Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

IFT

A Multiagent Design Methodology
for the Manufacturing Execution
System Domain

DISSERTATION
submitted in partial fulfillment of the requirements for the degree of
Doktorin der Technischen Wissenschaften
by

Dipl.-Ing. Solmaz Mansour-Duschet
Registration Number 0526321

to the Faculty of Mechanical and Industrial Engineering

at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Burkhard Kittl

The dissertation has been reviewed by:

Ao.Univ.Prof.Dr. Univ.Prof.Dr.
Wolfgang Kastner Alfred Taudes

Vienna, 27" October, 2020

Solmaz Mansour-Duschet

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der Arbeit

Dipl.-Ing. Solmaz Mansour-Duschet
NuBberggasse 42, 1190 Vienna

Hiermit erkldre ich, dass ich diese Arbeit selbstdndig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der Arbeit —
einschlielich Tabellen, Karten und Abbildungen —, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als
Entlehnung kenntlich gemacht habe.

Wien, 27. Oktober 2020

Solmaz Mansour-Duschet

iii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Acknowledgements

First, I would like to thank Prof. Burkhard Kittl, who guided me and taught me to question
everything with courage and an open mind. He is a good friend and my most valuable critic.
I am grateful to Prof. Kastner for sharing his valuable time and experience with me.

To Shahin Mahmody, I want to express my gratitude for turning my ideas and visions into
executable code. I learned a lot from him and enjoyed working with him.

I am grateful for the support and friendship of my friends Amina Wieser, Sara Mansour Fallah,
Claudia Hesse and Christina Schon.

My dear father Majid Mansour Fallah, taught me that books can be remarkable friends. He
introduced me to technical science, and never hesitated to invest in me.

My beloved mother Sima Naghshdoust, left the familiar for the uncertain abroad only to offer
her daughter a brighter future. She is my role model of a confident and independent woman in
SO many ways.

I am deeply grateful for having you both as parents.

I am grateful for the unconditional love and support my sisters, Sara and Sarina Mansour Fallah
gave me.

I also want to thank my beloved husband Simon Duschet, who helped me overcome any doubt.
May our future be as bright and joyful as our past was.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Abstract

While technological inventions and progress are driving the linkage of cyber-physical-production-
systems (CPPS), there is still room for a suitable control structure. Multiagent system (MAS)
are proper candidates since they establish optimization through competition and flexibility.
Although MAS in manufacturing are not new, they still lack momentum.

One reason is the lack of specified design methodologies meeting the demands of the manufacturing
domain. The manufacturing domain is mainly driven by mechanical or industrial engineers as
stakeholders, with no prior MAS knowledge. Although numerous MAS design methodologies
exist, none address mechanical or industrial engineers as target designers.

Among others, this doctoral thesis addresses this issue, as it is built on two pillars. The first
pillar of this doctoral thesis is the design of a MAS as a process control for the integrated tool life
cycle of the TU Wien Pilotfabrik. The TU Wien Pilotfabrik is a demonstrator factory offering
students and scientists a state-of-the-art production environment. The tool cycle combines the
tool disposition, the tool supply, and the tool use. The tool cycle was chosen as demonstration
process since it manages physical and digital entities and encompasses different production
layers. Its biggest challenge is the highly heterogeneous hard- and software landscape, causing
missing data exchanges and a lack of interfaces. Although it can be assumed, that the tools
have a high impact on the overall production cost and thus a high saving potential, the true
tooling cost can only be estimated. According to Sharit and Elhence cutting tools cause 25% of
all operation costs [SE89]. As groundwork for this thesis, all linkage issues of the tool cycle in
the TU Wien Pilotfabrik were resolved and published as the “integrated tool lifecycle” [FTP19].
Besides providing a process control, the MAS maps the true tooling cost for each order and aims
to minimize it if possible, by negotiating agents finding a beneficial order sequence.

During the first attempts of designing such a MAS, the lack of feasible design methodologies for
the manufacturing domain was discovered. The second pillar of this doctoral thesis addresses this
issue by developing a multiagent Design Methodology for the Manufacturing Execution
System Domain (DM-MESD) especially addresses mechanical and industrial engineers. The
DM-MESD offers the designer the possibility to evaluate if the design methodology is suitable
for the desired application in advance. This will be achieved by a defined investigation area,
which serves as gauge for other applications. Comparing the application with the investigation
area resolves, if the DM-MESD can be used for a specific application. The presented design
methodology consists of six phases. The DM-MESD focuses on building services based on
existing functions and tasks. It uses textual and structural analysis methods to elaborate those
tasks and functions to describe existing services and elaborate new services if possible. It is a
pure design methodology with no implementation tools or suggestions. This thesis examines the
DM-MESD on the integrated tool cycle. By doing so the desired MAS is being designed and the
use of the DM-MESD can be exemplified. The feasibility of DM-MESD and its resulting MAS
design will be evaluated by a proof of concept.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Preface

Since the preface stands at the beginning of a complex discussion, it shall ease the reader’s
first step into a perhaps new topic. The reader might find aid in understanding some of the
perspectives presented here by knowing the author’s background. Solmaz Mansour-Duschet
(born Mansour Fallah) studied industrial engineering at the TU Wien. While studying, she was
employed as an application and sales engineer at MMF Engineering, a distributor for industrial
equipment. Before, she worked as a Launch-Team member at the General Motors powertrain
plant in Vienna. During her time as a PhD student and as employee of the Institute of Production
Engineering and Photonics Technologies of the TU WIEN, she engaged with a broad range of
topics such as, Manufacturing Execution System (MES), Service Oriented Architecture (SOA)
and Multiagent Systems (MAS). In this context the Solmaz Mansour-Duschet acquired humble
skills in programming (Java), Web Services, OPC-UA, ontologies and of course SOA and MAS.
The reader might notice during this thesis, that the professional strength of the author originates
from her knowledge as an industrial engineer, and not as a computer scientist. With respect
to this, she pursues a solid scientific work about MAS in the manufacturing domain, from
the perspective of an industrial engineer, instead of aiming to provide a wider, but inaccurate
perspective as a beginner in programming.

As humans we always risk encountering unfamiliar topics, which cannot be fully mastered in
one’s lifetime, but it is the unknown that excites the curious the most. Future challenges will call
for the cooperation of professionals from different fields. Following this spirit, the author does
not try to address the multi-agent paradigm in the manner or quality of a computer scientist
instead; she aims to widen the horizon of industrial and mechanical engineers, such as herself,
for the multi-agent paradigm.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

1 Introduction
1.1 Motivationl L e
1.2 Presented approach/.
1.3 Investigation area;. L
1.3.1 Systematic literature study oo
1.3.2 Evaluation by proof of concept|

2 State of the art

2.1 Toolcycle e
2.1.1 Cutting tools|

2.1.2 Tool management

2.1.3 Stateoftheartl

The tool cycle in industrial practice]

Integrated tool cycle in the pilot factory|

2.2 Multiagent system| L L
2.2.1 Agents and their characteristics,

Concepts|
2.2.2 FIPA Specification
2.2.3 JADE

2.2.4 MAS implementations and demonstrators
2.3 Design methodologies
2.3.1 Common design methodologies for multiagent systems|
2.3.2 PASSIl e
Advantages and disadvantages of PASSI for our investigation area
2.3.3 Gaial e
Advantages and disadvantages of Gaia for our investigation area

3 MAS design methodology for the manufacturing execution system domain
(DM-MESD)

3.1 Design methodology

3.2 Evaluation phase

3.3 Assessment phase L

3.3.1 Determining the core process, including its boundaries

3.3.2 Defining the pursued strategy and its KPI to be optimized

3.3.3 Rechecking the process boundaries |.

3.4 Analysis phase] Lo

3.4.1 'Textual description of the process

3.4.2 Detecting essential process entities or beings

3.4.3 Describing process entities in a glossary|

15
15
15
17
20
24
27
29
29
33
34
37
37
41
41
46
52
93
o8

61
61
63
64
65
66
66
67
67
68
69

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.4.4 Optional: Coarse activity diagram'
3.5 Abstraction phase,
3.6 Clustering phase, L L
3.7 Transformation phase,
3.7.1 Role assignment| oo
3.7.2 Agent type multiplicity] oL
3.7.3 Redefined process entities|o
3.7.4 Agent interaction|
3.7.5 Optional: Sequence diagram|.

Design Process
4.1 Presenting the industrial setting of the TU Wien Pilot Fabrik
4.1.1 Industrial Hardware o
4.1.2 Industrial Softwareo
4.2 Evaluation Phase o
4.3 Assessment phase Lo L
4.3.1 Determining the core process, including its boundaries
4.3.2 Defining the pursued strategy and its KPI to be optimized
4.3.3 Rechecking the process boundaries |.
4.4 Analysis Phase
4.4.1 'Textual description of the process
4.4.2 Detecting essential process entities or beings|
4.4.3 Describing process entities a glossary|.
4.4.4 Optional: coarse activity diagram|.
4.5 Abstraction phase L
4.6 Clustering Phase
4.7 'Transformation phase
4.7.1 Role assigning|
4.7.2 Agent type multiplicity]o
4.7.3 Redefined Process Entities oL
4.7.4 Agent interaction| L Lo
4.7.5 Optional: Sequence Diagram|
4.8 The Final MAS Design/.
4.8.1 The DataAgent and its functionalityl
4.8.2 The VisualAgent and its functionality |
4.8.3 The OrderAgent and its functionality,
4.8.4 The MachineAgent and its functionality|
4.8.5 The SupplyAgent and its functionality,

Scenarios tested on the final MAS design
5.1 Preface: Simplifying assumptions

5.1.1 1. Simplification: Process simulation|
5.1.2 2. Simplification: Utilizing a single machine tool]
5.1.3 3. Simplification: Utilizing only one database
5.1.4 4. Simplification: Reducing the magazine pockets from 30 to 10/.
5.1.5 5. Simplification: Limiting the workpiece quantity per order to less than

20 pleces|. L e e e

5.2 Agent cooperation tested by examined calculations L.
5.2.1 Test Scenarios e
5.2.2 Test Scenario ll

69
69
72
73
74
74
74
74
76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2.3 Test Scenario IIl.
5.2.4 Test Scenario III e
5.2.5 Test Scenario IVl

6 Critical reflection and outlook
6.1 FExamining the list of requirements Lo
6.1.1 Domain specific requirements| L.
6.1.2 General requirements for a design methodology
6.2 Review of the final MAS designl o oo
6.3 Conclusive summary L Lo

6.4 Outlook
List of Figures
List of Tables

Bibliography

133
133
133
134
135
136
137

139

141

143

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

Competition has a history of leading individuals and firms to their optimum. This is also valid
with respect to global competition forcing the domestic producing industry to refine in any
possible manner. In 2017, Austria achieved a GDP of 329,18 billion Euros, of which 62,20 billion
Euros have been realized directly by the mining and goods producing industry, which makes
18,9% of the overall GDP [Stal7, p. 26]. In 2016, Germany realized a GDP of 2.822,2 billion
Euros of which the goods producing sector has contributed 722,3 billion Euros, 25,6% of the
overall GDP [DD17, p. 330].

Since 1990 a trend of companies relocating their productions to other countries has become
apparent [Kinl2, p. 703]. This relocation is not mainly pursued for shortening transportation
distances to a fast-growing market, or for operating direct investment (foreign direct investment).
Economist Steffen Kinkel explained in his work, that the dominating single motive for relocating
the production abroad is still the reduction of labor cost [Kinl2, p. 705]. Konings et al. have
depicted the substitution of originated jobs by foreigner jobs for multinational enterprises in the
European Union (EU) and Central and Eastern European Countries (CEEC). The relocation
trend was mainly visible in the manufacturing sector, but against common belief it took place
between European countries [KMO0G, p. 281].

In order to inhibit the relocation trend, reducing the labor cost can be addressed by a higher
level of automation. However, a higher level of automation is most profitable in mass production,
and not yet suitable for serial or small-sized productions. Besides major investment, a higher-
level automation always engenders long ramp-up times, a high sensibility to changes and
unsuitable to meet the increasing product variety. The increasing product variety is not new
in the manufacturing industry (see [MSF96] and [FRU99]). It is driven by new material or
technological benefits or legal regulation, but the major part is caused by customer demands for
specifications [EIM09, p. 43]. While a higher level of automation could prevent the relocation
of domestic production, it compromises production flexibility and is for now difficult to realize
for production with high product variety. Therefore, in 2011 the German Federal Ministry of
Education and Research (BMBF) founded the research and development initiative “Industrie
4.04(I4.0), globally known as Smart Factory or Smart Manufacturing [Grol3, p. 67].

This pre-announced fourth industrial revolution shall equip the domestic industry and its
competitiveness for the advent of the Internet of Things (IoT) in the sector. The Internet of
Things will enable more flexibility by raising the amount of cross-linked entities through the
Internet, while achieving a higher level of automation. IoT owes its genesis to multiple factors,

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

such as, decreasing prices for central processing units (CPU) and memories, which made Internet
connected devices increasingly affordable. At a point, the Internet became more and more the
Internet of things, than of humans. Industrie 4.0’s strategy is to build upon IoT to enforce the
linkage of objects, knowledge, processes and humans, in order to optimize the manufacturing to
the extent that a lot size of one becomes profitable [Grol3l p. 23].

The disadvantages of a higher level of automation shall be overcome by production entities
capable of being reassembled in a production network as currently needed. Those production
entities could be interlinked in a network (IoT, or Ethernet), either by transmitting their
information or offering their service to others. In this manner a restructuring of those entities
should result in a restructuring of the production itself.

To realize this vision in the manufacturing domain, two requirements must be fulfilled: Melding
of the physical with the digital entity, and a flexible control structure to enable the restructuring
of entities. The first requirement ensures, that the digital twin reflects the state of the physical
entity in all stages. 14.0 utilizes Cyber-Physical-Systems (CPS) to fuse the physical entity with
its digital representation [Grol3l p. 5]. CPS are embedded systems integrating computation
to physical entities and processes [Lee08]. In their later work Lee, Jay and Bagheri defined
CPS as a "technology capable of transforming and managing between the physical assets and
the computational capabilities of a connected system" [LBKI15l p. 18]. CPS in the production
domain called Cyber Physical Production System (CPPS) have already been acknowledged as a
core technology of 14.0. CPPS are expected to be the digital twin of their physical asset, and to
integrate features, such as robustness, self-organization, self-maintenance, remote diagnosis etc.
[Monl14, p. 11].

The second requirement is a control structure enabling flexibility. A control structure is a
framework defining form, artifacts, content of the communication. A broadly used control
structure in the manufacturing domain is the hierarchical control structure. The Figure 1.1
illustrates the rigid hierarchical control structure. The lowest layer in this figure contains all
value adding actions and the therefore required CPPS. The highest layer reflects the global
decision-making unit, the Enterprise Production System (ERP) layer. The layer beneath, the
Manufacturing Execution System (MES) layer controls the short-term production scheduling and
its process control. To exemplify the adverse effect of such hierarchical control structures, figure
1.1} illustrates the report and command flow triggered by an occurring event. Since the CPPS
can not decide for themselves, they report and obey orders received from their assigned decision
unit of a higher layer (Cluster A, B, C). Due to its rigid command line, such a communication
structure is complex to maintain and reacts inflexible to unforeseeable circumstances. However,
hierarchical production control realizes an overall optimum, which can hardly be outperformed,
when working as planned. Such a production control reacts highly sensitive to unforeseen
circumstances, such as machine downtime, or disturbances in the supply chain. An alternative
to the overall scheduled optimum is be a local optimized schedule limited to specific CPPSs
and managed by them. By taking the decision-making units down, a flatter and therefore
more flexible control structure can be achieved. Self-containing CPPSs could cooperate in a
flexible manner. This possibility raises the question: Which control structure should frame the
cooperation between those CPPS?

Using multiagent system (MAS) seems to a suitable solution for managing a production in a
flexible manner. Thereby the services of one or more CPPS would be offered and managed by
agents. Such agents react to environmental changes, act, negotiate, cooperate, and compete. Such
a control structure reduces the complexity of a system by its natural encapsulation mechanism,
as each (CPPS’s) service group will be represented by a specific agent type. Figure 1.2 illustrates
as a scheme how the before introduced example would change by introducing a multiagent

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

Global Layer: ERP

Decision N
% Making \\ -global production schedule
/ /!\ /‘h N AN -resource allocation
o N -manages processes on ERP layer
0.1 RO'Z,—[‘ a1 \\\ \\
e [c2.1 \
// RL2 sz.z c3.1 N Rsa2 AN . RS.1
- i AN AN
‘ Layer: MES
Decision Unit Decision Unit Decision Unit

Cluster A Cluster B Cluster C | | -detailed schedule
A i -resource utilization
l -manages processes on production process
| Level

Layer: PLC, NC & Hardware

-productive task

o : - cres Task = d —> Report

= - Y/mﬁued omman P
4

Event Action

occurs N V required

Figure 1.1: Scheme of a possible message traffic in a hierarchical control structure

system on the MES layer. Each agent would be capable of cooperating with other agents and
decide according to its own goals. The true advantage will be the direct interaction between the
agents, which substitutes the hierarchical command from the higher layer.

Advantages such as reducing the complexity of a system, or encapsulation cannot be achieved,
if each and every CPPS is represented by an interface agent. Implementing an interface agent
on top of each CPPS does not reduce the complexity of the system, nor does it contribute to
its modularity or flexibility. An interface agent offers only a digital one-to-one representative,
without any higher service. Interface agents would take the decision unit down to a layer, which
might require resolving real-time and safety issues. Instead of interface agents, agents can be
modeled to represent higher services of clustered CPPS to employ MES functions, such as
controlling or scheduling.

The MAS paradigm does not enjoy a wide popularity in the industry. Since investments are high,
and ensuring the throughput is crucial, the idea of letting software entities decide autonomously,
based on their Belief, Desire, and Intention (BDI) is not popular. Beside others this is one
reason, why MAS, despite their benefits, are not well accepted in the manufacturing domain.
According Leitao et al. the scientific projects SOCRADES, IMC-AESOP and ARUM suggest,
that the combination of CPS with a collaborative automation paradigm, such as Service Oriented
Architecture (SOA) and MAS will resolve some of those issues [LCK16]. The authors propose a
strategy to use MAS on the higher enterprise layer for the orchestration and managing task, while
SOA shall address the interoperability issues of MAS. SOA is a process driven communication
paradigm, which not technology driven. Its service-offering is not bound to a specific protocol
or technology, and could in its simplest form be accomplished by the exchange of text (see
[7S05] and [BNPT08]). Leitdo et al. further point out that the combination of CPS with other
technologies, such as MASs, SOAs, IoT, and cloud computing, is the sought innovation. Table
1.1 compares the expected CPPS characteristic with SOA and MAS capabilities to support those
innovations. It summarizes both MAS’s weakness, such as real-time control and predictability,

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Global Layer: ERP

Decision
Making

Command in form general Objectives

Layer: MES Multiagents system

Agent Type 3

Multiagent System

-flexible schedule
-resource utilization by negotiation
-manages process by Cooperation

Agent Type 2 of Agent types

Agent Type 1

CPPS

Layer: PLC, NC &
Hardware

-productive task

p— Task
At %mﬁied ——=> Command —— — =>Report

~
Event - Action
Oceurs / required

Figure 1.2: Previous scheme with a multiagent system on the MES layer managing and scheduling
the production entities

which can be partially repeal by a combination with CPPS and SOA. MAS in manufacturing
struggle with interoperability issues since this domain has a highly heterogeneous hard- and
software landscape. In this respect, SOA can support MAS by enabling a vertical and horizontal
integration of MAS through OPC-UA or Webservices (WS). An additional benefit of MAS is the
availability of an interaction standard by the Foundation for Intelligent Physical Agents (FIPA).
The FIPA specification defines the communication by the Agent Communication Language
(ACL) and eases implementation efforts by offering a set of communication protocols as guidance.
Agent Integrated Development Environment (IDE), such as JADE have implemented the FIPA
specification. However, the triumphant procession of MAS in manufacturing has not come yet,
although those technologies and specifications exist.

Leitao et al. illustrated the delayed MAS advent in manufacturing by assigning technology
readiness level (TRL) to the MAS applications [LKR¥16]. The authors provided a list of MAS
projects enrolled from 1995 until 2015 sorted by ISA 95 levels. Figure [1.3| on the left side
visualizes this list. The remastered data in this figure [1.3 reveals that MAS applications were
mostly used on the second ISA 95 level "supervisory control" with 16 projects out of 33 projects.
The right side of figure |1.3| lists the scopes of those sixteen projects, of which the majority dealt
with manufacturing or process control. Especially MAS with self-learning and self-optimization
capabilities benefit as a manufacturing control. MAS are also more likely to be utilized as
manufacturing control due to their location on a higher layer, where their advantages, such
as self-optimization and self-organization are not blurred by their lack of real-time capability.
MAS applications with the highest maturity scored a TRL of nine, such as the Daimler Chrysler
Project of Bussmann and Schild [BS01]. While most MAS Projects encountered a TRL of six or
seven, only projects limited to research laboratories reached a technology readiness level between
seven and nine. Although each application of MAS contributes to their familiarity, explicit
efforts must be made to ease the MAS application in manufacturing.

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Expected CPPS Characteristics

[Mon14]

SOA in relation

[RBMOS| [VMS*14]

MAS in relation

[LKRT16] [VMST14]

Self-Organization

Very Supportive
SOA based technologies
enable offering
of devices, services
or other entities

Very Supportive
known for autonomic
behavior, can provide
self-optimization and

self-adaption

Self-Repair Supportive Very Supportive
offer the infrastructure and self-healing and
integration for MAS self-configuration capability
inspired by
biological system and swarms
Efficiency Very Supportive Very Supportive
enabling a network due to the interaction
of services among the individual
agents an their
self-optimization capability
Transparency Very Supportive Very Supportive

"ability to unravel and quantify
uncertainties to determine
estimation of its capability

and readiness" [LLI3]

Safety Supportive Weak
Remote Diagnosis Very Supportive Supportive
Real-time Control Very Supportive Weak

due to OPC-UA over
Time-Sensitive Networking (TSN)

due to unsuitable high-speed
interactions between
individual agents

Predictability

Very Supportive

Weak

Table 1.1: Comparison of CPPS with SOA and MAS Characteristics

5
15%

9
27%

16
49%

= L1 -Automation control

= L2 - Supervisory control

= L3 - Manufacturing Operations Management

L4 -buisness planning and logistics 69%

= Process/Manufacturing Control

= SOAbased Cross-layer (Device-ERP)

= SOA/Cloudbased SCADA/DCS

Self-Adaption

Reconfiguration and Plug-and-Produce

Figure 1.3: Left: Realized MAS projects sorted according ISA 95 levels;Right: Realized MAS
projects at the level 2 of ISA 95 sorted by their Project Scope, Original Data from [LKRT16]
analyzed and remastered for this illustration

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Vrba et al. suggested that four MAS challenges must be overcome to enable a broad application
of MAS outside large R&D departments and laboratories [VMS™14]. The authors conceptualized
their work for energy systems. However, the four MAS challenges are also valid in manufacturing:

Resolving the emergent behavior: Designed systems can react in an unexpected manner.
This emergent behavior might be inefficient or not, however, it appears alarming for the
conservative manufacturing sector.

Solving interoperability issues: A successful interoperability on the syntactic and on the
semantic level is required. Syntactic integration can be realized by the common agent
communication languages (ACL) of the FIPA specification. A proper ontology for the
application domain is necessary. For a successful vertical integration, the combination
of MAS with SOA concepts and existing implementation such as Web-Services (WS),
OPC-UA, RESTful, ESB will be essential.

Execution on field devices: The use of Java-based agents on field devices still holds deploy-
ment challenges.

Lack of proper design methodologies and architectures: MAS design methodologies lack
awareness in the manufacturing domain. Common design methodology addresses com-
puter scientists or designers with MAS knowledge. Those methodologies rather focus
on the decision-making algorithms or role assigning mechanisms, than realizing an agent
architecture that considers industrial restrictions.

1.1 Motivation

Considering the advantages of MAS as a control structure and the available technologies and
standards, one question must be raised: Why are MAS still missing approval in the manufacturing
domain? The MAS paradigm might not be familiar enough to the manufacturing community.
The MAS has its historical source in computer sciences, while the manufacturing domain is
driven by industrial and mechanical engineers as stakeholders. Another reason may be the high
consulting cost for external professions, especially if the benefit is not certain. Even if a MAS
would be feasible for manufacturing process, the stakeholder might not be aware of it, nor can
he or she assess the feasibility in advance. Even if the integration of MAS gains acceptance in
the producing industry, tools to evaluate the suitability of the MAS paradigm for users with
less MAS knowledge do not exist. Vrba et al. pointed out, that the lack of design methods for
specific areas might be one reason for the lack of acceptance [VMST14].

A design methodology is a systematic path towards a solution design offering its user proper
methods, concepts, and models along its stages. Design methodologies most commonly consist
of at least four stages:

1. A broad description of its application area
2. An analysis phase, mapping the problem area
3. A designing phase, transforming methods or guidelines

4. A development phase

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Design methodologies for multiagent systems exist. Some of them have their genesis right at
the beginning of MAS or even before, at the beginning of object-oriented programming. All
those methodologies source from computer science and require prior MAS- knowledge. The
number of design methodologies addressing the manufacturing domain as an application field
is small. Among these, the designer is expected to be familiar with common MAS concepts.
Beside the expected MAS-Knowledge, modeling aspects and languages common in computer
science are also required. These requirements towards the designer restrict the usage of those
methodologies in the manufacturing domain. Production processes are complex. Transforming
their process control into a MAS process control requires the knowledge of the process stakeholder.
A multiagent design methodology especially for industrial and mechanical engineers could address
this issue.

Requirements of MAS Design Methodology for the Manufacturing
Execution System Domain (DM-MESD)

A common requirement of design methodologies focusses on the model fidelity, which describes
the suitability of the modeling concept. The prescriptiveness, the second common requirement,
evaluates the user-friendliness, the design methods, and the extent of tools. Those tools can
be modeling languages with their own ontology, modeling concepts and notations. Such tools
can also be more evolved, such as the CASE (Computer Aided Software engineering) tool.
The prescriptiveness is given, if the offered methods guide the designer step by step through
the process. This requirement is bound more than the previous one onto the knowledge and
capability of the designer. A person with a profound MAS-knowledge might compensate missing
descriptions, while a designer with no knowledge depends on the continuous assistance through the
designing process. The target designers addressed here are industrial and mechanical engineers
with rudimentary knowledge about UML and no knowledge about MAS. This definition raises
the demands towards our design methodology.

Besides common requirements the desired design methodology must also meet the specific
requirements of the shop floor. Such specific requirements derive from two aspects of the
manufacturing domain, the process stakeholders as target designers and the focus on the
integrity of the manufacturing processes. Defining mechanical and industrial engineers as target
designers limits the modeling tools to those commonly known. The design methodology must also
conduct the MAS concept and deploy it intuitively, as the designer has no prior MAS-knowledge.
The missing of this prior MAS-knowledge demands exact instructions and guidance throughout
the design process. Focusing during the design process on the integrity of the manufacturing
processes requires the embedded mechanisms to account for manufacturing restrictions. Such
manufacturing restrictions could be task sequences, thresholds, releases, etc. Following domain
specific requirements must be considered for designing a multiagent system on the MES layer:

Highly process controlled
While the object-oriented perspective focuses on objects, attributes and methods, the
production control requires a process-oriented perspective on the system. A production
control focuses rather on process stages than on objects and roles. A process mapped on a
MES layer is a multidimensional activity diagram, where the sequence of activities and its
constraints are more important, than the entity responsible for it. Those dimensions in
this activity diagram arise from the several possible combinations by which the process
could be realized. These combinations vary by either the process flow itself or by the
responsible actor. It is possible to capture the production process with object-oriented
modeling approaches, such as UML, but it is labor intense and complex. This might also

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

be the reason why there have been attempts to introduce various modeling approaches
such as Petri net, or IDEF0 into manufacturing.

Future Task: The design methodology should respect the process driven perspective
required in the MES layer and try to manage it by offering a less extensive and complex
concept to capture the possible process paths.

Mutual dependency

While object- and agent-oriented approaches uphold characteristics such as autonomy,
encapsulation and emerging behavior, those characteristics are problematic for a process
control in the manufacturing domain. To produce a good a sequence of tasks depending
on one another is required. The autonomy of one entity might impede the next task. On
the other hand, autonomy and encapsulation are highly desired, if their negative effects
can be prevented.

Future Task: Concepts like autonomy, proactiveness and goal orientation can be incor-
porated into the production control rather than into a lower layer. To incorporate those
concepts, the design methodology must include mechanisms paying special attention to
mutual dependencies and encapsulation potentials. Thereby, the most suitable balance
between two options must be found. The first option is a system with the narrowest
encapsulation setting and the lowest mutual dependency, as each service is divided into
fractions. However, such fractions may have no value-adding capacity. The second option
is a coarse encapsulation, leading to a higher level of mutual dependency between each
service. Such a system is more holonic, as more mature services can be provided. The
chain of interaction in such a system is smaller than in the first mentioned system. But
this system lacks robustness, as the mutual dependency between the entities and their roles
is high. A proper design methodology should give the designer clear rules or guidelines for
clustering service fractions.

Sensitive System A program error handling mechanism is based on a combination of error

catching and concurrency mechanisms, restoring a safe state. A manufacturing execution
system has mechanisms to catch errors and safe states to which it can return, but since it
has numerous real-life interfaces, this procedure is more complex and time consuming. A
production control in such error cases is inert and rigid since it takes time and human effort
to restore it to a safe state. This characteristic makes the system sensitive to unforeseen
errors.

Future Task: A MAS design must cope with this issue by only implementing the agents
on a higher MES layer leaving a sufficient buffering zone between the MAS and the error
handling mechanism. Taking the sensitivity of the system into account, a multiagent
system as production control cannot be implemented purely as interface agents. The task
is to provide an encapsulated service of one or more production assets to a multiagent
system, not to lash the production asset to its interface agents as a digital one-to-one
representative. An interface agent error or exception would effect the asset directly and
must be prevented. An agent on higher MES layer offering only the encapsulated services,
leaves enough buffer for the system to cope with an error or denial, as only successful
trades and interactions will be transmitted. This design choice ensures that an agent
breakdown will not cause any harm to the production asset or its availability.

Highly heterogenic hard and software structure Manufacturing overlaps traditionally a

heterogeneous landscape of technologies. In the industry, a shop floor is being conceptu-
alized as a holistic design in its beginnings. After several years, parts of the shop floor
need adaptions. This partial modification also raises the heterogeneity of technologies on

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

the shop floor. A multiagent system on the MES layer is effected by this heterogeneity,
although not as strongly as a multiagent system on the lower level.

Future Task: A MAS must either be applied as a platform independent solution or
on a platform with multiple interconnection possibilities. The first solution requires a
high programming effort. Each production asset and its agent must be conceptualized
individually and then be integrated into the agent society. This solution is complex and
difficult to consider during the design process since the different ways of implementation
effect the agents’ interactions. The second solution implies that agents will be designed and
implemented on a single platform. This solution ensures the design freedom, the agents’
interactions, and the feasibility of the implementation. The downside of this solution is,
that the interface possibility between each agent and its production resource is limited by
the range of interfaces the platform supports. This aspect must be considered during the
design phase, as it is possible, that not all services mapped and designed into an agent can
be realized due to missing interfaces. Such a MAS platform could be, for example, JADE.

To summarize the requirements for desired MAS design methodology in concrete terms:

Model fidelity
The MAS design methodology for the manufacturing execution system domain should
provide an acceptable model fidelity. Its model fidelity will be evaluated through the
resulting MAS’s capability to maintain the core process.

Prescriptiveness
Prescriptiveness describes the quality of assistance that the design methodology offers.
This continuous assistance appears as a guiding procedure, in which the results of the
previous step are the inputs of the next step. Further, the design methods are described
precisely, including their operation, their initial state and their final output. The designer
shall at no time be forced to improvise or guess the next step.

Feasibility for industrial and mechanical engineers

Since industrial and mechanical engineers are the target group, the design methodology
must correspond to their common knowledge. While programmers mainly share object-
oriented perspectives on systems and approaches, mechanical and industrial engineers
are trained to use a process-oriented perspective. Tools and methods offered by the
design methodology should ease the transition from a process-oriented perspective to an
object-oriented perspective. Considering the target designer, the modeling tools should be
limited to combination of textual description and structured analysis. Further the design
methodology should exclude any implementation decisions or communication protocols.
Such tasks are best handled by programmers with MAS experience.

Capability to model agent-oriented systems in the MES layer
Since the designer has no prior MAS-knowledge, the design methodology must include
MAS concepts embedded in its design methods, such as encapsulation, autonomy, etc. It
should further respect the specific demands of a process on the MES layer.

1.2 Presented approach

Although the benefits of multiagent systems (MAS) as a process control are apparent, MAS
are rare in the industrial practice. One reason is the lack of design methodologies specified for
mechanical or industrial engineers as target designers and adapted to their capabilities.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

This doctoral thesis is built on two pillars. The first pillar is the utilization of multiagent system
(MAS) as manufacturing process control. This approach uses the tool cycle of the TU Wien
Pilotfabrik, a small size production. The TU Wien Pilotfabrik is a demonstration factory offering
students and scientists a production environment with state-of-the-art technologies. The MAS
maps the true tooling cost for each order as over time the orders arrive online. The true tooling
cost, which is caused by the tool supply and consumption, can now be recorded and assigned
to each order and taking the current shop floor state into account. Beside that, the MAS tries
to minimize the real tooling cost, if possible through agents negotiating a beneficial online
order sequence. The sequencing is addressed from a process control perspective, and not as an
optimization issue. Therefore, the success of a process is preferable to an optimal order sequence.
The MAS operates on the MES-layer and manages already released shop orders. Since successful
tool supply and machining have the highest priority, sequencing the machining orders is only
possible to a limited extent and with respect to the situation on the shop floor at the time of
order release.

The tool cycle (also called tool lifecycle) was chosen as demonstration process, since it manages
physical and digital entities encompassing different production layers. Its functions are spread
over three production layers with individual time demands. The tool cycle touches services on
the ERP layer, as well as services on the MES layer. The tool cycle exchanges data between
different layers and time frames and covers a wide range of platforms and interfaces. It therefore
reflects the highly heterogeneous hard- and software landscape found in the manufacturing
domain. A wide range of standards exist that define tool components and tools, such as the ISO
13399, which defines the exchange data, or the DIN 4000, which defines the technical properties.
Those standards benefit the full digital representation of cutting tools.

Despite those existing standards and the opportunities offered by them, the tool cycle has not
seen many innovations in the last years. The biggest challenge that the tool cycle faces is its
highly heterogeneous hard- and software landscape, causing missing data exchanges and a lack
of interfaces. Although it can be assumed, that the tools have a high impact on the overall
production cost and thus a high saving potential, the true tooling cost can only be estimated.
According to Sharit and Elhence cutting tools cause 25% of all operation costs [SE89|. Gray
et al revealed in 1993, by reviewing industrial data, that tooling accounts for 25 up to 30% of
variable and fixed production cost [GSS93]. New sources, or sources detailing the cost caused by
missing tools or delayed set-up times could not be found.

This missing information can be explained by the high effort it would take to trace individual
tools throughout the process. Therefore, only expensive customized cutting tools are likely
to be monitored. In any other case, enough replacement tools are being stocked next to the
machine tool to prevent idle times. The main incentive for using this strategy is that the tool
cost is not factored directly into the production. The low per-piece-cost of standard cutting tool
components supports this strategy. Before the tool cycle at the TU Wien Pilotfabrik can be
used as a demonstration process, its data interruptions must be resolved.

As groundwork, for this thesis, all linkage issues of the tool cycle in the TU Wien Pilotfabrik
were resolved. The results were published during the CIRP ICME in Italy as the “integrated
tool lifecycle” [FTP19]. The integrated tool cycle developed in the pilot factory at the Vienna
University of Technology allows the tool costs to be determined for each order, while considering
the situation on the shop floor at the time of order release. Chapter two will present the
integrated tool cycle, which serves as application domain for the presented multiagent design
methodology. The designed MAS captures the possible tooling cost and aims to sequence the
orders to achieve a lower tool cost. This sequence shall be achieved by utilizing price-based
negotiations between the agents, which decide independently whether to accept or deny an offer.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

During the first attempts to design such a multiagent system for the integrated tool cycle, the
lack of feasible design methodologies for the manufacturing domain was discovered.

The second pillar of this thesis is the development of a multiagent design methodology, which
meets the specific manufacturing requirements and supports accomplishing the first pillar.
The Design Methodology for the Manufacturing Execution System Domain (DM-
MESD) presented in this doctoral thesis, especially addresses mechanical and industrial engi-
neers. It offers the designer, in contrast to already existing design methodologies, the possibility
to evaluate if the design methodology is suitable for the desired application in advance. For
this purpose, the DM-MESD defines an investigation area, which serves as a gauge for other
applications. Comparing the application process with the investigation area resolves if the
DM-MESD can be used for a specific application. The design methodology presented here
consists of six phases, beginning with the evaluation phase. The DM-MESD builds services out of
existing functions and tasks and creates new services from scratch. While existing services cover
the original process, new services introduced by the methodology extend the functionality of
the process. The DM-MESD uses textual and structural analysis methods to elaborate existing
tasks and functions from which existing and new services can be built. In its clustering phase
the DM-MESD combines services into service clusters based on three clustering rules. The
resulting service clusters are the foundation for the future agent types. In the transformation
phase, the last phase of the DM-MESD, those service clusters are transformed into agent types,
by defining roles, interactions and multiplicities. DM-MESD is a pure designing methodology
without any implementation mechanisms or preferences. It does not specify communication
protocols, nor does it suggest any ways of implementation. Since the target designers are
mechanical and industrial engineers with no prior MAS-knowledge the DM-MESD suggests no
way of implementation. Nonetheless, implementation decisions are best reserved for programmers
with MAS experience. DM-MESD is a platform independent design methodology, it does not
favor any programming language, or any agent implementation strategy. Although the MAS
presented here is implemented in JADE, the final MAS design, could be implemented on any
platform. The resulting MAS design is described in a textual and structural manner, leaving
the programmer freedom in his or her choices for implementation. The presentation of the
DM-MESD is divided into two parts. First the methodology itself and then its application on
the integrated tool cycle is presented. Using the DM-MESD on the integrated tool cycle has two
objectives. The first is demonstrating how to apply the DM-MESD step by step, and the second
it offers an insight into the methodology’s feasibility and the results, that can be achieved by
applying it. Both aspects will later serve the proof of concept.

The final MAS is a flexible process control reflecting the current situation on the shop floor
and online scheduling the released machining orders in the best possible manner. It thereby
aims to minimize the tooling cost and therefore the production cost of each machining order.
This management of released machining orders is achieved by the MachineAgent offering the
OrderAgents a production price and throughput time for each available position in the machining
queue. If there is a chance of a sequence with lower tool costs, the MachineAgent starts a new
offering process. In the new offering process, it tries to buy back the already sold positions in the
machining queue, by either offering the owners a lower production price or a shorter throughput
time. Thereby the price reduction consists of half the tool costs saved with the new sequence.
Since each of the agents is designed to achieve its individual goals, this renewed offer process
may or may not be successful. The OrderAgent decides whether to accept an offer or not, based
on its individual parameters, such as the maximum order execution time, the maximum cost,
and the time factor. If, for example, the magazine is currently loaded with cutting tools required
for OrderAgent B and their tool lifetime is sufficient to machine the order, the MachineAgent

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

offers OrderAgent A a price reduction, if it gives up its machining queue position in favor of
OrderAgent B. The MachineAgent however only revises its offer, if the current circumstances
of the shop floor allow it. Those circumstances include the remaining lifetime at the machine
tool, the remaining lifetime currently available at the storage, the time required to supply and
commission the cutting tools to the machine and the time left before the setup must be started.
Those circumstances are random process parameters, which reflect the reality on the shop floor
and must be considered by a successful production process control. If all those circumstances are
in favor of rescheduling the offer, the MachineAgent proposes such offers to OrderAgent A and
B and awaits their affirmative answer before proceeding. OrderAgent A could also refuse the
offer, although a lower production cost (tooling cost) was offered. On the one hand this design
choice primarily reflects the reality in which orders are processed according to their priority
while the expenses are secondary. On the other hand, this design choice expresses the freedom
of decision that the OrderAgent has, since its primary goal does not necessarily coincide with
the MachineAgent.

The final MAS design for the integrated tool cycle is simulated using JADE and will not be
directly implemented into the TU Wien Pilotfabrik. Although JADE compatible interfaces for
each machine and asset are possible, it would exceed the scope of this thesis, and require a
sufficient recovery strategy. Such a recovery strategy includes proven mechanisms to return to a
safe and correct state from which the system can be restarted again. The presented approach
uses a system simulation in JADE without any backup recovery mechanism.

1.3 Investigation area

Since manufacturing is a broad term, confinement is required. This confinement is achieved
by describing the investigation area of this thesis. Defining an investigation area, serves the
comparability of this work and the definition of its extent. Further, the investigation area
clarifies the target domain of the presented design methodology for the manufacturing execution
system domain (DM-MESD). The investigation area reflects the defined requirement of the
DM-MESD. At the same time, it serves as a gauge for other applications of the DM-MESD.
Comparing the application with the investigation area resolves if the DM-MESD can be used for
a specific application. The survey of design methodologies will show that only a few existing
methodologies have a defined application domain. Among those, no design methodology defines
it in a comparable preciseness.

With respect to the production process itself, the focus lies on discrete manufacturing (see
figure|1.4). Other than the process industry, the output of the discrete manufacturing is processed
individually and countably. Its process control faces different challenges than the process industry.
The production is also differentiated by the produced quantity. On the scale of the production
quantity two extreme kinds of production exist, the job-shop and the mass-production. The size
of the production addressed in this investigation area ranges between a job shop and a serial
production. The tool cycle as the chosen demonstrator fits into this investigation area. The
application layer of the investigation area is also limited. Although the DM-MESD can be used
theoretically on processes from the ERP its field of application is mainly the MES layer. The
application process should however not be located lower that the MES layer.

1.3.1 Systematic literature study

As a first step, a systematic literature study is conducted in the previously described investigation
area. The objective is to gain information on common design methodologies for multiagent

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Job shop

Serial
production

I
|
I
I
|
I
I
|
I
I
.

Mass
production

\

-

e

-
-

|
I
]
|
I
| -
|
I
I
]
I
L

ERP

-
-
-
-
1
1
I
1
I
I
1
i
1
1 S

// PLC

/
7 Hardware

continuous manufacturing discrete manufacturing

Figure 1.4: Investigation area visualized

systems. Since the scope of this thesis covers three courses, tool cycles, MAS and MAS design
methodologies, the systematic literature study must be limited to a process-able amount. This
search is not limited to an explicit number of sources, but to the content that fits the investigation
area. The first part of the literature search addresses the tool cycle. This search shall define
the tool cycle, its core process, its weaknesses, and its open potentials. Due to the closeness
of the tool cycle to industrial practice, this search is not limited to scientific publication, but
requires the knowledge of process stakeholders and professionals. The result of this search will
be presented in section 2.1, The second course addresses MAS. Since the volume of publications
in this area is tremendously high, the search must be limited. Beside more general terms and
concepts directly bound to the MAS paradigm, the review is limited to MAS applied in domains
comparable to the investigation area. This excludes MAS on the device or Programmable Logic
Controller (PLC) layer. Additionally, the search is limited by excluding approaches, which are
located higher than the MES layer. Among those, MAS approaches using the FIPA Specification
will be favored. The remaining literature offers enough volumes and more importantly an
active scientific community, which covers all required fields of interest. This search focuses
predominantly on the Elsevier’s database, Scopus. Since FIPA has been integrated into the
Institute of Electrical and Electronics Engineers (IEEE), the search will be extended to the
IEEE database. Since MAS source from computer science, the journals of the Association for
Computing Machinery (ACM) are included in this search. To cover relevant patents, books,
white papers or reports, the same keywords and search mechanism are used on the Google
scholar search engine. Possibly doubled literature is not being considered. The above-mentioned
restrictions limit the search to the following keywords:

o MAS
o FIPA

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

« JADE
« MES
¢ Manufacturing domain

e Manufacturing control

The last course in this search addresses MAS design methodologies. It covers the same journals
and databases as in the search for MAS. First a more general search for available MAS design
methodologies is pursued. This general search offers an overview of the existing methodology
landscape. Based on the results, the methodologies are limited to those widely evolved and
used. Among those methodologies, those with a suitable modeling concept for mechanical and
industrial engineers and are favored.

e Multiagent design methodology

e Multiagent design method

The comparable work of other researchers is presented in the respective sections of the state-of-
the-art chapter.

1.3.2 Evaluation by proof of concept

The last step involves validating the suitability of the presented MAS design methodology for
the manufacturing execution system domain (DM-MESD). This validation is achieved in three
stages. First it will be examined, if the DM-MESD fulfills all domain specific requirements and
all requirements set for a proper MAS design methodology. Then the resulting MAS will be
reviewed to conclude if the methodology provided the desired result. The review focuses on the
benefits achieved by using the DM-MESD and on the documentation of the final MAS design it
provides. The final stage of the review offers a conclusive summary, comparing the DM-MESD
with the PASSI and the Gaia methodology.

