
Detecting "Getting up" Behavior
of a Person From a Bed

using Neural Network and Depth Data

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Ali Amini Raoofpour, B.Sc.
Matrikelnummer 01227507

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Privatdoz. Dipl.-Ing. Dr.techn. Martin Kampel
Mitwirkung: Projektass. Dipl.-Ing. Dipl.-Ing. Thomas Heitzinger

Wien, 16. November 2020
Ali Amini Raoofpour Martin Kampel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Detecting "Getting up" Behavior
of a Person From a Bed

using Neural Network and Depth Data

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Ali Amini Raoofpour, B.Sc.
Registration Number 01227507

to the Faculty of Informatics

at the TU Wien

Advisor: Privatdoz. Dipl.-Ing. Dr.techn. Martin Kampel
Assistance: Projektass. Dipl.-Ing. Dipl.-Ing. Thomas Heitzinger

Vienna, 16th November, 2020
Ali Amini Raoofpour Martin Kampel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der
Arbeit

Ali Amini Raoofpour, B.Sc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 16. November 2020
Ali Amini Raoofpour

v





Danksagung

Ich möchte meinem Betreuer, Martin Kampel, für seine Unterstützung danken. Ein großes
Dankeschön auch an Christopher Pramerdorfer für seine Anleitung und Zeit sowie an die
Firma Cogvis 1, die mir Hardware für die Tiefenkamera und Rohdaten zur Verfügung
stellte. Ich möchte mich ganz herzlich bei meiner Partnerin Lena bedanken, die mich
selbstlos unterstützte und mir in schwierigen Zeiten zur Seite stand. Zu guter Letzt
möchte ich auch meinen Eltern, Mehdi und Mahnaz, danken, die mir immer den Rücken
stärken und meine akademische Karriere ermöglicht haben. Danke euch allen.

1https://www.cogvis.at/ (visited on 04.11.2020)

vii

https://www.cogvis.at/




Acknowledgements

I thank my supervisor, Martin Kampel for his support. Also a big thank you to
Christopher Pramerdorfer for his guidance and time and to the Cogvis2 company who
provided me with depth camera hardware and raw data. I would like to express my
deepest gratitude toward my beloved partner Lena who selflessly supported me and
stood by me through difficult times. Last but not least, I thank my parents, Mehdi and
Mahnaz, who always have my back and enabled my academic career. Thank you all.

2https://www.cogvis.at/ (visited on 04.11.2020)

ix

https://www.cogvis.at/




Kurzfassung

Die Erkennung und Analyse menschlicher Aktivitäten ist ein Bereich der Computervision,
in dem menschliche Bewegungen anhand von Kameras und/oder Sensoren erfasst und
ausgewertet werden. Der Einsatz von Tiefensensoren in intelligenten Systemen in privaten
Bereichen wie individuellen Haushalten oder Krankenhäusern nimmt aufgrund ihrer nicht-
invasiven Natur stetig zu. Neben der Wahrung der Privatsphäre haben Tiefensensoren den
Vorteil, dass sie kostengünstig sind und auch im Dunkeln genügend Informationen über
den menschlichen Körper für verschiedene Anwendungen der Verhaltensanalyse erfassen.
Der Aufbau intelligenter Systeme zur Verhaltensanalyse mithilfe von Tiefendaten bringt
Herausforderungen wie Okklusion, Datenmangel und den im Vergleich zu RGB-Kameras
kleinen Erfassungsbereich mit sich. Die Erkennung von Aufstehverhalten aus einem
Bett mithilfe von Tiefensensoren ist ein Beispiel der Verhaltensanalyse in alltäglichen
Situationen, die von diesen Herausforderungen betroffen sind. In der vorliegenden Arbeit
beschreiben wir die Möglichkeit, das Aufstehverhalten aus einem Bett anhand verschiede-
ner Deep-Learning-Modelle und Tiefendaten zu erfassen. Dies soll als Konzeptnachweis
dienen, dass Systeme, die auf Tiefensensoren basieren, mit Hilfe von Deep Learning
entwickelt werden können, um die oben genannten Hindernisse zu überwinden.

Da zu diesem Zeitpunkt kein ähnlicher Datensatz mit Tiefenbildern zur Erkennung
des Aufstehverhaltens öffentlich verfügbar war, wurden die erforderlichen Daten selbst
gesammelt, verarbeitet und kategorisiert, um so als ersten Schritt einen Datensatz zu
erstellen. Anschließend wurden mithilfe eines Convolutional Neural Networks aufgaben-
abhängige Features aus Tiefendaten extrahiert, um die Analyse der Daten mithilfe von
zwei unabhängigen Anwendungen durchzuführen: Klassifizierung und Objekterkennung.
Anstatt das Netzwerk von Grund auf zu trainieren, haben wir das vortrainierte neuronale
Netzwerk ResNet verwendet, um bereits vorhandenes Wissen von ResNet auf unser
Modell zu übertragen und dadurch Probleme im Zusammenhang mit Datenmangel zu
überwinden. Sowohl die angewendeten Klassifizierungs- als auch Objekterkennungsmetho-
den konnten das Aufstehverhalten zuverlässig erkennen. Unsere Ergebnisse zeigen, dass
die Verwendung von vortrainierten Netzwerken den Hauptbeitrag zum Training leistet,
obwohl das hierfür verwendete Netzwerk ursprünglich mit RGB-Daten trainiert wurde.
Darüber hinaus demonstrieren unsere Ergebnisse, dass Transfer-Learning Techniken die
Größe aufgabenspezifischer Daten reduzieren. Diese Ergebnisse zeigen, dass Convolutio-
nal Neural Network in der Lage sind, aufgabenabhängige Features aus Tiefendaten zu
extrahieren, die bei der Entwicklung intelligenter Systeme verwendet werden können.
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Abstract

A rapid increase in the development and integration of modern technology into society
enables the modeling of human behavior in contact with new technologies. Detecting
human activities is one of the areas of computer vision through which it detects and
analyzes human movement behavior from data gathered through cameras and/or sensors.
The application of depth-sensors in intelligent systems in privacy-sensitive areas such
as homes or hospitals is steadily increasing, due to their non-invasive nature. Apart
from preserving privacy, depth-sensors have the advantage of low cost and being able to
operate in the dark, while still capturing enough information about the human body for
various human behavior modeling applications. Building intelligent systems to be used
in modeling human behavior based on depth data brings challenges such as occlusion,
lack of data, and the shorter range of capture in comparison to RGB cameras. Detecting
getting up behavior from a bed using depth-sensors represents one example of modeling
human activity in real-life settings, which is affected by these challenges. We describe
the possibility of detecting getting up behavior from a bed using different deep learning
models and depth data as a proof of concept, that systems based on depth-sensors
can indeed be developed with the help of deep learning to overcome the above-stated
obstacles.

Because no similar dataset containing depth images for detecting getting up behavior was
publicly available at the time of writing, all required data was gathered, preprocessed,
and labeled to create a dataset as the first step. Then, a state-of-the-art convolutional
neural network architecture was used to extract high-level task-dependent features from
depth data to investigate the possibility of using them in two applications: classification
and object detection. Instead of training the network from the ground up, we used the
pretrained convolutional network ResNet to transfer knowledge of what the network
has learned to overcome the problems associated with the lack of large data. Both
classification and object detection methods were able to reliably detect getting up
behavior. Our results show that using pretrained networks is the key contributor in
training, despite the fact that the pretrained networks used here were initially trained
on RGB data. Furthermore, our results show that transfer learning techniques reduce
the size of task-specific data. These results also demonstrate that convolutional neural
networks are capable of extracting high-level task-dependent features from depth data
which can be utilized in developing ambient intelligent systems.
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CHAPTER 1
Introduction

1.1 Motivation
Humans are diverse in their abilities and knowledge. How a person behaves in any
given situation varies based on psychology, sociology, or anthropology factors. Behavioral
science, the combined study of these factors, investigates human actions and how decisions
are made in real-world situations.1 Particularly, it addresses the effect of human emotions,
environment, human biology, and social elements on the decision making progress[2].
Analyzing and describing human behavior contribute to understanding human actions,
detecting behavior patterns based on human actions, and providing assistance in dealing
with them.

The rapidly increasing development and integration of computers and modern technology
into society demands the study of human behavior in contact with new technologies [82].
One aspect of human and computer intersection is human behavior modeling in computer
science. Modeling is a tool for achieving these objectives with three distinguishable
purposes: simulation, prediction, and inference. Simulation models mimic real-world
behavior whereas prediction models try to detect behavior with a certain probability.
Inference models on the other hand aim to predict certain behavior as well as define the
reason behind it [119]. Human behavior is modeled at the level of an individual because
human behavior in a society can be modeled with statistics without any representation
of individuals. Furthermore, because groups are modeled as if they were individuals,
behavioral science at the level of an individual can also be applied to groups. [43].

Human behavior modeling in computer science (from now on we omit computer science)
focuses on automatically recognizing human activities with the help of sensors and
analyzing them. Human activities can be divided into categories of gestures, atomic

1https://www.merriam-webster.com/dictionary/behavioral%20science (visited on
20.09.2020)
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1. Introduction

actions, human-to-object or human-to-human interactions, group action, behaviors, and
events[112]. Therefore, human behavior modeling aims to inquire and build systems that
can provide services in various domains based on the complexity of the human action.
Examples for human behavior modeling applications include predicting user behavior on
Facebook [6], simulating (mental) health conditions for insurance companies [101, 65],
human narrative modeling [81] and modeling human behavior in air combat simulations
[118] .

Computer vision is a field of study that tries to address, how a computer can obtain
a high-level of understanding from digital images or a sequence of digital images [8].
Detecting human activities is one of the areas of computer vision where it automatically
detects and analyzes human movement behavior from gathered data from sources such as
cameras or sensors [3]. Data for analyzing and modeling human behavior is classified into
sensor-based and vision-based data which can be further classified into either wearable
or non-wearable form [14]. Sensor-based devices are non-intrusive but provide only
one-dimensional signal data. They cannot perform when the subject is out of bounds (in
wearable sensor-based devices, this indicates that the subject is not wearing the sensor)
[51] or an action performed by the subject is unidentified [13]. Vision-based devices are
intrusive and are able to capture 2D or 3D data, images and videos [71].

There are commercial systems available in market that are based on four combinations
of these categories: first, wearable sensor-based systems such as detecting fall based
on a wearable sensor-based device [76], capturing individual and group behavior with
a wearable sensor-based device named sociometer [78], and detecting natural disasters
based on smartphone sensors [32]. Second, wearable vision-based systems such as Gait
disorder rehabilitation based on wearable vision-based devices [4]. Third, non-wearable
sensor-based systems such as recognizing human activity with the help of WIFI signals
[29]. Fourth, non-wearable vision-based systems such as hospital bed video surveillance
[46].

Non-wearable vision-based systems have gained a majority of interest in research and
marketplace in the present time due to lower cost and complexity in terms of set-up and
use [4, 71]. Furthermore, the advancement of machine learning, especially deep neural
networks in computer vision, has given computers the ability to solve computer vision
tasks comparable to human level [62]. However, there are drawbacks limiting the use of
non-wearable vision-based systems such as occlusion of objects inside the frame of view,
limited point of view, and lighting conditions [50, 71].

Human behavior modeling in non-wearable vision-based systems can be subdivided based
on the data type, which includes two types of Red Green Blue (RGB) data [121] and
depth data [85, 84]. Both RGB data and depth data are considered a form of data that
are based on RGB images and depth images respectively, such as video or 2D/3D images.
An RGB image is a digital image constructed from three matrices that have the same
size (known as three-channel images), where each matrix represents one of three colors:

2



1.1. Motivation

red, green, or blue. Each pixel in an RGB image is a combination of these three colors2.
A depth image is a single-channel image (one matrix). Each element in this matrix is a
pixel in the image which represents how far away an object is located from the camera
lens in millimeters.3 Systems that use machine learning and utilize RGB and depth data
types are known as ambient intelligent systems. They are being used in various domains,
such as video surveillance [63], object detection in public areas [115, 72], healthcare [4, 33]
and fall detection [84, 48]. Human behavior detection systems trained based on Red
Green Blue-Depth (RGB-D) data (both RGB and depth data) have shown to achieve
higher accuracy in comparison to systems trained based on RGB alone, because depth
data provides extra distance information [114]. However, it is not always possible to use
both data types because in contrast to conventional RGB cameras, depth sensors are not
widely available.

Due to the flexibility and feasibility of connecting devices to the internet, the advancement
of artificial intelligence, mass data gathering and remotely controlling systems, humanity
is facing new challenges in the 21st century[83]. These challenges include rapid advances
in integration of computers into everyday life and increased application of neural networks.
The rapid advancements and increased application spark distrust in accepting intelligent
systems that can potentially harm or reveal private information. Hence, using RGB
cameras in places where privacy can be violated such as personal homes or hospitals are
problematic, because RGB images are intrusive and can capture personal information.
Consequently, systems that are built upon using RGB data for human behavior modeling
are considered unacceptable in privacy-sensitive settings [33]. One way to avoid these
issues is to use depth images. The number of human behavior modeling systems that
use depth images is increasing, because depth images preserve privacy and can operate
without light. Depth sensors have proven to capture sufficient information about the
human body in their field of view for human behavior modeling purposes [70] and produce
better quality for 3D depth data than single-lens cameras [113]. Hence, reasons arguing
in favor of using depth-sensor vision-based devices in privacy-sensitive areas include: to
preserve privacy, decrease costs, and operate in darkness while still capturing sufficient
information about human actions in a monitored environment.

While depth images are suitable for privacy-sensitive ambient intelligent systems, they
bring challenges such as occlusion, lack of data, or shorter range of capture in comparison
to RGB cameras, all of which need to be dealt with appropriately [42]. Depth images
capture the shape of an object from its point of view with infrared light which makes the
device sensitive to sunlight. Therefore, they are more suitable for indoor use where direct
sunlight can be avoided. Furthermore, occlusion of an object with a human or interaction
of a human with indoor objects adds complication to modeling human behavior based
on depth images. Beds or sofas are common objects inside a home, and the interaction
of a person with a bed while sleeping or lying while the person uses a blanket can be

2https://www.mathworks.com/help/matlab/creating_plots/image-types.html (vis-
ited on 07.10.2020)

3https://en.wikipedia.org/wiki/Depth_map (visited on 07.10.2020)
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1. Introduction

challenging for ambient intelligent systems. Getting up behavior is a human activity that
involves a person to interact with a bed or sofa where the person is frequently occluded
with a blanket. Detecting getting up brings all of these challenges together for modeling
human behavior. In addition, it can be directly used as an extension in ambient detection
systems such as fall detection where lying on a bed can be misclassified with falling since
the person is in a horizontal position, or in hospital when a person in a Intensive Care
Unit (ICU) is not supposed to move from a bed.

In this thesis project, we show that it is possible to detect getting up behavior with
deep learning and depth images. This can be viewed as a proof of concept that ambient
intelligent systems based on non-wearable depth-sensors can be developed to model
human behavior with deep learning techniques in order to overcome the above mentioned
obstacles. The problem can be formally described as follows:

Problem Definition:
Input: A depth image x and set of class labels w that describe getting up behavior
Question: Which function can be used to map a depth image to a class label f : x →

w?

Common datasets such as [60, 17] contain tens of thousands of RGB images carefully
annotated by humans. Such diverse and large datasets are not available for every problem.
A large quantity of labeled data for problems in specific domains is often unavailable
and too expensive to generate. This is problematic in deep learning applications because
deep learning methods are data-oriented methods that need a large dataset for training
[106]. Training based on a small amount of data can cause bias in the outcome of the
trained model [94]. However, studies show that the training process and performance
benefits from using pretrained neural networks that have been trained on a large general
dataset [88, 80, 124, 79]. Hence, in order to address the need of large data for solving
the task of detecting getting up behavior with depth images, we purpose to transfer the
knowledge of a neural network model that has been trained on a large common dataset
to the network that tackles the getting up behavior in order to improve the performance
of the model. In machine learning, this technique is referred to as transfer learning [80].

1.2 State of the Art
Interaction and occlusion of humans with indoor objects like beds or sofas pose a challenge
for ambient intelligent systems detecting human behavior. For instance, a person lying
down on a bed is easily mistaken as a person falling to the ground by fall detection
systems. Detecting getting up behavior from a bed with the help of a depth camera and
neural network is a unique problem, because at the time of writing, there is no public
record of such a system available with limited research published on this topic. However,
state-of-the-art methods can be described and compared by considering characteristics of
using a depth camera, neural network and transfer learning techniques to analyze similar
real-life situations.

4



1.2. State of the Art

For example, Grimm et al. used a depth camera mounted in front of a hospital bed to
classify four sleep positions (empty, left, right, supine) [28]. This system uses Bed Aligned
Map (BAM) [45] to extract a low-resolution map from a depth map that is aligned to the
bed position and then performs classification using Convolutional Neural Network (CNN).
BAM uses depth images to localize the bed and estimate its surface. Then it divides
the surface into 5 cm x 5 cm cells, each of which calculates the average height over the
mattress and then feeds the encoded 2D cell-structure into CNN. This system achieves
94% accuracy and thereby outperforms non-spatially aware classifiers like Support Vector
Machines or simple Multilayer Perceptrons. [28]. The data for this system was gathered
during six months with 78 patients recorded over 94 nights (roughly 600 hours) which
adds up to 65 millions images. Not all the images were used since manually labeling
this amount of data is too time-consuming if at all possible. Hence, Grimm et al’s work
proves that gathering and preparing large amounts of depth data for training a neural
network from the bottom up is possible, but expensive and time-consuming.

In a different approach, Mithun et al tackled the problem of availability of depth data by
using transfer learning techniques in detecting objects inside buildings and offices with
depth images to preserve the privacy of people passing by the depth camera. Mithun
et al used a fixed point of view for mounting the camera at the top of an entry or exit
point in a room on the ceiling, to minimize occlusion of humans with other objects. The
authors introduced an object detector network called (Object Detector using a Depth
Sensor (ODDS) in which they used raw depth images to detect various objects such as
a backpack, laptop, cup, etc. with the help of embedded GPUs [72] in real-time. The
object detection network used was built upon the popular state-of-the-art method Single
Shot Detector (SSD) [61] in which Visual Geometry Group (VGG)-16 [102] was utilized
as the pretrained CNN backbone. Afterward, the network was trained with the help
of curriculum learning and model pruning on three-channel depth images. Each of the
depth images is a single-channel depth image, where the same single-channel image is
copied over other channels to make a three-channel image. An overview of the approach
by Mithun et al is depicted in Figure 1.1. This approach indicates that a real-time system
for detecting daily objects was achieved by using only depth data with less powerful
GPUs.

With the ODDS network, Mithun et al demonstrated the possibility of detecting objects
with depth images while using a pretrained network to improve the accuracy of network
and speed during the training procedure [72]. Thereby, they show the effectiveness of
transferring knowledge from networks trained on RGB images to a network working with
depth images. Gupta et al used the same idea and proposed a technique for transferring
knowledge of what is learned from different formats of images, best described in their own
words: "We use learned representations from a large labeled modality as a supervisory
signal for training representations for a new unlabeled paired modality" [31]. Figure 1.2
demonstrate the idea behind this method. This approach has advantages concerning
both image types, RGB and depth images. It shows that transferring what the network
learned between different types of images leads to a better performance [31]. However, this

5



1. Introduction

Figure 1.1: An overview of how ODDS works. In the middle of the figure, the VGG-16 used
as CNN backbone to extract features at each level of the convolution and outputs them
in a feature pyramid where each layer was used to detect objects in different sizes. The
bigger the layer, the smaller its receptive field. On top of the feature pyramid layer, the
initial detection was applied in order to detect the objects inside the convolutional layers
and at last, a non-maximum suppression layer was used to combine similar detections for
the same object into one final detection [72].

approach adds complications to training, because choosing a suitable layer for transferring
the semantic is crucial for the network for it to be able to learn discriminating features.
Also, different image modalities of the same point of view is necessary which requires
multiple camera systems at the same spot.

Figure 1.2: The figure demonstrates training a CNN network for new depth images
by back propagating the semantic (loss) of what the network has learned from labeled
RGB-images for the same paired up images [31].

