
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Investigating Constraint
Programming and Hybrid

Answer-set Solving for Industrial
Test Laboratory Scheduling

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

Tobias Geibinger, BSc

Matrikelnummer 01427138

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Priv.-Doz. Dr. Nysret Musliu

Wien, 26. November 2020

Tobias Geibinger Nysret Musliu

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Investigating Constraint
Programming and Hybrid

Answer-set Solving for Industrial
Test Laboratory Scheduling

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

Tobias Geibinger, BSc

Registration Number 01427138

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Dr. Nysret Musliu

Vienna, 26th November, 2020

Tobias Geibinger Nysret Musliu

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der

Arbeit

Tobias Geibinger, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26. November 2020

Tobias Geibinger

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

First, I would like to thank my advisor Priv.Doz. Dr. Nysret Musliu for his guidance
through this thesis and giving me the opportunity to do this kind of research. I would
also like to express my gratitude to Dipl. Ing. Florian Mischek, who was my colleague
during my work on this thesis and whose input and insight was invaluable. Finally, I also
want to acknowledge the support of my family, who enabled my education and fostered
my desire to do academic research.

The work was supported by the Austrian Federal Ministry for Digital and Economic
Affairs and the National Foundation for Research, Technology and Development through
the Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning
and Scheduling.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

In dieser Diplomarbeit betrachten wir ein real auftretendes, komplexes Projektpla-
nungsproblem. Dieses Planungsproblem ist eine Erweiterung des bekannten Resource-
Constrained Project Scheduling Problem (RCPSP) und tritt in industriellen Testlaboren
auf, bei denen eine große Anzahl an Tests durch qualifiziertes Personal und unter Einhal-
tung von Fristen und anderen Einschränkungen durchgeführt werden müssen.

Wir untersuchen exakte Methoden für dieses Problem basierend auf Constraint Pro-
gramming und Answer-set Solving. Unter anderem schlagen wir verschiede Constraint
Programming Modelle vor, welche zum Teil auf bestehenden Ideen aus der Literatur auf-
bauen, aber für die komplexen Constraints unseres Problems erweitert wurden. Außerdem,
stellen wir neuartige redundante Constraints vor und nutzen verschiedene Suchstrategien.

Darüber hinaus zeigen wir, wie dieses Projektplanungsproblem mit Hybrid Answer-set Pro-
gramming gelöst werden kann. Im Speziellen stellen wir ein Encoding für den Constraint
Answer-set Solver clingcon vor und untersuchen verschiedene Modellierungsoptionen und
Konfigurationen.

Wir liefern außerdem einen Very Large Neighborhood Search (VLNS) Ansatz, welcher auf
unseren exakten Methoden basiert und die Qualität, der von diesen Methoden gefundenen
Lösungen, drastisch verbessert.

Unsere Lösungsansätze werden im Anschluss empirisch evaluiert, sowohl mit echten Daten
als auch mit existierenden, zufällig generierten Benchmark-Instanzen von verschiedenen
Größen. Zusätzlich vergleichen wir unsere Methoden mit einem state-of-the-art meta-
heuristischen Ansatz für dieses Problem und einem Mixed-Integer Programming Solver.
Unsere Methoden konnten gültige Lösungen für alle 31 Testinstanzen finden, und für
22 sogar optimale Lösungen. Wir zeigen außerdem, dass VLNS die momentan besten
Ergebnisse für dieses Problem liefert. Zusätzlich zeigen wir, dass VLNS für 30 der 31
Instanzen Lösungen findet, welche im Bereich von bis zu 5% des Optimums liegen.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

In this thesis we deal with a complex real-world scheduling problem closely related to the
well-known Resource-Constrained Project Scheduling Problem (RCPSP). The problem
concerns industrial test laboratories in which a large number of tests has to be performed
by qualified personnel using specialized equipment, while respecting deadlines and other
constraints.

We investigate exact approaches based on Constraint Programming and Answer-set
Programming for this problem. First, we propose various Constraint Programming models
based on existing approaches for the related problems and introduce new encodings for the
complex constraints of the problem. Additionally, we provide novel redundant constraints
and analyze the impact of various search strategies.

Furthermore, we show how we can solve this problem by Answer-set Programming
extended with ideas from constraint solving. We propose an innovative and efficient
encoding, apply an answer-set solver for constraint logic programs called clingcon, and
investigate different modeling options and solver configurations.

We also propose a Very Large Neighborhood Search (VLNS) approach which exploits
our exact methods and manages to drastically improve the quality of the solutions found
by these methods.

Our solution approaches are empirically evaluated both on real-world data and existing
randomly generated benchmark instances of different sizes. Additionally, we compare
our methods with a state-of-the-art metaheuristic approach for this problem and a
Mixed-Integer Programming solver. Our approaches provide feasible solutions for all
31 instances and for 22 we could find optimal solutions. The VLNS approach currently
yields the best known solutions for this problem outperforming existing metaheuristic
approaches. In fact, we show that VLNS finds solutions which are within 5% of the
optimum for 30 out of the 31 instances.

Finally, the solution methods described in this thesis are currently in use in a real-world
industrial test laboratory.

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1

1.1 Aims of the thesis . 2
1.2 Contributions . 2
1.3 Structure of the thesis . 3

2 Theoretical Background 5

2.1 Constraint Programming . 5
2.2 Constraint Answer-set Programming 7
2.3 Very Large Neighborhood Search . 9

3 Problem Definition and Related Work 11

3.1 Problem Definition . 11
3.2 Complexity . 15
3.3 Related Work . 18

4 Constraint Programming Models 21

4.1 MiniZinc Formulation . 21
4.2 Interval-based Model . 26

5 Constraint Answer-set Programming Model 29

5.1 Input Facts . 29
5.2 Solution Representation . 30
5.3 Basic Hard Constraints . 30
5.4 Unary Resource Constraints . 31
5.5 Soft Constraints . 32

6 Very Large Neighborhood Search 35

6.1 Lower Bound Calculation . 35

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2 Search Algorithm . 36
6.3 Modifications for Chuffed . 38

7 Experiments and Comparison 39

7.1 Experimental Setup . 39
7.2 Instances . 39
7.3 Constraint Programming Experiments 40
7.4 Constraint Answer-set Programming Experiments 42
7.5 Comparison of Exact Approaches . 43
7.6 VLNS Parameter Configuration . 45
7.7 VLNS Experiments . 46
7.8 Comparison with the State-of-the-Art 49

8 Conclusion 53

Bibliography 55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

Project scheduling includes various problems of high practical relevance. Such problems
arise in many areas and include different constraints and objectives. Usually project
scheduling problems require scheduling of a set of project activities over a period of time
and assignment of resources to these activities. Typical constraints include time windows
for activities, precedence constraints between the activities, assignment of appropriate
resources etc. The aim is to find feasible schedules that optimize several criteria such as
the minimization of total completion time.

In this thesis, we investigate solving a real-world project scheduling problem that arises in
an industrial test laboratory of a large company. This problem, Industrial Test Laboratory
Scheduling (TLSP), which is an extension of the well known Resource-Constrained Project
Scheduling Problem (RCPSP), was originally described in [MM18b, MM18a]. It consists
of a grouping stage, where smaller activities (tasks) are grouped into larger jobs, and a
scheduling stage, where these jobs are scheduled and have resources assigned to them.
Here, we deal with the second stage and assume that a grouping of tasks into jobs is
already provided. Since we focus on the scheduling part, we denote the resulting problem
as TLSP-S.

The investigated problem has several features of previous project scheduling problems in
the literature, but also includes some specific features imposed by the real-world situation,
which have rarely been studied before. Among others, those include heterogeneous
resources with availability restrictions on the activities each unit of a resource can
perform. While work using similar restrictions exists ([DPRL98, YFS17]), most problem
formulations either assume homogeneous, identical units of each resource or introduce
additional activity modes for each feasible assignment, which quickly becomes impractical
for higher resource requirements and multiple resources. Another specific feature of
TLSP(-S) is that of linked activities, which require identical assignments on a subset of
the resources. To the best of our knowledge, a similar concept appears only in [SSD97],
where modes should be identical over subsets of all activities. We also deal with several

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

non-standard objectives instead of the usual makespan minimization, which arise from
various business objectives of our industrial partner. Most notably, we try to minimize
the total completion time of each project, i.e. the time between the start of the first and
the end of the last job in the project.

Mischek and Musliu [MM19] introduced a local search framework for TLSP-S. They
investigate several metaheuristics out of which Simulated Annealing (SA) is shown to
perform best. However, no exact methods for TLSP-S are known yet. Moreover, for
many instances optimal solutions are not known and finding them has immense impact
in practice.

In practice, exact solutions for this problem are desired especially in situations where it is
necessary to check if a feasible solution exists at all. In the application that we consider,
checking quickly if activities of additional projects can be added on top of an existing
schedule is very important. Although it is known from previous papers [SS16, YFS17] that
constraint programming techniques can give good results for related project scheduling
problems, it is an interesting research question if Constraint Programming (CP) techniques
can also solve TLSP-S that includes additional features and larger instances. We also
investigate Constraint Answer-set Programming (CASP) for solving TLSP-S, which has
so far not been used in project scheduling.

The existence of exact methods clears the path for the development of a Very Large
Neighborhood Search (VLNS) approach.

1.1 Aims of the thesis

The goals of this work are the following:

• Investigate Constraint Programming and Constraint Answer-set Programming for
TLSP-S and thus provide novel exact methods for this problem.

• Utilize these exact methods in a Very Large Neighborhood Search in order to
provide high quality solutions for large problem instances.

• Empirically evaluate our proposed solution methods and compare them to existing
approaches on randomly generated benchmark instances and real-world data.

1.2 Contributions

The main contributions of this thesis are:

• We give a basic CP model of the hard constraints of TLSP-S, review different options
to model the most difficult constraints, and provide novel redundant constraints
which improve solving performance.

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.3. Structure of the thesis

• We propose an alternative CP model based on interval variables.

• We provide a Constraint Answer-set Solving approach for TLSP-S and again provide
various encoding options.

• We introduce a Very Large Neighborhood search utilizing the provided exact
methods.

• An evaluation of the methods proposed in this thesis is given using 30 randomly
generated instances and 1 real-life instance. The solution approaches discussed in
this thesis achieve the currently best known results for these instances.

• The solution methods described in this work are currently being employed in a
real-world industrial test laboratory.

Some of the result of this thesis have been already published at the CPAIOR confer-
ence [GMM19].

1.3 Structure of the thesis

The rest of this thesis is structured as follows: In Chapter 2 we describe the theoretical
background of the solution approaches used in this work. A formal definition of TLSP-S,
basic complexity analysis, and a review of related work is given in Chapter 3. Afterwards,
we give different Constraint Programming formulations for TLSP-S in Chapter 4 and a
Constraint Answer-set Programming encoding in Chapter 5. Our Very Large Neighbor-
hood Search approach is described in Chapter 6, while Chapter 7 provides the empirical
evaluation and comparison of the solutions methods developed in this thesis. Finally, we
discuss our findings in Chapter 8.

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Theoretical Background

In this chapter, an overview of the solving paradigms applied in this thesis will be given.
In particular, the main concepts of Constraint Programming and Constraint Answer-set
Programming will be discussed. Furthermore, we will give a short introduction into Very
Large Neighborhood Search techniques.

2.1 Constraint Programming

Constraint Programming (CP) is a solving paradigm which allows for the specification
of constraints in a declarative manner and thus independent from underlying solving
mechanisms. CP is used for solving constraint satisfaction problems or CSP for short.
They were originally introduced by Montanari [Mon74] and Mackworth [Mac77] and are
formally defined as follows [RvBW06].

A CSP is a triple P = 〈V, D, C〉 where V = 〈v1, . . . , vn〉 is an n-tuple of variables (also
called decision variables), D = 〈D1, . . . , Dn〉 is an n-tuple of sets called domains, and C

is a set of constraints. Each constraint c ∈ C has a scope(c) which is a tuple of variables
from V . Furthermore, a constraint also consists of a relation(c) over the domains of the
variables in its scope. A variable assignment for a CSP is an n-tuple A = 〈d1, . . . , dn〉
where di ∈ Di. We say that an assignment satisfies a constraint c ∈ C if the projection of
A onto scope(c) is an element of relation(c). An assignment that satisfies all constraints
is called a solution. We often use variables and their respective assignment synonymously
if it is clear from context.

The problem of checking whether or not a given CSP has a solution is well-known to
be NP-complete. However, depending on the use case we might also want to find all
solutions of a problem or a solution which is deemed optimal. Constraint optimization
problems (COP) allow us to formulate such optimization problems. A COP P is a CSP
which was extended with an objective function σ : sol(P)→ R where sol(P) is the set of

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Theoretical Background

solutions of P. If P is a minimization problem, then a solution S of P is called optimal
whenever for any other solution S′, σ(S′) ≥ σ(S). Optimality for maximization problems
is defined analogously.

CSPs and COPs can, for example, be solved using constraint propagation and backtracking
search. In a nutshell, the approach works by picking a variable vi and assigning it a
domain value di ∈ Di. This can be seen as changing the domain Di of vi and for each
constraint c ∈ C with vi is its scope, we can propagate this change to the domains of
the other variables in scope(c). One way to propagate these changes would be to remove
all values that do not correspond to tuples in the relations. However, different types of
propagation exist. Whenever the domain of a variable becomes empty, we have found a
partial assignment which cannot be extended to a solution. In such a case we backtrack
our variable assignments. In practice, there exist sophisticated heuristics for variable and
value selection and also for backtracking strategy. For a more comprehensive introduction
to CP solving we refer to the Handbook of Constraint Programming [RvBW06].

Later on in our CP models, most of the constraints will be boolean or arithmetical,
and their meaning should be clear. However, we will also use so called global con-
straints [vHK06]. Such constraints specify a certain relation over the variables and
are usually (but not always) reducible to basic boolean and arithmetic relations. The
motivation behind using global constraints is having a shorthand for complex constraints
but most solvers implement specialized propagation strategies for global constraints.
These propagators help reduce the search space and can speed up the solution process
significantly.

