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2. Abstract  

English Version 

Fungal cluster border prediction based on computational molecular co-evolution (=FunOrder) is a 
genome mining program which finds evolutionary connections between fungal genes and hence, find 
genes involved in the biosynthesis of a compound. During this project, the program was evaluated by 
manually examination of phylogenetic trees based on the genes within experimentally validated 
fungal biosynthetic gene clusters (BGC) as positive controls and genes from randomly generated 
clusters as negative controls. The evaluation data was then used to define the borders of co-
evolution between protein families within BGCs in fungi. The aim of the project was to verify if 
FunOrder has the ability to predict correct fungal cluster borders and therefore can contribute to the 
research for novel secondary metabolites. 

 

German Version 

FunOrder (Fungal cluster border prediction based on computational molecular co-evolution) ist ein 
Genome Mining Programm, welches die evolutionäre Verbindung zwischen Genen und Gencluster 
aus Pilzen untersucht. Während des Projekts sollte das Programm durch die manuelle Auswertung 
phylogenetischer Bäume von Genen aus experimentell ermittelten pilzlichen biosynthetischen 
Gencluster (BGC) als Positiv- und aus zufällig generierten Cluster als Negativkontrollen evaluiert 
werden. Die daraus erzielten Daten wurden anschließend verwendet, um die koevolutionären 
Grenzen von Proteinfamilien in Gencluster von Pilzen zu definieren. Ziel des Projektes war die 
Untersuchung und Verifikation, ob FunOrder korrekte Clustergrenzen in Pilzen vorhersagen kann und 
damit als neues Tool zur Entdeckung von neuen Sekundärmetaboliten geeignet ist. 
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3. Introduction 
3.1 Fungal secondary metabolites (SM) 
Secondary metabolites are low-molecular-weight, often bioactive compounds produced by a cell.1 
The probably most famous secondary metabolite is the broad-spectrum antibiotic penicillin which 
was discovered in 1929.2 Since then, an effective control of infections was possible for the first time 
in history and the research for new antibiotics began.3 4 While the discovery of Penicillin happened by 
accident, 16 years later in 1945, Giuseppe Brotzu searched especially for microorganisms that 
inhibited bacterial development in sea water and therefore discovered penicillium acremonium that 
produces cephalosporins, another β-lactam antibiotic like penicillin.5 In 2011, Brakhage assumed that 
most of these metabolites are produced for the competition and communication with other 
organisms.6 In fact, secondary metabolites provide their producers to interact and compete with 
other organisms, unlike primary metabolites which are required to ensure growth of the organisms 
that produce them.7 8 Hence, secondary metabolites not only include beneficial products like 
antibiotics and other pharmaceuticals (e.g. anti-cancer agents and immunosuppressant), but also 
toxins, hormones, insecticides and carcinogens.1 6 9 10 Mycotoxins are indeed the subject of major 
concern because they lead to severe mycoses and mycotoxicosis.11 Both beneficial and harmful 
properties of these metabolites lead to a greater importance to study them and their producers.  

Today it is well-known that the genetic information of the specific organism forms the basis to 
produce these secondary metabolites. For the discovery of novel secondary metabolites, the 
genomic information from microorganisms is leveraged (see 3.3 Genome Mining).12 Hence, microbial 
pharmaceuticals are now indispensable in the treatment of various clinical disorders. Furthermore, 
secondary metabolites are also used as herbicides, insecticides, and fungicides.13 

But as a Darwinian consequence, the usage of microbial, antibiotic products led to an increased 
number of resistances to antibiotics and therefore concerns about these antibiotic resistances has 
risen in the early beginning of the 21st century leading to a more careful usage of antibiotics and 
pesticides, but also to an urgent need to discover new microbial products.13 14  Furthermore, the 
access to novel natural products is limited, as most loci for secondary metabolites are disabled, also 
referred as “silent”, under specific, in most cases unknown circumstances, because of the absence of 
stimuli (e.g., nutrient sources).15 16 Additionally, the main part of experimental evidence for 
secondary metabolites derive from bacteria, as they are fast and cost-efficient producers. In fact, it is 
estimated that the total number of bacteria species is around 100 million, whereas approximately 5 
million fungal species exist but only about 99 000 of them were identified.11 17 Hence, fungi might 
encode a vast potential for the discovery of novel natural products. Genome analysis indeed revealed 
that some fungal species possesses up to 80 BGCs in their genomes. This and the knowledge about 
the silent genes postulate that there are still much more compounds to find.16 17 18  

3.2 Biosynthetic Gene Cluster (BGC) 
The genome of an organism possesses the blueprints for producing secondary metabolites and is 
described by a unique nucleotide sequence. This sequence is built up by the four nucleotides: 
adenine (A), guanine (G), cytosine (C) and thymine (T). The unique composition of these nucleotides 
forms the genomic sequence. For fungi, the genome sequence lengths vary from 8,97 Mb to 177,57 
Mb.19 Segments of these genomic sequences that can be transcribed into a biological active mRNA 
are called genes. These mRNA segments are then translated into amino acid sequences, which are 
folded into a 3D structure forming the finished protein. The whole process constructing the product 
is called (gene)expression. However, secondary metabolites are mostly not produced by a single gene 
only, but by a collaboration of two or more genes that together encode the specific biosynthetic 
pathway to produce that specific metabolite.20 As secondary metabolites are important for microbial 
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competing and communication, regulation is often done by environmental stimuli, including light, 
pH, carbon source, nitrogen source, reactive oxygen species and temperature.21 Further 
investigations also revealed that they are often regulated by a cluster-specific transcription factor.10 

22 

Back in the early 21st century the first complete microbial genome sequences revealed two further 
important aspects; Firstly, these genes are typically located side by side, clustered into so-called 
biosynthetic gene clusters (BGC) with modest sizes containing up to 20 genes in fungal species.13 22 23 
These clusters contain all genes for the biosynthesis of all compounds needed in the biosynthetic 
pathway, such as precursors, modificatory, resistance, and regulation genes, to produce the final 
product(s).23 Secondly, BGCs mostly contain one or more core biosynthesis genes encoding 
multimodular enzymes, like polyketide synthases (PKS) or non-ribosomal peptide synthetases 
(NRPS).23 PKS and NRPS are multi-functional megasynthases that utilizes a biosynthetic mechanism 
similar to the fatty acid biosynthesis. In fact, PKS are homologous to fatty acid synthases.6 10 13 24 
Furthermore, it became apparent that the sequences of PKS and NRPS enzymes are very conserved, 
meaning that they rarely change during evolutionary processes, and have therefore highly predictive 
quality.4 23 Thus, their typical structure can be visualized (see Table 3.1) 

Table 3.1: Typical structures of biosynthetic gene clusters (BGC) encoding polyketides and non-ribosomal peptides.20 25 26 27 28 

Products Core enzyme Typical domains Typical additional domains 

Polyketides Polyketide synthase  

Acetyltransferase (AT) Ketoreductase (KR) 
Acyl carrier protein 
(ACP) 

Dehydratase (DH) 
Enoylreductase (ER) 

Ketosynthase (KS) Methyltransferase (MT) 

Non-ribosomal 
peptides 

Non-ribosomal 
peptide synthetase  

Adenylation (A) Thioesterase (TE) 
Condensation (C)  Reductase 
Peptidyl Carrier 
protein (PCP) = 
Thiolation (T) 

Epimerisation (E)  
Methyltransferase (MT) 

 

As shown in Table 3.1, a typical NRPS module minimally consists of three domains: an Adenylation 
domain (A) that activates the amino acids, a Condensation domain and Peptidyl carrier protein 
domain, also known as thiolation domain, that serves as an anchor for the growing peptide chain.  
Whereas a PKS module minimally consists of an acyltransferase (AT) domain for unit selection and 
transfer, an acyl carrier protein for unit loading and a ketoacyl synthase domain, that condensates 
decarboxylatively the unit.6 25 26 27 Not all clusters produce their compounds using only one core 
enzyme. Some BGCs synthesize their products from two synthases and/or synthetases forming a 
hybrid BGC. Examples for this are the fumagillin cluster, a PKS-TC hybrid, or echinocandin, a PKS-
NRPS hybrid.16 Although, it became apparent that not all BGC comprise similar modularity like 
polyketides and non-ribosomal peptides, e.g., terpene BGCs. All fungal terpenoids derive from the 
common five-carbon isoprenyl diphosphate intermediates, isopentenyl diphosphate (IPP) and 
dimethylallyl diphosphate (DMAPP), in short isoprenes. They are the start material for the 
biosynthesis of terpenoids and isoprenoids by either terpene cyclases (TC) or dimethylallyl-
tryptophan synthases (DMATs).29 30 Over the past view years, another fungal biosynthetic class was 
identified: ribosomally synthesized and post-translationally modified peptides (RiPPs).31 They are 
synthesized by short precursor peptides comprising a leader peptide and a core peptide. After 
synthesizing the precursor in the ribosome, the core peptide is post-translationally modified by 
tailoring enzymes and then usually cleaved from the leader peptide, yielding the final product. Fungal 
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RiPPs include six classes: amatoxins/phallotoxins32, and borosins33, which both are found in the 
basidiomycetes. In Ascomycetes, RiPPs are produced by dikaritins34, which are classified as ustiloxins, 
asperipins, phomopsins, and epichloëcyclins.35 36 37 The knowledge about the different enzyme 
classes were used to discover novel BGCs (see 3.3 Genome Mining). To date, a huge amount of 
genomic data has been deposited in publicly accessible databases (see 3.4 Databases).38 The 
availability of genome sequences and the research to identify the containing genes resulted in a large 
number of secondary metabolite gene clusters per organism, most of them unknown and therefore 
referred as “orphan” or “cryptic”.10 16 

However, another important aspect regarding the BGCs is that they are often concentrated at the 
telomeres (sub-telomeric regions) and at the centromeres.10 16 It is well known that sub-telomerically 
located genes, like BGC genes, are often repressed, which is called telomere position effect.16 21 Also, 
chromatin modifiers which control silencing and transcription effects have a high impact due to their 
location in sub-telomeric region.10 16 21 This knowledge hardens the perception that most of the BGCs 
are silent under standard conditions.10 15 21 23 In addition, the inability to cultivate some potential 
producers aggravates the research for novel secondary metabolites.10 15 These findings emphasized 
the research for new approaches.   