The two publications mentioned above demonstrate the effectiveness of transfer learning
techniques to increase performance and accuracy in comparison to using networks trained
without transfer learning, when depth data is concerned. This advantage, along with low
cost and preservation of privacy, make depth sensors favorable for ambient intelligent
systems in privacy-sensitive areas. Nevertheless, it is possible to avoid using transfer
learning techniques and utilize a simpler form of data (based on depth data) for modeling

6



1.3. Aims

getting up behavior. Manzi et al used human skeleton joints extracted from kinect sensors
in a simple Mulit-Layer Perceptron (MLP) to detect standing, lying, and sitting positions
on a sofa and to detect falls [69]. In this case, the network detects the position with an
accuracy of over 97 % in real-time. However, the authors made pre-assumptions about
the camera position which helped in detecting positions and occurrence of a fall that
may not be applicable in real-life situations. Furthermore, the test subject in this study
was not occluded with blankets or similar objects. The camera was fixed in front of the
sofa which gives the network the advantage of having less noise in the data. The authors
used extracted joint data instead of depth images which increases the inference speed
but makes the network reliant on the correctness of the extracted joint data.

In another approach, Zhao et al introduced a novel method for fall detection from a
bed in real-time by characterizing human behavior via detection of the human head and
upper body using random forest [123]. They solved the binary classification problem
of falling by using a large margin nearest neighbor classification approach instead of a
Neural Network (NN) which gives the advantage of real-time performance without any
GPUs by detecting 21 frames per second. However, upper body detection with random
forest suffers from noise present in the depth data and a person on the bed covered with
a blanket increases errors in detection.

While the above described state-of-the-art techniques provide tools to facilitate the use
of depth images in ambient intelligent systems, there is a need for further investigation
of an end-to-end network that takes a depth image (without any pre-/post-processing)
and analyzes human posture in interaction or occlusion with indoor objects. There also
is a need for investigation whether the network is capable of not only recognizing the
human action but also localizing it inside the depth image.

1.3 Aims
The main goal of this thesis is to provide a proof of concept for detecting a human action,
in this case getting up behavior, based on depth data with the help of deep learning.
This overall goal can be divided into three different aims:

Aim 1: To train a neural network that is able to detect getting up behavior of a person
from a bed with or without a blanket by taking a single depth image regardless of the
angle of movement, provided the whole area of interest is inside the field of view.

Aim 2: To examine the feasibility of detecting getting up behavior with two distinct
machine learning applications, namely classification and object detection.

Aim 3: To exploit the effectiveness of using transfer learning techniques in order to
facilitate data gathering, training, and assessing model performance.

Detecting getting up behavior of a person from a bed with or without a blanket represents
an example for detection of human behavior in interaction with indoor objects, with
(blanket) or without (no blanket) occlusion. The main challenge lies within a trade-off

7



1. Introduction

between the size and diversity of collected data and engineering a NN architecture.
Therefore, the questions addressed in this thesis further include the following:

• Does transfer learning affect the size of gathered data?

• Is it possible to achieve the goal without transfer learning techniques?

• To what extent does the NN architecture affect the outcome?

1.4 Contribution
The contribution of this work is: 1) to gather diverse data, because there are no datasets
publicly available for the purpose of detecting getting up behavior, 2) to engineer an
End-to-End NN architecture to learn from gathered data in order to detect when a
person gets up from a bed or sofa and, consequently, 3) to provide an indication of
human behavior modeling based on depth data for ambient intelligent systems. Getting
up behavior is detected with two approaches: classification, where each depth image is
assigned to a class label, and object detection within the depth image in which the person
and the bed are located. Each prediction is solely based on a single frame of depth image
without any prior information about either the previous or next frames. Moreover, this
thesis analyzes aspects of using a pretrained network on RGB images as a starting point
for training a network on depth images.

1.5 Structure
The thesis is structured as follows. In chapter two, a theoretical approach to tackling
the defined problem 1.1 is discussed, starting with goal definition and followed by how
to achieve and evaluate the goal theoretically. Then, notion and theoretical definitions
of the tools that are needed for achieving the goal are presented. In chapter three, the
exact implementation of the solution is discussed, along with the presentation of exact
methods for gathering and augmenting data. Moreover, the hardware specifications used
for obtaining the examination result along with software requirements are presented. The
results of training and evaluation of implemented methods are discussed in chapter four,
with a focus on exploiting the effect of utilizing transfer learning techniques. The final
chapter contains a conclusion and suggestions for future steps.

8



CHAPTER 2
Theoretical Background

To solve the defined problem 1.1, the computer needs to gain a high-level understanding
of getting up motion from depth data. The use of depth images suggests that the problem
lies within the field of computer vision. A depth camera set captures consecutive depth
images from its field of view. Each image is a single-channel matrix where each element
represents a pixel, its value being the distance between the object and the camera in
millimeters. By considering that getting up from a bed contains a finite number of class
labels, such as lying and standing, it is possible to reformulate the problem to assign a
class label to each depth image. This is the definition of the classification task [21].

2.1 Theoretical analysis and historical background
Classification methods can be implemented in three different learning approaches:
supervised[49, 108], unsupervised[16, 52] or semi-supervised[126]. Supervised learning is
an approach where the data for training is labeled by humans whereas in unsupervised
learning the data is not labeled at all. Semi-supervised is the combination of these two:
the data is partly labeled and partly remains untouched[74].

Scientific Question 2.1:
Input: Set of single-channel depth images x and set of class labels c.
Question: Which learning approach, supervised, unsupervised, or semi-supervised, is

suitable for assigning a class label from c to each element in x ?

The unsupervised learning approach is not suitable for this problem, because it mainly
focuses on explanatory analysis from (big) data without any label for which the aim
is to understand the underlying structure of the data. After all, the underlying struc-
ture/information in the data has not been cleared by humans. However, with the help of
deep learning, new methods have been developed in unsupervised learning in order to
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2. Theoretical Background

reach or pass the result in a supervised learning approach [98]. Furthermore, there are
methods that specifically use unlabeled data for training in the classification task. For
example, Quoc V. Le et al built high-level features from a large unlabeled face dataset
that detects and classifies faces[53]. Dosovitskiy et al. used discriminative unsupervised
feature learning to train a network for classification with only unlabeled data [16]. De-
spite the fact that these methods were able to successfully use unsupervised learning in
classification, they still were not able to outperform classification with labeled data [16].

The semi-supervised learning approach is used for building a model in presence of both,
labeled and unlabeled data. Semi-supervised learning can be categorized into two slightly
different settings: transductive learning and inductive learning [126]. In transductive
learning, the concern is to predict an unlabeled example based on a model that is trained
on labeled and unlabeled data. It cannot handle new or unseen examples. In inductive
learning the goal is to build a model based on both, labeled and unlabeled data, to predict
unseen examples such as the state-of-the-art model built by Xiaohua et al that used only
10% of the labels in the Imagenet Large-Scale Visual Recognition Challenge (ILSVRC)-
2012 dataset to build a classification model by image rotation and visual representation
learning [122]. the inductive learning is considered a traditional approach where the goal
is to achieve a generic model that detects future unseen data. In other words, the goal of
semi-supervised learning is to use the unlabeled data for automatically labeling a dataset
or to build a model for more complex data representation where the manual labeling
process is not possible or too expensive. None of these points are valid in detecting getting
up behavior because depth cameras are inexpensive and can be used to systematically
collect and label data. Furthermore, one of the aspects of the defined problem is to
examine the effectiveness of transferring knowledge from pre-existing models instead of
training a neural network from a large quantity of data. Hence, because unsupervised and
semi-supervised approaches are not suitable, classical supervised learning is considered
as the main approach for tackling the problem. Supervised learning currently is the
main research field of machine learning and numerous state-of-the-art methods and
architectures in deep learning have been developed [5].

Scientific Question 2.2:
Input: A single-channel depth image x and set of predefined labels w
Question: How to determine a suitable method in classification with supervised

learning that can assign a label from set w to the image x?

A feature in machine learning is a distinct quality that is measurable and can be used
to distinguish between class labels in classification tasks [11]. Choosing an informative
feature is key to build an effective classifier. For instance, in this problem, recognizing
a human body and posture is considered an informative and discriminative feature.
However, such features are considered task-specific and high-level, because they are built
on top lower-level features such as detecting edges or blobs in an image. These lower-level
features are built on top of even lower-level feature until it reaches the color pixels of the
image. Therefore, in order to assign a label to an image, a method should be able to
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extract high-level features from an image and utilize them to distinguish between the
class labels. High-level features are unique to each problem and they are task-specific.
In other words, a method is considered suitable for detecting getting up behavior, if
there is a parametric model f (w = f(x : θ)) that maps each image of a dataset to a
class label in which the parameters θ of the model are set automatically by a training
process that was able to extract task-specific high-level features from the data. Deep
learning models with different architectures have shown that they are able to learn such
features. They are known to learn non-linearity and high complex features and consist of
multiple processing layers that can learn a representation of data with multiple levels
of abstraction[5]. Nevertheless, they are considered to be a black box, because their
understanding of data cannot be interpreted by humans at present.

The concept of deep learning has been around since the 1960s and the early idea of
supervised learning in the neural network, which essentially is a variant of linear regression
methods, goes back to the early 1800s [99]. Throughout the last century, neural networks
have been developed but never became the main focus due to the high demand for data
and computational power. However, one of the neural network milestones happened in
1989 when Lecun et al used a learning technique called backpropagation to learn the
neural network parameters from hand-written images [56]. Lecun et al approach was
based on the work of Rumelhart et al from 1986, who introduced backpropagation of
errors as a learning representation for neural networks [96]. The excitement about deep
learning was sparked by Hinton in 2006 [36] who produced a novel deep network called
Deep Belief network (DBN). This led to a wave of rapid development in deep learning
techniques in different fields such as computer vision. More detailed information on the
background can be found in [55, 62, 37]. The flexibility in NN architecture has made
it possible to have a variety of solutions depending on the data and the problems such
as Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) that are
suitable for the problems where the order or sequences of data is important like Natural
Language Processing (NLP) [27].

One of the successful architecture in classification is called Convolutional Neural Network
(CNN). It is a neural network model that uses a mathematical operation called Convolu-
tion [27]. Neural network models based on this architecture have achieved performance
results comparable to humans[22]. This indicates that CNNs can extract high-level
task-dependent understanding from data. Therefore, using CNN in classification is a
suitable architecture for detection of getting up behavior. Using CNN is not the only way
to tackle this problem. One may argue that RNN or LSTM could be more suitable for
this task since they focus on sequence/order and getting up from a bed occurs throughout
a sequence of frames. However, both of these approaches are computationally more
expensive than CNN because they cannot be parallelized and each input of a network
requires the previous output [27]. Furthermore, even though getting up behavior occurs
in a sequence of events, a human being can easily detect the behavior by only looking at
one frame without any knowledge about the previous or following frames. Therefore, it
is necessary to investigate how to model human behavior without any information about
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the sequence of its occurrence.

A CNN is a black box function that is able to extract high-level features. To investigate
its outcome, we expand the goal to use the extracted features from the CNN to not
only detect getting up behavior inside an image but also to localize the bed and the
person inside the image. These two approaches are referred to as "classification" and
"object detection". Furthermore, the effectiveness of transfer learning techniques in both
approaches is analyzed.

2.2 Architectures of methods
An artificial neural network is a directed graph where each node in the graph represents a
linear or non-linear function and each edge defines the data flow between the nodes[27]. In
other words, a neural network is a function that is composed of other functions (neurons).
If the connections between the nodes do not form a cycle, the information or data only
flows in one direction and never goes backward. Such a network is called a Feed-Forward
(FF) neural network. A FF network has an input and output where the input nodes take
data like a vector or an image and pass it to the next nodes. This continues until the
data flow to the last nodes or the desired output is reached. The nodes or neurons can be
grouped by their distance from the input. A group of these neurons/functions is called
a layer. the architecture of a network is a construction of different arrangements and
connections between the neurons and layers along with the mathematical characteristics
of each neuron.

Each neuron is a parametric function that has one or more inputs and one output. It is
formally defined as follows:

n(W, b; X) = f(
i

wi ∗ xi + b) (2.1)

where X ∈ {x1, x2, ...} and W ∈ {w1, w2, ...}
Each neuron has three parameters of weights (w), bias (b), and activation function (f)
beside its input that comes from the previous layer or the input data. Weight is associated
with the input and determines the importance of the input, bias is the threshold for the
neuron and activation function defines the output of the neuron[77]. A neuron takes every
incoming data (x), multiples it by its weights (w) and sums them together. Afterward,
the sum is added to the bias of the neuron and pass it through the activation function to
produce the output of the neuron. One reason to use activation function as the output
of a neuron is to add non-linearity to the model so that the network is able to learn
multi-dimensional, complex data [15].

In classification, the output of the network is a vector of the size of class labels where its
values represent a probability distribution for all the labels. The vector indicates how
probable it is for the image to belong to each of the labels. This is achieved by a function

12



2.2. Architectures of methods

called softmax. It takes a vector of discrete values (output of the network) and produces
the same size vector so that the sum over all of its elements is equal to 1. Softmax has two
advantages: First, it emphasizes the largest value and suppresses the small ones. Second,
it is not scale-invariant [27, 11]. Since softmax outputs all values between 0 and 1, the
values can be interpreted as probabilities. The output of an object detection method is
the output of classification along with the exact position of a boundary box that shows
the location of the objects inside the image. Each of these methods uses the notion
of CNN and constructs a neural network model that fulfills the required functionality.
Each of these components, along with state-of-the-art architectures, is described in the
following subsections.

2.2.1 Convolutional Neural Network

CNNs are a form of FF networks that utilize a mathematical convolution. In mathematics,
convolution is a mathematical procedure that takes two functions and constructs a new
function which describes how one of the two functions is modified by the other one. In
CNN terminology, the first argument is the input, the second argument is the kernel and
the output is the combination of these two which is a single neuron that is referred to
as feature maps[27]. The convolution and its receptive field are demonstrated in Figure
2.1. A convolution layer has two advantages: Firstly, using kernel makes it possible
to look at a region of neurons instead of the entire previous layer. This is beneficial
because spatially close pixels are highly correlated and correspond to the same object.
Furthermore, going deeper by increasing the layers in the convolution layer, the receptive
field increases. Secondly, using the same kernel to scan the input reduces the number
of parameters. Each edge or data flow in a network has a parameter that needs to be
set by the training process. If in a simple FF network, where every neuron in a layer is
connected to all the neurons in the next layer (Such a network is called MLP), then the
complexity of the computed functions (neurons) in the network increases exponentially
as the network becomes deeper [86]. Hence, in CNN, by using and sharing a kernel,
only the neurons close to each other are connected which reduces the total number of
parameters in a network and consequently, makes it possible to have a deeper network.

Each layer executes a various number of convolutions and then applies an activation
function on top to decide if a neuron should get activated or not. This is a replica of
how neuronal signal transmission in the human brain works. An activation function
can be linear or non-linear depending on the purpose of the network. However, a linear
neural network can only model linear data. Therefore, they have a lack of capacity. On
the other hand, non-linear activation functions can increase the capacity of the network
and introduce non-linearity into the network. Furthermore, activation functions play
an important role in training because in order to train a NN with backpropagation,
the algorithms calculate the derivative of each function in the network. The derivative
of neurons and convolutional layers with a linear function is constant. However, the
derivative for non-linear functions is not constant and has an impact on training if the
derivative small or zero dependent on the input of the function. Here, three well-known
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Figure 2.1: Example of convolutional layers. In a) each blue rectangle is a pixel and
the kernel has a size of 3x3. The kernel scans the input and convolutes every 9 pixels
to one output in the next layer. The last layer on top demonstrates the output of the
convolution of the whole input in the next two steps.1In b) the sparse connectivity of the
convolutional layer is shown. The receptive field of the neurons on deeper layers is bigger
than the neurons on the shallow layers [27].

activation functions that are frequently used in the neural networks, are explained:
Sigmoid, Tahn, and Rectified Linear Unit (ReLU).

Sigmoid

Sigmoid is an acitvation function that the input is x ∈ (−∞, +∞) and the function
output is always between zero and one sig ∈ (0, 1). The characteristic of the Sigmoid
function is that the output of the function almost stays constant either 0 or 1 as long as
the input is bigger that -4 or 4 respectively. The definition of the formula is as follows:

sig(x) = 1
1 + e−x

(2.2)

The formula (2.3) shows the derivative of the Sigmoid function and it is computationally
cheap to calculate. Therefore, it is commonly used in MLP networks. However, the
Sigmoid function has a downside. As demonstrated in Figure 2.2, the derivative of the
Sigmoid function reaches zero gradient or saturates and becomes insensitive to training
as it gets closer to either 0 or 1[30]. The saturation of neurons will reduce the update
of the weights and biases to zero and the neurons on deeper levels cannot get updated.
This problem is referred to as vanishing gradient[38]. Hence, due to this limitation, it is
not possible to have a network deeper than 5 layers, and this function is usually used in
the last layers of convolutional network[15].

1https://redcatlabs.com/2017-06-24-BeginnersDay/#/13/3 (Visited on 22.10.2020)
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sig (x) = e−x

(1 + e−x)2 (2.3)

Tahn

Tahn is very similar to Sigmoid but its output domains are slightly different and mostly
average close to zero. The formula is as follows:

tanh(x) = sinh(x)
cosh(x) = ex − e−x

ex + e−x
(2.4)

The input is x ∈ (−∞, +∞) and the function output is always sig ∈ (−1, 1). the
difference between Sigmoid and Tahn is the derivative around zero. As shown in Figure
2.2, the Tahn function has a steeper derivative around zero than the Sigmoid function.
However, both of these methods suffer from the vanishing gradient problem which makes
them not suitable for deep convolutional layers. It is shown that the networks used
the Tahn function converge faster than those with Sigmoid function[57]. The derivative
formula of the Tahn function is as follows:

tanh (x) = 2sigmoid (2x) − 1 = 4e−2x

(1 + e−2x)2 (2.5)

ReLU

ReLU was proposed by Nair and Hinton in 2010 and has since become the most used
activation function for convolutional layers[73, 87]. It is described by a very simple
function:

g(x) = max(0, x) = x if x ≥ 0
0 if x < 0

(2.6)

ReLU is a threshold function that outputs the input based on each input, if the input
value is positive, the function passes the input as the output without any change, if the
input value is negative, the function outputs zero. The main advantage of this function
is that the derivative of this function (demonstrated in formula 2.7) is cheap to compute
since it is constructed by two linear functions. Furthermore, because of the simplicity of
the function, the gradient is a constant if x > 0. Therefore, it eliminates the vanishing
gradient problem mentioned above.

g (x) = 1 if x ≥ 0
0 if x < 0

(2.7)
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Despite the advantages of the ReLU in facing vanishing gradient problem, it tends to
overfit the network easier than the Sigmoid or Tahn function which its effect can be
reduced by the technique introduced by Glorot et al ReLU[26] by randomly dropping
some neuron during training. Moreover, ReLU has another disadvantage due to its
gradient at zero. The zero gradient causes the neurons to die during training and the
neuron gets be excluded from the rest of the training. This problem has led to the
development of other activation functions such as Leaky ReLU[68], Exponential Linear
Unit (ELU) [12] which overcome the dead neuron problem.

Figure 2.2: Each plot demonstrates a) ReLU b) Tahn c) Sigmoid activation function as
straight lines and their derivatives as dotted-lines [15].

A common convolutional block contains three components: in the first layer, it carries
out several stacked convolutional layers. Second, it uses non-linear activation functions to
introduce non-linearity into the model. Finally, a pooling function stands on top of the
last layer to modify the output in order to add invariance to small changes of the input.
A pooling function is a tool that helps to make sure a feature is present regardless of
its location and additionally reduces the feature maps size[27]. Max pooling is a type of
pooling that was introduced by Zhou et al that outputs the maximum number within a
rectangular area [125]. Max pooling has been extensively using in CNN layers to reduce
the size of feature maps [49, 108].

In 2012 rizhevsky et al introduced an architecture design based on CNN called AlexNet
that won ImageNet Large Scale Visual Recognition Challenge in that year. His paper is
considered one of influential papers published in computer vision (as if now their paper
is cited 72127 according to google scholar in 2020)2. This was the start of a new era of
computer vision leading to the creation of a basic concept and simple recipe for designing
a CNN. They used eight layers of convolutional layers to extract high-level features
followed by three fully connected layers for classification which are trained by Compute
Unified Device Architecture (CUDA) programming for parallel training.AlexNet was not
the first of its kind that used the power of Graphics Processing Unit (GPU) for training.
Dan C.et al also used GPU to accelerate training and implemented a similar network
architecture.

