
Ein eLearning Tool zur
Identifizierung von Population,

Intervention, Vergleich und
Ergebnis für Medizinstudierende

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Medizinische Informatik

eingereicht von

Florian Schweikert, BSc
Matrikelnummer 00825224

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Allan Hanbury
Mitwirkung: Linda Andersson, M.A.

Wien, 25. November 2020
Florian Schweikert Allan Hanbury

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

An eLearning tool to identify
population, intervention,
comparison and outcome

(sentiment) for medical students

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Medical Informatics

by

Florian Schweikert, BSc
Registration Number 00825224

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Allan Hanbury
Assistance: Linda Andersson, M.A.

Vienna, 25th November, 2020
Florian Schweikert Allan Hanbury

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Florian Schweikert, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. November 2020
Florian Schweikert

v

Danksagung

Ich möchte meinem Betreuer Univ.Prof. Dr. Allan Hanbury für seinen Rat und sein
Feedback danken. Ein besonderer Dank geht an Linda Andersson für ihre Betreuung,
Geduld, ihr Feedback und ihre Motivation.

Ferner möchte ich Markus Zlabinger und Tobias Fink für all die ergiebigen Sitzungen
des Gedankenaustausches zum Thema danken.

Mein Dank geht an meine Freundin Katharina, ohne die es mir wahrscheinlich nicht
möglich gewesen wäre, diese Arbeit abzuschließen.

Nicht zuletzt möchte ich meinen langjährigen Studienfreunden Manuel Wiesinger und
Christoph Roschger danken, die mir Feedback und Motivation gegeben hat.

vii

Acknowledgements

I would like to thank my advisor Univ.Prof. Dr. Allan Hanbury for his advise and feed-
back. A special thanks goes to Linda Andersson for her supervision, patience, feedback
and motivation.

Furthermore, I want to thank Markus Zlabinger and Tobias Fink for all the fruitful
sessions of exchanging ideas on the topic.

My gratitude goes to my girlfriend Katharina, without whom it probably would not have
been possible for me to finish this thesis.

Last but not least, I want to thank my longtime university friends Manuel Wiesinger
and Christoph Roschger for providing me with feedback and motivation.

ix

Kurzfassung

Die medizinische Forschung präsentiert ihre Resultate in Form von publizierten Papers
in wissenschaftlichen Zeitschriften. Eine der wichtigsten Onlineplattformen zur Recher-
che der publizierten Papers ist PubMed, in der bereits vor dem offiziellen Erscheinen
die Abstracts aller Artikel veröffentlicht werden. Die Verwendung dieser Daten in der
evidenzbasierten Medizin ist jedoch immer noch eine extrem zeitaufwändige Aufgabe, da
sich der Aufbau von Abstracts zwischen verschiedenen Studiendesigns, Fachrichtungen
und Forschungsgruppen stark unterscheiden. Mit Stand 2019 enthielt PubMed 5,7 Mil-
lionen Artikel mit einer aktuellen Wachstumsrate von ungefähr 500.000 Artikel pro Jahr.
Auch wenn moderne Suchmaschinen besser funktionieren als früher, ist es immer noch
notwendig, dass der/die Forschende zumindest die Abstracts aller potenziell relevanten
Artikel liest. Population, Interaction, Comparison, Outcome (PICO) stellen Grundele-
mente einer medizinischen Studie dar. Die Verwendung von maschinellem Lernen ist
eine State-of-the-Art Methode für Labelvorhersagen in Texten. So ein Model lernt auf
Basis von bereits annotierten Texten (Data Set) selbst Annotierungen durchzuführen.
Ein Beispiel für so ein Data Set mit Annotierungen von PICO Elementen in medizini-
schen Texten ist ebmnlp, welches in dieser Arbeit mehrfach zum Vergleich herangezogen
wurde.

Basis dieser Arbeit war das bereits aus dem KConnect Projekt vorhandene Data Set
bestehend aus bereits PICO-Element annotierten Abstracts medizinischer Studien. Das
für das KConnect Projekt entwickelte Annotierungstool wurde zu einem eLearning Sys-
tem erweitert, mit dessen Hilfe weitere Abstracts annotiert werden konnten (picoweb
Data Set). Zur Vereinfachung für die Benutzer wurden Intervention und Comparison zu
Therapy kombiniert. Im nächsten Schritt wurde ein neuronales Netz (SciBERT) mit dem
picoweb Data Set trainiert. Dieses erzielte f1-Scores für die Erkennung von Population
von 0.87 und für Therapy von 0.83. Zum Vergleich wurde das gleiche Modell mit dem
ebmnlp Data Set trainiert, welches einen f1-Score von 0.81 für Population und 0.72 für
Therapy erzielte.

xi

Abstract

Medical research presents its results in the form of published papers in scientific journals.
One of the most important online platforms for researching published papers is PubMed,
in which the abstracts of all articles are published even before their official publication.
However, the use of this data in evidence-based medicine is still an extremely time-
consuming task, as the structure of abstracts can vary between different study designs,
disciplines and research groups greatly. As of 2019 PubMed contained 5.7 million articles
with a current growth rate of approximately 500,000 documents per year. Even if modern
search engines work better than in the past, it is still necessary, that the researcher
at least reads the abstracts of all potentially relevant articles. Population, Interaction,
Comparison, Outcome (PICO) are basic elements of medical studies. The use of machine
learning is a state-of-the-art method for label predictions in texts. Such a model learns
to perform annotations on the basis of already annotated texts (data set). An example
of such a data set with annotations of PICO elements in medical texts is ebmnlp, which
has been used for comparison several times in this paper.

The basis of this work was the data set already available from the KConnect project
consisting of abstracts of medical studies with already annotated PICO elements. The
annotation tool developed for the KConnect project was extended to an eLearning sys-
tem, with which further abstracts could be annotated (picoweb data set). To simplify
things for the users, Intervention and Comparison were combined to form Therapy. In
the next step a neural network (SciBERT) was trained with the picoweb data set. This
achieved f1-scores of 0.87 for the detection of Population and 0.83 for Therapy. For
comparison, the same model was trained with the ebmnlp data set, which achieved an
f1-score of 0.81 for Population and 0.72 for Therapy.

xiii

Contents

Kurzfassung xi

Abstract xiii

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Contributions . 2
1.3 Methodological approach . 3
1.4 Structure of the work . 4

2 Background 5
2.1 Medical texts . 7
2.2 Annotation gathering and eLearning 9
2.3 Language representation models . 14
2.4 Neural Networks & Deep Learning . 17
2.5 Metrics . 23
2.6 Summary . 23

3 Method 25
3.1 Data set analysis . 25
3.2 Annotation and eLearning . 26
3.3 Evaluation of the comparison of different data sets 37
3.4 Summary . 39

4 Result 41
4.1 Data set analysis findings . 41
4.2 Gamification/eLearning platform . 48
4.3 Comparing the SciBERT model performance trained on different data sets

with each other . 49
4.4 Summary . 55

5 Conclusion 57
5.1 eLearning platform . 57
5.2 Machine Learning . 57

xv

List of Figures 59

List of Tables 61

Acronyms 63

Bibliography 65

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
This work contributes to improving how medical doctors work with evidence-based
medicine (EBM).

"Evidence based medicine is about asking questions, finding and apprais-
ing the relevant data, and harnessing that information for everyday clinical
practice." [RD95]

Rosenberg and Donald [RD95] formulated four steps in evidence-based medicine (EBM):

1. Formulate a clear clinical question from a patient’s problem.

2. Search the literature for relevant clinical articles.

3. Evaluate (critically appraise) the evidence for its validity and usefulness.

4. Implement useful findings in clinical practice.

Even if this thesis focuses on the second step (literature search), the presented eLearning
platform can help medical students to learn formulating a clear clinical question. As a
source for literature PubMed1 provides a large amount of medical texts, especially for
clinical based trials, in human readable form. However, using this data in evidence-
based medicine is still an extremely time-consuming task. In the past, about 2 hours
were estimated to formulate a clinical question and search and evaluate existing litera-
ture [RD95]. Since the mid-nineties the number of available studies has risen enormously.

1https://www.ncbi.nlm.nih.gov/pubmed/

1

https://www.ncbi.nlm.nih.gov/pubmed/

1. Introduction

Even if modern search engines work better than in the past, it is still necessary to re-
view many documents manually. There is still potential in making the search and the
evaluation of relevant studies faster and less error-prone.

The PICO framework was developed to help formulating clinical questions. It defines
the following four basic parts of a well-built clinical question [Ric+95].

Population descripes the type of patients studied, e.g. pregnant women or patients with
type 2 diabetes.
Intervention describes what intervention was done, e.g. 5mg of cortisone or chemother-
apy.
Comparison describes what the alternate treatment, that the study tested against, was,
e.g. placebo.
Outcome describes what the outcome of the intervention was, e.g. reduced pain (positive)
or no effect compared to control group (negative)

Schardt et al. [Sch+07] have shown—even if statistically not significant—that using
PICO to search for literature tends to enhance search result precision.

It is important for medical doctors and students to be able to extract this kind of
information out of medical publications to be able to evaluate if the study results do
apply to their current problem.

1.2 Contributions
The contributions of this work are two-folded. One contribution is the design of an
elearning system that helps students and other interested parties to learn how to extract
PICO data from abstracts. The annotated sentences, gathered in the process, are used
to extend the training data of a Machine Learning (ML) model. The second contribution
is the exploration of ways to merge these gathered annotations with another data set to
improve the trained ML model.

Research questions Following are the research questions we answer in the result
section.

• How to create an annotation platform that motivates medical students to annotate
medical abstracts?

• How to evaluate the performance of the users to give them feedback on their
learning progress?

• How does a state-of-the-art Machine Learning model perform on these annotations
compared to the similar ebmnlp data set?

2

1.3. Methodological approach

• What differences exist inside our data set (picoweb) compared to the similar
ebmnlp data set?

• How does the model perform if sentences without PICO elements are included in
the data?

• Is it possible to improve performance by enriching the annotations with PoS tags?

• How does the model perform when trained on a combination of both data sets?

1.3 Methodological approach
The focus of this work is to create an annotation platform that is easy to get started
with and also uses gamification techniques to enhance long-term motivation. As the
main goal of this thesis depends highly on the cooperation of the users, it is necessary to
design a system that is beneficial for the users. For the Machine Learning part the goal is
to achieve a reasonable prediction rate using the existing annotated data and enable the
system to get better while used as an elearning tool. While choosing the used algorithms
and hyperparameters, good precision is preferred over better recall. The reason for this
is that false positives should be minimized, as a user reacts in a more negative way if
wrong annotations are generated than if the system misses some. As the dataset only
contains around 26000 annotations, computational speed is not a major concern.

1.3.1 Review/explore the data
The KConnect data set [Zla+18b], consisting of 1.5M PubMed abstracts, is used and
extended. The picoweb data set consists of the existing KConnect annotations and
the annotations gathered using the eLearning. The data is analysed to identify nec-
essary preprocessing steps. These preprocessing steps are similar to the pipeline used
in [Zla+18a]. Suitable unsupervised methods are used to evaluate the structure of the
available text. Furthermore we analyse and compare the picoweb data set with the
ebmnlp data set [Nye+18] and explore possibilities of combining them.

1.3.2 Develop an elearning platform
We present an easy-to-use web application, enabling users to learn to label PICO el-
ements in PubMed abstracts. In contrast to common annotation platforms like brat2

our approach focuses on usability over complexity. The annotation frontend created by
Markus Zlabinger [Zla+18b] is used as base for the annotation part of the application.
The frontend was extended and simplified to meet the requirements of an eLearning
platform. The user can choose from several medical topics (e.g. cardiac, psychiatry,
. . .) to start a learning session. Each learning session consists of a PubMed abstract
to annotate—one sentence at a time. The annotations of the users are stored to extend

2https://brat.nlplab.org/ (visited 2020-09-13)

3

https://brat.nlplab.org/

1. Introduction

the data set and provide data to compute the performance score of new annotations.
At the end of each session the users shown how well they performed by comparing their
annotations with the existing ones (Section 3.2.2). To simplify the user experience Inter-
vention and Comparison were combined into Therapy, as first user tests showed that it
is often ambiguous what the Intervention is and what the Comparison—e.g. in a study
comparing three treatments.
Annotation of Outcome was not implemented for two reasons. The first reason is that
the existing KConnect data set does not include outcome either, so there were no anno-
tations to base the initial model training on, to show predictions to the user. The second
reason is to remove complexity, as our approach focuses on usability over complexity.

The system computes and displays basic statistics on how the user is performing. This
information could also be used to weight the annotations as input for a machine learning
model. Different gamification approaches are implemented and evaluated based on user
feedback.

Finally the eLearning system was linked to a basic prediction service, using a model
trained on the gathered annotations, allowing manual review of the prediction quality
and also rating these predictions as correct or incorrect.

1.3.3 Train basic model
We already have access to annotated data from the KConnect3 project. The data consists
of 24770 annotations of 8902 sentences in 1415 documents. Over 11000 annotations are
marked as intervention, over 7000 as population and over 6000 as comparison. The
already existing annotated PubMed abstracts, created by Zlabinger et al. [Zla+18b],
are used to train a neural network using SciBERT [BLC19]. By using a part of the
data as test data, several approaches were evaluated. To get insights into the impact of
including sentences without PICO labels or adding PoS tags, we trained the model with
and without them and compared the results. We present a comparison of the model
scores trained on the picoweb data set and the scores trained on the ebmnlp data set
(Section 2.1.2, 4.3). Furthermore we merged both data sets and trained a model using
this combined data set.

1.4 Structure of the work
In Chapter 2 we give a literature overview for the research questions we want to answer.
Chapter 3 describes the methods used to answer these research questions. In Chapter 4
we describe our gathered data and present our answers to the research questions. In
Chapter 5 we discuss our findings and future work.

