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Multi-phase Interface Area Calculation Using Iso-Alpha Method

by Jobin RAJU

One observes absorption phenomena when fluids of different nature come
in contact with each other. During absorption, mass is transferred across the
fluid-fluid interface in both directions via diffusion of species. Computa-
tional Fluid Dynamics (CFD) techniques can be suitably exploited to evalu-
ate the extent of mass transfer and its visualization. The key parameters that
influence a specific specie absorption rate are the area of interface and a driv-
ing force. Existing area calculation algorithms are either based on approxi-
mation techniques using the magnitude of gradient alpha (volume fraction)
or geometrical methods. In the former method, the magnitude of the gra-
dient alpha (volume fraction) can be suitably manipulated to approximate
the area of the interface. In the latter method, the mesh cells are split into
two to form an interface separating the different phases and then calculat-
ing the area of the polygonal interface. Current research focuses on accurate
evaluation of the interface area between the two phases using a geometri-
cal method-’Iso-Alpha’ and its application on mass transfer simulations. The
case of a rising bubble with mass transfer is considered for the current study.
The total interface area of the bubble is calculated in every time-step using
both methods for comparison. The magnitude of the interface area is vali-
dated against the area obtained from the post-processing utility - paraView.
Subsequently, the species mass transfer rate is also compared using both area
calculation methods. Mass transfer during bubbly flows is commonly ob-
served in chemical and biological processes such as oxidation, fermentation,
etc. Hence, a quantitative estimation of transferred mass is an important
aspect in industrial-scale packed column bubble-liquid reactors and related
chemical engineering applications.
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Chapter 1

Introduction

1.1 Multi-phase Mass Transfer

Fluid flows observed in nature generally consist of more than one phase. The
additional phases could be solid particles, gases, or even fluids with different
material properties. The phases are likely to interact with each other during
the flow. As a result of the interaction, there are a lot of possible outcomes de-
pending on the nature of the interacting phases. A fluid flow with solid par-
ticles as the additional phase results in the transportation of particles along
with the flow. For example, soil deposition along river banks. Solids can
also absorb species from the fluid phase through the surface via adsorption.
The interacting phenomenon becomes slightly complicated when gases are
involved due to their ability to react chemically, get absorbed into the liquid
phases, or adsorption onto solid phases. In the aforementioned situations, a
common observation in the nature of the interaction is the transfer of mass
from one phase to the other.

(A) Micro reactor[1] (B) Bubble column reactor[2]

The current research focuses on the key aspects of such fluid-gaseous in-
teractions where a mass transfer is involved. A typical mass transfer phe-
nomenon is observed in aerated flows where the components of the gaseous
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phase get partially absorbed and desorbed into the medium through the
multi-phase interface. This methodology can be used to filter out certain
elements from a gas mixture using a suitable liquid medium. The key param-
eters in such mass transfer processes are the area of interface and the driving
force for interfacial species exchange between the phases. Since the mass
transfer phenomena happen at the interface and it constantly varies its po-
sition relative to the domain, this makes it difficult to conduct experimental
studies on the rate of mass transfer, flow patterns, and specie mass transport
along with the flow. In the current research, a simplified case of a liquid-gas
interaction with mass transfer in a rectangular column is conducted using
Computational Fluid Dynamics (CFD) techniques using the numerical pack-
age OpenFOAM.

FIGURE 1.2: Mass transfer through an interface (left),
simulation-rising bubble (right)[3]

1.2 Literature Review

Numerical simulation of multi-phase flows took a new turn with the intro-
duction of the Volume of Fluid (VoF) method by Hirt and Nichols[4]. This
opened up a new domain for scientific research: identification and recon-
struction of the interface. Earlier methods made use of Marker and Cell[5]
which demanded high memory requirements. Hirt and Nichols originally
used the SOLA-VOF method. But later averaging methods replaced the MAC
method. For a short period, the Simple Line Interface Construction (SLIC)[6]
method served to approximate the interface between the two media. The
SLIC method constructs simple vertical and horizontal partitions in the inter-
face cell so that it conserves the averaged volume fraction while solving the
VoF equations. The SLIC method is mass preserving in nature. This method
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was later substituted by more accurate Piecewise Linear Interface Calcula-
tion (PLIC)[7] which involved the construction of a line of surface that pre-
serves the normal direction of the curvature developed at the interface. The
original PLIC method was later expanded from 2D to 3D polyhedral mesh
cells[8]. Cummins[9] suggested improved interface reconstruction methods
developed using the modified PLIC method. The 21st century saw lots of
hybrid methods[10][11] such as isoAlpha method, isoRDF, etc based on geo-
metrical interface reconstruction.

The advancements in the interface reconstruction methodologies assisted
the research in the domain of interfacial mass transfer simulations[12]. Mea-
surement of mass transferred posed a difficult problem to tackle. Correlation
studies[13] were used initially for quantifying the mass transfer. This was
followed by particle tracking methods making use of Lagrangian methods.
One such method is the Smooth Particle Hydrodynamics (SPH) method de-
veloped by Tartakovsky et al[14]. Interface capturing methods were later
introduced because of their success in calculating mass transfer on a fixed
euler grid[15]. A different approach for quantifying mass transfer via species
concentration was introduced by Haroun et al[16]. He proposed the Contin-
uum Species Transfer model using VOF formulation[17, 18]. This approach
successfully captured the species concentration transport across the interface.

Earlier attempts were made to model mass transfer models using the
magnitude of gradient alpha to approximated the interface[19–21]. Due to
poor local reconstruction of the interface, it had poor applicability. Later at-
tempts were made to make use of geometrical methods such as PLIC[7, 22]
for mass transfer. Gim et al. describe a modified PLIC like algorithm for CFD
simulations involving mass transfer[23]. Further investigation into the avail-
able research on geometrical area based mass transfer numerical showed a
need for further study and simulation-based experimentation in this domain.

1.3 Revisiting Mass Transfer Simulations

Research on mass transfer simulation is constantly evolving. Adapting new
methodologies for more accurate results is finally the aim of every researcher.
When it comes to mass transfer, the interface between the different phases is
one of such hot points. Capturing the accurate physics at the interface is of
paramount importance. As mentioned before, the calculation of the interface
area between the phases requires special attention. Commonly used interface
area calculation methods (gradient alpha methods) for mass transfer simula-
tions make use of approximation techniques for calculation of the interface
area. These measures are often inaccurate and lead to errors while estimating
the amount of mass transferred between the phases at specific time frames.
This calls for alternative techniques for the estimation of the interface area.

The choice of estimation techniques depends on the accuracy requirement
or nature of specific mass transfer simulations. When accuracy of the high-
est order is required, researchers normally go for geometrical techniques for
interface area approximation and this comes at a higher computational cost.
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Instead of using a linear relationship with the available parameters, the geo-
metrical techniques make use of interface reconstruction and then manually
calculating the area of the interface using simple area calculation formulas.

Interface reconstruction is a complex procedure that is under active devel-
opment even now. Current research makes use of the interface reconstruction
algorithm: isoAlpha method originally proposed by Dr. Johan Roenby[10].
Though his original work point towards the development of solution proce-
dure for advection equations and their numerical implementation, the same
principle is attempted in the current research after suitable changes. Since
the work is open-source, it is permitted to make changes and adapt to the
specific needs of the current thesis.

1.4 Some Insights on the Present Research

The primary focus of the present research is the implementation of a geomet-
rical interface calculation algorithm for simulations involving mass transfer.
The results of the simulation are compared and analyzed for evaluating the
suitability of geometrical methods for interface area calculation. The inter-
face area between the phases is evaluated at every time step and compared
with values obtained using traditional area calculation methods.

The results of the area calculation methods are compared against the val-
ues obtained using the post-processing utility paraFoam. The rate of mass
transfer corresponding to both methods is also subjected to comparison. Tak-
ing the computational power requirement in mind, a simplified 2D version
of a real-life rising bubble case is adopted and simulated in OpenFOAM.
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Chapter 2

Multiphase Mass Transfer

We describe a flow as a multi-phase if two or more phases coexist in the same
flow domain. There are three physical states of matter- solid, liquid, and gas-
under normal circumstances in general. But from a modeling point of view, it
is advantageous to classify the phases depending on the way they respond to
inertia and interaction with the flow. Depending on the nature of the phases
involved, we have different mathematical models for each scenario. Some
examples of multi-phase systems are gas bubbles in a liquid, liquid droplets
in gas, and solid particles in gas or liquid.

