the tasks Motor 7 and Emotion 3 are similar but show less
significance in the difference (see Table 5.6). It has to be noted that the difference is still
significant for p < 0.001. The same is true for the tasks Social 2 and Relational 2 however
the mean values of the diagonal m̄ii and off-diagonal m̄i6=j are lower in comparison.
Gambling 2 is the only task with a lower significance of the difference between diagonal
and off-diagonal with a critical value of p = 0.043 in contrast to the p < 0.001 for all
the other tasks. Additionally the mean values (m̄ii = 0.147 and m̄i6=j = 0.135) are low
and have high standard deviations in comparison (0.119 and 0.110). The distributions of
the diagonal and off-diagonal values are visualized in Figure 5.19 and for the normalized
correlation matrices in Figure 5.20.

m̄ii (mean ± std) m̄i6=j (mean ± std) t(p)
Emotion 3 0.608 ± 0.104 0.572 ± 0.099 7.3 (p<0.001)
Gambling 2 0.147 ± 0.119 0.135 ± 0.110 2.0 (p=0.043)
Language 3 0.666 ± 0.081 0.576 ± 0.071 23.6 (p<0.001)

Motor 7 0.608 ± 0.086 0.567 ± 0.082 10.1 (p<0.001)
Relational 2 0.332 ± 0.194 0.297 ± 0.179 3.8 (p<0.001)

Social 2 0.437 ± 0.101 0.394 ± 0.092 8.9 (p<0.001)
WM 9 0.660 ± 0.078 0.621 ± 0.075 10.6 (p<0.001)

Table 5.6: Mean values of the diagonal (m̄ii) and the off-diagonal (m̄i6=j) and their
respective standard deviation as well as the test results of a two-tailed t-test for the
different tasks.

For the discussion and interpretation of these results it is relevant to examine the task
activation on the cortex. The true and predicted task activations of four different tasks
are plotted for a single subject in Figure 5.21.
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5.5. Task Prediction

(a) Emotion 3 (b) Gambling 2 (c) Language 3 (d) Motor 7

(e) Relational 2 (f) Social 2 (g) WM 9

Figure 5.19: Histogram plots of the diagonal (blue) and off-diagonal (orange) correlation
values for each task.

(a) Emotion 3 (b) Gambling 2 (c) Language 3 (d) Motor 7

(e) Relational 2 (f) Social 2 (g) WM 9

Figure 5.20: Histogram plots of the diagonal (blue) and off-diagonal (orange) normalized
correlation values for each task.
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5. Experiments

(a) Gambling 2

(b) Language 3

(c) Relational 2

(d) WM 9

Figure 5.21: Comparison of the true task activation (left column) and the predicted task
activation (right column) of a randomly chosen subject. Each picture shows the cortex
in a lateral view of the left hemisphere (left) and the right hemisphere (right).
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5.6. Fluid Intelligence Prediction

5.6 Fluid Intelligence Prediction

The coefficients of dynamicity and individuality include information of cognitive data. As
such they can be used to predict the fluid intelligence of an individual. For this purpose
a linear model is used according to Section 4.8. To enable a legitimate comparison to
the state of the art, a subset of 118 subjects is used. The model is trained and tested in
a leave-one-out fashion for different features. Three different features are used: 1. the
coefficient of individuality r, 2. the across-subject correlation and 3. the coefficient of
dynamicity cdyn. The resulting predicted values of fluid intelligence are plotted in Figure
5.22 and the quality of the prediction is analysed by comparing the true and predicted
values in Figure 5.23.

(a) coefficient of individuality (b) across-subject correlation (c) coefficient of dynamicity

Figure 5.22: Fluid intelligence plot. For each subject (x-axis) the affiliated fluid intelligence
values are given (y-axis). The true values (red) of all subjects used are sorted and compared
to their corresponding predicted values (blue). The predicted values for (a) are the results
of the negative feature model f−

i , (b) and (c) are the values of the positive feature model
f+

i .

