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Zusammenfassung

Das Bestimmen und Messen von Schadstoffen in der Luft liefert einen wesentlichen Beitrag, um

den Menschen sichere und gesunde Lebensbedingungen zu garantieren. Die erlaubten Grenz-

werte der jeweiligen Stoffe sind in nationalen Gesetzen geregelt und orientieren sich an den

Richtlinien der Weltgesundheitsorganisation. Es ist die Aufgabe nationaler Luftmessnetzwerke

und den zuständigen Behörden, repräsentative Standorte auszuwählen und Immissionsmessun-

gen durchzuführen. Die dazu verwendeten Geräte sind meistens für einen einzelnen Analyten

optimiert, und deren nicht zu unterschätzenden Abmessungen erfordern eine Installation in

umgebauten Kastenwägen, Transport-Containern oder dedizierten Labors in Amtsgebäuden.

Obwohl es für sämtliche Schadstoffe bereits hochpräzise Referenzmessgeräte gibt, verhindern

vor allem deren Anschaffungskosten und Abmessungen den Aufbau dichter Messnetzwerke.

Dieses Problem könnte in Zukunft mit dem Einsatz von Infrarotspektroskopie gelöst werden,

da alle zu erfassenden gasförmigen Schadstoffe charakteristische Absorptionslinien in diesem

Wellenlängenbereich aufweisen. Folglich könnten mehrere Gase mit einem einzigen Messgerät

quantifiziert und so die Installations- und Betriebskosten gesenkt werden. Um die Technologie für

kompakte Multi-Gas-Analysatoren weiter voranzutreiben, wurde in dieser Arbeit ein Prototyp,

mit dem die Schadstoffe CO, NO, NO2 und SO2 in der Umgebungsluft gemessen werden

können, entwickelt. Dieser besteht aus vier Quantenkaskadenlaser, einer Gasmesszelle mit 76 m

optischer Weglänge und zwei Quecksilber-Cadmium-Tellurid-Detektoren, wobei bei der Wahl

der einzelnen Komponenten auf deren kommerzielle Verfügbarkeit geachtet wurde. Damit die

Schadstoffe auch im niedrigen ppbv-Bereich gemessen werden können, basiert der Prototyp auf

der 2f-Wellenlängenmodulationsspektroskopie.

Weil die CO-Konzentration aber auch sehr leicht Werte den einstelligen ppmv-Bereich erreichen

kann, wurde zusätzlich eine Technik mit deutlich höheren linearen Bereich installiert. Die hetero-

dyne phasen-sensitive Dispersionsspektroskopie kann sehr einfach in einem für 2f-Wellenlängen-

spektroskopie gedachten Versuchsaufbau mit Standardkomponenten integriert werden. Während

direkte auf Absorption basierende Techniken durch die starke Signalabschwächung des Analyten
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limitiert sind, wird bei dieser die wellenlängenabhängige Phasenverschiebung zur Konzentra-

tionsbestimmung herangezogen. Dazu wird der Laser im Megahertz-Bereich moduliert, um zwei

weitere Wellenlängen zu erzeugen (optische Seitenbänder). Diese interagieren anschließend

mit dem Analyten und ergeben am Detektor ein charakteristisches Schwebungssignal. Obwohl

dessen Amplitude durch die starke Absorption verrauscht ist, lässt sich die Phasenlage, und

somit die Konzentration, präzise messen.

Die Anwendbarkeit des Prototyps wurde während zweier Messkampagnen gezeigt, wobei die

erste in Szombatheley (Ungarn), in der Nähe eines holzverarbeitenden Fabrik durchgeführt

wurde und zehn Tage dauerte. Aufgrund des damaligen Enwicklungsstandes konnten nur die

Analyten CO, NO und NO2 mit der 2f-Wellenlängenmodulationsspektroskopie gemessen werden.

Für die zweite Feldmessung wurde der Prototyp nahe einer stark befahrenen Straße in Wien

aufgestellt und erneut die Schadstoffe CO, NO und NO2 quantifiziert. Zusätzlich wurde die

CO-Konzentration für 42 Stunden mit der Dispersions-basierten Messtechnik bestimmt und

dessen Tauglichkeit für Umweltmessungen gezeigt.
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Abstract

Measuring the ambient air quality is essential to guarantee a save and healthy environment for

the people living there. The pollutants and their maximum allowed concentration levels are

regulated by the national governments and they are usually in accordance with the guidelines

published by the World Health Organization. It is the task of local air quality networks and

national departments to install suitable sensors at representative locations and to monitor the

pollution caused by traffic, power plants and other anthropogenic sources. The equipment is

often placed in mobile laboratories, cargo containers or local governmental buildings and each

target analyte requires its dedicated hardware.

With the demand to reduce the size and operating costs, novel measurement concepts are

evaluated to replace the highly optimized and specialized reference hardware. A promising

technology is infrared spectroscopy, as all gaseous pollutants and greenhouse gases absorb within

this spectral range of the electromagnetic spectrum. Subsequently, it is possible to combine the

quantification of multiple gases in a single multi-analyzer unit and reduce the overall dimensions

of the analytical devices. The aim of this thesis was to build a prototype that is capable to quantify

the pollutants CO, NO, NO2 and SO2 in the ambient air. This has been achieved by combining

commercially available Quantum Cascade Lasers, a multi-pass gas cell with 76 m optical path

length and off-the-shelf infrared-detectors. To ensure optimum performance in the single-digit

ppbv-range, the 2f-Wavelength Modulation Spectroscopy has been employed to quantify the

analytes of interest.

As CO can easily reach concentrations in the single-digit ppmv-region, a technique that can

cover a significantly higher linear range has been installed in the prototype as well. Heterodyne

Phase Sensitive Dispersion Spectroscopy can easily be integrated into an existing 2f-Wavelength

Modulation Spectroscopy-based setup and, again, only off-the-shelf components were used.

While direct absorption based techniques rely on sensing the amplitude of the transmitted light,

this one quantifies the concentration with a dispersion based technique. In particular, an optical

three-tone-signal, emitted by the laser, is used to probe the dispersion, induced by the absorption

v
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line of the analyte. The consequence is a more robust signal generation, especially at higher

concentration levels.

Finally, the applicability of this prototype has been evaluated in the field during two measurement

campaigns. The first one was located in Szombathely (HU), in vicinity to a wood-processing

factory, and the performance has been investigated for ten days. Due to the development progress

of the prototype, only CO, NO and NO2 have been investigated with 2f-Wavelength Modulation

Spectroscopy. The second campaign took place in Vienna (AT), next to a busy road, and the

same analytes have been monitored for five weeks. In addition, CO has been quantified with a

dispersion-based technique for 42 hours to prove its application in ambient air monitoring.
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”Clean air is considered to be a basic requirement of human health and well-being. However,

air pollution continues to pose a significant threat to health worldwide.”

World Health Organization

WHO Air quality guidelines for particulate matter, ozone,

nitrogen dioxide and sulfur dioxide. 2005.
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1. The Motivation for Ambient Air

Monitoring

Investigating the isotope ratios of elements or analyzing antarctic glacier ice that was formed

millions of years ago, allows scientists to reconstruct the composition of the Earth’s atmosphere

back to 4 billion years ago. It reveals, that its composition has always been changing [1, 2] and

had a significant impact on the evolution of all living things and the way how the earth looks like

now.

With the first human settlements and getting stationary, mankind began to influence the environ-

ment. First the early Egyptians and later the Romans and Greeks had a heavy demand on fire

wood, releasing significant amounts of CO, CO2 and soot in the air. This pollution of the air has

already been described by the Roman philosopher Seneca in AD 61 [3]:

As soon as I had gotten out of the heavy air of Rome and from the stink of the smoky

chimneys thereof, which, being stirred, poured forth whatever pestilential vapors

and soot they had enclosed in them, I felt an alteration of my disposition.

This famous quote is an important evidence of the long history of air pollution caused by humans.

At the same time, also the first laws addressing the air quality were enacted, although their main

focus was reducing the smell of decaying organic waste [4, 5].

Several hundreds of years later - to be accurate, in 1306 - another notable law/regulation

addressing the air quality has been passed: Kind Edward I has prohibited burning coal while

Parliament was in session [6, 7]. During the following centuries, the demand on refined metals

and coal increased, and reached its next peak with the industrialization in the 18th century. The

development of the steam engine was responsible for further increasing demand on mineral coal

and industrialized cities were soon covered in smog.

With the development of the Otto- and the Diesel-engines and the mass production of cars

in the early 20th century, the emission of NO and NO2 (known as NOx), and SO2 began to

1
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1. The Motivation for Ambient Air Monitoring

increase. The release of SO2, which resulted from the oxidation of sulfur in fossil fuels, was the

main reason for acid rain in central Europe. The changing pH of rain had severe effects on the

vegetation and soil. Desulfurization of fossil fuels and the emitted flue gas improved the situation

significantly and the SO2 pollution is nowadays a minor issue.

Reducing the fuel consumption and optimizing the engines caused, as a consequence, higher

combustion temperatures. Together with an increased oxygen content, not only the fuel gets

oxidized but also the N2 as well. Subsequently, NOx are produced as well and an additional

catalyst is required to limit its release into the ambient air. Compared to the emission of SO2,

NOx causes less visible problems in the environment, but they are an important precursor for

particulate matter and are supposed to cause respiratory diseases [8].

Although measuring and monitoring the ambient air quality is a global issue, it is regulated in

local laws. In the European Union, the Directive 2008/50/EC of the European Parliament and of

the Council (”Ambient Air Quality and Cleaner Air for Europe”) [9] has to be implemented by

each member state. It regulates, for example, the sampling points, the reporting, the data quality

objectives and, most important, the limit values to ensure the protection of human health. The

maximum allowed concentrations of the pollutants, averaging periods and tolerated number of

exceedances are listed in Table 1.1.

Similar to this directive in the EU, the Clean Air Act of 1963 is the pendant in the USA, the

National Clean Air Program, 2019 in India and the Air Pollution Prevention and Control Law

(2000) is applied in China. Although individual numbers can differ, many of them are based on

the Air Quality Guidelines, released by the World Health Organization [10].

1.1. Reference Methods Used in Ambient Air

Monitoring

To guarantee Europe-wide comparable results, the directive defines reference methods for the

ambient monitoring as well. They are European Standards and each pollutant has to be quantified

with an optimized measurement technique, as listed in Table 1.2. The methods for gaseous

pollutants, like CO, NOx, O3 and SO2, are of special interest and are discussed further below.

2
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1.1. Reference Methods Used in Ambient Air Monitoring

Pollutant Limit Value Averaging Period Not to be exceeded more than

SO2 350 µg m−3 One hour ... 24 times a calendar year

125 µg m−3 One day ... 3 times a calendar year

NO2 200 µg m−3 One hour ... 18 times a calendar year

40 µg m−3 One calendar year

Benzene 5 µg m−3 One calendar year

CO 10 mg m−3 Maximum daily eight

hour mean

Pb 0.5 µg m−3 One calendar year

PM10 50 µg m−3 One day ... 35 times a calendar year

40 µg m−3 One year

Table 1.1.: Limit values for pollutants in the Directive 2008/50/EC, Annex XI

Pollutant European Standard Analytical method

SO2 EN 14212:2012 Ultraviolet fluorescence

NO and NO2 EN 14211:2012 Chemiluminescence

Pb EN 14902:2005 Atomic absorption spectrometry, mass

spectrometry

PM10 EN 12341:2014 Gravimetric

PM2.5 EN 12341:2014 Gravimetric

Benzene EN 14662:2005 Gas chromatography

CO EN 14626:2012 Non-dispersive infrared spectroscopy

O3 EN 14625:2012 Ultraviolet photometry

Table 1.2.: Reference methods listed in the Directive 2008/50/EC, Annex VI (latest consolidated version:

18/09/2015).
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1. The Motivation for Ambient Air Monitoring

Quantifying NO and NO2

The quantification of NO and NO2 in the ambient air is specified in the European Standard

EN 14211:2012 [11] and is based on chemiluminescence, caused by the chemical reaction of NO

and O3. The ambient air passes a particle filter and enters a reaction chamber where O3 is added.

The O3 is produced in a separate reactor either by ultraviolet radiation or by a high-voltage

electric discharge and can oxidize the NO according the following reactions:

NO + O3 −−→ NO2
∗ + O2 (1.1)

NO2
∗ −−→ NO2 + hν (1.2)

The emitted photon (hν) is detected with a photo multiplier or a photodiode and the output

signal is direct proportional to the NO concentration. To avoid additional pollution by releasing

excessive O3, a filter (e.g. activated carbon) is installed between the reaction chamber and the

sampling pump.

The NO2 can be quantified with the same technique but requires an additional processing step. A

converter is installed in the sample stream before the reaction chamber and reduces the NO2 to

NO, according:

NO2
converter−−−−−→ NO (1.3)

Typically, these converters are either heated furnaces made out of molybdenum, copper or

stainless steel, or use photolysis to compose the NO2. The additionally produced NO is then

measured together with the already present NO and the concentration is proportional to the

difference of the signals measured with and without the converter.

Measuring SO2 in the Ambient Air

The reference method for quantifying SO2 in the ambient air is found in the European Standard

EN 14212:2012 [12] and uses ultraviolet fluorescence to quantify the analyte. Particles and

interfering substances (e.g. aromatic hydrocarbons) are removed from the sample stream with

appropriate filters and the gas to be analysed is transported into the measurement cell. Light from

an UV lamp passes an optical filter and is absorbed by the SO2 molecules in the gas cell. After a

certain lifetime, the excited molecules relax again and emit a photon at longer wavelength:

SO2 + hν (200 − 220 nm) −−→ SO2
∗ (1.4)

SO2
∗ −−→ SO2 + hν (240 − 400 nm) (1.5)

The fluorescence is measured with a photomultiplier and an additional detector can be used to

compensate for intensity fluctuations of the UV lamp.
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1.2. Possibilities for New Air Quality Measurement Systems

Quantification of CO

Another important parameter for evaluating the ambient air quality is the CO concentration. The

reference method uses non-dispersive infrared spectroscopy and it is described in the European

Standard EN 14626:2012 [13]. It relies on the wavelength dependent absorption of infrared

radiation by diatomic hetero-atomic molecules and three different optical designs are suggested.

They all have in common to suppress the cross-sensitivity with other gases such as H2O, CO2,

N2O and hydrocarbons.

Measuring O3

According the European Union, O3 has to be measured with an optical method and the spec-

ifications can be found in the European Standard EN 14625:2012 [14]. Here, UV light with

253.7 nm from a mercury discharge lamp passes an absorption cell and the attenuation caused by

the presence of the analyte is detected with a photomultiplier detector or a photodiode.

1.2. Possibilities for New Air Quality Measurement

Systems

The reference methods, that are recommended by the EU, are mechanically robust, easy to repair

and ensure a high selectivity to other substances that occur in the ambient air. As neither the

directive nor the European Standards define maximum mechanical dimensions of such equipment,

many commercial sensors are designed to fit in 19” racks (48 cm width) for easier installation.

Subsequently, device manufacturer can optimize their hardware to fulfill the previously listed

requirements and are not required to miniaturize the dimensions of the hardware.

So far, equipment has been installed in dedicated measurement stations like 20ft-shipping

containers, small trucks/transporters or in dedicated buildings. They are equipped with air

conditioning, a calibration module and a computer system for data reporting and remote control.

Considering the ongoing trend to investigate the air pollution and the emission of greenhouse

gases in more detail, the number of measurement stations will increase and could benefit from

smaller and cheaper hardware.

The regulation to use non-reference methods is given by the section B of the Annex VI of the

directive 2008/50/EC. It says that a new method must produce results that are equivalent to the

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

1. The Motivation for Ambient Air Monitoring

reference methods and the Commission may require a report on the demonstration of equivalence.

This means that the device performance should achieve similar detection limits and robustness to

other substances in the ambient air.

With the possibility to develop hardware on other analytical techniques, one can identify two

chances to optimize the costs:

• Employ cheaper sensors.

• Combine and simplify the hardware.

Sensors based on metal oxides are typical low cost devices and they are often combined to

detect and quantify numerous substances. Different manufacturers are on the market and their

cross-sensitivity depends on the individual metal oxides and their surface modifications [15–19].

Due to their low price, the small package and low power consumption, they are often combined

with a data communication module and build a compact measurement node [20–31].

Although their small mechanical dimensions and the low price allow a dense monitoring network,

these sensors are not perfectly suited for official measurements as they still show a significant

cross sensitivity to other substances and do not comply with the air quality directive [32, 33].

Nevertheless, they can be used to identify general trends and fit perfectly in the topics Internet of

Things and Citizen Science.

A more expensive, but more precise and robust technique, is infrared spectroscopy with laser

sources. It allows to quantify gaseous, heteroatomic molecules with comparable detection

limits as the reference methods and is subsequently a good candidate for being an equivalent

measurement method according the directive 2008/50/EC. Selecting the correct wavelength and

reducing the pressure in the measurement cell makes interference-free measurements possible

and one can even quantify multiple analytes with the same equipment by simply adding an

additional laser source.

Within this thesis, the basics of ro-vibrational spectroscopy and the applied laser-based measure-

ment techniques will be discussed. The implementation of these concepts is shown in a prototype

that is capable to quantify the pollutants CO, NO, NO2 and SO2 and the green house gas N2O.

The requirements of the individual hardware components will be discussed and a fully assembled

prototype will be presented. Its performance and applicability for ambient air measurements will

be evaluated and the results of two measurement campaigns in Szombathely and Vienna will be

shown.
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1.2. Possibilities for New Air Quality Measurement Systems

Figure 1.1.: Drawing of the optics rack of the prototype developed within this thesis.
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2. Infrared Spectroscopy as an

Alternative to Quantify Gases

A general view on science and technology reveals that many research fields, from astronomy,

physics, chemistry and even medicine, rely nowadays on the interactions between matter and

electromagnetic waves/photons. Investigating and having knowledge on how molecules, atoms

and other particles interact with these waves allows, for example, to analyze the atmosphere

of exoplanets [34–36], to observe chemical reactions in the femto-second-range [37, 38], or

detect cancer [39, 40]. While these applications require an interaction between the wave and

matter, other technologies, such as telecommunication [41–46] or certain physical experiments

[47–49], try to avoid them to maximize the distance between repeaters or to minimize other

signal disturbances.

It was Maxwell, who described the electromagnetic waves mathematically in 1865 [50], and

these formulas belong to the most important ones in science. Originally, they consisted of twenty

equations which have later been reduced to a group of four by Heaviside, Gibbs and Hertz. This

set is nowadays known as the ”Maxwell’s equations” [51] and one can derive from these, in

short, that electromagnetic waves consists of an electric and a magnetic field which oscillate and

are also synchronized.

In practical terms for developing scientific equipment, the most important property of such an

electromagnetic wave is the wavelength. As it travels through space, the wavelength is the spatial

period of the wave and it defines the interaction with matter. In numbers, this practical range is

∼ 15 orders of magnitude. Depending on the application and field of research, the wavelength is

often expressed in other units, such as the frequency (Hz), energy (eV) or wavenumbers (cm−1).

The conversion is described with the Einstein-Planck relation:

E = hν = hcν̃ =
hc

λ
(2.1)
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

whereas E is the energy of the wave/photon, h the Planck constant, c the speed of light, ν the

frequency, ν̃ the wavenumber and λ the wavelength of the wave. This relation is visualized in

Figure 2.1 whereas the different spectral ranges are labeled.

300E 30E 3E 300P 30P 3P 300T 30T 3T 300G 30G 3G 300M 30M 3M 300k 30k 3k
Frequency (Hz)

1M 124k 12k 1k 124 12 1 124m 12m 1m 124µ 12µ 1µ 124n 12n 1n 124p 12p
Energy (eV)

1E10 1E9 1E8 1E7 1E6 1E5 10000 1000 100 10 1 0.1 0.01 1E-3 1E-4 1E-5 1E-6 1E-7
Wavenumbers (cm 1)

1p 10p 100p 1n 10n 100n 1µ 10µ 100µ 1m 10m 100m 1 10 100 1k 10k 100k
Wavelength (m)

-Ray X-Ray UV Infrared -Wave Radio Wave

26316 12820 3333 2000 1000 400 200 100 40 20 10
Wavenumbers (cm 1)

380n 780n 3µ 5µ 10µ 25µ 50µ 100µ 250µ 500µ 1m
Wavelength (m)

Visible
(VIS)

Near-Infrared
(NIR)

Mid-Infrared
(MIR)

Far-Infrared
(FIR / THz)

Figure 2.1.: An overview of the electromagnetic spectrum and different scales to express the energy of the resulting

wave/photon. The labeled sections correspond to the type of interaction between an electromagnetic

wave and atoms/molecules [52].

The individual ranges have different effects on atoms and molecules and, subsequently, other

applications. Radio waves, for example, are mainly used for telecommunication, and require

antennas to detect and emit them. In contrast, microwaves have a shorter wavelength which

allows significant higher data rates. They already have sufficient energy to induce rotation in

molecules with an electric dipole and can be used for heating. The following frequency region is

the infrared and three important sub-ranges can be identified:

• The far-infrared is defined as the range between 50 µm and 1 mm, according ISO 20473

[52], and is also known as THz region. The electromagnetic waves can cause the rotation

of molecules or lattice vibrations.

• The mid-infrared lies between 50 µm and 3 µm. The fundamental vibration modes of

molecular bonds and rotational-vibrational transitions are within this range and it can be

seen as the most important one in infrared spectroscopy.

• The near-infrared, which closes the gap to the visible, spans from 3000 to 780 nm and

excites overtones of vibrations.

The next higher energy range is the visible. Its frequency is high enough to excite electronic

states in atoms and molecules and it corresponds to the human visual capacity. For the sake of

10
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2.1. Ro-Vibrational Spectroscopy of Gases

completeness, it is followed by the three ionizing radiation types ultraviolet, x-ray and γ-ray.

Their energies are already sufficient high to remove electrons from the atomic shell which can

cause severe damage to organic tissue at high doses.

2.1. Ro-Vibrational Spectroscopy of Gases

Quantifying the gaseous pollutants in the ambient air requires a technique that allows to measure

molecule-specific properties. A reliable way is to probe the gas-sample with electromagnetic

waves in the infrared and microwave regions. The mid-IR is perfectly suited as it can interact

with the covalent bonds of molecules. Radiation is attenuated if the wavelength corresponds

to the energy of certain molecular rotation or vibration. The main properties - the geometry,

their distance, masses, charges and the forces between the involved atoms - define at which

wavelength absorption can occur and where the radiation is transmitted. The basic concepts and

their mathematical description for small molecules is summed up in the following subsections

and is derived from literature [53–58].

2.1.1. Rotation of Diatomic Molecules

Heteronuclear diatomic molecules, such es CO and NO, show a dipole moment which is caused

by the different particle charges (electrons, protons) of the individual atoms. In the case of CO,

the carbon atom has a positive net charge, while the oxygen atom is negatively charged. This

electrical dipole ~µ is the sum of each charge qi multiplied with its location in the coordinate

system (~ri):

~µ =
∑

i

qi~ri (2.2)

If the condition ~µ 6= 0 is fulfilled, electromagnetic waves can interact with the molecule. For

energies in the far infrared and micrometer range, the interaction will cause rotation of the

molecule.

In classical mechanics, as shown in Figure 2.2, one would calculate the moment of inertia I for

this rotation according the equation:

I =
∑

i

mir
2
i = µr2

e , with µ =
m1m2

m1 +m2
and re = r1 + r2. (2.3)
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

m1 m2

r2r1

center of mass

axis of rotation

Figure 2.2.: Visualization of two different masses (m1, m2) rotating at constant distance (re = r1 + r2).

It is possible to describe the two-body problem of the masses m1,m2 with a single (reduced)

mass µ rotating at the distance re. The corresponding angular momentum L is calculated by

multiplying the moment of inertia I with the angular frequency ωrot. Moreover, the rotational

energy is calculated according:

Erot =
1

2
Iω2

rot. (2.4)

In quantum mechanics, however, the allowed values and directions for the angular momentum

are quantized:

|Iωrot
| = h

2π

√

J(J + 1) and J = 0, 1, 2, 3, ... (2.5)

The quantum number J describes the total angular momentum and its values are integers. Similar

to classical mechanics, the rotational energy is:

Erot =
1

2
Iω2

rot = J(J + 1)
h2

8π2I
= EJ (2.6)

By expressing the energy in units of cm−1 and introducing the rotational constantB = h/(8π2Ic),

one can simplify the equation:

F (J) = BJ(J + 1) (2.7)

So far, the only limitation is given by the quantized angular momentum. By introducing the

Schrödinger equation to describe the phenomena of absorption/emission as transition probability,

one yields another selection rule for rotational transitions:

∆J = Jfinal − Jinitial = ±1 (2.8)

The consequence is that the rotational quantum number must change by 1 when a pure rotational

transitions takes place. Still assuming that the molecule behaves like a rigid rotor (RR), this leads

to an evenly spaced absorption spectrum where the individual lines correspond to the quantized

rotational transitions.
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2.1. Ro-Vibrational Spectroscopy of Gases

2.1.2. Vibration of Diatomic Molecules

A basic model for understanding the vibration of a chemical bond is given by the simple harmonic

oscillator (SHO). Here, two atoms are connected with a spring and they oscillate around the

equilibrium distance, as illustrated in Figure 2.3.

m1 m2

rmin∆/2

requilibrium

Figure 2.3.: The simple harmonic oscillator (SHO) consists of two masses that are connected with a spring and

oscillate.

The force F between the atoms depends on the spring constant ks, the distance r and the

equilibrium distance re according:

F = ks(r− re). (2.9)

The corresponding fundamental resonance frequency νvib is a function of the spring constant

and the reduced mass µ:

νvib =
1

2π

√

ks/µ with µ =
m1m2

m1 +m2
(2.10)

For practical reasons, the frequency νvib can be written in wavenumbers, according ωe = νvib/c.

By introducing the vibrational quantum number ν = 0, 1, 2, 3, ..., one can then describe the

energy of a vibrating diatomic molecule with:

G(ν) = ωe(ν + 1/2) (2.11)

2.1.3. Improving the Models

Rotation

The rigid rotor is a very basic idea derived from classical and quantum mechanics but it does

neither compensate the vibrational stretching nor the centrifugal distortion. To take those into

account, the formula F (J) = BJ(J + 1) is extended as follows:

Fν(J) = BνJ(J + 1) −DνJ
2(J + 1)2 (2.12)
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

Here, Bν is the vibrationally dependent rotational constant (indicated with the index ν) and Dν is

the centrifugal distortion constant. They depend on the vibrational quantum number according:

Bν = Be − αe(ν + 1/2) (2.13)

Dν = De + βe(ν + 1/2) (2.14)

Vibration

The presence of anharmonic oscillations in a vibration can be compensated by improving the

primitive model of the SHO with a Taylor series:

G(ν) = ωe(ν + 1/2) − ωexe(ν + 1/2)2

︸ ︷︷ ︸

anharmonicity corr.

+... +H.O.T . (2.15)

The quadratic term is also known as the anharmonicity correction with its corresponding constant

xe. This adjustment has two consequences: First, the energy differences between two energy

levels is no longer constant and it decreases for higher values of ν. Second, the selection rule

for vibrational quantum numbers allows additional values for ∆ν, namely integers ≥ 2. This

means that not only fundamental vibrations can be excited, but overtones as well. However, their

transition probabilities are ten to hundred times smaller and the required energies lie in the NIR

range.

Instead of describing the potential energy with a quadratic function, it is recommended to replace

it with the Morse function:

U = Deq

[

1 − e−α(r−re)
]2

(2.16)

The potential energy U depends on the bond-dissociation energy Deq, the displacement r− re

from the equilibrium distance re between the atoms and the constant α. The improved model

describes the propulsion of the atoms at lower distances significantly better and allows the

dissociation of the bond (Figure 2.4).

2.1.4. Combining Rotation and Vibration

So far, the concepts of rotation and vibration have been discussed separately. However, these

two models have to be combined to understand the absorption spectra of molecules and the

simplest model can be derived from the Born-Oppenheimer approximation. Assuming, that both

14
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2.1. Ro-Vibrational Spectroscopy of Gases

0 re
Internuclear Separation (a.u.)

Po
te

nt
ia

l E
ne

rg
y 

(a
.u

.)

Deq

Simple Harmonic Oscillator
Morse Potential

Figure 2.4.: Illustration of the potential energy of an SHO (without anharmonicity correction) and the more precise

Morse potential (with the correction term). One can clearly see the constant (SHO) and decreasing

differences (Morse potential) of the energy levels, caused by the additional correction term.

phenomena are independent and the total energy is the sum of the energy for the rigid rotor and

the SHO, allows to denote the following equation:

T (ν, J) = ERR +ESHO = F (J) +G(ν) = BJ(J + 1) + ωe(ν + 1/2) (2.17)

Together with the selection rules for ∆ν and ∆J , one can calculate the rovibrational transitions in

a diatomic heteronuclear molecule. Figure 2.5a shows the Morse potential with the rovibrational

energy levels in the ground state and an excited electronic state. The possible transitions for

(ν = 0 → ν = 1, Jinitial = 0, 1, ..., 5) of the ground state are illustrated in Figure 2.5b. The

vectors are grouped by the value of ∆J and the forbidden transition ∆J = 0 is plotted too, but

indicated by the dashed lines.

A more precise way to describe the rovibrational energy levels is to compensate for the anhar-

monicity and the non-rigid rotation:

T (ν, J) = G(ν) + F (ν, J) (2.18)

= ωe(ν + 1/2)
︸ ︷︷ ︸

SHO

−ωexe(ν + 1/2)2

︸ ︷︷ ︸

anharmon. corr.

+BνJ(J + 1)
︸ ︷︷ ︸

RR(ν)

−DνJ
2(J + 1)2

︸ ︷︷ ︸

centrifugal dist.

(2.19)

An exemplary section of the rovibrational spectrum of CO is shown in Figure 2.6 where the

line strengths of the absorption lines of the fundamental vibration ∆ν = 1 are plotted. One can

clearly identify the two regions of the transitions with ∆J = −1 and ∆J = +1. Moreover, the

space between individual lines is increasing towards smaller wavenumbers, which is caused by

the non-rigid rotation of the molecule.
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

= 0

= 1

= 2

= 3

Ground State

= 0

= 1

= 2

= 3

En
er

gy

Internuclear Separation (r)

Excited Electronic State
(a)

= 0 J = 0
J = 1
J = 2

J = 3

J = 4

J = 5

= 1 J = 0
J = 1
J = 2

J = 3

J = 4

J = 5

J = 1 J = 0 J = + 1
P-Branch Q-Branch R-Branch

(b)

Figure 2.5.: (a): Illustration of the Morse potential and the corresponding ro-vibrational energy levels in the ground

and excited electronic states. (b): For a diatomic molecule, such as CO, only transitions with j = ±1

are allowed. The forbidden Q-Branch is indicated with dashed arrows.
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Figure 2.6.: Visualization of the characteristic P and R branch of the fundamental vibration of CO. The numerous

absorption lines are caused by the rotational transitions of the molecule. The corresponding values are

derived from the database HITRAN2016 [59, 60].
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2.1. Ro-Vibrational Spectroscopy of Gases

2.1.5. Polyatomic Molecules

The concept to describe rovibrational spectra of polyatomic molecules is similar to the diatomic

model. As the number of atoms, and subsequently the complexity of the system increases, it is

necessary to adjust or extend the selection rules for most molecules. In short, the consequence is

that additional vibrations are allowed and the space between rotational energy levels decreases.

An example for these vibrations is illustrated in Figure 2.7 where the different vibrations for

CO2 are shown. While the asymmetric stretching and the symmetric bending are IR active, the

electric dipole moment is ~µ = 0 for the symmetric stretching and therefore not present in IR

spectra.

OCO

OCO

OCO

OCO

(a) ν1 (b) ν2 (c) ν3

Figure 2.7.: Visualization of the vibrational modes of CO2. (a): symmetric stretching mode that is not IR-active

(ν1 = 1330 cm−1), (b): the degenerate symmetric bending (ν2 = 667 cm−1) and (c): the asymmetric

stretching (ν3 = 2349 cm−1), adopted from [53].

