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Abstract

In spite of the successes of observational astro- and particle physics and cosmol-
ogy very much of the universe remains unknown. The Standard Model of particle
physics is a theory describing the electromagnetic, weak, and strong nuclear in-
teractions, as well as classifying all the subatomic particles known. But there
is overwhelming evidence, that all the known particles, the ordinary (baryonic)
matter, the building blocks of planets, stars and ourselves, only make up about
4.9% of the energy content of the universe. The standard model of cosmology
(ΛCDM) indicates that the total mass-energy of the universe contains beside the
4.9% ordinary matter two other components: 26.8% dark matter and 68.3% dark
energy.

The accelerating expansion of the Universe is the result of the effect of the dark
energy with its most simple form given by a cosmological constant Λ in Einstein’s
Equation.

Dark matter is an unidentified type of matter that is not accounted for by dark
energy and neutrinos and is generally believed to be a non-relativistic, charge
neutral and non-baryonic new form of matter. Although dark matter has not been
directly observed yet, its existence and properties are inferred from its gravitational
effects such as the motions of visible matter, gravitational lensing, its influence
on the universe’s large-scale structure, and its effects in the cosmic microwave
background.

Thus the search for Dark Matter is the search for physics beyond the standard
model. Although the nature of dark matter is yet unknown, its presence is crucial
to understanding the future of the universe.

The CRESST experiment is searching for direct evidence in the form of a nuclear
recoil induced on a scintillating CaWO4 crystal by a dark matter particle, and is
installed and taking data underground at Laboratory Nazionali del Gran Sasso
(LNGS) in Italy.

While both, dark energy and dark matter, have not been detected directly, a
class of dark matter particles that interact only via gravity and the weak force,
referred to as Weakly Interacting Massive Particles (WIMPs), has been established
as the leading candidate among the dark matter community.

For this thesis a special model of dark matter was studied, namely the dark
photon.

This thesis provides a detailed description of the calculation of the 90% upper
limit on the dark photon kinetic mixing κ based on data from the second phase of
the CRESST experiment. The analysis was carried out in a frequentist approach
based on the (unbinned) maximum-likelihood method and likelihood ratios. To
make a statement about the calculated result and its quality, the used algorithm
had to be tested, what was done with Monte Carlo simulations (pseudo data).
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1. Dark Matter
This chapter gives an explanation to the notion "Dark Matter", its indications and the
observed evidence.
Dark matter is undetectable by any electromagnetic radiation at our disposal - it

can’t be seen in the visible range, it can’t be detected by radio waves at the low end
of the spectrum or by the X-rays at the high end of the spectrum. It appears not to
interact by the electromagnetic force. The obvious question is then "How do we know
it is there?". With the answer to that - it interacts by gravity and thereby produces
measurable results, as all observation of "Dark Matter" so far are based on gravitational
interactions.
The following sections present how we got to known some characteristics of dark mat-

ter, like it is non-luminous (i.e. electrically neutral), has a weak (or even less) interaction
with ordinary matter, a low self-interaction cross-section, is stable with respect to the
lifetime of the universe, is non-baryonic and (probably) is a massive particle as it acts
gravitationally (there is no evidence for the particle character of "Dark Matter", however,
it is well motivated from the particle physic point of view), and we still don’t know its
origins.
An historical outline is presented, starting with the dynamics of galaxies and galaxy

clusters, coming to a brief introduction on cosmology, going to the standard model of
particle physics (SM) and its deficiencies (like not explained phenomena and experimen-
tal results, not observed theoretical predictions and theoretical problems), concluding
with an explanation on how the search for dark matter is one field in the search for
physics beyond the standard model (BSM). Some constraints on the nature of dark
matter are represented in the course of describing some phenomena, as well as methods
on detection of dark matter are explained (whereat in chapter 2 the main focus lies on
the CRESST experiment) and in the end candidates for dark matter (particles) are illus-
trated (where dark photons are described in section 1.8.5, which are needed in chapter
4).

1.1. Introduction
In the late 18th Century, long before distances to stars were known, William Herschel
tried to estimate the size and shape of our Galaxy. In visible light we see an accumulation
of stars, but the structure is not so clear. Herschel did not realize, that most of the stars
were obscured from his view and concluded the Galaxy was a flattened, disk-shaped
object, with the Sun near the center, greatly underestimating the size of the galaxy.
At the beginning of the 20th century, the prevailing view of the cosmos was, that the
universe consisted entirely of our own - the Milky Way - galaxy (an actual visualization
can be seen in fig. 38 on page 112 and fig. 37 on page 111).
Due to the work of scientists like H. S. Leavitt (relation of luminosity and period for

Cepheids - a kind of star that is used to determine the distance from the galaxy using
as standard candle (see appendix A.2); and eq. (1)), J. E. Keeler, W. W. Campbell, V.
M. Slipher (first discovery of the shift of spectral lines of galaxies - galactic redshifts, eq.
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1. Dark Matter

(3) and (32); [1]) and E. Hubble it was proven that extragalactic objects exist.

F = L

4πd2 ⇒ d =
√

L

4πF , (1)

states, that the distance d of a galaxy can be calculated from light flux F from objects
with defined luminosity L (Standard Candles e.g. Cepheid variable stars, supernovae
Ia). With:

L = 4πR2σT 4 , (2)

where L is the luminosity of a star (assuming the star is a black body, compare fig. 11,
which is a good approximation), the temperature T, and radius R of the star and σ is
the Stefan-Boltzmann constant 5.67 · 10−8 W m−2 K−4.
With the the redshift z (and blueshift, where z<0), a dimensionless quantity, as in-

strument to measure velocity of recession of galaxies

z =
√

1 + β

1− β − 1 , (3)

where β = v

c
, v the velocity at which the source moves away from the observer, c the

speed of light and

z = λob − λem
λem

= λob
λem

− 1 , (4)

where z is characterized by the relative difference between the observed (λob) and emitted
(λem) wavelengths (or frequency ν - convert via c = λ · ν) of an object. More to the
topic of redshift and the Doppler Effect see in appendix A.1.
Hubble identified Cepheid variables amongst others in the Andromeda Nebula (M31)

(brief explanation see section 1.1.1). This observations (made in 1922-1923) consequently
proved that these nebulae were much too distant to be part of the Milky Way and were,
in fact, entire galaxies outside our own. The Coma Cluster is one example of a collection
of many galaxies, each consisting of hundreds of billions of stars, as well as there are
many different types of galaxies. Also Hubble was the first to categorize galaxies in a
comprehensive way (see fig. 39 in appendix - A.4):

• Spirals

• Barred spirals

• Ellipticals

• Irregulars

These results changed the scientific view of the universe fundamentally. Nowadays it
is known that many galaxies exist and are estimated to (at least) 200 billion galaxies
(arranged in clusters - more see appendix A.5) in the observable universe. (Current
observations estimate the number of galaxies in the observable universe to ≈ two trillion,
almost a factor of ten higher than would be seen in an all sky survey at Hubble Ultra-
Deep Field depth. [2])

2



1.1. Introduction

Hubble also formulated the famous Hubble law (eq. (5)) in 1929 [3] stating that
the redshift of an astronomical object is linearly proportional to its distance, however
the discovery of the expanding Universe was already made two years earlier in 1927
by Georges Lemaître [4] (and was based on the discovery of the redshift by Milton
Humanson and the spatial distribution of the galaxies).

v = H0 d , (5)

is a linear relation between recess velocity v and the distance d, with H0 = 68 km s-1 Mpc-1
the Hubble constant (Hubble parameter), and respectively the redshift (when the veloc-
ity v is much less than the speed of light (v � c and γ ≈ 1 - eq. (7)) z becomes z ≈ v

c
)

is given by

z = H0

c
d . (6)

With these findings we got to know, that most galaxies recede from us, it became
possible to measure the velocities at which they recede from us, their distance and that
the recession speed is larger for more distant galaxies.

This was determined from the Doppler effect (see appendix A.1). A redshift resulting
from Hubble flow is called the cosmological redshift. The whole universe is expanding.
Galaxies are moving away from all points in space - not just us (more on this topic in
section A.3).

1.1.1. Additional

Lorentz Factor γ
γ = 1√

1− v2

c2

= 1√
1− β2 , (7)

the Lorentz factor (or Lorentz term).

Measure of length 1 Mpc = 1 Mega parsec = 1 · 106 parsec, with 1 parsec =
3.0857 · 1016 m = 3.26156 ly, and 1 ly = 9.4607 · 1015 m.

Messier Catalogue Astronomers often refer to objects (stars, nebula, galaxies, etc.)
by their number in the Messier Catalogue, which the 18th century French astronomer
Charles Messier compiled to aid him in his search for comets.

3



1. Dark Matter

1.2. Indications of Dark Matter
1.2.1. Dynamics of Galaxy Clusters

In 1933 Fritz Zwicky studied two neighbouring galaxy clusters, Coma and Virgo and
was the first to apply the virial theorem

M = 5R
3G v2 (8)

to astrophysics [5] by relating the observed velocity of galaxies with the gravitational
potential. By estimating the gravitational mass based on the motions of galaxies near its
(the clusters) edge, then comparing it to an estimate based on its luminosity and number
of galaxies, he obtained that the velocities of the individual galaxies that belonged to
a cluster were of several hundred times greater than expected from Kepler’s law (he
deduced a ratio of gravitational interacting matter to luminous matter of 400 M⊙/L⊙,
given in terms of solar mass M⊙ and solar luminosity L⊙). The more mass there is
in the galaxy cluster, the stronger are the forces exerted on each single galaxy and the
higher is their speed. Zwicky verified that the gravity effect of the visible galaxies was far
too small for such fast orbits, thus far more non-luminous matter than observed luminous
matter must be contained to hold the cluster via its associated gravitational attraction
together, calling it dunkle Materie "dark matter". [6] This was the first indication found
for dark matter, stating that most of the matter in galaxy clusters is dark.

1.2.2. 21 cm Hydrogen Line

In 1959 Louise Volders demonstrated deviations expected according to Keplerian dynam-
ics in the spinning of the Triangulum Galaxy (M33) - spiral galaxy - by observations
of the Doppler shift of the 21 cm radio line. Because it is a radio frequency it passes
undisturbed through dust, and is thus a good tool for measurements on this big scales.
(This effect originates when the electron of the hydrogen atom flips its spin, and then it
emits a 21 cm radio wave.)

4



1.3. Evidence

1.3. Evidence
Today the evidence in favour of dark matter is stronger than it has ever been! To
mention just a few examples, by means of Astrophysical motivations

• Rotation curves of spiral galaxies

• Gravitational lensing for galaxy clusters

and Cosmological motivations

• Large-scale structure of the Universe

• Anisotropy of cosmic microwave background (CMB)

• N-body simulations

• Brilliant agreement of the CMB and SN Ia data

• Nucleosynthesis theory

In the following some of them are briefly explained in a historical approach.

1.3.1. Dynamics of Galaxies

Giving further support for Zwicky’s hypothesis, Vera Rubin confirmed in 1970 ([7]) the
non-Keplerian profile of rotation velocities for a huge number of galaxies (starting with
the Andromeda Galaxy) using optical spectroscopy, where she uncovered the discrepancy
between the predicted angular motion of galaxies and the observed motion, and thereby
obtained the strongest evidence up to that time for the existence of dark matter.
By setting the gravitational force (FG) and the centrifugal force (FZ) equal, describing

the circular movement of a star around the galactic centre, the rotational velocity v=v(r)
of an object on a stable Keplerian orbit in dependence of the radius r of its orbit can be
calculated (in the context of classical Newtonian gravitation - connecting of the angular
velocity of an orbiting satellite around a mass in a virialized system) like:

FG = GmM

r2 = m · v2

r
= FZ (9)

⇒ v(r) =
√
G ·M
r

, (10)

with M being the mass within the orbit and G the gravitational constant - G ≈

6.674 · 10−11 N
m2

kg2 .
Thus, for stars well outside the (luminous) galactic body, one would expect the velocity

to follow a Keplerian behaviour, i.e.

v(r) ∝ 1√
r

(11)

5



1. Dark Matter

if only visible matter would be present.
In observations from 1980 (V. Rubin et al. [8]) individual stars or star clusters were

measured to establish the velocity curve of a given galaxy, i.e. the circular velocity
around the galactic center as function of the radius r (eq. (10) and (11)) of the orbit.
A flat rotation curve even well beyond the galactic body was observed in systematic
measurements of rotation curves for 21 galaxies and no single curve followed the expected
Keplerian behaviour.
The orbital speed of a star or gas cloud around the Galaxy is determined by mass

inside the orbit. Therefore it is needed to calculate the mass inside the Sun’s orbit. This
can be done via Kepler’s Law:

Mtotal ∝
(orbital size)3

(orbital period)2 (12)

Rubin’s results showed, that if the gravity of the constituent stars was all that was
holding the galaxies together, they would rupture because of their fast rotation velocity.
But as they are not flying apart, a huge amount of unseen, non-luminous mass must be
holding them together, at least ten times as much dark mass as can be accounted for
by the visible stars. This phenomenon became known as the galaxy rotation problem.
Rubin’s observations indicated, that not just galaxy-clusters, but also individual galaxies
contain dark matter, and were the first robust results to suggest that either Newtonian
gravity does not apply universally, or that, conservatively, upwards of 50% of the mass
of galaxies was contained in the dark galactic halo.
A comparison of the rotation curve of the typical spiral galaxy M33 predicted from the

distribution of the visible matter and the above mentioned results from the observations
of Volders and Rubin is represented in figure 1.

Dark halo

Implying the existence of a dark halo (i.e. a mass distribution made by non-luminous
and non-absorbing matter) with a mass density ρ(r) ∝ 1

r2 (eq. (13) and (14)) the
observed deviation from the Keplerian velocity curves can be explained and was first
done by J. Einasto et al. [10] and J.P. Ostriker et al. [11], stating that dark matter
in galaxy clusters is not homogenous distributed throughout the cluster, but clustered
around the individual galaxies, resulting in dark halos around the luminous part of the
galaxies. [5]
With M = ρ · V assuming a spherical distribution of matter with a constant density

ρ and V = 4
3πr

3 and eq. (11) one gets:

v(r) =
√
GM

r
=
√
G · ρ4

3πr
3

r
= r

√
Gρ

4
3π , (13)

or

⇒ ρ = ρ(r) = 3
4
v2

Gπ
· 1
r2 . (14)

6



1.3. Evidence

Figure 1: Rotation curve of the typical spiral galaxy M33 (yellow and blue points with error-
bars) and the predicted one from distribution of the visible matter (white line). The
discrepancy between the two curves is accounted for by adding a dark matter halo
surrounding the galaxy. [9]

Measurements of numerous spiral galaxies return, that v(r) ∝ constant for a test mass
m being within the spherical distribution of density ρ. To explain this a massive halo
(10:1; mass ratio halo to baryonic matter) is required (a comparison of the Milky Way
and its DM-halo can be seen in fig. 37 on page 111).
In figure 2 a measurement from 1985 of the circular speed v(r) as a function of the

radius r for the barred spiral galaxy NGC 3198 shows, that for large r (r > 10 kpc)
the velocity is almost constant and thus requests additional non-luminous gravitational
matter.
Astronomers discovered, that the galaxy VIRGOHI21 practically totally consists of

dark matter, observing nearly no stars, only 21 cm hydrogen-line emission and found that
hydrogen is rotating, what can only be explained by a ratio of the hydrogen mass (MH)
to the total mass of MH/Mtotal ≈ 1/103. [12] Also recent discoveries, like properties of
the longer known galaxy Dragonfly 44 (with W.M. Keck Observatory and the Gemini
North telescope, both in Hawaii), which is located in the nearby Coma constellation and
is a diffuse "blob" about the size of the Milky Way showed, that only one-hundredth of
1% is in the form of stars and "normal" matter. The other 99.99% is in the form of dark
matter. [13] This would suggest the long theorized existence of dark galaxies, but there
are no confirmed dark galaxies to date.

7



1. Dark Matter

Figure 2: The velocity distribution for the barred spiral galaxy NGC 3198. The dots from the
measurement indicate a massive halo, the lines correspond to models with contribu-
tions from a halo or a disk. [14]

8



1.3. Evidence

Effects on the solar system

One question to these findings is, why the influence from dark matter has not been
seen at observing the solar system. The influences from these non-luminous gravitational
pulling matter becomes noticeable just on the very large scales, it hardly effects the solar
system �, where the mass is completely dominated by baryonic matter, what is shown
in the following calculations (eq. (15) to (17)) and in figure 3.

Figure 3: Velocity distribution of the planets within our solar system with the nice v ∝ 1√
r

distribution. [5]

9



1. Dark Matter

This can easily be explained with a simple estimated model, describing the influence
of dark matter inside the orbit of the earth. Taking the distance from Earth to the
Sun of 1 AU ≈ 150 · 1011 m (astronomical unit), with the diameter of the earth of
≈ 13 · 106 m one gets a volume of

V = πAU2 · 13 · 106 m = π · (150 · 1011 m)2 · 13 · 106 m ≈ 9 · 1033 m3 . (15)

The nowadays known dark matter density ρDM of the galactic halo of the Milky Way
from measurements (from indirect DM detection 1.7.2, and simulations), is ρDM =
0.3 GeV/cm3 for the solar neighbourhood (1 eV = 1.602176565·10−19 J), or via E = m·c2

(the mass equivalent of 1 eV/c2 = 1.782662 · 10−36 kg) this can be converted to

ρDM = 0.3 · 109 · 1.8 · 10−36 kg

(10−2)3 m3 ≈ 0.5 · 10−21 kg

m3 . (16)

Therefore the mass of DM between the sun and earth (mDM−SE) can be approximated
to

mDM−SE = ρDM · V = 0.5 · 10−21 kg

m3 · 9 · 1033 m3 = 4.5 · 1012 kg . (17)

Comparing this result onmDM−SE with the mass of the sunm� ≈ 2·1030 kg and noticing
the difference in a magnitude of 1018 it becomes clear, why the influence on these scales
is negligible and thus there is no deviation from Keplerian behaviour.

Dark matter distribution

In literature many different approaches to the actual distribution of dark matter den-
sity ρDM are discussed, e.g. iso-thermal halos, tri-axial halos, etc. There are some
popular distributions like the Einasto profile, Sérsic profiles, and one in the following
equations briefly outlined model is the Navarro-Frenk-White (NFW) model [15], which
can be parametrized as

ρDM = ρ0(
r
R

)γ
·
[
1 +

(
r
R

)α](β−γ)/α , (18)

with

α = 1.0, β = 3.0, γ = 1.0, R = 20 kpc , (19)

with the dark matter density of the halo ρ0 and a characteristic scale R. It is used also
in fig. 2. [5]
The Navarro–Frenk–White (NFW) profile is a spatial mass distribution of dark matter

fitted to dark matter haloes identified in N-body simulations by Julio Navarro, Carlos
Frenk and Simon White, and is one of the most commonly used model profiles for dark
matter halos. Alternative models, in particular the Einasto profile, have been shown
to represent the dark matter profiles of simulated halos as well as or better than the
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NFW profile. Because of the limited resolution of N-body simulations, it is not yet
known which model provides the best description of the central densities of simulated
dark-matter halos. The NFW dark matter profile is not consistent with observations
of low surface brightness galaxies, which have less central mass than predicted. This is
known as the cusp-core (or cuspy halo) problem (see sec. 1.6.1).

1.3.2. Gravitational Lensing

Further evidence for dark matter was delivered by the effect of (weak) gravitational lens-
ing. As already supposed by Isaac Newton, Newtonian gravity predicts that starlight
will bend around a massive object. A little bit more detail on space time etc. will be
given in section A.3, but for now it is sufficient to mention, that the trajectory of light is
always a geodesic for a given space time. As energy can curve the space time, it can also
affect the light trajectory. This principle is illustrated in fig. 4: A massive object be-
tween a light source (here a distant galaxy) and an observer can bend the light trajectory
like an optical lens, hence this effect is called gravitational lensing. As consequence of
the bended light trajectory, the position of the distant object is changed for the observer
and the image of an extended object get distorted.

After Albert Einstein predicted (in 1915) with his theory of general relativity, that
the deflection angle, due to gravitational lensing, was twice the Newtonian prediction,
it was A. Eddington [16] during the total eclipse in 1919, who made Einstein and his
theory world-famous, by verifying this. He measured, that the position of stars near the
eclipsed Sun where changed with respect to their position in absence of the Sun (i.e. at
night).
The deflection angle α̂ can be calculated from the mass M of the lens and the impact

parameter ζ [18] via:

α̂ = 4GM
c2ζ

, (20)

with the speed of light c and the gravitational constant G, see also fig. 4.

Nowadays it is distinguished between three classes of gravitational lensing, according
on the strength of the effect:

1. Strong gravitational lensing - where the image is split

2. weak gravitational lensing - no clearly visible distortion of the image occurs

3. Microlensing - is a strong lensing event, in case the lens is small, e.g. a massive
astrophysical compact halo object (MACHO) - see section 1.3.4 on page 29.

ad 2.:
The distortions of background sources are much smaller, and no obvious distortion of
the image of an individual source is observed, but it is possible due observing multiple
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Figure 4: A lens of mass M will deflect light from a distant source by an angle α̂ dependent
on the impact parameter ζ. [5] [17]

sources, to statistically deduce the correlation between the images (due to the gravi-
tational lensing). Because of this use of multiple sources, more extended gravitational
lenses can be studied, e.g. cosmic filaments or colliding galaxy clusters.
By measuring the shapes and orientations of large numbers of distant galaxies, their

orientations can be averaged to measure the shear of the lensing field in any region.
Based on the observed ellipticities a shear map can be constructed. This, in turn,
can be used to reconstruct the distribution of gravitational interacting matter between
source(s) and observer:
in particular, the background distribution of dark matter can be reconstructed (over
density - and in contrary an under density between source and observer, e.g. a void).
But the results of these surveys are also important for cosmological parameter estima-
tion, to better understand and improve upon the ΛCDM model (see section 1.4), and to
provide a consistency check on other cosmological observations. They may also provide
an important future constraint on dark energy.

The effects of both, the strong and the weak gravitational lensing, shows for galaxy
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clusters more gravitational interacting matter than luminous matter. The differences
can be explained as dark matter and is in agreement with the results obtained from
dynamics of galaxies (discussed in the previous section), but this is not just an addi-
tional indication for dark matter, with gravitational lensing, it is also possible to map
the distribution of dark matter in comparison with luminous matter, see e.g. fig. 5 for
the famous "Bullet cluster".

Gravitational lenses act equally on all kinds of electromagnetic radiation, not just vis-
ible light. Weak lensing effects are being studied for the cosmic microwave background
(see section 1.3.3) as well as galaxy surveys. Strong lenses have been observed in radio
and X-ray regimes as well.

Bullet Cluster

The bullet cluster (1E 0657-558) consists actually of two well separated colliding galaxy
clusters observed in 1 billion pc away from Earth, and passed through 150 million years
ago. The name Bullet Cluster refers to the smaller subcluster, moving away from the
larger one and looks like a bullet passing through a target.
It was found per measurements from weak lensing, that the visible mass accounts for

only . 2% of its total mass [19] and therefore the existence of dark matter is needed.
Furthermore the bullet cluster allows also to investigate the nature of its dark matter,

i.e. if it is non-baryonic dark matter or baryonic dark matter (see section 1.8). A classic
candidate for non-baryonic dark matter in galaxy clusters is the intergalactic medium
(see appendix A.5), i.e. hot gas not associated with individual galaxies but with the
total cluster [20].
The Bullet Cluster is one of the hottest known clusters of galaxies. Investigating this

collision one can discriminate three parts:

• The stars of the galaxies, observable in visible light, were not greatly affected by the
collision, and most passed right through, gravitationally slowed but not otherwise
altered.

• Observations in X-ray found the hot gas of the two colliding components. It is
located in-between the two subclusters and represents most of the baryonic (i.e.
ordinary) matter in the cluster pair, but it contributes only . 15% to the total
cluster mass. The gases interact electromagnetically, causing the gases of both
clusters to slow much more than the stars.

• The third component, indirectly detected by the (weak) gravitational lensing of
background objects is the dark matter.

By interpenetrating each other, the galaxies of each subcluster where not distorted,
due to the large distances between it. Contrary, the extended gas around each subcluster
was separated from the galaxies by friction. [19]
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The weak-lensing, which is strongest in two separated regions near (possibly coinci-
dent with) the visible galaxies, showed that most of the cluster mass coincide with the
subclusters. Therefore, baryonic dark matter is only a minor contribution to the mass
budget of the bullet cluster and provides support for the idea that most of the mass in
the cluster pair is in the form of two regions of dark matter, which bypassed the gas
regions during the collision and lies ahead of the collisional gas, see fig. 5. Non-baryonic
dark matter could be a solution for the missing major contribution. [19]
Additional, this potential non-baryonic mass must have a low self-interaction cross-

section, because otherwise friction would have separated it from the galaxies as it coincide
(similar to the intergalactic mediums). This together with the observation of several
other merging clusters could set limits on the self-interaction cross-section. [21].
This (and other similar observations) allow good limits on the cross-section of the

self-interaction of dark matter ([21]) and provides an observable constraint for cosmo-
logical models, which may diverge at temperatures beyond their predicted critical cluster
temperature ([22]).
A study from 2010 has concluded that the velocities of the collision as currently

measured are "incompatible with the prediction of a ΛCDM model" (discussed in section
1.4) [23], and it may indicate that the prevailing cosmological model is insufficient to
describe the mass discrepancy on galaxy scales, or that its predictions about the shape
of the universe are incorrect.
In theories without dark matter, such as Modified Newtonian Dynamics (MOND), the

lensing would be expected to follow the baryonic matter (i.e. the X-ray gas). Since the
observation of the bullet cluster, shown in fig. 5, the MOND approach lost its validity
as substitute for the existence of dark matter. (However, small MOND effects on top
of non-baryonic dark matter are not excluded.) These obstacles may be solved by even
more generalized modifications, e.g. Modified Gravity (MOG) which introduce a position
dependent gravitational coupling to explain the Bullet Cluster. [24]
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Figure 5: Composite picture of the bullet cluster. Optical image of the Bullet Cluster (1E
0657-558), overlayed with a X-ray observation (red) and a lensing map (blue). For
details see text. Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical:
NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI;
ESO WFI; Magellan/U.Arizona/D.Clowe et al. [19] [25]
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1.3.3. Cosmic Microwave Background

After G. Gamow, R. Herman and R. A. Alpher first predicted it in 1948, it was discovered
by A. Penzias and R. Wilson in 1965 with the Holmdel horn antenna. The most precise
observation of the Cosmic Microwave Background (CMB) power spectrum (fig. 8)
was done with the PLANCK satellite ((Re)Named in honour of the German physicist
Max Planck (1858-1947), who derived the formula for black-body radiation.), which
was a space observatory operated by the European Space Agency (ESA) from 2009
to 2013. It mapped the anisotropies of the CMB (fig. 7) at microwave and infra-red
frequencies, with high sensitivity and small angular resolution and provided a major
source of information relevant to several cosmological and astrophysical issues, such as
testing theories of the early Universe and the origin of cosmic structure. As of 2013 it
has provided the most accurate measurements of several key cosmological parameters,
including the average density of ordinary matter and dark matter in the Universe and
with an expanded release including polarization data in February 2015.
Planck’s objective is to analyse, with the highest accuracy ever achieved, the remnants

of the radiation that filled the Universe immediately after the Big Bang - this is observed
today as the Cosmic Microwave Background.