It is possible that during the interaction of multiple phases, mass is trans-
ferred from one phase to the other. In nature, it is common among gases to get
absorbed into the solution they come in contact with. It is also common prac-
tice in chemical industries, where chemicals in the aqueous phase are treated
with gaseous reactants in a fractional column. The gas is passed through the
aqueous solution in a stirred environment wherein the mass transfer takes
place between the phases. The below chart shows the available multiphase
solution methodologies.

FIGURE 2.1: Multi-phase Flow Solution Methodologies
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2.1 Lagrangian-Eulerian Approach

The Lagrangian-Eulerian model is usually employed for flows involving par-
ticulate matter in moving fluids. Equations of continuity and momentum are
solved for the continuous Eulerian phase. The dispersed phase is solved us-
ing particle tracking. We use the flow field to track a large number of particles
via one-way or two-way coupling of momentum, mass, and energy exchange
between the phases. Properties such as the velocity and temperature of a La-
grangian particle are updated along the trajectory.

FIGURE 2.2: Euler-Lagrangian flow example in real life[24]

2.1.1 Lagrangian approaches: Point force and Resolved sur-
face treatment

Depending on the type of coupling and relative size of the particle with re-
spect to the grid, we categorize the lagrangian approaches into two: point
force and resolved surface treatment[25].

For the point-force approach, the fluid or particle is described at a single
point that moves at its own independent velocity. Hence this approach is
also called Discrete Element Approach. The particle trajectory can be traced
using an ODE, while the continuous phase is solved on a fixed eulerian grid.

In the resolved surface approach, the detailed flow around each particle is
solved to a high resolution at the same time, treating the particles as discrete
elements. The flow solution is numerically integrated over the surface.

ODE formulation for the particle movement due to the combined effect of
external forces reads as shown below:

mp
dv
dt

= Fbody + Fsur f + Fcoll

Here the body force, Fbody directly depends on the mass of the particle,
Fsur f represents the fluid dynamic forces and Fcoll represents the forces due
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FIGURE 2.3: Comparison of particle size w.r.t grid resolution.
(left)point force (d<Δx) and

(right)resolved surface (Δx << d)

to particle-particle or particle-wall collisions. Depending on the treatment of
Fsur f , we can formulate the particle equation for the point force approach and
resolved surface approach.

Fbody = gmp = gρpVp (2.1)

where Vp is the particle volume and ρp is the volume-averaged density of the
particle.

FIGURE 2.4: Forces acting on the discrete phase
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2.1.2 Eulerian equations for a fixed grid

We have separate treatment of the momentum equations for the point-force
and resolved-surface treatment of the discrete phase.
Continuous phase momentum equation (point-force treatment):

ρ
∂α f ui

∂t
+ ρ

∂α f uiuj

∂xj
= α f ρg − α f

∂p
∂xi

+ α f µ
∂2ui

∂x2
j
− npFint,i (2.2)

where np is the number of particles per unit volume, α f is the volume frac-
tion of the fluid phase and Fint,i is the interphase hydrodynamic force acting
on the particles. The equation is applied to the entire domain.

Continuous phase momentum equation (resolved-surface treatment):

ρ
∂ui

∂t
+ ρ

∂uiuj

∂xj
= ρg − ∂p

∂xi
+ µ

∂2ui

∂x2
j

(2.3)

The above equation is solved only for those mesh cells excluding the par-
ticle cell volume.

Finally the continuity equation:

∂ρ

∂t
+∇.(ρu) = 0 (2.4)

2.1.3 Equations of Motion for Particles - Point Force approach

For point force approach Fsur f is a function of surface averaged forces. In
general, a surface-averaged force is a linear combination of specific forces,
such as drag FD , lift L, added mass A, stress gradient S, history force H, etc.

Fsur f = ∑ Fsur f = FD + L + A + S + H + ...

Balancing the forces in a Lagrangian frame of reference lets us predict the tra-
jectory of the discrete phase particle. The Lagrangian-Eulerian model reads:

d�up

dt
= FD(�u − �up) +

�g(ρp − ρ)

ρp
+ �F (2.5)

where �F is an additional force term due to external factors such as centrifugal
force. �FD(�u − �up) is the drag force per unit particle mass, FD is the inverse
relaxation time defined as:

FD =
18µCDRe

ρpd2
p24

(2.6)
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Here, �u is the fluid phase (phase 1) velocity, �up is the particle velocity, CD
is the drag coefficient, µ is the molecular viscosity of the fluid, ρ is the fluid
density, ρp is the density of the particle and dp is the particle diameter. Re is
the relative Reynolds number and it is defined as

Re =
ρdp|�up − �u|

µ
(2.7)

For very heavy particles (ρp >> ρ f ), the interphase force is often simpli-
fied to include only the particle drag FD. For very light particles with little or
no collisions, the interphase forces can be expressed only using stress gradi-
ent S. The stress gradient is defined below as:

S = ρVpD�up/Dt − gρVp (2.8)

where, Vp is volume of the particle. Hence the EL model reads:

d�up

dt
= ρVpD�up/Dt − gρVp + F (2.9)

2.1.4 Equations of Motion for Particles - Resolved Surface
approach

The resolved-surface approach allows for the details of the fluid pressure and
shear stress to be integrated over the particle surface.

mp
dv
dt

= Fbody + Fsur f + Fcoll (2.10)

where

Fsur f =
	
[−p + µ f (∂ui/∂xj + ∂uj/∂xi)]n · dAp (2.11)

and Fbody as defined in Equation 2.1. mp is mass of the discrete particle,
Ap is the surface area of the discrete particle and n is the unit normal from
the surface. The effect of collision forces are insignificant compared to other
forces and hence ignored during modeling purposes.

2.2 Eulerian-Eulerian Approach

When the number of particles increases, the Lagrangian formulation becomes
computationally intensive. The Eulerian formulation comes in handy in such
situations since it is independent of the number of particles. Instead of solv-
ing separate equations for each particle, a set of momentum equations is
solved for the discrete phase collectively after identifying the phases using
an additional volume fraction parameter. In the EE approach, the different
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phases are treated as an interpenetrating continuum. The equations of con-
tinuity and momentum are solved on a fixed grid. Depending on the nature
of the interaction between the phases at the interface, the EE approach can
be further subdivided into mixed and separated fluid approaches. The two
main EE models are the Volume of Fluid model (mixed approach) and Eule-
rian model (separated fluid)[26].

(A) Dispersed - Continuous (B) Continuous - Continuous

Dispersed-Continuous phase interactions can take any value of volume-
fraction between 0 and 1. Whereas Continuous-Continuous phase interac-
tions are restricted to a volume-fraction of either 0 or 1 (except in the interface
region)

2.2.1 Euler-Euler (Two fluid) Model

The Eulerian model is the most sophisticated of multiphase models[26]. This
model solves the continuity and momentum equations for all the phases. In
addition to this, the coupling between the phases is achieved using differ-
ent momentum transfer mechanisms. The model is also called the two-fluid
model since it assumes both phases to be fluids regardless of whether it is a
solid dispersed phase or gaseous phase. This model is appropriate for model-
ing fluidized beds, risers, pneumatic lines and particle-laden flows in which
phases mix or separate[26][27]. In general, the EE model works well with
the primary phase as a fluid and secondary phase which mixes well with the
primary phase and the flow domain has volume fraction > .10[28][29]. The
EE model has limited capability to predict the flow pattern in such flows and
hence VoF models are used whenever the interfaces between the different
phases need to tracked especially in free-surface flows, slug flows, etc.

There exist different interphase exchange coefficient models depending
on the nature of phases in the flow domain. Appropriate drag laws can be
chosen for different processes. Several kinetic theory based formulas are also
available for the granular stress in the viscous regime and frictional viscosity
based formulation for the plastic regime stresses. The accuracy of the model
depends on the precision of the closure models since the number of equa-
tions involved is high.
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Conservation Equations
Continuity equation for phase 1:

∂

∂t
(α1ρ1) +∇.(α1ρ1�v1) = (ṁ12 − ṁ21) + S1 (2.12)

Phases denoted by subscripts (1, 2), density by ρ1, ρ2, volume fraction by
α1, α2, velocity v1, v2 and mass transfer between phases ṁ12 is the mass trans-
ferred from phase 1 to phase 2. S is a user defined source term (zero in most
cases). Also α1 + α2 = 1

Momentum Equation for phase 1:

∂

∂t
(α1ρ1�v1)� �� �

local accln.