Under certain conditions, the Q branch of a vibration can also be present. This leads, together

with the narrow line spacing, to a more complex infrared spectrum which is also illustrated in

Figure 2.8. It shows the vibration ν3 of the molecule CH3Cl (stretching of C – Cl) and one can

clearly identify the additional lines between the P and R branches. [54, 57]
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Figure 2.8.: (a): Visualization of the rovibrational lines of CH3Cl of ν3. The grey area indicates the Q branch which

is plotted in detail in (b).
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

2.1.6. Linewidth Broadening

The theoretical discussion of rovibrational spectra lets assume that absorption occurs only if

the electromagnetic wave has exact the required energy to excite a certain transition. In reality,

however, this is not the case and three important phenomena are responsible that IR spectra of

gases do not consist of perfect lines and are rather be described with line functions.

Natural Broadening

The first broadening effect arises from the Heisenberg Uncertainty Principle. It allows to relate

the uncertainty in energy (∆Ei) of a specific state i with its lifetime τi, according:

∆Eiτi ≥ h

2π
(2.20)

The consequence is, that the energy difference, which corresponds to the transition, is also not

exact and therefore broadened. The Full Width at Half Maximum (FWHM) of natural broadening

can be calculated from the lifetimes of the two states τ ′ and τ ′′:

∆νN =
1

2π

(
1

τ ′
+

1

τ ′′

)

(2.21)

Assuming that the atomic system behaves like a damped oscillator, one can use the Lorentzian

function, centered at ν0, to describe the resulting line shape ΦL(ν):

ΦL(ν) =
1

2π

∆ν

(ν − ν0)2 + (∆ν
2
)2

(2.22)

Collision Broadening

While the natural broadening can be explained with a single molecule, this effect is caused

by the collision with other molecules. Energy can be transferred between the involved species,

reducing the lifetime of a specific energy state and leads, subsequently, to a broadened absorption

line. From the optical collision diameters σA and σB of two gases, the temperature T and the

Boltzmann constant k , one can derive the number of collisions (ZAB) per second for a single

molecule B with all (nA) molecules of A, according:

ZAB = nAπσABc with σAB =
1

2
(σA + σB) and c =

(

8kT

πµAB

)1/2

(2.23)
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2.1. Ro-Vibrational Spectroscopy of Gases

For a gas mixture with more than two components, one can introduce the ideal gas law P = nkT

with the mole fraction XA and build the sum of all components:

ZB = P
∑

A

XAπσ
2
AB

(

8

πµABkT

)1/2

(2.24)

From the relation ∆ν = 1
2π (1/τ ′ + 1/τ ′′) and ZB = 1/τ ′ = 1/τ ′′, the FWHM caused by the

collisional broadening is written as:

∆νC = ZB/π = P
∑

A

XA2γAB with 2γAB = 1.013 × 106σ2
AB

(

8

πµABkT

)1/2

(2.25)

Here, 2γAB is the broadening coefficient of the gas B interacting with another gas A. Depending

on the application, this complex system can be simplified and only the collisions of the species

B itself (also known as self-broadening) and the dilutant (e.g. N2) are taken into account. To

compensate the temperature, one can extrapolate the value of γ from a reference value (γT0
at

temperature T0), according the following equation:

2γ(T ) = 2γT0

(
T0

T

)n

(2.26)

Typical values for 2γ are ≈0.1 cm−1 at room temperature and 1 atm, and n = 0.5 can be used

for temperature compensation.

Doppler Broadening

This type of line broadening arises when atoms or molecules have a velocity component in the

same direction as the electromagnetic wave. It is caused by the Doppler effect and shifts the

frequency where absorption will occur to either higher or lower wavelength. The velocities of

molecules in a gas are described with the Maxwell velocity distribution and the resulting line

shape ΦD(ν) can be written with a Gaussian function:

ΦG(ν) =
2

∆νD

(

ln 2

π

)1/2

exp

[

−4 ln 2

(
ν − ν0

∆νD

)2
]

(2.27)

Again, the curve is centered at ν0 and the FWHM ∆νD follows the equation:

∆νD = ν0

(

8kT ln 2

mc2

)1/2

= ν0(7.1623 × 10−7)
(
T

M

)1/2

(2.28)

whereas M is the molar mass, in the unit g/mol.
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

Voigt Profile - Combination of Doppler and Collisional Broadening

In many cases it is sufficient to approximate the line shape of an absorption line with either a

Lorentzian or a Gaussian line shape, depending which FWHM is dominating. For the situation

that the Doppler and the collisional broadening contribute similar (∆νD ∼ ∆νC), one can use

the convolution of the Lorentz and the Gaussian function, that is also known as Voigt profile:

ΦV (ν) = ΦD(ν) ∗ ΦC(ν) =
∫ +∞

−∞

ΦD(u)ΦC(ν − u)du (2.29)

The basic idea behind the Voigt profile is that each velocity, defined by the Gaussian function,

has its own Lorentz line shape, indicated with the integration over the shift from the line center u.

With the parameters a, w and y, according

a =

√
ln2∆νC

∆νD
, w =

2
√
ln2(ν − ν0)

∆νD
, y =

2u
√
ln2

∆νD
(2.30)

one can mathematically describe the Voigt profile with the equation

ΦV (ν) = ΦD(ν0)
a

π

∫ +∞

−∞

exp(−y2)dy

a2 + (w− y)2
= ΦD(ν0)V (a,w) (2.31)

whereas V (a,w) is the famous Voigt function.
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Figure 2.9.: (a): Simulation of an absorption line of CO at different pressures (c =1 ppmv, L =76 m, T =23 ◦C and

Lorentzian line shape). (b): Comparison of the Lorentzian and Gaussian line shape with FWHM = 1.

2.2. Fourier Transform Infrared Spesctroscopy

Investigating the composition of an unknown sample (gaseous, liquid or solid) with an infrared

based technique requires equipment that is capable to measure the wavelength dependent ab-

sorption with sufficient precision. While spectrometers for the UV, VIS and NIR region employ
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2.2. Fourier Transform Infrared Spesctroscopy

an optical grating to resolve the spectral components of a broadband light source, most in-

frared spectrometers are based on an interferometer. Typically, they use a scanning Michelson

interferometer, as visualized in Figure 2.10a.
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Figure 2.10.: Illustration of a Michelson Interferometer (a). The interferogram (b) is recorded by measuring the de-

tector intensity at different mirror positions. Applying the Fourier Transformation on the interferogram

leads to the single channel spectrum, as shown in (c).

Instead of measuring the intensity for each wavelength consecutively, Fourier Transform Infrared

(FTIR) spectrometers detect all optical frequencies simultaneously and reconstruct the desired

spectrum. To do so, the blackbody radiation of a broadband IR source is collimated and a beam

splitter diverts it into two beams with same intensity. One beam is reflected at a fixed, the other

one at a movable mirror. Both waves are combined again at the beam splitter, redirected to

the sample to be analyzed and finally focused towards an IR detector, like a liquid N2 cooled

Mercury-Cadmium-Telluride (MCT) detector.

The principle of the Michelson interferometer is explained best with a collimated, monochromatic

light source with the wavelength λ: one beam from the beam splitter travels to the fixed mirror,

gets reflected and can interfere with the second beam. If the path length to the second mirror is

identical to the first one, the phase difference will be 0° and the beams interfere constructively and

cause maximum signal at the detector. The same intensity will be detected if the mirror position

is changed by λ/2, as the phase difference is 360° = 0°. Destructive interference will occur if

the recombining waves show a phase shift of 180° and result in zero intensity at the detector. In

reality, the light source emits a continuous spectrum, and constructive/destructive interference

will occur simultaneously. Measuring the detector signal at different mirror positions results in

an interferogram that contains the spectral information. Applying the Fourier Transformation on
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

this signal leads to the infrared spectrum, as shown in Figure 2.10b and c . It should be noted

here, that the maximum optical path difference dMOPD of the two interferometer arms is often

the resolution limiting parameter of an FTIR spectrometer [61]. The relation is derived from the

finite length of the interferogram and, if other optical effects like the aperture, are ignored, the

spectral resolution ∆ν̃FWHM is calculated according:

∆ν̃FWHM =
1.207

2dMOPD

(2.32)

Although such an interferometer based spectrometer is significant more complex than a simple

grating or prism based one, it has several advantages too [62]. First of all, the signal to noise ratio

(SNR) is better than in dispersive spectrometers, which analyze one wavelength after another

(or pixel by pixel). The Michelson interferometer, in contrast, detects the information of all

wavelengths simultaneously but encoded in the interferogram. This effect is also known as

Fellgett advantage [63].

The Jacquinot advantage [64] arises from the fact that Michelson interferometers no longer

require an input slit before the monochromator. Subsequently, the energy throughput is higher

and improves the SNR.

The third one, also known as Connes advantage [65], is traced back to installing an additional

laser in the interferometer. Usually, this is a HeNe laser and acts as the wavelength reference for

recording the interferogram. Originally, the zero crossings of this reference interferogram were

used to trigger the data acquisition of the IR detector signal. With improved analog to digital

converters (ADCs), both, the photodiode for the HeNe laser and the IR detector, are digitized

simultaneously at much higher sampling rate and allow precise extrapolation for the correct

retardation values.

The FTIR spectrometer is the workhorse in IR spectroscopy and can be found in various

applications such as process analytics, quality control or research [66–69]. Depending on the

analyte to be measured and its state, one has to find a trade-off between its price, robustness,

physical dimensions and the spectral resolution. Liquids or solids, for example, show rather

broad absorption lines in the mid-IR and a spectral resolution of 1-4 cm−1 is often sufficient.

Subsequently, a physically smaller interferometer can be chosen and installed in a compact

or extra-rugged case. If, in contrast, the desired application is to investigate and measure the

ro-vibrational absorption lines of gases, a resolution ≤0.1 cm−1 is required. To achieve this,

the maximum optical path difference of the interferometer must be increased and the quality

and precision of the other optical elements have to support this as well. Due to the physical
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2.3. Semiconductor Lasers for the Mid Infrared

dimensions, state-of-the-art FTIR spectrometers are typically installed in research facilities and

barely found in industrial environments.

2.3. Semiconductor Lasers for the Mid Infrared

The classical concept to combine a thermal/broadband light source, such as a tungsten lamp or a

Globar, and a spectrometer/interferometer is a very flexible one but it comes with disadvantages

like limited spectral resolution, insufficient signal to noise ratio or mechanically complex designs.

If the measurement equipment is intended to be used for a specific and defined application, one

can try to optimize the setup by replacing the light source and simplifying the optical components.

One could profit from a reduced maintenance time as less mechanical parts are required, a higher

precision could be achieved, and compact dimensions would also help to optimize the hardware

costs.

The development of innovative light sources during the last decades provides the technology

to develop new instruments for process analytics and environmental monitoring. The most

important one is the diode laser and the first devices were published in 1962 [70–72]. They

emitted in the NIR and VIS and were made out of GaAs-diodes. Compared to already developed

gas (HeNe) and solid state lasers (ruby), the photons for pumping the laser are generated in

the gain element and a flashlamp for pumping the laser is no longer required. An electrical

current allows the electrons and holes in the diode to recombine and the energy of the photon

corresponds to the band gap. Subsequently, the emitted wavelength can be slightly tuned by

varying the semiconductor material.

Very soon after the first demonstration of electrically pumped semiconductor laser diodes,

infrared lasers based on InAs and InSb [73, 74] have been presented. The devices emitted at

3.1 µm and 5.2 µm, required cooling with liquid helium and a pump current of several amperes.

One year later, in 1964, the wavelength region was extended to 8.5 µm by switching to the

material systems PbTe and PbSe. In the following years, this laser type, also known as lead-salt

laser, emerged to useful light sources in infrared spectroscopy and has also been implemented

in numerous gas sensors [75–80]. Although room temperature operation at reasonable optical

output powers[81] and continuous wave (cw) mode has been achieved [82], they have been

superseded by a significantly more flexible laser technology - the Quantum Cascade Laser.
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

2.3.1. Quantum Cascade Lasers

A different approach for building infrared lasers was proposed by Kazarinov and Suris in 1971

[83] and is nowadays known as Quantum Cascade Laser (QCL). As the band gaps of typical

semiconductor materials is higher than the energy of infrared photons, the idea was to modify the

conduction band. This should be realized with alternating nm-thick layers where the electrons

could tunnel through the created barriers and, as the following quantum well is of lower energy,

a photon would be emitted (active region). A basic illustration of modified conduction band is

shown in Figure 2.11b and the calculated energy levels of a real QCL can be seen in Figure 2.12.

Generating the photon with the correct wavelength/energy is one challenge in developing such

a laser. Another requirement is to achieve the population inversion, which occurs when more

members of a system are in a higher/exited state than members in the lower energy state. In

the case of QCLs, this means that more electrons must be in the upper lasing level than in the

lower lasing level. To solve this, the active region is followed by a miniband which depopulates

the lower lasing level. In the same way, this zone fills the upper lasing level of the following

active region and it is therefore known as injector. Another unique property results from the

fact that the photons are produced in the conduction band: As the electrons do not recombine

with the corresponding holes, the charge carriers can be reused and emit multiple photons, by

repeating the growth sequence of the injector and the active region multiple times. Subsequently,

the optical output is increased and enables a higher efficiency.

It took more than 20 years, until the first working Quantum Cascade Laser (QCL) was demon-

strated in 1994 [84] and it was achieved by growing alternating layers of InGaAs/InAlAs on an

InP wafer. Like the first NIR and lead salt laser, it had to be operated in pulsed mode and required

liquid N2 for cooling. Since then, numerous improvements, such as cw operation [85, 86], or extra

wide gain ranges have been presented [87–89]. It should be noted here, that growing the quantum

cascade on a suitable substrate wafer is still a challenge. Two processes, namely the Molecular

Beam Epitaxy (MBE) [90, 91] and the Metal Organic Vapor Phase Deposition (MOVPE) [92,

93], are suited to deposit the nm-thick layers with the required precision. Additional cladding

layers, encapsulating the typically 25-30 periods of the active region, and growing calibration

samples in the reaction chamber decreases the possible output of the wafer production. Further

improvements in the field of QCLs are the topics of book chapters and extended review papers,

such as [88, 94–101].
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2.3. Semiconductor Lasers for the Mid Infrared
E
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Figure 2.11.: Comparison of three different semiconductor lasers: conventional diode lasers (a) produce photons in

the VIS and NIR by recombining electrons with holes. Quantum Cascade Lasers (b), in contrast, emit

photons in the mid-IR by modifying the conduction band. Interband Cascade Lasers (c) combine both

techniques and allow a lower threshold current.

2.3.2. Resonator and Wavelength Selection

Producing photons in the mid-IR and achieving population inversion are two requirements for a

working QCL. Another one is amplifying the light in a cavity. In the case of a gas laser, such as a

HeNe-laser, the dimensions of the resonator are clearly defined by the gas cell and the highly

reflective mirrors. Semiconductor lasers require such a confinement as well and this is typically

realized by etching a waveguide structure into the wafer. Different geometries are available, and

most QCLs are based on linear ridge-type waveguides.

Depending on the spectral requirements and the later application of the QCL, additional process-

ing steps or mechanical parts can be used to meet the specifications. These modifications have a

significant impact on the spectral emission of the laser and are discussed in detail.

2.3.2.1. Fabry-Pérot Cavity

Manufacturing a Fabry-Pérot (FP) QCL from a suitable substrate wafer requires etching of a

ridge waveguide, depositing an insulation layer, such as Si3N4, and evaporating/sputtering a

contact layer (e.g. gold). The front and backside of the ridge can either be cleaved or milled

with Focused-Ion-Bombardment (FIB) [108] and act as highly reflective mirrors. If emission

from only one facet is required, one can deposit a highly-reflective coating on the back, and an

anti-reflective coating on the front side [109–112]. A schematic illustration of an FP-QCL is

shown in Figure 2.13.
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2. Infrared Spectroscopy as an Alternative to Quantify Gases
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Figure 2.12.: Energy levels of a quantum cascade calculated with the software tool ErwinJR [106, 107]. The blue

and green levels are the upper and lower lasing state. The purple curve represents the first level of the

injector (other levels in gray).
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Figure 2.13.: The waveguide of an FP-QCL is achieved by etching the wafer with common semiconductor processes.

The facets at the front and at the back correspond to the highly reflective mirrors in a conventional gas

laser. The red arrow indicates the direction of the laser beam.

Although this laser type is simple to manufacture, it is rather unsuited for developing precise

sensors. Devices emit at several frequencies simultaneously which is caused by the Fabry-Pérot

cavity [113]. It amplifies all wavelengths (λ) that are a fraction (m) of the cavity length (L),

according λ = 2neff/mL. The refractive index of the waveguide has to be considered in the

equation as well, which is typically neff ∼ 3.1. As this property depends on the temperature, the

emitted wavelength range can be adjusted a few wavenumbers by changing the temperature of

the gain chip. They have been successfully integrated in liquid [114–118] and gas phase sensors

[119, 120], but their multi-mode emission makes them rather unsuited for precise ambient air

sensors.
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2.3. Semiconductor Lasers for the Mid Infrared

2.3.2.2. External Cavity

The External-Cavity (EC) design is based on an FP-QCL and employs an external optical grating

to reduce the number of emitted wavelengths, as shown in Figure 2.14. One distinguishes the

Littrow [121, 122] and Littman-Metcalf [123, 124] configuration which have different approaches

to create a feedback to the gain element and to amplify a certain wavelength. Tuning is achieved

by either rotating the grating with a motor (piezo [125], stepper [126], micro-opto-electro-

mechanical systems [127]), alternating its periodicity [128] or adjusting the angle of the feedback

mirror [129]. Mode-hop-free operation and cw emission have been demonstrated as well [130]

and the tunable range has been increased over the years significantly. While the first devices

could cover ≈33 cm−1 [131], a few years later a tuning range ≥430 cm−1 has been achieved [87].

Their application in various research fields has been shown, ranging from the gas phase [126,

132, 133], to sensing liquids [134, 135] up to solid phase measurements [136].

Despite their outstanding properties, EC-QCLs are barely found in gas sensors. Several reasons

can be identifies, such as the limited number of manufacturers, the presence of mechanical

components for the wavelength selection, difficulties in mode-hop stability and the mechanical

dimensions in general.

Mirror
Optical Grating

Lens

(a) (b) (c)

Figure 2.14.: Three typical configurations of an EC-QCL. (a): Littrow, (b): Rear-Littrow, (c): Littman-Metcalf

configuration. The red arrow indicates the beam path.

2.3.2.3. Distributed Feedback Cavity

A different approach to achieve single-mode emission of a QCL is etching the optical grating into

the waveguide. This has been presented for the first time in 1997 [137] and the manufacturing

process is similar to a conventional FP-QCL. The grating, however, can either be etched at the

top (illustrated in Figure 2.15a) or into the side walls [138] of the waveguide or buried within

[139–142]. The desired emitted wavelength must be, of course, within the gain range of the laser
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

material, and the required grating period Λ for a specific wavelength λ is calculated according:

λ = 2neffΛm (2.33)

Again, the effective refractive index neff of the gain material must be taken into account and m

represents the numeric order of the grating.

Commercially available DFB-QCLs typically employ a 1st order grating, causing emission at the

facets of the waveguide. Similar to FP-QCLs, reflection coatings on the front and back allow

to favor an output direction. Another property they share with the simplest type of QCLs is the

wavelength tunability, which is achieved by influencing the refractive index of the waveguide.

One can either change the temperature directly by heating/cooling the device with e.g. a Peltier

cooler, or by modifying the laser current, which heats the gain element through the electrical

resistance. Together with cw operation, compact packaging and devices available over the whole

mid-IR makes them a perfect tool for developing gas sensors.

1st Order DFB Grating
2nd Order DFB Grating

(a) (b)

Figure 2.15.: Most DFB-QCLs are manufactured by etching a 1st order grating into the top layer of the waveguide

and emit at the facets, indicated with the red arrow (a). DFB-QCLs with a 2nd order grating emit

perpendicular to the wafer (b, section view) and the facets of the FP-cavity are no longer required.

DFB-QCLs with a 2nd order grating have also been reported in literature [143]. In contrast, they

emit perpendicular instead of parallel to the wafer. As the facets of the ridge waveguide are

no longer required for light extraction, circular waveguides, as shown in Figure 2.15b, are also

possible [144–149]. They emit at a significantly narrower angle, allow two dimensional arrays

[150] and make, due to the absent facets, wider mode-hop-free operation possible (up to 12 cm−1,

[151, 152]).

2.3.2.4. Other Designs

Closely related to 1st order DFB-QCLs are lasers with Bragg reflectors [153]. Different versions

have been presented, such as a Bragg grating at one end of the waveguide [154], two different
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2.4. Measurement Techniques and Quantification

grating periods with independent electrical contacts (Sampled-Grating Distributed Bragg Re-

flector (SGDBR)-QCL, [155–158]) or deeply etched Bragg reflectors, separated from the actual

waveguide [159].

An even further modification is the digital grating design that is achieved by mixing the period

length of two frequencies. Subsequently, the structure can be applied on the full length of the

waveguide. The individual wavelength is selected by heating a section of the waveguide and

adjusting the refractive index, so that only one wavelength can be emitted [160]. Implementing

this technique with a suitable gain material allows to manufacture a laser device that can be

switched between two different wavelengths, separated up to 300 cm−1, in a single ridge QCL.

Many other waveguide designs and techniques to select a certain wavelength, single mode

emission or higher optical power have been presented [149, 161–167]. They demonstrate the

various possibilities to process QCLs and are building tools for future light sources. From a

technical point of view however, conventional 1st order ridge-type DFB-QCLs and EC-QCLs are

still the ”workhorses” in laser-based IR spectroscopy.

2.4. Measurement Techniques and Quantification

With having the wavelength-selective element defined, the possibilities for measuring the con-

centration of an gaseous analyte should be discussed in detail. Numerous techniques and modifi-

cations thereof have been presented in literature, but the focus here is on robust techniques, that

are fit for purpose and could indeed be integrated in a commercial sensor.

2.4.1. The Beer-Lambert-Bouguer Law

One of the most important or even the equation for optical quantification has been discovered by

Pierre Bouguer, Johann H. Lambert and August Beer. In the 18th century, Bouguer and Lambert

found out that the loss of light intensity is proportional to the initial intensity and the path

length [168]. Almost a century later, in 1852, Beer discovered that the transmittance of a liquid

is constant, if the product of the optical path length and the concentration is constant [169].

Nowadays, the two relations are often written as

Tν =
I(ν)

I0(ν)
= exp(−kνL) = exp(−S(T )ΦνPiL). (2.34)
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

The wavelength dependent transmittance Tν is the fraction of the detected and the initial intensity

(I and I0) and depends on the interaction length L and the spectral absorption coefficient kν

(sometimes also written as α(ν)). It can also be described as a function of the line strength S,

the line shape function Φν and the partial pressure Pi.

Closely related with the transmittance is the absorbance A, according:

Aν = log
1

Tν
= log

I0

I
= ǫνcL (2.35)

Here, the absorbance depends on the molar absorptivity ǫ, the concentration c and, again, on the

interaction length L.

From the technological aspect, it is versatile and applied for all states of matter. To record

an absorption spectrum, a background- and a sample-measurement have to be performed. By

applying the Beer–Lambert–Bouguer law, one can calculate the absorbance for every measured

wavelength, resulting in the spectrum.

2.4.2. Tunable Diode Laser Absorption Spectroscopy

If the analyte to be measured is gaseous, absorbs in the mid-IR and has ro-vibrational absorption

lines with a FWHM of <1 cm−1 under measurement conditions, one can employ a DFB-QCL as

light source and perform Tunable Diode Laser Absorption Spectroscopy (TDLAS). Here, the

emitted wavelength of the laser diode is typically tuned across an absorption feature by either

pulsing the semiconductor or operating it in cw and applying a current ramp. The electric current

induces heating of the gain material and leads to a shift in the emitted wavelength. The laser

beam passes the gas cell and the transmitted intensity during the tuning process is recorded with

a fast-enough detector and data acquisition system, as shown in Figure 2.16.

Applying the Beer-Lambert-Bouguer law to get an absorption spectrum requires usually a

sample and a background spectrum. For gaseous analytes with clearly separated absorption lines

in a non-absorbing matrix (e.g. measuring low concentrations of CO in N2) it is possible to

perform background-free measurements. It requires a stable tuning behavior of the QCL and is

achieved by interpolating the measured signal, as illustrated in Figure 2.17. Depending on the

laser properties and the detector response, it can be sufficient to perform a linear or 2nd order

polynomial fit to interpolate the background signal. This approach is a powerful tool, especially

if it is technically not possible to replace the sample in the laser beam with the non-absorbing

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.4. Measurement Techniques and Quantification

1 Hz Sawtooth

Gas Cell

QCL MCT

Figure 2.16.: Components required for Tunable Diode Laser Absorption Spectroscopy. The spectral tuning of the

QCL is realized by either pulsing it or appying a current ramp on the constant laser current. The

detector signal is recorded with a fast enough data acquisition card or an oscilloscope.
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Figure 2.17.: Simulated detector signal of a laser tuning across three individual absorption lines with Lorentzian line

shape and the absorbances 60 mAU, 100 mAU and 30 mAU. The background spectrum is retrieved

by interpolating across the absorption features and by applying the Beer-Lambert-Bouguer law, the

absorption spectrum can be calculated.

matrix. Prominent examples, where this technique is applied, are open path measurements in the

ambient air [170–176] or inline process monitoring [177, 178].

A major advantage of this technique is the relatively simple access to calibration-free measure-

ments. Considering that the optical path length is known and the target analyte has sufficiently

separated ro-vibrational absorption lines, one can derive its concentration from the well known

line-strength values. As the peak height of the absorption spectrum is mainly influenced by

the pressure and the temperature, these parameters have to be estimated by fitting a Lorentzian

or Voigt function. In addition, the tuning behavior of the QCL must be known and is often

monitored with an etalon and an additional detector.

Another useful feature is the pulsed operation of the QCL with a typical pulse length of several

hundred nanoseconds. Together with a sufficient fast detector and electronics, this allows to

record >100 000 intra-pulse spectra per second. The high data rate enables to investigate either

fast processes or to improve the signal-to-noise ratio by averaging.

However, disadvantages are also associated with this technique. Depending on the application, it

might not be sensitive enough, especially, if extremely small concentrations of a gas have to be
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

measured. Another difficulty are changes in the sample matrix that can influence the algorithm

for simulating the background for the Beer-Lambert-Bouguer law.

2.4.3. Wavelength Modulation Spectroscopy

This technique is closely related to the TDLAS but it is specially optimized to quantify small

optical absorbance. As the signal noise decreases often at higher frequencies, the idea is to shift

the detection process to higher frequencies and demodulate the signal afterwards. Wavelength

Modulation Spectroscopy (WMS) has been introduced to mid-IR spectroscopy in the late 1970s

with lead salt diode lasers [179–186].

The experimental setup is similar to TDLAS, as illustrated in Figure 2.18, and requires an

additional signal source for the modulation and a lock-in amplifier for demodulating the signal.

1 Hz Sawtooth

20 kHz Sine Wave

Gas Cell

QCL MCT

Lock-In Amplifier

Signal

Reference

R

Θ

Figure 2.18.: Illustration of the required components to record a WMS spectrum. The laser is modulated in the

kHz-range and slowly tuned across the absorption feature. The 2f-WMS spectrum is recorded by

demodulating the detectro signal at the 2nd harmonic of the modulation frequency.

The main application of WMS is to retrieve the concentrations from extremely weak signals,

which are caused by ro-vibrational absorption lines. Therefore, a few simplifications are useful

for discussing the signal path [184, 187, 188]. First, the spectral absorbance α(ν) = kνL

should be <0.1. This allows to substitute the Beer-Lambert-Bouguer law and approximate the

transmitted intensity I(ν), with I0 as incident intensity, according:

I(ν) ≃ I0(ν) [1 − α(ν)] . (2.36)

Second, the investigated absorption feature is dominated by pressure broadening and Doppler

broadening can be neglected. Subsequently, the wavelength dependent absorbance α(ν) in

vicinity of the line center ν0 can be described with the Lorentzian line shape:

α(ν) = α(ν0)
1

1 +
[

ν−ν0

∆ν

]2 (2.37)
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2.4. Measurement Techniques and Quantification

In this definition of the Lorentzian line shape, ∆ν is the Half Width Full Maximum (HWHM) of

the absorption line and α(ν0) the spectral absorbance of the feature. Shifting to higher detection

frequency is done by modulating the laser current i0 with a cosine wave of the amplitude k and

the frequency ω (∼10 kHz). The resulting time-dependent laser current is described as:

i(t) = i0 + k cosωt. (2.38)

As the emitted wavelength of the laser is a function of the injected laser current, one can introduce

the modulation depth a and describe the emitted wavelength ν(t) as follows:

ν(t) = ν0 + a cos(ωt). (2.39)

Similar to the Direct Absorption Spectroscopy, WMS requires to tune the emitted wavelength

across the absorption line to be investigated. This is typically done by increasing the laser injection

current periodically (i = i0 + iramp, frequency: ∼1 Hz) and indicated as ν. Subsequently, the

emitted wavelength ν(t) is now:

ν(t) = ν + a cos(ωt). (2.40)

The detected signal I(t) is a periodic even function and can be expanded in a Fourier cosine

series [187, 189]:

I(t) = I0 [1 − α(ν + a cos(ωt))] = I0



1 −
∞∑

k=0

Hk(ν, a) cos(kωt)



 (2.41)

with H0(ν, a) =
1

2π

∫ +π

−π
α(ν + a cos θ)dθ (2.42)

Hk(ν, a) =
1

π

∫ +π

−π
α(ν + a cos θ) cos kθdθ. (2.43)

Here, Hk is the kth order Fourier coefficient, which depends on the modulation depth, the

wavelength and the line shape of the absorption feature. These coefficients have been intensively

studied and calculated for different line shapes functions in literature [184, 187, 188, 190–193]

and enable to use either a lock-in amplifier or an FFT-approach to demodulate the signal and

retrieve a value that is proportional to the concentration of the analyte.

The modulation depth a is a crucial property in WMS as it influences the the shape of the

WMS spectrum and also affects recovered signal intensities. Still assuming that the investigated

absorption feature has a Lorentzian line shape, it is useful to introduce the modulation index

m = a/∆ν [184]. A detailed characterization of the influence of the modulation index on the

line shape was done by Arndt [190]. The main consequence for WMS is, that the maximum

signal for the 1st harmonic is achieved with m = 2 and for the 2nd at m ≈ 2.2. WMS spectra

of different harmonics are plotted in Figure 2.19b and the peak maximum as function of the

modulation index m is shown in Figure 2.19c.
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2. Infrared Spectroscopy as an Alternative to Quantify Gases
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Figure 2.19.: An absorption feature with Lorentzian line shape (a) and the recovered 1f-, 2f- and 3f-WMS spectra

(b). The peak maxima of the WMS spectra depend on the modulation depth and on the order of the

harmonic (c).

2.4.3.1. Lock-In Amplifier

One option to isolate the harmonics of the detector signal is employing a lock-in amplifier [194,

195]. Its underlying principle is the trigonometric identity, which describes the multiplication of

two sine functions:

sin(α) sin(β) =
1

2
cos(α− β) − 1

2
cos(α+ β) (2.44)

The result is the difference of two cosine functions, whereas one is the sum frequency (α+ β)

and the other one is the difference (α− β).

In the case of WMS, the detector signal is multiplied with the laser modulation frequency

(reference signal, fmod). Assuming that the 1st harmonic is the desired one, the output signal

of the multiplication will consist of the difference frequency f = 0 (=DC) and their sum

frequency 2fmod. At this point it should be pointed out, that only the amplitude of the frequency

fmod contributes to the DC component and all other signal components from the detector with

f 6= fmod (also noise), can be filtered with a suitable low-pass filter. Higher harmonics, such

as the 2nd or 3rd, are accessible by multiplying the reference frequency to achieve the desired

harmonic at the input. The filtered signal is also known as X-component (or in-phase component,

I) and contains the desired WMS-signal, if the phase θ between the signal and the reference is

zero.

For the more common case, that electronic components, the laser diode or the detector introduce

phase shifts θ 6= 0, one can extend the signal processing by multiplying the input signal with

a 90° shifted reference. Again, a low-pass filter with identical filter parameters isolates the

DC-component, producing to the Y-component (or quadrature component, Q).
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2.4. Measurement Techniques and Quantification

With this dual-phase or phase-insensitive lock-in amplifier, one can calculate the magnitude R

and the phase shift θ from the X- and Y -component, according:

R =
√

X2 + Y 2 and θ = arctan

(
Y

X

)

(2.45)

The basic concept of such a dual-phase lock-in amplifier is visualized in Figure 2.20.