(a) coefficient of individuality (b) across-subject correlation (c) coefficient of dynamicity

Figure 5.23: Prediction quality plot. The predicted values are plotted against the true
values. In addition the diagonal (red) and the linear approximation of the scattered
points (green) are given. The predicted values for (a) are the results of the negative
feature model f−

i , (b) and (c) are the values of the positive feature model f+
i .
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5. Experiments

The correlation of the true and the predicted values is calculated for each result and given
in Table 5.7. The best results are obtained by using the coefficient of individuality as the
model feature. The correlation of the true and predicted values for the negative feature
model is 0.320; the result for the negative feature model is 0.043. The resulting correlation
of the positive feature model for the other two features used are 0.301 (across-subject
correlation) and 0.218 (coefficient of dynamicity). Here the results for the negative feature
model are lower (0.176 and 0.081).

feature of correlation
linear model f+

i f−
i

coefficient of individuality 0.043 0.320
across-subject correlation 0.301 0.176
coefficient of dynamicity 0.218 0.081

Table 5.7: Correlation of the true and the predicted values of the positive feature model
(f+

i ) and the negative feature model (f−
i ) for the three different features used in the

model calculation and prediction.

The correlation of the coefficients of the brain actors and the fluid intelligence values are
calculated for each subject and averaged over all subjects. The correlation is plotted for
the highest positive and negative values in a weighted manner in Figure 5.24 to visualize
the brain areas associated with cognitive function.

5.7 Summary

The dataset used for the research of this work is part of the HCP S1200 release [59].
There are 453 subjects in SubjectGroupA with four scans per subject. To examine the
subject stability the dataset is split into MainDatasetA and ReproductionDatasetA1
each containing two scans for each of the 453 subjects. NMF is performed on this dataset
to create an atlas of nc = 60 brain regions. The reproducibility of the result is measured
by calculating the correlation of matching actors. The mean correlation is 0.789 with a
standard deviation of 0.268. The value of nc = 60 is chosen because the reproducibility
is maximal compared to other values of nc > 20.

The global results W and H are used as an initialisation of a second NMF to create the
individual specific results Wi and Hi. In contrast to the global calculation the algorithm
has to be stopped to avoid over-fitting. The tolerance of tol = 10−2 is chosen as the
optimal stopping criterion. The reproducibility of the individualized results is analysed
by calculating the within- and across-subject correlation of 1000 randomly chosen subject
couples. The within-subject correlation (mean value of 0.887) is significantly higher
(p < 0.001) than the across-subject correlation (mean value of 0.742).

The coefficient of individuality ri is calculated for each subject and its stability is analysed
by calculating the correlation (mean correlation of 0.894). The individuality across the
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5.7. Summary

cortex is averaged over the 7 Yeo networks of [17]. The network demonstrating the highest
individuality is Visual Attention (mean value of 1.250) and the lowest individuality is
observed in the Limbic network (mean value of 1.186).

The coefficient of dynamicity c
dyn
i is calculated for each subject by comparing the actor

co-activation and averaged over the 7 Yeo networks of [17]. The Visual and Limbic
networks display the highest dynamicity (mean value of 0.573 and 0.568) while the
Default network exhibits the lowest dynamicity (mean value of 0.459).

The actor composition at each point on the cortex of an individual subject is used to
train a linear model capable of predicting task activation. The quality of the prediction
is analysed by calculating the correlation matrix between the predicted and true task
activations. There is a significant difference (p < 0.001) between the values of the diagonal
(mean m̄ii) and the off-diagonal (mean m̄i6=j) for six of the seven tasks tested (all but
Gambling). The highest quality is obtained for Language 3 (m̄ii = 0.666) and the lowest
quality for Gambling 2 (m̄ii = 0.147).

A linear model is trained to predict cognitive data by using fluid intelligence values fi

as targets. Three different features are used for the model training: the coefficient of
individuality, the across-subject correlation and the coefficient of dynamicity. The quality
of the prediction is assessed by calculating the correlation of the true and predicted
values. The feature resulting in the highest correlation is the coefficient of individuality
with a correlation of 0.320 for the negative feature model.
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5. Experiments

(a) coefficient of individuality

(b) across-subject correlation

(c) coefficient of dynamicity

Figure 5.24: Correlation between coefficients and fluid intelligence. The correlation is
averaged over all subjects and weighted by the global actor footprints on the cortex. The
correlation of the highest positive and negative values for the coefficient of individuality
(a), the across-subject correlation (b) and the coefficient of individuality (c) are plotted.
The images show a lateral view of the left hemisphere (left) and the right hemisphere
(right).
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CHAPTER 6
Discussion

The results of this work are discussed in this chapter. The main focus lies on the
comparison to the state of the art and the interpretation of the implications of the results.
The process and results of brain parcellation are discussed in the Section 6.1. Section 6.2
examines the results concerning individuality and Section 6.3 those concerning dynamicity.
The task prediction is reviewed in Section 6.4 and the fluid intelligence prediction is
debated in Section 6.5. The possibilities for future work are discussed in Section 6.6.