3http://www.kconnect.eu/ (visited on 2020-02-22)

4

http://www.kconnect.eu/

CHAPTER 2
Background

As stated by Gobbel et al. [Gob+14] high costs are incurred because reviewers with
sufficient expertise are needed to annotate medical texts. For that reason the availability
of well annotated texts is rather limited. Besides the quality, the amount of data is very
important in supervised machine learning to achieve good predictions. Therefore it is
advisable to look into possible ways to expand the data set by combining it with other
data sets from the same domain, depending on the task even data sets in a different
language can be used [FES16]. Another approach is to get usable results with less
labeled data. As stated by Bergsma [Ber10], standard supervised learning models can
only guess the labels if a sequence of words did not occur in the training data. As
stated by [KZW19] using unsupervised Machine Learning methods to initialize a model
with pretrained parameters from a large unlabeled corpus significantly improves the
model performance. The large amount of raw text available from different domains offer
opportunities to use unsupervised Machine Learning methods to pretrain a model on
the structure of the text.
Figure 2.1 illustrates what information unsupervised methods—like word2vec (see: 2.3.3)—
are able to extract from unlabeled text. The example was created using the PubMed
corpus used for picoweb. Digits for example are in a cluster on the top right side near
some written numbers. On the right side there is a clear cluster of units too. Left
from this cluster there is another cluster containing organs (kidney, heart, lung, . . .).
You will also find several pairs of two words with strong connections, e.g. contradistinc-
tions (small/large), singular/plural (receptor/receptors), or words with similar meaning
(ability/capacity). Be aware that this is just a two-dimensional representation of a
300-dimensional model, therefore not all connections between words are visible.
There are several approaches to improve model designs using unsupervised techniques.
Using semi-supervised methods like unsupervised pre-training, it is possible to make use
of unlabeled data to enhance the model. To explore the question why unsupervised pre-
training works so well Erhan et al. [Erh+10] reviewed several possible explanations in

5

2. Background

Figure 2.1: Word cluster generated from PubMed abstracts using word2vec (Sec-
tion 2.3.3)

the literature and performed experiments to explore them. Their experiments were done
on the MNIST digit classification and InfiniteMNIST data set. Their results support
the hypothesis that, as stochastic gradient descent weight changes do have more impact
in early training, it can get trapped in the basin of attraction. In a setting with a
small training set, pre-training helps to find better minima in terms of generalization
performance.

6

2.1. Medical texts

2.1 Medical texts
The structure, syntax and terminology of documents may vary according to the do-
mains [Gob+14]. Therefore NLP systems trained on one domain may not work well
for another domain [Gob+14]. In medical research, papers are often using the tradi-
tional Introduction, Methods, Results, Discussion (IMRD) format, but as the analysis
of Nwogu [Nwo97] shown these elements can be further subdivided into eleven "moves",
A move is a text segment that forms a unit. It is functionally related to the text of
which it is a part, where not every move always exists.
Figure 2.2 shows the subdivisions Nwogu [Nwo97] describes. This results in a similar
structure through different papers.

Figure 2.2: Moves and Their Discourse Functions ([Nwo97] page 7)

As the medical sector is subdivided in many diverse fields (e.g. surgery, psychiatry, . . .)
and the work of medical professions vary, so do the (finer) structure and grammar used
in papers [Pet82].

2.1.1 Picoweb/KConnect data set
We base our work on the data gathered in a former KConnect1 project [Zla+18b].

Zlabinger et al. [Zla+18b] presented their process of establishing a corpus for Popula-
tion, Interaction, Comparison, Outcome to be used by medical doctors for more ad-
vanced search queries. Based on 1.5M PubMed titles and abstracts from Trip2 they
selected a subset containing only Randomized Control Trials (RCTs). An annotation
platform was designed to gather the annotations from 6 persons which came from differ-
ent backgrounds (linguists, biologists, medical experts and students). The interface was

1http://www.kconnect.eu/
2https://www.tripdatabase.com/

7

http://www.kconnect.eu/
https://www.tripdatabase.com/

2. Background

improved between three test rounds. They aimed to increase the agreement between the
annotators after each interface improvement. They achieved this goal by increasing the
agreement from 20% (1st version) to 55% (final version).

The resulting data set consists of 24770 annotations of 8902 sentences in 1415 docu-
ments. All documents are abstracts of Randomized Control Trials (RCTs). Over 11000
annotations are marked as intervention, over 7000 as population and over 6000 as com-
parison.

2.1.2 EBMNLP data set

Nye, et al. presented a corpus of 5000 PICO annotated abstracts of RCTs [Nye+18]. The
data set consists of span based PICO annotations and more complex hierarchical labels.
As we only used the span based labels, we do not describe the hierarchical data here.
The span based labels are published in the CoNLL-2003 format [SD03], where Part of
Speech (PoS) and chunk are not used. The Named Entity Recognition element was used
for the PICO label. They used Amazon Mechanical Turk (AMT) to gather annotations
of the abstracts from both non-experts (three workers for each of the 5000 abstracts)
and experts (for 200 documents). Overall, the annotations were done by 579 AMT
non-expert workers and two experts (medical students). As the annotations generated
by the AMT workers are very noisy, they tested three different aggregation strategies
to improve the data quality. These three strategies were a simple majority vote, the
Dawid-Skene model [DS79], and HMM-Crowd [Ngu+17]. They choose HMM-Crowd as
it delivered the best results. They outlined multiple tasks and created baseline models
for each of them. The for us interesting task is identifying PICO spans in abstracts—
as this is also one of the aims of this thesis. They presented two baseline models, a
linear Conditional Random Field (CRF) and a Long Short-Term Memory (LSTM) -
CRF model. While the CRF performed rather badly with f1-scores of 0.53, 0.32, and
0.29 (population, intervention, outcome), the LSTM model performed much better with
scores of 0.71, 0.65, and 0.63.

Figure 2.3 shows an example of the span based annotation process used to create the
ebmnlp data set.

2.1.3 Data set analysis

An often used method in Natural Language Processing (NLP) to calculate the similarity
between corpora is the cosine similarity. Li and Han [LH13] have shown that even if
cosine similarity has some shortcomings it is still a quite effective way to measure the
similarity between corpora. For convenience we used the classic cosine similarity to
analyse the data set differences. In Equation 2.1 A and B are two vectors with elements
to be compared, where Ai and Bi are components of vector A and B respectively.

8

2.2. Annotation gathering and eLearning

Figure 2.3: ebmnlp span annotation example (https://ebm-nlp.herokuapp.com/
annotations [visited 2020-09-13])

cos(θ) = A · B
A B =

n

i=1
AiBi

n

i=1
A2

i

n

i=1
B2

i

(2.1)

Entropy is a measure for the average level of information inside a message 2.2. In
Equation 2.2 Z is a vector containing events and z is a single even in Z. pz is the
probability the event z happening. b is the base of the logarithm. For tossing a coin b
would be 2 and Z would contain the events that the coin is heads and the event that
the coin is tails. If the coin is fair, the probability for each event is 0.5. This leads to
−(0.5·log2 0.5−0.5·log2 0.5) = 1.0 which represents maximum uncertainty for predicting
the next toss. In case the probability pz of an element is zero, the summand is set to 0:
limp→0+ p log(p) = 0.

H1 = E[I] = −
z∈Z

pz logb pz (2.2)

2.2 Annotation gathering and eLearning
Even if the main target group of our approach are medical students, to enlarge the po-
tential user group, the system should be suitable for GPs and interested persons without
medical background too. As our target groups are adults the system was developed with
the way adults learn (in contrast to children) in mind [Mer01]. Interactive eLearning
approaches are mainly seen as an extension of classical lecturing, with the benefit of

9

https://ebm-nlp.herokuapp.com/annotations
https://ebm-nlp.herokuapp.com/annotations

2. Background

helping to maintain the interest of the learner [RML06]. We want to answer the ques-
tion how to make an annotation system more appealing for the user. Also we want to
explore ways to provide these annotators with enough benefits to stay motivated.

Figure 2.4: BioNLP annotation interface example using brat (https://brat.
nlplab.org/examples.html [visited 2020-09-13])

A common tool to annotate text corpora is brat3. While it can be used even for complex
annotation tasks, there is an initial barrier for new users. As seen in the example setup
for a BioNLP task shown in Figure 2.4, the interface provides the possibility to annotate
complex relations between token spans. Being able to handle this complexity requires
training before a user can start annotating text.

Our approach on the other hand aims to create a system that is intuitive enough to
allow a user to start annotating with as little introduction as possible. On one hand
this means a reduced complexity of the gathered annotations. On the other hand this
can increase the overall amount of training data, as the user needs less time to finish an
annotation, and therefore can do more annotations in the same time. Of course there
are use cases—like extracting deeper knowledge from texts—where the resulting data
set might be insufficient, but for our targeted use case of helping MDs to find relevant
papers for a specific medical question no complex relations between token spans are
needed.

2.2.1 User performance and error rate
Measurement of how often a user is able to label a sentence correct is essential to provide
the user with feedback of the learning progress. It can also be used to weight the impact
future annotations of the user should have in the model training process. To answer the
question of how to formalize the performance of a new annotation of an user, we decided
to calculate the inter-annotator agreement (IAA) between the new annotation to the
existing annotations of the same sentence. This of course only works if there already are
annotations of the same sentence.

3https://brat.nlplab.org/

10

https://brat.nlplab.org/examples.html
https://brat.nlplab.org/examples.html
https://brat.nlplab.org/

2.2. Annotation gathering and eLearning

As we want to compare the annotations of more than two raters, Cohen’s Kappa [Coh60]
is not sufficient, as it is only designed for two raters. Therefore we use Fleiss’ Kappa [Fle71]—
which is based on the Scott’s Pi [Sco55]—to calculate the IAA.

κ = P̄ − P̄e

1 − P̄e

pj = 1
Nn

N

i=1
nij , 1 =

k

j=1
pj

Pi = 1
n(n − 1)

k

j=1
nij(nij − 1)

P̄ = 1
N

N

i=1
Pi, P̄e =

k

j=1
p2

j

(2.3)

Where N is the total number of subjects, n is the number of ratings per subject, and k is
the number of possible categories. P̄ is the percentage of judgments on which the raters
agree (accuracy), and P̄e is the probability of an agreement by chance. pj represents the
proportion of all assignments to the j-th category, and Pi represents the extent to which
annotators agree on the i-th subject.

2.2.2 Gamification
As stated in Section 1.2 we want to find a way to create an annotation platform that
motivates medical students to annotate PICO elements in medical abstracts. Gamifica-
tion is a popular method to create long term motivation by adding elements known from
games to the platform. Deterding et al. [Det+11] proposed a definition of gamification
as the use of game design elements in non-game contexts.

Gamification (gameful design) is distinct from the related concepts (Serious) games,
Toys, and Playful design, as it uses gaming elements only as a tool to achieve a separate
goal. One has to differentiate between gaming and playing, where gaming contains rules
and is towards a discrete outcome [Cai01] (Figure 2.5).

Such gamification elements can be e.g. progress bars, experience points or virtual goods [Dic+15].

Dicheva et al. [Dic+15] reviewed 34 papers and identified 15 design principles (Table 2.1).

11

2. Background

Figure 2.5: "Gamification" between game and play, whole and parts ([Det+11] page 5)

12

2.2. Annotation gathering and eLearning

Goals mean the gamified system has clear goals the user seeks to
achieve

Challenges and
quests

mean there are self-contained tasks to do, to finish a quest

Customization means the tasks are personalized to each user (e.g. increasing
difficulty)

Progress means the users get visible feedback on their progress (e.g.
progress bars, levels)

Feedback means the users get timely feedback on their performance
Competition and
cooperation

adds a social component to the system (e.g. leaderboards,
groups/guilds, . . .)

Accrual grading allows earning e.g. points for finishing tasks.
Visible status is another social element, it allows the user to display their

achievements and earn social reputation
Unlocking content allows the user to unlock new challenges or similar by finishing

tasks
Freedom of choice means the user is not restricted to a linear path through the

tasks
Freedom to fail means failing a task does not have severe consequence, the user

has e.g. the possibility to retry a task
Storytelling embed the tasks into a bigger story framework
New identities e.g. avatars
Onboarding design principles lower the barrier of entrance for a new user

(e.g. a tutorial for new users)
Time restriction adds an additional challenge for the user by enforcing the tasks

to be finished in a specific time

Table 2.1: 15 design principles identified by Dicheva et al. [Dic+15]

13

2. Background

2.3 Language representation models

As first step to prepare a corpus to be used by a Machine Learning algorithm, the
documents have to be split into sentences and sentences into words (tokens) using a
tokenizer. A tokenizer chops a sequence of characters into pieces (tokens) and typically
removes characters like punctuation. Tokenization is more complex than simply splitting
a string at each space character. It has to handle special characters like punctuation
correctly (e.g. 0.99 is a single token). An extreme example where splitting at spaces does
not work is chinese. Chinese does not use spaces between characters and a word can
consist of two characters, where each character also represent another word if treated
as a single character word. To run learning algorithms on text data it is necessary to
convert the words to some mathematical constructs like vectors. There are multiple
approaches to achieve this.

2.3.1 One-Hot

The simplest type to represent text data in a computable form is the one-hot encoding.
Each word in the text corpus gets a unique, sequential identifier (ID) assigned to it.
This ID is used to create a one dimensional vector of the size of the vocabulary. Every
position in the vector is 0 except for the position with the index of the word, which is 1.

This method is very easy to implement but the vectors created by it are sparse. This
has the disadvantage to be unable to work with words not present in the training cor-
pus [Seo+16]. Also One-Hot encodings do not handle any information from the word
context. As our PICO extraction model has to be able to deal with new words (e.g. a
new drug) this method is insufficient.

Word ID
lorem 0
ipsum 1
dolor 2
sit 3
amet 4

=⇒

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
0
0
0
1

Table 2.2: One Hot Embedding

2.3.2 Global Vector

Global Vector (GloVe) [PSM14] is a count-based method to map words into a dense
vector space. The idea is to count how often a word appears in the context of other
words. Therefore a co-occurrence matrix is built for the complete corpus. Afterwards
dimension reduction is used to generate a dense vector. Even if this method is a much
better approach than simple one-hot, there are better methods available for our use case.