X
LPF

A

f

LPF
A

f

Y

R

θ

Signal

Reference

Harmonic

X²+Y²

tan
-1
(Y/X)

90°

Figure 2.20.: Lock-in amplifiers are designed to extract the amplitude of the same frequency as the reference signal

(or its harmonic). The magnitude R and the phase θ is calculated from the in-phase and quadrature

signals X and Y .

Different approaches are nowadays available to build a lock-in amplifier [196]. Depending on

the experiment, the simplest one requires only an analog switch that is triggerd by a square wave

reference signal, an RC-filter and an operational amplifier [197]. More advanced analog ones

are based on multiplying amplifiers for the input stage, a frequency multiplier to generate the

harmonic and a differentiator for the 90° phase shift [194, 198]. Additional operational amplifiers

can be used to extract the magnitude of the X- and Y -component.

With the development of fast ADCs, it is also possible to digitize the analog signals and perform

the multiplication, the filtering and the calculation of R and θ on a micro-processor [199], or even

faster, on a Field Programmable Gate Array (FPGA) [200–203]. Similar, the lock-in amplifier

can be programmed as a software on a Personal Computer (PC) [204], which simplifies the

following data processing (storing, additional filtering, ...) even further.

2.4.3.2. Fourier Transform Based Demodulation

While the lock-in amplifier selects the nth harmonic by multiplying the measured signal with a

reference and converting it to a DC-component, the signal processing can also be performed in
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

the frequency domain. To do so, the signal is digitized and a Fourier Transformation algorithm

is applied. In the next step, a band-pass filter passes only the frequencies in vicinity of the

demodulation-frequency whereas the bandwidth defines the desired filter range.

The selected frequency range is transformed back to the time-domain and an envelope function,

e.g. the absolute of the Hilbert-transformation |H|, is applied. The resulting line shape is identical

to the magnitudes recovered with a lock-in amplifier. The required steps for processing the

detector signal in the frequency domain are illustrated in Figure 2.21.
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Figure 2.21.: WMS spectra can also be extracted from the detector signal by filtering in the frequency-domain

and applying an envelope-function. Absorption features ((a), parameters as in Figure 2.17) probed

with a modulated, ideal laser (here: sine-wave, 1 kHz) lead to the characteristic signal pattern in the

detector signal (b). The desired harmonic and bandwidth is selected in the frequency domain (c) and

transformed back to the time-domain. The positive part of an applied envelope function leads to the

1f-, 2f- and 3f-WMS spectrum (d-f).

Regarding measuring the concentration of a gas species with WMS, it is a common reliable

way to evaluate the 2nd harmonic of the detector signal. Its shape is closely related to the 2nd

derivative of the absorption line [190] and the peak maximum is proportional to the concentration.

While others have investigated the reconstruction of the original line shape, the influence of laser

properties or other innovative approaches [188, 205–214], this work is focused on the technical

implementation in a field-deployable prototype. Subsequently, the concentrations of the target

analytes are derived from the maximum of the magnitude of the 2nd harmonic, which delivers a

sufficient precision for real world application, as later discussed in the results section. From a

technical point of view, calibration-free measurements are possible as well, but require precise
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2.4. Measurement Techniques and Quantification

knowledge of the laser tuning properties. As the shape of the recorded spectrum depends not

only on the temperature and the pressure, but on the modulation depth too, advanced models are

necessary and rather topic for scientific purpose [215–219].

2.4.4. Heterodyne Phase Sensitive Dispersion Spectroscopy

In general, most of the experiments in IR spectroscopy rely on measuring the wavelength-

dependent attenuation of light, caused by the presence of an absorbing analyte. It is described by

the Beer-Lambert-Bouguer law, whereas the absorbance of a sample at a certain wavelength is

proportional to the concentration of the analyte. Although this model fits for many applications

in optical spectroscopy, it is useful to understand the underlying, more general, concept of the

complex refractive index, as well. This relation allows to develop innovative experimental setups

that quantify an analyte by measuring other properties of the transmitted light than the intensity

itself.

2.4.4.1. Relation between Absorption and Dispersion

The well-known refractive index n of a sample, defined as the ratio of the speed of light in

vacuum and the speed of light in the sample, can be extended by an imaginary part κ which

is proportional to the absorption coefficient α and also depends on the vacuum wavelength λ0,

according [55]:

n = n′ − iκ and κ =
αλ0

4π
. (2.46)

The real part n′ depends, like the absorption coefficient, on the optical frequency ω and represents

the dispersion of the wave. To stay in consistency with the literature, it is recommended to express

the wavelength in units of frequency. For an absorption feature with a Lorentzian line shape, one

can also write:

n′(ω) = 1 + s
ω0 − ω

(ω0 − ω)2 + (γ/2)2
(2.47)

Here, s is a spectral line dependent coefficient, ω0 the frequency of the line center, and γ

the FWHM of the spectral feature. In addition, the refractive index n(ω) and the absorption
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

coefficient α are related via the Kramers-Kronig relation [220, 221], which is also illustrated in

Figure 2.22:

n(ω) = 1 +
c

π

+∞∫

0

α(ω′)

ω′2 − ω2
dω′ (2.48)

0
Optical Frequency (a.u.)

Absorbance
Refractive Index, n

Figure 2.22.: The relation between the absorbance and the refractive index in vicinity of an absorption line is

described with the Kramers-Kronig relation.

The consequence is that light, traveling through an absorbing medium, is attenuated and the

phase will be, due to the dispersion, shifted. This phase shift can be measured and correlates with

the concentration of the analyte. One approach is to employ a monochromatic, coherent light

source and detect the constructive/destructive interference in a Mach-Zehnder-Interferometer,

as presented in [222, 223]. In the gas phase, however, the absorption features are significantly

narrower and the interferometer can be substituted with an electronics based approach.

2.4.4.2. Signal Generation

Two effects can be observed when a laser diode is current modulated: At lower frequencies,

typically <MHz, the changing laser current influences the refractive index of the active re-

gion/waveguide due to joule heating. Subsequently, the emitted wavelength can be controlled

and this behavior is the basis of TDLAS and WMS. At higher frequencies, however, the joule

heating is limited due to the thermal mass of the semiconductor and the electronic tuning caused

by carrier dynamics dominates [224]. The time-dependent optical field E(t) can be written as

[225, 226]:

E(t) = E0 [1 +M sin(ωrft+ ψ)] exp [i(ω0t+ β sin Ωt)] , (2.49)
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2.4. Measurement Techniques and Quantification

whereas E0 is the electric field amplitude of the original laser beam, M and β are the amplitude-

and frequency-modulation (AM, FM) indices, ψ the phase difference between AM and FM,

ω0 the center frequency and Ω the modulation frequency. Assuming that M ≪ 1 and β ≪ 1

leads to an optical signal which consists of the carrier signal ω0 and two side bands located

at (ω0 − Ω) and (ω0 + Ω). The same effect can be realized with electro- and acousto-optical

modulators but, due to the availability of these components, this approach is typically applied in

combination with NIR lasers.

One way to use this spectral narrow-spaced beam for spectroscopic applications was described

by Bjorklung [227, 228] and is known as Frequency Modulation Spectroscopy (FMS). Here,

an absorption feature is probed with one of the optical side bands and the measured beat signal

depends on attenuation due to absorption and the phase shift, caused by the dispersion. The side

band is tuned across the absorption line by either increasing the laser current (similar to WMS)

or by chirping the modulation frequency ωrf . Notable improvements and modifications are, to list

a few, Two-Tone FMS [229], Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular

Spectroscopy (NICE-OHMS) [230–232] and Chirped-Laser Dispersion Spectroscopy (CLaDS)

[233–236].

Also related to FMS is the Heterodyne Phase Sensitive Dispersion Spectroscopy (HPSDS)

[237–239] which shall be discussed in detail. Compared to other FM based experimental setups,

its design allows to integrate it in an existing WMS setup with minimum hardware modifications

and its applicability for environmental measurements will also be shown in this work.

For HPSDS experiments with mid-IR QCLs [240, 241] and ICLs [242], the laser diode is directly

modulated to emit the optical three tone. The modulation signal, generated from a suitable signal

generator, is added to the laser current with a bias-tee circuit and lets the laser emit the optical

three-tone signal. When the laser beam propagates through a medium with an absorption feature

close to the center wavelength of the laser, each frequency will undergo a slightly different

refractive index, due to the Kramers-Kronig relation. The consequence is that the phases will be

shifted after the absorbing sample, as illustrated in Figure 2.23a.

Each phase depends on the optical length of the gas cell L and the wavelength-dependent

refractive index of the sample. Subsequently, one can express the electromagnetic fields E1,E2
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

  
Position (a.u.)

(a)

Air Sample Air

E2
E1
E3

0
Optical Frequency (a.u.)

(b) Refractive Index, n
HPSDS Spectrum, 

Figure 2.23.: (a): Illustration of the electric fields of the optical three-tone while passing an absorbing sample.

The waves have been shifted along the y-axis for better visibility. (b): The HPSDS signal origins

from the optical sidetones whereas each optical frequency undergoes different refractive indices. The

corresponding spectrum is recorded by tuning the optical three-tone across the absorption feature.

and E3 with the corresponding amplitudes (A1,A2,A3) and phases (ϕ1,ϕ2,ϕ3):

E1 = A1 cos(ω0t− ϕ1) ϕ1 =
ω0L

c
[n(ω0) − 1] (2.50)

E2 = A2 cos [(ω0 + Ω)t− ϕ2] ϕ2 =
ω0L

c
[n(ω0 + Ω) − 1] (2.51)

E3 = A3 cos [(ω0 − Ω)t− ϕ3] ϕ3 =
ω0L

c
[n(ω0 − Ω) − 1] (2.52)

When the phase-shifted frequencies hit the square law detector, three beatnotes, originating from

the three optical frequencies, will be detected and the resulting phase ϕ0 is written as:

ϕ0 = arctan
a sin(ϕ2 − ϕ1) + b sin(ϕ1 − ϕ3)

a cos(ϕ2 − ϕ1) + b cos(ϕ1 − ϕ3)
(2.53)

a = 10−(A(ω0)+A(ω0−Ω))/2 (2.54)

b = 10−(A(ω0)+A(ω0+Ω))/2 (2.55)

The coefficients a and b describe the absorption of the optical tones and can be neglected for

small concentrations (a = b = 1) or if the precise line shape is not required [239]. Subsequently,

the formula for ϕ0 can be simplified to:

ϕ0 = arctan

(

ϕ2 − ϕ1 + (ϕ1 − ϕ3)

2

)

≈
(
ϕ2 − ϕ3

2

)

(2.56)

and finally:

ϕ0 =
ω0L

2c

(

n(ω0 + Ω) − n(ω0 − Ω)
)

. (2.57)
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2.4. Measurement Techniques and Quantification

To record the corresponding HPSDS spectrum, the center frequency ω0 has to be shifted across

the absorption feature, which is realized, like in WMS, by applying a slow current ramp. Regard-

ing the data acquisition, it should be pointed out that the phase signal occurs at the modulation

frequency. This is typically in the range of 100-500 MHz and exceeds the bandwidth of many

laboratory lock-in-amplifiers. To circumvent this issue, the detector signal is down-mixed to

the kHz-range by multiplying it with a sine-wave of slightly higher frequency than the mod-

ulation frequency (Ω + δ, e.g. δ =10 kHz). Now, the phase signal can be easily extracted by

demodulating at the intermediate frequency δ.

A typical laboratory setup for HPSDS is illustrated in Figure 2.24 and one can see the similarity

to the WMS setup, as shown in Figure 2.18. The additional components are a bias-tee to inject

the high-frequency modulation signal, a two-channel signal generator and two mixers.

Gas Cell

Signal Generator

100.00 MHz

100.01 MHz

Laser Driver

QCL MCT

Bias Tee

1 Hz

Lock-In Amplifier

Signal

Reference
R

Θ

Figure 2.24.: Experimental setup to record a HPSDS spectrum. Assuming that the detector supports the required

bandwidth, only two mixers, a bias-tee and a two-channel signal generator have to be added to an

existing WMS setup.

Like for 2f-WMS and TDLAS experiments, calibration-free measurements are possible too [237],

as the dispersion can be derived from simulated absorption spectra. With the focus on developing

and testing a (mainly) 2f-WMS based multi-gas-analyzer, however, further scientific experiments

shall be the topic of future projects. From a technical point of view, it is recommended to optimize

the setup in terms of electrical and optical components first (bandwidth of detector and signal

generator >1 GHz, high-precision lock-in-amplifier, reducing number of optical elements in the

beam path).

2.4.5. Other Mid-IR based Techniques

Mid-IR based sensors can be differentiated by the way how the light interacts with the sample

and and how it is quantified. For direct methods, the transmitted light is detected and its intensity
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2. Infrared Spectroscopy as an Alternative to Quantify Gases

measured. This can be, for example, monitoring the intensity at the detector while tuning a

diode laser across an absorption feature (TDLAS) [176, 243–245], or reconstructing a 2f-WMS

signal with a lock-in-amplifier [246–248]. Similar, low-cost non-dispersive sensors, employing a

thermal light source, an optical filter and a pyroelectric detector, can be built [249–255]. Many

sensors in the liquid phase are based on this technique too, however, they often use broadly

tunable EC-QCLs, tunable FP-filter detectors or commercially available FTIR spectrometers, as

the absorption features are significantly broader than the ro-vibrational absorption lines in the

gas phase [135, 256, 257]. They all have in common, that, if the analyte is present in a very small

concentration, the measured signal is very close to the background signal and therefore difficult

to quantify. Subsequently, stabilization of the light source and precise signal processing is crucial

to achieve reasonable limits of detection (LOD). Depending on the matrix and the individual

application, it can be improved by increasing the optical pathlength. This is relatively simple in

the liquid phase, where flow cells with an optical path length of 10-500 µm are used. For trace

gas measurements in ambient air or nitrogen, in contrast, an optical path length of several tens of

meters are common and challenging to increase further.

The indirect methods, in contrast, measure a property that is influenced or generated by the

absorption of light by the analyte. One of them is photoacoustic (PA) detection, which measures

an acoustic wave with a microphone or comparable hardware [258–266]. A common application

is the quantification of CO2 whereas a blackbody emitter is employed as the light source.

The emitted radiation is filtered so that only the spectral range around 4.5 µm enters the gas

cell. The target analyte absorbs the radiation and, if the IR beam is modulated with e.g. a

mechanical chopper, an acoustic wave with the modulation frequency will be produced. A low-

cost microphone is sufficient to detect the sound wave and the signal can be further improved by

installing an acoustic resonator. A lock-in amplifier extracts the signals that are in same phase as

the chopper and improves the signal to noise ratio further. The most significant difference to the

direct methods is the fact, that the property that is measured, is produced by the interaction of the

radiation and the analyte. Subsequently, the signal to noise ratio can be improved by increasing

the optical power of the incident beam and miniaturization helps as well.

Quartz Enhanced Photoacoustic Spectroscopy (QEPAS) is closely related whereas the micro-

phone is replaced with a quartz tuning fork [267–273]. Due to its electro-mechanical properties,

only certain mechanical vibrational modes can induce the piezoelectric effect and generate a

signal. Experimental setups are typically based on precisely controllable laser sources, such as

QCLs or ICLs, and the beam is focused in between the prongs of the fork. The target analyte

absorbs the radiation and emits an acoustic wave during relaxation. The generated sound wave
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2.4. Measurement Techniques and Quantification

pushes the prongs away from each other and a voltage signal can be measured at the electric

contacts. To improve the signal further, resonator tubes can be installed at both sides of the tuning

fork. This method benefits from the availability of low-cost tuning forks, their high Q-factor, the

sharp resonance frequency at ≈32.76 kHz and the possibility to miniaturize the setup.

Another indirect method is Photothermal Spectroscopy (PTS) whereas the changing refractive

index, induced by the absorption of light [274–278], is measured. The setup consists of two

lasers, whereas one is matched to an absorption line of the analyte and the other one acts as

probe laser. To detect the minimum changes of the refractive index caused by the absorption,

the probe laser is installed in an interferometer geometry. Setups, based on the Mach-Zehnder-,

Jamin- and Fabry-Perot-Interferometer have been realized and miniaturization is possible as well

[279, 280].

Although these methods allow miniaturization of the gas measurement cell and rely on a relatively

cheap detection equipment, one should mention the disadvantages as well. The photoacoustic and

-thermal waves depend strongly on the water vapor content as shown in [268, 281]. Subsequently,

either the humidity must be measured or humidified with additional equipment. Another one

is that the acoustic wave or the change of the refractive index depends on the optical power of

the excitation laser. Therefore, these setups depend on the availability of high-power cw-QCLs,

which can be challenging as QCLs and ICLs are, in contrast to NIR laser diodes, still not mass

products.

For the development of the multi-gas-analyzer, the direct method 2f-WMS has been identified

as the best suited measurement technique. Numerous other prototypes and experimental setups

based on this technique have been presented and successfully tested in the lab and in the field.

The required components, such as the gas measurement cell, the laser driver, the detector and

control electronics are all off-the-shelf parts and can be further optimized if commercialization

of the sensor is requested.
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3. Development of a

Multi-Gas-Analyzer for Ambient Air

Monitoring

Several reviews, book chapters and books have already addressed the applicability of infrared

spectroscopy for ambient air monitoring, trace-gas sensing and other fields, extensively [249,

271, 282–288]. The demand to quantify pollutants in the air, monitor the composition of process

streams and even measuring the atmosphere of other planets has led to numerous scientific

publications in physics and chemistry and a coarse overview of the available techniques shall be

topic of this chapter. Then, the requirements and the components for a 2f-WMS based prototype

for ambient air measurements will be evaluated, beginning with the suitable wavelengths to

quantify the analytes. The gas measurement cell, detector, mechanical assembly, electronics and

the software will be discussed as well, and, finally, the modifications that are required to perform

HPSDS measurements with the setup as well, will also be part of this chapter.

3.1. Building Prototypes in General

Before the target analytes and the individual components of the multi-gas-sensor are discussed

in detail, one should clarify the term ”prototype” to provide a better understanding of the desired

aims of the here presented measurement device.

Taking a closer look in developing prototypes reveals different levels of the integration of the

individual components and the effort it would take to bring a new product to the market. For

example, it can occur that a researcher calls his/her experimental setup in the lab already a

”prototype” when the setup is working and ”transportable”. This can also include that the optical

components are mounted on a lab-breadboard, the required electronics (like signal generators

and power supplies) are placed in a large box, made of aluminum profiles, and the software for
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3. Development of a Multi-Gas-Analyzer for Ambient Air Monitoring

controlling the individual parts runs on an office PC. In contrast, a customer or sales representative

might associate the word ”prototype” with an already optimized and even field-tested device.

The final steps before releasing it to the market could include minor adoptions on the user

interface, the replacement/simplification of the power supplies, or last adjustments in the final

specifications.

As the problem of different definitions of the term ”prototype” is not new, NASA has introduced

the Technology readiness levels (TRLs). In the mid-2000s, the European Space Agency adopted

the TRL scale and soon it became an important definition in Horizon 2020-projects ([289],

Framework Programmes for Research and Technological Development, European Commis-

sion). By applying this definition, the first example, showing the point of view of a researcher,

corresponds to TRL 4 and the second case (sales representative) is described best with TRL 8.

Regarding the here discussed ”prototype”, the state of development is somewhere in between

the previous examples and tries to satisfy both, the scientist and the customer (TRL 6). To

achieve this within the given conditions, certain simplifications had been done. For example, the

electronics have been chosen on the basis of already gained experience from earlier projects,

instead of investing resources for developing or optimizing new electronics. Another one is the

number of target analytes that could be quantified with the hardware. Although other green

house gases, such as CH4, CO2 or the pollutants O3 and NH3 could be measured with IR based

techniques as well, the list of target analytes has been reduced to five.

The development process has been accompanied by computer-aided design (CAD) studies (e.g.

Figure 3.18, also in the appendix) to stay within certain mechanical dimensions, which should

make the prototype competitive to other manufacturers of ambient air monitors. In particular,

the prototype must be transportable by car, should fit in widely used 19” racks for electronic

equipment and achieve comparable detection limits.

3.2. Requirements and Target Analytes of the Gas

Sensor

QCL-based gas sensors must fulfill certain expectations to be competitive with the established

reference methods. Beside delivering the correct measurement values, the response time should

be identical or better, the overall power consumption should be similar or lower and the mean

time between failures must as long as possible. The physical dimension should be the same size
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3.2. Requirements and Target Analytes of the Gas Sensor

Component Concentration

... in the atmosphere according [291] ... typical values in an European city

H2O 0.03 % 1.3 %

CO2 345 ppmv 410 ppmv

CH4 1720 ppbv 1900 ppbv

CO 150 ppbv 400 ppbv

N2O 310 ppbv 310 ppbv

O3 65 ppbv 70 ppbv

NO 0.3 ppbv 40 ppbv

NO2 0.023 ppbv 80 ppbv

SO2 0.3 ppbv 3 ppbv

Table 3.1.: Typical concentrations of IR absorbing gases in the atmosphere and realistic values for an urban

area. Gases written in bold are of special interest for ambient air monitoring, according the Directive

2008/50/EC.

or smaller than the existing measurement equipment and ideally fit in 19” racks [290], which is a

defacto standard for these installations. Finally, a prototype should have at least one outstanding

feature to be the definitive successor in a future discussion about reference methods.

In the case of the here discussed multi-gas sensor, most of these requirements are successfully

fulfilled or could be easily adopted with minor modifications. The decisive factor for a possible

commercialization, however, is the application of infrared spectroscopy, which allows to quantify

multiple analytes with the same equipment. The only task is to identify an interference-free

absorption line for each analyte and to combine the laser beam of the required light sources.

3.2.1. Spectral Ranges

Developing a trace gas sensor based on mid-IR laser spectroscopy requires a careful selection

of the individual laser sources. Although the ro-vibrational absorption lines in the gas phase

are relatively narrow and often nicely separated, it is necessary to know the composition of the

matrix to avoid incorrect results, caused by overlapping absorption features. Therefore, Table 3.1

gives an overview of important IR active gases and their concentrations in the ambient air.

Normalized IR spectra of the four air-quality relevant analytes CO, NO, NO2 and SO2 and

the greenhouse gas N2O have been simulated with HAPI [59] and are plotted in Figure 3.1a.
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3. Development of a Multi-Gas-Analyzer for Ambient Air Monitoring

Although some of the spectra are slightly overlapping, it would be possible to distinguish the

target gases with low-cost bandpass-filters, if they were the only components mixed with N2. In

practical terms, however, the analytes of interest have to be quantified in the low ppbv-region

and in presence of water vapor, CO2 and CH4. This situation is illustrated in Figure 3.1b, where

the line strengths of the relevant gases are plotted.
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Figure 3.1.: (a): spectral ranges of the target analytes. (b): line strength of possible interferants in the ambient air

As a gas measurement cell defines the interaction of the laser beam and the gas sample, one can

lower the pressure within it to reduce the FWHM of the absorption lines, as described earlier.

Subsequently, it is possible to identify at least one wavelength for each analyte where the matrix

does not influence the measurement. These wavelength regions are illustrated in Figure 3.2

whereas spectra of the target analyte and possible interferants are plotted. The concentration

of each component is listed in the legend and are typical values for the ambient air. Moreover,

a Lorentzian line shape, a pressure of 100 mbar and an optical path length of 76 m has been

selected for the simulations. Additional calculated gas spectra of the ambient air at different

pressures can be found in Appendix A.

3.3. Optical Setup

A schematic of the 2f-WMS based multi-gas-analyzer is shown in Figure 3.3 and gives an

overview of the required components. Measuring the four pollutants and the greenhouse gas
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3.3. Optical Setup
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Figure 3.2.: Simulated spectra of the five analytes of interest: (a) CO and N2O, (b) NO, (c) NO2 and (d) SO2. A

pressure of 100 mbar, an optical path length of 76 m and Lorentzian line shape have been selected for

the calculation. The grey section indicates the absorption line which is measured with the 2f-WMS

setup.

is achieved with four DFB-QCLs which are mounted on aluminum heat-sinks and connected

to the laser electronics. The emitted laser beams are redirected with gold mirrors (PF-10-M03,

Thorlabs, Newton, NJ, USA) towards beam-splitters (PFE10-M01, Thorlabs, Newton, NJ, USA),

which combines the individual beams. When the laser beam hits the first splitter, ∼45 % of

the optical power will be lost and the other ∼45 % are redirected to a second splitter. The

beam will be splitted again, whereas one half passes a set of reference gas cells (Wavelength

References, Corvallis, OR, USA) and hits a Mercury-Cadmium-Telluride (MCT) detector (PCI-

4TE-9, 20 MHz bandwidth, Vigo Systems, Ozarow Mazowiecki, PL). The other half is reflected

into the gas measurement cell (AMAC 76, Aerodyne Research, Billerica, MA, USA) and the

attenuated beam is focused with an off-axis parabolic mirror (MPD149-M01, Thorlabs, Newton,

NJ, USA) towards a second detector (PCI-2TE-12, 200 MHz bandwidth, Vigo Systems, Ozarow

Mazowiecki, PL).

3.3.1. Lasers

The QCLs installed in the prototype are DFB devices, can be operated in cw-mode and are

already assembled in high-heat-load (HHL) packages. The laser package includes a Peltier-cooler,

a temperature sensor (NTC 10k) and a collimation lens. Due to the availability of cw-DFB-QCLs,
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3. Development of a Multi-Gas-Analyzer for Ambient Air Monitoring
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Figure 3.3.: Schematic of the setup.

three devices were from the company AdTech Optics (City of Industry, CA, USA) and one from

Alpes Lasers (St. Blaise, CH). The most important laser parameters for a chip temperature of

25 ◦C are listed in Table 3.2 and are taken from the corresponding data sheets.

A picture and a section view of one of the packaged DFB-QCLs is shown in Figure 3.4. Each

laser has been characterized with a laboratory FTIR-spectrometer (Vertex 80v, Bruker Optics,

Ettlingen, DE) whereas the laser beam acted as the light source. Spectra were recorded at different

gain-chip temperatures and laser currents (according the data sheets) to verify the single-mode

operation and to identify possible mode-hops.

Target Analyte Manufacturer Device Threshold

Current

(mA)

Max.

Current

(mA)

Wave-

numbers

(cm−1)

Max.

Power

(mW)

CO, N2O AdTech Optics 15-06 220 310 2179 50

NO AdTech Optics 17-15 410 520 1900 40

NO2 AdTech Optics 17-17 490 670 1630 110

SO2 Alpes Lasers 507 630 650 1379 1

Table 3.2.: Laser parameters at 25 ◦C, according the corresponding data sheets.
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3.3. Optical Setup

QCL Chip

Peltier Element

Collimating Lens

(b)

Figure 3.4.: (a): Picture of a high-heat-load (HHL) package and an M6x25-screw for scale. (b): section view of the

HHL package, with the DFB-QCL, Peltier-cooler and the collimating lens inside.

3.3.2. Multipass Gas Cell

While measurement cells for the liquid phase have an optical path length between a few µm and

up to several mm, gas cells are significantly longer. Depending on the application, they can be a

few cm (e.g. quantifying the main components of a process stream) and exceed more than 200 m

(e.g. for quantifying trace gases). Single-pass cells are usually a metal tube with IR transparent

windows at the front and at the back and are limited by the dimensions of the experimental setup

(typically <1 m). A longer optical path length can be realized with mirrors, reflecting the light

multiple times.

Different cell designs have been developed over the time and the most prominent ones are the

White cell [292], the circular multipass cell [293] and the Herriott cell [294]. The White cell

consists of three spherical, concave mirrors with identical radius of curvature, and is illustrated

in Figure 3.5a. The distance between the two objective mirrors (OM 1 and OM 2) and the field

mirror (FM) is equal to the their focal length. It is a well established cell design and several

improvements and applications have been reported over the time [295–297].

Circular multipass cells (Figure 3.5b) have the mirrors aligned in a circle and the recent improve-

ments even employ the body itself as the reflecting mirror. This improves the robustness against

vibrations and temperature changes and miniaturization is possible as well [298–301].

The Herriott cell, which is also installed in the prototype, is an improved version of a spherical

mirror interferometer (Figure 3.5c) [302]. Here, two spherical mirrors with the focal length f are

aligned coaxial at the distance d and match the condition f ≤ d ≤ 4f . An entering beam will be

reflected multiple times in between, and the beam spots will either lie on a circle or an ellipse,

depending on the input parameters. Under certain conditions, the beam will exit at the entry

hole. In [294], Herriott and Schulte suggested to either insert a perturbing mirror or to replace
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3. Development of a Multi-Gas-Analyzer for Ambient Air Monitoring

one or both of the spherical mirrors with astigmatic ones. The idea of the first modification

is to slightly shift the last spot, lying on the previously mentioned ellipse, to enforce another

round-trip between the spherical mirrors. The same effect can be realized with astigmatic mirrors,

but it avoids the installation of another optical component.

(a) (b) (c)

OM 1

OM 2

FM

Figure 3.5.: Basic principle of three different types of multipass gas cells. (a): White cell, (b): circular multipass cell

and (c): Herriott cell.

The coordinates xi and yi of the i-th beam spot on the astigmatic mirrors can be calculated

according [303]:

xi = X0sin(iΘx), yi = Y0sin(iΘy) (3.1)

Θx = cos−1

(

1 − d

Rx

)

, Θy = cos−1

(

1 − d

Ry

)

(3.2)

Here, the parameters X0 and Y0 define the overall dimension of the spot pattern on the mirror, d

is the distance in between them, and Rx and Ry are the radii of the astigmatic mirror surface. The

integer i counts the number of reflections whereas even values are spots on the entrance-mirror

and odd values are spots on the back. The spot positions are sinusoidal with different frequencies

and are similar to Lissajous curves. As the laser beam should exit the optical system at the same

position as it enters, one can write the reentrance conditions

NΘx = Mxπ and NΘy = Myπ. (3.3)

Numerous combinations are possible for the integers N , Mx and My, but if the parameters

Mx and My have common factors other than 2, the pattern will degenerate and the number of

reflections will be reduced. In addition, N must be even, to place the exit- and entrance-spot on

the same (front-) mirror. Another practical requirement is that spot positions next to the entrance

should be avoided, to allow a larger input diameter.

Several useful values for N , Mx and My have been identified, tested in gas sensing prototypes

and even commercialized. Two patterns of the input mirror are plotted in Figure 3.6 and the

one shown in (b) corresponds to the beam pattern of the Herriott cell installed in the prototype

(shown in Figure 3.7, parameters: {N , Mx, My = 238, 142, 134} with a base path d = 0.32 m.
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3.3. Optical Setup
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Figure 3.6.: Two beam pattern of the input mirrors of astigmatic Herriott gas cells. The following parameters

were used: (a): {N , Mx, My = 182, 80, 76}, (b): {N , Mx, My = 238, 142, 134}. The spot at the

coordinate (0, 0) indicated with a black circle represents the input hole of the front mirror.

Figure 3.7.: Aerodyne AMAC 76 with 76 m optical path length.
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3. Development of a Multi-Gas-Analyzer for Ambient Air Monitoring

This results in an optical path length of 76 m, which is sufficient to quantify the target analytes in

the ambient air.

For practical applications, it is useful to set the distance between the mirrors close to their focal

length (confocal spacing, d ≈ Rx,y). This results in values of Θx and Θy ≈ π/2 and the first

reflection on the back mirror will be close to the relative coordinate (1, 1), simplifying the

alignment of the laser beam. In addition, it is common to rotate the axis of both mirrors by 45°.

This lets the entering and output beams be parallel to the xy-plane (e.g. the optical table) and

reduces the installation time further.

These multipass gas cells are commercially available in different lengths (e.g. classical Herriott

cells: 3 m, 10 m, 15 m, 31 m; with astigmatic mirrors: 36 m, 76 m, 100 m, 210 m). The version

with 76 m has been selected as it is a compromise of the outer mechanical dimensions and the

achievable optical path length.

3.3.3. Detector

In general, two main types of IR detectors can be identified, namely thermal and photonic ones.

The first one relies on thermal effects, such as changing the resistance or the thermoelectric

effect. Due to their type of operation, they are relatively slow and their bandwidth is <10 kHz,

depending on the detector material. As they are operated at room temperature, they are cost

effective and often used in filter-based gas-sensors or maintanance-free FTIR spectrometers.

Photonic detectors, in contrast, are based on semiconductors with a bandgap, that is sufficient

small, to be triggered by an infrared-photon. To limit the thermal noise, they have to be ei-

ther cooled with liquid N2 (−196 ◦C), or equipped with multi-stage Peltier coolers (<−70 ◦C).

