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Kurzfassung

In sicherheitskritischen Bereichen wie der Aeronautik, aber auch in anderen Sparten wie
der Freizeitindustrie, werden die Weiterentwicklungen entsprechender Produkte mass-
geblich durch die Verbesserung der eingesetzten Werkstoffe und Materialien geleitet.
Um die Zieleigenschaften dieser neuen Materialien zu analysieren, werden durch bild-
gebende Verfahren wie Röntgencomputertomographie (XCT) Abbildungen der inneren
Strukturen angefertigt, die anschließend durch Segmentations- und Quantifizierungsalgo-
rithmen detailiert aufgeschlüsselt werden. Der genaue Aufbau der inneren Strukturen ist
für MaterialwissenschaftlerInnen hierbei ausschlaggebend für die Charakterisierung von
Werkstoffen und ein Vergleich mehrerer Materialkandidaten anhand ihrer Charakteristika
somit unumgänglich für die Untersuchung verschiedener Herstellungs-, Optimierungsver-
fahren oder Eigenschaftsverhalten.

Derzeit sind MaterialwissenschaftlerInnen bei dem Vergleich von mehreren Materia-
lien auf sequentielle Vergleiche angewiesen. Die Verteilungen der einzelnen Attribute
verschiedener Materialsysteme müssen verglichen werden, weshalb diese Aufgabe ty-
pischerweise geistig aufwendig, zeitintensiv und dadurch fehlerbehaftet ist. Diese Arbeit
zielt darauf ab, Fachexperten bei ihren täglichen Aufgaben in der Analyse großer Mate-
rialensembledatensätze zu unterstützen. Wir haben für diesen Zweck ein komparatives
Visualisierungsrahmenwerk entwickelt, das durch eine Übersichtsvisualisierung und drei
Detailvisualisierungstechniken ein ganzheitliches Bild über Ähnlichkeiten bzw. Unähnlich-
keiten in den Daten liefert. Anhand der Verwendung der Dimensionsreduktionsmethode
Multidimensionale Skalierung werden die individuellen Strukturen zusammengefasst und
in einer tabellen-basierten Visualisierungtechnik, namens Histogramm-Tabelle, dargestellt.
Die Informationen, in welchen Attributen sich die Strukturen am ähnlichsten sind und
ihre genauen Ausprägungen, werden mittels statistischer Berechnungen evaluiert, deren
Ergebnisse in einem Säulendiagramm und Kastengrafik visualisiert werden. Schlussend-
lich können auch die linearen Korrelationen zwischen den individuellen Charakteristiken
genauer in einer Korrelationskarte exploriert werden. Wir präsentieren die Nutzbarkeit
dieses Visualisierungssystems anhand von drei konkreten Anwendungsszenarien und
überprüfen ihre Anwendbarkeit mittels einer qualitativen Studie mit 12 Materialexper-
ten. Die aus unserer Arbeit gewonnenen Erkenntnisse repräsentieren einen signifikanten
Schritt im Bereich der komparativen Materialanalyse von hochdimensionalen Daten und
unterstützen Fachexperten dabei, ihre Arbeit einfacher und effizienter zu gestalten.
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Abstract

In safety-critical areas such as aeronautics, but also in other sectors such as the leisure
industry, the advancement of respective products is largely driven by the improvement of
the materials used. In order to analyze the targeted properties of these new materials,
data of the internal structures is generated, using imaging techniques such as X-ray
computed tomography (XCT), which is then analyzed in detail using segmentation
and quantification algorithms. For materials scientists, the exact design of the internal
structures is crucial for the characterization of materials and a comparison of several
material candidates based on their characteristics is therefore indispensable for the
investigation of different manufacturing and optimization processes or property behavior.

Currently, material scientists are dependent on sequential comparisons when analyzing
several material candidates. Distributions of the individual attributes across the material
systems need to be compared, which is why this task is typically cognitively demanding,
time consuming, and thus error-prone. This work aims to support domain experts in their
daily tasks of analysing large ensembles of material data. For this purpose we developed
a comparative visualization framework that provides a holistic picture of similarities
and dissimilarities in the data by means of an overview visualization and three detailed
visualization techniques. Using the dimension reduction method Multidimensional Scaling,
the individual structures are summarized and rendered in a table-based visualization
technique called Histogram-Table. Information, describing in which attributes the
structures are most similar as well as their exact characteristics, is evaluated by statistical
calculations, the results of which are visualized in a bar chart and box plot. Finally, the
linear correlations between the individual characteristics can be explored in a correlation
map. We present the usability of this visualization system by means of three concrete
usage scenarios and verify its applicability by means of a qualitative study with 12
material experts. The knowledge gained from our work represents a significant step in
the field of comparative material analysis of high-dimensional data and supports experts
in making their work easier and more efficient.
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CHAPTER 1
Introduction

1.1 Motivation
In industry, the search for improvement in order to produce customized materials and
material systems is ever-increasing. There are numerous reasons for this continuous
ambition: not only cost-efficiency is here the main driving force towards advances within
the field, but also the need for highly function-oriented, light-weight and safe components
and materials, which are required in application areas such as aerospace, automotive,
defense, and others. To ensure continuous optimization as well as to discover novel
materials, knowledge about the internal structure is crucial [HS17, NKUC20].

A candidate for advanced future materials, which is promising superior properties over
conventional materials and which is applicable in numerous novel applications, is found
in composite materials. Composites are heterogeneous material systems, that typically
consist of a reinforcement material, which is carrying the loads, and a matrix material,
which acts as a glue keeping the reinforcements in place. Due to the heterogeneous nature
of this material system a detailed analysis is essential in order to qualify the material
system for its targeted use. In order to prevent the failure of composites, especially
their inherent structures, such as fibers or pores, need to be monitored and evaluated,
e.g., in first part load tests or during the life cycle of the material. The properties of
these interior structure such as orientation, length, volume etc., provide valuable insights
and allow the expert to draw conclusions about the composites’ prospective behaviour.
Currently state of the art visualization tools support domain experts with standard
visualization techniques targeted on datasets of single materials, employing scatterplot
matrices, parallel coordinate plots and other techniques [WAL+14]. With these graphical
mappings, interesting features and their attributes are explored individually and per
material system, but the users are not provided with any guidance to see the bigger
picture of one dataset including all interesting features and how they compare against
similar datasets of other materials. Furthermore, the datasets describing specimens often
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1. Introduction

consist of a large quantity of data, usually composed of thousands of features of interest,
each represented by 10s to hundreds of different attributes. Comparing and visualizing
more than one dataset, with this composition, at a time is not suitable with conventional
visualization systems due to overlapping and visual clutter effects. We address this issue
in the following chapters of this thesis.

1.2 Aim of Thesis
To support material scientists in understanding, discovering, designing, and optimizing
materials, the overall goal of this work is the development of tailored visualization
techniques, which enable not only the comparison of individual features such as fibers or
pores according to their characteristics within an individual dataset, but more importantly
a comparison across several specimens and all interesting feature characteristics at once.
We therefore focused on the implementation of a tool that allows material scientists to
quickly identify similar (or respectively dissimilar) datasets according to their feature
characteristics. The resulting ensemble visualization framework should enable domain
scientists to compare information, previously not possible to compose, by simplifying the
identification of patterns in numerical multivariate data ensembles through a table-based
visual analytic approach. In essence and as generalization, we are striving for a visual
comparison of n-dimensional data in ensembles of complex data, in our case as generated
in the quantitative analysis and visualization of "rich" XCT data (spatial data + derived
quantitative data).

The design of our visualization framework was driven by the following task-specific
questions, which a material engineer might formulate according to the provided data
basis:

• Which specimens consists of the same type of objects? - For example, do the
different materials consist of the same type of fibers, such as very short or very
long fibers?

• Are there any similar groups of features within or across the datasets? - Are there
individual areas in which the structures are similar, in the case that the materials
to be compared are in general very inhomogeneous?

• In which attributes are the objects similar or dissimilar? - For example, are the
similar pores all of the same thickness, or are they all of the same length?

• If the elements are similar in one attribute, can the similarity in other attributes
be inferred? - If the fibers are very long, do they all have an increased volume?

We developed a visual analysis framework that helps material scientists to get answers to
the questions above. In order to avoid losing focus on our goals regarding the development
of respective visualization techniques, we defined three general main research questions
that our tool should be able to visualize:
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1.3. Methodological Approach

R1. Which datasets are similar or dissimilar?

R2. In which characteristics are the datasets similar or different?

R3. Is there a correlation between certain characteristics?

1.3 Methodological Approach
Based on the defined research questions, a visual analysis tool was developed that
combines a compact overview with in-depth representations for the complete ensemble
of data. To provide the observer with a concise summary of the complete ensemble a
table-based visualization tool is offered. Each individual object, such as a fiber or a pore,
is represented as a point with a specific position on a horizontal numerical line. The
dimension reduction method Multidimensional Scaling is used to reduce each element to
a specific position based on its n-dimensional attributes. Different data sets are plotted
one beneath the other. To avoid overlapping of the individual objects, they are grouped
into bins and their quantity within a bin is encoded using a sequential color scheme.
More comprehensive information on the properties of the structures can be inspected
more closely using, statistically calculated, detailed visualizations. A bar chart shows
the similarity of each attribute by calculating the coefficient of variation. A box plot
is provided to explore the exact characteristics of the individual attributes. Finally,
a correlation map is presented to determine potential linear correlations between the
individual attributes. In addition, the detailed visualizations react to the selections made
by the users in the overview visualization and update automatically.

The main contribution of this thesis is the conception and development of a
visual analysis tool for material scientists working on the design of safe and
customized materials. We support their work using a tool that allows for a comparison
of many different materials based on their segmented structures such as fibers, pores and
others, as well as their attributes. Our highly abstracted design renders it possible to
compare not only different areas of materials, but also samples that have been changed
over time.

1.4 Outline of Thesis
The following chapters are structured as follows: In Chapter 2 we describe the backgrounds
regarding the field of material science. We briefly explain which topics and goals this area
is concerned with, how the required datasets are generated and how they are structured.
In Chapter 3 we give an overview of research activities in the field of ensemble visualization.
An ensemble is a collection of related datasets. Material science data can consist of
collections of related datasets, and thus represents one or several ensembles. Knowledge
about general problems and definitions in ensemble visualization is therefore necessary to
incorporate the latest findings into the development process. In Chapter 4 various state
of the art works are described, which influenced the development of our visualization
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1. Introduction

framework. Especially systems for the visualization of material datasets and latest works
from the field of ensemble visualization are described in this section. Chapter 5 describes
our developed visual analysis framework in detail. Here, the used aggregation method
Multidimensional Scaling and further computations are explained in detail. Furthermore,
the developed visualizations and algorithms are introduced. In addition, it is described
with which tools the analysis framework was implemented. Chapter 6 deals with the
discussion of the developed analysis framework and examines possible use cases. For
this purpose, three different usage scenarios are presented. During our work we also
conducted a qualitative evaluation in cooperation with 12 material scientists, which is
also described in this chapter. Chapter 7 contains a short summary about the developed
visualization framework. Furthermore, current limitations are discussed on the basis of
the evaluation and possible future extensions and improvements are suggested.
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CHAPTER 2
Material Science Background

The structure of datasets being used in material science are rather complex. Each
one describes several thousands of features of interest, typically fibers or pores, for
which tens to hundreds of attributes are computed. Characteristics such as their length,
orientation, diameter, and more describe each feature. This type of data can be defined as
multivariate numerical data, since this data contains at each point multiple scalar values
that represent simulated or measured quantities. To understand the data, it is often
necessary to consider a large amount of them. In the literature such a data compilation
is called ensemble data. By definition, ensembles are large data collections containing
a number of individual, but often related datasets with slightly varying characteristics.
In this context individual ensemble datasets are referred to as members or ensemble
members [Sch16].

In recent years, a rapid growth in the generation of ensemble data in various disciplines
can be observed [OBJ16, HHB16, Cro18, WHLS19]. This increase may be explained by
the necessity to precisely model and understand real-world phenomena and structures.
Especially in domains, where the generation of simulation data is crucial for understanding
different connected phenomena as for example in climate research, large quantities of
ensemble datasets are currently generated. The reason for this rapid increase in respective
ensemble data is motivated by the availability of novel powerful computational techniques.
These give users access to faster computations of simulation runs of respective simulation
models, which are strongly affected by the chosen predefined configurations, such as input
parameters, boundary and initial conditions, as well as phenomenological models. With
the increased accessibility to advanced parallel computing and momentous improvements
in computing power, it is possible to run the models with different configurations to
generate multiple realizations of the same experiment within reasonable time. The
different characteristics of the models can then be evaluated and enable a new way to
gain insight into complex phenomenons.
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2. Material Science Background

Although most research in the field of ensemble visualization is done in the area of climate
research, there are other domains that would benefit from the analysis of ensemble data.
Recent advances in imaging and analysis techniques now also enable the generation of
ensemble data. These novel data generation processes, originating from innovations
in ultrasound or computed tomography, not only reduce scan times, but also generate
images with higher resolutions. The resulting images allow the viewers a more precise
recognition and thus interpretability and understanding of the data. Especially, also
disciplines in natural science as for example the domain of material science benefits from
investigating their ensemble data [HS17].

2.1 Material Science
Material science involves the subareas of understanding, discovery, design and use of
(new) materials as well as material systems [HS17]. The scientific field of material science
is thus responsible for understanding material’s inner structures, and related thereto the
material’s properties and performances. The knowledge about material’s characteristics
and abilities allows domain experts the creation of tailored components, fulfilling unique
requirements, which have to be preserved to be applicable in the targeted domains. In-
dustries such as agriculture, construction, health care, automotive or aeronautics, depend
on adopting these function-oriented, highly integrated components, that specifically meet
their needs, since otherwise the improvement of their products and their competitive
advantage would be severely limited.

2.2 Non-destructive Testing
The properties of materials are largely determined by its inner structure. For this reason
a detailed examination is necessary to understand and ensure the qualitative criteria,
which have to be fulfilled to enable a safe usage in the target application. Currently,
there is a growing trend to reduce the weight of components, since less weight facilitates
less costs and less energy consumption in manufacturing and beyond. As a result, the
impact of defects in the material’s structure becomes more serious, since even small
abnormalities may lead to 100% material failures. Therefore, the recognition of defects
and potential points of failure is becoming increasingly important [WDJ15].

Non-destructive testing is thus highly important to ensure the application-specific re-
quirements with regards to the material’s inner structures. Besides testing methods
based on magnetic, optical or acoustic principles, radiographic examination has gained
in importance in recent years: X-ray computed tomography (XCT) is not restricted to
medical applications anymore, but becomes common practice in material testing [Sch18].
The goal of this non-destructive imaging technique is to produce a spatial representation
(i.e., 3D volumetric datasets), which is generated from series of 2D X-ray penetration
images, each of which taken at a different perspective typically around a circular scanning
trajectory. To generate images in this examination method, the test object is irradiated

6



2.3. Composite Materials

by a sharply focused X-ray beam. The X-ray beam, which is attenuated by the scanned
specimen, is then recorded by one or more detectors. While in medical CT-applications
the source and the detectors rotate synchronously around the object, in industrial ap-
plications typically the test specimen is rotated, keeping X-ray source and detector at
fixed positions. Each detector therefore determines the total absorption along the X-ray
beam. This procedure requires large amounts of data to be stored and processed by the
computer, especially when high resolution images are involved. Afterwards the individual
sectional images are reconstructed to a single final image, i.e., the 3D reconstructed
data volume. This way it is possible to non-destructively inspect the specimen to detect
cavities, cracks or irregularities in its inner structure [WDJ15, Sch18].

When analyzing volumetric data, data exploration and visualization can become quickly
cumbersome, especially with increasing volume sizes, which is due to the high information
content inside the reconstructed volume data. Therefore, typically additional data pro-
cessing pipelines including segmentation and quantification algorithms, e.g., as proposed
by prior papers [SKK+11, TMG+10], are applied to the intensity-based volume, such
that further secondary and derived information can be computed and made available in
the form of attributes of specific features of interest. The resulting multivariate dataset
for every segmented object describes interesting characteristics as length, orientation,
Cartesian coordinates of start and endpoint, diameter, etc.

2.3 Composite Materials
Advanced composite materials such as fiber reinforced polymers (FRP) are one type
of material, which gained popularity in recent years, because of its potential abilities
for optimization in terms of stiffness, strength, density and lower cost with improved
sustainability [RPML19]. These properties allow composite materials to be suitable in
various application areas, thus making it a viable alternative over many conventional
materials. Composite materials consist of a base matrix material and various filler
materials. The base matrix material (also referred to as matrix) binds the filler materials,
which contain the reinforcement materials and other application-specific filler materials.
The reinforcements can be composed of different items, as for example sheets of fiber
fabrics, particles or individual fibers. Figure 2.1 shows the classification of composite
materials according to their internal structure.

According to Rajak et al. [RPML19], composites can be classified according to their
fiber length, with long fiber reinforcements referred to as continuous and short fiber
reinforcements as discontinuous fiber reinforcement composites. Furthermore, fibers can
be located unidirectional or bidirectional in the matrix structure of continuous fiber
composites. Because of this placement and the respective alignment of fibers, this class
of composites takes the loads from the matrix to the fibers in an easy and effective way.
The fibers placed in discontinuous fiber reinforced components may feature a preferred
direction or they are randomly oriented. For effective load transfer and to restrict
the growth of cracks, fibers used in this class must have sufficient length. Mechanical
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2. Material Science Background

Figure 2.1: Rough classification of fiber reinforced polymers according to their fiber
structure, taken from [RPML19].

properties and other structural behavior of composite materials can also be influenced
by the arrangement and orientation of the fibers. For this reason, domain experts are
typically interested in how the fibers are distributed with respect to length and orientation
or which fiber properties are most prominent in spatial subregions when analyzing such
fiber reinforced composite samples. This qualitative and quantitative analysis helps to
predict final characteristics of the specimens in terms of stiffness, strength, ductility, and
durability [WAL+14].