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

State of the art

This chapter provides a brief but adequate understanding of the three major topics this thesis
examines. First the tool cycle, its issues and its potentials will be addressed. This section
describes the role of the tool cycle in production and gives a brief insight about cutting tools,
standards, data management and their importance in the manufacturing process. Afterwards,
the state-of-the-art tool cycle will be briefly outlined to show the linkage issues it faces. The
"integrated tool cycle" developed to solve the linkage issues for the TU Wien Pilotfabrik is
presented besides other tool cycle approaches in this section. The second part of this chapter
addresses multiagent systems (MAS) and their characteristics in general. In this section, topics
such as autonomy, encapsulation, emergent behavior, FIPA Specification, Agent Communication
Language (ACL), and JADE will be introduced. This section shall broaden the reader’s MAS
understanding and to highlight the paradigm’s strengths and weaknesses in the manufacturing
domain. The third section of this chapter will address multiagent design methodologies. This
section introduces terms, such as method and methodology and presents how design methodologies
evolved. First, it presents commonly used design methodologies, offering the reader an overview
of common software and MAS design methodologies. Then it will review in detail the top down
approach Gaia and afterwards the Agent UML based PASSI methodology.

2.1 Tool cycle

2.1.1 Cutting tools

Cutting tools are an important production resource, as they play a major role in a span removing
manufacturing process. Cutting tools, the NC-program, and the clamping systems count to
group of production resources. A cutting tool used in machine tools is an assembly made of
components from the ISO 13399, as figure 2.1/ displays. An assembled cutting tool consists of
a machine side adapter, a tool holder (optional) and a cutting tool, which is an assembly or a
solid tool component. Cutting tools used for CNC manufacturing consist of tool components,
offers many tool assembly combinations (see figure 2.2). Each tool component has its own set of
data, such as material, dimensions, vendor, cutting conditions, price, name, etc.

One reason why the tool cycle was chosen as a demonstration process is that cutting tools are
highly standardized. Although numerous specifications exist, only the two most relevant are
introduced here briefly, the DIN 4000 and the ISO 13399. Both standards are important for the
data representation of cutting tools.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

o & o
o

e) [

= .. .

=~ @ -

Figure 2.1: Main groups of cutting tool components; Source: ISO 13399

Workpiece side Machlne side
R e

Cutting item Tool item Adaptive item Adaptive item Adaptive item

== BOW= =
| Adaptive item |
| Adaptive item |
| Adaptive item |
| Tool item |
| Tool item |
| Tool item |
[Cutting tool |
I Cutting tool |
utting too
Cutti |
| Cutting tool |

Figure 2.2: Assembly options according to the ISO 13399

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

The DIN 4000 (German industrial standard) specifies the tool types, geometrical attributes,
material and data properties. The DIN also defines the interface coding for each tool component,
so that filter functions can be used for assembling. The interface coding is a string that classifies
the interface specification of each component. It includes coupling type, form, dimension,
version, and kind. With this interface coding the operator can limit his or her search for fitting
components. This interface coding does not only ease the assembly of cutting tools, but it also
enables their digital representation.

ISO 13399 is an international standard defining the cutting tool data representation and
its exchange. It has its beginnings in the doctoral thesis of Nyqvist [Nyq08]. Its aim is to
provide an information model for the computer-interpretable representation and exchange of
industrial product data about cutting tools and tool holders. It offers a tool component and
data representation free of proprietary format constraints. This data representation enables
implementing and sharing product data bases. The data model defined in ISO 13399 uses
the EXPRESS modeling language. Its data model can be exchanged either by STEP file or
STEP-XML. Based on the ISO 13399 and DIN 4000 tool management software can generate the
data set of an assembled tool automatically from the data of its component. This tool data can
be exchanged between CAM and ERP systems, easing tool data management, and enabling the
manufacturing process simulation in CAM software with the future tool.

2.1.2 Tool management

The tool cycle is embedded into tool management as it covers three of its sub-processes, the
tool disposition, the tool supply and the tool use. Tool management is therefore introduced
briefly. Tool management is a cross-section process, managing the tool data, as well as the
physical cutting tool items. Thomas Geib depicted the tool management as a graphic, which was
translated, adapted and digital revised by the author (see figure 2.3)) [Geil3|]. The graphic shows,
that the task range of the tool management spans from tool planning with a long planning
period, to tool use with a short planning period. Tool planning is located on the ERP layer,
while the tool use falls into the machine control’s field of action, demanding a faster reaction
time. Tool planning starts by defining the range of cutting tools a producing enterprise requires.
It is a strategical question, choosing between a small variety of tool types, or a large variety
but shorter tool use time during machining. CAM software with manufacturing simulations
can determine the future tool use time. Based on this information, the desired tool range and
estimate tool requirement is determined Although the tool planning utilizes product data from
the CAM, its decisions are yet order-independent.

Another part of the tool management is the tool logistics, which manages the tool procurement
and inventory on the enterprise level. Tool logistics includes the preceding determination of the
tool requirement based on the expected production volume. It also marks the transition from
the order-independent to the order-specific, as it considers long term tool requirements based on
the expected amount of orders.

Tool disposition manages the tool scheduling, the supply planning and the determination of
the short-term tool requirements. It marks where the tool management enters the MES-layer
and where, according to Geib, the tool management becomes task-oriented instead of planning-
oriented. The tool disposition is also the entry-point of the tool cycle.

Tool supply handles all supporting tasks to deliver the required amount of cutting tools to the
machine tool. It includes tool preparation, collecting the cutting tool components, and assembling
them, as well as measuring their dimensions or adjustment to preset values (pre-setting). The
tool supply also covers the tool commissioning to the machine tool. Tool supply also includes the
reworking of the cutting tools, which is an up-following step of the tool use. The tool supply also

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Tool Planning

ToolRange Planning

Tool Logistic

Requirement

Tool Management

Tool Disposition Tool Supply Tool Use

Tool Scheduling Tool Preparation Warkpiece Machining

Determination of Tools

Short-Term Tool
Requirement
Determination Tool Transport Maching's Internal Tool
Tool Inventory Handling

Managament Supply Planning

Tool Range
Maintenance

Tool Reworking Tool Monitoring

Tool Procurement

Tool Use Planning

long-term short-term
Planning Period

Data Topicality
Data Volume
indgrpienrn;ent order-specific
planning-ariented task-oriented
wirtual phy sical
machine machine
external internal
ERP MES Machine Control

Figure 2.3: Tool management scheme, original source [Geil3], digital revision and translation:
author

manages the disposal of tools that can no longer be reworked. Before the tool supply, cutting
tools were only considered based on their data representation. This data representation included
cutting tool master data. When the tool components are assembled, a new type of cutting tool
data is being instantiated, the tool instance data. The tool instance data is a set of data that
belongs to a unique cutting tool instance and consists of the tool inventory number (unique
resource identifier), its measurements, its remaining lifetime, the critical lifetime limit, etc. This
data is only being handled in the MES and on the machine control layer. Some data points
of the tool instance data are dynamic data, which means that they are periodically updated,
such as the remaining lifetime, or its measurements. The tool supply is the first sub-process to
generate machine tool relevant data and to manage it outside the machine tool (see ,,machine
external,,figure2.3).

The tool use is the fifth and final sub-process of the tool management. The German language
distinguishes between tool use or use of tool as a process or process step (Werkzeugeinsatz)
and another word for the tool use (time) as part of the machining time (Werkzeugeingriff). To
prevent future confusion, the author refers to the time [minute] in which the cutting tool is
removing chips from the workpiece as tool use time. Tool use takes place inside the machine

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

tool and is limited to this location. It includes the machining, the tool monitoring, and the
machines’ internal tool handling. It demands the highest data topicality, as it corresponds to
the machine control reactions time, which ranges in milliseconds.

While scientific efforts are made to optimize the cutting speed and quality and to equip cutting
tools with sensors, the tool management has not received as much scientific attention as it
should. In fact, many scientific publications exist, reviewing various cost optimization or efficiency
strategies for other production resources than for the order specific tool supply and its costs. This
can be reasoned by the shear amount of data and physical items, that must be managed during
manufacturing. Two similar assembled tools, have a different data set, as their circumstance
of tool use, such as tool wear and measurements vary. Due to this high management effort,
producing enterprises do not factor the tool cost directly into the order processing, but rather
count them as fixed production costs. This view identifies cutting tools as assets of the machine
tool, such as electricity or cooling lubricant. As such assets neither their consumption nor their
replacement is being tracked. This view is common in manufacturing. Reasons for this are:

High physical management effort
A cutting tool consists of several components, which must be handled and tracked.

High data management effort
As not only the data of assembled components, but also the data of single components
must be managed.

Low per piece price
Standardized cutting inserts and items, broad competition and the low per-piece price at
large quantities, lower the purchase price and make a higher stock level affordable.

Information breakpoints during the tool cycle
There are still data interruptions in the tool cycle, such as between the machine tool and
the Tool Management Systems (TMS) or between the storage and the TMS.

Low variety on cutting tools
The tool range is minimized to standard cutting tools to purchase large numbers at low
prices and to save on logistic efforts.

The standardization of tool components not only drives the competition between the vendors.
It also lays the base for the Tool Management Systems (TMS). TMS are software solutions to
manage the tool management at different phases. The high grade of standardization of cutting
tools enables the data exchange between tool management system (TMS) and CAM software
or ERP- software. With the interface to the TMS, that a CAM offers, NC-programs can be
optimized to shorten processing time, but also to utilize tool types already in storage. By doing
so, the variety on cutting tool types can be reduced as well as the per-piece price. Those points
might be the reason for the lack of information about costs caused by missing or delayed cutting
tools. In fact, only a few scientific publications can be found, which have elaborated the tooling
costs for a case study or a best practice setting.

In 2016 Manogharan and his colleagues published an economic model for a new hybrid manufac-
turing method and its analysis [MWHI16]. This method included 2D layer printing and CNC
milling. To compare the costs of this hybrid method, the authors built a case study and captured
the CNC and the additive manufacturing cost in detail. Figure 2.4 summarizes the partial and
total manufacturing cost of the CNC Rapid Prototyping. Their case study shows that tooling
costs have a large impact on the operating cost and on the total cost including material. The

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Setup Machining Number of tool Tooling Tool change Stage Operating Total cost including

CNC-RP stage time (hrs) time (hrs) changes cost ($) time (hrs) time (hrs) cost () material ($)

Roughing and 0.17 14.04 8 160 1.33 1537 417.50 1358.25
hogging

Finishing 9.38 5 100 0.83 10.21 276.00

Total CNC-RP 0.17 23.42 13 260 217 25.59 698.25

Figure 2.4: CNC-RP operation and tooling cost for sample parts, source [MWHI6]

tooling costs, which reflect only the number of tools worn out for production summed up to 260
$, which is 19,14 % of the total cost. Thereby the authors assumed the average tool lifetime to
be 100 minutes of machining time and tooling cost of $20/tool, which fits industrial settings
for a small to medium sized production. In their calculation model, the authors counted the
tool setup times as part of the machining time. The summed-up tool setup time was 2,17 hours
and made up 9,26 % of the overall machining time. The operating cost rate is assumed to be $
25 /hour as the average rate according to the U.S. Bureau of Labor Statistics in 2013. This case
study gives a glimpse on the potential cost that could be saved by drawing more optimization
efforts into the tool management. International and national specifications opened the way to
overcome systematic linkage issues. Those standards enabled today’s practice of generating NC
programs in a CAM Software, which include enterprise specific tools. With the standardized
tool data, a TMS software can generate setup sheets and managing the tool component stock
through an interface with the ERP system.

2.1.3 State of the art

A review of the current literature showed that the state of art can be divided into solutions
addressing interface issues and those which address the refining of the tool cycle process.

Approaches addressing the interface issues

Wang et al offered in their publication a tool management methodology based on using RFID
tags as the driving technology [WNY™09]. The authors saw the tool management process divided
into tool preparation and tool use, due to a lack of connectivity. During tool use, RFID tags
with a designed encoding shall solve the linkage issue as a bridging technology. The encoding
included a tool instance identifier and the tool length and diameter, as part of the corrective
geometry. The tool instance identifier is divided into a group number and a tool instance number.
According to the authors the integration of a RFID-based tool management system reduced the
tool-setting times and prevented possible mistakes.

Denkena et al. utilized a central tool management system in combination with a unique
identification number (tool ID) [DKS14]. The authors stated that the production is currently not
capable of providing sufficient feedback on tool condition. Like the previous approach, Denkena
et al did not store the data required for the tool use in their centralized tool database. The
authors used a self-contained data format, called Gentelligent Markup Language (GIML). GIML
is an XML based textual representation of product and production-related information. The
authors stored the relevant tool data directly on the RFID tag. At this point, their approach
differs from the here presented "integrated tool cycle", which only stores the tool instance ID
(inventory number) on to RFID tags and requests the rest of the data from the data base. Each
individual system along the tool cycle reads the tool ID and requests the updated data from the
TMS webservice. Thereby unnecessary data redundancy is prevented.

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

The team around Hassan introduced in their paper [HK16] an "Integrated Cutting Tool Man-
agement and Monitoring" system (ICTMM). ICTMM was designed to exchange cutting tool
information between the shop floor and any virtual system. On the machine side this approach
utilized the RFID tags to store the tool ID and the tool life estimation. The ICTMM was used as
a monitoring function on the shop floor. The ICTMM represented the tool data in a STEP-NC
file to a higher layer. This approach covers the highest range of monitoring functionality yet to
be reviewed. It compared to the here presented approaches it does not offer monitoring data to
a higher layer through a HT'TP based format. Nor does this approach offer a direct interface to
the machine tool with life-data. The tool lifetime utilized in this approach is only estimated
until the RFID tag can be read and evaluated.

Approaches refining the tool cycle process

Schaupp et al. proposed in their publication a framework for approaching the digitalization in
tool management [SAM17]. The authors offered three sequential steps for enterprises to evaluate
the stage of tool management. Thereby the authors provided an evaluation methodology for
stakeholders beginning with individual goal definition, such as high tool availability, and a low
tool inventory etc. The second step determined the digitalization levers and their influence
on predefined goals. The last step measured the implementation process, by presenting a
Readiness-Model. Schaupp et al. pointed out that RFIDs are not used for the track and tracing
of individual tools, but rather for storing the remaining tool lifetime. The authors emphasized
the lack of a direct interface between the machine tool and the tool database. Therefore, the
remaining tool lifetime stored on the RFID cannot be automatically transmitted to the database
without further effort. In fact, the remaining tool lifetime is only considered for special tools.
This practice is reasoned by the high purchasing cost special tools have. This is where the
integrated tool cycle of the TU Wien Pilotfabrik steps in. The integrated tool cycle provides an
automatic data entry of the tool lifetime as well as a track and trace function of the RFID tag
through the single tool lifecycle stations and represents a digitalized tool management.

Another approach, which refined the tool cycle is the "Digital Twin of a cutting tool" approach
by Botkina et al [BHOT18|. The authors presented a digital representation of the cutting
tool through all its lifecycle. This digital twin ran through all stages that the physical item is
currently passing. To collect the data the authors used the previously developed event-driven line
information system architecture (LISA). LISA is an event-based SOA, allowing other applications
to render themselves as services. LISA is using the enterprise service bus (ESB). The digital twin
of the cutting tool tweeted its data to LISA to store it. Those tweets were detailed and specific
messages from a so-called tweeting machine. The tweeting machine was a machine tool sending
tweets or real-time data. Tweets were published to the ESB by using LISA architecture. The
CNC machining data, such as cutting path, forces, and tool use time, is based on STEP-NC. The
tool data tweeted during the machining includes measurements of parts, tool compensations and
changes, cutting data, etc., all with STEP-NC contexts. To accomplish the tweeting capability
of the machine tool, a CNC/PLC interface publisher, a STEP viewer, and receiver applications
have been previously developed. The author emphasized two novel paradigms of their approach,
the ISO 13399 compliant data flow and collection, and its usage of open source applications
such as LISA, tweeting machine, and ToolMaker (Sandvik tool assembly software). The authors
also stated that their implementation poses some challenges for the industry. One challenge
is that ,,modern product lines do not typically have the tweeting machine capability“. As the
tweeting machine connectivity has been realized by several modifications to existing controllers
and PLC-software connectivity. It is not clear if this proposed connectivity prevails in the
industry. The integrated tool cycle of the TU Wien Pilotfabrik utilizes TMS software, which
is not only an industrial best practice solution, but is also compliant to the DIN 4000 tool

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

properties standard and the ISO 13399 tool data representation and exchange specification. The
integrated tool cycle presented here aims to solve the linkage issue of the tool cycle to prime it
as being a MAS compatible process.

Approaches addressing the scheduling optimization of cutting tools and orders as
offline problem

Beside the two mentioned groups of approaches, which both address the tool cycle on the MES
layer, there are numerous approaches addressing the scheduling optimization of cutting tools and
orders on the ERP-layer. These approaches consider the magazine load or the order sequence as
an optimization preemptive problem in planning and scheduling. Mathematical models for tool
provision are created and optimized with respect to the desired parameters. Although all these
approaches are located in the ERP layer, a few well-known approaches are briefly listed here to
clearly differentiate the approach described in this thesis.

Das, Baki and Li addressed the development of a process-planning model for machining cylinder
heads [DBL09]. The authors’ objective was to plan the magazine load based on production
part groups, which have combined design features (DFUs). Each design feature (DFUs,r)
processes one or more UMF,0 which can be seen as equal to operations. To develop their
mathematical planning and scheduling model the authors defined modeling assumptions. Among
those assumptions is that each operation is linked to one tool only, and that the tool lifetime is
infinite. This approach does not consider randomly filled magazines, nor previously used cutting
tools. Their mathematical model offers an optimization of the machine tools internal tool change
and the orientation change times.

Hertz et al. published several new families of heuristics for the loading of a tool magazine
[HLMS98]. Among their contributions were two new distance functions and two new methods
for the tool load problem.

In their paper Baykasoglu and Dereli offered a simulated annealing based heuristic optimization
system [BD04]. The authors’ objective is to determine the optimal index position of cutting tool
types in a tool turret magazine. Different than previous proposals in this area, this approach
considers tool duplications and can effectively resolve automatic tool changer index-optimization
problems.

Those approaches differ from the approach presented here, as it addresses process controls on
the MES layer. On the one hand the goal of this thesis is to create a multiagent system as a
process control for the tool cycle. The multiagents system serving as process control tries to
schedule orders as an online problem in the best possible sequence to lower the tooling costs.
On the other hand, it aims to develop the DM-MESD, a design methodology for multiagent
systems specifically for the manufacturing domain. Both the tool cycle as a use case and the
methodology are assigned to the MES layer. Therefore, the orders addressed here are already
released and can only be sorted to a limited extent, without impeding the manufacturing process.
This circumstance is best described as online scheduling, in which the entities that should
be scheduled are unknown until they arrive into the system. Krumke, Taudes and Westphal
addressed in their work such a non-preemptive scheduling approach [KTWI1I]. The authors
described the concept of online scheduling based on job scheduling on parallel machines.

The MAS designed here as process control shall at any moment in time evaluate the possible
tool cost and achieve a beneficial sequence, if the current situation on the shop floor and the
free will of the agents allow it. The actual situation on the shop floor is subject to constant
changes and is better addressed by a process control approach, rather a scheduling optimization
approach. This thesis therefore covers a process control for tool provision and does not address

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Order Qty NCProgrammlID Status
OF 8 NC12072019 machining

oG 4 NC12072019 preparing
OH 4 NC12072020 open
Ol 4 NC12072018 open

Table 2.1: Sequence of released orders

H Order ‘ Required toollD
OF
oG
OH | 6585264 | 6585289 | 6585293 | 6585299 | 6585300 | 6585301 | 6585305 | 6585306
Ol 6585290 | 6585295 | 6585298 | 6585302

6585289 | 6585290 | 6585292 | 6585298 | 6585299 | 6585300 | 6585304

Table 2.2: Compares of required tools for each order

the planning of a job sequence or its optimization. The presented heuristics or mathematical
models exclude real life circumstances such as tool breakage, consumption, down times etc.

In order to give the reader an idea of the potential that the MAS can have as a versatile process
control of tool costs, a short example is given here. The same example is used in the test scenario
IV (see 5.2.5) to examine the MAS capabilities. This example uses four orders of which one (OF)
is already being machined and another one (OG) is being prepared for setup (see table 2.1). The
order OH was released before the order OI and would traditionally be machined before OI. In
the most scheduling optimization approaches the orders are previously known and sorted before
they enter the system. The approach presented here, addresses the production as online problem,
as arriving orders are unknown in advanced. The MAS process control presented in this thesis
will be capable of considering the current state of the shop floor. This current state includes
life data from the storage and machine tool such as the magazine load and the remaining tool
lifetime or the current job that is being processed.

Table 2.2 displays the required tools for each order. With this information similar tools can be
identified. Different than the developed MAS, table 2.2| does not consider the remaining tool
lifetime currently available at the machine tool nor does it consider the state at the storage.
The current state of the shop floor includes live data from the storage and machine tool such as
the magazine load and the remaining tool lifetime or the current job that is being processed.
The order OF and OG share the same NC-Program and use therefore the same cutting tools.
If the remaining tool life proves to be sufficient neither additional tools nor setup are needed.
Determining the net tool requirement demands continuous monitoring of the production and
its real-life circumstances. It can not be sufficiently determined by heuristics or mathematical
models.

The order sequences with the lowest tooling and therefore the lowest production cost will be
found by negotiating agents. A core element of this approach is the machining queue, which is
schematically illustrated in figure 2.5, A change in the machining queue is initialized if an order
is processed or a new order enters the system and should be scheduled for a different position
than the last. However, the sequence does only change if all parties (machine tool and order)
agree upon the change. If the order OI can be scheduled prior to OH, the sum of the changed
cutting tools would only be five instead of seven, which the original release sequence requires.
Table 2.3 shows the tooling costs, which this thesis considered at a cost rate of 10 Euros equal
to the machining cost rate. The table illustrates that the new sequence would save 20 Euros in
tooling costs. The machining and handling costs of each order do not vary as they depend on

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Machining Queue

[Pos 1:6585290 ||

Pos 1: 6585290 PG

Pos 1: 6585290 | __ |PF [
Pos 2: 6585298 || OF =Dl |
Pos 3: 6585304 PG |————_| Frozen
Pos 4: 6585292 || OG |—pH Zone
Pos 5: 6585289 Pl |
Pos 6: 6585300 || OH |—
Pos 7: 6585299 DH |—
Pos 8: 6585297 —
Pos 9: 6585301 —
Pos 10:6585295 —

Tool magazine load

while OrderAgent OF is Machining Queue after
being machined OF was machined

Machining Queue at
the arrival of OI

Machining Queue at
the arrival of OH

Figure 2.5: Scheme of the flexible machining queue introduce in this thesis; source: own

illustration
Comparison of the possible sequences by the tooling costs
OrderAgent | Tools Qty changed | Tooling Costs | Production Cost

OF 0 0 54,41
oG 0 0 27,21
OH 4 40 64,15
Ol 3 30 53,16
OF 0 0 54,41
oG 0 0 27,21
Ol 1 10 33,16
OH 4 40 64,15

Table 2.3: Table comparing the original release sequence against the sequence of the online tool
cost based scheduling

the production quantity and its machining time. The tooling cost however have (see table 2.3) a
strong influence on the overall production price.

The tool cycle in industrial practice

The tool cycle, sometimes also called tool lifecycle, combines three sub processes of the tool
management, the tool disposition, the tool supply, and the tool use. Covering all functions
of those three processes, the tool cycle includes all necessary functions to guarantee the right
number of required tools at the machine tool. Although it plays an important role in production,
it has not gained much attention. This might be caused by several data interruptions the tool
cycle faces. While the tool cycle in literature is a wholesome process, guiding the cutting tool
components and their data from their first demand to their disposal, reality differs. In real world
this theoretical tool cycle is not feasible due to the lack of connectivity.

Figure 2.6 illustrates the complete tool cycle. It starts by assessing the production order related
tool demand, also called tool requirement. This is classically accomplished based on a tooling list.
The tooling list is generated from the CAM program and stored in the setting sheet data. Based
on the tooling list the gross tool requirement for the order will be estimated. Theoretically, the

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

=

Production
Order

Determination Gross
Tool Requirement

Tool
Disposition

Gross Tool Net Tool Req.
Req.

Component
ﬁ Storage
ool Supply

Component
Maintenance

Component s Tool Assembly
Disposal ey i i
- : =

Tool Life Cycle

A Tool Storage

) Setting Sheet Tool Use
. N [rso00m. 558 Corrective
program

Remaining Magazine
Lifetime Load

Figure 2.6: Tool Cycle Scheme highlighting data interruptions by flashes; source: own illustration

next step is determining the net tool requirement, which is the sum of required cutting tools
for the order minus all tools already available either at the machine tool or in storage. The net
tool requirement is therefore always the minimum tool requirement, which is a snapshot of the
tools available at the shop floor. Figure 2.6/ shows that the first data interruption occurs during
determining the net tool requirement. This interruption is caused by the missing linkage to
the current magazine load. Some "work around" solutions exist, such as storing a text files of
the tool list of the previous order. However, an interface between the TMS and machine tool
magazine has not been established yet. Such an interface could exchange the magazine load
(tool ID), and inventory number) and the remaining lifetime of the cutting tools at the machine
tool. A data exchange exists via Distributed Numerical Control (DNC) between the machine
tool and a presetting device or a cell controller with TMS on it. However, those solution are
not capable of recalling and storing the current remaining tool lifetime. Based on the net tool
requirement, a list of tool IDs and their quantities, the TMS generates a list of required tool
components, the picking order.

The components from the picking list are being collected and commissioned by a worker to

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

be assembled. In some industrial settings, the NC-program refers to cutting tools with preset
dimensions. This practice is common if the same tool type is required in a high number. In this
case the worker presets the cutting tool dimension to the NC program standard. This makes
manually entering the geometrical corrective data into the machine control unnecessary. Small
to medium sized productions commonly track and trace their tool instances, since the number of
tools on the shop floor is manageable. An inventory number is assigned to each tool instance to
store the dynamic tool data, such as remaining tool lifetime, geometrical data etc. From now on,
its cyber-physical representation goes through the same changes as the physical tool. To merge
the digital representation to its physical item, two common technologies are available, the Data
Matrix Code (DMC) or the Radio Frequency Identification Technology (RFID). The DMC is an
optical identification technology, which identifies the tool by a two-dimensional code plotted
on its tool holder. The surface cleanness can however compromise its reading. RFID tags are
commonly mounted into the tool holder. Both technologies join the tool inventory number to
the physical tool and to refer to its geometrical corrective data.

After the assembly, the cutting tools are either be measured or preset to a defined measure on
the presetting device. A presetting device (in figure 2.6 from Zoller) is an optical measurement
device with a TMS terminal. Through the terminal the tool management data base can be
accessed and manipulated. The presetting device can also be extended with an RFID read and
write terminal. The measured tool geometry is important for the machine tool so it can consider
the tools dimensions for its NC-program and prevent collisions during its execution. There are
three ways to feed this geometrical corrective data into the machine tool, either by manually
inserting it, by storing it on a portable device, or by accessing a corrective program generated
by the presetting device. A corrective program is a numerical control code, which includes the
measurements of the tool and defines the reference points for the machine control. This artefact
can be created by presetting devices with a suitable post processor. After measuring the tools
either a corrective program or a setting sheet is generated and commissioned together with
the tools to the machine tool. At this point, the second data interruption occurs during the
transmission of the dynamic tool data (lifetime and measurements). Although each machine
tool can be connected individually with the presetting device through a cell or machine control,
this linkage is labor intensive. Besides, this linkage does not enable access the machine tools
internal tool data such as the remaining tool lifetime.

When cutting tools and their data arrive at the machine tool the setup can be executed. A
magazine is filled by utilizing loading strategy, such as spreading replacement tools over different
magazine pockets so, that the time accessing them is shorter. If no magazine strategy is used,
the cutting tools will be inserted randomly to the magazine pockets. The machine control assigns
the pocket by a Duplo number (internal machine tool number) to the referencing tool type. This
Duplo number will be linked to tool identification used in the NC-program. An NC-program
could be written identifying a tool by a predefined magazine pocket number. In that case the
worker must ensure, that each tool ends up in the right pocket. Another way is flexible pocket
coding, in which the cutting tool is identified by a tool name (string or number), which refers to
a given name in the NC-program. In that case the cutting tool is assigned to the tool name or
type, already stored in the machine control. During the tool use process the machine control
counts the tool use time for each tool instance and monitors the machining process.

After dismounting the tool its dynamic tool data is no longer available at the machine tool.
At this point the third data interruption occurs. The inventory number and the remaining
lifetime can only be transferred manually back to the TMS or by using a RFID tags. Both
cases are rarely considered. Therefore, the remaining lifetime of the dismounted tools is not
stored. Once dismounted those tools are most likely not be used again to prevent the risk of

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

g ' & ™
. _ Shop Order Refer H Refer]»
| Release NC-Program . Tool List | }

/,‘

5

e —
i
./- ‘_/' \
>| Determine Tool Generate Assemble Tools &
| Gross Req. Picking Order L Assign Tool Data RFID \l
.
/
b e g
{ -~ -
I (
L P - Store Deliver & Load
s] Correction data To Magazine W
- % -
il i
{ & Load (" Assign Magazi 3
e oa = ssign Magazine
Read RFAD Correction Data position }>\‘
N 03 .
- '
[-f
>| Start End Store Tool
| Processing Processing . Lifetime on RFID |
\ \ S
7 -
{
s Read Tool (" feedTool |
ea 00! ee 00!
Unload Tool N
>|‘ naadoo! Lifetime | Lifetime into DB }]
b

-®

Figure 2.7: Activities of the current state tool cycle; source: [F'TP19

tool breakage. The further use of dismounted tools depends on the company’s tool management
strategy. Either those tools are considered valuable enough to be tracked and tracked and to
fully utilize their potential or they are not. In the first case, dismounted tools are first inspected
and then reworked if necessary. In the latter case the dismounted tools disassembled, and the
cutting items will be disposed. Figure 2.7 depicts the particular activities of the tool cycle.

Integrated tool cycle in the pilot factory

To resolve the data interruptions requires an interface between the machine tool and the TMS.
Through this interface the current magazine load including the remaining lifetime can be accessed
and geometrical corrective data can be transmitted. Remote access of the current magazine
load enables the determination of the net tool requirement and optimizes the usage of the
assembled cutting tools. By resolving this linkage issues realizes the tool cycle as it is mapped
in the literature and transforms the real-world process. A digital process transformation is
a process restructuration, either by extending its functional capabilities or by optimizing its
resource allocation due to newly accessible data. During the groundwork of this doctoral thesis,
those technological linkage issues were solved for the tool cycle of the TU Wien Pilotfabrik.
The resulting tool cycle is called the integrated too cycle. Its newly accessible data enables
determining the net tool requirement and established a continuous process, which could be
digitally mapped fully.

Resolving the linkage issues

In this groundwork, a connection between the machine tool and the TMS has been implemented,
to remotely exchange the current magazine load and the remaining lifetime of those tools. On
the tool management side, setting from the company Zoller has been used, consisting of the
TMS Gold software on a host server, a presetting device "Venturio" including a TMS client,

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

I

Operator

Machine Management Zoller
Tool (CMI) System Webservice
T

Loading

|_________

T
|
|
|
|
== |
RFID Read Tool ID |
|
|
|
|

CMI Request
Tool by ID
HTTP /GET
T Tool Data)
1 QuerySQL DB
M | Eeseeesmeensd] -
<= — create Tool- — - e
|
= _show Toolin__ .
_deployed Machine
Insert SQL DB
_____________ !

Overview _J HTTP /POST
L]
I 1
| |
I 1
| |
I 1
| |
| |
: :

Figure 2.8: Realized communication with proprietary interface; source: |[F'TP19

and the Zoller webservice, an HT'TP webservice for connecting to the backend TMS database.
On the machine tool side, it is was necessary to use some vendor specific interfaces to fill the
gap. To en-/decode the data on RFID tags and store them in the tool list, the TDI (Tool Data
Information) Ident Connection from Siemens has been used. A reading and writing-terminal has
been implemented on the presetting device and on the machine tool. To grant remote access
to the machine tool internal tool data "Create Mylnterface" by Siemens has been used on top
of the machine tool control. As figure 2.8 published by the author and her colleagues [F'TP19)
shows, the machine tool read using the TDI the RFID tool identifier and requested the tool data
from the Management system via CMI. The management system requested the data from the
TMS webservice and converted it to the Sinumerik specific tool data format to create the tool in
the machine control supported format. The Management system used HT'TP to receive the tool
instance data from the Zoller webservice. During machining, the CMI interface provided updates
of tool lifetime each time a tool is put back into the magazine. This data will be returned to the
TMS to be stored. With TDI and CMI on the machine side and the webservice on the TMS
side the connectivity issues have been solved. For further details on how the linkage issues have
been solved can be found in the CIRP publication [FTP19].

Transformed processed

With the now accessible data, the tool net requirement can be determined, and the tool cycle
process can be restructured. Figure [2.9 highlights the process changes in green. The machine
tool is now capable of accessing the tool data and the correction data for each tool by reading
the tool inventory number from the RFID tag and requesting its data through the CMI interface.
This remote information enables now tracking the true tool consumption for each order. After
machining the remaining lifetime can be updated in the database in the same way. Determining
the tool net requirement optimizes the usage of existing tools as they remaining lifetime could
be exploit better. Making the tool net requirement feasible, reduces the number of tools to be
assembled and lowers the cost of the tool supply. Now only tools, not available at the shop floor
will be assembled. Assembling a smaller number of tools results in a time and cost saving for
each tool supply order. In addition, the set-up time is reduced, as well as the necessary magazine
load due to the better exploited tool lifetime. All those savings realized by the newly accessible

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

~

S
Shop Order i Refer Refer
Release NC-Program Tool List A
X AN //."
o
>| Determine Tool]i e — = Determine Too\
Gross Req Net Req
_/
4 i
Magazine Load R e
SE——
[ToolID][ToolLifeTime] y |
e
(‘
>(Generate _‘ Assemble Tools & o P i }»
Picking Order Assign ToollD to RFID teseting ‘
' /
)
B

r
L (k (" Deliver & Load i
>| Load data in DB = e = Read RFID
machine tool Magazine)
L o &, o4 /_r
7
I fi T = ey
i Automatic Request — Assign Magazine Processin }»
L Correction Data from DB position e \‘
4

7

[~ d) N
\>{ Tool Change H‘/ Auromat\c. DB_ ==
\) L Update tool lifetime

Figure 2.9: Activities of the transformed tool cycle; source: [FTP19

data result in lower tooling cost. The here realized tool lifecycle develops new opportunities
on a higher process level. For example, with the new data orders could be scheduled in an
adequate sequence, which minimizes the tooling cost. Of course, this schedule must be managed
in a flexible manner considering the current magazine load and react on newly arrived orders.
This new possibility to schedule orders in a flexible manner based on the magazine load shall be
further explored.

Based on the integrated tool cycle, the author envisaged the use of a multiagent system to schedule
flexibly and autonomously orders in a sequence with minimal tooling costs. A multiagent system
as flexible scheduler was considered as perfect fit. This schedule shall be achieved by utilizing
price-based negotiations between the agents. The first pillar of this doctoral thesis addresses
the designing of such a MAS for the integrated tool cycle. During the first design attempts the
lack of design methodologies meeting the specific requirements of the manufacturing domain
was discovered. The second pillar of this doctoral thesis addresses this issue by developing a
MAS Design Methodology for the Manufacturing Execution System Domain (DM-
MESD), which meets the specific domain requirements. The DM-MESD presented here,
especially addresses mechanical and industrial engineers. It offers the designer, in contrast to
already existing design methodologies, the possibility to evaluate if the design methodology is
suitable for the desired application in advance.

2.2 Multiagent system

2.2.1 Agents and their characteristics

A multiagent system is a society of competing and cooperating agents. The characteristics of a
multiagent system can be divided into three layers, the single agent, the agent’s interactions,
and the structure of the society. First the characteristics of a single agent are described and the

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

most popular internal agent architecture; Belief, Decision, and Intension (BDI) is introduced
briefly. Wooldridge and Jennings defined an agent in 1995 [W.J95] as a software process with
following characteristics:

Autonomy
Operates without human intervention and has the sovereignty over its actions and state

Social ability
Interacts with other agents

Reactivity
Perceives its environment and acting upon events

Proactiveness
Takes the initiative

As Giorgini and Henderson stated in their work, that the defining of agents is not straightforward
since numerous interpretations of the agents’ characteristics do exist [GHS05]. Although the
characteristics of agents vary in the literature, a common consensus has been found on autonomy,
situatedness, proactivity and sociality. An agent’s response to its environment is called its
behavior, which can be either proactive or reactive. A proactive agent acts without an external
order to do so, while a reactive agent only responds to its environment. According to Giorgini
and Henderson, most designed agents are a combination of both agent types.

Proactiveness and autonomy are based on interactions with the environment. A reactive agent
only proceeds with its behavior if a change in the environment occurs. Agents sense systems or
environmental changes as occurring events. An autonomous agent is independent as it decides
how to respond to an incoming communication. Deciding which partial behavior should be
proactive or rather reactive, is the designer’s challenge. According to Giorgini and Henderson,
agents are often compared to objects. An agent perceives its environment by using sensors or
interfaces to resources. An agent action is defined as an environmental change or as a change in
the agent’s state, caused by the agent.

Jennings [Jen00] set encapsulation and situatedness in relation: ,an agent is an encapsulated
computer system that is situated in some environment and that is capable of flexible autonomous
action in that environment in order to meet its design objectives®. Some other agent’s capabilities,
such as mobility, for example cause dissent in the community. There are similarities between
objects and agents, and this perspective has been strengthened by the many object-oriented
design methodologies adapted for designing multiagent systems. According to Giorgini and
Henderson, this combing perspective results in “clever objects” and “objects that can say no”. An
Agent’s decision-making is based on a “perceive-decide-act” cycle. The interaction between agent
in an environment is based on the notation of perception and action the agent communication,
that has been used. Such a notation is the basis for the negotiation between agents in the form
of contract, auction, and request protocols.

The two challenges from the software engineering perspective are firstly that the agent types are
not predefined during the designing phase, which requires an iteration. The second challenge is
that considering agents instance arriving and leaving is complex.

The best-known agent architecture “Beliefs, Desire and Intention” has been published by Rao and
Georgeff in 1995 [RGT95]. Those three concepts are characteristic for a higher-level of abstraction
and will be mapped in the design layer. Beliefs reflect the depth of the agent’s environmental

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

i {consistentset of}

Percept Event Belief —Goalbank/-~> Desire

leads to
ce'71r'
(/
sge,ne

Action i
(ak.a. Task) S K

(wrj;si)f)
1

Plan

Vi

Intention

leads to

Figure 2.10: BDI model setting the concepts into relation; Source:[HSTDO05]

sense, while desires reflect the different objectives, which might include contradictions. Intentions
on the other hand display a coherent set of goals with no conflicts. Henderson et al have
published a model in 2005 (see figure 2.10) displaying the relationship of BDI concepts [HSTDO5].
Each goal leads to at least one plan, which consists of an action and a pursuing goal. An agent
senses its environment through occurring events, therefore an event might lead to an action.
Events also affect the agent’s perception and can have a mutual effect on its beliefs and vice
versa. Events also trigger the new establishment or adaption of goals. An agent has a set of
goals or objectives. A goal without contradiction is, as the figure shows, an intention, which is
inherited from the goal. While the relationship between goals and desires is more complex, a set
of goals exist as inheritance of the class goal. Those sets of goals form the agent’s desire, as far
as they are consistent.

The BDI model describes the internal structure of one agent, not the interaction of an agent society.
Therefore, methodologies for agent-oriented design can be divided into those methodologies
designing multiagent systems and those designing solitaire agents. Jennings and Wooldridge
[W.J95] stated that the coordination between agents might be difficult to achieve, due to the
following impediment:

Agents actions may interfere
Two robots reaching for the same workpiece, for instance, will collide

There might be global constraints to be met
Especially in manufacturing, schedules must be kept and might cause coordination issues

No individual agent has the power over all resources
This requires a successful coordination of several agents to maintain the required process
flow

The interaction of agents utilizes protocols and exchange mechanisms, such as negotiations.
Negotiation is seen by Jennings and Wooldridge as a joint decision between at least two parties,
where first contradictory demands are made to then find a consensus [W.J95]. There are several
negotiation templates inspired by human negotiations, the most prominent are auctions. Auctions
are a trade mechanism to exchange goods or services, and can be differentiated into three types,
one-sided, two-sided, and continuous auctions. In a one-sided auction, only one-party bids, while
the other party accepts or denies the offer. In a two-sided auction an agent places bids to an
auctioneer, who requests and then matches those bids to accomplish several trades. And then

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

there is the continuous auction, which allows bids and requests to arrive over time (and matches
both over time). Based on these auction types, several auction protocols have been established.
The three most known auction types, the English auction, the continuous double auction (CDA)
and contract-net protocol (CNP) are reviewed briefly.

English auction
is a one-sided auction type, the auctioneer aims to sell at the highest price and requests
bids, of which it chooses the best offer.

Continuous double auction (CDA)
is a mix of the two-sided and continuous auction, bids and requests were continuously
made over time and matched by neutral auctioneers according to predefined market rules.

Contract-net protocol (CNP)
a protocol that assigns tasks to individual nodes. It assumes, that there are several parties
capable of fulfilling a task. Parties offering a task are called “manager” and the party
requiring the task is called “contractor”.
This protocol is initiated by the manager, who announces its task to possible contractors.
The contractors are placing their bids and the manager chooses the best bid and sends the
chosen one an award message.

Agents possess higher-level characteristics that evolve from plainer characteristics. Scalability,
adaptiveness, flexibility, and maintainability for example, are such higher-level characteristics,
that root in autonomy and proactiveness. Those characteristics are attributed to a society of
agents (MAS). Scalability is a system characteristic, which enables the system to raise or minimize
its capacity by raising or reducing its resources. A MAS managing a production schedule could
expand its capacity by deploying more agent instances of the same types. Adaptiveness is
based on the systems capability for autonomy, and proactiveness, but also on its scalability and
reaction to a changing circumstance. An adaptive MAS is capable of coping or contributing to
environment and circumstance changes. Incase of a production scheduling for example, scalability
describes the system’s capability to increase and decrease its capacity. From the throughput
perspective, the system is adaptable, if it copes with the raised demand, although it is limited
by the production limits. This might be different when it comes to the ability to adapt to a new
product, workplan, or manufacturing technology. The flexibility of the system is measured by
its range of adaptiveness to expected and unexpected circumstances. The higher the amount of
adapting strategies a system has, the more flexible it reacts if one or more changes occur. A
system’s flexibility is defined by its ability to bend to the changing circumstances by considering
and adapting to them. While those characteristics are desired, autonomy and proactiveness
are also the fundament of the not desired emergent behavior. Emergent behavior is seen as a
wildcard of the system’s reactions to unforeseen or emergent events, which cannot be predicted.
According to Jennings et al. [Jen00], this unpredictability leads to two key arguments against
MAS:

e The patterns and outcomes of the interactions are inherently unpredictable.

e Predicting the behavior of the overall system based on its constituent components is
extremely difficult.

The lack of the system’s predictability signals, that the whole might be more than the sum of
its parts. This means that a system can not be predicted by inspecting the individual parts. As

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

a further consequence, a bottom up perspective is not descriptive of the system’s reaction. This
circumstance is supported by the development of top-down design methodologies, such as Adelfe
or Gaia. Reasons for this emergent and unpredictable behavior is the combination of two agent
characteristics on an individual level (autonomy and proactiveness) and the complexity and
mutual interference of the system at runtime. Agents decide at run-time what action to take
next for each specific context. Although acquaintances between them are designed and known,
neither the sequence in which those interactions might occur, nor their success can be ensured
before the run time, which causes unexpected collective behavior [Jen00]. Those numerous
factors impede predictions, which are aggravated by the de-coupling and variability. Even if
agents make requests, due to their autonomy they might be immediately accepted, modified, or
even refused.

Concepts

Agent based approaches are distinguished not only by the above-mentioned characteristics, but
also by the concepts they implicate. Such a concept is encapsulation, which is the capability
for self-containment. According to Shen et al. [SHYNO6], encapsulation can be realized either by
functional or by physical decomposition. According to the functional decomposition approach,
agents can encapsulate functional modules. In manufacturing, such functional modules could be
transportation, material handling, scheduling, quality control, etc. This encapsulation approach
emphasizes, that the designed agents have no explicit relationship, or interface to their physical
entities and assets they represent. This loose relationship of agents with their physical entity
enables the integration of agent-approaches into already existing systems and resolves the legacy
issues. The physical decomposition approach on the other hand binds the agents as cyber-physical
representations to their assets. The agents possess an explicit relationship to their physical
entity.