In Chapter 4 we are going to give models in two distinct CP modeling languages. One of
them is the solver-independent modeling language MiniZinc [NSB+07]. This language
supports basic boolean and arithmetical constraints as well as integer and boolean decision
variables. Furthermore, it supports a variety of global constraints. We are going to
utilize cumulative [AB93] and global cardinality [R9́6] constraints. Formally, a cumulative
constraint is of the form cumulative(S, D, R, b) where S, D, and R are n-tuples of integer
decision variables and b is an integer constant. To illustrate the semantics of the constraint
suppose we have n activities with start times S = 〈s1, . . . , sn〉, durations D = 〈d1, . . . , dn〉,
and resource usages R = 〈r1, . . . , rn〉. Let At = {i ∈ N

+ | i ≤ n, si ≤ t ≤ si + di} be the
set of activities active at time point t. We say that the cumulative constraint above is
satisfied, if for every time point t it holds that

∑

i∈At
ri ≤ b.

There are a number of global cardinality constraints in MiniZinc but we are going use
ones of the form gcc_low_up(V, c, l, u) where V = 〈v1, . . . , vn〉 is an n-tuple of decision
variables, c is a domain element, and l, u are constant non-negative integers. Let
o = |{i ∈ N

+ | i ≤ n, vi = c}| be the number of occurrences of the domain value c in the
assignment of variables V , then the constraint is satisfied if l ≤ o ≤ u.

The other CP language we are going to use, is the one of IBM CP Optimizer [IC17a].
In our CP Optimizer model, all the decision variables are (possibly optional) intervals.
Internally, intervals contain a start and an end time and when declaring an interval we

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Constraint Answer-set Programming

can directly constrain their domains. The keywords startOf(a) and endOf(a) can be
used to obtain the start and respectively end of an interval a and lengthOf(a) returns its
length. Furthermore, it is also possible to fix the size of an interval variable at declaration.
Optional intervals are not necessarily present in a solution unless some constraints require
it. Intervals which are not present are ignored by other constraints. For example, the
constraint noOverlap(I), where I is a tuple of intervals, ensures that only the present
intervals of I do not overlap. The presence (or non-presence) of an interval a can be
enforced using the boolean function presenceOf(a) which is true whenever a is present
and an appropriate constraint. The constraint alternative(a, I, n), where a is an
interval, I a tuple of intervals and n is a natural number, can also affect the presence of
intervals. This constraint is true if whenever a is present, also exactly n intervals from I

are present as well. Further CP Optimizer constraints we use are endBeforeStart(a1, a2)
enforcing that interval a1 ends before the start of interval a2, and span(a, I) which
constrains the interval a to start at the earliest start and end at the lastest end of any
interval in I.

We can also formulate cumulative constraints in CP Optimizer in the following way:
∑

i≤n pulse(ai, ri) ≤ b, where ai, . . . , an are intervals, ri, . . . , rn their resource usages,
and b is the resource bound.

For a complete formal definition of the CP Optimizer language and all the supported
constraints, we refer to the article by Laborie et al. [LRSV18].

2.2 Constraint Answer-set Programming

First, we give a short introduction into Answer-set Programming (ASP) [EIK09].

Answer-set programs are defined over a vocabulary V = (P,D), where P is a set of
predicates and D is a set of constants (also referred to as the domain of V). Each
predicate in P has an arity n ≥ 0. We also assume a set A of variables.

An atom is defined as p(t1, . . . , tn), where p ∈ P and ti ∈ D ∪ A, for 1 ≤ i ≤ n. We call
an atom ground if no variable occurs in it.

A (disjunctive) rule, r, is an ordered pair of form

a1 ∨ · · · ∨ an ← b1, . . . , bk,∼ bk+1, . . . ,∼ bm, (2.1)

where a1, . . . , an, b1, . . . , bm are atoms, n, m, k ≥ 0, and n + m > 0. Furthermore, “∼”
denotes default negation i.e. ∼ p is true if p is not derivable. The left-hand side of
r is the head and the right-hand side is the body of r. For a program P , we define
H(P) =

⋃

r∈P H(r) and B(P) =
⋃

r∈P B(r).

A rule r of form (2.1) is called (i) a fact, if m = 0 and n = 1; (ii) a constraint, if n = 0;
(iii) safe, if each variable occurring in H(r)∪B−(r) also occurs in B+(r); and (iv) ground,
if all atoms in r are ground.

A program is a set of safe rules. We call a program ground if all of its rules are ground.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Theoretical Background

The set of all constants appearing in a program P is called the Herbrand universe of
P , symbolically HU P . If no constant appears in P , then HU P contains an arbitrary
constant.

Given a rule r and a set C of constants, we define grd(r, C) as the set of all rules generated
by replacing all variables of r with elements of C. For any program P , the grounding of
P with respect to C is given by grd(P, C) :=

⋃

r∈P grd(r, C). If P is a ground program,
then P = grd(P, C) for any C.

A set of ground atoms is called an interpretation. Following the answer-set semantics for
logic programs as defined by Gelfond and Lifschitz [GL91], a ground rule r is satisfied
by an interpretation I, denoted by I |= r, iff H(r) ∩ I 6= ∅ whenever B+(r) ⊆ I and
B−(r) ∩ I = ∅. For a ground program P , I |= P iff each r ∈ P is satisfied by I. The
Gelfond-Lifschitz reduct [GL88] of a ground program P with respect to the interpretation
I is given by

P I := {H(r)← B+(r) | r ∈ P, I ∩B−(r) = ∅}.

An interpretation I is an answer set of a non-ground program P iff I is a subset-minimal
set satisfying grd(P, HU P)I .

Also, some ASP systems, for example clingo [GKKS14], support choice rules i.e. rules of
the form l {a1 ; . . . ; an ; . . . ; ∼ an+1 ; . . . ; ∼ ao} u← b1, . . . , bk,∼ bk+1, . . . ,∼ bm,
where l and u are natural numbers specifying a lower and upper bound. An interpretation
satisfies the head of such a rule if l ≤ (

∑

1≤i≤n ai ∈ I +
∑

n+1≤i≤o ai 6∈ I) ≤ u.

We are also going to use conditional choice rules where the head takes the form l {L0 :
L1, . . . , Ln} u and Li (0 ≤ i ≤ n) are non-ground atoms or default negated non-ground
atoms. Such a rule is essentially expanded during grounding into an unconditional choice
rule containing an instantiation of L0 whenever the corresponding instantiations of the
atoms in L1, . . . , Ln are present or respectively not present as facts.

Furthermore, we also make use of aggregates. Although different types of aggregates are
supported by most ASP solvers, we exclusively employ count aggregates. Generally, a
count aggregate has the form #count{v1, . . . , vn : L1, . . . , Lm} = b, where Li (i ≤ m) are
literals, vj (j ≤ n) are variables occurring in these literals, and b is a natural number.
An aggregate can be used in the positive body of a rule. During grounding a count
aggregate is expanded to #count{c1

1, . . . , c1
n : l11, . . . , l1m ; . . . ; ck

1, . . . , ck
n : lk1 , . . . , lkm} = b,

where li1, . . . , lim (i ≤ k) are ground instances of the literals and ci
1, . . . , ci

n are the
respective constants instantiated for variables v1, . . . , vn. An aggregate is satisfied by
an interpretation I if the number of tuples 〈ci

1, . . . , ci
n〉 where lk1 , . . . , lkm is satisfied by I

(i ≤ k), is exactly b.

For a more thorough reference for choice rules, aggregates and other ASP language
features, we refer to the relevant literature [EIK09, GKKS12, GKKS14].

Constraint Answer-set Programming (CASP) extends ASP with linear variables V =
〈v1, . . . , vn〉 over domains D = 〈D1, . . . , Dn〉 and linear constraints. In clingcon [BKOS17]
– an extension of clingo and the CASP solver we concentrate on – these linear constraints

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Very Large Neighborhood Search

can appear as body atoms or singular head atoms and the domains are sets of integers.
An interpretation for a program as defined above is extended by a variable assignment
A = 〈a1, . . . , an〉 of domain elements to the variables i.e. ai ∈ Di (i ≤ n). A linear
constraint is satisfied if the assignment satisfies it as defined for CSPs in the previous
section. Answer-sets for CASP can then be defined – mutatis mutandis – as for standard
ASP above.

In clingcon, we can define the domains of linear variables via domain constraints of the
form &dom{l..u} = v, where l and u are integer constants, and v is a linear variable. The
lower bound of the domain of v is represented by l and the upper bound by u. Linear
constraints like v1 + · · · + vn ◦ k, for ◦ ∈ {=,≤,≥, <, >}, can be expressed with the
constraint atom &sum{v1 ; . . . ; vn} ◦ k, where vi (i ≤ n) are linear variables and k is
an integer constant. For linear and domain constraints the constants can also be ASP
variables and the linear variables can contain ASP variables as well. The latter leads to
the generation of a linear variable for each corresponding constant during the grounding
of the program.

Similarly to COPs, we can also specify an optimization objective for a CASP program.
In clingcon this can be done by adding a directive &minimize{t : L1, . . . , Ln}, where t

is a linear term over non-ground linear variables and Li (i ≤ n) are non-ground literals.
During grounding the directive is expanded to represent the sum of the corresponding
grounded linear variables and the objective is to find an answer-set for which this sum is
minimal. If multiple directives are contained in a program, then the overall objective is
to minimize the sum of all of them.

For a more detailed introduction to CASP and the input language of clingcon, we refer
to the article by Banbara et al. [BKOS17].

2.3 Very Large Neighborhood Search

Very Large Neighborhood Search (VLNS) [PR10] or sometimes just Large Neighborhood
Search is a metaheuristic [GP+10] introduced by Shaw [Sha98]. The main idea behind
VLNS is a continuous destroy and repair approach. We begin with an initial solution.
The destroy method then removes part of this solution and the repair method completes
the solution again. The repairing should aim to fix the destroyed part in the optimal way
i.e. out of all possible repairs it should select the best. Most of the time, this process
is repeated until some criterion is met. Which parts of the solution get destroyed is
of course highly problem specific. Often, the repair method is implemented through a
general purpose solving paradigm like MIP or CP.

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Problem Definition and Related

Work

In this chapter, we are going to give a formal definition of the problem investigated in
this thesis and an overview of related work.

3.1 Problem Definition

As mentioned in the introduction, we deal with a variant of TLSP which was recently
introduced by Mischek and Musliu [MM18b, MM18a, MM19], where we assume that
a grouping of tasks into jobs is already provided for each project, and focus on the
scheduling part of the problem instead (TLSP-S). Thus, the goal is to find an assignment
of a mode, time slot and resources to each (given) job, such that all hard constraints are
fulfilled and the number of violations of soft constraints is minimized.

The problem description below captures TLSP-S and is based on one of TLSP [MM18b,
MM18a, MM19].

3.1.1 Parameters

Each instance consists of a scheduling period of h discrete time slots. The set of all time
slots is denoted by T = {0, . . . , h}. Further, it lists resources of different kinds:

• Employees E = {1, . . . , |E|} who are qualified for different types of jobs.

• A number of workbenches B = {1, . . . , |B|} with different facilities.

• Various auxiliary lab equipment groups Gg = {1, . . . , |Gg|}, where g is the group
index. These each represent a set of similar devices. The set of all equipment
groups is denoted G∗.

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Problem Definition and Related Work

Furthermore, we have given the set of projects labeled P = {1, . . . , |P |}, and the set of
jobs to be scheduled J = {1, . . . , |J |}. For a project p, the jobs of this project are given
as Jp ⊆ J .

Each job j has several properties1:

• A time window, given via a release date αj and a deadline ωj . In addition, it has a
due date ω̄j , which is similar to the deadline, except that exceeding it is only a soft
constraint violation.

• A set of available modes Mj ⊆M , where M is the set of all modes.

• A duration dmj for each available mode m ∈Mj .

• The resource requirements for the job:

– The number of required employees rEm
m depends on the mode m ∈Mj . Each

of these employees must be chosen from the set of qualified employees Ej ⊆ E.
Additionally, there is also a set of preferred employees EPr

j ⊆ Ej .

– The number of required workbenches rWb
j ∈ {0, 1}. If a workbench is required,

it must be chosen from the available workbenches Bj ⊆ B.

– For each equipment group g ∈ G∗, the job requires r
Eq
gj devices, which must

be taken from the set of available devices Ggj ⊆ Gg for the group.

• The predecessors Pj of the job, which must be completed before the job can start.
Precedence relations will only occur between jobs of the same project.

• Linked jobs Lj of this job. All linked jobs must be performed by the same em-
ployee(s). As before, such links only occur between jobs of the same project.

Out of all jobs, a subset are started jobs JS ⊆ J , which are considered already being
worked on.

3.1.2 Solution

In general, a solution for an instance of TLSP-S needs to contain the following assignments
for each job j ∈ J :

• ṫs
j ∈ T its starting timeslot,

• ṫc
j ∈ T its completion time,

• ṁj ∈M the mode which it is assigned,

1In TLSP, these are derived from the tasks contained within a job. Since we assume the distribution

of tasks into jobs to be fixed, they can be given directly as part of the input for TLSP-S.

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Problem Definition

• ḃj ∈ B the assigned workbench or 0 if none is assigned,

• Ėj ⊆ E its set of assigned employees, and

• for each equipment group g ∈ G∗, the set Ġjg ⊆ Gg denotes the assigned equipment
to j from group g.

3.1.3 Constraints

We now give a formal account of all hard and soft constraints contained in TLSP-S. For
a full account of all constraints of TLSP we refer to the technical report by Mischek and
Musliu [MM18b]. To simplify notation, we introduce the set of active jobs at timeslot t

denoted by Jt = {j ∈ J | ṫs
j ≤ s, ṫc

j > t}.

Hard Constraints

Job duration The difference between a jobs start time and completion time has to
match its duration.

ṫs
j − ṫc

j = dṁjj j ∈ J (3.1)

Time window Each job has to be performed within its time window i.e. it has to
start after its release time and complete before its deadline.

αj ≤ ṫs
j ∧ ṫc

j ≤ ωj j ∈ J (3.2)

Job precedence The predecessors of a job have to be completed before it can start.

ṫc
k ≤ ṫs

j j ∈ J, k ∈ Pj (3.3)

Started jobs Jobs which are already started have to start at the first timeslot.