14

2.3. Language representation models

2.3.3 Word2Vec
Another technique for computing continuous vector representations of words is word2vec.

Mikolov et al. [Mik+13] propose two model architectures for computing continuous vector
representations of words. They measured the quality of the representations in a word
similarity test, comparing it with the previously best performing techniques. They aimed
to introduce a technique that makes it possible to train on over a billion words with
high dimensionality. They also wanted to make it possible to map multiple degrees of
similarity [MYZ13] in this vector space. This means that not only similar used words
are close together (e.g. countries), it also means versions of a word with different endings
are close together in one dimension, and different words with the same ending are also
close together in another dimension.

The authors were surprised that similarity of word representations go beyond simple
syntactic regularities. So is it possible to perform algebraic operations on the vectors
representing the words, e.g. “Paris − France + Italy = Rome”.

The two new model architectures are called continuous bag of words (CBOW) and
continuous skipgram.

The continuous bag of words is trained to maximize the probability to get a word
as output, by its context words. This is done for each word in the corpus.

w(t-2)

w(t-1)

w(t+1)

w(t+2)

w(t)

Projection

Sum

Input Output

Figure 2.6: continuous bag of words (CBOW) takes two tokens before and two after a
word (context) and trains to predict the word itself

The continuous skipgram architecture takes the opposite approach, it iterates
over the words in a corpus and takes one word after another as input, to maximize the
probability to get the context words as output for each input word. While this method
is more complex, it improves the quality of the resulting word vectors [TSA15].

To measure the quality of the word vectors, the authors defined 869 semantic and 10675
syntactic questions. A question is answered correctly only if the closest representation
of a word in the vector is the correct one. Using a 300 dimensional skip-gram with 783M

15

2. Background

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

ProjectionInput Output

Figure 2.7: Continuous Skipgram takes a word and trains to predict two tokens before
and two after a word (context)

training words, they achieved an accuracy of 50.0% for the semantic tests, compared to
34.2% using a 100 dimensional Feedforward Neural Net Language Model (NNLM) with
6B training words. For the syntactic test the skip-gram is slightly worse than the NNLM
with 53.1% vs. 64.5%.

2.3.4 BERT
Even as word embeddings like word2vec represent a major breakthrough in Natural
Language Processing and made finding word analogies possible, they have some short-
comings. One property of word embeddings like word2vec is that they treat every
appearance of a word the same way, independent of the meaning in the context it is
used. For example word embeddings cannot distinguish between the meanings of the
word "running", as in "running a marathon" or "running a company". To solve this
problem Bidirectional Encoder Representations from Transformers (BERT) was devel-
oped [Dev+18]. BERT provides a pre-trained language model trained on the BooksCor-
pus (800M words) [Zhu+15] and and English Wikipedia (2,500M words).

SciBERT

SciBERT [BLC19] is based on BERT, with the difference that it is trained using text of
scientific papers. The corpus consists of 18% computer science papers and 82% papers
from the biomedical domain.

2.3.5 Rare/unknown words problem
Classic language representation models use vocabularies to convert between words and
vector space. That leads to two problems. First, context-based models cannot learn
much about the typical context of a word if it is very rare. Second, not all words are part
of the training data, so it is necessary to handle unknown words for doing predictions.
One naive way would be to just ignore them by removing them before inserting the

16

2.4. Neural Networks & Deep Learning

sentence into the model. As this would change the whole sentence structure, this is not
advisable. A common way to deal with such words is to replace them with an UNK token.
This leaves the sentence structure intact, but of course some information is lost. There
are approaches to improve on just treating all UNK tokens the same way. As stated by
Gulcehre et al. [Gul+16], covering a large number of words is key to building a robust
NLP system. Increasing the vocabulary is problematic as it only leads to more rare
words with an inaccurate vector representation. A vector representation is inaccurate
if it is not placed near vector representations of similar words. Especially, if the words
you want to predict are often unknown/rare words—as in [Bor+15]—this can be critical
as there is not much training data to learn a accurate vector representation of a word.
Gulcehre et al. [Gul+16] subdivided existing approaches solving the rare/unknown word
problem into three categories. The approaches in the first category focus on enhancing
the computation speed, allowing it to be run with a larger vocabulary. This helps
mitigate the unknown word problem, but does not help for the rare word problem. The
second group uses information from the word context. This works well for machine
translation and question answering, by copying words from the input text. Approaches
in the third category change the input/output resolution, like using the input corpus on
character level. These suffer less from the rare/unknown word problem, but, because of
the increased amount of input elements, training usually becomes harder.

BERT uses an approach of the third category to deal with the unknown word problem
by splitting unknown words into subtokens.

2.4 Neural Networks & Deep Learning
The basic ideas for neural networks date back to the middle of the last century [Ros58]
or even further. The availability of large amounts of data and fast processing units
(especially GPUs) made it possible to readopt these ideas. In contrast to earlier Machine
Learning methods deep learning does not involve extensive manual feature extraction.
Instead most features are learned by finding patterns in training data [LBH15]. Reducing
manual feature extraction also leads to a more unified neural network architecture usable
for more than a single task, as the model also discovers patterns in the data that are
probably not important for one task but for a different task [Col+11].

Deep learning (and Machine Learning in general) made major breakthroughs in many
areas of computer science possible. In 2012, a deep convolutional neural network was
used to win the ImageNet Large Scale Visual Recognition Competition [KSH12]. After
that deep learning got more and more popular for image recognition.
Besides computer vision applications, Natural Language Processing (NLP) is an area in
which deep learning offers a high potential [HM15].

Machine Learning uses features to classify elements—like a word is most likely a drug
name if it is after a number and the word mg. Traditional Machine Learning often
includes a high amount of manual feature engineering. This means that it was necessary
to define rules by hand. Such manually defined rules can get very complex. Using neural

17

2. Background

networks the trend goes to end-to-end learning. The idea behind end-to-end learning
is to apply gradient-based learning to a system as a whole [Gla17]. This also includes
“peripheral” parts of the model, like representation learning [Gla17].
For example, the traditional approach for speech recognition looks like this:
Audio input → feature extraction → phoneme detection → word composition → text
output
With end-to-end learning such a system would look like this:
Audio input → neural network → text output
A benefit of such an end-to-end approach is to avoid task-specific engineering [Col+11].

The basic idea of (artificial) neural networks is based on how the human brain works,
even if most of modern neural networks are very simplified. They consist of multiple
layers of neurons connected to each other. Each neuron calculates a weighting sum of
its inputs (plus a bias). An activation function then produces the output of the neuron.

Basically a neural network is an arbitrary function approximator. It is able to ap-
proximate any continuous function, even if the neural network only has one hidden
layer [Cyb89].

2.4.1 Activation function
To achieve an approximation of a nonlinear function, the network itself needs to be
nonlinear. In neural networks the activation function is the nonlinear part (e.g. sigmoid
or ReLU).

2.4.2 Training
After the layers of a neural network are defined, its weights need to be initialized. This
is normally done by setting the weights to small random values. Backpropagation is
the dominant method to calculate the gradient of the loss function with respect to the
weights. The term is also often wrongly used for the whole learning process. The
backpropagation algorithm was published in 1986 [RHW86]. First the network is used
feed-forward to calculate an output, based on the current weights. The output is com-
pared to the training data and used to calculate the error using backpropagation. The
weights must now be optimized to reduce the loss or in other words to match the desired
output better. This is similar to classic mathematical optimization, with the difference
that in Machine Learning the goal is to optimize against unseen samples instead of the
training data (Section 2.4.3). To achieve this an optimizer is used. The optimizer deter-
mines how weights are adapted while training to minimize the loss or cost. A popular
method to find a minima in Machine Learning is gradient descent (GD). The basic prin-
cipal behind gradient descent methods is as follows. The initialized network is used to
make a prediction—even if guess would be a better expression at this stage. The loss
function is used to get the loss—a measure of how bad the prediction is, based on the
prediction in contrast to the training data. As the gradient of the loss points in the
direction of the highest increase of the loss, using the inverse points in the direction of

18

2.4. Neural Networks & Deep Learning

the the highest decrease. Adapting the weights in that direction brings us in direction
of a local minimum. Repeating this for each training item called an epoch. Common
practice is to calculate the performance (Section 2.5) after each epoch to decide if an-
other epoch should be trained. Even if the validation performance does not improve or
even slightly decreases after an epoch it is possible it will improve again after a later
epoch. Therefore it is recommended to store the model state after each epoch and keep
training the model until it does not improve for multiple epochs. After the training is
stopped the state of the epoch with the best validation performance is chosen.

As described by Ruder [Rud16], one challenge of gradient descent is choosing the learning
rate—representing the impact of each training sample. A low learning rate obviously
leads to slow convergence. On the other side if the learning rate is too high it can
prevent convergence and cause the loss function to fluctuate around a local minimum.
Using learning rate schedules, the learning rate is adjusted while training (e.g. reduced
after each epoch). But as these adjustments have to be specified in advance it is not
possible for this method to adapt for the characteristics of the data set. Furthermore
the same learning rate is applied to all parameter updates.

Figure 2.8: Gradient descent optimization methods ([Rud16] page 10)

Ruder presented several of the most commonly used optimizations of the learning pro-
cess. We summarize the algorithms important for this thesis. Many build up on the
momentum method [Qia99]. This method aims to accelerate gradient descent in the
relevant directions while slowing down less relevant directions. Therefore a fraction γ
(usually about 0.9) of the update of the past step is taken into account at each step.
Such a momentum method behaves similar to a ball getting faster in direction of the
steepest slope (see also Figure 2.8).

19

2. Background

β1, β2 ∈ [0, 1) exponential decay rates for the moment estimates

(2.4)
m0 = 0, v0 = 0 (2.5)
gt = Θft(Θt−1) gradients w.r.t. stochastic objective at timestept

(2.6)
mt = β1 · mt−1 + (1 − β1) · gt biased first moment estimate (2.7)
vt = β2 · vt−1 + (1 − β2) · g2

t biased second raw moment estimate (2.8)

m̂t = mt

1 − βt
1

bias-corrected first moment estimate (2.9)

v̂t = vt

1 − βt
2

bias-corrected second raw moment estimate (2.10)

Θt = Θt−1 − α · m̂t√
v̂t +

updated parameter (2.11)

Adaptive Moment Estimation (Adam) [KB14] is a method to compute adaptive learning
rates for each parameter. It stores an exponential moving average of the gradient (first
moment estimate mt) the squared gradient (second raw moment estimate vt).

Equations 2.4-2.11 describe an update step of Adam, where α is the step size. m0 and
v0 are initialized as 0 (Equation 2.5), which has the effect that it leads to moment
estimates that are biased towards zero. This bias are counteracted resulting in m̂t

(Equation 2.9) and v̂t (Equation 2.10). Popular implementations of Adam often add
L2 regularization by adding δΘt−1 to the cost function to calculate gt (Equation 2.6):
gt = Θft(Θt−1) + δΘt−1 [LH17].

In their presentation of Adam [KB14] Kingma and Ba suggest using α = 0.001, β1 = 0.9,
β2 = 0.999, and = 10−8 as good default settings. They also tested Adam with multiple
popular Machine Learning models, where it performed better than AdaGrad, AdaDelta,
SGDNestrov, and RMSProp.

Loshchilov and Hutter [LH17] demonstrated that adaptive gradient algorithms like Adam,
do not generalize as well as SGD with momentum. They presented an adaption of Adam
called AdamW where they decouple weight decay and loss-based gradient updates. This
is achieved by moving the regularization term δΘt−1 to parameter update Θt (Equa-
tion 2.11): Θt = Θt−1 − α·m̂t√

v̂t+ + δΘt−1.

As stated by Léon Bottou in [Bot10] the computational complexity of learning algorithms
became the limiting factor when dealing with large data sets. Stochastic gradient descent
(SGD)—a widely used optimizer— does not perform well on large data sets. On the
other hand adaptive gradient algorithms that perform better on large data sets, were
shown to generalize worse than SGD with momentum. As (Sci)BERT is trained on a
large corpus, while having the need for good generalization, neither classic SGD nor

20

2.4. Neural Networks & Deep Learning

Adam are a good fit. AdamW represents a version of Adam with better generalization
capabilities, while retaining the scaling benefits.

2.4.3 Overfitting
Overfitting can be a problem when working with deep neural networks as it means
the network is learning the noise in the training data that does not exist in the test
data [Sri+14]. A model has to be able to work with data unknown at the time of
training, which requires it to represent a generalization of the data. If the model is
not able to generalize from the training set well, it will perform badly with new data.
This happens if the model uses too many variables to describe the data and is trained
for too long. In general deep neural networks tend to learn simple patterns first as the
experiments in [Arp+17] show, but begin to memorize the training examples later.

“Deep neural networks contain multiple non-linear hidden layers and this
makes them very expressive models that can learn very complicated rela-
tionships between their inputs and outputs. With limited training data,
however, many of these complicated relationships will be the result of sam-
pling noise, so they will exist in the training set but not in real test data
even if it is drawn from the same distribution.” [Sri+14]

One way to deal with overfitting is to use a method called dropout. With this regular-
ization method, randomly chosen nodes are deleted in a training step [Sri+14]. In a way
it is a similar approach as adding noise while training an unsupervised model.

2.4.4 Vanishing gradient problem
In Machine Learning using backpropagation each weight of the neural network receives
an update based on the activation function with respect to the current weight. If using
an activation function like the sigmoid function that use gradients between 0 and 1, mul-
tiplying multiple such gradients while propagating the weight changes back in direction
to the input layer of the network, will result in a very small value when reaching the
first layer. This results in very slow training of the first layers. In the worst case the
Machine Learning model stops learning on new data [Hoc91][Hoc98]. As the first layers
are crucial to detect core features of the input data, insufficient training of them lead to
an overall bad performance of the network.