3.3 Genome Mining 
At the time it came to known that microbes possessed an unexplored potential for producing 
secondary metabolites, the idea of genome mining was born, which involves the prediction and 
isolation of microbial products by using the genetic data of biosynthetic gene clusters (BGC).4 In fact, 
the conserved characteristics of the core enzymes in biosynthetic gene clusters (BGC) are therefore 
exploited for genome mining purposes.4 23 Over the time, two ways of establishing a link between a 
BGC and a secondary metabolite (SM) were established. Either the SM is identified for a specific BGC 
by elucidating its biosynthetic pathway, in the following referred as first strategy, or a BGC is 
identified for a specific SM by homology search, retro-biosynthesis, or comparative genomics, in the 
following referred as second strategy.4 39 
 
For the first strategy the starting point is a putative BGC that is investigated. These strategies were 
summarized as molecular and epigenetics-based methods and methods that attempt to predict 
natural condition that led to activation.6 A flow diagram of key questions determining the exact 
strategy was proposed by Inge Kjaerbolling et al. in 2019, starting with the question whether the 
cluster is in a cultivable host and if this fungus is engineerable.39 If not, heterologous expression 
strategies are used, otherwise a homologous expression is possible, meaning that it can be expressed 
in the native host. In the latter case it is relevant whether the cluster is silent or not. Silenced clusters 
need to be activated first, e.g., by varying the environmental stimuli or overexpressing cluster specific 
transcription factors. Already activated clusters can be directly used for deletion strategies to 
elucidate the function of the cluster genes. This is usually done by sequentially deleting or disrupting 
genes followed by metabolite profiling. Thus, it is possible to identify metabolites missing in the 
strain and its intermediates.6 39  
 
The second strategy is the association of a BGC with a specific SM it is producing (Figure 3.1).39 The 
goal is the annotation of the identified cluster, which means the functional classification of the 
genes. This strategy is mainly based on bioinformatic prediction also referred to as in silico mining.4 6  
It describes the usage of genomic information for the discovery of new products, but also of new 
processes and targets using computing technologies.4 12 38  
The starting point for this strategy is the selected secondary metabolite or, alternatively, SMs with 
already identified BGCs which are used for the search of similar BGCs. It concerns three in-silico 
methods namely homology search, retro-biosynthesis, and comparative genomics.39  
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During the first method (Figure 3.1, subpart strategy 1), homology search, a secondary metabolite 
with identified BGC is used for elucidating the BGC of a similar and known secondary metabolite by 
applying alignment tools, such as Basic Local Alignment Search Tools (BLAST) (see 3.5.1.1 BLAST). The 
second method (Figure 3.1, subpart strategy 2) starts with a chemically characterized secondary 
metabolite using an in-silico retro-biosynthesis to identify intermediates and compounds that are 
needed to produce the specific metabolite. For the third method (Figure 3.1, subpart strategy 3) a set 
of producing organisms is known and compared to each other in order to find and identify 
homologous gene clusters that produce the candidate metabolite. Such approaches use core genes, 
tailoring enzymes, or even phylogeny-based mining methods to find homologous sequences. A 
common example is antiSMASH (see 3.3.1 Cluster border definition and prediction algorithms). An 
example for phylogeny-based genome mining is EvoMining, which searches for homologues of 
housekeeping genes in secondary metabolite clusters.4 6 38 39  
 

Figure 3.1: According to Kjaerbolling et al. in 2019, there are three bioinformatic methods (in the figure referred as 
“strategy”) for linking secondary metabolites with a biosynthetic gene cluster (BGC). 1) Homology search defines a 

method at which a compound A and its BGC is already characterized and compared to a compound B and its genome 
sequence to elucidate the BGC of compound B. 2) Retro-biosynthesis is the prediction of enzymes needed to produce a 
chemically classified compound. 3) Comparative genomics enables the identification of homologous gene clusters for a 

candidate compound by comparing a known set of producing organisms and genomes.39 

The second strategy (the linkage of a BGC with a secondary metabolite) ends in the identification of a 
putative BGC that can be verified using the first strategy by expressing the cluster homologously or 
heterologously.  
 
In this thesis, the focus lies on the second strategy: By using comparative genomics based on 
phylogeny, the bioinformatic prediction enables the linkage of a BGC with a putative secondary 
metabolite. 

3.3.1 Cluster border definition and prediction algorithms 
As written in 3.2 Biosynthetic Gene Cluster (BGC) and 3.3 Genome Mining, the core genes (PKS and 
NRPS) are highly predictable due to the strikingly conserved biosynthetic principles and biosynthetic 
machineries, even though secondary metabolites are highly diverse.4 23 This enables the 
bioinformatic prediction of BGCs.  



15 
 

The first reported tool for automated bioinformatic gene prediction was the proprietary DECIPHER® 
search engine and database published in 2003.23 Six years later, the first open-source pipelines 
CLUSEAN and NP.searcher (both for bacteria) were released.4 23 Finally, in 2011, the first version of 
antiSMASH, which, amongst others, incorporates the CLUSEAN pipeline, was released and was since 
then steadily extended. AntiSMASH is an open-source genome mining platform that enables large-
scale genome mining studies.23 Next to antiSMASH, other noteworthy tools have been developed, 
like PRISM, which have a focus on predicting chemical structures of the biosynthetic pathway, and 
SMURF, a tool for mining fungal PKS.23 These cluster prediction tools rely on collections of protein 
domains found in known clusters.22 Such domains are then searched in new sequences to find 
homologies and to that effect new clusters.22 23 AntiSMASH identifies core enzymes like PKS or NRPS 
according to a collection of biosynthesis enzymes.  

Hence, the prediction of secondary metabolites starts with identifying conserved biosynthetic genes 
and subsequently analysing them about their putative biosynthetic function. For this, gene 
annotations must be available on the genome of interest, which can be found in databases like 
GenBank® built by the National Center for Biotechnology Information (see 3.4.1 GenBank®).23 40 If 
there are no annotations available, it is possible to use a gene finding tool, e.g., antiSMASH uses 
Prodigal for bacteria and GlimmerHMM for plants and fungi.9 23 The next step is the identification of 
core enzymes, like PKS or NRPS, to identify BGCs. As these enzymes frequently share common 
patterns of amino acids, profile-based methods like Hidden Markov models (HMMs) are used to 
identify these patterns.9 23 Once the core enzyme is identified, co-located genes are compared. In this 
connection, secondary metabolite genome mining tools, like AntiSMASH, PRISM and SMURF, use 
manually curated BGC rules following Boolean logic to decide whether these adjacent genes are part 
of the cluster or not.23 An example is that BGCs encoding nonribosomally synthesized peptides 
typically contain at least one Condensation, Adenylation, and Peptidyl Carrier Protein domains, next 
to its core enzyme, NRPS.23 41  
 
Today, antiSMASH incorporates two approaches for bacterial BGC (CLUSEAN and ClusterFinder) and 
one approach for both, bacterial and fungal BGC (NRPSpredictor).23 The latter one, NRPSpredictor, is 
a machine learning approach that uses a high amount of core enzyme sequences to predict substrate 
specificity.9 23 However, while all the above-mentioned tools work well for similar clusters, these 
tools have difficulties when searching for novel ones, especially for novel RiPPs and terpenoids 
clusters as they are not as highly conserved as PK and NRP clusters.22 29 42 

An alternative is CASSIS/SMIPS, a toolkit that uses the biological principle that BGCs contain a higher 
density of shared transcription factors and common regulatory patterns to predict core genes.9 23 43 
Secondary Metabolites by InterProScan (SMIPS) is a genome wide detector for core genes, like PKS, 
NRPS or dimethylallyl tryptophan synthases (DMATS).22 It can be used separately or together with 
Cluster Assignment by Islands of Sites (CASSIS).22 CASSIS is a method for BGC prediction in eukaryotic 
genomes searching for cluster-specific motifs in the vicinity of the detected core genes.22 It is a 
further development of the method Motif Density Method (MDM), assuming the density of binding 
motifs for cluster specific transcription factors (csTF) must be higher within the cluster and lower 
outside.22 But, this method, too, uses sequence similarity searches and it is therefore not likely to 
find completely new BGCs.44   

Hence, EvoMining, a tool based on phylogenetics (see 3.5 Phylogenetic trees), was created for 
bacteria and archaea species, which provide a genome mining approach using the evolutionary 
insights to discover novel biosynthetic gene clusters.44 However, this approach refers to bacteria and 
archaea lineages, only.44 Therefore, an approach based on fungal phylogenetics is still missing. During 
this thesis a suchlike, novel genome mining tool for fungal species is presented. 
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Nevertheless, Genome mining is a bioinformatic, in-silico method. Therefore, experimental 
verification of obtained putative BGC genes is inevitable.  