Properties

Alluding to its Wien peak in the microwave region, it shows the wavelength dependence
of a "blackbody" radiator at about 3 K temperature today.
All objects emit radiation with the wavelengths characteristic of their temperature.

The ≈ 380000 year old universe was a 3000 K blackbody (fig. 11), with its peak wave-
length = 1 micrometer = 10−6 m, releasing this microwave radiation. Looking across
space today it is glowing with 1 millimetre = 10−3 m. This shift of the spectrum of
the cosmic microwave background from 3000 K to 3 K is an enormous redshift, named
cosmological redshift.
Before the decoupling, photons and electrons were coupled via Thompson scattering.

Electrons and protons were coupled via charge conservation. Matter got compressed
during fall into the gravitational well, resulting in temperature increase. Radiation pres-
sure increased with temperature, and radiation pressure rarefied matter again, resulting
in temperature decrease. A consequence are acoustic oscillation with wavelength λ and
higher harmonics. This process stops at recombination.
So this "light" which is detected now originated in the very early universe, in an

age then about 380000 years or nearly 13.7 billion years ago and is considered to be the
remnant of the radiation emitted at the time the expanding universe became transparent.
This decoupling of γ took place at a temperature of about 3000 K, at a redshift z of about
z = 1100 (last scattering surface), and a time when the universe was t = 380000 years
old (the redshift z is related to the distance d by Hubble’s law eq. (6)). Till then all
matter was in plasma (protons and electrons separated) and light could not pass through,
but then the microwave radiation decoupled from baryonic matter and the universe
transforms from being opaque in the plasma to being transparent. This is called the Era
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of Recombination, because the expansion of the Universe cools the plasma, protons and
electrons combined and formed neutral hydrogen and helium atoms, photons decouple
and so light could pass through and travelled in all directions and can be observed as
cosmic microwave background (CMB) radiation. A representation of the composition
at this time can be seen in fig. 6. The redshift is determined by eq. (4). From the
measured blackbody temperature the photon number nγ and the energy density ργ can
be calculated at the epoch of recombination to nγ = (2ζ(3)/π2)T 3

γ ' 411 cm−3 and the
energy density is given by ργ = (π2/15)T 4

γ ' 0.260 eV cm−3.
This microwave radiation is still here to today and penetrates the entire universe in

the guise as an almost perfect black body radiation at T = Tγ = 2.735 K. This is due to
the expansion of space, as the universe expands, the wavelength of primordial light also
increases. (redshift)
Also the discovery of the 3 K microwave background radiation was one of the crucial

steps leading to the calculation of the standard "Big Bang" model of cosmology.
It is nearly the same in all directions, but slightly asymmetric (≈ 0.1%), due a local

Doppler shift due to the earth’s motion. It is called CMB "dipole" and is visible because
of our local group’s relative speed to this primordial radiation (≈ 600 km/s). Observa-
tions revealed, that the Sun moves at 382 km/s, the Milky Way at 540 km/s and that the
Milky Way Galaxy is moving toward the Hydra-Centaurus Supercluster and this in turn
toward the Great Attractor (many clusters are moving in this direction - enormous pull).

Figure 6: Content of the universe at an age of 380000 a.

Observations of the anisotropy of the CMB from temperature fluctuations showed,
that it is homogeneous (the universe looks the same everywhere on large scales - there is
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no special place (center)) and isotropic (the universe looks the same in all directions on
the sky - there is no special direction (axis)). This behaviour got the notion cosmological
principle and describes the distribution of matter in the universe, when viewed on a large
enough scale, since the forces are expected to act uniformly throughout the universe,
and should, therefore, produce no observable irregularities in the large scale structuring
over the course of evolution of the matter field that was initially laid down by the Big
Bang (more on that see the following section 1.3.4).
Temperature variations in the cosmic background radiation are a record of sound

waves in the early universe - called Primordial sound waves. Studying the character of
these sound waves, and the polarization of the background radiation that they produce,
helps constrain models of the universe. The three major peaks (in fig. 8) show the
relative contributions of dark energy, ordinary matter, and dark matter.
The high degree of uniformity throughout the observable universe and its faint but

measured anisotropy lend strong support for the Big Bang model in general and the
ΛCDM ("Lambda Cold Dark Matter", see section 1.4) model in particular.

Further details of the CMB verified, that the cosmological principle holds. Planck
creates a very detailed picture of the microwave radiation, and the content of this image
tells us much about the fundamental structure of the universe:

• If the Universe was denser and hotter in the past, there should be leftover heat from
the early Universe. The CMB (the afterglow from the Big Bang) is homogeneous
to 1 part in 105 (anisotropic ≈ at the mK-level), a very direct evidence for the
cosmological principle to hold.

• the age of the universe is 13.8 billion years (with less than 0.1% (1/1000) uncer-
tainty); If the expansion rate of the universe H = Ṙ

R
was constant H0, the age of

the universe could be computed as (eq. (5))

tHubble = d

v
= 1

H0
. (21)

It is shown later, that the H is not constant with time. Taking this into account
ends up with the age of the universe of about 14 billion years.

• the total energy-mass density Ω0 ("Omega nought") is very close to 1.00 (less than
1% uncertainty) in other words, the universe is flat (eq. (26)); The radius of the
observable universe is determined by the distance to the optical horizon, beyond
which no light signals could reach the Earth at the present time. If the universe
was static, flat:

dHubble = c · tHubble = c

H0
≈ 4.2 Gpc (22)

But the expansion of the universe enlarges this number, such that (under reason-
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able assumptions) the radius of the observable universe is

H ≈ 3.3 c

H0
≈ 14 Gpc ≈ 45 Gly . (23)

• The Universe recombined at z ' 1100 and re-ionized at z ' 10. This sets the times
when the CMB formed and when the first stars formed, respectively. (Observations
of galaxies today seem to indicate that most of the volume of the intergalactic
medium (IGM) consists of ionized material (since there are few absorption lines
due to hydrogen atoms). This implies a period of re-ionization during which some
of the material of the universe was broken into hydrogen ions.)

• the fractions (Ωx) of ordinary matter, dark matter and dark energy - fig. 9, defi-
nition and brief explanation see eq. (24), (25) and (27) and the following text;

Due to this precise measurements and fit (of the observed power spectrum) with
theΛCDM model, with results ([26]) in Ωb ≈ 0.049 and Ωm ≈ 0.314, clearly indicates
the existence of non-baryonic dark matter in the universe via the difference Ωm − Ωb ≈
0.265 = Ωdm.
The thereby current average density of ordinary matter and dark matter (and dark

energy - brief see page 25) in the Universe can be seen in figure 9.

Figure 7: The anisotropies of the Cosmic microwave background (CMB) as observed by Planck.
The CMB is a snapshot of the oldest light in our Universe, imprinted on the sky
when the Universe was just 380 000 years old. It shows tiny temperature fluctuations
that correspond to regions of slightly different densities, representing the seeds of all
future structure: the stars and galaxies of today. [27]

It is convenient to express the abundance of a substance Ω in the Universe in units
of ρcrit (more to this see appendix A.3), or in other words to express the density as a
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Figure 8: The TT power spectrum of the CMB anisotropies as measured by PLANCK. On
the upper panel on the vertical axis the band-power estimates Dl in µK2 are shown,
while the lower panel shows the residuals between measurement and model. The
uncertainties include both the statistical instrumental noise and cosmic variance.
The red curve is the best-fit ΛCDM model to the data. On the horizontal axis the
multipole moment l and the corresponding angular size are shown. Figure taken
from [26].

fraction of the density required for the critical condition with the parameter Ω = ρx(t=t0)
ρcrit

so that Ω = 1 represents the condition of critical density (coming from the Friedmann
equation - more see appendix). This leads to the definition:

Ω =
∑
i

Ωi ≡
∑
i

ρi
ρcrit

(24)

It is standard to define the present-day density parameter Ωx for various species as the
dimensionless ratio

Ωx ≡
ρx(t = t0)
ρcrit

= 8πGρx(t = t0)
3H2

0
, (25)
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Figure 9: Energy matter density content of our current universe.

where the subscript x is one of "b" for baryons, "c" or "dm" for cold dark matter, "rad"
for radiation (photons plus relativistic neutrinos), and "DE" or "Λ" for dark energy. It
should be noted, that in general Ω is a function of time t, since both ρ and ρc depend
on time. The present value of the density parameter is denoted Ω0 = Ω(t = t0).
Observations show that the radiation density is very small today, Ωrad ≈ 10−4, and

the Universe is matter dominated, Ωm > Ωrad (see fig. 10).
In the minimal 6-parameter ΛCDM model (more see 1.4), it is assumed that curvature

Ωk is zero. The geometry of the Universe is close to flat as the density of the Universe
matches the critical density very closely (Ω0 = 1.003+0.013

−0.017) and the curvature is consistent
with a flat universe (k=0) Ωk = 3kc2

8πGa2ρc
= 0

Ω0 = 1 + Ωk , (26)

with Ω0 = Ω + ΩΛ and Ω = Ωrad + Ωm.
The total matter energy density is

Ωm = Ωlum + Ωb + Ωdm (27)

and hence

Ωrad + Ωm + ΩΛ = 1 , (28)

in which the energy density contribution from radiation Ωrad can be neglected, as men-
tioned before.
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Figure 10: Evolution of density. [28]

Ωlum, the energy contribution from luminous matter, is ≈ 0.01, and the contribution
from baryonic luminous matter, Ωb ≈ 0.049. The energy density from the cosmological
constant is determined to be ΩΛ ≈ 0.683.
The radiation density can be split into two components, one for the photons and one

for the neutrinos

Ωrad = Ωγ · (1 + 0.2271Neff ) . (29)

In the equation above, the photon energy density Ωγ is related to the relativistic
neutrino energy density of via the effective number Neff of neutrino species which is set
to its standard value 3.04. The effective number of neutrinos decreases to the physical
number of neutrino, three, as the number of relativistic neutrinos declines. The non-
relativistic neutrino density Ων can be retrieved from the relation:

Ων =
∑
mν

94h2eV
. (30)

After all this ascertainments, dark matter is described as being cold (i.e. its velocity is
far less than the speed of light at the epoch of radiation-matter equality); non-baryonic
(i.e. consisting of matter other than protons and neutrons); dissipationless (i.e. cannot
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cool by radiating photons); and collisionless (i.e. the dark matter particles interact with
each other and other particles only through gravity and possibly the weak force). The
dark matter component (Ωdm) is currently estimated to constitute about 26.8% of the
mass-energy density of the universe.
The remaining 4.9% comprises all ordinary matter observed as atoms, chemical ele-

ments, gas and plasma, the stuff of which visible planets, stars and galaxies are made.
As a matter of fact, the great majority of ordinary matter in the universe is unseen,
since visible stars and gas inside galaxies and clusters account for less than 10% of the
ordinary matter contribution to the mass-energy density of the universe.
Also, the energy density includes a very small fraction (≈ 0.01%) in cosmic microwave

background radiation, and not more than 0.5% in relic neutrinos. Although very small
today, these were much more important in the distant past, dominating the matter at
redshift > 3200 (fig. 10).

Figure 11: Spectrum of the blackbody radiation at different temperatures T. [29]
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The power spectrum

The power spectrum, presented in figure 8, is sensitive to ΩΛ, Ωm and Ωb. The
anisotropy, or directional dependency, of the cosmic microwave background is divided
into two types: primary anisotropy, due to effects that occur at the last scattering
surface and before; and secondary anisotropy, due to effects such as interactions of the
background radiation with hot gas or gravitational potentials, which occur between
the last scattering surface and the observer. The structure of the cosmic microwave
background anisotropies is principally determined by two effects: acoustic oscillations
and diffusion damping (also called collisionless damping or Silk damping). These two
effects compete to create acoustic oscillations, which give the microwave background its
characteristic peak structure.
The angles subtended by the Hubble radius at last scattering correspond to a multi-

pole moment of l ' 100. The anisotropies at larger scales have not evolved significantly
and reflect the initial conditions at the epoch of recombination. The locations of the
peaks also give important information about the nature of the primordial density per-
turbations. There are two fundamental types of density perturbations called adiabatic
and isocurvature. A general density perturbation is a mixture of both, and different
theories that purport to explain the primordial density perturbation spectrum predict
different mixtures. The multipole modes in the range of 100 to 1000 contain the acoustic
peaks of the anisotropy spectrum, which are a consequence of gravity-driven acoustic
oscillations of the plasma before recombination. Perturbations within the horizon at
last scattering had been able to evolve causally and produced the observed anisotropy
at recombination. The frozen phases of these sound-waves imprint relations of the total
matter density Ω0 to the baryonic matter density Ωb, giving the CMB anisotropies its
constraining power on cosmological models.
The scale associated with the peaks is the sound horizon at last scattering, which size

can be calculated from the first peak, which is sensitive to the density of baryonic matter
Ωb and ΩΛ. The angular scale of the first peak determines the curvature of the universe
(but not the topology of the universe). The sound horizon is the wave length of the base
mode at decoupling and depends on Ωm and ΩΛ and is ≈ 150 Mpc. The distance to the
last scattering surface d depends on the curvature of the universe. The projection of this
length onto the sky yields an angular scale which is sensitive to the spatial curvature of
the Universe and thus its total energy content, Ω0, if the Hubble constant is known.
The second peak is sensitive to Ωb. More baryons result in a stronger compression

and in a higher amplitude of the odd-numbered peaks in the power spectrum. The ratio
between even and odd peaks, e.g. between first and second peak, is sensitive to Ωb, since
ratio of the odd peaks to the even peaks determines the reduced baryon density.
Higher peaks are sensitive to Ωm. So the third peak can be used to get information

about the dark-matter density. The time of transition from the radiation dominated
epoch of the universe to the matter dominated epoch depends on Ωm, e.g. for a smaller
Ωm, the transition happens later. In this case the decay of the gravitational wells by
radiation is stronger, which affects the amplitude of all peaks.
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For the search for dark matter, the CMB is important as it shows clearly that dark
matter is not just an observable feature of today’s Universe, but was present in the early
Universe with observable unique consequences. The formation of the acoustic oscillation
peaks requires Cold dark matter, as free-streaming relativistic Hot Dark Matter could
not accredit.

Dark Energy

In the late 1990s, the measurement of the luminosity-distance relation of Type Ia
supernovae led to the discovery, that the expansion of the Universe is accelerating, im-
plying that most of the energy in the Universe is some exotic Dark Energy, characterized
by its negative pressure-density ratio. This was confirmed by analysis of the microwave
background anisotropies, and by massive surveys of galaxies like the Sloan Digital Sky
Survey (SDSS). Both observations combined provided increasingly accurate values for
cosmological parameters.

Horizon problem

To complete this (sub)section the horizon problem (sometimes called the homogeneity
problem) shall be mentioned briefly.
With the discovery of this isotropic CMB in 1965, the Horizon problem became evi-

dent: As the particle horizon at the time of last scattering now has shrank to an area
about 1.6◦ in the visible background today, no physical influence could have smoothed
out initial inhomogeneities in either a matter - or radiation - dominated Universe and
thus bringing points separated by more than a few degrees at the time of last scattering
to the same temperature. This contradicts the observation of a nearly perfect isotropy
of the CMB at large angular scales.
So the horizon problem is a problem with the standard cosmological model of the Big

Bang and points out, that different regions of the universe have not "contacted" each
other because of the great distances between them, but nevertheless they have the same
temperature and other physical properties. This should not be possible, given that the
transfer of information (or energy, heat, etc.) can occur, at most, at the speed of light.
Two theories that attempt to solve the horizon problem are the theory of cosmic

inflation and variable speed of light. In the beginning of the 1980s the proposal of
the theory of inflation offered a solution to the Horizon problem among some other
outstanding cosmological puzzles, and provided a mechanism for the origin of large-
scale structure, which could be tested by the observation of anisotropies in the CMB.
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1.3.4. Large Scale Structure

Even a little more details on the nature of dark matter can be attained by studying the
evolution of the universe, the formation of large scale structures. From cosmology, the
study of the structure and evolution of the entire universe, it is known, that the universe
shows structure at many scales, as there are: subatomic particles, atoms, stars and
planets, star clusters and galaxies, galactic cluster and superclusters, voids and sheets.
The collection of data, such as of Galaxy Surveys has shown, that structure does end
on the scale of greater than 200-300 Mpc (largest structure - Sloan Great Wall - nearly
300 Mpc across), but no evidence of any larger structures, or the Pencil-Beam Survey,
which observed voids and sheets on scales of 100-200 Mpc, and also no indication of any
larger structures.

Evolution

Structure formation refers to the serial transformations of the universe following the
Big Bang. The universe, as is now known from observations of the cosmic microwave
background radiation, began in a hot, dense, nearly uniform state approximately 13.8
billion years ago. The early radiation-dominated Universe is considered to be preceded
by a different accelerating phase of the Universe known as cosmic inflation. This infla-
tionary epoch in the early universe, with exponential expansion of space, lasted from
≈ 10−36 seconds after the Big Bang to sometime between 10−33 and 10−32 seconds and
the temperature drops from 1027 K down to 1022 K. At present, it is known that the
Universe is accelerating and thus is described by a vacuum- (or cosmological constant-)
dominated Universe (see fig. 10). The evolution of the Universe can be described by
the Einstein equations, which arise in general relativity, including matter fields and a
cosmological constant (CC) Λ (more see appendix A.3).
Structure formation attempts to model how these structures of galaxies, galaxy clus-

ters and larger structures formed by gravitational instability of small early density ripples
and density fluctuations. During inflation the Universe became very flat and homoge-
neous with only small amounts of fluctuations. After inflation, the temperature returns
to the pre-inflationary temperature; this is called reheating or thermalization because
the large potential energy of the inflation field decays into particles and fills the Universe
with SM particles, including electromagnetic radiation, starting the radiation dominated
phase of the Universe. This oscillating inflation field briefly makes the Universe matter-
dominated until its decay produces relativistic particles: the Universe is then reheated
and thus begins the standard Big Bang Universe. For simplicity, it is usually assumed
that the particles produced from inflation decay are thermalized instantly and the reheat-
ing temperature Treh is defined as the temperature when the energy density of radiation
dominates the matter density of the oscillating inflation field. That happens around
a time comparable to the lifetime of the inflation field, t ∼ H−1, when the inflation
energy density exponentially decreases. The reheating temperature can be derived from
the Friedmann equation (see eq. (31)). To maintain the successful predictions for the
abundances of light nuclei production during the standard Big Bang Nucleosynthesis
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(BBN), it is required that Treh & 4 MeV. [30] Following the inflationary period, the
Universe continues to expand, but at a less rapid rate. The early Universe after inflation
was filled with relativistic particles in a plasma that was very hot and dense. The rel-
ativistic particles, collectively referred to as radiation, became thermalized due to their
self-interactions thus reaching local thermodynamic equilibrium. What prevents small
matter density fluctuations from collapsing is radiation, and (e.g. for a low-density gas
of non-relativistic massive particles) the relation between the pressure and the energy
density comes from the Equation of state: p · V = NkBT .
So on very large scales (≈ 100 MPc) the universe is homogeneous and isotropic, but

at the next smaller distances (≈ 50 MPc) this changes and voids and superclusters are
observed. Prior to structure formation, e.g., Friedmann cosmology solutions to general
relativity describe a homogeneous universe. Later, small anisotropies gradually grew
and condensed the homogeneous universe into stars, galaxies and larger structures.
Before decoupling the elementary particles did form a single photon-baryon-electron

fluid, where structures with a big enough mass (at least as large as MJ - Jeans Mass -
can be derived from the equation of state, the Jeans length and scales with the sound
speed cs in the relative medium, then cs ≈ c√

3 ; from [1] and [5]) are gravitational stable
and were not washed out by pressure changes, what corresponds to a mass larger than
the largest supercluster observed.
The time of decoupling is an important time in the structure evolution of the universe.

Before the decoupling only very large structures are gravitationally stable. After decou-
pling the sound of speed for baryons is determined by the temperature, what results in
a smaller sound speed cs ≈ 1.5 · 10−5 · c, what in turn allows much smaller structures to
develop: MJ ≈ 105 ·M� (smaller ones are washed out). After decoupling baryons fall
into dark matter halos and loose energy via radiation and at very high baryonic densities
fusion can star.
The modem view of the origin of structure is that it grew from initially small irreg-

ularities through gravitational attraction, which draws material towards regions which
start off with higher than average density. As gravity is the driving force, the formation
of structure is a probe of the total density of matter, just like rotation curves and bulk
flows and here the role of dark matter is taken into account.
Observations suggest that structure formation proceeds hierarchically, with the small-

est structures collapsing first, followed by galaxies and then galaxy clusters. As the
structures collapse in the evolving universe, they begin to "light up", as baryonic matter
heats up through gravitational contraction and approaches hydrostatic pressure balance.
It has been widely accepted that the baryonic matter in the universe would not in itself

provide enough gravitational attraction to form the observed structures by the present
age of the Universe. Initially, baryonic matter’s post-Big Bang temperature and pressure
were too high to collapse and form smaller structures, such as stars, via the Jeans
instability. This problem can be circumvented by the introduction of non-baryonic dark
matter, which provides the extra gravitational force to allow structures to form more
quickly and is not inhibited by pressure effects. [1] So the gravity from dark matter
increases the compaction force, allowing the formation of these structures. (The thermal
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production of dark matter relics is the mechanism in which they are produced from
particles in thermal equilibrium in such a way, that their resultant energy spectrum is
the same as that of the particles in the thermal equilibrium. DM relics can subsequently
freeze out from the thermal equilibrium or they can be already decoupled, e.g. when
produced from scatterings or decays of thermal particles.)

Classification

Dark matter can be divided into three categories (cold, warm and hot), referring to
velocity (rather than an actual temperature), indicating how far corresponding objects
moved due to random motions in the early universe, before they slowed due to cosmic
expansion - this is an important distance called the "free streaming length" (FSL). The
FSL sets a minimum scale for later structure formation, since primordial density fluc-
tuations smaller than this length get washed out as particles spread from over-dense to
under-dense regions, while larger fluctuations are unaffected.

• Hot dark matter could be described with light relativistic particles travelling with
(almost) the speed of light c. On the first look the neutrino would qualify as such
particle. They were discovered independently, long before the hunt for dark matter.
They were postulated in 1930, and detected in 1956. Neutrinos’ mass is less than
10−6 that of an electron. The most experiments allow the determination of the
(squared) mass-differences between the physical eigenstates, but not the absolute
mass. The absolute mass of the neutrino can for example be retrieved from the
measurement of the lowered endpoint of the electron energy spectrum close of the
β-decay or from the measurement of life-time of the neutrino-less double β-decay.
Neutrinos interact with normal matter only via gravity and the weak force, making
them difficult to detect (the weak force only works over a small distance (10−17

to 10−16 m), thus a neutrino triggers a weak force event only if it hits a nucleus
head-on). For example, if the average neutrino mass were over 50 eV/c2 (less than
10−5 of the mass of an electron), the universe would collapse. Data from CMB
and KATHRIN and other methods indicate that their average mass probably does
not exceed 0.3 eV/c2. Thus, observed neutrinos cannot explain dark matter.
They would have decoupled from baryon-radiation plasma before the era of decou-
pling. Their high mobility would lead to a wash out from initial density fluctuations
(diffusion), what would result in no structure building. Observations showed, that
(almost) massless particles like neutrinos cannot act as dark matter candidate. Ad-
ditional for hot dark matter the large structures (the size of superclusters) would
collapse first (top down scenario), but observation only observes the collapse of
superclusters only now. Also "hot" dark matter implies that the first objects that
can form are huge supercluster-size pancakes, which then fragment into galaxies.
Deep-field observations show instead that galaxies formed first, followed by clusters
and superclusters as galaxies clump together.

• Warm dark matter
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Predictions based on warm dark matter are similar to those for cold dark matter
on large scales, but with less small-scale density perturbations. This reduces the
predicted abundance of dwarf galaxies and may lead to lower density of dark
matter in the central parts of large galaxies and some researchers consider this to
be a better fit to observations. A challenge for this model is the lack of particle
candidates with the required mass ≈ 300 eV to 3000 eV.
No known particles can be categorized as "warm" dark matter. A postulated
candidate is the sterile neutrino. This is a heavier, slower form of neutrino that
does not interact through the weak force, unlike other neutrinos (more see 1.5).
Some modified gravity theories, such as scalar-tensor-vector gravity, require "warm"
dark matter to make their equations work.

• Cold dark matter
Possibilities range from large objects like MACHOs (black holes, neutron stars or
brown dwarfs together known as massive compact halo objects) to new particles
such as WIMPs and axions (brief explanation later, sec. 1.8), but the constituents
are yet unknown. MACHOs cannot make up more than a small fraction of dark
matter according to studies of Big Bang nucleosynthesis and gravitational lensing
and are therefore excluded as promising theory. Many supersymmetric models
offer dark matter candidates in the form of the WIMPy Lightest Supersymmetric
Particle (LSP). Separately, heavy sterile neutrinos exist in non-supersymmetric
extensions to the standard model that explain the small neutrino mass through
the seesaw mechanism.
Cold dark matter refer to heavy non-relativistic particles and which are ascribed no
interaction with radiation and decoupled from the baryon-photon plasma. Their
low mobility leads to a low speed of sound and the possibility to build up structure
from initial density fluctuations. Thus the grow of dark matter structure started
at about z ≈ 3600, the time when (the universe goes from a radiation to a matter
dominated universe - see fig. 10) the DM particle (WIMP) thermally decouples
from the medium, roughly when the temperature falls below the rest mass of the
DM particle (WIMP). Cold dark matter preserves small mass fluctuations in the
expected power spectrum for initial density perturbations. In concern of collapse,
first objects are the smallest (galaxies) followed by clusters and superclusters (bot-
tom up scenario), which is consistent with observations.