The vanishing gradient problem is often circumvented by using another activation func-
tion like ReLU. Glorot et al. [GBB11] presented the use of a rectified linear unit (ReLU)
activation function that works better for training neural networks than sigmoid or hy-
perbolic tangent. They based their research on neuroscience findings. As neurons are
rarely maximally saturated, it is possible to approximate it by a rectifier. They per-
formed several experiments in image recognition and sentiment analysis. Their results

21

2. Background

show that using ReLU increases performance of image recognition and sentiment analy-
sis tasks. This is especially true if no unsupervised pre-training were done. Using ReLU
as the activation function also prevents the vanishing gradient problem and is cheaper
to compute.

2.4.5 Bidirectional Long Short-Term Memory
When working with text it is necessary to include the context of a token into the training
process, as the token on its own can be ambiguous. For example the word present can
be used as noun with different meanings (present time, giving you a present), adjective
(be present at an event), or verb (to present something). The most obvious way is to use
a sliding window over the text. This implies selecting a window size, but that leads to
the problem on how to find the optimal window size. Using a too small window size can
make the network incapable of learning some important information from the context.
Using a too large window size leads to overfitting on the training data.

A better way is to use a recurrent neural network (RNN), which is a powerful sequence
model. A problem with basic RNNs is that—as it processes the input in temporal order—
it only learns from past context. Another problem is—although theoretically possible—
learning long range input/output dependencies using a RNN is difficult [BSF94]. Also—
as they are very deep neural networks—basic RNNs suffer from the vanishing gradient
problem (see: Section 2.4.4).

Graves and Schmidhuber [GS05] presented a bidirectional LSTM that solves these prob-
lems. It also outperforms unidirectional networks, and is faster and more accurate than
standard RNNs.

The problem of not learning from the future context is solved by using a bidirectional
RNN. The idea of a bidirectional recurrent neural network was introduced by Schuster
and Paliwal [SP97] to create a model that is able to learn from future context too. The
idea is to add a second RNN connected to the same output layer, but feeding it the
input in reverse order. This way the network has the complete context for every point
in a given sequence. They tested the new approach by running phoneme classification
on the TIMIT data set4. Using the bidirectional RNN they achieved over 77% recall for
the 61 symbol data set. Using a unidirectional approach it was less than 72%.

To solve the problem of learning long range input/output dependencies they use a Long
Short-Term Memory (LSTM) model. Hochreiter and Schmidhuber introduced the LSTM
in 1997 [HS97]. They introduced a novel, gradient-based method that has a computa-
tional complexity of O(1) per time step and weight. LSTMs implemented an approach
to achieve a constant error flow, this solves the vanishing gradient problem (see: Sec-
tion 2.4.4). Simplified, an LSTM extends the recurring part of a recurrent neural network
by memory cells and gates. These gates control how the memory is used. They decide
when to ignore new information, forget information stored in the memory and when to
select it to impact the prediction.

4https://catalog.ldc.upenn.edu/LDC93S1

22

https://catalog.ldc.upenn.edu/LDC93S1

2.5. Metrics

2.5 Metrics
In this section we describe the most relevant metrics used for validating Machine Learn-
ing (ML) models.

relevant non-relevant
retrieved A ∩ B A ∩ B B
not retrieved A ∩ B A ∩ B B

A A N

Table 2.3: metric sets overview (|N | = number of elements in the system, |A| = number
of relevant elements, |B| = number of retrieved elements) [JR71]

Precision shown in Figure 2.12 represents the ratio of how many of the retrieved
elements |B| are relevant (|A ∩ B|) [JR71].

precision = |A ∩ B|
|B| (2.12)

Recall shown in Figure 2.13 represents the ratio of how many of the relevant elements
|A ∩ B| are retrieved in relation to the the overall relevant elements |A| [JR71].

recall = |A ∩ B|
|A| (2.13)

F1-score shown in Figure 2.14 is defined as a harmonic mean of precision and re-
call [SF07] (see: 2.14). Hand and Christen argued in [HC18] that the f1-score method
has a major conceptual weakness—the relative importance of precision and recall should
be an aspect of the problem. The more generic Fβ allows applying weights to value
precision or recall more than the other. We did not use Fβ as the pytorch version, used
by SciBERT, did not support it at this time.

F1 = 2 · precision · recall
precision + recall (2.14)

2.6 Summary
In this chapter we described the importance of unlabeled texts to learn initialization
parameters for Machine Learning models. Furthermore, we presented the basic struc-
ture of medical texts as well as both the KConnect/picoweb and the ebmnlp data set.
Additionally we described algorithms to analyse presented data sets and furthermore
shed some light on background to gamification principles and error rate calculation used

23

2. Background

to create our eLearning system. At last we presented the background for our Machine
Learning model.

24

CHAPTER 3
Method

As mentioned in chapter 2 annotating medical data can be expensive, but there are
many unannotated text corpora freely available. This available data is used to pre-train
a model. As SciBERT provides us with a suitable pre-trained model we do not need to
do pre-training ourselves (Section 3.3).

3.1 Data set analysis

Before we are able to analyse the corpora we need to do some basic preprocessing on the
data. The documents have to be split into sentences and sentences into words (tokens)
using a tokenizer. The CoreNLP toolkit [Man+14] was used as such a tokenizer.

The preprocessing was kept minimalistic and was restricted to converting the text to
lowercase. Additionally the sentences are shuffled between documents before being used
to train the word2vec. Otherwise, as the learning rate decreases, sentences from early
documents would have more impact than sentences of later documents. This leads
up to around 25% better results (UMN-SRS word similarity [Pak+10]) than using the
sentences unshuffled [Chi+16]. 75% of the picoweb annotations are used as training set.

Cosine similarity was calculated using the formula described in Section 2.1.3 to get a
quick overview of the similarity between tokens labeled population and therapy inside a
data set. This was calculated for the picoweb and ebmnlp data set. First we created a
vocabulary of all labeled words inside a data set. Afterwards we counted the times each
token in the vocabulary appears labeled as population (|A|) and the times it appears
as therapy (|B|). At last we put |A| and |B| in Equation 3.1 to calculate the cosine
similarity. A high similarity means that, that the tokens in the data set appear similar
often as population and therapy.

25

3. Method

cos(θ) = A · B
A B =

n

i=1
AiBi

n

i=1
A2

i

n

i=1
B2

i

(3.1)

To find out how much information a token provides inside a data set, we used the
Shannon entropy [Sha48]. This was done for the picoweb and the ebmnlp data set.
In Equation 3.2, Z contains the probabilities of a token being population, therapy, and
appearing unlabeled. As we have three probabilities we use 3 as base for the logarithm.
This way a lower entropy (uncertainty) means the token is a good indicator for a label.

H1 = E[I] =
z∈Z

pzI(z) = −
z∈Z

pz log3 pz (3.2)

3.2 Annotation and eLearning
Expert annotators are expensive and while using cheap non-expert annotators e.g. Ama-
zon Mechanical Turk works for easy tasks, as shown by the authors of [Sno+08], there
is a lot of domain-knowledge necessary for annotating medical texts [KZW19].

Medical students could be a good source of this type of annotation. They already have
some medical knowledge, but are cheaper than medical experts. In fact, presenting the
annotation platform as an eLearning tool, it can provide the necessary benefit for the
user in non-monetary form. This section will deal with the question of how to create an
annotation platform that motivates medical students to annotate medical abstracts.

3.2.1 Gamification
Based on the design principles described in Section 2.2.2, we chosen the most suitable
principles for our use case. Table 3.1 describes which design principles are implemented
for our eLearning system and which are not, including a description how they are im-
plemented respectively why they are not implemented.

26

3.2. Annotation and eLearning

Design
principle

Description

Goals besides self-contained annotation sessions and categories, our
system does not provide any bigger goals

Challenges
and quests

we implemented self-contained categories as quests
(Section 3.2.1), where the user gets a badge for annotating all
documents in a category

Customiza-
tion

this was not implemented, as personalization of tasks is
non-trivial and increases the complexity of the system

Progress the user can see his/her progress for each category in form of a
progress bar

Feedback our system provides immediate feedback to the user after each
annotation session (Section 3.2.2)

Competi-
tion and
cooperation

the social components in our system are limited to an all-time
and a weekly leaderboard, showing the top-annotators by
annotation count

Accrual
grading

the system counts each annotation done by a user, but currently
it is only visible in the leaderboard as there is no user profile page

Visible
status

besides the leaderboard there is no social component where the
status of the user is presented to other users

Unlocking
content

our system allows users to unlock new categories when finishing a
category

Freedom of
choice

the user has the possibility to choose in which category he/she
wants to annotate documents

Freedom to
fail

even if it is not possible to retry a task, the only negative effect
of a wrong annotation is a reduced score, which can be undone
by new correct annotations

Storytelling we did not implement a bigger story framework, as embedding
the annotation of medical texts into such a framework is difficult

New
identities

this was not implemented, as the implemented social elements
kept at a minimum to prevent the scope of the application
getting to big

Onboarding to help the user to get started, we implemented a step-by-step
tutorial, explaining how to use the system

Time
restriction

this was not implemented, as enforcing the user to finish an
annotation faster, would enhance the chance of faulty annotations

Table 3.1: Description of implemented design principles identified by Dicheva et
al. [Dic+15]

Categories

The writing style of papers vary—besides differences between authors or work groups—
according to the subdomain of the work. There are no metadata like in which medical

27

3. Method

domain the study was done—also interdisciplinary studies could make it ambiguous. We
analysed the widely available tags provided for PubMed abstracts.

MeSH The Medical Subject Headings (MeSH) tags provide a suitable way to create
categories with documents of similar topics. First we experimented with an adapted
k-means algorithm named k-modes[Hua98] to cluster the categorical data. The kmodes1

library was used. The algorithm was used to split the 2550 documents of the KConnect
data set into different categories. We did several clustering runs with different number
of target clusters—starting from only five clusters up to twenty in steps of five. These
cluster counts were chosen to get a manageable amount of categories, with around 100
to 500 abstracts each, for the user to choose from. The result showed us that the
combination of MeSH tags, assigned to the categories by the kmodes library, produced
highly unbalanced amounts of documents per category.

Figure 3.1: Distribution of number of cluster documents (20 categories)

This approach generated some fairly good clusters, e.g. for pregnancy related abstracts,
where 91 of the 102 documents in the cluster had pregnancy related MeSH tags. As
expected many of the clusters included similar documents, but it was hard to find good
labels (category names) for the clusters, as multiple clusters shared similar “themes”.
The size of the clusters ranged from five documents to over 500 documents (Figure 3.1).
As the automatic clustering did not show good outcome, the categories were created by
assigning MeSH tags manually to the categories. Three categories were created for the
test rounds using the admin interface of our eLearning system.

Cardiology was selected by assigning most (except heart burn) tags that contain heart
or cardiac. We chose this category as it consists of 108 documents, which is realistic for
a user to annotate. Furthermore it was easy to find an expressive category image.

Following MeSH tags were assigned for this category:
1https://github.com/nicodv/kmodes/ (visited on 2019-11-02)

28

https://github.com/nicodv/kmodes/

3.2. Annotation and eLearning

• (D006333) Heart Failure

• (D002303) Cardiac Output, Low

• (D006348) Cardiac Surgical Procedures

• (D002304) Cardiac Pacing, Artificial

• (D005117) Cardiac Complexes, Premature

• (D001145) Arrhythmias, Cardiac

• (D006331) Heart Diseases

• (D006352) Heart Ventricles

• (D002301) Cardiac Glycosides

• (D006328) Cardiac Catheterization

• (D002302) Cardiac Output

• (D006350) Heart Valve Prosthesis

• (D006325) Heart Atria

• (D016027) Heart Transplantation

• (D006324) Heart Arrest, Induced

• (D006330) Heart Defects, Congenital

• (D006349) Heart Valve Diseases

• (D002305) Cardiac Tamponade

• (D019918) Heart Valve Prosthesis Implantation

• (D004489) Edema, Cardiac

• (D058406) Cardiac Resynchronization Therapy

Psychiatry was chosen by assigning 12 psychiatry and/or psychology related MeSH
tags. It contains 98 documents. We chose this category as psychiatry is a relatively
young, independent field, with little risk of overlapping documents with the Cardiology
or Colonscopy category.

29

3. Method

Following MeSH tags were assigned for this category:

• (D011569) Psychiatric Status Rating Scales

• (D011613) Psychotherapy

• (D011581) Psychological Tests

• (D013315) Stress, Psychological

• (D011618) Psychotic Disorders

• (D011619) Psychotropic Drugs

• (D012565) Schizophrenic Psychology

• (D011567) Psychiatric Department, Hospital

• (D011602) Psychophysiologic Disorders

• (D003858) Dependency (Psychology)

• (D011570) Psychiatry

• (D064889) Psychotherapy, Psychodynamic

Colonscopy was chosen by assigning the MeSH tag (D003113) Colonoscopy. This
category only contains 10 documents and was used to test the automatic unlocking of a
new category if a user completes a category.

Quality of Life consists of 115 documents with the (D011788) Quality of Life tag
assinged. This category was used to test if it gets unlocked when finishing all annotations
in the colonscopy category.

3.2.2 Measuring the reliability/performance of a user
It is critical to know how well a user performs on the annotation tasks, for providing
feedback to the user about his/her progress—this will answer the question on how to
evaluate a users’ performance and to potentially weight the annotation while training the
neural network. Measuring the reliability is done by comparing the users’ input with the
annotations of the same sentence done by other users. Getting more annotations of the
same sentence helps to reduce the impact of outliers. We use Fleiss’ Kappa (Section 2.2.1)
to calculate the inter-annotator agreement (IAA) between a new annotation and the
existing ones for the same sentence. If less than three other users annotated the sentence
we do not calculate the IAA to prevent a single wrong annotation has too much impact
on the score.

30

3.2. Annotation and eLearning

3.2.3 Prototypes and user feedback
Based on the annotation tool of [Zla+18a] we created two prototypes of the eLearning
platform.