2https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ImageNet+
Classification+with+Deep+Convolutional+Neural+Networks&btnG= (Visited on 23.10.2020)
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Figure 2.3: Demonstration of a convolutional neural network which contains convolution
layer with ReLU and followed by pooling. This layer is called convolutional layer or in
short conv-layer. Stacking these layers on top of each other can extract task-depend
high-level features which are used in the fully connected layer at the end to classify the
image [75].

As demonstrated in Figure 2.3, the basic concept of CNN contains three components:
convolutional layer, fully connected layer and output. Various studies showed that
deeper convolutional layers can result in better performance of a network because it can
extract higher-lever features for classification [108, 109, 34, 35]. Going deeper in a neural
network causes various problems such as the vanishing gradient problem, overfitting, or
increasing the number of parameters in the network for training which increases the need
for computational power. Therefore, CNN-based networks use different techniques to be
able to train deeper networks for better performance result such as Residual Network
(ResNet)[34], which uses identity function in order to preserve the gradient and avoid
vanishing gradient problem while the network depth is increasing, or another design
called inception [108] that uses auxiliary output in the middle of the network in order to
overcome the problem of vanishing gradient descent in initial layers of the network while
training.

2.2.2 Object detection
Object detection deals with identifying and locating multiple objects of certain classes
inside one image. The Objects inside an image are located by creating a bounding box
around the object. Object detection consists of two tasks: locating the area inside of
an image that has a high probability of containing an object and classifying that area.
Fundamentally, in each detection, the network proposes one or more regions that have
a high probability to contain an object, and then this area market by a bounding box
is passed through classification to assign a class label to it. If C is the number of class
labels that, an object detection task, background class is also added to the labels C + 1
so that the classifier does not to forcefully classify a bounding box to an object of interest
if there is a low possibility of the presence of any object. However, the background class
will not contribute to the evaluation of the model and only the detection of actual objects
contributes to how well object detection performs. This also implies that both parts
of finding a suitable boundary box and its classification, contribute to its performance.
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Because if a model proposes correct regions but does not classify correctly, it leads to
unsatisfactory performance. On the other hand, if a model does classify correctly but the
purposed regions are wrong and there is no object in it, it also leads to unsatisfactory
performance. Hence, both parts of object detection are highly correlated. In the following,
the two state-of-the-art methods name faster Region-Based Convolutional Neural Network
(R-CNN) and You Only Look Once (YOLO) are introduced in detail.

Faster Regional-based Convolutional Neural Network (Faster R-CNN)

Convolutional neural networks are so powerful and robust in classifying images due to
their ability to extract high-level features with convolutional layers. The first idea to
create an object detection is to use the powerful CNN to classify only one object at a
time within a bounding box and repeat the process for many other bounding boxes. This
is what Girshick et al proposed in an approach called R-CNN [25]. They used a selective
search algorithm based on colors, scales, and texture to propose regions. Then each
region is warped to a fixed size and was fed into a CNN network for feature extraction.
At last, they used the extracted features as the input for a Support Vector Machine
(SVM) classifier to assign a label to each region. This approach is expensive and slow in
terms of computation due to three main reasons as follows:

1. The region proposal algorithm extracts 2000 regions for each image.

2. Feature extraction is expensive and it needs to be done for every proposed region.
If there is n number of images, the feature space would be n ∗ 2000.

3. It uses three different methods instead of one end-to-end method. It also has a
multi-stage training pipeline (CNN cannot improve based on SVM results).

These disadvantages are referred to by the same researcher in his subsequent work where
he purposed a new approach to tackle these flaws. He proposed a new network that
takes the whole image and set of proposed regions as the input and performs a single
convolution network on the entire image to obtain the feature maps. Then it projects
the bounding boxes onto the output of convolution layers, as demonstrated in Figure 2.4.
With this approach, instead of extracting features for each purposed region, the whole
input image goes through the convolution once, and afterward, the relevant features
for each purposed region get extracted. Furthermore, he introduced a new layer called
Region Of Interest (RoI) pooling layer in order to extract relevant features for each
specific region in a fixed size. This layer takes the RoI projections which the projection of
the region into the feature maps. Then divides the window from projection into a fixed
size grid and max pool each cell inside the grid to achieve a fixed size volume. Afterward,
it passes the result produced from RoI pooling layer to a MLP for classification instead
of SVM because a MLP is also a neural network and brings the possibility to train the
network as a whole. The MLP a is a fully connected network that has two sets of output:
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Figure 2.4: Demonstration of end-to-end architecture of fast R-CNN for object detection
[24].

a softmax layer that outputs the probability over all class labels and a regressor vector
of a size 4 that outputs a real-value number for each corner a bounding box[93].

The improvement of fast R-CNN reduced the running time and led to a slightly better
performance in comparison to R-CNN [24]. These advancements exposed that region
proposing computation with a selective search algorithm as a bottleneck. Finding Region
proposals can still take up to 2 seconds [93]. Months after Girshick proposed Fast R-CNN,
Shaoqing et al introduced an improvement to fast R-CNN that used a neural network
called Regional Proposing Network (RPN) for proposing regions instead of selective search
algorithm. This network is called faster R-CNN which is a single, unified end-to-end
network for object detection.

Faster R-CNN contains two parts:

1. A deep fully convolutional network that proposes regions.

2. A Fast R-CNN network, as mentioned above.

RPN is a network that takes the feature space as input and outputs bounding box
regressor with a binary classifier that clarifies if there exists an object inside the boundary
box. The RPN function as a convolutional layer where the kernels of this layer are fixed
anchors. As it is demonstrated in the red rectangle area in Figure 2.5, the RPN takes
the feature maps and perform a convolution with the fixed size kernel and output a
tensor of the size 1 (because the output of a kernel is a single neuron) for each dimension
of the feature maps. Hence, the output of the convolutional layer of the RPN is an
intermediate layer with the size (1 × 1 × Dimension). For instance, in Figure 2.5, the
feature maps have the 256-dimensions therefore, the intermediate layer of the RPN has
the same number of dimensions. The intermediate layer features are fed to two siblings
fully connected layers that output the bounding box layer and probability of existing
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an object inside the box. This process gets repeated for all k different sizes of anchor
boxes. The RPN in essence is a MLP that is implemented with convolutional layers
which makes it independent of input size. This is referred to as a fully convolutional
network [64]. Hence, in the faster R-CNN, the RPN should function with every size
image, since the RoI pooling is only placed after the regions are purposed. The RPN
is also translation-invariant (the object should be found regardless of size and location)
because of the different shapes of the anchor boxes.

Figure 2.5: Illustration of the architecture of the RPN in faster R-CNN network [93].

The number of anchor boxes are dependent on two configurations: square box size and
aspect ratio of the objects in the image. For example, for 5 sizes of (16 × 16), (32 × 32),
(64 × 64), (128 × 128) ,(256 × 256) and 3 aspect ratios of [1 : 1], [2 : 1], [1 : 2], there
are k=15 anchor boxes for RPN. Furthermore, the output of the RPN is dependent on
the number of anchor boxes, 2k for objectness scores and 4k coordinates for 4 different
corners of a boundary box as illustrated on the left in Figure 2.5.

YOLO

Faster R-CNN tackles the object detection task by separating object localization and
classification. Another approach for object detection was introduced by Redmon et al
called YOLO. He treats the object detection as a regression problem where the localization
and classification happen in one evaluation[90].

The YOLO divides the input image into a S × S grid and process each cell in the grid.
Then it outputs a vector per each cell. Each of the vectors has four parts:

1. B number of anchor boxes

2. One element for box confidence
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3. Four elements of (x, y, h, w) for each boundary box

4. C number of class scores (one per each class label)

The output vector has a shape of (S, S, B × ((4 + 1) + C)). Similar to faster R-CNN the
YOLO has been also developed in different versions. The first version YOLOv1, tuned
for a challenge [17] and the network tuned to use a 7 × 7 grid, 2 anchor box per cell(B)
and 20 classes (C) which make the output of the network to become (7, 7, 30). The
network uses a 24 convolutional layer as a feature extractor to reduce the input image to
(7, 7, 1024). Then it flattens the tensor and uses 2 fully connected networks to reshape
and output a tensor of (7, 7, 30). Since all the output in each grid is independent of one
another, an object that belongs in two or more grid cells can make the YOLOv1 to make
duplicate predictions for the same object. To refer to this problem, the YOLOv1 performs
a non-maximal suppression per class which is a function that sort all the detections based
on their confidence score and take the detections with the highest confidence score for
each object.[90]. YOLOv1 treats the object detection problem as a regression problem
rather than a classification problem and manages to perform object detection tasks in a
single convolutional network. This unique approach brought the advantages of performing
real-time, fewer background mistakes in comparison to faster R-CNN. However, YOLOv1
struggles behind Faster R-CNN in terms of localization of small objects or clusters of
small objects and detecting the same object with different input sizes.

Figure 2.6: Demonstration of how YOLOv1 divides the input image into a grid and
outputs a vector y for each cell. pc is the box confidence score that specifies if the object
is in that cell. (bx, by, bh, bw) defines the bounding box and c1, c2, c3 are class scores for
each class label (no background).3

To address the disadvantages of YOLO v1, Redmon et al proposed several improvements
to their original work. One of the notable changes in YOLOv2 is proposing the anchor
boxes similar to the faster R-CNN approach. They used k-means clustering to design k
suitable anchor boxes with different aspect ratios and sizes on the given dataset then

3http://datahacker.rs/deep-learning-bounding-boxes/ (visited on 22.10.2020)
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used them for predicting bounding boxes. They also introduced Darknet19 [89] as the
backbone CNN. Darknet19 enabled YOLOv2 to increase the input size from 224*224 to
448*448 while maintaining speed in terms of computation. The YOLOv2 addressed the
problems of the first version by using two new tricks: fine-grained features and multi-scale
training. Fine-grained features tackle the problem of finding the small objects by dividing
the input image into a 13 × 13 grid. Multi-scale training tackles the problem of finding
the same object with different sizes by augmenting the dataset in a way that each object
is represented in multiple scales. More details on the improvements can be found in [91].

regardless of the robustness of YOLOv2 at the time, it was a trade-off between losing some
accuracy and gaining inference speed and make it a real-time detection. However soon
enough, the other approaches like RetinaNet [59] and SSD [61] outperformed the YOLOv2
in terms of accuracy. Hence, Redmon et al incorporates incremental improvements by
adding skip connections [35], and up-sampling [92] in order to improve its accuracy.
Furthermore, YOLO v3 also incorporates a complex and deeper variant of Darknet which
is a 106 layer of the fully convolutional network as the backbone of the YOLOv3. More
clearance on the development of these changes and other small alteration visit [92].

2.3 Learning process
By definition, a neural network is a parametric model which is a function f takes input x
and depends on its parameters θ outputs y. Training of such a function is basically means
to optimizing the parameters θ toward a certain machine learning goal like to predict a
outcome. Therefore, the training process lies within the field of function optimization
[27]. More specifically, the input x is a matrix representation of an depth image and the
output is a vector of the size of the class labels. a parametric function is denoted as
follows:

y = f(x; θ) (2.8)

with θ contains:

• W for the weights for each edge in the neural network.

• b for the biases for each neuron.

Training a parametric model includes finding suitable parameters θ from training data
so that the function f can map the input to the output as desired by train data. After
training is completed train data is discarded as it is no longer needed for future inference.
For training a parametric model, two ingredients are necessary: a loss function (also
known as cost or objective function) and an optimization algorithm. A loss function is
a function denoted as L(θ) that measure the performance of the parametric model f
with respect to parameters θ on a dataset. The loss function measures the performance
of function f by determining the error between the current output of the network and
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the given target value in the dataset. The smaller the error, the more the function f
represents the dataset. Thus, training a network or finding "good" parameters is the
process of iteratively changing the parameters in order to reduce the error of the loss
function to (almost) zero. This process is called iterative optimization.

Loss Function

In the classification task, the neural network is a valid probability mass function that
outputs a vector that each element of it represent a class label, and its values are non-
negative and their sum equals one. On the other hand, it is possible to represent the
ground-truths in the dataset with the same characteristic as the output of the neural
network by simply making a vector of the size of all the class labels with its all elements
equal to zero except the label that image belongs to. In such a vector, all the elements
are non-negative and their sum equals one. Hence, it is possible to use the principle of
maximum likelihood between them under the assumption that labels are independent of
each other. This is equivalently described as cross-entropy between ground-truth and
the model output [27]. Given the two probability mass function u (ground-truth) and
v(model output), the cross-entropy between the two is described as follows:

H(u, v) = −
T

t=1
ut ln vt (2.9)

The cross-entropy shown in the formula (2.9), measures the dissimilarity between ground-
truth and the model output. The cross-entropy penalizes the difference. H is higher if u
and v are more different. This formula determines how accurate the classifier performed
on the a single sample from a dataset. To calculate the cross-entropy loss function, the
cross-entropy between ground-truth and the model output for all sample data is needed.
The loss function and softmax function (model output) for the parametric model f given
the parameters θ over S number of data samples are as follows:

softmaxc(y) = eyc

c eyc
c is for each class label (2.10)

L(θ) = 1
S

S

s=1
H(ys, softmax(f(xs; θ))) (2.11)

The cross-entropy loss function shown in formula 2.11 is mostly used in classification
models where the assumption is the labels are independent of each other. In the object
detection task, there are two outputs of only one of them required to use softmax and
the other one is the real values of bounding boxes. Hence, a different loss function is
required for object detection. As described by Goodfellow et al "The choice of cost
function is tightly coupled with the choice of output unit."[27]. Because object detection
outputs real-values for boundary boxes, it is possible to use loss functions suitable for
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regression problems. In regression the output of the model is real-values and it is possible
to directly compare them with each other by simply looking at the difference between
ground-truth value with the predicted value. two common loss functions in regression
problems are called Mean Squared Error (MSE) or Mean Absolute Error (MAE) and
their corresponding formulas are given below:

MSE: L(θ) = 1
S

S

s=1
(ys − f(xs; θ))2 (2.12)

MAE: L(θ) = 1
S

S

s=1
|ys − f(xs; θ)| (2.13)

The MSE calculates the squared of the difference between ground-truth and predicted
value. Therefore, the derivative of this loss is the difference between them and as the
difference is high the derivative is bigger and vice versa. This is beneficial in the training
process in terms of convergence and high accuracy of the model. However, the squared
difference makes this loss function sensitive to outliers because as the error between
ground-truth and model output increases, the loss function increases faster due to squared
property. The MAE calculates the absolute difference between ground-truth and model
output. In this loss function, the calculated error does not make the loss to increase
rapidly. Therefore, the MAE is not sensitive with outliers but the derivative of this
function is fixed and has nothing to do with loss value which makes the training process
ineffective when the loss is decreasing.

Gradient Descent

Training a neural network includes optimizing the cross-entropy loss to reach zero. For
this, an optimization algorithm is needed. In 1847, Cauchy introduced a gradient-based
optimization technique called gradient descent[1]. This function and its variations are the
popular choices for training neural networks. The idea behind it is that the derivative of
any differentiable function at one precise point provides the slope of the function at that
point. It clarifies, how to apply a change in input to obtain a related change in output at
that point. Thus, by changing the input in small amounts in the opposite sign of the
derivative, it is possible to decrease the function.

Functions with multiple inputs such as loss functions must use the concept of partial
derivatives. The partial derivative of a function L with multiple inputs is the derivative
of the function at one input where the rest of the inputs are constant in the calculation.
Computing the partial derivative of function L based on all of the inputs as a vector
is a vector of gradients. In other words, the notion of gradient rise from expanding
the partial derivative on all the inputs[27]. The gradient points in the direction of the
greatest increase in the loss function denoted as L(θ) and change the parameters in
order to move in the opposite direction. Formally, it is defined as follows:
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1. Compute gradient of loss function denoted: L(x)

2. Update parameters θ = θ − α L(x). where α is a positive scalar defining the step
size.

These steps occur in an iterative procedure until L(x) ≈ 0 and when the gradient of
a function becomes zero, there is no information where to go next or how to change
the parameter and the function thus is in a flat situation or the optimal parameters
are found. These situations are called critical points. Basically, a function is in one of
the possible states depicted in Figure 2.7 when its gradient is zero. If the optimization
process reaches either of these points, it stops since no more changes are possible to be
applied to the parameters. Among all of the critical points, the critical point b) in Figure
2.7 is unlikely to happen because the algorithm only makes changes in a way that the
function value becomes smaller, not greater.

Figure 2.7: Demonstration of three types of critical points where the gradient is zero. a)
the function reached a local minimum(or possibly global minimum) and its neighbouring
points are higher than the central point. b) the function reached a local maximum and
its neighbours are lower than the point. c) the gradient is zero and the neighbouring
points are both higher and lower [27].

The absolute lowest value of a function is a global minimum point. A function can
have multiple global minima as well as multiple local minima. However, if there is more
than one global minimum, the values of the function in those points are equal to one
another, whereas the value of the function in the local minimum could be different. Point
a) in Figure 2.7 is a point lower than its neighboring points and it is not possible to
decrease the function. This point is definitely a local minimum point and a possible
global minimum. These types of points make the optimization difficult. However, in the
context of deep learning, it is common to agree on a very low value of function even if it
is not the global minimum. Also, if the step size α is large enough, there is a possibility
for the optimization algorithm not to fall into these points [27].

The gradient descent first computes the gradient of the loss function l(θ) for the entire
train set and then updates the parameters once. This process is called batch gradient
descent. One of its advantages is that batch gradient descent guarantees to converge to
the global minimum if the function has a convex shape and converge to a local minimum
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for non-convex surfaces. However, it has a disadvantage: the algorithm updates the
parameters only once after calculating the gradient for the entire train set. Thus, the
speed of calculating the gradient or training, in general, is highly dependent on the size
of the train set. The bigger the train set, which is common in training a neural network,
the slower the training phase. The problem is when the size of the train set is large and
the batch gradient descent has to recompute the gradient for the same data for each
iteration. To overcome this problem, the gradient can be estimated by calculating the
gradient only on a single data sample instead of the entire dataset. This method is called
Stochastic Gradient Descent (SGD). SGD is a faster method since calculating the gradient
is independent of the size of the train set and it can update the parameters frequently. It
also reduces memory usage of the GPU. The noisy estimation of the gradient leads to
fluctuations in the SGD which gives it the ability to escape local minimum as well as
overshooting over local/global minimum [95]. However, it has been shown that decreasing
the learning rate indicates the same behavior as batch gradient descent when converging.

Another interesting variant of gradient descent is to take only a constant amount of
samples from the dataset. This approach combines the benefits of the two methods
described above: on the one hand, the number of samples is not dependent on the dataset
size like the batch gradient descent, which makes it computationally cheap and on the
other hand, the sample number is not one, so unlike the SGD it has a less noisy gradient
estimation and thus it fluctuates less. Commonly, the number of samples varies between
1 and a few hundred, and due to data parallelism, it is two to the power of the number
(2n). So the training process updates the parameters after calculating the gradient for the
defined constant number of samples and it continues until all of the samples in the train
set are chosen. This is machine learning is referred to as Epoch. Epoch is the number
that how many times a training process completely goes through the whole training set.
For additional variations of gradient descent suitable for optimizing functions, Shilang et
al explains and compares ten different types of first-order optimization algorithms in a
survey [107].

Back-propagation

So far, calculating the gradient was presented as a black box. Computing an analytical
expression for a gradient is straightforward, however, determining the exact value can
be computationally expensive. A neural network is a computational graph. It contains
functions that are composed of other functions. The computational graph is the graphical
representation of functions where the edges represent an operation and each node in
the graph represents a variable. An operation is a simple function that takes one or
more variables and applies a simple operation such as plus, multiplication, or logarithm.
Complex functions in a graph can be decomposed into multiple simple operations. The
loss function is a complex function where its inputs are the outputs of the neural network.
Therefore, loss functions can be represented as a computational graph where its inputs
are the inputs of the network and the output is the value of the loss function.