+∇.(α1ρ1�v1�v1)� �� �
convective accln.

= −α1∇p� �� �
pressure grad.

+ ∇.τ1����
viscous forces

+ α1ρ1�g� �� �
body force

+

K21(�v2 − �v1)� �� �
drag force

+ F����
ext. forces

+ (ṁ12 �v12 − ṁ21 �v21)� �� �
mass-transfer momentum

(2.13)

The same set of equations can be similarly written for the second phase.

τ is the stress-strain tensor with the expression:

τ1 = α1µ1(∇�v1 +∇�v1
T) + α1(λ1 − 2

3
µ1)∇.�v1 Ī (2.14)

where µ and λ are the shear and bulk viscocity respectively. For incompress-
ible flows, the second term in the RHS becomes zero.

�v12 is the interphase velocity. If ṁ12 > 0, it implies mass from phase 1 is
being transferred to phase 2 and hence �v12 = �v1. If ṁ12 < 0, mass is trans-
ferred from phase 2 to phase 1 which implies �v12 = �v2. We can similarly
define �v21 based on the sign of ṁ.

F refers to the external forces acting on the system such as lift force, ex-
ternal body force, virtual mass force, turbulent dispersion force(in case of
turbulent flows), interaction force between phases, etc [25].

F = �Fext + �Fli f t + �Fvm + ... (2.15)

The drag force in general has the form, Fdrag = 1
2 ρACD(v − u)2, where CD

is the drag coefficient. Depending on the material properties of the phases,
several closure models for drag force are available.
A comparison of the drag force expression with the drag force term in the
momentum equation gives us:

K21 =
1
2

ρ2ACD(v2 − v1) (2.16)
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K21 is the momentum exchange coefficient. Many different K models are
available for multiphase flows depending on the application.
K is defined as a function of K(ρ, f , A, τ) where the parameters are density,
drag function, interface area, and particulate relaxation time respectively.

In a two-phase flow, the phase which is dominating the flow domain is
the primary phase. The other phase is the secondary phase. In a fluid-fluid
flow, the secondary domain is mostly droplets or bubbles. The momentum
exchange coefficient for such flow domain has a general form:

K12 =
ρ1 f d1Ai

6τ1
(2.17)

Physically, the particulate relaxation time is the time taken by a particle to
reach (1 − 1/e)v f low and is defined as

τ1 =
ρ1d2

1
18µ2

(2.18)

where d1 is the bubble diameter, ρ1 is bubble density and µ2 is the viscos-
ity of the bulk.

2.2.1.1 Popular Interface Area Models

The interface area is important for the exchange and evaluation of mass, mo-
mentum and energy transfer between the interacting phases. The ratio of
surface area to volume is used to approximate the algebraic interfacial area
(Ap). ie. Ap refers to the interface area per unit volume. For a spherical
bubble or droplet:

Ap =
πd2

1
6 πd3

=
6
d

(2.19)

where d is the diameter of the bubble/droplet.

Particle Model
The particle model approximates the interface area concentration for a dis-
persed phase as:

Ai = αAp =
6α

d
(2.20)

where Ap is defined in equation 2.19 and α is the volume fraction of the
discrete phase.

Symmetric Model
The symmetric model makes use of the volume fraction of the primary phase
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to ensure that the interface area is calculated only on the interface of the
phases. ie. The interface area concentration becomes zero as α tends to 1.

Ai =
6α(1 − α)

d
(2.21)

where α is the volume fraction of the dispersed phase.

2.2.1.2 Popular drag models

The drag function f depends on the drag coefficient which in turn depends
on the Reynolds number (Re). Some of the drag models for the EE model is
described below.

Schiller and Neumann Model
For the Schiller and Neumann model[26], we define the drag function f as:

f =
CDRe

24
(2.22)

where, CD =

�
24(1 + 0.15Re0.687)/Re Re ≤ 1000
0.44 Re ≥ 1000

Here Re is the relative Reynolds number which can be calculated using:

Re =
ρ2|�v1 − �v2|d1

µ2
(2.23)

This model is the default model in popular commercial solvers.

Morsi and Alexander Model
For the Morsi and Alexander model[30], the drag function, f is defined as:

f =
CDRe

24
(2.24)

where, CD = a1 +
�

a2
Re

�
+

�
a3

Re2

�
and the constants a1, a2, a3 are defined in table 2.1

This model is found to be less stable compared to other models even
though it is the most complete model since it adjusts the function values over
a range of Reynolds numbers.
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a1, a2, a3 Range of Re
0, 24, 0 0<Re<0.1
3.69, 22.73, 0.0903 0.1<Re<1
1.222, 29.1667, -3.8889 1<Re<10
0.3644, 98.33, -2788 100<Re<1000
0.357, 148.62, -47500 1000<Re<5000
0.46, -490.546, 578700 5000<Re<10000
0.5191, -1662.5, 5416700 Re≥ 10000

TABLE 2.1: Values of constants in Morsi and Alexander model

2.2.2 Volume of Fluid (VoF) Model

The VoF model is a simplified version of the full Eulerian model for
continuous-continuous phase interactions. In this model, a surface tracking
technique is applied on a fixed Eulerian grid. Here, we are interested in the
position of the interface. In the VoF model, each cell holds only one value
(averaged) for the simulation variables such as velocity, temperature, pres-
sure, etc. A single set of continuity and momentum equations are solved for
the different phases throughout the domain. Hence this model is less mem-
ory intensive compared to other models[31] when benchmarked on the same
grid. At the same time, in practical applications, the VoF model requires a
much finer computational grid compared to the EE model.

The interface between the different phases is captured by introducing a
parameter α. It is defined as the fraction of fluid in a mesh cell.

α =
V1

V
(2.25)

(A) Volume fraction of a Circular patch in a
grid

(B) Immersed volume V1

Here, values in the grid cells correspond to the volume fraction. V is the
total volume of the cell and V1 is the immersed volume of each individual
interface cell. The value of α is 1 if the cell has only phase 1 and 0 other-
wise. Those cells with α value between 0 and 1 correspond to interface cells.
The normal direction of the interface can be calculated by picking those cells
whose value of alpha varies rapidly. Hence, evaluating the gradient of α
gives the direction of propagation of the interface. Knowing the position of
the interface from the initial condition, we need to find the time evolution of
the interface as the flow progresses. Since the interface is being transported
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along with the flow, we use a transport equation to advect the interface. The
transport of a scalar quantity F in 2D is described as:

∂F
∂t

+ u
∂F
∂x

+ v
∂F
∂y

= 0 (2.26)

Since VoF approach proposes a single set of parameters in each grid cell,
we use averaged variables. We define the global parameters for the Eulerian
grid as follows:

v̄ =
1
V

	
V

vdV = αv̄1 + (1 − α)v̄2 = v̄1 + v̄2 (2.27)

p̄ =
1
V

	
p

pdV = α p̄1 + (1 − α) p̄2 = p̄1 + p̄2 (2.28)

ρ = αρ1 + (1 − α)ρ2 (2.29)
µ = αµ1 + (1 − α)µ2 (2.30)

For a scalar quantity ai and a vectorial quantity bi, both defined in phase i,
the following relations hold when averaging over the volume of the cell[32]:

∇ai = ∇āi +
1
V

	
Aij

ainijdA, (2.31)

∇.bi = ∇.b̄i +
1
V

	
Aij

binijdA, (2.32)

∂ai

∂t
=

∂ai

∂t
− 1

V

	
Aij

ainij.wdA (2.33)

where nij is the normal from phase i to the other. These equations enable
us to map model equations onto the mesh.