A first version was created and tested by several users. Afterwards we held a discussion
round to allow the test users to give us feedback about their experiences while using the
platform. The users were asked to describe how easy it was for them to start annotating
abstracts and if they had any problems while doing so. They also were asked if they have
any improvement suggestions. Based on this feedback we created an improved version
of the system. After the second test round we again held a a discussion round

First version

Three students tested the first version of the platform. Their feedback was used to
improve the system for a second test run.

A new user is provided with a simple “get started” guide to learn the basic usage of
the eLearning tool. This guide is always available and easily found in the main menu.
Additionally the full annotation guidelines are available to download at the guide page.

To begin with each user gets three hand picked categories to work on (Section 3.2.1).
The chosen categories were:

• Cardiology

• Colonoscopy

• Psychiatry

Colonoscopy was selected to provide a category with a small set of documents to test
progress related features faster.

Figure 3.2: Category overview

Normally the system automatically chooses three random categories for a new user, but
to make the experience of the test users comparable we chose the same category for each
user.

31

3. Method

Figure 3.3: Current annotations (first version)

Figure 3.4: Buttons if nothing annotated (first version)

The annotation process is done in learning sessions. A session consists of up to 20
sentences of a chosen category. The sentences are randomly chosen, but sentences with
existing annotations are preferred to enhance the chance to be able to give feedback for
an annotation. In total 174 annotations were added by the test users. An annotation
consists of a word span and a (PICO) label. For each session sentence the abstract
is shown for better context. The user is able to annotated Population, Intervention
and Comparison. For each annotation of a sentence the annotation is compared to the
existing annotations done by other users (Section 3.2.2) and shown in a list below the
sentence (Figure 3.3).

If there are no annotations in a sentence the user can continue without annotating
elements (Figure 3.4). This case is also stored as a negative test case. If the user
is unsure, it is possible to skip the sentence (Figure 3.4), the sentence will eventually
appear in a future session. If an user annotates all sentences of a category a new category
is unlocked and the finished category is marked in the overview.

After the test round we gathered the feedback (Section 4.2) of the test users.

32

3.2. Annotation and eLearning

Second version

For the second test round we improved the elearning system according to the feedback
we got after the first test round (Section 4.2). The second test round was done by four
students and one linguistic expert. The same categories as in the first test round were
assigned to the users.

The get-started guide was improved by adding more examples and providing an inter-
active step-by-step guide (Figure 3.5) how to annotate a sentence.

Figure 3.5: Step-by-step annotation guide

A session now consists of all sentences of a random document in sequential order as users
got confused because the shown abstract (Figure 3.6) changed after each sentence to the
abstract containing the new sentence.

The score of current annotations (Section 3.2.2) are hidden to prevent influencing the
user to give a specific answer. Instead a session result page was introduced after all
annotations are done (Figure 3.7).

A note was added to explain the correctness value as the similarity to other annotations
and does not always have to be correct. The buttons for continue without annotations
and skipping were renamed to make the annotation more intuitive (see Figure 3.8).

As an additional method of gamification a leaderboard was added to the application (see
Figure 3.9).

33

3. Method

Figure 3.6: Annotation session (second version)

Figure 3.7: Session summary page (second version)

Figure 3.8: Annotation buttons (second version)

Again we did a feedback session to see how well our improvements of the prototype work
(Section 4.2).

34

3.2. Annotation and eLearning

Figure 3.9: Leaderboard (names blacked out)

Simplifying user feedback for predictions

After the second feedback round (Section 4.2) and the training of the SciBert model, an
experimental prediction service was written allowing to run predictions by providing the
text2 or the PubMed id for the abstract3. The prediction service for a single sentence
also allows to store a rating of the provided prediction (Figure 3.10) on the server. There
exists also a rest api version4 as an alternative for the html interface. The prediction
service for an abstract (Figure 3.11) uses the provided PubMed id to retrieve the abstract
using the PubMed api and run the predictor on it. As for the sentence prediction service,
there exists also a rest api version5.

This was done to allow us to manually test the output of the trained model. Additionally
this api can be used in the future to provide the eLearning users with feedback on
their annotation performance. The prediction rating functionality was added to allow
gathering of ratings for possible future model improvements.

The eLearning system provides an admin interface we use to view and edit documents,
annotations, categories, . . .
A user able to access the admin interface is called a staff user. With such a user additional
features are visible in the eLearning system, for example we added a link to the service on

2https://picoweb.ifs.tuwien.ac.at/pico-prediction-service/
3https://picoweb.ifs.tuwien.ac.at/pico-prediction-service/pubmed/
4https://picoweb.ifs.tuwien.ac.at/pico-prediction-service/predict/

?sentence=<text>
5https://picoweb.ifs.tuwien.ac.at/pico-prediction-service/predict/pubmed/

?pubmed_id=16855426

35

https://picoweb.ifs.tuwien.ac.at/pico-prediction-service/
https://picoweb.ifs.tuwien.ac.at/pico-prediction-service/pubmed/
https://picoweb.ifs.tuwien.ac.at/pico-prediction-service/predict/?sentence=<text>
https://picoweb.ifs.tuwien.ac.at/pico-prediction-service/predict/?sentence=<text>
https://picoweb.ifs.tuwien.ac.at/pico-prediction-service/predict/pubmed/?pubmed_id=16855426
https://picoweb.ifs.tuwien.ac.at/pico-prediction-service/predict/pubmed/?pubmed_id=16855426

3. Method

Figure 3.10: Prediction service for sentence

Figure 3.11: Prediction service for abstract

the picoweb overview page (Figure 3.12) to make it easier to test the prediction service.
We also added the possibility to directly open the prediction of the current sentence
inside an annotation session (Figure 3.13).

36

3.3. Evaluation of the comparison of different data sets

Figure 3.12: Prediction service link shown on picoweb homepage for staff user

Figure 3.13: Sentence prediction service link (highlighted by red border) shown on an-
notation session view for staff user

3.3 Evaluation of the comparison of different data sets
To know how the SciBERT model performs on variations of the picoweb data set (Sec-
tion 2.1.1) compared to the ebmnlp data set (Section 2.1.2), we trained it on these data
set variations, to predict PICO labels in PubMed abstracts.

These variations are as follows:

• Only sentences containing labeled PICO elements

37

3. Method

• Additionally including sentences marked as not containing PICO elements

• Adding PoS tags to the previous variation of the data set

The same preprocessing steps as in Section 3.1 were performed on the picoweb and
ebmnlp data sets. CoreNLP [Man+14] was used to compute Part of Speech (PoS) tags
for tokens. 75% of the annotations are used as training set.

SciBERT [BLC19] was used together with a Bidirectional Recurrent Neural Network
(BRNN) to train on the picoweb and ebmnlp data sets.

We used the reference setup for SciBERT [BLC19] (commit: 7598219) published on
github6. We mostly used the preset hyper-parameters of SciBERT without finetuning
the learning rate. The used parameters are described in Table 3.2 All trainings were
done on a Nvidia GTX 1060 6GB using PyTorch [Pas+19]. We exported the picoweb
data set to the CoNLL-2003 format [SD03] to be loaded into the SciBERT model, as the
ebmnlp data set uses this format too.

To measure the performance of the trained models we used token-level f1-scores (Sec-
tion 2.5). Rather than using a fixed number of training epochs, we used an early stopping
technique to train as long as the average validation f1-score increases. This was com-
bined with a technique often called patience to continue training for ten epochs after the
average validation f1-score decreases.

Optimizer AdamW/BertAdam
Encoder bidirectional LSTM
Layers 2
Layer size 200
Dropout 0.5
Learning rate 0.001
Batch size 64
Dropout 0.5
Validation metric average f1-score

Table 3.2: SciBERT model parameters

Besides sentences containing PICO elements we also gave the user the possibility to
explicitly mark sentences that do not contain any PICO labels. This decision based on
two ideas. Firstly, it provides us with more data to learn from. Secondly, this provides us
with (more) examples of words that are not PICO elements. There are new approaches of
binary classification without negative data like positive-confidence (Pconf) [INS18] where
they use confidence information besides the positive data. Using the right amount of
negative examples can have a big impact on the performance of the model [KSB14]. We

6https://github.com/allenai/scibert (visited on 2020-03-22)

38

https://github.com/allenai/scibert

3.4. Summary

trained the SciBERT model on our data set with and without including sentences not
containing PICO labels.

Next we added the PoS tags we generated earlier using CoreNLP [Man+14] to the
CoNLL-2003 format [SD03] export. This was done to answer the question if including
predicted PoS tags can improve the performance. To answer the question how the
picoweb data set performs compared to a similar data set, we computed the model on
the ebmnlp data set included in SciBERT [BLC19]7.

More training data in general lead to a better model performance. As the ebmnlp data
set is bigger than the picoweb data set, we use a similar sized random subsample of
ebmnlp to compensate for the impact a bigger data set has on the model performance.
Additionally we removed all annotations for Outcome from the ebmnlp data set, to
enhance comparability between the picoweb and ebmnlp data set, as the picoweb data
set does not contain annotations for Outcome. Last we train on a combination of both
data sets to explore if this leads to a better model performance. The combining was
done by concatenating both data sets in the CoNLL-2003 format [SD03]. Care has been
taken to ensure that annotations of the same sentence are not used in both training and
validation.

3.4 Summary
In this chapter we shown how we applied the algorithms described in the background to
to get rudimentary insights into the data sets. Furthermore, we presented which design
principles were implemented for the eLearning system. Additionally we described the
created categories based on MeSH tags. At last we presented the parameters for our
Machine Learning model.

7https://github.com/allenai/scibert/tree/master/data/pico/ebmnlp (visited on
2020-03-22)

39

https://github.com/allenai/scibert/tree/master/data/pico/ebmnlp

CHAPTER 4
Result

4.1 Data set analysis findings
In this section we present the result of our analysis of our data set. Further, we explore
the differences between our data set and the ebmnlp data set [Nye+18].

The picoweb data set (Section 2.1.1) consists of annotations of approximately 1400 doc-
uments containing approximately 9000 sentences. Overall nearly 26000 annotations were
gathered, over 7600 labeled as population and over 18000 as therapy. The picoweb data
set consists of over 120000 annotated tokens, where approximately 50000 labeled as
population and approximately 70000 as therapy.

The ebmnlp data set (Section 2.1.2) in comparison consists of 5000 annotated documents.
We could not find the annotator guidelines that were used to create the ebmnlp data
set. Therefore we concentrated on analyzing the annotations itself.

First, we want to know how similar the picoweb and the ebmnlp dataset are. Therefore
we calculated the cosine similarity as stated in Section 3.1.

For the picoweb data set the cosine similarity (Section 3.1) between therapy and popu-
lation is 0.648. In contrast for the ebmnlp data set the cosine similarity between therapy
and population is 0.779. This shows that the labeled tokens for population and therapy
differ less inside the ebmnlp compared to the picoweb data set.

Next we wanted to see what the most common words of both data sets are and how the
differ. Figure 4.1 shows the frequency of the ten most annotated words in the picoweb
data set for each label. For the same words we also show the frequency of annotations
in the ebmnlp data set. One can see that 6% of the Population annotations in the
picoweb data set is the word patients, compared to 4% in the ebmnlp data set. For
Therapy the most commonly annotated words were numbers in general with 6.5% in
picoweb, compared to 3% in ebmnlp. Together with the difference in the annotation of

41

4. Result

mg (1.5% vs. 0.5%) this indicates that annotators of the picoweb data set included the
dosage of a drug more often than in the ebmnlp data set.

(a) population

(b) therapy

Figure 4.1: relative word frequencies by annotated label

Both data sets have 17 annotated documents in common. We picked one containing
intervention with dosage to see the difference. While the ebmnlp example (see Figure 4.2)
contains multiple smaller precise annotations, the picoweb example (see Figure 4.3)
consists of one large annotation catching the whole therapy procedure.

After a screening nocturnal polysomnograms (NPSG) and MSLT the following day ,
participants with primary insomnia were randomized to take zolpidem 10 mg (n = 50)
or placebo (n = 45) nightly for 12 months .

Figure 4.2: ebmnlp example population(orange)/therapy(red)

42

4.1. Data set analysis findings

After a screening nocturnal polysomnograms (NPSG) and MSLT the following day ,
participants with primary insomnia were randomized to take zolpidem 10 mg (n = 50)
or placebo (n = 45) nightly for 12 months .