Structures emerging in composites during the manufacturing process are pores. Porosity
is a measure for quantifying the void volume in relation to an observation volume in a
material. Porosity is calculated from the sum of the individual pores, which are described
in literature as small cavities. Pores can be divided into different classes according to
their size and appearance, in micro-, meso- or macropores. Isolated pores do not influence
the mechanical properties of the material. However, when they aggregate in specific
regions, they can significantly reduce the mechanical characteristics of a component. A
detailed examination of their distribution and size is inevitable to assure the component’s
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2.4. Analysis of Composite Materials

specified properties [Kie07, CSS14].

2.4 Analysis of Composite Materials
The workflow that is generally performed for the analysis of composite materials and the
visualization techniques used by the experts, is described on the basis of three differing
state-of-the-art papers.

Chung et al. [CEK+19] recently carried out an investigation to describe the material
properties and characteristics of lightweight aggregate concrete and foamed concrete with
the same density levels. In their analysis six different specimens, three of each type with
different density levels, were compared based on an image analysis. The comparison was
performed by positioning the 8-bit three-dimensional µ-CT images beside each other and
the similarity was determined on the basis of their voxel intensities between 0 (black)
and 255 (white). To get more detailed insights about the concrete’s inner structure, the
distribution of the pore sizes was visualized in a histogram. Thereby, one histogram was
drawn for each type of concrete. For each type, the pore size distributions of the specimens
with different density levels were superimposed. For studying the pore size distribution
of air voids in cement-based materials, Chung et al. [CSR+20] used 2D and 3D imaging
approaches. Focusing on the examination of the correlation between pore characteristics
and the mechanical properties of the specimens, micro-computed tomography images
were used to describe the inner structure of five test materials. The pore distributions of
the test specimens were compared using a side by side volume rendering approach, after a
segmentation of the voids has been computed using a watershed algorithm. The pore-size
distributions of the different materials were compared using individual histograms for
each specimen. Since the pore-size distributions were measured with different approaches,
the varying results were superimposed in histograms. The correlation between parameters
of the pore size distribution and further characteristics were visualized using scatterplots.
Figure 2.2 and Figure 2.3 show visualizations of different materials used for exploration
in both the works described above.

In the work presented by Maurer et al. [MHPK19] the damage propagation of fibre
reinforced polymers was investigated. To get detailed insights about the deformations
coming from different forces applied to the materials, four specimens with two types
of fiber orientations were tested. Five load steps were performed on each material,
resulting in five three-dimensional XCT datasets for each specimen. Since a detailed
defect analysis was the aim of this work, their workflow was outlined as follows: First,
a pore segmentation was performed on the XCT images in order to extract individual
pores in the datasets. Then a defect classification was applied with respect to interesting
characteristics of the pores. The four datasets were compared by using 3D rendering
of the determined defect classes. Each defect class was assigned a unique color. Then
a manual comparison was carried out by juxtaposition of the renderings of the same
time steps. The number of defects per material and loading force was visualized using a
stacked bar chart. Figure 2.4 and Figure 2.5 show some examples of the visualizations
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2. Material Science Background

Figure 2.2: Visualizations used for the exploration of different composites, taken from
[CEK+19].

used in this study.

In summary, the main goal in the analysis of composites is to investigate different material
properties. This is done by examining varying numbers of specimens and sequentially
comparing their inner structures. The main target is therefore comparison. This is
mostly done using juxtaposed basic visualization techniques like simple 3D renderings or
basic charts like scatterplots or line charts. The used visualization techniques, which are
based on basic charts, have to manage several challenges common in comparison tasks,
as stated by Gleicher et al. [GAW+11]:

1. Data Complexity: In this domain the comparison of very intricate but similar
objects is necessary. The complexity of the observed structures can be described
through:

a) the number of objects the inner structure consists of, i.e., how many fibers/pores
have to be visualized

10
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Figure 2.3: Visualizations used for the exploration of different composites, taken from
[CSR+20].

b) the abstractness of the information of the data, which is given by the intensity
values in the three-dimensional XCT data or in the form of a multitude of
numerical attributes

c) the subtleness of the similarity or dissimilarity within the structures, in this
case the difference in local intensities or numerical values.

2. Scalability: Depending on the complexity of the compared datasets and objects,
the visualization technique should be able to scale appropriately. So independently
from whether the three-dimensional intensities of the objects or their multivariate
attributes are in focus, and from how many elements inside one or several specimens
have to be compared, the visualization should adapt accordingly.

Regarding an adaptation to data complexity and scalability, the visualisation techniques
currently used in the material-science domain are not too efficient. While visualizing
voxel-based datasets in a three-dimensional rendering is quite effective, a side-by-side
comparison of various renderings of different (but only slightly changing) datasets is
rather limited. In this case, simple juxtaposition of renderings is only effective for a
very small number of datasets. As can be seen from the visualization techniques used in
the material-science approaches described in this section, at the moment only very few
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2. Material Science Background

specimens can be simultaneously investigated. In the studies described above, no more
than six specimens were examined at a time.

In case of investigating the multivariate characteristics of specimens, the visualization
becomes even more challenging. While conventional XCT data is fixed to four different
attributes (x, y, z, intensity), multivariate datasets consist of a multitude of characteristics,
which is increasing the complexity. The use of conventional visualizations for one such
dataset may be sufficient depending on the number of objects being visualized. Frequently
used visualizations like scatterplots, where too many objects result in strong visual clutter,
often make an effective understanding impossible. Comparing different specimens, each
described through its own multivariate dataset, is even more difficult. Simple sequential
examination of separate, juxtaposed charts, as currently common practice in the material-
science domain, is time consuming, error-prone and therefore costly, since the users have
to rely on their memory to make the comparison.
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2.4. Analysis of Composite Materials

Figure 2.4: 3D rendering of various defects used in [MHPK19].
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(a)

(b)

Figure 2.5: Extracts of the visualizations used in [MHPK19]: (a) histograms visualizing
the distribution of pore sizes, (b) number of defects displayed via stacked bar charts.
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CHAPTER 3
Ensemble Visualization

Background

Visualization is necessary to lead scientists towards a more intuitive and more detailed
understanding especially of complex data as well as sets of data generated for the
analysis of complex phenomena. Visualization of such complex dataset series with
spatial, temporal, and abstract data is also referred to as ensemble visualization. Due
to the complexity of these data the analysis and comparison of many members of an
ensemble is difficult, tedious, and error-prone, which is aggravated by often just subtle
differences. Ensemble visualization addresses the three main challenges regarding visual
analysis: (1) identifying one or several analysis tasks that reveal high-level relationships
between members and between their variables, (2) handling the complex structures and
connections of data ensembles, and (3) finding the appropriate visual representation at
various levels of abstraction [Cro18].

3.1 Ensemble Analysis Tasks
Although exploratory visual analysis can be performed to gain understanding of the
processes or phenomena hidden in the data, usually ensembles are generated to perform
a specific analysis task. As stated by Wang et al. [WHLS19], analysis approaches
mostly used in the existing literature are targeted to fulfill concrete predefined problems.
Ensemble visualization is mainly used for visualizing complex simulation models and
their respective outputs, but much less in traditional deterministic scientific domains,
as medicine or material science, where datasets are gained by measuring or imaging
techniques. Many ensemble visualization techniques are designed in order to fulfill
analytic tasks, which are only applicable for this special type of data and limited to
a specific application area. For completeness and to show the significant impact on
ensemble visualization designs, these tasks are briefly listed below.
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3. Ensemble Visualization Background

• Overview first, zoom and filter, then details-on-demand, stated by Shnei-
derman [Shn96], describes the sequence of individual analysis tasks from whose
execution the viewer receives a clear overall picture of the data. Overview is one of
the most important visual tasks, especially at the beginning of a visual exploration,
when no prior information is available. It is designed to give a concise visual
summary to jointly present the overall structure. Usually collective trends, like
spatial or temporal patterns, of all ensemble members can be identified at one
glance, when using the appropriate visual representations. Further outliers of the
entire ensembles can be detected. Because of the complex structure of ensemble
data, typically there is a need to perform certain levels of abstraction on each
ensemble member to get a concise summary. Since overview is a very basic task, it
is used in almost all works in one form or another. To get a compact summary,
abstractions must be performed on the complex structure of the ensemble data.
Thereby essential details are removed. In order not to lose important information,
it is necessary to ensure that it remains accessible. Using zooming and filters, the
viewer can select specific structures and display more detailed information for them.
This ensures that all information contained in the data can be effectively accessed
and examined.

• Uncertainty Quantification is an ongoing trend in ensemble visualization works.
Here, the uncertainty of the ensemble data is modeled by abstracting the individual
ensemble members as a probability density function.

• (Visual) Parameter Space Analysis is one of the most popular tasks and
targets to build connections between ensemble data and model parameters. So, not
only uncertainty in simulation inputs can be analyzed, but domain scientists are
able to identify the relation between the input parameters and the resulting output.

• Comparison is a difficult and resource-intensive task. It enables viewers to identify
similarities and differences, but also common patterns or trends. Regardless of the
data domain or type, this task is often challenging, since it requires understanding
of relationships among several objects. Comparative visualization techniques
are categorized in: superimposition, juxtaposition, and explicit encoding. This
classification can also be applied for ensemble visualizations with the difference
that the objects to be compared are not limited to merely two data entities, but
to collections of entities. Instead of comparing two members or time steps, two or
more ensembles of values have to be taken into consideration.

• Trend Analysis tries to highlight the evolution of the data over time. The ex-
traction of the temporal trend in ensemble data can be done, as in the traditional
temporal analysis, by examining one individual member after another and per-
forming a view composition of the gained information. Because of the additional
information of ensemble data, also the whole or a collection of the members can be
used to retrieve temporal similarities or differences. Many ensemble visualizations
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rely on summarizing the temporal evolution by using statistical measurements and
visualize these high-level abstractions with two-dimensional time-series plots.

Aside these tasks, ensemble visualization also strongly builds on related dataprocessing,
e.g., on Feature Extraction, which aims to extract sophisticated geometric or topological
features, like flow transport behaviour or topological critical points, such as a source,
sink, or saddle, from a simulation uncertainty field [WHLS19]. Furthermore, clustering is
of importance for ensemble visualization, which describes the classification of individual
ensemble members into separate groups, where similar members are in the same group.
Thereby prominent patterns can be revealed. In the field of ensemble visualization,
clustering is often applied to cluster members or similar objects inside the ensemble
members. According to Wang et al. [WHLS19], the distance metrics used in various
works were selected on the basis of emerging data characteristics, and are therefore very
application-specific. Using ensemble visualizations for a variety of different data is mostly
not feasible.

3.2 Ensemble Data Structure
In general, ensemble datasets contain similar attributes as conventional scientific data.
These can be multivariate, multidimensional, spatio-temporal, etc. The main charac-
teristic that distinguishes ensemble data from traditional scientific data, is their extra
dimension, called member dimension [WHLS19]. This dimension is imposed by the
individual members of the ensemble. In summary, ensemble data consists of many slightly
altered copies, called members, of scientific data. For a detailed description of the
structure of ensemble data, we formalize their data representation. Our formalization is
based on that of Wang et al. [WHLS19], which was originally introduced for computer
simulations. However, it can also be applied to general ensemble data as used in our
work: For the generation of XCT images, domain scientists need to specify a set of N
parameters, determining image properties of interest, like spatial resolution or geometric
blur [Kie07]. These parameters are summarized in the following parameter space as:

P = {p1, p2, ..., pN } ,

where each parameter pi ∈ P has a specific range of interest, defined by physical
characteristics, determining image quality. Now we define a parameter vector xi, which
is a sample from this N -dimensional parameter space:

xi = (x1, x2, ..., xN )

A output result (i.e., an XCT scan) is generated, based on the specifications of this
vector xi. When so-called in situ tests are performed, a material is scanned several times,
after a force, like pulling or shearing, is applied to it. This results in a series of images

17
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of a sample. The modification in the force can also be interpreted as different time
steps. Therefore an in situ test generates a time series of XCT images, summarized as an
ensemble member, here denoted as S (xi):

S (xi) = mi = {i1, i2, ..., iT } ,

where ii is the XCT scan for the corresponding time step. Each image ii is composed
of a three-dimensional volume storing intensity values. On each of the images different
segmentation and quantification algorithms can be applied, resulting in a descriptive
dataset, storing each detected feature, like fibers or pores, denoted as fi:

ii = {f1, f2, ..., fL}

For each feature fi various characteristics can be computed, like length, diameter, etc.
The set of characteristics C for each feature fi can be denoted as following:

C (fi) = {c1, c2, ..., cV }

For the sake of completeness, it should be noted that various ensembles can be generated,
by simply changing the input vector xi. In our work we do not focus on the effects of
the input parameters on the different ensemble datasets. Our aim is the exploration and
comparison of several XCT images, which are not necessarily connected. Therefore we
do not take the temporal relationship into consideration, if there exists one at all.

As introduced by Wang et al. [WHLS19], we can identify five dimensions of ensemble
data: variable, location, time, member and ensemble. While the dimension variable
describes the multivariate characteristics of the features, the dimension location represents
the individual features, like fibers or pores, in our scenario. The dimension time is
described by the series of images. The number of scans of different specimens, also
representing multi-valuedness, results in the member dimension. The variation of the
input vector xi results in multi-resolution ensemble datasets and defines the ensemble
dimension. Since we neglect the dimension time and ensemble in our work, we focus
on three of the five dimensions. Figure 3.1 shows the structure of ensemble datasets
according to the five dimensions.

The comprehensive explanation above shows that the structure and relationship of
ensemble data is quite complex. From the given structure of the ensemble datasets
two main problems arise, which make a direct application of traditional visualization
techniques difficult or even impossible. On the one hand, common representation
methods cannot correctly represent the member dimension. On the other hand, the
multi-facetedness of ensemble data is difficult to handle for conventional visualization
techniques.
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Figure 3.1: This figure shows the structure of ensemble datasets according to the five
specified dimensions. Each ensemble dataset e1 and e2 has M members, each consisting
of one material, recorded for T time steps. On the one hand our analysis tool is able to
compare recordings of different materials (red): m1 = {i1} , m2 = {i1} , ..., mM = {i1}.
On the other hand it is able to compare different time steps of one material (blue):
m1 = {i1, i2, ..., iT }.

The Member Dimension is the crucial difference between traditional scientific data
and ensemble data. This extra dimension can usually not be modeled with traditional
visualization techniques. For example direct volume rendering techniques are able to
render three-dimensional spatial information with one additional attribute. But rendering
more than one descriptive characteristic for one position, is currently not easily possible.
One straightforward solution to adapt the algorithm for ensemble data, could be to
aggregate the different values at each position to a single value. The calculated mean
values can then be visualized, resulting in rendering a mean volume. Of course, such a
simple abstraction is not always plausible, or at worst can even be misleading.

Multi-facetedness of ensemble data is determined by the five dimensions defined above.
Since the generation of ensemble data is still time consuming, specialists want to explore
and understand it in its entirety, when it is finally available. For this reason, the
simultaneous presentation of all these facets and their relations is a fundamental goal.
Using traditional visualizations a maximum of two different of the five dimensions can be
displayed. For example a parallel coordinates plot is able to visualize the variable and
location dimension, since the parallel axes are used to display the individual characteristics,
while the polylines represent the individual objects. However, extending this visualization
to cover a further dimension like the member dimension, for example by adding objects
from different members for comparison, is not possible without aggravating the problem

19



3. Ensemble Visualization Background

of clutter.

3.3 Ensemble Visualization Design
As stated by Crossno et al. [Cro18], information gain of ensemble data is highly influenced
by the domain knowledge, for which it is generated. The mental model of the user
community has a huge impact on the visual representation. The cognitive image can
either be supported or abstracted by the chosen representation and is therefore crucial
to consider in the designing phase. Furthermore, the mental model also determines
the necessary levels of abstraction of the data, ranging from highly abstract to very
precise. We specified three different levels of abstraction: entire ensemble, groups of
members, and individual members.

• Entire Ensemble – The representation at the level of the entire ensemble shows
overall trends and behaviours. Furthermore high level relationships can be investi-
gated like correlations between variables or temporal shifts.

• Groups of Members – The abstraction at group level can reveal group relation-
ships such as similarities or differences between clusters.

• Individual Members – The representation displaying separate members and
characteristics, can uncover commonalities and dissimilarities relative to groups,
identifying outliers or anomalies.

Last but not least, the different levels of abstraction must be linked to each other in order
to ensure a smooth transition between them and show their relationship to each other.
Interactions can be used as an instrument within the interface, performing operations
across the entire ensemble or on specific members, e.g. like filters to quickly reduce visual
clutter or connect individual elements to specific groups.

To enable the representation of different levels of abstraction, ensemble visualization
techniques usually rely on various aggregation techniques applied before or after mapping
the data to visual representations. As stated by Wang et al. [WHLS19], the general visu-
alization pipeline can be summarized as follows: Either an initial statistical aggregation
step is performed before the visualization, or a visual composition is computed after the
visualization. The combination of the two approaches is also common. Figure 3.2 shows
a general ensemble visualization pipeline.

Figure 3.2: General ensemble visualization pipeline taken from [WHLS19].
.
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3.3.1 Aggregation
The aggregation is usually generated using statistical methods, which provide summarized
descriptions of the individual ensemble members as a result. The summaries are then
mapped to appropriate visual encodings, creating a unified representation with the goal
of exposing patterns or behaviors of the ensemble data. Commonly used statistical
techniques include calculating mean value, variance, standard deviation or modeling
probability distributions.