ṫs
j = 0 j ∈ JS (3.4)

Single assignment Any resource i.e. workbench, employee or equipment cannot be
used two or more jobs simultaneously.

|{j ∈ Jt | ḃj = b}| ≤ 1 b ∈ B, t ∈ T (3.5)

|{j ∈ Jt | e ∈ Ėj}| ≤ 1 e ∈ E, t ∈ T (3.6)

|{j ∈ Jt | d ∈ Ġjg}| ≤ 1 g ∈ G∗, d ∈ Gg, t ∈ T (3.7)

Workbench requirements Each job which requires a workbench has one assigned.

rWb
j = 1 ↔ ḃj 6= 0 j ∈ J (3.8)

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Problem Definition and Related Work

Employee requirements A job has exactly as many employees assigned as its mode
requires.

|Ėj | = rEm
ṁj

j ∈ J (3.9)

Equipment requirements Each job must have enough devices of each equipment
group assigned to cover the demand for that group.

|Ġjg| = r
Eq
gj j ∈ J, g ∈ G∗ (3.10)

Workbench availability The assigned workbench of a job has to be available for said
job.

ḃj 6= 0→ ḃj ∈ Bj j ∈ J (3.11)

Employee qualification The employees assigned to a job need to be qualified.

Ėj ⊆ Ej j ∈ J (3.12)

Equipment availability The equipment assigned to a job has to be available for said
job.

Ġjg ⊆ Gjg j ∈ J, g ∈ G∗ (3.13)

Linked jobs Jobs which are linked have to be performed by the same employees.

Ėj = Ėk j ∈ J, k ∈ Lj (3.14)

Soft Constraints

Solutions of TLSP-S which satisfy the hard constraints defined above are further compared
by their quality. The quality of a solution is determined by the penalty induced by
the following soft constraints where lower penalty is better. Each soft constraint is
a sum expressing the number of violations of this constraint. The total penalty of a
solution is then simply the weighted sum of all soft constraints. The weights for each
soft constraint are currently being determined in correspondence with a real-world test
laboratory. These weights may also be subject to change depending on the currents
needs of the laboratory or the people involved in the planning. For this work, all weights
w1, . . . , w5 are considered to be 1 as they were in previous work [MM19].

In TLSP, the first soft constraint depends on the number of jobs. Since we consider the
job grouping fixed in TLSP-S, the number of jobs is fixed as well and we consider w1 · |J |
a constant penalty in the objective value.

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Complexity

Employee project preferences Each employee assigned to job while not being pre-
ferred will lead to a penalty.

w2 ·
∑

j∈J

|{e ∈ Ėj | e 6∈ EPr
j }| (3.15)

Number of employees Each employee assigned to a project will lead to a penalty.
Hence, we want to minimize the number of different employees in each project.

w3 ·
∑

p∈P

|
⋃

j∈Jp

Ėj | (3.16)

Due date For each job, the amount which it exceeds its due date will be registered as
a penalty.

w4 ·
∑

j∈J

max(ṫc
j − ω̄j , 0) (3.17)

Project completion time The project completion time for each project i.e. the time
between the earliest start time and the latest end time of all jobs in the project should
be kept as minimal as possible.

w5 ·
∑

p∈P

max({ṫc
j | j ∈ Jp})−min({ṫs

j | j ∈ Jp}) (3.18)

3.2 Complexity

We are now going to present complexity results for the problem considered in this thesis.
Similar results were already shown for TLSP in the article by Mischek and Musliu [MM19]
where they also gave the outline of the proofs formalized below.

TLSP-S as described above is of course an optimization problem. In order to analyze
its complexity we specify a corresponding decision problem i.e. a problem with a yes or
no answer. In general, the decision variants for optimization problems are obtained by
extending the problem with a parameterized bound on the objective value. The decision
problem would then be whether or not the optimization problem has a solution with an
objective value less or equal to the given bound.

Using this approach the corresponding decision problem for TLSP-S can be obtained by
adding a parameter B – which specifies the bound on the objective – and a constraint
ensuring that the total penalty is less or equal to B. We shall denote this decision
problem as TSLP-S(D).

The first result we want to show regards the hardness of TLSP-S(D). We will show that
the problem is NP-hard. We will achieve this by showing that the subproblem of finding
a feasible solution for a TLSP-S instance is already NP-hard.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Problem Definition and Related Work

Theorem 1. Checking whether an instance of TLSP-S is feasible i.e. has a solution is
an NP-hard problem.

Proof. We will show our claim by reduction from the decision variant of the Resource
Constrained Project Scheduling Problem (RCPSP) which is known to be NP-hard [GJ79].

Formally, an instance of RCPSP is defined as follows. We have n activities represented
by the set V = {0, . . . , n + 1} which also includes auxiliary start and end activities.
Each activity a ∈ V has a duration pa (p0 = pn+1 = 0). We also have a binary relation
Q ⊆ V ×V which defines precedences among activities. Note that Q(a, 0) and Q(n + 1, a)
do not hold for any a ∈ V , but Q(0, a) and Q(a, n + 1) hold for all a ∈ V \ {0, n + 1}.
Furthermore, an RCPSP instance also includes m renewable resources represented by
the set R = {1, . . . , m} each r ∈ R with an availability cr. For each activity a ∈ V and
resource r ∈ R, we have a demand bar. Lastly, we have a makespan Cmax.

A solution to an RCPSP instance as defined above is given by a start time assignment si

(0 ≤ i ≤ n + 1) such that the following constraints are satisified, where At = {a ∈ V |
sa ≤ t < sa + pa} is the set of active activities at time slot t.

s0 = 0 (3.19)

sj ≥ si + pi (i, j) ∈ Q (3.20)
∑

a∈At

bar ≤ cr r ∈ R, 0 ≤ t ≤ Cmax (3.21)

sn+1 = Cmax (3.22)

The first constraint (3.19) ensures that the auxiliary start activity begins at the first
timeslot zero. The second constraint (3.20) enforces the given precedence relation and
constraint (3.21) the resource availabilities. The last constraint (3.22) requires the end
activity to start – and thus end – at the makespan. We say that an instance of RCPSP
is a positive instance if it has a solution.

Now, we can define a many-one reduction f which takes an instance A of RCPSP and
transforms it into an instance of TLSP-S which is feasible iff A is a positive instance of
RCPSP.

Let A be an arbitrary instance of RCPSP with the components described above. We want
f(A) to be an instance of TLSP-S. The set of time slots will simply be T = {0, . . . , Cmax},
the set of jobs J = V , the projects are a singleton set P = {1} and J1 = J , and the
sets of employees and workbenches are the empty set E = W = ∅. The set of modes of
f(A) is also going to be a singleton set M = {1}, Mj = M for all j ∈ J , and rEm

1 = 0.
Furthermore, the equipment groups correspond the resources in RCPSP. Hence, G∗ = R

and Gg = {1, . . . , cr} for each r ∈ G∗ = R.

Now, we come to the job properties. The duration of a job j in the only possible mode
m = 1 is dmj = pj . The predecessors of a job j are given by Pj = {k ∈ V | (k, j) ∈ Q}.

For each equipment group g, we set the requirements of a job j to r
Eq
gj = bgj and Ggj = Gg.

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.2. Complexity

For any job j except the auxiliary end job, we set its release date αj to 0 and its deadline
ωj and due date ω̄j to Cmax . For the end job we set all three values to Cmax . The set of
linked jobs, preferred employees, available employees and workbenches are all the empty
set for each job j. Additionally, rWb

j = 0 for each job j. Lastly, JS = {0} is the set of
started jobs. It can easily be seen that the reduction f only needs polynomial time.

We need to show that A is a positive instance of RCPSP iff f(A) is a feasible instance
of TLSP-S. We start with the only-if direction. Hence, we will prove that if A is a
positive instance, then f(A) is feasible. Since A is a positive instance, there is a start
time assignment sa for each activity a ∈ V such that the constraints (3.19–3.22) are
satisfied. We are going to transform this RCPSP solution into a feasible solution of the
TLSP-S instance f(A).

By construction, we have J = V . Hence, we are given the starting timeslot of each job
j ∈ J by ṫs

j = sj . Since there only is one mode, ṁj = 1 for each j ∈ J and thus also

ṫc
j = sj + d1j . The assigned workbench and employees of a job j are simply ḃj = 0 and

Ėj = ∅.

Now, the equipment assignment for a group g ∈ G∗ is a bit more involved. We are going
to construct the assignment in m stages where m = |J | = |V |. Each stage will add the
equipment assignment for a job and we will go through them in the ascending order of
their start times ṫs

j . We going to use the auxiliary set Eg
t = {e ∈ Gg | j ∈ Jt, e 6∈ Gjg}

representing the yet unassigned equipment at time slot t.

Now, at each stage j we get the equipment assignment Gjg by taking the first r
Eq
gj = bgj

elements of Eg

ṫs
j

. Suppose that at some stage j, the construction fails because |Eg

ṫs
j

| <

r
Eq
gj . Then there exists a time slot t = ṫs

j such that
∑

j∈Jt
r

Eq
gj > |Gg| which implies

∑

j∈At
brj > cr where r = g and r ∈ R. The latter in turn implies that constraint (3.21)

is violated contradicting that A is a positive instance of RCPSP. Hence, this case cannot
occur.

It is not hard so see that the above construction ensures that TLSP-S single assignment
constraint for equipment (3.7) is satisfied as well the requirement constraint (3.10). The
satisfaction of job precedence constraint (3.3) is implied by RCPSP constraint (3.20) and
the remaining constraints hold by construction. Hence, we have a feasible solution for
TLSP-S instance f(A).

Remains to show the if-direction i.e. whenever f(A) is a feasible TLSP-S instance, then
A is a positive instance of RCPSP. We again show this by describing how a solution to
f(A) can be transformed to a solution of A. The RCPSP solution will simply be sa = ṫs

a

for each activity/job a ∈ J = V . Clearly, since TLSP-S constraint (3.4) is satisfied, the
RCPSP constraint (3.19) holds as well. Similarly, (3.22) has to be satisfied as for the end
activity n + 1, αn+1 = ωn+1 = Cmax , d1(n+1) = pn+1 = 0, and TLSP-S constraint (3.2)
holds.

A violation of RCPSP constraint (3.20) would imply a violation of the corresponding
TLSP-S constraint (3.3), so this cannot be the case. Lastly, the resource bounds (3.21)

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Problem Definition and Related Work

cannot be exceeded as the total number of equipment |Gg| for some resource r = g, is
exactly cr by construction.

Therefore, A is a positive instance of RCPSP iff f(A) is a feasible instance of TLSP-S.
Finding a feasible solution for a TLSP-S instance is thus NP-hard.

The following corollary trivially follows from the theorem above.

Corollary 1. TLSP-S(D) is NP-hard.

Now that we have a lower bound for the complexity of TLSP-S(D), we would like to
determine an upper bound.

Theorem 2. TLSP-S(D) is in NP.

Proof. We show NP-membership of TLSP-S(D) by presenting a guess and check algorithm.
The guess part consists of guessing ṫs

j , ṫc
j , ṁj , ḃj , Ėj , and Ġjp for each job j.

We can then easily check the constraints (3.1–3.4) and (3.8–3.14) for each job and
constraints (3.5–3.7) for each time slot. Similarly, we check whether the total objective is
below the given bound B. Obviously, the complete check only needs polynomial time.
Hence, TLSP-S(D) is in NP.

Since we both have NP-hardness and membership, the next result follows immediately.

Corollary 2. TLSP-S(D) is NP-complete.

Unless P = NP, it is thus not possible to solve TLSP-S in polynomial time. This further
motivates the solution approaches discussed in this thesis as they effectively reduce the
problem to other formalisms which are all at least NP-hard.

3.3 Related Work

The Test Laboratory Scheduling Problem (TLSP) as well as the restricted problem TLSP-
S were introduced by Mischek and Musliu [MM18b, MM18a, MM19]. They also offered
a local search framework for TLSP-S [MM19] and compared different metaheuristics.
Their experiments show that Simulated Annealing offers the best results. Aside from
their work, there exist no other published solution approaches for the problem considered
in this work.

The Resource-Constrained Project Scheduling Problem (RCPSP) has been investigated
by numerous researchers over the last decades and can be seen as the standard problem
in the field of project scheduling. For a comprehensive overview over publications dealing
with this problem and its many variants, we refer to surveys e.g. by Brucker et al.
[BDM+99], Hartmann and Briskorn [HB10], or Mika et al. [MWW15].

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Related Work

Of particular interest for the problem treated in this work are various extensions to the
classical RCPSP.

Multi-Mode RCPSP (MRCPSP) formulations allow for activities that can be scheduled
in one of several modes. This variant has been extensively studied since 1977 [Elm77], we
refer to the surveys by Wȩglarz et al. [WJMW11] and Hartmann and Briskorn [HB10].
A good example of a CP-Model for the MRCPSP was given by Szeredi and Schutt [SS16].

Many formulations, including TLSP, make use of release dates, due dates, deadlines, or
combinations of those. An example of this can be found in [DB08]. Further relevant
extensions deal with multi-project formulations, including alternative objective func-
tions (e.g. [PWW69]). The Resource Constrained Multi-Project Scheduling Problem
(RCMPSP) offers multiple projects, with project-specific constraints and objective func-
tions [GMR08, VPLP+19]. RCMPSP was also extended with execution modes yielding
Multi-Mode RCMPSP (MMRCMPSP) which is also subject of the MISTA challenge and
has been considered in several publications [AKK+16, WKS+16, AM18].

Usually, the objective in (variants of) RCPSP is the minimization of the total makespan
[HB10]. However, also other objective values have been considered. Of particular
relevance to TLSP are objectives based on total completion time and multi-objective
formulations (both appear in e.g. [NR97]). Salewski et al.[SSD97] include constraints
that require several activities to be performed in the same mode. This is similar to the
concept of linked jobs introduced in the TLSP.

RCPSP itself and most variants assume that individual units of each resource are identical
and interchangeable, which is one of the main differences between them and TLSP-S.
In difference to that in Multi-Skill RCPSP (MSPSP), first introduced by Bellenguez
and Néron [BN05], each resource unit possesses certain skills, and an activity can only
have these resources with the required skills assigned to it. This is similar to the
availability restrictions on resources that appear in TLSP-S. Just like for our problem,
they also deal with the problem that while availability restrictions could be modeled
via additional activity modes corresponding to feasible resource assignments (e.g. in
[BZ09, PWW69, ST00]), this is intractable due to the large number of modes that would
have to be generated [BN05]. The best results for the MSPSP problem have been achieved
by Young et al. [YFS17], who use a CP model to solve the problem.

Also variants of VLNS have been used to solve the RCPSP or extensions of it, such as
in [PAM04]. One of the main challenges in these approaches is the choice of a subset of
activities that is selected for optimization at each step. In TLSP-S, we have multiple
projects over which most of the constraints are evaluated. This makes single or multiple
projects a natural choice for this subset, which we exploit in our heuristic.