In feed-forward neural networks, the input produces information that flows forward into
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the network until the output is produced. This is called forward propagation, while
reversal of the flow of information or the propagation of the output value through a
network until it reaches the input is called backward propagation. In 1986, Rumelhart
et al introduced a back-propagation algorithm that uses both, the forward and backward
propagation principle, to calculate the gradients based on computational graphs[97]. To
compute the gradients, the authors used the inputs to evaluated the graph and stored
each local result (Forward propagation). Then they aggregated the local gradients from
the loss function to the inputs(backward propagation) by iteratively using the recursive
application of the chain rule. For instance, if x is a real number and two functions of f
and g map real number to real number, then a composition of the two could be denoted
as y = g(x) and z = f(g(x)) = f(y). Derivatives in such a graph can be computed as
follows: y = f (g(x))g (x). More details can be found in [97, 54].

Overfitting and UnderFitting

When training a neural network, the loss function only measures the training error,
which is the error between ground truth in train data and network output. The training
error iteratively decreases as the optimization algorithm continues. The main aspect
of training is to increase the ability of a neural network to predict new unseen data
correctly. This ability is called generalization. In machine learning, the goal is not only
to reduce the training error but also to increase generalization. This can be measured by
The generalization error which is defined by measuring the performance of the model on
a different dataset referred to as test where the samples are drawn separately from the
train set. Both datasets must have the same underlying probability distribution, but the
samples must be different. Now the factor that determines whether a neural network
model performs well is not only to make the training error smaller but also to keep
the disparity between the training error and generalization error small. These factors
contribute to two well-known challenges in machine learning: overfitting and underfitting.
As explained in/by Goodfellow et al: "Underfitting occurs when the model is not able to
obtain a sufficiently low error value on the training set. Overfitting occurs when the gap
between the training error and generalization error is too large"[27].

An example of over/under-fitting in training is depicted in Figure 2.8, where the training
error or training loss decreases constantly, but the test loss begins to rise at some point
during the optimization. The reason is that in the training phase the optimization
algorithm only looks at the training loss and tries to lower it. However, the test only
decreases as long as the optimization algorithm is able to generalize well on unseen data.
Therefore, in machine learning, a successful optimization (loss ≈ 0) does not indicate
good performance of the model. Monitoring the test loss is essential while training a
model. This is considered to be the difference between two fields of machine learning
and optimization[27].

In general, it is easier to avoid underfitting by simply reaching lower training loss or, to
put it differently, if the training phase is long enough the underfitting should not appear
to be the problem. On the other hand, Detecting overfitting is challenging. There are
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Figure 2.8: The plot demonstrates an example of the relationship between training time
and error rate. The shape of the error for training and generalization (or test) has a U
shape. On the left side of the graph, at the start of training, the error is high for both of
the training and generalization errors. As the training iteratively reduces the training
error, the generalization error drops simultaneously and the generalization gap between
the two is relatively small. This area is called the underfitting regime. As the training
continues, the training error continues to drop but the generalization error begins to rise
and the generalization gap grows bigger. This area is referred to as the overfitting regime.
The optimal solution is the red line between these two regimes [27].

techniques to combat overfitting, which are often referred to as regularization. The
regularization techniques that used for solving the defined problem of getting up behavior
modeling are listed below:

• Early Stopping: It is one of the natural ways of battling overfitting. The idea
is to stop the training when the generalization gap starts to grow large. At each
Epoch of training, the generalization error is compared with previous ones and if
it is lower than all the others, a copy of the network’s parameters is stored and
the training is continued until there are not smaller generalization error can be
achieved in e number of Epochs afterward. Then the training will stop and the
stored parameters from the lowest achieved generalization error are used as the
output of the training process. It is very simple to integrate this technique in the
training process however, it adds another hyperparameter: finding the right number
of Epochs can be challenging. If e is too small, the training stops before it actually
reaches a local/global minimum and underfitting might happen. If it is too big,
this will increase the training time.

• Data Augmentation: Another technique to fight overfitting is to use a larger
amount of data. When there is more data to be trained on, the model generalizes
better. However, it is not always possible to do so because in practice the available
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data is often limited or expensive to make. On the other hand, there is a way
to artificially increase the size of the train set by making "fake", new, meaningful
data. This is called data augmentation. Images are highly dimensional and have
many characteristics that can be artificially simulated by techniques like translation,
rotation, resizing, cropping, zooming, illumination, mirroring, color spacing etc.[100].
Augmentation techniques are not applicable in every task, because they might change
the class label after augmentation. For instance, a digit recognition application
is required to detect "6" and "9" and if one applies a 180-degree rotation to them,
each of them would be detected as the other. Generally, data augmentation is very
effective in image classification and object detection and usually, it improves the
generalization of the model. Occasionally, it has been shown that adding noise
by augmentation in train data can improve the model [100]. The augmentation
techniques used for creating datasets from depth images are illustrated in Figure
2.9.

Figure 2.9: Illustration of augmenting an image.4

• Weight Decay: Another regularization approach is to limiting the capacity of the
model by adding a parameter θ penalty to loss function. When the optimization
algorithm decreases the loss function, it decreases the loss on train data and the
size of parameters θ. It basically decreases the model variance which makes it
insensitive to small changes. In deep learning, a common approach is to add only

4https://www.raywenderlich.com/5653-create-ml-tutorial-getting-started (Vis-
ited on 24.10.2020)
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the weight parameters to loss function to penalize large weight parameters in order
to prevent the certain inputs from dominating outputs. This is also called L2
regularization[27]. Loss function with weight decay has the following function:

Lwd(θ) = δ

2w w + L(θ) (2.14)

where δ ∈ (0, 1) controls the effect of regularization. Calculated gradient of the loss
function is described as:

Lwd(θ) = δw + L(θ) (2.15)
Thus the gradient update for the optimization algorithm becomes:

w = w − α(δw + L(θ)) =⇒ w = (1 − αδ)w − α L(θ) (2.16)

As described in formula (2.16), the weights are decreasing by a constant factor
of (1 − αδ) in each iteration. Therefore, the weights of the network decay to zero
(hence, the name "weight decay"). The δ is yet another hyperparameter that needs
to be set. If δ is too small, the weight would not change much. If it is too big, it
could overrule the cross-entropy loss.

• Dropout: Dropout is a regularization technique that focuses on randomly discard-
ing some non-output neurons to make the learning process not to rely on certain
neurons. It is a layer where the output of some neurons is multiplied by zero to
discard the neuron effect. The choice of discarding a neuron is random. An example
of dropout is depicted in Figure 2.10. Another way of describing dropout: when a
neuron is discarded in an iteration of training, the network is forced to learn from
data with a slightly different and smaller version of the network. In simple terms,
if a neuron is, for example, taught to detect edges in an image then removing it
temporarily means, the network has to learn with the remaining neurons to detect
an edge inside an image. Thus, the network is able to detect edges in different ways
and becomes less sensitive to small changes, and generalizes better, which combats
overfitting.
Dropout applies randomly and if a network has n neurons then there are 2n

possibilities. In each iteration during the training phase, a different version of the
neural network is trained due to dropout. One can think of training with dropout
as training the same number of parameters with n number of neurons which instead
of one single big network architecture, it is the collection of 2n of possible different
(smaller) neural networks. Dropout layers only take a place in the training phase.
The generalization error is calculated without any dropout layer active. This is
because the dropout layer is a regularization technique and battles overfitting in
training. Also, randomly discarding some neurons affects the network output and
consequently makes the generalization error invalid.

• Mini-Batch Normalization: Normalization is the act of adjusting the values of
input to an output in a way that the mean of the inputs is zero and the standard
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Figure 2.10: Illustration of dropout in a training phase where a network has two hidden
layers, one input layer, and one output neuron. In a) the network is depicted before
applying dropout. In b) an example of a network after dropout is shown which can be
different each time [105].

deviation is one in which the values lies within a normal probability distribution[27].
In terms of deep learning for normalizing, each input image is converted to a
three-dimensional Tensor (each dimension for RGB color channels) and the mean
(µ1...µn) and standard deviation (δ1...δn) of each dimension over all training images
are calculated. Afterwards, every dimension of each input image is normalized with
the given mean and standard deviation for n channels as follows:

xnorm
n = (xn − µn)

δn
(2.17)

Normalizing input speeds up the training process. The calculation of the gradient
is dependent on input and if the input features are not on the same scale (not
normalized), the gradient for weights for some inputs would be different (larger or
smaller) between gradients and this would hinder the gradient descent to converge
to a minimum. Normalizing inputs are helpful even if input features are on a similar
scale. Weights and biases in deep neural networks iteratively change. Therefore,
the distribution of input changes as it propagates forward into the network. As Ioffe
et aldescribes this phenomenon in the paper: "Training Deep Neural Networks is
complicated by the fact that the distribution of each layer’s inputs changes during
training, as the parameters of the previous layers change. This slows down the
training by requiring lower learning rates and careful parameter initialization and
makes it notoriously hard to train models with saturating nonlinearities. We refer
to the change in the distributions of internal nodes of a deep network, in the course
of training, as Internal Covariate Shift."[41]. To overcome this problem, the authors
propose to normalized not only the input but also in between hidden layers before
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activation functions of neurons. Besides, the mean and standard deviation for
normalization is calculated over a Mini-Batchs rather than all train images. This
approach has two advantages: First, it maintains the input variance which increases
the training speed, second, it has a slight regularization effect, since each is scaled
by the mean and variation of that, therefore, it introduces some noises in each
hidden layer. Increasing the batch size would reduce the regularization effect[41].

2.3.1 Transfer learning

Deep learning is a data-driven method in which the performance of a model is highly
dependent on the size and quality of the dataset on which the model is training. The
amount of data also varies based on the task. Finding a large dataset could be challenging
in the areas that the data is sensitive or expensive to make such as medical data. This
problem sparked the idea of enhanced a new task by transferring knowledge from another,
similar, or related task that has been learned previously. The action of transferring
knowledge is referred to as transfer learning in machine learning. Transfer learning is not a
new idea and we as humans use it daily. The idea of transfer learning in machine learning
is also not a new concept. The Neural Information Processing Systems (NIPS) 1995
workshop on learning to learn, is considered one of the early sparks of transfer learning
for research[111]. Transfer learning can be applied by domain, task, and availability of
data. More details on transfer learning, in general, can be found in a publication written
by Pan et al[80]. Below, transfer learning is discussed in the context of deep learning
with a focus on three main aspects: what, when, and how to transfer.

One aspect of transfer learning is to identify what part of one task is common with
another task and can be used to improve the target task. Models in deep learning,
each network consist of connected neurons that are treated as a black box. However,
each network type has a characteristic that distinguishes them. For example, RNNs are
suitable for the tasks that the sequence of data is important or MLPs are suitable for
classification. There are many different state-of-the-art variants of these networks whose
performance is even better than human performance in computer vision [35, 109, 92].
One of the robust network architecture is CNN, which is suitable to extract high-level
features from data. Razavianet al introduced a new approach to utilize the trained CNN
from state-of-the-art networks that are capable of extracting task-dependent features to
tackle a similar problem with less amount of data[88]. The authors took a pre-trained
network, cut the classifier, and attached a new, shallow classifier to train the modified
network on a new dataset. In the training process, the parameter of the CNN part of the
network is frozen and does not participate in training. This approach is referred to as
feature extraction in transfer learning. They used this approach to different computer
vision tasks and compared the results. Figure 2.11 shows the clear advantage of using
this approach. If tasks between target and source are dissimilar and the dataset is small,
it is also possible to extract more generic features (lower-level features) and use them in
the source task. This can be done by taking the output of an intermediate layer instead
of the last layer [88].
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Figure 2.11: Performance of pre-trained models vs task-focused models. The y-axis shows
the accuracy and the x-axis defines the computer vision task. In each task, CNN using
transfer learning achieves better result than the best state-of-the art results [88].

On the other hand, if the target dataset is large enough, one can modify the network
in the same way as before but instead of only train the newly added layer, the whole
network is trained. This is commonly known as fine-tuning. It is not encouraged to use
fine-tuning while the dataset is small because the parameters of such models are large
and fine-tuning is prune to overfit the model[120]. Both approaches are developed and
implemented for image classification and object detection for solving the lack of data for
detecting a getting up.

Transferring the interesting part of a pre-trained CNN is straightforward. A neural
network contains two parts: architecture and parameters θ. for transferring the knowledge,
it is only needed to build a similar architecture of the interesting network and to initialize
its parameters with the values of the same parameters from the pre-trained network[120].
Furthermore, transfer learning should occur before training starts.

2.4 Evaluation
The loss function in machine learning is a function that calculates dissimilarity between
the model and the train data. The lower the loss function the closer the model is to the
train data. This is pure optimization. However, model evaluation in machine learning
in general aims to measure the accuracy of a model on future unseen samples. Loss
function cannot provide this type of information. Hence, there is a need to estimate the
generalization of a model and measure how well it will perform on unseen samples[27].

Evaluating a model is dependent on the task itself, as well as the data. A model is
trained on a train set and uses a test set to calculate the generalization error or model
performance. These two datasets are distinct from one another, because if the test set and
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train set use share data then it is not possible to accurately estimate model performance.
There are variables such as learning rate, batch size, number of Epochss etc. in defining
a machine learning model that controls the model capacity and performance. These
variables are called hyperparameters and should be set before training starts. Setting
the best possible hyperparameters is task specific and it is different for each model. The
objective of setting the hyperparameters is to increase model performance. Therefore,
they need to be optimized on a the data set. However, by tuning the hyperparameters
on training set, the model overfits and if they are optimized on test set, the evaluation of
the model becomes invalid. This problem can be solved by introducing a new dataset
named validation set. A validation set is a distinct subset of train data, which is only
used for optimizing hyperparameters. If n is the number of data samples available for a
task, then usually it is divided into three distinct subsets: Train set, Validation set and
Test set. As depicted in Figure 2.12, the train set takes most of the sample (commonly
above 80 % of data samples) and is used for training a model. Validation set and test set
each take 10 %, whereas the validation set is used for tuning hyperparameters and the
test set is used for final estimation of the performance.

Figure 2.12: Dividing n number of samples available for a task into three distinct subsets
of train set(green), validation set(blue) and test set(red)

Dividing the data can also be challenging. For instance, small test set after dividing
the data, can lead to statistical uncertainty or if the data is ordered, then dividing each
dataset would be biased towards its order. To overcome this, methods for dividing the
data such as k-fold cross-validation [20] and bootstrapping [47] has been developed in
which they tackle the problems of dividing data and gaining a unbiased evaluation. Each
method divides the data into three subset of training, validation and test sets. Training
set is only for training the network, validation set is used to tune the hyperparameters
and test set is only used to calculate final performance of the model.

Testing all possible combinations of hyperparameters for deep learning algorithms is not
possible, simply because each training can take a long time and since there are more than
one hyperparameter, then the number of combinations for testing is each value for each
hyperparameter becomes large and consequently makes it unpractical and unrealistic (if
possible) to test each combination. the first idea to tackle this problem is to find a similar
task and use their hyperparameter values as initial values. At last, they can be tuned to fit
more in the current task. The second approach is to use an approximative search strategy
such as Grid search [57] or Random Search [10] to find suitable values. If there are H
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hyperparameters, regardless if they are continuous or discrete, their values can be divided
into search intervals I1, I2, ..., IH . In grid search, the combination of hyperparameters
are sampled uniformly from all intervals Ih for h ∈ 1, 2, ..., H]. In random search, the
combination is sampled randomly from all intervals Ih for h ∈ {1, 2, ..., H}. In practice,
random search has shown better results [10]. In Figure 2.13, the difference between grid
and random search are depicted.

Figure 2.13: The plot demonstrates the difference between random and grid search for
nine combinations of parameters. The left side of each plot represents the less effective
parameters on the outcome and on the top in green, the more important parameters are
depicted. In the grid search plot, the search algorithm explores only three trials on both
important and unimportant parameters and skips over the optimal. The random search
on the other hand can explore 9 different positions in the space on both sides. It finds
the most optimal values for hyperparameters [10].

Evaluating a model is highly dependent on the model output and can vary a lot depending
on the task it is solving. Different competitions use different metrics for evaluation.
Therefore, In the following subsections, the evaluation metrics that were used for analyzing
the performance of the getting up detection model on both tasks of classification and
object detection.

Evaluation in classification

A form evaluation in classification is to simply check if the assigned labels to the input
are correct. This is called accuracy. Calculating Accuracy in classification is simple and
it can be calculated on all three datasets. Basically, the output of a classification network
is a vector of the size of all class labels and each element value is a probability that
represents how likely the current input of the network belongs to that class. To calculate
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accuracy, the biggest probability is taken as the assigned label from the network for
each input and a network generates an output for all data samples in each dataset. The
accuracy is the percentage describing how many data samples are assigned correctly in
that particular dataset.

Accuracy only represents how many of the inputs are assigned correctly in total. However,
there are situations where the network can only detect one class well because the training
data is biased regarding that label. This can lead to high accuracy even though the
network has not learned how to detect all the class labels or in another situation where
the accuracy is low and one wants to investigate which input is misassigned to which
class label. Therefore, the confusion matrix is used to evaluate the output of the network
for each class label. A confusion matrix is a matrix in which the number of correct and
incorrect predictions are summarized and divided into each class. A confusion matrix
has the size of n × n where n is the number of class labels. Each row in the matrix
represents a ground truth and each column represents predicted values. The fundamental
of a multi-class confusion matrix is based on a confusion matrix for one class label, where
rows and columns show if an input belongs to that label or not. Such a matrix has only
four elements as depicted in Figure 2.14.

Figure 2.14: The plot demonstrates a confusion matrix for a class label. The matrix
has only 4 elements depicted in orange called TP, FN, FP, and TN that their values
are counter for that category. For each sample in the dataset and based on the ground
truth and the prediction by model the count number in one of the elements in the matrix
increases by one. sum over all elements of matrix is equal to the size of the dataset
(TP+FN+FP+TN=#DataSamples).

The definition of each element in the matrix is explained as follow:

• True Positive (TP): When an input belongs to the label and that label is
predicted correctly.

• False Negative (FN): When an input belongs to the label but the model did not
predict it correctly.
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• False Positive (FP): When an input does not belong to the label but the model
falsely predicted that it does.

• True Negative (TN): When an input does not belong to the label and the model
correctly does not assign it to the label.

Based on this confusion matrix, it is possible to calculate accuracy, precision, recall, and
F1-measure metric for a class label. Each of them is defined as follows:

• Accuracy: indicates the accuracy of the label.

Accuracy = TP + TN

TP + TN + FP + FN
(2.18)

• Precision: indicates the correctness of positive labels. The precision specifies how
many data samples that were labeled positive were identified correctly. Hence,
high precision indicates less false positives or in other words, with high precision, a
model is less likely to misclassify data as positive for a certain label.

Precision = TP

TP + FP
(2.19)

• Recall: indicates how many data samples that belong to this class label are
recognized. High recall specifies that false-negative detection is low, which implies
that the model most likely is able to recognize the true positive samples.

Recall = TP

TP + FN
(2.20)

• F1-measure: represents both recall and precision. F1-measure is the harmonic
mean between recall and precision and punishes extreme values. Therefore, F1-
measure is always near the smaller value of precision or recall. High F1-measure
indicates high precision and high recall which consequently means a low number of
false positives and false negatives.

F1 − measure = 2 ∗ (Recall ∗ Precision)
(Recall + Precision) (2.21)

Interpreting these measurements can be helpful in evaluation. For example, if a classifier
has high precision but low recall, this implies that the model misses many positive
examples but if it predicts something, there is a high chance that the prediction is correct.

This binary confusion matrix is expandable to a multi-class confusion matrix by changing
the matrix dimension from two to the number of class labels. In the multi-class matrix,
if an input belongs to class i and the model predicts that it belongs to class j, then the
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value of the element in Mi×j increases by one. The elements on the main diagonal are
true positives, the elements in the triangle above the main diagonal are false negatives
and the elements below the main diagonal are considered to be false positives. In the
multi-class confusion matrix no elements are representing true negatives, because, in a
classification task, a model cannot assign no label to an input.