6.1 NMF Results

To create a functional parcellation of the human cerebral cortex brain fMRI data is
analysed using NMF. The application of NMF in this context yields two results: the
matrix W containing information about the functionally connected brain actors and the
matrix H that holds information about activation and co-activation of these actors over
the course of time. Because of the non-negativity of the results, they can be directly
interpreted. The actors in W are greater than 0 on all points on the cortex of the
corresponding actor footprint and equal to 0 everywhere else. One functional region is
therefore defined by the points on the cortex where the actor has values greater than
0. This enhances the interpretibility compared to methods that result in positive and
negative values (e.g. PCA). The activation of the actors in H behaves in a similar matter.
If the actor is active at a given point in time the value is greater than 0 and it is equal
to 0 if the actor is not active. The time points of activation can be identified as the time
points at which the entry of the corresponding actor is greater 0.

The parcellation calculated in this work demonstrates high reproducibility, analysed
by the actor correlation, on a global level (cor = 0.789 for nc = 60) as well as on an
individual level (average of cor = 0.887 for nc = 60).

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

6. Discussion

As stated in [17] it is difficult to evaluate the quality of the parcellation in terms of
anatomical and functional interpretibility. For this reason results are calculated for nc = 7
(see (a) in Figure 5.3). The results for nc = 7 show a high similarity to the established
results of [17], especially in the default mode network (pink), the frontoparietal network
(orange) and even including a similar separation of the sensory and motor cortices (blue
and purple) described in [17]. This result proves that NMF is a useful tool to produce an
interpretable and reproducible parcellation of the brain.

The result for nc = 60 has the same network structures but the bigger regions are split
into subregions, most notable in the sensory and motor cortices mentioned above. While
these regions still uphold features of the major networks, the results of nc = 120 show
little to none. Most of the regions are evenly distributed and evenly shaped, having lost
all interpretibility.

To get an individual-specific parcellation, the global results are used as an initialisation
of a second NMF. Using a population based atlas as a starting point for the calculation
of an individualized result is a method that has already been applied successfully [6].
Naturally the algorithm has to be stopped at convergence. Therefore the choice of the
stopping criterion has a major influence on the quality of the result.

As can be seen in Figure 5.4 the quality of the result drops significantly for tol < 10−2

as a stopping criterion. In this case the correlation of actors is used as a measure of
quality. The within-subject correlation drops which implies a reduced reproducibility and
stability of the method. The decline in the across-subject correlation indicates a lower
grade of group-level similarity. The reason for this occurrence is visible in Figure 5.5.
The individual actors start to scatter and diverge from the global result, which has two
indications: 1. the actors lose their interpretibility and 2. the actors lose their distinctive
characteristics. The scattering of the actors acts like an addition of noise, reducing
the quality of the result. Though the ratio r which corresponds to the individuality of
the result has a lower value for tol = 10−2 (r = 1.2) compared to values of tol < 10−2

(r = 1.5 for tol = 10−3), the value is high enough to be acceptable as the aforementioned
downsides outweigh the drop in individuality and the rise of r. Consequently the values
of tol < 10−2 are bad choices for the stopping criterion. The black line in Figure 5.4 is the
difference dif = within− across. It is important for values of tol > 10−2 to visualize the
change of the global actors. For low numbers of iterations (corresponding to high values
for tol) the actors are similar to the global actors and therefore highly similar to each
other (within ≈ across ≥ 0.9) with dif < 0.1. Hence they are not individual-specific and
therefore the values for tol > 10−2 are a bad choice as well. In conclusion the optimal
stopping criterion is tol = 10−2 as the difference dif is significant (i.e. dif > 0.1), the
within-subject correlation is high (within > 0.8) and the ratio r is acceptable.

The final individualized results are consistent among the same subject, evaluated by the
high within-subject correlation. It has to be noted however that the individual actors
are dependant of the initialisation. As long as the same global initialisation is used
for calculations there is no direct problem with this. When the results of two different
initialisations are compared one can see that the actors are generated differently. This is
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6.2. Individuality

visible in Figure 5.6. Especially in the third row the actor footprint shows two regions in
the frontal cortex for MainDatasetA (A) and a single one for ReproductionDatasetA1
(A1). This reduces the reproducibility of the algorithm and complicates the interpretation
because the same brain region is grouped into different actors. There are two possible
solutions for this problem: 1. using fewer regions, then associated regions are not split
into multiple actors, or 2. applying an additional clustering algorithm to join regions.
These methods are definitely a topic for future research.