Equation for mass conservation
Due to averaging of parameters, we can conveniently assume that the mass
of liquid in a mesh cell is directly proportional to the fluid volume. ie.
M(t) = ρlVl. This allows us to write:

∂ρ1

∂t
+∇.(ρ1v1) =0̄ = 0 (2.34)

∂ρ1

∂t
+∇.(ρ1v1) =

∂ρ1

∂t
+∇.(ρ1v1) (2.35)

=
∂ρ̄1

∂t
− 1

V

	
A12

ρ1n12.wdV +∇.(ρ1v1) +
1
V

	
A12

ρ1n12v1dV

(2.36)

=ρ1
∂α

∂t
+∇.(ρ1v̄1) +

1
V

	
A12

ρ1n12.(v̄1 − w)dV (2.37)
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where, ρ̄1 = 1
V



A12

ρ1dV = V1
V

1
V1



A12

ρ1dV = αρ1 and w is the average
velocity at the interface.

Similarly for phase 2, we have:

∂ρ1

∂t
+∇.(ρ1v1) = 0 =ρ2

∂(1 − α)

∂t
+∇.ρ2v̄2 − 1

V

	
A12

ρ2n12.(v̄2 − w)dV

(2.38)

The integral term accounts for the mass transfer between the two phases.
We denote ṁ21 as the mass transferred from phase 1 to phase 2.ie,

ṁ21 =
1
V

	
A12

ρ1n12.(v̄1 − w)dV (2.39)

ṁ12 =
1
V

	
A12

ρ2n12.(v̄2 − w)dV (2.40)

For a simple multiphase flow, the mass transfer is zero and we set ṁ as 0.
Depending on the physics of the simulation, mass transfer can be either one
way or both ways between the phases. We can generalise the mass conserva-
tion for both phases as:

∂α1

∂t
+∇.(α1v̄1) =

ṁ
ρ1

(2.41)

∂α2

∂t
+∇.(α2v̄2) = − ṁ

ρ2
(2.42)

We also know that α1 + α2 = 1. This lets us to write global mass conservation
equation:

∇.v̄ = ṁ
� 1

ρ1
− 1

ρ2

�
(2.43)

Volume fraction equation from mass conservation
The equation obtained from the previous section contains terms such as v1
and v2 which are not available at hand. Hence we need to rewrite the equa-
tion using the cell averaging formula for phase velocities as shown below.
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∂α1

∂t
+∇.(α1v1) =

∂α1

∂t
+∇.(α1(α1 + α2)v1) (2.44)

=
∂α1

∂t
+∇.(α1α1v1) +∇.(α1α2v1) (2.45)

=
∂α1

∂t
+∇.(α1α1v1) +∇.(α1α2v1)− (∇.(α1α2v2)−∇.(α1α2v2))

(2.46)

=
∂α1

∂t
+∇.(α1(α1v1 + α2v2)) +∇.(α1α2(v1 − v2)) (2.47)

=
∂α

∂t
+∇.(α1v) +∇.(α1α2v̄r) (2.48)

We now have the time evolution equation of α using known parameters. ie.

∂α

∂t
+∇.(αv̄) +∇.(α(1 − α)v̄r) =

ṁ
ρl

(2.49)

where, vr = v1 − v2 is the compressive velocity. It is also called added arti-
ficial velocity since it compress the interface and insures the stiffness of the
interface. But evaluation of v̄r requires v1 and v2. Hence we need to approxi-
mate v̄r using the below relation:

v̄r, f = n f min
�
Cα

|φ|
|S f | , maxF(

|φ|
|SF| )

�
(2.50)

where n f is the face unit vector, φ the flux through the face, and SF it’s surface.
Cα lets the user take control of the spread of the interface over the cells.

2.3 Choice of Multi-phase Models

Lagrangian-Eulerian models are suitable for simulating particle-laden flows
or sprays. In general, it is used for modeling flows where the secondary
phase has particulate nature and mass transfer is not involved between the
phases.

Euler models can be conveniently used for numerical simulations involv-
ing mass transfer. Among Euler models, the VoF model is the most preferred
model due to its intrinsic ability to separate the different phases using a scalar
function. The model is easy to implement and has less intensive calculations
per mesh cell compared to Euler-Euler (Two-fluid method). The scalar func-
tion has strict upper and lower bounds and hence acts as an interface be-
tween the phases. This is important for mass transfer calculations since the
interface area is directly proportional to the rate of mass transfer. This scalar
function can be manipulated appropriately for the construction of a strict in-
terface between the phases.
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Previous studies on species transfer across the interface such as the CST
method were carried out based on the VoF approach. The current study
attempts to explore the possibility of geometrical interface area calculation
methods in mass transfer simulations together with existing mass transfer
models. In the later chapters, we see how the interface is redefined using
geometrical interface reconstruction algorithms and how it compares to the
existing interface reconstruction algorithms.
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Chapter 3

Interface Area Calculation

In the previous chapter, we discussed the development of the volume frac-
tion time evolution equation 2.49. In this equation, we saw that the RHS
source term corresponds to the mass transfer from one phase to the other.
Once the evaluation of the mass flux(J) is done, we need to find the inter-
face area between the phases. In the VoF model, we have a continuous-
continuous domain. Hence it is possible to define a strict interface that passes
through only one cell and divides the phases into two. There are several
methods available to approximate the interface area using available informa-
tion such as volume fraction. The accuracy of the mass transfer model greatly
depends on the evaluation of the interface area. In the coming sections, we
discuss the various methods to evaluate the interface area.

3.1 Gradient Alpha Method

The magnitude of the gradient of volume fraction-α gives the approximate
area of the interface between the phases[33].

Interface area:

Ainter f ace = |∇α| (3.1)

The above formula gives us the interface area per unit volume. The idea
behind this approximation comes from measure theory and properties of
function spaces.

Let f be a Lipschitz continuous function, f : Rn −→ Rm where m ≥ n.
According to the area formula, the space measure of f (A) can be obtained by
integrating the jacobian of f over A, where A is a subset of Rn.

As an example, let n ≥ 1 and m = n + 1. ie f : Rn −→ Rn+1. We can write
f = ( f 1, .., f n).

D f =

� f 1
x1

. . . f 1
xn

... . . . ...
f n+1
x1

. . . f n+1
xn

�
(n+1)×n

(3.2)

D f is the jacobian of f .
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FIGURE 3.1: Mapping from Rn to Rn+1 space

Let A ⊆ Rn. Hence we can write:

S = f (A) ⊆ Rn+1

The surface area of the n dimensional domain, Hn(S) is given by the area
formula:

Hn(S) =
	

A

� n+1

∑
k=1

�∂( f 1, ..., f n+1)

∂(x1, ..., xn)

�2� 1
2
dx (3.3)

In 3D, the above equation becomes:

A =
	

V

�
(

∂ f
∂x1

)2 + (
∂ f
∂x2

)2 + (
∂ f
∂x3

)2
� 1

2
dx (3.4)

where A is the interface area. In a mesh cell with volume V, the above equa-
tion can be further simplified as:

A =
�
(

∂ f
∂x1

)2 + (
∂ f
∂x2

)2 + (
∂ f
∂x3

)2
� 1

2
V (3.5)

= |∇ f |V (3.6)

In our present 2D case, f is same as α. Dividing equation 3.5 with V gives
equation 3.1 .ie, the interface area per unit volume in a cell.

3.2 Geometrical Area Calculation Methods

Under the continuous-continuous flow domain assumption of the VoF model,
we now try to reconstruct geometrically a plane on the interface cell and then
calculate the area of the reconstructed surface using simple area calculation
formulae.
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3.2.1 Iso-Alpha Method

In this method, we define a parameter f based on the interpolated volume
fraction at the cell vertices. Here we introduce the concept of isovalues and
isosurfaces. The optimum value of the parameter f used to construct the in-
terface is called the isovalue. The interface now constructed is called the iso-
surface. We say the value of f is optimum when the geometrical volume frac-
tion matches with the volume fraction obtained from solving the α-equation
for interface advection[10].

Steps for Interface Reconstruction
Step 1: Identification of Interface Cells. Since we have a continuous-

continuous flow domain, we have volume fraction-α 0 and 1 everywhere
except on the interface cells. Hence, a cell is an interface cell if it satisfies:

� < αi < 1 − � (3.7)

where � is a user-defined tolerance.