3.4 Databases 
The elucidation of genomes led to an enormous amount of data, which had to be organized and 
accessed easily. Hence, databases were built-up. There is a high number of databases used in 
genomic studies. One of the main databases for nucleotide sequences is GenBank®.45 For 
biosynthetic gene clusters, one of the most important databases is Minimum Information about a 
Biosynthetic Gene cluster (MIBiG).46  

3.4.1 GenBank® 
GenBank® is a database that contains publicly available nucleotide sequences obtained primarily by 
submission supporting bibliographic and biological annotation.45 Uploaded sequences receive an 
unique accession number for better retrieval. Also, GenBank® provides several other ways to retrieve 
data, e.g., BLAST tool to search and align sequences from GenBank® to a query sequences or Entrez 
Nucleotide to search for identifiers and annotations.40 Data can be downloaded in GenBank® or Fasta 
format, both text based. GenBank® files have endings with .gb or .gbk and contain sequences, 
annotations, information about the organism and sometimes translated amino acid sequences, while 
Fasta files with endings .fasta, .fna, .ffn, .ffa or .frn contain amino acid or nucleotide sequences only. 
GenBank® is built by the National Center for Biotechnology Information (NCBI) and is extended every 
two months.45 40 

However, as the sequences and information depend on the uploads of researchers worldwide, the 
quality of the genomic data varies highly.  

3.4.2 MIBiG 
Minimum Information about a Biosynthetic Gene cluster (MIBiG) is a database that offers an 
improved access to information about secondary metabolites gene clusters. Building on Minimum 
Information about any Sequence (MIxS) framework, which is a standard for describing sequence 
data, MIBiG covers four general group parameters that each BGC must fulfil. These parameters 
include associated publications, description of the genomic loci, the chemical product and its 
features, and experimental verified genes.47 20 Furthermore, class-specific checklists for gene clusters 
must be fulfilled, e.g., there must be acyltransferase domain and starter units for polyketide BGCs or 
precursor peptides and peptide modifications for RiPP pathway clusters. Both, MIBiG and MIxS 
framework provide a characterization of a biosynthetic pathway.20 

3.5 Phylogenetic trees 
A phylogenetic tree is a diagrammatic representation comprising leaves, nodes and branches 
showing the evolutionary linkage among various taxa based on their molecular evolution at the level 
of nucleic acids or proteins.48 49 Hence, phylogeny is referred to as the evolutionary history of 
organisms or species.48 49 50 51 It forms the basis for comparative genomics, a research field for the 
comparison of genomic sequences showing the relation between them.48 49 52 
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Figure 3.2: Overview over the Tree of life obtained from the Interactive Tree Of Life.53 The three domains, Bacteria, 

Eukarya, and Archaea are linked together through the last universal common ancestor (LUCA), that is represented in the 
middle. As represented in blue, the most known living species belong to bacteria.53 54 

Evolutionary changes are caused by an accumulation of alterations of the genetic composition, varied 
by mutation, gene flow, genetic drift, or natural selection.48 Hence, evolution leads to the formation 
of new species. The evolutionary divergences of the DNA or protein sequences between the species 
can be then shown in phylogenetic trees.48 55 Accordingly, in evolutionary history there must have 
been one theoretical primordial ancestral form, from which life on earth evolved 3.6 billion years 
ago, called the last universal common ancestor (LUCA).48 50 51 All its descendants constitute the tree of 
life.48 Such trees starting with the ancestor from which the rest of the tree diverges are called rooted 
trees.48 49 The contrary are unrooted trees, that are inferred more often. 
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Figure 3.3: Components of a phylogenetic tree obtained from 
the book Encyclopedia of Evolutionary Biology, 2016.56 Single 

species, individuals, or even sequences are represented by 
leaves (tips) that are evolutionary connected through 

branches. Two branches run into nodes that represent the last 
common ancestor. Rooted trees also exhibit an overall 

common ancestor (root).56 

Figure 3.4: Highlighted groups are called clades, which 
include a node and all its descended lineages. Figure 
obtained from the book Encyclopedia of Evolutionary 

biology, 2016.56  

Like a tree, a phylogenetic tree consists of branches and leaves. The leaves represent populations, 
species, individuals or even genes that are connected by branches.56 A group of connected leaves 
with only one node are called clades. The branching points between two branches are called nodes, 
which represents the last common ancestors of the related leaves.48 56 At this point, the ancestor was 
split into two different descendant lineages, whose individuals did not exchange genes anymore. 
Although, a lineage splitting event occurred, it is not necessarily based on trait divergence, the 
accumulation of mutation can lead to a trait evolution in the descendant lineages.56  
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Figure 3.5: Various types of phylogenetic trees. The figure was obtained from Bioinformatics for Beginners, 2016.49 A, B 
and D show rooted trees, while C represents an unrooted one. While A shows an unscaled tree (cladogram) and B a 

scaled one (phylogram), the tree in D represents a dendrogram derived from hierarchical clustering.49 

Phylogenetic trees can be unrooted or rooted, but also scaled or unscaled.49 In scaled trees, branch 
lengths are proportional to evolutionary divergence, comprising e.g., the amount of nucleotide 
substitutions.49 There are therefore various types of phylogenetic trees; Cladograms represent a 
hierarchical but unscaled tree topology showing the relationship of clades, while Phylograms are 
scaled trees, which means the longer the branch the more changes occurred.49 A dendrogram is an 
arrangement of clusters showing their relationship and is not solely used in phylogeny, but also 
outside bioinformatics.49 56 

The construction of phylogenetic trees starts by first aligning two or multiple sequences according to 
their evolutionary relationship. In this connection, mostly amino acid sequences are used.49 55 In the 
second step an evolutionary model is determined. Based on that and the alignment the distances 
between the sequences is estimated by either distance-based or discrete methods.49 Using these 
methods, the phylogenetic tree is constructed.49 

The study of phylogenetic trees gives insight into the evolution of genes, genomes, and species. For 
this, two or more phylogenetic trees are compared, which is discussed in more detail in 3.5.4 
Inferring Co-evolution.57 

3.5.1 Multiple sequence alignment 
As written in the previous chapter, the inference of phylogenetic trees starts with the alignment of 
two or more sequences, which is the most important step in the construction as a good alignment 
yields a reliable tree.49 This multiple sequence alignment (MSA) comprises two main assumptions; 
Firstly, the sequences are homologous and secondly, point mutations evolved independently.49 
Homologous segments in genomic data are defined as sharing a common ancestor.49 58 However, 
MSA is an important method, on which, next to phylogenetic reconstruction, many other in silico 
analysis depend, e.g., domain analysis and motif finding. The goal is to infer the evolutionary, 
functional, or structural relationship of the sequences. For this, homologous sequences are aligned, 
and gaps are inserted, if needed.59 For the construction of phylogenetic trees, the evolutionary 
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relationship is represented, and the gaps therefore stand for insertions and deletions (indels) within 
the genome. Such changes in the genome are hypothesized as evolvements from a common 
ancestor.58 59 

As previously explained, MSAs consist of two or more pairwise alignments between the given 
sequences, which have similar lengths. Pairwise alignments are used to find the best match between 
two query sequences. This can be done globally or locally. Global alignments assume that the two 
sequences are basically similar over the entire length, trying to align every residue of the sequences, 
while local alignments only search for segments that match well.60 61 

  
Figure 3. 6: Example for a global alignment.60 Figure 3. 7: Example for a local alignment.60 

A popular approach for global pairwise alignment is the Needle Wunsch algorithm, which is using 
two-dimensional arrays representing every possible comparison between two amino acid or 
nucleotide sequences by pathways through the array, yielding the best similarity score by 
backtracking.62  

 
Figure 3.8: Completed similarity matrix using Needleman & Wunsch algorithm showing the best pathway through the 

array obtained from Needleman et al., 1970.62 Numbers in each cell represent the largest number of identical pairs that 
can be found if that cell is the origin of the pathway. Here, for each identical pair, the value one was given, non-identical 

pairs were given the value zero, scoring the maximum match, terminating at the largest number in the first row or 
column, 8 in this case, which is the similarity score.62 

In contrast, Smith-Waterman algorithm is a general local alignment approach. Such local alignment 
tools are generally preferred for database searches.63 



21 
 

 
Figure 3.9: Completed similarity matrix for local alignment of two small sequences using Smith-Waterman algorithm, 

showing the best matches by high numbers obtained from Khajeh-Saeed et al., 2010.64 The best local alignment is 
highlighted in blue, yielding the following aligned sequences: GCC-UCGC and GCCAUUGC.64 

Usually, protein sequences are used for the alignment for phylogenetic tree inference, as they have 
more characters (20) than nucleotides (4), amino acid matrices are more sophisticated, and there is 
no codon bias for the same amino acid in different species.49 55 But multiple sequence alignment can 
also be applied to DNA and RNA sequences.  