Agents society offer the concept of three organizational structures, the hierarchical, federation
or the autonomous approach. The hierarchical organization structure is similar to today’s
manufacturing state. Although it is criticized for its centralized architecture some MAS projects
still have realized it, such as the international Holonic Manufacturing System (HMS) project
[Dee01]. The federation organizational structure is built on the agents’ ability to coordinate,
interact, and cooperate. The federation approach has three popular approaches build on either,
the facilitator, the broker, or the mediator. The facilitator approach is based on an intermedium
(the facilitator) enabling interactions between local and remote agents. The facilitator fulfills
two services, the routing of messages to their proper destination and the translation of incoming
messages so that the recipient can process them. Such a destination can be a group of agents.
The broker approach is like the facilitator approach, but with the difference that the broker is
responsible of finding an agent which will complete the task. While the facilitator only forwards
the messages to their destination, a broker must find a suitable contractor to fulfill the task. In
its role the broker monitors and notifies the process from the request to its task fulfillment. The
mediator approach extends the services of the broker as it coordinates and stimulates cooperation
between the agents. It also learns from the single agent’s behavior and takes it into account for
future coordination. Overall, it can be said, that the federation architecture provides a stabile
organizational structure coordinating activities and optimizing resource allocation. This agent
organizational structure supports scalable MAS designed with the functional decomposition
approach. The autonomous agent organization approach differs from both above-mentioned
approaches as it does not include any coordination mechanism. This structural approach rests on
the individuality and autonomy of each agent instance. An autonomous agent communicates and
interacts directly with other agents in its own way, achieving its own goals. An autonomous agent

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

oftware

Agent Platform

Agent i
Management Directory ACC
System

Internal Platform Message Transport

|
|
+—
Facilitator +—
|
|
|

Figure 1 — FIPA reference model of an Agent Platform

Figure 2.11: FIPA specification reference model, source: [BPR99]

possesses knowledge of its environment either through sensors or provided protocols. Beside its
high grade of flexibility, scalability, and adaptability the autonomous agent bears the risk of
emergent behavior, especially for a high number of agents.

Another concept associated with agents, although it has its origin in the Artificial Intelligence
(AI) area, is the concept of learning. The capability of a software entity (agent or not) to learn
is a complex and charged topic in computer science. Agents with the capability to learn could
essentially benefit the manufacturing domain. A learning agent could observe its environment
and extend its knowledge to adapt its reactions. The mechanisms that would support this
process are not subject of this doctoral thesis as they are issues of computer science.

The next concept offered by agent-based approaches is simulation. With emergent behavior
and the manufacturing domain in mind, simulations to estimate collective behavior become very
important. However, agent-based systems can also be a way to simulate groups of different
interests and their mutual influence, as they can be mapped by software agents. Such MAS, for
example, one that maps a market with buyers and sellers or any other society, can be used to
simulate the collective behavior as an answer to environment changes.

2.2.2 FIPA Specification

The Foundation for Intelligent Physical Agents (FIPA) was founded in 1996 with the aim of
providing suitable standards that would ease the development of agents. Since in 2005 FTPA was
reincorporated into IEEE as a standards activity. The focus was on specifying the cooperation of
different agent platforms, by offering a standardized agent model and communication language.
The FIPA Specification offers a reference model of an agent platform (see figure 2.11). This
reference model defines key agents necessary for the management of the platform and its
agents. The reference model also specifies the agent management content language and ontology
[BPR99]. Bellifemine et al. [BCGOT] summarized the four core concepts of the FIPA, the agent
communication, the FIPA sublayer, the agent management and the abstract architecture as it
follows in this subsection:

The agent communication in the FIPA is based on the Agent Communication Language (ACL).
The ACL refers to the speech act theory by stating that messages represent speech acts or
performatives (communicative acts). The FIPA-ACL includes a set of 22 communicative acts.
Each communicative act defines the effects on the attitude of the sender and receiver agent.
The approach of communication acts is compatible with the BDI. The FIPA-ACL uses mostly

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

communications acts to inform, request, agree, not understood, and refuse. The specification
states, that to be granted as fully compliant, receiving any FIPA-ACL communicative act, and
at least answering it with "not-understood" is required.

The FIPA communication stack is separated into the seven FIPA sublayers [BCG07]. Those
sublayers are built within the application layer of the classical OSI or TCP/IP stack.

Transport
Is the lowest application sublayer protocol, FTPA has message transport protocols for IIOP,
WAP and HTTP.

Encoding
defined message representations for higher-level data structures including XML, String
and BitEfficient.

Messaging
The message structure is independent of encoding to encourage flexibility, key parameters
(sender, receiver, message type, time-outs. etc.) if necessary.

Ontology
The individual terms of the message content reference an application-specific conceptual
model or ontology.

Content expression
The content can be of any form, but guidelines for the use of general logical formulas,
predicates, algebraic operations for combining and selecting concepts exist. Examples of
logic formula include: "not", "or", "implies", "equiv", etc. Examples of algebraic operators
include "any" and "all".

Communicative act
It implies a simple classification of a message in terms of actions, or performatives. Examples
include "inform", "request" and "agree".

Interaction protocol or IP
It defines several interaction protocols.

Another key concept of the FIPA Specification is the Agent Management. It is a normative
framework, in which agents can exist, operate, and be managed. It offers the logical reference
model for the creation, registration, location, communication, migration and operation of agents
(see [fTPAO3]). Its reference model (figure2.12) includes the components building the framework
[BCGO7], which are :

Agent Platform (AP)
The Agent Platform is the overall infrastructure in which the agents are deployed. The AP
includes the machines, operating systems, FIPA agent management components (agent,
DF, AMS, MTS), the agents themselves and any additional support software.

Agent
An agent is a computational process, that inhabits an AP and offers computational services.
Those services can be published as a service description. The design of those services is
not subject of FIPA. FIPA only defines the structure and encoding of messages used to
exchange information between agents. An agent can be registered at several transport
addresses at which it can be contacted.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Agent
Platform

contains
0..n

contains
0..n

Agent Service
Description

Agent
Description

Figure 2.12: Agent Management Ontology from the FIPA specification, source: [BCGOT

Envelope | Transport
P information
Encoded
Payload 7 message
Message < Message
parameters
P Message
Content < ceniant

Figure 2.13: Message structure from the FIPA specification, source: [BCGOT7

Directory Facilitator (DF)
The DF is an optional component of an AP. Like the yellow pages it provides a maintained
and accurate list of all agents at any given time. Any agent wishing to publicize its services
to other agents must find an appropriate DF and request the registration of its agent
description. The DF fulfills therefore the role of the previously described broker.

Agent Management System (AMS)
The AMS is mandatory as it is responsible for managing the operation of an AP, such as
the creation and deletion of agents, and overseeing the migration of agents. Each agent
must register with an AMS to obtain an Agent Identifier (AID). The AMS uses the Agent
Identifier as a directory of all agents present within the AP and their current state (e.g.
active, suspended or waiting). The life of an agent terminates with its deregistration from
the AMS.

Message Transport Service (MTS)
The MTS is a service. It transports FIPAACL messages between agents on any given AP
and between agents on different APs. The general structure of a FIPA-compliant message
is depicted in Figure 2.13 Messages are providing a transport envelope that comprises the
set of parameters detailing, for example, to whom the message is to be sent.

Bellifemine [BCGO07] summarized the key achievements of FIPA as it follows:

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

» Specifications supporting inter-agent communication
o Key middleware services

e Highly used agent communication language

o A set of key interaction protocols

e Available FIPA compliant open source tool-kits

e FIPA compliant agent application platforms

o Agent-specific extension of UML, AUML

Several FIPA compliant agent platforms were developed. Three well-known agent platforms are:
JADE (http://jade.tilab.com/), FIPA-OS (http://fipa-os.sourceforge.net/)
and ZEUS (http://more.btexact.com/projects/agents/zeus/). Due to its popular-
ity, its high range of study material and its vivid community, JADE was chosen in this thesis.
In the next subsection gives a short introduction to JADE. Further information about JADE
can be found on the website: JADE (http://jade.tilab.com/).

2.2.3 JADE

The Java Agent Development Framework (JADE) was developed by Telecom Italia and is
an open-source software, with an active community. JADE provides an implementation of
the FIPA-ACL. As intended in the FIPA-ACL, JADE also supports XML-based syntax and
offers an XML-codec as an add-on. JADE simplifies the development of MAS while it ensures
FIPA compliance through a comprehensive set of system services and agents. JADE offers the
programmer a FIPA-compliant Agent Platform including includes the AMS, the DF and the
ACC (Agent Communication Channel). The communication between agents on the same host is
based on Java events, but it also offers multi-domain applications by the starting of several DFs
(Directory Facilitator) at once. JADE has an extended library of FIPA interaction protocols
ready to be used, and offers a graphical user interface (GUI). Its GUI enables managing and
monitoring several agent platforms. The core of the JADE software architecture (see figure
2.14) is the coexisting Java Virtual Machines (VM). Between those VMs the communication
is based on Java RMI (Remote Method Invocation). Thereby each VM is a basic container
of agents. A container provides a complete run time environment for concurrently executing
the included agents. Each agent container is a multithreaded execution environment, which
composes one thread for each agent and additional system threads spawned by RMI runtime
system for dispatching messages[BPR99]. To model the tasks that an agent shall perform,
JADE uses behavior abstractions. JADE offers behavior classes and agents instantiate their
behaviors according to the needs. From a programming point of view an agent is an active
object with a thread of control. JADE uses a thread-per-agent concurrency model instead of a
thread-per-behavior model [BPR99]. So that, two behaviors of the same agent are scheduled
cooperatively, although different agents run in the multithreaded environment. The behavior
class model of JADE is depicted in figure 2.15, published by [BPR99].

2.2.4 MAS implementations and demonstrators

There multiple ways to classify MAS application in the manufacturing domain. The MAS can be
sorted by the agent internal architecture, by their organizational structure, or by the platform
environment they use. The MAS applications presented here are limited to those applied in the

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://jade.tilab.com/
http://fipa-os.sourceforge.net/
http://more.btexact.com/projects/agents/zeus/
http://jade.tilab.com/

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

38

BROWSER
APPLET CONTAINER
A A A A
G G G G
E E E E
N N N N
T T T T
1 2 3 4

Message Dispatcher
I
Java RMI Java RMI

AGENT PLATFORM FRONT-END

AGENT CONTAINER

6

A A A A A
G G G G G
E E A E E E
N N D C 44 N D N N
T T F (&) T F T &
2 0 8 9

Message Dispatcher 'E Java RMI
RMI Registry

1 Message Dispatcher

1op
A

Figure 2.14: Software architecture of JADE, source: [BPR99]

Behaviour This abstract class is the generic interface

for Behaviour scheduling. Could be directly

This abstract class models
agent behaviours that are

to be executed without
interruption.

A SimpleBehaviour execute()
is seen as an atomic
computation unit by the

bel. d only for pretty unusual

+ void action() {fabstract}

+boolean done(Yabstract} and/or scheduling needs.

Behaviours, with special synchronization

|
ComplexBehaviour

void preAction()

void postAction()

boolean bodyAction(){abstract}

+ void addBehaviour(Behaviour b)

+ void removeBehaviour(Behaviour b)

A JAN

This class models agent behaviours that can be

i lexBehaviour holds a
list of children Behaviours and can be interrupted between
two of them. This class should only be extended in order to
create new kinds of composite behaviours with custom
children scheduling. A couple of protected methods,
preAction() and postAction() are invoked before and after
children Behaviours, subclasses can override these to
obtain fork()/join() style execution structure.

This class is a SimpleBehaviour

scheduler.
[
SimpleBehaviour
interrupted during
which executes continously
because its done() method
always returns false.
[
OneShotBehaviour

<

Cycli i i i NonDeterministicBehaviour

bodyAction() /cl # bodyAction()

This class is a ComplexBehaviour

This class is a SimpleBehaviour
which executes only once,
because its done() method

always returns true.

which executes its children in
non-deterministic sequence (really

a round-robin algorithm is used).
Different objects can terminate when
either any or all or a fixed number

This class is a ComplexBehaviour
which executes its children in
sequence, and terminates when
its last child ends.

of children end.

Figure 2.15: JADE behavior class diagram, source: [BPR99)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

manufacturing domain. Thereby the focus is set on functional areas relatable to the investigation
area, such as production planning and scheduling. In this subsection reviews some of the most
fitting projects. Manufacturing planning and scheduling foresees and plans the production
demand with the aim of doing so in the most profitable way. In the Gerstner Laboratory
EXPlanTech, a production planning MAS has been deployed (see [PVB05]). Its major tasks were
data collection, monitoring, and resource allocation by agent negotiations. These negotiations
tried to find the best fit for projects with different deadlines and priorities [PMO§]. This MAS
was designed to include distributed shop floor data. ExPlanTech was successfully integrated
into the ERP system of a cast and molds manufacturer. Its range of functions was expanded, so
that it could cover some functions of the supply chain.

Another project in this area was developed by Saarstahl AG and DFKI GmbH is the AgentSteel
System, a MAS for planning and scheduling the steel production. AgentSteel was fully integrated
into the Saarstahl IT infrastructure and utilizes webservices to provide an enterprise external
SOA (see [JMMLSFO05]). A realization of an enterprise scheduler based on multiagents was
developed for Axion-Holding, Russia by Andreev et al. [AIST10]. The authors developed a MAS
based on three agent types. The first agent type was the decision maker. Those agents handled
and participate in real world negotiations. The second type were the agents of unanimated
objects, which represent equipment and orders capable of acting as independent entities. This
type of agents had its own objectives and constraints to which it was bound. The last type of
agents was called "group" agents. Those agents represent departments or units of the production.
The authors combined a set of those group agents to a "swarm'. Each swarm representing a
production department had its own multiagent scheduler.

Another MAS project, which was deployed in a similar application area to the investigation
area, is the MAS designed for the KUZNETSOV corporation [SSST13]. KUZNETSOV is a
large Russian national aircraft jet engines manufacturer, which sought a cooperation with Smart
Solutions, Ltd to design a MAS scheduler. Thereby Shpilevoy et al. designed and developed
software agents representing the interests of orders, resources, workers, machines, operations, and
materials, using relationships between the operations [SSST13]. The overall system architecture
is displayed in figure 2.16, including the client layer, the server side (MAS) and the utilized data
storage layer. The core scheduling is handled in the scheduling engine. It includes the agent
platform and provides therefore the following functionalities:

o Agent dispatcher

o Messaging services

e Agent lifecycle support

e Agent creation

o Agent termination

e Communication protocols

o Representing the resulting schedule

The MAS responded fast to new events and proactively improved the operation plans. This
was realized by optimizing the use of free machine time or worker slots, by the sequence of
shifts and reallocations of previously scheduled operations to other resources. This optimization
was achieved by changing "unstable equilibriums" for a "stable equilibriums" measured by the
bonuses and penalties of a virtual agent market. According to the authors its architecture is very

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Client side

User |I . .
Interface Authorization <£‘ Integration

H Server side
i Business Scheduling

Scheduling
data source

Data manager
Wim— 1 module

Data storage

< Integration

Notification

Schedule al products,
check results

i Check

/ results

i

Schedule
yperations

L" Does

i everyone
: satisfied

agent

‘ Who can execute \
i operation and at "\\

Scheduling i what cost ‘! Can the worker
activities : 1 use machine

i delegation

1
(-

Figure 2.17: Main communication lines between the agents types, source: ﬂm

close to the PROSA architecture. The MAS consisted of at least eight agent classes. Order
Agent, had cost, priority, deadlines and production details as its attributes. This agent aimed
to achieve the best possible allocation for itself. The Organization Agent, which tried to
improve given KPI and monitors and harmonizes the process. The Worker Agent tried to get
as many jobs as possible, to raise its possible bonuses, achieved for quality and performance.
The Machine Agent sought an optimal machine utilization. The Technological Process
Agent coordinated technical operations. The Technological Operation Agent worked as a
facilitator, with the aim of finding the best possible worker or machine. The Operations Lot
Agent aimed to improve the efficiency by consolidating operations if possible. The MAS had
a class of agents called the Other Agents, which function as placeholders for required entity
representations, such as materials, instruments, transporter, etc. The communications between
those agent classes can be seen in figure [2.17.

Due to its structure and its marketplace strategy this MAS project realized the following

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

advantages during its first testing:

e An increase of workshop productivity from 10 up to 15%
e A reduction of scheduling efforts

e An increase of the efficiency of resources up to 15%

e A reduction of the time of response to unexpected events

e An increase of the completed orders, within a measured timeframe from 15 up to 30%

Besides those MAS projects, which are clearly located in the manufacturing planning and schedul-
ing domain, there are projects with a wider functional range, such as PABADIS, SOCRADES,
and IMC-AESOP. All three projects tackled functions from automation up to enterprise planning
and control [LCK16].

2.3 Design methodologies

2.3.1 Common design methodologies for multiagent systems

To give the reader an outline of the common MAS design methodology, figure [2.18 displays
Giorgini and Hendersons’s graphical overview of design methodologies [GHS05]. It shows
the different sources from which design methodologies evolved, focusing (beside Tropos) on
methodologies with roots or techniques from the object-oriented approach. Only the commonly
known design methodologies for multiagent systems or agent-software are considered. Emergent
behavior impedes the system’s predictability since inspecting its single parts no longer provides
an insight of the system’s reaction. It requires top-down design methodologies, such as Adelfe
and Gaia to address emerging behavior. Besides those two top-down design approaches, various
other design methodologies do exist, which Wooldridge, Jennings and Kenny [WJKO00| classified
in four groups:

Those using existing object-oriented modeling techniques or methodologies
as their basis seeking to either extend and adapt the models or to define a methodology
for their use.

Those with origins in knowledge engineering
Which are based on knowledge methodologies and modeling techniques. Those methodolo-
gies are suitable to verify the system structure and function.

Those which include existing formal methods and languages
and provide definition within a framework that supports agents or agents systems.

Those which have been developed completely new for specific agents
such as CASSIOPEIA.

The possibilities to classify design methodologies are vast. One-way of classification is to divide
design methodologies into those that use a role concept to map the agents’ interactions, such
as Tropos, Gaia and PASSI and those that do not. Agent-oriented design methodologies can
also be divided into those that consider an agent as a solitary entity with focus on the BDI
architecture, and those which prioritize designing an agent society. The latter mimics human

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

MAS-CommonKADS
(+AI/KE)

INGENIAS MaSE
Tropos

MESSAGE Adelfe

R \\ / P /G b

OMT Fusion OPEN

\//

‘/ Prometheus

Figure 2.18: Landscape of agent-oriented design methodologies and their influence, source:
IGHS05]

AO

PASSI

organization structures by utilizing roles to design a MAS, such as Tropos, MAS-common
KADS etc. One of the core objectives of a MAS design methodology is to define the agents’
interactions and cooperation. MAS design methodologies also differ by those which are platform
independent and do not consider the implementation (Gaia) and those which offer extended tools
and methods to turn models and designs into a code skeleton (PASSI). There are similarities
between object-oriented and agent-oriented approaches. It is therefore not surprising that many
MAS design methodologies, besides Tropos, have object-oriented roots (see figure 2.18). There
are six branches, evolved from the object-oriented paradigm according to Giorgini and Henderson
[GHSO05]: PASSI, which will be described later in detail, RUP (1999), OMT (Rumbaugh 1991),
Fusion (Coleman 1994), OPEN and Prometheus. While some methodologies such as PASSI
gained their familiarity with the object-oriented approach by utilizing object modeling language
(UML), others like MAS-CommonKADS are rather Al-based yet claim to be influenced by
object-oriented approaches.

In 1991 Rumbaugh et al [RBPT91] introduced the Object Modeling Technique (OMT),
which is based on object-oriented analysis and design. This methodology produces three models
to capture a different perspective:
Object model
which is a structural description of objects, including identity, relationships, attributes,
and operations.

Dynamic model
which maps the sequence and timing of operations, especially events, sequences of events
and states.

Functional model
Which maps the transformation of values, functions, constraints, and functional dependen-
cies.

From OMT, two branches of design methodologies developed leading to MAS-CommonKADS
on the one side and MaSE on the other side. Both branches are also influenced by knowledge-
oriented methodologies. The Multiagent System Engineering (MaSE) derives roles from

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

goals [DelLl99]. As most MAS design methodologies, MaSE has an analysis and a design phase.
During the first phase, goals will be captured by use cases and a goal hierarchy. In the design
phase, roles are assigned to agent classes. Then interaction protocols are defined. After that,
the internal agent architecture is specified as a last step, the deployment of the agents will be
addressed. Beside this structured flow, MaSE does not specify criteria to complete the single
steps. For the interaction MaSE offers a protocol specification model, but no method to design
the protocols.

MAS-CommonKADS is an extension of the CommonKADS methodology. Both methodolo-
gies originated from OMT and extended its techniques to map agent-oriented aspects. MAS-
CommonKADS [IGGV97] starts with a conceptualization phase, to capture the requirements by
utilizing five modeling phases:

1. Agent model

o Identifies actors through use cases

o Identifies active objects

o Assigns entities to agents

o Offers initial task model to identify functions to be assigned to agents
o Uses of an agent by other agents

2. Task model
Splitting tasks and mapping goals, inputs, and outputs to fulfill the tasks

3. Co-ordination model
Assigns interaction links by building prototypes and analyses their interaction in the
following steps:

e Prototypes of interaction scenarios

e Events or messages in a flow diagram

e Data exchange for each interaction

o Finalize each interaction in a state-transition diagram

o Identify the synchronization type for each interaction

4. Knowledge model
Maps knowledge in form of an ontology

5. Organization model
Displays structure of the agent society

MAS-CommonKADS provides several options to identify agents, such as linguistic case analysis,
use cases or conceptual analysis. However, it lacks prescriptiveness and guidelines when it
comes to implementing the steps. It can therefore be said, that MAS-CommonKADS addresses
experienced MAS designers, rather than industrial engineers.

Tropos has no direct link to object-oriented approaches, as it is a system-oriented methodology
IBPGT04]. Tt connects models of single concepts, such as goals, tasks, roles, responsibilities,
interactions, and organization to each other, like Prometheus. It begins by listing requirements
through modeling goals, tasks, resources, actors, and dependencies. Its next phase is the design
phase, in which actors in the system are refined, goal-fulfilling capabilities are identified and those
concepts are assigned to agents. Tropos does not offer pattern to identify the above-mentioned

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Dynamic Structural Overview | Entity Descriptors
Models Models

System Scenarios Goals Functionalities
Specification actions & percepts
Architectural | (interaction diagrams) | (coupling diagram) Agents

Design Interaction Protocols | (agent acquaintance) Messages

System Overview
Detailed Process Diagrams Agent Overview Capabilities
Design Capability Overview | Plans, Data, Events

Figure 2.19: Classification of Prometheus models, source: [PWO02

concepts. It also lacks prescriptive methods, according to Bussmann, Jennings and Wooldridge
[BIW13].

Prometheus [PW02] addresses industry professionals and undergraduate students, with no
background in agent technology [PWO02]. It has three phases: the system specification, the
architectural design, and the detail design. Prometheus uses scenarios instead of roles; besides
that, it falls back on concepts, such as goals, functionalities, actions, and perceptions. Its major
models are either dynamic, structural overview models or entity descriptors (see figure 2.19).
The system specification phase specifies the system by using goals and scenarios as concepts.
The next phase is the architectural design phase, starting by identifying agents and capturing
the system’s overall structure in a diagram. Afterwards, scenarios will be transformed into
interaction protocols. The last phase is the detail design, which addresses the internal design of
each agent and therefore defines capabilities, data, events, and plans. Prometheus stands out as
it provides a detail guidance on how to group functionalities (see [BJW13]):

e Group, if functionalities are using the same data
e Group, if interaction can be reduced
e Do not group, if data should be available for security or privacy reasons

e Do not group, if functionalities will be modified by another party

However, it must be stated, that resting the grouping criteria only on data and interaction pairing
is a good start, but not enough to capture dependencies in the production. Data for example
can be used by different functions, without the necessity of combining them. The authors stated
that Prometheus can be used by undergraduate students and industry practitioners, which
meets the domain specific requirement. The authors used Prometheus to ease the designing and
implementing of multiagent systems in JACK for their computer science students. It utilizes
UML with specific extensions developed for the methodology and demands from the designer to
have UML modeling skills. Prometheus is however, built upon JACK and therefore not platform
independent.

DACS is a design methodology for agent-based production control [BJWT3|, and shall meet
the specific requirement of the manufacturing domain. It addresses mainly control engineers
with no or minor knowledge about multiagent systems. Bussmann tested his methodology on
two computer science students and then reviewed their feedback (see [BJW13]). Beside the fact
that both students did not have any multiagent knowledge before applying the methodology,
computer scientists are not our target designers. The DACS methodology has three major
steps. The first step is the analysis of decisions, then the identification of agents and finally, the
selection of interaction protocols. During the analysis of decisions, necessary control decisions

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

are identified. By analyzing these decisions, dependencies between decisions can be derived. The
author differentiates between effectoric decisions tasks and decision dependencies. Effectoric
decisions tasks describe decision tasks that include at least one physical action, and has the
following attributes: control interface, trigger (event), decision space and local decision rule.
Decision dependencies reflect the mutual influence of decisions made. The analysis phase results
in a list of effectoric decisions, a list of decision dependencies and a trigger diagram (Petri Net
notation), including dependencies. The second phase identifies agents and designs, by iterating
between the agent-based control, and the clustering of decision tasks. An agent is identified
and assigned to decision tasks for which only itself is responsible. To find the right partition of
decision tasks, Bussmann offers the following procedure (direct quotation [BJW13, p. 145]) :
1. Step
Start with the set of clusters in which each cluster consists of a single decision task.

2. Step
For each subset of clusters, apply every clustering rule to every combination of decision
task from the different clusters.

3. Step
Whenever a clustering rule applies, replace the cluster by a new cluster consisting of all
the decision tasks from these clusters.

4. Step

Repeat steps 2 and 3 until no more clusters can be combined.
Beside those steps Bussmann offers additional clustering rules, with the aim of finding partitions
that would ease the implementation of the decision model. Those clustering rules are (direct
quotation [BJW13| p. 147-149]):
Clustering rule 1: Interface cohesion

Decision tasks using the same control interface should be assigned to the same agent.

Clustering rule 2: State cohesion
Decision tasks changing or affecting the state of the same production component should
be assigned to the same agent.

Clustering rule 3: High interaction coupling
Decision tasks that are always strongly dependent on each other should be assigned to the
same agent
The last step of this phase is the improvement of the decision model and a possible iteration of
the first step. The output of this phase is a list of agents.

The last phase of the DACS methodology is the selection of interaction protocols. An interaction
is mainly specified in protocols. Such protocols define the types of messages and the sequence
of messages. The first step is to classify each dependency by pre-defined criteria. Then those
classifications are matched with the library to identify re-use potential. If this is not the case,
then customized and specified protocols must be designed. The DACS methodology addresses
the production control as application domain. In addition, it also addresses non-MAS specialists
as designers, although it mainly focuses on process engineers. This methodology focuses on
the process rather than on the objects, which is crucial in managing production processes.
Furthermore, it offers clustering rules, although they are a bit vague. On the other hand, the
design methodology utilizes Petri net-based modeling notations, which a tester from the book
stated to be not a proper fit. The tester recommended UML. This methodology is rating decisions
with a physical effect (effectoric decision) higher than other decision tasks. The necessity of
design choice is debatable.

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

Initial Requirements New Requirements

v

System Requirements NModel Agent Implementation Model
Domain Req. . . Deployment
Description Multi-Agent Single-Agent ' C Dn‘;’.gﬁm on
* Structure Structure
v Definition — Definition Deployment Model
Agents
Identification : :
A 4 Y
v , -] ‘
Behavior Behavior
Roles » Tasks Description Description = ¢
Identification Specification Code Model

<

Code
* Completion
Protocols l

Domain Communication Roles
Ontology I Ontology 9 < - b ~
D(‘s:l‘ip!gt;m = Dosrripﬁim | Description ¥| Description Code
Completion society’
Agent Society Model Test

Figure 2.20: Stages of the PASST Methodology, source: [BC02]

2.3.2 PASSI

PASSI, standing for "Process for Agent Societies Specification and Implementation". PASSI is a
MAS design methodology focusing on turning system requirements into JADE code. Burrafato
and Cossentino support the idea that the design of an agent society is made in a most natural
manner [BC02]. According to Cossentino, PASSI is a step-by-step requirement to code method
to develop multiagent systems. PASSI uses or refers to common languages or standards, such as
Agent UML (AUML), FIPA, JAVA, RDF, and Rational Rose. As figure 2.20 reflects, the PASSI
methodology consists out of five stages with their reflecting models:

1. System requirements model
Analyzing stage, consisting of four substages: The domain description, the agent identifi-
cation, the role identification and the task specification.

2. Agent society model
Dependent on the role identification, this is the creative stage, consisting of the ontology
description, the roles description and the protocol description.

3. Agent implementation model
The iterative implementation phase, consisting of two mutual models, the agent behavior
description and the agent structure definition

4. Code model
It focuses on the code reusing and code completion.

5. Deployment configuration
It deploys the designed MAS.

As in many design methodologies, PASSI starts with an analysis phase, the “system requirement
model“, of which the the domain description phase (DD phase) is the first step. This phase is
the equivalent to a classical requirement engineering approach, starting with a system analysis.
The system analysis will be captured in several use case diagrams. The functionality of the
system will be mapped as use case. If further detailing is required due to the complexity of the
use case diagram, supporting sequence diagrams are suggested. Considering the tool cycle, a

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

<<extend>> Om
R
Carry Out Order By Phone
Gnicate>>

Negotiate Purchas e-Money
By Telephone

A

NSM Courses Web Server

<<communicate>»7

<<communicate>;

Chief Clerk

Get P ission T
Keep NSM Needs Updated strermission fo

Photocop

<<include>>

<<communicatex>

Predict Students Needs
Provide Book

<<include>>
<<communicate>>

O Update Purchase History

Book Store Employee EGMTURIGEIESS

/ Order de>> <<communicate>:
M= <<include>>

% <<cOmmunicate>> : :

NSM Student

<<commynicate>> O <<communicate>>
MFor Book In Store : :)@\
Onine Require Book Receive Delivery Storekeeper

“sinchae Update Store's Archive

Supplier

Sell Book “=<indude>> Record Sale

<<include>>

<<include>> <<include>>

<<include>>

Search Store's Archive

Figure 2.21: The domain description phase of the Moller Bokhandel case, source: [BC02

<<Agent>> —
Chieful 1 <<communicate>> ;():
PurchaseMonitor 1

. Get Permission To <<Agent>>
wm@ Photocopy Purchaser
P calass <<commjunicate>>
communicate
NSM Courses Web Server | Keep NSM Needs Updated — O— :

= E i / /)
<<inglude>> PurchaseManager Cany'Out:Order Supplier
<<cerfimynicate>>
<<communicate>> o O
\/ licate
Predict Students Needs Provide Books Negotiate Purchase-Money
" < i
<<communicate>;
| cor I & m\ ssagenty <<communicate>>

StoreUl

<<Agent>>
PurchaseAdviso) <<communicate>>
<<include>>
O m Receive Delivery Storekeeper

Define Purchase-Money Update Purchase History Record Sale

Figure 2.22: The agent identification of the Moller Bokhandel case, source: [BC02

multitude of use case diagrams must be developed. Burrafato and Cossentino examined the
PASSI methodology in their article [BC02] on the Juul Moller Bokhandel A/S; a book buying
and selling bookstore. The author had chosen to examine only one possible scenario, which is
not uncommon in scientific articles, but taking the extent of this single scenario into account,
indicates the high effort of this methodology for more complex application processes.

In the next step, the agent identification phase starts by composing agents from the use cases.
The authors grouped one or more use cases together into new diagrams, composing packages of
functionalities. For the presented use case of the Bokhandel, the authors restructured the use
case depicted in figure 2.21 into the role description diagram (see figure 2.22). Although one or
multiple use cases are grouped into packages, which define functionalities of a specific agent, the
authors have not explained any grouping mechanisms. The use cases “carry out of order®, and
“negotiate purchase-money*, for example, could be grouped together with “receiving delivery*,
or with other use cases.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

OrderPlacer DeliveryNotifier Recorder
Supplier | Storekeeper Pl ass Ao

Purchaser StoreUl

Informer ‘

BooksProvider : Consultant : Negotiator
P Purct Purchaser

P

rovideTheseBooks

o] haseConditions

>
TryTheseConditions J
| iateTheseConditjgns WithThis Supplier

YourBestOffer?

|
HerelsMyBestJ
1gh] utTh... ‘

“[Offer
That'sTheBestOffer

[\ ‘
WantToBuy
NewDelivery
BooksDelivered

CarryOutOrder ‘
GotTheBooks
Update haseHistory
\

T \ I \ \ \ \ \

o

Figure 2.23: Role Identification for the scenario in which the Purchase Monitor announces the
need for a books purchase, source: [BC0O2]

Other agents Purchase Manager agent
<<PurchaseMonitor task>>
PurchaseMonitor.RequestBooks Notification
/ <<StoreUl task>> ReceivePurchase
StoreUl.NotifyDelivery Request
<<PurchaseA<livisorvtask>> AskForAdvice StartPurchase
PurchaseAdvisor.Listener p~

AskNegotiation
<<Purchaser task>> =
Purchaser.Listener o
AskOrdering

ReceiveDelivery

/ UpdatePurchase [NotifyEndOf
\ History)= Purchase

Figure 2.24: Task specification for the PurchaseManager, source: [BC02

The next step is the role identification phase, which as a social concept is part of the agent
society model, and the third part of the system requirement model. The authors defined roles
as the sum of all possible “paths “of the agent identification. A path is seen as all possible
scenarios of interactions between agents trying to achieve a behavior. The result of this step is
a sequence diagram for each scenario (use case) enlisting all possible roles of an agent by the
syntax of < role,ame >:< agent,ame >. Figure 2.23 displays such a scenario. In case of the
Purchaser Agent two roles have been identified, one as Negotiator and one as OrderPlacer.

The next step is the task specification phase. The result of this phase are activity diagrams
for each agent with two swim lanes, one on the right side, containing all activities brought by
the agent and one on the left side with all activities required from other agents. The authors
stated that the task specification diagram is a recapitulation of all tasks the agent can complete,
ignoring the information about the roles of the agent. Observing the task specification diagram
in figure [2.24 the reader might guess, that those described tasks could be future methods.

The next model is the agent society model containing the ontology description, the role description,

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

History GoingOnPurchases

+0neOpenPurchase\|/ on

OpenPurchase

purchaselnfo : Purchase
remainingStocks ToNegotiate : Stocks

+Course|nfo/ 1&+ANegotiation

Course Negotiation
courseTitle : String orderCarriedOut : Boolean
teacherName : String
numberOfAttendees : Integer

+OneCarriedOutPurchase J/ 1.n
Purchase

+textBook\|/ 1

Book "
- Suppliers
authors : String Stocks
title : String
edition : String
publisher : String| 4 theirBestOffer 1.n rASto +ASupplier| |
+ourRequest - .
+textBook/]\ 1 Stock Stock Supp-E[Suppller
- 1 [numberOfitems : Integer| Sypplier|name : String
Delivery unitPrice : Integer email : String
+DeliveryStock |purchaseTime : Date 1 |fax : String
deliveryTime : Date phone : String

Figure 2.25: The domain ontology diagram describing system entities and their attributes in a
class diagram, source: |[BC02

and the protocol description. The three next steps of the PASSI method will address the FIPA
requirements for ontology and communication protocols. The next step is the ontology description
phase, and it consists of two diagrams: the domain ontology description and the communication
ontology description. The domain ontology description is represented in an XML scheme and
in future work realized in resource description framework (RDF), as figure [2.25/ shows. The
second model, communication ontology description, addresses FIPA definition of communications,
consisting of speech acts, that the FIPA has defined in several protocol types, categorized by
their intention. The authors based their communication ontology diagram on the template
structure provided by the FIPA, as they refer to the same protocol types. The communication
travels from the initiator to the participant, just as the QueryForAdvise, which travels from the
PurchaseManager to thePurchaseAdvisor in figure 2.26. This stage of the methodology serves to
define the use case relevant knowledge as domain ontology class Diagram and to refer to each
communication a FIPA protocol type and the domain ontology. Both modeling steps are helpful
for developing Java code for JADE.

The next phase is the roles description phase, which models the lifecycle of agents based on their
roles. As collaboration needs conversation and social rules, social rules will be expressed in OCL
or other formats. An agent is symbolized by a package containing role classes. This package is
a package of use cases from the agent identification phase, plus the given name of the role. A
role in the role description phase summarizes several tasks in the course of a resulting behavior.
The RD diagram models role changes (see figure 2.27) as connections between roles of the same
agent. This model incorporates a dependence scheme to preserve an agent as an autonomous
entity, when refusing crucial services. The authors have realized such a scheme, by introducing
three kinds of role dependencies into their role description phase:

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

PurchaseAdvisor PurchaseDetails
CourseData QueryForAdvse _past_purchases : History Ontology : Purchase
Ontology : Course|~1[Protocol : Query Language : RDF

[: RDF Protocol : Propose
anguage \“ﬁ;o {itant +Recordy
ksProvider

R

+BooksProvider DeliveryNotification
PurchaseAnnouncement :
Ontology : Delivery

Protocol : Request PurchaseManager Language : RDF
_open_purchases : GoingOnPurchases Protocol : Propose
_suppliers_list : Suppliers

PurchaseMonitor +Book der

_course_info : Course SHSHaE e mcer +BooksProvider +DeliveryNotifier
+Books Pfovider StoreUl
_delivery_details : Delivery
/N/egotiato rderPlacer

OurRequest
Purchaser
Protocol : Query _our_request : Stock StockToPurchase
_their_best_offer : Stock Protocol : Propose
StockInfo
4|>Ontology : Stock P —

Language : RDF

Figure 2.26: The communication ontology diagram referring to FIPA protocol types and the
domain ontology, source: [BCO2

<<Agent>>
Purchase Monitor
Informer : PurchaseMonitor
<<Agent>>
Purchase Advisor RequestBooks()
LookForChanges() <<Agent>>
Consultant : PurchaseAdvisor Purchaser
¢ PurchaseAr t -
IdleTask() [(sercs] | OurRequest Negotiator : Purchaser
ReceiveAdviceRequest() <ZAabns>
QueryOnHistory() 2 g'M IdleTask ()
I an e ancasy ReceiveNegotiationRequest()
uer Adji Negotiate
‘ Query BooksProvider : PurchaseManager | A8 0
(softresdurce) (rpsource) J
IdleTask()
ROLE GHANGE
{ ! ReceivePurchaseRequest() [ROLE/GHANGE]
StartPurchase() \1/
AskForAdvise() IStobk ToPUreh
v PurchaseDetails|StartNegotiation() 221" 1°T“"9 %0rderPlacer : Purchaser
AT | —{StartOrdering() I
SCORNCICTRe S dweol =] ReceiveDeliveryNotification() [~ IdleTask()
NotifyEndOfPurchase() (Bervice) = |ReceiveOrderingRequest()
ldleTask () UpdatePurchaseHistory() Order()
ReceiveRecordingRequest()
UpdateHistory()

—| DeliveryNotification

<<Aggnt>>
Store Ul

DeliveryNotifier : StoreUl

Notify Delivery()

Figure 2.27: The role description diagram mapping dependencies between agents, source: [BC02]

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

<<Agent>>
PurchaseManager
<<Agent>>
<<Agent>> ldleTask() Purchaser
PurchaseMonitor ReceivePurchaseRequest()
% — StartPurchase() IdleTask()
AskForAdvise() ReceiveNegotiationRequest()
fj;‘;ﬁg:gg:ﬁ;gs i StartNegotiation() Negotiate()
NSM Courses Web Senver StartOrdering() ReceiveOrderingRequest()
ReceiveDelivery Notification() Order()
<<Agent>> / NotifyEndOfPurchase()
PurchaseAdvisor UpdatePurchaseHistory()
ldleTask() /[\
ReceiveAdviceRequest() <<Agent>>
QueryOnHistory() StoreUl /ii
ReceiveRecordingRequest()
UpdateHistory() Notify Delivery()
Storekeeper Supplier

Figure 2.28: The multiagent structure definition diagram, source: [BC02]

Service dependency
which describes a role depending on another entity to deliver a service (dashed line with
“service“name).

Resource dependency
which describes a role depending on the availability of an entity (dashed line with “re-
source“name).

Soft-Services and Soft-Resources dependency
which describes if requested services or resources are desired but not crucial (dashed line
with “soft-service“or “soft-resource“name).
This dependency scheme could be practicable for considering the dependencies on the shop floor.
The next phase in this design methodology is the protocol description phase. It addresses the
cases, in which a FIPA standard protocol is not adequate. The authors suggested the use of the
FIPA documentation approach and did not provide further details.

The next model is the agent implementing model, containing the agent structure definition and
the agent behavior definition. This modeling phase iterates. Its result effects the earlier system
requirement model. The next step is the agent structure definition phase, where several class
diagrams with a single agent and a multiagent perspective will be produced. The multiagent
structure definition (MASD) is a UML class diagram representing the complete MAS system, in
which each class represents an agent identified in the Agent Identification phase (see figure 2.28)).
The attributes of an agent class describe its knowledge, which is discussed in the communication
ontology diagram. The single agent structure definition (SASD) diagram is used to display the
internal structure of an agent including its tasks (see figure 2.29). This phase combines the
attributes (knowledge) and the methods with the tasks’ classes, which are methods required to
deal with communication events. This combination serves as a template for a software structure,
which is ready to implement.

The agent behavior description phase is the second phase of the iterative agent implementing
model and it produces diagrams divided into multiagent and single agent perspectives. Its
result is an activity diagram displaying each communication including the exact methods
triggered for each single agent and in the sum for the whole multiagent system. Different than
DeLoach (MaSE), the authors stated that they do not need a specific diagram for concurrency
and synchronization since the UML activity diagram supports it. Both diagrams, the single
agent behavior and the multiagent behavior diagram, serve as implementation guide for the
programmer. The next phase is the code reuse phase which typically takes place in CASE

o1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

<<Agent>> <<Task>> <<Task>> <<Task>>
PurchaseManager ReceivePurchaseRequest StartPurchase AskForAdvice
purchaselnformation _course_info : Course |_course_info : Course
time StartPurchase() |_received_advice : Stocks

negotiatingConditions ReceivePurchaseRequest()| |startTask() ,IO’:JITIG;IUEISltZTS(Ogt 5
_their_best_offer : Stocl

<<Task>>
StartNegotiation

negotiatedConditions startTask() AskForPurchaseAdv() AskForAdvice()
deliveryData doneAskForPurchaseAdv() handleAdvice() startTask()
StartNegotiation()

$ AGENT_TYPE : String = "Purchase Manager” doneAskNegotiation() StartTask()
PurchasesManager() 47 handle TheirBestOffer()
registrationFailed() R —

registrationRefused() <<Task>> <<Task>>
registrationSucceded() IdleTask <<Task>> StartOrdering

shutdown() Task stock_to_purchase : Stock
IdleTask() (fom FIPA-0S) <3
startTask() StartOrdering()
handleRequest() startTask()
<<Task>> <<Task>>
F:PTS;:J» 1 UpdatePurchaseHistory <<Task>> ReceiveDeliveryNotification
gen . =
(from FIPA-OS) _purchase_to_record : Purchase NotifyEndOfPurchase _delivery_details : Delivery
UpdatePuchaseHistory() Notify EndOfPurchase() ReceiveDeliveryNotification()
startTask() startTask() startTask()

Figure 2.29: The single agent structure definition diagram, source: [BC02]

(Computer Aided Software Engineering tool environment). The PASSI method first introduced
its own CASE tool, called PASSI Tool Kit (PTK) design as an add-on for Rational Rose [CSCO03].
Its functionalities are total or partial automatic compilation of some diagrams, design consistency
checking, generation of report documents, design documents, access to the FIPA protocol data
base and generation of code. In the following years, the team around Cossentino developed
AgentFactory tool, an automatic code generator for JADE and the FIPA-OS platform. Its result
is a collection of reusable code pieces. Those pieces are generated on the base of the MABD,
SASD, the previously described behaviors and methods and the FIPA protocol types. Its result
is a code skeleton of agent main classes with their tasks. The next phase is the code completion
phase, which is best accomplished by a JADE experienced programmer. The final phase is the
deployment configuration phase. Its diagram shall depict the location of agents, their movements,
and their internal communication support. The authors have extended UML with a syntax
extension with a dashed line and a move_ to stereotype to map the mobility of agents.

Advantages and disadvantages of PASSI for our investigation area

PASSI uses UML and its Agent extension AUML, as it is a widely accepted modeling language
and an advantage. The Agent extension is intuitive and easy to understand since it is embedded
in existing diagram types and extends them mostly by semantical names. An additional benefit
of using UML is that it does not require an additional developed diagram for concurrency and
synchronization. Another benefit is that PASSI ties in with existing standards and platforms
such as FIPA, JADE, UML Rational Rose, RDF and XML. It also offers a CASE tool kit easing
the methodology deployment and the code implementation as it generates code.

During the years, the authors have not only deployed their methodology successfully on project
[CSCO3], but have also extended their PASSI supporting tool kit by the “AgentFactory®, a
CASE tool generating code for JADE and the FIPA-OS platform. Despite those benefits, its
suitability for industrial use cases is doubted. Manufacturing use cases are very complex and
mutually dependent. PASSI, would require a high number of diagrams to be modeled. The
domain description phase requires displaying each possible scenario occurring in a system as a
use case diagram. This is a disproportionate effort considering the simplicity of capturing those
possibilities textually or functionally. Using the PASSI methodology the tool cycle, would urge
to map over 18 use cases and at least as many sequence diagrams.

Although the methodology is generally extensive, it lacks comprehensibility in the agent iden-
tification phase. The authors stated that it is reasonable to combine required behavior into

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

one responsible unit. Since neither the criteria for a responsible unit was explained, nor for the
behavior, the made choices appear arbitrary. It would be comprehensible to bind the behavior
(task) to required artifacts or hardware and to highlight those necessary resources in this phase
to consider them in the agent identification.