Further, clustering is a very frequently used aggregation method. Cluster-based techniques
provide the possibility to group objects into subpopulations. This solves the question
to what extent the individual subpopulations differ. However, if there is no great
heterogeneity between the objects, i.e. they are very homogeneous, a clear division into
discrete groups is difficult to achieve [SSW17]. Since it is not always possible to classify
objects, like fibers and pores, unambiguously and correctly into discrete classes, another
type of aggregation methods, called dimension reduction techniques, is used in this thesis.

Dimensionality reduction is required, since the dimensionality of the used datasets exceeds
the available number of visual channels. By using a dimension reduction technique the
data dimension is decreased, making a visualization in 3D, 2D, or even 1D possible.
An example is the work of Weissenböck et al. [WAL+14], who use a Hilbert curve as
an aggregation method, which transforms the three-dimensional XCT scan into a one-
dimensional line. In general, there are many different methods of dimension reduction.
A distinction can be made between linear and nonlinear methods [AHT20]. In linear
techniques, as the name suggests, linear functions are used to project high-dimensional
data into lower dimensions. Commonly used linear methods are for instance Principle
Component Analysis (PCA) and Factor Analysis. Multidimensional Scaling (MDS)
belongs to the type of non-linear dimension reductions. These techniques were designed
to map complex non-linear features into a lower dimensional space. To preserve their
structure, methods like MDS or t-distributed stochastic neighbor embedding (t-SNE)
are necessary, since they are, in contrast to the linear methods, not bound to a linear
approximation [SSW17, SNHS18]. As no assumption can be made about the linearity of
the data investigated in this work, the use of linear projections may be too restrictive
to obtain an accurate representation. Therefore, only non-linear dimension reduction
methods were considered for aggregation in this thesis. One of the currently most
popular nonlinear dimensional reduction methods is t-SNE [AHT20, CMK20]. t-SNE is
based on matching distances between distributions. This method is very well suited to
represent non-linear structures properly, but it also has some disadvantages. The visual
clusters found by t-SNE are strongly dependent on the chosen parameterization of t-SNE.
Therefore, an exact understanding of the parameters of t-SNE is important. Otherwise,
clusters can be formed that do not occur in the original data, which can cause wrong
conclusions to be drawn. Furthermore, t-SNE is also known to find clusters in data that
are in fact randomly distributed. The main reason why t-SNE is not used in this thesis is
that the distances between clusters do not encode any information. Since the similarity of
the different objects in our overview visualization is visually encoded by their distances,
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the results of t-SNE cannot be used for our visualization. MDS was introduced by the
authors Kruskal and Wish [KW78] as an unsupervised dimension reduction method,
aiming to preserve similarity, dissimilarity, or distances between pairs of data points.
Since the MDS globally preserves the pairwise spacing in low-dimensional space, the
intrinsic information of the data remains available [AHT20]. MDS is very popular among
dimension reduction techniques, because of its simplicity and many fields of application.
It is used in various areas of pattern recognition, for seismic data, temperature studies
and even for the analysis of viral diseases [SNHS18]. For these reasons we have chosen to
use the MDS technique.

To facilitate an effective comparison of features and attributes, a reduction of the
complexity of the respective datasets is necessary. Different abstraction techniques can
be used to ease complexity, by turning the big data objects into simpler ones that are
easier to compare. This strategy can be either applied on the complex objects themselves,
or on the relationship between them. We should note here, that abstraction can be seen
as a pre-processing step, since the simplified data still has to be compared.

3.3.2 Composition
The composition visually combines the separate visual encodings of the individual en-
semble members. This approach also aims to uncover patterns or collective behavior,
but instead of abstracting the data directly, their individual representations are merged.
Composition is crucial to ensure the effectiveness of the comparison for the user. Three
main techniques can be used to describe how different visual encodings can be com-
bined. These techniques originate from comparative visualization and are described by
Gleicher et al. [GAW+11] as follows:

• Juxtaposition – The elements are placed next to each other to support a direct
comparison. This technique is known to provide a good overview and prevents
the occurrence of occlusions. An effective comparison is only possible if a limited
number of elements have to be compared side by side. The larger the number of
objects to be compared becomes, the more difficult it gets to display them all side
by side or to compare them for subtle differences.

• Superimposition – The elements are placed on top of each other. With this
technique a direct comparison is achieved most easily, since the objects to be
compared are positioned directly above each other. However, this positioning
also causes visibility problems due to the mutual overlapping, which becomes
increasingly pronounced the more elements are overlaid.

• Visual Encoding – Instead of showing the elements themselves, the differences
between them are calculated and displayed. Depending on the realization of this
technique, it is often possible to compare many elements at the same time with no
significant impact on the readability of the visualization. By using this technique,
however, the original information is lost for the viewer, since in the pre-processing

22



3.3. Ensemble Visualization Design

step the information is abstracted or its difference is calculated. Furthermore, when
using this technique, the validity of the used abstraction or difference determination
must be checked if it is meaningful.
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CHAPTER 4
Related Work

Since the purpose of this work is to optimize the working process of material engineers and
enable a deeper understanding of their data, in the following subsections the visualization
techniques developed for domain experts are described. Furthermore, an overview of
various works in the field of ensemble visualization is given.

4.1 Visual Analysis in Material Science
In the field of visualization, a body of work already exists, focusing on the improvement
of visualizations for material science data [HS17]. In the following works focusing on
comparing the inner structure of one material will be discussed.

To simplify the exploration of composites, Fritz et al. [FHG+09] developed an improved
volume visualization to better examine the individual objects. They focused on the
improved visualization of the orientation of fibers and the roundness of the particles.
For these characterizations, special transfer functions were calculated, which allowed the
authors an easier exploration and improved volume rendering. Grau et al. [GVTA10]
used an illustrative rendering method to achieve an improved volume representation
of pores. Different visualization styles, such as the calculation of a topological graph
and other illustrative effects, and interactive pore selection, allowed the viewers a better
understanding of the connectivity of individual pores and their sizes. Both works give
a good overview of the 3D structure, but do not provide any information about other
characteristics. By relying on volume rendering, only one attribute at a time can be
displayed for each individual object and not several at once, which is the aim in our
thesis.

Weissenböck et al. [WAL+14] introduced a visual analysis framework to explore fiber
reinforced polymers, focusing on the visualization of fiber properties as generated from
segmented and quantified XCT computed dataset. Different visualization techniques are
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composed in the framework to give a broad overview and enable a detailed investigation
of the multivariate data. By using parallel coordinates and a scatterplot matrix, the
quantitative characteristics of the features of interest are shown and interaction possibili-
ties are offered to focus the analysis on interesting features. Since fiber length and fiber
orientation distributions are of special interest for domain experts, these distributions are
visualized in separate 3D representations. Because of the large number of fibers, visual
clutter is a recurring problem. To reduce clutter in 3D renderings, the visual abstractions
of a blob and a meta data visualization support in revealing regions of fibers with similar
characteristics. Summarizing, this advanced visualization toolkit supports crucial domain
specific tasks such as identifying and visualizing classes of individual fibers, and provides
supplementary investigation opportunities for the most important characteristics fiber
length and orientation. Furthermore it enables the identification of regions with similar
fiber characteristics. Figure 4.1 shows the FiberScout system.

Figure 4.1: System Overview of FiberScout taken from [WAL+14].
.

Bhattacharya et al. [BWW+17] presented a tool to extract and visualize individual fiber
bundles and weaving patterns from XCT scans: First, a coarse version of integral curves
was used to trace sections of the individual fiber bundles. Then these fiber bundles
were extracted and clustered using an hierarchical approach: first the data was clustered
by orientation, then by proximity. After the extraction of the fiber bundles, either a
volumetric representation or surface models were generated for further analysis. Aside
a spatial representation of the fiber bundles, their properties could be visualized using
the methods introduced in FiberScout [WAL+14]. Through the scatterplot matrix and
the parallel coordinates plot, the domain experts were able to identify specific classes
and to compute statistical information like the minimum, mean, or maximum of the
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characteristics of the class. This work expands the investigation possibilities of fiber
reinforced polymers by allowing the users to examine even more complex fiber structures.

The study of Chiverton et al. [CIBP17] focuses on the understanding of the arrangement
of steel fibers in concrete. For this purpose the orientation of the fibers and the distance
between the fibers is used to develop models in order to understand the randomness
of an orientation distribution both locally and across the entire volume. Multiscale
entropy is used here to summarize the orientation and the spatial distribution into a
single stochastic model. The model is then visualized using volume rendering, resulting
in a detailed overview visualization, which helps to accurately identify differences in the
properties of the material. Figure 4.2 shows a volume rendering of the entropy estimation
giving an overview of the randomness of the fiber orientations.

Figure 4.2: Volume rendering visualizing the orientation of fibers with color, taken from
[CIBP17].

.

Since orientation is one of the most important characteristics for material engineers to
base their considerations upon, Weissenböck et al. [WAS+18] focused on the visualization
of this attribute. In this work the comparison of two different datasets, one real-world and
one simulated, were discussed based on their orientation-tensor information. To measure
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the resemblance of this characteristic, three different similarity measures were computed:
the degree of orientation, cosine similarity, and tensor similarity. The computed measures
were visualized by overlaying a heatmap with a sequential color scheme on the XCT
dataset. For a more detailed investigation, superquadric tensor glyphs were used. This
explicit encoding was calculated by dividing the XCT dataset into individual cells. For
each of these cells a tensor is generated by firstly calculating the fiber orientation for
each fiber and then averaging the values for all fibers located in the specific cell. The
comparison of the superquadric tensors was facilitated by superimposing them on their
specific cells. With this tool the identification of regions with similar fiber orientation is
simplified, as can be seen in Figure 4.3.

Figure 4.3: Visualizations developed by [WAS+18]: (left) heatmap visualizing the fiber
orientation correlations, (right) superquadric tensor glyphs showing the orientation
correlations in detail.

In summary, there are several promising approaches for visualizing single material samples
in detail. However, there are still limitations. For example, when visualizing multivariate
attributes of the individual structures of a specimen, currently the representation is still
relying on basic charts such as the parallel coordinate plot or the scatterplot matrix, as
used in FiberScout. As can be seen in Figure 4.1, these charts are only partially suitable,
since they suffer from severe cluttering when visualizing multivariate attributes generated
from segmented and quantified XCT datasets.

One solution for this problem is reducing the complexity of the data by focusing on
one or two characteristics and neglecting the remaining attributes. In FiberScout,
for example, additional charts were introduced to visualize specific characteristics like
length and orientation distribution. In the work of Chiverton et al. [CIBP17], Bhat-
tacharya et al. [BWW+17] and Weissenböck et al. [WAS+18] the specimens were only
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observed according to one or two attributes. The biggest disadvantage of this approach
is that a lot of information is just ignored and therefore simply lost.

Furthermore, although all these works make a valuable contribution to the visualization
of materials, they do not include the real-world workflow of material scientists. The
comparison of many materials is essential to be able to make correct and universal
statements about the properties and future behavior of the specimens. Therefore even
more advanced visualization techniques are needed that manage the examination of
several specimens at once and actively support comparison tasks. Some works fulfilling
this specification will be described in the next section.

4.2 Ensemble Visualization Techniques
Reh et al. [RAK+15] proposed a visual analysis framework to evaluate a series of in
situ XCT scans, which cover the evolution of an ongoing process. To investigate the
change of the internal structures of a component over time, individual features were
extracted and tracked throughout the process. Different visualization methods such
as a fuzzy tracking graph, a volume player, and an event explorer, were introduced to
track changes in the data. During this tracking procedure, each feature is assigned to
a corresponding event, i.e., creation, continuation, split, merge, or dissipation. From
this information an uncertainty tracking is computed between adjacent time steps. For
visualizing the uncertainty tracking a fuzzy tracking graph was developed, where tracked
features were colored along time steps. The volume player is a spatial visualization
that displays the events. By volume blending two subsequent time steps, changes in the
data series can be observed. Consisting of different scatterplots visualizing snapshots of
individual time steps, the event explorer can be used to get an overview of the distribution
of the events in the data. The different views are linked together enabling a detailed
examination of several time steps of one material. Figure 4.4 gives an overview of the
different visualizations developed by Reh et al. [RAK+15].

Amirkhanov et al. [AAS+16] presented a visual analysis system, which enables material
scientists to follow the creation and development of different defect types in a series
of XCT scans of fiber reinforced polymers. An automatic approach was designed to
extract and classify four different defect types: matrix fracture, fiber/matrix debonding,
fiber pull-out, and fiber fracture. For visual analysis a framework, consisting of multiple
coordinated views, was implemented. While in one view the defects are highlighted in the
original CT image, another view, called the Defect Density Map, provides an overview of
the defect areas and the distribution in 2D and in 3D. Furthermore, the surface of the
defects can be estimated according to the material’s fracture location, which is displayed
as a 3D surface. For detailed exploration a 3D Magic Lens was developed, which enables
an interactive exploration by allowing to compare a region of interest of one specimen
with two different time steps by using a side-by-side detailed view. Figure 4.5 shows the
volume rendering of a defect development process.

In the recent work of Weissenböck et al. [WFG+19] the main focus laid on the comparison
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Figure 4.4: System Overview of the framework developed by [RAK+15], showing a (A)
VolumePlayer, (B) 3D DataView, (C) EventExplorer and (D) FuzzyTrackingGraph.

of many spatial XCT scans of specimens. All members of an ensemble of volumes were
transformed by linearizing each volume along a Hilbert space-filling curve into a 1D
Hilbert line plot. As an overview, first a heatmap of the intensity frequencies was
presented to the user. When zooming in, the frequencies were replaced by superimposed
1D Hilbert line plots, where one line represents the evolution of the intensities of one
volume. With this visualization framework the visual analysis of many different regions
is possible in parallel. Interesting spatial regions can be identified quickly based on high
local intensity variations. Further the investigation of repeating patterns is facilitated,
whereby the most suitable volumes can be identified. Figure 4.6 shows the heatmap
visualization, while Figure 4.7 displays the non-linear scaled Hilbert lines plots and the
functional box plot representation.

As can be seen, there are already some relevant works bridging the gap between material
scientist’s workflow and comparative ensemble visualization. However, there is still much
potential for improvement. On the one hand, two of the three works focus on analysing
different time steps of one specimen. Since both works abstract the development of
intensity values of different points in time to higher order events, as defect creation or
development, the comparison of additional details, like individual characteristics, is not
possible. Further the proposed works only enable a detailed investigation of one specimen
at a time. When the development of several materials should be analyzed, material
engineers must again return to the inefficient method of comparing the differences manually
between equal time steps. Only in the latest work of Weissenböck et al. [WFG+19] various
independent specimens can be compared. All three works have in common the basis of

30



4.2. Ensemble Visualization Techniques

Figure 4.5: Direct volume rendering of a defect development process from
Amirkhanov et al. [AAS+16].

Figure 4.6: Overview visualization, developed by Weissenböck et al. [WFG+19], showing
a scaled histogram map, that encodes intensity frequencies.
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(a) Zooming the overview visualization leads to 1D Hilbert line plots.

(b) Functional box plots can be computed based on the individual Hilbert line plots.

Figure 4.7: Detailed representations of various volumes, visualized by the work of
Weissenböck et al. [WFG+19].

their data. All focus on visualizing the spatial volume, but so far no one has yet dealt with
the comparative visualization of the secondary multivariate data of several specimens.
There is a high potential of gaining new insights and discovering further knowledge.
Therefore our work focuses on the visualization of various multivariate ensemble datasets.

Ensemble visualization Techniques are the modification and adaptation of traditional
visualization methods in combination with advanced interaction methods, to overcome
the problems of the extra member dimension and multi-factedness of ensemble data. With
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these methods, it is possible to understand ensemble data without having to examine
each ensemble member individually [Cro18]. In the literature on ensemble visualization
we see that analysis frameworks tailor their techniques to the types of domain data to be
analyzed. The type of datasets represented most in ensemble visualization frameworks
are climate data, since the generation of various models is crucial for climate research
and is becoming increasingly popular. Therefore, the creation of ensemble visualization
systems that work with spatial and spatio-temporal data has so far been investigated in
great detail.

Kappe et al. [KBL19] analysed climate simulation ensembles by identifying groups
of datasets with similar parameters. Their analysis system provides three different
visualizations: a clustering timeline, a choropleth map, and a heatmap with a bar chart.
Together they give a precise overview of data similarity and its variations over time. First
the time-dependent 2D scalar field data is aggregated with a k-means clustering algorithm.
The result is then visualized in a clustering timeline, giving a concise summary over the
temporal occurrences of the clusters. To validate the computed clusters, a heatmap shows
the similarity between the individual time steps. To combine the abstracted clustering
timeline data with the original input data, filled contour maps are used. For all ensemble
members and all time steps, this geospatial visualization can be displayed, visualizing
binned scalar values of the unprocessed input datasets. Figure 4.8 shows the cluster-based
climate ensemble analysis tool.

The analysis of time-dependent cloud ensemble datasets is the focus of the paper of
Kumpf et al. [KSW19]. For aggregation first a t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) in the 2D space is used. To obtain the final clustering, various t-SNE
projections are aggregated by a k-means clustering. The similarity between the final
clusters is measured by comparing the distribution of their parameters. Pairwise compar-
ison of clusters is then visualized using a cumulative distribution function (CDF), which
consists of two lines, each representing a cluster. The area between the two lines defines
the distance between the clusters. Further the Kuhn-Munkres-algorithm is applied to
provide a one-to-one or a one-to-many matching of different clusters. Two or several
matching clusters are identified automatically and visualized in a scatterplot matrix. For
directly visualizing the high-dimensional data points, parallel coordinate plots are used.
To further ease the comparison of the value distributions, histograms are added on the
coordinate axes of the parallel coordinates for each displayed cluster. Figure 4.9 shows
the 2D representation of the different clusters, and the CDF visualization of two clusters.