3.5.1.1 BLAST 
Another heuristic, local alignment algorithm is the Basic Local Alignment Search Tool (BLAST).63 65 It is 
an important and robust tool for database searching, especially in GenBank®, aligning the query 
sequence with the sequences deposited in the database searching for the highest similarity scores.65 
As the functions and properties of a gene underlie their structure and composition, a BLAST search 
gives hints about that.66 

Depending on the given and the target sequence, there are various BLAST programs, e.g., blastp 
provides an alignment of a protein sequence with protein sequences from the database, while blastn 
uses a given nucleotide sequence to search in a nucleotide database. There is also the possibility to 
receive translated sequences, e.g., with blastx.(Information, 2008 #649) 65 

To measure the local similarity a maximal segment pair (MSP) score was introduced by Altschul et al. 
and implemented in BLAST.63 The MSP score is getting higher, the longer identical segments of two 
sequences are. Also, BLAST allow the implementation of substitution matrices, like PAM, and can be 
mathematically analysed (see 3.5.2. Evolutionary distances).63 This makes BLAST a valuable tool for 
genome mining.63 

3.5.2. Evolutionary distances 
A vital prerequisite for creating an accurate MSA is representing evolutionary relationship, which is 
done by the determination of evolutionary distances.49 

At this juncture, the simplest way to calculate evolutionary distance between two sequences is using 
the uncorrected p-distance, quantifying the number of substitutions: 𝑝 = 𝐷𝐿 (𝐵𝑎𝑤𝑜𝑛𝑜, 2014 #240) 

L… Number of positions in the sequence alignment, excluding gaps 
D… Number of positions that contain different residues 
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However, this is not very accurate, as a substitution may have evolved from another substituted 
nucleotide leading to an underestimation of true evolutionary distance.50 Hence, an evolutionary 
model must be determined, which is another important step for the reconstruction of phylogenetic 
trees, as they are used for calculating the evolutionary distances correctly, based on biological 
principles.49 50 

In 1965, the molecular clock hypothesis was proposed by Zuckerkandl and Pauling, which assumes 
that all species evolved with constant rate.50 Shortly after, Jukes-Cantor one-parameter model was 
proposed by Jukes and Cantor in 1969 assuming all nucleotides occur in equal frequencies.49 67 
However, both have been found to be oversimplified, because nucleotides and amino acids do not 
occur in equal frequencies and studies have shown that this is a result of different evolutionary 
pressures at different times.50 67 Furthermore, there are hot spots for mutations in the genome, 
depending on the chromosomal position, G+C content and the efficiency of their repairing system.67 
It is also known that the nucleotide replacement by a similar base facilitates further misincorporation 
errors.67 This is why transition mutation (A ↔ G and C ↔ T) are more common than transversion 
mutations (A ↔ T, G ↔ C).49 67 Later on, in 1980, Kimura’s two-parameter model for nucleotide 
sequences was proposed, that incorporates the different mutation rates.49 More complex algorithms 
are the Felsenstein model and the Hasegawa-Kishono-Yano model, which assume both, the different 
frequencies of nucleotides and the different rates of mutation type.49  

For amino acid sequences there are separate substitution models. The simplest model is the Bishop-
Friday model that does not incorporate different amino acid frequencies and different substitution 
rates.49 More complex models are Dayhoff’s model, leading to PAM (Percent accepted mutation) and 
Henikoff’s model, leading to BLOSUM (Blocks substitution matrix).49 68 69 Both are substitution 
matrices used for similarity measurements during alignment of protein sequences that represent all 
possible exchanges of amino acids. Next to the mutation rates, they incorporate the relative 
frequency of amino acid pairs estimating the evolutionary likelihoods of conservations and mutations 
of residues in amino acid sequences.49 However, BLOSUM are mostly used for database searches, as 
the approach perform better in alignments and homology searches than PAM, while PAM is usually 
used for phylogenetic relations.69  

3.5.3. Tree Construction 
The final phylogenetic tree is inferred based on the multiple sequence alignment. There are two 
methods applicable: The distance-based method and character-based (discrete) method.  

The first class, distance-based methods, are based on cluster algorithms producing distance matrices 
to estimate the evolutionary distance. As an adjustment of the received distances, the previous 
determined evolutionary model is used. The most common examples here are neighbour joining (NJ), 
Unweighted Pair Group Method with Arithmetic mean (UPGMA), the least squares, and the 
minimum evolution methods. Among them, UPGMA and NJ method are the most common ones. 
Both works quite similar; they are clustering procedures, constructing clusters (UPGMA) or distance 
matrices by Hamming distance (NJ) at each step yielding the final phylogenetic tree. However, as 
UPGMA is based on the molecular clock hypothesis, it is not often used today.70 Furthermore, despite 
their advantages to be very fast, applicable for close entities, and computationally efficient, these 
methods also undermine evolutionary relationship of distant sequences, e.g., NJ lacks information 
when sequences are converted into distances.66 71 72  

The second class for tree construction, the discrete method, involves maximum parsimony (MP) and 
maximum likelihood (ML) methods utilizing the sequences themselves rather than their pairwise 
distance. Unlike distance-based methods, character-based methods use evolutionary models at all 
stages during the tree-building process. Maximum parsimony assumes that the simplest tree is the 
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most plausible one, using the smallest number of evolutionary changes needed by one sequence to 
convert to another. It therefore assumes, that change over evolutionary times is improbable, which is 
considered as wrong.73 Also, maximum parsimony can perform quite poorly when the branch lengths 
vary.66 Furthermore, the more taxa for reconstructing the phylogenetic tree are used, the more tree 
topologies become possible.74 To overcome these disadvantages, Maximum likelihood was 
developed, which is a statistical method using the given data to determine the probability of 
substitutions to construct the phylogenetic tree with the most probability that the selected 
evolutionary model is predicting.73 It is a method, that can be evaluated, and it is able to give insights 
into sequence evolution. However, it is computationally demanding and can be therefore quite 
slow.49 71 72 A further development is Randomized accelerated maximum likelihood (RAxML), a fast, 
maximum likelihood tree search algorithm (see 3.5.3.1 RAxML).75 Yet these approaches have one 
disadvantage; they can miss the global optimal tree.66 

One of the first multiple sequence alignment and tree construction tool was Clustal, creating 
independently pairwise alignments calculating all distances between sequence pairs.58 While, in the 
original Clustal programs, initial guide trees were used to establish the multiple alignment using 
UPGMA, ClustalW (“W” for “weights”), developed in 1994, use neighbour-joining methods and 
comprise weight matrices which depend on the estimated evolutionary sequence history.76 77 Current 
Clustal programs derive from that 1994’ ClustalW and have been amended and added to many 
times.77 Since then, other more improved alignment tools such as MUSCLE, t-Coffee and MAFFT were 
developed, which perform iterated alignment steps to assure its accuracy.58 Today, three types of 
Clustal programs exist: the classical tools ClustalX and ClustalW, and an optimized, faster and 
scaleable one, ClustalΩ.78 

As the Clustal programs are not freely available, the European Molecular Biology Open Software 
Suite (EMBOSS) was established, providing free open-source software analysis packages, covering 
applications for e.g., sequence alignments, identification of protein motifs or rapid database 
searching with sequence patterns. It also provides multiple sequence alignment by ClustalW using 
the EMBOSS application EMMA, which is a property of the program that was evaluated during this 
thesis.79 80 

3.5.3.1 RAxML 
Maximum likelihood methods have one big disadvantage: they come with high computational costs, 
depending on the thoroughness of the search. Hence, randomized accelerated maximum likelihood 
(RAxML) a significantly faster search algorithm based on maximum likelihood for high performance 
computing was developed. Its focus is on the computation of large phylogenetic trees with over 1000 
taxa, starting with building an initial parsimony tree using stepwise addition for tree building.74 75 
Stepwise addition, a method attaching new sequences on three starting sequences yielding an 
optimum at each step, has two main advantages; firstly, it is fast, and secondly, later steps allow the 
reversion of earlier pairing decisions.66 Disadvantages are that it solely yields one tree, which often 
has no global optimum, and it is not as fast as neighbour-joining.66 The phylogenetic tree is optimized 
by iterated subtree rearrangements, which are repeated until no better topology is found. Today’s 
RAxML supports not only DNA and protein data, but also RNA and binary, multi-state morphological 
data. It also offers four different bootstrapping methods and several post-analysis functions, yielding 
a robust tree.75 