Properties and constraints

Additional computer simulations of billions of dark matter particles seem to confirm
that the "cold" dark matter model of structure formation is consistent with the structures
observed through galaxy surveys, such as the Sloan Digital Sky Survey and 2dF Galaxy
Redshift Survey, as well as observations of the Lyman-alpha forest.
Although the character of perturbations in the simplest inflationary theories is purely

adiabatic, many models predict correlated adiabatic and isocurvature modes. Predictions

29



1. Dark Matter

on an isocurvature component is contradicted by current data and analyses (e.g. WMAP,
CMB and LSS) and assume, that the adiabatic perturbation mode holds exactly.
Several processes ensure that growth actually depends on the matter content of the

Universe.
During the radiation dominated epoch, pressure opposes gravity effectively for wave-

lengths below the Horizon length. An important scale thus yields the comoving hori-
zon size DH(zeq) at the redshift of radiation-matter equality zeq. At early times, free-
streaming dark matter particles erased all scales up to the horizon until these particles
became non-relativistic, allowing the determination of an upper bound on the amount of
relativistic dark matter particles in the early Universe. For example, light massive neu-
trinos become non-relativistic at zeq, implying that all structure up to the horizon-scale
power-spectrum is erased.
A further important scale is set by the process of Silk damping in which photon

diffusion can erase perturbations in the matter-radiation fluid. This can be measured
from statistical analysis of the spatial distribution of galaxies in today’s Universe via
the overall power spectrum, which is related to the primordial power spectrum.
The detection of Baryonic Acoustic Oscillations (BAO) adds to the knowledge about

the accelerated expansion of Universe and its content by comparing observations of the
sound horizon today (using the Large Scale Structure of Universe) to the sound horizon
at the time of recombination (using the CMB). The physics of the propagation of the
baryonic density waves in the early universe is simple enough to allow the prediction the
size of the sound horizon at recombination. As mentioned before (sec. 1.3.3) also the
formation of the acoustic oscillation peaks requires Cold Dark Matter, as free-streaming
relativistic Hot dark matter could not accredit.
For simulations of the large scale structure of the Universe to be in agreement with

observations, the amount of relativistic dark matter must be limited severely. As the
free streaming relativistic particles would have washed out any emergent small-scale
structures in the early Universe, notable amounts of relativistic dark matter are excluded.
This requires either fairly massive particles as dark matter since accelerator physics
exclude the existence of appropriate low mass candidates, or the dark matter particle
must have been produced by a mechanism which prevents its thermalization with the
rest of the Universe.
The relic density of a dark matter particle after freeze-out in the early Universe must

yield the observed density of dark matter, Ωdm of the CMB. In addition, the particle
must be stable enough to explain the today’s dark matter density. While a lesser relic
density could be cured by the possibly that several species of dark matter particles exist,
a relic density too large is in disagreement with the observed flatness of the Universe.
The three neutrino types already observed are indeed abundant, and "dark", and

matter, but because their individual masses (confirmed through neutrino-oscillations) -
however uncertain they may be - are almost certainly tiny, they can only supply a small
fraction of dark matter, due to limits derived from large-scale structure and high-redshift
galaxies. The neutrino as hot dark matter can be excluded to constitute the bulk of the
required dark matter in the Universe due to problems with structure formation in the
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early Universe. Additional the neutrino as weakly interacting, non-baryonic particle
cannot provide enough of the observed dark matter energy density Ωdm without being
in severe contradiction to the observed structure of the Universe. Cold dark matter
leads to a "bottom-up" formation of structure while hot dark matter would result in a
"top-down" formation scenario, whereat the latter is excluded by high-redshift galaxy
observations. (Also there is strong evidence that galaxies formed before clusters, in the
sense that the stars in galaxies are 10 to 14 billion years old, but many clusters of galaxies
are still forming today. This would rule against the top-down scenario and support the
bottom-up process.)
Also the new physics related to dark matter must respect the observations of the pho-

ton to baryon abundance, η, and temperature T at the time of Big Bang Nucleosynthesis
(BBN), as only a very limited amount of particle decays from the dark matter sector
are allowed to maintain this/them.
Possible candidates for non-baryonic dark matter are hypothetical particles such as

axions or supersymmetric particles (more see later chapter 1.8). Unlike baryonic matter,
non-baryonic matter did not contribute to the formation of the elements in the early
universe (BBN) and so its presence is revealed only via its gravitational effects. In
addition, if the particles of which it is composed are supersymmetric, they can undergo
annihilation interactions with themselves, possibly resulting in observable by-products
such as gamma rays and neutrinos ("indirect detection" - see sec. 1.7.2).
Predictions on the abundances of the lightest elements synthesized in the early Uni-

verse are in good agreement with the primordial abundances inferred from observational
data: This is understood as a validation of the standard hot Big Bang Cosmology.
Big Bang Nucleosynthesis provides powerful constraints on possible deviations from the
cosmological Standard Model (sec. 1.4) as well as on new physics beyond the Stan-
dard Model of particle physics (see sec. 1.5). BBN constraints cold dark matter to
be non-baryonic as interactions between dark matter spoil the observed abundances of
the primordial elements. Furthermore, the reheating of the Universe by the decay of
hypothetical particles at the epoch of Big Bang Nucleosynthesis is constrained by its
interference with the formation of the primordial elemental abundances.
Finally, relics from the early Universe which could constitute Superheavy (or ultra-

heavy) dark matter candidates are in contradiction to the absence of cosmic rays above
the Greisen-Zatsepin-Kuzmin (GZK) cut-off.
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1.4. The Standard Model of Cosmology - ΛCDM Model

It is a description of the universe, respecting the phenomena on dark matter (about its
existence, hints about certain properties and the amount of dark matter in the universe)
explained in the previous sections, and contains a cosmological constant (Λ) added to
the Einstein’s equation of general relativity (see eq. (88)), with the equation of state
pΛ = −ρΛ. In short, it assumes, that the dark matter found in the Universe is cold
(i.e. it is non-relativistic; CDM), is based on the cosmological principle (described in a
previous section), and includes a "Big Bang", which implies, that the universe originates
from an initial singularity, from which space-time started expanding, followed by an
inflationary phase. This model described the Universe as a perturbed FLRW space-
time (see appendix A.3.2) with dynamics governed by Einstein’s equations, assuming a
vanishing global space-time curvature (k = 0, as mentioned before).
It is frequently referred to as "the standard model of Big Bang cosmology", because it is

the simplest model that provides a reasonably good account of properties (some discussed
in previous sections) of the cosmos like the existence and structure of the CMB, large-
scale structure (in the distribution of galaxies), the abundances of hydrogen (including
deuterium), helium, and lithium and the accelerating expansion of the universe (observed
in the light from distant galaxies and supernovae). Also the model assumes, that general
relativity is the correct theory of gravity on cosmological scales.

Λ represents the cosmological constant, which is currently associated with a dark
energy (or vacuum energy) in empty space that is used to explain the contemporary
accelerating expansion of space against the attractive effects of gravity. A cosmological
constant has negative pressure, p = −ρc2, which contributes to the stress-energy tensor
that, according to the general theory of relativity, causes accelerating expansion.
To describe the evolution of the universe the Friedmann equations are used, with the

first:

H2 =
(
ȧ

a

)2
= 8πG

3 ρ − kc2

a2 + Λc2

3 , (31)

which is derived from the 00 component of Einstein’s field equations (see appendix eq.
(88)) and the second:

ä

a
= Λc2

3 − 4πG
3

(
ρ + 3p

c2

)
, (32)

which is derived from the first (31) together with the trace of Einstein’s field equations.
H is the Hubble parameter, c is the speed of light in vacuum, a the scale factor, G the
gravitational constant, ρ the mass density, k

a2 the spatial curvature and Λ the cosmo-
logical constant, which is the driving force for the accelerated expansion of the universe
(expansion rate of the universe ȧ). The spatial curvature is set to zero as our universe
is (at least almost) flat. a, H, ρ, and p are functions of time, whereby ρ, and p are
the density and pressure, respectively. Although this expansion increases the distance
between objects that are not under shared gravitational influence, it does not increase
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the size of the objects (e.g. galaxies) in space. It also allows for distant galaxies to recede
from each other at speeds greater than the speed of light. The local expansion is less
than the speed of light, but expansion summed across great distances can collectively
exceed the speed of light. Furthermore, the critical density (ρc) is defined by setting Λ
to zero

ρc = 3H2

8πG = 1.87847 · 10−26 h2 kg m−3 , (33)

where h ≡ H0 /(100 km s−1 Mpc−1) is the reduced Hubble constant. The density
parameter, Ω (described on page 20), is defined as the ratio of the actual (or observed)
density ρ to the critical density ρc of the Friedmann universe. The relation between the
actual density and the critical density determines the overall geometry of the universe;
when they are equal, the geometry of the universe is flat (Euclidean).
Since the densities of various species scale as different powers of a, e.g. a−3 for matter

etc., the Friedmann equation can be conveniently rewritten in terms of the various
density parameters, and in the minimal 6-parameter ΛCDM model, it is assumed that
curvature Ωk is zero (and w = pΛ

ρΛ
= -1, where w is the equation of state of dark energy),

so this simplifies to

H(a) ≡ ȧ

a
= H0

√
Ωma−3 + Ωrada−4 + ΩΛ , (34)

whereat by neglecting the term of radiation density (very small today, Ωrad ≈ 10−4) an
analytical solution for a(t) can be obtained.
Independent on what exactly dark matter is composed of, this model describes the

evolution of the universe from right after the inflationary epoch up to now and to the
future very well via eq. (31) and (32). (More details on Einstein’s equations are given
in the section on cosmology, see appendix A.3.)
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1.5. The Standard Model of Particle Physics
The Standard Model of Particle Physics (SM) was developed throughout the latter half
of the 20th century and is used for classifying all the subatomic particles known. It
contains three of the four known forces of nature:

• weak interaction

• strong interaction

• electromagnetic interaction

These interactions are mediated by massless spin one gauge bosons. The SM accounts
since many years for all observed particles and interactions up to now, but there is no
particle within the Standard Model which has the right properties to explain the effects
of dark matter. From the mathematical point of view the SM is a relativistic quantum
field theory (QFT), containing the internal symmetries of the unitary product gauge
group SU(3)c ⊗ SU(2)L ⊗ U(1)Y , which exhibits a spontaneous symmetry breakdown:

SU(3)c ⊗ SU(2)L ⊗ U(1)Y → SU(3)c ⊗ U(1)Q (35)

A QFT treats particles as excited states of the underlying physical field, so these are
called field quanta. Quantum mechanical interactions between particles are described by
interaction terms between the corresponding underlying quantum fields. These interac-
tions can conveniently be visualized via Feynman diagrams, that also serve as a formal
tool to evaluate various processes. The theory is commonly viewed as containing the
fundamental set of particles: the leptons, quarks, gauge bosons and the Higgs particle
(fig. 12).
Since it is a field theory its fundamental objects are quantum fields, which are defined

at all points in spacetime. These fields are the fermion fields (ψ, which account for
"matter particles"), the electroweak boson fields (the Wµ SU(2) triplet field: W1, W2,
W3 and the Bµ U(1)Y hypercharge singlet, which both are massless), the gluon field
(Ga

µ, massless too) and the Higgs field (ϕ). U(1) (from eq. (35)) acts on B and ϕ, SU(2)
acts on W and φ, and SU(3) acts on G.
That these are quantum rather than classical fields has the mathematical consequence

that they are operator-valued. In particular, values of the fields generally do not com-
mute. As operators, they act upon the quantum state (ket vector) - little more detail is
given in appendix A.8. The fundamental constituents of matter are spin-1/2 particles,
fermionic quarks and leptons. The left-handed fermions are arranged in three genera-
tions of SU(2)L doublets. The masses of the fermionic fields are generated due to their
Yukawa coupling to the Higgs field, arising from the Yukawa interactions of the quark
fields with the Higgs condensate. The quarks in the weak eigenstate representation
are related to the mass eigenstates by the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
Analogous to the quark sector, for the leptonic sector there emerges a (unitary) matrix,
called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
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Figure 12: A schematic depiction of the Standard Model of elementary particles, with the three
generations of matter (first three columns), gauge bosons in the fourth column, and
the Higgs boson in the fifth. [31]

The weak force is best understood in terms of electro-weak theory (EWT). During
the quark epoch of the early universe, the electroweak force separated into the electro-
magnetic and weak forces. Important examples of the weak interaction include beta
decay, and the fusion of hydrogen into deuterium (that powers the Sun’s thermonuclear
process). Under spontaneous electroweak symmetry breaking, from SU(2)L ⊗ U(1)Y to
U(1)Q, the electroweak and the Higgs field merge to the observable massive vector bosons
in the SMW±, Z0, a massless γ and a massive Higgs boson H0. After spontaneous sym-
metry breakdown, a U(1) symmetry, acting on Q (the electric charge generator) emerges
(eq. (35)). The spontaneous symmetry breaking causes theW3 and B bosons to coalesce
together into two different bosons (the Z0 boson and the photon γ of quantum electro-
dynamics.) and the W1 and W2 bosons, in turn, combine to deliver the massive charged
bosons W±.

All charged particles take place in the electromagnetic interaction, whereat the force
can be attractive and repulsive, depending on the charge of interacting the particles.
The mediator of the electromagnetic interaction is the photon γ. It’s range is infinity
(compare forces in table 1).
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The weak interaction affects all the fermions of the Standard Model, but acting only
on left-handed fermions (and right-handed anti-fermions) as well as the Higgs boson.
As neutrinos have only a weak charge and no electric or strong charge, only left-handed
neutrinos are observed. Neutrinos interact through gravity and the weak interaction
only, and neutrinos were the original reason for the name weak force. It’s mediators are
the W- and Z-bosons, which restrict the range of this force by their finite mass. The
weak interaction violates parity (P) and charge conjugation (C) maximally and does not
preserve the combined CP symmetry to a smaller extend.
Further the first of the three gauge groups shown in eq. (35) above is the SU(3)c of

color (strong) interaction, known as Quantumchromodynamics (QCD). Quarks partic-
ipate in the strong interaction, carrying the corresponding charge known as the color
charge. The mediator are gluons (Ga

µ), obeying the SU(3) color symmetry, which also
contain a charge and couple to each other (self coupling). These quarks are bound to
each other within a hadron (for example baryons consist of three quarks, mesons of two
quarks) and are not freely visible (confined). Due to the self-interaction of the gluons
the strong force is a short-range force (compare forces in table 1), which preserves the
symmetries of parity (P) and charge conjugation (C).

Table 1: Fundamental interactions with their strength relative to the strong interaction and
their range.

interaction relative strength range
strong interaction 1 1 fm

electromagnetic interaction 10−2 ∞
weak interaction 10−7 10−3 fm

gravitational interaction 10−40 ∞

From the cosmological point of view, the Standard Model of particle physics is the
effective theory which governs the evolution of the Universe from the point when electro-
weak symmetry breaking occurred.
The crucial input for cosmology and the evolution of the particle content of the Uni-

verse from the SM is the particle dynamics (to know the existing particles, their masses
and their interactions) during the early Universe. This is important for the calculation
of relic densities of the various particle species found in the Universe. While leptogenesis
and baryogenesis is not explainable within the SM, it does contain the elementary fields
of all experimentally confirmed particles and forces. It is the foundation for the un-
derstanding of the freeze-out of neutrons and protons and for the subsequent Big Bang
Nucleosynthesis (BBN).

1.5.1. Shortcomings of the SM

The SM does leave some phenomena unexplained and it falls short of being a complete
theory of fundamental interactions. For example it does not incorporate the full theory
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of gravitation as described by general relativity (brief explanation see appendix A.3.1),
or account for the accelerating expansion of the universe (as possibly described by dark
energy).
It also does not incorporate the observed neutrino oscillations (and their non-zero

masses). Neutrinos are massless in the standard model of particle physic. As right-
handed neutrino would not interaction via weak, strong, or electromagnetic interactions,
it would be asterile neutrino. Contrary, the standard left-handed neutrinos are called
active neutrinos. Sterile neutrinos may also explain why the mass of the active neutrinos
mν−a is so small compared to the mass of the other leptons via the see saw mechanism.
The right-handed neutrinos could gain additional mass via a Majorana mass term, which
includes a free parameter M. Sterile neutrinos could interact with matter through a mass
mixing, but it is suppressed by mν−a/M.
In physical cosmology, baryogenesis (and leptogenesis) is the generic term for the hy-

pothetical physical processes that produced an asymmetry (imbalance) between baryons
(leptons) and anti-baryons (anti-leptons) produced in the very early universe. This re-
sults in the dominance of matter (baryons+leptons) over antimatter (anti-baryons +
anti-leptons) and can not be explained by the amount of CP violation in the SM.
Since no Standard Model particles are left as candidates for the dark matter, motivated

extensions like Supersymmetry, Extra Dimensions, Axions, sterile neutrinos, etc. are
studied.
By talking about physics beyond the Standard Model (BSM), it refers to the theo-

retical developments needed to explain the (above mentioned) deficiencies of the Stan-
dard Model (the origin of mass, the strong CP problem, neutrino oscillations, matter-
antimatter asymmetry, and the nature of dark matter and dark energy). Another prob-
lem lies within the mathematical framework of the Standard Model itself - the Standard
Model is inconsistent with that of general relativity, to the point that one or both theories
break down under certain conditions (for example within known spacetime singularities
like the Big Bang and black hole event horizons).
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1.6. Unsolved Questions and Open Issues
The Milky Way is surrounded by lots of smaller galaxies called satellite galaxies. The
biggest and most famous of these are the Large and Small Magellanic Clouds (only vis-
ible in the Southern Hemisphere). Persistent challenges from observations that probe
the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf
galaxy satellites facing the remarkably successful CDM cosmological model. The CDM
model has been demonstrably successful at explaining a variety of observations on cos-
mological scales. Tests on smaller scales are often complicated by the physics of galaxy
formation, but are crucial for verifying this model. However, testing the ΛCDM model
on galactic and sub-galactic scales is considerably more difficult (both from an obser-
vational and a theoretical point of view). Some current observational and theoretical
discrepancies of these "small scale controversies" are reviewed in this section.

1.6.1. Core-Cusp Problem

This is a problem, arising from cosmological N-body simulations, which indicate an
inner distribution of the density profile ρ of dark matter halos as ρ ∝ rα, with α = −1.
[32] The core-cusp problem (or cuspy halo problem) refers to a discrepancy between
this simulations and the observed dark matter density profiles (of low-mass - or dwarf -
galaxies). It can be shown, that a halo with constant DM density ρ leads to a rotation
curve with a linear increase, in contrast to a "cuspy" halo with a DM density with ρ ∝ r−1

leads to an increase of the rotation curve with the square root of the radius.
Nearly all simulations form dark matter halos which have "cuspy" dark matter distri-

butions, with density increasing steeply at small radii, while observational determination
of α based on rotational curves result in α ≈ 0. So these rotation curves suggest, that
they have flat central dark matter density profiles ("cores").
From more evolved N-body simulations fitted with a generic NFW (eq. (18) and

parameters from (19)) fit function leads to a DM density profile with a similar cuspy
behaviour of the DM profile.
Potential solutions to the core-cusp problem are:

• By including a baryonic feedback (i.e. baryonic matter falling into the gravitational
potential, leading to a supernova explosion which also leads to a decreased DM
density in the inner part of the halo, or a active galactic nuclei), a "flatten out" of
the core of a galaxy’s DM profile can be achieved, since the feedback-driven gas
outflows produce a time-varying gravitational potential that transfers energy to
the orbits of the collisionless dark matter particles.

• Another proposal is, that DM only weakly interacts with ordinary matter but has
strong self interaction.

The key question is whether the conflicts between N-body predictions and observed
galaxy properties can be resolved by "baryonic physics" - gas cooling, star formation,
and associated feedback - or whether they require different properties of the dark matter
itself.
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1.6.2. Missing Satellite Problem

It is also known as the dwarf galaxy problem. As the problem in the previous section
it arises also from numerical cosmological simulations. This simulations predict the
evolution of the distribution of matter in the universe, where dark matter seems to
cluster hierarchically and in ever increasing number counts for smaller-and-smaller-sized
halos. It refers to the difference of the number of predicted CDM sub-halos obtained
with N-body simulations compared to the number of satellite galaxies observed in our
local group.
The left panel of figure 13 shows the projected dark matter density distribution of a

1012M� CDM halo formed in a cosmological N-body simulation. Because CDM preserves
primordial fluctuations down to very small scales, halos today are filled with enormous
numbers of sub-halos that collapse at early times and preserve their identities after
falling into larger systems.
Prior to 2000, there were only nine dwarf satellite galaxies known within the ≈ 250 kpc

virial radius of the Milky Way halo (illustrated in the right panel of figure 13), with the
smallest having stellar velocity dispersions ≈ 10 km s−1. Klypin et al. (1999) and
Moore et al. (1999b) predicted a factor ≈ 5-20 more sub-halos above a corresponding
velocity threshold in their simulated Milky Way halos. Establishing the "correspondence"
between satellite stellar dynamics and sub-halo properties is a key technical point. Today
about 4-5 times more satellite galaxies with a circular velocity vcirc ≈ 10 − 20 km s−1

is expected from simulation. [5] (Sub-halos are rather characterised by their circular
velocity vcirc than their total mass, because of problems defining the sub-halo with
respect to the halo.) With vcirc the mass within the radius of the rotating sub-halo can
be measured.
A combination of feedback (explained in the previous subsection) and low star-formation

efficiency could explain why most of the dark matter sub-halos orbiting the Milky Way
do not host visible galaxies.
A variety of studies have shown that baryonic effects can plausibly account for cores

in halos occupied by high surface brightness galaxies and can plausibly suppress star
formation in very low mass halos. Improved simulations may show that baryonic effects
can soften cusps even in galaxies that are now dark matter dominated, or they may
show that the energetics arguments summarized above do indeed point to a genuine
problem for CDM that cannot be resolved by supernova feedback or galactic tides.
Improved simulations of models with interacting dark matter may show that they can
readily solve the small scale problems, or they may show that cross-section parameters
chosen to match one set of observations ultimately fail when confronted with another set.
Improved measurements of stellar velocities in satellite galaxies, and discovery of new
satellites from imaging surveys such as PanSTARRS and the Dark Energy Survey, may
better delineate the satellite problem itself, and the problem shifts from a DM-problem
towards a problem of galaxy formation.
The most promising possible solutions so far are:
• Processes keeping them "dark" by suppressing gas accretion in these halos (for

example ultraviolet photoionisation prevents from cooling a gas).
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Figure 13: The missing satellite and "too big to fail" problems. (Left) Projected dark matter
distribution (600 kpc on a side) of a simulated, 1012M� CDM halo (Garrison-
Kimmel, Boylan-Kolchin, & Bullock, in preparation). The numerous small sub-
halos far exceed the number of known Milky Way satellites. Circles mark the nine
most massive sub-halos. (Right) Spatial distribution of the "classical" satellites of
the Milky Way. The central densities of the sub-halos in the left panel are too high
to host the dwarf satellites in the right panel, predicting stellar velocity dispersions
higher than observed. The diameter of the outer sphere in the right panel is 300 kpc;
relative to the simulation prediction (and to the Andromeda galaxy) the Milky
Way’s satellite system is unusually centrally concentrated (Yniguez et al. 2013).
[33]

• Dwarf galaxies are to faint to be discovered (recently the SDSS has observed some
ultra-faint galaxies). It could be, that smaller halos do exist, but only a few of
them end up becoming visible because they have not been able to attract enough
baryonic matter to create a visible dwarf galaxy. In support of this are observations
of ultra-faint Milky Way dwarf satellites, that showed that some were around 99.9%
dark matter (with a mass-to-light ratio of about 1000). (See also end of 1.3.1 on
page 6.)

• Possibly dwarf galaxies tend to be merged into or tidally stripped apart by larger
galaxies due to complex interactions. This tidal stripping has been part of the
problem in identifying dwarf galaxies in the first place, which is an extremely
difficult task since these objects have low surface brightness and are highly diffused,
so much that they are virtually unnoticeable.
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1.6.3. "Too big to fail" Problem

The "missing satellites problem" is perhaps the most widely known and most investigated
discrepancy between theoretical predictions of the ΛCDM model and observations. Still,
any time concentrating on galaxies that are satellites of other galaxies, complicated
interactions between messy atoms and photons are getting in the way of the pristine
elegance of the non-interacting dark matter. So it is checked if this purported problem
exists even out "in the field" with lonely galaxies far away from big monsters like the
Milky Way.
It is similar to core-cusp problem, whit N-body simulation predicting to much mass

in the central region. Comparing the mass of the observed dwarfs and the massive sub-
halos from N-body simulation leads to a discrepancy, because the mass of the sub-halos
from simulation exceeds the mass of the observed dwarfs by a factor four to five.
The too big to fail problem is pointing out, that some of the predicted galaxies are

just so massive that there is no way they could not have visible stars. Or, put another
way: the Milky Way does have some satellites, as do other galaxies, but when examining
these smaller galaxies, they seem to have a lot less dark matter than the simulations
would predict. This effect is significant and a statistical fluctuation can be excluded.
Either these sub-halos actually exist as predicted in the Milky Way, requiring to un-

derstand their properties and stellar content, or they do not exist, in which case it is
necessary to understand the mechanism(s) that suppress their formation or survival.
Dark matter self-interactions would also reduce the central densities of sub-halos, and
would additionally make them more vulnerable to tidal disruption. It is far from ob-
vious that the abundance and dynamics of observed MW satellites would be correctly
reproduced in the viable parameter space of these non-CDM models. The majority of
the most massive sub-halos in dissipationless ΛCDM simulations are too dense to host
any of the bright Milky Way satellites. It follows, that galaxy formation must be effec-
tively stochastic in haloes with maximum circular velocities of vcirc ≤ 50 km s−1. This
conclusion may be circumvented if the Milky Way’s sub-halo population differs substan-
tially from the average ΛCDM expectation, or if the abundance or structure of massive
sub-halos in the Milky Way is strongly affected by baryonic processes or different dark
matter physics. [34] It shall be noted, that it is still possible, that combinations of sev-
eral of the effects mentioned above may prove sufficient to provide a solution (so that
baryonic effects does not seem to be able to resolve the reported discrepancy, at least
when considered on its own). It is also possible that the baryonic effects considered may
be larger than indicated by the theoretical models used in some works.
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1.7. Dark Matter Detection
The previous sections presented some properties, boundaries and constraints and ev-
idence for dark matter. All the observed evidence for dark matter was found only
through gravitational interaction, but some theories expect some additional (weak) in-
teractions beyond gravity between dark matter and Standard Model particles. The aim
is the detection of dark matter through non-gravitational interaction, but so far there
is no conclusive prediction of a DM particle (χ) candidate and size and type of inter-
action. There is a big diversity of theories for DM particle candidates with a broad
range of predictions which need different approaches with different experimental reach.
A compelling solution for the DM problem requires a coherent answer from different ap-
proaches. These orthogonal approaches, described in a little more detail in the following
sections, can be categorized as:

1. direct detection - elastic scattering between DM and a nucleon

2. indirect detection - through the annihilation of DM particles into Standard
Model particles

3. production - meaning the annihilation of Standard Model particles into DM
particles

4. (Astrophysical probes) - non-gravitation interaction of DM particles on astro-
physical scales

The different experimental approaches 1. to 3. can be seen as realisation of the same
Feynman diagram with space, time and direction being exchanged in figure 14.

Figure 14: Feynman diagram with the possible interaction for studying non-gravitational in-
teraction between matter and dark matter. To describe the various approaches the
arrow indicating the evolution of time and space needs to be rotated. Fig. taken
from [35].
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In order to establish a firm link between a dark matter particle candidate and the
observed effects of dark matter in the Universe, it must be shown that the particle is
abundant in the Universe today. Both direct and indirect detection experiments looking
for WIMP dark matter are addressed and a short summary of experiments looking for
axions is given, too.

1.7.1. Direct Dark Matter Detection

Earth based experiments can search for scattering of dark matter particles on standard
model particles, since the Earth is located in the galactic dark halo. In direct detec-
tion experiments one looks for the interaction of a WIMP (explanation see 1.8.1) with
a suitable detector in a laboratory on earth and considers only interaction with quarks
(the most microscopic scale). As no free quarks exists, the observable effect would be
a recoiling nucleus in the detector target. So the effective WIMP-nucleon interaction
(the next level) depends on the quark content per nucleon, i.e. per proton and per neu-
tron. Finally, the WIMP-nucleus cross section σχN is constructed by coherently adding
the contributions from the individual nucleons per nucleus. If dark matter is made up
of WIMPs, then millions, possibly billions, of WIMPs must pass through every square
centimetre of the Earth each second. Many experiments aim to test this hypothesis. Al-
though WIMPs are popular search candidates, most experiments can also analyse their
data for signatures of other models of DM (e.g. direct detection experiments are able to
search for axion in the µeV to meV region).