In the case of the role identification, it must be stated that the actual design phase occurred
earlier, and that this phase only includes naming the structure defined before. A “package of
role classes®, for example shall be a package of use cases composed in the agent identification
(equals agent class), addressed the name given to its role in the Role Identification phase and
its tasks. It would have been more comprehensible to address the “package of role classes“as
identified agent packages classified by their roles and including their tasks according to these
roles.

In conclusion, it can be said, that the PASSI design methodology is a mature helpful and
well-designed methodology. Its use of AUML and its embedding of domain ontology into
FIPA protocol-templates is worthwhile for MAS developers, especially for those without FIPA
experience. PASSI provides the designer with CASE tools such as PTK and AgentFactory, which
generate code skeletons for JADE. PASSI also offers a scheme to model the mutual dependencies
of agents in a system, which is very useful. Despite its numerous advantages, conducting the
PASSI methodology for the integrated tool cycle and any other shop-floor processes in general,
appears to be associated with a high effort. This can be reasoned as this methodology mainly
uses AUML and use case diagrams with subordinated sequence diagrams if the use cases are
complex and not self-explanatory. This procedure would cause, in the case of the tool cycle,
numerous use cases and sequence diagrams to map the system requirements. In case of such
complex systems with a high number of dependencies and restrictions, a textual description
appears to be more feasible and suitable.

2.3.3 Gaia

Its name reminds of the mother earth in Greek mythology, although it was chosen after the
influence hypothesis Gaia by James Lovelock. Lovelock stated that the effect of all living
entities on earth can be understood as parts of an ecosystem. Wooldridge, Jennings and Kinny
developed Gaia for analyzing and designing agent-based systems, where the key concepts are
roles, [W.JKOQ].

Gaia is a top-down approach, which decomposes behavior into roles. Those roles are associated
with responsibilities, activities, permissions, and protocols. The interaction of roles is managed
by defined protocols. The authors developed Gaia because object-oriented approaches face
shortcomings during modeling individual or agent classes. Models of object classes are static,
while agents and their relationships are dynamic. Beside the requirements statement, the Gaia
methodology consists of two phases, the analysis phase with its roles model and its interaction
model, and the design phase (see figure 2.30). The design phase consists of the agent model,
the services model, and the acquaintance model. Gaia introduces two types of main concepts,
the abstract ones and the concrete ones. The abstract entities appear during the analysis phase
and conceptualize the observed system. Those entities do not automatically effect the resulting
system directly. The concrete entities on the other hand are utilized during the design process
and influence the resulting system or its parts directly. Table 2.4] lists the entities according to
the two concepts. The first phase, the analysis phase builds an understanding of the system
without any reference to possible implementation. In Gaia one single role does not directly
define an individual as it is possible for an individual to serve in several different roles. The role
model identifies all key roles of the system [W.JKO00].

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

requlrements

s[atemem‘.

> -

agent model services model acquaintance design
model

Figure 2.30: Influence of the Gaia models, source: [W.JKO00]

H abstract entities ‘ concrete entities H

Roles Agent Types
Permissions Services
Responsibilities Acquaintances
Protocols
Activities
Liveness Properties
Safety Properties

Table 2.4: List of abstract and concrete concepts in Gaia, source: [WJKOO]

The authors explain their model using coffee making in an office as an example [WJK00]. The
role COFFEEFILLER is written in capital letters and has a description explaining: “its purpose
is to ensure that the coffee pot is kept full“. A role is defined by four attributes: permission,
responsibility, activities, and protocols [WJKOQ]. Roles can be characterized by two perspectives:

Permissions and rights associated with a role
It includes permissions for resources that are associated with a role.

Responsibilities of a role
It includes the purpose of a role, or its functionality and action which a role must fulfill.

The authors defined permissions as resources and tend to see them primarily as information
resources. Those information resources can either be accessed (read), manipulated or generated.
Permissions of a role are identified in two ways:

Identify directly deployable resources
Those are resources, which can be used intuitively by the role, in a “can be spent“manner.

Identify resource limits to be maintained
Resource limits which must be respected or maintained by the role in “cannot spent or
reached“manner, are called parameterized permissions. Those parameterized permissions
will be defined by the supplied keyword.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Operator Interpretation

Xy x followed by y

x|y X Or y occurs

X x occurs 0 or more times
% x occurs 1 or more times
b e x occurs infinitely often
[x] x 1is optional

x|y x and y interleaved

Figure 2.31: Operators of liveness properties, source: [W.JKOO]

In the COFFEEFILLER example, the following permissions could be modeled.

readscoffeeStatus | \full or emptychangescoffeeStock \\stock level (2.1)

In Gaia “read “and “changes “describe the permission, while coffeeStatus and coffeStock define
a resource. The parametrized permissions of the COFFEEFILLER could be:

readssupplied CoffeeMaker \\DeLonghi 612 (2.2)

Beside responsibility and permission, activities and protocols do exist. Activities are computations
in the sense of private actions. Protocols serve as defined interactions between roles. The
authors have defined several protocols (see [ZJWO03]), which are not referring to the FIPA
protocols. Responsibilities reflect the functionality of a role and are the key attributes of a role.
Responsibilities are divided into two types, liveness properties and safety properties. The
difference between those responsibilities lies in the perspective on the incidence in which they
occur. Liveness properties state a “something good happens“incidence as they define the agent’s
states in a certain environment conditions. Safety properties catch not desired incidence, so that
“nothing bad happens®. In fact, safety properties are invariants to maintain an acceptable state,
as for example not exceeding a temperature maximum. In case of the COFFEEFILLER, its
responsibility is to keep the coffee pot full. This responsibility can be divided into two liveness
properties:

e whenever the coffee pot is empty -> fill it up

e whenever coffee pot is full -> inform worker

Liveness properties do have their own liveness expressions, which define the lifecycle of a role
with the help of operators (see figure 2.31). The general form of a liveness expression is:
ROLENAME = expression. The role name is the name of the liveness expression, while the
expression refers either to activities or protocols. In case of our COFFEEFILLER role, the
liveness expression for the above-mentioned responsibilities would be: COFFEEFILLER =
(Fill.InformWorkers.CheckStock.Await Empty”). The activity of this liveness expression
occurs infinitively often since the superscript w operator was used. The behavior executes the
Fill protocol “followed by“the InfromWorkers protocol, “followed by” the activities (underlined)
CheckStock “followed by“the activity AwaitEmpty. For the current moment, protocols are being
treated as interaction labels.

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Role Schema: COFFEEFILLER

Description:
This role involves ensuring that the coffee pot is kept filled, and informing
the workers when fresh coffee has been brewed.

Protocols and Activities:
Fill, InformWorkers, CheckStock, AwaitEmpty

Permissions:
reads supplied coffeeMaker // name of coffee maker
coffeeStatus /] full or empty
changes coffeeStock /] stock level of coffee
Responsibilities

Liveness:
CorreeFILLER = (Fill. InformWorkers. CheckStock. AwaitEmpty)®
safety:
e coffeeStock > 0

Figure 2.32: Role schema for the COFFEFILLER role, source: [W.JKOOQ]

Beside liveness properties the role COFFEEFILLER also has safety properties, represented as
invariants, which must be maintained during the roles live time. These safety properties are
a list of predicates (see [WJKO00]). Those predicates arise from the variables listed under the
role’s permissions. Pre-empting what permissions are, in the case of the COFFEEFILLER one
possible safety property could be to ensure it does not run out of coffee, cof feeStock > 0. In
summary, the above mentioned figure [2.32 records all role concepts of the COFFEEFILLER
role.

Beside the roles model, the analysis phase includes the interaction model. Some dependencies
or relationships between the roles are inevitable and must be mapped in the interaction model.
An interaction model combines the roles with protocols, which are defined interactions between
roles. Those protocols’ definitions consist of:

e Purpose: textual description, “assign. .., “request ...“

o Initiator: role starting the interaction

e Responder: the receiving role

o Inputs: resource/permission used by initiator

o Outputs: resource/permission offered by responder

o Processing: textual description of processing/actions the initiator performs during inter-
action

Figure 2.33| of the COFFEEFILLER role shows, what a protocol definition for the Fill protocol
looks like. At the top is the protocol name. Under the protocol name on the left side is the
initiator role name, which starts an interaction with the responder role standing on the right
side. On the same level as the roles, but outside the box permissions and resources are written.
This protocol definition states, that the COFFEEFILLER interacts with the COFFEMACHINE.
It further states that the COFFEEFILLER fills a coffee machine (resource) named coffeeMaker
with coffee. In case of the Fill protocol, “supplied“marks that using the coffeeMaker resource is
bound to a parametrized permission. This protocol calls the action “Fill coffee machine®. The
output permission of this protocol is the generated information of the coffeeStock. An interaction
model maps the possible paths of interactions by executing a chain of such protocol definitions.
Thereby an arrow leads from one protocol to another. Figure 2.34 displays the scheme of a
partial interaction model. One protocol definition leads to another protocol definition, and

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

Fill

CoffeeFiller CoffeeMachine supplied coffeeMaker

Fill coffee machine

coffeeStock

Figure 2.33: Fill protocol definition for the COFFEFILLER role, source: [W.JKO00]

Role A interacting with
B

Resources to

be accessed or

_| supplied
resources

Role A Role B

Permissions

Resources
generated
and/or

-7 modified
Permissions -

Actions

|_Enaction to the
|_next interaction

Figure 2.34: Scheme of a partial interaction model, source: Own illustration

thereby maps the interactions between the roles. The analysis phase will be iterated until all
outputs, interactions and roles have been captured. The second phase of the Gaia methodology
is the design phase. It transforms abstract models from the analysis phase to artefacts of a lower
level of abstraction, to make them easier to implement. The authors emphasize that ways of
implementing agent services are beyond the scope of Gaia and vary with the application domain.
The design process consists of three models: the agent model, service model and acquaintance
model. The agent model captures the various agent types and the agent instances of each type
during run time. The authors defined an agent type as a set of (agent)roles. Combining the
roles to a set, the designer can either choose a one-to-one correspondence between role and
agent, or to cluster closely related roles together as agent type. The agent model is a simple
agent type tree, in which leaf nodes are roles and other tree nodes are agent types. Figure [2.35
displays such an agent model for another Gaia use case. The roles (at the bottom in this figure)
are being combined into agents (top). As the reader might have noticed, each agent type has
its multiplicity of instances defined at the end of the association. The authors defined a set
of instance qualifiers, as displayed in figure 2.36. Those qualifiers originate from the FUSION
methodology. The authors also stated that Gaia does not consider inheritance in its agent model.
This is reasoned by the fact that Gaia is applied best to systems with a small number of roles and
agent types, with a one-to-one mapping. In such application areas, inheritance has no additional
benefit. They also admit that inheritance is desirable when it comes to the implementation. The
authors offered no particular rules on how to set the agent instance qualifier.

The second model of the design phase is the service model. This model shall aid in identifying
the services, that each agent role can offer to its environment. Those services are in fact functions
the agent fulfills. In object-oriented approaches, a service is in further consequence a method.

o7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CustomerAgent Cus?erviceDivisionAgent VetCustomerAgent = NetworkDesignerAgent LegalAdvisorAgent
T+ 1 T 3..10 T 1..10 T 1.5

Customer CustomerHandler QuoteManager CustomerVetter NetworkDesigner LegalAdvisor

Figure 2.35: Agent model from another use case, source: [W.JKO0]

Qualifier Meaning

there will be exactly n instances

..n there will be between m and n instances
there will be 0 or more instances
there will be 1 or more instances

+*§3

Figure 2.36: Agent instance qualifier, source: [W.JKO0]

Service Inputs Outputs Pre-condition Post-condition
obtain customer customerDetails customerRequirements true true
requirements
vet customer customerDetails creditRating customer vetter available creditRating # nil
check customer creditRating continuationDecision — continuationDecision = continuationDecision #
satisfactory nil nil
chect service type customerRequirements serviceType creditRating # bad serviceType €
{standard, bespoke}
produce standard serviceType, quote serviceType = standard » quote # nil
service costing customerRequirements quote = nil
produce bespoke serviceType, quote, servicelsLegal serviceType = (quote # nil) v (quote
service costing customerRequirements bespoke A quote = = nil n— servicelsLegal)
nil ~ servicelsLegal
inform customer customerDetails, quote true customers know quote

Figure 2.37: Example of a service model of a different use case, source: [W.JK00]

Those services not available for other agents, like a method would be. The services are a “single
coherent block of activity“. Each activity from the analysis phase corresponds to a service. The
service model also specifies the main properties of these services. Those attributes (see figure
2.37) are input, output, pre-condition and post-condition. Input and output of a service will be
derived from the protocol definition. Pre-condition and post-condition capture the constraints
of the service and relate to the safety properties. The last model in the design phase and in
the Gaia methodology is the acquaintance model. According to the authors, it is the simplest
model and defines the communication links between the agents. Figure 2.38 shows an example
of an acquaintance model from another use case. The communications link only reflects the
existing interactions between the agent types. They do not give qualitative information about
the messages.

Advantages and disadvantages of Gaia for our investigation area

Gaia dissociates from object-oriented design methodologies, as it states that they are too detailed
and lack a higher level of abstractions. Gaia includes, however, aspects from the FUSION
methodology, such as the agent instance qualifier. Since Gaia uses natural concepts of roles,
responsibilities, permission, and services without any additional modeling language, it would
easily gain acceptance from industrial and mechanical engineers. Also, the progress from one

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CustomerAgent

CustomerServiceDivisionAgent

VetCustomerAgent NetworkDesignAgent <= LegalAdvisorAgent

Figure 2.38: Example of an acquaintance model, source: [W.JKO0]

methodology step to another is intuitive and easy to accomplish.

Gaia demands no prior computer-scientific knowledge, as it does not at any stage consider
implementation concerns. Another benefit of Gaia is that its textual description and natural
concept captures an agent society better, than object-oriented approaches such as class diagrams.
Further, such object-oriented approaches do not consider any system changes during run-time.
Mapping an agent society with object-oriented approaches, such as UML, forces the designer to
make design decision, which affect the outcome strongly and, way too early in the process. Gaia
honors the idea of encapsulation as it offers self-containing concepts as protocols (interaction
mapping), and permissions (resource facilitation), giving the possibility to link those concepts if
required.

On the other hand, Gaia has been developed for the application on small systems, as each agent
type is designed individually, and no inheritance exists. It also limits its focus on the design
aspect of the MAS, not offering any mechanism to check for feasibility of the implementation.
Gaia is, different than PASSI not developed for any specific platform. As a further consequence,
the tools that Gaia offers the designer are not as extensive as for example PASSI. Gaia also does
not support any implementation of the autonomy defined protocols, leaving the designers on their
own, when it comes to the question of how to realize a negotiation interaction between the agents.
This is reasoned by a high level of abstraction, that Gaia maintains during its design steps.
On the one hand, this high abstraction gives the designers more creative freedom and requires
less implementation knowledge. However, it does not offer insurance that an implementation is
feasible, and requires high effort at the implementation phase.

In conclusion, it can be said, that Gaia enables every process stakeholder regardless of what her
or his professional background is, to design a MAS. It does not demand any modeling language
skills, as most parts are captured either in a textual way or in intuitive models. The introduced
concepts of Gaia are natural concepts, such as roles, resources, permissions, and interaction
models based on simple protocols. However, Gaia is limited to small use cases with a limited
number of roles and restrictions. Its suitability for a process in the manufacturing domain is
therefore doubted.

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

MAS design methodology for the
manufacturing execution system
domain (DM-MESD)

This chapter presents the developed MAS design methodology for the manufacturing execution
system domain (DM-MESD). It is structured in siz phases, each one describing the higher
purpose of its methodological phase. Those phases are the evaluation phase, the assessment
phase, the analysis phase, the service identification phase, the service clustering phase, and
the transformation phase. FEach phase is divided into methodical steps, guiding the designer
through the developing process. While presenting the design methodology, the DM-MESD is being
continuously compared with the PASSI and Gaia methodology. This comparison shall ease the
understanding of the newly presented methodology and show its differences.

3.1 Design methodology

This design methodology was developed for the presented investigation area. Its main objective
is to enable process stakeholders from the manufacturing domain to evaluate, if an agent-based
process control could be of any benefit and if so, to enable those stakeholders to draw their first
design. Identifying the process stakeholders as industrial and mechanical engineers, sets high
demands for this methodology. One of those demands is to integrate agent-oriented aspects
as mechanisms within the methodology. Those mechanisms enable designers without MAS
experience to fully exploit the MAS advantages. Another demand on this methodology is the
continuous guidance through the design process. The designer should not be compelled to second
guesses her or his next step. The DM-MESD is built on the process-oriented perspective and
differs from common design methodologies, which are based on role concepts. The DM-MESD
elaborates services from the core process by textual description and structured analysis. This
methodology offers an evaluation phase at the beginning of the process to evaluate if this design
methodology is suitable for the desired application domain. The DM-MESD focuses on the
MAS design and does not consider any implementation subjects or limitations. It sets Key
Performance Indicators (KPI) and offers thereby its user the chance to pursue optimization
strategy. The design methodology consists of six phases and their methodological steps, which
are displayed in figure 3.1.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfiigbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Evaluation phase

Assessment phase

Analysis phase

Domain Requirements:
1. Similar investigation area
2. No real-time requirements
3. Processes with a defined start and end
4. No data interruptions
5. Granular process steps
6. Influence on process parameters within the agents’ reach

Determining core process incl. its boundaries:
By identifying sub steps and inputs (boundaries)

Defining KPI:

parameter to be optimized

Rechecking process boundaries:

checking if required KPI input within process boundaries

Textual description of the process

Detecting essential process entities or beings:

Concrete vs abstract concepts

Defining process entities or beings in a glossary

Optional: coarse activity diagram

Service identification:
Service defintion rule 1: Offers something of value
Service defintion rule 2: Amalgamation of tasks and functions
Service defintion rule 3: Solitary and not be substituted
Service defintion rule 4: Defined beginning and end

Service clustering
Clustering rule 1: Combining Joint resources or inputs
Clustering rule 2: Combining to a higher service
Clustering rule 3: Familiarity of services

Role assignment
Agent type multiplicity

Agent interaction:

e Report
e Order

e Negotiation

Optional: Sequence diagram

Figure 3.1: The DM-MESD and its six phases, source: own illustration

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.2 Evaluation phase

The reviewed design methodologies have not included any previous form of evaluation. This is a
clear disadvantage. The first phase is the evaluation phase, which has only one step. This step is
controlling if all six domain requirements, which derive from the investigation area, are fulfilled.
The evaluation phase ensures that the target application meets the criteria of the investigation
area, and thus the DM-MESD is suited. If the target application meets all six requirements the
designer may proceed to the next phase. If the target application does not meet one or more
requirements, either the issue must be resolved, or the domain perspective must be adapted.
The DM-MESD is not suited for the target application if none of both options work. The six
domain requirements are:

e Process within a similar investigation area

e No real-time requirements

e Processes with a defined start and end

e No data interruptions during the process

e Granular process steps with measurable input and outputs

e Influence on process parameters within the agents’ reach

Requirement 1: Process within a similar investigation area

This requirement was established since the design methodology presented here is limited to the
earlier presented investigation area. It can not be stated for certain, if the DM-MESD can be
successfully deployed outside the investigation area. The main characteristics of the investigation
area are introduced here. The investigation area is limited to discrete manufacturing, as
the continuous manufacturing has different demands to on its process control. The continuous
production process is influenced by the quality and quantity of its input material, which is not
the case in discrete manufacturing.

The investigation area is also limited by the size of the production, as only small to mid-size
serial productions are addressed. This limitation effects the order execution time. While a mass
production handles orders in sizes, which occupy the production lines over several hours or shifts,
a small size to mid-size serial production has shorter productions cycle more suitable for flexible
orchestration by multiagent systems. Even smaller productions, such as job shop production
could benefit from the flexible qualities that a MAS control introduces.

From the perspective of the application layer, the target application shall not be located
lower than the MES layer. One reason is that processes on a higher layer offer a higher
grade of abstraction. The higher the grade of abstraction, the easier is to integrate multiagent
systems as process control. This design methodology might also be a suitable for processes on
the ERP layer. Although it has not been designed for them in the first place, nor has it been
tested on such processes.

Requirement 2: No real-time requirements

This requirement emphasizes that the methodology presented here is not suitable for real-time
requirements such as those required for the PLC layer. Such requests invariably require the
processing of incoming data without a buffer delay. There is a large number of scientific works
dealing with the high requirements of such systems and the special adaptation of the multiagent
paradigm to those. The author cannot stress enough, that neither this methodology nor the use
case, presented here touches an area in which real-time requirements would be an issue. This is

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

important as no design mechanisms or concepts were developed, that would ensure a proper
handling of this subject.

Requirement 3: Processes with a defined start and end

This restriction was set, to ensure that only processes are considered with a defined starting
and end point. This restriction excludes processes that are run as a manner of a continuous
controlling loop.

Requirement 4: No data interruptions during the process

For a process to be managed by a multiagent system, a complete digital representation of the
process stages must be available. The MAS must be capable of monitoring the process and to
set actions, that either directly or indirectly influence the process. Data interruptions are blind
spots in the process and can either be overcome by technological solutions, such as interfaces,
storage etc., or by process adaptation, providing or excluding this data.

Requirement 5: Granular process steps with measurable inputs and outputs

To identify if a process is going along as planned, process steps with significant results must be
available and defined.

Requirement 6: Influence on process parameters within the agents’ reach

To implement a MAS based process control, the agents must be capable of manipulating the
actuating parameter either directly (by setting them) or indirectly (environmental changes).
This might be best explained on the example of a MAS deployed to draw and sell paintings
to human customers. The agents must be able to access feedback data from the customer (no
data interruption). Based on that feedback, data on customer preferences can be gathered and
evaluated. Now the agent must be capable to adapt the next painting (process parameter in the
field of action). The future agents must have one or more process parameter in their field of
action, so that they can influence the process and its outcome.

If the target application does not support any of the above-mentioned requirements in its original
state, adaptations must be made. Those adaptations can either be made by resolving the
issue directly or by limiting the application to an area, that meets the requirements. If neither
resolving the issues nor limiting the target application work, the DM-MESD is not suited. But
if all requirements are fulfilled, the next phase can be proceeded.

3.3 Assessment phase

This phase helps the designer to determine the core of her or his application process. This is
accomplished by determining which part of the desired process meets the core process definition.
The first step defines a core process and how it can be differentiated from other process forms by
using criteria. Those specific criteria determine the core process entities. Its result is in a first
table of sub steps and their required inputs, which mark the process boundaries. The second
step of this phase chooses the Key Performance Indicators (KPI). The set Key Performance
Indicators (KPI) give the designer the chance to pursue optimization strategy during the MAS
designing. Analyzing the KPI shows what information and tasks are required to optimize them.
The outcome of this step is a short textual description of the pursued strategy, as well as its KPI.
The outcome of this KPI assessment is important groundwork for the next and third step of this
phase, the rechecking of process boundaries. The process boundaries have been drawn during
the determination of the core process and did not consider possible KPI and their required
information or task. This last step of this phase rechecks the earlier set process boundaries based
on whenever they include the required KPI information or tasks.

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.3.1 Determining the core process, including its boundaries

The term core process is used in many different areas. It is mostly used to describe the core
business process of an enterprise. The core process is defined in this thesis as a process pursuing
a main objective by fulfilling several sub steps with defined inputs and tasks. A core process
has an overall objective. The achievement of this overall objective must be measurable and
divisible in sub-achievement. Its objective is realized by fulfilling several subordinated
tasks, here called sub steps. Complex objectives can be achieved by fulfilling several sub
steps. A core process has sub steps with qualitative or quantitative parameters, which illustrate
their success. A step consists of a task or a function and has an input and an output. A task is
connected to the physical world either by its physical input or by its physical action, that must
be performed. A function represents here the formal transformation, which takes fully place
in the digital world. It might be a mathematical function or a method call returning a defined
digital output for a digital input. Defining a core process fulfills the aim to reduce every aspect
not necessary for the process. Doing so automatically limits the design effort as well as the
complexity of the use case. To assess a core process the following entities must be determined:

Overall objective
A core process is the remaining part of a process, which cannot be furthered narrowed
without losing its functionality to achieve the overall objective. This overall objective must
be measurable either qualitative or quantitative manner.

Sub steps
The achievement of the overall objective must be divisible into a sequence of sub steps. A
sub step has a defined task or function, processing a defined input into a defined output.

Input for each sub step
Those inputs and outputs must be defined in a qualitative or a quantitative manner, to
evaluate the achievement of the sub step

Task or function in each sub step
Each sub step describes a task or function to be fulfilled on input or output. A task is an
action set on a physical item. A function is a relation between one or more logical inputs
and outputs.

If the target process meets the demands of a core process, its overall objective is being mapped
by an informal textual description. Then it will be roughly clarified if the core process has sub
steps. If so the sub steps, their tasks or functions and their inputs are listed, in an assessment
table. The core process is defined in an informal textual manner. This textual definition
can be divided into two parts. First, the overall objective is described in a short text, a few
sentences are enough. Second, the sub steps including their task or functions and their inputs
and outputs are listed. This structured listing of the sub steps does not have to be detailed.
However, this coarse listing must mention all important tasks or functions and their inputs. This
description can either be realized by a short text or a structured table as schematically depicted
in table 3.1. After the sub steps are listed in the table, the next step is to evaluate, whether
all inputs can be accessed within the core process. This practice is essential for determining
the process boundaries. By limiting the boundaries to the inputs of the sub steps, the process
will be narrowed automatically. The input of the sub steps defines the artefact or interface that
marks the process boundary. The finer the grading of the sub steps and inputs, the more precise
the process boundaries are. The previous sub steps listing serves as a control for completeness.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Core process

Overall objective:

Objective measurability:

Sub steps Input Task or function Output

Sub step 1 | Input 1 [unit] Task 1 Output 1 [unit)
Sub step 2 | Input 2 [unit Task 2 Output 2 [unit
Sub step 3 | Input 2 [unit Task 3 Output 3 [unit

Sub step 4 | Input 4 [unit] Task 4 Output 4 [unit]

Table 3.1: Core process assessment table

3.3.2 Defining the pursued strategy and its KPI to be optimized

This step sets Key Performance Indicators (KPI) and offers the designer the chance to pursue
optimization strategy. If the designer wants to map the process in its origin state this step of
the assessment phase can be skipped. KPI are measurable indicators matched to the pursued
strategy, stating the performance of an action or process. A KPI is qualitatively or quantitatively
measurable. Further, a KPI must not conflict with the overall objectives of the core process. All
the actuating values and functions of the KPI must be either within the process boundaries or
have a defined interface to it. The defined interface must allow the core process to influence
those actuating values or functions. This does not mean that their value is only effected by the
core process, but that some influence from the core process is granted. A KPI can be a value
influenced and set by several sub step parameters. The number of KPIs, which can be defined
within a core process depends on their mutual dependencies and the designer’s choice. It is
possible to choose two or more KPI, depending on each other to find an equilibrium between
those variables. First, the KPI is described in a textual form, capturing its objective in words.
Afterwards the KPI must be formulated as a relation between its inputs and the action. This
can be realized either in a textual manner or with the aid of mathematical formalism. The main
interest is to clarify, which parameter or tasks and function has an influence on the KPI. This
clarification is needed for evaluating in the next step if all influencing parameters and functions
of the KPI’s are still within the process boundaries and therefore within the field of action.

3.3.3 Rechecking the process boundaries

While the earlier drawn process boundaries only depended on the required inputs, the revised
boundaries consider the KPI. This step controls if the process boundaries exclude the required
data or function for the previously defined KPI. The KPI might require input outside the process
boundaries. If so, either the process boundaries must be adapted, or interfaces and artifacts
must be defined. In this case the data as an artefact must be defined and provided from the
outside the process boundaries. This definition includes its format (XML, SQL query, text file,
OPC UA, etc.), its content and the interface it uses to be transmitted. This interface is one way
to define process boundaries as they mark the link between the internal and external system. If
establishing such artefacts or interfaces is not possible, the KPI must be adapted. If the designer
chooses to adapt the KPI, the author suggests to evaluate if the required data or function can be
derived from another source or in another manner. The process boundaries need adapting, if the

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

required data or functionality can not be provided through artifacts or interfaces. In that case
the process boundaries must be adapted so that they include the required data or functionality.
In both mentioned cases, adaption of the KPI or of the process boundaries, step two and three
of this phase must be repeated. These three steps are the abstract part of the analysis phase,
sharpening the designer’s perspective for her or his core process.

3.4 Analysis phase

This phase produces a textual description of a core process and its entities. It consists of four
methodological steps. Now that the observed process is defined and demarcated, the analysis
phase begins with the textual description of the core process. During second step in this phase
the core process is reduced to the smallest possible number of tasks and entities. Essential
process entities are elaborates based on the textual description. If essential process entities
require further description, they are being defined in an informal glossary giving the designer
the chance to sharpen her or his understanding of them. Based on the textual description and
the glossary a coarse activity diagram can optionally be designed.

3.4.1 Textual description of the process

The textual description serves as a mapping mechanism. This modeling method can easily be
used by industrial and mechanical engineers with no modelling experience. Most industrial or
mechanical engineers have only basic or no experience with modeling languages, such as UML,
Petri Net, etc. A textual description is the most natural way to capture a process. The textual
description is also a common method to capture a production process in manufacturing. A good
example for this is a work plan, which describes in detail the sequence of tasks necessary to achieve
a desired outcome. Although ERP and MES software offer process flow-based representations
of work plans, it is still common on the shop floor to have a textual described work plan. The
advantage of a textual description is its unambiguous grasp of the process, if worded precisely. It
is possible to achieve the same quality with a UML model in a more eloquent manner, but that
would require an experienced modeler on the one side and a just as experienced model user on
the other side. If this is not present, inaccuracies or misinterpretations are predestined. Another
reason for the textual description is the low effort required to map even complex systems. In the
modeling with UML or any other modelling language, complex systems are mapped with nesting
mechanisms. Modeling a system is always a tradeoff between abstraction, offering simplicity and
detailedness, offering the entire information. Modeling a system reflects a purpose. This purpose
guides the designer through decisions, whether to neglect a systems’ aspect in the course of
abstraction or rather to observe it in detail.

The textual description has no specific form. The designer should however keep in mind that
a short and precise text, is easier to handle in the upcoming tasks. The textual description
begins with the very start of the core process and ends with its last sub step. It covers in the
course each necessary action or task in the progress, as well as each entity required to fulfill
the tasks. Thereby the process is described in a narrative manner. The degree of detail or the
number of detours to explain possible scenarios, is the choice of the designer and the stakeholder.
Another benefit of a textual description is that the process stakeholder could deliver such a
textual description, to the person that should design the MAS.

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.4.2 Detecting essential process entities or beings

Based on the textual description process entities can be elaborated. The process entities are
divided into two concept groups; the concrete and the abstract concept group (see table 3.2)).
While the concrete concept group covers the input and outputs previously introduced during the
assessment phase, the abstract concept group covers tasks and functions, which are the basis for
services. In the concrete group of process entities, we differ between the following concepts:

e Resources
o Information

o Material

Process entities

Concrete concepts | Abstract concepts
Resource Task
Information Function
Material

Table 3.2: Process entity concept

While some methodologies such as Gaia consider only information as a resource, the DM-MESD
defines resources in a manufacturing manner. The resources are physical items, which are
required for the value adding process, but are not consumed during it. Examples for such
resources are machine tools, workstations, robots, etc. Resources are occupied during fulfilling a
task. While an information or a material runs through changes during the process, resources
remain at its original state. A resource aids a task or function to perform a transformation on
an information or material, without being merged into the outcome.

Information is a necessary process entity, required in a certain form and quality at a certain
stage of the process to proceed. In this context information is defined as a entity serving a task
or function as input. An information can be data, a list, a file or a state. An information can be
accessed or to manipulated it when needed or included in the upcoming task or function.

Another concept of the process entity is the material. During the process it is consumed or
transformed. If consumed, the material feeds into the output during a value-adding process. If
transformed, one or multiple characteristics of the material are being changed, in the course of
the value-adding process.

Tasks and functions are abstract process entities. Abstract in the sense that both concepts are
not representing a physical entity or its data. Tasks and functions initiate a transformation from
one state to another. The term of a function, used here, describes the formal transformation
of a logical input, such as an information into a logical output. A function is a transformation
taking place in the digital or logical world, such as calculations, generations, simulations, etc. A
function is defined as a qualitative or quantitative tool set to transform a predefined input into
a predefined output. A function can be a mathematical function, or a method call returning a
defined output for the given input.

A task on the other hand is a transformation at least partially taking place in the physical
world. A task is performed on a resource or a material and can also require information for its
fulfillment. An example for a task could be the loading or unloading of cutting tools or their

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Process Entities

Input [Concrete Types] | Task or Function | Output [Concrete Types]

Input 1 [Resource] Output 1 [Information]
Input 2 [Information] Task 1

Input 3 [Resource]

Input 1 [Resource] Output 2 [Material]
Input 4 [Material Output 3 [Information]
Input 3 [Resource] Task 2 Output 1 [Material]
Input 5 [Information] Output 1 [Information]

[

Input 5 [Information]

Table 3.3: Process table

assembly. Both types of concepts can be determined by analyzing the textual description. The
abstract concepts, such as textbftasks and functionscan be found in the textual description by
analyzing verbs used to describe the process flow and by underlining them. These underlined
words are not only limited to the verbs themselves, as pronouns are required to clarify the task
or function. For example, not only the verb “update” should be underlined, but also the object
that should be updated.

The concrete concepts, such as information, material or resources that are required to fulfill the
underlined verbs can be emphasized by . Both process entity types should then
be listed in a table such as table 3.3 shows. The reader might notice that at the core of this
table are either tasks or functions. Since this methodology is built on the service concept, tasks
and functions are indications of future services, and the main point of interest in this phase.
During this step, all required tasks and functions are listed with their required inputs and their
resulting outputs. Thereby a task or a function can utilize several inputs at once, which will be
captured in the table.

3.4.3 Describing process entities in a glossary

Now that the essential process entities are detected, process entities requiring an additional
explanation or definition can be described in a glossary. To avoid interrupting the narrative by
detailed descriptions of process entities, an additional informal glossary is compiled. It shall
offer the designer a place to describe essential process entities in detail if required. The informal
glossary defines the name, by which the entity will be referred. It further describes in a textual
manner its nature, purpose, characteristics, conditions and its restrictions.

3.4.4 Optional: Coarse activity diagram

Based on the textual description and the glossary a coarse activity diagram can be designed
optionally. This UML diagram is not required. It serves as an overview of the process if desired.
To design this optional class diagram the process table (see table 3.3) can be consulted.

3.5 Abstraction phase

The earlier mentioned design methodologies, Gaia and PASSI, utilize roles to design multiagent
systems. This approach does not use the role concept, because the author thinks that identifying

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

and clustering of services would be a more suitable fit for manufacturing processes on the MES
layer. This is reasoned, as the role perspective of a system is limited to its current state. The
role concept does not consider the possible development of responsibilities by new interfaces or
tasks, nor does it consider extending the roles range during that. A role is an abstract concept
not directly bound to the physical nor the digital represented entity, it most commonly reflects
already existing actors and their tasks. It does not combine them to higher level abstract services.
The service-oriented perspective of the DM-MESD leads to the development of self-containing
services out of tasks and functions of the core process. Further the DM-MESD offers tools to
develop new services, which extend the functionality of the core process. The prior phases of the
DM-MESD ensured that all required tasks, functions, inputs and output of the core process, are
self-contained within the boundaries of the process.

Assumption 1 ,The services found within the core process boundaries are most properly also
self-contained, as all they require will be offered within the process boundaries. “

This assumption reflects the top-down perspective of the DM-MESD approach. The abstraction
phase consists of only one step. In this step the previously listed tasks and functions are being
combined into services. Beside those services deriving from the mapped tasks and function this
phase offers the designer the chance to introduce new services into the core process. Those new
services can be designed freely along as their required inputs and are within the core process
boundaries.

Service identification

This step identifies services either from the previously mapped tasks and functions or defines so
called new services. New services are only partially or not all based on existing process functions
or tasks. Those services can be chosen freely or by considering the set KPI if their required
inputs are available within the process boundaries. Both types of services are determined with
the aid of four service definition rules. The result of this phase is a list of services summarized
in a table (see table 4.3). Those four rules define the service term and its requirements.

Service definition rule 1: Value
,A service provides or offers something of value to another party.“

A service must offer something of relevance to its environment. The relevance is not only defined
by the output (data or physical transformation), but also as something of a higher value. Offering
another party data does not provide a higher value, but offering information is, as information
is worked-up data for a specific a purpose.

Service definition rule 2: Amalgamation of tasks and functions
LA service is an abstract amalgamation of tasks and functions, combined to provide
or offer something of value*

Simple tasks and functions can be merged, while achieving an output of a higher quality. Those

tasks or functions must either support each other in their pursuit or cover different aspects of

a higher goal. For example, the tasks existing solitary in a car shop, can be combined to a

higher service. A car shop disposes individual tasks, such as, “checking the pressure of the tires”,
b)) “

“regulating tire pressure”, “changing o0il”, "reading board computer error” and “error handling”.
Those tasks can be combined and offered to another party as the service “Interval inspection”.

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Service table

Task or Function [Types] Service offered value
“T1”|Task] offered value 1
“F1” [Function] Service “S1”

“F2” [Function]

“T3”|Task] offered value 2
“T4”|Task]] offered value 3
“T117[Task] Service “S2”

“T15”[Task]

“F2” [Function]

Table 3.4: Service table

This service offers an outcome of a higher quality and is at the same time an abstraction of the
amalgamation of tasks and functions. At this point it shall be noted that some combination of
tasks or functions do not have to be performed in a specific sequence, and some do. For example,
it is irrelevant if the oil gets changed before the pressure of the tires will be checked. But it
is required that the task “regulating tire pressure” is performed after “checking the pressure”.
Some tasks, such as the “regulating tire pressure” task depend on the output of another task.

Service definition rule 3: Solitary and unique
A service is solitary and cannot be substituted by any other service, for it is unique.”

A criterion for being self-contained beside the required input, is that the functionality of the
service is not part of any other service. If, for example, a service s; requires its input from
service so and returns its output to s, such as it is common in a controlling loop, then both
services can be aggregated. A service also offers something of value in a unique manner. Its
outcome or performance can not be substituted by another service. Further a service must be
unique. Unique by the means that the value or benefit that this service offers another party can
not be rendered by third party. Of course, heritance of the same service provider is excluded
from this restriction. Thereby a task or a function can also be accessed by another service. The
service “change tires” will beside other tasks include, the “checking the pressure of the tires”
and “regulating tire pressure” tasks.

Service definition rule 4: Beginning and end
»A service has a precise beginning and end.“

This criterion supports its encapsulation. It must have a precise beginning with preconditions or
an input and an ending with postconditions or an output. The service table is used to summarize
this service-information, as table |4.3 shows. This table reflects some of the service rules directly.
It discloses if a service is unique by the sum of its task or functions. This table lists all values a
service offers. No other service should have the exact same tasks or offer a substitutable value
(service definition rule 1). However, the table shows that some tasks or functions, such as “F2”
can be utilized by different services, without an effect on the uniqueness of the service.

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.6 Clustering phase

The naming of the phase conducts the creative process of clustering the identifying services. This
phase consists of only one step, which offers the designer clustering rules. With the guidance
of the clustering rules presented here, the designer shall combine and services to a cluster.
Those service clusters will represent future agent types including their offered services. Most
object-oriented MAS design methodologies share a composing phase. PASSI for example also
has such a phase earlier in its process, where use cases are composed together under a bridging
role. Gaia also offers such a composing phase, but rather at the end of the process, where roles
are combined to agent types. Before Gaia combines the roles to agent types, every aspect of
the role (responsibilities, protocols, permissions) has been defined. The DM-MESD enables the
designer to compose the services and their aspects at an earlier stage, before defining protocols
or acquaintances. The DM-MESD gives the designer clear guidance during the composing phase,
by offering clustering rules. Offering guidance during the composing phase is not new, as the
DACS methodology of Bussmann also includes such rules. But different than in the DACS
methodology, the DM-MESD does not focus on decision making tasks, but on services, and so
do the composing rules.

Service clustering

Since all previously elaborated services are self-contained and encapsulated, the creativity is
encouraged. Now the designer can combine those services into clusters in search of benefits, such
as synergies, resource allocations or services of a higher quality.

Clustering rule 1: Familiarity of services
»oervices should be clustered, if they have a familiar nature or structure and their

combination could work out synergies, such as resource allocations “

This rule is developed to cover services sharing the same mechanism. If for example two services
handle bidding tasks on different resources or information could maybe be joint. This familiarity
rule would suggest testing if composing those familiar services could be of any benefit. Such
benefits are synergies that could be exploited. Synergies, such as using the same algorithms
(functions), or slightly adapted interfaces or protocols (inputs). The motivation is, that such
unused synergies entail optimizing potential not only for resource allocation, but also for decision
making. Merging familiar services could better exploit decision-making algorithms, optimizing
them by learning from the different areas.

Clustering rule 2: Combine to a higher service
,oervices should be clustered, if a service of a higher quality could be achieved by
combining them. “

This rule covers the possibility of services with different resources and input information to be
joint to a higher service. This rule only focuses on the new benefit that a service clustering
could bring. A higher service is a service whose potential can only be exploited if two smaller
services where joint together. If such higher services could lead to a process transformation in a
beneficial manner. Again, deciding if combining services to a higher service is worth considering
is the choice of the designer and process stakeholder. Since the process stakeholder can evaluate
if the combination of services brings any further benefits.

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Service Cluster

Service Cluster
A

. Service
Service cB
BA Service
AB

Figure 3.2: Scheme of clustered services, source: own illustration

Clustering rule 3: Joint resources or inputs
LServices should be clustered, if two services need the same input or resource.

This rule states, that services, which access the same information, input, or the same resources
are likely to be composable. It shall improve the encapsulation idea, as services utilizing the
same resources or information can be jointed together. This rule shall however come into effect if
the services do not access multiple other resources. It is not useful to force two services together
if they share one out of five resources. For example, a service si, is based on the information
i1 and nothing else, and another service so uses resource rq, ro, rsand the information ¢;and
i2. Then the designer could consider the service s; as a sub-service of so. However, the choice
is most likely domain specific and the process stakeholder should have the final saying in this
matter. This rule exploits service dependencies, such as shown in the example. By clustering
service using the same resources controlling mechanisms of the resource can be joint. It also
enforces the paradigm of encapsulation from the resource perspective and raises transparency
of responsibilities and control structures. The result of this phase are service clusters, each
representing a future agent type. Those agent clusters can be depicted in a similar diagram,
shown in figure 3.2,

3.7 Transformation phase

Now that the services have been clustered, those clusters can be transformed into agent types.
Thereby, this methodology does not focus on the internal architecture of those agent types. It
rather focuses on the services the agents will provide and how they interact with each other. Both
agent aspects, the functionality described by services and the interaction between those services
is described in a textual manner. This methodology does not address agent implementation
mechanisms, nor does it suggest any tools or platforms. The result of this phase is a multiagent
diagram. Like the acquaintance diagram of Gaia, the multiagent diagram states only the role,
the multiplicity and interaction between the agent types. The interaction is captured in a coarse
manner only summarizing the way in which the agents interact with each other. As figure 3.3
shows the multiagent interaction diagram, in which a role will be assigned to each service cluster.
Each agent type, represented by its role will receive a multiplicity, which will be determined

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

in the second step of this phase. Afterwards the third step of this phase will elaborate the
general type of interaction between two agent types will pursue. Last step of this phase, which
is optional the designer can capture the interactions between the agent’s types in detail by a
UML sequence diagram.

3.7.1 Role assignment

While the reviewed methodologies focus right at the being on roles and responsibilities that
agent types could have, this methodology assigns roles at the very last moment. Assigning
roles without an understanding of possible services, and in further consequence interactions and
responsibilities is not suitable for manufacturing. The role assignment step of the transformation
phase is only performed for the sake of completeness, as each cluster already has its services
(methods) and interactions defined through inputs and outputs with other clusters (agents). The
role assignment is done by naming the clusters. This naming is best done by observing the most
relevant services or benefits a cluster has or by finding collective term for the different services.
The result of this step are role-reflecting names in the interaction diagram for each agent types,
placed in the middle of the service cluster (see figure 3.3).

3.7.2 Agent type multiplicity

Except for Gaia, none of the reviewed design methodologies addressed the matter of agent type
multiplicity. Multiplicity is important for the manufacturing domain, as the agent types are
digital representations and control entities of physical world entities. At this point the designer
must question, if the multiplicity in the physical world is possible and if it would be of any benefit
for the core process or the system. In doing so the designer must differ between the setting she
or he has on hand and the more general possibilities the domain could offer. For example, if a
production is limited by having only one industrial robot covering both the handling and the
weighting service, it does not mean that the designed MAS must generally limit the “Weighting
agent type” to one agent per system. This limitation could be respected for the setting in which
the MAS is deployed. Overall, the designer must question if a higher multiplicity of an agent
type is possible. If so, the next question must be, if a higher multiplicity of the same agent type
would bring any additional benefit. This additional benefit could be reasoned in cooperating or
competing agents. The result of this step are multiplicity ranges for each agent type limiting the
amount of agent type instances during runtime. The multiplicity is captured as a number range
between 0 and infinity (notated as “n”). This multiplicity is notated in the interaction diagram
above each agent type and emphasized by an underline (see figure 3.3)).