3.5.3.2 Bootstrap 
Bootstrapping is a nonparametric, resampling method for inferring uncertainty for phylogenetic trees 
which was first introduced by Felsenstein in 1983.72 81 In this connection, the original data are 
randomly sampled and replaced, receiving bootstrapped values, which are then compared to the 
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original estimates. If a bootstrapped tree is different to the original tree, it can be assumed that the 
underlying data have weak evolutionary signals, and vice versa.72 Though, it is not a test on how 
reliable the tree is, but how stabile it is.81 

Other resampling methods are cross-validation, jackknifing, which is also called “leave n out” 
procedure, and Bayesian simulation.72 82 

3.5.4 Inferring Co-evolution 
In 1959, Demerec and Hartman postulated that gene clusters will not be separated by natural 
selection as they confer an evolutionary advantage for their host organism.83 Hence, the comparison 
of two or more evolutionary trees is an important aspect for inferring co-evolution among organisms 
and deciphering geographical areas. To achieve this, different metrics can be distinguished 
computing the dissimilarity between two phylogenetic trees.57 They can be divided into two groups, 
firstly, counting the minimum number of operations required to transform one phylogenetic tree 
into another tree, e.g., nearest neighbour interchange (NNI) or subtree-prune-regraft (SPR) 
distances. The second group include distances in which the information of two phylogenetic trees is 
split into sets. Those sets are then compared, and their similarity is measured. Such methods include 
the Robinson-Foulds and the Quartet distances.57 84 However, all these algorithms share one main 
disadvantage, namely leaves are compared to only one leaf of the other tree, and they, hence, are 
unable to deal with trees that contain gene duplication or gene loss.85 This means that only 11 to 37% 
of the fungal genomes are accounted with these methods.85  

An alternative is TreeKO algorithm, which measures the number of inferred duplications and losses 
events by using backward selection (also called pruning, or decomposition).85 The similarity between 
pruned trees is calculated using the RF distance formula, yielding a so-called strict distance.85 Hence, 
the strict distance is a weighted RF penalizing gene duplications and gene losses, which is most 
appropriate when searching for protein families with a similar evolutionary history.85  

The evaluated program in this thesis uses a TreeKO algorithm to automatically calculate the distances 
of the computed phylogenetic trees. One goal of this thesis was to range these distances by using the 
data from the manual evaluation.  

3.6 Multivariate Statistics 
When using basic statistics, usually univariate data is applied, utilizing only one dependent variable. A 
dependent variable is the input variable which depends on other, independent variables. For 
example, when investigating the dose effect of a substance on the frequency of symptoms, the dose 
is the dependent and the frequency of symptoms is the independent variable.86 

However, natural behaviour is usually not described by only one input variables, but by a multitude 
of variables. Such methods and algorithms are called multivariate statistics. A special case is bivariate 
statistics comprising two variables, yielding the relationship between them.87 

In the following sub chapters, the methods used in this thesis are described.  

3.6.1 PCA 
Principal component analysis (PCA) is one of the most popular multivariate statistical approach 
allowing the examination of the relationship among variables explaining their variability as much as 
possible by linearly combining them. The goal of a PCA is to represent similarity patterns by 
extracting the most important information. In a pre-processing step, the data are centred and either 
a covariance matrix by dividing all elements with the root of the observations or a correlation matrix 
by standardizing the data is established. During the analysis, the variables are linearly combined to 
new orthogonal variables called principal components based on singular value decomposition (SVD). 
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SVD allows an optimal approximation of a matrix by reducing the dimensionality yielding a second 
matrix comprising the principal components. On a geometrically view, a linear combination of a two-
dimensional data point comprising a x and a y value represents its new definition by other lines at 
any angle from any direction receiving new values x’ and y’. For a set of data points, the variability is 
summarized by the standard deviation and then maximized by increasing the standard deviation to a 
maximum. The whole process is called projecting a data point. The new values, called factor scores, 
are therefore projections of the original observations.82 88  
But PCA are not only used for descriptive but also for predictive purposes, where the values of the 
novel observations shall be estimated by the PCA model. For such cases, an evaluation is needed by 
using resampling techniques (e.g., bootstrapping, or cross-validation).82  
 
One main disadvantage regarding PCA, but also other established methods, like partial least squares 
(PLS), is the need of complete datasets, which is seldom the case in research. Hence, missing data 
must be eliminated, or estimated by various methods. This is a crucial step, as outliers have a high 
impact on PCA results.88 89  
A popular technique is the NIPALS algorithm based on linear regression, which can be applied on 
random missing data patterns.90  
Another method is the non-parametric MissForest algorithm, a random forest approach, which can 
handle any type of data, even mixed data. While the original random forest algorithm requires 
dependent variables without missing data for training, MissForest uses the given observations to 
directly predict the missing values.89 
 
In this thesis, a MissForest algorithm was used to perform PCA.  
 
3.6.2 PLS DA 
As the name implies, Partial least squares-discriminant analysis (PLS-DA) is an algorithm used for 
classification of multivariate data, combining dimensionality reduction and discriminant analysis. It 
involves several mathematical steps facilitating predictive and descriptive modelling as well as 
discriminative variable selection.91  
To classify datasets, categorical variables of the training set must be recoded into continuous 
variables first. In this junction, two algorithms, PLS1-DA and PLS2-DA, can be distinguished: The 
former is used for binary modelling, while the latter is applied on multi-class problems.  
Next, the covariance between input and output variables is maximized and subsequently scores and 
loadings are determined. These data are used to estimate the regression coefficient receiving the 
first PLS component. This procedure is repeated as often as PLS components are required for the 
desired model using the last calculated residuals as new input and output variables. The outcome is a 
regression coefficient matrix as well as all needed PLS components that can be applied on a test set. 
The classification of the test set allows its description or prediction.91 
 
3.7 FunOrder 
FunOrder, short for fungal cluster border prediction based on computational molecular evolution, is 
a program written in python and bash by Mag.pharm. Gabriel A. Vignolle. It works with amino acid 
sequences from GenBank® files creating phylogenetic trees using a manually created fungal 
database. Its goal is to predict the genes involved in the biosynthesis of a fungal secondary 
metabolite and by this facilitate the molecular research for novel biosynthetic gene clusters.  

3.7.1 Subprograms 
FunOrder is a program for detection of the genes necessary for the biosynthesis of a specific 
compound within a BGC and further for cluster border discrimination using RAxML and EMBOSS.  

In the first step FunOrder extracts the amino acid sequences and split them from a GenBank® file into 
single FASTA files. Next, a sequence alignment for each sequence is done using blastp on a manually 
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created fungal database. This database contains 134 proteomes over the Ascomycota tree of life and 
2 basidiomycetes. The latter are used as an outgroup. A remote BLAST search can be performed if 
desired. The top 20 hits for each sequence are listed and a multiple sequence alignment by means of 
EMMA, a ClustalW wrapper from EMBOSS, is done creating dendrograms. Subsequently, the 
phylogenetic trees are constructed using RAxML. Furthermore, strict distances and speciation 
distances between all generated trees are calculated via TreeKO algorithm. However, these distances 
were not used during evaluation. 

3.7.2 Aim  
The aim of this project was to evaluate the program fungal cluster border prediction based on 
computational molecular evolution (=FunOrder) and analyse its calculated phylogenetic manually, 
based on validated methods. During the analysis, the goal was to answer the following questions:  

1. Has FunOrder the ability to predict positive genes correctly? 
a. If Yes, can it differentiate between core genes and adjacent genes? 

2. Can FunOrder differentiate between positive and negative controls?  

The evaluation data were then used to define the borders of the co-evolutionary distances calculated 
by the TreeKO algorithm of FunOrder to be able to use the program. The project was therefore a 
possibility to define the borders of co-evolution between protein families within BGCs in fungi. As the 
distances calculated by FunOrder were not handed over to the writer, the evaluation was executed 
as a blind study.  

As FunOrder is a program that predicts genes involved in the biosynthesis of secondary metabolites 
like pharmaceuticals, FunOrder can be used in the drug discovery as well as in other research topics 
regarding secondary metabolites from fungi. 
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4. Materials and Methods 
4.1 FunOrder 
Fungal cluster border prediction based on computational molecular co-evolution (FunOrder) is a 
program written by Mag.pharm. Gabriel A. Vignolle in the programming languages python, perl 
regular expressions, and bash. Based on a GenBank® file (.gbk or .gb) as input, the amino acid 
sequences are extracted and converted into fasta files using the package biopython and the program 
“convert genbank to fasta” by Cedar McKay and Gabrielle Rocap, University of Washington.92 The 
converted fasta files are then split into single fasta files, that are called queries hereinafter, by the 
emboss function seqretsplit containing one sequence each.80 93 A sequence similarity search using 
blastp of the package BLAST65 for each fasta file is carried out and the top 20 hits are outputted. The 
used database for the search contained 134 proteomes over the Ascomycota tree of life and 2 
basidiomycetes and was manually created by Mag.pharm. Gabriel A. Vignolle. Duplicated sequences 
in this database were removed prior using. A further remote sequence similarity search using BLAST 
in the database from NCBI65 94 remains optional. Sequence duplications originating from using a 
query sequence that also occurs in the database were removed using a custom perl script. The 
obtained hits are then aligned against the query sequence using the multiple sequence alignment 
function emma95 from the emboss package80 93  yielding dendrograms and a multiple sequence 
alignment. To create the final phylogenetic tree, a rapid bootstrap analysis and a search for the best-
scoring maximum likelihood tree using the RAxML package74 75 is executed. Finally, the phylogenetic 
trees are compared using the free treeKO software by Marina Marcet-Houben and Toni Gabaldon85 
written in python, where strict distances and speciation distances between all generated trees are 
calculated.  