Evaluation in Object detection

In object detection, the output of a model does not only contains classification but also has
one or more bounding boxes coordinates that localize the object inside the input images.
Therefore, classification metrics are not applicable in object detection because using the
accuracy or confusion matrix only considers the output label and does not consider if the
boundary box is predicted correctly. The evaluation metrics used for the object detection
in this project is based on two popular competitions called: Pattern Analysis, Statistical
Modeling and Computational Learning Visual Object Classes (PASCAL VOC)5 and
Common Object in COntext (COCO) detection challenge6. Both competitions use the
same principle to establish a metric based on a curve called Precision x Recall Curve
(PR-Curve). Before defining the PR-Curve, The following notions need to be explained:

• Intersection Over Union (IoU): intersection over union is a measurement that
evaluates the overlap between two different bounding boxes. If BBgt is the bounding
box for ground truth and BBp is the predicted bounding box, IoU is the area of
overlap divided by the area of union. The formula and an illustration of the IoU is
depicted in figure 2.15.

Figure 2.15: Illustration of calculation of IoU between predicted bounding box and the
ground truth. The IoU is the area of overlap divided by area of union. In the right most
division in the plot, the red box demonstrates a predicted bounding box and the green
box is the ground truth.7

5http://host.robots.ox.ac.uk/pascal/VOC/ (visited on 04.11.2020)
6http://cocodataset.org/#home (visited on 04.11.2020)
7https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

(visited on 31.10.2020)
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• Precision and Recall: Object detection metrics uses a similar principle than the
one used for calculating the confusion matrix in classification to calculate precision
and recall. However, the terms have a slight different definition.

– True Positive (TP): A detection that it is classified correctly and the
IoU>= threshold8.

– False Positive (FP): A detection that it is classified correctly and the
IoU<= threshold8.

– False Negative (FN): a ground truth is not detected.
– True Negative (TN): It is not related because it indicates if an object is

not detected correctly and an object detection model only outputs found
prediction.

– Precision: Precision in object detection determines the ability of the model
to identify just relevant objects. It is the percentage of correct positive
predictions:

Precision = TP

TP + FP
= TP

All Detections (2.22)

– Recall: Recall in object detection determines the ability of the model to find
all relevant objects. It is the percentage of how many of the ground truths are
detected:

Recall = TP

TP + FN
= TP

All Ground Truths (2.23)

The IoU threshold used for determining true positives and false positives is dependent
on the metric. In PASCAL VOC, it is set to 50 % [18], while in COCO it is set to
various values between 50% to 90% to average the estimation[60]. The higher the IoU
threshold, the more precise the model detects the bounding boxes. Hence, the threshold
has a direct effect on precision. Lowering the threshold increases the number of false
positives which consequently decreases the precision and increases the recall. On contrary,
raising the threshold increases the number of false negatives that leads to an increase in
precision and a decrease in recall. Other than the IoU threshold, there is also a confidence
threshold. An object detection model also outputs a score that indicates, how confident
the model is to find a label in the predicted bounding box. Usually, predictions, where
the confidence score is lower than the confidence threshold, are discarded and are not
counted in evaluation.

Based on the metrics, an object detection model has higher performance if it can find
all the ground-truth objects (zero false negatives) and identify the relevant object (zero

8There is only one true positive per ground truth. If there are more than one detection for same
ground truth, the detection with the biggest IoU is considered a TP and the rest FP.
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false positives), which implies high in recall and precision respectively. On the other
hand, a model considered to achieve less in performance, it increases the number of
objects detected in order to have a high recall, which in turn leads to a high number
of false positives and lower precision. Or, other way around, to achieve high precision,
the model cannot detect all the ground-truth objects which leads to a high number of
false positives and consequently low recall. The trade-off between these two is a metric
for evaluating an object detection model and a Precision-Recall (PR) curve is a way
to demonstrate the trade-off for the model. A PR-Curve is a plot that indicates the
association between the two metrics in which the x-axis represents the recall values and
the y-axis represents precision values. Each pair of precision and recall is a point in
the PR-Curve. By setting different confidence thresholds, one can get different pairs
of precision and recall. The higher the confidence, the more precise the model (highest
precision), and the fewer objects are detected (lowest recall). Therefore, PR-Curves tends
to start with high precision which decreases as the confidence threshold decreases. The
reason is that it is harder to detect more of the ground truth objects correctly. On the
other hand, the recall increases monotonically, because as the confidence threshold drops,
more objects are being detected. An example of such a plot is depicted in Figure 2.16.
In practice, instead of setting different confidence thresholds, the table of all detections
is sorted by confidence score and the pair of precision-recall is calculated by accumulated
TP and FP for each row in the table. For more detailed information on this topic, visit
[18, 60].

Figure 2.16: an Example of PR-Curve.9

To precisely evaluate and compare PR-Curves, the area under the plot is calculated as an
evaluation metric for a single class in the object detection model at one threshold. Both
precision and recall values are bounded between [0, 1]. Hence, the whole area of the plot
is equal to 1 and makes the area under the curve to be less than or equal to one. The
area under the curve is a numeric metric that is called Average Precision (AP). It is

9https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html
(visited on 04.11.2020)
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the precision averaged across all unique recalls. In order to reduce the impact of zigzags
in the plot, the precision is interpolated at all the recall levels before actually calculating
the AP. Originally in the PASCAL VOC challenges the recall levels are interpolated at
only 11 equally spaced points[18]. Nowadays, the interpolation point is chosen by each
unique recall presented by data. The interpolated precision pinterp at a unique recall level
r is defined as highest precision found for any recall level r that is bigger than r. The
formula for calculating the AP is as follows:

pinterp(r) = max
r ≥r

p(r ) (2.24)

AP =
n−1

i=1
(ri+1 + ri)pinterp(ri+1) (2.25)

The calculated AP is based on a single class label. However, in object detection, usually,
there is more than one class label. To have a single value as the metric, the AP must
be calculated for each class with the same IoU threshold and be averaged over all APs.
This metric is referred to mean Average Precision (mAP) which is a single metric
for evaluating an object detection model at one exact IoU threshold. The mAP formula
is defined as follows:

mAP =
K
i=1 APi

K
(2.26)

As previously mentioned, the PASCAL VOC challenge used a single IoU threshold of
50% for calculating the mAP in 2012 [18]. However, this threshold is not suitable for all
tasks. For example, if an object is small in an image, it needs a higher overlap threshold
since a small misplacement of a bounding box might refer to another small object in the
image. To have a better evaluation of a model, the COCO challenge defines several IoU
thresholds for evaluating a model. They calculate mAP averaged over 10 IoU thresholds
in a interval [0.5-0.95] (i.e. 0.50, 0.55, 060, ... , 0.95) as primary metric for the challenge.
Furthermore, they also used different object scales, different numbers of detection per
class, for evaluation of an object detection model. All the metrics are explained in detail
in [60].
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CHAPTER 3
Methodology

To build a model that detects getting up behavior, two components are needed: a dataset
and a neural network architecture. A dataset for supervised learning contains data
representing getting up behavior with manually assigned labels for classification and
object detection. It consists of getting up scenes recorded at different angles and single
images extracted from these recordings. Each extracted image is labeled to create the
final dataset. For each dataset, data augmentation is applied to increase the quantity,
diversity, and generalization of the data.

Based on the structure of the depth images and desired outputs, a compatible neural
network architecture is constructed which is capable of receiving knowledge from other
trained networks. To achieve this instead of building a new architecture, a state-of-the-art
network that has been trained on a large RGB datasets is used and modified to be
compatible with the new dataset and class labels. Both data collection and network
architecture used for detecting getting up behavior are described in detail in this chapter.

3.1 Creating Datasets
To create a dataset for the purpose of modeling getting up behavior, at first the required
data is collected in the form video sequences. Second, the gathered data needs to be
processed and labeled to the desired dataset for classification and object detection. Each
dataset undergoes data augmentation to increase the performance of the model.

3.1.1 Data Gathering
All data are collected in two different formats: depth images and conventional RGB
images. RGB images are recorded as an auxiliary source for labeling as the depth images
represent distance in their pixels, not colors. Therefore, it is not possible to correctly
label them with only depth images. However, RGB images are not used in datasets
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and training and evaluation are performed only with depth images. Each depth image
captures a scene in a one-dimensional matrix in which every pixel represents how far the
object is located from the camera in millimeters. Depth images record no information
about the color and pattern of the object and the lighting of the recorded scene does not
affect the image as long as the lighting reflects the sunlight. Thanks to these attributes,
depth image cameras protect the privacy of the recorded person which makes them
suitable for use in places like hospitals or nursing homes where the privacy of a patient is
a major concern.

Camera and principle of depth imaging

The Astra pro RGB-D camera depicted in Figure 3.1 is used for recording video sequences.
This device consists of 3 main parts: an RGB camera, an Infra-Red (IR)-projector and
an infrared camera. Video sequences are recorded in (640 × 480) (VGA) quality at 30
Frames Per Second (FPS) with a field of view of 60 H x 49.5 V x 73 D.1

Figure 3.1: Camera Astra RGB-D sensor.2

A depth camera set measures the distance by using infrared light, an electromagnetic
radiation with a wavelength between 700 NanoMeters (nm) to 1 MilliMeters (mm)[67].
These wavelengths are longer than visible light and therefore not visible to the human
eye. The visible spectrum of wavelengths lies between 400 nm and 700 nm[67]. Infrared
light can be visualized with night vision cameras.

Taking a single frame of a depth image is based on the invention of Freedman et al [19]
that involves three steps: first, the device projects an irregular pattern of infrared dots
(around 300,000 dots) into the field of view[45]. Second, the infrared camera captures
the infrared light that bounces back from objects in the field of view. The projected dot

1https://orbbec3d.com/product-astra-pro/ (visited on 01.11.2020)
2https://orbbec3d.com/wp-content/uploads/2018/10/astra-pro-for-slider.png

(Visited on 01.11.2020)
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Figure 3.2: Illustration of projected dot pattern from an IR-projector into its field of
view [103].

pattern is a reference dot pattern that is captured in a calibration process at a known
distance from the sensor and is stored in the memory of the sensor. As a third and final
step, the captured image is compared to the projected dot pattern in order to calculate
the distance between object and camera. Figure 3.3 illustrates a dot observed in both
projected and observed pattern. When a dot is projected at an object and bounces back
to the camera, it will be either in the same place that it was projected or it will be shifted
in directions of left or right. If the distance between the object and camera is smaller
than the reference pattern, then the dot in the observed pattern is located on the right
side of the same dot in the projected pattern with a disparity and if the dot is located on
the left side, then the distance is larger than the distance between projected pattern and
camera.

The distance between IR-camera and IR-projector is B, the distance from B to the
projected pattern is Z0, and the disparity between the projected dot and observed dot is
D. In this case, it is possible to calculate the distance Z for each dot from the similarity
of triangles as follows:

D

B
= (Z0 − Z)

Z0
=⇒ Z = Z0(B − D)

B
(3.1)

In this formula, B is known and remains constant. Z0 can be determined by calibration
and the disparity D is the displacement of a dot or a group of neighboring dots between
the projected and observed patterns. More detailed information about the geometrical
calculation and deeper insight into the different models of estimation can be found in
[45, 66, 104, 23].

Recording settings

The video sequences are recorded in different bedrooms and living rooms where different
actors (male and female) are simulating getting up behavior. Each field of view is set to
represent a possible real-world use case of positioning the camera setup. The camera
is positioned to record scenes from the right, left, and center. Generally, no specific
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Figure 3.3: Demonstration of an example of projected and observed dot pattern for
calculating the distance z when the object is closer to the camera than the projected
pattern. The disparity D indicates the displacement of a same dot in both of the projected
and observed patterns. (inspired by [45])

restrictions are considered on where and in which position the camera should be placed
inside a room. The only rule being that bed and person should be completely inside the
field of view of the camera. Each actor in each recording simulates a variety of getting
up behaviors with and without using a blanket. The getting up behavior varies as each
person gets up from a bed dependent on the characteristics of their physical body and
habits. Getting up behaviors like jumping on the bed or standing on the bed before
getting up etc. are not considered and not examined during evaluation. Examples of
recording situations are depicted in Figure 3.4.

3.1.2 Data pre-processing
All the video sequences are recorded with the maximum possible quality (640 × 480
resolution @30 FPS) with the Astra RGB-D camera unit. Hence, from each second of
the depth stream, 30 depth images with the same resolution are extracted and stored
separately as Portable Network Graphics (PNG) image file. The PNG file format is
chosen because it uses a non-lossy compression algorithm that avoids loss of information
when storing on a hard-drive. Furthermore, this format does not degrade image quality
after editing the image which is crucial for Data Augmentation.
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Figure 3.4: Demonstration of camera position and actors who are getting up in different
settings. RGB images are used in this figure for demonstration purpose only.

There is a structural difference between depth and RGB images that would cause an
incompatibility problem when transferring the knowledge from a network that is trained
on RGB images. A depth image is a single-channel image where each pixel represents
how far an object is from the camera. RGB images on the other hand have three-channels
where each pixel is the combination of three colors of red, green, and blue. Due to this
difference, depth images are not compatible for training/testing on networks that have
been pre-trained on RGB images. There are two possible solutions of this issue: the
first option is to change the network so that it becomes compatible with single-channel
images. This, however, is not a suitable solution because changing the layers (especially
early layers) could have a ripple effect on what the network has learned and damage
the transfer learning process. The second option is to convert the depth images from
single-channel images to three-channel images in order to have the same input structure
as RGB images. One way to achieve this is to convert each pixel of a depth image into
an RGB color. This is not suitable because it could lead to information loss since the
recorded pixels are distances, not colors. Another way to convert the depth images is to
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take the single recorded channel of depth image, copy it twice and combine the copies
to produce a three-channel image. Thus, the depth image as the input of the network
becomes a three-dimensional tensor mimicking an RGB image. The three dimensions of
the tensor are equal to each other and represent a single-channel depth image.

Labeling

Labeling the extracted images is done differently, depending on the classification or object
detection method. In classification, the whole image is simply assigned to a label. In
object detection, an object inside the image is specified by drawing a bounding box
around it and assigning a label to it. In order to distinguish the images from one another
and label them correctly, it is necessary to formally define getting up behavior of a single
person to determine what is considered to be a sitting or standing position and what is
considered as a lying position. Each complete getting up motion contains consecutive
motions that are captured in a series of consecutive frames. Humans could recognize
a getting up motion by looking at each individual frame without any prior knowledge
about the motion. Therefore, each frame is labeled individually and the datasets contain
no information about the order of frames.

Getting up is defined as the motion of the human body that transfers the body from
a horizontal position on the bed to a vertical position to maintain body balance for
standing up. In order to recognize a person getting up, a network has to be able to
distinguish between lying and standing or sitting. Hence, each frame is labeled with one
of two labels: "lying" or "standing". An image is labeled "lying" when a person is present
on the bed in horizontal resting mode. Once a person passes a critical point in which
the feet are off the bed on a downward-moving trajectory and simultaneously the upper
body part moves from the mattress in an upward-moving trajectory, the image is labeled
"standing". Both labeled situations and the critical point are demonstrated in Figure3.5.

For training a model and evaluating its generalization for unseen future data, the data
should be divided into three smaller datasets: training set, validation set, and test set.
The training set contains all images used for training in forward pass and backward pass
in every Epoch. The validation set is used to estimate how well the network is generalized
in the same Epochs and tunes the hyperparameters, whereas the test set is used to
estimate how well the network performs after being trained. Noteworthy, all images in
each of the three datasets must be distinct from one another. However, all the frames in
a depth video sequence are similar, because they are acquired with 30 frames per second,
which means 30 depth images per second are generated and within a second the setting
of a room stays mostly the same. Also, an activity like lying on a bed is a long term
activity in which the person mostly does not move. Therefore, taking all frames would
overfit the network with the repetition of similar images. To avoid overfitting, instead of
extracting all the frames, only every 5th frame is extracted (6 frames per second instead
of 30). In order to make the datasets distinct, the images are should be divided based on
their the field of views.
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Figure 3.5: Example of an image which is a) labeled "standing" where a person is sitting
on the edge of the bed and b) labeled "lying" where a person is lying on a bed; c) shows
the critical point at which the position changes from lying to standing.

Because the amount of data available for getting up behavior modeling is limited, the
data is divided only into training and validation sets and the test set is omitted. The
reason behind this is that the test set should ideally simulate unseen future data and
if the size of the test set is fairly small, it makes the evaluation of the model uncertain.
Plus, increasing the size of validation and train sets benefits the model performance.

Each of the training and validation sets is prepared differently based on the classification
or object detection task they are utilized to solve. In classification, each label is assigned
to a folder and the images of each dataset are labeled simply by copying each extracted
frame into the corresponding folder. For object detection, each depth is labeled with
bounding boxes. Each bounding box is a rectangular shape that contains information
about the position and the object inside it. An image can have more than one bounding
box, each of which points to different objects inside the image. However, here, each
scene contains one bed within a room with one person lying on it. Therefore, there
is one bounding box per image. The labeling is done with the help of RGB images
of the same recording. As depicted in figure 3.6, for labeling a depth image, first the
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bounding box with its label is manually added to the RGB image of a frame, and then the
Extensible Markup Language (XML) information about the bounding box is produced
and extracted. Next, the RGB image is replaced by the depth image of the same frame.
Each XML file contains the following items: filename of the depth image, path to the
image, coordinations for the bounding box and its label. Labeling and setting bounding
boxes is performed by the program "LabelImg"3 in PASCAL VOC format.

Figure 3.6: Demonstration of labeling bounding boxes of depth images with the help of
RGB images. At each frame the RGB and depth images are taken and the bounding box
is added to the RGB image. Then, information about the bounding box is stored in an
XML file. The pair of XML and depth image is used as input for object detection.

Data Augmentation

In total, 12 different rooms are captured and Data Augmentation techniques are used to
artificially enlarge the datasets.The augmentation techniques used for classification and
object detection are listed below:

• Classification:

– Training set:
∗ Random crop: Cropping random size of 0.08 to 1.0 from the original size

with the same aspect ratio. This crop at the end is resized to the size of
224 × 224 pixel.4

∗ Random horizontal flip: Randomly horizontally flipping a defined propor-
tion of the training set.

∗ Random Rotation (45): Randomly rotating the whole image in 45 degrees
in clockwise or counterclockwise direction.

3https://github.com/tzutalin/labelImg (visited on 04.11.2020)
4https://pytorch.org/docs/stable/_modules/torchvision/transforms/

transforms.html#RandomResizedCrop (Visited on 04.11.2020)
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– Validation set:
∗ Resize: resizing the images to the size of 224 × 224 pixel.
∗ Center crop: Cropping the image from center to the desired output size.

• Object detection:

– Train set:
∗ Resize: resizing the images to the size of 640 × 480 pixel.
∗ Rotate: Rotating the image and its bounding box by 45 and -45 degrees.
∗ Translation: Shifting pixels inside the image in two different axis of X

and Y.
∗ Crop: Cropping pixels at the sides of the image.

Data augmentation is not required for the validation set, because this dataset represents
real unseen future situations. The resizing that is used in data augmentation is based on
network architecture. In classification, the ResNet is used that accepts a certain input
size due to the existence of a fully connected network as a classifier. Therefore, validation
and train sets use resizing as a form of data augmentation which can be seen as data
preparation. In object detection where the faster R-CNN is used, images do not need to
have a certain input size even though the network contains two fully connected layers
as a classifier in the last layers. The faster R-CNN uses a special pooling layer that
resizes every feature map tensor to a specific size before passing it to the fully connected
layer. However, all the images are resized to a fixed size of 640 × 480 so that the network
performs on the unified input size.

In order to normalize the data, the mean and standard deviation of the entire dataset
(either train set or validation set) for each channel needs to be calculated. One way to
calculate them is based on the images sizes. If the images have the same size, the mean
and standard deviation is equal to the mean of each image means and standard deviation.
If the images have different sizes, the same principle but with a weighted mean can be
used. Another way to calculate them per mini batch instead of per image. The mean
and standard deviation is calculated per mini batch of the size 2048 (The bigger the size
of mini batch, the more accurate the standard deviation) and averaged over throughout
the entire dataset. The calculated standard deviation and mean differs from what they
actually are. However, this difference is small that does not have an impact in practice.

3.2 Methods
For each method of classification and object detection, a network architecture that is
compatible with depth images and has the desired output is required. This is achieved by
taking a network trained on RGB images and modifying it in order to be compatible with
the output desired for detecting getting up behavior for both methods of classification
and object detection. Then, for each network, the training process needs to be defined in
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order to not only tackle the task of detecting getting up behavior but to also exploit the
effectiveness of using transfer learning techniques in this context.