Bartels and Zimmermann [BZ09] describe a problem for scheduling tests of experimental
vehicles. It contains several constraints that also appear in similar form in TLSP-S, but
includes a different resource model and minimises the number of experimental vehicles
used.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Problem Definition and Related Work

To the best of our knowledge, neither answer-set programming nor hybrid extensions of
ASP have been utilized for project scheduling problems. However, there are examples in
the literature of those paradigms being used for other scheduling problems. In [DM17]
and [ADM17] the authors present ASP encodings for the Nurse Scheduling Problem.
ASP solution methods for the Operation Room Scheduling Problem can be found in
[DGMP18]. Also, Abseher et al. [AGM+16] provide an ASP formulation for the Shift
Design Problem. In the case of hybrid systems, [Bal11] and [FFM+16] employ an ASP
and CP hybrid approach to solve industrial machine scheduling problems. An application
of ASP combined with difference logic for a real-world train scheduling problem can be
found in [AJO+20].

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Constraint Programming Models

We initially developed our constraint programming model using the solver-independent
modeling language MiniZinc [NSB+07]. Using MiniZinc we can easily compare different
CP solvers and even MIP solvers.

We provide a CP model for our problem by exploiting some previous ideas for similar
problems [SS16, FGS+17] and extend them to model the additional features of TLSP-S.
This includes, for example, the handling of the problem specific differences discussed
above but also new redundant constraints as well as search procedures tailored to the
problem.

In order to provide an alternative CP formulation, we also modeled our problem with the
IBM ILOG CP Optimizer [IC17a]. This model uses a different formulation of constraints
and decision variables than the MiniZinc model and is described in Chapter 4.2.

4.1 MiniZinc Formulation

4.1.1 Solution Representation

In order to represent a solution for the scheduling problem we use the following decision
variables. The start time variable sj assigns a start time to each job j. Similarly, for
each job j, mode variable mj assigns it a mode. For resource assignments we need the
following variables: For each job j, the variable aEm

ej is set to 1 if employee e is assigned to

j and 0 otherwise, the variable aWb
bj is 1 if j is performed on workbench b and 0 otherwise,

and the variable a
Eq
dj is 1 if device d is used by j and 0 otherwise.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Constraint Programming Models

4.1.2 Basic Hard Constraints

The following constraints follow directly from the problem definition.

sj ≥ αj ∧ (sj + dmjj) ≤ ωj j ∈ J (4.1)

sj ≥ (sk + dmkk) j ∈ J, k ∈ Pj (4.2)

mj ∈Mj j ∈ J (4.3)

aEm
ej = 1 → e ∈ Ej j ∈ J, e ∈ E (4.4)

aWb
bj = 1 → b ∈ Bj j ∈ J, b ∈ B (4.5)

a
Eq
dj = 1 → d ∈ Ggj j ∈ J, g ∈ G∗, d ∈ Gg (4.6)

∑

e∈E

aEm
ej = rEm

mj
j ∈ J (4.7)

∑

b∈B

aWb
bj = rWb

j j ∈ J (4.8)

∑

d∈Gg

a
Eq
dj = r

Eq
gj j ∈ J, g ∈ G∗ (4.9)

aEm
ej = aEm

ek j ∈ J, k ∈ Lj , e ∈ E (4.10)

sj = 0 j ∈ JS (4.11)

The job duration constraint (3.1) is enforced by (4.1). The adherence to job precedences
as required by (3.1) is given by constraint (4.2). The required availabilities of resources as
formulated in hard constraints (3.11), (3.12) and (3.13) is ensured by the corresponding
constraints (4.4), (4.5) and (4.6). In order to make sure that each job has exactly as many
resources as required i.e. satisfying (3.8), (3.9) and (3.10) from the problem definition,
we have constraints (4.7), (4.8) and (4.9). Furthermore, we need (4.10) to make sure that
linked jobs are assigned to the same employees as required in (3.14) and constraint (4.11)
to fix the start time of jobs which already started i.e. to satisfy hard constraint (3.4).

The above set of constraints is however not enough to ensure a valid solution. Additionally,
we have to consider hard constraints (3.6), (3.5), and (3.7) which enforce that no resource
(employee, workbench, or equipment) is assigned to two or more jobs at the same time.
Like it was the case with MSPSP [YFS17], the constraints used for modeling these unary
resource requirements have a tremendous impact on the practicability of the model and
in the next subsection we will present different options for modeling such constraints.

4.1.3 Unary Resource Constraints

We will now present three different approaches for modeling unary resource constraints in
MiniZinc, each of which is designed with CP solvers in mind. Two of these three quickly
proved to be impractical for TLSP-S.

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. MiniZinc Formulation

Time-indexed approach

The probably most straightforward way to model the non-overuse of any resource at any
given time is captured by the following constraints.

∑

j∈J,sj≤t<(sj+dmj j)

aEm
ej ≤ 1 e ∈ E, t ∈ T (4.12)

∑

j∈J,sj≤t<(sj+dmj j)

aWb
bj ≤ 1 b ∈ B, t ∈ T (4.13)

∑

j∈J,sj≤t<(sj+dmj j)

a
Eq
dj ≤ 1 g ∈ G∗, d ∈ Gg, t ∈ T (4.14)

The number of constraints generated by MiniZinc based on (4.12–4.14) is of course
directly dependent on the planning horizon h and the total number of resources. Because
of the long compilation time and the high computer resource consumption, it quickly
became immanent that for our larger instances the time-indexed approach is not efficient.
This is of course not surprising since Young et al. [YFS17] came to a similar conclusion
for MSPSP. Hence, we discarded this option after some preliminary testing.

Overlap constraint

For MSPSP, Young et al. [YFS17] achieved their best results using a so-called order
constraint. This constraint basically enforces that two activities cannot overlap in their
execution when they use a common resource. During the initial modeling phase we tried
a very similar approach. First, we introduced the new predicate overlap:

overlap(j, k) := sk < (sj + dmjj) ∧ (sk + dmkk) > sj

In MSPSP, resources are assigned to activities with respect to the needed skill of the
activity. For the overlap constraint it is not important which skill requirement the
resource contributes to, so Young et al. [YFS17] had to introduce an auxiliary variable to
express that a resource is used by an activity. We on the other hand assign the resources
directly and thus can model our overlap constraint without any new variables.

overlap(j, k)→
(

∧

e∈E

(¬aEm
ej ∨ ¬aEm

ek)
∧

b∈B

(¬aWb
bj ∨ ¬aWb

bk)
∧

g∈G∗,d∈Gg

(¬a
Eq
dj ∨ ¬a

Eq
dk)

)

j, k ∈ J, j 6= k, αk < ωj ∧ ωk > αj (4.15)

Just like with the time-indexed approach, it turned out that the overlap constraint
produced too many constraints and was thus impractical for larger instances. This is
interesting because Young et al. had no such problems, but their biggest instances only
had 60 resources and 42 activities, whereas we have instances with more than 300 resources
and jobs, respectively. It should however be noted that Young et al. [YFS17] reduced the
number of generated constraints by considering only unrelated activity pairs, i.e. activities
which do not depend on the execution of each other via precedence constraints (related

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Constraint Programming Models

activities can obviously never overlap). We on the other hand generate constraints for
all pairs of jobs which are allowed to overlap based on their release dates and deadlines.
Comparing only unrelated jobs requires the computation of the transitive closure of the
job precedence relation and because our instances have a lot of unrelated jobs, we don’t
expect any significant improvement.

Cumulative constraints

Another way to model the unary resource constraints is to use a global constraint
like cumulative. The cumulative constraint takes as input the start times, durations
and resource requirements of a list of jobs and ensures that their resource assignments
never exceed a given bound. This is of course a perfect way to enforce non overload of
any resource and both MSPSP and MRCPSP have efficient models which make use of
cumulative in some way [SS16, YFS17]. In order to enforce the non-overload of any
resource we need three constraints (one for each resource type).

cumulative((sj)j∈J , (dmjj)j∈J , (aEm
ej)j∈J , 1) e ∈ E (4.16)

cumulative((sj)j∈J , (dmjj)j∈J , (aWb
bj)j∈J , 1) b ∈ B (4.17)

cumulative((sj)j∈J , (dmjj)j∈J , (aEq
dj)j∈J , 1) g ∈ G∗, d ∈ Gg (4.18)

In difference to our first two modeling approaches, this one turned out to scale well.
Since the others performed so poorly on large instances, the rest of our experiments were
performed with the cumulative unary resource constraints.

4.1.4 Soft Constraints

We have given several soft constraints in Chapter 3.

MiniZinc has no direct support for soft constraints, hence we define them as a function
which should be minimised. This function given as follows.

As stated in Section 3.1.3, the first soft constraint of TLSP is the number of jobs and we
want to maintain comparability with TLSP. Hence, we consider the term s1 = w1 · |J |
part of the objective function.

According to soft constraint (3.15), the solutions where the assigned employees of a job
are taken from the set of preferred employees are preferred:

s2 = w2 ·
∑

j∈J

∑

e∈(E\EPr

j
)

aEm
ej

For each project, the total number of employees assigned to it should be minimised (soft
constraint (3.16)):

s3 = w3 ·
∑

p∈P

∑

e∈E

((
∑

j∈Jp

aEm
ej) > 0)

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. MiniZinc Formulation

For each job, due date violation should be avoided (soft constraint (3.17)):

s4 = w4 ·
∑

j∈J

max(sj + dmjj − ω̄j , 0)

Lastly, there is a soft constraint (3.18) stating that project durations should be as small
as possible:

s5 = w5 ·
∑

p∈P

(maxj∈Jp(sj + dmjj)−minj∈Jp(sj))

The complete objective function is then given by min
∑

1≤i≤5 si.

4.1.5 Redundant Constraints

Finding good redundant constraints for our problem proved to be very hard since the
search space is usually very big and at the beginning of the search there is little knowledge
about the final duration of the jobs. To deal with this issue we introduced a relaxed
cumulative constraint enforcing a global resource bound.

cumulative((sj)j∈J ,

(minm∈M (dmjj))j∈J ,

(minm∈Mj
(rEm

m) + rWb
j +

∑

g∈G∗

r
Eq
gj)j∈J ,

|E|+ |B|+
∑

g∈G∗

|Gg|) (4.19)

This enables the search to discard scheduling options which are impossible regardless of
the chosen modes early on.

On top of that, we can also formulate more straightforward cumulative constraints
which enforce the global resource bounds for each resource at any point in time.

cumulative((sj)j∈J , (dmjj)j∈J , (rEm
mj

)j∈J , |E|) (4.20)

cumulative((sj)j∈J , (dmjj)j∈J , (rWb
j)j∈J , |B|) (4.21)

cumulative((sj)j∈J , (dmjj)j∈J , (rEq
gj)j∈J , |G|) g ∈ G∗ (4.22)

Given the large search space, trying to restrict the scope of the decision variables seems
like a worthwhile idea. We achieve this by using global cardinality constraints. These
constraints allow us to give tight bounds for the total number of resources which should
be used.

gcc_low_up((aEm
ej)e∈E,j∈J , 1,

∑

j∈J

minm∈Mj
(rEm

m),
∑

j∈J

maxm∈Mj
(rEm

m)) (4.23)

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Constraint Programming Models

gcc_low_up((aWb
bj)b∈B,j∈J , 1,

∑

j∈J

rWb
j ,

∑

j∈J

rWb
j) (4.24)

gcc_low_up((aEq
dj)g∈G∗,d∈Gg ,j∈J , 1,

∑

j∈J

∑

g∈G∗

r
Eq
gj ,

∑

j∈J

∑

g∈G∗

r
Eq
gj) (4.25)

Constraint (4.23) enforces that no more employees can be assigned than the sum of
the highest possible employee requirements and no less than the sum of the minimum
requirements. The other two constraints analogously ensure that the number of assigned
workbenches and equipment is tightly bounded by the cumulative requirement of all jobs.

4.1.6 Search Strategies

During initial testing it quickly became immanent that the default search strategy of
Chuffed (or Gecode) was not even able to find feasible solutions for most instances. This
was not surprising since Young et al. [YFS17] already had a similar issue with MSPSP.
However, they were able to improve their results drastically by employing a new MiniZinc
search annotation called priority_search which is supported by Chuffed [FGS+17].
Based on their research we have experimented with four slightly different versions of
priority_search:

(i) ps_startFirst_aff

(ii) ps_startFirst_ff

(iii) ps_modeFirst_aff

(iv) ps_modeFirst_ff

All four search strategies branch over the jobs and their resource assignments. The order
of the branching is the same for all strategies and is determined by the smallest possible
start times of the jobs in ascending order. For each branch, searches (i) and (ii) initially
assign the smallest start time to the selected job followed by assigning it the mode
which minimises the job duration. Search procedures (iii) and (iv) start with the mode
assignment and then assign the start time. Once the start time and the mode have been
assigned for the selected job, all of the search strategies make resource assignments for the
job. Searches (i) and (iii) start by assigning those resources to the job which are available
and have the biggest domain i.e. those which are not fixed to assigned/unassigend,
whereas (ii) and (iv) start with assignments which are either unavailable or have only
one value in their domain.

4.2 Interval-based Model

We also modelled our problem with CP Optimizer [IC17a]. This solver uses a different
modeling paradigm than MiniZinc. We gave formal definitions for the variables and
constraints we are going to use in Chapter 2.1.

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.2. Interval-based Model

In the CP Optimizer model the decision variables are given by the following interval
variables:

interval aj ⊆ [αj , ωj) j ∈ J

interval bp p ∈ P

interval aij optional size dij j ∈ J, i ∈Mj

interval aEmM
eij optional j ∈ J, i ∈Mj , e ∈ Ej

interval aEm
ej optional j ∈ J, e ∈ Ej

interval aWb
bj optional j ∈ J, b ∈ Bj

interval a
Eq
gdj optional j ∈ J, g ∈ G∗, d ∈ Ggj

The intervals aj represents the jobs and are constrained to the time windows of the
respective job. The second set of intervals bp are auxiliary variables representing the
total duration of the projects. These intervals enable an easy formulation of the project
duration soft constraint. The next intervals aij are optional and the presence of such
an interval indicates that job j is performed in mode i. For a job j several employee
allocations are possible depending on its mode. The presence of an optional interval
aEmM

eij represents the allocation of employee e to perform job j in mode i. The last three
sets of optional intervals are used to indicate resource allocation.