The interaction of WIMPs and ordinary nuclei can proceed via a spin-dependent
(SD, axial-vector) or a spin-independent (SI, scalar and vector) channel. Considering
WIMPs as the lightest supersymmetric (SUSY) neutralino, their coupling to quarks
can be modelled via axial-vector interactions αaq to the quark spin (SD), or via scalar
interactions αsq (quark type q) to the quark mass (SI). The WIMP-quark couplings αsq
and αaq has to be calculated on the fundamental level by evaluating the corresponding
Feynman diagrams (examples for the coupling to the light quarks and to the gluons
are shown in fig. 15). In the most models of SI interactions the cross section scales
like A2, which is the reason to use heavy targets aiming for high event rates (taking
advantage from the A2 scaling). Results from experiments with different targets can
be compared via the WIMP-nucleon cross section (via the scaled WIMP-nucleus cross
section σ0,SI/A

2). For the SD cross section there is no scaling with A2 nor is there a
scaling with J2 (with J the total nuclear spin). So far no indication for spin-dependent
interactions are observed. Consequently, direct searches can set limits on the cross
section.
The parameters for direct methods can be divided in three groups:

• The astrophysical parameters are ρ0 = nχmχ the density, vχN the velocity of the
WIMP relative to the target nucleus and vesc the velocity needed to escape the
gravitation well of the Galaxy. They depend on the used halo model and are fixed
by astrophysical observations.
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• Detector parameters are chosen via the material selection for the target and the
experimental set-up. They are the atomic weight A (which is related to the number
of nuclei in the target via NT = mNA/A), the target mass m and the the minimal
measurable energy - the detector threshold ET .

• The particle parameters (mχ and σχN) depend on the actual model for the DM
particle and its interaction with the nucleus. σχN is the cross section for WIMP-
nucleus-scattering with the unit usually in barn (1 b = 100 fm2 = 10−28 m2). As
result of a direct detection experiment, limits or detection claims are given for
σχN(mχ). To compare the results of experiments with different target materials,
σχN is often scaled to σχn, the WIMP-nucleon-cross section.

Since the cross section is very low, the expected event rate is extremely low (in the
order of 1 event per ton per year). Therefore experiments with a target mass in the
multi-ton range are planned (e.g. the LZ experiment - LUX-Zeplin (LZ) a international
collaboration combining the LUX and ZEPLIN groups) to obtain a high statistic of po-
tential scatterings. This shall be achieved via a large exposure (i.e. target mass m times
the observation time). Additionally, one aims for low detector thresholds ET .

WIMP induced nuclear recoils are a rare process (σ . 10−10 pb). In the isothermal,
isotropic halo model, the mean velocity of the WIMPs is equal to the local circular ve-
locity. For a laboratory on earth, this velocity has to be modified by the peculiar motion
of the sun and the motion of earth around the sun. For these velocities, WIMPs will
interact with ordinary matter through elastic scattering on nuclei. For the velocities
assumed for WIMPs in the galactic halo, the nuclear recoil is expected to be of the
order of a few tens of keV. In this energy region, detectors are prone to a wide variety
of background events induced by radioactivity of the experimental surroundings, what
requests a proper discrimination of the spurious events. For the sensitivity achieved in
this field today, also the shielding from cosmic rays is mandatory, thus these experiments
are located in underground laboratories. Most modern experiments employ techniques
which can discern nuclear recoils in the detector and signals due electrons and γs. Fur-
thermore, it is possible to discriminate α-particles and protons from recoiling nuclei.

Figure 15: Example Feynman diagrams contributing to: spin-independent WIMP-quark scat-
tering (a) and WIMP-gluon scattering (b), spin-dependent WIMP-quark scattering
(c). Figure taken from [5] and based on [36].
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Only materials with very low contamination (called radiopure materials) are selected
for the detector construction, and as surrounding of the detector shieldings for further
reduction are placed, like Pb against gamma-rays, or polyethylene against neutrons (e.g.
from U/Th in the concrete of the laboratory floor). This reduces the background from
radioactivity to neutron induced nuclear recoils if the discrimination technique is appli-
cable.

The most stringent constraints on the medium mass WIMP type dark matter is
achieved in experiments with simultaneous read-out of two independent signal channels
of a detector, allowing to the discriminate the various sources of energy deposition due
the ratio of the two signal strengths (i.e. it is possible to discern the energy deposition
by a nuclear recoil from the energy deposition of an electron).
For example a detector type consists of cryogenic bolometers made of a scintillating

insulator, which are operated in such a way that the scintillation light and the heat
deposited can be read out simultaneously. The required sensitivity of the bolometer de-
mands operation temperatures close to absolute zero temperature. The discrimination
of the particle type becomes possible by the light yield of a given event in the detec-
tor. If energy is deposited by a recoiling nucleus, the light is quenched, compared to
an energy deposit by an electron or by a lighter particle, where less scintillation light is
produced in the crystal. This technique allows the operation of a large variety of ma-
terials. This work is focusing on the CRESST experiment (more details in chapter 2),
which operates a set of CaWO4 bolometers at T . 30 mK in the Laboratori Nazionali
del Gran Sasso (LNGS) underground laboratory. LUX and CRESST are examples for
experiments which obtained null results and set exclusion limits, which set the leading
limits for the lowest cross section and the lowest recoil energy respectively.

Most experiments use either cryogenic or noble liquid detector technologies. Cryo-
genic detectors (as CRESST mentioned above) generally operate at temperatures below
100 mK and measure the heat produced when a particle hits an atom in a crystal ab-
sorber (scintillating insulators, or semi-conductor such as silicium and germanium have
been operated successfully). Among the many different cryogenic detector experiments
are: CDMS, CRESST, EDELWEISS, EURECA.
(liquid) noble gas detectors are three dimensional sensitive dual phase trajectory pro-

jection chambers (TPCs), which detect the direct scintillation light from an event in
the liquid phase and the secondary proportional scintillation light in the gaseous phase
from the ionization of the event driven in a high voltage field. Noble liquid experiments
include ZEPLIN, XENON, DEAP, ArDM, WARP, DarkSide, PandaX, and LUX, the
Large Underground Xenon experiment.

Other experiments include DAMA/LIBRA, KIMS, COUPP, TEXONO (operates ultra-
low energy germanium semiconductor diodes - ULEG), CoGeNext (operates a heavy
p-type point contact germanium detector), SIMPLE and PICASSO.
DAMA/LIBRA operates highly radiopure NaI crystals, the KIMS experiment runs
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scintillating CsI(Tl) crystals, both read out by photomultiplier tubes (PMT) and try
to observe a annual modulation of the count rate (with a maximum around June 2nd).
The COUPP experiment operates a bubble chamber of superheated CF3I, which is
examined photographically for bubbles due to interactions of impinging particles with
the superheated liquid.

1.7.2. Indirect Dark Matter Detection

The search for the secondary particles of DM annihilation is labelled indirect detection.
If the DM particle χ is a Majorana particle, two χ can annihilate and produce secondary
particles with a total energy of two mχ. So the indirect detection of DM is the attempt
to detect the signature of the annihilation of DM particles with the corresponding anti-
particles. The annihilation process used for this indirect DM detection is identical to
the process which is responsible for the DM relic density produced during WIMP freeze
out. Thereby it delivers a hint for the size (or benchmark process) for the expected cross
section. This searches mainly focus on the detection of WIMP-like DM particles in the
GeV to TeV mass region as expected from freeze out.
Deep within the gravitational well of a galaxy, an over-abundance of DM is expected.

If sufficient over-densities of dark matter particles are located within our galaxy, a de-
tectable flux of secondaries (for example from WIMP annihilation) can be detectable.
The expected reaction rate depends on ρ2

χ(~x), thus regions of over-density like the center
of the galaxy should show an enhanced reaction rate. The highest DM density and there-
fore flux of decay products is expected from the galactic center. The expected signal
is highly dependent on the model of the dark matter halo density profile. Furthermore
indirect detection relies critically on the knowledge and modelling of the interactions of
the secondary particles with the galactic environments, i.e. the gas distribution of the
galaxy and the halo, the magnetic field and the interstellar radiation field.
The produced Standard Model particles could be charged (fermions) or electrically

neutral (photons or neutrinos). The potential messengers heralding WIMP annihilation
are anti-matter particles, synchrotron radiation of the produced charged secondaries,
neutrinos and gamma rays. Only muon neutrinos νµ are reconstructed via the weak
interaction and production of muons, producing Cherenkov light (but so far no excess
of neutrinos has been observed - but thus a limit can be set). For high-energetic γ-rays
and neutrinos, the direction to the source can be identified relatively easy. Positrons
(and other charged cosmic rays) diffuse through the galaxy and the halo as they inter-
act with the local matter and the magnetic field. High energetic positrons thermalize
quickly due to inverse Compton-scattering off cosmic microwave background photons
and synchrotron radiation in the galactic magnetic field. This restricts the detectable
flux to regions a few kpc nearby. Within this reach, the galactic center as most likely
region of DM annihilation is located. Thus they yield no information about the location
of their origin. Another channel for indirect dark matter detection are anti-protons,
which are expected as well in DM annihilations and can travel much longer distances
than positrons. During their passage of the interstellar medium they are expected to
create additional secondary signals which should be observable if the anti-protons travel
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through regions outside the galactic plane. On top of the expected signal in each channel,
ordinary physics happening in the galaxy provides a background. Standard astrophysi-
cal processes are responsible for a large flux of high energetic γ-rays from the center of
our galaxy which constitute a serious background. Although a theoretical forecast the
amount of neutrinos produced in DM annihilation in galactic or extra-galactic sources
is too small to be detectable, WIMP DM annihilation in the center of the sun could
potentially generate a detectable flux of mono-energetic high energy neutrinos. The
neutrino telescopes Antares and IceCube placed upper limits on the muon flux from the
sun which corresponds to the favoured decay channel of Kaluza-Klein type WIMPs (and
on a spin dependent cross-section from the assumed WIMP capture rate in the sun).
Neutrino detection is done with large area detectors, which detect neutrinos via leptons
produced in a charged interaction. Detection of charged particles is done with satellites
or ISS based detectors (e.g. AMS-02).

Dark matter particle annihilation can proceed via several decay channels, resulting
in mono-energetic γ-rays. This mono-energetic lines are readily distinguishable from
astrophysical sources and would serve as smoking gun evidence for DM annihilation. On
top of these mono-energetic lines, the hadronic (bb̄) and leptonic (µµ̄) decay channels
will contribute continuous γ-ray spectra.

A continuum of γ-rays from inverse Compton-scattering on the galactic radiation field
and synchrotron radiation from interactions with the galactic magnetic field dwells in the
background. The synchrotron radiation is detectable by cosmic microwave background
experiments. The inverse Compton scattering of these leptons on photons of the cosmic
microwave background or the starlight results in MeV to GeV γ-rays and is accessible
by instruments like Fermi LAT. In generell the detection of photons is done via pair
production in satellites (e.g. Fermi-LAT) or ground based air Cherenkov telescopes (e.g.
MAGIC, HESS, CTA).

Several experiments like the PAMELA satellite, the Fermi LAT satellite, and others
delivered constraints on DM models. For example PAMELA measured the ratio of
positrons to electrons as well as the anti-proton to proton ratio up to energies in the few
100th-GeV-range. An anomalous positron excess has been detected while the measured
anti-proton to proton ratio is in agreement with standard secondary production models
of cosmic ray propagation in the galactic medium. Through this asymmetry DM models
could be constrained, as they usually predict symmetric leptonic and hadronic secondary
production. Standard astrophysics still offers many explanations for the positron excess,
like nearby young pulsars or supernova remnants.

Before concluding this section it must be mentioned, that the interpretation as a clear
signal for DM annihilation is not possible because of too little statistics or too large
astrophysical systematic uncertainties.

Another and new way which opens the possibility of observing the phenomenon of DM,
which seem to have no effects except gravitational, is the observation of gravitational
waves as done in the detection by LIGO (in September 2015).
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1.7.3. Dark Matter Production

Expecting DM particles to couple weakly to standard model particles it should be able
to produce them in high energetic (SM-) particle collisions, what is called dark matter
production. This fact is used to search for DM in particle colliders (like the LHC at
CERN), requiring the collider to reach energies at least high enough to pair produce
possible massive DM particles.
It is argued that the detection of particles beyond the Standard Model in collider

experiments cannot resolve the question about the nature of the astronomically observed
dark matter conclusively.
If the dark matter particle has a mass in the range of a few tens of GeV up to the

maximum energy of the collider (≈ 13.8 TeV for the Large Hadron Collider - LHC),
it can produce such a particle, and would deliver a good sensitivity for low mass DM
particles. Unfortunately, it is impossible to determine the life-time of a produced neutral
particle in a collider experiment if the life-time exceeds a collider specific value. Because
a DM candidate needs to be stable on time scale of the universe 1010 y ≈ 3 · 1017 s,
and the particle detectors dimensions are about 3 m (what corresponds to 10−7 s by
assuming speed of light), this results in a difference of 1024 orders of magnitude. Thus
the LHC can provide only a dark matter particle candidate within a quite narrow mass
range, since a collider experiment cannot probe the required stability of the particle.
Also hadron colliders (like LHC) have very little sensitivity for DM candidates coupling
to leptons.
Since particle physics detectors detect particles via the electromagnetic interaction,

but DM particles do not interact via electromagnetic interaction (dark!), they do not
leave any signature in the detector, but carry away energy and momentum, what results
in a clear signature, the missing energy Z

ZET .
In general there are two different detection scenarios. The first one is the direct

production of two DM particles leaving the detector without signal (→ Z
ZET ). This

method has less sensitive to the underlying DM model, allowing to put direct limits on
the mass and interaction. The second scenario is the production of non-Standard Model
particles (typical scenario for LSP in SUSY type models) decaying into DM candidates,
with a signature in hadronic activity and Z

ZET . ("LSP" means lightest supersymmetric
particle.)
Because neutrinos do not interact with detectors and leave similar signal like DM par-

ticles (in context of missing transverse energy), they make up an irreducible background,
which needs to be well understood. Events with γ + Z0 → νν decays are the largest
background contribution.

1.7.4. Axion Searches

Being a suited candidate for CDM, as pseudoscalar particle with very low mass (proper-
ties explained in 1.8.3), being neutral and extraordinarily weakly interacting, an axion
(a) can be produced by the interaction of two photons
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γ + γ → a . (36)

If one of the photons is a virtual one, this is known as the Primakoff effect. In an
external electromagnetic field, this may result in the mixing of photons and axions.
The conversion of an axion in a strong magnetic field due to the Primakoff effect and
the subsequent detection of the resulting photon opens the field for the experimental
search for the axion. The very weakly coupled axion is also very light because axion
couplings and mass are proportional (see also 1.8.3). Three types of experiments are
currently employed in the search for the axion: Photon regeneration experiments, axion
helioscopes and resonator cavities.
Photon regeneration is best described by the catchy phrase "shining light through

walls" experiments. Examples are the BFRT experiment, the BMV experiment and the
GammeV experiment. Generally this methods do not rely on either astrophysical or
cosmological sources. However the confirmation of the existence of a particle in the
laboratory does not prove it is responsible for the effects of DM in the Universe. Before
and behind a wall, magnetic fields are applied. In absence of axions (or ALPs), the
light detector should measure no light. If axions (or ALPs) exist, such an experiment
produces axions coherently by shining a LASER beam through a strong magnetic field
and reconvert the produced axions in a collinear magnetic field on the other side of an
optical barrier. Due to their low interaction rate, the axions could pass through the wall.
Axion helioscopes try to detect the axions produced in the core of the Sun (i.e. when

X-rays scatter in strong electric fields) by converting them back to photons in a strong
magnetic field. In the core of the Sun, axions would be produced with a thermal spectrum
of a mean energy of ≈ 4.2 keV. By pointing a light detector behind an opaque shield
permeated by a magnetic field into the direction of the sun, conversions of axions to
photons are expected within this volume. An example for this method is the CAST
experiment - the CERN Axion Solar Telescope.
The third technique is the resonant (and very weak) conversion of (dark matter) axions

to radio-frequency photons in a microwave cavity permeated by a strong magnetic field.
The shortcomings of this method is the fact, that only one resonance frequency can be
checked at a time. This turns the measurement of a broader range of axion masses in
a time consuming process. Today’s most sensitive microwave cavity experiment is the
ADMX experiment, which searches the galactic dark matter halo for resonant axions
with a cold microwave cavity and has excluded optimistic axion models in the µeV
range.
Also dark matter cryogenic detectors (like CDMS; or EDELWEISS which set coupling

and mass limits) have searched for electron recoils that would indicate axions. Others
like UORE and XMASS also set limits on solar axions, or XENON100, which set the
best coupling limits to date and excluded some parameters.
There are also theories, that axions may be produced within neutron stars, by nucleon-

nucleon bremsstrahlung. The subsequent decay of axions to gamma rays allows con-
straints on the axion mass to be placed from observations of neutron stars in gamma-rays
using the Fermi LAT.
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1.8. Dark Matter (Particle) Candidates
Within the previous sections, it has been shown that viable dark matter candidates must
satisfy several conditions: They must interact very weakly with baryons and electromag-
netic radiation, their relic density must be in agreement with the DM energy density and
they must be non-relativistic (cold) to be allowed by the observed large scale structure of
the Universe. From the point of particle physics, well motivated ideas of particle physics
beyond the Standard Model which present viable candidates for dark matter exist, to
mention just a few i.e. supersymmetry, extra dimensions and axions.
It should be noted that the presented list of candidates is by no means complete.

Many other theories can provide candidates for dark matter.
Before presenting some viable candidates it should be reviewed, that some models

has already been excluded in the course of the discussion in the previous sections, as
there are the baryonic dark matter like MACHOs (as mentioned in section 1.3.4) and
also a non-baryonic standard model candidate, the neutrino because it would act as
hot dark matter that could not explain structure formation in the early universe and
furthermore, the upper limit for its contribution to the normalized energy density is
too small. Additional it shall be noted for MACHOs, even if they are objects like red
and white dwarfs (which are not completely dark), the rotational curves of the galaxies
cannot be explained by MACHOs. This amplifies the impact of the evidence celestial
dynamics provide to the hypothesis of non-baryonic dark matter. In particular, as the
predominant part of dark matter in our galaxy must be non-baryonic in the absence of
MACHOs, the chance to detect it in direct or indirect searches is enhanced. Also the
MOND theory has been excluded - see the end of the section Bullet Cluster at page 13.
Although there is no evidence for the particle character of dark matter, there are some

well motivated approaches from the particle physic point of view. It seems straightfor-
ward to attribute DM to the existence of a neutral stable thermal relic particle, i.e. a
particle which was in thermal equilibrium with all other particles in the early Universe
for temperatures above its mass.
Generally, DM relics are considered to be produced in the early Universe in (at least)

two distinct ways. One possibility involves DM particles generated in processes taking
place in thermal equilibrium, generically referred to as thermal production (TP) with
the relics produced this way called thermal relics. On the other hand, non-thermal pro-
duction (NTP), will refer to processes taking place outside of the thermal equilibrium,
and the resulting relics are called non-thermal relics. Focusing on the first class of pro-
cesses, they include the freeze-out of relics from thermal equilibrium, or their production
in scatterings and decays of other particles in the plasma.
While some DM candidates are created just to solve the DM problem, others emerge

quite naturally from solutions to long standing problems in particle physics. In this
latter category, notable candidates include the axion, which emerges from the Peccei-
Quinn (PQ) solution to the strong CP problem and the neutralino which emerges from
a supersymmetric solution to the gauge hierarchy problem. In cases such as these and
others, the relic abundance of DM along with DM detection rates are calculable in terms
of fundamental parameters, and thus subject to experimental searches and tests.
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An overview of several well-motivated DM candidates in the mass vs. detection cross
section plane is presented in figure 16. On the vertical axis a typical order of magnitude
detection cross section associated with each type of candidate is shown. Just for refer-
ence, a SM neutrino with mass of order 0.1 eV and weak interaction strength of order
10−36 cm2 = 1 pb ' 1 GeV −2/3.92 is shown, although such a candidate would constitute
hot DM (HDM) and thus does not meet the need (of its velocity not exceeding the
escape velocity in galaxies) for cold relics (as mentioned before).

1.8.1. WIMP

Weakly interacting massive particles as non-baryonic cold DM are considered as one of
the best candidates for DM. In figure 16 the box marked "WIMP" represents "generic"
weakly interacting massive particle candidates as thermal relics. Their mass can lie in
the range between a few GeV (below which it would overclose the Universe) and some ≈
100 TeV from unitarity constraints. Their detection cross section is limited from above
by direct DM search limits. As some properties have already been mentioned in section
1.7.1, it shall be mentioned again, that the strongest limits come from direct detection
experiments like the Xenon100 experiment and the LUX experiment. A firm lower limit
on the other hand does not really exist and can only be estimated on the basis of some
kind of theoretical arguments of "naturalness". The underlying theories of WIMP DM
require a discrete symmetry. The fact that the relic density obtained from thermal freeze
out, which leads to a mass and cross section known from the electroweak theory (WIMP
miracle), is an aesthetic argument and briefly explained in the following. In the early
Universe WIMP particles χ are assumed to be in thermal equilibrium at temperature
T & mχ. For sufficiently high temperatures, such as those existing in the early Universe,
the dark matter particle and its antiparticle would have been both forming from and
annihilating into lighter particles. The relic density nχ of a WIMP can be calculated
with the Boltzmann equation:

dnχ
dt

= −3Hnχ − 〈σannv〉 (n2
χ − n2

eq) (37)

with nχ the WIMP number density, neq the equilibrium density, H the Hubble constant
and 〈σannv〉 the thermal averaged WIMP annihilation cross-section times WIMP relative
velocity. The Boltzmann equation can be solved only numerically, not analytically. As
can be seen in the equation above (37), the change in density with time originates from
several contributions. The first comes with the expansion of the universe (represented by
the Hubble constant H) and dilutes the WIMP density nχ. The next contribution is due
to the annihilation of WIMPs, what reduces the WIMP density nχ. And, although the
WIMP density nχ gets enhanced through the production of WIMPs from particles from
the equilibrium neq, the number of produced WIMPs decreases exponentially with the
Boltzmann factor e−mχ/T (because the number of particles with enough energy to create
a pair of these particles decreases). As the Universe expanded and cooled, the average
thermal energy of these lighter particles decreased and eventually became insufficient
to form a dark matter particle-antiparticle pair. So the term "WIMP" is given to a
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Figure 16: Several well-motivated candidates of DM are shown in the log-log plane of DM relic
mass and σint representing the typical strength of interactions with ordinary mat-
ter. The red, pink and blue colors represent HDM, WDM and CDM, respectively.
Figure taken from [30].
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dark matter particle that was produced by falling out of thermal equilibrium with the
hot dense plasma of the early universe. The annihilation of the dark matter particle-
antiparticle pairs, however, would have continued, and the number density of dark matter
particles would have begun to decrease exponentially. Eventually, however, the number
density would become so low that the dark matter particle and antiparticle interaction
would cease, and the number of this particles would remain (roughly) constant as the
Universe continued to expand. This point with the temperature Tfr, where the Hubble
term becomes dominant (a co-moving (expanding) volume) and the number density
becomes effectively constant is the freeze-out point. This time (or energy) is ≈ mχ and
the energy is below the energy required to pair produce a DM particle pair. The χχ
pair is no longer in equilibrium and freezes out. Particles with a larger interaction cross
section would continue to annihilate for a longer period of time, and thus would have a
smaller number density when the annihilation interaction ceases.
Based on the current estimated abundance of dark matter in the Universe, if the

dark matter particle is such a relic particle, the interaction cross section governing the
particle-antiparticle annihilation can be no larger than the cross section for the weak
interaction (order ≈ 10−36 cm2 (= 1 pb), Fermi scale). If this model is correct, the dark
matter particle would have the properties of the WIMP. The cross section required to
match the observed DM density in the universe leads to a cross section similar to that
known from weak interaction (pb), assuming (here Fermi Theory) this would lead to a
required DM of O(GeV).
Because supersymmetric (for a brief explanation see sec. 1.8.4) extensions of the

standard model of particle physics readily predict a new particle with these requested
properties, this apparent coincidence is known as the "WIMP miracle", and a stable
supersymmetric partner has long been a prime WIMP candidate.
Concluding this section, the main theoretical characteristics of a WIMP are that it

interacts only through the weak nuclear force and gravity, or possibly other interac-
tions with cross-sections no higher than the weak scale, and a large mass compared to
standard particles. Because of their lack of electromagnetic interaction with normal mat-
ter, WIMPs would be dark and invisible through normal electromagnetic observations.
Because of their large mass, they would be relatively slow moving and therefore "cold".
Their relatively low velocities would be insufficient to overcome the mutual gravitational
attraction, and as a result WIMPs would tend to clump together.

1.8.2. Asymmetric Dark Matter (ADM)

Another type of dark matter relic is called asymmetric dark matter (ADM) and can be
produced via mechanisms similar to those which generate the baryon asymmetry. In this
case, in contrast to the standard WIMP scenario, one postulates both DM and anti-DM
particles where an asymmetry can develop between the two. In the early Universe, only
the number density difference between the two (asymmetric component) remains after
the annihilation of the symmetric components of DM and anti-DM. In this case, the
relict abundance Ωdm of ADM is set by the asymmetry in their initial populations, and
not by the thermal freeze-out:
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Ωdm ∼ ηdmmdm , ηdm = ndm − ndm
s

, (38)

with the entropy density s. Therefore the mass mdm is related to the Ωb/Ωdm ratio [30]

mdm = ηb
ηdm
· Ωdm

Ωb

·mp , (39)

with the proton mass mp as typical baryon.
Some examples of ADM include technibaryons, mirror dark matter, scalar neutrinos,

pure higgsinos and others. If the ADM is self-interacting or decaying, then various
astrophysical signatures may arise. For example, decaying ADM might explain the
cosmic positron excess or produce signatures in the gamma-ray sky.