Step 2: Defining the parameter f : We now interpolate the α values to
the interface cell vertices using the information (α values) from neighboring
cells. The inverse of the distances between the grid points and cell centers is
used as interpolation weights. We denote the interpolated volume fractions
as f1, f2, f3, .. fn, where n is the number of vertices in the interface cell. (See
figure 3.2).

fv =
∑k∈Cv wkαk

∑k∈Cv wk
(3.8)

where Cv are the cells near the interface cell whose α values are used to
obtain fv

Step 3: Construction of f − iso f ace: An edge of the interface cell is cut
based on the following rule:
Let (Xk, Xl) be the edge of an interface cell. The egde has f values fk, fl. An
arbitrary f0 − iso f ace should satisfy fk < f0 < fl. The edge is then cut by
linear interpolation of the edges using the equation:

Xcut = Xk +
f − fk
fl − fk

(Xl − Xk) (3.9)

Following this rule, all the edges of the interface cell are cut. Now, these
points can be connected to form the f − iso f ace of the interface cell.

Step 4: Geometrical Volume Fraction Calculation: The isoface cuts the
interface cell into 2 polyhedral cell domains A and B. Geometrical volume
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FIGURE 3.2: Interpolation of volume fraction to the interface
cell vertices

fraction of the interface cell is calculated as:

α( f ) =
vol(Ai( f ))

Vi
(3.10)

where vol(Ai( f )) is the volume of the immersed cell corresponding to the
f − isovalue and Vi is the total volume of the interface cell.

The iso-surface now forms two polyhedral volumes within the cell. To
find the volume of the immersed volume, we split the cell using pyramid de-
composition. We choose an arbitrary point inside the immersed volume and
connect the vertices to that point. It decomposes the polyhedron into smaller
pyramids whose volume is calculated using the formula:

V = ∑
f

1
3
|n f .(x f − x̄)| where, x̄ =

1
N f

∑
f

x f (3.11)

f refers to the faces of the polyhedron. n f , x f are the normal vectors and
face centres respectively defined below:

n f =
Nv

∑
k=1

n f ,k, where n f ,k =
1
2
(xk+1 − xk)(x̄ − xk) and x̄ =

1
Nv

Nv

∑
k=1

xk

(3.12)

n̂ f =
n f

|n f | and x f =
Nv

∑
k=1

n f ,k

n f

xk + xk+1 + x̄
3

(3.13)
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(A) f iso-surface interface (B) Polyhedron formed by connecting isosur-
face vertices to centre of immersed volume(x̄)

FIGURE 3.3: Immersed Volume Calculation Steps

FIGURE 3.4: Pyramid formed by connecting vertices of triangu-
lated iso-surface with x̄

Finding the Optimum iso-value
We saw that α̃ is a function of f ∗. The value of f can vary anywhere between
min( f1, f2, ... fn) and max( f1, f2, .. fn). It means that α̃ can vary anywhere be-
tween 0 and 1. When α̃ matches with the α from the volume fraction equation,
we say that the current f ∗ value is the optimum iso-value.ie,

α̃( f ∗) = αi (3.14)

We find the optimum isovalue using a root-finding procedure described be-
low:
We assume that the value of α̃∗ varies as a cubic polynomial in f. The aim is
to form a cubic polynomial equation using available values of f and α and
solving it using a Vandermonte matrix and LU factorization.
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1. Geometrically calculate f1, fn for all vertices.
2. Evaluate α̃( f ) for all f1, f2, .. fN and find an interval [ fk, fl] which is likely
to have the f ∗. ie f ∗ ∈ [ fk, fl] corresponding to an edge.
3. Evaluate two additional α̃( f ) in [ fk, fl] so that we have fours supporting
equations to find the coefficients of the cubic polynomial.
4. The resulting 4x4 matrix system can be solved using LU decomposition
such that |VA( f ∗)

Vi
− αi| < �, where � is the tolerance input.

3.2.2 Iso-RDF Method

RDF stands for Reconstructed Distance Function. In this method, we re-
construct the interface using a reconstructed distance function. This dis-
tance function takes into account the orientation of the reconstructed inter-
face which was not accounted for in the iso-Alpha method. The method fol-
lows a similar algorithm until finding the interface area vector xs and normal
vector n̂s. We use these values to calculate the distance function. The distance
function then allows for more accurate estimates for the area and normal vec-
tors[11].

Steps for Interface Reconstruction
Step 1: Similar to the iso-Alpha method, we find the interface cells subject to
a user-defined tolerance.

Step 2: Calculate RDF, Ψ on all the interface cells and the neighboring cells
which share at least one point with the interface cells.

Calculation of RDF
We first define the distance function, Ψ̃ as the perpendicular distance from a
neighboring cell to the interface cell.

Ψ̃ = n̂S,j.(xi − xS,j) (3.15)

We use these distances from all neighboring cells to calculate the RDF of
each interface cell using:

Ψi =
∑j wijΨ̃ij

∑j wij
(3.16)

where w is the weighing function and is calculated as,

wij =
|n̂S,j.(xi − xS,j)|A

|xi − xS,j|A , with A = 2 (3.17)
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FIGURE 3.5: Distance function on a cell near the interface

Step 3: Interpolate the RDF values to the cell vertices. Here we use the least
squares method to calculate the weights for interpolation.

fv =
∑k∈Cv wkΨk

∑k∈Cv wk
(3.18)

This step is similar to the second step in the iso-Alpha method.

Step 4: Face centre, xnew
S,i and face unit normal, n̂new

S,i are calculated using the
new Ψv values at the vertex. We follow step 3 and step 4 as we saw in the
iso-Alpha method replacing fv with ψv.

We continue recalculating the new face centers and unit normals until the
difference in the new and old normals converge to a predefined tolerance.

ie, the residual = 1
N ∑N

i |1 − n̂S,i.n̂new
S,i |

3.2.3 PLIC-RDF Method

The PLIC-RDF method makes use of the best out of both PLIC-Piecewise
Linear Interface Construction and RDF methods. The method reconstructs
the interface via the equation of a plane as a starting point and later cor-
rects the interface normal using a distance function as explained in the RDF
method[11].

Steps for Interface Reconstruction

Step 1: Identify the interface cells based on a user defined tolerance �
ie, � < αi < 1 − �

Step 2: Estimation of n̂s. We use the normal based on gradient alpha for
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FIGURE 3.6: New and old normal vectors on the isosurface

the first time-step. For later time-steps we use the normal vector from pre-
vious timesteps (n̂old

S ) and interpolate it using weighing functions under the
condition that βi is less than 10 degrees. If β > 10o, we use ∇α/|∇α| as initial
guess for the normal. We define β as:

βi =
∑j arccos(n̂S,i.n̂S,j)|nS,j|

∑j |nS,j| (3.19)

n̂S,i =
∑j wijn̂old

S,j

∑j wij
(3.20)

where w is the weighing factor, defined as:

wij = |nold
S,j x[(xi − uiΔt)− xS,j] (3.21)

with ui as the flow field velocity in cell i.

The PLIC surface has the equation of the form:

xv.n̂S,i − dv = 0 (3.22)

We use the estimated normal n̂S,i and vertex xv to calculate the projected
vertex position dv. Using dv as the vertex values, we calculate the center xS,i
of the d∗ isosurface having A(d∗) as volume fraction. We follow similar pro-
cedure as in steps 3 and 4 of iso-Alpha method to find the optimum d∗ value
by solving A(d∗) = αi.

Step 3: Calculation of RDF. Based on the values of xS and n̂S we calculate ψ
as described in the iso-RDF method.
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Step 4: Calculation of improved interface normal using ∇Ψ.ie

n̂new
S = ∇Ψ/|∇Ψ| (3.23)

Step 5: Residual calculation for convergence. The residual res is evaluated
as the difference between n̂s and n̂new

S .

ie, the residual = 1
N ∑N

i |1 − n̂S,i.n̂new
S,i |

Once the residual is below the tolerance set by the user we stop the itera-
tion. Otherwise, we update the value of n̂S . ie, n̂S = n̂new

S

3.3 Choice of Interface Area Models

We know that an ideal interface between the phases should only be one cell
thick. So that the species transfer from one phase to the other happens only
through that one cell divided by the interface. If the interface is spread over
more than one cell, it leads to excessive and non-physical mass transfer from
one phase to the other. The gradient alpha method has this drawback since
it is an area approximation method.