There is one initial parameter for the algorithm of NMF: the number of components nc.
It is mentioned in Section 4.3 that the right value has to be picked. But what exactly is
the right value? Finding a definitive answer to that question is challenging and maybe
there is no "single correct answer given that the cerebral cortex possesses complex patterns
of diverging and converging connections among areas." [17]. It is necessary to approach
it by limiting the possible candidates. The dataset used has 5124 points of measurement
on the cortex. Since the focus of this work lies on the connectivity between these points
and the research of functional brain areas, it is necessary to reduce the number of regions
so that multiple points are included in each region. For this reason it is desired that a
region contains at least 1% of the data points which leads to nc = 100 respectively. In
theory, a computation of all possible values can be done to get results for each value
of nc; in practice however this would take a long time and lots of memory. Hence the
computation is done in discrete steps for nc. By comparing the resulting correlations of
nc = 50, nc = 100 and nc = 150, a trend is visible. The higher the number of regions
the lower the reproducibility of the parcellation. For this work a value of nc = 60 has
been chosen because the respective results have the highest reproducibility for values
of 20 < nc < 150. The numbers of nc ≤ 20 indicate better reproducibility, but for the
context of this work this number of regions which is low in comparison has no other
benefits; whereas more regions equal a finer grained parcellation which is beneficial for
this work. In fact a higher number of initial regions can potentially be used to apply
additional merging and clustering methods, e.g. as described in [9], for future studies.

6.2 Individuality

The individualized results are analysed in regard to their reproducibility within the same
subject and variation across different subjects. For this purpose the correlation of the
actor footprints is calculated. The average within-subject correlation is cor = 0.887
for the MainDatasetA and cor = 0.885 for the ReproductionDatasetA1. These values
demonstrate high reproducibility within the same subject and indicate high stability of
the method. The average across-subject correlation is cor = 0.742 for the MainDatasetA
and cor = 0.749 for the ReproductionDatasetA1. This can be interpreted as a high
correlation across subjects and hence a stable parcellation that has similar regions
independent of the subject. On the other hand these values are significantly lower
(p < 0.001, see Table 5.3) than the values of the within-subject correlation, indicating
a higher variation across different subjects than within the same subject. This is an
important finding illustrating that the individual-specific differences vary across subjects
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6. Discussion

but are reproducible within the same subject. The variation of these individual-specific
differences is analysed by calculating the coefficient of individuality ri defined by (4.10).

To evaluate the quality of this result it is necessary to compare it to previous work. As
stated in Section 2.3.1 Wang et al. [6] have researched the individualization as well as
the within-subject reproducibility and across-subject variability in this context. It is
important to note that their results are calculated using the Dice coefficient (opposed
to the correlation used in this work). However both values indicate the same results
and can be compared for the interpretation of the individualization quality. Wang et
al. [6] have calculated 0.83 and 0.824 for the within-subject reproducibility. The results
of this work (0.887 and 0.885) are similar but higher indicating a higher stability of
the method within the same subject. The across-subject values of [6] (0.67 and 0.605)
however are different (especially 0.605), as the results of this work are higher (0.742 and
0.749). There are two possible explanations for this: 1. The results of this work are
closer to the global initialisation and therefore more similar across subjects; and 2. the
disparity is caused by the different calculations, as the dice coefficient is more sensible to
differences that may be less relevant (e.g. at the borders of regions). As mentioned above
one has to be careful when comparing two differently calculated coefficients (in this case
the Dice coefficient and the correlation) but the resulting indication is the same: The
within-subject reproducibility is significantly different from the across-subject variability
and the within-subject values are significantly higher than the across-subject values.

The differences in individuality across the cortex (see Figure 5.10) have been analysed in
previous works as mentioned in Section 2.3. The research of Laumann et al. [27] has
concluded high individuality in the medial, fronto-parietal and default mode regions.
A similar result is acquired in this work. The values indicative of individuality of r
in these regions are high (r > 1, colour red in Figure 5.10). The lower values in the
somato-motoric regions match the results of [27] with low across-subject variability and
low individuality.

Analogous to these results, the findings of Langs et al. [8] and Finn et al. [29] (see Section
2.3.3 and Section 2.3.6) have determined the location of the networks most relevant for
individuality in the frontal, temporal and parietal lobes. While these areas demonstrate
high individuality, the motoric and visual areas display lower individuality. The results
provided in this work directly correspond to this conclusion.