One of the few ensemble visualization frameworks, enabling the comparison of domain-
independent volume ensemble datasets, was designed by Demir et al. [DDW14]. Datasets
visualized with this system were climate data, as well as fluid simulation data. The aim of
this work was to guide the analysis process towards relevant characteristics by visualizing
statistical properties of 3D ensemble fields. By combining volume and information
visualization techniques they seek to effectively uncover uncertainties, correlations, and
trends. As a first aggregation step, the 3D voxel data is linearized along a space-filling
Hilbert curve. The aggregated information and statistical values derived from it are
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4.2. Ensemble Visualization Techniques

visualized in multi-charts. These charts are a combination of bar and line charts in one plot
area. While the bar charts represent histograms and probability densities, line charts are
overlaid to allow the viewers to compare the individual members against the ensemble. By
calculating the similarity between the histograms, clustering is performed. Furthermore,
they are put into spatial context by visualizing selected distributions and regions via
volume rendering. Additionally, they provide a correlation computation, allowing users
to draw conclusions about the connections between various values of different spatial
positions. Figure 4.10 shows the overall structure of the analysis framework.

MotionRugs is a visualization framework developed by Buchmüller et al. [BJC+19]
aiming to get insights into the movement patterns of groups, like swarms of fish or birds.
This work solves the challenges of identifying local or time-dependent patterns in this
spatio-temporal movement data. For aggregation each 2D time frame of the dataset is
linearized using a Hilbert Curve, a space-filling curve approach, or a tree representation,
called R-Tree. Depending on the chosen linearization method, the identified entities are
arranged in a certain 1D order. Each entity in the 1D sequence is then visually encoded
with a rectangle colored by its attribute value, for example speed. Finally, the generated
sequences are depicted vertically in the visualization, to make a comparison between the
different time steps possible. Figure 4.11 provides an overview of the visualization and
its interpretation.

Although the works described before all deal with the same type of data, we can see,
their solutions are highly adapted to the specific domains, for which the ensemble
visualization frameworks were developed. Nevertheless they all follow the visualization
pipeline described in Section 3.2. All works use some sort of aggregation technique, either
clustering via k-means or linearizing the data points using a space-filling curve. Further
the analysis frameworks almost always consist of at least one overview visualization
and one to several detail visualizations. For composition, these frameworks mostly use
juxtaposition and superimposition to combine the different members in one plotting
area. Although all these systems combine very interesting visualizations, these techniques
cannot be used for the data discussed in this thesis. While all these systems focus on
the visualization of spatio-temporal data, the multivariate ensemble data, discussed in
this thesis, is not specifically location-dependent, nor does it always have a temporal
component.
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Since most research in the field of ensemble visualization is done on spatial or spatio-
temporal data, the visualization of multivariate ensemble data has not been in focus
so far. Therefore, there are only a few papers dealing with visualization techniques for
non-spatial data [WHLS19]. Most papers, visualizing multivariate data alone, or data
related to the spatial domain, use parallel coordinate plots [MGKH09, ZMM12, HTWL18,
KSW19], scatterplot matrices [KSW19], or simple heat maps [JFSK16, KBL19] to give
an overview of data similarity. These plots are often chosen because they do not require
major modifications to represent multivariate ensemble datasets [WHLS19, TAES09]. In
principle, these techniques are designed to enable the identification of patterns or trends
in many objects and their characteristics. However, their readability decreases with the
amount of data, since clutter makes it difficult to identify trends or individual objects.

To visualize ensemble datasets based on high-dimensional multivariate data, considering
some works focusing on the visualization of large amounts of multivariate data is essential.
The field of Genome Data Visualization faces the same challenges and strives for the same
goals as the ensemble visualization developed in this thesis. In this research area the goal
is to find similarities and outliers in very complex datasets. Although genome data has
not yet been classified as ensemble datasets, we give arguments for doing so. Based on the
five dimensions of ensemble datasets, we can show that genome data can also be described
in this form. First, there exist various different types of genome data depending whether
the genome inspected originates from viruses, bacteria, etc. (ensemble dimension). For
each species and within each species, the structure of the genomes can vary considerably
(member dimension). Furthermore, genomes can evolve and change over time (time). In
their structure, genomes consist of tens of thousands of DNA sequences (genes) that are
connected to each other (location dimension). The individual sequences in turn consist
of various combinations of different base pairs (variable dimension). As shown above,
genome datasets are also very large and complex. Since the analysis and interpretation
of these multilayered data are routine in the fields of biology and medicine, there are
some works focusing on their visualization [ADG11, CBS+15].

Albers et al. [ADG11] aim to visualize up to 100 different genomes according to their
underlying DNA sequences in their tool called SequenceSurveyor. They focus on providing
a concise overview, to allow the viewers to compare sequences more quickly, and facilitate
the task of finding matching regions by using alignment visualization. The overview
representation consists of horizontal stripes, where each row shows the sequences of one
genome. The visual encoding of the different attributes of the sequences, is defined by
the user and can be changed at any time. There are two different mappings possible, to
position as well as to color. By assigning different combinations of attributes to position
or color, different patterns can be made visible. Since the size of the sequences exceeds
the number of available pixels on a screen, the sequences have to be aggregated to be
displayed. For aggregation, the sequences are grouped in blocks. The color of the blocks
is determined by four different aggregation methods: aggregation, robust aggregation,
event stripping, and color weaving. While averaging reveals high-level trends, robust
averaging has the advantage of reducing the influence of outliers compared to the former.
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Outliers are highlighted when using event stripping. The most detailed information is
provided by the aggregation method color weaving, which visualizes the distribution of
the different genes in the blocks. Figure 4.12 shows the alignment overview visualization.

LayerCake is the analysis tool developed by Corell et al. [CBS+15]. This framework
is intended to enable the rapid exploration of sequence variations in viral populations.
Each row in the overview visualization represents a sample of a viral population. The
various areas of the samples are color coded according to the deviation from a previously
chosen reference sample. Since it is not possible to visualize all sequences of the samples
simultaneously, LayerCake automatically aggregates regions of genomes into discrete
bins. The color of the block results from averaging the different variations contained
in the block. With this technique it is possible to give a concise overview of thousands
of sequences, facilitating the exploration of similarities and differences of variability in
viral genomes. By using averaging as an aggregation method, details such as sporadically
occurring locations of high variation can be erased. LayerCake supports recovering details,
by providing focus + context lenses and event stripping. When clicking on a bin, the user
is able to enlarge its content in a detailed view, while the rest of the line is reduced in
size. When using the method event stripping, the user has to select a specific threshold.
Bins containing the specified range are highlighted by adding a dark red bar inside the
bin. This technique facilitates the identification of outliers in the sequence data. Figure
4.13 shows the overview visualization of LayerCake. As can be seen, the identification of
patterns of variability is easily possible.

Both works are based on alignment visualizations, which focus on the comparison of
similarities of different sequences. Since the main goal is to provide an overview of
many different genomes, it is necessary to abstract the very complex data. Therefore
mainly statistical methods are used. In the design phase of both works, principles of
human perception were considered. For this reason, visualizations are easy to read,
similar regions can be found at a glance due to their visual encoding, and there is no
clutter restricting readability. All these advantages speak for using different concepts of
alignment visualizations also for the comparison of complex material datasets.

Since genome data consist of concatenated sequences, a fixed order is naturally given.
Features such as fibers and pores do not have a natural ordering, which is why the
visualizations presented here cannot simply be applied to these datasets. But, as was
shown in these works, alignment visualizations are a good alternative to conventional
visualizations, such as parallel coordinate plots or scatterplot matrices. Since they
naturally support the detection of collective patterns and trends, the design of our
analysis framework is based on this type of visualization.
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CHAPTER 5
Methodology

To visualize several material samples for comparison, our analysis framework is based on
an overview visualization and three detailed visualizations. Since most tools in material
science focus on a detailed exploration of one or only several materials at once, we
wanted to provide a framework where a huge number of datasets can be compared at one
glance. We fulfilled this goal by creating an overview visualization called Histogram-Table.
To summarize the huge amount of data we use a dimension reduction method, called
Multidimensional Scaling (MDS), to map each individual object in the datasets to a
specific position on a 1D line. A dataset is visualized using a horizontal stripe. Each
additional dataset is drawn underneath the previous one, in a top to bottom style. For a
more detailed exploration we provide two different zooming techniques. To facilitate the
comparison task and make a fast detection of similar datasets or regions possible, we
implemented an automatic ranking technique based on a histogram distance metric. To
identify in which attribute the objects are similar, a statistic parameter, called coefficient
of variation, is calculated for every attribute and visualized using a bar chart. In order
to explore to which extent the various attributes are similar, a box plot is drawn showing
the intervals of the characteristics. Finally, users are also able to make assumptions about
the correlation of the individual attributes, by exploring the last detail visualization,
called correlation map. Figure 5.1 shows the interface of our analysis framework.

To give a detailed explanation of our visualization approach, first we explain our design
considerations. Then we discuss the Histogram-Table in more detail. Finally the
computation and depiction of the individual detail visualizations are explained.
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(a)

(b)

Figure 5.1: (a) Interface of our analysis framework consisting of an overview visualization
and three detail visualizations. (b) Mathematical calculation whose results are displayed
in the corresponding visualizations
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5.1. System Design

5.1 System Design
Until now material scientists mostly depend on the sequential comparison of datasets to
find similarities and differences. The number of specimens to be manually explored is
restricted to a limited number of samples, since otherwise this cognitively demanding
task requires even more time, leading to a higher probability of errors. To reduce
complexity and allow the users to explore several specimens at a time more efficiently,
we first summarized the detailed analysis tasks most important to material scientists
when exploring different samples. Secondly, we organized all available information
about required tasks and dataset structure, according to the four considerations from
Gleicher et al. [Gle18], which help in establishing design solutions for scenarios involving
comparison. As stated by Albers et al. [ADG11], including the knowledge of perceptual
science is a key advantage when designing visualizations for large amounts of huge data.
Therefore, we give a brief overview of the perceptual principles that have been studied
and on which we tried to rely as much as possible.

5.1.1 Analysis Tasks
Based on discussions and interviews about their workflow with material experts, the
following analysis tasks were determined:

• Comparing Specimens - Since minor modifications in the generation process of
materials, can have a huge impact on their inner structures, rapidly comparing
different samples of composites of the same type would facilitate the work of material
scientists. Furthermore, identifying samples of interest from a large amount of data
and then having to analyse only the selected ones, could save both working time
and effort. Also for educational purposes, a rough overview of different materials
could help to memorize figuratively the wide range of variations in their inner
structure.

• Finding Patterns - Finding patterns in material datasets can help to make
more accurate statements or predictions about the behavior of the samples. The
comparative analysis of several adjacent areas in one material can also support to
predict its mechanical properties.

• Comparing Individual Objects - Evaluating groups or individual objects, as
fibers and pores, based on their attributes can be useful for exploring specific
regions in more detail. Thereby the detailed analysis should enable the examination
of all attributes of the objects, but also of individual attributes, which the user is
currently most interested in.

• Identifying Outliers - By determining similar or different regions inside one
specimen, irregularities can be detected. Also the fast detection of outliers in a lot
of different specimens can help to focus on different tasks. For example, the user
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can decide to examine just the similar samples more closely. The interest could
also fall on one or more outliers, which can then be investigated in more detail.

5.1.2 Visual Design Considerations
In our work, comparison is the most important task, even influencing other analysis
tasks. The visual concepts used in our visualization system are based on the design
framework developed by Gleicher et al. [Gle18]. The authors give a broad overview of
what needs to be considered when designing a comparative framework and base their
recommendations on an extensive literature study. For this reason, we structure our
information according to the four defined categories: Comparative Elements, Comparative
Challenges, Scalability Strategies, and Comparative Designs.

C1. The Comparative Elements, the set of items that should be compared in our
final visualization framework, are two-layered. First, a comparison between different
specimens should be possible. Each specimen consists of thousands of objects, each
described by 10 to hundreds of attributes. Second, a comparison among groups
of objects should be possible. Therefore our visualization tool has to be
adaptable to different levels of detail.

C2. Comparative Challenges, determining the degree of difficulty of a comparison,
are defined by three categories: the number of items to compare, the complexity of
the items themselves, and the complexity of the relationships between the items.
Since in this work not only several different datasets, but also groups with varying
numbers of objects, should be compared, the number of the comparative elements is
quite high, lying in the range of three to hundreds of dataset and thousands of ob-
jects. Since the individual objects are described by a large number of characteristics,
usually in the range of ten to hundreds, the items themselves are complex as well.
Solely the relationships among the elements can be characterized as simple, since
each object has the same number and types of attributes, where the variation can
be depicted by calculating the difference. As a result, our visualization frame-
work has to be able to deal with a huge amount of data, providing an
abstraction by summarizing the data in an overview visualization. Since
exact characteristics are necessary for domain scientists to analyse and
interpret the specimens’ properties, details cannot be omitted. There-
fore additional detail visualizations are necessary to display important
supplementary information about the detailed specifications.

C3. A Comparative Strategy is required to solve the scalability problems imposed
through the comparative challenges. To solve comparison challenges, Gleicher et al.
categorized three different approaches: scanning sequentially, selecting a subset,
and summarization. While the user is able to explore each item serially in the
first approach, selecting a subset can help identifying patterns or commodities.
Summarization can constitute an advantage when an overview or context-specific
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properties have to be analysed. Since we wanted material scientists being
able to explore their data on a high-level as well as individually, we
combined all three concepts in our tool.

C4. Comparative Design, describes the visual design used for comparative visualiza-
tions. As described by several prior papers [Kim2017, Gleicher2018, Wang2019]
there are three basic designs: juxtaposition, superimposition, explicit encoding.
While in the first strategy the items are placed in different spaces, next to each other,
in the superimposition design the items are place in the same space, on top of each
other. In contrast to those, explicit encoding visualizes the relationships between
the items. Since the comparative design is depending on the task at hand,
in our tool all three concepts were used in different combinations.

5.1.3 Perceptual Phenomena
Human perception plays a major role in the field of visualization, since the correct use of
graphic features exploits the low-level visual system of human beings and allows them
to be recognized without effort. When visualizing huge amounts of information, the
human visual system is easily overwhelmed. Therefore understanding perception can
significantly improve material science visualization by exploiting perceptual mechanisms
[ADG11, FP02]. Perceptual phenomena, on which we focused during the development
of our framework are: Pre-Attentive Phenomena, Visual Search, Visual Clutter, and
Summarization.

• Pre-Attentive Phenomena summarize visual properties that can be identified
fast and without effort by the viewer. The use of these pre-attentive features allows
the viewers to detect important points among a large number of elements by making
them "pop-out". An example where this phenomenon occurs is when finding a few
blue points in a set of red ones. However, the number of pre-attentive features
is very limited and the combination of several of them is also problematic, since
interference can eliminate the effect. Therefore in our work the only pre-attentive
graphical feature we use is color. Our encoding emphasizes pre-attentive pattern
finding and summarization, since large fields of color symbolize the number of
similar objects in the datasets or specific regions.

• Visual Search is a common task in comparison, since it occurs when viewers
cannot detect targets pre-attentively, but have to look carefully over the whole scene
while searching for them. Search tasks can be quite time consuming and demanding
without visual aid. Designing tools that incorporate perceptual mechanisms sup-
porting the visual scans are necessary. To efficiently support users in finding similar
fiber or pore regions, visual search mechanisms are the key to a guided search. In
our visualization tool we map each dataset to a horizontal line, allowing the user to
scan the inside of one dataset by horizontal reading, and to search across multiple
datasets by vertical reading. In addition, an automatic ranking helps to identify
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the datasets that are most similar. The more similar the datasets are, the closer
they are positioned to each other, minimizing the time needed to search the entire
screen.

• Visual Clutter prevents from fast identification of single objects or their connec-
tions, because the number of elements, the visual encoding, or the layout prevents a
direct identification. This slows down the search process and increases the cognitive
load of the user. To avoid visual clutter, our framework uses diverse aggregation
techniques and a color-field visualization, limiting the displayed information. Clut-
ter can emerge in our prototype only on the most detailed level view, when each
individual object is shown.

• Summarization describes the aggregation of whole regions or groups by using
statistical methods. The result is representative overview information, whereby
the context of the information is preserved, while irrelevant details are omitted.
Summarization is currently not very common in the visualization of material data
because of the danger of losing valuable detail information. However, to be able to
compare different materials efficiently, the large amount of data has to be reduced.
In our framework the given objects are summarized according to all their attributes
to a specific position on a 1D line. Therefore the graphical feature, encoding the
similarity of individual objects, is position.

5.2 Overview Visualization - Histogram-Table
The primary goal in the design of our framework was enabling the recognition of patterns
and trends of several specimens. Our framework follows the visualization pipeline from
Section 3.3 as follows: First an aggregation is applied to the data. Next, the visual
encodings are assigned, which are then merged by a composition. In our work the goal is
to compare as many objects from as many datasets as possible. To allow the visualization
to be highly scalable, the given information must be minimized as much as possible to
make a visual summary of the whole data possible. To ensure serial scanning of the
datasets or objects, we decided to map every single object into 1D space. The points,
originating from the same dataset, are mapped together on a horizontal line. This way
a space-filling visualization can be created, which allows the viewers to compare an
unlimited number of datasets.