Depending on their preamplifier, the electrical bandwidth is in the MHz-range and goes up to

1 GHz.

The prototype is equipped with two MCT detectors, whereas one acts as a reference detector

(the laser beam passes the gas reference cells) and the other one is used to measure the light

passing the gas measurement cell. As the multi-gas-sensor was initially designed for 2f-WMS

experiments only, the selected reference detector supports a bandwidth of 20 MHz (PCI-4TE-9,

Vigo Systems, Ozarow Mazowiecki, PL, also shown in Figure 3.8). With the integration of

HPSDS, the bandwidth of the measurement detector must be at least in the order of the laser

modulation. Subsequently, an MCT detector with 200 MHz has been selected (PCI-2-TE-12,

Vigo Systems, Ozarow Mazowiecki, PL).
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3.4. Electronics and Additional Components

3.4. Electronics and Additional Components

Recording 2f-spectra requires, beside the lasers, optics and detectors, several electronic com-

ponents to operate and control these. The QCLs, for example, depend on a current supply

with high precision (also known as laser driver) and accurate temperature control of the gain

element. The detector signal must be digitized to be further processed with the measurement

PC (software-based lock-in amplifier) and the pressure in the gas cell must be stabilized at

100 mbar.

Considering that the main priority of this prototype has been to demonstrate the applicability of

2f-WMS for ambient air monitoring, the optimization of the electronics was secondary. Building

the prototype with off-the-shelf components reduces time-consuming hardware development

and can still be done in a later stage of commercializing the prototype. One of the drawbacks

of not optimizing the electronics is the number of individual power supplies. With components

from different manufacturers, it is necessary to install a series of power supplies, as listed in

Table 3.3.

With these power supplies and the measurement PC, it is possible to operate and control the

electronic parts, which are discussed further in detail.

3.4.1. Laser Driver and Demultiplexer

From the electronic point of view, QCLs behave like diodes, operated in forward direction at rel-

atively high voltages (∼12-18 V) and moderate currents (∼100-1000 mA). As the optical power

Figure 3.8.: Mercury-cadmium-telluride-based IR detector with an integrated Peltier-cooler and preamplifier

(M6x25-screw for scale).
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3. Development of a Multi-Gas-Analyzer for Ambient Air Monitoring

Device Electrical Parameters Purpose

Mean Well SP-480 24 V, 20 A, 480 W Powers the TEC controllers, the pressure con-

troller, the data acquisition card NI6366, the

signal generator for HPSDS and the fans in-

stalled in the optics case.

Mean Well MDR-40 12 V, 3.3 A, 40 W Connected to the MCT detectors.

2x TDK-Lambda

HWS 50A-24/A

24 V, 2.2 A, 50 W Low noise power supply for the laser driver.

HKC V-Power 450 450 W ATX power supply for the measurement PC.

Table 3.3.: Several power supplies are required to operate the electronic components, such as the laser driver, the

detectors and the TEC controller.

and the emitted wavelength depend strongly on the injected laser current and its temperature, it

is of utmost importance to control these parameters as precise as possible.

While it is sufficient for a laser diode installed in a laser pen to connect a constant current

circuit (Figure 3.9a), NIR diode lasers and QCLs used for spectroscopic applications require

a more sophisticated control of the laser current. One approach to improve the current source

is illustrated in Figure 3.9b, whereas a transistor is added in serial to the laser diode. A shunt

resistor feeds a voltage, which is proportional to the laser current, to the inverting input of an

operational amplifier. As its non-inverting input is connected to a signal source (e.g. a voltage

divider), the output current will be adjusted so that the currents at its inputs are equal. This output

current controls the base connector of an npn-transistor and regulates the current flowing from

the emitter through the laser diode.

GND

GNDGND L
A
S
E
R

T1

R
2

R
1

1
3

2 OPAMP

2

3
6

7
4

GND

C1

ADJ

VI
3

1

VO
2

V_REG

3
1

2

R
1

R
2 C2 D
1

L
A
S
E
R+

(a) (b)

Figure 3.9.: Two basic concepts of laser drivers, based on (a): a voltage regulator and (b): a transistor, controlled

with a shunt resistor and an operational amplifier.

The concept of this constant current source can be improved in several ways [247, 304–309]
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3.4. Electronics and Additional Components

and low-noise laser drivers are nowadays based on high-precision voltage references and have

several other features. The most important ones are a modulation input, a set-point input, a

current-monitor output, a current-limitation circuit and additional laser protection. The laser

driver installed in this prototype is the model QCL1000 OEM (Wavelength Electronics, Bozeman,

MT, USA) and supports a maximum output current of 1 A.

As the installed data acquisition card NI6366 (8x 16 bit ADC, 2x 16 bit DAC, National In-

struments, Austin, TX, USA) supports only two analog outputs (one for the lock-in amplifier

reference signal, the other to control the laser driver), it has been decided to measure one analyte

after another by redirecting the laser current to the desired QCL. This has been realized with

a demultiplexer which consists of a commercial available relais module with four channels

(SainSmart Technology, Lenexa, KS, USA). It disconnects the QCL from the laser driver and, as

soon as the correct settings has been loaded in the software, it activates the corresponding QCL

for measuring the next analyte.

The consequence is that the analytes can only be measured one after another, but taking into

account that the Directive 2008/50/EC requires only one measurement value every 30 min, and

assuming that the composition of the air (traffic in the area, exhaust gas of industrial plants)

does not change tremendously within this time period, this simplification is acceptable for this

prototype. It reduces the number of laser drivers, requires less components and saves space in

the electronics rack. However, from the technical point of view, it would be possible to quantify

all required gases at the same time. The underlying technique is known as frequency modulation

multiplexing, whereas the lasers are operated simultaneously and modulated at different sine

frequencies, as presented in [310]. The individual 2f-WMS spectra are then extracted with lock-in

amplifiers, whereas the correct reference frequencies have to be used.

3.4.2. Temperature Control

DFB-QCLs can be typically tuned over 1-3 cm−1 by changing the injection current and keeping

the temperature of the gain element constant. The joule heating caused by the electrical resistance

influences the refractive index of the gain material and changes the emitted wavelength. Due

to the relatively small thermal mass, the emitted wavelength can be influenced with the laser

current up to the high kHz range and is actually the underlying property for 2f-WMS.

Changing the temperature of the gain element by heating/cooling its sub mount directly, gives

access to a much wider tuning range (up to ∼10 cm−1). This depends strongly on the gain
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3. Development of a Multi-Gas-Analyzer for Ambient Air Monitoring

material and the allowed operation range given by the laser manufacturer. The tunability by

temperature helps, on the one hand, to find optimum laser parameters for a certain wavelength,

but, on the other hand, requires a precise temperature control to avoid drifting from the desired

wavelength. To address this, QCLs are usually installed in a HHL, TO-8 or similar package

and equipped with a Peltier element and a temperature sensor. A temperature controller is then

connected and regulates the current flowing through the Peltier and stabilizes the temperature of

the gain element.

Each laser installed in the prototype is equipped with a dedicated thermoelectric cooler (TEC)

controller (TEC-1091, Meerstetter Engineering, Rubigen, CH). As the heat from the Peltier

element is spread via the HHL package, the aluminum plate where the lasers are mounted on,

is temperature stabilized as well. Here, a two channel TEC controller is installed (TEC-1122,

Meerstetter Engineering, Rubigen, CH).

Figure 3.10.: Temperature controller TEC-1091 with an M6x25-screw for scale.

3.4.3. Pressure Control

During the field experiments, the sample port is defined by the project partners and a PTFE-tubing

connects the prototype to a glass-made manifold. A 5 µm particle filter protects the measurement

cell from dust and aerosol in general. The gas stream to be analyzed (ambient air or calibration

gas, depending on the experiment) passes a pressure controller (GSP-C5SA, Vögtlin Instruments,

Aesch, CH) before entering the gas cell. It guarantees a stable and precise pressure which is

mandatory for measuring ro-vibrational absorption lines in the mid-IR. For most measurements,

the set point was 100 mbar, which guarantees a sufficient flow rate and reduction of the FWHM

of the ro-vibrational absorption lines.

As shown in Figure 3.11, the outlet from the gas cell is connected to a laboratory vacuum

pump (N860.3FT.40.18, KNF Neuberger, Freiburg, DE), which transports the gas to be analyzed
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3.4. Electronics and Additional Components

through the gas cell. An additional needle valve keeps the volume flow through the the pressure

controller within its flow limits, defined by the geometry/dimension of the regulating valve.

Aerodyne AMAC-76
Particle Filter Vacuum Pump

Gas Sampling

Exhaust

Pressure Controller

Needle Valve

Figure 3.11.: Schematic of the piping. A pressure controller and a laboratory vacuum pump ensure a stable pressure

of ≈100 mbar in the gas measurement cell.

3.4.4. Modifications for HPSDS

Implementing HPSDS in an existing 2f-WMS setup requires only minor modifications, which

can be done with off-the-shelf parts. The optical three tone signal is realized by modulating the

DFB-QCL and a bias tee circuit (ZFBT-6g+, Mini-Circuits, Brooklyn, NY, USA) combines the

relatively constant laser current, generated by the laser driver, with the high-frequent modulation

signal. This part is common for e.g. powering low noise amplifiers in antenna systems, and

consists of a coil and a capacitor. While the coil passes the almost constant laser current to the

output, it blocks the high-frequent modulation signal, connected at the capacitor. Vice versa,

the capacitor transmits the radio signal (typically in the high MHz region) and blocks the laser

current. Subsequently, the output of the bias tee is the sum of the laser current (also known as

DC or direct current) and the modulation signal (RF, radio frequency). The DC-part lets the laser

emit light and the RF-component enforces the amplitude modulation, generating the optical three

tone signal.

Measuring the dispersion, caused by the presence of the analyte requires a detector that supports

the electrical bandwidth of the modulation frequency. The output signal could be directly

analyzed with a fast enough lock-in amplifier, but in order to employ the already installed

software-based one (limited by the sample rate of the data acquisition card, 1 MSPS), the signal

must be converted to a lower frequency. To do so, the signal is down-mixed by multiplying it with

a slightly lower modulation frequency (ZAD-1-1+, Mini-Circuits, Brooklyn, NY, USA). Isolating

the phase component with the software-based lock-in amplifier is achieved by demodulating at

the difference frequency.
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3. Development of a Multi-Gas-Analyzer for Ambient Air Monitoring

The first tests were performed with a laboratory signal generator (Rigol DG4162, RIGOL

Technologies, Suzhou, CN) and the beat note was down-mixed to 10 kHz (ZAD-1-1+, Mini-

Circuits, Brooklyn, NY, USA). A second mixer (ZLW-1-1+, Mini-Circuits, Brooklyn, NY, USA)

produced the phase stable reference signal for the software-based lock-in amplifier, as presented

in Figure 2.24.

The mechanical dimensions of the Rigol DG4162 are acceptable for lab experiments, but it

does not fit in the electronics rack of the prototype. Therefore, it was replaced with a dedicated

microchip for generating sine waves of different frequencies. In detail, the evaluation board

with the chip AD9959 (Analog Devices, Norwood, MA, USA) was installed. It features four

synchronized Direct Digital Synthesis (DDS) channels with up to 200 MHz. The frequency

(32 bit), phase (14 bit) and amplitude (10 bit) can be controlled individually for each channel.

The common clock generator guarantees a stable phase between the four outputs. With this chip

it is possible to replace the lab-bench signal generator and one analog mixer too, as shown in

Figure 3.12.

Gas Cell

AD9959

100.00 MHz

100.01 MHz

Laser Driver

QCL MCT

Bias Tee

1 Hz

10 kHz

Lock-In Amplifier

Signal

Reference

R

Θ

Figure 3.12.: Hardware modification required for HPSDS with AD9959 (four channel DDS).

3.5. Software

The prototype is controlled with a custom developed software, written in LabVIEW 2017

(National Instruments, Austin, TX, USA) which has several advantages, compared to other

languages and development suites. For example, the graphical environment allows developers to

understand programs faster than conventional text-based code. This is possible with the data-flow

model whereas data/values are transported in wires and functions are realized with icons, that are

connected with these wires. Numerous functions are implemented by default, ranging from basic

input-/output-operations like saving and reading text-files up to advanced mathematics functions,

like the FFT and matrix operations.
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3.5. Software

A special feature of LabVIEW 2017 is the perfect integration of the hardware components,

sold by the company. This can be, for example, simple temperature sensors, low-cost ADCs

with sample rates of several kS/s, or even high-speed digitizers based on FPGAs. Compared

to other hardware manufacturers on the market, controlling the measurement equipment is

straight-forward and numerous software examples and tutorials are available.

In addition, the software contains a large variety of user interface elements, such as tables and

graphs. They are easy to integrate into the program and can be customized in different ways.

With these it is possible to develop user friendly interfaces that are intuitive and flexible at the

same time.

The software itself is based on the Producer/Consumer-architecture, which is a common way to

write responsive programs in LabVIEW 2017 [311]. Here, the user interactions are separated

from the tasks that are either time consuming or should run in the background continuously.

An event handler is placed in a while loop and waits, for example, until the user presses a

button to start the data acquisition. The corresponding event case contains only code that can

be immediately executed, such as configuring the measurement channel or setting the data rate.

The time-consuming code, in this example reading the data for several minutes, is located in

an dedicated while loop and it should start as soon as the measurement channel is configured.

The synchronization of these independent while loops is achieved with a queue, that can be

interpreted as a First-In-First-Out (FIFO) buffer. The event handler, also known as the producer,

inserts an element into this queue to trigger the waiting while loop. The second while loop

removes the element for the queue (consumer) and records the signal. With this programming

approach, it is possible to keep the user interface responsive, run multiple tasks in parallel and

split the code into smaller sections.

The block diagram (LabVIEW code) for the multi-gas-analyzer is shown in Figure 3.13 and

the tasks of the corresponding while loops are commented. The producer, located at the top,

contains event cases for each button that can be pressed on the front panel (Figure 3.16). It is, for

example, responsible to load the default settings when starting the software, lets the user adjust

the laser parameters and starts/stops recording 2f-spectra. The consumer loops are below and

each hardware component has its dedicated section. This allows to structure the code and makes

it easier to adjust the code if certain hardware components are replaced or modified.

While the code for the TEC controller, the pressure controller, the laser demultiplexer and the

data logging is relatively simple, the consumer loops for recording the spectra is more complex

and should be explained in detail. The laser driver is controlled with an analog signal, that is
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3. Development of a Multi-Gas-Analyzer for Ambient Air Monitoring

Figure 3.13.: Block diagram of the software for the prototype. The producer at the top handles all user interactions,

the other while loops act as consumer and interact with the hardware components.
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3.5. Software

the sum of a slow sawtooth-like ramp (e.g. 1 Hz), for tuning across the absorption line, and a

sine wave (e.g. 20 kHz), required to modulate the laser wavelength. The code in Figure 3.14 is

responsible for this task. It reads the laser settings and creates a waveform that is fed into the

laser driver. As the software lock-in amplifier requires a reference signal too, a second waveform

with the sine wave only is generated. A digital trigger indicates the beginning of a new current

ramp and synchronizes the spectrum acquisition.

The code for reading the detector signal is slightly more complex (Figure 3.15) as it calculates

the gas concentration as well. Digitizing the analog signals of both detectors and the modulation-

reference begins when a new current ramp is started (internal digital trigger). Smaller pieces

of the signal (typically corresponding to 1 ms) are analyzed with the software-based lock-in

amplifier and recorded while the laser tunes across the absorption feature. The result is the

already discussed 2f-spectrum whereas the peak height at the center of the absorption line is

proportional to the concentration of analyte (under certain conditions). As the peak maximum

itself might be influenced by noise, one can fit a parabolic function at the center of the peak and

get a more reliable value. Finally, the concentration of the target analyte is calculated with a

linear calibration. It has been useful to apply a moving averaging filter over 10 s to reduce the

noise further.

Figure 3.14.: LabVIEW-code for generating the waveform (sine wave plus sawtooth ramp) to control the laser driver.

An internal trigger signal indicates the beginning of a spectrum.

The user interface contains two modes, which are shown in Figure 3.16. The advanced version

(Figure 3.16, left) is designed for experiments in the lab and lets the user modify all parameters,

ranging from the laser-temperatures over the modulation frequency up to the filter settings of the

software-lock-in amplifier. The smaller one is optimized for a 7” LCD screen (1024 × 600 pixel),

installed in the front of the electronics rack. It is intended for field experiments, where the operator

should only be informed about the current device status and the measured concentrations.
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3. Development of a Multi-Gas-Analyzer for Ambient Air Monitoring

Figure 3.15.: LabVIEW-code to extract the 2f-spectrum from the detector signal. The peak at the center of the

absorption feature is fitted with a parabolic function and its height is proportional to the concentration

of the analyte.

Figure 3.16.: User interface of the prototype - the Advanced Mode (left) is designed for experiments in the lab

and allows access to all settings. The Simple Mode (right) is optimized for the LCD screen in the

electronics rack and is intended for field campaigns.
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3.6. Mechanical Layout

3.6. Mechanical Layout

Several measures have been taken to make the multi-gas-analyzer transportable and ready for

commercialization. First of all, the bulky electronic components (power supplies, measurement

computer, laser driver, ADC/DAC module) are separated from the optics, lasers and the TEC-

controllers. Therefore, the complex setup is split into two sub-assemblies, each installed in a

19” server rack (IPC 4U-4129-N, outer dimensions: 48 × 18 × 65 cm, Inter-Tech Elektronik,

Langenhagen, DE). Figure 3.17 shows both cases opened. The rather simple electronics rack

contains the measurement PC and uses mountings according the ATX-standard to install DIN

rails [312] for the 12 V and 24 V power supplies. The cases are connected with a set of cables,

which allows to use the equipment with other experiments in the future (1x USB, 2x 12 V DC,

1x 24 V DC, 4x BNC cables).

Figure 3.17.: Pictures of the optics (a) and electronics (b) of the prototype. The assembly fits in two 19” racks

(height: ≈18 cm, depth: 65 cm).

Second, the number of different optical (mirrors, beam splitter) and opto-mechanical components

(kinematic mounts, gimbals) has been kept as low as possible, to avoid mixing up parts during

assembly. In addition, they are manufactured by a major supplier, guaranteeing quick delivery

and long term availability.

Third, the breadboard and certain metal plates have been manufactured by a metal workshop

(Schaeffer, Berlin, DE). This custom breadboard is not only thinner compared to commercial

ones, it also fits perfectly into the 19” server rack and features threads for a TEC controller, the

gas measurement cell and a DIN rail. The CAD drawings of these custom parts can be found in

Appendix D.
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3. Development of a Multi-Gas-Analyzer for Ambient Air Monitoring

Fourth, an LCD-screen with touch-functionality (7” Capacitive Touch Screen, Waveshare Elec-

tronics, Shenzhen, CN) has been installed on the front of the electronics rack (visible in Fig-

ure D.1). The customer can directly read the current status of the prototype and interact with

the automated measurement software, without requiring an additional computer to log into the

system.

Keeping the overall dimensions of the optical setup and the electronics within the initially defined

limits has been achieved by intensive planning with CAD software (SolidWorks 2016, Dassault

Systems, Velizy-Villacoublay, FR). The result is a digital model of the prototype that contains

all optical components, mechanical parts and electronics. The sectional drawings, shown in

Figure 3.18, gives a precise overview of the optical beam path and how the laser beams must be

aligned to couple into the gas measurement cell.
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3.6. Mechanical Layout

B
B

A
A

SE
C

TIO
N

 A
-A

SE
C

TIO
N

 B-
B

Figure 3.18.: Construction drawings of the multi-gas analyzer. The beam paths of the lasers are illustrated with red

rods and is simplified in Figure 3.3. Sectional drawings allow a better understanding of the optical

path.
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4. Experiments and Results

Designing and assembling the prototype are the first steps in developing a new measurement

device. Although QCLs are commercially available since two decades, their electrical and

emission properties vary from device to device. While it is obvious that a different gain material

requires completely different parameters, even devices, processed on the same wafer are not

identical in terms of mode-hop-free emission and operation range. Subsequently, characterizing

each QCL is of utmost importance before installing it in the prototype.

With the QCLs installed, the beams aligned to pass the gas measurement cell and hitting the

detectors, one can optimize the laser parameters and evaluate the performance of the multi-gas-

analyzer. To do so, 2f-spectra with different concentrations of the individual analytes have been

recorded. These calibration experiments allow to verify the linearity of the sensor and to estimate

the limit of detection (LOD).

While the experiments in the lab represent the performance under controlled conditions, measure-

ment campaigns in the field show the robustness and stability of the prototype for the intended

application in ambient air monitoring. Two successful measurement campaigns have been per-

formed with the multi-gas-analyzer, whereas one was located in an industrial area (Szombathely,

HU) and the other one next to a busy main road (Hietzinger Kai, Vienna, AT).

4.1. Identifying the Optimum Laser Parameters

4.1.1. FTIR Spectra

It is recommended, to characterize a new QCL before installing it in a prototype or experimental

setup, as it allows to validate the properties stated by the manufacturer. In addition, one gains

information on the tuning behavior, its spectral emission (single- vs. multi-mode) and the

parameters where mode-hops occur. To evaluate the laser properties, the device is connected to
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4. Experiments and Results

the TEC controller and laser driver, mounted next to an FTIR-spectrometer, and the beam points

towards the input window for an external light source. Single-channel spectra are then recorded

at different laser parameters (changing the temperature of the gain element and applying different

laser currents) and interpreted.

Plotting the wavelength of the peak maxima against the laser current gives detailed information

on the tuning behavior and helps selecting the laser settings to emit at the absorption line of the

analyte to be measured. The ideal result of such a laser characterization is single-mode-emission

within the defined operation range. Moreover, the relation between laser current and the emitted

wavelength at a constant laser temperature should be continuous, indicating mode-hop-free

operation.

The results of the laser characterization for the four DFB-QCLs are plotted in Figure 4.1. One can

see that the devices for CO (Figure 4.1a) and SO2 (Figure 4.1d) emit single-mode and mode-hop

free, as the data-sets of different temperatures do not cross/overlap. In contrast, the QCLs AdTech

17-15 (Figure 4.1b) and AdTech 17-17 (Figure 4.1c) have mode-hops. In the case of the laser for

NO, this effects only a relatively narrow spectral range. As mode-hops affect the measurements

by a sudden change in the wavelength and emitted intensity, it is not recommended to employ this

QCL for any precise 2f-WMS experiments around ≈1902 cm−1, to avoid misleading results. By

increasing the laser temperature and reducing the injection current or vice versa, it is possible to

find laser parameters where the laser emits at the desired wavelength without risking mode-hops

during the measurement.

4.1.2. Fine-Tuning the Laser Parameters and Modulation Depth

The results from the characterization with the FTIR-spectrometer deliver coarse values for the

laser current and temperature. After installing the QCLs in the setup, aligning the optics and

filling the gas measurement cell with the target analyte at the desired pressure, the final laser

parameters have been selected. Considering the data acquisition rate of 1 MSPS and requiring

1000 data points for each lock-in process step, the final 2f-WMS spectrum consists of 1000 points.

To guarantee a reasonable resolution, the laser parameters have been adjusted that the FWHM of

the absorption line corresponds to ≈ 200 data points. This guarantees a fast acquisition rate of

one spectrum per second and a reasonable resolution of the characteristic 2f-WMS signal.

As the peak height and the shape of the recorded spectra depend strongly on the modulation

index of the laser, this parameter has been optimized too. Again, the gas cell has been filled
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4.2. 2f-WMS Performance Under Laboratory Conditions
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Figure 4.1.: Results of the characterization of the DFB-QCLs. Spectra at different laser currents and gain-element-

temperatures have been recorded and the wavelength of its peak maximums is plotted. (a) AdTech

15-06, (b) AdTech 17-15, (c) AdTech 17-17, (d) Alpes 507.

with a defined concentration and set to a pressure of 100 mbar. The amplitude of the sine-wave

modulation has been increased in a step-wise manner and the maximum of the 2f-WMS peak

was recorded. The normalized peak amplitude for all analytes is plotted in Figure 4.2 and the

maximum signal is achieved with a modulation index m between 2.2 and 2.5. This is in good

agreement with theory, which expects an optimum modulation index of 2.2. The final laser

parameters, including the laser temperature, the range of the sawtooth-shaped current ramp and

the amplitude of the sine-wave modulation, are listed in Table 4.1.

4.2. 2f-WMS Performance Under Laboratory Conditions

4.2.1. Calibration Curves

A common way to characterize the performance of a sensor is to test if the output signal/the

generated values correlate with the analyte content. From the already discussed theory, one
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4. Experiments and Results
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Figure 4.2.: The 2f-WMS signal is maximized if the modulation amplitude corresponds to ≈2.2 times the HWHM

of the absorption line.

Target Analyte Laser Wave-

numbers

(cm−1)

Temperature

(◦C)

Current Ramp

(mA)

Modulation

(mA)

CO AdTech 15-06 2179.77 20.85 297.0-300.2 1.0

N2O AdTech 15-06 2180.40 17.61 297.0-300.2 1.1

NO AdTech 17-15 1900.08 21.09 514.0-520.0 1.6

NO2 AdTech 17-17 1630.33 27.57 640.2-646.5 2.8

SO2 Alpes 507 1380.93 3.95 625.0-640.0 5.2

Table 4.1.: Laser parameters used for the experiments.
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4.2. 2f-WMS Performance Under Laboratory Conditions

Target Analyte Calibration R2 SNR at 100 ppbv,

1 Hz Sample Rate

1σ Detection Limit (ppbv),

1 Hz Sample Rate

CO 0.99918 308 0.32

N2O 0.99798 40 2.51

NO 0.99998 224 0.45

NO2 0.99990 233 0.43

SO2 0.99978 71 1.40

Table 4.2.: Linear response and detection limits calculated from the calibration for the individual target analytes.

expects a linear relation between the peak height of the 2f-spectrum and the concentration of the

target analytes (to be more precise: concentrations ≤500 ppbv with this prototype and the target

analytes).

Although it would be possible to perform calibration-free 2f-WMS measurements [217–219],

the prototype has been calibrated with an in-house developed gas mixing rig. It consists of

four mass flow controllers (GSC-B9TS-BB23, Vögtlin Instruments, Aesch, CH) and allows

to combine up to four different gas streams. For the experiments, test gas bottles, filled with

the target analyte (≈1 ppmv in N2, Air Liquide Austria, Schwechat, AT), and pure N2 (N2 5.0,

Messer Austria, Gumpoldskirchen, AT) have been connected to two of the mass flow controllers

and a LabVIEW-based software increased the concentration of the target analyte in a step-wise

manner. Each step was held constant for 5 min and the calibration range was 0-500 ppbv for the

analytes CO, N2O, NO and NO2. Due to the relatively small cross-section of SO2, the calibrated

concentration range was set to 0-1000 ppbv and the number of measurement steps was reduced

as well. The 2f-spectra, the peak-height during the calibration sequence as time-trace and the

final linear fits are plotted in Figure 4.3. The insets in the column ”Calibration Time-Series”

show the signal at 100 ppbv of the analyte. The residuals of the linear fit are also plotted as an

inset (3rd column). For completeness, the 1f- and 3f-spectra can be found in Appendix B.

The limit of detection (LOD, 1σ) has been derived from the signal to noise ratio at an analyte

concentration of 100 ppbv and 30 data points (corresponding a measurement time of 30 s) have

been used for the calculation. The detailed results are listed in Table 4.2.
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Figure 4.3.: Calibration experiments for CO, N2O, NO, NO2 and SO2. The first column are the recorded 2f-spectra,

the second plot is the trace of the maximum of the 2f-WMS peak (the inset corresponds to 100 ppbv of

the target analyte). The third column shows the linear calibration and the residuals as inset. Measurement

points indicated in grey were identified as outliers and have been excluded for the calculation of the

calibration.
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4.3. Calibration Curves Recorded With HPSDS

4.2.2. Allan-Werle Plot

Similar important, like the LOD, is the temporal stability of the prototype. This property limits

the chance to improve the Signal-to-Noise ratio by averaging a higher number of measurement

points. One way to characterize the long term stability is to calculate the Allan-Werle variance

and plot the resulting data. The basic idea behind this is that the deviation decreases until it

reaches a minimum. After this point, it increases again as slow fluctuations, such as thermal

drifts in the lab, begin to dominate the noise level.

To record such an Allan-Werle plot, the concentration and pressure within the gas measurement

cell has been kept constant for 1 h and the multi-gas-analyzer measures the concentration. Each

target analyte has been studied after another and the combined plot is shown in Figure 4.4. One

can clearly see that the optimum averaging time is between 30 and 120 s, which is comparable to

results of other publications [247, 313, 314].

100 101 102 103
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100
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Figure 4.4.: Allan-Werle Plots for CO, N2O, NO, NO2 and SO2.

4.3. Calibration Curves Recorded With HPSDS

The initial experiments to quantify CO with HPSDS were done with the laboratory signal

generator Rigol DG4162 and the first aim was to reproduce the typical shape of the spectra, as

known from literature. Therefore, the laser parameters have been adjusted to ensure sufficient

amplitude modulation with the sine-wave signal, injected via the bias-tee-module. While it is

common to operate a QCL at its maximum output power to maximize the optical path length

or to optimize the signal at the detector, the highest amplitude modulation is typically found

at moderate laser currents. Decreasing the laser current, however, causes a lower output power
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4. Experiments and Results

Initial Experiments with

Rigol 4162

Field Experiments with

AD9959

CO Absorption Line 2183.22 cm−1 2179.77 cm−1

Laser Current Ramp 238.0-242.0 mA 297.0-300.2 mA

Laser Temperature 11.28 ◦C 20.85 ◦C

Table 4.3.: Laser parameters for the first HPSDS experiments in the lab (with the Rigol 4162) and the field campaign

(with the AD9959).

and a higher detector noise. The consequence was to select a different ro-vibrational absorption

line of CO, located at 2183.22 cm−1. Subsequently, the laser current and temperature, listed in

Table 4.3, have been identified as useful.

From [237] it is known, that the maximum phase shift is generated, if the sine-wave frequency

is approximately 0.58 times the FWHM of the absorption line. Considering a pressure of

100 mbar in the gas measurement cell, the FWHM of the probed absorption line is ≈0.014 cm−1,

which corresponds to ≈420 MHz. Subsequently, the optimum modulation frequency would

be ≈244 MHz, which is, neither supported by the signal generator, nor by the MCT detector

(electrical bandwidth: 200 MHz).

To avoid this hardware limitation, the pressure in the gas measurement cell was reduced to

30 mbar, resulting in an FWHM of ≈127 MHz. As a higher modulation frequency affect the

maximum phase shift less than lower ones (here: ≈5 % smaller), this parameter has been set to

100 MHz.

As HPSDS has been implemented in the prototpye to quantify rather high levels of CO in the

ambient air, the calibration range was adjusted too. The test gas bottle contained CO with a

concentration of 100 ppmv in N2 (Air Liquide Austria, Schwechat, AT) and has been diluted

with N2 5.0. The measured concentrations covered the range 0-20 ppmv whereas each step was

held for 5 min. A selection of HPSDS spectra, recorded during the calibration experiment, and

the resulting calibration curve are shown in Figure 4.5. One can clearly see that the shape of

the spectra are as expected from the theory (compare with Figure 2.23). The linearity of the

calibration and the LOD derived from the SNR at 10 ppmv are listed in Table 4.4.

The mechanical dimensions of the prototype, however, prevented an integration of the laboratory

signal generator and it was replaced by a development board, based on the chip AD9959. In ad-

dition, the laser settings have been adjusted to measure CO again at 2179.77 cm−1, avoiding pos-

sible influences from the significantly different laser parameters (295.0-300.2 mA, 22.45 ◦C).
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4.4. Field Experiments
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Figure 4.5.: HPSDS spectra of CO at 2183.77 cm−1, recorded with the prototype. The minimum in the HPSDS

spectrum correlates with the concentration of the target analyte, as one can see from the linear calibration.

Signal

Generator

Calibration R2 SNR at 10 ppmv,

1 Hz Sample Rate

1σ Detection Limit (ppmv),

1 Hz Sample Rate

Rigol 4162 0.99802 32 0.31

AD9959 0.99880 124 0.08

Table 4.4.: Linear response and detection limits for CO, recorded with HPSDS and two different signal generators.