4.2. Positive controls 
A set of 29 experimentally verified positive controls were obtained from literature research. These 
controls were restricted to biosynthetic gene clusters (BGC) with defined cluster borders, tested by in 
vitro methods such as gene inactivation or heterologous recombination. All sequences except of four 
derived from Minimum Information about a Biosynthetic Gene cluster (MIBiG) database. Two of the 
remaining four sequences were defined by their locus tags based on their respective literature, one 
sequence was downloaded directly from GenBank®. The last sequence was received using a 
sequence similarity search in the proteome of the fungus and each gene sequences were 
downloaded separately from GenBank®. FunOrder was then fed with the positive controls and tree 
comparisons were made according to chapter 4.4. Tree comparison. Because of the high number of 
genes and species-to-query-similarities within two trees, not all genes within a cluster could be 
compared. Therefore, nearly all positive clusters had missing data. To receive a meaningful 
evaluation, genes necessary for the biosynthetic pathway according to the respective literature were 
specified. Phylogenetic trees of those genes were compared. Furthermore, core genes like polyketide 
synthases (PKS) and non-ribosomal peptide synthetases (NRPS) were compared to all genes in their 
respective cluster.  

4.3. Negative controls 
Two groups of negative controls were used for evaluation: 42 synthetic BGCs and 60 random BGCs, 
which are defined in the following subsections.  

4.3.1. Random BGCs 
To establish the random BGCs, various amino acid sequences of random sizes were randomly 
sampled from fungal proteomes of the database and then randomly concatenated. FunOrder 
calculated multiple phylogenetic trees for each cluster which were used as negative controls for 
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further evaluation. Tree comparison was made according to chapter 4.4. Tree comparison. Within 
each random cluster all genes were compared with each other. 

4.3.2. Synthetic BGCs 
Synthetic BGCs were completely randomly generated by creating ATGC strings and put together to 
generate a DNA sequence. In a further step, those in-silico nucleotide sequences were translated into 
an amino acid sequence. FunOrder analysed those synthetic BGCs, but no phylogenetic trees from 
synthetic controls could be established.  

4.4. Tree comparison  
The phylogenetic trees computed by FunOrder, representing each a gene within a cluster, were 
examined, and compared using the online tool phylo.io.96 As the coevolutionary linkage was of 
interest, similar leaves between two trees were determined. No similar leaves indicated that the 
respective genes did not share any evolutionary traits. To receive a meaningful evaluation, the 
following parameters were examined: branch length differences, node differences, and branch 
colours between the leaves and query, and the overall topologies of both trees. The branch lengths 
were measured with a ruler, converted into the distances using the caption of phylo.io96 and the 
differences were then calculated. The nodes between a species and the query were counted and 
subtracted with the number of nodes of the second phylogenetic tree, yielding the node differences. 
The branch colour was a tool from phylo.io96 that described the similarity to the most common node. 
Other than the nodes and branch lengths, the branch colours were defined as a categorical class 
were 0 to 40% of similarity was represented as “yellow”, 40 – 66,6% was defined as “green” and the 
rest was regarded as “blue”. The topologies of two phylogenetic trees were specified using phylo.io96 
and compared in five different ways, that can be found in Table 4.1.  

Table 4.1: Definition of the parameter “topology”. To specify the coevolutionary linkage between two genes, the topologies 
of their phylogenetic trees were compared using the tool phylo.io96, next to the branch lengths, nodes, and branch colours. 
During the evaluation, five different ways to define the topology comparison were used: same, very similar, similar, 
somewhat similar, and different.  

Topology Definition 
same min. 8 similar species, same topology with only little exceptions, colour 70-100% 
very similar min.5 similar species, similar topology, colour min. 70%  
similar Δdistance < 2, colour min. 50% 
somewhat 
similar 

either 1 or 2 similar species with Δdistances < 0.5 and Δnodes <3, or more species but 
only little similarities  

different no similarities or only 1 similar species 
 

Using the conversion explained in Table 4.2, the parameters were converted into numerical data to 
enable a statistical evaluation. 
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Table 4.2: Caption for the conversion of the parameters to receive numerical data only. The measures were used to calculate 
the manual evaluation measures (MEMs) and average manual evaluation measures (aMEMs). ΔDistance, branch length 
distances between a leave and the query compared to another phylogenetic tree; ΔNodes, node differences between a leave 
and the query compared to another phylogenetic tree; Colour, branch colours according phylo.io96 between a leave and the 
query compared to another phylogenetic tree; topology, comparison of the topologies of two phylogenetic trees 

ΔDistance ΔNodes Colour Topology Measure 
0 – 0.5 0 blue same 3 
0.5 - 1 1 -  very similar 2.5 
1 – 1.5 2 green Similar 2 
1.5 - 2 3 - somewhat similar 1.5 

> 2 > 4 yellow different 1 
 

Average pairwise distances of all four measures were determined. If the trees contained more than 
two similar leaves, another average pairwise would be calculated, called manual evaluation measure 
(MEM). These MEMs were put together in matrices to evaluate the coevolutionary linkages between 
genes and to decide, whether FunOrder could predict positive genes correctly and whether it could 
differentiate between core genes and adjacent genes. The matrices consisting of the MEMs were 
therefore used to calculate heatmaps, dendrograms and principal component analysis (PCA). 

To evaluate whether FunOrder can differentiate between positive and negative controls and predict 
biosynthetic gene clusters correctly, further average pairwise distances per cluster of the previously 
obtained MEMs were determined, called average manual evaluation measures (aMEM). They were 
used for building up a confusion matrix and a receiver operating characteristics (ROC) curve.  

4.5. Statistical Evaluation 
Statistical evaluation of the manual evaluation measures (MEMs) was made in RStudio, Version 4.0.2. 
The R script used for evaluation is attached in the supplement (Supplement 9.1 and Supplement 9.2.) 
The data was imported from .csv sheets. The column names were defined, and matrices applied 
numerically using the R function matrix. Because the rownames were removed during the import, 
the columnnames where set as rownames. From these prepared matrices, heatmaps were 
constructed applying the R functions heatmap.2 from the package gplots.97 To eliminate missing data 
in the positive controls for further plots, a random Forest approach (MissForest package) was used. 
Then, datasets were scaled using the function scale, and next Euclidean distance applying the dist 
function from the package stats were computed on both, scaled and unscaled data. Subsequently, a 
Ward clustering was executed using the hclust function of stats yielding the final dendrograms. 
Within the hclust function, two different methods were applied; ward.D which did not implement 
Ward’s clustering criterion from 1963, and ward.D2 which implemented that criterion. With the 
latter one the dissimilarities were squared before cluster updating.98 In the end, four different 
dendrograms with the parameters scaled or unscaled data, and ward.D or ward.D2 approach were 
established for negative controls. Positive controls further included dendrograms with missing data 
or with approximated data. The principal component analysis was computed using the datasets 
approximated by MissForest approach and the pca function from the package mdatools.99  

To decide whether FunOrder can differentiate between positive and negative controls, the average 
manual evaluation measures were used to establish a confusion matrix. Because of the high amount 
of missing data in the positive controls, two different thresholds were used: 1.5 for negative controls 
and 2.0 for positive controls. According to the thresholds, true negatives (TN), and true positives (TP), 
as well as false negatives (FN), and false positives (FP) were determined to establish the confusion 
matrix and to calculate the performance metrics. The formulas were listed in Table 4.3. 
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Table 4.3: Formulas of the respective performance metrics based on the true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN). These metrics were used to analyze the performance of the classification.100  

Performance metrics Formula 

True positive rate (Sensitivity) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 [%] =  ∑ 𝑇𝑃∑ 𝑇𝑃 + ∑ 𝐹𝑁 ∗ 100 

True negative rate (Selectivity) 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 [%] = ∑ 𝑇𝑁∑ 𝑇𝑁 + ∑ 𝐹𝑃 ∗ 100 