3.2.1 Classification
Architecture

In classification, there are state-of-the-art CNN-based architectures available such as
ResNet [34], inception [108, 109], Alex Network [49], VGG [102], dense network [39]
and squeeze network [40]. Each of these architectures has been trained on publicly
available datasets such as ImageNet. Adjusting and modifying the neural networks are
not automatic tasks and they are unique to each model.

Any of the aforementioned networks could have been a possible choice for this experiment.
All of these networks can be used in both classification and object detection and they
use a different technique to overcome the vanishing gradient descent problem [44]. This
is a problem that occurs during training when each neuron receives an update based
on a partial derivative of loss function backpropagated to the neuron. When a network
is deep enough the gradient update becomes so small that it has almost zero effect to
change the values in the earlier layers of the network. Out of these networks, ResNet is
chosen as the backbone CNN because apart from the mentioned advantages, the ResNet
also solves the degradation problem which is a problem caused by the network depth.
As the networks increases in depth, the accuracy gets saturated which then causes the
accuracy to degrades. Basically, adding more layers to the suitable models leads to higher
training errors [34]. In addition, the ResNet is available in various number of layers from
ResNet18 to ResNet152.

Figure 3.7: Illustration of a single residual block that is proposed in ResNet [34].

ResNet introduces a layer called residual blocks to overcome the issues. As depicted in
Figure 3.7, a residual block is a layer that takes the input activation and fast-forwards to
the deeper layer (skip connection) or, in mathematical terms, it uses an identity function
which always returns the input as the output to preserve the gradient, since the gradient
of the identity function is 1. Each residual block has a connection that can skip layers and
prevent the vanishing gradient problem. Therefore, it is possible to stack residual blocks
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as needed to go deeper into complex problems without facing the vanishing gradient
problem. More detailed information about identity function and residual blocks can be
found in publications written by Kaiming He [34, 35].

Among the available depths of ResNets, the ResNet18 is chosen as the backbone for
this experiment because it is lightest among all ResNet networks while the overall
performance difference is less than 5% according to [110]. ResNet18 is trained on the
1000-class ImageNet dataset and has exactly one output neuron for each of the classes.
Since the depth images are converted to three-channel images in preprocessing, the
input of the network does not need to be modified. The output layer of the ResNet18
(classification part) on the other hand needs to be adjusted. It takes the extracted feature
from CNN part as input and generates "lying" and "standing" classes as output. The
ResNet18 architecture contains a convolutional layer with a max pool, 8 residual blocks
that are divided into 4 different layers followed by an average pooling, and 1000 neurons
as output layer that are fully connected to the previous layer. The network architecture
is depicted in figure 3.8. To modify the network, the current fully connected output layer
of the trained network that is directly connected to the extracted features by CNN is
removed and two new neurons as the output with random weights and biases are attached
as demonstrated in Figure 3.8.

The network ResNet uses a fully connected network at the last layer that only takes a
fixed-size feature map. The average pooling before this layer outputs the needed fixed-size
feature map and it is indifferent to image size. However, because in this experiment,
the pretrained network is used, the input depth images must have the same input size
that the ResNet was originally trained on which is a squared image of the size 224 × 224
pixels. Thus, all the depth images in the dataset which have the size 640 × 480 pixel
are resized before being fed into the network as a part of data augmentation. The input
tensor for the network is a 3 × 224 × 224 and the size of the input tensor changes as it
is passing through the network. The output sizes after each layer are listed below (the
softmax layer is omitted):

• First Convolution and max pooling: 64 × 112 × 112

• Layer 1: 64 × 56 × 56

• Layer 2: 128 × 28 × 28

• Layer 3: 256 × 14 × 14

• Layer 4: 512 × 7 × 7

• Average Pooling: 512 × 1 × 1

• Output Layer: 2
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Figure 3.8: The architecture of modified ResNet18 that is used for classification. It
contains two parts:CNN and a fully connected network. The CNN part of the ResNet18
includes 1 convolutional layer followed by 4 layers of residual blocks where each of them
has two convolutional layers that are followed by a batch normalization layer and ReLU.
After the fourth layer, the CNN outputs the features to the fully connected network
with an average pooling in order to have a fixed output size. The last layer takes the
feature maps and outputs a vector of size 2 where it uses a softmax layer to output the
probability of the two class labels.

The abstract way of looking at this network is that the network takes an image and
extracts features from the original image. As it propagates forward in the network layer
by layer, it tries to extract higher-level features until it reaches a tensor of the size 512.
At last, based on the extracted features, a simple fully connected network classifies if a
person is standing or lying on a bed.

Training

The modified classification network is trained in three different manners to exploit the
effectiveness of the training process and transfer learning:

1. Freeze and fine-tune

2. No Transfer Learning
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3. Only fine-tune

In both fine-tuning and transfer learning approaches, the whole modified network is
trained without any restriction. In the fine-tuning, all of the parameters inCNN part
are initialized with the values transferred from the trained ResNet18 whereas in the no
transfer learning approach, all of the network parameters are initialized randomly. The
freeze and fine-tune approach has a two-phase training: In the first phase, the transferred
part of the network is frozen in order to avoid changes during training and only the
newly added part is trained (feature extraction mode). In the second phase, the frozen
part of the network is unblocked from training and the whole network participates in
training without any restriction (fine-tuning mode). The idea behind this approach is
that the newly added neurons and connections have random weights and biases and this
makes the network not knowing how the output should look like while the CNN part is
extracting features. Thus, in the first phase, the newly added output layer learns how
the output of the network should look before the whole network starts to get trained.
In other words, the new output layer has no understanding of how to classify based on
the extracted features due to its random initialization. In training, this might lead to
unwanted alterations in the transferred part of the network and/or induce loss of what
CNN has previously learned.

For training of all the models, a backpropagation algorithm with a cross-entropy loss
function is used. Also, instead of using a constant learning rate during the training
process, its value is reduced by gamma=0.1 at every n=10 Epoch. This is known as
step-wise decay or adaptive learning rate which helps the optimizer to converge faster
with a higher success rate as previously suggested by Bengio et al. [9].

In training, at the end of every Epoch, the validation loss obtained from the current
Epoch is compared to the best previous validation loss. If it is smaller, then the weights
and biases of the network from the current Epoch will be saved and the best previous
validation loss will be replaced by the current Epoch validation loss. If it is bigger,
then nothing happens and the training continues. This functionality leads the training
process to return the best-achieved model parameters of the entire training instead of
the parameters of the last training Epoch. In addition, this feature enables the use of
early stopping, which is used to avoid overfitting during training. The threshold for early
stopping is defined by the step size of the learning rate because if the network is not
generalizing and starting to overfit, the learning rate would get reduced at least one more
time and gives the optimizer another chance to converge if possible before the training
stops by early stopping. In the fine-tuning and no transfer learning approaches, the
hyperparameters are set before the training process. However in the freeze and fine-tune
approach, before the start of the second phase, all the hyperparameters that are changed
during the last phase such as learning rate, early stopping counter, optimizer are reset to
its original value after the first phase is finished. The exact values for hyperparameters
used are listed in the next chapter 4.1.
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3.2.2 Object detection
Architecture

For object detection, Faster R-CNN with ResNet18 as its feature extractor is used. This
network has previously been trained on the COCO dataset and is flexible in choosing
different CNN networks as feature extractors [93]. For the sake of simplifying comparison
between classification and object detection, ResNet18 is used as backbone CNN for both
tasks.

The general idea behind Faster R-CNN is to take the feature maps from the CNN part
and use it as the input for the RPN network that outputs/proposes boundary boxes
(around 2000 proposals). For each proposed boundary box, the parts of the feature maps
that correlate to the proposed boundary box are then extracted with the help of RoI
pooling. Afterward, the classifier assigns a label to the proposed boundary box based on
the extracted features. RPN works with predefined anchor boxes in order to propose the
boundary boxes and has two tensors as output: the first is the likelihood score which
indicates how likely an object (regardless of the class labels) exists in this boundary box
and the second is the tensor that contains the offset coordinates for the boundary boxes
which will be applied to anchors to get the final coordinates. The output of the classifier
layer is similar to the output of RPN except that one of the tensors assigns a class label
to each box with the probability instead of the likelihood of the existence of an object.

To modify the network to fit the purpose of object detection in detecting "standing" and
"lying" in the context of getting up behavior, the changes do not only need to be made
on the output of the classifier layer but also on the output of the RPN network. This
is because the predefined anchor boxes from RPN are different than what it is suitable
for this experiment and the RPN is trained to detect objects that are in the COCO
dataset. Thus, in order to build the network, three parts of Faster R-CNN have to be
built/modified, namely: backbone CNN, RPN and the classifier. The architecture of the
network and the three parts are illustrated in Figure 3.10.

Part I: ResNet18 is chosen as the backbone for this network. The feature map produced
by ResNet18 is 512 × 1 × 1 for each single image. This is a single vector of the size 512
which is not suitable for Faster R-CNN, because the RoI pooling layer is used to find the
region of interest inside the feature map. Thus, if each dimension of the feature map
has only one element 1 × 1, then all the proposed boundary boxes have the same set
of features regardless of where each box is located. One solution is to cut the network
before the average pooling where the output tensor of the CNN part is 512 × 7 × 7 so that
the RoI pooling layer can find the region of interest inside the feature map. However,
this approach introduces another problem with predefined anchor boxes. One of the
advantages of using CNN is that each neuron at a deeper level has a larger receptive field.
By calculating the layers for ResNet18, each neuron at the feature maps has a receptive
field of a 435 × 435 [34]. The receptive field can be larger than the input because the
network uses residual connections [7]. This implies that every anchor size (even the size
of 1 × 1) applied to these feature maps still defines a boundary box as big as the input
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image. Therefore, training such a network requires multiple sizes of an object for training
so that the network can gain an understanding of various sizes of the object. Again,
this would borderline the problem with the problems of gathering data, especially in
detecting getting up behavior where there is no dataset publicly available. Still, there is a
possibility to cut further into the CNN until the size of the feature map and its receptive
field is suitable for applying different anchor sizes where anchor boxes can search through
the image at various window sizes. However, cutting deeper into the CNN reduces the
capacity of the network because going deeper is the key to extracting high-level features.

Tsung-Yi Lin et al introduced a novel network called Feature Pyramid Network (FPN)
where it maintains the capacity of the CNN while using different anchor size at various
scales[58]. The FPN uses multi-scale feature maps to detect different sizes of an object.
Figure 3.9 depicts how RPN works. The image data flows in two directions: Bottom to
top and top to bottom. On the left side of the figure, the image data flows through the
CNN and gets smaller in resolution but higher in dimension (high in terms of semantics).
On the right of the figure, the FPN layer takes the last feature map from CNN with high
semantics to solving a task and increases the resolution. There is a lateral connection
between FPN and feature maps that merges the higher resolution of feature maps with
the current feature maps. This helps to improve the detection and also functions as a
skip connection similar to what is used in ResNets. More detailed information about
FPN can be found in [58]

Figure 3.9: The network illustrates the architecture of FPN. On the left-hand side, the
image data flows from bottom to top in order to extract the features (thicker borders
represent higher semantics), and on the right-hand side, it uses the extracted feature to
construct a higher resolution with higher semantics [58].

Figure 3.10 demonstrates the whole modified network for detecting getting up behavior.
The left side of the figure shows the architecture of the first part. ResNet18 is used as
the CNN for extracting high-level features for the FPN and it has four residual blocks
that are color-coded in Figure 3.10 where each is named as C2, C3, C4, and C5 for the
convolutional layers 2, 3, 4, and 5 respectively. Each of these layers has a corresponding
layer in the top to bottom part of FPN where they are called M2, M3, M4, and M5
respectively. Furthermore, there is an extra layer called M6 that is the same as M5 with
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a max pool layer on top. Each of the M2, M3, M4, M5, M6 layers outputs a feature map
called P2, P3, P4, P5, P6 respectively that have different sizes but equal semantics.
The last layer of ResNet18 outputs a tensor of the size of (512 × 15 × 20). The actual
output size of the ResNet18 is different than what is described in the corresponding
publication [34]. This is because the input of the depth images has the size of (640 × 480)
and is not similar to the fixed size of (224 × 224) that is assumed in the publication.
After passing the last layer of ResNet18, the extracted feature map is passed on to a 1 × 1
convolution to reduce the C5 from 512-d to 256-d without changing the resolution of the
feature map. Hence, the size of the feature map is (256 × 15 × 20) at M5. This is the
first feature map (P5) that is passed to the RPN as an output. Then, as it goes to the
next layer, it upsamples the tensor by the factor of 2 using nearest neighbor upsampling.
Then it merges element-wise with the C4 (the related feature map) which is also passed
through a 1 × 1 convolution filtering to reduce its dimension to 256-d. In other words,
the tensor (256 × 15 × 20) is upsampled to (256 × 30 × 40) and then is simply added
element-wise with the output of lateral connection which has the same size. This is
the second output of the network (P4) that is passed to RPN. This is repeated twice
more until there are four feature maps of P2, P3, P4, and P5 that correspond to four
layers of ResNet18. In addition, there is an extra output that is the result of a simple
2D max-pooling (downsample by stride two) applied on the M5. This feature map is
created, for covering larger anchors sizes such as 512-pixel and higher [58].
In all the layers inside the FPN, frozen batch normalization is used instead of batch
normalization, because in object detection the size of mini-batches is small. Using normal
batch normalization leads to poor mini-batch statistics which degrades the performance
[34].
Part II: In this layer the RPN takes all the feature maps and proposes RoIs with the
help of predefined anchors. Originally without FPN, the RPN takes a single feature map
and perform a 3 × 3 convolutional layer succeeded by two neighboring 1 × 1 convolutional
layers that are used for classification and boundary box regression with the respect
to predefined anchors. The anchors are defined based on their size and aspect ratio.
By default Faster R-CNN uses three sizes and three aspect ratios which yields k = 9
anchors. The anchor sizes and aspect ratio are fixed and should be set before training or
inference. Therefore, they are considered hyperparameters that can affect the outcome of
the network.
For detecting getting up behavior, it is assumed that the size and position of the bed
inside the frame is not fixed. Therefore, the size of the boundary box can be varied
and the network should be able to detect them all. Because the size of depth images is
fixed (640 × 480) pixels, the maximum possible anchor size is (512 × 512) pixels. The
sizes bigger than 512 pixels would be 1024 pixels that contain the whole image which
is a classification task by considering the size of depth images. Figure 3.11 depicts the
statistics for all boundary boxes in both the train and validation sets. Plot a) in the
figure demonstrates the histogram of aspect ratios in which it is clear that more than
95 % of the aspect ratios lie within the interval of [1, 2.5]. Plot b) demonstrates the
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Figure 3.10: The plot illustrates the modified object detection network which contains
three different parts: FPN as the backbone, RPN, and the classifier. The backbone of
the network uses ResNet18 with FPN that outputs multi-scale feature maps where each
feature map has high semantics (high extracted features) but in different sizes [58]. The
second part includes the RPN that takes each of the feature maps and proposes boundary
boxes. In the third part, with the help of RoI pooling, the relevant feature for each
proposed box is extracted in a fixed size and passed forward to a fully connected layer for
classification. The output of the network has two tensors: classes of size 3 (one for each
class label + one for the background) and offset to boundary boxes for each class label. 59
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histogram of the square root of the area of the boundary boxes in which more than
97 % of the boundary box areas lie within the interval [127, 527]. Hence, it is sensible
to assume that the anchors in future situations would also lie within these intervals.
Plot c) in the figure demonstrates a scatter plot of the aspect ratio and boundary box
area and the red rectangle inside the plot shows the intervals mentioned above. It is
clear that the chosen intervals do not cover every possibility of occurred boundary boxes
and possibly every new situation/room might have different sizes of boundary boxes.
However, they cover more than 95.0 % and 97.2 % of all the aspect ratios and sizes
available in the datasets. Therefore, the values of (Size = {322, 642, 1282, 2562, 5122}
and AspectRatio = {1 : 2, 1 : 1, 2 : 1, 2.5 : 1}) are set as the anchor boxes values based
on the mentioned intervals. Hence, there are 20 anchors per spatial area.

RPN is adapted to be able to work with FPN. The RPN is applied to all levels of the
FPN with 3 × 3 convolution followed by two 3 × 3 convolutional layers. However, because
the 3 × 3 slides over all areas of all levels of the pyramid, it is not necessary to use all
different scales of anchors in terms of size over every level of the FPN output. Each
anchor size is assigned to a single level of FPN output. Formally, the anchors are defined
to have areas of {322, 642, 1282, 2562, 5122} pixels covered on {P2, P3, P4, P5, P6} and all
sizes are used in multiple aspect ratios of {1 : 2, 1 : 1, 2 : 1, 2.5 : 1}in each pyramid level.
The reason to assign the smallest area to the largest feature map is that the higher
(smaller) the size of the feature map, the bigger is its receptive field. The output of the
RPN is a set of proposed boundary boxes per each level of pyramids and passes to the
next part of the network.

Part III: This part takes the RoI proposals from RPN and the outputs from FPN then
produces the final results. Originally, the RoI pooling is used to extract features from
a single feature map in a fixed size. The RoI for this network is needed to extract the
related features from different feature maps. So it is necessary to expand the capability
of the RoI so it can work with multi-scale feature maps. Therefore, the RoI adapts a
new strategy to decide which feature map is suitable for extracting the features for each
proposed boundary box. The strategy starts from the feature map M6 (smallest in terms
of resolution) and takes a proposed RoI. Then the RoI is scaled to the input image if the
proposed RoI becomes smaller than half of the original image size (640 × 480), it uses a
finer resolution level (or bigger in terms of feature map resolution) until the RoI scale
becomes bigger than half of the input image size. The exact formula can be found in [58].

After the feature map is chosen, the RoI pooling is used to extract 7 × 7 relevant features
and passes them to the next two fully connected network layers as depicted in Figure
3.10. In the original ResNet18, the last convolutional layer (conv5) is adopted to extract
a 7×7 feature but in the FPN this is already being used to construct the feature pyramid.
Hence, the RoI pooling outputs the same size features to attach two hidden 1024-d fully
connected layers. These layers are initialized randomly. Afterward, these layers are
connected to two sibling layers of classification (softmax) and boundary box regressor
that finalize the output. Unlike the similar layers in RPN, these last two layers are
specifically designed to output prediction for detecting getting up behavior. The classifier
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Figure 3.11: This figure demonstrates statistics of boundary boxes available in train
and validation sets. In a), a histogram of all aspect ratios of all boundary boxes is
depicted. b) depicts the histogram of all square root of all boundary boxes. The square
root of the area is chosen because it is easier to understand the area of a boundary box
based on the number of pixels that exist on the side instead of the number of pixels
inside the area. c) demonstrates the scatter plot between the area of boundary box and
aspect ratio. The red rectangle inside this plot shows the area that the chosen anchors
(Size = {322, 642, 1282, 2562, 5122} and AspectRatio = {1 : 2, 1 : 1, 2 : 1, 2.5 : 1}) for the
modified Faster R-CNN network is able to cover.
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head has the size of three, one for each class label of "standing", "lying" and "background".
The boundary box regressor has a size of 12 which is three times boundary box locations
of size four, one for each class label.

After building these three parts, they are assembled to build an End-to-End network that
is trained all at once. This network is a collection of different parts that are designed
separately and combined. Unlike the classification network which needs a modification of
the original pretrained ResNet18 to be used for this experiment. In this network, part I
has the possibility to be used as a pretrained network and the other two parts are built
based on the requirements of this project and initialized randomly.

Training

The modified Faster R-CNN network is trained in three different approaches similar to
classification: Freeze and fine-tune, No transfer learning, and Only fine-tune. However,
the non-CNN part of the network is larger since it has the classifier and RPN. This
network is trained with different hyperparameter values.