The consistency in the findings of this work and the state of the art validates the quality
of the results concerning the individualization. The further research of within- and across-
subject differences leads to the calculation of individuality and matches the existing
results from previous works.

The low individuality averaged across the Motor, Visual and Limbic Yeo-7 regions of [17]
(see Figure 5.11) is a clear implication that the basic physical regulation networks are
highly similar for each individual subject. The more complex areas of Attention (VA
and DA) as well as the Fronto-Parietal network are more specific for each individual and
indicate the influence of hereditary differences and differences in the life of the subjects
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6.3. Dynamicity

(upbringing, education, experiences, interests, etc.). The results of Müller et al. [26] are
similar though the descending order is different (e.g. with the lowest value being the
Visual network). The overall structure is the same as in this work: the Default network in
the center with the Attention and Fronto-Parietal networks above and the Motor, Visual
and Limbic networks below. One noteworthy disparity is the high difference between the
Limbic and the Motor and Visual networks whereas the result for the Motor region in
this work is close to the value of the Default network. A possible cause for this disparity
is the dataset used. 23 subjects are used in [26] (with 5 scans per subject) whereas 453
subjects are used in this work (with 2 scans per subject). The different dataset may
explain the difference in the descending sequence while maintaining the same overall
indications.

The results of this work demonstrate differences in individuality across the cortex yet the
values are highly similar to each other (all between 1.15 and 1.25). This is explained by
the calculation of the coefficient of individuality r. A better calculation has yet to be
found and may be a topic for further research.

The individual differences are relevant for clinical applications [8] [26]. The individuality
is likely to be connected to the susceptibility of neuropsychiatric disorders [26]. Studies
have found that the cause might be a disconnection of regions in functional networks.
This finding is supported by the time period many neuropsychiatric diseases emerge:
adolescence [26]. During this period the long-range connections in the brain are formed
and abnormal or absent connections may result in a higher susceptibility for mental
diseases [26]. Especially abnormal activity at rest and disconnections in the default
network are identified to be indicators for diseases like attention deficit hyperactivity
disorder [61] or depression [62] as well as Alzheimer’s disease [63] [64]. The research
of brain networks and their individual differences could allow an early detection of the
increased susceptibility and facilitate an improved treatment or even the prevention of
neuropsychiatric diseases.

The knowledge of the individuality of brain regions is important for pre-operative planning
[26]. If the individuality of the region containing the operation site is high, additional
imaging and examination are required. The same is true for brain stimulation therapy:
depending on the individuality of the target area, it might be necessary to obtain
additional information of the specific subject’s connectivity pattern instead of using group
averaged data [26].

6.3 Dynamicity

The differences in dynamicity across the cortex demonstrate a similar picture: the values
for the primary motor cortex and the primary somatosensory cortex are significantly
lower than the rest of the cortex. This can be seen in Figure 5.13 (dark blue region) and
could be explained by the complexity of the corresponding function of the region as well
as its evolutionary expansion. In contrast to the frontal, temporal and parietal lobes who
are "phylogenetically late-developing regions" [26] the motor region is a primal region and
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6. Discussion

has therefore little connection to the areas that developed later. This is also beneficial
from an evolutionary point of view as the movement responses have to be quick and the
involvement of different regions potentially increases the reaction time.

Averaging the coefficients of dynamicity for each area of the Yeo-7 atlas [17] (see Figure
5.14) yields a result that has to be discussed. First of all the low values in the motor
region mentioned above are equalized by the high values in the upper half of the temporal
lobe (that is still part of the Motor network of [17]). The lower half of the temporal
lobe has low values of dynamicity (yellow-teal in Figure 5.13) and the corresponding
Default network is therefore the network with the lowest dynamicity. The Default
network is deactivated during most tasks [1] which implies low co-activation with other
brain networks. The actors in the Default network therefore mainly show co-activation
with other actors of the same network when they are active resulting in a low value of
dynamicity. The network demonstrating the highest dynamicity is the Visual network.
The reason for this lies in the function of this network: the processing of visual inputs.
The information gained from this processed data is transferred to specialized regions all
over the cortex [1]. This means the Visual network displays co-activation with many
other brain regions which results in a high value of dynamicity. The Limbic network also
exhibits high dynamicity. The area corresponding to this network encircles the brain
stem and is connected to the experience and expression of emotion [1]. Because there is
a diversity of emotions each associated with different brain regions this network has a
high coefficient of dynamicity.