1.8.3. Axion

Moving down the vertical axis (in fig. 16), the axion is a well known example of a
non-thermal relic candidate for dark matter. It was postulated by the Peccei-Quinn
theory in 1977 ([37]) to resolve the strong CP problem as a hypothetical elementary
particle. (In particle physics, the strong CP problem is the puzzling question of why
quantum chromodynamics (QCD) does not seem to break the CP-symmetry (there is no
experimentally known violation), although according to QCD there could be a violation
of CP symmetry in the strong interactions.) It prevents CP violation via an additional
Peccei-Quinn symmetry, which breaks below the scale fa (the axion decay constant).
CP violating terms are allowed in LQCD but would result in an electric dipole moment
of the neutron (NEDM), which has not been observed yet (Fine-tuning problem!).
On a more technical level, during the evolution of the universe it cools down below

fa and the axion appears as the pseudo-Nambu-Goldstone-Boson that results from the
spontaneously broken Peccei-Quinn symmetry. However, the non-trivial QCD vacuum
effects (e.g., instantons) spoil the Peccei-Quinn symmetry explicitly and provide a small
mass for the axion. The coupling of axions to matter is ∝ f−1

a . Its interaction strength
is strongly suppressed relative to the weak strength by a factor (mW/fa)2 (where fa ≈
1011 GeV - the PQ breaking scale), resulting in its very light mass. As the axion radiation
is an additional channel to transport energy out of stars, a too strong coupling would
result in a too fast cooling of stars and supernovae. Astronomical observations set limits:
fa > 107 GeV and on the axion mass ma < 1 eV. If it exists and has a low mass within
a specific range, they are of interest as a possible component of cold dark matter.
As pseudoscalar particle, an axion can be produced by the interaction of two photons

(as mentioned in 1.7.4 eq. (36)). If one of the photons is a virtual one, this effect is
known as the Primakoff effect. In an external electromagnetic field, this may result in
the mixing of photons and axions by the Lagrangian:

Laγγ = gaγa ~E · ~B . (40)

The coupling constant gaγ is defined as:
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gaγ = αgγ
πfa

(41)

with the electromagnetic fine structure constant α, the axion decay constant fa and
a constant gγ which contains the dependence on the axion model. The scale of PQ
symmetry breaking fa is required to be fa & 109 GeV, otherwise supernovae cool too
quickly. [30]
Beside the classic axion from the Peccei-Quinn symmetry, similar light particles exist

in other theories, collectively called axion like particles (ALPs). ALPs may be observable,
despite its small couplings, via the Primakoff effect (see 1.7.4), i.e. the conversion of an
ALP to a photon in a magnetic field. So far, no ALPs were observed.
Some theorists claim, that any theory of DM which neglects the axion stands a good

chance of being incomplete, as physicists have often considered either WIMP-only or
axion-only theories of CDM for many years. In a SUSY extension of the SM (as explained
briefly later), the newly measured Higgs boson mass can be in accord with theory, but
then there is no solution for the strong CP problem. Nature seems to need both.
To complete this section it shall be described in short, why the model of axions was not

applied for this work since it is a search for physics beyond the standard model. Because
the CRESST-II detector Lise, which data was analysed, has a threshold of 300 eV and
axions are expected in the sub-eV range, it would be unnecessary to set a limit or rather
to transform the calculated limit (for Lise) in an axion parameter. There are other
experiments (like XENON) which are better suited for the corresponding energy-range.

1.8.4. SUSY

Supersymmetry (SUSY) is the only non-trivial extension of the standard model (SM),
as the Algebra of Supersymmetry is the only non-trivial extension of the poincare group
and is a generalization of the space-time symmetries found in quantum field theory that
allows the transformation of fermions (particle with half spin) into bosons (particles with
integer spin), and vice versa like:

Q|Fermion〉 = |Boson〉 and Q|Boson〉 = |Fermion〉 . (42)

An extension of the Standard Model is the minimal supersymmetric model (MSSM), in
which each SM particle has a supersymmetric partner, squarks and the supersymmetric
partners of the gauge bosons, gauginos. This partners should have the same mass as the
SM particle. The simple MSSM extension has additional 120 parameters. But because no
supersymmetric particles have been observed, or the mass of SUSY particles is different
to the mass of the SM particles, the "SUSY is broken", what requests a breaking scenario.
If the supersymmetry breaking mechanism is soft and the corresponding SUSY-breaking
mass is in the range of a few TeV, the stability of the gauge hierarchy can be maintained.
A new form of parity is introduced, the so-called R-parity, which is a discrete symmetry

(Z2) with a multiplicative quantum number R = (−1)3B+L+2s which is conserved (s is
spin, B is baryon number, and L is lepton number). It prevents the proton decay and
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at the same time ensures the stability of the the lightest supersymmetric particle (LSP)
(can not decay into SM particles). This further results in SM particles having R=+1
and SUSY particles having R=-1 and SUSY particles being allowed to be produced only
in pairs.
SUSY offers a solution to most of the remaining problems from the SM, whereof here

three examples are mentioned. Starting with a excellent candidate for dark matter, the
LSP, the Neutralino, a mixture of the neutral supersymmetric partners of the gauge
bosons (a superposition of bino, photino and higgsino, the SUSY partners of the SM
gauge bosons). Further, with SUSY the evolution of the three fundamental coupling
constants meet at a single point with time, the grand unification scale (GUT). And the
third example is the intrinsic relation to time-space of SUSY, which local invariance leads
to a spin-2 particle, the graviton. Also the gravitino, the spin 3/2 SUSY-partner of the
graviton, could act as a candidate for DM, interacting only via gravity and not weakly
interacting. Even more candidates are allowed with introduction of SUSY models, e.g.
the spin-1/2 axino ã, the SUSY partner of the axion and the spin-0 saxion s.
It also provides a framework for the unification of particle physics and gravity possibly

allowing an explanation of the gauge hierarchy of the electroweak scale to the Planck
energy scale.
The axino is an example of an extremely-weakly interacting massive particle (E-

WIMPs, or alternatively super-WIMPs or FIMPs (for feebly interacting massive par-
ticles)). The axino mass is strongly model dependent. In the case where ã is the stable
LSP, then it could comprise at least part of the DM. Axinos can be either thermal or
non-thermal relics, or both, since they can be produced in both thermal and non-thermal
processes. Depending on various conditions, they may comprise hot, warm or cold relics,
or some combinations of say warm and cold DM.
The gravitino G̃, is another well-motivated example of an E-WIMP and shares several

properties to the axino. It is a neutral Majorana fermion whose couplings to ordinary
particles (and sparticles) are strongly suppressed - this time by the square of the Planck
scale, ≈ (mW/MP )2. Like the axino, relic gravitinos can have contributions from both
thermal and non-thermal processes, and they can be either hot, warm or cold DM.

1.8.5. Dark Photons (Vector Particles)

Just like ordinary matter couples to a long-range force known as "electromagnetism"
mediated by particles called "photons", dark matter could couple to a new long-range
force known (henceforth) as "dark electromagnetism", mediated by particles known (from
now on) as "dark photons". (Another possibility could be, that DM couples to a relatively
strong short-range force that could have interesting consequences for structure on small
scales. [38])
One brief explanation would be imagining that there is a completely new kind of

photon, which couples to dark matter but not to ordinary matter. The long-range gauge
force is coupled to DM, in the form of a new unbroken abelian field, dubbed the U(1)D
"dark photon" (V, hidden photons, A’, ...). So there can be dark electric fields, dark
magnetic fields, dark radiation, etc. The dark matter itself consists half of particles with
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dark charge +1, and half of antiparticles with dark charge -1. For these particles and
antiparticles to all not annihilate into dark photons, there is a range of possibilities for
which the dark matter does not annihilate very efficiently. For example, if the mass of
the individual dark matter particles was sufficiently large, their density would be very
low, and they just would not ever collide. Alternatively, if the strength of the new
force was extremely weak, it just would not be that effective in bringing particles and
antiparticles together. But this attitudes were already discussed in previous sections for
similar problems.
For DM particles weighing several hundred times the mass of the proton, there should

be about one DM particle per coffee-cup-sized volume of space. The strength of the
dark electromagnetic force can be characterized by the dark fine-structure constant α̂.
In comparison that ordinary electromagnetism is characterized by the ordinary fine-
structure constant α = 1/137. In a first approach, just considering to stop the DM
particles from annihilating away, it turns out, that the upper limit on the dark fine-
structure constant would be about the same. [38] It is remarkable that such large values
were allowed.
However, a little more properties about the DM is known, like it is close to collisionless.

If they would collide very often, all sorts of things would happen to the shape of galaxies
and clusters and would be in contradiction to observations. Taking this into account
another limit on the strength of dark electromagnetism can be estimated. Interactions
should be sufficiently weak that dark matter particles do not "cool off" by interacting
with each other in galaxies and clusters. That turns into a more stringent bound on the
dark fine-structure constant of about an order of magnitude smaller, at α̂ < 10−3.
Further it can not be stated with perfect confidence that the DM really is effectively

non-interacting. If a model like this is right, and the strength of dark electromagnetism is
near the upper bound of its allowed value, there might be very important consequences
for the evolution of large-scale structure. At the moment, it is a little bit hard (for
calculational reasons) to figure out what those consequences actually are. What is
proposed is the possibility, that DM is really a plasma, and to understand how structure
forms, one needs to consider dark magnetohydrodynamics, what is a non-trivial task.
The idea of new forces acting on dark matter is by no means new. But what is

exciting about dark photons is that they are much more natural from a particle-physics
perspective. Typical models of quintessence and long-range fifth forces invoke scalar
fields, which are comfortable to work with, but which by all rights should have huge
masses, and therefore not be very long-range at all. In comparison is the possibility
of considering the dark photons massless, like the ordinary photon, and that the dark
photon comes from a gauge symmetry, also just like the ordinary photon, its properties
are therefore completely natural.
Some physicists proposed not just dark photons, but a barrelfull of new dark fields

and interactions ([39]), showing that these models manage to evade all sorts of limits one
might worry about, from getting the right relic abundance to fitting it with constraints
from primordial nucleosynthesis and the cosmic microwave background.
The model mentioned before would actually be simpler, because of the possible im-
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pacts of this new long-range force in the dark sector on observable cosmological dynamics.
Another difference between dark electromagnetism and a scalar force is that electromag-
netism has both positive and negative charges and thus, both attractive and repulsive
forces. (Scalar forces tend to be simply attractive, and get all mixed up with gravity.)
So much more than a single species of dark matter could be imagined. For example
what if two different types of stable particles exist that carried dark charge? Then there
could be dark atoms, what would not be far from dark chemistry, what further would
not let dark biology far behind.
(Of course the new U(1) symmetry could come from some string or GUT model,

which would be another interesting thing to think about.) Correlating, there would also
be a dark background radiation. But the dark sector (dark matter + dark radiation)
decouples relatively early on (temperatures of order 10 GeV). After that, energy gets
dumped into ordinary photons from other standard-model particles, but not into the
dark photons; so soon, the dark temperature is lower than the ordinary temperature
and that is why there is no problem with BBN or the CMB.

From here on a little more technical details are considered. Dark matter detectors
discussed in section 1.7.1, which primarily probe elastic scattering of WIMPs on nuclei
are also precise probes of light, weakly coupled, particles that may be absorbed by the
detector material (for dark photon DM with mass in the ≈ 0.01-100 keV range). This
specific model of dark photons is the minimal model of dark matter comprised of a long-
lived vector state V (dark photons) generated through inflationary perturbations in an
initial dark photon condensate, or possibly other non-thermal mechanisms. The relevant
parameters for this model are the mixing angle κ and the mass of the dark photon mV.
The analysis presented in this thesis addresses the model of a very light dark photon
field as a (pseudo) vector gV Vµψ̄γµψ (a (pseudo) vector too is: gAAµψ̄γµγ5ψ) with ψ the
the electron field, gi parametrizes the dimensionless couplings, and V (and A) are the
fields of metastable but very long lived DM. The case discussed in this work corresponds
to gV = eκ, and the light mass mV is protected by gauge invariance. Dark Photons
can be super-WIMPs and they can be dark matter through non-thermally generated
abundance.
Although freeze-out in this scenario is similar to that in the standard WIMP scenario,

the long-range DM-DM interactions implied by the unbroken U(1)D may lead to consid-
erably different DM phenomenology in the current Universe, and in particular in galactic
halos. In this scenario, dark-matter halos are composed of an equal mixture of χ and χ̄.
More generally, a dark photon is any spin-1 boson associated with a new U(1) gauge

field. That is, any new force of nature that arises in a theoretical extension of the
Standard Model and generally behaves like electromagnetism. Unlike ordinary photons,
these models often feature a dark photon that is unstable or possess non-zero mass,
rapidly decaying into other particles such as electron-positron pairs. They may also
interact directly with the known particles, like electrons or muons, if said particles are
charged under the new force.
Dark photons would theoretically be detectable via their mixing with ordinary photons
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(and subsequent effect on the interactions of known particles) what is the topic of the
analysis carried out in this work, with results presented in chapter 4. Some works has
already shown, that the coupling constant of the dark photon to electrons, eκ (= coupling
to all charged particles), can be probed to exquisitely low values, down to mixing angles
as low as κ ≈ O(10−15). [40] Some constraints and their descent for this model in the
mentioned region are explained briefly.
In the simplest form of these theories the extra U(1)D gauge field mixes with the SM

U(1) hypercharge gauge field (see eq. (43)) with an additional kinetic term (−κ
2FµνV

µν)
in the Lagrangian, eq. (44). This mixing term provides a portal from the dark sector
to the charged particles of the SM, with the mediators called dark photons denoted by
(Vector) Vµ.

SU(3)c ⊗ SU(2)L ⊗
via κ︷ ︸︸ ︷

U(1)Y ⊗ U(1)D (43)

It shall be noted, that this work concentrates on the Stuckelberg-type mass (eq. (45))
for the vector field of the model of direct detection of V, because mV can be added
easier, rather than being induced via the Higgs mechanism. [40] (Equally applying to
the Higgsed version (the existence of a Higgs field charged under this U(1)) this also
opens up additional possibilities for achieving the required cosmological abundance of
V.)
The lagrangeian containing this effective kinetic mixing of strength κ between the

dark photon (V) and photon (A) with respective field strengths Fµν and Vµν , is

L = −1
4F

2
µν −

1
4V

2
µν −

κ

2FµνV
µν + eJµemAµ , (44)

where Jem is the electromagnetic current. The mentioned Stückelberg case (with a "hard
photon mass") is:

L ⊃ −1
2mV V

2
µ . (45)

For the case where mV > 2mdm, the dark photons could quickly decay into a pair
of DM particles. If the self interaction is strong enough, the dark matter can form a
bound state with the dark photon being the mediator of dark matter self interaction.
Two cases for the mass mV with different properties are considered. If mV > 1 MeV, the
dark photon plays the roll of the mediator of the force of dark matter self interaction.
And if the DM can form such a bound state, high luminosity colliders (like Belle II,
SeaQuest, SHiP) could be used to study the property of this state(s). For mV < 1 MeV,
the here interesting region (because of the detectors), the dark photon can easily be
cosmologically stable, and play the roll of dark matter. DM detectors (sensitive to
electron recoils) can be used to detect both solar dark photon and dark photon dark
matter. In principle, all the detectors designed for detecting axion DM can be used to
detect dark photon DM.
Direct detection experiments such as CRESST-II, XENON10, XENON100 and XENON1T

are able to place a very strong constraint on the dark photon mixing angle, down to
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O(10−15), assuming that dark photons comprise the dominant fraction of dark matter
(figure 32). This sensitivity to dark photon dark matter exceeds the indirect bounds
derived from stellar energy loss considerations over a significant fraction of the available
mass range.
Constraints to this model can be derived from two sides, first from astrophysical

objects (stars), and second by energy injection from γ-rays (contributions to the diffuse
photon background) originating from V → 3γ decays below the e+ + e−-threshold.
For the case, that dark photons contribute to a significant fraction of the dark matter
cosmological abundance, the nowadays DM experiments are sensitive enough to compete
with stellar energy loss bounds for mV > 10 eV.
Requirements for stability of the V’s on the cosmological time scales can be derived

from decays of sub-MeV Dark Photons, such as it should be light, below 2me, what
prevents the V → e+e− decay and shall have a small κ � 1, to slow down V → 3γ.
(This allows the vectors to have a lifetime greater than the Universe.)
(Diffuse) Gamma rays and CMB limits exclude Dark Photon DM heavier than ≈

few 100 keV in the (mV , κ) parameter space. Other important astrophysical limits are
aspects of stellar emission (for the mentioned Stückelberg case), and also from horizontal
branch (HB - appendix A.7) stars and red giants (RG), which are independent of the relic
density of dark photon DM. [40] These astrophysical constraints on the mixing parameter
κ can be seen in the figure(s) of the results of this work in chapter 4 as shaded regions.
For the direct detection of solar Dark Photons (probably) liquid scintillators are again
best suited. For Horizontal Branch (HB) stars, a 0.8M�-star, which has an energy loss
limited to 10% of the HB’s luminosity (LHB = 60L�), is considered. [40] The sensitivity
to larger mV can be extended from constraints derived from RG stars. A categorization
of the different types of stars can be seen in figure 17, for example the Horizontal Branch
stars (HB) with a helium burning core.
Astrophysical limits are strong, but direct detection (for example CRESST, Xenon)

can probe uncharted territory. The sensitivity of current direct detection experiments
already excludes dark photon dark matter with a thermally generated abundance.
As shown in [40], matter effects are not very important (if mV ≥ Eth the photoelec-

tric threshold, some eV - depending on the material) and the problem reduces to the
absorption of a massive non-relativistic particle with eκ coupling to electrons. (The
astrophysics bounds, on the other hand, are often derived in the regime EV � mV .)
An important aspect for the detection comes from the photo-ionization cross sections

of ordinary photons. Because it can be huge, say, 107 bn, these compensating factor
makes up for a tiny coupling κ � 10−10 (and renders V stable on cosmological time-
scale) and the absorption of ≈ keV vectors can be looked for in electron band.
The Dark Photon absorption in comparison to a photon (massless, carrying momen-

tum |~q| = ω) comes from the non-relativistic dark vector carrying a negligibly small
momentum |~q| = mV vdm ≈ O(10−3)ω (mass mV), where vdm is the dark photon velocity.
Because both the photon wavelength and the DM Compton wavelength are much larger
than the linear dimension of the atom, this difference has little effect on the absorption
rate. In exact calculations for Dark Photon absorption (including medium effects) it can
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be shown, that the absorption rate is given by the imaginary part of the polarization
functions.
With all the mentioned properties, an approximation for the relation between the

absorption cross sections is

σV (EV = mV ) vV ' κ2 σγ(ω = mV ) c , (46)

where vV is the velocity of the incoming DM particle (this relation is not exact and
needs corrections) [40].
Also from [40] the absorption rate used for the calculated limit in chapter 4 is given

by

Rate per atom ' ρdm
mV c2 · κ

2 σγ(ω = mV ) c , (47)

where ρdm is the local galactic DM energy density.
In comparison to axion-like-particle DM dark photon DM has certain advantages

(with respect to direct detection), for example because of the absence of the V-decay to
two photons, which removes the constraint from monochromatic X-ray lines (stringent
constraint on axion-like keV-scale DM). Furthermore, the cross section for dark photons
is significantly enhanced for small masses, relative to the cross section for absorption of
axion-like particles.

Figure 17: Schematic Globular Cluster color-magnitude diagram. The structure of stars cor-
responding to the different branches of the diagram are indicated. Figure taken
from [41]
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1.8.6. Alternative Theories

Many theorists have presented imaginable scenarios and theories in which additional to
the space-time, which appears to consist of three space and one time dimension, further
dimensions reveal themselves at higher energy scales. As examples of theories with extra
dimensions string theory and M-theory shall be noted, which may be the best candidates
for a consistent theory for quantum gravity and for the unification of all interactions.
Such theories seem to require seven additional extra dimensions at least.
Finally, a wimpzilla (also represented in fig. 16) is an example of a nominally non-

thermal relic. There are constraint on Ωdm from the CMB which limit the maximum
mass of a dark matter particlemdm if it is a thermal relic of the early Universe. But there
is still a possibility to evade this limit, and conceive super-heavy particles with masses
mdm > 1010 GeV, if these particles were never in thermal equilibrium during freeze-out.
If this is the case, then their relic abundance is not dependent on their annihilation cross-
section but on their production cross-section. However, they have to be stable enough to
contribute to the present day matter density. Cosmic rays at energies above the Greisen-
Zatsepin-Kuzmin (GZK) cut-off observed by the AGASA experiment deliver the main
motivation for superheavy DM particles. While it is not motivated by particle physics,
it represents an alternative type of relic that can be produced in the early Universe by
1. classical gravitational effects, 2. through non-perturbative quantum effects during
preheating, 3. from vacuum fluctuations in a first-order phase transition, or in addition,
4. under some circumstances it can also have a thermal population ([30]). Also like
the most DM candidates suggested so far, Wimpzilla DM rely on exact or almost exact
discrete symmetries. In contradiction to the AGASA result recent measurements of the
ultra high energy cosmic ray spectrum confirm the GZK cut-off. An example is the
AUGER experiment, which does not observe cosmic rays above the GZK cut-off, what
states that the main motivation for superheavy dark matter has gone.

1.9. Conclusion
In all these sections in this chapter it has been shown, that the dark sector, i.e. dark
matter might be complicated, with a rich phenomenology all its own, but so far without
a satisfying solution. The ΛCDM is a nice, simple starting point for a theory of dark
matter. But there are plenty of ideas, and some promising theories for DM were outlined,
including the one most important for this work - dark photons. It is very tempting to
think that observed deviations from the predictions of ΛCDM are due to some interesting
new physics in the dark sector.
Still - all there is today are "minimal" properties ("minimal" means that the particles

are cold and basically non-interacting with each other) and upper limits, but no firm
conclusions. It is certainly possible that there is a lot of interesting physics going on in
the dark sector, but is just too subtle for scientists to have noticed yet. So on the one
hand it is important for theorists to propose specific, testable models of non-minimal
dark sectors, so that on the other hand observers have targets to shoot for when trying
to constrain just how interesting the darkness really is.
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2. The CRESST Experiment
CRESST is an experiment designed for the direct detection of dark matter and is an
acronym for Cryogenic Rare Event Search with Superconducting Thermometers. It
is located in hall A of the Laboratori Nazionali del Gran Sasso (LNGS) underground
laboratory between the towns of L’Aquila and Teramo in Italy, on average 1400 meters
underground. Together with multiple passive shielding layers to reduce the background,
the Gran Sasso massive is the first layer, serving to shield the setup against cosmic
radiation (but due to the presence of natural radionuclides in the rock it is itself a
source of radioactivity). Other background sources to the DM-particle-nucleus elastic
scattering can be natural and induced radioactivity near the detector. Not only dark
matter particles but also muons, neutrons, electrons, photons and alpha particles will
interact in the detector.
Because a very low interaction probability is anticipated for dark matter particles

massive detectors are needed to obtain a measurable interaction rate. Further the ap-
paratus has to be be decoupled from ambient vibrations and so, first of all, the cryostat
hangs from a 20 cm thick wood plate which rests on air dampers. Secondly, to reduce
the effect of vibrations created inside the cryostat from boiling cryogenic liquids, the
detectors in the cold box are mounted onto a spring loaded support hanging from the
cold finger. A sketch of the experimental setup of the CRESST-II Cryostat with the
various (passive) shielding layers can be seen in figure 18.
The setup allows for the installation of up to 33 detector modules (detector carousel).

From the inside out figure 18 shows the "cold box" surrounded by a 14 cm thick inner
shield made of high-purity copper and a 20 cm outer shield made of lead, both to absorb
electromagnetic radiation from the environment of the experiment. To eliminate radon
contamination of surfaces close to the detectors, the next layer is the radon box, an air
tight aluminium container, flushed by nitrogen gas (and maintained at a slight overpres-
sure in order to prevent radon from penetrating the shielding). Outside the radon box,
a muon veto is installed and the outermost shield is a 50 cm neutron moderator made
from polyethylene. The muon veto system is installed inside the neutron moderator,
suppressing the remaining neutron flux dominated by neutrons induced by muons in the
lead of the shielding.
Because the momentum transfer of the neutron to a proton is maximal as their masses

are similar, hydrogen-rich compounds are most effective for the purpose of neutron
shielding. This is the reason for the large neutron stopping power of hydrogen-rich
materials like water or polyethylene, with both materials roughly having the same density
(≈ 1 g/cm3). The advantage of polyethylene (PE) is, that it is solid at room temperature,
thus a neutron shielding around a given detector setup is easier to build and maintain
with PE than with water. Unfortunately, both materials contain isotopes which allow
(α,n)-reactions for rather low incident α energies.
Although the background is highly suppressed due to locating the experiment under-

ground, using passive shielding layers, increasing radio-purity and applying a simulta-
neous read-out of light and phonon channel, one of the main parts of the remaining
background, originates from neutron nuclear recoils which have a characteristic similar
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Figure 18: This figure shows a sketch of the experimental setup of the CRESST-II Cryostat,
taken from [42].
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to WIMP nuclear recoils. This neutrons that might reach the detectors can be pro-
duced by spontaneous fission of heavy elements, by (α,n)-reactions on light nuclei, or
by muons. If they are produced outside the PE shielding (moderator for neutrons with
energies up to some MeV), they have a very low contribution to the background, but if
they are produced inside the shielding or the detector itself, then they can contribute to
the background more significantly.
Because it is anticipated that the recoil energy of the struck nucleus is small, with most

of the events in the keV region and below the detectors are operated in 3He/4He dilution
refrigerators at about 10-15 mK, where superconducting phase transition thermometers
(tungsten films) become superconducting, offering the ability to observe these small
energy deposits.
As mentioned a little bit more detailed in section 1.7.1, in this energy region, detectors

are prone to a wide variety of background events, what requests a proper discrimination
of the spurious events. This is achieved due to the simultaneous read-out of two inde-
pendent signal channels of the detector, since a particle scattering off a nucleus in the
detector produces heat in the form of phonons and additional scintillation light. This
also allows to discriminate the various sources of the energy deposition via the ratio of
the two signal strengths.
The discrimination of the particle type becomes possible by the light yield of a given

event in the detector. If energy is deposited by a recoiling nucleus, the light is quenched,
compared to an energy deposit by an electron or by a lighter particle, where less scin-
tillation light is produced in the crystal. Because the produced amount of light differs
for different kinds of particles, most common backgrounds (e.g. electron recoils, alpha
events, ...) can be eliminated. This is a very efficient way of active background discrim-
ination, achieved using this so-called light yield, which is defined as the fraction of light
and heat energy as discrimination parameter, showed in figure 19.

The horizontal bands in this schematic drawing (figure 19) shown in the light yield
- energy plane are the mentioned results from the different event types. Per definition
the light yield is normalized to 1 for gamma radiation with an energy of 122 keV (57Co,
calibration source), what results in a light yield of β’s and γ’s (electron recoils) of about
1. For α particles the light yield is about 0.22 and for nuclear recoils (O, Ca, W) it
is even lower (0.1 - 0.02). [43] Due to finite detector resolution, these bands can be
separated to some extent.
The achieved high resolution in combination with total energy measurement and high

sensitivity, what made cryodetectors being the natural instrument for the direct detec-
tion of dark matter, can also be used to search for signatures of other models like dark
photons (done in this work, sec. 1.8.5), but can also open completely other fields, for
example observations of low energy neutrino scattering, (neutrinoless) double beta de-
cay, detection of large biomolecules, and the detection of microfractures. More details
on the light yield, the resolution, the calibration, cuts (quality cuts, coincidence cuts,
rise-time cuts) and further properties can be found in [44] and [45].
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Figure 19: This figure shows a schematic drawing of the horizontal bands resulting from dif-
ferent event types in the light yield-energy plane, taken from [43].

2.1. Phases
The data for the analysis of this work are taken from the CRESST-II Phase 2 run
detector module Lise, the other phases are just mentioned briefly.
In CRESST-I sapphire crystals (Al2O3) were used as target material, it started in

1999 and published data for WIMP cross section in 2003.