The only difference between classification and object detection in terms of the training
process is how the loss of the network is calculated. The object detection network has
four different losses, two of which are for RPN network and the remaining two are for
the final output of the network. Each uses a different loss function, as stated below:

• RPN Objectness: Binary Cross Entropy with logits

• RPN Boundary Box Regressor: L1-loss

• Classifier: Cross Entropy

• Boundary Box Regressor: Smooth L1-loss

The final loss for the training is the sum of all four. However, in this project, the loss
used for training is a weighted loss where the losses are multiplied by a constant before
summing them up. This is, because the sum of all losses drops below 0.01 after one
Epoch which renders the training process unable to affect any changes in the network
and consequently the network does not learn/change to reveal any increase in validation
accuracy. Therefore, weighted loss is used to magnify the error rate (loss) for the
backpropagation to be able to make changes especially in the early layers of the network.
Each of the four mentioned losses is multiplied by a constant. Therefore, they are treated
as hyperparameters and selected based on the grid search. The weighted loss that the
object detection network trained with is calculated as follows:

loss = (loss classifier∗10)+(loss box reg∗3)+(loss objectness∗5)+(loss rpn box reg∗1)
(3.2)
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3.3 Workflow
In machine learning, it is common that the developer/researcher repeatedly makes
changes to a model until it reaches the desired outcome[116]. This iterative workflow or
human-in-the-loop approach is used for producing the desired results for this experiment.
An iterative workflow is a method in which all processes, data, and decisions inside the
workflow cycle can be executed multiple times until a satisfactory result is obtained.
This is useful in deep learning since training and evaluating a model requires repetitive
optimization on hyperparameters and the stochastic behavior in the learning process
might lead to different results [117].

Figure 3.12 shows the customized iterative workflow for this project. It starts by
formulating the problem where the goal of the project, the process of how to reach the
goal, and the tools that are required are defined. Then the cycle inside the workflow
starts by collecting data. Afterward, all the recorded data along with data received from
Cogvis Co. are processed and divided into two datasets: train and validation. Then both
datasets are used to construct a model. In the next step, the model is evaluated .

Figure 3.12: Iterative workflow is used in this experiment. The workflow includes the
steps that are taken from the point of setting the goal to the point where the outcome of
the project is evaluated and visualized. The graph contains a cycle that iteratively goes
through different steps and can be broken if the obtained results are satisfactory.

The evaluation process is different from machine learning evaluation since there is no test
set available for this experiment. The evaluation here provides information such as the
correctness of the algorithm or data, hyperparameter settings, etc. With the information
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provided by the evaluation process, it is possible to decide if the result is satisfying or
not. If yes, then the obtained results are visualized for analyzing the model. If no, it is
necessary to investigate if there is a problem in the development of the algorithm or data
preparation/collection. After diagnosis, the flow is continued in either collecting a larger
amount of data, preprocessing the data or even refining the algorithm.

3.3.1 Software
All the programs are written in Python programming language version 3.6.4 with the help
of Pycharm5as IDE in which a variety of packages is used for development. The video
sequences are recorded with Open Natural Interaction (OpenNI) which records in two
formats of RGB and depth and stores the video sequences as Open Natural Interactions
(ONI) file. This file can be opened and modified in Python with the same package. All
Python packages used are listed and briefly described below:

• Data collection and cleaning:

– PrimeSense (v2.2.0.30.post5)6: An OpenNI python package for working with
depth cameras.

– OpenCV (v4.1.1.26)7: Unofficial pre-built OpenCV packages for Python.
– Pillow (v6.2.1)8: Python Imaging Library.
– Matplotlib (v3.1.1)9: Python 2D plotting library.

• Deep Learning:

– Pytorch (v1.3.0)10: Deep learning research platform based on torch.
– Torchvision (v0.4.1)11: a package consisting of popular datasets, model archi-

tectures, and common image transformations for computer vision.
– TensorBoard (v2.0.2)12: Visualization and tooling needed for machine learning

experimentation.

• Evaluation and saving results:

– Pandas (v0.25.3)13: Python Data Analysis Library.
– Numpy (v1.7.17)14: fundamental package for scientific computing with Python.

5https://www.jetbrains.com/pycharm/ (visited on 04.11.2020)
6https://structure.io/openni (visited on 04.11.2020)
7https://opencv.org/ (visited on 04.11.2020)
8https://github.com/python-pillow/Pillow (visited on 04.11.2020)
9https://matplotlib.org/ (visited on 04.11.2020)

10https://pytorch.org/ (visited on 04.11.2020)
11https://pytorch.org/docs/stable/torchvision/index.html (visited on 04.11.2020)
12https://www.tensorflow.org/tensorboard (visited on 04.11.2020)
13https://pandas.pydata.org/ (visited on 04.11.2020)
14https://numpy.org/ (visited on 04.11.2020)
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– OS15: Miscellaneous operating system interfaces.

3.3.2 Hardware
The computational power utilized in all parts of the project was provided by Vienna
Scientific Cluster (VSC)16, a scientific cluster that provides supercomputer resources and
corresponding services to Austrian universities. It contains over 2800 Linux compute
nodes in which additional hardware such as GPUs is available. The nodes this project is
computed on are listed in 3.1

Component Model
Processor(CPU) Intel Xeon

Working Memory(RAM) 32 Gb
Graphic processor(GPU) NVIDIA V100 TENSOR CORE GPU with 16 Gb

Operation System Centos Linux 7

Table 3.1: Hardware specifications

15https://docs.python.org/3/library/os.html (visited on 04.11.2020)
16http://www.vsc.ac.at/ (visited on 04.11.2020)
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CHAPTER 4
Results and Discussion

The modified networks of classification and object detection are trained on the created
train set and analyzed on validation set during and after training in order to gain an
understanding of the model’s performance. For each model, the output performance on
validation sets is shown to determine 1) the behavior of the model during training and 2)
at which Epoch the network has the highest performance.

Following training, each model is analyzed based on its task: in classification, the model
output is examined with a confusion matrix to visualize the performance of the model for
each class label. All incorrect detections of the model are analyzed based on the room
situations in the validation set. In object detection, the model performance is analyzed
based on the two mAPs for a variety of IoUs along with incorrect detection in reference
to the room situations.

Overview of the Experiments

Classification and object detection tasks have different hyperparameters and are distinct
in terms of evaluation. Each task of classification and object detection is trained until
its optimal hyperparameter values are found. Afterward, each model is trained multiple
times with the same hyperparameters to find the model which performs best on the
validation set. This is due to the element of randomness that exists in training caused
by the optimization algorithm and online data augmentation which can lead to different
results in each training run.

After determination of the optimal hyperparameters, the models are trained with and
without the help of transfer learning techniques with these hyperparameter values in
order to exploit the effectiveness of applying transfer learning techniques.
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4.1 Classification
In the classification task, the modified neural networks explained in the previous chapter
are trained in three different ways as follows:

1. Freeze and fine-tune

2. No transfer learning

3. Only fine-tuning.

In freeze and fine-tune, the model is trained in two phases: First, weights and biases
are blocked (frozen) from participation in training as long as the optimizer algorithm
is still able to converge. Second, all weights and biases are unblocked (unfrozen) and
the training of the whole network with weights and biases gained from the first phase
is continued. This model is referred to as Freeze and Fine Tune throughout this
sub-chapter. In the second approach, the network is initialized with random weights and
biases, and no transfer learning technique is used for training the model. This model
is referred to as the No Transfer learning model from here on. In the third training
approach, the whole network is fine-tuned without any restrictions. This approach is
referred to as Fine Tune.

All of the aforementioned models are compared with each other and their advantages
and disadvantages are discussed in the following subsections. The aim of training the
same neural network architecture in different manners is to exploit the effects of using
the transfer learning technique and how it can affect the model outcome.

Hyperparameters

All the hyperparameters used in classification are listed in Table 4.1 along with their
values for the best result. The table does not contain all hyperparameters available for a
neural network model. hyperparameters related to architectural design are excluded. The
values are selected based on the grid search technique and are kept constant throughout
the different training models in the classification task. The number of Epochs are omitted
from the table because the early stopping technique is used.

Model 1: Freeze and Fine-tune

In Figure 4.1, the learning curve obtained from training the freeze and fine-tune model
is depicted. The entire training took about 40 minutes in 80 Epochs. The accuracy of
the training and validation set starts from around 52 % and continue rising to 70 %
in Epoch 11. The network is not able to converge further. Training continued without
further improvement in the accuracy or loss until Epoch 49. Interestingly, during training
until Epoch 49 the validation set achieved approximately 2 % higher accuracy and
approximately 0.02 higher loss compared to the training set in Figure 4.1. This effect can
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Hyperparameter Value
Learning Rate 0.001

Batch Size 256
Optimizer SGD

Momentum 0.9
Weight Decay 0.0001

Learning Rate Step Size Every 10th Epoch
Learning Rate Change Rate (gamma) 0.1

Loss Function Cross Entropy
Early Stopping True

Data Augmentation True
Normalization True

Table 4.1: Hyperparameter values applied for training of the classification task

be explained in various ways: Firstly, the size of the validation set is smaller than the
training set and the majority of the network is blocked from training. So the network is
performing on two datasets, one of which is smaller than the other, but both are derived
from the same distribution. Secondly, the training loss has regularization losses such as
dropout, weight decay, etc. during training, but none of these is used while calculating for
the validation set. Thirdly, even though both training accuracy and loss are calculated
during one Epoch, the validation set accuracy and loss are calculated after the training
is concluded. Thus, validation accuracy and loss are calculated after the Epoch is done
with the training set.

Following the freeze phase, the whole network is unblocked and participates in the
training. As depicted in Figure 4.1, at the start of phase two rapid improvements occur
in both accuracy and loss and it continues until Epoch 55, where the validation loss and
accuracy start to depart from one another. This is considered the optimal point as further
training past this point leads the model to overfit. The network saves the weights and
biases at Epoch 55 as the most suitable parameters achieved up to this point. However,
as no better local optimum for accuracy and loss in the validation set is achieved past
this point, the training stopped and returned the parameters saved from Epoch 55.

Model 2: Fine-tune

The modified ResNet18 and its learned parameters are fine-tuned without any restrictions
for this model. The fine-tune training encompassed approximately 19 minutes and 34
Epoch in total. As shown in Figure 4.2, the learning curve begins to improve from the
start for both validation and training set. At Epoch 8, validation accuracy reaches its
maximum value while the training accuracy is still rising. After Epoch 8, the validation
set accuracy and loss starts to worsen until the optimization algorithm stops working.
The training returns the parameters for the final model at Epoch 8 which is determined
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4. Results and Discussion

Figure 4.1: The plots illustrate the learning curve of the network during training on
ResNet18. The plot demonstrates a) the accuracy and b) the loss of train and validation
sets at the end of each Epochs during the training phase.

as the optimal point for training. This model and training process were able to converge
at Epoch 8 which is 2 times faster in comparison with the freeze and fine-tune model
that reached the local optimum at Epoch 55. However, the freeze and fine-tune model
has approximately 4 % better validation accuracy and loss compared to fine-tune.

Figure 4.2: Lines in the plot demonstrate the learning curve a) accuracy and b) loss of
training and validation sets at the end of each Epochs during training in which the whole
modified network is fine-tuned in training.

Model 3: No Transfer Learning

The network used for this model is similar to the fine-tune model but with the difference
that its parameters are initialized randomly. Hence, no transfer learning techniques are
applied. The training took about 40 minutes and 69 Epochs in total. The learning curve
achieved for this model is depicted in Figure 4.3. The curve at the beginning of training
improves until Epoch 11 even though the improvement is less than 5 %. After that, the
curve becomes almost a straight line throughout the rest of the training. The train and
validation curves are close to each other and neither diverge from nor converge with one
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another. This indicates that the optimization algorithm is not able to converge further.
The accuracy for the training and validation sets from the beginning until the end is
between 50 and 60 % which is considered almost random for a binary classifier. In other
words, the curve shows that the model either is not able to learn how to detect getting up
behavior from depth data alone, or the provided data is simply not informative enough
for the task it should solve. From these observations, it can be concluded that without
the transfer learning, the network is not able to converge solely based on the currently
available data.

Figure 4.3: The plots demonstrating a) the accuracy and b) the loss of the train and
validation sets at the end of each Epoch during the training phase in which the network’s
weights and biases are not transferred from a trained network and are initiated randomly.

Confusion Matrix

The confusion matrix is a suitable approach to dive deeper into evaluating the three
models introduced above based on the class labels. In Table 4.2, three binary confusion
matrices for each of the three models along with their precision and recall are depicted.
The validation set contains exactly 854 images for each label.

For the freeze and fine-tune model, 85 % of all images labeled „lying“ and 84 % of images
labeled “standing” are correctly detected (recall) and the precision achieved for lying
and standing labels is 85 % for both. In the fine-tuning model, 91 % of lying labels
and 72 % of standing labels are detected correctly and accuracy for lying and standing
reached 76 % and 89 % respectively, which indicates more than 15 % difference between
the two labels for this model. Besides, the recall for lying and the precision for standing
are almost 5 % higher than the same values achieved by the Freeze and fine-tune model.
The difference gets higher up to 10 % when it comes to the precision for lying and recall
for standing between the two models. In other words, the difference between these two
models is due to the fact that the Freeze and fine-tune model is able to detect both
labels equally but the fine-tune model is almost 5 % higher at detecting lying labels and
higher precision at detecting standing labels. In model 3, where no transfer learning
techniques are used, the precision reaches approximately 55 % for lying and 87 % for
standing, which indicates that the model is biased towards higher precision in detecting
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standing situations. However, the recall value of 20 % for standing and 96 % for lying
shows a 70 % difference between the labels in the same model that implies the model is
biased toward detecting lying positions rather than standing positions.

Table 4.2: Three binary confusion matrix for all three models of classification are shown,
where the three models (Freeze and fine-tune, No transfer learning, and fine-tune) are
demonstrated in colors of yellow, orange, and green respectively. The rows in the matrix
represent actual class labels and columns represent the predicted class. The diagonal of
each matrix demonstrates the true positives of each class. The precision and recall for
each label and model is calculated and is depicted next to each matrix.

Incorrect detections

In order to distinguish between situations, it is possible to divide the images of the
validation set into their field of view and evaluate the models based on the field of
view, because each field of view has its own characteristics which can help to evaluate
the models. In the validation set, there are four different situations. Four examples of
the images from each situation are depicted in Figure 4.4 and their characteristics are
described as follows:

• Couch: An L-shaped couch is used instead of a normal bed

• Bedroom 1: The bed is positioned far from the camera and in a way that only
the bottom of the bed is visible to the camera set.

• Bedroom 2: King size bed, only half of which is used and the camera set is
positioned on the side.

• Bedroom 3: The edges of a single bed (especially the bottom of the bed) are
occluded with blankets and the camera is positioned on the side of the bed in a
lower position.

In Table 4.3, the incorrect detections are divided into different rooms contained in the
validation set where the images were originally taken. The field of views of bedroom 1
and the couch with the average of 31.6% and 34.6 % respectively are the highest incorrect
detections among of all the field of views. The reason for this is, in the couch field of
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view, the network should detect a getting up from a couch based on the data that only
represents getting up behavior from beds. In bedroom 1 field of view, by looking closely
at Figure 4.4, it is clear that the bed inside the field of view in bedroom 1 is positioned
in a way that the bottom of the bed occludes the rest of the bed and the highest wrong
detection is for detecting standing position in the field of view of the bedroom 1. In the
field of view of bedrooms 2 and 3, even though the rooms and beds are considered to be
new situations for the model, the least wrong detections happen in comparison to other
situations.

Field of Incorrectly detected (%)
View Model 1: Freeze and fine-tune Model 2: fine-tune Model 3: No Transfer Learning Average Over all models

Total Lying Standing Total Lying Standing Total Lying Standing Total Lying Standing
Couch 16.9 16.3 17.2 27.5 41.8 20.9 59.6 0 86.8 34.6 19.3 41.6

Bedroom 1 41.7 54.3 8.1 25.1 12.9 57.3 28.2 11.7 72.2 31.6 26.3 45.8
Bedroom 2 8.8 3.2 13.7 17.6 0 33.2 35.5 2.3 65.0 20.6 1.8 37.3
Bedroom 3 8.2 2.2 16.9 7.1 1.5 15.3 39.6 0 97.2 18.3 1.2 43.1

Average 18.9 19.0 13.9 19.3 14.5 31.6 40.7 3.5 80.3

Table 4.3: Summary of incorrect detections in percentage based on the field of view of
the camera(rooms) for each model in total and per label. In the validation set, the data
per label is not balanced since it is representing real-world situations and that is the
reason why in some cases, the total percentage of incorrectly detected is not equal to the
average over the incorrect percentage of the labels.

By looking at Table 4.3, in the model freeze and fine-tune column, the error in detecting
lying positions in bedroom 1 is much higher than in the fine-tuning model and vice versa.
This can be explained by the randomness of the learning algorithm which indicates there
are local minimums in training that could lead to the same overall accuracy but in fact,
they are different in detection. Besides, the no transfer learning model is skewed toward
lying labels. Therefore the incorrectly detected standing in all the situations is higher
than for other models.

By carefully examining the detected images, some of which are depicted in Figure 4.4,
the situations that the models were not able to detect correctly fall into two categories:
Firstly, where the images labeled wrongly as standing. these situations contain a position
when a person is in the progress of changing position from lying to sitting and/or the
legs of the person inside the frame are covered with a blanket. In this situation, the
freeze and fine-tune model achieved the lowest incorrect detection for standing. Secondly,
where the images are labeled lying incorrectly. This has three reasons: First, the sitting
position is different than usual, especially in the couch images, where one person can
sit at the front, center, or back side of the couch after getting up. Second, not both of
the legs are visible in a sitting position. This is where one leg of one person is either
hidden under the blanket or the person is sitting with one leg tucked under the other.
The third reason is similar to the previous scenario, where a person is in the middle
of the getting up process. In this situation, the fine-tuning model achieved the lowest
incorrect detection rate at the lying label. The incorrect detection score on average for
the freeze and fine-tune model is the lowest in comparison to other models.
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Figure 4.4: Examples of images for each field of view used in the validation set that the
models had difficulty detecting them correctly.

Summary

Table 4.4 shows an overview of all the measurements obtained for all three models.
The model Freeze and fine-tune is able to reach the highest validation accuracy and
lowest validation loss among all the models. However, the fine-tune model comes as
the close second and the difference to the first model is less than 3 %. By looking at
the F1-measurements, lying on average is 13 % higher in comparison to standing. This
indicates that all models are able to detect lying images better than standing images.

Overview of all the classification experiments

Model Precision Recall F1-Measurement Accuracy
(Validation)

Loss
(Validation)

Time
(Minute))L S L S L S

Model 1: Freeze and fine-tune 0.85 0.85 0.85 0.84 0.85 0.84 85.2 % 0.355 39
Model 2: fine-tune 0.76 0.89 0.91 0.72 0.82 0.79 81.9 % 0.389 19

Model 3: No Transfer Learning 0.55 0.87 0.96 0.20 0.69 0.32 58.8 % 0.666 40
Average 0.72 0.87 0.90 0.58 0.78 0.65

Table 4.4: Summary of all classification models

By comparing the accuracy of models 1 and 3, it becomes clear that using transfer learning
techniques has an positive impact on solving the problem. Even though, the knowledge
that transferred is from the ResNet18 network which is only trained on the-channel RGB
images, and this experiment is based on single-channel depth images.
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4.2 Object detection
The object detection network, similar to classification, was trained in three different ways:
Model 1 freeze and fine-tune, Model 2 fine-tune, and Model 3 no transfer learning. The
main reason for training the same network in different ways is not only to achieve the
best results but also to exploit the effect of the transfer learning technique. The concept
of three different training processes is similar to classification. All of the three models
are compared with each other and their advantages and disadvantages are discussed in
the following subsections.

Hyperparameters

All hyperparameters in object detection are listed in Table 4.1 along with their values for
the best achieved result. The table does not contain all hyperparameters available for the
neural network model. Hyperparameters related to architectural design are excluded. The
values are selected based on the grid search technique and are kept constant throughout
all three models in training of the the object detection task. The number of Epochs are
omitted in the table, since the early stopping technique is used.