A comparison of Figure 5.14 and Figure 5.11 implies an inverse relation: the networks
with the highest dynamicity (Vis, Lim, and Mot) have the lowest individuality whereas
networks with high individuality (FP, VA, DA) have lower values of dynamicity.

6.4 Task Prediction

The data acquisition of the fMRI occurs in different settings. The data used in this work
is resting-state data which means the subjects do not perform any task. It is possible to
obtain fMRI data while the subjects perform different tasks as well. There is a connection
between the actor activation at rest and during tasks [14]. This means the task activation
can be predicted using task-free data. In this work the individual actor composition at a
point on the cortex is used as the feature of a linear model to predict the task activation
at this point on the cortex. All points on the cortex of all but one subjects are used to
train the model and test it in a leave-one-out fashion.

The model is capable of predicting the task activation using task-free data. The two-tailed
t-test statistics show that the predicted activation is more similar to the actual activation
of the corresponding subject than to the actual activation of all the other subjects. The
only exception is the task Gambling 2. For this task the difference is only significant for
p > 0.043. As can be seen in Figure 5.19, the overlap of the diagonal and off-diagonal
entries includes the entire distribution. In Figure 5.20 one can see that part of the
distribution of the normalized values is greater than 1 which indicates a low prediction
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6.4. Task Prediction

quality because the correlation between the predicted and actual activation is higher
for non-corresponding couples. The main reason for this lies in the method used. The
brain data used in this work and all subsequent results are 2D surface data of the cortex.
Therefore 3D effects like the activation of subcortical gray matter are excluded. For
tasks that are connected or based on these effects the model training fails and therefore
the prediction quality is comparatively bad. Gambling is a task that is restricted to
subcortical gray matter [28]. To improve the prediction quality for this task it is necessary
to include additional features representing the subcortical activation in the training of
the model.

The tasks Emotion, Language, Motor, Relational, Social and WM all display a minimal
number of values greater than 1 in Figure 5.20. This demonstrates the prediction quality
for these tasks as there is a significant difference between the diagonal and off-diagonal
values and more than 90% of the distribution of the off-diagonal values is smaller than 1.

The best predictions are given for the tasks Language (m̄ii = 0.666, t = 23.6) and
WM (m̄ii = 0.660, t = 10.6), followed closely by Motor (m̄ii = 0.608, t = 10.1) and
Emotion (m̄ii = 0.608, t = 7.3). In Figure 5.19 the distributions of the diagonal and
off-diagonal correlation values display less overlap (than Gambling) and the difference in
the means is visible. The results for the tasks Social (m̄ii = 0.437, t = 8.9) and Relational
(m̄ii = 0.332, t = 3.8) in comparison are worse. To find the cause of this difference in
quality it is necessary to look at the task activation on the cortex in Figure 5.21. The
images in (b) show the actual and predicted task activation for the Language task. In
both pictures the activation is mainly restricted to the language area in the temporal
lobe with smaller areas of activation in the frontal and parietal lobes. The activation
for the WM task is also mainly restricted to a specific brain region in the occipital lobe.
In contrast to these tasks, the activation for the Gambling and Relational tasks are not
restricted to a specific brain region. As can be seen in (a) and (c) the task activation
is scattered across the cortex. This could be explained by the complexity of the tasks:
many brain regions participate and cooperate during these tasks. In addition subcortical
gray matter activation is included as well. The simple model used in this work is not
capable of learning all these dependencies. This is reflected in the absolute values of the
predicted task activations: the true activation values are in the range of 100 (Gambling
[−2.85, 2.24] and Relational [−5.47, 2.83]) while the values of the prediction are in the
range of 10−1 (Gambling [−0.154,−0.0534] and Relational [−0.156, 0.102]).