The hard constraints of the problem are encoded as follows:

span(bp, [aj]j∈Jp) p ∈ P (4.26)

endBeforeStart(ak, aj) k ∈ Pj (4.27)

alternative(aj , (aij)i∈Mj
, 1) j ∈ J (4.28)

alternative(aij , (aEmM
eij)e∈Ej

, rEm
ij) j ∈ J, i ∈Mj (4.29)

alternative(aEm
ej , (aEmM

eij)i∈Mj
, 1) j ∈ J, e ∈ Ej (4.30)

noOverlap((aEmM
eij)j∈J,i∈Mj ,e∈Ej

) e ∈ E (4.31)

noOverlap((aEm
ej)j∈J,e∈Ej

) e ∈ E (4.32)

alternative(aj , (aWb
bj)b∈Bj

, rWb
j) j ∈ J (4.33)

noOverlap((aWb
bj)j∈J,b∈Bj

) b ∈ B (4.34)

alternative(aj , (aEq
gdj)d∈Ggj

, r
Eq
gj) j ∈ J, g ∈ G∗ (4.35)

noOverlap((aEq
gdj)j∈J,d∈Ggj

) g ∈ G∗, d ∈ Gg (4.36)

¬ presenceOf(aji) j ∈ J, i ∈ (M \Mj) (4.37)

¬ presenceOf(aEm
ej) j ∈ J, b ∈ (E \ Ej) (4.38)

¬ presenceOf(aWb
bj) j ∈ J, b ∈ (B \Bj) (4.39)

¬ presenceOf(aEq
dj) j ∈ J, g ∈ G∗, d ∈ (Gg \Ggj) (4.40)

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Constraint Programming Models

presenceOf(aEm
ej) = presenceOf(aEm

ek) j ∈ J, k ∈ Li, e ∈ E (4.41)

startOf(aj) = 1 j ∈ JS (4.42)

Constraint (4.26) allows us to easily formulate the soft constraints which depend on the
completion time of a project. The job precedences as defined in (3.3) are enforced through
(4.27). The alternative constraints (4.28–4.30) make sure that the employee requirements
for each job (3.10) are satisfied, while (4.31–4.36) express the single assignment constraints
(3.5–3.7). In order to make sure that the resource availability requirements (3.11–3.13)
are satisfied, we need constraints (4.31–4.36). Lastly, linked jobs (3.14) are modelled
using (4.41) and started jobs (3.4) are modelled with (4.42).

Using pulse constraints we can also formulate redundant constraints which are similar to
the cumulative constraints defined in Section 4.1.5.

∑

j∈J

∑

m∈Mj

pulse(ajm, rEm
jm) ≤ |E| (4.43)

∑

j∈J

∑

m∈Mj

pulse(ajm, rWb
jm) ≤ |B| (4.44)

∑

j∈J

∑

m∈Mj

pulse(ajm, r
Eq
jm) ≤

∑

g∈G∗

|Gg| (4.45)

Finally, the objective is to minimize the following formula which is just the weighted sum
of all violations of soft constraints defined in Chapter 3.1.3.

min w1 · |J |

+ w2 ·
∑

j∈J

max(0, endOf(aj)− ωj)

+ w3 ·
∑

j∈J

∑

e∈(E\EP r
j

)

presenceOf(aEm
ej)

+ w4 ·
∑

p∈P

∑

e∈E

(

0 <
∑

j∈Jp

presenceOf(aEm
ej)

)

+ w5 ·
∑

p∈P

lengthOf(bp)

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Constraint Answer-set

Programming Model

In this chapter we investigate a hybrid Answer-set solving approach for TLSP-S. We
present an encoding of the problem in the input language of the Constraint Answer-set
Programming (CASP) solver clingcon [GOS09, BKOS17] and give alternative formulations
for unary resource constraints. To the best of our knowledge, this is the first time CASP
has been employed for a project scheduling problem.

5.1 Input Facts

In order to solve a TLSP-S instance with clingcon we need to encode its parameters
described in Chapter 3.1.1 as facts.

For each job j ∈ J we have the following input facts:

• job(j),

• release(j, αj),

• deadline(j, ωj),

• due(j, ω̄j),

• durInMode(j, m, dmj) for each mode m ∈M ,

• precedence(k, j) for each k ∈ Pj ,

• linked(j, k) for each k ∈ Lj ,

• modeAvail(j, m) for each available mode m ∈Mj ,

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Constraint Answer-set Programming Model

• empAvail(j, e) for each qualified employee e ∈ Ej ,

• wbAvail(j, w) for each available workbench w ∈Wj ,

• equipAvail(j, e) for each equipment group g ∈ G∗ and each available device e ∈ Gjg,

• reqEquip(j, g, r
Eq
gj) for each equipment group g ∈ G∗,

• empPref (j, e) for each preferred employee e ∈ EPr
j , and

• projAssign(j, p) where p ∈ P and j ∈ Jp.

Additionally, if j ∈ JS then we have the fact started(j) and also wbReq(j) if rWb
j = 1.

Furthermore, for each mode m ∈ M we also have a fact reqEmp(m, rEm
m), for each

equipment group g ∈ G∗ we have group(g) and for each project p ∈ P we have the fact
project(p). Lastly, we have the fact horizon(h) denoting the scheduling horizon.

5.2 Solution Representation

Each answer-set of the encoding we are about to give will represent a solution of TLSP-S
with respect to the given instance. More specifically, an answer-set will include the
following facts for each job j ∈ J :

• modeAssign(j, m) indicating that j is assigned mode m,

• empAssign(j, e) expressing that employee e is assigned to j,

• wbAssign(j, w) representing the assignment of workbench w to j, and

• equipAssign(j, e) meaning that j is assigned equipment e.

Furthermore, an answer-set also contains a start time assignment start(j) for each job j

which is encoded as an integer variable.

5.3 Basic Hard Constraints

We will now give the clingcon encoding of the basic hard constraints of TLSP-S as
described in the problem definition.

&dom{R..D} = start(J) ← job(J), release(J, R),

deadline(J, D) (5.1)

&dom{R..D} = end(J) ← job(J), release(J, R),

deadline(J, D) (5.2)

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Unary Resource Constraints

1 {modeAssign(J, M) : modeAvail(J, M)} 1 ← job(J) (5.3)

duration(J, T) ← job(J), modeAssign(J, M),

durInMode(J, M, T) (5.4)

&sum{end(J);−start(J)} = T ← job(J), duration(J , T) (5.5)

&sum{start(J)} ≥ end(K) ← job(J), job(K), precedence(J, K) (5.6)

&sum{start(J)} = 0 ← job(J), started(J) (5.7)

1 {wbAssign(J, W) : wbAvail(J, W)} 1 ← job(J), wbReq(J) (5.8)

R {empAssign(J, E) : empAvail(J, E)} R ← job(J), modeAssign(J, M),

reqEmployees(M, R) (5.9)

R {equipAssign(J, E) : equipAvail(J, E),

group(E, G)} R ← job(J), group(_, G),

reqEquip(J, G, R) (5.10)

← job(J), job(K), linked(J, K),

empAssign(J, E),

∼ empAssign(K, E) (5.11)

The first two rules (5.1) and (5.2) define the domains of the start and end times which
are bounded by the release time and deadline of a job thus enforcing the time window
constraint (3.2). Rule (5.3) ensures that each job is assigned exactly one available mode.
Rule (5.4) enforces that each job has the duration required by its mode and rule (5.5)
links the start and end time to the duration. Rule (5.6) ensures that the job precedence
constraint (3.3) is satisfied. Started jobs are enforced to start at the first timeslot by rule
(5.7) thus ensuring constraint (3.4). The resource requirement constraints (3.8–3.10) are
handled by rules (5.8), (5.9), and (5.10). Finally, the constraint rule (5.11) ensures that
the linked jobs constraint (3.14) is satisfied.

The rules presented above do not enforce the single assignment constraints (3.6), (3.5),
and (3.7). In the next section we will introduce 2 ways of encoding these constraints in
clingcon.

5.4 Unary Resource Constraints

In Section 4.1.3, we expounded on the difficulty of modelling unary resource constraints for
TLSP-S i.e. constraints ensuring that no resource is used by multiple jobs simultaneously
in CP. Our best formulation of these constraints relied on a global cumulative constraint.
clingcon has no such cumulative constraint and the disjunctive it does support only works
with fixed durations, which we do not have because of the different possible execution
modes. Hence, we need to decompose the constraints.

We propose two such decompositions. The first is given by the following rules.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Constraint Answer-set Programming Model

precedence(J, K) ∨ precedence(K, J) ← job(J), job(K), wbAssign(J, W),

wbAssign(K, W), J < K (5.12)

precedence(J, K) ∨ precedence(K, J) ← job(J), job(K), empAssign(J, E),

empAssign(K, E), J < K (5.13)

precedence(J, K) ∨ precedence(K, J) ← job(J), job(K), equipAssign(J, E),

equipAssign(K, E), J < K (5.14)

Intuitively, those rules specify that whenever a resource is used by two different jobs
j, k ∈ J , then either j has to precede k or k has to precede j.

The second is more straight-forward and is given as follows.

overlap(J, K) ← job(J), job(K), &sum{start(K)} < end(J),

&sum{end(K)} > start(J), J < K (5.15)

← overlap(J , K), wbAssign(J, W), wbAssign(K, E), J < K (5.16)

← overlap(J , K), empAssign(J, E), empAssign(K, E), J < K (5.17)

← overlap(J , K), equipAssign(J, E), equipAssign(K, E), J < K (5.18)

In this formulation, a fact overlap(j, k) is derived for each pair of overlapping jobs j, k ∈ J

by rule (5.15). The constraints (5.16–5.18) then ensure that overlapping jobs cannot be
assigned the same resources.

An empirical evaluation of both formulations is given below in Chapter 7.4.1.

5.5 Soft Constraints

We now give the encodings for the the soft constraints given in Chapter 3.

&sum{unprefEmp(J)} = N ← job(J),

#count{E : empAssign(J, E),

∼ empPref (J, E)} = N (5.19)

&minimize{w2 · unprefEmp(J) : job(J)} (5.20)

The first soft constraint (3.15) minimizes the number of employees assigned to each job
despite not being preferred. This can easily be realised using a count aggregate as given
in rule (5.19). For each job j, this aggregate counts the number of occurrences where

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.5. Soft Constraints

an employee e is assigned to j but empPref (j, e) (indicating that e is preferred for j)
cannot be derived and is thus not part of the input. The objective (5.20) then encodes
the necessary minimization.

&sum{employees(P)} = N ← project(P),

#count{E : empAssign(J, E),

projAssign(J, P)} = N (5.21)

&minimize{w3 · employees(P) : project(P)} (5.22)

According to soft constraint (3.16), we also need to minimize the number of different
employees in each project. This is achieved again by a simple count aggregate as
formulated in (5.21) and (5.22). The input fact projAssign(j, p) denotes that j is contained
in project p.

&sum{delay(J); T} = end(J) ← job(J), due(J, T),

&sum{end(J);−T} > 0 (5.23)

&sum{delay(J)} = 0 ← job(J), due(J, T),

&sum{end(J);−T} ≤ 0 (5.24)

&minimize{w4 · delay(J) : job(J)} (5.25)

Now we come to soft constraint (3.17) i.e. we generally want a job j to end before is
due date t given by input fact due(j, t) or, if this is not possible, to minimize the delay.
The encoding for this objective can be found in (5.23–5.25) where we introduce integer
variables for the delay of each job. These variables are then constrained to represent the
difference between the end and the due date or zero if the job completes within its due
date.

&dom{0..H} = projectStart(P) ← project(P), horizon(H) (5.26)

&dom{0..H} = projectEnd(P) ← project(P), horizon(H) (5.27)

1 {firstJob(J) : job(J), projAssign(J, P)} 1 ← project(P) (5.28)

&sum{projectStart(P)} = start(J) ← firstJob(J), projAssign(J, P) (5.29)

&sum{projectStart(P)} ≤ start(J) ← job(J), projAssign(J, P) (5.30)

1 {lastJob(J) : job(J), projAssign(J, P)} 1 ← project(P) (5.31)

&sum{projectEnd(P)} = end(J) ← lastJob(J), projAssign(J, P) (5.32)

&sum{projectEnd(P)} ≥ end(J) ← job(J), projAssign(J, P) (5.33)

&minimize{w5 · projectEnd(P)− w5 · projectStart(P) : project(P)} (5.34)

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Constraint Answer-set Programming Model

The last soft constraint (3.18) has the most complex formulation which is given in
(5.26–5.34). The goal here is to minimize the completion time of each project i.e. the
time between the project start and end. The reason why this objective is difficult to
define is that we effectively need to determine the job with the earliest start in a project
as well as the one with the latest end. We achieve this by guessing a first and last job for
each project with the rules (5.28) and (5.31). For the selected first job, we ensure that
no other job in the project has an earlier start. Similarly for the selected last job. We
can then easily define the project start via rule (5.29) and the end with rule (5.32). The
objective (5.34) then simply minimizes the sum of all completion times.

Not given is the encoding for the fixed penalty w1 · |J |. However, this can easily be
formulated using a count aggregate.

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Very Large Neighborhood Search

Utilizing the exact methods described in Chapters 4 and 5 we propose a Very Large
Neighborhood Search (VLNS) approach. The basic idea is to start with a feasible but
suboptimal solution and repeatedly fix most of the schedule except for a small number of
projects and then try to find an optimal solution for those projects.

Furthermore, we also use our exact approaches to determine a lower bound of the objective
function. This idea will be described in the next section, afterwards we give the details
of the Very Large Neighborhood Search.

6.1 Lower Bound Calculation

In order to provide the VLNS with knowledge of which projects should be rescheduled
to improve the objective value, we calculate a lower bound for the introduced penalty
of each project. If a project induces a penalty equal to its lower bound in the current
solution, rescheduling said project cannot improve the objective and hence should be
avoided.

Algorithm 6.1 gives the details of the lower bound calculation in pseudo code. The
algorithms loops over all projects in the instance and solves each project independently
with a given timeout. This is achieved by creating a new problem instance where all
other projects are removed. If the solution found for this instance is optimal, we add its
objective value as a lower bound for the project. If the limit is reached and no optimal
solution could be found, we determine a heuristic lower bound for the project as follows:
We sum up the number of jobs (to maintain comparability with TLSP), the minimum
number of different employees needed for the project (3.16), and the minimal duration
of all jobs on the longest path in the job dependency graph (3.18). For soft constraints
(3.15) and (3.17), zero is used as the lower bound.