False positive rate (FPR) 𝐹𝑃𝑅 [%] = ∑ 𝐹𝑃∑ 𝑇𝑃 + ∑ 𝐹𝑁 ∗ 100 

False negative rate (FNR) 𝐹𝑁𝑅 [%] = ∑ 𝐹𝑁∑ 𝑇𝑁 + ∑ 𝐹𝑃 ∗ 100 

Accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [%] = ∑ 𝑇𝑃 + ∑ 𝑇𝑁∑ 𝑇𝑃 + ∑ 𝐹𝑃 + ∑ 𝑇𝑁 + ∑ 𝐹𝑁 ∗ 100 

Positive predicted value (Precision) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 [%] = ∑ 𝑇𝑃∑ 𝑇𝑃 + ∑ 𝐹𝑃 ∗ 100 

Negative predicted value (NPV) 𝑁𝑃𝑉 [%] = ∑ 𝑇𝑁∑ 𝑇𝑁 + ∑ 𝐹𝑁 ∗ 100 

F1 score 𝐹1[%] = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 100 

 

A further performance metrics was calculated to evaluate the quality of the classification, namely the 
Matthews correlation coefficient (MCC):  

𝑀𝐶𝐶 = ∑ 𝑇𝑃 ∗ ∑ 𝑇𝑁 − ∑ 𝐹𝑃 ∗ ∑ 𝐹𝑁√(∑ 𝑇𝑃 + ∑ 𝐹𝑃)(∑ 𝑇𝑃 + ∑ 𝐹𝑁) (∑ 𝑇𝑁 + ∑ 𝐹𝑃)(∑ 𝑇𝑁 + ∑ 𝐹𝑁)100
 

The ROC curve was established in Microsoft Excel for Microsoft 365 MSO 64-bit using the confusion 
matrix and the previously calculated sensitivity and false positive rate (FPR).  

To verify the results, a Partial least discriminant analysis (PLS-DA) was established in DataLab101, 
Version 4.0, based on the raw data for branch lengths and node differences, topology, and branch 
colours. As the topology and branch colours belonged to a categorical class, they were converted to 
numerical data first (see Table 4.2).    
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5. Results 
5.1 Positive controls 
The 30 positive BGCs were restricted to clusters verified experimentally, only. Most of them were 
obtained from MIBiG. The following four positive control BGCs were obtained differently:  

• Sorbicillin BGC, T. reesei 
• Xanthocillin BGC, A. fumigatus 
• Fumagillin BGC, A. fumigatus 
• Lovastatin BGC, A. terreus 

Sorbicillin BGC (Positive Control 27) was downloaded from GenBank®, Accession number GL985056.  

Xanthocillin and fumagillin BGC were defined by their locus tags in literature.102 103 These locustags 
were searched in NCBI and the obtained results used for evaluating FunOrder. Both clusters were 
also found in the MIBiG repository.  

A lovastatin BGC missing one of the core enzymes (lovB) could be found in GenBank®, Accession No. 
AH007774.104 A sequence similarity search using BLAST was done for searching the whole cluster 
including lovB in the proteome of A.terreus strain NIH2426, for which the genome was the only one 
that was publicly available.105 All cluster genes could be found in GenBank® separately. Another 
sequence similarity search using the single genes verified the correctness of the acquired BGC. The 
query coverage for almost all found genes resulted in 99-100%, except of ORF12, ORF8 and ORF16. 
ORF12 could not be found in the proteome of A. terreus strain NIH2426. The sequence similarity 
searches of ORF8 and ORF16 yielded a coverage of 95% and 83%, respectively. As the obtained BGC 
from A. terreus strain NIH2426 included the core enzyme lovB, it was used for evaluation. 

The cyclosporine cluster from Tolypocladium inflatum (MIBiG repository BGC0000334)106 found in the 
MIBiG database was redefined in the following as MIBiG cluster. This BGC had no congruence with 
the one described in the literature (Figure 5.2).107  

Figure 5.1: Cyclosporine cluster from Tolypocladium inflatum downloaded from the MIBiG repository BGC0000334106, 
which was redefined as MIBiG cluster. The cluster contained only two sequences: one small gene in grey followed by a 
bigger one in red. The location defines the geographical coordinates of the cluster. The cluster is therefore located in the 
genome between 2841 and 45420 nucleotides (nt) and has a total length of 42560 nt.  
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Figure 5.2: The structure of the cyclosporine biosynthetic cluster according to literature. The core enzyme is a NRPS 
defined as simA gene. All followed genes are renamed according to the core gene by Xiuqing Yang et al. According to 
literature the gene ID for simA is TINF00159, which could not be found in GenBank®.107 

As shown in Figure 5.2 the cyclosporine cluster contained at least 12 genes (simA – simL) and 3 
additional ones with the gene IDs TINF00183, TINF00557, TINF07874.107 The MIBiG cluster however 
included only two genes (Figure 5.1). Next, the gene IDs stated in the publication of Xiuqing Yang, 
2018, were searched in GenBank® but could not be found there.107 Subsequently, the core gene simA 
was found in Uniprot108 and its nucleotide sequence was downloaded from NCBI (Accession number 
AOHE01000194). Notably, the species Tolypocladium inflatum was called differently in various 
papers and databases (Tolypocladium niveum, Beauveria nivea, Trichoderma polysporum).  

To review if the MIBiG cluster (Figure 5.1) was part of the cyclosporine cluster, the received gene 
simA was globally aligned with the MIBiG cluster via EMBOSS Stretcher online.The result suggested 
that the two genes from the MIBiG cluster were only a part of the simA gene that was found in 
Uniprot and therefore do not include the whole BGC. Consequently, the MIBiG cluster was not used 
for evaluation.  

A second cyclosporine cluster from Beauveria felina was found and downloaded from the MIBiG 
repository (Figure 5.3). Notably, the number of genes in this BGC were in line with the research of 
Xiuyang Yang et al.107 

Figure 5.3: Cyclosporine biosynthetic gene cluster from Beauveria felina. The cluster was obtained from MIBiG 
(BGC0001565) and contained 12 genes. Although Xiuyang Yang et al. investigated the cyclosporine cluster in 
Tolypocladium inflatum (also called Beauveria nivea), the number of genes in the BGC from Beauveria felina were in line 
with the literature.109 The location defines the geographical coordinates of the cluster. The cluster is therefore located in 
the genome between 1 and 90396 nucleotides (nt) and has a total length of 90396 nt. 

The new cyclosporine cluster from B. felina (Figure 5.3) was globally aligned using EMBOSS Stretcher 
online with simA gene from T. inflatum and with the MIBiG cluster from T. inflatum, respectively. The 
results verified that simA was part of the BGC from B. felina. 

The BGC from B. felina was subsequently used for a sequence similarity search in the genome of T. 
inflatum yielding a cyclosporine cluster sequence, which was redefined as GenBank cluster. A global 
alignment via EMBOSS Stretcher online suggested that the simA gene was part of the BGC from T. 
inflatum as well. However, since this sequence was not annotated and the genes could not be 
obtained separately, the GenBank cluster could not be used for evaluation.  
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The previously stated results led to the usage of the cyclosporine BGC from B. felina for evaluation, 
whereas the clusters from T. inflatum were dismissed. 

The finally utilized positive control BGCs and their source entries are listed in Table 5.1. 

Table 5.1: Source entries of all used positive controls. “No” referred to the characterized number of the respective 
biosynthetic gene cluster (BGC) used for this thesis. For each BGC an abbreviation was further defined listed in “BGC abbr.”. 
Source entries either corresponded to the accession number in the MIBiG repository (starting with “BGC”) or in the 
GenBank® database. The Lovastatin BGC was received by a BLAST analysis and therefore no source entry is available.  

No BGC BGC 
abbr. 

Source entry 

1 Tetramic acid tas KP8352.02 
2 Mycophenolic acid mpa BGC0000104 
3 Mycophenolic acid mpa2 BGC0001360 
4 Mycophenolic acid mpa3 BGC0001677 
5 Botrydial bot BGC0000631 
6 Leporin B lep BGC0001445 
7 Fumitremorgin ftm BGC0000356 
8 Tenellin ten BGC0001049 
9 Ilicicolin H ili BGC0002035 

10 2-Pyridon-Desmethylbassianin dmb BGC0001136 
11 Xanthocillin xan BGC0001990 
12 Fumagillin fma BGC0001067 
13 Terrein ter BGC0000161 
14 Pneumocandin pne BGC0001035 
15 Fumonisin fum1 BGC0000063 
16 Destruxin dtxs BGC0000337 
17 Paxillin pax BGC0001082 
18 Aflatoxin afl BGC0000008 
19 Pestheic acid pes BGC0000121 
20 Cephalosporin cep BGC0000317 
21 Penicillin pen1 BGC0000404 
22 Penicillin pen2 EF601124.1 
23 Sorbicillin sor1 BGC0001404 
24 Ustiloxin B ust NW_002477245 
25 Lovastatin lov - 
26 Compactin com BGC0000039  
27 Sorbicillin sor2 GL985056 
28 Fumonisin fum2 BGC0000062 
29 Cyclosporine C cyc BGC0001565 

 

Each positive control BGC was examined and genes necessary for the biosynthetic pathway according 
to literature were specified and in the following redefined as necessary genes.34 84 102-105 107 110-173 All 
used positive controls with their necessary genes can be found in Table 5.2.  
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Seven controls contained more genes and therefore more trees were acquired than expected 
according to their respective literature.34 120 121 122 123 125 132 133 139 148 153 157 168 174 In four of the analysed 
clusters, core genes were missing (Table 5.3).  