To evaluate the quality of the results they are compared to the state of the art results of
[28]. For this reason the same tasks have been chosen for the prediction. The resulting
m̄ii of the tasks Language 3 (0.72) and WM 9 (0.74) are similar but slightly higher than
the results of this work (0.67 and 0.66). The outcome of the tasks Emotion 3 (0.57) and
Motor 7 (0.56) are comparable but marginally better in this work (0.61 and 0.61). For
these four tasks the results display high similarity therefore confirming the functionality
of the model. The remaining three tasks are the ones with the lowest quality results.
It is interesting that there is no significant drop in quality for these tasks in [28]. On
the contrary: the values for Gambling 2 (0.74), Relational 2 (0.80) and Social 2 (0.76)
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6. Discussion

are as high or even higher than the aforementioned ones, unlike the results of this work
(0.15, 0.33, and 0.44). The reason for this discrepancy is the different feature set used for
the prediction model. The model of [28] uses functional connectivity at rest as well as
"predictors encoding individual brain morphology (gross structure) and microstructure"
[28]. In total the number of features used in [28] is 107 while in this work it is nc = 60.
The additional features enhance the quality of the prediction of tasks that display less
restriction to specific brain regions (i.e. Gambling and Relational). Regardless it is
mentioned in [28] that the quality for Gambling 2 is lower with the explanation given
above (subcortical gray matter restriction).

The results of this work indicate that it is possible to predict the activation of specific
tasks using task-free data acquired at rest. This enables the task prediction of subjects
who are unable to perform the task (e.g. because of medical conditions). To enhance the
prediction quality however it is necessary to improve the model by including additional
features especially regarding the activations in the subcortical gray matter.

6.5 Fluid Intelligence Prediction

The individuality and dynamicity of the brain regions of an individual subject are
correlated to the fluid intelligence of the same subject. The comparison of the true
and predicted values of fluid intelligence display that there is a significant correlation
(0.320) when using the coefficient of individuality as a feature. It has to be noted that
this is only true for the negative feature model f−

i . The reason for this is the inverse
dependence of the across-subject correlation as the coefficient of individuality is defined
as r = within

across
. The across-subject correlation is researched as a predictive feature for the

model as well and demonstrates a significant correlation for the positive feature model f+
i

(0.301). In comparison the quality of the prediction using the coefficient of dynamicity is
lower (0.218). For all three features the model fails to predict the whole range of fluid
intelligence. As can be seen in Figure 5.22 the predicted values are mostly in the range
[10, 20] resulting in big errors for values fi < 10 or fi > 20. The results are scattered
around the mean value and are generally lower for values fi < 15 and higher for values
fi > 15. Hence the model is able to successfully predict the fluid intelligence and give an
estimate of the height of the value in regard to the mean.

The actors that are chosen for the predictive model training are visualized in Figure
5.24. The images corresponding to the coefficient of individuality (Figure 5.24 (a)) and
the across-subject correlation (Figure 5.24 (b)) display similar patterns but with an
opposite sign. This is explained by the calculation of the coefficient of individuality
because it is inversely dependent on the across-subject correlation. The features yielding
the best prediction results (negative for the coefficient of individuality and positive for
the across-subject correlation) are four regions scattered across the cortex (blue in Figure
5.24 (a) and red in Figure 5.24 (b)). The pattern is reminiscent of the patterns of the
Default and especially the Fronto-Parietal networks which means that these two networks
could be closely correlated to fluid intelligence. While the results for the coefficient of
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6.6. Future Work

dynamicity are part of the Fronto-Parietal and Default networks as well, they display
no similarity to the other results, which interferes with this hypothesis. The features
yielding the best results are positive and concentrated in regions of the frontal lobe and
small regions in the occipital lobe.

To assess the quality of these results it is necessary to compare them to existing research.
The experiment has been designed with this purpose in mind and uses the same number
of subjects and the same model calculation as the work of Finn et al. [29]. The resulting
correlation of true and predicted fluid intelligence is 0.5 in [29]. This value is higher than
the values of this work. The reason for this is the difference in features for the predictive
model as the researchers of [29] use the connectivity profiles. By looking at the graph
comparing predicted and true values one can see that the values are distributed in a
similar fashion as in Figure 5.23. Analogous to this work the predicted values are mostly
in the range 10 ≤ fi ≤ 20 and scattered around the mean. The prediction quality for
values fi > 15 however is better compared to the results of this work therefore resulting
in a higher total correlation.

6.6 Future Work

The application of NMF for the analysis of human brain fMRI data has significant benefits
over other parcellation techniques like PCA. The main advantages are the interpretibility
of the results and the dimensionality reduction of the data. However there are three
major areas that can still be improved and have to be further investigated in future work:
1. the parcellation, 2. the coefficient calculation, 3. the prediction.