Geometrical area calculation methods are more accurate regarding inter-
face reconstruction. As a result, it is possible to obtain an interface through
a minimum number of cells compared to gradient alpha method. In the
present study, we have chosen the iso-Alpha method for interface area cal-
culation. The iso-Alpha method is the fastest method among the three geo-
metrical methods described in the chapter. Moreover, its implementation in
the mass transfer model is not excessively complicated. The motive of the
study is the effectiveness of the geometrical interface reconstruction meth-
ods and their feasibility in mass transfer simulations. Hence we adopted the
iso-Alpha method for the current research.

A comparison of the gradAlpha and isoAlpha methods is made and its
effect on the rate of mass transfer between the phases is assessed in the results
chapter.
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Chapter 4

Numerical Model Implementation

This chapter discusses the implementation of the multiphase mass transfer
model coupled with the interface area calculation library. OpenFOAM solver
is used for this purpose and is available as an open-source software package.
At a fundamental level, OpenFOAM is a collection of C++ libraries specif-
ically for the purpose of solving Computational Fluid Dynamics problems.
Since it is open-source, the users are free to use existing solvers and modify
them to suit specific engineering problems.

We make use of the VoF multiphase model for the current research on
mass transfer. The interFoam solver is the base solver for incompressible mul-
tiphase problems using VoF. In this thesis, we use multiPhaseFoam solver de-
veloped by Bahram Haddadi (TU Wien) as a starting point for the problem.

4.1 OpenFOAM Solver: multiPhaseFoam

multiPhaseFoam can solve multiphase problems involving two compressible
immiscible fluids using the VoF model and is based on the interFoam solver.
It also has the capabilities to solve non-isothermal flows with mass transfer
between the phases. Turbulence models can be chosen between laminar, RAS
or LES.

4.1.1 Mass Transfer Model

Mass transfer between the phases is incorporated as a source term in the
volume fraction equation. The evaluation of the term involves the calculation
of the mass flux at the interface and area of the interface (discussed in chapter
3). In order to track the transferred mass, we solve an additional species
transport equation[34].

The rate of mass transfer can be formulated as:

rate of mass transfer, ṁ = k x (interfacial area)x(concentration difference)

ie:

dmi

dt
= ki1A(C∗

i − Ci) (4.1)
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FIGURE 4.1: multiPhaseFoam solver structure

where ki1 is the mass transfer coefficient of specie i in phase 1. C∗
i is the

saturation concentration (concentration at the interface when in equilibrium)
and Ci is the specie concentration in the bulk (phase 1 or phase 2) and A is
the interfacial area.

OpenFOAM uses Yi parameter for the specie concentration. It is related
to the actual specie concentration Ci as:

Yi =
Ci

ρ
(4.2)

where ρ is the density of the bulk fluid.
And the specie transport equation would read as:

∂α1ρ1Yi

∂t
+∇ · (α1ρ1U1Yi)−∇D · ∇(Yi) =

dmi

dt
(4.3)

Here α is the volume fraction of the bulk phase and D is the diffusion
coefficient
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In multiPhaseFoam, the following models let us calculate the mass trans-
fer terms:

• interfaceAreaModel

• equilibriumModel

• kineticModel

The implementation details of the interfaceAreaModel is discussed in the
previous chapter.

equilibriumModel and kineticModel work together to return the equilib-
rium value of concentrations at the interface or in the fluid bulk in equilib-
rium. The species concentration at either side of the interfaces is related using
Henry’s Law. The law states:

Ci1 = HCi2 (4.4)

where Ci1 is the concentration of specie-i in phase 1 and H is the Henry’s
constant which is conveniently taken as 1 for numerical modeling purposes.

4.1.2 PIMPLE Algorithm for VoF Model

PIMPLE is a hybrid predictor-corrector algorithm using SIMPLE (Semi-Implicit
Method for Pressure Linked Equations) and PISO (Pressure Implicit with
Splitting of Operators) combined. We have chosen PIMPLE algorithm due
to its higher stability and capability to handle flows with Courant numbers
higher than 1 thereby letting us simulate flows with larger time steps[35][36].

The different NSE solution algorithms such as SIMPLE, PISO, PIMPLE,
etc., differ only in the number of inner and outer iterations. The inner iter-
ations are performed on the Poisson pressure equation. The pressure value
now obtained is used to correct the intermediate velocities and pressure. This
contributes to the PISO loops in the PIMPLE algorithm. The outer iterations
are used to update the velocity matrix in the momentum equations. Accord-
ing to the convention used in OpenFOAM, nCorrectors refers to the number
of inner iterations and nOuterCorrectors refers to the outer iterations. The
PIMPLE algorithm works as a PISO algorithm if the nOuterCorrectors is set as
one.

4.1.3 Discretization of NS Equations

The integral form of the momentum equation reads:	
V

∂ρu
∂t

dV +
	

V
∇ · ρuudV = −

	
V
∇pdV +

	
V
∇ · (∇u)dV +

	
V

SsdV (4.5)

where Ss is the source term arising from forces such as surface tension
forces etc.
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FIGURE 4.2: PIMPLE Algorithm flow chart

Finite Volume Method Discretization of the individual terms can be sum-
marized as follows[37][38][39][40]:

Discrete Continuity equation:
We use Gauss’s identities for the discretization of the spatial terms. The be-
low identity is used for the discretization of the continuity equation:

	
V
∇ · adV =

�
∂V

dV · a (4.6)

Replacing the surface integral with summation over the cell faces gives
us:

	
V
∇ · udV = ∑

f
S · u (4.7)
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where S is the magnitude of the cell face area and u is the interpolated
value of velocity onto the cell faces. In order to account the direction of the
face area vector, we split the summation into ’owned’ and ’neighbouring’
faces:

∑
f

S · u = ∑
owner

S f · u − ∑
neighbour

S f · u (4.8)

where S f is the face area vector.

Temporal term:
Let φ be a time dependent parameter. The first order accurate linear variation
in time reads[35]:

φ(t + Δt) = φ(t) + Δt
�∂φ

∂t
�

(4.9)

Using the above variation of the function in time, the temporal integral
corresponding to the parameters u(t), ρ(t) :

	
V

∂(ρu)
∂t

dV ≈ ρn+1un+1 − ρnun

Δt
V (4.10)

Convection term:
Here we again use Gauss’s divergence theorem for converting the volume
integral to surface integral.	

V
∇ · (ρuu)dV =

	
S

ds · (ρuu)� �� �
gauss div thm.

≈ ∑
f

S · (ρu) f u f = ∑
f

Fu f (4.11)

where S is the surface area on the mesh cell faces and F is the flux through
the face F defined as F = S · (ρu) f . This operation requires interpolated
values of velocities on the cell faces. Linear interpolation and other named
interpolation techniques are available in OpenFOAM.

Diffusion term:
The diffusion term is discretized in a similar way as the convection term us-
ing the assumption of linear variation of u and using Gauss’s divergence
theorem: 	

V
∇ · (µ∇u)dV =

�
f

dS · (µ∇u) ≈ ∑
f

µ(S · ∇ f u) (4.12)

In the above equation ∇ f is the face gradient and is calculated similar to
equation 4.8.
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Pressure term: 	
V
∇pdV =

�
f

p · ndS = ∑
f

S · Pf (4.13)

where p f is the interpolated pressure values on the cell faces in a collo-
cated grid.

Source terms:
The source terms are first linearized and then integrated over the control

volume.
S(ψ) = SIψ + SE, where SI and SE may depend on the dependent variable,
say ψ. 	

V
S(ψ)dV = SIVψ + SEV (4.14)

Without going into the specifics of available discretisation schemes in
OpenFOAM, we derive the semi discretized form of the Navier Stokes equa-
tions as shown below:

(
∂ρu
∂t

)p + ∑ Fu f − ∑
f

µ(S · ∇ f u) = −(∇p)p + S (4.15)

The above equation can be written algebraically as:

aPuP + ∑
N

aNuN = −∇p + S (4.16)

where subscript p refers to values in the current control volume and sub-
script N refers to the values from neighboring cells. This is done to assist
the solution algorithms such as SIMPLE, PISO, PIMPLE, etc. aP is a diagonal
matrix. The invert of a diagonal matrix can be easily found by taking the re-
ciprocals of the diagonal elements. aN contains all the off-diagonal elements.