5.2.1 Aggregation with Multidimensional Scaling (MDS)
For aggregation, the dimension reduction technique Multidimensional Scaling was ap-
plied. The overall idea of MDS is to map the original high-dimensional data into lower
dimensional data. We consider s objects defined in an m-dimensional space M . The
goal is to map each of the given s objects into a lower r-dimensional space R, where
r m. In the original space a proximity measure δij describes the correct distance
between the pairwise objects (i, j). The computation of this measure results in a matrix
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C = (δij), where the dimension of C is defined as dim (C) = s × s. The MDS results in a
configuration matrix X, with the dimension dim (X) = s × r, that contains the newly
calculated positions of objects in r-dimensional space. To compute the configuration
matrix X, the MDS tries to replicate the proximities of the m-dimensional space in the
r-dimensional space. To obtain a result for configuration X, the following function is
defined:

σ(X) =
i<j≤n

wij (δij − dij(X))2 (5.1)

The function σ(X) describes a loss or stress function that measures the squared differences
between the ideal (m-dimensional) distances and the actual distances in r-dimensional
space. The term δij represents the ideal distance, here called proximity, between the
objects in the original m-dimensional space. The term dij(X) measures the distances
between object i and j in the embedding space R. wij ≥ 0 describes a weight for the
measurement between the pair of objects (i, j). The better the configuration X minimizes
the function σ(X), the better the points in the new space correspond to the points in
the original space.

Input Data for MDS

To obtain points in a lower dimensional space, the MDS requires similarity or dissimilarity
information as input. The proximity, denoted as δij , describes the closeness information
of the points in the input data. For MDS, there exists a multitude of different proximity
measures. In general, proximity information is organized in a proximity matrix and
different metrics primarily vary in the way they were collected, either directly or indirectly
[SNHS18].

• Direct proximity measures are based on qualitative judgements or quantitative
assessments that directly indicate the condition of the point. So the similarities or
dissimilarities of this measure are directly encoded. Examples for direct proximities
are subjective rankings, opinions or perceptions, expressed by users. For this reason,
variables used in this type of measure are generally dichotomous (binary). Here the
similarity is often expressed with presence or absence of the defined phenomena or
opinion.

• Indirect proximity measures are the result of computations from certain avail-
able types of information. In most cases this information is available as a matrix,
containing similarities in form of variables. It should be noted that the available
variables can be quantitative, qualitative, or mixed.

One major disadvantage when using MDS for similarity computation, is that the genera-
tion of proximity information, i.e., the creation of the proximity matrix, is often quite
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complex and time consuming. For simplification, certain assumptions can be made to
ease this process:

1. δij > 0, describes non-negativity

2. δii = 0, describes identity, so the point is always similar to itself

3. δij = δji, describes symmetry, stating that the distance from i to j is the same as
from j to i

There are some authors, who disagree with the above conditions [SNHS18]. If δij = 0
holds for two objects i and j, it may happen that δik = δjk for a third point k. To
ensure that the above assumptions hold, it is necessary to check whether the similarity
information satisfies the definiteness property or the triangle inequality, so either i and
j coincide for δij = 0 or δij ≤ δik + δjk. If these requirements are fulfilled, well-known
distance metrics like the Minkowski family of distances can be applied as proximity
metrics. For two objects i, j ∈ M the Minkowski distance of order p, can be defined as
follows if we consider m quantitative variables Yk with observations yik:

δij =
m

k=1
|yik − yjk|p

1
p

(5.2)

For p = 1 the Minkwoski metric corresponds to the Manhatten Distance, for p = 2 to the
Euclidean distance and for p = ∞ to the Lagrange and Chebyshev models. Furthermore,
Table 5.1 shows various popular proximity metrics, where δij describes the dissimilarity
and ρij describes the similarity between two objects i and j. The first four entries display
four different Minkowski distances, that directly integrate dimensional differences. In
contrast to the Minkowski family, the models from row 5 to 10 in Table 5.1 control the
dispersion of the variables. The Canberra Distance is used if absolute differences should
be corrected along each dimension. In addition, if yik have negative values, then δij

reaches an asymptote of infinity. Consequently, the Canberra Distance should only be
used if solely positive values are involved. The Bay-Curtis distance tries to correct the
sum of absolute differences, and is mainly used in the domain of environmental research.
Both, this metric and the chord distance perform well with positive values of yik. The
resulting values of the correlation coefficient lie in the range of -1 and 1. In contrast to
the other metrics, this distance describes the linear similarity between the individual
objects i and j according to the Pearson Correlation. It works especially well for very
large data with many dimensions m.

In our work we focused on the distances based on angles, defined in row 9 and 10 in Table
5.1. The Angular Separation, also known as cosine similarity, measures the similarity
of two non-zero vectors. This measure is defined to be equal to the cosine of the angle
between them, which is also equal to the inner product of the normalized vectors. Angular
Separation is a measure of orientation of the vectors, since unit vectors are maximally
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No. Model Formula
1 Manhattan δij = ( m

k=1 |yik − yjk|)
2 Euclidean δij = m

k=1 |yik − yjk|2
1
2

3 Lagrange and Chebyshev δij = maxm
k=1 |yik − yjk|

4 Minkowski δij = ( m
k=1 |yik − yjk|p)

1
p with p ≥ 1

5 Canberra δij = m
k=1

|yik−yjk|
|yik+yjk|

6 Bray-Curtis δij =
m

k=1|yik−yjk|
m

k=1(yik+yjk)

7 Chord δij = m
k=1 y

1
2
ik − y

1
2
jk

2
1
2

8 Correlation Coefficient ρij =
m

k=1(yik−ȳi)(yjk−ȳj)

( m

k=1(yik−yi)2)
1
2 m

k=1(yjk−yj)2
1
2

9 Angular Separation ρij =
m

k=1 yikyjk

( m

k=1 y2
ik)

1
2 m

k=1 y2
jk

1
2

10 Angular Distance δij = 1 − arccos

 m

k=1 yikyjk

m

k=1 y2
ik

· m

k=1 y2
jk

 · (1/π)

Table 5.1: Proximity Metrics

similar if they are parallel, while they are maximally dissimilar if they are orthogonal
to each other. The resulting similarity values have a range of [−1, 1]. Values close to
-1 mean the compared vectors are exactly opposite, while 0 indicates decorrelation and
1 denotes equality. The Angular Separation is very similar to the Pearson correlation,
because it can be transferred to the Pearson correlation by a simple subtraction of the
vector mean values from the vectors.

In contrast to Angular Separation, which expresses the similarity ρij between two objects
i and j, we consider the dissimilarity δij between i and j. In our work, we are only
interested in the ordering of the dissimilarities within the set of input vectors. Since
the order of the resulting dissimilarities is always the same, regardless which of the
angular functions was chosen, we neglected the term (1/π) and we do not subtract the
arccos-term from 1. To assign different importance to the individual attributes yik and
yjk of objects i and j, we add a weighting described by αk. With this weighting, the users
are able to determine the similarity of the objects based on the attributes that are of
interest to them. The resulting proximity calculation, used in our implementation, has
the following structure:

δij = arccos

 m
k=1 α2

kyikyjk

m
k=1 α2

ky2
ik · m

k=1 α2
ky2

jk

 (5.3)
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Before the MDS is applied to the data in our approach, each value of each column of the
initial matrix is divided by the maximum value of its column. This ensures that all values
of a column lie in the range of [0, 1] and prevents saturation effects of the numerical values.
Each row vector of the matrix represents an item, i.e. a fiber or pore, the individual
columns represent the individual attributes. In general, the resulting proximity matrix
C = (δij) is symmetric, non-negative, and is hollow, thus has a diagonal filled with zeros
[dLM09]. C can now be used as input proximity matrix for the MDS calculation.

Loss Function for MDS

To map high-dimensional data points to a lower dimension, the MDS positions all points
in a low-dimensional Euclidean space, in such a way that the distances between the
points approximate the given dissimilarities. To get the best result, the MDS tries to find
the best configuration matrix X such that the Euclidean distance dij(X) approximates
the proximity δij :

dij(X) ≈ δij

This equation can be represented as an optimization problem by the stress function shown
in Equation 5.1. The authors Leeuw et al. [dLM09] developed an efficient algorithm,
named SMACOF (Scaling by Majorizing a Complicated Function), that minimizes the
stress function by iterative majorization. In each iteration the stress σ(X) is calculated
and the algorithm can either be stopped if the difference between the stress value of
the previous iteration step and the stress value of the current iteration is quite small,
lower than a specified threshold, or if a certain iteration limit is reached. Majorization
guarantees a reduction or at least preservation of the stress value for each iteration step
and provides a linear convergence rate. A disadvantage of this method is the possibility
to get stuck in local minima. The smaller the dimension of the final low-dimensional
space is specified, the more likely the algorithm will return a local minimum as result
[dLM09]. In this work we will not explain the mathematical details of SMACOF, but
introduce the fundamental equation, called Guttman transform:

X = V B(Z)Z (5.4)

where V is the Pseudo inverse, also called Moore-Penrose inverse. The Guttman transform
is obtained by setting the derivative of σ(X) equal to zero, that is, ∇σ(X) = 0, where ∇
symbolizes the derivation. This equation can also be written as V X = B(Z)Z.

V = (vij) (5.5)

vij = −wij if i = j

i=j wij if i = j
(5.6)
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B(z) = (bij) (5.7)

bij =




−wijδij/dij(Z) if i = j
0 if dij(Z) = 0, i = j
− i=j bij if i = j

(5.8)

If the weights are equal for all distances, i. e., wij = 1, then

V = s I − eet

s
(5.9)

V = 1/s I − eet

s
(5.10)

where e = (1, ..., 1)t is a unit vector whose length is r, as the resulting lower dimensional
space R, and t denotes the transpose of the vector. I is the identity matrix, and s is
the number of objects. In our work we use Equation 5.10 for V . The iteration of the
SMACOF algorithm is processed by substituting X [k−1] into Z of Equation 5.4, resulting
in:

X [k] = V B(X [k−1])X [k−1] (5.11)

where X [k] is the configuration matrix after k iterations. Based upon the previous
definitions, the SMACOF algorithm now executes the following steps. First X [0] is
initialized with a random or predefined configuration matrix. In each iteration k a new
configuration X [k] is calculated by computing the Guttman transform of Equation 5.11.
Then the difference σ(X [k]) between the stress of the old configuration and the stress
of the new configuration is calculated, that is, σ(X [k]) = σ[k−1] − σ[k]. If σ(X [k]) < ,
where is a relatively small threshold constant, the computation is finished and the
configuration matrix X [k] is taken as result. The iterative process performed by the
SMACOF algorithm is summarized by the pseudo code example in Algorithm 5.1. Since
in our work the information regarding each object should be compressed as much as
possible, we chose the one-dimensional space as the result space, thus for our case r = 1.
For a more detailed description of the derivation of the SMACOF algorithm, we refer to
Leeuw et al. [dLM09] and Bae et al. [Bae08].

Output of MDS

The resulting output matrix X now stores the information about the relationship between
all objects, where similar elements are located in close proximity to each other, while
dissimilar elements are positioned far apart. The coordinates produced by the MDS are
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Algorithm 5.1: SMACOF
Input: A random configuration matrix X[0] and a threshold
Output: A configuration matrix X

1 Z ← X[0];
2 k ← 0;
3 Compute σ[0] = σ(X[0]);
4 while k = 0 or σ(X[k]) > and k ≤ maximum iterations do
5 k ← k + 1;
6 Compute the Guttman transform X[k] given in Equation 5.11;
7 Compute σ[k] = σ(X[k]);
8 Z ← X[k];
9 end

10 X ← X[k];
11 return X;

not unique, since the output configuration is not explicit in terms of reflection, rotation,
or dilation. For this reason a comparison of several configurations cannot be performed
without considering the ambiguity caused by these three transformations [SNHS18]. In
our approach the MDS generates a configuration matrix X of size dim (X) = s × 1, in
which for each object i of all used datasets a certain position was computed.

5.2.2 Visualization
The overview visualization, developed in our work, uses the output matrix of the MDS
and visualizes each object according to its computed position. All objects are ordered
according to their affiliation to a certain dataset. The objects of a dataset are mapped to
a common horizontal number line. Each object is represented as a circle according to
its calculated position on the respective number line. The MDS maps similar objects
close together and dissimilar objects farther apart. Therefore points that are located
closer to each other represent similar elements, while points positioned further apart are
more dissimilar. The numerical values, calculated by the MDS, cannot be interpreted
on their own, since merely the differences between them are meaningful. Therefore we
have omitted concrete axis labels in the visualization to not distract the viewer during
the analysis. Figure 5.2 visualizes the mapping of the objects to their positions on the
appropriate number lines, resulting in a point visualization to provide an overview.

If we look at dataset D1 in Figure 5.3, we can see that many points on the horizontal
line are located further to the left, when viewed from the center. Only a very small
percentage of the points are further to the right. These elements are outliers in this
dataset, since their positions do not align with the positions of the majority of the points.
Since the MDS considers the distances from all objects from all datasets, different datasets
can be compared with each other. Points that are vertically below each other are also
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similar, because they have the same horizontal position. For example, if we compare
the horizontal line of dataset D1 with that of dataset D2, we see that both datasets
are rather different. While in D1 the majority of the elements is more to the left, the
elements of D2 are positioned from the center to the far right. The rightmost positioned
elements of D1 and the objects of D2, positioned underneath, are quite similar, marked
in light green in Figure 5.3. The outermost right elements of D2 and the outermost left
ones of D1 are most dissimilar, highlighted in light red in Figure 5.3. Since there are
thousands of objects to be visualized, mapping each element to one specific position leads
to clutter in the visualization, as indicated by a dark red marking in Figure 5.2.

Figure 5.2: Illustration that shows how the individual objects are visualized on their
respective number lines. For each dataset Dj , ∀j = 1, ..., 16, a number line is displayed.
Each object i, ∀i = 1, ..., s, is represented by a position pi. According to its position,
each object is depicted on the horizontal number line. If too many objects are mapped
to similar positions, clutter occurs, which is marked in dark red.

Figure 5.3: Closer examination of dataset D1 and dataset D2 : The light red highlighting
shows the objects of the two datasets that are most dissimilar to each other. The centrally
positioned elements of D1 and D2 that lie vertically above each other, highlighted with
light green, are very similar.

To avoid clutter, the number lines are organized into regions and the number of elements
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inside a region is color coded. Through dividing the number lines into adjacent bins,
a summarization visualization is created that avoids visual clutter and allows users to
detect similar objects and datasets by using color as pre-attentive feature. This results
in the overview visualization shown in Figure 5.4, called Histogram-Table. After binning
has been performed, the visualization is still the same: Regions that are close to each
other are similar, while regions that are far apart are dissimilar.

A sequential scheme from yellow to red was chosen as the color palette. It was selected
based on experiments with different schemes. The chosen scheme was best suited to
identify different adjacent regions based on visual perception. Using this color scheme
facilitates the visual search for similar patterns across the different datasets. The
visualization of the same patterns across different datasets, reveals the same underlying
quantity of objects. Datasets with objects that have similar properties and are similar
in number can be found quickly and without mental effort. In Figure 5.4 we can see
at a first glance that the datasets Specimen1 to Specimen3 have similar distributions
of objects, since most of the more dark yellow to redder regions are located on the left
side. In contrast, the datasets Specimen5 to Specimen8 have the distributions of their
objects on the right side. From these two observations we can immediately conclude that
Specimen1 to Specimen3 are similar and differ strongly from Specimen5 to Specimen8.

Figure 5.4: Overview Visualization - Histogram-Table: This visualization gives an
overview over eight datasets. The individual regions are color coded according to the
number of objects inside. The redder the color, the more objects are located inside a
region, the brighter yellow the region is colored, the less to no elements are contained.

5.2.3 Linear Zoom

In the overview visualization, the horizontal number line is very roughly partitioned
into ten individual areas. Even though this subdivision provides a compact overview of
the object distribution, important details are lost. A finer subdivision would produce a
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more precise representation of the distribution. This would make it possible to identify
smaller collections of objects that were previously aggregated by the rough classification.
For this reason, three different zoom levels were integrated to obtain a more detailed
representation. Since the comparison between the different zoom levels should be possible,
the color palette was kept for each level. Figures 5.5, 5.6, and 5.7 show the individual
zoom levels. The higher the zoom level, the more precisely the exact positions, where
the objects are located, are displayed. By scrolling in or out with the mouse wheel, the
different zoom levels are activated or deactivated.

Figure 5.5: Zoom level 1: 20 regions per horizontal line

Figure 5.6: Zoom level 2: 40 regions per horizontal line
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Figure 5.7: Zoom level 3: 80 regions per horizontal line

5.2.4 Non-Linear Zoom

In linear zoom mode all datasets are enlarged or reduced simultaneously. To be able to
inspect interesting areas individually, a non-linear zoom mode was developed. Figure 5.8
shows the non-linear zooming applied on various regions. The user can select any region
at any zoom level and view the individual objects located in that region in a separate
area. It is possible to select single regions or several regions at once in the same dataset,
as well as for several datasets. Thus, individual regions can be compared with each other,
but also whole datasets can be compared in detail. Inside the newly created zooming
areas, the selected objects are positioned in relation to the two selected objects with the
smallest and largest position, i.e., similarity value. On the left border of the zooming
area, the object with the smallest position is drawn, while on the right border the object
with the highest position is visualized. Inside the zooming area the distribution of the
selected objects is displayed according to the selected minimum and maximum position.
Since we have to deal with thousands of objects, the subdivision into individual regions
is also applied to the zooming area.