Hyperparameter Value
Learning Rate 0.001

Batch Size 8
Optimizer SGD

Momentum 0.9
Weight Decay 0.0001

Learning Rate Step Size Every 4th Epochs
Learning Rate Change Rate (gamma) 0.1

Loss Function Cross Entropy
Early Stopping True

Data Augmentation True
Normalization True

Table 4.5: Hyperparameter values used in training of the object detection task

Model 1: Freeze and Fine-tune

Figure 4.5 depicts the curves for the freeze and fine-tune model. The left plot in the figure
shows the mAP curves in which the mAP(COCO) indicates that the mAP is calculated
for IoU [0.50 − 0.95] at each 0.05 interval and the mAP(PASCAL VOC) indicates that
the mAP is calculated for IoU > 0.5 for the validation set during training. The right
plot demonstrates the different losses of train data during training. In the first phase
of training, where only the newly added parameters participate in training, the curve
starts from mAP(COCO)= 0.05 % and mAP(PASCAL VOC)= 25 % and goes up to
7 % and 3 % respectively until Epoch 3. Afterward, both curves start to fluctuate and
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reach higher average precision until Epoch 12, where phase two of the training begins. In
the second phase of training where the entire network participates in the training, the
mAP steeply increases at Epoch 13. However, interestingly enough, in the right plot, the
loss at Epoch 13 increases when the training phase changed. Despite the higher loss in
at Epoch 13, the network with all of its parameters in training achieved approximately
15 % higher mAP(PASCAL VOC) compared to Epoch 12, where the loss is smaller but
only part of the network is taking part in the training. This could be because of RPN
network and fully connected layers of the network which are initialized randomly, actually
had a worsening effect in training after the FPN part of the network is unblocked in
the second phase of training. In other words, the layers must have unlearned what they
learned during the first phase of training. Nevertheless, After Epoch 13 the network
started fluctuating again and did not improve even though the loss was still decreasing.
After 9 Epochs, the training stopped and the states of all parameters from the best
mAP(COCO) at Epoch 13 is saved as the final model. mAP(COCO) is considered the
final single evaluation metric during training because it is a metric that covers different
IoU thresholds from 0.5 to 0.95 and it represents an overall fitness of the model.

Figure 4.5: plots demonstrating the training curve for the freeze and fine-tune model.
Plot a) indicates mAP for two different IoU thresholds of [0.5 − 0.95] for mAP(COCO)
and IoU > 0.50 for mAP(PASCAL VOC). Plot b) demonstrates the loss values of the
training set during training. The loss of the training contains four different losses that
are calculated directly from outputs of the network, loss(sum) is the sum of all four, and
loss (weighted sum) is the sum of the magnified all of the four loss values.

Figure 4.6 demonstrates PR-Curve for two different IoU thresholds for the trained model
at Epoch 13. In plot a), the curve starts from the top left, where precision is equal to 1
and recall is equal to about 0.08. The curve slowly comes down to where the precision
equals 0.20 and recall is near 0.70. This shows that at first the model is able to find
approximately 8 % of all the ground truths with 100 % positive prediction and as the
recall started to rise, the model is less likely to detect them correctly until the point
where 70 % of the ground truths are detected with only 20 % confidence. In plot b), the
model becomes less confident as the IoU threshold is raised to 0.70. The precision starts
around 0.40 and goes up slightly and then slowly drops until 0.10 and recall reaches the
highest point below 0.40. The area under the curve is an approximation of the mAP for
its respective IoU. In Figure 4.6, the left plot has a mAP of 42.9 % which is equal to the
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value of mAP(PASCAL VOC) at Epoch 13 in the left plot of Figure 4.5. The right plot
has a mAP equal to 14.9 %. The difference between the two mAPs suggests that the
model is less accurate in finding more precise bounding boxes.

Figure 4.6: plots demonstrating precision recall curve for a) IoU > 0.5 and b) IoU > 0.7
for the freeze and fine-tune model. The area under the curve approximates the mean
average precision of the model at the defined IoU threshold.

Model 2: Fine-tune

The network in this model is trained as a whole without any restrictions from the
beginning. Figure 4.7 depicts the training curve for this model. In the left plot, the
curve starts at 0.80 and 0.30 for mAP(COCO) and mAP(PASCAL VOC) respectively.
The mAP(PASCAL VOC) starts to increase until 0.90 at Epoch 5 where it reaches its
optimum point. On the other hand, the mAP(COCO) does not change much during
training. It increases slightly from 0.30 at Epoch 3 to 0.31 at Epoch 4. In the right plot,
loss values starts at 0.40 and decreases sharply until it is 0.10 atEpoch 2 and continues to
decrease until Epoch 5. Afterward, it does not change and stops improving. The training
process stopped at Epoch 13, where no more improvements are achieved and returned
the parameter values at Epoch 4 as the final model parameters. An interesting fact about
the training curve is that both of the mAPs did not increase more than 10% during
training but they started at a point where it is twice as high as the previous model. At
the start of training, the network has no understanding of the data and the task, because
the network before training at Epoch 0 is initialized with random values. Therefore, the
network either learned most of the data in the first Epoch and/or it started at a point
close to the local optimum with a steep gradient.

Figure 4.8 depicts PR-Curve for the fine-tune model. In the left plot, precision has a
value of 1.0 at the top left corner for the recall between [0, 0.4]. Thereafter, as the recall
increases from 0.4 onwards, the precision starts to decrease to the point where recall
equals almost 1.0, and precision drops to 0.35. As shown in the figure, the precision
dropped drastically in the last 20 % of recall. In other words, the model is able to detect
80 % of all ground truths with a precision of more than 80 % but close to where recall
equals almost 1, the model is able to detect the entire ground truths with only 35 %
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Figure 4.7: Plots demonstrating training curve for the fine-tune model. Plot a) indicates
mAP for two different IoU thresholds of [0.5 − 0.95] for mAP(COCO) and IoU > 0.50
for mAP(PASCAL VOC). Plot b) demonstrates the loss values of the training set during
training. The loss of the training contains four different losses that are calculated directly
from outputs of the network, the loss(sum) is the sum of all four, and loss (weighted
sum) is the sum of the magnified all of the four loss values.

precision, so with less than half of what it is at recall 80 %. This indicates that the
model is facing difficulties to detect 20 % of the ground truths. This plot also shows that
the model is able to detect all of the ground truths and to detect more than 80 % of
them with 80 % precision.

Figure 4.8: Plots demonstrating precision recall curve for a) IoU > 0.5 and b) IoU > 0.7
for the fine-tune model. The area under the curve approximates the mean average
precision of the model at the defined IoU threshold.

In the right plot of Figure 4.8, the model starts at the top left corner with a precision
equal to 1.0 but it decreases drastically as the recall increases to the point where it is
approximately 0.45. This plot demonstrates that the model, similar to the previous
model is not able to detect all the ground truths when the more accurate IoU threshold
is considered.
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Model 3: No Transfer Learning

The network in this model is trained with all of its parameters initialized randomly and
participating in training without any restrictions. Figure 4.9 shows the training curve for
this model. In the left plot, the curve for the mAP(COCO) starts at 0.12 and for the
mAP(PASCAL VOC) starts at 0.37. Similar to the previous model, mAP(COCO) does
not change much during training. It only increases slightly from 0.12 at Epoch 3 to 0.15
at Epoch 5. However, mAP(PASCAL VOC) increases from 0.37 to 0.5 at Epoch 6. In the
right plot, despite the fact that loss values are less than one at the Epoch 1, it manages to
decrease considerably from 0.65 at the beginning to 0.11 Epoch 5. The training algorithm
stopped after Epoch 14 where it could not converge further and returned the parameter
values at Epoch 5 as the final output.

Figure 4.9: Plots demonstrating training curve for the no transfer learning model. Plot
a) indicates mAP for two different IoU thresholds of [0.5 − 0.95] for mAP(COCO) and
IoU > 0.50 for mAP(PASCAL VOC). Plot b) demonstrates the loss values of the training
set during training. The loss of the training contains four different losses that are
calculated directly from outputs of the network, loss(sum) is the sum of all four, and loss
(weighted sum) is the sum of the magnified all of the four loss values.

In Figure 4.10, PR-Curve demonstrates the evaluation of the no transfer learning model.
In plot a), on the top left corner, precision equals 1.0 at its maximum. As the recall or
the total number of positive detection increases, the precision starts to drop about 10 %
to the point where the recall is near 0.28. Afterward, the precision starts to decrease
rapidly until the precision is dropped down almost 40 % where recall equals 0.38. At this
point, the decrease of the precision slows down but continues until 0.23, where the recall
is 0.82. This plot suggests that the network is able to learn some getting up positions
better than others. Therefore, there is a 50 % change in precision as the recall increases
only 20 %. In the right plot of Figure 4.10, the area under the curve is less than 0.5.
Precision starts at 0.4 and drops down immediately to almost zero at recall 0.2. The
area under the curve in plot b) is equal to only 4.2 % which indicates that the network is
not able to detect precise boundary boxes at all.

79



4. Results and Discussion

Figure 4.10: Plots demonstrating precision recall curve for a) IoU > 0.5 and b) IoU > 0.7
for the no transfer learning model. The area under the curve approximates the mean
average precision of the model at the defined IoU threshold.

Analyzing incorrect detections

An approach to evaluate the three models is to dive deeper into understanding which
situations are not detected. In order to distinguish between situations, the images of the
validation set can be divided into and evaluated based on their field of view, because each
field of view has specific characteristics which can help to better evaluate the models. In
the validation set, there are four different situations. Eight examples of the images from
each situation are depicted in Figure 4.11 and have the following characteristics:

• Couch: An L-shaped couch is used instead of a normal bed

• Bedroom 1: The bed is positioned far from the camera and in a way that only
the bottom of the bed is visible to the camera set.

• Bedroom 2: King size bed, only half of which is used and the camera set is
positioned on the side.

• Bedroom 3: The edges of a single bed (especially the bottom of the bed) are
occluded with blankets and the camera is positioned on the side of the bed in a
lower position.

In Table 4.6, calculated mAPs for the three models based on field of view for two different
IoU thresholds of 0.5 and 0.7 are represented. As shown in the left part of the table,
where IoU > 0.5, the fine-tune model achieved the highest mAP in all room settings. In
the couch field of view, the freeze and fine-tune model (model 1) and fine-tune model
(model 2) could achieve higher mAP than the no transfer learning model (model 3).
However, in the bedroom 1 field of view, model 1 did not perform well and achieved
only a mAP equal to 4.6 %. On the other hand, in the field of view of bedroom 2, all
of the models achieved an average of 94 % which indicates that all models correctly
detected most of the getting up positions in this field of view. In bedroom 3, model 2 is
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able to achieve the highest mAP score of 93.9 % which is three times larger than the
second-highest 28.3 %.

Model 1 was able to detect the couch and the bedroom 2 field of views with 68.3 % and
86.9 % mAP respectively whereas the mAP for bedroom 1 and 3 is less than 5 %. Model
2 achieved 99.4 % and 93.9 % mAP scores in bedroom 2 and 3 respectively which is at
most 20 % higher than the scores for the couch and bedroom 1. The interesting difference
is in the performance between model 1 and model 2 (especially in bedroom 1 and 3) even
though, in training, both used the same network, training data, and fine-tuning technique.
The only difference is that RPN and classification parts of model 1 are trained before the
fine-tuning training phase. Freezing the network before fine-tuning had a reverse effect
on the learning process in model 1. In other words, the network forgot/unlearned what
it had learned/transferred before.

By looking at the average of all mAPs per field of view overall models in Table 4.6, it
becomes is clear that all of the models detected all of the images belonging to bedroom 2
with more than 94 % accuracy. However, in other situations, the models achieved on
average a mAP between [43% − 55%]. This indicates that Bedroom 2 is the most suitable
field of view for all the models.

Models
mAP (%)

IoU > 0.5 IoU > 0.7
Couch Bedroom 1 Bedroom 2 Bedroom 3 Couch Bedroom 1 Bedroom 2 Bedroom 3

Model 1: Freeze and fine-tune 68.3 4.6 86.9 8.3 37.9 0 23.6 0.84
Model 2: fine-tuning 84.5 71.5 99.4 93.9 20.5 0.004 81.4 14.6

Model 3: No Transfer Learning 12.7 54.7 97.6 28.3 0.02 0 12.5 5.7
Average Over All Models 55.1 43.6 94.6 43.5 19.47 0 39.1 7.1

Table 4.6: Summary of incorrect detections in percentage based on the field of view of
the camera(rooms) for each model in total and per label

On the right side of the Table 4.6, where the IoU > 0.7, model 2 achieved the highest
mAP values in the bedrooms 1,2 and 3 field of view and model 1 was able to achieve the
highest mAP in the couch field of view. Model 3 was barely able to detect anything in
the couch field of view. In bedroom 1, surprisingly (almost) no model could detect any
boundary boxes. This indicates that all the models have problems precisely locate smaller
objects because the bed is located further away from the camera and consequently makes
the boundary boxes smaller in comparison to other fields of view (See figure 4.11). In
bedroom 2, model 2 achieved a mAP equal to 81.4 % which is approximately three times
better than the mAPs in the other two models for the same field of view. In bedroom 3,
all three models, similar to bedroom 1, achieved low mAP scores where all of them are
below 15 %. By looking at the average mAPs on the bottom, bedroom 2 again has the
highest value among other situations and the couch takes second place, whereas bedroom
1 and 3 come in last. It is noteworthy that the average mAP in each situation where IoU
> 0.7 is smaller than the average mAPs where IoU > 0.5.

Figure 4.11 demonstrates eight incorrectly detected examples from all field of views. The
examples for bedroom 1 and the couch field of view show that finding a correct boundary
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box is crucial for faster R-CNN. Basically, the network finds the region of interest, then
cuts inside the box and classifies it. Therefore, both parts of cropping and classifying
are essential for the faster R-CNN object detection network. If the box is placed in
an incorrect position, no matter how good the classifier, the classifier cannot detect it
correctly. On the other hand, if the box is placed in the correct position but the classifier
makes a mistake and does not classify it correctly, the network also performs badly as
demonstrated in the examples for bedroom 2 and 3 in Figure 4.11. By looking closely
at these pictures, the proposed regions do contain a bed and a person (even though the
proposed boundary boxes are bigger than the ground truths) even though the classifier
cannot assign the correct class label to them. Yet, at the bedroom 1 bottom image in
the figure, the proposed green region does contain the bed, but not the person and the
classifier correctly assigned lying since the person is not in the box and to the classifier,
it appeared that the person is occluded by the blanket.

Figure 4.11: Examples of the wrong detections by object detection models in different
rooms available in the validation set. Red boxes inside the images indicate the ground
truth and green boxes depict- the detections made by the models.

Summary

Table 4.7 shows an overview of all measurements obtained for the three models. The
fine-tuning model achieved the highest mAPs, mean Average Recall (mAR), and the
smallest loss in comparison to the other models. By looking at mAP where the IoU
[0.50-0.95] is, the models 1 and 3 achieved similar values equal to 16.5 % and 14.1 %
respectively. This implies that the two-phase training in this situation not only did not
benefit the performance of model 1 but also made the network perform as good as if it
did not use any transfer learning techniques. Model 2 achieved mAP 33.1 % for the IoU
[0.50-0.95] which is almost double in value in comparison to models 1 and 3. The same
situation applies to mAR, where models 1 and 3 are close to one another, and model 2
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has the highest value among them in the Table.

Models
mAP (%) mAR (%) Loss Training

IoU > 0.5 IoU > 0.7 IoU IoU (Weighted) Time
Total Lying Standing Total Lying Standing [0.50-0.95] [0.50-0.95] (Minutes)

Model 1: Freeze and fine-tune 42.9 41.6 44.2 14.8 12.35 17.25 16.5 27.4 0.204 340
Model 2: fine-tuning 87.4 88.75 86.06 30.7 27.1 34.3 33.1 41.1 0.084 249

Model 3: No Transfer Learning 49.0 44.65 53.35 4.2 1.5 6.9 14.1 25.7 0.122 277
Average over all models 59.7 58.3 61.8 16.5 13.6 19.4

Table 4.7: Summary of all object detection models

In the Table 4.7, results for mAP at IoU > 0.5 and IoU> 0.7 are calculated per each label.
By comparing the average of standing and lying mAPs, the standing label has achieved a
3.0 % to 6.0 % higher score than lying on average which indicates that detecting standing
situations is easier than lying even though the size of the lying and standing images are
balanced in the validation set. A standing position is easier to detect since the person is
visible and not occluded with blankets in comparison to lying. Among all three models,
the IoU > 0.5 has a much better score than IoU > 0.7 on average which implies that the
models faced difficulties in detecting precise boundary boxes.

Model 1, which uses a pretrained backbone in training, not only did not perform equal to
model 2 but also model 3 outperformed it at calculated mAP where IoU > 0.5 although
model 3 did not even use the pretrained backbone. This suggests, that the training
process can hinder the possible positive effect of transfer learning techniques on model
performance. Model 2, which also used the pretrained network, outperformed the other
two models in all metrics. This emphasizes how much transfer learning techniques benefit
the performance of model 2 as well as training time (model 2 took almost 30 minutes
less than model 3).

16 of the correctly detected situations with IoU > 0.5 performed by model 2 are demon-
strated in Figure 4.12. In all images, the model was able to propose a boundary box that
contained a person and a bed and classify them correctly. An interesting point is that in
part d) of the figure, the model detected the extra blanket and pillows at the bottom
of the bed as a part of the bed, which possibly indicates that the model has gained an
understanding of blankets.

4.3 Comparison
It is not possible to directly compare models used for classification and object detection.
Each model is evaluated with different metrics and generally they all have a different
purpose in computer vision. Therefore, in order to compare the models of the two
methods, it is necessary to define an objective goal and analyze their advantages and
disadvantages towards the defined objective. In this context, the defined goal is to detect
the getting up behavior of one person from a bed inside a field of view while keeping the
computational cost (speed) in mind.
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4. Results and Discussion

Figure 4.12: Examples of correctly predicted frames in all different scenes available in
validation set.

One should keep in mind that the comparison of the two methods is based on the best
models obtained during training with regard to the defined goal and it is not a general
comparison between classification and object detection.

• Classification (Model 1: Freeze and fine-tune):

– Advantages:
∗ Smaller network and computationally more efficient in comparison to the

object detection network.
∗ Faster detection.

– Disadvantages:
∗ Single detection per frame.
∗ Assigns a label to a frame regardless of what the input images are.

• Object Detection (Model 2: fine-tune):

– Advantages:
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∗ Ability to locate getting up behavior inside the frame.
∗ Ability to detect multiple people getting up in the same frame.

– Disadvantages:
∗ Bigger network and consequently less computationally efficient in compar-

ison to classification network
∗ Less accurate when the bed is positioned further from the camera set
∗ Longer training time.
∗ Only the backbone is able to benefit from pretrained networks and the

RPN and classifier parts are initialized randomly.
∗ the entire detection is based on the boundary boxes

The classification method proved to be reliable in various situations, since the classifier
does not rely on boundary boxes. However, if the correct boundary box is proposed, the
object detection is less likely to make mistakes compared to classification. Classification
uses a smaller network which makes it computationally more efficient than the object
detection network. This makes classification suitable for less powerful computers such
as Raspberry PI where the model can be deployed on the device and detects getting up
behavior without any latency on demand. On the other hand, object detection brings the
possibility of detecting multiple getting up motions in settings such as using one camera
for detecting multiple beds in a hospital setting, where post-processing can be used.
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CHAPTER 5
Conclusion and Outlook

This thesis project contributes to the research field of human behavior modeling by
introducing an example of using depth images to detect a specific human action (getting up
from a bed) indoors. The method is applicable even when the person is partially occluded
with indoor objects without any restriction on the angle of the camera. Furthermore, the
work described here demonstrates how to gather and preprocess depth images to produce
a dataset for training networks that are built and pretrained based on RGB images.

In conclusion, both the classification and the object detection method are able to
reliably detect getting up behavior. The results presented here imply that the CNN is
capable of extracting high-level task-dependent features from depth data regardless of
the architectures for classification or object detection. Also, using pretrained networks is
the key contributor to correctly detect getting up behavior even though the pretrained
networks used here were trained on RGB data and not on depth data. Transfer learning
techniques reduce the size of task-specific data because the data used for training the
networks in this project are considerably small in comparison to well-known datasets
such as COCO or ImageNet.

Going forward, future work will have to focus on reducing the errors in detecting getting
up where a person is in transition from lying to standing or vice versa. One possible
solution is to introduce a new class label to classify transition points. The practicality
of the network can then be changed or expanded from getting up from a bed to sitting
and walking inside the room, based on the purpose of the real-life application. The
combination of depth data and CNN for modeling human behavior gives the flexibility to
be used in intelligent systems such as detection of falls or sleep positions. Depending on
the goal of the application (for example high inference speed or high performance), this
combination can be applied to a variety of state-of-the-art convolutional neural networks.
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62, 67–71, 75–77, 79
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