The above equation can be further simplified as:

aPuP = H(u)−∇p (4.17)

uP =
H(u)

aP
− ∇p

aP
(4.18)

where H(u) = −∑ aNuN + S. The above equation is equivalent to the
matrix equation:

[A][u] = [B] (4.19)

4.1.4 Pressure-Velocity Coupling

In the discretized Navier stokes equations, we observe a linear dependence
of velocity on pressure and vice versa. This inter-equation coupling is called
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pressure-velocity coupling[41].

Momentum Predictor
In each time step in the PIMPLE algorithm, we find intermediate velocities
u∗ until the residual error drops below the tolerance set by the user. ie,

aPu∗
P = H(u∗)−∇p (4.20)

Since the Navier Stokes equation is implicitly solved in the PIMPLE algo-
rithm, we use the values from the previous time-step to formulate the H(u∗)
matrix and the ∇p term. Hence the solution process is iterative in nature due
to this inaccuracy in approximating the H(u∗) term.

The intermediate velocity u∗ can be found as:

u∗
p = a−1H(u∗)− a−1∇p (4.21)

Pressure/Velocity Corrector
The predicted velocity does not satisfy the continuity condition since we as-
sumed the pressure in the momentum predictor step. Hence we force the
continuity condition to find a pressure value which helps to find a velocity
that satisfies both continuity and momentum equations by iteration.

Imposing continuity condition on the momentum predictor step gives us:

∇ · (a−1∇p) = ∇ · (a−1H(u∗)− ṁ(
1
ρ1

− 1
ρ2
)) (4.22)

The additional term on the right-hand side arises due to mass transfer
between the phases. The poisson equation above is solved for p and used to
correct the velocity as shown below:

u∗∗ = a−1H(u∗)− a−1∇p∗ (4.23)

This constitutes the PISO loop of the PIMPLE algorithm. The pressure-
velocity corrector step is repeated as many times as nCorrectors set in the
OpenFOAM solver. And the velocity matrix (a) is updated as many times as
specified in nOuterCorrectors. This constitutes the PIMPLE algorithm.

4.1.5 Solving Volume Fraction Equation: MULES

In the VoF multi-phase flow, we have an interface between the phases trans-
ported along the flow advected by the flow velocity. The parameter that
characterizes this interface is the volume fraction-α. Hence the solution for
the α equation requires a strict boundedness between 0 and 1 since α1 + α2 =
1. MULES (Multidimensional Universal Limiter for Explicit Solution) algo-
rithm in OpenFOAM solves the α equation explicitly[38][39].

There are many solvers for passive advection of the interface such as
the Compressive Interface Capturing Scheme for Arbitrary Meshes (CIC-
SAM) used in ANSYS, High-Resolution Interface Capturing (HRIC) used
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in StarCCM+ and isoAdvector (OpenFOAM) which is still under develop-
ment. Performance comparison of the above methods suggest that MULES
has superior interface reconstruction capabilities compared to HRIC and CI-
CSAM[10].

MULES solver solves equations of the form:

∂α

∂t
+∇ · F = αSp + Su (4.24)

where, α is the volume fraction and F - the flux of α. Sp and Su are the
implicit and explicit source terms respectively.

In OpenFOAM, MULES solver can be evoked by calling the function:

MULES(α, φ, F, Sp, Su, 1, 0) (4.25)

where φ is a surface flux used to determine the upwind direction of the α
flux-F. 1 and 0 in the argument list refer to the upper and lower bounds of
the α solution.

If the source terms are absent one can also call the function as:
MULES(α, φ, F, 1, 0).

MULES Algorithm

MULES is the OpenFOAM implementation of the Flux Corrected Transport
(FCT) theory[42]. Consider the hyperbolic equation:

∂φ

∂t
+∇ · �F = 0 (4.26)

Our problem is to maintain the boundedness of the solution of the above
equation. An explicit discretization of the above equation reads:

φ + in+1 − φn
i

Δt
V + ∑

f
(�Fn · �S) f = 0 (4.27)

where F is the quantity to be transported and �F its flux. i denotes the cell
under consideration. For a one dimensional grid, the above equation can be
re-written as:

φn+1
i = φn

i − Δt
V
(Fn

i+1/2 − Fn
i−1/2) (4.28)

where �Fn = (�Fn · �S) f denotes the total flux.

The OpenFOAM way of solving the above equation is described below[38]:
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1. Compute the transportive flux (F) using low and high order schemes. We
denote them as FL and FH respectively.
2. We define an anti-diffusive flux A = FH − FL

3. Calculate Corrected flux, FC = FL + λA with 0 ≤ λ ≤ 1
4. Equation 4.28 is now reformulated as:

φn+1
i = φn

i − Δt
V
(FC

i+1/2 − FC
i−1/2) (4.29)

We observe that the evaluation of λ brings boundedness to the equation
to be solved. OpenFOAM uses iterative methods for finding λ.

4.1.6 Numerical Schemes

OpenFOAM offers a variety of discretization schemes for the different terms
in Navier Stokes and other associated equations. The chosen discretization
schemes are specified in the fvSchemes dictionary in OF. Given below is a
short description of the available discretization schemes and interpolation
schemes[43].

Time Schemes
The (∂/∂t) terms are available in the ddtSchemes sub-dictionary in OF. The
following are the popular time schemes available in OpenFOAM:

Scheme Description
Euler First Order, Bounded, Implicit
CrankNicolson Second Order, Bounded, Implicit
backward Second Order, Implicit
steadyState Does not solve for time derivatives

TABLE 4.1: Numerical schemes for temporal terms

Divergence Schemes
OpenFOAM by default uses Gauss divergence schemes. It also has a variety
of interpolation schemes to choose from. The general format of the numerical
scheme would look like:

Gauss < interpolationScheme > (4.30)

The popular interpolation schemes in OF are:
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Scheme Description
linear Second order, unbounded
upwind First order, bounded
QUICK First/second order, bounded
linearUpwind First/second order, bounded

TABLE 4.2: Interpolation schemes for divergence terms

Laplacian Schemes
A common laplacian term encountered is the viscous term-∇ · (ν∇u) in NS
equations. The evaluation of the laplacian term requires a discretization
scheme, interpolation scheme and normal surface gradient scheme ie. ∇u.
Selection is made via the following argument:

Gauss < interpolationScheme >< snGradScheme > (4.31)

Interpolation schemes can be chosen from the previous table. Popular
snGradSchemes are: corrected, uncorrected, limited.

Gradient Schemes
Evaluation of the gradient terms require selection of a discretization scheme.
The following schemes are available:

Scheme Description
Gauss <interpo-
lationScheme>

Second order, Gaussian integration

leastSquares Second order, least squares
cellLimited
<gradScheme>

Cell limited version of one of the above
schemes

faceLimited
<gradScheme>

Face limited version of one of the above
schemes

TABLE 4.3: Numerical schemes for gradient terms

4.2 Simulation Setup

In the framework of OpenFOAM, the simulation parameters such as the ge-
ometry, mesh, initial conditions, choice of discretization schemes, simulation
time and time-step size, etc are set in the case directory. The important simu-
lation settings are detailed in this section.

Geometry and Mesh
The geometry of the simulation is a simplified case of a spherical bubble in
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a rectangular column. In 2D, the problem is a circular bubble(phase 1) in a
rectangular domain(phase 2-water).

FIGURE 4.3: 2D Geometry for Simulation

blockMesh utility in OpenFOAM is used for the construction of a regular
hexahedral mesh. The mesh is 3-dimensional with one cell thickness in the z-
direction(OpenFOAM processes 2D geometry as 3D geometry with one cell
thickness).

The rectangular column has the dimensions: 0.02m x 0.04m x 0.001m. The
domain has 80000 mesh cells. The center of the bubble of radius 0.001m is lo-
cated at (0.01m, 0.005m) with the left bottom corner as the reference origin.
The meshed geometry is shown in figure4.3.

Time stepping
As a general rule for transient simulations to be stable, the Courant num-
ber(Co) is kept under 1. The explicit MULES algorithm works well with
Co < 0.25 Hence the time step size is chosen accordingly. In the present
simulation the chosen time step δt is 1x10−4. The simulation is run for 0.5
sec.