Figure 4.3: picoweb example therapy(red)

We calculated the entropy (Section 3.1) of the likelihood being labeled population or
therapy of the most common labeled words in picoweb and ebmnlp. This was done
to estimate how the SciBERT model performs when combining both data sets. High
entropy means the word is labeled as both Population and Therapy equally often. On
the other hand a low entropy means the word clearly belongs to one of the two categories.

token entropy population count therapy count unlabeled count
failure 0.5692148 163 0 76
adults 0.3607534 147 0 23
hypertensive 0.2610894 77 0 7
young 0.2167368 73 0 5
japanese 0.1544296 71 0 3
section 0.4176604 53 0 11
colorectal 0.4554859 48 0 12
forty 0.5268998 47 0 17
arthritis 0.5268998 47 0 17
adolescents 0.3510629 47 0 7

Table 4.1: picoweb entropy for words most commonly labeled Population in picoweb
data set

token entropy population count therapy count unlabeled count
failure 0.6662032 191 7 302
adults 0.4061009 365 2 63
hypertensive 0.4496421 143 1 12
young 0.4580312 214 2 45
japanese 0.5666924 40 3 7
section 0.8365317 19 4 25
colorectal 0.7640933 83 8 94
forty 0.2537468 69 0 6
arthritis 0.5224450 68 0 24
adolescents 0.3997988 164 3 22

Table 4.2: ebmnlp entropy for words most commonly labeled Population in picoweb data
set

We first calculated the entropy for the 10 words most often labeled Population in picoweb
(Table 4.1). As we can see even if the word failure is never annotated as Therapy the

43

4. Result

entropy is high with 0.5692148, as there are 76 unlabeled occurrences of the word failure.
With 0.1544296 the word japanese has the lowest entropy, this means appearances of this
word are most likely labeled Population. For comparison we calculated the entropy for
the ebmnlp data set for the same words (Table 4.2). For eight of the words the entropy
is higher in the ebmnlp data set. The entropy of the word arthritis is with 0.5224450
very similar to the picoweb entropy of 0.5268998. For the word japanese the entropy
is with 0.5666924 much higher for ebmnlp than for picoweb with 0.1544296. The word
forty on the other hand has a much lower entropy of 0.2537468 for ebmnlp than picoweb
entropy with 0.5268998.

token entropy population count therapy count unlabeled count
disorder 0.5587121 398 0 173
hundred 0.2495566 236 0 20
older 0.5563372 177 0 76
metastatic 0.5310091 127 0 47
males 0.4386603 113 0 26
infarction 0.6156223 105 0 152
leukemia 0.5000691 83 0 26
previously 0.6058537 82 0 132
females 0.5188793 78 0 27
old 0.3124197 74 0 9

Table 4.3: ebmnlp entropy for words most commonly labeled Population in ebmnlp data
set

token entropy population count therapy count unlabeled count
disorder 0.5487493 96 3 24
hundred 0.3313479 119 2 11
older 0.4979830 105 1 27
metastatic 0.2468472 36 0 3
males 0.4729420 33 0 9
infarction 0.5857992 111 3 36
leukemia 0.6881253 15 1 6
previously 0.7800730 24 3 30
females 0.4781681 25 0 7
old 0.3084670 42 0 5

Table 4.4: picoweb entropy for words most commonly labeled Population in ebmnlp data
set

Afterwards we calculated the entropy for the 10 words most often labeled Population in
ebmnlp (Table 4.3). There are only two words with an entropy less than 0.4, hundred
with an entropy of 0.2495566 and old with 0.3124197. For comparison we calculated the
entropy for the picoweb data set for the same words (Table 4.4). Similar to the entropies

44

4.1. Data set analysis findings

for picoweb, in the ebmnlp data set the entropies for the words hundred (0.3313479) and
old (0.3084670) are relatively low. In contrast to the entropy of 0.5310091 for the word
metastatic in the picoweb data set, the entropy is much lower in the ebmnlp data set
with 0.2468472.

token entropy population count therapy count unlabeled count
twice 0.4733274 0 172 47
administration 0.6218378 0 140 186
solution 0.3777006 0 135 23
saline 0.3190870 0 119 15
lidocaine 0.2509362 0 117 10
times 0.6137725 0 111 75
administered 0.6245256 0 93 118
low-dose 0.3429510 0 84 12
losartan 0.3454873 0 76 11
sertraline 0.3454873 0 76 11

Table 4.5: picoweb entropy for words most commonly labeled Therapy in picoweb data
set

token entropy population count therapy count unlabeled count
twice 0.6271984 11 67 214
administration 0.4283185 21 78 623
solution 0.6485577 2 128 79
saline 0.4861115 1 192 50
lidocaine 0.3282946 0 136 18
times 0.3790360 11 35 359
administered 0.4506919 19 65 489
low-dose 0.7060968 4 57 88
losartan 0.5353743 0 29 11
sertraline 0.4205641 0 19 4

Table 4.6: ebmnlp entropy for words most commonly labeled Therapy in picoweb data
set

The same calculations as for Population were done for Therapy. We calculated the en-
tropy for the 10 words most often labeled Therapy in picoweb (Table 4.5). For compar-
ison we calculated the entropy for the ebmnlp data set for the same words (Table 4.6).
The only word with low entropy in both data sets is lidocaine with 0.2509362 in the
picoweb data set and 0.3282946 in the ebmnlp data set.

45

4. Result

token entropy population count therapy count unlabeled count
risperidone 0.4193760 0 215 45
bupivacaine 0.3581505 0 136 21
lidocaine 0.3282946 0 136 10
cyclophosphamide 0.1452165 0 106 4
oil 0.5780314 0 105 52
doxorubicin 0.2923156 0 103 11
morphine 0.6147689 0 98 67
oxytocin 0.5315167 0 97 36
cbt 0.4338554 0 89 20
propranolol 0.4007739 0 89 17

Table 4.7: ebmnlp entropy for words most commonly labeled Therapy in ebmnlp data
set

token entropy population count therapy count unlabeled count
risperidone 0 0 32 0
bupivacaine 0.4938054 2 98 21
lidocaine 0.2509362 0 117 10
cyclophosphamide 0.6506238 1 29 13
oil 0.6098685 0 17 11
doxorubicin 0.5240761 1 32 7
morphine 0.8527925 7 35 21
oxytocin 0.6216097 0 3 4
cbt 0.4695343 3 22 1
propranolol 0.5261106 1 35 8

Table 4.8: picoweb entropy for words most commonly labeled Therapy in ebmnlp data
set

As before we calculated the entropy for the 10 words most often labeled Therapy in
ebmnlp (Table 4.7). There are several drug names with low entropy, especially the words
cyclophosphamide and lidocaine have low entropies of 0.1452165 respectively 0.3282946.
For comparison we calculated the entropy for the picoweb data set for the same words
(Table 4.8). For the ebmnlp data set only two words have low entropies. The word
lidocaine with 0.2509362 and the word risperidone with 0, as it is always annotated as
therapy and the shannon entropy defines log(0) as 0 (Section 2.1.3).

In contrast to the top 10 words of the picoweb data set (Table 4.5) the top 10 words of
the ebmnlp data set (Table 4.7) only contain pharmaceutical ingredients. This shows us
that ebmnlp annotations tend to be shorter and only contain the most essential elements
(Figure 4.2).

46

4.1. Data set analysis findings

(a) population (picoweb) (b) therapy (picoweb)

(c) population (ebmnlp) (d) therapy (ebmnlp))

Figure 4.4: word cloud by annotated label

We used the word_cloud library for python1 to generate word clouds for picoweb and
ebmnlp, both for population and therapy separately. Comparing Figure 4.4a and Fig-
ure 4.4c we see a lot of similarities in Population, like patients with and <number>
patient. There are only differences in some detailed diseases, like for picoweb there are
more annotations of breast cancer and diabetes patients, while for ebmnlp autism is
more frequent.
Doing the same for therapy Figure 4.4b and Figure 4.4d we see that treatment and
therapy is more frequent in the ebmnlp data set compared to the picoweb data set.

Besides the high rate of the word patients, Figure 4.4a shows that the label population
is highly likely linked to a disease.

Figure 4.4b confirms the insight that, as we only use clinical trials in the data set, control
groups (placebo) are omnipresent in therapy annotations.

Looking at the lengths of the annotations by label (Figure 4.5), one can see that an-
notations of population tend to include more tokens than therapy. If we look at some
samples of annotations, therapy often just consists of a drug name (e.g. dexamethasone
or placebo). Sometimes followed by the dosage (e.g. full-dose (10 mg) ramipril). While
population often contains a group of people combined with a disease (e.g. infants and
children with uncomplicated Salmonella gastroenteritis). Some annotators also included
the count of the patient group (e.g. 108 patients with angina).

1python word cloud library: https://github.com/amueller/word_cloud (visited on 2020-04-
18)

47

https://github.com/amueller/word_cloud

4. Result

Figure 4.5: Length of annotated sequence in picoweb

4.2 Gamification/eLearning platform
The feedback sessions after the test rounds (Section 3.2.3) gave us valuable insights
into how to make the system as easy to use as possible, without sacrificing too much
annotation quality.

After the first test round was completed (Section 3.2.3) there was a feedback round.
Following points were discussed, evaluated and if possible improved in the second proto-
type. Seeing the abstract of the sentence leads to the wish to select another sentence in
the abstract with better PICO elements in it. However cherry picking the best sentences
from an abstract leads to the problem of having only positive examples. This probably
result in a neural network not “knowing” sentences without PICO elements can exist.
To improve the usability here, while preventing cherry-picking, we came up with the idea
to change an annotation session to consist of a complete abstract (Section 3.2.3). By
leading the user through the abstract sentence by sentence, the context of the current
sentence should be easier to understand. The feedback also showed that the distinction
between Intervention and Comparison is often difficult to see. This is especially true for
studies comparing three or more therapies. Also it probably does not matter most of
the time if a paper compares therapy X with therapy Y or the other way around.
We noticed that the correctness shown for annotations can lead to the assumption that
100% are “the truth”. To counteract this we added an info text next to the correctness
explaining what it represents. Furthermore the get-started guide needs more examples
of how to annotate specific elements as it is not likely eLearning users take the time to
read the full annotation guideline. A common question was if you should annotate the
amount of a population or not (e.g. 50 patients with heart disease vs. patients with heart

48

4.3. Comparing the SciBERT model performance trained on different data sets with each other

disease).

Similar to the first test round, we collected the feedback of the test users after the second
test round (Section 3.2.3). The step-by-step guide received good feedback, the users are
now less confused how to use the platform. The same is valid for the new session layout,
where all sentences of a whole abstract are used for a session. One user noted that the
No element in sentence button does not need confirmation, so it is possible to trigger it
by accident, without a possibility to undo it. This is not fixed yet.

To answer the question on how to evaluate the performance of users, we used Fleiss’
Kappa to calculate the IAA to be used to give the users feedback on their performance.
As our test rounds did not go over a long period of time, showing the user the IAA
(Section 3.2.2) of the annotations done in a session was sufficient feedback for our test
users. With a long-term user in mind who keeps improving, some kind of overall user
score will be necessary to be implemented in the future, to give the user clear feedback
of his/her progress.

For our tests we created the categories by hand using MeSH tags (Section 3.2.1). This
was possible as we only created four simple categories by naively assigning MeSH tags
containing specific keywords (e.g. heart, cardiac, . . .). For more complex categories the
MeSH tags should be provided as a tree structure to see what tags are related.

4.3 Comparing the SciBERT model performance trained
on different data sets with each other

In this section we wanted to find out how the SciBERT model (Section 3.3) performs
using variations of the picoweb data set as input. The SciBERT model was trained to
predict the labels Population, Therapy, and Outside (representing non-PICO elements).
We also trained the SciBERT model on the ebmnlp data set (Section 2.1.2) to compare
both performances.

We started by exploring the impact of including sentences without PICO elements on
the performance of the SciBERT model. Therefore we trained on an export of our
annotations only including sentences with PICO labels and an export also including
sentences without labels to compare their performance (Section 4.3.1). Next we explored
the impact of PoS tags on the model performance (Section 4.3.2).

4.3.1 Evaluating the influence of storing sentences without PICO
labels on the SciBERT model performance

To evaluate the impact of using sentences without any PICO labels on the model per-
formance, we trained the SciBERT model [BLC19] one time using the picoweb data
set excluding sentences marked as not containing PICO elements and another time in-
cluding sentences marked as not containing PICO elements. Overall there were 25820
annotated sentences with annotated PICO elements, but only 395 that are marked by

49

4. Result

the user as not containing any PICO elements. This is because most of the annotations
derived from a former project (see: Section 2.1.1), where it was not possible to mark
sentences that do not contain PICO elements.

Each training ran until the avg f1-score did not improve for 10 epochs. Best scores were
achieved after epoch 6 for the set including sentences marked as not containing PICO
elements. In contrast it took until epoch 10 for the set not including sentences marked
as not containing PICO elements to reach the best f1 score.

(a) avg f1-scores (b) f1-scores population

(c) f1-scores therapy (d) accuracy

Figure 4.6: f1-scores and accuracy for picoweb data set excluding sentences marked as
not containing PICO elements

Figure 4.6 shows the training process of the model excluding sentences marked as not
containing PICO elements. As we can see in Subfigure 4.6b the validation f1-score for
Population is even through the epochs, this seems most likely based on the consistency
of Population annotations (for example patients). In comparison the f1-scores for Ther-
apy are more uneven (Subfigure 4.6c), very likely because of the diverse possibilities in
Therapy (e.g. medication, surgery, . . .). After epoch 10 the validation scores beginning
to fall while the training scores still increase, this indicates overfitting. Therefore, we
choose the state after epoch 10.

50

4.3. Comparing the SciBERT model performance trained on different data sets with each other

(a) avg f1-scores (b) f1-scores population

(c) f1-scores therapy (d) accuracy

Figure 4.7: f1-scores and accuracy for picoweb data set including sentences marked as
not containing PICO elements

Figure 4.7 shows the training process of the model including sentences marked as not
containing PICO elements. After epoch 6 the validation scores begin to fall while the
training scores still increase, this indicates overfitting. Therefore, we choose the state
after epoch 6. In contrast to the training process of the data set including sentences
marked as not containing PICO elements—except for the most likely random outlier at
epoch 4—the validation scores stay more stable after the best epoch.

Population Therapy Outside Average
without negatives 0.86 0.83 0.92 0.87

with negatives 0.87 0.83 0.92 0.87

Table 4.9: f1-scores after 6 epochs for picoweb not including sentences marked as not
containing PICO elements and 10 epochs including sentences marked as not containing
PICO elements

As shown in Table 4.9 including sentences marked as not containing PICO elements

51

4. Result

result in a minimal higher (less than 0.01) f1-score for Population.

4.3.2 Evaluating the impact of PoS tags
In this section we evaluate the possible benefit of adding PoS tags into the picoweb
data set. The PoS tags were created using CoreNLP [Man+14] and added to the corre-
sponding fields in the CoNLL-2003 [SD03] export file. We expected an increase of the
performance based on the idea that the PoS tags provide additional indications for PICO
labels. Surprisingly, adding PoS tags only led to less than 0.01 higher average f1-score
(Table 4.10). One explanation for this effect is, that the SciBERT model already learned
similar categories like the PoS in the pre-training done on corpus consisting of computer
science and biomedical papers.

(a) avg f1-scores (b) f1-scores population

(c) f1-scores therapy (d) accuracy

Figure 4.8: f1-scores and accuracy for picoweb data set with PoS tags

The training progress over the epochs seen in Figure 4.8 behaved similar as the data set
without PoS seen in Figure 4.7, In contrast to the training on the data set without PoS
tags—which showed overfitting after epoch 6—the data set with PoS showed overfitting
after epoch 7.