2.1.1. CRESST-II

For this phase scintillating CaWO4 crystals (more details see sec. 2.2) as absorbers
were developed, in which as for sapphire a particle interaction produces mainly heat
in the form of phonons. Additional to CRESST-I is the two channel read out (added
the detection of scintillation light), and the integration of the carrier of the 33 detector
modules (detector carousel) plus the SQUID system. The statistical fluctuations were
reduced and the energy resolution improved.
In CRESST-II Phase 1 detector modules with a mass of ≈ 300 g were installed, a

total net exposure of about 730 kg days was collected (complete data set) and it was
operating from 2009 till 2011.
For the next run, the extended dark matter run CRESST-II Phase 2 (began in July
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2013 and ended in August 2015) 18 detector modules of four different module designs
were installed. The final module composition in the detector carousel were 12 modules
of the conventional design, 2 modules with stick design, 2 modules with carrier design
and 2 modules with silicon beaker design. Lise, where the data for this work are taken
from, is a type of the conventional design.
As light detector, which is also operated as cryogenic calorimeter, a light absorber

(usually silicon on sapphire) was combined with a second thermometer.
In general for all designs both detectors are mounted close to each other forming a

detector module and are enclosed in a scintillating and reflective housing for an efficient
light collection.
As already mentioned, the temperature sensors are superconducting phase transition

thermometers (transition edge sensors - TES), consisting of thin tungsten films evap-
orated onto a surface of the absorbers. A small temperature rise leads to a relatively
large increase in resistance, because the thermometers are stabilized in the transition
from the normal conducting to the superconducting phase.
A schematic sketch of the conventional design (Lise) can be seen in figure 20.

Figure 20: This figure shows a schematic sketch of the conventional design of the CRESST-II
detector module, taken from [43].

Figure 20 shows, that a module consists of a phonon detector (CaWO4 single crystal)
and a light detector (Si or Si on Al2O3). They are mounted together in a reflective and
scintillating housing. Both detectors are equipped with a tungsten TES, which then is
read-out with a squid system. Thus the heat and the simultaneously produced light
signal can be recorded together.
Because in the conventional module both detectors are held by non-scintillating bronze

clamps which might lead to a difficult background contribution due to surface α decays,

67



2. The CRESST Experiment

large efforts were put into radon prevention to reduce this background.
A picture of the Lise-type module can be seen in figure 21.

Figure 21: This is a picture of the Lise detector module (conventional design), on the left is the
light absorber for scintillation-light detection, with a silicon-on-sapphire disc with
a diameter of 40 mm and a thickness of 500 µm, and on the right is the phonon
detector, where on top are the three clamps (bright) holding the crystal and the
W-thermometer (TES, dark rectangle) on top of the CaWO4-crystal, taken from
[43].

Lise had the lowest threshold (for nuclear recoils) in CRESST-II Phase 2 of ≈ 0.3 keV
(solely arising from a superior performance of the phonon detector). In comparison to
the module "TUM40" (stick design; the module with the best overall performance of
CRESST-II Phase 2) the radio-purity of the commercial crystal installed was worse by
a factor of ≈ 2 below 40 keV. The whole data set of Lise had an exposure of 52 kg days
and due to the excellent threshold extends the exclusion limit for the first time down to
the sub-GeV region.

2.1.2. CRESST-III

CRESST-III Phase 1 started in June 2016, where ten newly designed detector modules
(including crystals with a mass of only ≈ 25 g each) are installed. Due to the decreased
mass the sensitivity will be significantly increased and the detectors are expected to reach
thresholds below 100 eV allowing a further investigation of signatures in the low-mass
region.
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2.2. Calcium tungstate CaWO4

2.2. Calcium tungstate CaWO4

Calcium tungstate, also known as Scheelite, named after Karl Wilhelm Scheele (1742 -
1786), a Swedish chemist, is an example of an inherently fluorescent mineral. The crystal
structure consists of tetrahedral W042- anions bonded to calcium Ca2+ cations ionically,
distributed throughout the lattice. The crystal morphology is typically dipyramidal.
Each calcium atom shares corners with eight adjacent WO4 tetrahedra. Each tungsten

is bound primarily covalent to four oxygen atoms to form a tetrahedron slightly squashed
(≈ 7%) along the c-axis. The structure can be seen in figure 22 with the value for the
lattice parameters a and c at a temperature of 300 K. CaWO4 has a molecular weight
of 287.93 g, is an intrinsic scintillator with high light yield and high thermal quenching
temperature.
Regardless of the physical appearance of Scheelite, all samples have a characteristic

intense blue-white fluorescence when stimulated by short-wave UV-radiation. The fluo-
rescence in Scheelite is caused by transitions of electrons within the tetrahedral tungstate
anion. [46]

Figure 22: The structure of CaWO4, taken from [47].
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3. Statistics
This chapter gives an explanation of the basic principles and fundamental concepts of the
statistic methods necessary for the data analysis of this work. The aim was to calculate
an (unbinned) 90% frequentist upper limit for the data of the CRESST-II Phase 2 Lise
detector module. And for the search for physics beyond the standard model convert
this limit on the dark photon mixing κ (section 1.8.5). A basic overview is given on
what the frequentist probability, a probability density function (pdf), a test statistic,
hypothesis testing, a maximum (extended) likelihood (ratio) is, and what in the context
of frequentist likelihood ratio a 90% upper limit means.
Statistics can be seen as a branch of mathematics or as a mathematical body of science

that pertains to the collection, analysis, interpretation or explanation, and presentation
of data and it is concerned with the use of data in the context of uncertainty and decision
making in the face of uncertainty. Probability is useful to help explain this uncertainty
and variation/variability.
The mathematical theory of probability has a history dating back at least to the 17th

century, and several different definitions of probability have been developed. A great
discovery of twentieth century physics was the probabilistic nature of physical phenom-
ena at atomic scales, described in quantum mechanics. Like other theories, the theory
of probability is a representation of probabilistic concepts in formal terms. The cen-
tral objects of probability theory are random variables, stochastic processes, and events:
mathematical abstractions of non-deterministic events or measured quantities that may
either be single occurrences or evolve over time in an apparently random fashion. There
have been at least two successful attempts to formalize (modern) probability, namely
the Kolmogorov formulation and the Cox formulation. The axiom system presented by
Kolmogorov combined the notion of sample space (introduced by Richard von Mises)
and measure theory. In Kolmogorov’s formulation, sets are interpreted as events and
probability itself as a measure on a class of sets. In Cox’s theorem, probability is taken
as a primitive (that is, not further analysed) and the emphasis is on constructing a
consistent assignment of probability values to propositions.
The following definitions and formalism are in terms of set theory as formulated in

1933 by Kolmogorov ([48]).
Probability theory considers measures that assign to the whole set the size 1 (P (S) =

1), and considers measurable subsets to be events whose probability is given by the
measure. Taking a set S called the sample space (which relates to the set of all possible
outcomes in classical sense) consisting of a certain number of elements (leaving the inter-
pretation open for the moment). (A set is a collection of some elements, whereat capital
letters are often used to denote a set. To define a set all the elements can simply be listed
in curly brackets, for example the set of integers, Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.)
To each subset A of S (set A is a subset of set S if every element of A is also an element
of S, written as A ⊂ S) one assigns a real number P (A) called a probability. P (A),
quantified as a number between 0 and 1 (where 0 indicates impossibility and 1 indicates
certainty), is the measure of the likelihood that an event (from a sample space) will
occur (0 ≤ P (A) ≤ 1). A variable that takes on a specific value for each element of the
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set S is called a random variable. The individual elements may each be characterized by
several quantities, in which case the random variable is a multicomponent vector.
A Probability Model lists the possible outcomes of the experiment and the associated

probability of each outcome displayed in a table, by a graph, or by a formula (section
3.2).

3.1. Interpretation of probability
Although any function can be called by definition a probability function, which satisfies
the axioms defining probability ([48], [49]), it must still be specified how to interpret
the elements of the sample space and how to assign and interpret the probability values.
Commonly used in data analysis are two main interpretations of probability, called objec-
tive and subjective probability. (Some prefer to categorize in "physical" and "evidential"
probabilities.)
Used among other things for assigning statistical errors to measurements, the most

important is that of relative frequency (objective). The other interpretation (subjec-
tive probability) is also used, e.g. to quantify systematic uncertainties. When it comes
to practical application however, there are two major competing categories of probability
interpretations, whose adherents possess different views about the fundamental nature
of probability:

• The most popular version of objective probability is frequentist probability, which
claims that the probability of a random event denotes the relative frequency of oc-
currence of an experiment’s outcome, when repeating the experiment (very often).
This interpretation considers probability to be the relative frequency "in the long
run" of outcomes. (A modification of this is propensity probability, which interprets
probability as the tendency of some experiment to yield a certain outcome, even
if it is performed only once.)
In the frequentist interpretation, probabilities are discussed only when dealing with
well-defined random experiments (or random samples). Physical probabilities,
which are also called objective or frequency probabilities, are associated with ran-
dom physical systems such as roulette wheels, rolling dice and radioactive atoms.
As mentioned above, an event is defined as a particular subset of the set of all
possible outcomes of a random experiment (called the sample space of the experi-
ment). In such systems, a given type of event (such as a die yielding a six) tends to
occur at a persistent rate, or "relative frequency", in a long run of trials. For any
given event, only one of two possibilities may hold: it occurs or it does not. The
relative frequency of occurrence of an event, observed in a number of repetitions
of the experiment, is a measure of the probability of that event. This is the core
conception of probability in the frequentist interpretation. Physical probabilities
either explain, or are invoked to explain, these stable frequencies. The two main
kinds of theory of physical probability are frequentist accounts and propensity
accounts.

72



3.1. Interpretation of probability

Frequentist probability, frequency interpretations or frequentism is a standard in-
terpretation of probability, it is empirical, defined by a ratio from an infinite series
of trials, what can be understood as a very natural interpretation for scientific
experiments, but from the mathematical point of view there are doubts of the
convergence properties of the non-mathematical series.
If nt is the total number of trials and nx is the number of trials where the event
x occurred, the probability P (x) of the event occurring is the relative frequency
and, as the number of trials is increased, one might expect the relative frequency
to become a better approximation of a "true frequency", with the claim, that in
the "long run", as the number of trials approaches infinity, the relative frequency
will converge exactly to the true probability:

P (x) = lim
nt→∞

nx
nt

. (48)

The development of the frequentist account was motivated by the problems and
paradoxes of the previously dominant viewpoint, the classical interpretation. In
the classical interpretation, probability was defined in terms of the principle of
indifference, based on the natural symmetry of a problem (e.g. the probabilities
of dice games arise from the natural symmetric 6-sidedness of the cube). This
classical interpretation stumbled at any statistical problem that has no natural
symmetry for reasoning.

• The other main interpretation, subjective probability, considers degrees of belief
(or "bias"). All practical "subjective" probability interpretations are so constrained
to rationality as to avoid most subjectivity. Real subjectivity is repellent to the
sciences, which strive for results independent of the observer and analyst. The
historical roots of this concept extended to such non-numeric applications as legal
evidence.
Subjectivists assign numbers per subjective probability, i.e. as a degree of belief,
interpreted as, "the price at which you would buy or sell a bet that pays 1 unit
of utility if E, 0 if not E". The most popular version of subjective probability is
Bayesian probability, which includes expert knowledge as well as experimental
data to produce probabilities. The expert knowledge is represented by some (sub-
jective) prior probability distribution. These data are incorporated in a likelihood
function, whereat the product of the prior and the likelihood, normalized, results
in a posterior probability distribution that incorporates all the information known
to date. Bayesian probability is a quantity that is assigned to represent a state of
knowledge, or a state of belief.
The elements of the sample space correspond to hypotheses or propositions, i.e.
statements that are either true or false. (When using subjective probability the
sample space is often called the hypothesis space.) One interprets the probability
associated with a hypothesis as a measure of degree of belief: P (A) = degree of
belief that hypothesis A is true.
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One of the many applications of Bayes’ theorem (see eq. (49)) is Bayesian infer-
ence, a particular approach to statistical inference. With the Bayesian probability
interpretation the theorem expresses how a subjective degree of belief should ra-
tionally change to account for evidence. Bayesian inference is fundamental to
Bayesian statistics.
It is named after Thomas Bayes (1701-1761), who provided an equation that allows
new evidence to update beliefs. It was further developed by Pierre-Simon Laplace,
who first published the modern formulation. Sir Harold Jeffreys put Bayes’ al-
gorithm and Laplace’s formulation on an axiomatic basis. Jeffreys wrote that
Bayes’ theorem "is to the theory of probability what the Pythagorean theorem is
to geometry".
Bayes’ theorem is stated mathematically as the following equation

P (A | B) = P (B | A)P (A)
P (B) , (49)

where A and B are events and P (B) 6= 0. P (A) and P (B) are the probabilities
of observing A and B without regard to each other, P (A | B) is a conditional
probability, the probability of observing event A given that B is true and P (B | A)
is the probability of observing event B given that A is true.
Here P (A) (or P (theory)) represents the prior probability that the theory is true,
and P (B | A) (or P (data | theory)), called the likelihood, is the probability, under
the assumption of the theory, to observe the data which were actually obtained.
The posterior probability that the theory is correct after seeing the result of the
experiment is then given by P (A | B) (or P (theory | data)). The prior probability
for the data P (B) (or P (data)) says how one’s degree of belief should change in
the light of experimental data.

Summarising these two mentioned main categories in short:

• For the frequentist approach a hypothesis is a proposition (which must be either
true or false), so that the frequentist probability of a hypothesis is either one or
zero. In Bayesian statistics, a probability can be assigned to a hypothesis that can
differ from 0 or 1 if the true value is uncertain.

• In the Bayesian view, a probability is assigned to a hypothesis, whereas under
frequentist inference, a hypothesis is typically tested without being assigned a
probability.

• – The frequentist "school" of statistics restricts itself to making statements of
the form "probability of the data given the hypothesis". The definition of
probability in this context is based on a limit of frequencies of various out-
comes. In that sense it is objective.
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– The Bayesian "school" of statistics allows one to make statements of the form
"probability of the hypothesis given the data", which requires a prior proba-
bility of the hypothesis. Often the definition of probability in this context is
a "degree of belief".

Clearly the probabilities based on such models can never be determined experimen-
tally with perfect precision. The basic tasks of classical statistics are to estimate the
probabilities (assumed to have some definite but unknown values) given a finite amount
of experimental data, and to test to what extent a particular model or theory that
predicts probabilities is compatible with the observed data.
The relative frequency interpretation is straightforward when studying physical laws,

which are assumed to act the same way in repeated experiments. The validity of the
assigned probability values can be experimentally tested. This point of view is appro-
priate, for example, in particle physics, where repeated collisions of particles constitute
repetitions of an experiment, but the concept of relative frequency is more problematic
for unique phenomena (such as the big bang).
As an interpretation, the frequentist method is not in conflict with the mathemati-

cal axiomatization of probability theory, rather, it provides guidance for how to apply
mathematical probability theory to real-world situations. It offers distinct guidance in
the construction and design of practical experiments, especially when contrasted with
the Bayesian interpretation. As to whether this guidance is useful, or is inclined to
misinterpretation, has been a source of controversy. (Particularly when the frequency
interpretation of probability is mistakenly assumed to be the only possible basis for fre-
quentist inference.) The Jeffreys-Lindley paradox shows how different interpretations,
applied to the same data set, can lead to different conclusions about the ’statistical
significance’ of a result.
The beauty of probability theory is, that it is applicable regardless of the interpretation

of probability that is used (i.e., in terms of long-run frequency or degree of belief).
Probability theory provides a solid framework to study random phenomena. It starts by
assuming axioms of probability, and then building the entire theory using mathematical
arguments.

3.2. Probability density function
Any random variable will take a certain values with a certain probability. The function
that controls these probabilities is in general called the probability mass function (pmf)
in the context of discrete random variables (random variables that take values on a
discrete set), while the probability density function (p.d.f.) is used in the context
of continuous random variables (important for this work) as the relative likelihood for
this random variable to take on a given value.
The value of the pdf at a certain value of the random variable will give a point on the

graph of the pdf for that variable. For finding the probability in the continuous case,
one can find that area under the curve of the pdf between two points on the range of the
random variable. In addition to the (pmf and) pdf there is another important concept, or
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function, called the Cumulative Distribution Function (cdf). The cdf (FX(x)) is defined
all over the real line regardless whether the variable is discrete or continuous, and it is
given by

FX(x) = P(X ≤ x) , (50)

where the right-hand side represents the probability that the random variable X takes
on a value less than or equal to x.
On the other hand, the cumulative distribution function describes the probability that

the random variable is no larger than a given value; the probability that the outcome
lies in a given interval can be computed by taking the difference between the values of
the cumulative distribution function at the endpoints of the interval. The cumulative
distribution function is the antiderivative of the probability density function provided
that the latter function exists.
The probability of the random variable falling within a particular range of values

is given by the integral of this variable’s density over that range - that is, it is given
by the area under the density function but above the horizontal axis and between the
lowest and greatest values of the range. The probability density function is nonnegative
everywhere, and its integral over the entire space is equal to one (eq. (55)).
With FX (the cdf) of X, the pdf is:

FX(x) =
x∫

−∞

fX(u) du , (51)

and (if fX is continuous at x)

fX(x) = d

dx
FX(x) . (52)

So to calculate the probability that a continuous r.v. X falls into an interval (a,b) ([a,b),
(a,b], [a,b]) by the definition of CDF and the fundamental theorem of calculus, one has
to integrate the PDF over the appropriate range

P (a < X ≤ b) = F (b)− F (a) =
b∫
a

f(x)dx . (53)

Intuitively, one can think of fX(x)dx as being the probability of X falling within the
infinitesimal interval [x, x+ dx]

probability to observe x in the interval [x, x+ dx] = fX(x)dx . (54)

f(x) is the density of the distribution near a specific value x. In the relative frequency
interpretation, fX(x)dx gives the fraction of times that X is observed in the interval
[x, x + dx] in the limit that the total number of observations is infinitely large. The
p.d.f. f(x) is normalized such that the total probability (probability of some outcome)
is one,
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∫
S

f(x) dx = 1 , (55)

where the region of integration S refers to the entire range of x, i.e. to the entire sample
space.
In fact, F (x) is usually defined as the probability to obtain an outcome less than

or equal to x, and the p.d.f. f(x) is then defined as ∂F/∂x. For the ’well-behaved’
distributions (i.e. F (x) everywhere differentiable) typically encountered in data analysis,
the two approaches are equivalent. (Note that the units of f(x) are [units(X)]−1, so for
example if X is in cm, then f(x) is in cm−1.)
This distinction between parameters (p, later θ or θ) and observables (x or x) is im-

portant, because it directly relates to the function expression of the object: a probability
density function is unit normalized with respect to its observables, but not with respect
to its parameters (eq. (55) can also be written as

∫
S
f(p;x) dx = 1). Observables are

measured quantities, while parameters are degrees of freedom in the model.

3.2.1. Quantile

A useful concept related to the cumulative distribution is the so-called quantile of
order α (or p; or α-point; or p-Quantile Q(p)). The quantile xα (or p) is defined as
the value of the random variable x such that F (xα) = α, with 0 < α < 1. Demonstrative
the quantile is a threshold. That is, the quantile is simply the inverse function of the
cumulative distribution (eq. (51), figure 23)

xα = F−1(α) . (56)

With reference to a continuous and strictly monotonic distribution function, for example
the cumulative distribution function (eq. (51)) FX : R → [0, 1] of a random variable X,
the quantile function Q returns a threshold value x (or xα) below which random draws
from the given c.d.f would fall p percent of the time. In terms of the distribution function
F, the quantile function Q returns the value x such that

FX(x) := Pr(X ≤ x) = p . (57)

The cdf (F (x)) gives the p values as a function of the q values, while the quantile function
Q does the opposite, giving the q values as a function of the p values (Q = F−1).
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Figure 23: The p-quantile, with p ∈ (0, 1), is the value of a r.v., which splits its quantity in
two sections, left of the p-quantile is p (= 100 · p%); on the right-hand side the
remaining 1-p (= 100 · (1− p)%).

3.3. Statistical tests, Hypotheses
A widely used procedure to establish discovery (or exclusion) (or distinguishing events
of interest (signal) from other types (background)) in particle physics is based on a
frequentist significance test using a likelihood ratio as a test statistic. In addition to
parameters of interest (POI) such as the rate of the signal process, the signal and
background models will contain in general nuisance parameters (NUI) whose values are
not taken as known a priori but rather must be fitted from the data.
The goal of a statistical test is to make a statement about how well the observed

data stand in agreement with given predicted probabilities, i.e. a hypothesis. The
hypothesis under consideration is traditionally called the null hypothesis, H0, which
could specify, for example, a probability density f(x) of a random variable x. If the
hypothesis determines f(x) uniquely it is said to be simple; if the form of the p.d.f.
is defined but not the values of at least one free parameter θ, then f(x; θ) is called
a composite hypothesis. In such cases the unknown parameter or parameters are
estimated from the data (see sections 3.4 and 3.5.3).
A statement about the validity ofH0 often involves a comparison with some alternative

hypotheses, H1, H2, . . .. The values could, for example, represent n repeated observations
of the same random variable, or a single observation of a n-dimensional variable. In
order to investigate the measure of agreement between the observed data and a given
hypothesis, one constructs a function of the measured variables called a test statistic
t(x) (or often also denoted as λ(µ) where µ is the POI of θ - see sec. 3.4 and 3.6).
Often one formulates the statement about the compatibility between the data and

the various hypotheses in terms of a decision to accept or reject a given null hypothesis
H0. This is done by defining a critical region for t. Equivalently, one can use its
complement, called the acceptance region. If the value of t actually observed is in the
critical region, one rejects the hypothesis H0; otherwise, H0 is accepted. The critical
region is chosen such that the probability for t to be observed there, under assumption of
the hypothesis H0, is some value α, called the significance level of the test (compare sec.
3.2.1). There is thus a probability of α to reject H0 if H0 is true. This is called an error
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of the first kind. An error of the second kind takes place if the hypothesis H0 is
accepted but the true hypothesis was not H0 but rather some alternative hypothesis Hi.
From here on (and in the further sections) a vector of data x = (x1, . . . , xn) is consid-

ered, from which one would like to construct a one-dimensional test statistic t(x) so as
to distinguish between two simple hypotheses H0 and H1. The best test statistic in the
sense of maximum power for a given significance level (or selection efficiency) is given
by the likelihood ratio (compare with eq. (62) and 71)

t(x) = f(x|H0)
f(x|H1) . (58)

In order to construct this, however, it is necessary to know f(x|H0) and f(x|H1).
The (upper) limit calculated in the analysis of this work (more see sec. 3.6) shall

not be confused with the statistical significance of an observed signal quantified by
means of a p-value or its equivalent Gaussian significance (σ-range). In particle physics
one usually converts the p-value into an equivalent significance, Z, defined such that a
Gaussian distributed variable found Z standard deviations above its mean has an upper-
tail probability equal to p. That is, Z = Φ−1(1−p), where Φ−1 is the quantile (inverse of
the cumulative distribution, eq. (51) and (56) and figure 23) of the standard Gaussian
(see also sec. 3.2.1). It shall be noted, that some authors define this relation using
one-sided and some other a two-sided fluctuation of a Gaussian variable (for example
for two-sided: a 5σ significance corresponding to p = 5.7 · 10−7).

3.4. Parameter estimation
Considering the situation where one has made n measurements of a random variable
x whose p.d.f. f(x) is not known. The central problem of statistics is to infer the
properties of f(x) based on the observations x = x1, . . . , xn. Specifically, one would
like to construct functions of the xi to estimate the various properties of the p.d.f.
f(x). Often one has a hypothesis for the p.d.f. f(x; θ) which depends on an unknown
parameter θ (or parameters θ = (θ1, . . . , θm), containing the POI and the NUI). The
goal is then to construct a function of the observed xi to estimate the parameters.
A function of the observed measurements x1, . . . , xn which contains no unknown pa-

rameters is called a statistic. In particular, a statistic used to estimate some property
of a p.d.f. (e.g. its mean, variance or other parameters) is called an estimator. The
estimator for a quantity θ is usually written with a hat, θ̂, to distinguish it from the true
value θ whose exact value is (and may forever remain) unknown.
If θ̂ converges to θ in the limit of large n, the estimator is said to be consistent. Here

convergence is meant in the sense of probability, i.e. for any ε > 0, one has

lim
nt→∞

P (|θ̂ − θ| > ε) = 0 . (59)

Consistency is usually a minimum requirement for a useful estimator.
The procedure of estimating a parameter’s value given the data x is called parameter

fitting (more in sec. 3.5.3).
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Since an estimator θ̂(x1, . . . , xn) is a function of the measured values, it is itself a
random variable.
When observing a signal, one may see evidence for a special type of signal event, the

number ns of which can be treated as a Poisson variable with mean νs. In addition to the
signal events, however, one will find in general a certain number of background events
nb. Suppose this can also be treated as a Poisson variable with mean νb, which will be
assumed for the moment to be known without error. The total number of events found,
n = ns + nb, is therefore a Poisson variable with mean ν = νs + νb. The probability to
observe n events is thus

f(n; νs, νb) = (νs + νb)n
n! e−(νs+νb) . (60)

More on this see section 3.5.2.
The next task is to give some measure of the statistical uncertainty of the estimates.

If the entire experiment is repeated a large number of times (with n measurements each
time) each experiment would give different estimated values for the parameters. One
way of summarizing how widely spread they will be is with the variance (or standard
deviation) of the estimator. Often the result of a measurement is given as the estimated
value of a parameter (θ̂) plus or minus (±) one standard deviation, or with asymmetric
error (more see sec. 3.5.3). In graphs the error is often displayed as error bar.
The statistical errors (i.e. the standard deviations) are expresses via the inverse of

the covariance matrix V −1.
In the case of a sufficiently large data sample, one can estimate V −1 by evaluating the

second derivative with the measured data and the ML (next sec.) estimates θ̂. This is
the usual method for estimating the covariance matrix when the likelihood function is
maximized numerically. For example, the routines MIGRAD and HESSE in the program
MINUIT (see sec. 3.5.3) [50] determine numerically the matrix of second derivatives
of logL using finite differences, evaluate it at the ML estimates, and invert to find the
covariance matrix. In cases of doubt one should check the results with a Monte Carlo
study.
It turns out in many applications to be too difficult to compute the variances ana-

lytically, and a Monte Carlo study usually involves a significant amount of work. In
such cases one typically uses the Rao-Cramer-Frechet (RCF) inequality, also called the
information inequality, which gives a lower bound on an estimator’s variance. (This
inequality applies to any estimator, not only those constructed from the ML principle.)