It should be noted that this algorithm works independently of the exact method used.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Very Large Neighborhood Search

Algorithm 6.1: Lower Bound Calculation
Data: the problem instance and a timeout
Result: a map with a project as key and as value its lower bound

1 initialize empty map lowerBounds;
2 projects ← getProjects(instance);
3 for p ∈ projects do

4 projectInstance ← deleteAllExcept(instance, p);
5 schedule ← solveOptimal(projectInstance, timeout);
6 if isOptimal(schedule) then

7 lowerBounds(p)← getPenalty(schedule);
8 else

9 lowerBounds(p)← getHeuristicBound(projectInstance);
10 end

11 end

12 return lowerBounds

6.2 Search Algorithm

As already mentioned, VLNS starts with a feasible solution and then applies the exact
solver repeatedly on parts of the current solution. This process is described in detail in
Algorithm 6.2.

The basic steps of the search are the following:

1. Find Initial Solution
In order for the VLNS to work, we need a feasible schedule for the instance. Since
our exact approaches find feasible solutions within a couple of minutes, we used
them to provide an initial solution.

2. Calculate lower bound for each project
In parallel to step one we calculate the lower bounds as described above.

3. Fix all but k projects
Once we have an initial solution and the lower bounds we can start the actual
heuristic. We start by selecting at random a combination of k projects (initially,
k = 1), with the following properties: If k > 1, then all of the projects overlap in
the current schedule (or, if there are no such combinations, have overlapping time
windows) and at least one of the projects has potential for improvement i.e. the
difference between the current penalty and the lower bound is larger than zero.

The projects which are not in the selected combination are then fixed. To achieve
this, we modify the time windows and availabilities of each job contained in a fixed
project. The release and due dates are changed to correspond to the current start
and end dates, the available modes and resources are changed to only include the

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Search Algorithm

Algorithm 6.2: Very Large Neighborhood Search
Data: the problem instance, globalTimeout, moveTimeout and jumpProb
Result: a solution schedule

1 currentSchedule ← solveFeasible(instance);
2 lowerBounds ← calculateLowerBounds(instance, moveTimeout);
3 lowerBound ← sum lowerBounds;
4 noChangeList ← ∅;
5 projects ← getProjects(instance);
6 k ← 1;
7 while not globalTimeout reached do

8 availableProjects ← ∅;
9 for p ∈ projects do

10 if lowerBounds(p) < getPenalty(currentSchedule, p) then

11 availableProjects ← availableProjects ∪ {p};
12 end

13 end

14 selectedProjects ←
getRandomCombination(availableProjects, noChangeList, k);

15 if selectedProjects = ∅ then

16 k = k + 1;
17 with probability jumpProb do k = k + 1;
18 selectedProjects ←

getRandomCombination(availableProjects, noChangeList, k);
19 if selectedProjects = ∅ then

20 abort;
21 end

22 end

23 tmpInstance ← fixAllExcept(currentSchedule, selectedProjects);
24 tmpSchedule ← solveOptimal(tmpInstance);
25 if getPenalty(tmpSchedule) < getPenalty(currentSchedule) then

26 currentSchedule ← tmpSchedule;
27 noChangeList ←

removeOverlaps(noChangeList, currentSchedule, selectedProjects);
28 noChangeList ← noChangeList ∪ {selectedProjects};
29 if lowerBound = getPenalty(currentSchedule) then

30 abort;
31 end

32 end

33 end

34 return schedule

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Very Large Neighborhood Search

current assignments, and finally the resource requirements are restricted to equal
the assignments.

The resulting instance is then further reduced by cutting away the fixed jobs outside
of the merged time window of the selected projects. These removed jobs cannot
be changed or influence the result and reducing the size of the instance improves
compilation/grounding time.

4. Perform move
After the preprocessing we try to find an optimal solution for the selected projects,
where we again set a runtime limit of moveTimeout. The best assignment found
within this limit is then applied to the current incumbent schedule if it decreases
the penalty of the solution.

After we have performed the move, we save the selected combination in a list.
Combinations contained in this list (or subsets of a combination in the list) are not
selected again unless there has been a change in a job overlapping the combination.

5. Possibly change k

If k is bigger than 1 and the incumbent schedule has been changed by the last move,
then we set k back to 1. Otherwise, if there are no more eligible combinations with
size k, we increase k by one or – with probability jumpProb – by two. If there no
more combinations for any k, we terminate.

After this we check if the current solution is equal to the sum of all project lower
bounds. Should that be the case, then we have found an optimal solution and can
terminate. If not, we go back to step 3 or terminate if we have reached the time
limit of the solver.

6.3 Modifications for Chuffed

Initial experiments showed that using VLNS with our MiniZinc model described in
Chapter 4.1 and the CP solver Chuffed falls into local optima quite often. Hence, it was
necessary to increase diversification. One way to do this was by modifying line 24 of
Algorithm 6.2 to allow the acceptance of moves which neither increase nor decrease the
current penalty. However, this yielded situations where the search would loop by doing
and undoing the same moves repeatedly. To combat this we extended the algorithm
further. With a parameterised probability hotStartProb we hot start the CP solver.
This means that the current assignment of the selected projects is given to the solver
as an initial solution. The hot start functionality is based on work by Demirovic et.
al [DCS18] and has been integrated by us into the current version of the solver Chuffed.
The hot starts get the search to reject nonimproving solutions while also increasing
the performance of the underlying CP solver. Additionally, if we do not hot start the
solver, we additionally set up priority_search to assign resources not in input order
but randomly to enhance diversification.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Experiments and Comparison

In this chapter we evaluate our solutions methods on a set of benchmark instances and
real-life data. We also provide a comparison of our solution approaches with Simulated
Annealing which was introduced by Mischek and Musliu [MM19]. This approach was
shown to be the best performing metaheuristic for TLSP-S.

7.1 Experimental Setup

We ran our experiments on a benchmark server with 224GB RAM and two AMD Opteron
6272 Processors each with max. 2.1GHz and 16 logical cores. Since all of the solvers we
experimented with are single threaded, we usually ran two independent sets of benchmarks
in parallel. For the VLNS parameter experiments we used a Lenovo ThinkPad University
T480s with an Intel Core i7-8550U (1,8 GHz). We used MiniZinc 2.2.3 [NSB+07] with
Chuffed 0.10.3 [Chu11] and CPLEX 12.8.0 [IC17b]. Our VLNS which is described in
Chapter 6 was implemented in Java 8. Furthermore, we also experimented with the ILOG
CP Optimizer 12.8.0 [IC17a] which was not run from MiniZinc but with the ILOG Java
API. We have also tested Gecode [SLT18] as an additional CP solver included in MiniZinc,
but it quickly proved to be inferior to Chuffed on this model even when run with multiple
threads. As CASP solver we used clingcon 5 [GOS09, BKOS17] (unpublished as of the
writing of this thesis but available on github1).

7.2 Instances

We use a total of 30 randomly generated instances (based on real-life situations) of
different sizes for our experiments [MM18b]. In addition, we also include one real-life
instance (Lab) taken directly from the lab of our industrial partner (in anonymized

1
github.com/potassco/clingcon

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Experiments and Comparison

form). This instance covers a scheduling period of over one year, at a granularity of two
timeslots per working day. It includes a reference schedule that is the manually created
schedule actually used in the lab at the time the instance was created. Those instances
are listed in Table 7.1. The instances all have three modes: a single mode requiring only
one employee, a shift mode which requires two employees but has a reduced duration,
and an external mode that requires no employees at all. In general, jobs can be done in
single mode or optionally in shift mode. Some instances however also include jobs which
can only be performed in external mode. Initial assignments appear only for jobs which
are already started or are fixed to their current value via availability restrictions and
time windows.

While the the 30 benchmark instances were generated randomly, they are still modeled
after real-world scenarios. Half of the instances are modeled very closely to a real-world
laboratory, whereas the other half is more general and makes full use of the problem
features. The details of how this generation works as well as the exact differences between
the laboratory instances and general instances are given in [MM18b]. Furthermore, our 30
instances are a selection from a total of 120 instances given in the report. We chose the first
two instances of each size (scheduling horizon and number of projects) and two additional
instances for the 3 smallest sizes. This selection was necessary, because of the long time it
would have taken to experiment with all 120 instances and the same selection was made
in previous work [MM19]. Those 120 instances as well as the 30 we selected for this paper
can be found at https://www.dbai.tuwien.ac.at/staff/fmischek/TLSP/.

Since those instances were generated with the full TLSP in mind and in TLSP-S we take
the initial job grouping as fixed and unchangeable, the instances had to be converted.
This is achieved by viewing the jobs as the smallest planning unit and assigning the job
parameters – which are defined by the tasks contained in the job in TLSP – directly to
the jobs.

7.3 Constraint Programming Experiments

In Chapter 4.1.6 we gave several different search strategies for our MiniZinc model and the
CP solver Chuffed. Table 7.2 shows the comparison of the search procedures described.
The column #feas shows for how many instances (out of the 30 generated instances)
the model-search combination found feasible solutions, #opt contains the number of
instances solved to optimality. Furthermore, the values in the column #best show the
number of instances where the respective configuration found the best solution w.r.t all
six configurations.

Each model was run using Chuffed with free search enabled. Free search alternates
between user-defined and activity-based search on each restart. The time limit was set to
30 minutes for each instance. It can be easily seen that any version of priority_search

is vastly superior to the default search of Chuffed.
priority_search strategies solve more instances to optimality and also found feasible
solution for every instance. It should be noted that the fourteen optimally solved instances

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.dbai.tuwien.ac.at/staff/fmischek/TLSP/

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.3. Constraint Programming Experiments

Data Set ID |P | |J | h |E| |B| |G∗| |Ej | |Bj | |Ggj |

1 General 000 5 7 88 7 7 3 2.08 3.57 1.5
2 General 001 5 8 88 7 7 3 4.88 3.63 15.67
3 LabStructure 000 5 24 88 7 7 3 1.84 3.38 11.67
4 LabStructure 001 5 14 88 7 7 3 4.36 3.5 0.36
5 General 005 10 29 88 13 13 4 4.04 3.48 5.76
6 General 006 10 18 88 13 13 6 5.56 4.22 13.28
7 LabStructure 005 10 37 88 13 13 3 6.16 4.03 0.65
8 LabStructure 006 10 29 88 13 13 3 6.21 3.76 21.01
9 General 010 20 60 174 16 16 5 7.42 4.42 11.36

10 General 011 20 84 174 16 16 4 7.31 4.3 3.7
11 LabStructure 010 20 65 174 16 16 3 6.28 4.43 26.26
12 LabStructure 011 20 62 174 16 16 3 7.27 4.24 1.21
13 General 020 15 29 174 12 12 5 5.76 3.97 1.12
14 LabStructure 020 15 53 174 12 12 3 6.28 4.47 20.63
15 General 025 30 113 174 23 23 3 8.26 4.41 5.71
16 LabStructure 025 30 105 174 23 23 3 7.52 4.25 39.63
17 General 015 40 126 174 31 31 3 9.26 4.48 29.53
18 LabStructure 015 40 138 174 31 31 3 7.36 3.57 41.93
19 General 030 60 208 174 46 46 6 9.85 4.11 31.45
20 LabStructure 030 60 212 174 46 46 3 9.28 4.17 78.16
21 General 035 20 76 520 6 6 5 4.24 3.62 8.08
22 LabStructure 035 20 71 520 6 6 3 4.3 3.42 11.70
23 General 040 40 196 520 12 12 4 6.95 4.47 4.24
24 LabStructure 040 40 187 520 12 12 3 6.55 4.51 1.38
25 General 045 60 260 520 18 18 6 7.65 4.52 23.95
26 LabStructure 045 60 239 520 18 18 3 7.44 4.42 33.65
27 General 050 60 270 782 13 13 4 6.89 4.39 3.89
28 LabStructure 050 60 247 782 13 13 3 6.97 4.21 23.42
29 General 055 90 384 782 19 19 5 7.27 4.29 26.89
30 LabStructure 055 90 401 782 19 19 3 7.34 4.53 36.76

Lab - - 74 297 606 22 17 3 6.02 5.36 1*

Table 7.1: The set of test instances used for the experiments. Shown are the data set
the instance is taken from and the ID within that set. The following columns list the
number of projects, jobs and the length of the scheduling period, followed by the number
of employees, workbenches and equipment groups. The last columns contain the mean
qualified employees and available workbenches per job, as well as the mean available
devices per job and equipment group (only over those jobs that actually require at least
one device of the group, about 10% of all jobs).
*The discrepancy compared to the generated instances arises from the fact that several
equipment groups were not yet considered for planning at the time this instance was
created.

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Experiments and Comparison

Red. Constraints Search #sat #opt #best

(4.19–4.25) Default 13 8 8
(4.19–4.25) ps_modeFirst_ff 30 14 18
(4.19–4.25) ps_modeFirst_aff 30 14 18
(4.19–4.25) ps_startFirst_ff 30 14 21
(4.19–4.25) ps_startFirst_aff 30 14 22
(4.20–4.25) ps_startFirst_aff 30 14 25

Table 7.2: Priority Search Experiments (Runtime 30m)

are the same over all search configurations. They all have less than or equal to 20 projects.
The search strategy ps_startFirst_aff achieved the best cumulative objective value,
which is why this strategy – albeit slightly modified to support random value selection –
is also used in the VLNS.

While initial experiments showed that redundant constraints (4.20–4.25) have a high
impact on the search, Table 7.2 shows that constraint (4.19) has no positive impact on
the solution quality. Hence, we decided to drop the constraint for the comparison with
the other solvers and the VLNS experiments.

7.4 Constraint Answer-set Programming Experiments

For CASP we present two further experiments. The first concerns different encodings for
a particular constraint, whereas the second is a comparison of built-in search options
of clingcon. The solver supports a multitude of further configuration options, but we
mostly rely on its default settings.

For each of the experiments in this section, clingcon was given a time limit of 30 minutes
per instance. Unless stated otherwise we used the default configuration and a single
solving thread.