Initial and Boundary Conditions
The setFields utility in OpenFOAM maps non-uniform initial conditions onto
the mesh. In the present simulation, we have 2 phases-water and air- with
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FIGURE 4.4: Meshed domain for Simulation at t=0
full domain(left) and closer view of the bubble(right)

corresponding volume fractions(α) 1 and 0. The mapped values are used as
the initial condition for the α equation.

Boundary conditions are required for solving the Navier-Stokes equation.
The α, pressure and velocity boundary conditions are as follows:

Velocity, U at the walls: (0 0 0)
Pressure, p at the walls: zeroGradient ie. ∇p = 0
Volume fraction, α at the walls: zeroGradient ie. ∇α = 0

Discretisation Schemes
Information regarding discretization schemes is set in the fvSchemes dictio-
nary in OpenFOAM. The file is located in the case/system directory. Chosen
discretisation schemes for the simulation are as follows:

• Time Scheme, (∂/∂t): Euler-first order implicit

• Gradient Scheme, (∇): Gauss Linear

• Divergent Schemes, (∇·): Gauss vanLeer, Gauss Linear, Gauss Upwind

• Laplacian Schemes, ∇ · (ν∇U): Gauss Linear Uncorrected

• Interpolation Scheme: Linear
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Chapter 5

Results

A ’rising bubble with mass transfer’ is taken as the test case. The simula-
tion is run using OpenFOAM 5. Further analysis of the impact of isoAd-
vectorArea interface area calculation library is discussed in the subsequent
sections. The simulation results are also compared against the regular ris-
ing bubble simulation which uses gradient-alpha interface area calculation
algorithm for mass transfer. The simulation results are post-processed using
paraView (paraFoam) visualization application. This chapter discusses the
details of the transient simulation results.

5.1 Volume Fraction Results

This result helps us visualize the interface between the two phases as the
bubble moves upwards due to buoyancy.

FIGURE 5.1: Volume fraction results: isoAlpha method

We observe a zig-zag motion of the bubble as it move upwards which is
identical as in real life. See figure 5.1
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5.2 Interface Area Comparison

The interface area is extracted from the simulation and plotted in figure5.2.

FIGURE 5.2: Interface area comparison

Interpretation of the above chart: We know that at time, t=0 , the bubble
has the lowest possible surface area due to its circular shape. Once it starts
rising upwards, the shape of the bubble distorts to an oval-like shape and as
a result, the surface area increases. We observe an oscillation in the values of
the interface area as the bubble rises. This is due to surface tension and si-
multaneous species transfer from the bubble to the fluid medium. We notice
that the interface area increases till the time reaches around 0.375s. At that
point, the bubble reaches the top and no longer retains the spherical (circular)
shape and simulation start to subside. The flat part of the graph corresponds
to this observation.

We also notice that the default gradAlpha method under-approximates
the area and fails to capture the rapid changes in the interface area of the
rising bubble as a result of mass transfer. The isoAlpha algorithm closely fol-
lows the interface area obtained from paraView post-processing utility. This
is used as a form of validation in our current research. The interface area
(in m2) calculations from the gradAlpha and isoAlpha methods are tabulated
below.

5.3 Analysis of the Reconstructed Interface

We know that a strict interface is only one cell thick. In figure 5.4 we see that
the gradAlpha method(left) reconstructs an interface that is four to five cell
thick. The interface reconstructed by isoAlpha method is sharper and only
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Area comparison chart

FIGURE 5.3: Interface area from isoAlpha and gradAlpha com-
pared with area obtained from paraFoam

FIGURE 5.4: A closer look at the interface: gradAlpha (left) Vs
isoAlpha (right) at an arbitraty timestep

two mesh cells thick in most parts of the interface. The reconstructed inter-
face as time-lapse is shown below to compare the efficiency of the gradAlpha
and isoAlpha methods.

As a result of the smeared interface, pseudo mass transfer through these
non-interfacial cells around the actual interface cells is expected. Thus we
expect a higher mass transfer rate in the gradAlpha method compared to
the isoAlpha method despite the observation that isoAlpha method records
a higher interface area according to the interface area table above.

In the area results, we see fluctuations in the isoAlpha area. This is at-
tributed to the pseudo-interface area cells during the simulation as well as
the interface orientation error intrinsic to the isoAlpha algorithm.
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FIGURE 5.5: A closer look at the isoAlpha interface
through regular time-steps

FIGURE 5.6: A closer look at the gradAlpha interface
through regular time-steps

5.4 Specie Mass Transfer Results

The rate of mass transfer per unit volume is calculated during the simulation.
We saw earlier that the mass transfer rate is:

ṁ = kAΔC (5.1)

The mass transfer rate (ṁ) plotted against time is shown in Figure 5.7.
We see that the average mass transfer rate of isoAlpha method is less than
gradAlpha. It is due to the fact that gradAlpha method has far more inter-
face cells distributed around the interface which contributes towards pseudo
mass transfer from those cells. This is observed in the simulation results of
the O2 mass transfer and simultaneous comparison of mass transfer values
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(mdot).

A comparison of the O2 specie transfer results from isoAlpha and gradAl-
pha algorithms is shown below.

gradAlpha Vs isoAlpha Side-by-side Comparison

FIGURE 5.7: O2 Specie mass transfer simulation results:
gradAlpha method

FIGURE 5.8: O2 Specie mass transfer simulation results: isoAl-
pha method
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FIGURE 5.9: Mass transfer using isoAlpha and gradAlpha

FIGURE 5.10: Averaged rate of mass-transfer plotted against
timesteps

From the graphs, we notice that the rate of mass transfer in isoAlpha
method is lesser than gradAlpha method. Hence we infer that the specie
transfer happens only through the exact interface cells and the amount of
pseudo mass transfer is reduced in the isoAlpha method. This can be better
understood by comparing the mdot.O2 results from paraFoam.
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FIGURE 5.11: mdot.O2 mass transfer rate result at t = 0.25 s
gradAlpha result(left) and

isoAlpha result(right)

In the above picture, we notice that mass transfer happens through cells
other than the rising bubble in the gradAlpha result(marked in red circles).
For calculating the rate of mass transfer, we sum the mass transfer rate (mdot)
from every cell in the domain. Hence in the gradAlpha result, we have
pseudo mass transfer since the already accounted transferred mass is added
again to the main transferred mass. In the case of isoAlpha, we do not have
this pseudo mass transfer since we calculate mdot only from the interface
cells as observed in the isoAlpha result in figure 5.11. The higher mass trans-
fer rate in the isoAlpha result is accounted for the above-mentioned reasons.

Computational Time Comparison

The simulations are performed using an intel i7 4710HQ processor on a
single thread. The time taken for isoAlpha and gradAlpha simulations are as
follows:

Area model Simulation Time Mesh cells
isoAlpha 2 hrs 42 mins 80000
gradAlpha 1 hr 51 mins 80000

TABLE 5.1: Simulation time comparison
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Chapter 6

Conclusion

Geometrical interface area calculation library- isoAdvectorArea is implemented
in the multiPhaseFoam solver. The original solver relies entirely on the gra-
dient alpha method for interface area calculation. Results of the isoAdvec-
torArea library when compared with the values from the post processing
utility-paraFoam shows that the method follows similar curves in estimating
the interface area.

Even though the results look seemingly fine considering more accurate
mean values, the oscillations in the area values is still an area which requires
further analysis. In a preliminary analysis, this observation can be attributed
to the mass transfer around the bubble. This causes the area calculation li-
brary to reconstruct a pseudo interface near the actual interface. So this forces
the solver to consider those areas while calculating the mass transfer and in-
terface advection (solution of α − equation). Also, the current algorithm has
its own innate inaccuracies. The interface reconstructed by the algorithm fo-
cuses less on the orientation of the interface. This could also be one of the
possible reasons for the fluctuations in the interface area.

The research as a whole proves the possibility to implement geometri-
cal methods in simulations involving mass transfer with higher accuracy. It
should also be noted that the price of higher accuracy comes at higher com-
putational cost which is quite the case in the current research.

Interface reconstruction is still an area of active research in science. As
a next step, other geometrical interface reconstruction methods need to be
attempted in order to rectify the drawbacks of the current algorithm. Other
interface reconstruction algorithms include iso-RDF, PLIC, PLIC-RDF meth-
ods etc.
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