3.5. The method of maximum likelihood

Considering a random variable x distributed according to a p.d.f. f(x; θ). Supposing
the functional form of f(x; θ) is known, but the value of at least one parameter θ (or
parameters θ = (θ1, . . . , θm)) are not known. The method of maximum likelihood
(ML) is a technique for estimating the values of the parameters given a finite sample of
data x.
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Under the assumption of the hypothesis f(x; θ), including the value of θ, the proba-
bility for the first measurement to be in the interval [x1, x1 + dx1] is f(x; θ)dx1. Since
the measurements are all assumed to be independent, the probability to have the first
one in [x1, x1 + dx1], the second in [x2, x2 + dx2], and so forth is given by

probability that xi in [xi, xi + dxi] for all i =
n∏
i=1

f(xi; θ)dxi . (61)

If the hypothesized p.d.f. and parameter values are correct, one expects a high prob-
ability for the data that were actually measured. Conversely, a parameter value far
away from the true value should yield a low probability for the measurements obtained.
Since the dxi do not depend on the parameters, the same reasoning also applies to the
following function L

L(θ) =
n∏
i=1

f(xi; θ) , (62)

called the likelihood function. (Note that this is just the joint p.d.f. for the xi,
although it is treated here as a function of the parameter θ. The xi, on the other
hand, are treated as fixed (i.e. the experiment is over).) The likelihood function is the
probability of observing the data as a function of θ. In informal contexts, "likelihood" is
often used as a synonym for "probability." In statistics, a distinction is made depending
on the roles of outcomes vs. parameters. Probability is used before data are available to
describe possible future outcomes given a fixed value for the parameter (or parameter
vector). Likelihood is used after data are available to describe a function of a parameter
(or parameter vector) for a given outcome.
Sometimes the density function for the value x of x for the parameter value θ is written

as f(x|θ), what should not be confused with L(θ|x) which should not be considered a
conditional probability density.
With this motivation one defines the maximum likelihood (ML) estimators for the

parameters to be those which maximize the likelihood function. As long as the likelihood
function is a differentiable function of the parameters θ1, . . . , θm, and the maximum is
not at the boundary of the parameter range, the estimators are given by the solutions
to the equations

∂L

∂θi
= 0 , i = 1, . . . ,m . (63)

If more than one local maximum exists, the highest one is taken. As with other types
of estimators, they are usually written with hats, θ̂ = (θ̂1, . . . , θ̂m), to distinguish them
from the true parameters θi whose exact values remain unknown.
The motivation for the ML principle presented does not necessarily guarantee any

optimal properties for the resulting estimators. The ML method turns out to have
many advantages, among them ease of use and the fact that no binning is necessary.
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3.5.1. The log-likelihood function

Rather than using the likelihood function as defined in equation (62) it is usually more
convenient to use its logarithm. Since the logarithm is a monotonically increasing func-
tion, the parameter value which maximizes L will also maximize logL. The logarithm
has the advantage that the product in L is converted into a sum, and exponentials in f
are converted into simple factors (very useful for example when using the Poisson distri-
bution which contains two terms that can easily overflow on computers). The (natural
logarithm of the likelihood function (62), called) log-likelihood function is thus

logL(θ) =
n∑
i=1

log f(xi; θ) . (64)

As mentioned above, by numerically maximizing the log-likelihood function, one ob-
tains values for θ where the statistical errors are the square roots of the variance. These
have been estimated by computing (numerically) the matrix of second derivatives of the
log-likelihood function with respect to the parameters, and then inverting to obtain the
covariance matrix.
In the large sample limit, the log-likelihood function takes on the form

logL(θ̂) = logLmax (65)

3.5.2. Extended maximum likelihood

As explained in the context of equation (60) it is often the case that the number of
observations n in the sample is itself a Poisson random variable with a mean value ν.
The result of the experiment can be defined as the number n and the n values x1, . . . , xn.
The likelihood function is then the product of the Poisson probability to find n and the
usual likelihood function for the n values of x

L(ν,θ) = νn

n! e
−ν

n∏
i=1

f(xi;θ) = e−ν

n!

n∏
i=1

νf(xi;θ) . (66)

This is called the extended likelihood function. It is really the usual likelihood
function, however, only now with the sample size n defined to be part of the result
of the experiment. One can distinguish between two situations of interest, depending
on whether the Poisson parameter ν is given as a function of θ or is treated as an
independent parameter (the case in this work).
The situation of interest is where there is no functional relation between ν and θ.

Taking the logarithm of eq. (66) and setting the derivative with respect to ν equal to
zero gives the estimator

ν̂ = n , (67)

as one would expect. By setting the derivative of logL(ν,θ) with respect to the θi equal
to zero, one obtains the same estimators θ̂i as in the usual ML case. So the situation is
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essentially the same as before, only now a quantity which depends on both n and θ̂ will
contain an additional source of statistical fluctuation, since n is regarded as a random
variable.

In some problems of this type, however, it can still be helpful to use the extended
likelihood function. Often the p.d.f. of a variable x is the superposition of several
components,

f(x;θ) =
m∑
i=1

ϑifi(x; ξi) , (68)

whereat θ contains the parameters ϑ = (ϑ1, . . . , ϑm) and ξi and the goal is to estimate
the ϑi representing the relative contributions of each component. Suppose that the p.d.f.s
fi(x) are all known (as supposed for the analysis for this work). Here the parameters ϑi
are not all independent, but rather are constrained to sum to unity. The addition rule
above is involved with finding the probability of i or i+1. The emphasis here is on "or",
i.e. when one or the other will occur. Each probability rule is related to some kind of
events. The addition rule is involved with disjoint or if one will occur than the other.

In the usual case without the extended likelihood function, this can be implemented
by replacing one of the coefficients, e.g. ϑm, by 1−∑m−1

i=1 ϑi, so that the p.d.f. contains
only m-1 parameters. One can then construct the likelihood function and from this find
estimators for the ϑi.

The problem can be treated in an equivalent but more symmetric way using the ex-
tended likelihood function (66). Taking the logarithm and dropping terms not depending
on the parameters gives

logL(ν,ϑ,θ) = −ν +
n∑
i=1

log
 m∑
j=1

νϑjfj(xi;θ)
 . (69)

By defining µi = ϑiν as the expected number of events of type i, the log-likelihood
function can be written as a function of the m parameters µ = (µ1, . . . , µm)

logL(µ) = −
m∑
j=1

µj +
n∑
i=1

log
 m∑
j=1

µjfj(xi)
 . (70)

The parameters µ are no longer subject to a constraint, as were the components of
ϑ. The total number of events n is viewed as a sum of independent Poisson variables
with means µi. The estimators µ̂i give directly the estimated mean numbers of events
of the different types. This is of course equivalent to using the ML estimators ϑ̂i for
the fractions along with the estimator ν̂ = n for the single Poisson parameter ν. Now,
however, all of the parameters are treated symmetrically. Furthermore, the parameters
µi are often more closely related to the desired final result.
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3.5.3. Fitting a model to data

For (numerical) convenience and because it is more robust for low statistics fits (and
it can also be performed on unbinned data) the negative log of the likelihood (NLL)
is often used, and in comparison to estimating parameters by maximizing the (log)
Likelihood, it is equivalently minimizing − log(L). The standard tool in High Energy
Physics to perform the minimization and error analysis since decades is MINUIT,
and also RooFit (explained in the next chapter) delegates the minimization task to the
ROOT implementation of MINUIT in the class TMinuit. RooFit is therefore more of a
data modelling package rather than a fitting package.
After creating the − log(L) (NLL) from the pdf and the given dataset it is given to

MINUIT, which minimizes it (with respect to the floating parameters) by computing the
best-fit parameter values and estimate the errors on the parameters of the pdf, including
correlations between the parameters. (As mentioned before the variance is estimated
from 2nd derivative of − log(L) at minimum (Rao-Cramer-Frechet inequality).)
The errors based on the MINUIT error matrix take account of all the parameter cor-

relations, but not the non-linearities. After the error matrix has been calculated the
parameter errors printed by MINUIT are the square roots of the diagonal elements of
the matrix. MINUIT was written by CERN staff physicist Fred James in the 1970s and
in the early 2000s he started a project for a new MINUIT, which is an optional package
(minuit2 ) in the ROOT release. [50]

In the following a very short description of the functionality and some of the most
important routines of MINUIT is given.

• MIGRAD

This routine performs a local function minimization using a modified version of
the Davidson-Fletcher-Powell switching method. It finds the function minimum
via calculating the function gradient, then follow to a (local) minimum, recalculate
the gradient, and iterate until the minimum is found. The number of function
calls required depends greatly on the number of floating parameters, the distance
from the function minimum and the shape of function. For all but the most
trivial scenarios it is not possible to automatically find reasonable starting values
of parameters, so it is necessary to supply "reasonable" starting values for the
parameters, because there may exist multiple (local) minima in the likelihood.
Also one may need to supply a "reasonable" initial step size in parameters.

• HESSE

The HESSE routine calculates the full second-derivative matrix of the user function
using a finite difference method. This is often used to improve upon the result
obtained by MIGRAD. It also gives symmetric error. It is valid in assumption that
the likelihood is locally parabolic and it requires roughly N2 likelihood evaluations
(with N = number of floating parameters).

84



3.6. Wilks’ Theorem

• MINOS
It was (probably) the first program to calculate parameter errors taking into ac-
count both parameter correlatins and non-linearities. The MINOS error intervals
are in general asymmetric, and may be expensive to calculate especially if there
are a lot of free parameters and if the problem is very non-linear. Its error analysis
can result in different errors than obtained using MIGRAD or HESSE methods.
MINOS can only operate after a good minimum has already been found, and the
error matrix has been calculated. So MINOS normally follows MIGRAD (and
HESSE).

Sometimes fits do not converge because, e.g. MIGRAD is unable to find a minimum,
or HESSE finds negative second derivatives (which would imply negative errors). The
most common problems are usually numerical precision and stability problems, but the
underlying cause of fit stability problems is usually by highly correlated parameters in
the fit. To put things right one can try to fix a parameter; if parameters are highly
correlated, fixing one to a reasonable value can help improve the convergence property
of a fit.
Furthermore, if a fitted parameter value is close to a boundary, errors will become

asymmetric (and possible incorrect). For example: a fraction parameter is only defined
in the range [0,1]. MINUIT maps finite range parameter to an internal infinite range
using an arcsin(x) transformation. So one has to be careful with bounds. If boundaries
are imposed to avoid a region of instability, one should look into other parametrizations
that naturally avoid that region. And if boundaries are imposed to avoid "unphysical",
but statistically valid results, one should consider not imposing the limit and dealing
with the "unphysical" interpretation in a later stage. Also a special care should be taken
when fitting small data samples.

3.6. Wilks’ Theorem
This theorem is based on the ratio of likelihoods. As mentioned before (sec. 3.3, and
eq. (58)) a likelihood ratio test is in general a statistical test used to compare the
goodness of fit of two models, one of which (the null model, H0) is a special case of the
other (the alternative model, H1). The test is based on the likelihood ratio (eq. 58 and
(71)), which expresses how many times more likely the data are under one model than
the other. It is often denoted by λ (or λ(θi)) and is defined as

λ = L(H0)
L(H1) , (71)

where the null and alternative hypotheses for convenience are written in terms of fixed
values of a notional parameter θ: H0 : θ = θ0, H1 : θ = θ1. The likelihood ratio is
small if the alternative model is better than the null model and the likelihood ratio test
rejects the null hypothesis if the value of this statistic is too small. How small is too
small depends on the significance level of the test, i.e., on what probability of Type I

85



3. Statistics

error is considered tolerable. Low values of the likelihood ratio mean that the observed
result was less likely to occur under the null hypothesis as compared to the alternative.
High values of the statistic mean that the observed outcome was nearly as likely to occur
under the null hypothesis as the alternative, and the null hypothesis cannot be rejected.
(A likelihood interval can be used without claiming any particular coverage probability;
as such, it differs from confidence intervals.)
This likelihood ratio, or equivalently its logarithm, can then be used to compute a

p-value, or compared to a critical value to decide whether to reject the null model in
favour of the alternative model. When the logarithm of the likelihood ratio is used,
the statistic is known as a log-likelihood ratio statistic, and the probability distribution
of this test statistic, assuming that the null model is true, can be approximated using
Wilks’ theorem.
This is a convenient result, found by Samuel S. Wilks, stating that as the sample

size n approaches ∞, the test statistic −2 log(λ) (eq. (72)) for a nested model will be
asymptotically chi-squared distributed (χ2) with degrees of freedom (df) equal to the
difference in dimensionality of θ0 and θ1, when H0 holds true. [51] This means that
for a great variety of hypotheses, a practitioner can compute the likelihood ratio λ for
the data and compare −2 log(λ) to the χ2 value corresponding to a desired statistical
significance as an approximate statistical test.
That is, in short, each of the two competing models, the null model and the alternative

model, is separately fitted to the data and the log-likelihood recorded. The test statistic
(often denoted by D) is twice the log of the likelihoods ratio, i.e., it is twice the difference
in the log-likelihoods

D = −2 ln(λ) = −2 ln
(
L(H0)
L(H1)

)
= 2 ln

(
L(H1)
L(H0)

)

= 2
[

ln
(
L(H1)

)
− ln

(
L(H0)

) ] (72)

The alternative model (with more parameters) will always fit at least as well - i.e., have
the same or greater log-likelihood - than the model with fewer parameters (here null),
resulting in 0 ≤ λ ≤ 1 (eq. (71)). Whether the fit is significantly better and should
thus be preferred is determined by deriving the probability or p-value of the difference
D. Where the null hypothesis represents a special case of the alternative hypothesis,
the probability distribution of the test statistic is approximately a χ2 distribution with
degrees of freedom equal to dfalt−dfnull ([52]), respectively the number of free parameters
of models alternative and null.
The results of Wilks generalize to more than one parameter of interest. If the POI

can be explicitly identified with a subset of the parameters θr = (θ1, . . . , θr), then the
distribution of −2 lnλ(θr) follows a noncentral χ2 distribution for r-degrees of freedom.
Wilks’ theorem assumes that the true but unknown values of the estimated parameters

are in the interior of the parameter space, but this can be violated for some special
models.
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4. Analysis (Software), discussion and results
With the level of knowledge on likelihoods and p.d.f.s from chapter 3, the model to apply
must be clearly defined (and normalized over the range of interest of the observable) in
order to fit the model to the data, what is explained in 4.1.
After explaining how the data were handled and analysed and the model was fitted

in section 4.2, the calculation of the limit and also the limit on the dark photon mixing
κ (eq. (47)) is explained in section 4.3. Some further technical details are discussed in
section 4.4 as well as a flowchart of the algorithm is given.
To make a statement about the calculated result and its quality, the used algorithm

had to be tested, what was done with Monte Carlo simulations (pseudo data), explained
in 4.5.
To complete this chapter all the results available in figures are presented for clarity in

section 4.6.

4.1. The model
To define the likelihood according to (62) or rather (66) and (68) in order to use it for
the fit, first the pdf has to be defined.
The limit for the Lise data should be given over an specific energy range, what is for

dark photons in relation with mV in [keV/c2]. So the observable, the (continuous r.v.)
x from chapter 3, now belongs to the energy, but for simplicity is still denoted as x
in this chapter. The first step is to choose the interesting range of the data (energy),
because this determines amongst other things which and how many components for the
model are necessary. The upper border was chosen to be 40 keV ("xup" in the following),
because above there are strong astrophysical limits (but already at above ≈ 1 keV other
experiments (for example XENON100 and XENON1T) give limits better to some order
of magnitude). The border on the low side was given by the threshold of the detector
module (see sec. 2.1.1) and was 0.3 keV ("xlow").
In the resulting range the model was chosen to consist of five types of events (fi(x),

with i = 1, 2, 3, 4, 5), i.e. a signal and four background components. What is exactly
meant by "signal" is explained later (sec. 4.3). The signal and three components of
the background are represented with Gauss-peaks (normal distribution), in the follow-
ing denoted as fG, and the remaining background component is a constant (uniform
distribution) fC .
The probability density of the normal distribution is:

fG = f(x | µ, σ) = 1√
2πσ

e−
(x−µ)2

2σ2 , (73)

where µ is the mean (here the position) or expectation of the distribution (and also its
median and mode) and σ is its standard deviation (and σ2 the variance) and are for
clarity later denoted as ξ = (µ, σ) and f(x | µ, σ) = f(x | ξ). fG as represented in (73)
is normalized to unit area for x−∞ < x < x+∞.
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The probability density function of the continuous uniform distribution (often abbre-
viated U(xlow,xup)) is:

fC = f(x) =


1

xup−xlow
for xlow ≤ x ≤ xup ,

0 for x < xlow or x > xup .
(74)

With this form fC is normalized to 1 in the relevant range.

To model the shape of the data also the form of the efficiency of the detector module
has to be taken into account, affecting all five components multiplicative in the pdf.
Multiplicative in the sense of "and" in the meaning of probability. (For CRESST-II a
detailed description of the data acquisition, readout, and the procedures for controlling
detector stability, as well as reconstructing the deposited energy from the measured
pulses can be found in [53] and [54].) The model for the efficiency (ε(x) = ε) is

ε(x | st, amp, τ) =


st ·

(
1− amp · e−x

τ

)
for x ≥ xlow ,

0 for x < xlow
(75)

and was separately fitted to determine its three parameters st, amp and τ . This can be
seen in figure 24.
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Figure 24: Shape and fit (red) (of (75)) of the efficiency of the detector module Lise, with
energy on the x-axis in [keV] and with the threshold of xlow = 0.3 keV.

In comparison with (73) and (74), which are normalized per definition to unit area
within a fixed range (xlow < x < xup, or x−∞ < x < x+∞), the normalization of each
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component of the pdf (eq. (55)) has to be performed extra, because of the multiplication
with the efficiency ε(x). With the equations (73), (74) and (75) the p.d.f. of the model
can be represented as

f(x;θ) =
5∑
i=1

ϑi
ε(x)fi(x; ξi)

xup∫
xlow

ε(x)fi(x; ξi)dx
= ε(x)

5∑
i=1

ϑi
fi(x; ξi)

xup∫
xlow

ε(x)fi(x; ξi)dx
, (76)

whereat the ϑi are not independent but rather have to sum to unity, the (vector) θ
containing all the parameters to be fitted: ϑ = (ϑ1, . . . , ϑ5) and ξi, which are the
parameters of each Gaussian model component (= 0 for fC). The normalization (of
each component) is taken into account in the denominator of eq. (76).
The integrals for normalization of the two different types of components are

xup∫
xlow

ε(x) · fC(x) dx =
xup∫

xlow

st ·
(
1− amp · e−x

τ

)
· Const dx =

= st · Const ·

 xup∫
xlow

dx − amp

xup∫
xlow

e
−x
τ dx

 =

= st · Const︸ ︷︷ ︸
= 1
xup−xlow

·
[
xup − xlow + amp · τ

(
e

−xup
τ − e

−xlow
τ

)]
=

= st ·
[

1 + amp · τ
xup − xlow

(
e

−xup
τ − e

−xlow
τ

)]

(77)

for the constant component, and

xup∫
xlow

ε(x) · fG(x) dx =
xup∫

xlow

st ·
(
1− amp · e

−x
τ

)
· 1√

2πσ
e−

(x−µ)2

2σ2 dx =

= st√
2πσ

 xup∫
xlow

e−
(x−µ)2

2σ2 dx − amp

xup∫
xlow

e
−x
τ e−

(x−µ)2

2σ2 dx

 =

= st

2

[
erf

(
µ− xlow√

2 σ

)
− erf

(
µ− xup√

2 σ

)
−

− amp e
σ2−2µτ

2τ2

(
erf

(
xupτ − µτ + σ2

√
2τσ

)
− erf

(
xlowτ − µτ + σ2

√
2τσ

))]
(78)
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for the Gaussian components, where erf is the Gauss error function.

4.2. Likelihood fit
The model (76) defined in section 4.1 was fitted to data via an unbinned likelihood fit
(explained in the previous chapter), with the data treated as x = (x1, . . . , xn), with
n number of events. Because the number of events (n = nsig + nbkg, with nbkg =
nbkg,1 + nbkg,2 + nbkg,3 + nbkg,4) per component are also parameters to be fitted, the
extended likelihood (section 3.5.2; eq. (66)) had to be used. Each component (ni) is
distributed according to a Poisson distribution and therefore their sum (n) is also Poisson
distributed. With the pdf (76) the extended likelihood can be written as

L(x|ν,θ) = νn

n! e
−ν

n∏
i=1

f(xi;θ) . (79)

Inserting (76) gives

L(x|ν,θ) = νn

n! e
−ν

n∏
i=1

ε(xi)
5∑
j=1

ϑj
fj(xi; ξj)

xup∫
xlow

ε(x)fj(x; ξj)dx
, (80)

with the conditions
∑
k

ϑk = 1 , (81)

and accordingly

ϑk = sk
ν

with
∑
k

sk = ν . (82)

The three Gaussian components of the background were characterised to belong to
specific iron (55Fe) and copper (Cu fluorescence) lines ([45]), and can be seen in the
energy spectrum (after cuts - explained in [44] and [45]) in figure 28 and 29. The
iron background peaks resulted from a accidental illumination of the detector module
Lise with an iron source (installed to calibrate the light detector of a close-by detector
module) and contributed the two peaks Fe-Kα at ≈ 6.0 keV and Fe-Kβ at ≈ 6.6 keV in
the spectrum. The third one originates from the shielding of the detector module with
its peak in the data at: Cu: ≈ 8.1 keV (copper Kα escape line). This three positions
of the peaks are the µ in eq. (73). For the fit the allowed range of values of the µi
had to be restricted, because otherwise the routines (Minuit2, Migrad) could not find
the correct minimum because of possible overlaps or rather distinguishing between the
peaks. Further restrictions were implemented on the ni, the number of events of each
component, to be priori positive (or zero). Also the position (µ in eq. (73)) of the
signal peak had to be fixed, but this is explained in the following section. (In the energy
spectrum there is a peak at 2.7 keV, which probably is due to cosmogenic activation
of tungsten, but is controversial so far, because of missing peaks according to tungsten
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at higher energies an was therefore not included in the background model.) In the
selected, or rather in the energy range from 1.0 to 40 keV an average background level
of 13 counts/(keV kg day) was determined. And if the contribution of the 55Fe-source
is excluded a value of 8.5 counts/(keV kg day) is obtained.

4.3. Limit
To calculate the 90% upper limit for the data measured with the detector module Lise of
CRESST-II Phase 2 (in the defined energy range), Wilks’ theorem (eq. (72)) was used:

t(η) = −2 log λ(η) = −2 log L(η, ˆ̂
θ)

L(η̂, θ̂)
= 2

(
log(L(η̂, θ̂))− log(L(η, ˆ̂

θ))
)

(83)

with η (later denoted "nsig,UL") the parameter of interest (POI). log(L(η̂, θ̂)) is the best fit
result, received from "Minuit2" via minimizing the NLL (see section 3.5.3), with p free
parameters. log(L(η, ˆ̂

θ)) is the best fit result of the same model, but with q = p− 1 free
parameters, because of a fixed value for η.
According to Wilks’ theorem (section 3.6) t(η) shall be χ2 distributed (f(tη|η) =

χ2
k(tη)), with k = p− q = 1 degrees of freedom, because the model with less free param-

eters is a special case of the other one. The "90% upper limit" is the value of nsig,UL for
which the c.d.f. of χ2

1(tη) is 0.9 (F (tη) = 0.9 = α; as explained in sec. 3.2.1). As can
be obtained from standard tables or from computer routines, the 90%-Quantile of a χ2

distribution with one dof is tη,90 = 2.705543.

The procedure is similar to a "peak search". So for every single position (energy value)
at which the limit should be calculated the "signal" position (µ of its Gauss peak (73))
had to be fixed. For the signal peak also its parameter σ was fixed to σsig = 0.062 keV
and resulted in the resolution of the detector (energy resolution at zero energy - baseline
noise). The limit was chosen to be calculated at 200 positions (energy values) in the
range 0.3 keV to ≈ 5 keV and ≈ 9 keV to 40 keV. The range in between (≈ 5 keV to
≈ 9 keV) was spared because of the three mentioned background peaks lying in this
range.
So to find the value of nsig,UL for one position a root-finder ("BrentRootFinder") had

been used, which had to solve the previous equation (83) rewritten to

log(L(η, ˆ̂
θ))︸ ︷︷ ︸

findη

+

χ2−Quantile︷︸︸︷
tη,90

2 − log(L(η̂, θ̂))︸ ︷︷ ︸
best fit

p free parameters

= 0 (84)

Here again for the root-finder good initial values were necessary.

To obtain the correct values for the limit, the exposure (Expo = mass · time) had
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to be taken into account, which was for the Lise module: Expo = 51.128377 kg days.
Also the effect of the detector efficiency (eq. (75)) had to be corrected, what was done
by calculating:

nsig,UL
X

=

xup∫
xlow

ε(x)fG(x)dx
xup∫

xlow

fG(x)dx
︸ ︷︷ ︸

=1

, (85)

and

⇒ X = nsig,UL
xup∫
xlow

ε(x)fG(x)dx
. (86)

So the final frequentist 90% upper limit for the Lise data (can be seen in figure 30) was
calculated via

limit = nsig,UL

Expo ·
xup∫
xlow

ε(x)fG(x)dx
, (87)

with nsig,UL the values from the root-finder.

A flow-chart of the algorithm explained in words in this section can be seen in fig-
ure 25 (and an explanation of the applied cuts is given at the end of section 4.4).

The limit converted with eq. (47) to the dark photon mixing κ (or κ(mV )) can be
seen in figure 31 (compared with a limit calculated with a Bayesian approach), or ad-
ditional with astrophysical constraints explained in section 1.8.5 as well as limits from
other experiments (XENON) can be seen in figure 32. It can be seen, that the re-
sult from the frequentist approach is in good agreement with the one from
a Bayesian approach. For eq. (47) an isothermal dark matter halo with (a galactic
escape velocity of 544 km/s, an asymptotic velocity of 220 km/s and) a dark matter
density of 0.3 GeV/cm−3 was assumed. The annual modulation effect is neglected.

For the photon cross section σγ in eq. (47) data from NIST ([55]) and from VUO
(Virtual Unified Office, [56]) were combined. Because the data from NIST reach down
to 1 keV, but the threshold of Lise is 0.3 keV, data from VUO were added and the final
cross section for CaWO4 can be seen in figure 33. In figure 32 the cyan graph for the
Bayesian limit was calculated via a linear interpolation of the data from NIST to energies
below 1 keV. In comparison to this, the pink graph was calculated with the combined
cross section (NIST and VUO) and yielded a better result.
(For figure 32, a Flat prior in the context of Bayesian inference: Simply put, a flat/non-
informative prior is used when one has little/no knowledge about the data and hence
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it has the least effect on outcomes of the analysis (i.e. posterior inference). Roughly
speaking, a prior distribution is noninformative if the prior is "flat" relative to the likeli-
hood function. Thus, a prior is noninformative if it has minimal impact on the posterior
distribution. Other names for the noninformative prior are vague, diffuse, and flat prior.
Many statisticians favour noninformative priors because they appear to be more ob-
jective. However, it is unrealistic to expect that noninformative priors represent total
ignorance about the parameter of interest.)

4.4. Algorithm
The algorithm was written in C++ and processed via ROOT. ROOT is a modular scien-
tific software framework which provides functionalities to deal with big data processing,
statistical analysis, visualisation and storage. It is an object-oriented program and li-
brary developed by CERN. It was originally designed for particle physics data analysis
and is mainly written in C++ (but integrated with other languages such as Python and
R).
At first some attempts were done using RooFit/RooStats. RooFit is a complete

toolkit for fitting and data analysis modelling. The RooFit library provides a toolkit
for modelling the expected distribution of events in a physics analysis, whereat models
can be used to perform unbinned maximum likelihood fits, produce plots, and generate
"toy Monte Carlo" samples for various studies. The software was primarily designed as
a particle physics data analysis tool, but its general nature and open architecture make
it useful for other types of data analysis also. It introduces a granular structure in its
mapping of mathematical data model components to C++ objects.
RooStats is a joint project between the LHC experiments and the ROOT team and

is a project to create statistical tools built on top of RooFit and distributed in ROOT.
The idea was to provide the major statistical techniques as a set of C++ classes with
coherent interfaces, so that can be used on arbitrary models and datasets in a common
way.
RooFit/RooStats would have had the great advantage of a broad flexibility to test

different models and a few analysis techniques. But after several attempts with the
root build-in toolkits, problems with the special model of this work (and more complex
background models) had been ascertained due to the dependence of the efficiency (75)
and sadly could not be eliminated because for a lack of documentation.