52

4.3. Comparing the SciBERT model performance trained on different data sets with each other

Population Therapy Outside Average
with PoS tags 0.87 0.84 0.92 0.88

without PoS tags 0.87 0.83 0.92 0.87

Table 4.10: f1-scores for picoweb with and without PoS tags

4.3.3 SciBERT model performance trained on ebmnlp compared to
picoweb

(a) avg f1-scores (b) f1-scores population

(c) f1-scores therapy (d) accuracy

Figure 4.9: f1-scores and accuracy for ebmnlp data set downsized to similar size as
picoweb and removed outcome

Figure 4.9 shows the training process of the model training on the ebmnlp data set
(Section 4.3.3). After epoch 13 the validation scores begin to fall while the training
scores still increasing, this indicates overfitting. Therefore, we choose the state after
epoch 13. As shown in Table 4.11 the model trained on picoweb performed slightly
better by about 0.05 for Population and substantially for Therapy by 0.11.

53

4. Result

Population Therapy Outside Average
picoweb 0.86 0.83 0.92 0.87
ebmnlp 0.81 0.72 0.90 0.79

Table 4.11: Comparison f1-scores for ebmnlp subsample data set without Outcome an-
notations and picoweb data set excluding sentences marked as not containing PICO
elements (Section 4.3.1) data set

4.3.4 Combine picoweb and EBM-NLP

(a) avg f1-scores (b) f1-scores population

(c) f1-scores therapy (d) accuracy

Figure 4.10: f1-scores and accuracy for combined data sets (picoweb & ebmnlp)

Figure 4.10 shows the training process of the model for the combined data set (Sec-
tion 3.3). The f1-score (Table 4.12) is slightly higher with an average of 0.83 than
ebmnlp with 0.79, but lower than the f1-score of picoweb with 0.92. After epoch 12
the validation scores begin to fall while the training scores still increase, this indicates
overfitting. Therefore, we choose the state after epoch 12.

54

4.4. Summary

Population Therapy Outside Average
0.82 0.74 0.93 0.83

Table 4.12: f1-scores after epoch 12 for ebmnlp data set downsized to similar size as
picoweb and removed outcome

4.4 Summary
In this chapter we presented the result of our analysis of our data set. We calculated the
cosine similarity between Population and Therapy for the picoweb (0.648) and ebmnlp
(0.779) data set. This showed us that in ebmnlp the words labeled Population and
Therapy are more similar than in picoweb, which probably makes it harder to predict
these labels in ebmnlp. Another important difference is that in ebmnlp mostly does not
recognize units of dosages as part of Therapy as shown in Figure 4.1. We calculated the
entropy of the likelihood being labeled Population or Therapy of the ten most common
labeled words in picoweb and ebmnlp. In contrast to the top 10 annotated words of
the picoweb data set the top 10 annotated words of the ebmnlp data set only contain
pharmaceutical ingredients. This showed us that ebmnlp annotations tend to be shorter
and only contain the most essential elements.

Furthermore we put an emphasis on user feedback to get valuable insights into how to
make the application as easy to use as possible without sacrificing too much annotation
quality. This was achieved by implementing selected gamification techniques.

Next we used different variations of the picoweb data set as input for the SciBERT model
to see how it performs. We also trained the SciBERT model on the ebmnlp data set to
compare both performances.

As summarized in Table 4.13 including sentences marked as not containing PICO ele-
ments or PoS tags had almost no impact on the f1-score. All in all the SciBERT model
achieved around 0.08 higher average f1-scores when trained on the variations of picoweb
data set than on the ebmnlp data set.

55

4. Result

Pop-
ula-
tion

Inter-
ven-
tion

Outside Average

picoweb excluding sentences marked
as not containing PICO elements

0.86 0.83 0.92 0.87

picoweb including sentences marked
as not containing PICO elements

0.87 0.83 0.92 0.87

picoweb w/o PoS tags 0.87 0.83 0.92 0.87
picoweb with PoS tags 0.87 0.84 0.92 0.88

ebmnlp 0.81 0.72 0.90 0.79
picoweb+ebmnlp 0.82 0.74 0.93 0.83

Table 4.13: Overview of f1-scores of experiments described in Section 4.3

56

CHAPTER 5
Conclusion

We presented an analysis and comparison of two PICO data sets (Section 4.1). Even if
both the picoweb (Section 2.1.1) and the ebmnlp (Section 2.1.2) data set consist of PICO
labeled PubMed abstracts, the differences in the guidelines do have a high impact on
the structure of the annotations. We presented experiments to show how the SciBERT
model performs on these data sets (Section 4.3). The presented experiments describe
the impact of different data set features (PoS, sentences without PICO elements, . . .).
We also presented ways to design an annotation platform as an eLearning system to
enhance the motivation of the users.

5.1 eLearning platform
We created an eLearning system (Section 3.2) to provide an easy to use platform to
input annotations of population and therapy elements in PubMed abstracts.

Additionally to the user feedback there are multiple topics that are worth having a deeper
look in the future. We implemented the most promising gamification elements in our
eLearning system, based on them it would be interesting to do additional experiment
with more social elements like badges, levels, leagues, . . .

5.2 Machine Learning
Our first experiment presented in Section 4.3.1 answers the question what impact includ-
ing sentences without PICO labels have on the performance of a ML model. It shows
only a minimal improvement on the f1-score of population. This was not unexpected
as the picoweb data set consists of 25820 sentences including PICO labels, but only
395 sentences without any PICO label. Redoing this experiment with more data could
provide us with more insights on the impact of such sentences.

57

5. Conclusion

Our second experiment presented in Section 4.3.2 answers the question of what impact
including PoS tags have on the performance of a ML model. These PoS tags were
created using CoreNLP [Man+14]. This was done to explore the question if syntactic
structure information lead to better performance. While the f1-scores did increase by
0.01, this had less impact than we expected. One can theorize that using a transformer
like (Sci)Bert, the pre-training already learned similarities between words that would
have the same PoS tag. Validating whether or not this can be the case would be a very
interesting topic for future work.

To answer the question of how a model trained using the picoweb data set perform
compared to the similar ebmnlp data set we trained the same model with each of the
data sets. Comparing the performance of the ebmnlp data set (Section 4.3.3) to the
picoweb (Section 4.3.1) shows a lower average f1-score by 0.08 and for intervention 0.11.
As the ebmnlp guideline/annotation style differ from ours, one should be cautious to
jump to conclusions too quickly. Reviewing manual samples of annotations in both
data sets (Section 4.1) suggests that the ebmnlp annotations cover more diverse struc-
tured abstracts. On the other hand as most picoweb annotators do have at least basic
knowledge of medicine and/or linguistics—while ebmnlp used Amazon Mechanical Turk
annotators—this can also impact the quality of the data set.

Our last evaluation was on a combined data set (Section 4.3.4). This performed slightly
better than the ebmnlp data set, but worse than the picoweb.

Looking on the differences found—between the picoweb and the ebmnlp data set—
(Section 4.1), the results of the ML experiments in Section 4.3.4 we can answer the
question if both data sets are compatible to combine to achieve better performance as
follows. The differences in the annotation styles of these data sets prevent them to be
simply merged to improve performance. This does not mean that this is impossible to
achieve using more sophisticated methods, but that is out of the scope of this thesis.

An interesting topic for future work is using HMM-Crowd [Ngu+17] aggregation as done
for the ebmnlp (Section 2.1.2) data set, as it probably could improve the achieved scores
of the picoweb data set. Another interesting topic for future work is exploring ways
to use the calculated reliability of a user to weight their annotations accordingly while
training.

58

List of Figures

2.1 Word cluster generated from PubMed abstracts using word2vec (Section 2.3.3) 6
2.2 Moves and Their Discourse Functions ([Nwo97] page 7) 7
2.3 ebmnlp span annotation example (https://ebm-nlp.herokuapp.com/

annotations [visited 2020-09-13]) . 9
2.4 BioNLP annotation interface example using brat (https://brat.nlplab.

org/examples.html [visited 2020-09-13]) 10
2.5 "Gamification" between game and play, whole and parts ([Det+11] page 5) 12
2.6 continuous bag of words (CBOW) takes two tokens before and two after a

word (context) and trains to predict the word itself 15
2.7 Continuous Skipgram takes a word and trains to predict two tokens before

and two after a word (context) . 16
2.8 Gradient descent optimization methods ([Rud16] page 10) 19

3.1 Distribution of number of cluster documents (20 categories) 28
3.2 Category overview . 31
3.3 Current annotations (first version) . 32
3.4 Buttons if nothing annotated (first version) 32
3.5 Step-by-step annotation guide . 33
3.6 Annotation session (second version) . 34
3.7 Session summary page (second version) 34
3.8 Annotation buttons (second version) . 34
3.9 Leaderboard (names blacked out) . 35
3.10 Prediction service for sentence . 36
3.11 Prediction service for abstract . 36
3.12 Prediction service link shown on picoweb homepage for staff user 37
3.13 Sentence prediction service link (highlighted by red border) shown on anno-

tation session view for staff user . 37

4.1 relative word frequencies by annotated label 42
4.2 ebmnlp example population(orange)/therapy(red) 42
4.3 picoweb example therapy(red) . 43
4.4 word cloud by annotated label . 47
4.5 Length of annotated sequence in picoweb 48

59

https://ebm-nlp.herokuapp.com/annotations
https://ebm-nlp.herokuapp.com/annotations
https://brat.nlplab.org/examples.html
https://brat.nlplab.org/examples.html

4.6 f1-scores and accuracy for picoweb data set excluding sentences marked as
not containing PICO elements . 50

4.7 f1-scores and accuracy for picoweb data set including sentences marked as
not containing PICO elements . 51

4.8 f1-scores and accuracy for picoweb data set with PoS tags 52
4.9 f1-scores and accuracy for ebmnlp data set downsized to similar size as pi-

coweb and removed outcome . 53
4.10 f1-scores and accuracy for combined data sets (picoweb & ebmnlp) 54

60

List of Tables

2.1 15 design principles identified by Dicheva et al. [Dic+15] 13
2.2 One Hot Embedding . 14
2.3 metric sets overview (|N | = number of elements in the system, |A| = number

of relevant elements, |B| = number of retrieved elements) [JR71] 23

3.1 Description of implemented design principles identified by Dicheva et al. [Dic+15] 27
3.2 SciBERT model parameters . 38

4.1 picoweb entropy for words most commonly labeled Population in picoweb
data set . 43

4.2 ebmnlp entropy for words most commonly labeled Population in picoweb data
set . 43

4.3 ebmnlp entropy for words most commonly labeled Population in ebmnlp data
set . 44

4.4 picoweb entropy for words most commonly labeled Population in ebmnlp data
set . 44

4.5 picoweb entropy for words most commonly labeled Therapy in picoweb data
set . 45

4.6 ebmnlp entropy for words most commonly labeled Therapy in picoweb data
set . 45

4.7 ebmnlp entropy for words most commonly labeled Therapy in ebmnlp data
set . 46

4.8 picoweb entropy for words most commonly labeled Therapy in ebmnlp data
set . 46

4.9 f1-scores after 6 epochs for picoweb not including sentences marked as not
containing PICO elements and 10 epochs including sentences marked as not
containing PICO elements . 51

4.10 f1-scores for picoweb with and without PoS tags 53
4.11 Comparison f1-scores for ebmnlp subsample data set without Outcome anno-

tations and picoweb data set excluding sentences marked as not containing
PICO elements (Section 4.3.1) data set 54

4.12 f1-scores after epoch 12 for ebmnlp data set downsized to similar size as
picoweb and removed outcome . 55

4.13 Overview of f1-scores of experiments described in Section 4.3 56

61

Acronyms

Adam Adaptive Moment Estimation. 20, 21

AMT Amazon Mechanical Turk. 8, 58

BERT Bidirectional Encoder Representations from Transformers. 16, 17

BP backpropagation. 21

BRNN Bidirectional Recurrent Neural Network. 38

CBOW continuous bag of words. 15, 59

CBT clinical based trial. 1

CRF Conditional Random Field. 8

CS computer science. 17

DNN deep neural network. 21

EBM evidence-based medicine. 1

GD gradient descent. 18, 19

GloVe Global Vector. 14

GP general practitioner. 9

GPU graphics processing unit. 17

IAA inter-annotator agreement. 10, 11, 30, 49

ID identifier. 14

IMRD Introduction, Methods, Results, Discussion. 7

LSTM Long Short-Term Memory. 8, 22

63

MD medical doctor. 1, 7, 10

MeSH Medical Subject Headings. 28–30, 39, 49

ML Machine Learning. 2, 3, 5, 14, 17, 18, 20, 21, 23, 24, 39, 57, 58

NER Named Entity Recognition. 8

NLP Natural Language Processing. 7, 8, 16, 17

NNLM Feedforward Neural Net Language Model. 16

Pconf positive-confidence. 38

PICO Population, Interaction, Comparison, Outcome. xi, xiii, 2–4, 7, 8, 11, 32, 37–39,
48–52, 54–57, 60, 61

PoS Part of Speech. 3, 4, 8, 38, 39, 49, 52, 53, 55–58, 61

RCTs Randomized Control Trials. 7, 8

ReLU rectified linear unit. 18, 21, 22

RNN recurrent neural network. 22

SGD stochastic gradient descent. 6, 20

64

Bibliography

[Arp+17] Devansh Arpit et al. „A closer look at memorization in deep networks“. In:
arXiv preprint arXiv:1706.05394 (2017).

[Ber10] Shane Bergsma. „Large-scale Semi-supervised Learning for Natural Lan-
guage Processing“. AAINR67581. PhD thesis. Edmonton, Alta., Canada,
2010. isbn: 978-0-494-67581-6.

[BLC19] Iz Beltagy, Kyle Lo, and Arman Cohan. „SciBERT: A pretrained language
model for scientific text“. In: Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019,
pp. 3606–3611.