7.4.1 Unary Resource Constraints

As described in Chapter 5.4, our model contains two alternative formulations for the
unary resource constraints. We evaluated both versions of our model, once with the
direct formulation and once with the precedence formulation, on all 30 generated test

Formulation Unary Resource Constraints #sat #opt #best

precedence (5.12–5.14) 30 18 25

direct/overlap (5.15–5.18) 28 15 19

Table 7.3: clingcon Unary Resource Constraints Experiments (Runtime 30m)

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.5. Comparison of Exact Approaches

instances. A summary of this evaluation is given in Table 7.3. The direct formulation
found a better solution on 5 instances, while the precedence formulation found a better
solution on 11 instances (both models produced schedules with the same quality for the
remaining 14 instances). In addition, the direct formulation could not find any feasible
solution for the two biggest instances.

For this reason, we used the model with the precedence formulation for all further
experiments and VLNS.

7.4.2 clingcon search strategy

Now, we offer a comparison between different optimization strategies of clingcon (param-
eter −− opt− strategy), inspired by the strategies used in [AGM+16].

We evaluated the following four optimization strategies:

(i) Branch-and-bound in hierarchical order of priorities (bb, hier),

(ii) branch-and-bound with exponentially decreasing steps (bb, dec, not used in [AGM+16]),

(iii) optimization based on unsatisfiable cores (usc, 3), and

(iv) clingcon’s default strategy.

Table 7.4 shows the results on the 30 generated test instances. All four strategies produce
solutions of identical quality on most instances. On the few instances where they differ,
configuration (ii) consistently produced the best solution. The remaining experiments
use this strategy.

Configuration #feas #opt #best

bb, hier 30 18 28
bb, dec 30 18 30

usc, 3 30 18 27
default 30 18 26

Table 7.4: clingcon Optimization Strategy Experiments (Runtime 30m)

7.5 Comparison of Exact Approaches

Table 7.5 shows the results of our experimental evaluation of the exact solution methods
mentioned in this these. Hence, it is a comparison between clingcon, Chuffed, the MIP
solver CPLEX and the CP solver CP Optimizer. The time limit was set to 2 hours for each
instance. The CASP solver clingcon was run both with a single thread and with 8 solving
threads. Chuffed does not support multithreading, so it was only run in with one thread.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Experiments and Comparison

#
clingcon

Chuffed CP Optimizer CPLEX
1 thread 8 threads

1 98 * 98 * 98 * 98 * 98 *
2 73 * 73 * 73 * 73 * 73

3 149 * 149 * 149 * 149 * 149

4 105 * 105 * 105 * 105 * 105 *
5 283 * 283 * 283 * 283 287
6 162 * 162 * 162 * 162 162

7 307 * 307 * 307 * 307 –
8 310 * 310 * 310 * 310 317
9 501 * 501 * 501 * 502 –

10 564 * 564 * 574 566 –
11 856 * 856 * 856 * 859 –
12 656 * 656 * 656 * 661 –
13 340 * 340 * 340 * 340 370
14 420 * 420 * 420 * 424 –
15 1084 * 1084 * 1646 1104 –
16 1138 * 1138 * 1560 1193 –
17 1194 * 1194 * 1254 1203 1242
18 1555 1358 1817 1404 –
19 2617 2241 2650 2099 –
20 2663 2140 2887 2284 –
21 679 * 679 * 679 * 722 –
22 765 * 765 * 765 * 770 –
23 2619 2757 3486 2207 –
24 2456 1859 2445 1863 –
25 3347 2425 3278 2551 –
26 3856 2600 3896 2799 –
27 3169 2923 3095 2338 –
28 4244 2423 2569 2402 –
29 6607 5613 4539 3718 –
30 6062 5590 5904 4995 –

Lab 4477 3969 5188 3444 –

Table 7.5: Comparison of Exact Solution Approaches (Runtime 2h)

CP Optimizer was run with 8 threads and the parameter FailureDirectedSearchEmphasis
was set to 4. Numbers in boldface indicate that the solution is the best found in this
experiment, whereas the star next to an objective value signifies that the respective solver
could prove optimality for this instance.

It can easily be seen that CPLEX performed very poorly in comparison to the rest,

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.6. VLNS Parameter Configuration

although it should be noted that our model was developed with CP solvers in mind
and thus might not be a perfect fit for MIP solvers. Also, CPLEX was only run in
single-threaded mode.

The other solvers on the contrary could find solutions for all instances. However, they
differ in the number of optimally solved instances, where clingcon is the clear winner
both single and multi-threaded with 19 instances.

In terms of solution quality, CP Optimizer dominates for the larger instances and the
real-life instance, but overall clingcon finds the best solutions for most instances with 19
in single and 23 in multi-threaded mode.

clingcon (ST) clingcon (MT) Chuffed CP Optimizer

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

P
en

al
ty

(r
el

at
iv

e
to

 b
es

t s
ol

ut
io

n)

Figure 7.1: Solution Quality Comparison Between Exact Methods

Figure 7.1 further shows the quality of the solutions found by each solver relative to the
best known objective values. We omit the results for CPLEX here since – in difference
to the other solvers – it did not find feasible solutions for all instances.

7.6 VLNS Parameter Configuration

As described in Chapter 6, we have two basic parameters for VLNS called jumpProb and
moveTimeout. For VLNS using Chuffed we additionally have the parameter hotStartProb.
The latter and jumpProb Both represent probabilities and are thus reals ranging from 0
to 1, whereas moveTimeout is given in seconds.

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Experiments and Comparison

Parameter Value Range Chosen Value

jumpProb [0.0, 1.0] 0.35
moveTimeout [0, 300] 30
hotStartProb [0.0, 1.0] 0.8

Table 7.6: The chosen VLNS parameter configuration

We manually tested different configurations and the trend in the experiments was that
a high hotStartProb makes the search more stable and thus less reliant on randomness.
However, by setting it to 1.0 the search would get stuck in local optima very often. A
good compromise between those two extremes turned out to be 0.8. In other words, we
hot start from the previously best solution 80% of the moves and in 20% of the time
we do not hot start and start the search from a random assignment of timeslots and
resources.

Similarly, a very low jumpProb can lead to local optima out of which the search cannot
escape, but if we set it too high then we might waste a lot of time in larger neighborhoods.
In the end, the experiments showed that a jumpProb of 35% performed well.

The parameter moveTimeout was set to 30 seconds. This timeout was also used for each
project in the lower bound calculation as described in Chapter 6.1.

Table 7.6 shows the chosen configuration for the all further experiments.

7.7 VLNS Experiments

In our experiments for our VLNS described in Chapter 6 we tested both clingcon (single
threaded) and Chuffed as internal solvers. We used the basic algorithm for clingcon and
the modified version given in Chapter 6.3 for Chuffed. We did not use multithreading for
clingcon, since our intention was to keep VLNS portable to workstations with limited
resources. Furthermore, we did not experiment with CP Optimizer here since it already
employs its own VLNS internally [LG07] and in difference to the other solvers it showed
difficulty in proving optimality. The latter is rather inconvenient for VLNS as it affects
the average time a move needs in a negative way.

The summary of computational results for VLNS are given in Table 7.7. Shown are best
and average results out of five runs (2h runtime each) and instances marked with a star
are again those which were proven optimal. It can be seen that VLNS using clingcon
generally achieves the best results except for one instance, but even where the difference
in the solution quality is very small. Furthermore, the same can be said about the average
solution quality.

Of particular interest is that Very Large Neighborhood Search with clingcon could prove
optimality for 15 instances by finding solutions that match the precomputed lower bounds
(see Chapter 6.1) while VLNS with Chuffed proved optimality for 16 instances with the

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.7. VLNS Experiments

#
VLNS with clingcon VLNS with Chuffed

Best Avg Best Avg

1 98 * 98.0 98 * 98.0
2 73 * 73.0 73 * 73.0
3 149 * 149.0 149 * 149.0
4 105 * 105.0 105 * 105.0
5 283 * 283.0 283 283.0
6 162 * 162.0 162 * 162.0
7 307 * 307.0 307 307.0
8 310 * 310.0 310 310.0
9 501 * 501.0 501 * 501.0

10 564 * 564.0 564 * 564.0
11 856 * 856.0 856 856.4
12 656 * 656.0 656 * 656.0
13 340 * 340.0 340 * 340.0
14 420 * 420.0 420 * 420.0
15 1084 * 1084.6 1084 * 1085.0
16 1138 * 1138.8 1138 * 1142.6
17 1194 * 1194.2 1194 * 1194.4
18 1356 1356.4 1359 1378.2
19 1928 1942.4 1964 2000.8
20 2080 2081.4 2114 2140.8
21 679 * 679.0 679 * 679.2
22 765 * 765.0 765 765.0
23 1936 1974.8 2029 2104.2
24 1773 1774.8 1776 1798.6
25 2073 2104.6 2112 2165.8
26 2543 2553.4 2558 2573.8
27 2152 2152.0 2151 * 2151.8
28 2322 * 2323.2 2322 * 2322.6
29 3118 3138.4 3233 3297.0
30 4399 4401.6 4736 4779.4

Lab 3195 3239.6 3334 3400.6

Table 7.7: VLNS Comparison (Runtime 2h)

same method. However, VLNS with clingcon could also show optimality for an additional
5 instances where the optimal solution is above the lower bounds. In four of these last
cases, the proof of optimality was obtained by increasing the neighborhood size to the
total number of projects in the instance (effectively reducing the Very Large Neighborhood
Search algorithm to the exact clingcon solver). The fifth instance (test instance number
22) can actually be separated in two independent subproblems, which were detected

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Experiments and Comparison

automatically and individually solved to completion by Very Large Neighborhood Search.
The VLNS approach based on Chuffed found the same solutions for these instances, but
was unable to prove their optimality within the given time.

Exploration of such large neighborhoods became possible due to clingcon’s ability to
quickly prove optimality of small subproblems and the aggressive strategy for increasing
the neighborhood size.

VLNS (clingcon) VLNS (Chuffed)

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

O
pt

im
ili

ty
 G

ap
 o

f B
es

t S
ol

ut
io

n

Figure 7.2: VLNS Optimality Gaps of Best Solutions Found

Using the lower bounds, VLNS can not only prove some instances optimal but also give
optimality gaps for each best solution found. Figure 7.2 shows the respective gaps of
VLNS with clingcon and Chuffed. For instances which were proven optimal despite
having a lower bound less than the optimal solution, we also list the gap as zero. It can
be seen in the figure that the best solutions found with the clingcon based VLNS are
within 5% of the optimum for all instances except one. Similarly, for VLNS with Chuffed
we are within 10% of the optimum for all but one instance.

Finally, Figure 7.3 shows the quality of the solutions found by clingcon and Chuffed
based VLNS. It can easily be seen that the results for VLNS with clingcon are much
better in general.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.8. Comparison with the State-of-the-Art

VLNS (clingcon) VLNS (Chuffed)

1.
00

1.
02

1.
04

1.
06

1.
08

P
en

al
ty

(r
el

at
iv

e
to

 b
es

t s
ol

ut
io

n)

Figure 7.3: VLNS Average Solution Quality Comparison

7.8 Comparison with the State-of-the-Art

We also compared the methods described in this thesis with a metaheuristic method.
Namely, a Simulated Annealing (SA) approach introduced by Mischek and Musliu [MM19],
which has given very good results for the existing benchmark instances. We ran SA
with the same parameter configuration as given by the authors. Furthermore, since the
method is nondeterministic, we ran SA five times for each instance with different seeds
and in accordance with our other experiments, a time limit of 2h was set for each run.
Figure 7.4 shows the full comparison of all of our methods and SA. For VLNS and SA,
the numbers are the average over the five respective runs. The detailed results for SA
are given in Table 7.8. While SA mostly outperforms all exact approaches, VLNS with
Chuffed yields better results for all but one instance and VLNS with clingcon has the
best results in general. Also, it should be noted that SA fails to find feasible solutions in
a total of 2 out of 155 runs.

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Experiments and Comparison

0
10

00
20

00
30

00
40

00
50

00
60

00

P
en

al
ty

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 Lab
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Chuffed
clingcon (ST)
clingcon (MT)
CP Optimizer
VLNS (clingcon)
VLNS (Chuffed)
SA

Figure 7.4: Comparison of Solution Approaches with SA

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.8. Comparison with the State-of-the-Art

#
SA

Best #Feas. Avg

1 98 5 98
2 73 5 73
3 152 5 152.6
4 106 5 107
5 287 5 306.4
6 180 5 181.4
7 307 5 307
8 310 5 310
9 501 5 501

10 564 5 564
11 872 5 872.8
12 660 5 660
13 352 5 377.4
14 423 5 424.2
15 1085 5 1086.8
16 1141 5 1142
17 1195 5 1200.2
18 1359 5 1362.2
19 2127 5 2168.6
20 2228 5 2242.2
21 685 5 689
22 766 5 768.4
23 2209 4 2319.25
24 1780 5 1817.2
25 2701 5 2836
26 2579 5 2599.8
27 2153 5 2155.2
28 2338 5 2351
29 3996 5 4192.6
30 4478 4 4544.75

Lab 3338 4 3366.75

Table 7.8: Simulated Annealing Experiments (Runtime 2h)

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 8
Conclusion

In this thesis we investigated different ways to model and solve a complex project
scheduling problem appearing in an industrial test laboratory. After giving a formal
definition of all hard and soft constraints of the problem, as well as providing basic
complexity analysis, we modeled the problem using Constraint Programming (CP) and
Constraint Answer-set Programming (CASP).

For CP we reviewed and extended existing modeling techniques from the literature which
were used for related project scheduling problems. To deal with this more complex
problem and larger instances we introduced several extensions in modeling, including
novel redundant constraints and search strategies. In order to compare with another
state-of-the-art CP solver, we also proposed an interval-based CP model.

Our CASP encoding is – to the best of our knowledge – the first use of this solving
paradigm for project scheduling. Besides giving a basic encoding of the problem, we also
provide an alternative formulation for unary resource constraints, which tend to have a
big impact on solving.

Furthermore, we introduced a Very Large Neighborhood Search (VLNS) metaheuristic for
the problem considered in this thesis. This approach utilizes the exact solving methods
and manages to find high quality solutions.

We evaluated our different modeling approaches, search strategies, and solver configu-
rations on 30 randomly generated benchmark instances. Additionally, we provided a
comparison of all approaches on these 30 instances as well as 1 real-life instance.

For VLNS, we experimented with different exact repair methods on the same instances.
We showed that our approach managed to find the best known solutions for 31 instances,
where we could show that for 30 instances the found solution is within 5% of the optimum.
Lastly, we also compared VLNS to an existing Simulated Annealing metaheuristic and
showed that while exact methods fall behind SA, VLNS is generally superior.