1. The parcellation: The NMF algorithm requires one significant input parameter: the
number of components nc. For the calculations of this work a value of nc = 60 is chosen
because of the high reproducibility (actor correlation of 0.789) however values of nc < 40
demonstrate higher stability (actor correlation of 0.891 for nc = 20 and 0.971 for nc = 7).
For the purpose of this work a higher number of components is beneficial but that may
not be the case for future research. The number of regions could also be reduced by
applying a clustering algorithm to fuse functionally connected regions. This process could
be formulated in a dynamic manner resulting in different numbers of regions dependent
on the individual subject. This way abnormalities in the brain function could be revealed
and physical or mental illnesses could be detected.

2. The coeeficient calculation: In this work the concepts of the coefficient of individuality
and the coefficient of dynamicity are introduced. The coefficient of individuality is
calculated by comparing the within- and across-subject correlation of the brain actors.
This way the individuality is calculated by comparing the individual regions to those
of all the other subjects in the dataset. While this method is functional it can still be
improved. It could be beneficial to calculate the coefficient by comparing the individual
actors to a global average. For the comparison the correlation is calculated resulting in a
scalar for each actor. A more complex calculation could provide information answering
additional questions e.g. What part of the region indicates higher individuality? or Is the
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6. Discussion

individuality continuously spread across the region? This may be obsolete for sufficiently
small regions but could be relevant for larger regions (i.e. a lower number of components).
The coefficient of dynamicity is calculated by comparing the actor co-activation over
time. This is a novel concept introduced in this work and is therefore difficult to review.
For the calculation only the top 10% i.e. 6 actors are included - the inclusion of more or
all actors might improve the results especially if the number of included actors is chosen
in a dynamic manner. This way the calculation would be different for actors with few
(e.g. 2) and many (e.g. 15) co-actors. A different definition and calculation could also
improve the quality of the results.

3. The prediction: First of all the prediction model could be changed and improved.
In this work linear models are used. While more complex models or machine learning
algorithms (e.g. neural networks) could improve the prediction quality they usually re-
quire more computational power and training data. The task activation can be predicted
with the (task-free) matrix Wi. An improvement of the predictive model would be the
inclusion of temporal data. The task activation could be predicted in a dynamic matter
instead of a static snapshot by including Hi as a model feature. This would allow the
simulation of the brain activity during tasks potentially in real time enabling the research
of the dynamic connections of brain areas and emulating them for subjects who cannot
perform certain tasks (e.g. due to illness). The inclusion of additional features (e.g.
microstructural or subcortical) could also enhance the prediction quality.
The prediction of fluid intelligence is performed with a linear model and different coef-
ficients as features. For all coefficients used the quality of the prediction is decent but
lower compared to the state of the art results. To provide a more accurate estimation of
the fluid intelligence for an individual subject the model has to be improved. This can
be achieved by filtering the training data to exclude outliers or by using a more complex
model. The inclusion of additional or different features in the model training may also
improve the prediction quality. An increase of the amount of training data could enhance
the prediction quality as well.
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CHAPTER 7
Conclusion

The results of this thesis have demonstrated that NMF can be used to analyse brain
fMRI data and create of an atlas of brain regions that is reproducible and anatomically
interpretable. It is possible to create individual-specific results that display high repro-
ducibility within the same subject while exhibiting significant variation across different
subjects. The individuality of brain regions can be quantified and is distributed unevenly
across the cortex with high values in the network of Dorsal-Attention and low values in
the Limbic network. The brain actor dynamics and co-activations are quantified by the
coefficient of dynamicity. There is a variation in dynamicity across the cortex and the
regions displaying the highest dynamicity are in the Visual and Limbic networks while
the Default network exhibits the lowest dynamicity.

Individual task activation can be predicted using task-free individualized data, i.e. the
brain actor composition, as training. The prediction quality is high for all but one task
(Gambling) but additional features e.g. of the subcortical gray matter could conceivably
increase the performance. It is possible to predict cognitive data like fluid intelligence
using the coefficient of individuality and the coefficient of dynamicity. However the
predictive model is limited and the quality of the prediction can still be improved.

In conclusion NMF is a useful tool for brain fMRI analysis and the individual subject
specific results obtained could be relevant for clinical application. The knowledge of
individuality and dynamicity could be important for pre-operative planning and brain
stimulation therapy as well as the estimation of susceptibility for neuropsychiatric
disorders and possibly an improved or even preventative treatment of mental diseases.
The prediction of task activation could be used for patients who are unable to perform
certain tasks. For the actual use in clinical practice however it is necessary to continue
the research and further improve the quality and reproducibility of the results.
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