As can be seen in Figure 5.8, in the first dataset Specimen3 three adjacent regions were
selected, visualized with a green outline. The zooming area is visualized as a continuous
line, where the selected objects are distributed. We can see that the distribution is quite
homogeneous in the first two selected region, while in the rightmost area a cluster with a
higher number of objects can be detected. In dataset Specimen1 the same regions were
selected, so the selected regions of the datasets can now be compared with each other.
Although the objects from these regions are similar, a detailed analysis can reveal that
they are not exactly the same. For example, the objects in dataset Specimen3 are located
further to the right, while the objects in dataset Specimen1 form a cluster to the left.
Finally, the same regions were selected again in dataset Specimen6. Here the zooming
area is empty, since there are no objects in the selected regions.
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Figure 5.8: Non-linear zoom mode: Various regions of three different datasets were
selected for a detailed comparison. For each dataset a new zooming area is visualized
containing only the objects of selected regions.

As in the linear zoom mode, it is possible to adjust the region size with the mouse
wheel. In the non-linear zoom mode, we provide four different zoom levels. In the first
three zoom levels the size of the bins is changed, while in the fourth level, called the
point level, the underlying point visualization is shown. Since binning causes blockiness
and positional inaccuracy, these introduced errors should be compensated by the point
visualization [ADG11]. Figure 5.9 shows the zoom mode on point level. We can see
that the selected region in red from dataset Specimen3 contains most of the objects, but
they are distributed within the region in a uniform way. The yellow region from dataset
Specimen1, that is located vertically below the selected, red region, on the other hand,
contains much fewer objects, which are also much less overlapping. To facilitate a direct
comparison of datasets that are located far away from each other, it is also possible for
users to manually position the datasets one below the other.

Figure 5.9: Non-linear zoom mode showing the point representation. Each object is
visualized as a circle.
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5.2.5 Similarity Ranking
The main goal of our visualization was to support users in identifying similar and
dissimilar datasets without having to look carefully over the whole ensemble. If there are
many very similar datasets, it is difficult to visually determine which of the datasets are
most similar. For this reason, an automatic calculation of the most similar datasets has
been incorporated into the system. Since the Histogram-Table represents histograms, we
chose the Chi-squared distance as comparison metric between the individual datasets.

The overview visualization can be interpreted as a histogram, since the overview visual-
ization is a depiction of several histograms, each shown as a colored bar. A histogram
is constructed by binning a range of values. In our case, for each dataset the positions
of the objects are clustered according to a predefined number of regions or bins. The
entire value range is thus divided into a series of intervals. Then the number of values in
each bin, called frequency, is counted. Often the bins are equal in size, and are visualized
by rectangles, that are built with a height proportional to the number of cases in each
respective bin. Also in our work the bins are of the same size, but instead of drawing
a rectangle for each bin, we divide the different frequencies into discrete intervals and
encode them in color. So we get a space-saving visualization of a histogram.

Since in the Histogram-Table each row represents a histogram, a histogram comparison
metric can be applied to determine the similarity of the individual datasets. There are
many different statistical methods to calculate the similarity between histograms. A very
good overview is given by Cha et al. [Cha08] and Meshgi et al. [MI15]. One of the most
popular metrics is the Chi-squared measure χ2, which is defined as follows:

χ2 =
k

i=1
(Oi − Ei)2 / (Oi + Ei) ,

where Oi is the observed frequency for bin i and Ei is the expected frequency for bin i.
In our work, the expected frequency Ei is represented by the dataset, which is used as
reference for the comparison. The other datasets, which will be ordered according to the
reference one, are represented by Oi. The Chi-squared measure is an unbound measure,
meaning that it does not have a fixed maximum. The smallest value delivered by this
measure is zero. The smaller the value of the metric, the more similar the expected and
observed histograms are. Chi-squared measure is a kind of weighted Euclidean distance.
As stated by Naik et al. [NPJ09] the chi-squared measure does not deliver the most
accurate results when comparing a large group of datasets with very different types
of histograms, but creates very accurate results when comparing sets of very similar
multimodal histograms. Since our analysis tool should help to determine the similarity of
materials, which can also have a very similar distribution of attributes, we have chosen
the Chi-square metric. The automatic sorting by similarity is especially useful in cases
where many very similar datasets are inspected. Figure 5.10 shows the ensemble before
and after the ranking was performed, according to a dataset selected by the user. All
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other datasets are ordered according to their similarity to the chosen reference dataset.
So, the closer the other datasets are positioned to the reference one, the more similar
they are to it.

The datasets can be ranked not only by all their bins, but also by individual ones or
groups. The user can select one or more bins from a dataset, according to which the other
datasets should be ordered. Figure 5.10c shows the ordering of all datasets according
to one individual bin outlined in green. This makes it possible, for example, to sort the
data records more specifically according to a certain type of objects.

5.2.6 Ordering
Up to now, the user can recognize collective patterns and trends in the Histogram-
Table, filter out the most similar datasets, and set varying zoom levels through different
interactions. Since the individual datasets can consist of a different number of objects, a
functionality must be provided to study the datasets also by the number of their contained
elements. To make this possible, an additional visualization was implemented, which
visualizes the datasets sorted by the total number of their objects. Figure 5.11 shows the
three different orderings that are provided to the viewer to explore the varying number
of objects: sorted in ascending order, sorted in descending order, and sorted in the order
the datasets had when the user had selected and loaded them into the application. The
visualizations consist of bars that represent the individual number of objects per dataset.
On the right, the total number of objects in each dataset can be read.
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(a)

(b)

(c)

Figure 5.10: The Histogram-Table (a) before and (b) after the automatic ranking was
performed. The row outlined in green represents the dataset that was selected as reference
by the user. (c) demonstrates the ranking based on one individual bin (green).
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(a) Ascending Order.

(b) Descending Order.

(c) Ordering according to the initial order the datasets had when the user loaded them into the
application.

Figure 5.11: The different orderings of the datasets, based on the number of their
contained elements.
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5.3 Detail Visualizations
Since the Histogram-Table visualization and the aggregation required for it, abstracts
the data very strongly, essential details can no longer be determined. For example,
material scientists need knowledge about the individual attributes of fibers and pores
in order to draw conclusions about the properties of the material. Since this detailed
information is lost in the overview visualization, it must be made visible again by
additional visualizations. Especially if the user has inspected similar datasets or regions,
he or she needs answers to questions like:

• In which attribute or attributes are the objects in the regions or datasets similar?

• To what extent are the elements similar in a particular attribute?

• If the elements are similar in one attribute, can the similarity in other attributes
be inferred?

A concrete example would be if the material scientists now want to examine the properties,
of a specific region containing a large number of fibers, more closely. Above all, he is
interested in why these fibers are all located in the same region, i.e., more specifically,
what commonalities they share. If, for instance, the fibers all behave similarly in their
length attribute, the follow-up question arises as to whether all fibers are equally long or
equally short. Since the comparison of many materials provides a lot of data about their
attributes, a further question can occur whether one attribute influences another one. For
example, long fibers could always have increased volumes. Based on these considerations,
we added three different detailed visual metaphors to the analysis framework:

1. A bar chart visualizing the most similar attributes computed based on a statistical
measure

2. A box plot displaying the interval range in which the objects’ attributes lie

3. A correlation map showing the relation between the individual attributes.

Since the various visualizations complement each other, the combination of all of them
forms a framework for analysis that both offers an overview and enables a more detailed
investigation.

5.3.1 Bar Chart
The bar chart visualizes all attributes given for each individual object. The height of
the bars represents the individual similarity values computed based on the empirical
coefficient of variation. The empirical coefficient of variation is a measure of descriptive
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statistics. It is a relative measure of variation and can be used to determine a series of
measurements. The empirical coefficient of variation cv is defined as follows:

cv = 1√
s

· σ

µ
, (5.12)

where µ defines the mean value and σ describes the empirical standard deviation [Koh06].
In general, the empirical coefficient of variation shows the degree of variability in relation
to the mean value of the measurement and the resulting interval is in the range of [0, 1].
The more similar the values are, the closer the result of the coefficient of variation is to
0, the more dissimilar they are, the closer the result is to 1. To ease the readability and
eliminate the need for prior knowledge, we mapped the resulting interval of the coefficient
of variation to a percentage in the range of [0, 100], where 0 means there is no similarity
and 100 implies equality.

Figure 5.12a shows the ranking of the 13 different attributes according to their similarity.
All fibers from all datasets were considered for this calculation. As we can see, the
attribute with the least dispersion of its values is the attribute Curved Fibre with about
5% to 10% similarity. The other attributes follow in descending order. In general, it can
be said that all fibers from all datasets are not very similar overall.

If a selection of certain regions was made in the Histogram-Table visualization, the bar
chart will also be adjusted based on the selected regions. The coefficient of variation
is recalculated based only on the objects contained in the selected bins. The various
results are then visualized with green bars that are superimposed on the original grey
bars. So, a comparison between the similarity of the selected objects and all the objects
can be made. In addition, the attributes are re-sorted depending on which attributes the
selected objects are most similar. Furthermore, the width of the green bars is variable,
depending on the ratio between the number of selected objects and the number of all
objects from all datasets. The fewer objects are selected compared to the original number
of elements, the thinner the bar is drawn. In Figure 5.12b we can see that the attributes,
in which the selected objects are most similar, is the characteristic RealZ1 with more
than 50%, followed by the attribute Curved Fibre with approximately 35%.

5.3.2 Box Plot
Now that the user has been able to determine in the bar chart, in which attributes
the fibers are similar, the question arises to what extent they are similar. In order to
visualize the dispersion and skewness of the individual attributes, a box plot is drawn
for each characteristic. For this reason, the five-number summary is calculated based on
all objects from all datasets for each attribute. This statistical summary consists of the
minimum, the median, the first and third quartiles, and the maximum. The minimum
and the maximum define the lowest and largest data point excluding any outliers. The
median is the middle value of the dataset. The lower quartile is the median of the lower
half of the dataset, while the third quartile is specified as the median of the upper half of
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(a) Bar chart is calculated from all objects from all datasets.

(b) Bar chart recalculated according to the selected objects. The green bars represent the similarity
of the selected elements, while the grey bars show the similarity based on all objects from all
datasets. The width of the green bars is based on the ratio of the amount of selected items and
the overall number of objects.

Figure 5.12: Bar chart shows the similarity for each available attribute computed by the
coefficient of variation. The bars are arranged in descending order from most similar to
most dissimilar attribute.

the data. Each box plot consists of a box and two lines, called whiskers, which extend
the rectangle. The bottom line represents the minimum and the top line represents the
maximum. The box is drawn from the 25%-quartile to the 75%-quartile. The horizontal
line in the box represents the value of the median. Since the different attributes can have
very diverse values, the minimum is mapped to the value 0 and the maximum to the
value 1. This ensures that all box plots can be displayed side by side in a diagram. The
ordering of the box plots is bound to the similarity ranking of the bar chart. Therefore
the attributes are arranged in the same order as the attributes in the bar chart.

Figure 5.13a shows the box plots for the individual attributes. If we look at attribute
Volume, we can see that the first and third quartiles are very close together. Since this
means that the variance of the values is rather small, we can conclude that this attribute
has very similar values. In contrast, if we look at attribute RealZ1, we see that the box,
i.e., the interquartile range, is very large, which means that there is a large variation, so
it is not very similar in its values. If we go back to attribute Volume, we can also observe
that the box is displayed almost at the bottom on the vertical axis. From this we can
deduce that most of the values are rather small compared to the maximum value this
attribute can assume. A similar statement can be made for the attribute Diameter. Here
the box is very small and located in the middle. This reveals that the majority of the
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objects has an average value with a few smaller and larger outliers.

Like the bar chart, the box plot is also recalculated based on the selected regions. For
each attribute additional green box plots are drawn, for which the calculation is based
only on the selected objects. To perform a comparison with the grey reference box
plots, which are computed using all objects from all datasets, the green box plots are
superimposed on the grey ones. Furthermore, the ordering of the box plots is changed
using the calculated similarity values based on the coefficient of variation as depicted in
the bar chart. Figure 5.13b shows box plots for some selected elements. As we can see,
the selected objects are most similar in the attribute RealZ1. Here the box is particularly
small and also positioned very low. Therefore, we can conclude that the values of the
selected elements are very small, compared to the numerical values of all objects in all
datasets. If we look at the second attribute Volume, we can observe that the selected
objects have an increased volume compared to all elements, because the lower quartile of
the selected elements is above the median of the original objects. Furthermore, we can
conclude that the currently selected items do not contain the objects with the highest
or lowest numerical value. This can be determined by the fact that the whiskers of the
green box do not reach the whiskers of the grey box.

(a) Grey box plots showing the interval similarity, i.e., the distribution of the attributes’ values,
calculated based on all objects of all datasets.

(b) Interval similarity calculated based on the selected objects superimposed in green over the
grey reference boxplots.

Figure 5.13: Box plot visualizing the distribution of each individual attribute.
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5.3.3 Correlation Map
On the basis of the two detail visualization techniques it can now be determined in which
attributes the objects resemble each other and to what extent they are similar. Now it
can be clarified whether one attribute influences another one, or in other words: Whether
it can be shown that if in the ensemble many objects are similar in one attribute, i.e.,
have similar values, that they are also similar in another attribute. To detect relations
between attributes, correlation analysis can be used. This analysis determines whether a
relationship between pairs of variables exists and describes how strong it is. Correlation
calculates a statistical relationship, where often the linear correlation of two variables is
of interest. Also in our work we are interested in the linear correlation between individual
attribute pairs. A standard method in correlation analysis is the correlation coefficient,
also called Pearson product-moment correlation coefficient. For a given attribute pair
(a, b), ∀a, b = 1, ..., m and a = b, each consisting of s values given by the s objects, the
pairwise correlation coefficient rab between the two attributes a and b is defined as follows:

rab =
s
k=1 (ak − ā) bk − b̄

s
k=1 (ak − a)2

1
2 s

k=1 bk − b
2

1
2

(5.13)

The correlation coefficient can assume values in the interval [−1, 1]. The value 1 means
that the two variables have a perfect positive relation. If one of the two variables increases,
the value of the other variable will also increase. The result −1 shows a perfect negative
correlation, which means that the more one variable decreases in its value, the greater
the value of the other variable becomes. If the correlation coefficient is zero, no linear
relationship between the two variables can be calculated. To interpret the results of
the correlation coefficient correctly, the following properties of this measure have to be
considered:

• Existence: Even if the correlation coefficient assumes the value 0 for a pair of
attributes (a, b), this does not mean that there is no relation at all, but only that in
this case no linear relation can be determined. If we assume, for example, that the
attribute a has a standard normal distribution and b = a2, thus depends completely
on a. This would result in a complete dependence between both variables, but their
correlation would be 0 according to the correlation coefficient.

• Subpopulation Size: The correlation coefficient can be significantly influenced
by the number of the chosen subset of the objects. A limitation of the variability
of the data occurs, if a attribute has similar values. This happens, for example,
if the subpopulation does not contain all or only a very limited range of possible
values of an attribute. Thus the subpopulation does not sufficiently represent the
whole interval range of the values of an attribute. An unbalanced selection of
the subpopulation can lead to a wrong correlation being calculated. Furthermore,
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correlations for very small subpopulations are not very meaningful, since high
correlations are easier to obtain in smaller subpopulations than in larger ones.

• Robustness: The correlation coefficient is not robust against outliers. This means
that outliers can both artificially increase and decrease the correlation coefficient.

To allow a correct interpretation of the correlation coefficient, the above mentioned
properties should be kept in mind. Furthermore, for easier interpretation, the rules of
thumb of Cohen [Coh13] can be taken into account, which state that if |rab| = 0.1 the
effect is small, at |rab| = 0.3 a medium correlation can be found and with |rab| ≥ 0.5 a
high correlation can be observed.

Dealing with datasets consisting of a large number of attributes, it becomes difficult
to interpret the many resulting correlation relationships, since the information to be
examined grows very quickly. Given m attributes, the correlation computation will
compute O m2 correlation pairs. Therefore, an effective visual interface is required to
enable analysts to get a quick overview. Traditionally, visualization methods such as
scatterplots, parallel coordinate plots, or correlation matrices are used to display the
correlation of many attributes. Scatterplots do not visualize the correlation coefficients
themselves, but the underlying data points. This visualization shows the relationship
between two attributes measured for the same objects. The values of one attribute are
drawn on the horizontal axis, while the values of the other attribute are displayed on
the vertical axis. Each individual object is thus represented as a point, whose x- and
y-position are determined by the values of its two attributes. The overall pattern formed
by the points describes the correlation of the attributes. In the parallel coordinates
plot, each attribute corresponds to an axis, and the m axes are organizes as uniformly
spaced vertical lines. An object, consisting of m attributes, manifests itself as a set
of points, one on each axis, connected by a polyline. The pattern of the polylines
determines the type of correlation. Both types of visualizations often suffer from clutter,
because either points or different lines overlap. An alternative approach is the use of a
correlation matrix visualized as a heatmap. In this depiction the correlation coefficients
of each attribute pair are encoded using a color scale [SS04]. Although the perception
of the correlations is improved by encoding the correlation coefficients with color and
brightness, the authors Bertin et al. [Ber83] found that position and size are preferable
for interpreting quantitative information.