Figure 4.6 shows HPSDS spectra recorded at different CO concentrations, the decreasing phase

signal (caused by the presence of the analyte), and the linear calibration curve. It is immediately

visible that the spectra are different, compared to the first HPSDS calibration. This is most likely

caused by operating the QCL at a relatively high laser current, which reduces the effectiveness

of amplitude modulation and, although not further investigated, optical side bands with different

amplitudes. Again, the minimum of the HPSDS spectrum is in linear relationship with the

concentration, defined by the gas mixing rig.

4.4. Field Experiments

While it is sufficient to demonstrate the functionality of a prototpye for the TRLs 3 to 5 under

optimized lab conditions, achieving TRL 6 requires already testing in the intended environment.

Experiments in the lab differ significantly from field campaigns and additional challenges are,

to name a few, transportation, remote location/limited access and durability. Their effect on the

measurements and possible solutions shall be briefly mentioned, before discussing the performed

field campaigns.
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Figure 4.6.: HPSDS spectra of CO and the calculated calibration curve. The laser parameters are similar to the ones

used in 2f-WMS and the sine-wave for modulating the QCL was generated by the AD9959.

It is known that experimental setups equipped with optical components are sensitive to vibrations

and mechanical impacts. Compared to the electronics rack, special care has to be taken when

the optics rack of the prototype is transported. This issue can, for example, be addressed by

simplifying and reducing the number of optical elements, installing the components in a rigid

construction, or by employing a mechanically more robust measurement technique.

Closely related with transportation is the geographical location of measurement sites and the

limited access. Performing experiments in the laboratory or on the University campus allows

usually easy access to the equipment. In contrast, servicing a prototype at a remote measurement

site includes often traveling (even if the location is within the same city) and, in many cases,

coordination with project partners. Installing a cellular modem gives simple remote-access to the

measurement-software and allows monitoring the hardware functionality.

The third identified challenge is durability. A prototype in the lab is often only turned on if, e.g.,

the optics need to be adjusted, the software is tested, calibration experiments are performed

or Allan-Werle plots are recorded. Subsequently, the hardware/software runs only a few hours

per day and long-term issues, like buffer overflows in the software, a filling hard drive or an

unexpected software update, are a minor issue. Measurement campaigns, in contrast, require the

sensor to operate autonomously, 24/7, without any interruptions.

With these challenges in mind, two successful measurement campaigns have been performed

with the multi-gas-analyzer and will be discussed in detail.
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4.4. Field Experiments

4.4.1. Szombathely - January 2019

The first field test has been carried out in the city Szombathely (HU), together with the project

partner Green Lab Hungary Engineering (Budapest, HU). The measurement site (Vépi út 12,

9700 Szombathely, HU, 47°13′55.4′′N, 16°38′52.7′′E) has been selected, because the project

partner already operates there a mobile laboratory for ambient air monitoring. It is installed

in a van (Peugeot Boxer) and two 19” racks hold reference devices to monitor the following

pollutants:

• Particle counter (MP 101M, ENVEA, Poissy, FR)

• NO, NO2, NOx (Model 42i, Thermo Fisher Scientific, Waltham, MA, USA)

• SO2 (Model 43i, Thermo Fisher Scientific, Waltham, MA, USA)

• CO (Model 48i, Thermo Fisher Scientific, Waltham, MA, USA)

• O3 (Model 49i, Thermo Fisher Scientific, Waltham, MA, USA)

In addition, the mobile laboratory is equipped with an automated calibration system (Sonimix

6000, LNI Swissgas, Versoix, CH), test-gas bottles, two sample inlets, a manifold, air-condition,

an industrial computer and various meteorologic sensors (temperature, wind-speed and direction).

The measurement site itself is located in the industrial part of the town and close to a wood-

processing company. An ambient air monitoring station, operated by the Hungarian Air Quality

Network (Ministry of Agriculture, HU) is in 2.1 km distance and its data has been evaluated as

well.

The prototype has been installed in the van and data has been recorded between January 11

and 22, 2019. As the focus of ambient air monitoring is rather gaining information over long

periods of time than measuring short time events, like a truck passing by the measurement site,

the sequential monitoring (one analyte after another and switching the active QCL every 10 min)

is sufficient. Similar, the data supported by the project partner are average-values of 15 min and

the temporal resolution of the Hungarian Air Quality Network is 1 h.

Due to the development state of the multi-gas-analyzer, the focus was on the analytes NO, NO2

and CO. Moreover, only 2f-WMS has been employed to quantify the pollutants, as at that time

HPSDS has not yet been implemented in the prototype.

Figure 4.7 shows the results from that measurement campaign in Szombathely. One can see that

the values, derived from the prototype follow the trends of both, the reference values from the

project partner, as well as the ones from the air quality network. A possible explanation for the

similar trends in the concentration of the pollutants is that the source is in significant distance
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4. Experiments and Results

to the town. This could be, for example, the slowly changing traffic on a local highway, or a

changing wind direction, transporting pollutants from a distant factory towards the town. Further

investigations on its origin, however, would require additional information on the wind-direction

and wind-speed, and would be part of a dedicated study.
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Figure 4.7.: Results of the measurement campaign in Szombathely in January 2019. The results gained with the

multi-gas-analyzer are comparable with the ones from the reference equipment, installed at the same

location, and the data from the Hungarian Air Quality Network.

4.4.2. Vienna - October and November 2019

The second measurement campaign was in cooperation with the Municipal Department for

Environmental Protection (MA 22) of Vienna (AT) and has been carried out between October 22

and November 29, 2019. In contrast to the first one, where the multi-gas-sensor was located in

an industrial part of the city, the measurement location was in an urban area. The sample intake

was next to a busy road, with an intersection in ≈50 m distance. The equipment has been set up

in a dedicated laboratory of an administrative building (Hietzinger Kai 1-3, 1130 Vienna, AT,

48°11′18.3′′N, 16°18′0.0′′E).

The measurement station was equipped with a calibrator (ASGU, Horiba, Kyoto, JP), the required

calibration gas bottles, an automated remote control system, a manifold and reference devices to

quantify the following analytes:

• NO, NO2, NOx (APNA-370, Horiba, Kyoto, JP)

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.4. Field Experiments

• CO (APMA-370, Horiba, Kyoto, JP)

4.4.2.1. Long-Term Monitoring

Again, the focus of the campaign was on the analytes CO, NO and NO2. The greenhouse-gas

N2O was irrelevant, as the measurement site is located in a city and its most significant human

source is agriculture. The pollutant SO2 is also of minor interest, as it is known from previous

studies, carried out with reference equipment, that the typical levels in Vienna are below 3 ppbv

and, if they are slightly increased, usually caused by a refinery, close to Vienna.

Like during the field campaign in Szombathely, the multi-gas-analyzer has been operated in

automated switching mode, where each pollutant was monitored for 10 min, before activating

the next QCL. With keeping in mind that the Directive 2008/50/EC aims to ensure a clean air on

a long term perspective, the 10 min-average-values have been accepted to be comparable with

the official average-values of 30 min.

The results of the prototype and the reference hardware can be found in Appendix E, and a

representative plot, showing the concentrations of the three pollutants of one week can be seen

in Figure 4.8.
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Figure 4.8.: Exemplary concentration profile of the pollutants CO, NO and NO2, recorded during the measurement

campaign in Hietzing (Vienna, AT), in October/November 2019.

Compared to the first field test, the concentrations of the pollutants reach much higher levels

during the day. This can be traced back to the traffic on the road next to the the sample intake.
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4. Experiments and Results

As the traffic is at a minimum during the night, NO and NO2 levels reach almost 0 ppbv and CO

is reduced to its natural ambient air concentration of ∼200 ppbv. Together with the increasing

number of vehicles during the morning hours, the pollution increases too, as it can be seen in the

diagrams. Around midday, the concentrations decrease slightly, and reach the levels from the

morning again in the late afternoon/early evening. This daily rhythm is clearly visible during the

working days from Monday to Friday. On the weekends, in contrast, the traffic is less and this

effect is significantly reduced.

From a technical point of view, the relevant result is the good agreement of the values derived

with the prototype and the data retrieved from the reference equipment. A better way to visualize

this, is a scatter plot, as shown in Figure 4.9. Here, the values from the reference devices are

plotted on the x-axis and the data from the prototype on the y-axis. If the equipment was ideal

and both would deliver identical results, all points would be on a single line, with the slope

k = 1 and no offset. Keeping in mind, that the measurement principles of the prototype and the

reference equipment are different and that simplifications have been made by assuming that the

average of 10 min (laser-based sensor) and the average of 30 min are equal, it is obvious that the

scatter-plot cannot deliver a perfect line. However, as one can see in Figure 4.9, the individual

data points are located in vicinity of the slope with k = 1. The different colors in the plot shall

indicate the data quality and comparability of the laser based and the reference sensors. Dots

in blue represent 90 % of the data points, sorted by their distance to the ideal behavior. The red

ones are the remaining 10 % of the data points and one could argue that these are outliers.
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Figure 4.9.: Visualization of the recorded data of the reference equipment and the prototype as a scatter plot. The

colors indicate the match of the different sensors. The green line has a slope of k = 1 and represents

the ideal situation, where the prototype delivers the same values as the reference equipment. (a): NO2,

(b): NO, (c): CO.
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4.4. Field Experiments

4.4.2.2. Monitoring One Pollutant in Detail for Several Hours

Although the focus during this second field campaign was again on the evaluation of the long-

term applicability for ambient air monitoring, two additional experiments have been carried out.

The first one took place between October 30 and November 2 and it investigated the rapidly

changing concentrations of the pollutants, that are usually suppressed by averaging the sensor

data to produce the 30 min values. To do so, the automatic switching between the lasers has been

deactivated and a single analyte has been monitored with a temporal resolution of 1 s over 8 h.

The recorded data has been filtered with a moving-average filter over 10 s and the resulting data

is plotted together with the reference values (temporal resolution: 1 min) in Figure 4.10.

As expected, the results recorded with the prototype are almost identical to the data, delivered

by the commercial reference equipment. Similar to the already discussed long-term results, the

concentration of the pollutants is significantly reduced during the night and concentration levels

increase in the morning hours. With the higher temporal resolution, it is now possible to identify

sharp peaks in the pollution during the night and strong fluctuations of the analyte concentration

during the the day. For a better visualization of these events, the grey sections in Figure 4.10 are

magnified in the plots below.

With the information that a light-controlled intersection is located in ≈50 m distance to the

sample intake, it is obvious, that these peaks of pollution are caused by the traffic. In detail, the

total light cycle is 120 s, whereas the main road (Hietzinger Kai/B1) is active for 95 s and the

side road (Dommayergasse) for 25 s. The periodic stops of the traffic have been identified in

the time diagram but should be visible in the frequency domain of the recorded signal as well.

Therefore, the data has been analyzed with an FFT algorithm and the frequency components are

plotted for the individual analytes in Figure 4.11.

The FFT revealed clear peaks at the frequencies 0.010 Hz and 0.008 Hz for the analytes NO2 and

NO, respectively. This fits perfectly to the light cycle of the intersection. For CO, however, the

FFT has not been able to identify any periodic signal, which is most likely due to the relatively

long intervals between events during the night.
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4. Experiments and Results
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Figure 4.10.: Observing each analyte for 8 h with a increased temporal resolution (prototype: 1 s, reference equip-

ment: 1 min).

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.4. Field Experiments

0.00 0.01 0.02 0.03 0.04
Frequency (Hz)

0

1

2

3

4

5

Am
pl

itu
de

 (a
.u

.)

(a) NO2

200 100 66 50 40 33 28 25
Time (s)

0.00 0.01 0.02 0.03 0.04
Frequency (Hz)

0

1

2

3

4

5

6

7 (b) NO

200 100 66 50 40 33 28 25
Time (s)

0.00 0.01 0.02 0.03 0.04
Frequency (Hz)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0 (c) CO

200 100 66 50 40 33 28 25
Time (s)

Figure 4.11.: Converting the time-series of a single pollutant into the frequency domain helps to identify repeating

events.

4.4.2.3. Field Measurements with HPSDS

Closely related to the experiments, where one pollutant was measured for an extended time period

with 2f-WMS, is a long-term test of HPSDS. Here, the pollutant CO has been monitored with the

dispersion based technique for 42 h (November 26-28) to evaluate and verify the applicability

in the field. The results of the reference hardware and the prototype are plotted in Figure 4.12

and the time diagrams are again almost identical. The relatively high CO concentration (average:

≈500-700 ppbv, with several peaks >1.5 ppmv) and the subsequent high absorbance, have been

the optimum conditions to test the applicability of HPSDS.
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Figure 4.12.: CO concentration recorded with HPSDS and the commercial NDIR-based reference equipment.

Converting the time series of the CO concentration to the frequency domain reveals, as shown in

Figure 4.13, a significant peak at 0.008 Hz. This corresponds to the already discussed light-cycle

of 120 s and emphasizes the readiness of HPSDS for field campaigns.
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4. Experiments and Results
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Figure 4.13.: Similar to the measurements of NO and NO2, the FFT of the time series recorded with HPSDS shows

a repeating event with 0.008 Hz.

The results from the measurement campaigns in Szombathely and Vienna show that the perfor-

mance of the prototype is comparable to the reference equipment. As the intention of ambient

air monitoring lies in improving the air quality for the inhabitants in an area/city/country, it has

been acceptable to quantify each pollutant for 10 min and to compare its average with the official

30 min-value, derived from the reference equipment.

The additional experiments in Vienna, where a single analyte has been monitored over several

hours, have proven the fast response of the laser-based prototype. The light-controlled intersection

close to the measurement site has been the perfect benchmark to test this property of the multi-

gas-analyzer.

Finally, it has been possible to test the applicability of HPSDS in the field together with estab-

lished reference equipment. As it is a dispersion based technique, its main advantage lies in the

reduced sensitivity towards the transmitted light. The increased CO concentrations, caused by

the traffic close to the sample intake, have been the perfect test conditions to verify this.
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5. Conclusion, Outlook

Over the decades, numerous research projects have shown the applicability of infrared lasers

to quantify greenhouse gases, pollutants and other trace gases in the ambient air by probing

their ro-vibrational absorption lines. Depending on the applied measurement technique and the

selected wavelength, concentration measurements in the ppbv-, pptv- and even ppqv-range have

been achieved. The ongoing improvements of the light sources (e.g. ICLs and recently frequency

combs) and the progress in measurement techniques (especially photo-acoustic, photo-thermal

and dispersion based ones) are the key to develop high-precision sensors and novel prototypes.

They have the chance to outperform established measurement techniques, like the gas chromatog-

raphy or fluorescence-based devices, in terms of lower detection limits, reduced measurement

time or by recovering more information from the sample. Quantifying multiple analytes with one

device simultaneously reduces the required space in mobile laboratories, makes them more en-

ergy efficient and can also help to extend the service intervals. In the simplest case, it is sufficient

to adjust the temperature/laser current of the (DFB-) QCL to quantify a different analyte than the

initially intended one. Although QCLs with an external cavity cover a significantly wider spectral

range (∼200 cm−1), they are often avoided for trace gas measurements, as their mode-hop-free

range is limited and their modulation properties do not compete with DFB-QCLs. Subsequently,

it is still preferred to install one dedicated DFB-QCL for each analyte and to combine them with

either beamsplitters, dichroic mirrors or even galvo mirrors.

The presented multi-gas-analyzer is not the first prototype that tries to revolutionize the equipment

installed in mobile laboratories. Other research groups and start-ups have, for example, developed

open-path sensors with an optical path length of several hundreds of meters, prototypes that can

quantify more than seven gases or ultra compact devices measuring down to the ppqv-region.

How this prototype contributes to the commercialization of QCL-based ambient air monitors in

detail shall be summarized in the following section.

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5. Conclusion, Outlook

5.1. Achievements

Within this work, a QCL based multi-gas-analyzer has been developed to quantify the pollutants

CO, NO, NO2 and SO2 in the ambient air. In addition, is is possible to quantify the greenhouse

gas N2O too, as it features a ro-vibrational absorption line that is accessible with the laser for CO.

A careful wavelength selection of the required QCLs and reducing the pressure in the gas cell

allows interference-free measurements of the target analytes. In contrast to fundamental research

projects, one aim was to rely on commercially available components in this setup. Subsequently,

the optics, electronics and most of the mechanical parts, have been ordered from established

companies, which helps to reduce the development time significantly.

The employed measurement technique is 2f-WMS, which is commonly used in near- and mid-IR

laser spectroscopy. Here, the laser diode is modulated with a sine-wave and slowly tuned across

an absorption feature. The detector signal is then demodulated with a software-based lock-in-

amplifier at the 2nd harmonic, which delivers the 2f-spectrum. With this, it has been possible

to achieve detection limits in the low single-digit ppbv-range for the target analytes, which is

required to be applicable for ambient air measurements.

The precise planning with CAD software and minor simplifications made it possible to keep the

overall dimensions of the prototype within the defined limits. Placing the optical components and

(most of) the required electronics in two separate 19” racks makes it transportable and already

competitive to commercial reference equipment.

Two successful measurement campaigns underline the performance and readiness of the 2f-

WMS based sensor for ambient air monitoring. Both revealed that the values derived from the

prototype are comparable with the 30 min-average values that are demanded by the Directive

2008/50/EC. Additional experiments during the field evaluation in Vienna showed, that if only a

single analyte is monitored, the responsiveness of the setup is sufficient to resolve the cycle of a

signal controlled intersection.

Finally, HPSDS has been integrated in the 2f-WMS setup to quantify CO. The additional

components included off-the-shelf parts and, in the final version, an evaluation board to modulate

the QCL in the high MHz-region. The dispersion based technique has been tested during the 2nd

campaign for 42 h and delivered almost identical results as the reference equipment.
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5.2. Future Improvements

5.2. Future Improvements

Several simplifications have been made to achieve the desired Technology Readiness Level 6

within the project’s time-frame. Subsequently, the prototype could be improved in different ways

to deliver even more precise results and to quantify all target analytes simultaneously.

First of all, one could adopt the 2f-WMS technique with an algorithm for calibration-free

measurements. To do so, it is necessary to characterize the tuning behavior of the QCL in more

detail and to include the lock-in-signal of higher harmonics to the calculations.

Operating all QCLs simultaneously is another important feature, but it involves major hardware

modifications. In particular, each QCL would require its dedicated laser-driver, sine-wave

generator and lock-in amplifier. While the demodulation is done in software and therefore a

minor issue, three additional high-precision current-sources are difficult to fit into the electronics

rack and also a cost-factor.

Closely related is the improvement of the lock-in amplifier and the control of the laser driver

in general. One could replace the installed measurement-PC with a more efficient single-board-

computer and reduce the complexity of the system. In addition, the lock-in amplifier could be

either designed in hardware (analog), on a DSP or even on an FPGA. The simultaneous modula-

tion of all QCLs would also benefit from the chip integration, as it involves only copy/paste of

the individual code-blocks.

A major topic is to quantify as many pollutants and greenhouse gases as possible with a single

analyzer. Due to the different molecular properties, this would require additional wavelengths

and therefore additional QCLs. Depending on the application and the analytes of interest, one

could employ QCL-arrays, where multiple DFB-QCLs are processed from a single gain chip.

Assuming that each gain chip covers a gain range of ≈250 cm−1, six gain chips could cover the

range 1000-2500 cm−1, in which most of the interesting analytes show absorption lines.

More information on the composition of the ambient air could also be delivered by installing

additional, specialized sensors. In detail, one could use low-cost sensors to quantify CO2 or the

humidity.
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[144] E. Mujagić et al. “Low divergence single-mode surface emitting quantum cascade ring lasers”.

In: Applied Physics Letters 93.16 (2008), p. 161101. DOI: 10.1063/1.3000630.

[145] C. Schwarzer et al. “Grating duty-cycle induced enhancement of substrate emission from ring

cavity quantum cascade lasers”. In: Applied Physics Letters 100.19 (May 2012), p. 191103. DOI:

10.1063/1.4712127.

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://doi.org/10.1007/s00340-005-1965-4
https://doi.org/10.1364/AO.42.004877
https://doi.org/10.1007/s00340-017-6715-x
https://doi.org/10.1007/s00340-017-6715-x
https://doi.org/10.1364/OE.24.010391
https://doi.org/10.3233/BSI-180177
https://doi.org/10.1039/c0an00532k
https://doi.org/10.1021/acs.analchem.7b03878
https://doi.org/10.1063/1.119208
https://doi.org/10.1063/1.1883332
https://doi.org/10.1063/1.120585
https://doi.org/10.1364/OL.25.000230
https://doi.org/10.1063/1.4801906
https://doi.org/10.1109/LPT.2017.2681127
https://doi.org/10.1063/1.1313807
https://doi.org/10.1063/1.3000630
https://doi.org/10.1063/1.4712127


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Bibliography

[146] C. Schwarzer et al. “Linearly polarized light from substrate emitting ring cavity quantum cascade

lasers”. In: Applied Physics Letters 103.8 (Aug. 2013), p. 081101. DOI: 10.1063/1.4819034.

[147] R. Szedlak et al. “On-chip focusing in the mid-infrared: Demonstrated with ring quantum cascade

lasers”. In: Applied Physics Letters 104.15 (Apr. 2014), p. 151105. DOI: 10.1063/1.4871520.

[148] Y. Bai et al. “High power, continuous wave, quantum cascade ring laser”. In: Applied Physics

Letters 99.26 (Dec. 2011), p. 261104. DOI: 10.1063/1.3672049.

[149] A. Harrer et al. “Mid-infrared surface transmitting and detecting quantum cascade device for

gas-sensing”. In: Scientific Reports 6.21795 (Apr. 2016), pp. 1–6. DOI: 10.1038/srep21795.
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Figure A.1.: Simulated spectra of CO and its possible interferants at different pressures.
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Figure A.2.: Simulated spectra of NO and its possible interferants at different pressures.
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Appendix A. Simulated Gas Spectra
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Figure A.3.: Simulated spectra of NO2 and its possible interferants at different pressures.
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Figure A.4.: Simulated spectra of SO2 and its possible interferants at different pressures.
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Appendix B.

1f-, 2f- and 3f-WMS-Spectra
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Appendix B. 1f-, 2f- and 3f-WMS-Spectra
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Figure B.1.: 1f, 2f and 3f-WMS-spectra, recorded during the calibrations.
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Appendix C.

Demultiplexer
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Figure C.1.: Schematic of the wiring of the QCLs, the demultiplexer and the bias tee. The interface between the

software and the relais module is realized with a low-cost microcontroller (ATmega 328, Microchip

Technology, Chandler, AZ, USA).
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Appendix D.

Mechanical Parts, CAD Drawings
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Figure D.1.: CAD drawings of the optical setup (without enclosure, top) and the electronics racks (without cover

plate, bottom).
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Appendix D. Mechanical Parts, CAD Drawings
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Figure D.3.: Additional custom-built parts.
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Results Vienna, October 22 -

November 29, 2019
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Appendix F.

Scientific Publications on

Infrared-Based Gas Sensing

Publication I

A Quantum Cascade Laser-Based Multi-Gas Sensor for

Ambient Air Monitoring

Authors: Andreas Genner, Pedro Martı́n-Mateos, Harald Moser and Bernhard Lendl
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Abstract: A quantum cascade laser-based sensor for ambient air monitoring is presented and five

gases, affecting the air quality, can be quantified. The light sources are selected to measure CO, NO,

NO2, N2O and SO2. The footprint of the measurement setup is designed to fit in two standard 19”

rack (48 cm × 65 cm) with 4 height units (18 cm) whereas one is holding the optical components and

the other one contains the electronics and data processing unit. The concentrations of the individual

analytes are measured using 2f-Wavelength Modulation Spectroscopy (2f-WMS) and a commercially

available multipass gas cell defines the optical path. In addition, CO can also be measured with a

dispersion-based technique, which allows one to cover a wider concentration range than 2f-WMS.

The performance of this prototype has been evaluated in the lab and detection limits in the range of

1ppbv have been achieved. Finally, the applicability of this prototype for ambient air monitoring is

shown in a five-week measurement campaign in cooperation with the Municipal Department for

Environmental Protection (MA 22) of Vienna, Austria.

Keywords: quantum cascade laser; infrared; ambient air; wavelength modulation spectroscopy;

heterodyne phase sensitive dispersion spectroscopy

1. Introduction

Measuring the air quality has become an important task in analytical chemistry over the last

decades and it was mainly caused by the combustion of fossil fuels. While CO2 is the primary product

of the oxidation process, toxic gases, such as CO, NO, NO2 and SO2, are formed as well. Measures,

such as the desulfurizing of diesel, gasoline or the resulting flue gas already improved the air quality in

industrial cities significantly during the last decades [1,2]. A recent example of further efforts to reduce

air pollution is the limitation of diesel cars in cities with high NOx levels, which are considered to

cause respiratory diseases [3]. Nevertheless, the effectiveness of those measures needs to be evaluated

and are therefore in the interest of (non-) governmental air-quality measurement networks. The

requirements for such a measurement station are typically regulated in local laws and the globally

important regulations, such as the Directive 2008/50/EC (EU), the Clean Air Act (USA) and the Law on

Prevention and Control of Air Pollution (China) should be noted.

The instrumental equipment can differ between the measurement stations but in general, it can

be said that each analyte/measurement parameter requires different equipment. For example, SO2 is

measured with UV fluorescence, the NOx detection relies on chemiluminescence and the CO/CO2 is

quantified with a non-dispersive infrared sensor. One way to reduce the investment/operation costs and

the required space of the measurement station is to combine and simplify the equipment/components.

As the previously listed analytes are gaseous and rather small molecules, an infrared based technique
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could be applied. In infrared spectroscopy, Fourier transformation-based spectrometers are still the

“golden standard” and cover the whole mid-IR. However, the typical concentrations of the target

analytes require an optical path length >20 m, which is difficult to achieve in combination with standard

Fourier transform infrared (FTIR) equipment.

An alternative is to replace the light source with a collimated semiconductor laser. Beside the

higher optical power and the better beam quality, they do not require an interferometer. Instead, the

emitted wavelength can be controlled by the temperature of the gain element and the injected current.

Lead–salt diode lasers were the first successful semiconductor based mid-IR diode lasers [4–11],

but only a decent number of gas sensors, working in the mid-IR, have been demonstrated

and published [12–19]. This has changed with the development of the quantum cascade laser

(QCL) [20]. The first devices required liquid nitrogen for cooling and allowed only pulsed

operation, but they are currently commercially available in continuous wave mode at room

temperature and emit up to several hundreds of mW. So far, numerous measurement techniques

with QCLs have been applied to ambient air monitoring—ranging from Tunable Diode Laser

Absorption Spectroscopy (TDLAS) [21–23], 2f-Wavelength Modulation Spectroscopy (2f-WMS) [24],

photoacoustic [25–27] photothermal spectroscopy [28], cavity enhanced absorption spectroscopy [29]

and also dispersion-based ones [30] have been demonstrated.

In this work, we present a sensor based on 2f-WMS that is capable to quantify the analytes CO,

NO, N2O, NO2 and SO2 in the single digit ppbv-range in ambient air. With the exception of the

breadboard and a 3d-printed mount for a reference cell, all other parts are off-the-shelf components

and easily available. In addition, we show the integration of Heterodyne Phase Sensitive Dispersion

Spectroscopy (HPSDS) to cover a significantly higher CO concentration range and present results of a

measurement campaign in Vienna.

2. Design Considerations for the Multi-Gas Sensor

Due to the molecular properties of the analytes of interest, their absorption lines are clearly

separated, in the range between 4 and 8 µm (Figure 1a) and could easily be quantified with filter-based

IR sensors. As the ambient air contains other IR active molecules like H2O, CO2 or CH4 as well, only

a few absorption lines are interference-free and suited for quantification with IR spectroscopy. This

situation is illustrated in Figure 1b whereas the line strengths of the individual analytes are plotted on

a logarithmic scale.

 

(a) (b) 

Figure 1. Although the target analytes show nicely separated absorption regions (a), the presence of

other gases in the ambient air, such as H2O, CH4 and CO2, require a precise wavelength selection of

the laser sources (b).

QCLs with an external cavity (EC-QCLs) can already cover a spectral range of >400 cm−1 [31], but

they are rather unsuited for gas phase measurement. This is caused by the mechanical parts that are

required to select the emitted wavelength and mode hops are a common issue. They are mainly used

for measuring solids [32,33], liquids [34,35] or polyatomic gasses and vapors with broad absorption

bands [36,37]. During the last decades, QCLs with distributed feedback (DFB) gratings [38] have
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proven as reliable light sources for gas phase spectroscopy. An optical grating, which is etched into the

waveguide during the manufacturing process, is responsible for singe mode emission. Subsequently,

the emitted wavelength can only be tuned by either changing the injected current or the temperature

of the gain element. Common values for this tuning range are a few wavenumbers and usually more

than one absorption line of the target analyte is within the accessible range.

As the absorption lines of our target analytes are distributed over the mid IR range and cannot be

covered by a single DFB-QCL, multiple lasers are necessary. On the wafer scale level, QCL-arrays in

different geometries have been demonstrated [39–42] and even the integration of infrared detectors is

possible [43]. Due to the weak demand of such arrays, they can still be seen as research devices and

the preferred way is to employ individually packaged DFB-QCLs that are then combined with dichroic

mirrors or beamsplitters.

2.1. Spectral Coverage of the QCLs and Absorption Lines of the Analytes

The DFB-QCLs that are used in this multi-gas sensor are commercially available (AdTech Optics,

City of Industry, CA, USA and Alpes Lasers, St. Blaise, CH) and mounted in a high heat load (HHL)

package. Each device was characterized with a high resolution FTIR spectrometer (Vertex 80v, Bruker

Optics, Ettlingen, DE) whereas spectra were recorded at different gain element temperatures and laser

currents. The emitted wavelength, depending on the operation parameters, is plotted in Figure 2a–d

and spectra of the target analytes and their major interferences are shown as well. The data is derived

from the HITRAN database [44,45] and calculated for a pressure of 100 mbar, room temperature and

76 m optical path length. The laser parameters used for the further experiments are listed in Table 1.

 

(a) (b) 

(c) (d) 

Figure 2. Characterization of the cw-QCLs. While the lasers for CO (a) and SO2 (d) are mode-hop-free,

the devices for NO (b) and NO2 (c) have mode-hops within their operation range. In addition,

absorption spectra of the analytes and other interfering species are plotted. The grey sections indicate

the investigated absorption lines of the analytes.
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Table 1. Laser parameters used for 2f-Wavelength Modulation Spectroscopy (2f-WMS). The amplitudes

of the sine wave modulation were adjusted to achieve the maximum lock-in amplifier signal, according

to [46].

Manufacturer Analyte
Wavenumbers

(cm−1)

Temperature
(◦C)

Current Ramp
(mA)

Modulation
(mA)

AdTech Optics CO 2179.77 20.85 297.0–300.2 1.0
N2O 2180.42 17.61 297.0–300.2 1.1

AdTech Optics NO 1900.08 21.09 514.0–520.0 1.6
AdTech Optics NO2 1630.33 27.57 640.2–646.5 2.8
Alpes Lasers SO2 1380.93 3.95 625.0–640.0 5.2

Although the QCLs emit typically single-mode, two devices showed mode hops during the

characterization. In the case of the QCL for NO, this occurs at laser parameters where the analyte is

not absorbing and therefore not relevant (Figure 2b). In contrast, the laser for NO2 has a mode hop at

the same wavelength as the probed absorption line (Figure 2c). However, the thermal and electrical

parameters of the gain element allowed us to find suitable laser parameters where the mode hop does

not influence the measurements.

2.2. Opto-Mechanics

The laser beams were collimated and then directed with gold mirrors (PF-10-M03, Thorlabs,

Newton, NJ, USA) to the first beam splitter stage (CaF2, BSW510, Thorlabs, Newton, NJ, USA). Here,

two lasers that were on the same aluminum heat sink were combined. A third beam splitter allowed

us to combine the beams from the first stages. Approximately 45% of the light was redirected with a

flat mirror (PFE10-M01, Thorlabs, Newton, NJ, USA) into the 76 m long Herriott-type multipass gas

cell (AMAC 76, Aerodyne, USA) and then focused (MPD149-M01, Thorlabs, Newton, NJ, USA) onto a

thermoelectrically cooled MCT detector (PCI-2-TE-12, 200 MHz bandwidth, Vigo Systems, Ozarow

Mazowiecki, PL). The other half can be used to track the laser parameters by passing a gas reference

cell (Wavelength References, Corvallis, OR, USA) and an additional reference detector (PCI-4TE-9,

20 MHz bandwidth, Vigo Systems, Ozarow Mazowiecki, PL). The overall dimensions of the optical

setup were 45 cm × 65 cm, making it perfectly fit in a 19” server rack (IPC 4U-4129-N, Inter-Tech

Elektronik, Langenhagen, DE), as shown in Figure 3.