[Bor+15] Antoine Bordes et al. „Large-scale simple question answering with memory
networks“. In: arXiv preprint arXiv:1506.02075 (2015).

[Bot10] Léon Bottou. „Large-scale machine learning with stochastic gradient de-
scent“. In: Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. „Learning long-term
dependencies with gradient descent is difficult“. In: IEEE transactions on
neural networks 5.2 (1994), pp. 157–166.

[Cai01] Roger Caillois. Man, play, and games. University of Illinois press, 2001.
[Chi+16] Billy Chiu et al. „How to train good word embeddings for biomedical NLP“.

In: Proceedings of the 15th Workshop on Biomedical Natural Language Pro-
cessing. 2016, pp. 166–174.

[Coh60] Jacob Cohen. „A coefficient of agreement for nominal scales“. In: Educational
and psychological measurement 20.1 (1960), pp. 37–46.

[Col+11] Ronan Collobert et al. „Natural language processing (almost) from scratch“.
In: Journal of Machine Learning Research 12.Aug (2011), pp. 2493–2537.

[Cyb89] George Cybenko. „Approximation by superpositions of a sigmoidal func-
tion“. In: Mathematics of control, signals and systems 2.4 (1989), pp. 303–
314.

65

[Det+11] Sebastian Deterding et al. „From game design elements to gamefulness:
defining" gamification"“. In: Proceedings of the 15th international academic
MindTrek conference: Envisioning future media environments. 2011, pp. 9–
15.

[Dev+18] Jacob Devlin et al. „Bert: Pre-training of deep bidirectional transformers for
language understanding“. In: arXiv preprint arXiv:1810.04805 (2018).

[Dic+15] Darina Dicheva et al. „Gamification in Education: A Systematic Mapping
Study“. In: Journal of Educational Technology & Society 18.3 (2015), pp. 75–
88. issn: 11763647, 14364522. url: http://www.jstor.org/stable/
jeductechsoci.18.3.75.

[DS79] Alexander Philip Dawid and Allan M Skene. „Maximum likelihood estima-
tion of observer error-rates using the EM algorithm“. In: Journal of the
Royal Statistical Society: Series C (Applied Statistics) 28.1 (1979), pp. 20–
28.

[Erh+10] Dumitru Erhan et al. „Why does unsupervised pre-training help deep learn-
ing?“ In: Journal of Machine Learning Research 11.Feb (2010), pp. 625–
660.

[FES16] Alejandro Moreo Fernández, Andrea Esuli, and Fabrizio Sebastiani. „Dis-
tributional Correspondence Indexing for Cross-Lingual and Cross-Domain
Sentiment Classification.“ In: Journal of artificial intelligence research 55
(2016), pp. 131–163.

[Fle71] Joseph L Fleiss. „Measuring nominal scale agreement among many raters.“
In: Psychological bulletin 76.5 (1971), p. 378.

[GBB11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. „Deep sparse rectifier
neural networks“. In: Proceedings of the fourteenth international conference
on artificial intelligence and statistics. 2011, pp. 315–323.

[Gla17] Tobias Glasmachers. „Limits of end-to-end learning“. In: arXiv preprint
arXiv:1704.08305 (2017).

[Gob+14] Glenn T Gobbel et al. „Assisted annotation of medical free text using Rap-
TAT“. In: Journal of the American Medical Informatics Association 21.5
(2014), pp. 833–841.

[GS05] Alex Graves and Jürgen Schmidhuber. „Framewise phoneme classification
with bidirectional LSTM and other neural network architectures“. In: Neural
networks 18.5-6 (2005), pp. 602–610.

[Gul+16] Caglar Gulcehre et al. „Pointing the unknown words“. In: arXiv preprint
arXiv:1603.08148 (2016).

[HC18] David Hand and Peter Christen. „A note on using the F-measure for evalu-
ating record linkage algorithms“. In: Statistics and Computing 28.3 (2018),
pp. 539–547.

66

http://www.jstor.org/stable/jeductechsoci.18.3.75
http://www.jstor.org/stable/jeductechsoci.18.3.75

[HM15] Julia Hirschberg and Christopher D Manning. „Advances in natural lan-
guage processing“. In: Science 349.6245 (2015), pp. 261–266.

[Hoc91] Sepp Hochreiter. „Untersuchungen zu dynamischen neuronalen Netzen“. In:
Diploma, Technische Universität München 91.1 (1991).

[Hoc98] Sepp Hochreiter. „The vanishing gradient problem during learning recurrent
neural nets and problem solutions“. In: International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 6.02 (1998), pp. 107–116.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. „Long short-term memory“. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[Hua98] Zhexue Huang. „Extensions to the k-means algorithm for clustering large
data sets with categorical values“. In: Data mining and knowledge discovery
2.3 (1998), pp. 283–304.

[INS18] Takashi Ishida, Gang Niu, and Masashi Sugiyama. „Binary Classification
from Positive-Confidence Data“. In: Advances in Neural Information Pro-
cessing Systems 31. Ed. by S. Bengio et al. Curran Associates, Inc., 2018,
pp. 5917–5928. url: http://papers.nips.cc/paper/7832-binary-
classification-from-positive-confidence-data.pdf.

[JR71] Nick Jardine and Cornelis Joost van Rijsbergen. „The use of hierarchic clus-
tering in information retrieval“. In: Information storage and retrieval 7.5
(1971), pp. 217–240.

[KB14] Diederik P Kingma and Jimmy Ba. „Adam: A method for stochastic opti-
mization“. In: arXiv preprint arXiv:1412.6980 (2014).

[KSB14] Rafał Kurczab, Sabina Smusz, and Andrzej J Bojarski. „The influence of
negative training set size on machine learning-based virtual screening“. In:
Journal of cheminformatics 6.1 (2014), p. 32.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. „Imagenet classi-
fication with deep convolutional neural networks“. In: Advances in neural
information processing systems. 2012, pp. 1097–1105.

[KZW19] Tian Kang, Shirui Zou, and Chunhua Weng. „Pretraining to recognize piCO
elements from randomized controlled trial literature“. In: Studies in health
technology and informatics 264 (2019), p. 188.

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. „Deep learning“. In:
nature 521.7553 (2015), p. 436.

[LH13] Baoli Li and Liping Han. „Distance weighted cosine similarity measure for
text classification“. In: International Conference on Intelligent Data Engi-
neering and Automated Learning. Springer. 2013, pp. 611–618.

[LH17] Ilya Loshchilov and Frank Hutter. „Decoupled weight decay regularization“.
In: arXiv preprint arXiv:1711.05101 (2017).

67

http://papers.nips.cc/paper/7832-binary-classification-from-positive-confidence-data.pdf
http://papers.nips.cc/paper/7832-binary-classification-from-positive-confidence-data.pdf

[Man+14] Christopher Manning et al. „The Stanford CoreNLP natural language pro-
cessing toolkit“. In: Proceedings of 52nd annual meeting of the association
for computational linguistics: system demonstrations. 2014, pp. 55–60.

[Mer01] Sharan B Merriam. „Andragogy and self-directed learning: Pillars of adult
learning theory“. In: New directions for adult and continuing education 2001.89
(2001), pp. 3–14.

[Mik+13] Tomas Mikolov et al. „Efficient estimation of word representations in vector
space“. In: arXiv preprint arXiv:1301.3781 (2013).

[MYZ13] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. „Linguistic regularities
in continuous space word representations“. In: Proceedings of the 2013 con-
ference of the north american chapter of the association for computational
linguistics: Human language technologies. 2013, pp. 746–751.

[Ngu+17] An T Nguyen et al. „Aggregating and predicting sequence labels from crowd
annotations“. In: Proceedings of the conference. Association for Computa-
tional Linguistics. Meeting. Vol. 2017. NIH Public Access. 2017, p. 299.

[Nwo97] Kevin Ngozi Nwogu. „The medical research paper: Structure and functions“.
In: English for specific purposes 16.2 (1997), pp. 119–138.

[Nye+18] Benjamin Nye et al. „A corpus with multi-level annotations of patients,
interventions and outcomes to support language processing for medical lit-
erature“. In: Proceedings of the conference. Association for Computational
Linguistics. Meeting. Vol. 2018. NIH Public Access. 2018, p. 197.

[Pak+10] Serguei Pakhomov et al. „Semantic similarity and relatedness between clini-
cal terms: an experimental study“. In: AMIA annual symposium proceedings.
Vol. 2010. American Medical Informatics Association. 2010, p. 572.

[Pas+19] Adam Paszke et al. „PyTorch: An Imperative Style, High-Performance Deep
Learning Library“. In: Advances in Neural Information Processing Systems
32. Ed. by H. Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035.
url: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.
pdf.

[Pet82] Catherine Pettinari. „The function of a grammatical alternation in 14 sur-
gical reports“. In: Linguistics and Literacy. Springer, 1982, pp. 145–185.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D Manning. „Glove:
Global vectors for word representation“. In: Proceedings of the 2014 confer-
ence on empirical methods in natural language processing (EMNLP). 2014,
pp. 1532–1543.

[Qia99] Ning Qian. „On the momentum term in gradient descent learning algo-
rithms“. In: Neural networks 12.1 (1999), pp. 145–151.

68

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[RD95] William Rosenberg and Anna Donald. „Evidence based medicine: an ap-
proach to clinical problem-solving.“ In: BMJ: British Medical Journal 310.6987
(1995), p. 1122.

[RHW86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. „Learn-
ing representations by back-propagating errors“. In: nature 323.6088 (1986),
p. 533.

[Ric+95] W Scott Richardson et al. „The well-built clinical question: a key to evidence-
based decisions“. In: ACP journal club 123.3 (1995), A12–A12.

[RML06] Jorge G Ruiz, Michael J Mintzer, and Rosanne M Leipzig. „The impact of e-
learning in medical education“. In: Academic medicine 81.3 (2006), pp. 207–
212.

[Ros58] Frank Rosenblatt. „The perceptron: a probabilistic model for information
storage and organization in the brain.“ In: Psychological review 65.6 (1958),
p. 386.

[Rud16] Sebastian Ruder. „An overview of gradient descent optimization algorithms“.
In: arXiv preprint arXiv:1609.04747 (2016).

[Sch+07] Connie Schardt et al. „Utilization of the PICO framework to improve search-
ing PubMed for clinical questions“. In: BMC medical informatics and deci-
sion making 7.1 (2007), p. 16.

[Sco55] William A Scott. „Reliability of content analysis: The case of nominal scale
coding“. In: Public opinion quarterly (1955), pp. 321–325.

[SD03] Erik F Sang and Fien De Meulder. „Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition“. In: arXiv preprint
cs/0306050 (2003).

[Seo+16] Miran Seok et al. „Named entity recognition using word embedding as a
feature“. In: Int. J. Softw. Eng. Appl 10.2 (2016), pp. 93–104.

[SF07] Yutaka Sasaki and R Fellow. „The truth of the F-measure, Manchester:
MIB-School of Computer Science“. In: University of Manchester (2007).

[Sha48] Claude E Shannon. „A mathematical theory of communication“. In: The
Bell system technical journal 27.3 (1948), pp. 379–423.

[Sno+08] Rion Snow et al. „Cheap and fast—but is it good?: evaluating non-expert
annotations for natural language tasks“. In: Proceedings of the conference
on empirical methods in natural language processing. Association for Com-
putational Linguistics. 2008, pp. 254–263.

[SP97] Mike Schuster and Kuldip K Paliwal. „Bidirectional recurrent neural net-
works“. In: IEEE transactions on Signal Processing 45.11 (1997), pp. 2673–
2681.

[Sri+14] Nitish Srivastava et al. „Dropout: a simple way to prevent neural networks
from overfitting“. In: The Journal of Machine Learning Research 15.1 (2014),
pp. 1929–1958.

69

[TSA15] MUNEEB TH, Sunil Sahu, and Ashish Anand. „Evaluating distributed word
representations for capturing semantics of biomedical concepts“. In: Proceed-
ings of BioNLP 15 (2015), pp. 158–163.

[Zhu+15] Yukun Zhu et al. „Aligning books and movies: Towards story-like visual
explanations by watching movies and reading books“. In: Proceedings of the
IEEE international conference on computer vision. 2015, pp. 19–27.

[Zla+18a] Markus Zlabinger et al. „Extracting the Population, Intervention, Compar-
ison and Sentiment from Randomized Controlled Trials“. In: Building Con-
tinents of Knowledge in Oceans of Data: The Future of Co-Created eHealth
- Proceedings of MIE 2018, Medical Informatics Europe, Gothenburg, Swe-
den, April 24-26, 2018. 2018, pp. 146–150. doi: 10.3233/978-1-61499-
852-5-146. url: https://doi.org/10.3233/978-1-61499-852-
5-146.

[Zla+18b] Markus Zlabinger et al. „Medical Entity Corpus with PICO elements and
Sentiment Analysis“. In: Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC 2018). Ed. by Nicoletta
Calzolari (Conference chair) et al. Miyazaki, Japan: European Language Re-
sources Association (ELRA), May 2018. isbn: 979-10-95546-00-9.

70

https://doi.org/10.3233/978-1-61499-852-5-146
https://doi.org/10.3233/978-1-61499-852-5-146
https://doi.org/10.3233/978-1-61499-852-5-146
https://doi.org/10.3233/978-1-61499-852-5-146

	Kurzfassung
	Abstract
	Introduction
	Motivation and Problem Statement
	Contributions
	Methodological approach
	Structure of the work

	Background
	Medical texts
	Annotation gathering and eLearning
	Language representation models
	Neural Networks & Deep Learning
	Metrics
	Summary

	Method
	Data set analysis
	Annotation and eLearning
	Evaluation of the comparison of different data sets
	Summary

	Result
	Data set analysis findings
	Gamification/eLearning platform
	Comparing the SciBERT model performance trained on different data sets with each other
	Summary

	Conclusion
	eLearning platform
	Machine Learning

	List of Figures
	List of Tables
	Acronyms
	Bibliography