3.7.3 Redefined process entities

Since the core process was restructured and controlled by agent types (service clusters), some
process entities might require adaptation. This adaption arises since process entities might need
to cover either new tasks and roles or need to provide a different data set. Another reason is
that new services might require new or adapted process entities. This step shall address those
redefined process entities, artefacts and new entities. Those new or adapted process entities are
described in an informal description.

3.7.4 Agent interaction

Inputs and outputs are the basis of directed interaction, between agent types. The dependency
of inputs and outputs was determined on the function and task level in the analysis phase. The

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

agent interaction step focuses on the type of interactions. Since the interaction content is already
defined by the inputs the type of interaction must by defined An interaction type can either
be an order, or a negotiation or a report type. Different than the other methodologies, the
DM-MESD does not dictate the inclusion of FIPA protocols any other protocols. It only poses
the question, which type of interaction type should take place between two agent types. Thereby
the choice reflects the pursuit interaction-goal of each agent type. For example, if an agent type
optimizes a parameter it might need to negotiate with one agent type and to order another
agent to do something. The DM-MESD differentiates between three different interaction types:

Order
Triggering an action of another party.

Report
A report is an active feedback mechanism informing another party of occurring events or
changes. A report does not require an action or a confirmation of its receipt.

Negotiation
This is an interaction mechanism in which both parties try to optimize the outcome to be
in their best interest. The type of protocol or auction model is not important, as those
choices are best made by a programmer.

The result of this step are the interactions types shown in the interaction diagram as directed
arrows (see figure 3.3)).

l.n

Role B

Service
BB
Service

Service
BD

BC

Order

Service
AA Role A
. Service
Service cB
BA Service
AB

Figure 3.3: Scheme of the interaction diagram, source: own illustration

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

3.7.5 Optional: Sequence diagram

If desired the interaction of the agent types can be additionally captured in a detailed sequence
diagram. A sequence diagram is helpful for the programmer to receive an artifact in which every
parameter and value of the interaction is summarized.

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Design Process

In this chapter the DM-MESD is being used on the integrated tool cycle of the TU Wien
Pilotfabrik. Thereby the application of the DM-MESD and the development of a multiagent
system is presented step by step. Before the DM-MESD is applied on the integrated tool cycle
the industrial setting of the TU Wien Pilotfabrik is being described. This detailed descriptions of
the industrial shall grant the reader better comprehension. The rest of this chapter follows the
structure of the DM-MESD. The application of the transformation phase is described in the next
chapter, as it is the introduction to the final MAS design.

4.1 Presenting the industrial setting of the TU Wien Pilot
Fabrik

The TU Wien Pilotfabrik [WIE] is a demonstration factory, in which industrial Industrie 4.0
approaches are being realized and tested by the TU Wien and it partners. It also serves as a
learning area for students and grants them an insight into industrial solutions and processes.
The aim of the TU Wien Pilotfabrik is to offer the students and the scientific staff an industrial
environment, which reflects today’s state-of-the-art production. The production area includes
industrial size machine tools, state-of-the-art communication and solutions. Utilizing the
industrial setting of the TU Wien Pilotfabrik brings the benefit of working with common
industrial solutions. It serves as an example of an industrial shop floor. Of course, it lacks
complexity compared to a manufacturing plant with hundreds of workers, and machines and
numerous departments. But for this very reason it is a suitable and manageable system to start
with. To describe the setting of the TU Wien Pilotfabrik first the process relevant hardware, and
then the software settings are being presented. This knowledge is usually possessed by the process
stakeholder. This proves that the mapping process for the manufacturing domain on the MES
layer requires stakeholder knowledge. The target designer of the DMMD are those stakeholders,
which are industrial or mechanical engineers or foremen with training. The complexity and
domain specific knowledge, which are presented here briefly as industrial hardware and software
settings, confirms the choice to address industrial and mechanical engineers as target designers.

4.1.1 Industrial Hardware

The core of the process relevant assets is the EMCO MAXXMill 550 machine tool. It has a
Siemens control, the SINUMERIK 840DSL-711 Version 04.08 4+ SP 02 including the Siemens

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CNC programming software SHOPMILL. This 9,2 tons heavy machine tool offers five-sided
machining in a single workpiece set-up [EMC]. It has an integrated tool magazine with up to
30 pockets for cutting tools with HSK clamping adapters. Its working table is 600 millimeters
long and 600 millimeters wide and is conceptualized for a maximum load of 250 kilograms. The
motor spindle of this milling center covers speeds between 50-15000 rpm. The MAXXMill 550’s
drive power performs with 34,5 kilowatt and a maximum torque of 110 newton meters. Its rapid
motion speed reaches up to 3 meters per second on each axis (X/Y/Z), offering on each axis a
feed force of 5.000 newton. Those characteristics underline the before stated importance of the
TU Wien Pilotfabrik as an industrial use case, reflecting the current state of the art.

To load and unload the MAXXMill an IRB robot is adjusted right before the milling machine
tool. The robot is controlled by the machine tools CNC control and is part of the production cell.
The workpieces are carried on the workpiece transporting palette, which is fixed on an Automatic
Guide Vehicle (AVG). The AVG signals its arrival using the industrial network through the IRB
robot to the MAXXMill, which then triggers the loading or unloading process. Since the AVG
and the workpiece handling are just marginally relevant they are not further described.

Cutting tool components are highly standardized, it is therefore not relevant that those com-
ponents in the TU Wien Pilotfabrik are not produce by the same manufacturer. In fact, the
TU Wien Pilotfabrik possesses a high number of different cutting tool types and brands. The
assembled cutting tools are either being used in the MAXXMill tool magazine or being in the
storage. This corresponds with the actual distribution of cutting tools and components in an
industry setting.

Next to the cutting tool storage is a workplace for an employee to assemble the tool components
into cutting tools. In general, it can be said, that an employee will be informed about the
required components and the workplan to assemble them by a terminal. The terminal consists
of an RFID reader and writer unit and a tablet with a Zoller TMS Gold App connected through
the Zoller Web-services interface with the TMS Gold data server ("pilot 3.0") at the presetting
device. The RFID reader and writer station has been installed for the RFID-tags on the tool
holder. The tags have been inlaid on the tool holder and sealed with an epoxy resin layer. The
RFID tag has enough storage, but will only carry the tool inventory number, which refers an
assembled cutting tool in the pilot 3.0 database. The tool inventory number is a unique cutting
tool identifier, which traces a cutting tool instance. The MAXXMill also possess a RFID reader
and writer terminal right next to the loading door. As described in subsection 2.1.3 machine
tools can be connected via a directed network to the presetting device, in order to receive the
corrective geometric data of each tool.

As a presetting device Venturion 450 from Zoller is used [Zol18§]. It is equipped with the software
»pilot 3.0« cutting tool database and a graphical user interface. This presetting device is
equipped with a RFID reader and writer equipment. It can automatically detect cutting edge
forms, zero-point monitoring and run an automatic inspection of the cutting edges. With its
integrated tool management system «pilot 3.0» tools and adapters can be managed, identified
and their inspection record be managed. Data from the pilot 3.0 database can be exchanged
with other systems via the Zoller web-service. The presetting device offers scanning functions for
cutting tools and saving the envelope contour in different drawing formats. The tool contour can
be determined with the »lasso« measuring program and undergo the automatic target-actual-
comparison. This data is exchanged with machine tool control to prevent any collision during
the machining. This automatically approaching and focusing measurement program guarantees
user-independent precise measurement. The optical measuring head is moving automatically,
using CNC axes to measure the assembled tool clamped on to the identified tool holder, so

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

the overall measurements of the cutting tool are written automatically into the tool inventory
number database.

4.1.2 Industrial Software

The exchange of cutting tool information between the presetting device and the machine tool at
the TU Wien Pilotfabrik is solved querying the setting sheet data through the Zoller web-service
directly from the database into the machine tool. This is accomplished by connecting the machine
tool through an OPC-UA client on top of the Sinumerik control. For further information about
the technical realization see [FTP19]. The exchange of the current magazine load data between
the machine tool and the tool database has no standardized interface. In fact, there is no current
solution that would allow to query the data from the machine tool control to the presetting
device or the tool management database. In the TU Wien Pilotfabrik, a by-passing solution is
deployed, by utilizing a combination of OPC-UA and Siemense CreateMylInterface. The latter
technology is needed to retrieve internal machine tool control data. This solution is a temporally
work around, until Siemens realizes its OPC-UA compatible machine tool control.

4.2 Evaluation Phase

Requirement 1: Process within a similar investigation area
This requirement is clearly fulfilled, as the discrete manufacturing in a small size production is
being addressed. The application domain is limited to the MES layer or higher.

Requirement 2: No real-time requirements

The limited perspective on the integrated tool cycle does not require real-time responses. The
machining process itself intersects with the real-time requirement, but since the machine tool
is considered as a closed system and its internal control functions are not considered, this
requirement is fulfilled.

Requirement 3: Processes with a defined start and end
The integrated tool cycle starts with the release of a shop order and ends with the completion of
its machining. This requirement is therefore fulfilled.

Requirement 4: No data interruptions during the process

During the groundwork for this thesis, the data interruptions between the machine tool, the tool
management system and the production control were resolved. As in subsection 2.1.3| described,
the current magazine load can be accessed at any given time. Further is the linkage issue between
the presetting device and the machine tool resolved by implementing an interface with the Zoller
webservice. With this interface setting sheet data can be exchanged with the machine tool. The
cutting tools in the machine tool are being identified as tool instances by using RFID tags on the
tool holder of each tool, storing its tool inventory number. The machine tool and the presetting
device both have RFID-terminals, to access the inventory number on the tag. In this manner
the tool instance data, such as the remaining lifetime, can be accessed and manipulated via the
Zoller webservice. This requirement is therefore seen conserved as fulfilled.

Requirement 5: Granular process steps with measurable input and outputs

The activity flow of the integrated tool cycle process (see figure 2.9) and its first introduction
in section [2.1.3| show that this process can be divided into process steps. The second part of
this requirement is the measurability of each input and output of those process steps. This
requirement demands a clear definition of each input and output during the process. During the
examination of the integrated tool cycle to solve all data interruptions the inputs and outputs

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

were defined and are therefore measurable. The measurability is granted by availability of a
defined form and quality or by quantity. This requirement is therefore considered as fulfilled.

Requirement 6: Influence on process parameters within the agents’ reach

The process parameters such as resources, material and information must be available to ensure
the process. The integrated tool cycle has all required entities at its service. Since it accesses to
all required inputs it can be assumed that the process influencing parameters must be within
the field of action of the process. The future agents cover at least the origin field of action of the
integrated tool cycle. This requirement is therefore assumed to be fulfilled.

4.3 Assessment phase

This phase determines if the integrated tool cycle fulfills the requirements of a core process.

4.3.1 Determining the core process, including its boundaries

The overall objective of the integrated tool cycle is to manage the cutting tools (physically
and virtually) required for a shop order and to ensure that the right tools will be at the machine
tool on time for the machining. This overall objective is measurable, as the required tool lifetime
for each tool type must be available at the machine tool. Either this task is being successfully
performed, which leads to the starting of the machining, or not. For the tool cycle to be a core
process, this overall objective must be achievable through subordinated goals or sub steps. A
core process objective must be achievable by dividing it into sequences of sub steps. According
to the description of the integrated tool cycle (see|2.1.3) it can be divided into sub steps and
their tasks. Figure 2.9 summarizes those sub steps as process steps. A sub step has a defined
task or function processing a defined input into a defined output. The sub steps required to
achieve the overall objectives are summarized in a coarse manner in table 4.1.

As table 4.1 shows, the determined core process has an overall objective, which is measurable
and can be achieved by sub steps. The process boundaries depend on the input required for
each sub step. The core process starts with the release of a shop order, and so does sub step 1,
including the task “Shop order release”. The input of this sub step is the received shop order
data. Its outcome starts of the process. So, the shop order data is the first boundary of the
core process. A shop order is a partial order of the bigger customer order. It is automatically
generated, will not be automatically released. While the ERP schedules the customer orders,
the release of shop orders is a task within the MES. The shop order data such as the work plan
and BOM, etc. are automatically generated based on the master data located in ERP. However,
this data can be manipulated on the MES layer, if required. This practice is used, if the shop
order requires a modified BOM or a different work plan. So, the shop order data received here
is the highest entity within the core process and marks one process boundary. The shop order
data is an artefact that serves as the interface to the ERP or MES layer. As such an artefact it
needs to be defined. The shop order data should include the product reference, a production
quantity, and a date to be finished.

Sub step 2, which is a calculation and therefore a function determines the gross tool requirement
and returns the required tool use time for each tool type to machine the order. Beside the
shop order data, this function requires a tool list of the NC program listing all tools required
and the exact tool use times that the NC-program plans for the use each tool type. The shop
order references the NC-program. The NC-program data can either be another defined process
boundary, if stored as part of the product master data in the ERP. Or it can be stored, as it is

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

Core Process

Overall objective:
required cutting tools (physically and virtually) on time at the machine tool for the machining of a shop order

Objective measurability:
sum of the required tool lifetime [minutes| for each tool type has to be available at the machine tool for the shop order

NC-program tool use time [Data]

Sub steps Input Task or function Output
Sub step 1 Shop order data [Datal] Shop order release [Report] Event [Event]
Shop order data [Datal]
Sub step 2 | Tool list according NC-program [Data] | Determine gross tool requirement [Function] Gross tool requirement [Datal

Sub step 3

Machine tool control [Interface]

Request magazine load [Function]

Magazine load [Data]

Sub step 4

Magazine load [Data]
Current storage stock [Data]
Gross tool requirement [Data]

Determine tool net requirement [Function]

Tool net requirement [Data]

Sub step 5

Tool net requirement [Data]
TMS [interface]

Generate picking order [Function]

Picking list [Data]

Sub step 6

Picking list [Data]
Tool Components [Physical items]
Worker handling [Human labor]

Assemble tool components [Task]|

Assembled tool [Physical items]

Sub step 7

Assembled tool [Physical items]
Presetting device [Physical item)]

Measure and store measurement [Task]

Tool measurement [Data]

Sub step 8

Assembled tool [Physical items]

Commission to machine tool [Task]

Worker handling [Human labor]
Assembled tool [Physical items]
Tool measurement [Data]
Worker handling [Human labor]
Workpieces [Physical item]
Clamping system [Physical item)]
Machine tool [Physical item)]
Machine tool Control [data]
NC-program [Data)
Assembled cutting tools [Physical item)]
Workpieces [Physical item]
Clamping system [Physical item]
Machine tool [Physical item)]
Machine tool control [data]

Tool setup [Task]| Setup accomplished [Event|

Sub step 9

Machining [Function] State [Event]

Sub step 10

Report machining end [Function] End process [Event]

Sub step 11 Remaining tool lifetime [data]

Processed workpiece [Physical item]

Table 4.1: Core process assessment of the integrated tool cycle

in our case, in a setting sheet data available at the TMS. The NC-program data is seen as a
defined artefact marking the interface to the TMS.

Sub step 3 includes the function of requesting the current magazine load. This sub step sets the
interface to the machine tool control as a process boundary.

Sub step 4 determines the tool net requirement for each shop order. The tool net requirement is
the smallest amount of cutting tools required to machine a shop order, considering the cutting
tools currently at the machine and at the storage. Its function requires the magazine load [data],
the cutting tool stock at the storage [data] and the previously determined gross tool requirement
as input. While the magazine load and the gross tool requirement are outputs of previous sub
steps, the current storage stock data marks a new process boundary. The current cutting tool
stock must include the inventory number and the remaining lifetime of those tool instances.
This artefact is updated directly in the TMS database.

Sub step 5 requires beside the tool net requirement an interface to TMS to generate a picking
order using the TMS database.

Sub step 6 is the assembly of tool components, which represents a physical task performed by a
human worker. The human worker is in addition to the tool components another required input
and marks another boundary.

Sub step 7 requires the previously assembled cutting tools and a presetting device to measure
them. Sub step 8 also requires the assembled tools and the worker handling the task. Both
inputs have been already listed.

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Sub step 9, the “tool setup” requires, five inputs, among those are the physical items, the machine
tool, the clamping system and the work pieces. The machine tool is a resource, which can be
scheduled and occupied. The clamping systems are, similarly to the cutting tools auxiliary
production resources. This input marks another boundary, as the clamping systems is required,
but not managed in the core process. Their availability at the machine tool is assumed. Another
input in this sub step is the workpiece, which is here also clarified as a physical item. The
workpiece is of the type material, as it will be consumed or transformed in course of the value
adding process. Like the clamping systems, workpieces are assumed to be available at the
machine tool on time. Both decisions are reasoned in the attempt to narrow the core process.
The tool cycle is defined as the core process with the objective of providing the “required cutting
tools (physically and virtually) on time at the machine tool for the machining of a shop order”.
Managing and providing clamping systems and workpieces at the machine tool is not part of the
core process.

Sub step 10 considers the machining, which is function fulfilled within the machine tool. It
requires all inputs from the previous step and in addition an NC-program. The right NC-program
is assumed to be available at the machine tool or to be accessed through an internal network.

Sub step 11 includes the function “Report machining end” and marks the end of the core process.
Its input requires no additional boundary, but its output which is of an event type marks the
end of the core process.

The process boundaries are set based on the sub step inputs. The highest boundary is shop
order data as an artefact defined in the ERP system. Another artefact, which has its source in
the ERP master data is the NC-program tooling data. It is available in the TMS. In the lower
MES layer, the process boundaries are set by including or excluding processes or resources. The
current tool stock data is provided from outside the core process system and available for the
core process in the TMS database. Two resources within the process boundaries, beside the
cutting tools and the TMS, are the machine tool and the presetting device.

The machine tool is distinguished resource as it is also utilized by other processes, such as
maintenance, material supply, etc. The limited perspective of the machine tool must therefore
be emphasized. The physical appears of the machine tool as a production resource is either
available or not. The machine tool is seen as closed unit, which interacts with the core process
through the machine tool control. The machine tool control offers the core process artefacts,
such as the current magazine load state and the reports of the beginning and ending of the
machining (sub steps 10 and 11). Both artefacts of the machine tool demarcate the process
boundaries as no other task or function within the machine tool are considered. For example,
the internal tool changing strategy or any other detail of the machining itself is not relevant for
the core process. The perspective of the presetting device is limited to measuring the assembled
tools and its connectivity to the TMS to store the measurements with reference to the tool
inventory number.

4.3.2 Defining the pursued strategy and its KPI to be optimized

Through resolving the data interruption, the tool net requirement of each shop order can be
determined. The tool net requirement is the minimal number of tools required at a given time
to machine a specific shop order. The smaller the number of cutting tools, that must be setup
for a shop order, the smaller the tooling costs will be. A setup of three cutting tools is less
expensive, than the setup up of ten cutting tools. The tooling cost include the tool cost and
the tool supply, including assembly, measurement and commission. Reducing the tooling cost,
reduces the production cost in two ways. One way is by indirectly reducing the idle time of

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

the machine tool, as less setups would be required. The other way is by exploiting cutting
tools to their optimum and reducing the tooling cost. Since the magazine load of the machine
tool can be requested at any time, it might be possible to sort the shop order by their tool net
requirement. Finding a schedule with the smallest tooling costs means that less cutting tools
must be assembled, and less capital is being tied up in assembled tools.

The pursued strategy is to flexible schedule the orders so that the tooling cost is minimized.
In this context, the KPI set for the pursued strategy is to sort the orders to achieve the minimal
the tooling cost. This KPI shall be achieved by finding the optimal production schedule for
each shop order based on its tool net requirements, which depends on the previous order and
the current magazine load. The shop orders shall be scheduled depending on the previous shop
orders and their required tools, so that the number of new assembled tools will always be the
smallest possible. The integrated tool cycle covers all required inputs, so that the minimal tool
net requirement for each shop order can be realized.

4.3.3 Rechecking the process boundaries

Since the required inputs for the defined KPI are all covered by inputs required to determine
the tool net requirement, they are already within the core process boundaries. However, it must
be considered, that a released shop order might include more than one workpiece type to be
machined. A shop order could include different workpieces requiring different NC-programs to
be executed on different machine tools or working stations. This would compromise our KPI
aim to schedule the shop order by the tool net requirement, since one shop order could include
several components with their own workpieces and tool net requirements. The possibility in this
case is either to adapt the KPI or to adapt the system boundary, which is a designer stakeholder
choice. Here the process boundaries are being adapted.

A shop order is not granular enough, as it does not directly refer to the order to be machined. A
shop order can include to its work plan, several machining or assembling orders, which require a
certain sequence. Since the set KPI is to find a schedule for a machine tool, which offers the
minimal tooling cost, the orders can be reduced to machining orders. Before the shop order was
defined as the highest artefact and as system boundary to the ERP. Since scheduling shop orders
is not sufficient, the new boundary is set on machining orders. A machining order would refer
to one NC-program and a tooling list. It does not require the completion of any previous order,
nor does it include more than one workpiece type, NC-program or machine tool, to be machined.
Based on those characteristics, a machining order can be freely scheduled. Its machining takes
place at only one machine tool.

To schedule the machining orders in a manner, that would minimize the tooling cost, cutting
tools must be used in different NC-programs to exploit their potential. This poses a problem.
The remaining tool lifetime can only be estimated, based on the tool load, the feed and the
cutting depth. The tool manufacturer offers a so-called catalog-tool lifetime, depending on a
pre-defined feed, tool depth, and tool load. The actual tool lifetime and its consumption depend
on several factors, besides the ones mentioned above, such as lubrication and span transportation.
Both criteria depend on the actual machining circumstances. In practice, the tool lifetime is
determined by machining under real circumstances and monitoring the tool wear. A high number
of scientific efforts focus on investigating how to estimate the tool lifetime precisely. Besides
complex mathematical and computer-aided models, there is a vibrant discussion which machining
factors affect the tool lifetime more than others. Since finding an answer to those questions
would provide scientific sustenance for several doctoral thesis, this work will not further explore
the subject of tool lifetime estimation. However, the pursued strategy is to achieve minimal

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

tooling costs by scheduling machining orders based on the current magazine load. To do so, the
use of cutting tools in different NC-programs is essential. It will be therefore assumed that tool
lifetime consumption can be set into relation with the NC-program related tool load. It will be
therefore assumed that the NC-program related lifetime is expected correctly, but also that it
stands in a linear relation to the catalog lifetime. This assumption enables the use a cutting
tool in different NC-programs by transforming its remaining lifetime.

4.4 Analysis Phase

The analysis phase deepens the perspective on each sub step, and breaks them down into other
sub steps, if required. The main part of this analysis phase is the textual description.

4.4.1 Textual description of the process

A [machining order], instead of a shop order was chosen in order to realize our KPI of scheduling
the orders according to their tool net requirement. The process begins therefore with the arrival
of a released machining order into the system. With this event the system receives the machining
order data. Such machining order data must at least include the production quantity and a
reference to the NC-program to refer to a tooling list. An additional machining order identifier
and production deadline would also be suitable. With the reference to the NC-program the
related can be found in the TMS. A setting sheet, also called setup sheet, is
a tooling list of cutting tools required for an NC-program on a machine tool. This setting
sheet lists all required tool types, which are identified either by a unique number or a unique
name. However, a setting sheet does not reflect the actual number of tools required for the
future machining order. In fact, in practice a setting sheet just describes which tool types
and components are required for the specific NC-program. It does not specify the number of
the replacement tools (sister tools) required to process a machining order. In this setting the
tool types are identifies by a tool number, called ToollD. Only three kinds of information are
commonly used in setting sheets: the NC-programlD, the machine tool and the .
While transforming the tool cycle, the specific tool use time of each tool type to machine one
workpiece was added into tooling list of the setting sheet. With this extended tooling list of
the setting sheet and the workpiece quantity, the gross tool requirement can be calculated for

each cutting tool type. The result of this calculation is the [gross tool requirement], a minute
value for each cutting tool type reflecting the required tool use time to machine the complete
machining order. The gross tool requirement, which displays required minute value for each tool
type, is at the same time the biggest tool requirement. Its order specific value will be reduced
by the remaining lifetime of the cutting tools available on the shop floor. In the meantime
the magazine load can be requested from the to determine if fitting tool type
instances are currently available. The result of this request is a tooling list, summarizing the
tool types and the tool instances by their unique inventory number and their remaining tool
lifetime. Since required tool instances could also be available in the storage, a request is sent to
the , which always has the newest stock data. This request will be limited to the tool
types from the tooling list of the setting sheet. Its result is a tooling list from the storage listing
tool types, tool inventory numbers and the remaining tool lifetime. Those two tooling lists from
the machine tool and the storage, together with the gross tool requirement are the basis to
calculate the net tool requirement. The [net tool requirement] is the smallest required amount
of cutting tools required to machine the order, reflecting the current state of the shop floor. It
reflects the current state of the shop floor, as it considers the tool currently at the machine
and at the storage. Like the gross tool requirement, the net tool requirement is a minute value

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

for each tool type required to machine the order. On this basis a dynamic setting sheet for
the specific production quantity and the current state of the shop floor can be generated. This
new setting sheet includes the minimal amount of tool instance required to machine the order
and will be further called [dynamic setting sheet] as it reflects the minimal tool requirement,
which shall be covered by newly assembled tools. This dynamic setting sheet is, other than the
common setting sheet, order specific, as it considers a specific machining order and the specific
tooling situation on the shop floor. This dynamic setting sheet would be generated by the TMS
or through the Zoller web service by generating a new setting sheet ID with the amount of
tool instances required from each tool type. To determine from the net tool requirement (a
minute value) the tool instances quantity, the following information would be required: the
of a new cutting tool, the critical tool life time and the tool lifetime according to
the NC-program. The latter value describes how long (in minutes) a new cutting tool would
last, when machining with a specific NC-program. The tool lifetime of new cutting tool is either
a catalog value, set by the manufacturer or an NC-program specific value. It describes the tool
lifetime under predefined cutting circumstances, such as tool load and cutting feed, which vary
in each NC-program. Now a picking order is created on the basis of the dynamic setting sheet.

A is a bill of materials. It lists the components required for assembly for each
tool instance. This picking order is handed to the , who collects all components and
assembles them to tools. Those cutting tools are mounted to a tool holder of the type HSK,
which fits the machine tool coupling. Each tool holder has a inlaid. Now that the
cutting tool is assembled and mounted onto a tool holder, it becomes a tool instance. As such
it now possesses an inventory number, which will be assigned, either by the worker or by an
number generated by the TMS. This inventory number is unique and refers to dynamic tool data.
Dynamic tool data is data that belongs to tool instances and is being changed during the tool
cycle. Such data is, for example the remaining tool lifetime, geometrical measurement values,
last use time, etc. When all required tools have been assembled and their tool inventory number
has been stored into the , the tools will be delivered to the presetting device with the
worker. Now each cutting tool instance is identified by the presetting device with its inventory
number on the RFI tag and measured. The measurements are stored directly by the presetting
device to the TMS and are accessible for the machine tool on a request basis. To enable a
remote call for the tool data from the machine tool, the Siemens Create MylInterface and OPC
UA is used. To exchange data from the TMS to the machine tool and back, either HT'TP or
XML based solutions (Zoller Web Service) are used. This interface is further addressed as the
[TMS interfacej. Right after this gross tool requirement is determined, the current magazine
load is checked through Create Mylnterface and the net tool requirement is determined. The
measured data is stored in the central TMS databased and linked to the tool ID. When all tools
are measured, the worker delivers them to the machine tool. The machine tool identifies the
tool instance by the inventory number written on the RFID tag and requests the tool instance
data. The machine tool can call up the required data through the TMS interface. Now the
cutting tools are setup by inserting the tools into the machine tool spindle, which assigns them
a magazine pocket. The machine control then assigns the magazine position freely to the tool
instance and codes the magazine position to the tool type. Now the machining and therefore
tool use can start. After the machining ends, the lifetime value of each inventory number is
updated remotely in the TMS, through the web service interface. The machining ends when all
workpieces are machined.

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

4.4.2 Detecting essential process entities or beings

The aim of this methodical step is to determine essential process entities from the above stated
textual description. According to table 3.2/ the entities are divided into two groups, a concrete and
an abstract concept group. To determine the function and tasks of the textual description, the
focus shall be on verbs used to describe the process flow. Those verbs are marked by underlining
them. These underlined words are not only limited to the verbs themselves, as pronouns are
required to clarify the task or function. For example, not only “update” is underlined, but also
the object that should be updated. Those underlined verbs and their pronouns were then listed
in table 4.2. Their abstract concept type has not been defined yet.

In the next step of the process concrete objects, that are required to fulfill the tasks or functions,
are listed in the table. It is in most cases evident, which concrete concept types influence the
task or function. Concrete concepts are either resources, material or information required to
fulfill a task or a function.

With the tasks and functions filled in the center of the table 4.2 the required inputs can be listed
and categorized by assigning concrete concept types. The process starts with “Beginning process”,
which is triggered by the arriving information “Released machining order”. An information is a
concrete concept type merging data, state and events. A released machining order is an event
and therefore of the type information. Since “Beginning process” requires only the event, it is a
function.

While the functions and task have been underlined in the textual description the object required
have been emphasized by to aid transparency. The first such object is the
machining order. The machining order is an information and includes the following parts:
machining order name, NC-program No. and a production quantity. While the machining order
is described as a complete entity in the textual description, the table only considers its required
aspects individually. In this manner the table is completely mapping the entire process in detail.
At this point it is noted that “Assign magazine pocket” or “Machining” are both functions,
although they utilize and occupy a resource. This is reasoned in the previously defined process
boundaries. It was stated that the internal processes of the machine tool are not concerning
the process. This perspective corresponds to the assumption that the NC-program is always
available at the machine tool (see process boundaries). The machine tool is therefore seen as a
closed system, fulfilling a function and only requiring itself, the machine tool, to do so. The same
goes for the workpieces and the clamping systems. All three concrete concepts have therefore
not been listed in the table.

4.4.3 Describing process entities a glossary

This methodical step describes the process entities, that need further explanation. Thereby
the stakeholder or designer decides for which process objects a further description would be
beneficial. Here the machining order, the setting sheet, the tool lifetime and the dynamic setting
sheet, require further explanation. However, at this point it must be stated, that no task or
function should require a further description in the glossary, since they have been broken into
their smallest possible pieces. During the KPI definition the machining order was chosen to
be used instead of shop orders, to ensure a free scheduling of those orders without mutual
interference. The understanding of such a machining order is defined in the glossary as follows:

A Machining order is limited to a workpiece type and a processing NC-program. A released
shop order, on the other hand can trigger a chain of activities required to fulfill the shop order.
So does a released shop order for one engine release other subordinated shop orders, such as one
each for the pistons, the piston rods, the engine block etc. The machining order can be easily

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Process entities

Input [Concrete types]

Task or function

Output [Concrete types]

Released machining order[Information]
Released machining order[Information]
Machining order name [Information]
Production quantity [Information]
NC-program no. [Information]

Beginning process [Function]

State [Information]
Machining order data [Information]

Machining order data [Information

Get NC-program no. [Function]

NC-program no. [Information

Machining order data [Information

Get production quantity [Function]

Production quantity [Information

NC-program no. [Information]|

Get setting sheet[Function]

Setting sheet ID [Information
Setting sheet tooling list [Information]

Production quantity [Information]
Tool list [Information]

Calculate gross tool requirement[Function]

Gross tool requirement [Information]

Machine tool control [Resource]
TMS interface [Resource]

Request magazine load [Function]

Magazine load tool list[Information]
Inventory no.[Information].
Rem. tool lifetime [Information]

TMS interface [Resource]

Request warehouse tool stock [Function]

Stock tool list[Information]
Inventory no.[Information].
Rem. tool lifetime [Information]

Gross tool requirement [Information]
Magazine load tool list[Information]
Stock tool list[Information]

Calculate net tool requirement [Function]

Net tool requirement [Information]

Net tool requirement [Information]
Catalog tool lifetime[Information]

Calculate tool quantity [Function]

Tooling list net requirement [Information]

Tooling list net requirement [Information]
TMS interface [Resource]

Generate dynamic setting sheet [Function]

Dynamic setting sheet [Information]

Dynamic setting sheet [Information]
TMS interface [Resource]

Generate picking order [Function]

Picking order [Information]

Picking order [Information]
Worker [Resource]

Collect components [Task]

Components [Resource]

Picking order [Information]
Worker [Resource]
Components [Resource]
Workstation [Resource]

Assemble components [Task]

Assembled tools [Resource]

Assembled tools [Resource]
Worker [Resource]
RFID-tag [Resource]
RFID-terminal [Resource]
TMS interface [Resource]

Assign inventory no. [Function]

Assembled tools [Resource]
Inventory no. [Information]

Inventory no. [Information]
TMS interface [Resource]

Store inventory no. [Function]

State [Information]

Assembled tools [Resource]
Worker [Resource]

Deliver tools to presetting device [Task]

State [Information]

Assembled tools [Resource]
Inventory no. [Information]
Presetting device [Resource]
Worker [Resource]

Measure tools [Task]

Measurement [Information]

Inventory no. [Information]
Measurement. [Information]
TMS interface [Resource]

Store measurements [Function]

State [Information]

Assembled tool [Resource]
Worker [Resource]

Deliver tools to machine tool [Task]

State [Information]

RFID tag [Resource]
RFID terminal [Resource]
Machine tool control [Resource]

Read RFID tag [Function]

Inventory no. [Information]

Inventory no. [Information]
Machine tool control [Resource]
TMS interface [Resource]

Request data [Function]

ToolID [Information]
Tool lifetime [Information]
Measurement [Information]

Assembled tool [Resource]
Worker [Resource]
Machine tool [Resource]

Insert tools into machine [Task]

State [Information]

Machine tool [Resource]
Machine tool control [Resource]

Assign magazine pocket [Function]

State [Information]

Machine tool [Resource]

Start machining [Function]

State [Information

Machine tool control [Resource]

End machining [Function]

State [Information

Machine tool control [Resource]
Inventory no. [Information]
Remaining lifetime. [Information]
TMS interface [Resource]

Update tool lifetime [Function]

State [Information
Inventory no. [Information]
Remaining lifetime. [Information]

Machine tool control [Resource]

Process end [Function]

State [Information]

Table 4.2: Process entities of the integrated tool cycle

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

managed and recalculated since it is limited to one machine tool as a production resource. A
machining order is a realized routing step consisting of one NC-program, which is fulfilled by
the machine tool as the production resource. The cutting tools and the clamping system are in
this context, auxiliary production resources, assigned to the routing step (NC-program). The
maximum lot size of a machining order is defined in the product or component master data and
sized to fit the machine tool capacity. This capacity is not only limited by the machine tool
working area, but also by the tool magazine capacity, since machining without an additional
setup must be guaranteed. The NC-program, as a specified work plan for a machine tool type,
must be executed on a machine tool matching its type. The machining order presented here
already contains the NC-programID. The machining order contains a unique machining order
1D, the quantity of the workpieces to be processed.

A Setting sheet, which is also called setup sheet, is a tooling list of cutting tools, required for
an NC-program on a machine tool. In practice, a setting sheet just describes which tool types
and components are required for the specific NC-program. It does not specify the number of the
sister tools, that are required to process a machining order. However, to calculate the gross tool
requirement, the individual tool use time for each tool type is required. To scale this tool use
time for the quantity of the order, this tool use time must capture the per workpiece duration.
For each cutting tool in the tooling list of the setting sheet a tool use time per workpiece is set.
This per workpiece tool use time is saved as a long comment in the tool specific data set of the
setting sheet. The thereby stored values are calculated due to the desired feed and tool load.
Those tool use times per workpiece are stored in a comment data field, since no explicit data
field is covering this issue yet. With this data the gross tool requirement of each machining order
can be determined. Since the literature and the industrial practice have no standardized setting
sheet structure, its structure depends on customized choices. Only three kinds of information
are commonly used in setting sheets: the NC-programID, the machine tool and the tooling list.
Since the net tool requirement shall be determined with the setting sheet more data is required.
This data is divided into three groups, one is the machining order related data, the second is
the NC-program related machining data and the third is the extended tooling list required to
fulfill the NC-program. The setting sheet data provided by Zoller TMS Gold is used and for
each cutting tool the tool use time per workpiece is added to it. This minor adaption enables
calculating the order related required tool use time for each tool, and as a further consequence
the gross and net tool requirement.

The dynamic setting sheet enables the usage of the tool data stored in the TMS. With a
dynamic setting sheet, easily a picking order can be generated, which includes the bill of material
for each tool type listed. The dynamic setting sheet is used to list only the required tools, after
considering the available tools at the machine tool and in storage. While the traditional setting
sheet, is used as a template to calculate the gross tool requirement, the dynamic setting sheet
serves as a template to generate a picking order.

Tool lifetime: During rechecking the boundary, it was assumed, that the NC-program related
lifetime is correct. It was further assumed, that the NC-program related tool lifetime must stand
in linear relation to the catalog lifetime. Both assumptions enable transforming the remaining
lifetime from one NC-program to another. This assumption enables using the same tool instance
in different NC-programs. It is not yet elaborated, how to calculate this transformation. This
aspect must be considered in the upcoming progress.

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.4.4 Optional: coarse activity diagram

Get NC-ProgramID| NC-ProgramID:String

Get
SettingSheet

MachiningOrder MachiningOrder:table
release

‘ SettingSheet: SettingSheet

Toolinglist:List Get Toolinglist

Get ProductionQty | productionQty:Int

Calculate

GrossToolRequirement

LJ

GrossToolRequirement

Request
CuttingToolStock

Request

MagazineLoad MagazinLoad:ToolList ToolStock:ToolList

Calculate
NetToolRequirement

NetToolRequirement

Calculate
ToolQty

Generate . . P ToolSupplyOrder:
{DynamicSettingSheet DynamicSettingSheet:SettingSheet Generate ToolSupplyOrder ToolSupplyOrder Collect Components
Tool.Inv:Int | Assign Tool.InvNo. Assemble Tool

NetReqToolingList:List

Deliver Tools to Store Tool.InvNo.

PresettingDevice

Measure Tools

MeasureResults:XML

Deliver Tools to Machine Read RFID Tag | Tool.Inv:Int TooIData:XML Insert Tools into Machine

ToolData:XML | Update ToolLife End Machining Start Machining Asmg;ol\c/lka(iazme

O

89
Figure 4.1: Tool Cycle of the TU Wien Pilotfabrik, described in an UML activity diagram

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.5 Abstraction phase

Now that all required tasks and functions are captured, services deriving from those tasks and
functions and new services are being identified. First, the services deriving from the process
tasks and functions are described. Afterwards, new services supporting the KPI are designed.

Service Identification

Machining Service

The machining service is unique and brings in a value. It starts with the core functions “Start
machining” and “End machining”. The function “Assigning a magazine pocket” does not count
as a service by service rule 1, as it does not add value into another party. In fact, assigning the
magazine pocket is a function within the machine tool, which adds no value outside the machine
tool. Therefore, this function is added to the machining service, as it supports it. “Read RFID
tag” and ,Request data“ are both functions supporting the machining service. Both have no
additional value outside the machine tool and will be added to the machining service. Between
those functions and the “Assign magazine pocket” function is the “Insert tools into machine”
task. This task is clearly required for the machining to begin. It does however not belong to the
machining service. This task will stand alone as a service.

Setup service

The worker inserting the assembled and required cutting tools provides something of value to
another party, the machine tool. Its service is solitary and cannot be substituted by any other
party. Inserting the tools into the machine also satisfies the service rule 4 as it has a beginning
and an end. This service only consists of one task and is named the setup service.

Commissioning service

Another service in this core process, is the commissioning service provided by the worker and
consisting of two tasks, “Deliver tools to presetting device” and “Deliver tools to machine
tool”. Both tasks are not replaceable and provide a value to the other parties. Both tasks have
been summarized as in the next phase, they would have been, due to their joint resources and
familiarity. Since both tasks cover the same functional range and are both executed by the
worker, they have been directly summarized.

Assemble tool service
Another service is the assemble tool service, which combines the continuous tasks and functions
from the collection of components to the storing of the inventory number.

Measuring service

The next service is the measuring service. It combines the task “Measure tools” and the
function “Store measurements”. The combination of both offers the outside a complete service
of measurement.

Determine net tool requirement service

The last service deriving from table |4.3|is the determine net tool requirement service. This service
combines only functions and processes therefore only information. Provides the calculation of
the net tool requirement for each available position in the machining queue.

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Process entities

Task or function [Types] Service Offered value
“Read RFID”[Function] Machining the order
“Request data” [Function]

“Assign magazine pocket” [Function] Machining service

“Start machining” [Function]
“End machining” [Function]
“Insert tools into machine”|Task] Setup service Setup of required tools
“Deliver tools to presetting device” [Task]| Transporting physical items
“Deliver tools to machine tool” [Task]
“Measure tools”[Task]| Measuring physical tool
“Store measurement” [Function] Generating corrective geometrical data
“Collect components”[Task] Assembling cutting tools
“Assemble components”|[Task] Generating tool instance
“Assign inventory number” [Function]
“Store inventory number” [Function]
“Update tool lifetime” [Function]

Commission service

Measuring service

Assembling tools service

Transmitting the current

Update tool lifetime service o e
remaining lifetime

“Get NC-program no.”[Function| Minimal tool requirement [Information]
“Get production quantity” [Function]

“Get setting sheet” [Function]

“Calculate gross tool requirement” [Function]
“Request magazine load” [Function]
“Request warehouse tool stock” [Function]
“Calculate net tool requirement” [Function]
“Calculate tool quantity” [Function]
“Generate dynamic setting sheet” [Function]
“Generate picking order” [Function]

Determine net tool requirement service

“Beginning process”[Function] Beginns interaction
Inquiring Offer service Transmits values

Requires offer

“Calculate production costs”[Function] Turns position into production cost
“Calculate order execution time”[Function] Proposing offer service Turns position into order execution times
“Post offers”[Function] Offers possible positions machining schedule
“Evaluate best offer”[Function] Pursuing KPT strategy

Denying offer
Accepting offer

“Report Deny”[Function]

, . Accepting offer service
“Report Acceptance”[Function] pting ofier servi

“Termination” [Function] Report to a higher system and terminate
“Update Machining Queue”[Function] Knowledge of the current schedule
“Evaluate time preceding order”[function] Ensuring machining position is available
“Evaluate time until setup”[function] Managing machining service Defining tools for dismounting

“Managing the tools in the magazine” [function]

Ensures on time tool supply
“Calculate time tool supply” [Function] Prevents idle time due to

“Calculate until setup” [Function] Managing setup service missing tools

Table 4.3: Summary of services

Update tool lifetime service

During machining, the remaining tool lifetime is reduced. The updated tool lifetime is signaled
after finishing the machining. Although the function “Update tool lifetime” takes place within
the timeline of the machining service, it is chosen to be a separate service. This is reasoned as
the updated tool life within the machining service would not have value for another party. It is
a solidary and unique service, although its source might be substitutable. The tool life could
also be estimated instead of being updated directly by the machine control.

New Services based on the KPI

The above described services cover the complete functionality of the core process. However,
they do not cover the KPI, which is to minimize the tooling costs by the optimal scheduling
of the orders. Since there is no task or function available to build the service on, new services
must be developed. In a hierarchical control structure, the scheduling mechanism would be a
formal function and dictated the sequence. But since the minimal tooling cost sequence shall be
achieved by a multiagent system, negotiation pattern must be installed. An example of such a

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

negotiation pattern could be an auction mechanism.

In such an auction, the party that is willing to pay the most would win the bid. But this
negotiation pattern is not suitable for realizing a machine tool schedule to realize the minimal
tooling cost. Another negotiation pattern would be a buyer-seller-system, in which the scheduling
is achieved by one party inquiring and another party offering. The party who inquires can
choose whether it is in its interest to accept or to deny the offer. This pattern is suitable for this
case and can be designed by establishing new services. To pursue this pattern, a “proposing”,
“accepting” and a “scheduling” service are required. The new scheduling service should include
a mechanism to determine the most suitable sequence of machining orders. But since the aim is
to design a flexible process control by a multiagent system the scheduling mechanism must be
separate from the execution mechanism.

The scheduling services only oversees if at any moment the machine utilization still is the best
possible solution and suggest a rescheduling, if this is not the case. But whether this rescheduling
is being executed or not depends on the consent of two parties, the bidder making an offer
and the buyer, accepting, or denying the offer. The new services of the type “Proposing” and
“Accepting” shall lay down the execution mechanism. Since the aim is an optimized schedule
with a minimal tooling cost, which is reflected in minimal production cost, it is comprehensible
that the buyer party will be represented by machining orders.

To start the process an arriving machining order is required. Its analogue for a buyer-seller-
system would be an arriving inquiry. This arriving inquiry states some individual goals, such as
the order execution time or the maximum (production) cost, etc. This inquiry is answered by
proposing one or more offers for different positions in the machining schedule. At the beginning
new services have no tasks or functions and consist only of a name and a value they must
optimize. Their further tasks and functions will be defined in the next steps. This is possible,
since their functions and tasks are not yet bound neither to any concrete nor to an abstract
process entity and can be defined freely, to fit into the further multiagent system. Now the
scheduling, bidding and buying services are being discussed in detail focusing on their content
and which functionalities they must have including their inputs.