 

 

 
(a) 

 
(b) 

Figure 3. Schematic layout of the individual components for the 2f-WMS based sensor (a) and the

assembly of the optical setup in a standard 19” server rack (b). The laser driver, data-acquisition-card,

power supplies and the measurement PC are installed in a second rack (not shown).
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Sensors 2020, 20, 1850 5 of 13

2.3. 2f-Wavelength Modulation Spectroscopy

The prototype is based on Wavelength Modulation Spectroscopy (WMS), which is closely related

to the TDLAS. Here, the laser is tuned over an absorption line (e.g., by changing the injected current,

tuning an external cavity grating, etc.) and attenuated by the presence of the analyte. After passing the

gas measurement cell, the light hits a detector and its signal can directly be used for the Beer–Lambert

relation. In contrast, WMS uses a sine wave on top of the slow sawtooth ramp and a lock-in amplifier

processes the received detector signal. An ideal lock-in-amplifier recovers only the signal components

that arise from the sine wave modulation and suppresses all other frequencies with a low pass filter. It

is therefore perfectly suited to extract the desired signals from noisy environments. By demodulating

at the harmonics of the sine wave, one gains information on the shape of the absorption line and

the peak height of the second harmonic is proportional to the absorption of the analyte. The noise

at the maximum of the 2f-sepctrum is further reduced by fitting the center of the spectrum with a

parabolic function.

2.4. Electronic Parts

A data acquisition card (NI 6366, National Instruments, Austin, TX, USA) produced the control

signal for the laser driver (QCL 1000 OEM, Wavelength Electronics, Bozeman, MT, USA). It consisted

of a 1 Hz sawtooth ramp with a 20 kHz sine wave on top. The rather slow sawtooth function

was responsible for tuning the emitted wavelength over the absorption line and the sine wave was

responsible for the wavelength modulation. Each QCL requires specific amplitudes of the individual

signal components as the material properties and dimensions of the gain chips differ. Considering the

additional costs and the required space of individual laser drivers, a low-cost 1-to-4 demultiplexer

(4 channel relay module, SainSmart Technology, Lenexa, KS, USA) redirects the laser current to the

desired QCL. Each laser was protected with a dedicated fuse and an electrostatic discharge (ESD)

absorber (LA44-2000, Lasorb, Sanford, FL, USA).

The detector signal was digitized with the data acquisition (DAQ) card at 1 MSPS and demodulated

with a software-based lock-in-amplifier (120 dB/decade, time constant=1 ms, FIR). The demodulation

was set to the second harmonic of the sine wave modulation (1f = 20 kHz) and, as the laser was tuning

over an absorption line with 1 Hz, a 2f-WMS spectrum was recorded every second. The hardware for

the signal processing, the measurement PC and the required power supplies were installed in a second,

dedicated 19” rack (IPC 4U-4129-N, Inter-Tech Elektronik, Langenhagen, DE) and the overall power

consumption was 280 W.

Beside the high precision laser driver, DAQ card and demultiplexer, the sensor requires an accurate

temperature control of the laser gain chips. Therefore, each HHL package had its own thermoelectric

cooling (TEC) controller (TEC 1091, Meerstetter Engineering, Rubigen, CH), which red out an NTC

and adjusts the current for the Peltier element. An additional dual-channel TEC controller (TEC 1122,

Meerstetter Engineering, Rubigen, CH) was installed to stabilize the temperature of the aluminum

plate where the HHL packages were mounted. The pressure in the multipass gas cell was adjusted

with a pressure controller (GSP-C5SA, Vögtlin Instruments, Aesch, CH) and set to 100 mbar. To avoid

mechanical vibrations, the required vacuum pump (N860.3FT.40.18, KNF Neuberger, Freiburg, DE)

was placed next to the prototype.

3. Experiments with 2f-Wavelength Modulation Spectroscopy

3.1. Lab Evaluation

The sensor was calibrated with an inhouse built gas mixing rig whereas two mass flow

controllers (GSC-B9TS-BB23, Vögtlin Instruments, Aesch, CH) defined the mixing ratio of the gas

from the individual test gas bottle and nitrogen (N2 5.0, Messer Austria, Gumpoldskirchen, AT). The

concentration was increased in a stepwise manner, covering the range between 0 and 500 ppbv. The

flow rate was set to 1 L/min and each concentration step was held for 5 min to exchange and stabilize
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the sample composition in the gas cell. As the gas sensor allows only sequential quantification of

the analytes, the QCLs were not switched during the calibration runs. The fitted peak amplitude of

the 2f-WMS-spectrum were averaged over 10 s and the resulting graphs are shown in Figure 4. The

minimum detection limits were calculated from the signal to noise ratios at 100 ppbv and are listed

in Table 2.

 

(a) (b) 

(b) (d) 

 

(e) 

Figure 4. Calibration curves (center), the associated residuals (bottom), the peak signal of the

lock-in-amplifier and selected spectra (insets) for the accessible pollutants. The calibration points

indicated in grey have been identified as outliers and were excluded from the linear calibrations.

The concentrations for the presented spectra in (a–d) were 0, 100, 200, 300, 400 and 500 ppbv; the

concentrations for SO2 (e) were 0, 200, 400, 600, 800 and 1000 ppbv.
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Table 2. Linear response and detection limits derived from the calibration for the individual

target analytes.

Analyte Calibration R2 SNR at 100 ppbv, 1 Hz
Sample Rate

1σ Detection Limit (ppbv),
1 Hz Sample Rate

CO 0.99918 308 0.32
NO 0.99998 224 0.45
N2O 0.99798 40 2.51
NO2 0.99990 233 0.43
SO2 0.99978 71 1.40

One can see from the calibrations, that the LODs for SO2 and N2O were significantly higher than

the other components. In the case for N2O, the increased noise can be traced back to fringes as the

mirrors and detector signal were optimized for the laser parameters to quantify CO. For the SO2, in

contrast, the interference free absorption lines of SO2 were in general rather weak, which resulted in

higher detection limits.

The temporal stability of the sensor was evaluated by measuring a constant concentration of the

analyte for 1 h (CO, NO, N2O and NO2: 100 ppbv, SO2: 500 ppbv). The Allan–Werle variance (Figure 5)

retrieved an optimum integration time between 30 and 100 s. This result is in the same region as other

publications [47–49] and it is assumed that thermal drifts in the lab (air conditioner) limit the maximum

integration time.

 

σ

 

Figure 5. Allan–Werle plot for five pollution relevant analytes that can be detected with the

multi-gas sensor.

3.2. Field Evaluation of CO, NO and NO2

A measurement campaign was carried out in Vienna, Austria, in October/November 2019 and the

focus was on the analytes CO, NO and NO2. As the sensor can only quantify one component at a time,

it was set to monitor one analyte for 10 min and then to switch to the next one. This guaranteed a

reasonable measurement duration for each component but also an acceptable interval. Additional

reference data was gained at the installation site using commercially available equipment, based

on chemiluminescence (NO, NO2 and NOx, Horiba APNA-370, Kyoto, JP) and non-dispersive IR

measurements (CO, Horiba APMA-370, Kyoto, JP). The data from one week is plotted in Figure 6 and

one can clearly see that the results of the QCL based sensor were very similar to the values from the

reference methods.
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(a) 

 
(b) 

Figure 6. Time series of CO, NO and NO2 during one week of the measurement campaign in Vienna.

Beside data from the QCL sensor, values from the MA 22 are plotted too (a). The intake of the

measurement station (b) is located close to an intersection of a busy road.

While the analytes NO and NO2 were always within the linear calibration range of the sensor,

several short time events with significantly higher CO concentrations occurred during the field test.

They exceeded the linear range of the calibration and the resulting data is therefore not reliable. One

solution would have been to modify the hardware by, for example, reducing the optical path length

or diluting the sample stream. However, these options have not been applicable in the experimental

setup and it was solved by integrating the Heterodyne Phase Sensitive Dispersion Spectroscopy as a

second measurement modality.

4. Heterodyne Phase Sensitive Dispersion Spectroscopy to Quantify High CO Concentrations

4.1. Required Modifications

As one can see from the recorded calibrations, 2f-WMS was perfectly suited for the quantification

of low-ppbv-concentrations, but it shows a non-linear behavior at rather high concentrations. In

particular, the gained 2f-WMS signal from CO concentrations higher than 1 ppmv was not linear

anymore and the calibration would require a non-linear fitting-function. This limitation origins from the

Beer–Lambert–Bouguer law and can be solved by changing the measurement technique. Photo-thermal

and photoacoustic methods, for example, enable a linear range over several magnitudes, but they

require special designed gas cells and cannot be implemented in the existing system. A method that

can be easily integrated in this direct absorption-based sensor is Heterodyne Phase Sensitive Dispersion

Spectroscopy [50]. Instead of quantifying the attenuation of the laser beam caused by the presence of

the analyte, the phase shift of the laser beam, introduced by the dispersion of the gas, is measured.

The basic principle is to superimpose the laser current with a sine wave in the high MHz range,

causing the emission of two additional sidebands. They are separated from the emitted center

wavelength by the applied modulation frequency. Each optical tone undergoes different refractive

indices while passing the gas measurement cell. These optical phase shifts are proportional to the

wavelength dependent dispersion of the analyte, its concentration and the optical path length. To

detect these phase shifts, the bandwidth of the detector must be in the same range as the modulation

frequency. The relevant information is the phase and it is, for a wide concentration range, independent

of the amplitude.

The required hardware modification involves standard components for radio-frequency

experiments that are commercially available. A four-channel frequency source (AD9959, Analog

Devices, Norwood, MA, USA) generated a sine wave with 100.00 MHz, which was added to the

laser current with a bias-tee (ZFBT-6g+, Mini-Circuits, Brooklyn, NY, USA). As the software-based

Appendix F. Scientific Publications on Infrared-Based Gas Sensing
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lock-in-amplifier was not capable to demodulate at the resulting frequency, the detector signal must

be downmixed with an analog mixer (ZAD-1-1+, Mini-Circuits, Brooklyn, NY, USA). The required

reference signal was slightly higher (100.01 MHz) and synthesized on the second channel of the AD9959.

The third channel generated the difference frequency (10 kHz), which allowed us to demodulate the

downmixed signal with the software-based lock-in-amplifier (Figure 7). Like TDLAS and 2f-WMS, the

absorption line was probed by tuning the center-wavelength of the QCL (1 Hz sawtooth current ramp).

 

 

 
(a) 

 
(b) 

Figure 7. (a) The laser source is intensity-modulated and generates an optical three-tone-signal. While

the laser is tuned across the absorption line, the phases of the three wavelengths are differently shifted

because of the wavelength dependent refractive indices. (b) The detector signal is downmixed to a

lower frequency and a software-based lock-in-amplifier recovers the phase information.

4.2. Calibration of CO

Again, the applicability of this hardware upgrade of the prototype was verified in the lab by

recording a calibration of CO in N2 whereas a concentration range of 0–20 ppmv was covered. In

contrast to the 2f-WMS measurements, the pressure in the gas cell was reduced to 30 mbar. This was

necessary because the maximum phase signal is achieved if the modulation frequency is 0.6 times

the full width at half maximum (FWHM) of the spectral line [51]. As the electrical bandwidth of

the detector and the signal generator are limited, one can only improve the signal by reducing the

FWHM of the spectral feature. To compensate the additional phase caused by the cables and optical

elements, a HPSDS background spectrum (only N2 in the gas cell) was subtracted. Then, the phase at

the minimum was used to calculate the linear regression. The HPSDS spectra and calibration curve

(R2 = 0.9988) were plotted in Figure 8 and the detection limit was 0.08 ppmv.

 

 
(a) (b) 

Figure 8. Heterodyne Phase Sensitive Dispersion Spectroscopy (HPSDS) spectra (a) from the calibration

of CO (b). The asymmetry of the spectra is the result of the rather high laser current, which is necessary

to achieve a sufficient signal on the detector.
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4.3. Field Test and Discussion

The applicability of HPSDS for measuring CO in the ambient air has also been tested during the

campaign and compared with values from the commercial reference sensor. To show the performance

of this advanced technique, only CO has been measured during this 42 h experiment. The retrieved

concentrations were compared with the one-minute-average values from the reference equipment and

are shown in Figure 9.

 

Figure 9. Time series of the CO concentration measured with HPSDS and the data from the NDIR

based reference equipment. The responsiveness of setup can be seen in the zoomed in plots.

Considering the different temporal resolutions of the multi-gas sensor and the reference equipment,

one can see that the graphs matched perfectly. The sudden increase of CO at the sampling point of the

measurement station was caused by the traffic light-controlled intersection, shown in Figure 6b. One

can clearly identify phases with a lower CO concentration during the night (e.g., 27 November 0:00–4:00,

28 November 0:00–5:00) and increased levels during the rush hours in the morning and evening.

5. Conclusions

In this paper, we demonstrated a QCL based sensor for monitoring gaseous analytes that strongly

contributed to the overall air quality. The electrical and optical components of the setup are commercially

available and can be, due to the installation in a standard 19” server rack, easily installed next to

commercial ambient air monitors and maybe even replace them in the future. By default, the analytes

were measured with 2f-WMS and the characterization in the lab revealed LODs <1 ppbv for the main

analytes (CO, NO and NO2) and slightly higher values for N2O and SO2. According to the Allan

variance plots, this could be improved by averaging over 30–60 s, however, an integration time of 10 s

was used to guarantee a reasonable response time. Comparing the results to other multi-components

QCL sensors, it was suspected that the wedged beamsplitters and the lack of not perfectly optimized

electronics are the main reasons for the slightly higher detection limits.

In addition, HPSDS was integrated in the sensor that was originally designed for 2f-WMS

measurements. The calibration of CO in the lab showed that the linear range of the prototype could be

extended to cover concentrations of up to 20 ppmv without replacing the gas measurement cell or

installing an additional gas dilution system.

Both techniques, the 2f-WMS and HPSDS, were applied in a measurement campaign in Vienna

and the results were in good agreement with the reference values. Subsequently, this QCL-based

multi-gas sensor can be seen as a step forward to a new generation of high precision and still very

flexible gas monitoring systems.
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Implementation and characterization of a 
thermal infrared laser heterodyne radiometer 
based on a wavelength modulated local 
oscillator laser 
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Abstract: This article presents the first implementation and the experimental characterization 
of a thermal infrared wavelength modulation laser heterodyne radiometer (WM-LHR) based 
on an external cavity quantum cascade laser. This novel WM-LHR system has demonstrated 
calibration-free operation, a superior signal to noise ratio and, more importantly, has opened 
the door for cost-efficient wide spectral range laser heterodyne radiometry in the near future. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Optical spectroscopy is arguably the technique with the highest potential for atmospheric 
sounding: the Total Carbon Column Observing Network (TCCON) [1,2], the Thermal and 
Near infrared Sensor onboard the Greenhouse Gases Observing Satellite (GOSAT) [3] or the 
Orbiting Carbon Observatory 2 spectrometers [4,5] are indeed some of the most outstanding 
examples of the capabilities of the approach. The sophisticated spectral analyzers mentioned 
above, which provide reliable estimations of the concentrations of atmospheric constituents 
such as water vapor, carbon dioxide, methane, and nitrous oxide, have been implemented 
utilizing Fourier Transform (FTS) or grating spectrometers (as virtually any other, ground-
based or spaceborne, optical atmospheric sounding infrastructure nowadays). However, and 
strongly supported by the advent of high quality, robust and compact laser sources, many 
stunning instrument designs and experimental demonstrations are paving the way for Laser 
Heterodyne Radiometers (LHR) to become the terrestrial and planetary atmospheric optical 
sounding tool of the future [6–12]. 

LHR systems provide very high sensitivity, ultra-narrow optical resolution, very confined 
field-of-view, and, due to low component count, reduced cost, high reliability, and a huge 
potential for ruggedization and miniaturization [13,14]. The LHR method has, nevertheless, 
remained essentially unchanged from the very first demonstrations performed by Menzies and 
Shumate [15,16] in the early seventies and, up to this day, most developments have been 
focused on the adoption of higher-performing components. It was only very recently that a 
new LHR spectral interrogation procedure, Wavelength Modulation Laser Heterodyne 
Radiometry (WM-LHR) [17], was proposed as a noteworthy performance enhancement step. 
WM-LHR is based on the use of a wavelength-modulated local oscillator (LO) laser in a 
manner similar to the vastly used Wavelength Modulation Spectroscopy (WMS) technique 
[18]. A preliminary WM-LHR near-infrared system implementation [17], based on optical 
communication components, recently demonstrated a very promising boost in performance 
and consistency. This paper now presents the first implementation of a thermal infrared (TIR) 
WM-LHR based on an external cavity quantum cascade laser (EC-QCL) and provides a 
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thorough characterization of the system and a comprehensive comparison of performance 
with the traditional LHR method. This novel WM-LHR system has demonstrated calibration-
free operation, a superior signal to noise ratio and, more importantly, has opened the door for 
wide spectral range radiometric measurements in the near future. The results yield a very 
clear and conclusive representation of the new and unique capabilities of this novel spectral 
analysis approach. 

2. Wavelength modulation laser heterodyne radiometry

2.1 Fundamentals of the method

The block diagram of the WM-LHR architecture can be seen in Fig. 1. The incoming optical 
signal is combined with the LO on a beam splitter and focused into the detector. The RF chain 
maintains a classical design based on amplification, band-pass filtering, RF power detection 
and lock-in signal demodulation. A ramp modulation signal is applied to the laser for 
frequency sweeping in order to facilitate the spectral interrogation of the incoming signal. 
Contrary to traditional LHR [19], WM-LHR adds a sinusoidal frequency modulation to the 
ramp signal of the laser that completely redefines the functioning of the heterodyne 
radiometer. In this way, the traditional spectral intensity detection performed by LHR is now 
converted into optical intensity differentiation (the presence of an absorption line gives rise to 
harmonics of the modulation signal that can be utilized to infer the composition of the gas 
sample under analysis) providing several noteworthy advantages in the process. 

Fig. 1. Schematic of a WM-LHR system. 

2.2 Thermal infrared wavelength modulation laser heterodyne radiometry with an 
external cavity quantum cascade laser 

A photograph of the experimental TIR WM-LHR implementation based on an EC-QCL is 
shown in Fig. 2. A continuous wave mode-hop-free EC-QCL (41078-MHF, Daylight 
Solutions, Inc., USA) with a wavelength tuning range from 7.64 to 8.22 µm (1319 to 1217 
cm−1) and a maximum power output of 225 mW is employed. The laser frequency is slowly 
swept across the spectrum of interest using a ramp signal generator connected to the piezo 
element that controls the external cavity length. A much faster sinusoidal modulation of the 
laser is achieved by the direct modulation of the QCL current through the internal bias Tee 
circuit. 

The first optical component of the set-up is an uncoated 4 mm thick calcium fluoride 
window acting as a beam splitter that sends roughly the 95% of the power emitted by the laser 
to a beam block. The remaining light is redirected to the next stages of the heterodyne 
radiometer (a second beam-stopper eliminates the reflection on the backside of the beam-
splitter). This approach is preferred over the traditional laser intensity control based on 
polarizers, as it provides an improved performance with respect to interference fringes. 
Subsequently, beam expansion, required for an adequate spatial overlapping with the optical 
signal, is realized by means of two 90 degrees gold-coated off-axis parabolic mirrors with 
focal lengths of 1 and 6 inches. The total diameter of the laser beam is, in this manner, 
expanded up to 12 mm. A second calcium fluoride window combines the LO light with the 
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signal (5:95) and redirects the resulting beam to a parabolic mirror that focus the light into the 
thermal detector. A thermoelectrically cooled photovoltaic detector (PVI-4TE-10.6-1x1, Vigo 
Systems S. A., Poland) with a high speed (450 MHz) transimpedance preamplifier has been 
employed in the experimental demonstrations presented in this paper. The use of a 
thermoelectrically cooled detector instead of the conventional liquid nitrogen unit is utterly 
important to facilitate the eventual field deployment of the radiometer. No modifications were 
made to the detector to reduce the noise level. To ensure maximum consistency in the 
experimental results, a regular optical signal is replicated with a 12 V silicon carbide IR 
source (an area of roughly 70 × 10−9 m2 of the source is imaged into the detector) and an off-
axis parabolic mirror that collimates part of the emitted radiation through a 30 mm gas cell 
with calcium fluoride windows. A band-pass optical filter (7.5 to 8.5 µm) finally restricts the 
optical bandwidth of the incoming signal before combination with the LO for spectral 
interrogation. Different gas concentrations were pumped into the cell for the characterization 
of the performance of the system. An optical chopper, which is disabled during WM 
operation, is also included to benchmark the performance of WM-LHR with the traditional 
LHR method. The RF processing chain is comprised of a low-noise 24 dB amplifier (ZFL-
500LN, Mini-Circuits Inc., USA), a 50 MHz to 100 MHz band-pass filter and a Schottky 
detector (EZR0120A3, Eclipse Microwave Inc., U.S.A.). The dual-sideband optical resolution 
of the spectrometer is, therefore, 100 MHz or 0.003 cm−1. 

 

Fig. 2. Photograph of the WM-LHR implemented in the laboratory. The red and blue lines 
represent the optical path of the local oscillator laser and the thermal signal respectively. 

The EC-QCL was tuned to 7.87 µm (1270.8 cm−1) to target methane inside the cell. The 
laser was operated at a forward current of 375 mA to ensure a LO power reaching the detector 
of 150 µW; this intensity level was found to be the optimum operation point of our detector 
(the power passing through the cell in these conditions is approximately 5 mW). The 
sinusoidal modulation of the current of the EC-QCL was performed at 185 Hz and 1 Vp (for a 
total frequency deviation of 0.0002 pm or 0.033 cm−1) in order to achieve a fast wavelength 
modulation of the LO with an optimum modulation index of about 2.2 times the linewidth of 
the molecular transition [17]. Besides this, a sawtooth signal, amplified by a piezo driver up 
to 20 V peak to peak, was utilized for fine spectral interrogation. The power dissipated by the 
infrared source and the gas concentration in the cell were widely tuned during several tests to 
accurately characterize the effectiveness of the WM-LHR method. 
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Fig. 6. Signal to noise ratio with respect to the integration time of the lock-in amplifier. 

As shown in Fig. 6, the SNR of the thermal infrared radiometer provided by 1f and 2f 
WM-LHR noticeably exceeds that of the conventional LHR method. This is expected, as in 
WM-LHR the modulation is performed directly by an electronic reference signal, while a 
mechanical system with far greater phase jitter and frequency drifts is utilized by LHR. 
Interference fringes in the cavity of the particular laser employed are the main SNR restricting 
factor in the implemented WM-LHR system. The differences in SNR could be even more 
apparent when laser diodes (with much lower RAM) are employed in systems in which a 
great level of amplification is required [17]. 

4.3 Out-of-band signal rejection 

Even though the use of LHR has routinely been restricted to very narrow (single absorption 
line) spectral ranges, the surge of robust widely tunable laser technology promises to permit 
the development of a new generation of wide span heterodyne radiometers. In the traditional 
LHR approximation highly selective optical filters are employed to narrow down the spectral 
span of the signal to be analyzed because of the reasons presented in Section 4.1. Set-ups with 
a wide spectral coverage require a method with a superior out-of-band intensity rejection such 
as WM-LHR. In this section, the ability of the traditional and the WM-LHR approaches to 
operate without optical filters are analyzed. A series of measurements were carried out in 
which the optical filter that restricts the wavelength range of the incoming signal is placed in 
the system and subsequently removed. A gas sample with 10% methane diluted in nitrogen at 
60 mbar was pumped into the cell, the integration time of the lock in amplifier was adjusted 
to 100 ms and the period of the ramp signal to 20 s. A traditional LHR measurement in which 
four line sweeps are performed, two with optical filter and two without the optical filter, is 
shown in Fig. 7(a). Even though the optical power density of the signal in the spectral range 
interrogated by the laser rises only by roughly 40% (due to the absence of the optical losses of 
the filter), the baseline is increased by more than an order of magnitude due to optical power 
reaching the detector at wavelengths that are far from the region of interest. As previously 
presented, the pronounced step changes in the intensity of the incoming power (that result 
from the need of chopping the input signal) generate a substantial gain modulation due to the 
non-linearities of regular detectors and amplifiers. This issue is strongly noticed if out-of-
band radiation is allowed into the detector, as is this case. On the contrary, both the baseline 
and the WM-LHR signal, shown in Fig. 7(b), are incremented by a factor that is equal to the 
inverse of the transmittance of the optical filter, not being influenced by out-of-band optical 
radiation. The reason being that, whereas signal chopping in LHR generates high amplitude 
optical pulses, in WM-LHR the only intensity fluctuations are those from the RAM of the 
laser that are miniscule compared to the DC intensity level. Therefore, WM-LHR 
measurements are consistently taken at a constant gain value (and with no distortion of the 
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sensitivity. These characteristics promise to enable a new palette of applications that would 
range from atmospheric multiple analyte detection to deep space exploration. 
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Application of a ring cavity surface emitting 

quantum cascade laser (RCSE-QCL) on the 

measurement of H2S in a CH4 matrix for process 

analytics 

Harald Moser,
1
 Andreas Genner,

1
 Johannes Ofner,

1
 C. Schwarzer,

2
 Gottfried Strasser,

2
 

and Bernhard Lendl
1,*

 
1Institute of Chemical Technologies and Analytics, Vienna University of Technology, Austria 

2Institute of Solid State Electronics, Vienna University of Technology, Austria 
*bernhard.lendl@tuwien.ac.at 

Abstract: The present work reports on the first application of a ring-cavity-
surface-emitting quantum-cascade laser (RCSE-QCL) for sensitive gas 
measurements. RCSE-QCLs are promising candidates for optical gas-
sensing due to their single-mode, mode-hop-free and narrow-band emission 
characteristics along with their broad spectral coverage. The time resolved 
down-chirp of the RCSE-QCL in the 1227-1236 cm−1 (8.15-8.09 µm) 
spectral range was investigated using a step-scan FT-IR spectrometer 
(Bruker Vertex 80v) with 2 ns time and 0.1 cm−1 spectral resolution. The 
pulse repetition rate was set between 20 and 200 kHz and the laser device 
was cooled to 15-17°C. Employing 300 ns pulses a spectrum of ~1.5 cm−1 
could be recorded. Under these laser operation conditions and a gas 
pressure of 1000 mbar a limit of detection (3σ) of 1.5 ppmv for hydrogen 
sulfide (H2S) in nitrogen was achieved using a 100 m Herriott cell and a 
thermoelectric cooled MCT detector for absorption measurements. Using 3 
µs long pulses enabled to further extend the spectral bandwidth to 8.5 cm−1. 
Based on this increased spectral coverage and employing reduced pressure 
conditions (50 mbar) multiple peaks of the target analyte H2S as well as 
methane (CH4) could be examined within one single pulse. 

©2016 Optical Society of America 

OCIS codes: (300.6340) Spectroscopy, infrared; (140.5965) Semiconductor lasers, quantum 
cascade; (280.3420) Laser sensors. 
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1. Introduction 

Since their first realization in 1994, quantum cascade lasers (QCLs) have developed from 
research devices to powerful light sources for practical use in applied infrared spectroscopy. 
The first devices showing cascaded intersubband transitions in an AlInAs/GaInAs 
heterostructure could only be operated in pulsed mode at cryogenic temperatures and showed 
multi-mode emission with peak power of a few µW only. Resonator designs of such early 
architecture were based on Fabry-Perot (FP) [1] cavities. As FP-QCLs emit multimodal over 
a wide spectral range they tend to have limited applicability for applied infrared gas 
spectroscopy and even for condensed phase applications an external sample modulation is 
required for achieving the required selectivity [2]. In spite of the great progress achieved in 
high resolution spectroscopy using FP-QCL sources [3], for many applications the use of 
single mode sources is beneficial. Up to date, the spectral coverage of QCLs extends from 
below 3 µm over the mid-IR spectral range to the far-infrared and THz regime. Furthermore, 
concerning the mid-IR spectral range, single-mode emission in pulsed as well as in 
continuous wave (cw) mode are state of the art. Also resonator designs were improved over 
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the years with the distributed feedback (DFB) [4] and the external cavity (EC) [5] approach 
being the most prominent ones. Depending on the application in mind different properties of a 
given QCL may be of special relevance. Properties to be considered include, among others, 
pulse peak power, cw-operation, line widths as well as spectral coverage. 

A general aim with respect to the ongoing development of QCLs for sensing applications 
is to reduce the line width of the emitted radiation to a minimum while achieving a spectral 
coverage as large as possible. So far EC-QCLs offer the largest tuning range which, 
depending on the employed gain medium, may cover up to several hundreds of wavenumbers. 
Operated in pulsed mode these lasers are good candidates for condensed phase spectroscopy 
and have found their applications in far-field as well as near-field infrared microscopy, stand-
off measurements of solid residues as well as in the measurement of liquids. Unfortunately, 
these devices are not ideal for gas spectroscopy as even concerning their mode-hop free 
version practical issues arise with regard to mono-mode emission over a few tens of 
wavenumbers [6]. 

In recent years various methods for extending the tuning range were investigated by 
exploiting the large width of the gain curve of semiconductor lasers and the full gain width of 
optical amplifiers. Promising results could be achieved by modification of the sampled 
grating distributed feedback laser architecture with digital concatenated gratings [7], by 
incorporation of a buried microscopic heater element close to the active region [8], by 
integration of Vernier-effect distributed Bragg reflectors based on superstructure gratings [9] 
or by integrating an asymmetric sampled grating distributed feedback tunable laser with an 
optical amplifier [10]. It is characteristic of the various schemes for extended tuning that the 
resulting wavelength is no longer a relatively simple monotonous function of a single control 
parameter. Instead, it is often necessary to use two or more control variables (quasicontinuous 
tuning) [11]. In this manner the reported full tuning ranges will span between 9 and 14 cm−1 
[8], [9] and can reach up to 120-236 cm−1 [7], [10]. 

The high quality requirements in terms of single mode emission and wavelength stability 
as needed for trace gas sensing are, however, met by DFB-type QCLs [12]. Commercial 
DFB-QCLs are configured as ridge lasers which are designed for edge emission. These lasers 
can be tuned by changing the temperature of the gain medium. The resulting tuning range 
covers thus a few wavenumbers only, and this is why typically one analyte is targeted by a 
given DFB-QCL. 

Several different optical setups for quantitative gas phase spectroscopy using QCLs have 
been demonstrated already and the used techniques were recently reviewed [13]. These 
include, cavity enhanced absorption spectroscopy [14], quartz-enhanced photoacoustic 
spectroscopy [15] and open-path setups [16], which were all successfully applied to industrial 
[17] and environmental monitoring [18]. The most ‘straightforward’ setups for gas 
measurements in the mid-infrared spectral region using QCLs are based on absorbance 
measurements in multi-reflection cells [19]. While special cell types were successfully tested 
[20], the basic cell type for laser spectroscopy is the so called Herriott cell [21]. Common 
multi-gas analyzers based on QCLs suffer from the required space to combine the beam lines 
of different lasers to one gas cell [22]. These setups are typically based on multiple QCLs in 
separated packages, even if the spectral distance between the target absorptions is small [23]. 

Recently, different strategies were proposed to improve the spectral coverage while 
maintaining the high quality of single-line emission of DFB-QCLs. Processing different, 
individually addressable, ridge type DFB-QCLs on a single chip as an array allows to produce 
a laser source [24], [25] covering several tens of wavenumbers that still features a spectral 
resolution smaller than 0.01 cm−1. A further refinement of this concept concerns fusion of an 
optical coupler to the monolithically produced DFB-QCL array to achieve emission from a 
single spot [26]. 