The data for this work were given in the form of ROOT-files, with several trees,
whereof one were the energy events measured with the Lise detector (see sec. 2.1.1).

At the beginning of the algorithm two cuts (see fig. 25) were applied on the energy
events. One necessary to select the range (0.3 to 40 keV) and the other cut depended
on the light yield (which was also given in a tree). In the letter cut, it was checked, if
the light yield of an event lies inside the central 90% two-sided interval around a mean
value which also decreases at the lower energies.
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A "two dimensional" fit, incorporating the light yield (LY), would have been of no ad-
vantage to the limit for κ (had been ascertained via a previous Bayesian approach), but
rather bring new challenges and problems to the fit (additional L(LY|θ′)) and also to
the root finder. A detailed explanation on the relation (selection process, cuts, etc.)
between the acceptance region in the light yield - energy plane and the energy spectrum
given in figure 28 and 29 used for this work can be found in [44] and [45] (there marked
as yellow area).

A flowchart of the algorithm of the calculation of the limit is given in figure 25.

Figure 25: This figure shows the flow-chart of the algorithm to calculate the limit of the Lise
data.
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4.5. Test-Software
Wilks’ theorem states that the true but unknown values of the estimated parameters
are in the interior of the parameter space. This can be violated in, for example, random
or mixed effects models when one of the variance components is negligible relative to
the others. In some such cases, one variance component is essentially zero relative to
the others or the models are not properly nested. Therefore the true distribution of this
likelihood ratio statistic could be substantially different from the naive χ2.
Although the result from the frequentist approach is in good agreement with the one

from a Bayesian approach (compare in figure 31 and 32), to make a statement about the
calculated result and its quality, the used algorithm had to be tested, what was done
with Monte Carlo simulations (pseudo data).
The first step was to create pseudo data ("toy Monte Carlo" data) distributed according

to the data measured with the Lise detector module. Therefore each of the 5 components
of the model were produced via a poisson process. An example of the lise data, the
pseudo data and a fit to the pseudo data is shown in figure 28 (for a signal peak at the
low edge of the spectrum) and zoomed in to see the background peaks in figure 29.
The data were created with the signal peak at a fixed position and a specific value for

its peak height. Then the limit was calculated with the same procedure as in sec. 4.4
(and 4.3). This was done in a loop of 1000 to 30000 times (runs) for each peak position.
A flowchart of the algorithm to control the calculation of the limit is given in figure 26.
If the method to calculate the limit was totally correct, then in 90% of the runs the
calculated limit values (per position) should be above the adjusted value for the signal
peak.
At first it was assumed, that this method could possibly fail for energies below 1 keV

because of the decreasing behaviour due to the efficiency and be correct above 1 keV. But
for all tested positions (below and above 1 keV) the test software worked and resulted
not in an 90%, but in a ≈ 94% (93% - 95%) limit.

Because of this also pseudo data created with several other models were checked: just
1 Gauss peak, Gauss ·ε, Gauss + Const and (Gauss + Const) ·ε and all gave a similar
result of ≈ 94%.

Due to the results from all of this tested models and positions, the used method for
calculating a 90% upper limit can be said to be on the side of conservatism.
One direct cause for this can not be determined, but there are several possible reasons:

• the precision of the routines (MINUIT2, MIGRAD) in calculating the parameter
estimates and their variances;

• the difference in magnitude of the different components;

• the precision of the root finder

• Wilks’ theorem could be on the edge of asymptotic due to the restriction of some
parameters, especially for the POI nsig to be positive.
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Figure 26: This figure shows the flow-chart of the algorithm to check the calculation of the
limit of the Lise data.

Therefore in the next section the attempt to proof, if the distribution of t(η) (eq. (83))
follows a χ2 distribution, as stated by Wilks’ theorem, is explained.
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4.5.1. Testing the t(η)- vs. χ2
1- distribution

To check the distribution of the t-values in the used method events were created (in a
Poisson process; pseudo data) to form just one Gauss peak. A flowchart of the algorithm
to produce the t distribution is given in figure 27.
Two attempts were carried out. At first a Gauss peak containing 10 events and second

containing 1000 events, was created. Both attempts were carried out in 100000 runs.
The result for both of them with the method explained in the previous chapter was
again ≈ 94%. For the Gauss peak with 10 events 896907 (of the 100000, 89.6907%)
calculated t values were below the χ2

1-90%-quantile (2.705543). For the Gauss peak with
1000 events 89.907% were < 2.705543.

The t distribution for 10 events in the peak, compared with a χ2 distribution with
1 dof, can be seen in figure 34. The same figure, but zoomed in, with an other binning
and also drawn the 90% quantiles of both distributions can be seen in figure 35. The t
distribution for 1000 events in the peak compared with a χ2

1 distribution and both their
90% quantiles can be seen in figure 36. For both attempts a distribution resembling a
χ2

1 distribution can be determined.

Further it can be seen, that the value of the quantile for the Gauss peak with 1000
events is closer to the quantile of the χ2

1 distribution then in the case with 10 events in
the peak. This could be one sign for the asymptotic accuracy of high event rates.

Finally it shall be noted, that this procedure was a simplified approach and easy in
computation (because of just one component in the model, what not even demands and
extended pdf) for an estimation of the behaviour of the method in order to invest not too
much time. Using a more complex model by adding more components (not to mention
the model of this work) would require more time, much more power of computing, an
optimization of the algorithm in runtime and simplifying the calculation steps, but could
proof the asymptotic correctness of the used procedure.

97



4. Analysis (Software), discussion and results

Figure 27: This figure shows the flow-chart of the algorithm to the t distribution of the algo-
rithm.
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4.6. Results
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Figure 28: This figure shows the correlation between pseudo data and the data from Lise, a
fit to the pseudo data with the signal peak fixed at a value in the low energy region
and the decline at low energies caused due to the detector efficiency (eq. (75)).
Also the Fe-Kα (at ≈ 6.0 keV), Fe-Kβ (at ≈ 6.6 keV) and the Cu (at ≈ 8.1 keV)
peaks can be seen. On the y-axis are the counts per keV. Although an unbinned
fit was performed, for the visualization the intern binning of Root should be kept
in mind.
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Figure 29: This figure serves to compare the height of the three background peaks - Fe-Kα (at
≈ 6.0 keV), Fe-Kβ (at ≈ 6.6 keV) and the Cu (at ≈ 8.1 keV). On the y-axis are the
counts per keV. Although an unbinned fit was performed, for the visualization the
intern binning of Root should be kept in mind.
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Figure 30: This figure shows the frequentist 90% upper limit for the Lise data on the y-axis, in
units per kg days (compare eq. (87)). On the x-axis is the energy in [keV], with the
200 positions (energy values) at which the limit was calculated. The region from
≈ 5 keV to ≈ 9 keV was spared because of the three background peaks lying in this
range (Fe-Kα (at ≈ 6.0 keV), Fe-Kβ (at ≈ 6.6 keV) and the Cu (at ≈ 8.1 keV)).
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Figure 31: This figure shows the frequentist 90% upper limit on the dark photon kinetic mixing
κ (eq. (47)) for the Lise data on the y-axis, over the dark photon mass mV on the
x-axis compared with a result obtained with a Bayesian approach. The region from
≈ 5 keV to ≈ 9 keV was spared because of the three background peaks lying in this
range (Fe-Kα (at ≈ 6.0 keV), Fe-Kβ (at ≈ 6.6 keV) and the Cu (at ≈ 8.1 keV)).
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Figure 32: This figure shows the frequentist 90% upper limit on the dark photon kinetic mixing
κ (eq. (47)) for the Lise data on the y-axis, over the dark photon massmV on the x-
axis, compared with a result obtained with a Bayesian approach. Additional limits
obtained with other experiments (XENON) as well as astrophysical constraints
from [40] are shown. The region from ≈ 5 keV to ≈ 9 keV was spared because of
the three background peaks lying in this range (Fe-Kα (at ≈ 6.0 keV), Fe-Kβ (at
≈ 6.6 keV) and the Cu (at ≈ 8.1 keV)).
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Figure 33: This figure shows the photon cross section (σγ) used for the calculation of the dark
photon kinetic mixing κ via eq. (47) for CaWO4 used in the detector module Lise.
For the cross section data from NIST (red, [55]) and from VUO (yellow, [56]) were
combined.
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Figure 34: This figure shows the t distribution of the used procedure to calculate the limit for
a model of one Gauss peak with 10 events, evaluated with 100.000 runs compared
with a χ2 distribution with 1 dof.
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Figure 35: This figure shows the t distribution of the used procedure to calculate the limit for
a model of one Gauss peak with 10 events, evaluated with 100.000 runs compared
with a χ2 distribution with 1 dof. It is the same as fig. 34 but zoomed in and given
the 90% quantiles for both distributions. For clarity 20 bins were chosen.
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Figure 36: This figure shows the t distribution of the used procedure to calculate the limit for
a model of one Gauss peak with 1000 events, evaluated with 100.000 runs compared
with a χ2 distribution with 1 dof and for both distributions the 90% quantiles.
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A.1. Redshift and Doppler Effect
The distinction between redshift and blueshift is simply a matter of whether z is posi-
tive or negative. Some redshifts are an example of the Doppler effect. A redshift occurs
whenever a light source moves away from an observer. Another kind of redshift is cos-
mological redshift, which is due to the expansion of the universe, and sufficiently distant
light sources (generally more than a few million light years away) show redshift cor-
responding to the rate of increase in their distance from Earth. Finally, gravitational
redshift is a relativistic effect observed in electromagnetic radiation moving out of grav-
itational fields. Conversely, a decrease in wavelength is called blueshift and is generally
seen when a light-emitting object moves toward an observer or when electromagnetic
radiation moves into a gravitational field.

A.2. Distance Measurement
Here just a short list and brief explanations are given on how the distance (from earth)
to objects in the universe can be measured.

A.2.1. Stellar Parallax

With parallax one can measure the distances to nearby stars. It is 1/2 angle through
which a star’s position shifts as earth orbits the sun (actually this only works in deter-
mining stellar distances for nearby stars). (The nearest stars are f.e. Alpha Centauri
complex (triple-star system) with Proxima Centauri at 1.3 pc (4.3 ly) and Barnard’s
Star at 1.8 pc (6.0 ly).) Since stellar parallax fails beyond ≈ 100 parsecs, other methods
are necessary.

A.2.2. Standard Candle

If it is known how bright something really is (known as Luminosity or Absolute Bright-
ness) then from how bright it appears (Apparent Brightness) it can be determined how
far away it is. This follows simply from the inverse square law, see eq. (1). Super-
novae measuring distances to other galaxies. For the biggest distances the Redshift and
Hubble’s Law are used to measure distances to such objects.

A.2.3. Pulsating Variable Stars

This is a standard candle, which allows us to measure distances out to about 25 mil-
lion parsecs (25 Mpc), distances in our Galaxy and to nearby galaxies. Examples are R
R Lyrae variables (used to determine distances to globular clusters and size of the Milky
Way and that Andromeda is outside the Milky Way), and Cepheid variables.
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The pulsation period of each of these stars depends on luminosity. Therefore, a mea-
surement of the pulsation period immediately tells the star’s luminosity, its apparent
brightness can be seen and from the inverse square law, the distance can be determined.

A.3. Cosmology
Astronomy and cosmology became the oldest sciences pursued by mankind. In this
modern era, astronomy and cosmology are completely embedded into the framework
of physics. The experimental science of astronomy refined its methods and techniques
which allowed the ever improving exploration of the Universe. Since the invention of the
telescopes, astronomers were able to investigate the Universe to ever increasing ranges.
The last century saw the advent of several new messengers observable by astronomers,
apart from the visible light, observations throughout the electromagnetic spectrum be-
came possible. Also high energetic particles known as cosmic rays widened the window
through which the Universe became observable.
Cosmology is the study of the universe as a whole, including its origin, structure,

and evolution. The theoretical framework of Standard model of cosmology can be
viewed as the sum of: General relativity + cosmological principle + FLRW metric (an
expanding universe) + Friedmann equation. The following subsections will give a brief
explanation to this components.

A.3.1. General Relativity

General relativity is the description of the large scales of the universe (gravity). Modern
scientific cosmology is usually considered to have begun in 1917 with Albert Einstein’s
publication of his final modification of general relativity in the paper "Cosmological
Considerations of the General Theory of Relativity". The Einstein field equations (EFE)
(first published by A. Einstein in 1915 as a tensor equation) may be written in the form:

Rµν −
1
2Rgµν︸ ︷︷ ︸

≡Gµν

+Λgµν = 8πG
c4 Tµν , (88)

where Rµν is the Ricci curvature tensor, R is the scalar curvature, gµν is the metric
tensor, Λ is the cosmological constant, G is Newton’s gravitational constant, c is the
speed of light in vacuum, and Tµν is the stress-energy tensor. Gµν is the Einstein tensor,
a specific divergence-free combination of the Ricci tensor and the metric, where Gµν is
symmetric. The relationship between the metric tensor and the Einstein tensor allows
the EFE to be written as a set of non-linear partial differential equations (i.e. a system
of 10 coupled, nonlinear, hyperbolic-elliptic partial differential equations). The EFE
obeying local energy-momentum conservation (since Λ is constant, the energy conserva-
tion law is unaffected). The left side of eq. (88) represents the curvature of spacetime
as determined by the metric; the expression on the right represents the matter/energy
content of spacetime. The EFE can then be interpreted as a set of equations dictating

108



A.3. Cosmology

how matter/energy determines the curvature of spacetime. (Note: for sufficiently large
Λ a spherical Universe may also expand forever.)

A.3.2. FLRW Metric

The metric of an expanding Universe can be described in short as follows. The Friedmann-
Lemaître-Robertson-Walker (FLRW) metric is an exact solution of Einstein’s field equa-
tions of general relativity. It is proven that the FLRW metric is the only one on a
spacetime that is spatially homogeneous and isotropic (this is a geometric result and
is not tied specifically to the equations of general relativity). The quantities dxµ being
regarded as the components of an infinitesimal coordinate displacement four-vector, the
metric (gµν) determines the invariant square of an infinitesimal line element, often re-
ferred to as an interval. Starting with a flat (static) space with the interval often denoted
as

ds2 = gµνdx
µdxν . (89)

The interval ds2 (ds the space-time interval) imparts information about the causal struc-
ture of spacetime. xµ are local coordinates, where µ is an index which runs from 0 to 3
(the factors dxµ are one-form gradients of the scalar coordinate fields xµ). Coming from
spherical coordinates:

ds2 = dt2 − (dr2 + r2dθ2 + r2 sin2 θdφ2) (90)

and adding the "scale factor" R(t) (sometimes denoted as a, and ȧ for the expansion rate
of the universe) containing all of the time dependence for an expanding space delivers:

ds2 = dt2 − R(t)2 · (dr2 + r2dθ2 + r2 sin2 θdφ2) . (91)

And finally the constant k representing the curvature of the space needs to be added:

ds2 = dt2 − R(t)2 ·
(

dr2

1− kr2 + r2dθ2 + r2 sin2 θdφ2
)
. (92)

where k is the curvature = -1, 0 or 1 for an open, flat or closed Universe (k> 0:
spherical geometry; k< 0: hyperbolic geometry). Then r is unitless and a(t) has units
of length. When k = ±1, a(t) is the radius of curvature of the space, and may also be
written R(t). In this case, the Einstein equations lead to the Friedmann equation (see
eq. (31)) which governs the expansion of the Universe (with ρ is the energy density).

A.3.3. Friedmann Equation

The solution of Einstein’s field equations for general relativity, assuming homogeneous
and isotropic distribution of matter and radiation behaving like a perfect, frictionless
fluid, describes the evolution of the Universe. This solution for the temporal development
of the Universe was first found by Alexander Friedmann (introducing ρ the average
density).
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For the special case of non-relativistic matter it can be understood with simple New-
tonian mechanics: a point mass m is accelerated by gravity at the surface of a sphere of
radius R, density ρ, mass M = 4πR3ρ

3 :

H2
0 = v2

R2︸︷︷︸
kinetic
energy

= 8πG
3 ρ︸ ︷︷ ︸

- potential
energy

− k

R2︸ ︷︷ ︸
total
energy

. (93)

A.4. Milky Way
This section provides briefly some facts about the nowadays state of knowledge about
the Milky Way (MW).
In infrared, or far-infrared the structure of a disk and a bulge starts to be revealed,

and with modern instrumentation and techniques it is now known, that the MW is a
spiral galaxy (compare with fig. 39, 38 and 37) and consists of:

• the Galactic Bulge - which is composed of old stars (population II) and young
stars (population I) shaped like a football (about half as wide as long);

• the Galactic Disk - consists old stars (population II) and young stars (population
I), gas, and dust and appears in the shape Spiral arms;

• the Galactic Halo - has a spherical shape, includes globular clusters, which contain
only old stars (population II) and has a radius of about 65000 light years, whereat
it contains neither gas nor dust;

• the Dark Halo - with a radius of 200000 or 300000 light years contains 80%-95%
of the mass of the galaxy (dark matter)

Figure 37 is a representation of the Milky Way and its dark matter halo. The Galactic
disk is surrounded by a spheroidal halo of old stars and globular clusters, of which 90%
lie within 100000 light-years (30 kpc) of the Galactic Center. It results from analysed
data from a survey of stars called SEGUE (Sloan Extension for Galactic Understanding
and Exploration), which is part of a larger project called the Sloan Digital Sky Survey
(SDSS) that uses a 2.5-metre telescope in New Mexico. The stars in the sample ranged
from about 13000 to nearly 200000 light years from the galactic centre. The Sun is about
25000 light years from the centre. [57]

A halo can be defined as an overdensity (> 200 kpc) with respect to background (and
also defines the virial radius), whereas a sub-halo is a self-bound object within the viral
radius of a halo.

The distance from the Earth (or our solar system) to the galactic nucleus is about
30000 light years and the total mass of the Milky Way can be estimated to 1012 ·M�.
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Figure 37: Illustration: Axel Quetz/Max Planck Institute for Astrophysics-Heidelberg/SDSS-
II Collaboration that measured the velocities of nearly 2500 stars suggests that the
true mass is just under 1 trillion Suns. [57], [58]

The Milky Way has formed as it is through Evolution. The first stars were formed
in a very large region of space, with matter spread out in irregular patterns. The first
stars (population II) formed more than 10 billion years ago, and collapsed into globular
clusters. Huge region of clouds of primordial gas and early stars collapsed into large
cloud of matter. The galaxy continued to Evolve, as the slowly spinning cloud collapsed
into the disk and the dense core. Leaving behind stars formed early as a halo.
The disk rich in gas and dust formed, from which the Sun (and our solar system)

emerged about 5 billion years ago.
The interstellar medium is the matter that exists in the space between the star systems

in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as
dust and cosmic rays and consists of 90% hydrogen, 1% dust, 9-10% helium.
Stars near the galactic Center are found to be in orbits consistent with those expected

when orbiting a mass of about 4 million solar masses. Many Astronomers nowadays
believe a supermassive black hole is the only explanation for the data. This shall be a
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Figure 38: Representation of the Milky Way and some of its characteristics. [57], [59]

region of space in which matter has collapsed to the point where nothing can escape - not
even light! Many astronomers believe the mass equivalent to ≈ 4 ·106 suns has collapsed
to the center of the MW. It is called Sagittarius A*. Supermassive black holes are
now generally accepted to be at the centres of most spiral and elliptical galaxies.

Figure 39: Hubble tuning fork diagram. Categorisation of Galaxies. [60]
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A.5. Galaxy Clusters

Nearly 50 galaxies populate the local neighbourhood of the Milky Way. These major
astronomical objects within about 1 Mpc of the Milky Way Galaxy are bound together by
their combined gravity. Such a group of galaxies is called a galaxy cluster. Our cluster
is called the Local Group. The composition of the Local Group (nearly 50 galaxies)
consists of 3 spirals (the Milky Way, Andromeda (M31), and M33), irregulars (like
the Large Magellanic Cloud and Small Magellanic Cloud), dwarf irregulars or dwarf
ellipticals (M32 is a dwarf elliptical near Andromeda (M31)).

The Local Cluster is a galaxy "poor" cluster, what means that there are a relatively
small number of galaxies in the Local Group compared to rich clusters (such as Virgo
and Coma with thousands of galaxies).

On very large scales the galaxies are not distributed randomly. The huge spaces
between galaxy clusters are called the voids. Intergalactic space is the physical space be-
tween galaxies. Surrounding and stretching between galaxies, there is a rarefied plasma
that is organized in a galactic filamentary structure. This material is called the inter-
galactic medium (IGM). "Bubbles" of galaxies surround these unpopulated regions.

Galaxies in clusters often collide, for example the Cartwheel galaxy (where a smaller
galaxy has collided with larger one), NGC 2207 and IC 2163 (two spiral galaxies which
have swung past each other), or the antennae. These encounters have substantial ef-
fects on galaxies, whereby stars glide past one another, with essential no effect on the
individual stars, while tidal forces cause bursts of new star formation with major effects
on the galaxies themselves. The Andromeda galaxy is approaching the Milky Way at
120 km/s, and will collide in a few billion years.

Galaxy clusters are themselves clustered into superclusters like the Virgo Supercluster
- a 3 dimensional visualization can be seen in fig. 40. The Great Wall is one of the
largest known structures in the universe and measures ≈ 200 Mpc in width. In a new
way of defining superclusters from 2014 according to the relative velocities of galaxies the
local supercluster subsumes the prior defined local supercluster, the Virgo Supercluster,
now an appendage of the Laniakea Supercluster, which is the galaxy supercluster
that is home to the Milky Way and 100,000 other nearby galaxies. [61] It stretched out
over 160 megaparsecs (520 million light-years). Superclusters are some of the universe’s
largest structures and have boundaries that are difficult to define, especially from the
inside. Within a given supercluster, most galaxy motions will be directed inward, toward
the center of mass, what in the case of Laniakea is called the Great Attractor, and
influences the motions of the Local Group of galaxies and all others throughout the
supercluster. Unlike its constituent clusters, Laniakea is not gravitationally bound and
is projected to be torn apart by dark energy. Also Laniakea is shown to be heading in
the direction of the Shapley Supercluster, so both Shapley and Laniakea may be part of
a even greater complex.
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Figure 40: Virgo Supercluster in 3D. [62]

A.6. Gas in the Universe
At the beginning of the hunt for dark matter there also were considerations if the gas
within galactic clusters (Intracluster Gas) could explain much of the dark matter. It
would be only faintly visible, but over large volumes could it add up enough to explain
dark matter?
There are several places were gas resides:

• Interstellar medium (between stars within a galaxy) - about 1 atom per cubic cm

• Intergalactic medium (between galaxies within the cluster - intracluster) - about
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10−6 atoms
cm3 , or about 1 atom per cubic meter

• Intercluster medium (between galactic clusters) - very little matter

Observations from hot gas came from X-ray emission of Abell 85, a distant galaxy
cluster, where gas extends into the space between galaxies, but revealed, that it does
not add up sufficiently to solve the missing matter problem (need dark matter). Further
evidence of gas external to galaxies came from radio lobes of radio galaxies. These
head-tail radio galaxy show what appears to result from galaxies travelling through
intergalactic medium. The amount of mass required to bind this gas to the clusters (see
the Virgo Cluster) greatly exceeds the total visible mass of the galaxies (more evidence
of dark matter).
There is no evidence for such gas beyond the clusters, in the "extracluster" spaces.

There is a lot of intracluster gas but it doesn’t come close to accounting for the
dark matter.

A.7. Horizontal Branch
The horizontal branch (HB) is a stage of stellar evolution that immediately follows the
red giant branch in stars whose masses are similar to the Sun’s. Horizontal-branch stars
are powered by helium fusion in the core (via the triple-alpha process) and by hydrogen
fusion (via the CNO cycle) in a shell surrounding the core, compare fig. 17. The onset
of core helium fusion at the tip of the red giant branch causes substantial changes in
stellar structure, resulting in an overall reduction in luminosity, some contraction of the
stellar envelope, and the surface reaching higher temperatures.

A.8. Vectors, scalars, and spinors
Mathematically it may look as though all of the fields are vector-valued (in addition
to being operator-valued), since they all have several components, can be multiplied by
matrices, etc., but physicists assign a more specific physical meaning to the word: a
vector is something which transforms like a four-vector under Lorentz transformations,
and a scalar is something which is invariant under Lorentz transformations. The B, Wj,
and Ga fields are all vectors in this sense, so the corresponding particles are said to be
vector bosons. The Higgs field φ is a scalar.
The fermion field ψ does transform under Lorentz transformations, but not like a

vector should; rotations will only turn it by half the angle a proper vector should.
Therefore, these constitute a third kind of quantity, which is known as a spinor.
It is common to make use of abstract index notation for the vector fields, in which

case the vector fields all come with a Lorentzian index µ, like so: Bµ,W µ
j , and Gµ

a . If
abstract index notation is used also for spinors then these will carry a spinorial index
and the Dirac gamma will carry one Lorentzian and two spinorian indices, but it is more
common to regard spinors as column matrices and the Dirac gamma γµ as a matrix
which additionally carries a Lorentzian index.
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A.9. The Lagrangian
Lagrangian field theory applies to continua and fields, which have an infinite number of
degrees of freedom. The time integral of the Lagrangian is called the action denoted by
S. The Lagrangian mechanics formalism was generalized further to handle field theory,
whereat the independent variable is replaced by an event in spacetime (x, y, z, t), or
more generally still by a point s on a manifold. The dependent variables (q) are replaced
by the value of a field at that point in spacetime ϕ(x, y, z, t) so that the equations of
motion are obtained by means of an action principle, written as:

δS
δϕi

= 0 . (94)

The time integral of the Lagrangian L is the action

S =
∫
L dt . (95)

In field theory, a distinction is occasionally made between the Lagrangian L and the
Lagrangian density L, whereat the Lagrangian as a function of generalized coordinates
is replaced by a Lagrangian density, a function of the fields in the system and their
derivatives, and possibly the space and time coordinates themselves. In field theory,
the independent variable t is replaced by an event in spacetime (x, y, z, t) or still more
generally by a point s on a manifold. So, simplified, the spatial volume integral of the
Lagrangian density is the Lagrangian, in 3 dimensions

L =
∫
L d3x . (96)

Often, a "Lagrangian density" is simply referred to as a "Lagrangian". This density must
be integrated over all spacetime to get the action, where the action, S is a functional of
the dependent variables ϕi(s) with their derivatives and s itself

S[ϕ] =
∫
L(ϕ,∇ϕ, ∂ϕ/∂t,x, t) d3x dt . (97)

Quantum field theories in particle physics, are usually described in terms of L, and the
terms in this form of the Lagrangian translate quickly to the rules used in evaluating
Feynman diagrams.
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