Inquiring offer service

The inquiring service is the only new service, which includes an existing function; the “Beginning
process” function. The inquiring service is triggered by the machining order entering the system.
The machining order shall actively seek for the best spot in the machining schedule. It could
be debated, that the inquiring offer service is rather a function than a service, but it brings a
value to another party. This other party is whoever oversees the proposition of an offer or the
scheduling service. According to the service rule 1, it adds something of value to the system.
Additionally, service rule 3 is fulfilled, as this service cannot be substituted. Service definition
rule 2 and 4 are bound to the tasks and functions that this service will include. So, what will be
the task or function of this service? The inquiring an offer service informs the system of the
arrival about a new machining order. It transmits information of the machining order. Both
aspects are covered by the “Beginning process” tasks, which result in the machining order data.
But beside this the already defined data, a new data set is required to engage in a buyer—seller
scenario. There are two possible ways to trigger this scenario, either the buyer presents a target
value, that shall be meet or it provides parameters and waits for several offers. Since the setting
has only one machine tool, presenting a target value does not fit the use case. The benefit of
this scenario can be best exploited, if the buyer can connect several sellers with a target price,
to see who is capable of meeting it. Since the setting has one machine tool and therefore one
machining schedule, different positions in the machining queue (schedule) can be offered. So, the

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

possible scenario is to request several positions in the machining schedule, and to then choose
the one with the lowest price. The advantage of this scenario is also that the no further data
for the inquiry service needs to be exchanged. Considering service rule 4, this service has a
beginning and end, in fact, it will only be enrolled at the arrival of the machining order. This is
a design choice since machining order shall not request proactively a better machining queue
position, after already accepting an offer.

Proposing offer service

Now the proposing offer service is the second required interaction, between two parties trying
to achieve consent. It can be said without any doubt, that this is a service of value to another
party. The design choice is that the offering party makes an offer for each possible position
in the machining schedule to the new arriving machining order. The proposing offer service
should end at some point. This decision is made since machining orders shall not wait until their
desired value is met, but rather choose to accept or deny the offer. In fact, the offering party
should limit its offers to a specific time, so that the in inquiring party receives all possible offers
available at the moment of request. The resource capable of fulfilling what the proposal promises,
a position in the machining queue, is the machine tool. To offer a machining queue position
only the current schedule information is required, not the execution of the proposed machining.
Further, the offering party must be capable of turning the variable machining schedule spots
into parameters comparable with each other. Such parameters could be production dates, order
execution times, process times, or production costs, etc. Those value shall serve the buyer side
as decision-making parameters, reflecting, if the offer is desirable or not. So, the offering service
must have a set of information, enabling it to turn a spot in the machining schedule into selling
parameters. To keep it simple only two parameters are chosen to be offered by the seller, the
production cost, and the order execution time. So, each possible machining queue position has
at the time the request is made a known production cost and order execution time. Those
values are influenced by the preceding orders as well as by the requesting order. Therefore, both
values directly reflect if a machining order sequence is desirable of not. During the inquiring
service it was stated that a machining order can only once request offers. This has the benefit
that the next order will be offered positions in an already existing queue, instead of completely
rescheduling the machining queue. Completely rescheduling the machining queue is complex,
and would not meet the demands of the shop floor, as machine idle times occur due to the
rescheduling. The order execution time, as its name indicates, is the time a machining order
must wait until it has been completely machined and finished. It describes the time it takes
from the arrival of the machining order to completing its machining. The offered production
cost should somehow reflect the smaller tooling costs. In other words, it should put more weight
on a smaller tool setup than on other aspects. This decision is caused by the set KPI strategy.
Therefore, the main aspect of the production cost should be the cost caused by changing cutting
tools. Since machining orders can vary in size, and a bigger production quantity would also
cause higher handling cost and higher machining cost in the industrial practice, both aspects are
considered. The handling cost derives from the quantity of workpiece per machining order. While
the machining cost results from a multiplication of the workpiece quantity and the machining
hour rate. It derives from the time that the machining order occupies the machine tool. The
production cost includes the tooling cost, the handling cost and the machining cost. The tooling
cost has a higher impact on the production cost than the other two cost aspects. So, this service
does not only make an offer for each possible machining queue position at the moment of, but
also determines the order execution time and production cost for these positions.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Accepting offer service

The decision making of the buyer is based on two parameters, the order execution time, and the
production costs. The buyer must have a mechanism to evaluate the most suitable offer by this
set. If two offers exist, for example offer A and the other Offer B, and it is assumed that offer A
has a lower production cost and a shorter order execution time. Then the offer A is clearly the
more desirable offer. But this comparison lacks validity if offer A has the lower production cost
but the longer order execution time. The accepting offer service requires therefore a function
to choose a suitable offer. The proposing offer service will derive the smallest tool setup for a
smaller production cost. This leads us to the perspective that the accepting offer service should
focus its interest on gaining the lowest production cost possible. However, defining only this
focus might lead into accepting a theoretical infinite order execution time for the lowest possible
production cost. This aspect might not be obvious if only four machining orders would be in the
system simultaneously, but it is for 20 machining orders. If the buyer accepts any given position
offered only due to the price, there would be no mechanism to prioritize machining orders, which
is a common practice in the industry. The case might occur, that a machining order with a high
priority arrives, for which the production is willing to pay whatever cost only to machine it as
fast as possible. The accepting offer service must also cover this mechanism, which leads to
another function and its required information. A parameter is required to put production cost
and the order execution time into relation. To keep it simple, a time leeway factor is chosen.
It is a factor defining how big a time leeway can be to achieve a lower production cost. If an
accepting offer service deals with a leeway of 1.65 it could extend the order execution time up to
65% of the original value, only to realize the best production price. The target parameters are
the maximal production cost, the maximal order execution time, and the time leeway. Based on
those parameters, the accept offer service must chose if one offer can be accepted or all offers
must be denied. If no offer can be accepted, this service must have a function to handle this
case. Such a function could be an error handling or a termination with a report file.

Managing machining service

While the proposing offer and the accepting offer services ensure that the optimal machine
utilization with the lowest tooling cost is found, a service is required to ensure the smooth
operation of the machining. The proposing offer service calculates the realizable production
cost and order execution time of each position, while the managing machining service decides
which position is available for scheduling by considering machining restrictions, which must be
respected. One constraint is that the next order for machining cannot be changed anymore.
This reflects the situation on the shop floor as the tool supply takes time. Another task of the
managing machining service is managing the tools in the magazine. It schedules which tool is
up for replacement, and monitors that no other cutting tool is dismounted.

Managing setup service

The managing setup service provides the managing machining service with the information
about when a setup can take place and how long the tool supply might take. To flexible schedule
machining orders requires to postpone or prepone tool setup and supplies. While doing so, it
must be ensured that an offered machining position includes only positions, which offer enough
time until the setup starts, so that the tools can be prepared, and the tool setup can take place
on time. In figure 4.2| all services have been captured. Here the new services are highlighted
by a green background. The Inquiring Offer service, is the only new offer including an existing
function.

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Assembling

Measurin Commissionin
tools & &

Determining

. Update tool lifeti
net tool requirement paate toollitetime

Managing machining Managing setup

Inquiring offer

Proposing offer Accepting offer

Figure 4.2: Services

4.6 Clustering Phase

Services clustering

Now that all services are defined, the old ones ensuring the core process and the new services
addressing the KPI, the clustering phase can start. From this phase on the focus is mainly on
the services and no longer on the functions and tasks required to provide them. During the
clustering process the clustering rules provide guidance.

Cluster 1: First, the inquiring offer service and the accepting offer service are clustered
together. This is an intuitive decision as it is comprehensible to assign the accepting offer service
to the entity requesting an offer in the first place. This is also reasoned, as the entity requiring
offers from several entities, holds the knowledge of all made offers.

Cluster 2: This cluster is based on the first clustering rule, suggesting the joining of resources.
The assembling tools service, the commissioning service and the setup service have all joint
resources, the human worker. While all three require also other resources for their fulfillment,
the human work is their joint resource and suggests a fusion to one cluster.

Cluster 3: This cluster arises from clustering rule 3, combining familiar services to exploit
possible synergies. This cluster includes the managing machining service and the managing setup
service. Both services address the scheduling and the organization mechanism. Those mechanisms
could be similar or even inherit from one another. Both services have the responsibility to ensure
that specific restrictions are obeyed, to prevent machine idle times and to ensure a sufficient
tool supply at the machine tool.

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Cluster 1

Assembling
tools

Inquiring offer Commissioning

Accepting offer
Cluster 2

Measuring
Proposing offer

Determining
net tool requirement

Cluster 3

Update tool lifetime

Managing setup

Managing machining

Figure 4.3: Service clusters at the state 1

Figure 4.3 shows the current clustering state. As the reader might have noticed, the already
defined clusters are in the corner of the graphic, while the other services are positioned at
distances according to their interactions or relations. The proposing offer service is between
Cluster 1 and Cluster 3. This service interacts mainly with the services of Cluster 1, but it also
shares joint resources with Cluster 3. It shares with cluster 3 not only the information it gets
from the managing machining service, but it sells a position in the machining schedule organized
by cluster 3. The machining service is located between the proposing offer service and Cluster
3. Its service is used by both parties, while facilitates the service of the update tool lifetime
service right next to it. Although those services provide each other with something of value,
their clustering depends not on this criterion, as it would result in one big cluster of all services.

Cluster 4: If the proposing offer service is combined with the machining service, the calculation
of an offer and its execution would be in one hand. This has the benefit of controlling and ensuring
execution of the offer. This might not seem to be required in the setting of the Pilotfabrik,
but if several machine tools are involved on one shop floor this combination could benefit the
validating the offer. Higher services arising from this clustering could be the validating the offer
service and the monitoring the execution service. The monitoring the execution service could be
a service not only monitoring the progress of the machining but also posting life feedback to
the buyer. the validating the offer service could revise the made offer if something unforeseen
occurs, like machine downtime. It can also adapt its offer if production order time is shorter
than expected. Both higher services would speak for clustering those services together according
to the cluster rule 2.

When defining the update tool lifetime service, it was argued that this service could provide more
value to another party, than the machine tool, which is why the fusion with another service was
postponed. Now that all services in this system are observed, it is noted that the combination
of this service with any other service will neither support the familiarity rule nor the higher

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

service clustering rule. Therefore, this service is combined with the machining service in cluster
4. The update tool lifetime service could remain solitary, but it does not have enough substance
to find its own cluster, nor has it any other cluster services as main consumer of its service.
Figure 4.4 illustrates the current clustering state. The determining net tool requirement service

Cluster 1

Assembling
tools

Inquiring offer Commissioning

Accepting offer
Cluster 2

Cluster 4 Measuring

Proposing offer

Update tool lifetime

Determining
net tool requirement

Cluster 3

Managing setup

Managing machining

Figure 4.4: Service clusters at the state 2

is now located between two clusters. The determining the net tool requirement service is of
value for the proposing offer service. This is reasoned, as the proposing offer service requires
this valuable information to calculate the production cost for the specific machining schedule
spot. On the other hand, the determining the net tool requirement service is also of high value
to the managing setup service, as it offers the valuable information of tools are required. This
value is turned by the managing setup service into managing the tool setup individualized to
each machining schedule spot. Now the question is, which cluster the determining net tool
requirement service belongs to. It does not have any familiarity with an existing service on this
map. It shares resources with the machining service, as it acquires the machine tool control
for the magazine load. However, it does also share resources with the managing setup service,
as it requires a TMS interface to request the current tool stock. The second clustering rule,
addressing the combination of services for a higher service, will resolve this. Currently cluster
4 is the machining cluster and cluster 3 the managing machining cluster (see figure 4.4). The
determining net tool requirement service would fit both clusters but does not add up to a
higher service if jointed with only one cluster. However, if both clusters are combined with the
determining net tool requirement service, a higher service, such as the scheduling machining
service, could be gained. This cluster combines all required services to propose, execute and
manage the flexible machining schedule.

So cluster 3 and 4 are combined to one cluster (see 4.5). Since the measuring service depends on
the human as resources, it shall be added to cluster 2. Since the required functions were defined
previously the creative clustering will not jeopardize the functionality of the core process.

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Cluster 1

Assembling
tools

Inquiring offer Commissioning

Accepting offer

Cluster 2

Cluster 3

Proposing offer

Determining
net tool requirement

Update tool lifetime

Managing setup

Managing machining

Figure 4.5: Service clusters at their final state

4.7 Transformation phase

Now that the services are clustered, the transformation those three clusters into agent types can
begin. First, their role is defined and then their responsibilities. Then their multiplicity is being
discussed and defined. Afterwards, their interactions are being resolved. Then the redefined
process entities required to support those interactions are being presented. At the end of this
section, each agent type and its structure is being described. And finally, their interaction is
being described.

4.7.1 Role assigning

This step of the phase will assign roles and responsibilities to the previously presented clusters.
Since the MAS resulting from this thesis of this work will only be realized in JADE and not yet
directly in the Pilotfabrik setting, the human work and the database must be mapped into the
final MAS design. Since the integrated tool cycle shall be managed by the MAS design both
process entities must be included as additional agent types. Cluster 2 would for example, if the
human worker executes those tasks in the factory manage all handling and assembling tasks and
trigger the required steps. During this thesis the work of the worker is simulated by splitting
the cluster into two agent types. One covering the core service, which is the tool supply and one
simulating the humans’ tasks and the measurements of the presetting device.

No Cluster: The VisualAgent

Similar to the DataAgent, the visual Agent is a compromise between process-necessary entities
and the wish to map the tool cycle completely in a MAS simulation. It covers those tasks in the
simulation, that a real human being would fulfill in a real-world implementation. If the MAS
would be implemented into the Pilotfabrik, this agent would not be necessary.

98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

No Cluster: DataAgent

Similar to the VisualAgent, the DataAgent is implemented into this MAS not due to its services
or its role. It has been implemented to enable simulating the tool cycle process controlled by
the MAS in JADE. Due to JADEs’ XML interface it would be possible to establish a connection
to the TMS database of the Pilotfabrik. But since the generated data would not be based on
real-world data (measurements, inventory number, magazine load), the additional effort is not
reasonable. Therefore, the DataAgent is established as the simplest representative of the TMS
connection in JADE.

Cluster 1: The OrderAgent

An OrderAgent represents a released machining order in the MAS. It offers the system the

following services or actions:

o Triggering the process start

o ERP-related parameters (maximum order execution time, maximum production cost, time
factor)

e NC-ProgrammlID, required for determining the gross tool demand
o Negotiating

e Acting in its best interest

e Accepting or denying an offer

e Reporting to the higher MES or ERP layer

o Indirect competition between OrderAgents by their multiplicity

Cluster 2: The SupplyAgent

The SupplyAgent is designed to fulfill all tasks required in the tool supply. It represents the
state of the storage, informs about the location of the components, and manages the presetting
and measuring. Although it supports the human worker by triggering the VisualAgent, it does
not assemble the tools, nor does it deliver them to the machine tool. Those tasks are covered by
the VisualAgent and the human worker. The SupplyAgent monitors all cutting tools, which are
currently not in the machine tool magazine. It also covers the following services:

e Tool management in storage
o Creation and management of Setup orders
e Measuring

 Calculation of the Timeyntiisetup

The SupplyAgent is designed together with the VisualAgent, to ensure that the whole tool
supply is covered. The SupplyAgent maps the process steps required for the simulation, such as
the tool assembly or, the initiation of a tool instance, the tool measurement at the presetting
device, and the tool data management. It is also a valuable partner for the MachineAgent since
it provides the required tools on time at the machine tool by processing the ToolSupplyOrder.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Cluster 3: The MachineAgent
The MachineAgent represents the machine tool and all its states including its classical tasks,

such as machining, and updating the tool lifetime. Reasons for choosing a MachineAgent are:

e Multiplicity: one or more could be generated

e Competition based on pricing, MachineAgents could compete directly with each other by
adapting the price

e Competition based on current magazine load
e Knowledge of magazine load at any possible time
e Authorized to negotiate, since it provides the service

e Machining order sequencing, with the aim of minimal production cost achieved by minimal
setup rates

The MachineAgent also covers following services:

o Offering the OrderAgents coverage-based production prices
o Negotiating with one or more OrderAgents

e Planning the future magazine load

e Managing its own tool disposition

e Determining the net tool requirement

o Orchestrating the order sequence (machine utilization) towards a minimum setup time

4.7.2 Agent type multiplicity
VisualAgent multiplicity

The multiplicity of the VisualAgent depends on how many human workers and working stations
are available on the shop floor. Since a shop floor could have more than one worker and
working station, there could be more than one VisualAgent representing them. According to the
functionality, the system would benefit, if more than one VisualAgent would exist. In fact, the
VisualAgents and their resources could compete against each other for the bid. Generally, it
can be said, that the multiplicity of the VisualAgent could be between 1 and n, but since the
Pilotfabrik has only one worker and one working station its multiplicity is set between zero and
one for the simulation.

DataAgent multiplicity

The DataAgent is limited by its multiplicity to one. One DataAgent is enough to represent all
relevant services in this MAS. The other reason is, that JADE offers the existence of a Container
Agent (see 2) in its structure. A Container Agent is required in JADE to initiate a container
(MAS environment) in which the agent society runs. While each MAS could have a nearly
infinite multiplicity of different agent types, it can only have one Container Agent. Another
reason for the multiplicity of one is that a second DataAgent has no additional benefit. Unless

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

the databases are not separated, either by location or organizational reasons, it has no additional
benefit (except for back-up) to have two databases involved. If the databases were separated
either by location or by organizational reasons, a higher multiplicity and therefore competition
would be beneficial. In fact, JADE offers, similar to this idea, the functionality of Container
Agents being connected and communicating, which could be elaborated as two shop floors, each
managed by its own DataAgent competing with each other. Competing DataAgents would only
be competing based on the characteristics of their shop floors, which they can not influence
actively. This is an additional reason why the competition of DataAgents does not contribute to
the system. Since the DataAgent is only established for the simulation and it serves as Container
Agent its multiplicity is set to 1 (see figure [4.6).

OrderAgent multiplicity

Representing the machining orders as OrderAgents allows to raise their multiplicity and therefore
their competition. Since all OrderAgents are trying to optimize towards their best possible
outcome, they are (currently) indirectly competing against each other. An OrderAgent can either
accept or deny an offer and competes indirectly by its net tool requirement and its existence.
The mechanisms of indirectly competing are the missing knowledge of the offers made to the
competitor and the inability to make a counteroffer. Its multiplicity is set between zero and
infinity.

MachineAgent multiplicity

In the Pilotfarbik more than one machine tool could theoretically be deployed, which backs the
extensibility of the system. However, given the fact that a CNC-program is a numerically coded
routing step fitting a specific machine tool type, only machine tools of the same type could
compete. Although the competition is limited to one machine tool type, it still could benefit
the overall productivity. The MachineAgents could adapt their prices to get the bid, as a form
of direct competition. The MachineAgents could also be in indirect competition, due to their
availability or current Magazine load. The multiplicity of the MachineAgent could be between 1
and n, but since the Pilotfabrik has only one machine tool its multiplicity is set between zero
and one for the simulation (see figure 4.6)).

SupplyAgent multiplicity

The multiplicity of the SupplyAgent depends on the number of presetting devices and storages
available. If more than of those resources are available at the shop floor their competition will
bring a benefit to the system. Generally, the multiplicity of the SupplyAgent could be between 1
and n, but since the Pilotfabrik has only storage and one TMS its multiplicity is set between
zero and one for the simulation.

4.7.3 Redefined Process Entities

Abstracting services from the initial tool cycle process requires the adaption of process entities,
inputs and outputs. Those adapted process entities evolved to cover either new tasks and roles
or to provide a different data set. Some services, which did not derive directly from process
activities, require the introduction of completely new process entities, such as the dynamic
setting sheet and the machining queue. This section presents the redefined process entities,
artefacts and those which had to be developed.

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Machining Orders

The machining order presented here contains the NC-programlID. Beside the NC-programlID
it contains a unique machining order ID, the workpieces quantity, the maximum production
cost, the maximum order execution time and the time factor f. The last three parameters
are developed so that the OrderAgent can decide on their basis to accept or deny an offer.
The maximum production cost and maximum order execution time are inspired by the two
major KPI. The OrderAgent representing a machining order shall try to find the position in
the machining schedule with the lowest production cost (tooling cost) without exceeding the
order execution time. All three parameters outline an enterprise strategy, even if just vaguely.
The strategy is reflected by the time factor value, which describes the possible leeway to exceed
the order execution time. If the time factor is one, the maximum order execution time shall
not be exceeded. If it is higher than one, a longer order execution time is traded for a smaller
production price.

NC-program

An NC-program is a work-plan for a specific machine tool type programmed in G-code. It is an
executable numerical control program designed for a specific workpiece on a specific machine tool
type. The here defined NC-program built the required connection between a machining order
and the required setting sheet. The data of the machining order includes the NC-programlID,
which refers to a specific setting sheet. For the MAS the tool use time required to process one
workpiece is stored for each tool, so that the overall machining time of a machining order can
be calculated, as well as its required tool use time. The tool use time for one workpiece and
per tool are set to ranges taken from real-world practice. The NC-programs is stored locally on
the machine tool and are compiled on a CAM program with a suitable post-processor for the
machine tool control format. The NC-program is designed and converted in NX CAM.

Setting Sheet

A setting sheet has a data structure, such as displayed before in table 4.4. The literature and
the industrial practice have no standardized setting sheet structure, its structure depends on
customized choices. Only three kinds of information are commonly used in setting sheets: the
NC-programID, the machine tool and the tooling list. Since the net tool requirement shall be
determined, the setting sheet requires additional data. This data is divided into three groups,
one is the machining order related data, the second is the machining related data and the third
is the extended tooling list required to fulfill the NC-program. The setting sheet data provided
by Zoller TMS Gold is used and extended by the tool use time per workpiece for each cutting
tool type. This minor adaptation makes it possible to calculate the order related required tool
use time for each tool, and as a further consequence the gross and the net tool requirement. To
calculate the unit processing time Ty p of an order the production time per workpiece Tpy,,, the
nonproductive time per workpiece Ty p,,, must be multiplied with the order specific workpiece
quantity and be added up with the setup time Tseuprime. The unit processing time 7y p of an
order is required to determine the total order execution time. The production time is the sum of
all tool use times in the extended tooling list. Like the nonproductive time it is a per workpiece
time value. The nonproductive time describes the sum of all nonproductive tasks, that the
machine tool fulfills during processing an NC-Program, such as tool changes and positioning.
In practice it is usually measured or estimated. The values presented here are estimated as
a per workpiece values. In the industrial practice, those values can be simulated in a CAM
software, but they still lack accuracy, with a deviation of at least 15%. This deviation is caused

102

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

H Setting sheet data H

H Machining order related data H Machining related data H Extended tooling list H

Adapter HSK 63 Production time per workpiece[min] T, 3,95 || Tool type Tool descr. Tool use time [min| ‘
Setting sheet ID | SettingSheet12072018 || None prod. time per workpiece [min] Txpy, | 0,79 6585290 DrillD13 0,40
Product Prod.A Setup time [min] Tseruprime 3,00 || 6585298 ShellMillD66 1,96
Machine tool type MaxxMill750 Unit processing time Ty p 10,81 || 6585302 | MillingCutterD9,25 0,85
Machine ToolID MO007 - 6585295 CyeclindricalShaft 0,74

Table 4.4: Example of a setting sheet

by missing data about the real magazine load, the precise tool position in the magazine, and the
tool changing strategy the machine tool utilizes for the magazine. Since this work is build on
a process simulation, those set values are assumed to be sufficient. The setup time is also an
estimated value, which describes the estimated time for a worker to set up the machine tool. It
represents a onetime value and does therefore not scale with the number of workpieces. This
can be reasoned with the small variance of the setup duration wherever 10 workpieces or 20
workpieces are handled. The unit processing time Ty;p sums up the production time and the
required setup time. It is required to calculate the order related machining costs since it sums
up the time a machining order is occupying the machine tool. The extended tooling list offers
the tool type specific tool use time. It is required to calculate the gross tool requirement per
tool type for each machining order, which is here a minute value. In the industrial practice, the
gross tool requirement is a generously estimated number of cutting tools, if determined at all
(see tooling strategies in section 2.1.2)). The setting sheet (as displayed in table 4.4) can be seen
as a per workpiece template for calculating the order specific machining values.

Dynamic Setting Sheet

The dynamic setting sheet is developed to display the net tool requirement for each machining
queue position. The dynamic setting sheet serves as an artefact that lists the minimal quantity
of tools to be assembled for a position in the machining schedule. This minimal quantity of
tool instances to be assembled is called the total net tool requirement T Reqnerrotar [Piece]. The
template to determine the tool supply requirement for each position in the machining waiting
line. The dynamic setting sheet is used to automatically generate a tool supply order of the
total net tool requirement if the machining position is granted.

Machining Queue

A machining queue represents the machining order sequence at a given moment in time. It
reflects in which order the MAS processes the machining orders. The machining queue is a
flexible machine utilization, rescheduling the machining order if thereby smaller tooling costs
can be realized. The machining queue has a frozen zone, which ensures that the first and second
position can not be changed. All other positions outside the frozen zone can be modified until
they reach the frozen zone. In fact, infinite machining orders could be sorted in a sequence.
Some production parameters vary with machining queue position, such as the order execution
time, the net tool requirement and the production cost. Each machining queue position has
its own magazine load, which depends on the remaining tool lifetime of the currently mounted
tools and the preceding machining orders. Therefore, the production cost and the net tool
requirement vary for each machining queue position. Determining the net tool requirement for
each machining queue position and its production cost is done by the MachineAgent. It manages
the machining queue.

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Frozen zone

This new process entity will force the system to set a sequence. Since the tool cycle starts by
an incoming OrderAgent representing a machining order, the MAS will start to sequence the
machining orders according to a local optimum. The MAS might find it comprehensible, that
waiting for more machining orders to arrive would prevent a disadvantageous sequence. If the
multiagent system has the freedom to decide how long it could wait to collect machining orders,
it might never start. The frozen zone prevents a long order execution time, since the first and
the second machining order will always be machined next. The first and second position in the
machining queue are called "frozen zone". This mechanism also reflects the reality of the industry,
where machine idle times are expensive and must therefore be prevented. Assembling cutting
tools, measuring, and delivering them to the machine tool takes time. Without a frozen zone
the sequence could be changed again and again, without any machining order being processed.
In such a case, various redundant tools would be assembled and commissioned to the machine
tool without being used. Such a development would further lead to a high demand for the tool
components, which once assembled, would not be under the oversight of the tool management
system.

Predicting the remaining tool lifetime

Several possibilities to track and manage the remaining tool lifetime exist, either by storing it on
an RFID tag or by updating the value in the database. During the simulation of the tool cycle in
JADE, the remaining lifetime before and after the machining orders is determined by prediction.
Even in a real-world implementation, a previous prediction of the tool lifetime is a practical way
to schedule cutting tools, even though they were not subject to oversight at all times. However,
the industrial practice abstains from this solution since it demands a high organizational effort.
The remaining tool lifetime is a product of the NC-program related tool lifetime minus the
tool use time per workpiece. The tool use time is information stored in the setting sheet and
describes the time in minutes, which the cutting tool is cutting into the workpiece according to
the NC-program.

Estimating the NC-program related tool lifetime

The remaining tool lifetime can only be estimated based on the tool load, the feed and the
cutting depth. The actual tool lifetime and its consumption depends on several factors besides
the ones mentioned above, such as lubrication and span transportation. Both criteria depend on
the machining circumstances. In practice, the tool lifetime is determined by machining under
real circumstances and monitoring the tool wear. A large amount of scientific effort focuses
on investigating how to estimate the tool lifetime precisely. Besides complex mathematical
and computer-aided models, there is a vibrant discussion about which machining factors affect
the tool lifetime more than others. Since finding an answer to those questions would provide
scientific sustenance for several doctoral thesis, this thesis abstains from further addressing this
matter. This thesis rather assumes that the NC-program related tool lifetime can be correctly
estimated. In fact, the NC-program related tool lifetime in this approach is estimated and
has not been verified by a practical test. While setting the values of the NC-program related
lifetime, the focus was placed on a fair presentation of realistic values. Not only does the author
assume that the NC-program related lifetime is estimated correctly, but also that it stands in
linear relation to the catalog lifetime. The catalog tool lifetime depends on a pre-defined feed,
tool depth, and tool load and is provided by the tool manufacturer. If the NC-program related
lifetime stands in linear relation the catalog lifetime, a translation from one specific tool load to

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

the other must be possible. Since the aim of this work is to minimize the tooling costs, using the
same cutting tools with different NC-programs is essential. In the industrial reality a significant
amount of the tool lifetime is left unused to prevent tool damage or breakage, nor is it common
to switch cutting tools between different NC-programs. The NC-program related tool lifetime
is an estimated tool lifetime based on the tool load, feed and the cutting depth. Therefore, it
most commonly constitutes a smaller part of the catalog tool lifetime, if the tool load is higher
than assumed in the catalog lifetime. But there are exceptions, for example if the NC-program
related cutting tool depth, feed and load falls below the values referenced in the catalog lifetime.
In such cases the estimated NC-program related tool lifetime would be higher than the catalog
lifetime, since the wear and tear would be less than the ones assumed by the manufacturer.

Implementing a Lifetimefactor L; for converting the NC-program specific tool use
time to allow the use of tools in different NC-programs

To minimize the tooling cost, it is important to use the same cutting tool instance with different
NC-programs. This practice is not common, since the estimated or tested tool lifetime relates
to a specific NC-program. However, the feasibility of this idea is exactly the subject of this
developed process entity. Based on the assumption, that the NC-program specific tool lifetime,
and the catalog tool lifetime do relate in a linear manner, a translation from one NC-program
specific tool lifetime to another must be possible. Therefore, the tool wear intensity can be
scaled, by dividing the estimated tool lifetime, which is NC-program specific, by the catalog
tool lifetime provided by the manufacturer. The result of this division is the lifetime factor,
which is the subject of this developed process entity. The higher the tool wear, the smaller the
tool lifetime factor. Creating this factor allows the use of a cutting tool instance in different
NC-programs, without completely losing track of wherever the tool lifetime must be reduced
or increased. Fach tool has its NC-program specific lifetime stored in its setting sheet, as each
NC-program displays the lifetime consumption based on the lifetime a new tool would last in
this specific NC-program. Knowing this consumption makes the switch from one NC-Program
to another possible. This can be accomplished by normalizing the NC-program related value
according to the catalogue tool lifetime, using the Lifetimefactor L.

This Lifetimefactor sets the catalog lifetime in relation with the NC-program based lifetime.

I CatalogLi fetime
F= NCLifetime

The Lifetimefactor is determined and multiplied with the tool use time of the NC-program
to normalize its value based on the catalog tool lifetime. By doing so the remaining lifetime
is managed on the base of the catalog tool lifetime and eliminates the necessity of tracking
NC-program changes. A face mill for example with catalog lifetime of 200 minutes shall be used
in NC-program A for 20 minutes, in which it would last 150 minutes with a newly assembled.
The newly assembled face mill shall afterwards be used in a different NC-program B for 30
minutes, in which a new face mill would last 170 minutes. The Lifetimefactor Ly for translating
the tool use time from NC-program A into a catalog lifetime normalized value would be:

(4.1)

200minutes
5 = 150minutes 3 (4.2)
The normalized tool use time would therefore be 26,67 minutes, instead of the original 20 minutes.
The face mill has therefore 173,33 minutes left of its normalized remaining lifetime. Now the

face mill shall be used in NC-program B for 30 minutes.

2 nut
L, = 20minutes) g (4.3)

- 170minutes

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

The normalized tool use time of the NC-program B would be 35,4 minutes instead of 30 minutes.
After the machining with NC-program B, the face mill still has 137,93 minutes lifetime remaining.
Using the catalog lifetime and normalizing the NC-specific tool use time is a suitable method
to track and convert the remaining lifetime, while using the tools in different NC-programs.
This approach does not require storing the usage history for each tool inventory number with
a timestamp, as it were necessary if the remaining lifetime would be converted from each
NC-program to the next one.

Tooling Cost

Costs that are caused either directly or indirectly by cutting tools are nothing new. As described
in section 2.1, classical tooling costs are purchase, storage, handling and managing cost. Most
producing companies do not measure or calculate the cost. This has several reasons. One is that
each tool must be recorded, which consumes time and effort. In addition, most standard cutting
tools do not cost enough for the company to trace their consumption. In this work, the tooling
cost is emphasized. It is therefore set as key performance indicators. The strategy to minimize
the tooling cost is to schedule the machining order in a manner that requires the smallest net
tool requirement, and therefore the smallest amount of newly assembled tools to be setup. An
already assembled tool is as cheaper than a newly assembled cutting tool since the tool supply
causes hidden costs. In this work a cutting tool already at the machine tool is priced cheaper
than an already assembled tool from the storage or a newly assembled tool.

Tool Supply Order

A Tool supply order is nothing new. As the state-of-the-art chapter explains, there are different
ways to address the tool supply, as for example with a Kan Ban system or by storing a large
number of tools directly at the machine tool. In this work on the other hand, a tool supply
order is used to set up the minimal number of required tools and to commission them to the
machine tool just in time. This minimal number of required tools is the predetermined total net
tool requirement displayed in the dynamic setting sheet. To provide the tool supply process
with enough time, a frozen zone is used. The second machining order (frozen zone) can not be
changed since the tool supply order for this machining order has already been released and is
being processed. To further prohibit nonproductive time, due to a delayed tool supply, each
tool supply order has a predicted time frame from its ordering to the finished setup. The MAS
should therefore be capable to orchestrate the machining order, so that the nonproductive time
can be held at a minimum.

Time until setup TimeyniiSetup

Creating this new value is necessary to prevent a machine idle time due to missing tools. Before
offering a possible position in the machining queue, the Timerptiisetup value must be compared
with the time remaining until the time slot scheduled for the order. Thereby the Timeytiisetup
must be shorter than the order execution time of the preceding orders. This restriction ensures,
that the required cutting tools will be at the machine tool before the scheduled setup starts. It
is a simple assumption but demands high logistical and managing efforts across different shop
floor areas. Making this constraint a priority, effects the process, as only machining orders with
an on-time tool supply can be considered for a machining queue position. It requires a higher
consultation between the agents to meet the delivery deadline, compared to designs presupposing
a very restrictive buffer time.

106

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Human Labor

Although a lot of tasks in manufacturing have been automated, there are still many tasks that
depend on human dexterity, creativity and skill. Some tasks are also automated, simply because
they are not profitable and easy to outsource to robots. Assembling cutting tools is a complex
task to be automated, but it is easy to handle for a human with experience. Since the system is
running only on JADE and has no linkage to the real-world process yet, the human labor must
be mapped in the process. The human labor, including the assembly, the measurement and the
commissioning of the required cutting tools, is a crucial part of the tool cycle. Therefore, an
object must be designed, which maps the services depending on the human labor. This subject
is the VisualAgent which simulates the tasks of the worker and their fulfillment. Those tasks are
picking tool components, assembling, measuring, commissioning tools to the machine tool and
doing the setup.

4.7.4 Agent interaction

The MAS is triggered at the moment a machining order enters the system, represented by
an OrderAgent. Its advent can be triggered by an arriving XML file or a boot-command
from the outside of JADE directing to an XML file with the machining order data. The
instantiated OrderAgent requests several offers from the MachineAgent. Each offer reflects a
different machining queue position. The decision of the OrderAgent depends on the ERP-given
parameters, such as the maximum (production) cost [Euro], maximum order execution time
[minute] and the time factor f [1]. Based on those given parameters, the OrderAgent decides if it
accepts or denies an offer. An OrderAgent contacts directly the MachineAgent and requests an
offer.

The cooperation between the OrderAgent and the MachineAgent is conceptualized in a manner,
so that each one is focused on its win. The interaction type between the OrderAgent and the
MachineAgent is a negotiation (see figure |4.7). The MachineAgent seeks minimal tooling costs
and smaller tool setup, while the OrderAgent seeks to optimize either its order execution time
or its production cost. A lower production cost could for example be traded for a longer order
execution time and vice versa. The time factor f gives the OrderAgent its required decision
frame. A higher time factor means more leeway to optimize its production cost at the expense
of the total order execution time. A lower time factor indicates to the OrderAgent that the
order execution time is set as the most valuable parameter and makes it try to keep its order
execution time target at the expense of the production cost.

Requesting an offer requires transmitting two types of data, the NC-programID and the workpiece
quantity. The NC-programlID leads the MachineAgent with the help of the DataAgent to the
setting sheet. The setting sheet summarizes all machining relevant information, based on the
NC-program. The setting sheet contains machining related data and extended tooling list. With
this data the MachineAgent can calculate the T'ReqyetMachine for each available machining
queue position.

Before the MachineAgent offers the OrderAgent the resulting production cost and the order
execution time, it checks that time until setup TimeyntiiSetup is smaller than the total order
execution time Trog of the preceding orders. Since the MachineAgent predicts the net tool
requirement and the total order execution time, it requires at this stage the Timeyntiisetup value
from the SupplyAgent. Before checking that the time until setup value is smaller than the total
order execution time Tpop of the preceding orders, the MachineAgent calculates the net tool
requirement for each possible machining queue position as well as, the unit processing time.
With that information it can derive the production costs and the total order execution time to

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

OrderAgent

SupplyAgent

Inquiring offer Rep‘:ort

Commissioning

/Accepting offer

Measuring

Report

Negotiation

DataAgent

Determining
net tool requirement

Managing setup

Figure 4.6: Multiagent Interaction Diagram

offer the OrderAgent both values. Now the OrderAgent needs to decide whether the offers made
are suitable or not.

At this stage of work, no learning algorithm or competitive mechanism are implemented, so that
the OrderAgent does not consider the possible decisions of other OrderAgents. The OrderAgent
bases its decision on the received values for the production cost and the order execution time. It
either accepts or denies an offer. It can currently not start bargaining, for example offering to
wait a bit longer for a better price. If it accepts or denies an offer, it is currently based on the
ERP-given maximum production cost and order execution time. If the offer does not exceed
the cost or the time, the OrderAgent will certainly accept it. In case the order execution time
will be exceeded, the OrderAgent has an ERP-given leeway, the time factor f. With its help
it can decide if the excess is still in an acceptable range. If the maximum production cost is
exceeded, the OrderAgent cannot accept the offer. It denies and returns an error message to the
ERP layer, explaining that the ERP-given production cost is currently not realizable and then
terminates.

The new offer is made by the MachineAgent if a new sequence would save more tooling cost. If
for example an OrderAgent is scheduled on the machining queue position three, and another
OrderAgent arrives into the system, which would require less tools on that position to be setup,
then the MachineAgent makes a new offer to the OrderAgent currently in third position. This
offer must succeed the previous made offer in one way or the other. Since the MachineAgent
cannot offer the OrderAgent a shorter order execution time, as it wants to delay its machining by
squeezing another order in, it has to offer a better price. The MachineAgent calculates how much

108

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

money it would save by the changed sequence and offers the previous OrderAgent a production
price reduction, by passing half of the cost reduction on. So, the OrderAgent receives a new
offer for the fourth position, which includes a production price reduced by 50% of the realized
saving. Now the OrderAgent can decide if it accepts or denies the second offer. It evaluates
if the order execution time is still in the range with the respect of the time factor f leeway or
not. If the order execution time is acceptable, it certainly will accept the offer. If not, it denies
it. In case the OrderAgent accepts it, the MachineAgent will restructure the sequence and put
the new OrderAgent in third position. This simple negotiation between the MachineAgent and
the OrderAgents realizes a local optimum and reduces tooling costs. In case the OrderAgent
denies, for whatever reason, the MachineAgent must accept its decision and the MAS has failed
in realizing a possible local optimum. If an OrderAgent accepts a machining queue position,
it could change it again by accepting a newly made offer from the MachineAgent. Until the
OrderAgent rises to the second position in the machining queue might be rescheduled.

If an OrderAgent reaches the second position in the machining queue, the MachineAgent orders
the SupplyAgent to schedule the supply order (see figure 4.7). The interaction type is set as
an order due to the importance of its fulfillment. The supply order send to the SupplyAgent
includes the already calculated the net tool requirement after considering the tools available at
the stock T Reqners: and then the total net tool requirement, which reflects the list of tools to be
newly assembled. To calculate the net tool requirement in stock, the MachineAgent orders the
SupplyAgent to give a report of all fitting tool instances and their remaining lifetime available
in the storage. The SupplyAgent is, from now on, in charge of providing the MachineAgent with
the right tools and the estimated Timey,sisetup(r) at the machine tool. It generates a dynamic
setting sheet, which includes all newly assembled cutting tools and their bill of material (picking
list). The SupplyAgent requests of the DataAgent to store the dynamic setting sheet and to
generate a picking list. Then the SupplyAgent hands the picking list over to the VisualAgent,
which is the interface to a human worker, and orders it to collect and assemble the tools. The
VisualAgent aids the MAS, as it maps the process steps fulfilled by a human worker, and it aids
the worker by being a GUI guiding her or him through the work steps. Based on the picking
list, it visualizes the components for the worker to be assembled. It also generates an inventory
number with a TMS related number generator for each newly assembled tool. Now that the
components are assembled to cutting tools and an inventory number is assigned to them, all
tools (newly assembled and pre-existing ones) are handed over to the measuring unit. The
measuring unit is an automatic presetting device, which has an interface to the SupplyAgent.
The tool corrective geometries are measured and stored in the database. Then the SupplyAgent
orders the VisualAgent to transport the tools to the machine tool. Arriving at the machine tool
the VisualAgent requests a take-out list from the MachineAgent. This list displays all tools to be
dismounted from the magazine, with their inventory numbers and their remaining lifetime. Since
the MachineAgent has now no magazine load nor unload strategy, it removes the tools beginning
at the magazine position one, if they are not required in the upcoming machining order. It only
considers the next two machining orders. Receiving the take-out list, the VisualAgent displays
it on its GUI and the worker can work through it and then sign it as completed, which allows
the MachineAgent to start its machining process. Before the MachineAgent starts machining, it
requests the corrective geometrical data of the newly assembled tools from the DataAgent. While
the MachineAgent is machining, the VisualAgent and the human worker deliver the dismounted
tools back to the storage and inform the SupplyAgent and the DataAgent of their remaining
tool lifetime. After the MachineAgent finishes machining it informs the OrderAgent, which
creates a logfile, including all received offers and the one it chosen. It then terminates right after
transmitting the log file to the ERP.

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4.7.5 Optional: Sequence Diagram

OrderAgent

DataAgent

MachineAgent

SupplyAgent VisualAgent

loop J

Qty; NCProgNr

T
|
|
i
|
|
NCProgNr T ‘

SettingSheet

T
|
.
T ‘TooIID

Remaining lifetime on stock

Calculating
TotalNetToolReq

Request TimeUntilSetUp

TimeUntilSetUp

Choosing
offer

Calculating
Sending several offers| | offers

110

e S

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
}
|
Accepteq offer
|
T
|
|
|
|
|
|
|

Stores dynamic
Setting sheet

Generates pickinglist

;
|
I
|
|
I
I
|
|
}
|
StorNetToolReq; !
TotalNetToolReq -

Create
dynamic
setting
sheet

Tool supply order

Request to display
tool supply order

Approve assembly;
- _inserted Inv.No.

Store: Inv.No.,

.

Log file
|
|
|
|
|
|

_ Measurement
Store: Inv.No., !
Measurement |
! 1
! T
| Determine Inv.No.for i !
} dismounting } |
| T T
	I
	I
	I
	I
!	
Machining; }	
Reduce remaining lifetime	
!	
_	
	Store Inv.No.
I	lifetime
1 1	
	I
I~	. ‘
Store Inv.No. ! ! !
lifetime I ! !

Figure 4.7: Sequence diagram of the agent cooperation

Display
supply order;
Return user
input (ToolID)

Display tools
for commission

Display Inv.No.
for dismounting;
User Input:
Setup completed

Inv.No.
dismounted

Inv.No.
dismounted

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.8 The Final MAS Design

The following section describes the final agent types of this MAS with focus on their internal
functions.

4.8.1 The DataAgent and its functionality

This agent type owes its existence to the fact that the tool cycle is simulated in JADE. The
DataAgent can access systems outside JADE by accessing the TMS database. When the
DataAgent terminates, the entire platform in JADE is also terminated. DataAgent reads writes
and accesses the TMS database. The DataAgent controls the following services:

e Managing and storing the tool data

e Non-redundant and latest tool data

e Representation of the TMS database

o Representing the JADE Container Agent

o Displaying the database in the multiagent system.

4.8.2 The VisualAgent and its functionality

The VisualAgent mainly offers the service provided by human workers, such as initializing a new
tool with a tool inventory number, assembling and commissioning tools, as well as performing the
machine tool setup. It represents the interface of the MAS tool cycle process to the real-world
as it utilizes the interface to the worker. The above-mentioned steps require the performance
of the worker in the process. Depending on, which agent triggers the VisualAgent, a different
GUI will be generated, and displayed. These GUIs are displayed on the console and filled out
or acknowledged by the worker. The VisualAgent also displays its information for the worker,
which are:

e Displaying the supply order

e Displaying the tools for commission

e Displaying the tools to dismount from the machine tool
e Returning the new inventory number

¢ Confirming the commission of tools

e Confirming the setup completion

e Reporting the tool inventory number of dismounted tools

Those actions are described in detail in section 4.7.4.