Ring-cavity surface emitting (RCSE) QCLs represent a novel alternative [27] to 
commercially available ridge-type DFB-QCLs. In contrast to these edge emitting DFB-QCLs 
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wavelength selection and surface emission are made possible by radial second-order Bragg 
gratings etched in the top cladding of the gain material. The diameter of the surface emitting 
rings is in the order of a few hundreds of micrometer. Therefore, the beam divergence of 
RCSE-QCLs is only a few degrees [28] as compared to a few tens of degrees in case of edge 
emitting ridge lasers. This facilitates coupling of the emitted light in an optical system. 
Concerning peak optical power, threshold current and slope-efficiency the performance of 
RCSE-QCLs is improved when compared to ridge-type DFB-QCLs made of the same gain 
medium [12]. A further characteristic of these lasers is their broad tuning range, mode-hop-
free operation and beam stability during operation [29]. Arrangement of several RCSE-QCLs 
with slightly different grating periods at each ring allows taking advantage of the whole 
spectral range provided by the used gain medium. An effective spectral coverage of 180 cm−1 
was already demonstrated in 2011 [30]. In order to address the potential disadvantage of the 
RCSE design and its non-Gaussian output in the far-field, further improvement of the emitted 
radiation is possible using collimated substrate emission of RCSE-QCLs with on-chip 
focusing elements [31–33] or by modification of the distributed feedback grating by 
application of two π-phase-shifts at an angular distance of 180°. In this way a focused, central 
lobed and linearly polarized far field is achieved without external optics [32]. 

An innovative design of the QCL active region allows fabrication of a laser and a detector 
on the same chip [34], which reduces the sensor size and opens the door to new spectroscopic 
concepts [35]. 

Here we report on the first use of RCSE-QCL for gas spectroscopy. A widely tunable 
RCSE-QCL was operated in pulsed mode and coupled into an astigmatic Herriott cell and 
combined with a fast thermoelectrically cooled MCT detector. The laser down chirp produced 
by the pulsed mode-hop free RCSE-QCL was used for the simultaneous measurement of 
hydrogen sulfide (H2S) and methane (CH4). 

2. Materials and methods 

2.1 Laser and instrumentation for laser characterization 

The QCL device used in this scope of work was based on the substrate P51 [36] and was 
processed as a RCSE-QCL [27]. By assuming an effective refractive index of neff = 3.18 and 
aiming for a emission wavenumber of 1234 cm−1 at room temperature, a grating period of the 
2nd order was calculated to be 2.547 μm (481 slits) and realized. An in-house developed laser 
driver and TEC unit was used to control the injection current for pulsed operation of the 
RCSE-QCL and to adjust and stabilize the laser operation temperature to 0.1 K. Single mode 
emission at different operation parameters could be verified by recording spectra with an FT-
IR spectrometer (Vertex 80v, Bruker Optics, Germany) equipped with a photovoltaic liquid 
nitrogen cooled MCT detector (Kolmar Technologies, USA) using the external source input 
port. Moreover, time-resolved step-scan FT-IR [37,38] measurements with a time resolution 
of 2 ns and a spectral resolution of 0.075 cm−1 were performed to characterize the laser chirp 
with this FT-IR spectrometer [12]. For recording the signal produced by a single laser pulse a 
transient recorder board (Spectrum GmbH, Germany) with an 8 bit resolution and 500 MS/s 
sample rate was used. The laser pulse repetition rate was set between 20 and 200 kHz and the 
temperature of the laser was set between 15 and 17 °C. 

2.2 Optical setup for the H2S detection in CH4 containing nitrogen 

The experimental set-up for absorbance measurements was designed to enable recording of 
the background spectrum as well as the sample spectrum using one detector. This was 
achieved by pulsed operation of the laser and splitting of the laser pulse at a beam splitter. 
Whereas one part of the laser pulse was directly focused onto a TE cooled MCT detector 
(PVI-2TE-10.6, Vigo Systems) the second part was delayed by passing a 100 m Herriott gas 
cell (AMAC100, Aerodyne Inc.) [39] before impinging on the same detector. This 
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configuration allowed separating background and sample spectrum in time for laser pulses up 
to pulse lengths of 300 ns. For experiments relying on pulse durations >300 ns the beam 
splitter had to be removed in order to prevent overlapping of the reference and probe pulses 
on the same detector. In order to calculate absorbance values, a synthetic background 
spectrum had to be reconstructed from the probe pulses exiting the multipass cell and 
containing spectral features of the analytes. The synthetic background spectrum was obtained 
by fitting the pulse intensity envelope via a higher order polynomial function and 
subsequently used for calculation of the corresponding absorbance spectrum. To facilitate 
alignment of the optical set-up a HeNe-trace laser beam was used. The Herriott cell was 
operated at pressures ranging from 50 mbar to 1000 mbar. At low pressure conditions the ro-
vibrational bands of the analyte H2S could be resolved during short laser pulses. A calibration 
curve for H2S in nitrogen was recorded holding the cell pressure constant at 1000 mbar. 
Temperature was kept at room-temperature level throughout all experiments. Recording of 
the amplified detector signal was performed using an oscilloscope (14 bit, 600 MHz 
bandwidth, LeCroy Waverunner 64 Xi, Teledyne LeCroy SA, CH). For improving the signal 
to noise ratio, 1 k samples were internally averaged. A schematic and a picture of the full 
configuration including mirrors and lenses are given in Fig. 1. 

 

Fig. 1. Schematic (a) and actual picture (b) of the optical setup. M…mirrors, L…lenses and, 
OAP M…off axis parabolic mirrors. 

In order to confirm the correct wavelength calibration reference gas cells were used and 
inserted into the optical path as required. These cells, designed with an optical path-length of 
5 cm, are filled with the single target analytes with 98% H2S and 5% CH4 backfilled with N2 
to a total pressure of 50 mbar. They are sealed with wedged and Brewster angle tilted CaF2 
windows. 

3. The H2S / CH4 system in the mid-infrared spectral region 

Based on the available RCSE-QCL substrate and processing of the laser grating, the mid-
infrared spectral region between 1236 and 1227 cm−1 was available. This region is 
characterized by the overlapping of the ν2 (A1) bending-mode transition of H2S (C2v 
symmetry) and the ν4 (F2) bending mode of CH4 (Td symmetry) [40]. Further a Coriolis-
coupling of the ν4(F2) and the ν2(E) appears, causing the presence of ν4-ν2-coupled ro-
vibrational transitions [40,41] in this spectral window. 

With regard to selection of the most appropriate absorption lines for measuring H2S in the 
presence of CH4 reference spectra were calculated [42] based on the HITRAN [43] database 
(Fig. 2). Using the available RCSE-QCL the ro-vibrational transitions corresponding to the ν2 
bending-mode of H2S as listed in Table 1 were accessible. The rotational levels of H2S being 
a three-dimensional asymmetric top rotator with three different reciprocal moment of inertia 
are labeled by the three standard quantum numbers J, Ka and Kc [44]. For pulses with 
durations of 300 ns, the accessible spectral range was limited to 1235.4-1233.8 cm−1. Hence, 
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the measured H2S band centered at 1234.5 cm−1 is a sum of 4 basic ro-vibrational transitions 
of the ν2 bending-mode, which could partly be resolved by measuring at reduced pressure. 

Table 1. Main ro-vibrational transitions of the ν2 bending-mode of H2S in the spectral 

region 1236-1227 cm−1. 

Wavenumber (cm−1) Linestrenght (cmmol−1) RVSlow* 
[J Ka Kc] 

RVShigh* 
[J Ka Kc] 

Remarks 

1227.5925 1.37E-22 [2 2 0] [1 1 1] low line strength 
1229.2712 4.92E-22 [5 1 4] [5 0 5] CH4 interference 
1229.3305 1.64E-22 [5 2 4] [5 1 5] CH4 interference 
1229.3522 1.04E-22 [7 5 3] [7 4 4] CH4 interference 
1229.8447 2.10E-22 [3 2 2] [2 1 1] CH4 interference 
1230.3305 1.18E-22 [7 0 7] [7 6 1] CH4 interference 
1231.8627 1.74E-22 [6 4 6] [6 1 5] accessible only with 3 µs pulses 
1232.1418 5.24E-22 [6 3 4] [6 2 5] accessible only with 3 µs pulses 
1234.4351 3.83E-22 [7 3 4] [7 2 5] accessible 
1234.5767 7.77E-22 [5 0 5] [4 1 4] accessible 
1234.5830 2.59E-22 [5 1 5] [4 0 4] accessible 
1234.6113 1.80E-22 [8 6 8] [8 5 4] accessible 
1235.3742 1.30E-22 [7 4 4] [7 3 5] low line strength 
1235.7048 1.26E-22 [8 7 2 ] [8 6 3] low line strength 

* quantum numbers of higher and lower ro-vibrational state (RVS) 

 

Fig. 2. Accesible linestrenghts of H2S and CH4 in the 1236-1227 cm−1 spectral region. For 300 
ns pulses, the accessible spectral range was limited to 1235.4-1233.8 cm−1 

4. Results and discussion 

4.1 Measurement of the laser chirp, determination and validation of wavenumber calibration 

The temporal and spectral behavior of the pulsed laser radiation was characterized by step-
scan FT-IR spectroscopy and the obtained data was subsequently used for wavelength 
calibration of the laser chirp and is plotted in Fig. 3. The measured laser pulse was fitted to 
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the following logarithmic decay expression, termed transfer function which maps the laser 
emission wavelength in terms of wavenumber as a function of pulse time: 

 0( ) ln( ),v t v tα β= − ⋅ +  (1) 

where t denotes the pulse time as the independent variable and v0, α and β are the fitting 
parameters [45]. Having determined such expressions for a set of operating conditions, these 
transfer functions could be used for wavenumber calibration during the gas sensing 
experiments. As an example, v0 = 1154.3728, α = 5.8419 and β = 9.3623E-7 as the fit 
parameters for the logarithmic transfer function (Eq. (1) were obtained for a 3 µs pulse length, 
an operation temperature of 17 °C and a pulse current of 700 mA. 

As shown in Fig. 3(a)-3(c) employing an intra-pulse time of 300 ns and depending on the 
supplied current (400-700 mA), a spectral down-chirp range between 1.2 cm−1 and 1.7 cm−1 
could be recorded. Long pulses of >3 µs and injection current levels between 400 mA and 
700 mA enabled to cover a spectral bandwidth of up to 8.5 cm−1. The results of the intra-pulse 
characteristics and tuning ranges for 3 µs pulses are outlined in Fig. 3(d)-(f). 

 

Fig. 3. Different achievable tuning ranges and intra-pulse characteristics for low current 300 ns 
(a), medium current 300 ns (b), high current 300 ns (c), low current 3 µs (d), medium current 3 
µs (e) and high current 3 µs RCSE-QCL pulses (f). 

The tuning behavior of the pulsed laser was furthermore validated using the set-up for gas 
sensing and by inserting the two reference cells into the optical path. In Fig. 4 the intensities 
recorded during a 3 µs long pulse with 98%v H2S and 5%v CH4 present as absorbing gases in 
the reference cells are given along with the previously determined transfer function. The 
strongly structured pulse shape between onset and ~30% of the total intra pulse duration can 
be explained by transient changes in the thermal and electrical properties of the laser material. 
Compared to the short pulse durations, the much larger time constant of the cooling system 
gives rise to dynamic shifts of the operating point caused by the temperature changes of the 
laser structure. In order to calculate the corresponding absorbance spectrum a synthetic 
background spectrum had to be reconstructed by fitting the pulse intensity envelope via a 
higher order polynomial function. In Fig. 5 the calculated absorbance spectrum is plotted 
together with the simulated spectra using information contained in the HITRAN database 
concerning wavenumber and strength of the corresponding lines for hydrogen sulfide as well 
as for methane in the investigated spectral region as well as spectral broadening at a pressure 
of 50 mbar. 
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Fig. 4. A 3 µs long pulse with 98%v H2S and 5%v CH4 in the 5 cm reference cells at 50 mbar 
along with the tuning logarithmic fit. 

 

Fig. 5. Resulting absorption spectrum with the different analyte contributions of H2S and CH4 
(top and middle) and the according linestrengths of the contributing analytes (bottom). 

The line positions and lineshapes of the H2S and CH4 features in the range between 1235 
cm−1 and 1229 cm−1 could be spectrally reproduced as expected from Table 1 and are in good 
agreement with the HITRAN simulations. 
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4.2 Resolving H2S ro-vibrational features at reduced gas pressure 

For the study of spectrally resolved ro-vibrational features a spectral region containing 4 
transitions of H2S was selected. According to the HITRAN database three, closely spaced 
transitions (1234.5767, 1234.5830 and 1234.6113 cm−1) as well as a forth line at 1234.4351 
cm−1 are to be expected. Experimental conditions were set such that a background and sample 
spectrum could be recorded from a single laser pulse. In Fig. 6(a) data recorded from 200 ns 
laser pulses measuring a gas sample containing 500 ppmv H2S at different gas pressures are 
shown. Successful low pressure resolution of the ro-vibrational features can be observed 
starting from 400 mbar downwards. Whereas a clear separation of the transition at 1234.4351 
cm−1 from the group of three transitions and centered at 1234.59 cm−1 could be achieved, the 
latter three transitions were not resolved even at further reduced gas pressures. The resulting 
absorption spectrum at 200 mbar is shown in Fig. 6(b) and compared with HITRAN 
simulations showing excellent agreement. However, the strongly structured features at the 
pulse shape edges caused by transient changes in the thermal and electrical properties of the 
laser material and stemming from optical fringes are eventually the cause for the baseline 
noise between 25 ns and 75 ns. 

 

Fig. 6. (a) Short 200 ns pulses with 500 ppmv H2S at different cell pressures and the resulting 
absorption spectra (inset); (b) Experimental data and HITRAN simulation of a short 200 ns 
pulse with 500 ppmv H2S at 200 mbar cell pressure demonstrating low pressure resolution of 
the ro-vibrational features. 
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4.3 Measuring H2S in the presence of methane (CH4) 

Possible applications of measuring H2S can be found in the petrochemical industry. In these 
applications hydrocarbons are important components and methane a frequently occurring 
constituent of a typical sample matrix. Within this work the issue was pursued wether an 
extended tuning range of a single pulse would allow resolving absorption features of both 
molecules, H2S and methane (CH4), simultaneously. Therefore RCSE-QCL pulses of 3 µs 
duration were used as they enabled to cover a bandwidth of approximately 8 cm−1. Together 
with low pressure conditions of <500mbar selective and interference free H2S assessments in 
a CH4 matrix could be demonstrated. Figure 7(a) shows intra-pulse transmission and 
absorption spectra from 3 µs pulses with different isolated CH4 contributions arising from 
concentrations in the range of 0- 495 ppmv. Intra-pulse transmission and absorption spectra of 
a constant CH4 matrix of 495 ppmv and varying H2S content in the range of 0-1000 ppmv are 
highlighted in Fig. 7(b). 

 

Fig. 7. 3 µs pulses with different CH4 concentrations (a) and 3 µs pulse with constant 500 
ppmv CH4 and different H2S concentrations (b). The cell pressure was held constant at 500 
mbar. 

The experimental results of the intra-pulse absorption spectrum of a 3 µs pulse with 
contributions of 500 ppmv CH4 and 1000 ppmv H2S at 500 mbar are shown in Fig. 8 together 
with a HITRAN simulation for comparison. Slight differences in peak positions could be 
observed for the CH4 features at the beginning and pulse. The peak to peak wavenumber 
difference Δνpp was calculated to be ~0.07 cm−1. The positions of the main three CH4 peaks at 
1230.2 cm−1, 1229.4 cm−1 and 1228.8 cm−1 respectively, could also be spectrally reproduced, 
whereas the lineshapes could not be fully resolved as expected from the simulations. Due to 
slight TEC instabilities of the laser which led to minute wavelength shifts, the CH4 lineshapes 
appear broadened. The line positions and the lineshape of the H2S features at 1232.13 cm−1 
and 1231.86 cm−1 could be spectrally reproduced with adequate precision. 
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Fig. 8. Experimental data and HITRAN simulation of the intrapulse tuning of a 3 µs pulse with 
contributions of 500ppmv CH4 and 1000ppmv H2S at 500 mbar. 

4.4 Calibration of the H2S measurements and determination of the limit of detection (LOD) 

The calibration of H2S inside the 100 m Herriott cell and the determination of the related limit 
of detection (LOD) was performed by applying laser pulses of 300 ns as shown in Fig. 9(a). 
According to the step-scan FT-IR measurements, the ro-vibrational transitions of Table 1 
marked “accessible” could be probed. Different H2S concentrations from 50 ppm down to 1 
ppm were applied and the related absorption spectra calculated as outlined in Fig. 9(b). Each 
point of the calibration curve in Fig. 10 correlates to an averaging of 10 samples and good 
linearity between integrated absorbance and H2S concentrations is observed. The 
corresponding limit of detection (LOD) was ascertained with the VALIDATA software 
package [46] at three times the standard deviation (3σ) of the intercept divided by the slope of 
the calibration curve, which resulted in 1.5 ppmv. Analysis of the residuals provided a 
convenient means of confirming the linearity of the calibration data. 

In the aspect of process analytical integration and applicability sub-ppmv detection of H2S 
concentration levels is essential for production control and environmental monitoring 
purposes. When measuring H2S by IR spectroscopy high sensitivities are difficult to achieve 
due to the intrinsically weak linestrenghts of the H2S ro-vibrational features within the 
spectral range covered by diode lasers. Although detection of H2S concentrations levels of 
several ppbv has been demonstrated by employing integrated cavity output spectroscopy 
approaches [47], such sensitivities are difficult to obtain in field measurements as the 
robustness of these kind of systems remain limited [48,49]. A fully developed and industry 
tailored H2S sensor based on photoacoustic spectroscopy and a LOD of 0.5 ppmv is described 
in [50]. 
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Fig. 9. (a) Short 300ns pulses with different H2S concentrations; (b) Resulting absorption 
spectra from intra-pulse transmission signals. 
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Fig. 10. Calibration curve of 0-25 ppmv H2S. The calculated LOD was ~1.5 ppmv. 

5. Conclusions 

The presented work showed the applicability of pulsed ring cavity surface emitting quantum 
cascade lasers (RCSE QCL) for gas measurements for the first time. Pulse length between 
200 ns and 3 µs as well as pulse currents ranging from 400 to 700 mA were applied covering 
spectral bandwidths up to 8.5 cm−1, as revealed by step-scan FT-IR spectrometry. The ring-
type cavity allows single-mode and mode-hop-free emission. Gas measurements were 
conducted in a 100 m astigmatic Herriott cell. When applying short pulses (200-300 ns) and 
using a beam splitter it was possible to measure a background and sample spectrum with a 
single thermoelectrically cooled MCT detector from a single laser pulse. The investigated 
target analyte was hydrogen sulfide (H2S), present either in pure nitrogen or in nitrogen 
containing methane (CH4) as possible interferent. With the developed set-up a LOD (3σ) of 
1.5 ppmv for H2S could be obtained by evaluating the corresponding transitions in the 
spectral region from 1234.4 to 1234.7 cm−1. Planned research will benefit from the flexibility 
in the design of RCSE QCLs. Construction of multiple rings either side by side or in a 
centered configuration will allow for a further extended spectral coverage. Also integration of 
resonant cavities and detectors in one device is possible opening the path for highly 
miniaturized, sensitive gas sensors for detecting multiple gas molecules. 
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Abstract On-line monitoring of key chemicals in an indus-

trial production plant ensures economic operation, guarantees

the desired product quality, and provides additional in-depth

information on the involved chemical processes. For that pur-

pose, rapid, rugged, and flexible measurement systems at rea-

sonable cost are required. Here, we present the application of a

flexible mid-IR filtometer for industrial gas sensing. The de-

veloped prototype consists of a modulated thermal infrared

source, a temperature-controlled gas cell for absorption mea-

surement and an integrated device consisting of a Fabry-Pérot

interferometer and a pyroelectric mid-IR detector. The proto-

type was calibrated in the research laboratory at TU Wien for

measuring methanol and methyl formate in the concentration

ranges from 660 to 4390 and 747 to 4610 ppmV.

Subsequently, the prototype was transferred and installed at

the project partner Metadynea Austria GmbH and linked to

their Process Control System via a dedicated micro-controller

and used for on-line monitoring of the process off-gas. Up to

five process streams were sequentially monitored in a fully

automated manner. The obtained readings for methanol and

methyl formate concentrations provided useful information on

the efficiency and correct functioning of the process plant. Of

special interest for industry is the now added capability to

monitor the start-up phase and process irregularities with high

time resolution (5 s).

Keywords Formaldehyde production . Fabry-Pérot detector .

Mid-infrared . Process analytical chemistry .Methyl formate .

Methanol

Introduction

In process analytical chemistry (PAC), there is clear focus on

providing dedicated solutions to a given measurement prob-

lem. In this regard, emphasis is put on different parameters/

features with respect to laboratory equipment. Depending on

the installation, in PAC, a number of requirements have to be

met. This can involve robustness against environmental con-

ditions (e.g., humidity, vibration, chemical substances in the

air), a simple user interface (soft- and hardware), avoiding

sample preparation, autonomous operation, and the possibility

to forward the gained measurement data to a control center

(e.g., Modbus, OPC, 4-20 mA signal [1, 2]). Over the time,

many analytical techniques were adopted, optimized, and suc-

cessfully integrated in industrial processes. The range of dif-

ferent instrumental techniques that were brought on-line in-

cludes not only a broad variety of measurement principles

such as conductivity-, pH-, and particle-sensors but also high-

ly optimized gas chromatography systems, advanced mass

spectrometers, and alike [3, 4]. However, if possible, simple

and rugged, sensor-like solutions are the preferred way for

efficient on-line monitoring with high time resolution.

Awell suited measurement principle for analyzing process

streams in the gas phase is infrared spectroscopy. Almost ev-

ery gaseous analyte (except noble gases and homonuclear

diatomic molecules) absorbs radiation in the mid-infrared
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region (4000–400 cm−1) and both, quantitative and qualita-

tive, measurements are possible. Moreover, different instru-

mental realizations of mid-IR spectroscopy were developed

over time, allowing customers to select the best suiting instru-

ment [5].

Until today, the most generic and thus flexible tech-

nology for mid-IR-based gas measurements are Fourier

transform infrared (FTIR) spectrometers [6]. Usually,

they cover the whole mid-IR range and are capable of

recording a full spectrum of the sample. The spectral

resolution is typically 1–4 wavenumbers, but it can be

reduced if a higher measurement frequency is required.

Depending on the analytical problem to be solved either

simple integration of characteristic absorption bands or

application of chemometric approaches are the preferred

modes of data analysis. Concerning applicability in the

chemical industry, FTIR spectrometers are available from

many different suppliers and in use for in-line as well as

on-line monitoring of process gases. The downsides of

this technology are, for example, high cost, limited tem-

poral resolution, and, in some cases, the need for espe-

cially trained employees, especially when it comes to

maintaining multivariate calibration models.

Another group of mid-IR-based analyzers make use of re-

cent advances in laser technology in particular of quantum

cascade lasers (QCLs) or intra-cavity lasers (ICLs) [7].

Using these lasers as light sources, concentrations down to

the ppb-ppt concentration can be measured at high speed

[8–10]. Moreover, it is possible to avoid moving parts,

allowing the design of robust and compact instruments.

However, their multi-analyte capabilities are still restricted

due to the limited tuning range of the corresponding lasers

([11, 12]). An important current disadvantages of these mid-

IR laser-based analyzers is their rather high cost.

Alternatively, filter-based mid-IR analyzers are a different,

well-established group of mid-IR-based sensors that is char-

acterized by less analytical power but with the advantage of

low cost compared to FTIR-based analyzers. Here, a filter

transmits infrared radiation only in the region where the ana-

lyte of interest is absorbing. These transmission windows can

be rather wide (>20 cm−1 [13]) and cannot compete with the

resolution of FTIR spectrometers. Therefore, they are only

suited for rather simple applications such as quantifying

CO2, CO, or ethylene in air [14–17]. In filter-based gas sen-

sors, both absorption measurements based on Beers law as

well as photoacoustic measurements have been realized so far.

If several analytes have to be quantified with the same

analyzer, multiple filters with distinct transmission windows

are needed. In the past, this was realized by mounting filters

on a rotating filter wheel. However, the number of installable

filters is generally limited, reducing somehow the possibility

to fine tune across a certain spectral region as well as to select

varying spectral segments with one and the same instrument.

Sensors which employ the gas filter correlation spectrosco-

py as measurement principle are closely related to the previ-

ously mentioned filter-based systems. Hereby, a gas cell filled

with the analyte to be measured acts as the optical filter and

generates the reference measurement [18, 19]. This technolo-

gy is not limited to the infrared region ([20]) and typical

analytes are CO, CO2, and SO2.

An approach for realizing filters is to use a Fabry-Pérot

interferometer. Its basic principle is that two parallel and re-

flective surfaces allow only certain wavelengths to transmit.

The transmitted wavelength segment depends on the distance

between the reflecting mirrors (d), their reflectivity (R), and

the interference order (m). The mathematical relation is as

follows [21]:

FWHMλ ¼ 2d

πm2

1−Rð Þ
ffiffiffi

R
p

Based on this technique, full widths at half height of typi-

cally 10–20 cm−1 can be achieved.

There are different ways how such FP filters have been

implemented in process analyzers so far. FP filters with vary-

ing but mechanically fixed distances between the mirrors can

be found in circular and linear variable filters [22]. Here, the

first method is typically integrated in the respective instrument

like a filter wheel, thus requiring a single detector, whereas

instruments employing linear variable filters also contain a

detector array. In these systems, the optical configuration is

such that each detector element is irradiated by a different

wavelength segment.

Applying microelectromechanical systems (MEMS) made

it possible to develop Fabry-Pérot (FP) interferometers with

variable distance between the reflective mirrors. Commercial

available detectors employ either piezos (e.g., VTT Technical

Research Centre of Finland Ltd. [23]) or mechanical springs

(InfraTec GmbH) in combination with an electrical field to

establish a certain distance between the mirrors and thus to

select a certain wavelength segment. Realization of tunable FP

filters using MEMS components allowed downsizing of this

functional element. A sensor consisting of a tunable FP filter, a

pyroelectric detector and corresponding preamplifier electron-

ics can thus fit in a TO-8 can. Nevertheless, a broadband filter

still must be installed to suppress the transmission of har-

monics. A basic scheme of such a FP filter-based detector

element is illustrated in Fig. 1. A detailed mathematical de-

scription of its operation basics is available in [21, 24–26].

Production of formaldehyde

The measurement device presented in this paper was devel-

oped to monitor the concentration of side products from chem-

ical reaction plants producing formaldehyde (FA). The

754 A. Genner et al.
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underlying catalytic chemical reaction is the partial oxidation

of methanol, leading to primarily formaldehyde. Two major

processes which differ in the employed catalyst types are used

to produce FA on an industrial scale. The first one, which is

also known as Formox process, uses metal oxides (e.g., vana-

dium, molybdenum, or iron oxide) and is operated in the tem-

perature region of 270–400 °C. The other one, which is also

used at the investigated production plants of this study, is

based on silver crystals and operated at significantly higher

temperatures (600–720 °C) [27–30]. The formation of FA can

be written as follows:

CH3OH ↔ HCHO þ H2 ΔH ¼ þ 84 kJ=molð Þ

And with oxidation of the hydrogen:

CH3OH þ 0:5 O2↔HCHO

þ H2O ΔH ¼ −159 kJ=molð Þ

After the catalytic reaction, the product stream is cooled

down to approximately 150 °C and washed in counter flow

with H2O in an absorption column (a simplified scheme is

given in Fig. 2).

The main part of the off-gas consists of CO2, CO, and H2,

which are already monitored at Metadynea Austria GmbH

with commercial available devices. However, also low con-

centrations of methanol (MeOH) and methyl formate (MF)

(both <5000 ppm) and traces of not absorbed FA (<50 ppm)

can be detected. While MeOH origins from not converted

reactant, MF is created by a side reaction on the silver catalyst.

Investigations with deuterated methanol [33], performed at

lower temperatures than in commercial processes, propose

the mechanism shown in Fig. 3 (Tischenko mechanism).

However, Wachs andMadix mention that noMF is found in

industrial processes. They argue that the catalyst temperature

(>600 °C) would be too high to enable a long enough surface

residence time of FA on the silver catalyst to react to MF.

The task of the newly developed mid-IR-based gas sensor

is quantification of MeOH and MF in the process off-gas with

high time resolution (5 s.). The sensor was developed and

implemented with the vision to enable accurate monitoring

of the chemical status of the process and therefore to open

the possibility for a more economic operation of the FA pro-

duction plants.

Experimental setup

The installed mid-IR source is a JSIR350-4-AL-R-D6.0-0-0

(Micro Hybrid Electronic GmbH), which is a highly efficient

blackbody emitter [34] and produced by applying MEMS

processes. It is basically an electrical resistor which heats up

when a voltage is applied. Due to its compact design and low

thermal mass, amplitude modulation of the emitted radiation

up in the hundred Hz region can be achieved. This allows to

omit chopper wheels or other modulation techniques usually

required by the need of the employed cost-effective pyroelec-

tric detector. For this application, the applied voltage was 5 V

and the modulation frequency was set to 3.5 Hz (duty cycle,

50 %) to achieve an optimum detector responsivity.

Fig. 1 Scheme of a Fabry-Pérot filter-based detector

Fig. 2 Simplified scheme of the

FA production process based on

the silver catalyst. The side

product methyl formate (MF) and

traces of not converted MeOH are

quantified at the top of the

absorption tower, indicated with a

red arrow [31, 32]

On-line monitoring of methanol and methyl formate 755
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A ZnSe lens (f = 50 mm, ThorLabs Inc.) collimates

the beam and a flat gold mirror reflects the radiation

to a custom built gas cell. Its optical length is 30 cm

and its steel body is heated up to 45 °C to avoid pos-

sible condensation from the humid off-gas on the cell

walls. The limited space requires an additional reflection

of the beam form a second plane mirror before it is

focused (ZnSe, f = 50 mm) onto the detector.

The central component of the measurement device is

the tunable Fabry-Pérot (FP) filter-detector LFP-80105-

337 (InfraTec GmbH) [35]. By applying a control volt-

age (Vrange = 0-70 V), the filter can be tuned through the

region of 1250-950 cm−1, where two vibrational transi-

tions of MF and MeOH can be found (Fig. 5). These

bands (MF: CH3 rocking [36] at ∼1190 cm−1 and

MeOH: C-O str. [37] at ∼1040 cm−1) are spectrally

separated well enough for the tunable filter to resolve

the bands, although the low spectral resolution of the

tunable FP of approximately 10 cm−1 (Fig. 4).

As the mid-IR source is modulated, the detector signal

has to be demodulated with an in-house developed Lock-

In-Amplifier. The resulting signal is digitized with an an-

alog digital converter (ADC, ADS1115, 16 bit, Texas

Instruments Inc.) and a microcontroller (ATmega328P,

Atmel Corporation) averages 100 measurement points to

improve the signal to noise ratio. As the measurement

principle is based on the absorption of light, one can

apply the Beer-Lambert Law and calculate the concentra-

tion according to

A λð Þ ¼ log
I0
λ

Iλ

� �

¼ ε λð Þcl

where A(λ) is the absorbance, Iλ
0 is the intensity recorded

from a reference measurement at a certain wavelength

segment, Iλ is the intensity recorded from of the sample

channel at a certain wavelength segment, ε(λ) is the ob-

served decadic molar absorption coefficient at that wave-

length segment, c is the concentration of the analyte, and l

is the pathlength.

In order to calculate absorbance and the concentration of the

target analyte, one needs to know values for Iλ and Iλ
0. Here, the

reference value Iλ
0 is gained by flushing the gas cell with the IR

inactive gas N2. This reference measurement, which is also

helpful to compensate for long term drifts, is initiated by the

microcontroller and performed every 2 h 45 min. The concen-

trations of the two target analytes have to be quantified consec-

utively which requires adjusting the filter position periodically.

Therefore, a digital to analog converter (DAC, MCP4725,

12 bit, Microchip Technology Inc.) is installed and sets the

control voltage of the FP filter-detector.

The concentrations are determined by applying a calibra-

tion curve and proportional voltage signals for each analyte

are output on additional DACs (2xMCP4725). These analog

Fig. 3 Reaction mechanism for

the formation of methyl formate

as proposed by Wachs and Madix

Fig. 4 Left: front side of the developed sensor (19^ rack compatible); right: schematic assembly of the optical and electrical parts
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signals are connected to two 4-20 mA converters (PXU-

20.924/RS, Brodersen Controls A/S) to meet the requirements

of the process control system (PCS) at Metadynea Austria

GmbH. The 4–20 mA interface is the preferred way to mon-

itor the concentration of the analytes of interest. However, an

LCD display (HD44780, Adafruit Industries LLC) is also

installed at the front panel of the sensor to check the function-

ality. An additional single-board-computer (Raspberry Pi 2

Model B, Raspberry Pi Foundation) and a mobile broadband

modem (E3531, Huawei Co. Ltd.) allows remote monitoring

and firmware upgrades of the microcontroller.