For these reasons we followed the approach of Zhang et al. [ZMM12, ZMZM15] and
decided to display the correlation information as a graph, called correlation map. The
correlation map is a complete graph G consisting of a set of vertices V and a set of edges
E. The set V = {v1, v2, ..., vm} contains a node for each of the m attributes. Since G is
a complete graph, the set of edges is defined as E = {{va, vb} : 1 ≤ a < b ≤ m}, where
every edge {va, vb} describes the correlation coefficient rab between the attribute pair
(a, b).
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The vertices in the graph are positioned according to a force-directed layout. Attributes,
which have a strong correlation, are positioned closer to each other, while attributes,
which have no linear correlation, are positioned far away from each other. For computing
the layout, the algorithm of Fruchterman and Reingold [Kob13] was applied, which
treats vertices in the graph as atomic particles exerting attractive and repulsive forces
on each other. In our approach the attractive forces were weighted by the result of the
correlation coefficients to fulfill the requirement to position the vertices, i.e., attributes,
with stronger correlations closer to each other. The following formulas were implemented
for the attractive force fa(D) and the repulsive force fr(D):

fa(D) = D2/Dopt · |rab|, (5.14)

fr(D) = −D2
opt/D, (5.15)

where D describes the distance between two vertices and the optimal distance Dopt

between vertices is defined as

Dopt = Z
area

number of vertices (5.16)

where Z is a constant, area is the available width and length of the drawing area, and
number of vertices is the total number of vertices. In our approach the vertices’ positions
are initialized randomly, then the layout-algorithm is applied. The edges are color coded
according to the type of correlation. For coloring, two different diverging color schemes
where chosen with seven discrete color steps. The first color scheme runs from red, i.e.,
positive correlation, to white, i.e., no correlation, to blue, i.e., negative correlation. The
second one contains the same colors except that the color white has been replaced by
grey, i.e., no correlation. Figure 5.14a shows a correlation map, where the correlation
coefficients were calculated between all attribute pairs. As we can see, when the first
color scheme is applied, the correlation results with values close to 0 are invisible. This
makes it possible to get a good overview of the strong correlations between the attributes
without severe clutter. Furthermore, through the positioning of the nodes we can see
which attributes do not depend on other characteristics. For example, the attributes
RealX1 and RealX2 are both very far away from the other attributes, indicating that
they do not have a linear relationship with the other characteristics. Figure 5.14b shows
the same result using the second color scheme. Here we can see that correlations were
calculated between all attribute pairs, but for many of them the result was close to zero.
Since this color mapping produces a cluttered view because of the many overlapping
edges, that do not represent important correlation information, we provided the color
scheme used in Figure 5.14a. However, to allow the user to inspect the edges that have
no correlation more closely, the user can switch between these two color schemes.
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The grey circular segments, positioned around the correlation map, represent the indi-
vidual datasets. The length of the circular segments indicates the ratio of the number
of objects between the different datasets. As we can see in Figure 5.14, Specimen4
and Specimen8 contain the fewest objects, since they are represented by the shortest
segments. The representation of the ratio between the number of objects, contained
in the different datasets, should show which attributes of which objects were used to
calculate the correlation map. For example, if one dataset has significantly more objects
than another one, we could conclude that the smaller one is underrepresented for the
correlation calculation. These segments help the user to select a suitable subpopulation
of the datasets. The distance of the vertices to the circular segments does not contain
any information.

Like the bar chart and the box plot, the correlation map is also recalculated after selecting
certain regions in the Histogram-Table. Figure 5.15 shows the re-calculated correlation
map after various bins of two different datasets were selected by the user. The correlation
calculation is now only performed on the basis of the objects, which are contained in the
selected bins. The circular segments were updated to indicate that only two datasets were
included in the calculation. The dark-grey, external segments show the ratio between
the two selected datasets, based on all their objects, while the green inner segments
represent the number of selected objects per dataset. Only the elements represented by
these green segments are used to calculate the correlation coefficients. The light-grey
segments show the ratio of non-selected objects inside each dataset with respect to the
number of selected objects, visualized by the green segments.
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(a) Correlation map using the color scheme from red to white to blue.

(b) Correlation map using the color scheme from red to grey to blue.

Figure 5.14: Correlation map visualizing the linear correlation between the individual
attributes. The positioning of the vertices represents the strength of the correlations,
while the edges encode the type of correlation with color. The length of the circular
segments visualize the ratio of the elements in each dataset. The longer the segments
are, the more objects are stored in the respective dataset.
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Figure 5.15: Correlation map after some bins of two different datasets were selected. The
correlation map is recalculated based only on the chosen objects. The dark-grey, external
segments visualize the ratio between the different datasets based on the total number of
their objects. The green segments show the ratio of the selected objects with respect to
the dark-grey, external segments, showing all objects inside their dataset. The light-grey
lines represent the ratio of non-selected objects with respect to the selected objects inside
each dataset.
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5.4 Implementation
Our application is based on the programming language C++. It was developed as
module for the application open_iA [FWS+19]. Open_iA is an open source application
for the analysis of volume data based on image processing and visualization. Its main
focus is on industrial computed tomography. As graphical user interface, the cross-
platform framework Qt is used, which provides an easy to use and intuitive surface.
Open_iA allows slice-by-slice navigation in the 2D views, 3D navigation and arbitrary
slice planes in the 3D views and furthermore the definition of user-specific views for
individual visualizations. For visualization and image processing purposes, the toolkits
ITK [SNC03] and VTK [SML06] are used in addition to in-house developments, which
extend open_iA to a comprehensive tool for 3D visualization and CT data analysis.
open_iA is easily extensible and provides various filters and different tools for an accurate
visualization of material properties such as fibers and pores.
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CHAPTER 6
Discussion and Evaluation

In this chapter we will go into more detail about the practical applicability of our analysis
framework. We will demonstrate the usefulness of our analysis framework by means of
three different usage scenarios. To test the readability and cognitive difficulty of the
applied visual encodings in our visualization framework, we conducted a qualitative user
study. For this purpose, we formulated open tasks that the material engineers should
execute. In addition to checking the understanding of the visualization techniques, the
material experts were also interviewed about the usefulness of our framework in their
daily activities. Finally, we will describe the benefits and limitations of our tool on the
basis of the evaluation we have conducted.

6.1 Description of Data Used in This Work
The datasets used in our work are various CSV files consisting of hundreds to thousands
of rows, representing the individual objects. Each object is described through a varying
number of attributes. In the following we will describe three different use cases based
on three different ensembles. The first two ensembles come from the material science,
while the last ensemble represents a general dataset usually visualized in the information
visualization domain.

The first ensemble consists of six individual datasets, which describe two different materials
based on the contained pores. One dataset describes a small material scan, while the
other five datasets each describe a region of a larger material scan, which was divided
into five adjacent regions. The performed cutting is illustrated in Figure 6.1. The aim
is to compare the smaller material scan with the larger one and to determine whether
the two materials are similar and if so, in which region. The pores are described by 23
different features, including attributes such as different orientation specifications, flatness,
roundness, length, elongation, etc. The smaller material scan contains 1722 pores, while
each region of the big material scan contains around 1500 pores.
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6. Discussion and Evaluation

Figure 6.1: Regions, into which the larger sample was divided. All these will be compared
with a smaller material scan.

The second ensemble describes a fiber material that has been modified by an in situ test.
The first time the material has been scanned after it had been exposed to a shearing force
for 10 minutes. Then, it was scanned a second time after a total of 60 minutes of shear
force application. In this ensemble, the aim is to compare the two different time steps.
To enable the user to make a detailed analysis, the material was divided into the same
four areas in each scan, as shown in Figure 6.1. The individual fibers are described by
13 different characteristics like their start and end positions in the different dimensions,
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length, diameter, area, volume, etc. Each of the individual regions contains about 2.500
fibers, so a total of about 20.000 fibers are compared in this ensemble.

To demonstrate the generalizability of our analysis tool, we also show the applicability
to a time-varying spatial dataset, as provided by ILOSTAT [Org20] on the platform
Gapminder [Gap20]. This ensemble consists of six different datasets that describe the
unemployment of men and women in different age categories. Three datasets describe
the unemployment of women aged 15-24, 25-54 and 55-64, while the other three datasets
describe the unemployment of men in the same age groups. These CSV files are structured
as follows: For about 165 countries of the world, the percentage of unemployment is
plotted for the time period of 29 years. This dataset can be interpreted in such a way
that the individual objects are represented by the different countries, while the past years
reflect the individual attributes. By comparing these datasets, it will be shown that
unemployment behaves similarly within the same gender, while a clear difference between
the sexes can be identified.

6.2 Usage Scenarios
In the first scenario, two different specimens are compared based on their pore properties.
The second scenario describes a fiber material on which a force has been applied for a
certain period of time. The third scenario relies on datasets that do not originate from
material science. To show the generalizability of our tool, six different spatio-temporal
datasets are compared. Based on the different user scenarios we will show how to read
the different visualizations and what conclusions can be derived from them.

6.2.1 Analysis of Porous Materials

In this scenario the ensemble consists of two different material scans. The larger scan has
been partitioned into five areas, as can be seen in Figure 6.1. In the Histogram-Table in
Figure 6.2 we can explore the dataset SmallPores and the datasets with regions 1 to 5,
describing the various areas of the larger material scan. At first glance, there are no major
differences between the individual regions and the SmallPores dataset. However, dataset
Region5 is probably the most dissimilar, since it reveals large clusters, i.e., very red areas,
more on the right side of the Histogram-Table. Figure 6.3 demonstrates the bar chart
and box plot calculated for the ensemble. Inspecting the bar chart in Figure 6.3a, we
can determine that most similarity between all pores is mainly in their flatness attribute
and in their volume. In all other attributes, the statistical calculation does not show
much similarity. In the box plot in Figure 6.3b we can now take a closer look at the more
detailed depictions of the interval range of the individual attributes. When inspecting
the first few attributes, in general we can state that the pores are very flat, have a very
small volume and have a very similar orientation, based on the tensor orientation a22.
Figure 6.4 presents the correlation map calculated for this ensemble. The visualization
reveals that, for example, the attribute flatness does not show a strong correlation with
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Figure 6.2: Histogram-Table displaying the SmallPores dataset and the five regions of
the larger dataset.

any other attribute, while a more or less strong correlation was calculated between the
majority of the attributes.

Although we know that SmallPores is the smaller volume, we wanted to determine
the number of segmented pores more precisely. For this reason we sort the datasets in
ascending order. Figure 6.5 shows the result of the sorting. We can see that SmallPores
does not contain the smallest number of pores with its 1722 objects. Region1 and Region4
even contain smaller numbers of pores, i.e., 1437 and 1597 respectively. The area with
the most pores is Region5, with 1917 found elements. From these observations we can
conclude that although SmallPores covers a smaller volume, it has a higher pore density
compared to individual areas of the larger volume.

Our main goal is to find the most similar region to the volume of SmallPores. Since the
individual regions all have a very similar pore distribution, it is difficult to tell at a glance
which one is the most similar. For this reason we perform the automatic classification
according to the most similar datasets. Figure 6.6a shows the result of the similarity
ranking. The most similar dataset is Region2, while the second most similar dataset is
Region1. If we zoom in, as displayed in Figure 6.6b, the bin size is reduced, and we can
explore the distribution of the objects in more detail. At this zoom level, the subtle
differences in the distributions of the datasets SmallPores and Region2 become visible.

Now we want to explore why Region2 and the reference dataset SmallPores are similar.
This is why we select the bins with the most pores. Figure 6.7 displays the updated
Histogram-Table. All bins framed in green have been selected and the distribution of
their objects is drawn in more detail via the non-linear zoom. All in all, the distribution
of the objects is quite homogeneous in both datasets. The most significant difference
between the datasets is visible on the right side of the SmallPores dataset. There we
can locate many similar objects, while in the bins below, in dataset Region2, there is no
increased number of objects visible. Figure 6.10 represents the recomputed bar chart
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Figure 6.4: Correlation map computed based on all objects of the ensemble.

Figure 6.5: Ascending Ordering according to the contained number of pores.

and the newly computed box plot. As we can see in Figure 6.8a, the pores in these two
datasets are resembling each other for 50% in the first attribute, in contrast to the overall
similarity of about 35%. In addition, the green bars are about half as thick as the grey
reference ones, thus we can conclude that the two datasets together contain slightly more
than one third of all objects. In the box plot in Figure 6.8b, we can see that very flat
pores are present in the two datasets, since the box plot of attribute Flatness is very
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small and does not contain the outliers with the higher values. The selected pores are
also very similar in the attribute Volume. Further we can observe that the selected pores
have a very small volume, since the green box plot is very small and located very far
below. In summary, we can conclude that the pores located in the SmallPores material
scan, as well as in Region2 of the larger scan, are very flat and small.

As a final step in our exploration analysis, we want to take a closer look at the properties
of the pores in Region5, which are the most different ones compared to those in Region2
and in SmallPores. To do this, we select the three rightmost bins of Region5. In Figure
6.9 we can observe the representation of the individual pores and their distribution. In
the bar chart, shown in Figure 6.10a, we notice that the selected pores of Region5 are
also most similar in the attributes Flatness and Volume. If we take a closer look at the
interval range of the pores, selected in Region5, we can see that they assume much higher
values in both attributes, Flatness and Volume, compared to the pores selected in the
datasets SmallPores and Region2. We can distinguish the difference in the interval range
of the two attributes by looking at Figure 6.8b and Figure 6.10b. In Figure 6.10b, the
maximum values of the intervals of the attributes from Figure 6.8b are visualized using
two red markings. Thus, we can conclude that Region5 contains larger and rounder
pores.
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6.2.2 Analysis of a Fiber Material after Application of a Shear Force
In the second scenario, we show the visualization of a fiber material that was subjected to
a shear force over a certain period of time. A more detailed description of the ensemble
can be found in Section 6.1. At the beginning, we are mainly interested in the distribution
of the individual fibers. Therefore we take a closer look at the Histogram-Table in Figure
6.11. For two different time steps, the four individual areas of the sample are visualized.
The first four rows represent the four areas of the sample after a 10 minute exposure to a
shear force, the last four rows in the Histogram-Table show the same four areas after 60
minutes.

Figure 6.11: Histogram-Table shows each of the four areas of the sample in two different
time steps, i.e., after 10 minutes and after 60 minutes.

At first sight, we can detect a similarity between the two time steps. Area 1 of the
material scan, indicated with _1 in the two time steps 10min_1 and 60min_1, has
changed the least in the elapsed time. The areas 2 and 3 already show somewhat larger
changes, recognizable by the changing distributions of the fibers, which has moved slightly
to the right. The greatest change can be found in area 4, where a large number of fibers
have moved one bin further to the left. Although slight changes in the areas can be
observed, the similarity of the individual regions can still be clearly seen.

If we take a closer look at the similarities of the individual attributes, we can see that
only low similarities result based on the entirety of all fibers. All bars in Figure 6.12
are very low. However, the three most similar attributes are Curved Fibre, Separated
Fibre, and Volume. The first two are deterministic classification values and can only
assume boolean values. The attribute Volume is a continuous variable and indicates the
calculated volume of the individual fibers.

In the box plot in Figure 6.13 we can now take a closer look at the exact characteristics.
Although the attributes Curved Fibre and Separated Fibre can only assume two different
values, we can use the box plot to estimate which of the two values will occur more
frequently. For the attribute Curved Fibre the interquartile range, is equal to the minimum
value, which symbolizes that the majority of the fibers in this attribute have a value
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Figure 6.12: Bar chart showing the similarities of the individual attributes. In general,
no high degree of similarity can be determined for all fibers, which can be seen from the
small size of the bars.

of 0. In contrast, for the attribute Separated Fibre the interquartile range ranges from
the minimum to the maximum value, which is why the whiskers of the box plot are
occluded. This means that this attribute has mainly stored 1 as value. The box plots of
the next four attributes show a high similarity of the characteristics, since the boxes are
generally very small. Furthermore, they are also located on the lower end of the vertical
axis, so we can conclude that the fibers are generally very small, with only a few bigger
outliers. The next six attributes describe the start and end positions of the segmented
fibers in the three different axes x, y and z. Since their box plots are quite large, one
can conclude that the fibers are distributed relatively regularly in the volume. The last
attribute describes the diameter of the fibers. Due to the relatively small box plot, we
can assume that many fibers have a rather similar diameter. Since the box is placed in
the upper third of the vertical axis, most of the fibers have a relatively large diameter,
but there exist also some larger and smaller outliers.

Figure 6.13: Box plot visualizing the interval range of the attributes. The attributes
Curved Fibre and Separated Fibre have the most similar values. While Curved Fibre
mainly assumes the value zero, Separated Fibre mostly assumes the value one. The
Volume attribute shows a very high similarity, with the fibers shown here all having a
very small volume.

As the last step of the initial exploration, we want to check whether the attributes
influence each other. Therefore we inspect the correlation map in Figure 6.14. At first
sight we can see that there is a positive linear correlation especially between the start and
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end positions of the different dimensions. Since the length of the fibers, according to the
box plot, is relatively constant, the end position of the fibers is at a higher position, the
higher the start position is located. Furthermore, the location of these positions shows
that they are not, or only slightly, related to the other attributes. For this reason, they are
positioned further apart from the other attributes such as Diameter or CurvedLength. On
closer inspection, as seen in Figure 6.15, we can discover four different attributes, which
all influence each other. The four attributes are Volume, SurfaceArea, CurvedLength, and
StraightLength. The red edges between them symbolize that if one attribute of these four
has a higher value, all others will also have a higher value.

Figure 6.14: Correlation map visualizing the initial state of the fiber ensemble.

Next, we want to take a closer look at the area that changes most under the influence of
shear forces. For this reason, we first perform an automatic similarity ranking regarding
region 4 in the first time step. As expected, region 4 at the first time step is most similar
to the same region in the second time step, as shown in Figure 6.16.

We now look at the two specific bin regions of the 10min_4 and 60min_4 datasets,
which contain the most fibers. Figure 6.17 shows the selection of two bins of interest. We
will first find out to which extent the fibers are similar within their respective regions.
Then we can conclude how the fibers in the two regions differ and thus draw conclusions
about their development.

Figure 6.17a shows the exploration of the fibers contained in the red bin in dataset
10min_4. According to the color scheme, about 2000 fibers are positioned in this bin.
The bar chart in Figure 6.18a shows that the fibers are almost 100% similar in the
attribute Curved Fiber. In the second most similar attribute, the Volume, the selected
fibers are only 2% similar. Compared to the original calculation, which is based on all
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Figure 6.15: Zooming to four individual attributes, where a strong linear relationship
could be computed.