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

‘ OrderAgentID | Quantity | NC-programmID | Maximum production cost | Maximum order execution time | f |
‘ MachiningOrderID [String] ‘ n [pieces| ‘ NC-progID [String] ‘ costs [Euro] ‘ time [minutes] ‘ 1<f<2 ‘

Table 4.5: Data of an OrderAgent

4.8.3 The OrderAgent and its functionality

The OrderAgent represents the highest possible instance in the MAS, since it contains ERP-given
parameters. Depending on the given parameters, the OrderAgent evaluates the ERP-given
strategy. As table 4.5 exemplifies, an OrderAgent always has a unique identifier, a quantity
to be produced, a referring NC-programID and its ERP-given parameters. The OrderAgent
has three ERP-given parameters, the maximum production cost in the following referred to as
maximum costs, the maximum order execution time and the time factor. Depending on the set
parameter, the ERP can transform its pursuit strategy. If the maximum cost is set to a low
value, and the order execution time to a high, the OrderAgent has more freedom to seek the
best possible price, at the cost of a longer order execution time. If the cost is set to a high value
and the order execution time is set to a low value, the OrderAgent needs to accept an expensive
bid in order to meet the imposed order execution time. The time factor f ranges from one to
two and reflects the deviation the OrderAgent allows from the maximum order execution time.
If this value did not exist, the OrderAgent would have to reject offers, even if the target value
would be missed by only a fraction.

1< f<2 (4.4)

Depending on the given parameter the OrderAgent is capable of negotiating, accepting and
denying offered positions in the machining queue.

4.8.4 The MachineAgent and its functionality

Although, the number of machine tools is theoretically unlimited only one MachineAgent is
deployed in the Pilotfabrik. The MachineAgent has a machining queue, which displays the
current machine tool utilization (see figure 4.8). Every position of the machining queue beyond
the frozen zone (position 1 and 2), is changeable. The MachineAgent sorts the OrderAgents in
the machining queue with the intention of lowering the tooling costs. OrderAgents utilizing the
same tools or requiring a smaller tool setup will be machined back to back.

Figure |4.8 displays a schematical machining queue of the MachineAgent. The blue area depicts
the magazine with its current tools, displayed as their ToollD number. The right orange bar
shows only a part of the machining queue since the number of positions could theoretically be
infinite. The first two positions are marked with a grey background, illustrating the frozen zone.
Since the machining sequence is addressed as an online problem it can change continuously as
new OrderAgents arrive at the systems. Figure 4.8 illustrates this circumstance by multiple
machining queues at different moments (t). Each machining queue at a different moment in
time describes either a change in the machining queue caused either by a machining order or
a rescheduling due to a new arriving order. The magazine load in the figure shows the tool
types available at the moment t1 in which the order OA is being machined. The magazine load
changes depending on the machined order on position one. At the moment t1 every position in
the machining queue is changeable, except for the OA and OB.

For adapting the sequence and changing an already assigned and accepted machining queue
position, the MachineAgent must offer the OrderAgent, who is currently holding the desired
position, a revised offer and wait for its acceptance or denial. A revised offer includes either
a shorter order execution time or a lower production price. The machining queue can only

112

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

be adapted, when both OrderAgents, the one holding the desired position and the other one
intended for this position, accept.

MachineAgent

[Pos 1: 6585298 ||
[Pos 1: 6585301]|
Pos 1: 6585301 B |—
Pos 2: 6585293 || OA [R<DE |
Pos 3: 6585305 PD [~~~ | Frozen
Pos 4: 6585306 || OB |—)C? Zone
Pos 5: 6585300 DE |
Pos 6: 6585299 || OC |—{p??
Pos 7: 6585289 DC |
Pos 8: 6585289 1
Pos 9: empty —
Pos 10: empty .
Tool magazine load y —
at the moment t1 in time Machining Queue at
machining OrderAgent OA t3
Machining Queue at
t2
Machining Queue at
the moment t1 in time

Figure 4.8: Scheme of the machining queue

The MachineAgent does not differentiate when pricing, whether a cutting tool is changed because
it is worn out, or because it is not required by the next OrderAgent. The MachineAgent does
not differentiate between the reasons why a cutting tool is changed and prices each change
equally. To implement the sequencing aim in a more abstract and machine understandable way,
the MachineAgent makes each newly arriving OrderAgent X an individual offer for each possible
machining queue position. The thereby offered production price Cp(x) [Euro], reflects the net
tool requirement for the proposed machining queue position. The pricing is designed so that
only the tooling costs Cr(x) [Euro] are variable and depend on the machining queue position,
while the machining cost Cps(x) [Euro] and quantity dependent handling costs Cp(x) [Euro] do
not vary. The production cost Cp(x) that the MachineAgent offers to the OrderAgent, identified
as object X, adds up the three cost types for the offered machining queue position.

Cpx) =Cux)+ Crx) + Crix) (4.5)

The Cyy(x) is the machining cost resulting from multiplying the unit processing time Ty p(x)
[minute] for object X with the machining cost rate Cprr [Euro/hour].

_ (Tupx) * Cur)

Cux) = 50 (4.6)

The unit processing time Ty p(x [minute] reflects the time it takes to set up the machine and the
production quantity Qtyx) [piece] of object X with its specific NC-program. The NC-program
specific machining time is stored for each object as the unit processing time per workpiece Ty,
[minute| in its setting sheet. Tp,, is the production time per workpiece [min]. T pyyp is the
nonproductive time per workpiece [min]. The Tsesyprime(x) [minute] is the onetime duration,
that the operator takes to set up the machine with the correct clamping system. The unit
processing time for each order is calculated as follows:

TUP(X) = (TPwp + TNPwp) * Qty(X) + TSetupTime(X) (47)

113

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

The Cp(x) and Cyyx) values are independent from the position of object X in the machining
queue. Their value is therefore easy to calculate and does not change once the quantity of the
order has been set. C'y(x) is the handling cost caused by the handling of the production quantity
at a handling cost rate Cyypr [Euro/piece].

Cr(x) = Cwypr * Qty(x) (4.8)

The variable tool cost Cp(x), on the other hand varies with the position in the machining queue
and depends on the tools available after machining the preceding order. Crp(x) multiplies the
amount of required tools to be set up T'Reqneirotal(X) [piece] which varies with the machining
queue position, with the cost rate per tool Crr [Euro/piece].

Crx) = TReqNerrotal(x) * CTR (4.9)

Beside the costs, the MachineAgent offers the OrderAgent the total order execution time Trop(x)
[minute]. Trop(x) is the total order execution time of object X. Typ(yy is the unit processing
time of all preceding orders, symbolized as objects Y.

Tropx) = Tveix) + Y Tupn) (4.10)
Yer

where:
J = {Objects in the machining queue before Object X}

The MachineAgent requests the Timeg,siiSetup(x) [minute] value from the SupplyAgent to ensure
that the total order execution time of the preceding objects Trop(y) is longer than the time it
takes to assemble, measure and commission the tools for object X. Timeyptiiserup describes the
time required for the cutting tool assembly, measurement and commission to the machine tool.
This restriction shall prevent idle times, caused by missing or delayed cutting tools.

Timeyprisetup(x) < Y Troe(y) (4.11)
YeJ

The MachineAgent is also in charge of calculating the lifetime factor Ly [1] and to determine
the translated tool use time based on the catalog lifetime. The lifetime factor Ly is calculated
for each ToollD, which represents each tool type with a seven-digit number. While the ToollD
identifies the tool type (for example a mill cutter with a diameter of 8 mm), the inventory
number identifies a tool instances with a three-digit number.

The lifetime factor sets the NC-program related lifetime consumption NCpLT [minute| into
relation with the predicted catalog lifetime CatLT [minute]:

I . CQItLT(ToolID)
Tooll D) —
F(TeolID) = N CpLTroo1 D)

(4.12)

The NC-program specific tool use time T'useycy is then multiplied with the lifetime factor Ly
[1] to transform the tool use time into a catalog lifetime basis Tusesqns [minute].

Tusetrans(Tool1 D) = TUSENCp(ToolI D) * L f(ToolI D) (4.13)

114

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

The translated T'uses qns(Tooirp) S€rves as the basis to calculate the gross tool requirement
T Reqgros [minute] for each tool type, which is a minute value displaying the use time required
to process the machining order. Starting from the gross tool requirement several calculations
are made with the aim to determine the total net tool requirement T'Reqneirotar [Piece]. The
total net tool requirement displays the number of newly assembled tools required to process
a machining order, considered the magazine load and the stock at the warehouse at a given
moment. It is needed to calculate the tooling cost Cp for each offered machining queue position.
First, the available lifetime minus the critical lifetime of all cutting tool instances with the
same ToollD at the machine tool magazine is reduced from T Reqgyos, resulting in the net tool
requirement at machine T'Reqnetprach [minute]. Then the available lifetime of all cutting tool
instances with the same ToollD in storage is reduced from T Reqnetrach, resulting in the net tool
requirement in storage T Reqnetsior [minute]. The T Reqgros, TReqnetrrach and T Reqnetstor
are minute values, describing the tool requirement based on the tool use time. Tnewr(TooiID) 18
the lifetime value a newly assembled cutting tool of a specific tool type could offer. To turn
the T'Reqnetstor(Tool1p) Minute value into a cutting tool quantity it is divided by Tnewr(ToolID)
[minute].

The gross tool requirement T'Reqgros(Tootrp) 18 determined by multiplying the translated tool
use time T'usetyans(Tootrp) With the workpiece quantity of machining order X.

TReQGros(ToolID) = Tusetrans(ToolID) * Qty (414)

The net tool requirement at the machine tool T Reqnetmach reflects the required lifetime after
considering the tools currently or in future use at the machine tool magazine. For each machining
queue position the MachineAgent predicts, which previous order needs to be machined, which
tools are at the machine tool and what their pre and post machining lifetime will be. T Reqnetarach
results from subtracting the currently available tool lifetime at the machine tool magazine from
the T'Reqgros- The currently available tool lifetime of a cutting tool instance is its remaining
lifetime Rem LT [minute] minus the critical lifetime, that shall remain unused CritLT [minute].
T ReqNetMach reflects which tool lifetime will still be needed to process the machining order after
considering the magazine load for the specific machining queue position. The magazine load will
be predicted based on the preceding machining orders.

TReqnetmach(Tool1D) = TREqGros(TootiD) — 3 (RemLT gy — Crit LT (10011)) (4.15)
qeQ

where:
Q = {tool instances with the required ToolID available at the magazine}

In the second step, the net tool requirement at the storage T'Reqsiorage [minute] will be de-
termined. T'Reqgstorage Tesults from subtracting the currently available tool lifetime in storage
from T'ReqnetMach- T Reqstorage Teflects which tool lifetime will still be needed to process the
machining order, after considering the current cutting tool stock in storage.

TReqneisior(TooliD) = TREAN cirach(Tootrny — P _(RemLT sy — Crit LT o011 p)) (4.16)
seS

where:

S = {tool instances with the required ToolID available in storage}

115

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

If the net requirement after the storage T Reqneisior(Tootrp) €quals zero, no further tool use time
and therefore no further tools are required to process the order. If the net requirement after
the storage T Reqnetstor(Tootrp) 18 larger than zero, then T'Reqneirotal(Toot1 D) 18 also larger than
zero and has to be determined. While T'ReqnctStor(Tootrp) i @ minute value of the required tool
use time for each ToollD, T'ReqneiTotal(Tool1 D) 1S the tool quantity, which covers the required
tool use time. To derive the needed quantity of sister tools from T'Reqnetstor, its value is divided
by the lifetime of a newly assembled tool, called Ty cwr(Tooirpy [minute]. Tnewr(Tooirpy reflects
the lifetime that a newly assembled tool of the specific ToolID can offer. Therefore the catalog
lifetime CaT LT [minute] is used to determine Ty ewr(Tool1D):

TNewr(TootiD) = (CaT LT 1o011py — CTit LT (70011 D)) (4.17)

With Tnewr [1] and a TReqnetstor [minute] larger than zero, the total net tool requirement
TReqNetTotal can be determined as follows:

TReQNetStor(ToolID)

TRequtTotal(ToolID) = , for TReQNetStOT(ToolID) >0 (418)

TN ewT(Tooll D)

T ReqNetTotal(ToolID) i the minimal number of tools required to machine a specific machining
order for a specific machining queue position. It considers the current state in storage and the
machine tool magazine, depending on the machining queue position. This tooling list is stored in
a dynamic setting sheet, which enlists all tool instances needed from the storage and the tool com-
ponents which must be assembled to a new tool instance. With T'Reqy ciTotai(Tootrp) determined
by the MachineAgent, the MAS realizes the until now only theoretical net tool requirement.
The sum of T'Reqneirotal(Tootrpy for all ToollDs is communicated by the MachineAgent to the
SupplyAgent as a supply order.

4.8.5 The SupplyAgent and its functionality

The SupplyAgent calculates the time until setup Timeypisetup, Which is requested by the
MachineAgent to ensure that the scheduled time until the machining of object X begins is longer
than the time required to supply the tools.

TimeUntilSetup(X) =

Z (TimeUntilSetup(Y) + Qtye (Y) * fcom + Qtyn(y) * (fassem + fcom))
Yel

(4.19)

J = {Objects in the machining queue before Object X}
Qtye(Y) [piece] is the quantity of existing tools in storage available for Object Y
feom 1s a minute value estimating the average commissioning time
Qtyn(Y) [piece] is the quantity of newly assembled tools for Object Y [piece]

fassem 18 a minute value estimating the average assembling time

116

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Scenarios tested on the final MAS
design

The following chapter presents the designed multiagent system in practice. The first section
presents the simplifying assumptions made to implement the MAS during this thesis. The second
section presents the cooperation between those agents by four potential test scenarios. The MAS
reactions during the four test scenarios is being described and cross-checked, to ensure a proper
process flow.

5.1 Preface: Simplifying assumptions

For practical reasons further simplifying assumptions are necessary for the project’s feasibility
and to cut the time expense of checking calculations.

5.1.1 1. Simplification: Process simulation

As previously described the tool cycle process is simulated in JADE. This simplification is
reasoned by the project’s feasibility and three additional advantages. The first advantage is the
intactness of the TU Wien Pilotfabrik hardware and software settings. The second advantage
is the time and effort saved by reducing the implemented interfaces between JADE and the
process assets to only one required interface between JADE and the TMS. The last advantage
is that no recover strategy is necessary for a JADE simulation. A recovery strategy includes
mechanisms to return to a safe and correct state in case of an exception, which is mandatory
for a real-world implementation. A sufficient recovery strategy presupposes that negotiations
between agents are collected and recovered in the event of a termination, for whatever reason
it may occur. A simulation in JADE reduces the pressure to comply with such a mechanism,
since evolving such strategies poses its own scientific questions. The MAS developed during this
thesis has no recovery strategy. A termination with a preceding error message is accepted as a
sufficient endpoint. Nevertheless, despite this simplification, all design choice are based on the
real-world factory setting.

5.1.2 2. Simplification: Utilizing a single machine tool

In the present application case, more than one machine tool could be deployed, which promotes
the extensibility of the system. However, at this stage of work it is decided to test the MAS with

117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

only one deployed machine tool. This decision is reasoned by the challenging complexity that
deploying more than one machine tool would bring for cross-examining the made MAS decisions.
Considering a second (competing) machine tool would blur the comprehensibility of the system’s
response and outcome. One machine tool and therefore one MachineAgent is enough to evaluate
if the MAS can reduce the tooling costs by sequencing the machining orders through negotiating
agents.

5.1.3 3. Simplification: Utilizing only one database

It is common to consider redundant storage as a backup solution. Having a second database
with a different set of data does not contribute to the system in any way, unless the shop floor is
divided for either a geographical or an organizational reason. The implemented MAS design
utilizes only one database.

5.1.4 4. Simplification: Reducing the magazine pockets from 30 to 10

The EMCO MAXXMill 500 has a drum tool magazine with 30 magazine pockets. In the first
stage all calculations must be cross-examined, so the number of magazine pockets is limited to
an amount of 10. This simplification lowers the number of machining orders necessary to cause
the replacement of all tools at the magazine. Forcing a faster replacement of all tools increases
the tool assembly rate and the system’s dynamic significantly. A lower number of magazine
pockets forces the system to sort the machining orders after a shorter time, to minimize the
setups and the tooling costs.

5.1.5 5. Simplification: Limiting the workpiece quantity per order to less
than 20 pieces

This simplification has three reasons; one is the higher number of machining orders, that can
be processed without exhausting the order execution time. The second reason is the reduction
of the magazine pockets, which makes it necessary to adapt the workpiece quantity. With the
workpiece limit of 20 pieces at least three or four machining orders can be processed before
a setup is required. Finally, the focus of this thesis lies on productions covering job shop
and large-sized-series with high product variation, which is granted by limiting the workpiece
quantity.

5.2 Agent cooperation tested by examined calculations

The cooperation of the designed agents is examined in four test scenarios. Each scenario aims
for a defined output. If the MAS returns the desired output, it reacts in the desired manner.
It is assumed, that the MAS will return the expected results even on a bigger scale, if all four
test scenarios return the desired output. All four scenarios require an initial setting for the
machine tool magazine and the storage, to predict possible outcomes. To limit the complexity
to a processable amount, individual initial settings are for each scenario. This review focuses on
the interaction between the MachineAgent and the OrderAgents.

5.2.1 Test Scenarios

To ease the comprehensibility of future calculations and to enable the reader to reproduce the
calculations, table [5.1] summarizes all cutting tools in the mentioned NC-programs. The table
lists the NC-program related tool use time T'usencp(Toorrp)- The NC-program specific lifetime

118

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

H NC-program ID | Tool ID ‘ Tool Description ‘ NC-p.Lifetime ‘ Cat Lifetime ‘ Ly ‘ Tusencp(Tooll D) ‘ T'useyrans(Tooll D) H

NC12072018 | 6585290 DrillD13 74,00 100,00 1,35 0,40 0,54
NC12072018 | 6585298 ShellMillD66 81,00 93,00 1,15 1,96 2,25
NC12072018 | 6585302 | MillingCutterD9,25 68,00 70,00 1,03 0,85 0,38
NC12072018 | 6585295 CylindricalShaft 79,50 79,50 1,00 0,74 0,74
NC12072019 | 6585290 DrillD13 92,00 100,00 1,00 0,85 0,92
NC12072019 | 6585298 ShellMillD66 89,00 93,00 1,04 1,25 1,31
NC12072019 | 6585304 | MillingCutterD31,71 59,00 59,00 1,00 1,45 1,45
NC12072019 | 6585292 FaceMillD60 80,00 85,00 1,06 1,64 1,74
NC12072019 | 6585289 | ThreadMillM5X8 63,00 70,00 1,11 0,36 0,96
NC12072019 | 6585300 | MillingCutterD16 89,00 96,00 1,08 1,34 1,45
NC12072019 | 6585299 | MillingCutterD10 91,00 98,50 1,08 1,62 1,75
NC12072020 | 6585301 CountersinkD9 98,00 98,00 1,00 0,16 0,16
NC12072020 | 6585293 FaceMillD160 73,00 83,00 1,14 0,78 0,39
NC12072020 | 6585305 | RoundShankDrillD8,5 58,50 58,50 1,00 0,64 0,64
NC12072020 | 6585306 DrillD12,7 57,50 57,50 1,00 0,48 0,48
NC12072020 | 6585300 | MillingCutterD16 90,00 96,00 1,07 0,89 0,95
NC12072020 | 6585299 | MillingCutterD10 91,00 98,50 1,08 0,58 0,62
NC12072020 | 6585289 | ThreadMillM5X8 61,00 70,00 1,15 0,46 0,53
NC12072020 | 6585264 FaceMillD60 74,00 80,00 1,08 1,24 1,34

Table 5.1: Table with the NC-program based tool use times TuseNcp(roorp) in relation to the
transformed use times T'us€qns(Tool1D)

and the catalog lifetime from the template setting sheet. The lifetime factor Ly, as well as the
translated tool use time T'us€sqns(Tootrp) are calculated previously. The values from this table
are used in all four scenarios.

5.2.2 Test Scenario 1

Objective:

This scenario shall test if exceeding the maximum order execution time returns an error message
from the OrderAgent. The exceeded time could have several reasons, such as a high number
of preceding orders or an unrealistic forecast of the required order execution time. If no offer
meets the set maximum order execution time, the OrderAgent terminates after reporting an
error message. At this stage of work the MAS does not differentiate between causes for the
exceeded time. The message outside the MAS could help production professionals to optimize
their set goals.

Initial Setting:

For this test, two OrderAgents (OA and OB) are used. Both are in the frozen zone. Machining
those two orders should exceed the maximum order execution time of the OrderAgent OC (see
table 5.2). The machine tool magazine is filled with the cutting tools that table 5.3| displays. the
current state at the stock is displayed by table [5.4. According to the tables 5.5, 5.6/ and 5.7 the
OrderAgent OA has a unit processing time of 50,40 minutes minus the 3 minutes of the already
done setup ahead. The next order OB has a unit processing time of 47,24 minutes ahead of
it. OrderAgent OC must wait 94,64 minutes until its setup could start. OC’s maximum order
execution time is 100 minutes. Since its total order execution time sums the 94,64 minutes of
the preceding orders and its own unit processing time of 76,76 minutes. It exceeds its limit. OC
has a time factor of 1,20, allowing it to exceed the order execution time by 20 percent of the
original value. The total order execution time of 171,40 minutes still exceeds the given leeway,
which leads us to the next test scenario.

119

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

OrderAgentID Qty NCProgrammID Maximum production cost Maximum order execution time — f Status

OA 10 NC12072018 2000 200 1.45 machining
OB 4 NC12072019 3000 180 1.30 preparing
ocC 12 NC12072020 2000 100 1.20 open

Table 5.2: OrderAgents for test scenario I.

Magazine load for scenario 11
Magazine Pos. | T ID Tool Descript. | T Inv.No | Crit.TLifetime [min] | Cat.TLifetime [min] | Rem.Lifetime [min]
1 6585288 ShankMillD20 349 3,00 90,00 87,00
2 6585291 ThreadMillD17 350 5,00 85,00 65,00
3 6585297 | SlottingCutterD124 | 351 2,00 100,00 89,00
4 6585303 | MillingCutterD15,5 352 1,50 60,00 57,00
Table 5.3: Magazine load for scenario I
Assembled tools in stock for scenario 11
Magazine Pos. | T ID Tool Descript. | T Inv.No | Crit.TLifetime [min] | Cat.TLifetime [min] | Rem.Lifetime [min]
1 6585300 | MillingCutterD16 353 2,50 96,00 90,00
2 6585291 | ThreadMillD17 354 5,00 85,00 73,00

Table 5.4: Stock of assembled tools for scenario 1

5.2.3 Test Scenario II

Objective:

This test scenario shall test if the time gained with the time factor f is utilized properly. The
time factor shall grant the OrderAgents more leeway. The time factor ranges from 0 to 2. An
OrderAgent with a maximum time of 200 minutes and a time factor of 2 could, if required,
extend its order execution time to up to 400 minutes.

Initial Setting:

The initial setting of test scenario I offers the perfect circumstances for this test. The initial
OrderAgent parameters are adapted, so that the time factor can be tested (see table 5.8). As
stated in the earlier test scenario, OrderAgent OC requires a total order execution time of 171,40
minutes (see 5.7). In this test scenario the time factor f is adapted from 1,20 to 1,80. Now the
OrderAgent has an order execution time leeway of 80 percent, which means OC can and will
accept the MachineAgent’s offer for the third position in the machining queue.

5.2.4 Test Scenario 111

Objective:

This scenario shall test if exceeding the production cost returns the desired exception. The
production cost C'p, that the MachineAgent offers the OrderAgent, adds up to the order bound
machining cost Cy, the handling costs C'iy depending on the workpiece quantity and the tooling
costs Cr reflecting the amount of tool setups. For this scenario, no fitting tool instances
are available in storage. This means only the T'Reqnetnarach and the Tnewr(Tooirpy must be
considered to calculate the total net tool requirement T'ReqneiTota;- 1This test scenario is built
around the OrderAgents OD, OE and OE1, which are displayed in table|5.9. The orders OF and
OE1 utilize the same NC-program, workpiece quantity, maximum production cost, time factor
and maximum order execution time. Their machining cost is identical. OE1 follows OE, so the

120

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

0202L0ZTON weisord-HN I0] UOIJe[No[ed paje[al H() YISy IOpPI() :L°C dqR],

121

ve'1 09 1oSBYUING 927079

970 SXGINIIIINPEOIY L, 6823859

860 0T@RPNDSUIIN | 6655829

680 9T IeYMDIUI[IN 00£98%9

870 Lg1ana 90£S8%9

790 G NUBYSPUNOY | GOES8SY || 9L°9L

8.0 09T AN €62S8S9 || 00T

91°0 GUISIIUNO)) T0ES8S9 || 00°T
(@noon)@Nosn “IDS9p [00], arooL €T'G

dA7 [urtwa] swry Suisseooad jrun
[urua] swry dnjag
dnd N7 [urui] eoordsirom od owry ‘poixd suoN
dond [urta] eo9rdyiom 1od suir) uorONpOIJ

LOOIN
OGLITINXX®RIN
Dpoid
020z.L0Z 1300US8ur}jog
€9 3ISH
4

AI[00T, SUIYORIA
100], auIyoeIAl
1onpoad
A1 1°9Ys Sures
1o9depy
Ayyuendy

18T SUT[00) POPUIXF

®JRD POYR[OI SUTUIYIRIN

RIRP POl 19PIO SUTUIYDRIA

020GL0CTON ENHWOH@:OZ JI0J TOTJR[NO[RD paje[al H() uﬂ@%{ﬂ@ﬂ;o

6T02L0ZTON wreidord-HN I0J UOIpR[NOTRD paje[al () MRSy IopI() 9°G 9[qr],

291 0TIWNDSUIIN 66C98%99
2 9T IWNNDSUI[IN 00€98%9
980 SXSINITHN PRI T, 68CG8S99
791 09dIIHN®2® A ¢6TG8%99
GP'1 1L 1€qONDSUIIN | 0£S829
ST 99AIITINIPUS 86CG8SG9
68°0 STdI-d 0629859
AQ:oobawaw:& "10S9p [00], drooL

Vo' LY
00y
08T
10'6

dAy [umu] swry Suissedoad yun
[uru] awry dnjeg
dnd N [urwa] ooordsiiom 1od owiry ‘poad auoN
dnd 7 [urua] eoordsirom Jod aurl) uoryonporg

LOOIN
OSLIITNXXCIN
apoid
6102L0g1199US3uII08
€9 MSH
id

AI[00, dUIyoeIN
[00T, suIyoReIAl
jonpoiq
dI 199Y§s Suryyeg
19ydepy
Lyyuendy

[3SI[SUW[00) PIPUNXGT

eIRD poJR[RI SUTUIYDRI

)R POJR[AI 19PIO SUIUIYORIN

6T0CLOZTDON wreISorJ-ON I10] UOTIR[NO[R) paje[al g() MeSyIopI0

RT0ZL0ZIDN treisord-HN I0J UOT}e[No[ed Paje[ol () YISy IOPI() :G'C d[qR],

7.0 JJeYS[eILIPUIPAD) | G6TSRG9
a8‘0 GZ 6MMDIUIIN | ZOESRS9
96°T 99dIIINIPYS 8635899
070 S1aUIa 0625859
(@1100)4ONosm, T, “10S0p [00], AT00L

0¥°0¢g
00°€
6.°0
G6'€

dAy [urw] swry Surssedoad Jrun)
[urw] sury, dnjeg
dnd N1 [urwa] eoerdsirom 1od owry ‘poid SUON
dnd 7 [ur] eoordsjrom dod owury uorponporg

LOOIN
OCLITINXX®BIN
vV poid
8102L0g T190YSSuI3eg
€9 SSH
01

dIIo0L suryoeN
[00], durydeA
jonpoag
dI 199§ Suryjeg
19y3depy
Ayryuenty

[1ST] SUI[00} PAPULIXH

®)ep PojR[eI SUTUTIDRIN

®)EP Paje[al IOPIo SUTUTIORI

8T0CLOZTDN wrerSoid-pN I0J UOIpe[no[ed paje(al Y() Sy IepI0)

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay |
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoielnassiq Jasalp uoisianfeulbliO apponipab ausiqoidde aig

qny a8pajmoud| INoA

S8ylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

OrderAgentID Qty NCProgrammID Maximum production cost Maximum order execution time f Status

OA 10 NC12072018 2000 200 1.45 machining
OB 4 NC12072019 3000 180 1.30 preparing
ocC 12 NC12072020 2000 100 1.80 open

Table 5.8: OrderAgents for test scenario II.

OrderAgentID Qty NCProgrammID Maximum production cost Maximum order execution time f Status
OD 10 NC12072018 59 200 1.45 machining
OE 4 NC12072019 28 180 1.30 preparing
OE1 4 NC12072019 28 180 1.30 open

Table 5.9: OrderAgents for test scenario III.

Cwprl€] Curl[€] Crrl€]
5 10 10

Table 5.10: Cost rates for test scenario III and IV.

tooling cost Cp should be zero, unless the lifetime of a cutting tool expires. This scenario is
designed so that two cutting tools in the magazine do not last in the machining of OD until the
machining of OE. This causes a higher production cost for OE than for the identical upcoming
OrderAgent OE1. This additional cost, caused by two tools to be set up results in exceeding the
maximum production cost of the OrderAgent OE.

Initial Setting:

Table [5.9/ lists the initiated OrderAgents. All three agents refer to NC-programIDs with already
illustrated setting sheets (see scenario I). Table 5.11 displays the current magazine load of the
machine tool for this scenario. Table |5.10 summarizes the set cost rates for scenario III and IV.
The machine tool magazine is filled as listed in table[5.11. The two tool instances in positions one
and two (Inv.No 355 and 356), are required in all three orders. As the catalog tool life of both
suggests (100 minutes and 93 minutes) the actual set lifetime for this scenario is comparatively
very low with 10 and 30 minutes. Those values are set low to ensure that both tools are worn
out until order OE1 can begin processing, thus raising its tooling cost.

The magazine pocket no.10 is empty and should have no effect on the test scenario since the
MachineAgent checks the magazine load from OrderAgent to order and not over the range of
more than three orders. Table |5.12],5.13] [5.14 and [5.15| display how the MachineAgent predicts
the tool requirement. The predicted production cost of each OrderAgent is displayed in table
5.16. Table 5.15/ shows that the tool type 6585290 in magazine position one needs a sister tool,
since T ReqNetMach 1S larger than zero. The storage holds no fitting tool instance, T'ReqnetTotal
equals T ReqnetMach- Since magazine slot no. 10 is empty, the MachineAgent fills it with a sister
tool (drill diameter 13 mm). The MachineAgent has no tool changing strategy yet, it therefore
picks the next free magazine slot. After that the MachineAgent picks the next magazine slot
with a tool that is not required in the upcoming machining order. The MachineAgent schedules
magazine position four for the setup. If a different OrderAgent would be assigned to the third
position in the machining queue, which needs the tool type 6585295, the MachineAgent would
change the tool in the fifth magazine slot.

This test scenario is designed to use only three OrderAgents to disable the MachineAgents
capability to sort the OrderAgents. This decision is reasoned in providing the reader with
a simple example to understand the calculation of T Reqneirota; and of the production cost

122

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Magazine load for scenario IIT
Magazine Pos. T ID Tool Descript. | T Inv.No | Crit.TLifetime [min] | Cat.TLifetime [min] | Rem.Lifetime [min]
1 6585290 DrillD13 355 2,00 100,00 10,00
2 6585298 ShellMillD66 356 2,95 93,00 30,00
3 6585302 | MillingCutterD9,25 306 2,50 70 68,00
4 6585295 CyclindricalShaft 307 2,95 79,50 79,50
5 6585304 | MillingCutterD31,71 299 2,90 59,00 59,00
6 6585292 FaceMillD60 300 3,50 85 80,00
7 6585289 | ThreadMillM5X8 301 4,00 70 63,00
8 6585300 | MillingCutterD16 302 2,50 96,00 89,00
9 6585299 | MillingCutterD10 303 3,00 98,50 91,00
10 empty empty empty empty empty empty

Table 5.11: Magazine load for scenario 111

Cp. The MachineAgent predicted the tool wear for each machining queue position and each
order after OD and before OE a sister tool for 6585290 and 6585298 and initiates two tool
setups. If the T Reqnetprach €xceeds the minute value of the lifetime a newly assembled tool
could offer, then the T ReqneiTotar Tises to two or more pieces. As the tables [5.13| and 5.14
show the T Reqnetprach Of the drill and the mill is higher than zero, with 1,08 and 0,44 minutes.
Examining table 5.12 shows, that the mill is near its critical lifetime limit after OD. Independ
from the remaining lifetime, the MachineAgent only pursues a tool setup, if it is necessary for
an upcoming machining order.

Due to the high production cost of OE, this test scenario returns an exception. This OrderAgent
has an ERP-given maximum production cost of 28 Euros and faces due to the dual tool setup
an additional cost of 20 Euros (see table |5.16)). OrderAgent OE1 has a production cost of 27,88
Euros and stays under the requested 28 Euros. OrderAgent OE can not and will not accept the
offered production price of the MachineAgent. As a further consequence, it terminates right
after submitting its error message, displaying its reason.

123

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Magazine state

MagazinePos | ToollID | InvNo | CritLT | RemLT | Tuseransl | TReqgross | RemLT — CritLT | T ReqyetMach | Rem.LTPostOrder
1 6585290 355 2,00 10,00 0,54 5,40 8,00 0 4,60
2 6585298 356 2,95 30,00 2,25 22,25 27,05 0 7,75
3 6585302 306 2,50 68,00 0,88 8,80 65,5 0 59,20
4 6585295 307 2,95 79,50 0,74 7,40 76,55 0 72,10
5 6585304 299 2,90 59,00 X X 56,10 X X
6 6585292 300 3,50 80,00 X X 76,50 X X
7 6585289 301 4,00 63,00 X X 59,00 X X
8 6585300 302 2,50 89,00 X b 86,50 X X
9 6585299 303 3,00 91,00 X b 88,00 X X
10 empty empty empty empty empty empty empty empty empty
Table 5.12: Predicted magazine tool wear before processing OD
Magazine state
MagazinePos | ToolID | InvNo | CritLT | RemLT | Tuseransl | TReqgross | RemLT — CritLT | TReqnetMach | Rem.LTPostOrder
1 6585290 355 2,00 4,60 0,92 3,68 2,60 1,08 = CritLT
2 6585298 356 2,95 7,75 1,31 5,24 4,80 0,44 = CritLT
3 6585302 306 2,50 59,20 1,45 5,80 56,70 0 53,40
4 6585295 307 2,95 72,10 Not Required X X X X
5 6585304 299 2,90 59,00 Not Required X X X X
6 6585292 300 3,50 80,00 1,74 6,96 76,50 0 73,04
7 6585289 301 4,00 63,00 0,96 3,84 59,00 0 59,16
8 6585300 302 2,50 89,00 1,45 5,80 86,50 0 83,20
9 6585299 303 3,00 91,00 1,74 6,96 88,00 0 84,04
10 empty empty empty empty empty empty empty empty empty

Table 5.13: Predicted magazine tool wear after processing OD and before OE

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay |
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoielnassiq Jasalp uoisianfeulbliO apponipab ausiqoidde aig

qny a8pajmoud| INoA

S8ylolqie

124

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

THQ I03Je puR 9I0Jo(IeoMm [00) dUIZRIRUL PAIIPAI] :GT°G 9[qR],

7S'c8 0 1878 ve'e 1¢°T 9L°28 G6'C 16¢ 062S98S9 0T
80°LL 0 7018 969 VLT 7078 00‘€ €0¢ | 662S98S9 6
0¥'LL 0 008 08‘S GP'1 0z‘€8 0S'c 70¢ | 00£S8S9 8
ze'es 0 91°GS ¥8'¢ 960 91°6S 007 10§ 68238399 2
8099 0 ¥6'69 969 TLT 70‘€L 0g'e 00¢ | 2629899 9

X X X X poambay] J0N | 006G 06'C 66¢ | POELS8S9 g
7896 0 e'v6 89‘¢ @60 z£°96 00z 0S¢ | 062S8S9 v
09°'2¥ 0 0608 08‘G aP'1 0v'es 0S'c 90¢ | ZTOESRS9 s
Ayduro Ayduro Ayduro Ayduro Aydure Ayduro Ayduro Ayduro Ayduro b4
Adud Adurd Aduo Adud Aydure Adure Aydure Adurs Adurs 1

I9pIQIsOq LT WY | YovNeNbay I | L7114 — [TWay | ss049bay [| jsuvatosny | ey | LTIID | ONAUI | IIO0L | sodauizeden
91R)S JUIZRIRIN
pasIAaI ‘() 910Joq pur (J() Sursseoold I9)Je Ieom [00) dUIZRSRW PIYIIPald :F1°G O[qRL
9L°28 0 G006 ve's €1 00°¢6 G6'C 16¢ 0625859 01
70'78 0 0088 969 VLT 00°16 00°¢ €0¢ | 6629899 6
0z‘€8 0 0508 08‘c GP'1 0068 08z 20¢ | 00E£S8S9 8
9165 0 0065 78'e 960 00°€9 00'F 10¢ | 6829899 2
70°¢. 0 0692 96‘9 FLT 0008 0g'e 00¢ | 26259899 9
P b X b poxmbay] j0N | 00°6S 06'C 66¢ | ¥0£S8S9 G
z£'96 0 0086 89‘¢ 760 00T 00C 0S¢ | 06258S9 iZ
0v'es 0 0.9 08‘c GP'1 0365 08z 90¢ | 20ES8S9 €
I = o 08y v3'S 1€°7 QL L G6'C 9G¢ | 862S8S9 4
I = 80T 092 89‘¢ 76'0 09V 002 GGE | 062S8S9 1
IBPIQISOJILT WY | Yoo N1NDay I | LT14) — LTWaY | ssoudbayr [| jsuvatosny | oy | LIMNID | ONAUT | (QI[0CL | sodouize3en

oye)s aurzeSey

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay |
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoielnassiq Jasalp uoisianfeulbliO apponipab ausiqoidde aig

qny a8pajmoud| INoA

S8ylolqie

125

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

MachiningOrderID Qty Cgxl€] Cup[€] Crl€] Cp[€]

OD 10 50,00 8,40 0 58,40
OE 4 20,00 7,88 20 47,88
OE1 4 20,00 7,88 0 27,88

Table 5.16: Predicted machining cost for test scenario I11

OrderAgentID Qty NCProgrammID Maximum production cost Maximum order execution time f Status
OF 8 NC12072019 59 100 1.45 machining
oG 4 NC12072019 30 150 1.30 preparing
OH 4 NC12072020 80 200 1.30 open
Ol 4 NC12072018 80 200 1.30 open

Table 5.17: OrderAgents for test scenario IV.

Magazine Load for scenario IV
Magazine Pos. T ID Tool Descript. | T Inv.No | Crit.TLifetime [min] | Cat.TLifetime [min] | Rem.Lifetime [min]
1 6585290 DrillD13 357 2,00 100,00 92,00
2 6585298 ShellMillD66 358 2,95 93,00 89,00
3 6585304 | MillingCutterD31,71 299 2,90 59,00 59,00
4 6585292 FaceMillD60 300 3,50 85,00 80,00
5 6585289 ThreadMilIM5X8 301 4,00 70,00 63,00
6 6585300 MillingCutterD16 302 2,50 96,00 89,00
7 6585299 MillingCutterD10 303 3,00 98,50 91,00
8 6585297 SlottingCutterD124 351 2,00 100,00 89,00
9 6585301 CountersinkD9 359 2,80 98,00 88,00
10 6585295 | CylindricShaftMillD10 360 2,95 79,50 75,50

Table 5.18: Magazine load for scenario IV

5.2.5 Test Scenario IV

Objective: The last scenario tests if the MAS can sort the OrderAgents in a suitable sequence.
This is accomplished by the negotiation between the OrderAgents and the MachineAgent. This
scenario is built on the already known NC-programs, but different than the other test scenarios,
it has four instead of three OrderAgents. Since two OrderAgents are in the frozen zone (OF
and OG), two additional OrderAgents are required to test the scheduling function. For this test
scenario four OrderAgents are generated, as displayed in table [5.17.

Initial Setting:

Table |5.18 lists all cutting tools stored in the magazine before the arrival of order OF. For this
test scenario it is assumed, that all required tool instances are on stock and no assembly is
necessary. Table 5.19|lists all required tools at the storage.

Tools at stock for scenario IV
Magazine Pos. T ID Tool Descript. | T Inv.No | Crit.TLifetime [min| | Cat.TLifetime [min| | Rem.Lifetime [min]
1 6585264 FaceMillD60 335 4,00 80,00 66,68
2 6585306 DrillD12,7 311 1,80 57,50 57,50
3 6585305 | RoundShankDrillD8,5 310 1,85 58,50 58,50
4 6585293 FaceMillD160 340 3,00 83,00 83,00

Table 5.19: Tools at stock for scenario IV

OF and OG are in the frozen zone and use the same NC-program, NC12072019. OH and OI
have different NC-programs (see table 5.17)) and need to be sorted. Table 5.1 at the beginning

126

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

of this section, lists all required cutting tools for the three NC-programs. Both OrderAgents
have a workpiece quantity of four, which sets the fixed cost for both orders to an equal value of
20 Euros. The machining cost for OH are 4,15 Euros and 3,16 Euros for OI, which reflects the
time the order occupies the machine tool. The difference is low compared to the tooling cost.
The predicted magazine load and the remaining lifetimes before processing OrderAgent OF are
illustrated in table 5.21. The predicted magazine load and the remaining lifetimes of the tools
in the magazine before machining OrderAgent OG are displayed in table [5.22. The first possible
sequence is called A and lines up as follows: OF, OG, OH and OI. The second possible sequence
is B with the following OrderAgent line up: OF, OG, OI and OH. Table 5.21] and |5.22| describe
the predicted magazine state for the frozen zone and serve for both possible sequences A and B
as the calculation entry point. Table |5.23| shows how OH in the third position of sequence A
would effect the magazine state and which tool setups would be required. The cutting tools in
magazine position 6, 7 and 9 (colored green) are cutting tools from the preceding OrderAgent
OG, that OH is also using. The cutting tools colored red and marked with "instead" are cutting
tools required for the OH OrderAgent but not yet available at the magazine. Position 1 to 4 in
the table (colored grey) are tools, which will be replaced by the required tools (colored red).
Offering OH the third machining queue position requires four tools to be set up. Table 5.24
displays the magazine state after OH is machined and before IO arrives in the fourth machining
queue position. IO shares only one tool type with OH (colored green) but requires three tools to
be set up (colored red). Those three tools replace the cutting tools in magazine positions 1, 2
and 3. Adding the tool setup for OH in the third and IO in fourth position, sequence A requires
a total sum of seven tools to be set up.

The B sequence (see table 5.25) sets OI in third position. OrderAgent OI shares three tool IDs
with OG (colored green) and needs only one different tool type to be set up. Which makes clear
that OI on the second position in the queue needs only one tool to be set up, while OH would
needs four tools to be changed for the same queue position. OH in fourth position (see 5.26)
requires four tools to be set up, which makes a sum of five tools to be set up. The MachineAgent
is designed to not differentiate between cutting tools, which are replaced due to an expiring
lifetime or tools that are required for the next job. The MachineAgent focuses on minimizing
the number of tools to be set up. This means that the sum of required tool-changes weights
heavier than the number of similar tools. For example, in the sequence A, OG and OH share
three same tool types, but OH has four different tools compared to OG. Sequence B requires a
sum of five tools to be set up, which is smaller than the number of tools required to be set up
for the sequence A (seven tools). The summary of the individual costs is displayed in table 5.20.
It shows that the desired output of this test is the sequence: OF, OG, OI and then OH. It also
displays the revised offer, that the MachineAgent will make to the OrderAgent OH to waive
the third position, if OH has already accepted this position. The revised offer always includes a
price reduction. This price reduction is always the 50% of cost savings achieved by a smaller
tool setup.