Experimental

Recording spectra of the analytes and calibration curves

Due to the conditions of the gas stream the prototype has to

quantify MF and MeOH in the gas phase. At normal tempera-

ture and pressure, the analytes of interest are liquids with a

significant vapor pressure (MeOH, 13.02 kPa; MF,

63.46 kPa). In order to characterize the device performance

and to record calibration curves, gaseous reference samples

with similar concentrations as to be expected at the intended

application site had to be prepared in the laboratory. The phys-

ical properties of MF and MeOH make it difficult to prepare

stable calibration gas mixtures of accurately known composi-

tion by means of static methods [38]. In addition, static calibra-

tion gas mixtures of the readily condensable gases and vapors

of MF and MeOH cannot be maintained under a pressure near

the saturation limit without the occurrence of condensation.

Therefore, the saturation method according to ISO 6145-

9:2009 was employed for preparing calibration mixtures of

the analytes [39]. Following this standard a saturated gas stream

is produced, where the concentration of the desired component

can be calculated using pressure and temperature readings

logged during the experiments. The resulting saturated gas

stream was then further diluted to the appropriate concentration

with N2 by employing mass flow controllers (MFCs, red-y

smart, Vögtlin Instruments AG) and a static mixer. Finally,

the sample stream was fed into the developed prototype.

Reference spectra of MeOH andMF were recorded with the

prototype to establish calibration curves. To do so, the control

voltage of the FP filter was increased to get one data point every

10 cm−1. This led to 31 points per spectrum, taking 2 min.

Online measurements

Operating the prototype at Metadynea Austria GmbH in-

volved a modification of the microcontroller firmware, com-

pared to the reference measurements in the academic labora-

tory. Instead of recording full spectra with 31 data points, only

two filter positions were selected. These were selected at the

maximum absorption of the analytes and resulted in one con-

centration value for MF and MeOH every 5 s.

Multiple FA productions plants are located at the produc-

tion site. As only one plant can be monitored at a time, the

process control system switches the exhaust gas to the proto-

type automatically. It is intended to analyze each plant at least

once per working shift. The result is that in normal operation

mode, each plant is monitored for 1–2 h, depending on the

number of active plants. This automatic gas stream cycle is

overwritten if the plant operators modify process parameters

or restart individual production plants.

Results

Spectra of analytes

Two typical spectra of MF and MeOH recorded with the pro-

totype are compared with reference spectra from the PNNL

database [40] and shown in Fig. 5a. One can clearly see that

the resolution obtained with the FP-interferometer-based

a b

Fig. 5 a Comparison of reference spectra (PNNL) and spectra recorded with the FP-detector. All spectra were normalized to a maximum absorbance of

one. b Transmission behavior and FWHM of the Fabry-Pérot filter at different control voltages
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instrument cannot compete with an FTIR spectrometer.

Nevertheless, the absorption bands of the analytes are suffi-

ciently isolated which allows the application of the developed

instrument.

Calibration curves

Calibration samples were prepared with the gas mixing rig and

spectra were acquired with the prototype. Due to the fact that

a b

c d

Fig. 7 a Methly formate (MF) and MeOH concentration during 3 days at normal operation. b–d Retrieved concentration levels while starting an

additional production plant (new plant indicated as red sections)

Fig. 6 Calibration curves for MeOH and methyl formate, recorded at wavelength segments centered at 1010 and 1160 cm−1
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only a single point in the spectrum is used for each analyte during

operation at the production plants, wavelength segments with

maxima at 1010 cm−1 for MeOH and 1160 cm−1 for MF were

selected as spectral positions to establish the corresponding cal-

ibration curves. No significant cross sensitivities were found in

the concentration ranges of practical interest.

The resulting calibration curves are plotted in Fig. 6, with

achieved limits of quantification of 184 ppmV for MeOH and

165 ppmV for MF.

Experiments at the production plants

Results from online-measurements atMetadynea Austria GmbH

are depicted in the following figures. The exemplary data is

typically plotted over several hours/several days. Due to compa-

ny regulations absolute values, such as concentration values and

production plant IDs (which also change during different exper-

iments) and further additional plant parameters (catalyst temper-

ature, etc.) may not be disclosed.

If the production parameters are constant, the data recorded

from the PCS is as shown in Fig. 7a. Here, the periodical

switching (approx. every 2 h) between four production plants

initiated by the PCS can be observed. The constant production

settings lead to almost stable MF and MeOH concentrations

during 3 days of operation.

The FA production has to be stopped and restarted at certain

intervals. The reasons for that are, for example, degradation of

the catalyst caused by sintering effects [27] or test runs for other

process optimization experiments. Three examples, where

Fig. 8 Redirecting the exhaust

gas to the converter causes an

increase of MF as the catalyst

temperature decreases

Fig. 9 A short increase of theMF

concentration due to a short

change of catalyst temperature
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production plants have been restarted, are shown in Fig. 7b–d.

During these processes, the automatic switching cycle was

deactivated, to gain specific information on the selected reactor

during these experiments. According to Wachs and Madix [33],

MF can be produced on the silver catalyst at lower temperatures,

which is the casewhen the FAproduction is started. Reaching the

optimum production parameters also leads to a stable and rela-

tively lowMF concentration. TheMeOH concentration does not

stabilize as fast as MF which is very likely caused by its longer

retention time in the absorption tower as a consequence of the

higher water solubility of MeOH.

A different experiment is shown in Fig. 8. Here, the

exhaust-gas was redirected to the converter, leading to a de-

crease in temperature at the catalyst and an increase of MF at

the measurement position. In this case, the automatic

switching cycle was not deactivated and the new MF concen-

tration was not accessible until the next repetition.

Another example of the applicability of the developed pro-

cess analyzer is shown in Fig. 9. An unexpected change of the

catalyst temperature resulted in a quick increase of MF. The

production parameters were reset within 15 min and the MF

concentration stabilized immediately.

Conclusion

A cost-efficient prototype of a process analyzer for on-line mon-

itoring of MF and MeOH in the gas phase of a formaldehyde

production plant was developed and implemented. Key compo-

nents of the developed dedicated process spectrometer were an

electrically modulated thermal IR source, a combined Fabry-

Pérot interferometer-detector device and a microcontroller for

automated measurements. A custom developed gas mixing rig

allowed recording reference spectra and calibration curves of the

analytes of interest. The achievable limits of quantification were

184 and 165 ppmV for MeOH and MF, respectively. The appli-

cability of the prototype was shown at the production plants of

Metadynea Austria GmbH. It provided valuable data on the

time-dependent changes of the concentrations of the targeted

process gases. After an initial installation phase, it is now con-

sidered as a valuable tool for monitoring the production plants

and for providing in-depth information on the production process

under investigation.
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a  b s t  r a  c  t

The design and  application  of  a versatile, tunable filtometer based  on a Fabry-Pérot  (FP) tunable  filter  –
detector,  covering the spectral range from  1250  to 1850  cm−1 at  a spectral resolution  of approximately
30  cm−1,  is  presented.  The tunable filter was characterized  and  calibrated  using  a FTIR spectrometer.  Gas
mixtures comprising iso-butane,  1-butene,  1,3- butadiene  were prepared and measured.  The obtained
gas spectra  were validated  by  FTIR measurements.  Quantitative  analysis  based on  the  whole  tuning  range
of  the  filtometer and  employing partial  least  squares  (PLS)  calibration  revealed fully satisfactory  results
with root  mean square  error of  prediction (RMSEP)  of  0.03,  0.04 and 0.26% for iso-butane,  1-butene
and 1,3 butadiene respectively.  As the  tunable FP  filtometer also  allows measurements at pre-selected
spectral windows  a calibration  based  on  multiple linear  regression  (MLR) was  performed as  well obtaining
similar  results. The results clearly show that tunable Fabry-Pérot filters  can be used  in  a new  generation
of  filtometers  and provide a low-cost  option  for the  quantitative  and  fast  multicomponent  gas  sensing.

© 2016  Elsevier  B.V. All  rights  reserved.

1. Introduction

With increasing requirements on monitoring of  chemical as well
as pharmaceutical processes, the demand for powerful, robust and
low priced sensors increases. Trends in PAC (process analytical
chemistry) or PAT (process analytical technologies) point towards
portable analyzers, which can be used in  different environments for
at-line, but ideally for on- or in-line analysis. The sensor systems
have to be fit for purpose, exhibiting adequate analytical perfor-
mance for a moderate and reasonable price. In principle infrared
and Raman spectroscopies are highly interesting techniques in
this regard as they provide direct molecular specific information.
Concerning mid-IR spectroscopy, Fourier transform spectrometers
present the so far most widely used technique [1,2]. These instru-
ments provide a broad spectral coverage and can be successfully
applied to solve a broad variety of  different analytical problems
often by employing chemometric techniques for data analysis. As of
today rugged FT-IR spectrometers for on-line or in-line applications
are in generally available in every form factor, albeit at a rather high
cost. An interesting alternative to established FTIR spectrometers
concern spectrometer developments based on broadly tuning, but
still prohibitively expensive laser sources, such as external cavity

∗ Corresponding author.
E-mail address: christoph.gasser@tuwien.ac.at (C. Gasser).

quantum cascade lasers (EC-QCLs). Such spectrometers have been
used for gas [3,4], as well as  liquid sensing [5–7]. This  approach,
in order to be fit for purpose, needs to target applications where
gas traces need to be recorded at high speed or where increased
ruggedness for liquid sensing is required to justify the high cost.

For providing an answer to some sensing tasks, however, the
spectroscopic performance of an FT-IR spectrometer is not required
as  a restricted spectral range sometimes can provide the required
selectivity to solve a given problem. Furthermore, in many applica-
tions the high sensitivities as offered by mid-IR laser spectroscopy
are  not needed, either. This is  often the case when major and minor
components of industrial gas  mixtures need to be monitored. A
cost effective solution for addressing such applications is  possi-
ble by addressing selected spectral regions by the use of filters
instead of using an interferometer or lasers. Thus, analyzers using
a  small, but constant portion of the IR spectrum, as obtainable
with static IR filters, have emerged over the years. Such filter based
spectrometers are also known as filtometers, a term coined from
“filter” and “photometer”. The commercial success of such filtome-
ters made it apparent, that the compromise between performance
and price allows attractive solutions for certain measurement prob-
lems. Examples are the oil-in-water analyzers by Wilks Entreprise
[8] (Spectro Scientific) or first iterations of filtometers for the deter-
mination of casein content in milk and milk products [9]. Also
concerning absorption or photoacoustic gas measurements filter
based instruments have found their application in the recent past.

http://dx.doi.org/10.1016/j.snb.2016.11.016
0925-4005/© 2016 Elsevier B.V. All rights reserved.

189

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
is

se
rt

at
io

n 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
do

ct
or

al
 th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

is
se

rt
at

io
n 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

do
ct

or
al

 th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

10 C. Gasser et al. / Sensors and Actuators B 242 (2017) 9–14

Fig. 1. Transmission windows (a) of the LFP5580 when different voltages are applied and  FWHM (b, blue markers) of the transmission curves as  a function of wavenumber
as well as spectral center (green markers) in dependence of the applied voltage. The fitted curve is  indicated as the black dashed line. (For interpretation of the references to
colour  in this figure legend, the reader is referred to the web  version of this article.)

Here, applications of  filtometers primarily include gas-phase anal-
ysis of simple molecules, such as water and CO2 [10,11].

Whereas early technological solutions employed a filter wheel
for addressing different narrow spectral ranges for measurement,
new technological developments are emerging and may  change the
way modern filtometers operate. New designs respond to the fact
that it would often be advisable to monitor more than a single or a
set of predefined narrow wavelength ranges. This  added capability
would increase the flexibility of filtometers and turn them into a
more generally applicable analytical tool at remaining low cost and
small footprint.

A  key enabling technology for this  development is Fabry-Pérot
(FP) interferometry [12],  where the transmitted wavelength is
defined among other by the distance between two  reflective sur-
faces. A range of discrete distances can be realized in  a  small device
by circular (CVF) or linear variable filters (LVF). A combination of
these with a linear IR detector array [13,14] allows to create com-
pact mid-IR spectrometers, with a  spectral resolution of  at best
10–20 cm−1,  thus approaching the capabilities of  a low resolu-
tion FT-IR spectrometer but showing sensor-like performance. In
these instruments, like those of Pyreos [15], the reflective surfaces
of the Fabry-Pérot cavity are kept in  place by a  wedged spacer
in such a way, that the transmission window shifts through the
length of the array [14]. Another approach toward compact sensor-
like spectrometers consists in changing the distances between the
reflective surfaces of  the Fabry-Pérot cavity on demand by MEMS
(micromechanical systems) fabricated springs or piezo-actuators.
These tunable filters also include pyroelectric detector elements
and are available in TO8 housings. Compact arrangements of such
designs are realized in Infratec’s multi-color FP detectors [16] or
VTT’s integrated solutions [17]. Fabry-Pérot pyro-detectors can
therefore be manufactured in large quantities, covering different
ranges of the MIR  spectrum [18] and are therefore prime candi-
dates for the construction of  dedicated spectroscopic sensors. For
operation pyro-detectors require modulation of the light inten-
sity. In FT-IR spectrometers this is  achieved by using a thermal
light source [19], which provides a constant emission of infrared
radiation modulated by the interferometer itself. In case of using
adjustable Fabry-Pérot cavities for selection of narrow spectral win-
dows practically no intensity modulation is achieved. Therefore,
in these miniature, sensor-like spectrometers the intensity of the
light source itself has to be modulated. The operation principle of
FP-based filtometers permits arbitrary access to selected spectral

regions, in addition to recording the whole spectra by a  complete
scan.

This work reports on the results obtained with a home-made
prototype for gas sensing using a  Fabry-Pérot pyro-detector and
thermal light source, whose emitting element consists of a thin
layer of diamond like carbon (DLC), that can be modulated with
up  to 100 Hz. A typical gas mixture found at  butadiene plants of
petrochemical refineries has been selected as  target analyte com-
position (iso-butane, 1-buten, 1,3-butadiene). The obtained spectra
are evaluated with multivariate data analysis techniques and the
results compared.

2. Materials and methods

2.1. Tunable Fabry-Pérot (FP)  filter

For characterization and wavelength calibration, the FP filter
(LFP5580, InfraTec GmbH) with a  tuning range from 5.5 to 8 �m
(1830–1250 cm−1)  was coupled to a  Bruker Vertex 80v FTIR spec-
trometer as an external detector using a parabolic off axis mirror
(f = 156 mm).  Spectra at  different driving voltages (5–50 V) were
collected by averaging 5 scans and setting the scanner velocity to
1.2  kHz (HeNe frequency). With the resulting transmission win-
dows the filter was  calibrated (Fig. 1a). The following relation
between driving current and central transmission wavelength was
found:

Vdriving = Vmax −

c

�̃ −  �̃min
(1)

where Vdriving is the driving voltage of the tunable FP, Vmax is
the maximum voltage, c is a  constant factor and � is  the central
wavenumber. Eq. (1) was fitted (shown in Fig. 1b as the dashed
line) to the measured FTIR transmission spectra in order to cali-
brate the wavenumber axis and enable scanning with equidistant
step size.

Furthermore, as  shown in Fig. 1b, the full width at half maximum
(FWHM, blue markers) of the transmission curves increases with
increasing wavenumber.

2.2. FP-based MIR filtometer for gas sensing

The FP-based MIR  filtometer (inset in  Fig. 2) consisted of  a
custom built 30 cm gas cuvette employing two  circular (diame-

Appendix F. Scientific Publications on Infrared-Based Gas Sensing
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Fig. 2. Setup for  the  gas measurements including the gas mix rig. The  inset shows
the instrumentation of  the tunable FP filter.

ter: 52 mm)  2 mm thick CaF2 windows. Light from the pulsed MIR
source (JSIR350-4-AL-R-D6 by Micro-Hybrid Electronics GmbH)
was collimated with a CaF2 lens (f = 50  mm,  ThorLabs GmbH) and
after passing the gas cuvette, focused with an equal lens on the
active element of  the tunable FP filter-detector. The light source
was pulsed at  3.52 Hz with 5 V amplitude and a duty cycle of 50 %.
The electronic signal from the pyroelectric element of  the FP filter-
detector was processed with a  lock-in amplifier and the resulting
voltage was digitalized (ADS1115, Texas Instruments, 16-bit res-
olution) and recorded. Spectra of  the samples were collected by
stepwise changing the control voltage (MCP4725, Microchip Tech-
nology Inc.) for the tunable filter and calculating the resulting mean
intensity of an acquisition time of  1.5  s  per step. A  waiting period
of 300 ms  was applied when moving to the next position to let the
filter settle. The filtometer was thus operated by sampling from
one point to the next. A  step size of  10 cm−1 was  chosen over a
range of 550 cm−1 (1280–1830 cm−1). Scanning across the whole
spectral range thus took approximately 100 s. For  reference mea-
surements of the gases a Tensor 27 FTIR spectrometer (Bruker
Optics, Germany) equipped with a 10 cm gas cell was used. For FTIR
spectra acquisition 16 scans at a  spectral resolution of 1 cm−1 were
averaged. 3-term Blackman Harris apodization, a  zero filling factor
of 2 and Mertz phase correction were applied.

2.3. Experimental set-up including gas supply

For  providing gas mixtures with defined concentrations a cus-
tomized gas mixing rig (Fig. 2  top) was used. This rig consisted of
four mass flow controllers (MFC red-y smart, Vögtlin Instruments
AG, Switzerland), with different operating flows. To ensure homo-

geneity a  helical static mixer was employed before the mixed gas
was directed to the analyzers. Gas lines were made of stainless steel
tubing (i.d. 4  mm)  and Swagelok connections.

Gases were provided by AirLiquide Austria GmbH with the
following purities: 1-butene 99.6 %, isobutane 99.5 % and 1,3-
butadiene 99.6 %. The design of experiment was chosen with the
built-in function in OPUS 7.2 (Bruker Optics, Germany). 20 mea-
surement points were taken in a  range  from 0.12 to 1.77 % for
1,3-butadiene and isobutane and from 0.4  to 6.2 % for 1-butene.
The composition for each step can be seen in Table 1.

All concentrations are  given in volumetric quantities (v/v, in%)
unless specified otherwise. All steps had a  constant flow of  4  l/min
and a duration of  8  min  to ensure stable conditions in the gas cell. In
addition of measuring gas mixtures spectra of  pure gases were mea-
sured. The mass flow controllers and all valves switching the gas
mix  rig were controlled using LabVIEW® (National Instruments).

2.4. Data analysis based on partial least squares (PLS) regression

Multivariate data evaluation was  performed using the software
package DataLab [20]. Spectra of each concentration step were eval-
uated. Prior to performing PLS the dataset was mean centered. Cross
validation was  done by random subsets (using 5 iterations with 2
spectra). The root-mean-square error of prediction (RMSEP) was
calculated by Eq. (2),

RMSEP =

√

∑N

i=1

(

yi − ŷi

)2

N
(2)

where yi are the concentrations of  the respective components as
prepared in  the gas  mixing rig, ŷi the values predicted by the PLS
algorithm and N the number of samples measured.

2.5. Data analysis based on multiple linear regression (MLR)

Multiple linear regression correlates more than one inde-
pendent (descriptor) to one dependent (target) variable. Usually
spectroscopic methods provide a multitude of  descriptors (e.g.
different wavenumbers) and only one target variable (e.g.
concentration). Additionally, spectra inherently show strong mul-
ticollinearities because of  spectral features spanning over several
wavenumbers. These facts often cause over-optimistic models by
applying MLR  to spectral data. This can and must be avoided by
reducing the number of  descriptors. This is usually done by vari-
able selection algorithms, which identify the descriptors that are
most important for the analytical problem at  hand and use them
explicitly to build the model. Absence of collinearities can be tested
by calculating and comparing e.g. the variance inflation factor (VIF)
for different sets of descriptors.

3. Results and discussion

3.1. System performance

An important parameter indicating the performance of a given
experimental set-up are so called 100%-lines. These are  obtained
by recording two spectra without the analyte being present in the

Table 1

Composition of each concentration step set by the gas mixing rig and used for multivariate calibration and validation of  the tunable FP instrument. All concentrations are
given  in volumetric quantities (v/v, in%).

conc. step 1 2 3  4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1-butene 0.79 1.56 1.42 1.49 4.85 0.00 4.86 2.33 3.22 1.42 2.94 0.87 3.77 1.91 2.26 4.11  1.91 6.25  0.43 0.78
isobutane 1.39 1.13 1.51 1.07 0.31 0.89 0.49 0.69 0.12 0.88 0.19 0.06 0.00 0.63 1.12 0.06 0.94 0.06 1.77 1.70
1,3-butadiene 0.77 0.85 0.34 0.94 0.50 1.72 0.22 1.10 1.43 0.94 1.52 0.35 1.26 1.28 0.51 1.09 0.85 0.33  0.43 0.43
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Fig. 3. Pure spectra of the three sample gases collected with the FTIR spectrometer
(solid lines) and the tunable FP setup (dashed lines).

Fig. 4. All spectra of the different 3 component mixtures collected with the tunable
FP setup.

gas cell and calculating the related absorbance spectra, which in
absence of any noise would be straight lines. The root-mean-square
(RMS) noise of these 100% lines was calculated. The peak-to-peak
(PP) noise on the other hand is  the difference of  the absolute max-
imum and absolute minimum absorption value obtained in the
respective 100% lines. Under the adopted conditions and covering
a spectral range from 1280 to 1830 cm−1 the RMS  noise was found
to  be 0.76 mAU  (3.1 mAUPP) for the Fabry Pérot (FP)-based MIR  fil-
tometer. In Fig. 3 the spectra of  the pure components collected with
the FTIR spectrometer and the tunable filtometer are compared. For
the FTIR spectrometer a resolution of  1  cm−1 was  arbitrarily set,
representing the highest resolution this spectrometer can offer. On
the contrary, central wavenumbers for the transmission curves of
the filter spaced at 10  cm−1 were selected considering the FWHM
of the corresponding transmission curves being 25–45 cm−1.  This
difference in the spectral resolution is best observed for isobutene
at the band at 1470 cm−1 (Fig. 3). This band, assigned to the anti-
symmetric deformation of  the methyl group [21],  should show a
distinct peak at the center due to the Q-branch of  the rotational

Fig. 5. RMSEP versus number of  factors as calculated by cross-validation for  the
PLS for tunable FP setup. The black line indicates the mean RMSEP of all three
components.

Table 2

Overview of the MLR regression. The results of the variable selection contain the
position  (in cm−1)  and the index of the spectral position (in parenthesis). Addition-
ally, the variable inflation factor (VIF) of each variable, the regression coefficient (R2)
and the F-value of the model is  shown.

variable VIF R2 F

1,3-butadiene 1577 (32) 1.047 0.97 282
1448 (18) 1.047

1-butene 1612 (36) 2.625 0.992 1078
1662 (42) 2.625

isobutane 1367 (10) 1.36 0.9986 4561
1717 (49) 3.304
1812 (62) 3.788

transition. While this band is  visible in the FTIR spectrum it cannot
be observed in the tunable FP spectrum because of  the aforemen-
tioned lower resolution. The positions of absorption bands of the
different analytes are consistent in both spectrometers indicating
a  proper calibration of the Fabry Pérot (FP)-based MIR  filtometer.

Using the set-up depicted in Fig. 2 acquisition of FP-based spec-
tra (Fig. 4)  for different 3 components mixtures was possible. Care
was taken to avoid any carry over from one gas mixture to the next
one.

3.2. Quantification employing partial least square (PLS)

calibration

PLS models were calculated for the dataset using the gas con-
centration as set by the mass flow controllers as  reference values.
When establishing a PLS model the number of factors to be consid-
ered has to be selected carefully. It is recommended to choose the
least possible amount of factors that describe the sample system
sufficiently. For  the tunable FP filtometer dataset (Fig. 5)  the opti-
mum  number of factors was determined using cross-validation (2
spectra left out) to be five. With a  mean RMSEP of 0.109 % the devel-
oped FP filtometer provides highly satisfactorily results indicating
that spectral resolution as offered by the FP-based MIR  filtometer
does not limit the analytical performance.
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Table  3

Comparison of the results of the multivariate models calculated in this study for every component. Additionally, the acquisition time is given for comparison.

components

1,3-butadiene 1-butene isobutane

LOD (%) LOQ (%) LOD (%) LOQ (%) LOD (%) LOQ (%) acquisition time (s)

PLS 0.17 0.50 0.05 0.16 0.03 0.09 100
MLR  0.20 0.57 0.06 0.17 0.04 0.11 12

3.3. MLR  models for the tunable FP setup

Before setting up the MLR  model for each component present in
the sample mixture, a  reduction of  the number of  descriptors is nec-
essary. With respect to the FP-based MIR  filtometer in this study it
is  no longer required to scan the whole spectral range, instead a few
positions might be enough to predict the concentrations accurately.
This in turn will allow faster measurements.

DataLab has conveniently implemented functions, which auto-
matically select different sets of  descriptors, calculate a model and
report several parameters (min. t-value, Akaike Information Cri-
terion (AIC), Bayes Information Criterion (BIC), R2,  etc.) to decide
upon the most useful descriptor set for the problem at  hand. The
variable selection was performed using stepwise regression. Here,
the algorithm tries to improve the model by adding more suitable
variables and by comparing the minimal t-value. It can also modify
its selection by removing the last variable and trying another one,
which may  yield better results.

With the selected variables multiple linear regressions (MLRs)
were performed. To investigate collinearities in the selected vari-
ables, the VIF for each selected descriptor was  calculated and
compared [22]. In general, VIFs should be lower than 10  so that
selected variables are not strongly correlated to each other. How-
ever, the decision threshold can vary from dataset to dataset [23].
For the spectral descriptors chosen in this study, no VIF (Table 2)
was obtained with values above 3.8, so there is no indication for
strongly correlated variables. Thus the models can be assessed by
their other figures of  merit, like the regression coefficient and F
value.

The prediction accuracy for the individual components reassem-
bles the trend observed in the PLS models. For 1,3-butadiene and
1-butene two descriptors were chosen, as they  gave the best results
whilst showing the least correlation among them. Choosing vari-
able sets with more than two descriptors always resulted in  high
VIFs and were therefore discarded. Isobutane was the only compo-
nent, which allowed for three descriptors with moderate VIFs. This
resulted in a  better model and goodness of  fit for the regression
(Table 2).

3.4. Analytical figures of merit

When comparing different quantitative methods, their ability
to quantify a certain component inside a given matrix can be
expressed by figures of  merit such as the limit of detection (LOD) or
the limit of quantification (LOQ). IUPAC defines LOD as the concen-
tration level for which the risk of  false non-detects (false negatives)
has a probability �  [24,25]. Beforehand, a critical concentration
level has to be defined, involving a certain risk of false detects (false
positives) with a probability � [26]. Whereas these figures of merit
are well known and used for a long time in univariate analysis, it is
not straight forward to apply these to multivariate datasets. This is
because calibration curves obtained from multivariate datasets by
different chemometric algorithms may  contain different unknown
signal contributions for each component. Usually, this  is  the case
when large datasets are generated from complex sample mate-
rial where the presence of  unknown contributions from unknown

components cannot be omitted. However, if the sample systems is
known to not include such interferences, it  is valid to use the IUPAC
method for evaluating the resulting calibration curve of  each com-
ponent [27]. Equivalently, the LOQ was  determined based on the
standard deviation of the response of the model and the slope of
the obtained calibration curve, where the tenfold of the standard
deviation is divided by slope.

The LOD and LOQ of the different methods MLR  and PLS can
now be compared (Table 3). The resulting values for each compo-
nent are similar, with the PLS having the upper hand by a  small
margin. This is to be expected, because PLS uses the whole dataset
(has a higher information depth) as  MLR, where only a  couple of
descriptors were chosen to represent the components. However,
the acquisition time differs quite heavily, with the MLR  method
only needing 12 s,  which in turn  significantly improves time reso-
lution. This might be of benefit in fast changing processes, where
quick reaction to certain changes is required.

4.  Conclusions

A compact, robust and low-cost Fabry Pérot (FP)-based MIR  fil-
tometer for gas  sensing was  built and tested for multicomponent
gas analysis on the example of measuring 1,3-butadiene, 1-butene
and isobutene. The spectra obtained with the FP filtometer were
compared with spectra recorded on a  FTIR spectrometer and suc-
cessfully validated. Multivariate analysis based on partial least
squares (PLS) and multiple linear regression (MLR) for simulta-
neous quantification of  the target analytes were carried out and
compared. The PLS model gave best results using 5  factors with a
mean RMSEP of 0.109 %. Mainly due to the slow response time of
the pyroelectric detector employed in the FP-based MIR  filtome-
ter, it  took about 100 s to collect a  full spectrum. Given a defined
target application (as a  dedicated sensor) it is,  however, often not
required to record a  full spectrum and still achieve multicomponent
sensitivity. This was shown here by performing MLR  based on the
obtained dataset. Variable selection was  applied to find the most
significant descriptors which were then chosen for further analy-
sis. The absence of collinearities was verified by calculating VIFs
for the selected descriptors. MLR yielded a LOQ of  0.57 %, 0.17 %
and 0.11 %  for 1,3-butadiene, 1-butene and isobutane respectively,
which is comparable to the results obtained from PLS analysis.
The advantage of  using MLR  over PLS is  that only data from seven
positions have to be measured, which reduces the time  of anal-
ysis by a factor of  8 to approximately 12 s. Thus we could show
that this compact and low-cost sensor paired with chemometric
processing methods is able to quantify gas mixtures composed of
three different analytes. In light of the steadily increasing need for
cost effective gas sensing in process applications the presented FP-
based MIR  filtometer provides an attractive and versatile option.
The drawbacks of the FP-based MIR  filtometer certainly lay in the
restricted range covered and the limited spectral resolution, which
can still be sufficient for certain process applications, as shown in
this study on selected C4 hydrocarbons. Apart from the low cost of
the employed components a rapid reprograming allows also adap-
tion to different measurement problems. This versatility combined
with a small electrical as well as  physical footprint pave the way
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for this technique to establish itself as useful chemical sensors in
process monitoring and control.
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Title A New Method for Monitoring Clean-in-Place Processes by Using Quantum Cascade
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+ Organizing and performing the field experiments.
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- Developing a sensor to monitor the side products of a formaldehyde production plant,

- Modifying an FTIR spectrometer to quantify CO2 in hydrofluorocarbons,
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powders,

- Teaching students the basics of laser spectroscopy (quantifying NOx with an open-path
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website (Typo3), local MediaWiki installation).

Project staff

2009–2012 Institute of Chemical Technologies and Analytics, TU Wien, Vienna.

2014–2016

Part-time work

+ Assembling, programming and evaluating prototypes based on infrared spectroscopy,

+ Teaching students the basics of laser spectroscopy (quantifying NOx with an open-path setup

and TDLAS),

+ Administrating the IT infrastructure of the work group (office and lab PC’s, NAS, public

website (Typo3), local MediaWiki installation).

Project staff

2012–2014 QuantaRed Technologies GmbH, Vienna.

Part-time work + Installing an FTIR-based sensor to quantify hydrocarbons in a process stream at a refinery,
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2006–2008 ESW Consulting Wruss Ziviltechnikergesellschaft mbH, Vienna.
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Skills and interests

Languages

German First language

English Highly proficient in both spoken and written (C1/C2)

Computer skills

Programming LabVIEW, Python, TurboPascal/Delphi, C/C++, PHP

CAD, EDA SolidWorks, Eagle

Office Microsoft Office, LATEX, Adobe Illustrator, Adobe InDesign

Infrastructure Basics in Linux/Unix/MacOS (Workgroup Servers), Fundamentals in Switches, Routers and

VPNs

Project

Management

Redmine, Microsoft Project

Other activities

Volunteer Fire

Brigade

+ Platoon Commander (Zugskommandant)

+ Certified trainer and examinar "Basisausbildung" and "Grundlagen Führen"

+ Examiner "Ausbildungsprüfung Löscheinsatz"

+ Person in charge for hazardous substances

+ Member since 2003 (Freiwillige Feuerwehr Scheiblingkirchen)

Sailing + Offshore license "FB 2" (since 2009)

+ GMDSS - Short Range Certificate (marine VHF radio)

Electronics

Hobbyist

Raspberry Pi, Software Defined Radio, IoT, Arduino, ESP32, 3D printing
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