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

8. Conclusion

For future work, it would be interesting to extend our CASP models to the full TLSP
problem i.e. also do the grouping dynamically. Similar work has already been done
for our CP models and VLNS [DGMM20]. Additionally, investigating a combination of
VLNS and Simulated Annealing would be a worthwhile endeavor.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[AB93] Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip in order
to solve complex scheduling and placement problems. Mathematical and
Computer Modelling, 17(7):57–73, 1993.

[ADM17] Mario Alviano, Carmine Dodaro, and Marco Maratea. An advanced answer
set programming encoding for nurse scheduling. In Proceedings of the 16th
International Conference of the Italian Association for Artificial Intelligence
(AI*IA 2017), volume 10640 of LNCS, pages 468–482. Springer, 2017.

[AGM+16] Michael Abseher, Martin Gebser, Nysret Musliu, Torsten Schaub, and Ste-
fan Woltran. Shift design with answer set programming. Fundamenta
Informaticae, 147(1):1–25, 2016.

[AJO+20] Dirk Abels, Julian Jordi, Max Ostrowski, Torsten Schaub, Ambra Toletti,
and Philipp Wanko. Train scheduling with hybrid answer set programming.
Theory and Practice of Logic Programming, pages 1–31, 2020.

[AKK+16] Shahriar Asta, Daniel Karapetyan, Ahmed Kheiri, Ender Özcan, and An-
drew J. Parkes. Combining monte-carlo and hyper-heuristic methods for the
multi-mode resource-constrained multi-project scheduling problem. Infor-
mation Sciences, 373:476–498, 2016.

[AM18] Arben Ahmeti and Nysret Musliu. Min-conflicts heuristic for multi-mode
resource-constrained projects scheduling. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2018), pages 237–244. ACM,
2018.

[Bal11] Marcello Balduccini. Industrial-size scheduling with ASP+CP. In Pro-
ceedings of the 11th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2011), volume 6645 of LNCS, pages
284–296. Springer, 2011.

[BDM+99] Peter Brucker, Andreas Drexl, Rolf Möhring, Klaus Neumann, and Erwin
Pesch. Resource-constrained project scheduling: Notation, classification,
models, and methods. European Journal of Operational Research, 112(1):3–
41, 1999.

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[BKOS17] Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski, and Torsten
Schaub. Clingcon: The next generation. Theory and Practice of Logic
Programming, 17(4):408–461, 2017.

[BN05] Odile Bellenguez and Emmanuel Néron. Lower bounds for the multi-skill
project scheduling problem with hierarchical levels of skills. In Proceedings
of the 5th International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2005), volume 3616 of LNCS, pages 229–243. Springer,
2005.

[BZ09] J.-H. Bartels and J. Zimmermann. Scheduling tests in automotive R&D
projects. European Journal of Operational Research, 193(3):805–819, 2009.

[Chu11] Geoffrey Chu. Improving combinatorial optimization. PhD thesis, University
of Melbourne, Australia, 2011.

[DB08] L.-E. Drezet and J.-C. Billaut. A project scheduling problem with labour con-
straints and time-dependent activities requirements. International Journal
of Production Economics, 112(1):217–225, 2008. Special Section on Recent
Developments in the Design, Control, Planning and Scheduling of Productive
Systems.

[DCS18] Emir Demirovic, Geoffrey Chu, and Peter J. Stuckey. Solution-based phase
saving for CP: A value-selection heuristic to simulate local search behavior
in complete solvers. In Proceedings of the 24th International Conference
on Principles and Practice of Constraint Programming (CP 2018), volume
11008 of LNCS, pages 99–108. Springer, 2018.

[DGMM20] Philipp Danzinger, Tobias Geibinger, Florian Mischek, and Nysret Musliu.
Solving the test laboratory scheduling problem with variable task grouping.
In Proceedings of the 30th International Conference on Automated Planning
and Scheduling (ICAPS 2020), pages 357–365. AAAI Press, 2020.

[DGMP18] Carmine Dodaro, Giuseppe Galatà, Marco Maratea, and Ivan Porro. Operat-
ing room scheduling via answer set programming. In Proceedings of the 17th
International Conference of the Italian Association for Artificial Intelligence
(AI*IA 2018), volume 11298 of LNCS, pages 445–459. Springer, 2018.

[DM17] Carmine Dodaro and Marco Maratea. Nurse scheduling via answer set
programming. In Proceedings of the 14th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR 2017), volume 10377
of LNCS, pages 301–307. Springer, 2017.

[DPRL98] S. Dauzère-Pérès, W. Roux, and J.B. Lasserre. Multi-resource shop schedul-
ing with resource flexibility. European Journal of Operational Research,
107(2):289–305, 1998.

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[EIK09] Thomas Eiter, Giovambattista Ianni, and Thomas Krennwallner. Answer
set programming: A primer. In Sergio Tessaris, Enrico Franconi, Thomas
Eiter, Claudio Gutiérrez, Siegfried Handschuh, Marie-Christine Rousset,
and Renate A. Schmidt, editors, Reasoning Web. Semantic Technologies for
Information Systems, pages 40–110. Springer, 2009.

[Elm77] Salah Eldin Elmaghraby. Activity networks: Project planning and control by
network models. John Wiley & Sons, 1977.

[FFM+16] Gerhard Friedrich, Melanie Frühstück, Vera Mersheeva, Anna Ryabokon,
Maria Sander, Andreas Starzacher, and Erich Teppan. Representing pro-
duction scheduling with constraint answer set programming. In Operations
Research Proceedings 2014, pages 159–165. Springer, 2016.

[FGS+17] Thibaut Feydy, Adrian Goldwaser, Andreas Schutt, Peter J. Stuckey, and
Kenneth D. Young. Priority search with minizinc. In Proceedings of ModRef
2017: The Sixteenth International Workshop on Constraint Modelling and
Reformulation at CP 2017, 2017.

[GJ79] Michael R Garey and David S Johnson. Computers and intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GKKS12] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
Answer Set Solving in Practice. Synthesis Lectures on Artificial Intelligence
and Machine Learning. Morgan & Claypool Publishers, 2012.

[GKKS14] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub.
Clingo = ASP + control: Preliminary report. https://arxiv.org/abs/
1405.3694, 2014.

[GL88] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for
logic programming. In Proceedings of the 5th International Conference on
Logic Programming (ICLP 1988), pages 1070–1080. MIT Press, 1988.

[GL91] Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs
and disjunctive databases. New Generation Computing, 9:365–385, 1991.

[GMM19] Tobias Geibinger, Florian Mischek, and Nysret Musliu. Investigating con-
straint programming for real world industrial test laboratory scheduling.
In Proceedings of the 16th International Conference on the Integration of
Constraint Programming, Artificial Intelligence, and Operations Research
(CPAIOR 2019), volume 11494 of LNCS, pages 304–319. Springer, 2019.

[GMR08] J.F. Gonçalves, J.J.M. Mendes, and M.G.C. Resende. A genetic algorithm
for the resource constrained multi-project scheduling problem. European
Journal of Operational Research, 189(3):1171–1190, 2008.

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://arxiv.org/abs/1405.3694
https://arxiv.org/abs/1405.3694

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[GOS09] Martin Gebser, Max Ostrowski, and Torsten Schaub. Constraint answer
set solving. In Proceedings of the 25th International Conference on Logic
Programming (ICLP 2009), volume 5649 of LNCS, pages 235–249. Springer,
2009.

[GP+10] Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics,
volume 2. Springer, 2010.

[HB10] Sönke Hartmann and Dirk Briskorn. A survey of variants and extensions of
the resource-constrained project scheduling problem. European Journal of
Operational Research, 207(1):1–14, 2010.

[IC17a] IBM and CPLEX. 12.8.0 IBM ILOG CPLEX Optimization Studio
CP Optimizer user’s manual. https://www.ibm.com/analytics/

cplex-cp-optimizer, 2017.

[IC17b] IBM and CPLEX. 12.8.0 IBM ILOG CPLEX Optimization Stu-
dio CPLEX user’s manual. https://www.ibm.com/analytics/

cplex-optimizer, 2017.

[LG07] Philippe Laborie and Daniel Godard. Self-adapting large neighborhood
search: Application to single-mode scheduling problems. In Proceedings of
the 3rd Multidisciplinary International Conference on Scheduling : Theory
and Applications (MISTA 2007), 2007.

[LRSV18] Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. IBM ILOG
CP Optimizer for scheduling. Constraints, 23(2):210–250, 2018.

[Mac77] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelli-
gence, 8(1):99–118, 1977.

[MM18a] Florian Mischek and Nysret Musliu. A local search framework for industrial
test laboratory scheduling. In Proceedings of the 12th International Confer-
ence on the Practice and Theory of Automated Timetabling (PATAT 2018),
pages 465–467, 2018.

[MM18b] Florian Mischek and Nysret Musliu. The test laboratory scheduling problem.
Technical report, Christian Doppler Laboratory for Artificial Intelligence
and Optimization for Planning and Scheduling, TU Wien, CD-TR 2018/1,
2018.

[MM19] Florian Mischek and Nysret Musliu. A local search framework for industrial
test laboratory scheduling. Submitted to Annals of Operations Research,
2019.

[Mon74] Ugo Montanari. Networks of constraints: Fundamental properties and
applications to picture processing. Information Sciences, 7:95–132, 1974.

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.ibm.com/analytics/cplex-cp-optimizer
https://www.ibm.com/analytics/cplex-cp-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[MWW15] Marek Mika, Grzegorz Waligóra, and Jan Węglarz. Overview and state of
the art. In Christoph Schwindt and Jürgen Zimmermann, editors, Handbook
on Project Management and Scheduling Vol.1, pages 445–490. Springer, 2015.

[NR97] Nudtapon Nudtasomboon and Sabah U. Randhawa. Resource-constrained
project scheduling with renewable and non-renewable resources and time-
resource tradeoffs. Computers & Industrial Engineering, 32(1):227–242,
1997.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. Minizinc: Towards a standard CP
modelling language. In Proceedings of the 13th International Conference on
Principles and Practice of Constraint Programming (CP 2007), volume 4741
of Lecture Notes in Computer Science, pages 529–543. Springer, 2007.

[PAM04] Mireille Palpant, Christian Artigues, and Philippe Michelon. Lssper: Solving
the resource-constrained project scheduling problem with large neighbour-
hood search. Annals of Operations Research, 131(1):237–257, 2004.

[PR10] David Pisinger and Stefan Ropke. Large neighborhood search. In Handbook
of Metaheuristics, pages 399–419. Springer, 2010.

[PWW69] A. Alan B. Pritsker, Lawrence J. Waiters, and Philip M. Wolfe. Multipro-
ject scheduling with limited resources: A zero-one programming approach.
Management Science, 16(1):93–108, 1969.

[R9́6] Jean-Charles Régin. Generalized arc consistency for global cardinality
constraint. In Proceedings of the 13th National Conference on Artificial
Intelligence (AAAI 1996), pages 209–215. AAAI Press, 1996.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of
Constraint Programming, volume 2 of Foundations of Artificial Intelligence.
Elsevier, 2006.

[Sha98] Paul Shaw. Using constraint programming and local search methods to solve
vehicle routing problems. In Proceedings of the 4th International Conference
on Principles and Practice of Constraint Programming (CP 1998), volume
1520 of LNCS, pages 417–431. Springer, 1998.

[SLT18] Christian Schulte, Mikael Lagerkvist, and Guido Tack. Gecode 6.10 reference
documentation. https://www.gecode.org, 2018.

[SS16] Ria Szeredi and Andreas Schutt. Modelling and solving multi-mode resource-
constrained project scheduling. In Proceedings of the 22nd International
Conference on Principles and Practice of Constraint Programming (CP 2016),
volume 9892 of LNCS, pages 483–492. Springer, 2016.

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.gecode.org

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[SSD97] Frank Salewski, Andreas Schirmer, and Andreas Drexl. Project scheduling
under resource and mode identity constraints: Model, complexity, methods,
and application. European Journal of Operational Research, 102(1):88–110,
1997.

[ST00] Christoph Schwindt and Norbert Trautmann. Batch scheduling in process
industries: an application of resource–constrained project scheduling. OR-
Spektrum, 22(4):501–524, 2000.

[vHK06] Willem-Jan van Hoeve and Irit Katriel. Global constraints. In Francesca
Rossi, Peter van Beek, and Toby Walsh, editors, Handbook of Constraint
Programming, volume 2 of Foundations of Artificial Intelligence, pages 169–
208. Elsevier, 2006.

[VPLP+19] Félix Villafáñez, David Poza, Adolfo López-Paredes, Javier Pajares, and
Ricardo del Olmo. A generic heuristic for multi-project scheduling problems
with global and local resource constraints (RCMPSP). Soft Computing,
23(10):3465–3479, 2019.

[WJMW11] Jan Węglarz, Joanna Józefowska, Marek Mika, and Grzegorz Waligóra.
Project scheduling with finite or infinite number of activity processing modes
– a survey. European Journal of Operational Research, 208(3):177–205, 2011.

[WKS+16] Tony Wauters, Joris Kinable, Pieter Smet, Wim Vancroonenburg, Greet
Vanden Berghe, and Jannes Verstichel. The multi-mode resource-constrained
multi-project scheduling problem. Journal of Scheduling, 19(3):271–283,
2016.

[YFS17] Kenneth D. Young, Thibaut Feydy, and Andreas Schutt. Constraint program-
ming applied to the multi-skill project scheduling problem. In Proceedings of
the 23rd International Conference on Principles and Practice of Constraint
Programming (CP 2017), volume 10416 of LNCS, pages 308–317, 2017.

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aims of the thesis
	Contributions
	Structure of the thesis

	Theoretical Background
	Constraint Programming
	Constraint Answer-set Programming
	Very Large Neighborhood Search

	Problem Definition and Related Work
	Problem Definition
	Complexity
	Related Work

	Constraint Programming Models
	MiniZinc Formulation
	Interval-based Model

	Constraint Answer-set Programming Model
	Input Facts
	Solution Representation
	Basic Hard Constraints
	Unary Resource Constraints
	Soft Constraints

	Very Large Neighborhood Search
	Lower Bound Calculation
	Search Algorithm
	Modifications for Chuffed

	Experiments and Comparison
	Experimental Setup
	Instances
	Constraint Programming Experiments
	Constraint Answer-set Programming Experiments
	Comparison of Exact Approaches
	VLNS Parameter Configuration
	VLNS Experiments
	Comparison with the State-of-the-Art

	Conclusion
	Bibliography