127

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Comparing the Production cost of Sequence A and B
OrderAgent | NC-program | Qty | Cas | Cpgr | Tools Qty changed | Cr | Cp | NewOffer
OF NC12072019 | 8 14,41 | 40 0 0 | 54,41 None
oG NC12072019 | 4 7,21 | 20 0 0 | 27,21 None
OH NC12072020 | 4 4,15 | 20 4 40 | 64,15 None
0] NC12072018 | 4 3,16 | 20 3 30 | 53,16 None
OF NC12072019 | 8 14,41 | 40 0 0 | 54,41 None
oG NC12072019 | 4 7,21 | 20 0 0 | 27,21 None
0] NC12072018 | 4 3,16 | 20 1 10 | 33,16 None
OH NC12072020 | 4 4,15 | 20 4 40 | 64,15 54,15

Table 5.20: Comparison of the production cost caused by sequence A and B

128

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

() Surssenoid 210Jo(IeOM (00} dUIZESRUL PAIDIPAI] :ZZ'G O[qe]

129

by joN ‘bay 0N ‘bay joN "bayy joN by j0N 0s‘s. G6°C 09¢ | 9625899 01
by joN ‘boy j10N ‘boy 10N by joN ‘bay j0N 00°‘S8 08'C 6S¢ | TOES8S9 6
"bayy jJoN ‘bayy 10N "bay joN by JoN "bay joN 00°68 00'C IS¢ | L6TS8S9 8
00°02 0 0072 00°% GL'T 00°LL 00°€ €0E | 6629899 2
0912 0 0672 08°¢e S o LL 0S°c Z0¢ | 00£S8%99 9
8V'1¢ 0 AL 78'¢ 96°0 zg‘sg 00'% T0S | 68TS8S9 G
C1'6S 0 8¢29 969 vLT 8099 0S¢ 00¢ | 2629899 i
09°'T¥ 0 0S'F¥ 08‘¢e aP'l o' LY 06°C 66Z | ¥0E£S8S9 ¢
RC'EL 0 1662, ¥e'e 1€°T TG‘8. G6°C 8GEC | 86259899 ¢
9608 0 79'C8 89‘¢ 260 7978 00'G ,G€ | 0625899 1
&O@hOamOﬁHHﬂ.EO& QU@N&NUZWQM&& rﬁﬂws&b — rN\Nﬁsum mwa.ﬁuwum&rﬁ Nmﬁd.iwwﬁrﬁ n-HHEm-MH ,H\Hmﬁ.mo Oz\rﬁH ﬁHHEOO,HL womwﬂmNNWNz
QleIs @HHmNﬁwﬁH\/ﬁ
1 uorjisod uo ;g Sursseoold 9100 IBOM [00] dUIZBSeW PIIIIPAI] :1g'G 9[qe],
by 10N "beoyg JoN ‘b JoN by joN by 10N 096 86°C 09¢ | 9639899 01
by joN ‘bay 10N by j0N by joN by J0N 00°‘88 08°C 6S¢ | TOES8S9 6
by 10N ‘boy 10N ‘boy JoN by 0N ‘boy 10N 0068 00T 19¢ | L6TS8S9 8
00°LL 0 00°88 0071 GL'T 0016 00°¢ €0¢ | 6629899)
0F'LL 0 0608 09°TT GH'1 0068 0S'C Z0€ | 00€9899 9
ce'ss 0 00°6S 89°2, 960 00°‘€9 00'% T0S | 68TS8S9 G
80°99 0 0592 T6'ET VLT 00°08 0G‘¢ 00¢ | T6TS8S9 iZ
0% L¥ 0 01°9¢ 09°TT Gy'1 0068 06°C 66C | ¥0E€S8S9 ¢
0G‘8L 0 G098 8701 1€°1T 00°68 G6'C 8GE¢ | 86259899 4
79'78 0 00°06 9g‘2 @60 00°C6 00'C ,G€ | 0625899 1
h@@hOumOnﬁHﬁm.S@ﬁ QUSENwawwmrH rNQE&D — rwqgmm mwo.ﬁvwmmrﬁ Nwﬁ\c&ﬂwwﬁrw ,H‘HEQMH ,H\Hﬁ.no OZ>§H Q:OOH. mO&OQmNNWNE
[SURCHES w:ﬁﬁw\ﬁ)ﬁ

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | any a8pajmoun Jnoa

“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoielnassiq Jasalp uoisianfeulbliO apponipab ausiqoidde aig Av_ﬁ_._u.o__ﬂ__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Magazine state
MagazinePos | ToollID | InvNo | CritLT | RemLT | Tuseransl | TReqgross | RemLT — CritLT | T ReqyetMach | Rem.LTPostOrder

1 6585290 357 2,00 80,96 Not Req. Not Req. Not Req. Not Req. Not Req.

2 6585298 358 2,95 73,28 Not Req. Not Req. Not Req. Not Req. Not Req.

3 6585304 299 2,90 41,60 Not Req. Not Req. Not Req. Not Req. Not Req.

4 6585292 300 3,50 59,12 Not Req. Not Req. Not Req. Not Req. Not Req.
6585289 301 4,00 51,48 0,53 2,12 47,48 0 49,36
6585300 302 2,50 71,60 0,95 3,80 69,10 0 67,80
6585299 303 3,00 70,00 0,62 2,48 67,00 0 67,52

8 6585297 351 2,00 89,00 Not Req. Not Req. Not Req. Not Req. Not Req.
6585301 359 2,80 88,00 0,16 0,64 85,20 0 87,36

10 6585295 360 2,95 75,50 Not Req. Not Req. Not Req. Not Req. Not Req.
instead 1 6585293 340 3,00 83,00 0,89 3,56 80,00 0 79,44
instead 2 6585305 310 1,85 58,50 0,64 2,56 56,65 0 55,94
instead 3 6585306 311 1,80 57,50 0,48 1,92 55,65 0 55,58
instead 4 6585264 335 4,00 66,68 1,34 5,36 62,68 0 61,32

Table 5.23: Sequence A

: Predicted magazine tool wear before processing OH on position 3, require setup,

test

Magazine state
MagazinePos | ToolID | InvNo | CritLT | RemLT | Tuse;ransl | TReqgross | RemLT — CritLT | TReqyetMach | Rem.LTPostOrder

1 6585293 340 3,00 79,44 Not Req. Not Req. Not Req. 0 Not Req.

2 6585305 310 1,85 55,94 Not Req. Not Req. Not Req. 0 Not Req.

3 6585306 311 1,80 55,58 Not Req. Not Req. Not Req. 0 Not Req.

4 6585264 335 4,00 61,32 Not Req. Not Req. Not Req. 0 Not Req.

5 6585289 301 4,00 49,36 Not Req. Not Req. Not Req. 0 Not Req.

6 6585300 302 2,50 67,80 Not Req. Not Req. Not Req. 0 Not Req.

7 6585299 303 3,00 67,52 Not Req. Not Req. Not Reqg. 0 Not Req.

8 6585297 351 2,00 89,00 Not Req. Not Req. Not Req. 0 Not Req.

9 6585301 359 2,80 87,36 Not Req. Not Req. Not Req. 0 Not Req.
6585295 | 360 2,95 75,50 0,74 2,96 72,55 0 72,54
instead 1 6585302 337 2,50 68,00 0,88 3,52 65,50 0 64,48
instead 2 6585290 357 2,00 80,96 0,54 2,16 79,96 0 78,80
instead 3 6585298 358 2,95 73,28 2,25 9,00 70,33 0 70,33

Table 5.24: Sequence A: Predicted magazine tool wear before processing OI on position 4

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay |
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoielnassiq Jasalp uoisianfeulbliO apponipab ausiqoidde aig

qny a8pajmoud| INoA

S8ylolqie

130

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

‘dnges oxmbor ‘f uonisod uo () Sursseooid o10Joq Ieam [00) dUIZRFRW PajdIpald g dousnbeg :97°G 9[qe],

ce'19 0 89¢9 9¢‘s 7e'1 8999 00'% Gee | ¥92S8%99 7 peojsul
8G°GS 0 G9°'GS T6'T 870 0S‘LS 081 ITE | 90£S8S59 € peojsur
¥6'GS 0 G99 96t 790 05‘8S 68T 0T€ | S0ES899 T peojsul
¥7'6.L 0 0008 96‘¢e 68°0 00‘e8 00°¢ ove | £62S8S9 1 peajsut
by joN 0 ‘bay joN by joN by J0N 2% G6'C 09¢ | 96259899 0T
9¢°28 0 0G‘G8 790 910 00‘S8 08'C 6S¢ | TOES8S9
by joN 0 by j0N "bayy joN by 10N 00°68 00°C IS¢ | L6TS8S9 8
7829 0 00°29 SV'C 290 00°0L 00‘¢ €0¢ | 66T9899
08°29 0 0169 08°¢ 660 091 0S°C Z0¢ | 00£S8%9
9¢'6¥ 0 |V LY o1’ cgo 819 00'F T0€ | 6825829
by joN 0 by j0N ‘boy joN ‘bay j0N Z1'68 0g‘e 00¢ | T6TS8S9 i
by joN 0 by J0N "bay joN by j0N 8779 0S°C LE€ | TOES8S9 ¢
"oy J0N 0 ‘boy joN "boy j0N by J0N 8T‘%9 G6'C 8GE | 86TS899 z
‘bay joN 0 ‘boy j0N ‘boy joN ‘bay jo0N 08°‘8. 002 LS¢ | 0625899 !
h@@hOamOﬁHHﬂ.Ewm Qud&)zw\/@m«mrﬁ rH\Nt&D — rN\Nsmm m,md&@@m\mrﬁ Nwﬁﬁ&wwwﬁrm Eﬂawm r.—.L‘HGm.HO OZ>§H QﬂOOrH mOﬁm@ﬁmwaﬁz

9)R)S SuIZeIRN

‘dngos oxmbor ‘¢ uonsod uo () Surssedol1d o10Joq IBom (009} SUIZRSRUW POIIIPoId

aouenbeg :G7 G 9[qR],

8779 0 0g°‘c9 os'e 880 00°‘89 0S°C LE€ | TOES8S9 ¢ peojsul

¥8'cL 0 GGzL 96'C 7.0 0s‘s. G6°C 09¢ | S6TS899
by joN 0 by j0N "bay 0N ‘bay 10N 00‘88 08°C 6S¢ | T0ES8S9 6
"boy jo0N 0 ‘boy 10N "boy J0N by J0N 00‘68 00°Z IGE | L6TG8<S9 8
by joN 0 by j0N by joN by J0N 0002 00°€ €0¢ | 6625859)
by joN 0 by j0N "bayy joN by 10N 09°1L 0S°c Z0€ | 00£S8%99 9
by joN 0 by j0N "bay joN by j0N ST1g 00'% T0S | 68TS8S99 q
"boy JoN 0 ‘bayy joN "boy J0N by J0N T1'6S 0G‘¢e 00€ | T6TS8S9 i4
by joN 0 ‘boy j0N ‘boy joN by J0N 09°‘TH 06'C 66Z | ¥0E£S8S9 ¢

8379 0 £e'0L 006 6z'c 8T‘EL G6°C 8GE¢ | 8629899

088 0 96'8. 91'z 7S'0 9608 00'C LSE€ | 0625859

h@ﬁhOamOnﬂH\H.EOﬁ QUBE%@Z@@@H rﬁﬂﬁib — rmﬂgmm m%b&@@mﬁ?ﬁ Nwﬁdkwwmﬁrﬁ Hﬂgw‘m ,H,Ham.no OZ>QH AH:OO,H mOﬁMOQMNNWNE

97e)s auIZeSe]

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay |
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoielnassiq Jasalp uoisianfeulbliO apponipab ausiqoidde aig

qny a8pajmoud| INoA

S8ylolqie

131

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Critical reflection and outlook

This chapter critically reviews the DM-MESD in four stages. First it examines if the design
methodology fulfills the domain specific restrictions, and the requirements for a design methodology.
In the third stage the final MAS design is reviewed by its resulting MAS design. The last stage
offers the reader a critical summary and an outlook to future possibilities.

6.1 Examining the list of requirements

6.1.1 Domain specific requirements

The DM-MESD must fulfill the predefined domain specific requirements, which a MAS design
methodology for the manufacturing execution system domain must fulfill. By considering
those domain specific requirements the DM-MESD differs from other the common MAS de-
sign methodologies. This section reviews if the DM-MESD has met all the domain specific
requirements.

Highly process controlled

The DM-MESD prioritizes the core process and ensures its flow. Right at the beginning, the
design methodology defines and maps the core process and assure its proper operation during the
design process. Although the DM-MESD also considers objects, its design derives from focusing
on tasks and functions. This priority forces the designer to capture the required functions of the
core process and ensures them. The DM-MESD also captures the required inputs and outputs,
which include constraints. Defining a core process and focusing on the well-functioning of its sub
steps and tasks centralizes the process perspective instead of a role or responsibility perspective.

Mutual dependency

The design methodology must incorporate concepts like autonomy, proactiveness and goal
orientation, without risking the process operation. The DM-MESD considers the mutual
dependencies occurring during the core process. By capturing all required inputs and outputs of
the tasks and functions and building services upon those structures, mutual dependencies are
considered, while at the same time encapsulation is promoted. The resulting services facilitate
the integration of MAS concepts, such as autonomy, proactiveness and goal orientation, and
consider the mutual dependencies of the original core process.

133

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Sensitive System

The design methodology and its resulting MAS design must be located on a high MES layer.
The design methodology thereby realizes a loose coupling of the process relevant hardware and
leaves a buffering zone between the MAS and safety relevant mechanisms. This approach defines
an investigation area, which meets those demands. This investigation area is integrated into the
evaluation phase of the DM-MESD, which implies that the application domain is tested right
at the beginning, if it is located on a higher MES layer. The DM-MESD therefore meets this
domain specific requirement.

Highly heterogenic hard and software structure

This requirement demands that a MAS must be either applied on a platform independent solution
or on a platform with multiple interconnectivity possibilities. The DM-MESD neither supports
nor neglects this issue, as it only offers a pure design methodology without any implementation
suggestions. It does not specify the agent’s internal structure, nor does it specify the interaction
by offering protocol templates. The programmer can therefore choose the platform and the
implementation freely or consider future technical requirements for the application.

The DM-MESD methodology fulfills all requirements in a sufficient manner.

6.1.2 General requirements for a design methodology

Model fidelity

The model fidelity validates if the model suits its purpose. Early in this thesis the author stated
that the model fidelity is being verified through the capability of the resulting MAS to maintain
the core process. As the examined test scenarios show, the final MAS design maintains the core
process and extends it in beneficial manner. This implies, that the DM-MESD maps the process
in a satisfactory manner. The DM-MESD therefore complies with the requirement of model
fidelity.

Prescriptiveness

The DM-MESD guides the designer through all six phases. It describes the purpose of each
phase, as well as its starting point. The DM-MESD offers the designer a designing process
building on the results of the previous step. The continued assistance is achieved by a guided
procedure, where the result of the previous step is the input for the next step. The design
methodology presented here offers not only a precise description of the single design operations,
but also of the initial conditions and the final outputs. The DM-MESD offers, different from the
other MAS design methodologies, an evaluation phase, so that the designer can be sure that the
DM-MESD is a proper fit for the chosen application process.

Feasibility for industrial and mechanical engineers

In the investigation area that the DM-MESD defines, mechanical and industrial engineers are
commonly the stakeholders. Its design strategy and the chosen modeling tools are suitable for this
target group. By using textual description and structural analysis the DM-MESD corresponds
to their commonly minimal modeling knowledge. Further, this approach favors the familiar
process-oriented perspective during the analysis phase, instead of using the object-oriented
perspective. Although the DM-MESD relies on textual description and structured analysis, it
provides proper models and methods, as the application on the integrated tool cycle showed.
The designer is not expected to consider any implementation relevant aspects during applying
the DM-MESD, as it is a pure design methodology. The DM-MESD therefore fulfills this
requirement.

134

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Capability to model agent-oriented systems in the MES layer

The DM-MESD constitutes MAS concepts in its methods, without expecting any previous MAS
knowledge from the designer. Such concepts are encapsulation, service orientation, pro-activeness,
cooperation, and competitiveness. Encapsulation is realized during the use of the DM-MESD,
by structuring the system according to tasks and functions of the core process. Those tasks
and functions are later expanded to self-containing services. The process-perspective and the
building of self-containing services from tasks and functions underlines its service-oriented nature.
In defining objectives while structuring service clusters, the DM-MESD lays the foundation for
proactive behavior. However, it must be stated that although pro-activeness is a design choice,
its realization is rather an implementation than a design matter. In designing service clusters
and their resulting agents to cooperate and compete to realize set objectives, the DM-MESD
embeds those concepts. Although the DM-MESD does not consider the full range of all MAS
related concepts, it can be said, that it at least supports and realized the above mentioned. This
requirement is therefore considered fulfilled.

6.2 Review of the final MAS design

The assessment phase and analysis phase of the DM-MESD ensures the original functionality of
the integrated tool cycle, while the abstraction and the clustering phase-initiated improvements.
The aim at the beginning of the design process was to utilize the possibilities that the integrated
tool cycle had to offer. The author has chosen a multiagent system as a control structure.
While developing a MAS the author quickly realized the need for a MAS design methodology
conceptualized and designed for the manufacturing domain and its stakeholders.

During the application of the DM-MESD methodology on the integrated tool cycle, the de-
pendencies between the process entities were captured in a precise textual manner as input
and outputs. The new services, such as "inquiring an offer", "proposing offer" or "managing
setup”, that have been developed during the design process with the DM-MESD, are a beneficial
extension of the original process functionality. These services suggest that an advantageous
process transformation can be achieved with this method and its integrated MAS concept. The
services "inquiring an offer", "proposing offer" and "accepting offer" are services, which result
from the negotiation as a multiagent concept.

By creating services with clearly defined inputs and outputs, the concept of encapsulation was
also implemented and applied by the methodology. Building on tasks and functions, the small
building blocks from which services are created, includes in its essence the service-oriented
approach. But only the concepts of proactivity, cooperation and competitiveness make it possible
to tap the potential of the developed services. These concepts are determined by conceptualizing
the agents’ response to their environment and other agents.

The creation of the new services was initiated by the definition of the KPI and the overall
objectives. By setting the overall goal and gradually approaching it, the use case shows, that
the methodology’s perceptiveness can be concluded. Based on these measurable KPIs, it can be
evaluated whether the hoped-for advantages could be achieved through a MAS design. During
the application of the DM-MESD, a flexible order schedule based on the minimal tooling cost
was defined as KPIs. The test scenario IV shows, that the final MAS can sequence the machining
order in a manner that minimizes the tooling costs. The flexible machine utilization is achieved
by the previously mentioned MAS concepts and through combining the new developed services.
While newly developed services such as, "Inquiring offer", "Accepting offer" and "Proposing offer"
were responsible for finding the best possible schedule by negotiation, already existing services
such as, "Managing machining" and "Managing setup" ensured the provision of resources. In

135

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

addition to the advantages achieved by the MAS created with DM-MESD, the methodology
is also judged by the documentation of the final MAS design. The final design is achieved
through the description of the individual agent types and their functions and services. The
interaction between the agents is represented by a textual sequence, sequence diagram and an
interactions diagram. While the agents, their functionalities and their interactions were mapped,
the resulting MAS design leaves room for the implementation choices made by the programmer.

6.3 Conclusive summary

The MAS design methodology presented here utilizes two UML diagrams as optional support. It
is however centered on textual description and a structured analysis mechanism. The combination
of both enables the designer to easily map the complete system and in a most natural way, which
would require an experience modeler if for example UML would be used. This methodological
path was chosen, since process stakeholders from the manufacturing domain are the future
designers. Those stakeholders are most likely industrial and mechanical engineers, with little to
no modeling experience. The DM-MESD is based on textual description and structured analysis,
such as Gaia, to avoid the required model language extensions. PASSI for example uses UML
agent extension (AUML). To ease the modeling for the target audience, the DM-MESD does
not use UML, AUML or any other modeling language. This is reasoned in the effort required
to specify or to extend a modeling language. Doing so requires adapting meta models, and
a detailed description of notations and syntax checks. The methodological tools, such as the
textual description is practiced easily and without further experience. Further, the DM-MESD
enables the designer to map the process completely and prevents misunderstandings. In fact,
the use of the textual description does not require any modeling knowledge and enables the
process stakeholder to design a multiagent system. The DM-MESD also enables several persons
to work simultaneously on a design, as the textual description can be written by the process
stakeholder and then be handed over to the designer. The designer could then base her or his
design process on the detail process captured in text. If required in further steps the designer
could consult with the process stakeholder, for example during the clustering phase.

Like Gaia, this methodology does not offer or suggest an implementation mechanism nor a
pattern. It neither offers protocol templates, to be transformed into FIPA ACL protocols.
Offering protocol types in the DM-MESD would require a deeper understanding of the ACL
from the designer. Trying to fit interactions into fixed communication protocols would influence
the MAS design at an early stage and is not suitable for the target audience. It was therefore
assumed that the final MAS design will be implemented by a computer scientist or a programmer
with the capabilities and the experience to do so. Different from PASSI, the DM-MESD makes
no implementation suggestions nor does it encounter any implementation mechanism, which
would limit the implementation possibilities of the programmer. The DM-MESD does not dictate
any protocol specifications. Although MAS for integrated tool cycle was realized in JADE, any
other MAS platform could have been used.

The DM-MESD takes the manufacturing restrictions such as limited resources, process sequences,
interfaces, etc. into account. Due to its focus on the core process and its process analysis
phase, it also considers the given process restrictions and limitations. It offers the designer a
methodological path including mechanisms and guidelines throughout the complete designing
process. The DM-MESD offers the designer an evaluation phase right at the beginning, to
verify the proper suitability for the application domain and to save time and effort. During the
designing steps, new perspectives on the application process were elaborated and offered the
possibility of a process transformation. Offering mechanisms to restructure the process, such as

136

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

developing KPI and considering them during the creative design phase enhanced the process.
Differing from other methodologies, this methodology values the core process functionality above
all and ensures its implementation right from the beginning. This is achieved by considering
the required tasks, the functions, inputs and outputs during the analysis and the design phase.
The DM-MESD also offers multiple mechanisms, such as KPI, service identification and service
clustering to improve and transform the process.

6.4 Outlook

As a next step the DM-MESD can be applied to different application processes to document its
performance and to improve it. This additional practice would clarify if application processes
exist, which fit the investigation area, but still are not suitable for the DM-MESD. The additional
use would evaluate if the investigation area of the DM-MESD requires improvement. In the
future, the DM-MESD could be presented to industrial partner companies to gather field
information directly from the stakeholders. This next step would help improve and develop the
DM-MESD further according to the stakeholders’ needs. Additional use cases would also help
gather information from programmers to evaluate if implementation guidance from DM-MESD
is desired.

As a future step the resulting MAS can be improved to map the different parts of the tooling
cost in detail. Detailing the tooling costs offers the production a new insight into unexploited
saving potentials.

Another future task is the improvement of the agent types and their interactions. The Or-
derAgents could be improved to compete directly against each other. Their algorithm could
be enhanced so that they base their decisions on the reactions of the competition. Instead of
either accepting or denying an offer, the future OrderAgent could start bargaining, for example
offering to wait a bit longer for a better price. The MachineAgent on the other hand could be
improved in three ways. Those three ways are either improving the competition between the
MachineAgents or improving the negotiation between the OrderAgent or improving the tool
management of the MachineAgent. In the first possibility, the direct competition between more
than one MachineAgent could be enhanced. Two competing MachineAgents could adapt their
prices to get the bid, as a form of direct competition. Another form of competition between two
MachineAgents could also be indirect competition, due to their availability or current magazine
load. In the second possibility, the algorithm of the MachineAgent could be enhanced to enable
bargaining with the OrderAgent in order achieve either a better machine utilization or to save
production costs. The last option of improvement could be to use the MachineAgent and the
MAS simulation to elaborate an optimal tool changing strategy for the magazine. Such a
simulation with MAS could also be used to elaborate a suitable tool disposition strategy in
advance.

137

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“Jayloljqig UsIpn NL e uud ul sjgejreAe si sisay) [2Jo1oop Siyl Jo uoisian [eulblio panoidde ay | < any a8pajmoun Jnoa
“regBnyian 3ayloljqig UsIpn NL Jop ue Isi uoirelassiq Jasalp uoisianeulblo apponipab ausiqoidde aig v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.1
1.2

1.3

1.4

2.1
2.2
2.3

2.4
2.5
2.6

2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

2.19
2.20
2.21
2.22
2.23

2.24
2.25

List of Figures

Scheme of a possible message traffic in a hierarchical control structure,
Previous scheme with a multiagent system on the MES layer managing and scheduling
the production entities|o
Left: Realized MAS projects sorted according ISA 95 levels; Right: Realized MAS
projects at the level 2 of ISA 95 sorted by their Project Scope, Original Data from
[LKRT16] analyzed and remastered for this illustration
Investigation area visualized L oL

Main groups of cutting tool components; Source: ISO 13399 |
Assembly options according to the ISO 13399
Tool management scheme, original source |Geil3|, digital revision and translation:
author L L
CNC-RP operation and tooling cost for sample parts, source MWHI16]
Scheme of the flexible machining queue introduce in this thesis; source: own illustration
Tool Cycle Scheme highlighting data interruptions by flashes; source: own illustration
Activities of the current state tool cycle; source: [ETP19]
Realized communication with proprietary interface; source: [FTP19]
Activities of the transformed tool cycle; source: [EFTP19] |
BDI model setting the concepts into relation; Source:[HSTDOS]|
FIPA specification reference model, source: [BPR99|
Agent Management Ontology from the FIPA specification, source: [BCGOT7]
Message structure from the FIPA specification, source: [BCGO7]
Software architecture of JADE, source: [BPR99|
JADE behavior class diagram, source: [BPR99]
System architecture, source: [SSST13]| L L
Main communication lines between the agents types, source: [SSST13||
Landscape of agent-oriented design methodologies and their influence, source: |[GHS05]
Classification of Prometheus models, source: [PW02] &
Stages of the PASSI Methodology, source: [BCO2).
The domain description phase of the Moller Bokhandel case, source: [BC02|
The agent identification of the Moller Bokhandel case, source: [BC02]
Role Identification for the scenario in which the Purchase Monitor announces the
need for a books purchase, source: [BCO2|
Task specification for the PurchaseManager, source: [BCO2|
The domain ontology diagram describing system entities and their attributes in a
class diagram, source: [BCO2| oo oo oo

13

16
16

18
20
24

25
27
28
29
31
34
36
36
38
38
40
40

42
44
46
47
47

48
48

49

139

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.26

2.27
2.28
2.29
2.30
2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

140

The communication ontology diagram referring to FIPA protocol types and the

domain ontology, source: [BCO2|| 50
The role description diagram mapping dependencies between agents, source: [BC02] 50
The multiagent structure definition diagram, source: [BCO2| 51
The single agent structure definition diagram, source: [BCO2J| 52
Influence of the Gaia models, source: [WJKO00] 54
Operators of liveness properties, source: [WJKOO0] 55
Role schema for the COFFEFILLER role, source: [WJKOO] 56
Fill protocol definition for the COFFEFILLER role, source: [WJKOO] 57
Scheme of a partial interaction model, source: Own illustration 57
Agent model from another use case, source: [WJKO0] 58
Agent instance qualifier, source: [WJKOO] 58
Example of a service model of a different use case, source: [WJKO00] 58
Example of an acquaintance model, source: [WJKOO]|. 59
The DM-MESD and its six phases, source: own illustration| 62
Scheme of clustered services, source: own illustration 73
Scheme of the interaction diagram, source: own illustration 75
Tool Cycle of the TU Wien Pilotfabrik, described in an UML activity diagram/ . . 89
Services e e 95
Service clusters at the state 11 L 96
Service clusters at the state 20 L 97
Service clusters at their final statel o000 98
Multiagent Interaction Diagram/. Lo 108
Sequence diagram of the agent cooperation 110
Scheme of the machining queue Lo 113

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.1

2.1
2.2
2.3

2.4

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5

5.1

5.2
0.3
0.4
0.9
5.6
0.7
5.8
0.9
5.10
0.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

List of Tables

Comparison of CPPS with SOA and MAS Characteristics 5
Sequence of released orders 23
Compares of required tools for each order, 23
Table comparing the original release sequence against the sequence of the online tool
cost based scheduling 24
List of abstract and concrete concepts in Gaia, source: [WJKOO| 54
Core process assessment table oL oL 66
Process entity concept|o oo 68
Process tablel 69
Service table L 71
Core process assessment of the integrated tool cycle] 81
Process entities of the integrated tool cycle 87
Summary of Services e e e e e 91
Example of a setting sheet|. L o 103
Data of an OrderAgent| 112
Table with the NC-program based tool use times T'use ncy(roorp)y in relation to the
transformed use times TUS€irans(ToolID)| -+ + + « « « « « v oo 119
OrderAgents for test scenario I, L L oo 120
Magazine load for scenario I'. oo o 120
Stock of assembled tools for scenario Il L. 120
OrderAgent OA related calculation for NC-program NC12072018 121
OrderAgent OB related calculation for NC-program NC12072019 121
OrderAgent OC related calculation for NC-program NC12072020/ 121
OrderAgents for test scenario IL.| L oo 122
OrderAgents for test scenario IIL.|., 122
Cost _rates for test scenario HHland IV.)o oo, 122
Magazine load for scenario III}. oL, 123
Predicted magazine tool wear before processing OD| 124
Predicted magazine tool wear after processing OD and before OF/. 124
Predicted magazine tool wear after processing OD and before OE, revised 125
Predicted magazine tool wear before and after OK1. 125
Predicted machining cost for test scenario III| 126
OrderAgents for test scenario IV.| 126
Magazine load for scenario IV|. oo 126
Tools at stock for scenario IVl 126
Comparison of the production cost caused by sequence Aand B 128
141

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfiigbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

[5.21 Predicted magazine tool wear before processing OF on position 1/ 129
[5.22 Predicted magazine tool wear before processing OG, 129
[5.23 Sequence A: Predicted magazine tool wear before processing OH on position 3, require |
| setup, use same tools test |. Lo 130
[5.24 Sequence A: Predicted magazine tool wear before processing OI on position 4, . . . 130
[5.25 Sequence B: Predicted magazine tool wear before processing Ol on position 3, require |
| setup, use same tools|.o Lo 131
[5.26 Sequence B: Predicted magazine tool wear before processing OH on position 4, require |
| setup, use same tools|. 131
142

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[AIST10]

[BCO2]

[BCGO7]

[BD04]

[BHO™ 18]

[BJW13]

[BNP+08]

[BPGT04]

[BPRYY]

[BSO1]

[CSCO03]

Bibliography

Michael Andreev, Anton Ivaschenko, Petr Skobelev, and Alexander Tsarev. A
multi-agent platform design for adaptive networks of intelligent production sched-
ulers. IFAC Proceedings Volumes, 43(4):78-83, 2010.

Piermarco Burrafato and Massimo Cossentino. Designing a multi-agent solution
for a bookstore with the passi methodology. AOIS@ CAIiSE, 57, 2002.

Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing
multi-agent systems with JADE, volume 7. John Wiley and Sons, 2007.

Adil Baykasoglu and Tiirkay Dereli. Heuristic optimization system for the deter-
mination of index positions on cnc magazines with the consideration of cutting
tool duplications. International Journal of Production Research, 42(7):1281-1303,
2004.

Darya Botkina, Mikael Hedlind, Bengt Olsson, Jannik Henser, and Thomas
Lundholm. Digital twin of a cutting tool. Procedia CIRP, 72:215-218, 2018.

Stefan Bussmann, Nicolas R Jennings, and Michael Wooldridge. Multiagent
systems for manufacturing control: a design methodology. Springer Science &
Business Media, 2013.

Alan Boyd, D. Noller, P. Peters, D. Salkeld, T. Thomasma, C. Gifford, S. Pike,
and A. Smith. SOA in manufacturing—guidebook. MESA International, IBM
Corporation and Capgemini Co-Branded White Paper, pages 2429, 2008.

Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John
Mylopoulos. Tropos: An agent-oriented software development methodology.
Autonomous Agents and Multi-Agent Systems, 8(3):203-236, 2004.

Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Jade a fipa compliant
agent framework. In Proceedings of PAAM, number 97 in 3, page 33. London,
The Practical Application Company, 1999.

Stefan Bussmann and Klaus Schild. An agent-based approach to the control of flexi-
ble production systems. In ETFA 2001. 8th International Conference on Emerging
Technologies and Factory Automation. Proceedings (Cat. No. 01TH8597), vol-
ume 2, pages 481-488. IEEE, 2001.

Massimo Cossentino, Luca Sabatucci, and Antonio Chella. Designing jade systems
with the support of case tools and patterns. Special Issue on JADE of Telecom
Italia Journal EXP of September, 2003.

143

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[DBLOY]

[DD17]

[Dee01]

[DeL99]

[DKS14]

[EIMO09]

[EMC]

[fIPAO3]

[FRU99]

[FTP19)

[Geil3]

[GHS05]

[Grol3|

[GSS93)]

144

Kanchan Das, Md Fazle Baki, and Xiangyong Li. Optimization of operation and
changeover time for production planning and scheduling in a flexible manufacturing
system. Computers & Industrial Engineering, 56(1):283-293, 20009.

Deutschland and Statistisches Bundesamt Deutschland. Statistisches Jahrbuch
Deutschland und Internationales. Statistisches Bundesamt (Destatis), October,
2017.

S Misbah Deen. Cooperating agents for holonic manufacturing. In ECCAI
Advanced Course on Artificial Intelligence, pages 119-133. Springer, 2001.

Scott A DeLoach. Multiagent systems engineering: A methodology and language
for designing agent systems. Technical report, AIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH DEPT OF ELECTRICAL AND ..., 1999.

Berend Denkena, Max Kriiger, and Justin Schmidt. Condition-based tool man-
agement for small batch production. The International Journal of Advanced
Manufacturing Technology, 74(1-4):471-480, 2014.

Hoda A ElMaraghy. Changing and evolving products and systems—models and
enablers. In Changeable and reconfigurable manufacturing systems, pages 25-45.
Springer, 2009.

EMCO. Maxxmill 750: Emco lathes and milling machines for cnc turning
and milling. |https://www.emco-world.com/en/products/industry/
milling/cat/79/d/2/p/1000839%2C79/pr/maxxmill-750.html. (Ac-
cessed on 04/29/2019).

Foundation for Intelligent Physical Agents. FIPA Specification SC00023, Agent
management specification, 2003.

Marshall Fisher, Kamalini Ramdas, and Karl Ulrich. Component sharing in
the management of product variety: A study of automotive braking systems.
Management Science, 45(3):297-315, 1999.

Solmaz Mansour Fallah, Thomas Trautner, and Florian Pauker. Integrated tool
lifecycle. Procedia CIRP, 79:257-262, 2019.

Thomas Geib. GeschéftsprozeBorientiertes Werkzeugmanagement. Springer-
Verlag, 2013.

Paolo Giorgini and Brian Henderson-Sellers. Agent-oriented methodologies: an
introduction. In Agent-Oriented Methodologies, pages 1-19. IGI Global, 2005.

Industrie 4.0 Working Group. Recommendations for implementing the strategic
initiative INDUSTRIE 4.0: Securing the future of German manufacturing
industry; final report of the Industrie 4.0 Working Group. acatech -Deutsche
Akademie der Technikwissenschaften), 2013.

Ann E Gray, Abraham Seidmann, and Kathryn E Stecke. A synthesis of decision
models for tool management in automated manufacturing. Management science,
39(5):549-567, 1993.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.emco-world.com/en/products/industry/milling/cat/79/d/2/p/1000839%2C79/pr/maxxmill-750.html
https://www.emco-world.com/en/products/industry/milling/cat/79/d/2/p/1000839%2C79/pr/maxxmill-750.html

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[HK16]

[HLMS98]

[HSTDO5]

[IGGV97]

[Jen00]

[JMMLSFO05]

[JS05]

[Kin12]

[KMO6]

[KTW11]

[LBK15]

[LCK16]

[Lee08]

[LKR*16]

Mior Uzair Mior Hassan and Aini Zuhra Abdul Kadir. Management and monitoring
of rfid-based cutting tool information for integrated manufacturing. International
Journal of Engineering and Technology (IJET), 2016.

Alain Hertz, Gilbert Laporte, Michel Mittaz, and Kathryn E Stecke. Heuristics
for minimizing tool switches when scheduling part types on a flexible machine.
ITE transactions, 30(8):689-694, 1998.

Brian Henderson-Sellers, QN Numi Tran, and John Debenham. An etymological
and metamodel-based evaluation of the terms" goals and tasks" in agent-oriented
methodologies. Journal of Object Technology, 2005.

Carlos A Iglesias, Mercedes Garijo, José C Gonzalez, and Juan R Velasco. Anal-
ysis and design of multiagent systems using mas-commonkads. In International
Workshop on Agent Theories, Architectures, and Languages, pages 313-327.
Springer, 1997.

Nicholas R Jennings. On agent-based software engineering. Artificial intelligence,
117(2):277-296, 2000.

Sven Jacobi, Cristidan Madrigal-Mora, Esteban Leén-Soto, and Klaus Fischer.
Agentsteel: An agent-based online system for the planning and observation of
steel production. In Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, pages 114-119. ACM, 2005.

Frangois Jammes and Harm Smit. Service-oriented paradigms in industrial au-
tomation. IEEE Transactions on industrial informatics, 1(1):62-70, 2005.

Steffen Kinkel. Trends in production relocation and backshoring activities: chang-
ing patterns in the course of the global economic crisis. International Journal of
Operations & Production Management, 32(6):696-720, 2012.

Jozef Konings and Alan Patrick Murphy. Do multinational enterprises relocate
employment to low-wage regions? evidence from european multinationals. Review
of World Economics, 142(2):267-286, 2006.

Sven O Krumke, Alfred Taudes, and Stephan Westphal. Online scheduling of
weighted equal-length jobs with hard deadlines on parallel machines. Computers
& Operations Research, 38(8):1103-1108, 2011.

Jay Lee, Behrad Bagheri, and Hung-An Kao. A cyber-physical systems architecture
for industry 4.0-based manufacturing systems. Manufacturing Letters, 3:18-23,
2015.

Paulo Leitdo, Armando Walter Colombo, and Stamatis Karnouskos. Industrial
automation based on cyber-physical systems technologies: Prototype implementa-
tions and challenges. Computers in Industry, 81:11-25, 2016.

Edward A Lee. Cyber physical systems: Design challenges. In 11th IEEE
Symposium on Object Oriented Real-Time Distributed Computing (ISORC),
pages 363-369. IEEE, 2008.

Paulo Leitao, Stamatis Karnouskos, Luis Ribeiro, Jay Lee, Thomas Strasser,
and Armando W Colombo. Smart agents in industrial cyber-physical systems.
Proceedings of the IEEE, 104(5):1086-1101, 2016.

145

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[LL13]

[Mon14]

[MSF96]

[MWH16]

[Nyqo8]

[PMO8]

[PVBO5]

[PWO02]

[RBMOS]

[RBP+91]

[RG+95]

[SAM17]

[SESY]

[SHYNOG]

146

J Lee and E Lapira. Predictive factories: the next transformation. Manufacturing
Leadership Journal, 20(1):13-24, 2013.

Léaszlé Monostori. Cyber-physical production systems: Roots, expectations and
r&d challenges. Procedia Cirp, 17:9-13, 2014.

John Paul MacDuffie, Kannan Sethuraman, and Marshall L Fisher. Product variety
and manufacturing performance: evidence from the international automotive
assembly plant study. Management Science, 42(3):350-369, 1996.

Guha Manogharan, Richard A Wysk, and Ola LA Harrysson. Additive
manufacturing—integrated hybrid manufacturing and subtractive processes: eco-
nomic model and analysis. International Journal of Computer Integrated
Manufacturing, 29(5):473-488, 2016.

Olof Nyqvist. Information management for cutting tools: information models and
ontologies. PhD thesis, KTH, 2008.

Michal Péchoucek and Vladimir Matik. Industrial deployment of multi-agent
technologies: review and selected case studies. Autonomous agents and multi-agent
systems, 17(3):397-431, 2008.

Michal Pechoucek, Jiri Vokrinek, and Petr Becvar. Explantech: multiagent support
for manufacturing decision making. IEEE Intelligent Systems, 20(1):67-74, 2005.

Lin Padgham and Michael Winikoff. Prometheus: A methodology for develop-
ing intelligent agents. In International Workshop on Agent-Oriented Software
Engineering, pages 174-185. Springer, 2002.

Luis Ribeiro, José Barata, and Pedro Mendes. MAS and SOA: complementary
automation paradigms. In Innovation in manufacturing networks, pages 259—-268.
Springer, 2008.

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, William E.
Lorensen, et al. Object-oriented modeling and design, volume 199. Prentice-hall
Englewood Cliffs, NJ, 1991.

Anand S Rao, Michael P Georgeff, et al. Bdi agents: from theory to practice. In
ICMAS, volume 95, pages 312-319, 1995.

Eva Schaupp, Eberhard Abele, and Joachim Metternich. Potentials of digitalization
in tool management. Procedia CIRP, 63:144-149, 2017.

Joseph Sharit and Sharad Elhence. Computerization of tool-replacement decision
making in flexible manufacturing systems: a human-systems perspective. THE
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 27(12):2027—
2039, 1989.

Weiming Shen, Qi Hao, Hyun Joong Yoon, and Douglas H Norrie. Applications of
agent-based systems in intelligent manufacturing: An updated review. Advanced
engineering INFORMATICS, 20(4):415-431, 2006.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Dissertation ist an der TU Wien Bibliothek verfugbar.

The approved original version of this doctoral thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[SSS*13]

[Stal7]

[VMS+14]

[WIE]

[W.J95]

[WJIKOO]

[WNY*09)

[ZJW03]

[Zol18]

V Shpilevoy, A Shishov, P Skobelev, E Kolbova, D Kazanskaia, Ya Shepilov, and
A Tsarev. Multi-agent system smart factory for real-time workshop management
in aircraft jet engines production. IFAC Proceedings Volumes, 46(7):204—209,
2013.

Wirtschaftskammer Osterreich — Stabsabteilung Statistik. Statistisches Jahrbuch
Osterreich. Wirtschaftskammer Osterreich, 2017.

Pavel Vrba, Vladimir Marik, Pierluigi Siano, Paulo Leitao, Gulnara Zhabelova,
Valeriy Vyatkin, and Thomas Strasser. A review of agent and service-oriented
concepts applied to intelligent energy systems. IEEE transactions on industrial
informatics, 10(3):1890-1903, 2014.

TU WIEN. Pilotfabrik der tu wien. http://pilotfabrik.tuwien.ac.at/
en/. (Accessed on 04/29/2019).

Michael Wooldridge and Nicholas R Jennings. Intelligent agents: Theory and
practice. The knowledge engineering review, 10(2):115-152, 1995.

Michael Wooldridge, Nicholas R Jennings, and David Kinny. The gaia methodology
for agent-oriented analysis and design. Autonomous Agents and multi-agent
systems, 3(3):285-312, 2000.

Guoxin Wang, Hidehito Nakajima, Yan Yan, Xiang Zhang, and Lu Wang. A
methodology of tool lifecycle management and control based on rfid. In Industrial
Engineering and Engineering Management, 2009. IEEM 2009. IEEE International
Conference on, pages 1920-1924. IEEE, 2009.

Franco Zambonelli, Nicholas R Jennings, and Michael Wooldridge. Developing
multiagent systems: The gaia methodology. ACM Transactions on Software
Engineering and Methodology (TOSEM), 12(3):317-370, 2003.

Zoller. »venturion 450« premium presetting and measuring machine
for tools of all kinds. https://www.zoller.info/us/products/
presetting-measuring/vertical-devices/venturion—-450.html?
langswitch=1&cHash=1£5149df6a75386427ff55b33a639840, April
2018. (Accessed on 04/30/2019).

147

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
http://pilotfabrik.tuwien.ac.at/en/
http://pilotfabrik.tuwien.ac.at/en/
https://www.zoller.info/us/products/presetting-measuring/vertical-devices/venturion-450.html?langswitch=1&cHash=1f5149df6a75386427ff55b33a639840
https://www.zoller.info/us/products/presetting-measuring/vertical-devices/venturion-450.html?langswitch=1&cHash=1f5149df6a75386427ff55b33a639840
https://www.zoller.info/us/products/presetting-measuring/vertical-devices/venturion-450.html?langswitch=1&cHash=1f5149df6a75386427ff55b33a639840

	Introduction
	Motivation
	Presented approach
	Investigation area
	Systematic literature study
	Evaluation by proof of concept

	State of the art
	Tool cycle
	Cutting tools
	Tool management
	State of the art
	The tool cycle in industrial practice
	Integrated tool cycle in the pilot factory

	Multiagent system
	Agents and their characteristics
	Concepts

	FIPA Specification
	JADE
	MAS implementations and demonstrators

	Design methodologies
	Common design methodologies for multiagent systems
	PASSI
	Advantages and disadvantages of PASSI for our investigation area

	Gaia
	Advantages and disadvantages of Gaia for our investigation area

	MAS design methodology for the manufacturing execution system domain (DM-MESD)
	Design methodology
	Evaluation phase
	Assessment phase
	Determining the core process, including its boundaries
	Defining the pursued strategy and its KPI to be optimized
	Rechecking the process boundaries

	Analysis phase
	Textual description of the process
	Detecting essential process entities or beings
	Describing process entities in a glossary
	Optional: Coarse activity diagram

	Abstraction phase
	Clustering phase
	Transformation phase
	Role assignment
	Agent type multiplicity
	Redefined process entities
	Agent interaction
	Optional: Sequence diagram

	Design Process
	Presenting the industrial setting of the gls-pil
	Industrial Hardware
	Industrial Software

	Evaluation Phase
	Assessment phase
	Determining the core process, including its boundaries
	Defining the pursued strategy and its KPI to be optimized
	Rechecking the process boundaries

	Analysis Phase
	Textual description of the process
	Detecting essential process entities or beings
	Describing process entities a glossary
	Optional: coarse activity diagram

	Abstraction phase
	Clustering Phase
	Transformation phase
	Role assigning
	Agent type multiplicity
	Redefined Process Entities
	Agent interaction
	Optional: Sequence Diagram

	The Final MAS Design
	The DataAgent and its functionality
	The VisualAgent and its functionality
	The OrderAgent and its functionality
	The MachineAgent and its functionality
	The SupplyAgent and its functionality

	Scenarios tested on the final MAS design
	Preface: Simplifying assumptions
	1. Simplification: Process simulation
	2. Simplification: Utilizing a single machine tool
	3. Simplification: Utilizing only one database
	4. Simplification: Reducing the magazine pockets from 30 to 10
	5. Simplification: Limiting the workpiece quantity per order to less than 20 pieces

	Agent cooperation tested by examined calculations
	Test Scenarios
	Test Scenario I
	Test Scenario II
	Test Scenario III
	Test Scenario IV

	Critical reflection and outlook
	Examining the list of requirements
	Domain specific requirements
	General requirements for a design methodology

	Review of the final MAS design
	Conclusive summary
	Outlook

	List of Figures
	List of Tables
	Bibliography