Figure 6.16: Resulting ranking based on dataset 10min_4.

fibers, their similarity is higher. In the box plot in Figure 6.18b, we can take a closer
look at the interval range. At first sight, we can see that the volume is visualized by a
very narrow box plot, which is relatively far at the bottom, inside the grey reference box
plot. The tool-tip shows the exact values of the volume. As we can see, the first quartile
is 6213 µm3, the median is 11459 µm3 and the third quartile is 22625 µm3. Interesting
to observe are also the attributes RealZ1 and RealZ2. In contrast to the original boxes,
the green boxes are very small and lie pretty much exactly on the first quartile of the
original boxes. This suggests that the fibers lying in this bin all have a very similar start
and end position on the z axis, meaning that they all lie together in a similar position in
the volume.
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Now we consider the similarity of the red bin, containing the most objects, in area 4
in the second time step. In contrast to the red bin in dataset 10min_4, this bin is
located a bit more on the left side, thus we can observe a development of the fibers in
the Histogram-Table in Figure 6.17b. If we now take a closer look at the similarities of
the attributes in the bar chart in Figure 6.19a, we discover that these fibers are not so
similar in their attribute Curved Fibre. Even though the fibers in this attribute are still
the most similar, they are only about 25% resembling each other. However, the similarity
in the Volume attribute is still the same, as the tool-tip shows with a similarity of 2%.
The box plot in Figure 6.19b shows the interval similarity of the attributes. The volumes
of these fibers are still very similar, and also relatively small. If we take a closer look at
the exact values in the tool-tip, we can determine the following values: The first quartile
corresponds to 6013 µm3, the median to 11579 µm3 and the third quartile to 22653 µm3.
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6.2.3 Analysis of Unemployment among Men and Women of different
Age Classes

In the last scenario we want to show that our analysis framework can also be used to
visualize generic datasets and is not necessarily bound to material datasets. Since we
represent the objects with their characteristics in a very abstract way, we are not limited
to the exact structure and meaning of attributes in material structures. For this reason
we visualize an ensemble that describes the unemployment of men and women of different
age groups. The exact structure of the ensemble is explained in Section 6.1.

Figure 6.20 shows the Histogram-Table visualizing the Unemployment Ensemble. We
can immediately see that there is a clear difference between unemployment for women
and men. Even if the largest clusters are located in the middle of the Histogram-Table, a
distribution to the left for women and to the right for men can be recognized. However,
there are also many countries in which the unemployment rates of both sexes are very
similar. These are depicted by the very dark red regions in the middle. If we look more
closely at unemployment within the gender group of women, we can observe a greater
variability than if we compare the regions within the group of men. Figure 6.21 displays
the bar chart and box plot that visualize the unemployment rate in percent for various
countries over 39 years. In the bar chart in Figure 6.21a we can see that in the years 1981
and 1979, the countries’ unemployment rates were the most similar. In Figure 6.21b
the box plot reveals the interval range of the unemployment rates. We can observe that
the unemployment rates were very similar and had a very low value in 1980s and the
1990s. From 2000 onward, the unemployment rates of the individual countries developed
differently, but increased overall. This can be observed by the growth of the interquartile
ranges of the box plots.

In this scenario we want to focus on the similarity of countries describing the unem-
ployment of men in the age group between 25 and 54. Figure 6.22 shows the selected
regions of interest. The bar chart visualizes for each year, how much the unemployment
rates differ between the sexes and age groups. The smaller the bars are, the greater
the difference between the groups. Figure 6.23a depicts the bar chart, which shows the
similarity of all countries per year. It can be seen that unemployment was more similar in
the earlier years, but became more dissimilar towards the turn of the millennium. Thus,
unemployment among men between the ages of 25 and 54 has evolved divergingly in the
different countries. The box plot in Figure 6.23b shows that the unemployment rates
increased especially in the 2000s. This can be seen from the fact that the interquartile
ranges, i.e., boxes, are getting larger. The larger the interquartile ranges become, the
more varying unemployment rates are recorded for a given year. Since the boxes are
getting bigger in size, higher unemployment rates were measured in these years.
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6.3 Performance
All three usage scenarios were run on the same test setup, a laptop equipped with an
Intel i7-6820HK CPU with 16 GB of RAM and a 17 inch screen size. In the first two
usage scenarios, in each case, a total of about 20000 objects were compared, which is why
the calculation of the visualizations took about 17 minutes each. In the third scenario a
total of about 1000 elements were compared, resulting in a computation time of about
10 seconds.

The bottleneck in our application is the calculation of the dimension reduction method
MDS. The MDS is a very memory consuming method, since it uses a proximity matrix C
as input parameter. This matrix has a dimension of dim (C) = s × s, where s represents
the number of all objects from all datasets [Bae08]. This input matrix can become very
large, so that the possible number of objects to be compared is currently bound to the
size of the memory. In our implementation we used vectors that store the data type
double. In C++ each double value requires 8 bytes. Therefore 8 · s · s bytes need to fit
in the RAM for a reasonably fast calculation. In our experiments the comparison of a
maximum of 20000 objects was possible.

Another limitation is the calculation of the MDS. The runtime of the SMACOF algorithm
is O n3 · k , where k represents the number of iterations and n the number of objects
[Bae08]. The display of the Histogram-Table depends on the calculation time of the MDS
and thus forms the bottleneck of our visualization framework.

These performance issues could be solved by, for instance, using a more effective imple-
mentation of MDS, as shown in the work of Bea et al. [Bae08]. Another solution would
be to implement a less costly and memory intensive dimension reduction method for the
abstraction of individual objects, like PCA or Locally linear embedding (LLE) [ZKL18].
When using a different method, however, one must be aware of the different calculation
method and the different context of the resulting objects.

6.4 Evaluation Workflow
To check the comprehensibility and usability of our analysis framework, we conducted
a qualitative user study. The main focus was on testing the readability and intuitive
interpretability of the visualizations. Since our tool was mainly developed for the
application in material science, only persons with background knowledge in this field
were included in the study. A total of 12 people participated in the study, where six
individuals would describe themselves as rather inexperienced, since they were in the
middle of their studies or did not deal with this kind of data every day. The remaining
participants worked with these type of data almost every day or taught students how to
understand and process them. Five of the 12 participants were female.

The study was conducted as follows: First, the participants were given a 15 minute
introduction to the framework. A small fiber materials example was used to explain the
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readability of the various visualizations and the different interaction possibilities. The
description of the Histogram-Table also contained a short, very general explanation of
how the individual objects were mapped to points to make it easier for the participants
to interpret the very abstract information. Then the attendees were presented with
a new dataset, which they could explore independently for 20 minutes. Meanwhile,
the participants were asked to formulate their thoughts aloud and how they would
interpret the individual representations. Qualitative tasks were prepared in advance
to ensure that all possible interactions were tested and that the visual encodings and
their meaning for the participants were vocalized at least once. Figure 6.24 shows
the formulated challenges and whether the tasks were immediately answered correctly,
partially correctly, or not at all. The dataset from Section 6.2.2 was made available for
the participants for free exploration during the study. None of the participants had ever
worked with or seen the presented dataset before. They were verbally informed what the
dataset contained and how it was generated. This information was seen as an important
factor for the user study, as material experts should contribute their domain knowledge
during the exploration, to be able to test the usability of the framework under realistic
conditions. After the exploration phase, attendees were invited to participate in a short
semi-structured interview of about 10 minutes. The following questions were of particular
interest to us:

• Were you able to detect shear typical changes of the sample through our visualization
techniques?

• Can you imagine using this analysis framework in your daily work routine?

• Have you already worked with Box Plots before?

• Have you ever seen a visualization similar to the Histogram-Table?

• Do you consider the interpretation of the Histogram-Table difficult?

6.5 Evaluation Results
In general, the analysis tool was very positively received. The various tasks were mostly
solved independently by the participants during the exploration phase. The exact results
of the tasks are shown in Figure 6.24.

The Histogram-Table was perceived by the participants as very clear and descriptive. Once
explained how to interpret this visualization, they found the visual encoding obvious and
intuitive. Especially the color coding was positively received, as it clearly distinguished
the individual bins from each other. The positive perception of the Histogram-Table is
demonstrated by the good results in Task 1. Only two participants could not recognize
at first glance which datasets were similar to each other. These users first had difficulties
with the strong abstraction of the data. After another short explanation, one of the two
participants understood how the individual fibers were mapped. The second person felt,
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Figure 6.24: Visualization of the individual tasks and how the participants solved them

as he expressed himself, that "the abstraction was too strong and lacked exact numerical
values to read the similarity". Furthermore, as the study progressed, it became more
and more apparent that empty bins, with no objects in them, required their own color
coding in the Histogram-Table. This would make it easier for viewers to create an
interpretation. Furthermore, it was discussed whether a separate color table for the
zoomed Histogram-Table would be useful. Some of the participants thought that it
would be advantageous, to have a customized color table to better distinguish the smaller
number of objects and thus not only perceive homogeneously colored regions at higher
zoom levels. On the other hand, the participants found it good to be able to compare
the different zoom levels by using the same color table. This enabled them to keep the
overview and context between the changes.

The bar chart was immediately understood by all participants, and was judged by nearly
all to be very helpful, as it was easy to identify at a glance, in which attribute the fibers
were most similar. This positive feedback is also reflected in the excellent results of Task
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2 and Task 3. Only two participants solved the task merely partially. They argued that,
"they preferred to look at the box plot rather than the bar chart". This opinion was based
on the fact that the individual bars in the bar chart were very small in size, as they
represented low similarity values of about 10% to 15% and the initial axis was scaled to
100%. In their opinion, the axis should be adjusted so that the largest value also takes
up all of the displayed part of the axis, even if there is a risk that small similarities are
then interpreted as big ones.

Besides the Histogram-Table, the box plot was the visualization that the participants were
most interested in. The Histogram-Table was used as overview and to filter interesting
areas, while the box plot made the underlying details visible for the selected elements.
Most of the test persons felt that the adjacency of the different attributes made a
clear exploration easy. The readability of the box plot was strongly dependent on the
previous knowledge of the test persons. Tasks 4 and Task 5 could be solved without
problems, especially by those who had worked with box plots before. The person who
found it difficult to interpret the box plot had never heard of this type of visualization
before, and therefore required a more detailed explanation in addition to the general
introduction. Although it was possible to inspect the exact values of the individual
attributes, the representation of the interquartile ranges was often sufficient to get the
necessary impression of the characteristics.

The correlation map got the best feedback regarding its visual encoding. According to
the participants, the color coding of the linear correlations was clear and intuitive, while
the positioning of the attributes, as stated by one person, "felt a bit arbitrary". Also
the change between the different color schemes to view the relations in more detail or,
if necessary, to "switch invisible" according to one participant, was very popular. The
good readability can be shown by the result of Task 6. The circular segments, positioned
around the correlation map, were also evaluated positively and could be interpreted
without problems, as shown in Task 7.

The longer the exploration lasted, the more motivated the participants became to continue
using our analysis tool. One respondent noted that "you can get a lot of information out
of the tool, but it requires thinking in order to correctly interpret what you see". Another
test person made a similar statement saying "you have to get a feeling for the visualization
first, but then you can discover many interesting things". Another meant that "in the
beginning it was difficult to approach the problem in such an abstract way, but with time
you get used to it". The test persons also noticed positively, that they always saw the
attributes of the selected fibers in comparison to the ensemble as a whole. Thus, as one
of the participants stated, they were able to "interpret the exact values more easily in
comparison to the given ensemble".

When asked whether the participants could also use this analysis tool for their daily
activities, almost all agreed. Especially in areas such as utility value analysis, where
the homogeneity of materials plays an important role, this analysis tool could be tested.
The experts can also imagine using our framework for pre-processing tasks. This way,
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they would not have to display the distribution of each attribute in a separate chart and
compare them manually.

To the question, whether the participants had seen a similar visualization before, only
three of the test persons affirmed the question. Two of the three regularly deal with
different visualizations and had therefore already seen similar ones. The third person had
often dealt with biological data, and therefore had seen similar visualizations before. All
other participants stated that they mostly worked with graphics that could only show the
distribution of one attribute. One visualization they used, but rarely, to display several
attributes at once, was the star plot.

All in all, the readability and interpretability of our analysis tool was found to be very
good. It turned out that a certain training period was necessary for an efficient use,
but the developed visualization methods also offer new interpretation possibilities and
perspectives.
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CHAPTER 7
Conclusion and Future Work

We would like to conclude this thesis with a summary and an explanation of how the
research questions defined in Chapter 1 were addressed. Furthermore, we briefly discuss
the limitations of our project and formulate goals and tasks for future work.

7.1 Summary
The main task in our work was to develop a visualization system that would enable
material scientists to compare several materials at once, based on their similarity or
dissimilarity. In order to fulfill this task in the best possible way, we thoroughly researched
the field of material science through literature research and personal interviews with
experts in the field. The precise knowledge of their workflow and existing visualizations
should help to create a balanced visualization system that provides appropriate tools. In
Chapter 2 the findings from these researches were presented in detail.

As described in Chapter 3, we tried to include the broad knowledge from the field of
visualization and examined the material science datasets for their structure. We found
out that they represent a kind of ensemble of datasets, and thus examined the current
state-of-the-art visualization concepts in this area.

Based on the analysis of the individual work steps and the defined domain-specific
questions that were established in Chapter 1, we defined three main questions R1-R3,
that our tool was supposed to answer. In the following we describe how our framework
addresses these questions:

(R1) Which datasets are similar or dissimilar? - Above all, this question was the focus
of our work and significantly influenced our implemented framework. It was intentionally
kept so general as to take into account the existing scaling problem that the structure of
the ensemble data entails. This question can mainly be answered by the Histogram-Table.
By abstracting the individual objects, their distribution can be examined more closely
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not only within a dataset, but also among several datasets. On the one hand, this
visualization can handle different degrees of complexity. In general, our visualization
can process data, consisting of varying number of attributes, i.e. dimensions, like one or
two, up to m dimensions. In addition, our visualization scales well, since each dataset is
represented by a single line. The scalability is only limited by the height of the lines in
relation to the height of the screen. Furthermore, our visualization system is able to deal
with various kinds of data. Due to the high degree of abstraction, the exact structure or
the meaning of the structure is not decisive to know to enable a comparison.

(R2) In which characteristics are the datasets similar or different? - For material
experts, the detail values or at least the interval ranges of the individual attributes are
essential for estimating the differences or similarities of the materials. Since important
numerical details are lost due to the abstraction of the data in the Histogram-Table,
detail visualizations were added to show these details separately. On the one hand, a
bar chart was integrated, which visualizes the similarity of the individual attributes by
means of a statistical calculation. This provides an overview of the details. On the other
hand, a box plot was included, which provides deeper insight by visualizing the exact
interval boundaries. This allows users to verify even more precisely in which attributes
the datasets are most similar or dissimilar.

(R3) Is there a correlation between certain characteristics? - This last question can be
answered mainly by the correlation map. Here the linear correlation between the individual
attributes is depicted according to a statistical calculation. Due to representation of the
characteristics as nodes and the correlations as color-coded edges, a simple interpretation
of the results is possible.

With the help of a qualitative evaluation, we tried to determine whether material experts
could find answers to the above questions using our analysis tool. The result of the
evaluation was quite positive. Additionally, feedback from the participants helped to
collect some improvements and suggestions for further development.

7.2 Limitation and Future Work
During the evaluation we could not only collect suggestions for improvement of our
individual visualizations, but also discuss further potentially interesting comparison
tasks with the participants. Two approaches were considered by many participants as
particularly interesting and also important for an even more detailed exploration.

The participants thought that it should also be possible to order the objects in the
Histogram-Table according to attributes selected by the user. This would enable a
targeted search in the datasets for specific characteristics. This is partly already possible
in our framework, since the weighting of the individual attributes can be determined
before the calculation of the MDS and thus the resulting position of the objects can
be defined according to user-chosen characteristics. If we want to filter for a specific
attribute, we can set the weight of this attribute to 100% and the weights of all other
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attributes to 0%. Since, as mentioned above, the calculation can require a very long
time depending on the number of objects, this functionality is not realized in real time
in our framework. One solution could be that the MDS pre-calculates a solution for all
individual attributes, so that the finished computations are available in real-time.

In our framework the focus was put on comparing selected objects with all objects of
the ensemble. During the evaluation, this approach proved to be useful and valuable,
but it was also found that the comparison between the selected objects themselves was
equally important. Therefore, our next step will be to focus on the comparison of selected
objects with each other. This should make it easier to examine the objects for their
dissimilarities.

In general, our framework is better suited to visualize similarities than dissimilarities. If
objects are similar, this is indicated in the bar chart by large bars, in the box plot by
small boxes. Due to the small size of the box plots, the viewer is able to estimate the
interval range, in which the attributes are located. For dissimilar objects, the bars in the
bar chart are small, the boxes in the box plot are large. We can tell that the selected
objects are dissimilar, but we cannot identify which objects have what exact numerical
values. A better separation of the visualization of similarities and dissimilarities could
lead to additional insights in both use cases.

These limitations and future suggestions for improvement show that there is still much
to be explored in the comparative visualization of materials. This work is a further
advancement in the integration of comparative visual analysis techniques to improve
the visualization of diverse materials. Furthermore, this system is also interesting for
use in other fields. Here, specific evaluations with experts from other domains would be
necessary and fruitful. In this thesis we presented a comparative analysis framework that
enables material scientists to visually investigate various materials for their similarities
and dissimilarities. The goal was to enable an efficient identification of trends and
patterns in the ensembles, thus enabling a faster, high quality inspection of materials.
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