FunOrder was fed with all positive control BGCs and for each gene within a cluster a phylogenetic 
tree was inferred. Four of the analysed clusters were missing phylogenetic trees after running 
FunOrder (Table 5.3).  

Table 5.3: Additional and missing genes in gbk-files compared to literature and missing trees after running FunOrder. Genes 
marked with an asterisk (*) are core genes according to their respective literature. “BGC No” refers to the characterized 
number of the respective biosynthetic gene cluster.34 107 110 111 113 119 120 121 122 123 125 126 127 128 132 133 134 139 148 153 154 157 160 165 168 

170 174 

BGC No Additional genes Missing genes in file Missing trees 
5 bot6, bot7 - - 
6 gen1, gen2 - gen2 
8 ten1 - - 
9 gene1 - - 

13 - - terI 
14 GL100 

20 - GL10029, GL10046 - GL10050 
- GL10025, GL10046, 

GL10048 
15 - fum20 - 
18 - cypA*, norB* - 
20 - cefEF* - 
21 - orf1 - 
22 - orf20c - 
24 AFLA94900, AFLA94910, AFLA94920 - ustU, ustP1* 
26 - orf12 - 
27 orf118 - orf124, orf126, orf131 sor3* orf126, orf131 
28 - orf20 - 
29 - simC*, simL* - 

 

In three cases (BGC No 6, 14 and 27 in Table 5.3) the missing phylogenetic trees resulted due to 
additional genes, e.g., gen2 for the Leporin B BGC (BGC No 6 in Table 5.3). Furthermore, in the 
Ustiloxin BGC (BGC No 25 in Table 5.3) the genes ustU and ustP1 did not result in phylogenetic trees. 
Notably, both genes have only very small sequences compared to all other genes: 

ustU: MRWRGRMEFKTRGATVWRDGPLTLALRRLAMTSSVVICSHWPRVTCELKINLAPVWEDSCCLLLCAELLMEGRLLGAQFNSASSQTCLYLIDG 

ustP1: MGFSWYGVLLFVQLISSTIVYASDPCAQIDHYVAWGKKQGRNKISGIPGHLAYDVSSMPFRSDLAVKL 

After receiving the phylogenetic trees, for each positive control the core genes and multimodular 
enzymes were defined and their trees were compared with the online visualization tool phylo.io.96 
The tree comparisons were performed as described in chapter 4.4. Tree comparison. The four 
parameters (branch length differences, node differences, topology, and colour) were used to 
calculate an average value of the comparison of two genes within a cluster, called manual evaluation 
measure (MEM). As the clusters contained more than two genes, the MEMs within a cluster were 
averaged yielding an average manual evaluation measure (aMEM). Because of the high number of 
genes and species-to-query-similarities within two trees, not all genes within a cluster could be 
compared. To receive a meaningful evaluation the previously defined necessary genes needed for 
secondary metabolite production were compared with each other. To further reduce the number of 
comparisons, another declaration was made: If a biosynthetic pathway was suggested or defined in 
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literature, received trees of associated genes were compared to trees of these genes that were 
followed by them according to the pathway, only. However, backbone producing enzymes, like PKS 
and NRPS, were compared to all genes within a cluster.  

This procedure resulted in a high amount of missing data in nearly all clusters (Table 5.4), despite the 
great number of comparisons made (910 of 2588).  

Table 5.4: Obtained tree numbers, done comparisons compared to total number of potential comparisons, average manual 
evaluation measure for positive genes due to literature (aMEM core) and for all compared genes (aMEM total) in the 
positive controls, respectively. “No” refers to the characterized number of the respective biosynthetic gene cluster (BGC) 
used for this thesis. In the column labelled “BGC” the abbreviations of the clusters according to Figure 5.1 were used.  

Positive Controls 
No BGC Trees Possible 

comparisons 
Done 

Comparisons 
Missing 

Comparisons 
aMEM 

core 
aMEM 
total 

1 tas 8 28 9 19 2.52 2.47 
2 mpa 8 28 19 9 2.15 2.16 
3 mpa2 7 21 16 5 2.00 2.02 
4 mpa3 7 21 16 5 2.35 2.25 
5 bot 7 21 11 10 2.28 2.36 
6 lep 10 45 16 29 2.35 2.28 
7 ftm 9 36 24 12 1.63 1.78 
8 ten 5 10 6 4 2.46 2.11 
9 ili 6 15 7 8 2.38 2.25 

10 dmb 4 6 6 0 2.40 2.35 
11 xan 7 21 14 7 1.91 1.90 
12 fma 15 105 30 75 1.66 1.90 
13 ter 10 45 24 21 1.62 1.71 
14 pne 28 378 102 276 1.57 1.51 
15 fum1 17 136 65 71 2.25 2.30 
16 dtxs 21 210 57 153 2.70 2.03 
17 pax 8 28 22 6 2.24 1.90 
18 afl 24 276 60 216 2.06 2.09 
19 pes 18 153 31 122 1.91 1.87 
20 cep 7 21 12 9 2.27 2.24 
21 pen1 15 105 15 90 2.53 2.13 
22 pen2 15 105 15 90 2.46 2.14 
23 sor1 7 21 14 7 2.35 2.28 
24 ust 19 171 99 72 2.21 1.90 
25 lov 17 136 33 103 2.28 1.80 
26 com 9 36 26 10 1.86 2.00 
27 sor2 13 78 35 43 2.12 2.26 
28 fum2 23 253 89 164 2.21 2.20 
29 cyc 13 78 35 43 1.77 1.51 

 

The manual evaluation measures (MEMs) are listed in the supplement (Supplement 9.3 - Supplement 
9.31). As previously defined, the MEMs were averaged for each cluster, yielding the so-called average 
manual evaluation measure (aMEM, see Table 5.4). The MEMs and aMEMs were applied to further 
statistical evaluation, like heatmaps and dendrograms, as well as a manually created confusion 
matrix and a receiver operating characteristic (ROC) curve. The latter two were both compared to a 
partial least squares discriminant analysis (PLS DA) done using the raw data. Because of the missing 
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data a higher threshold of the aMEM for the positive controls (2.0) than for the negative controls 
(1.5) was used for the confusion matrix and the ROC curve. 

5.2 Negative controls 
The 42 synthetic BGCs analysed with FunOrder did not output any phylogenetic trees. They were 
therefore not included in the statistical evaluation.  

Phylogenetic trees for each of the 60 random BGC were obtained, which were therefore used as 
negative controls for further analysis. The comparisons of the phylogenetic trees were performed as 
described in chapter 4.4. Tree comparison. The MEMs are listed in the supplement (Supplement 
9.32). All negative control BGCs with their respective number of phylogenetic trees, completed 
comparisons and aMEMs are shown in Table 5.5. 

Table 5.5: Obtained tree numbers, done comparisons, and calculated average manual evaluation measure (aMEM) for each 
random control. “No” refers to the characterized number of the respective biosynthetic gene cluster used for this thesis.  

Random Cluster 
No Trees Comparisons aMEM 

1 5 10 0.4 
2 4 6 1.2 
3 7 21 1.3 
4 4 6 0.5 
5 4 6 0.9 
6 3 3 1.2 
7 4 6 0.8 
8 3 3 1.4 
9 7 21 1.2 

10 3 3 0.8 
11 7 21 1.0 
12 5 10 1.0 
13 5 10 0.4 
14 6 15 0.4 
15 3 3 0.5 
16 3 3 0.8 
17 4 6 0.9 
18 7 21 0.9 
19 6 15 0.9 
20 5 10 0.7 
21 3 3 1.1 
22 5 10 1.1 
23 4 6 1.2 
24 7 21 0.9 
25 8 28 1.0 
26 7 21 0.6 
27 5 10 1.0 
28 6 15 0.8 
29 7 21 1.0 
30 3 3 2.1 
31 8 28 0.8 
32 3 3 0.5 
33 5 10 0.7 
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34 5 10 0.5 
35 5 10 0.7 
36 5 10 1.1 
37 4 6 0.5 
38 4 6 1.0 
39 5 10 1.1 
40 6 15 0.4 
41 5 10 1.2 
42 3 3 0.5 
43 4 6 1.0 
44 7 21 0.6 
45 7 21 0.7 
46 8 28 1.1 
47 5 10 0.6 
48 5 10 0.9 
49 5 10 1.3 
50 4 6 1.5 
51 6 15 0.7 
52 6 15 0.7 
53 5 10 0.7 
54 5 10 0.7 
55 5 10 0.7 
56 7 21 0.9 
57 8 28 0.9 
58 4 6 1.3 
59 5 10 0.7 
60 2 1 1.5 

 

As shown in Table 5.5, most of the aMEMs were lower than 1.5. A threshold of 1.5 was therefore 
used for the confusion matrix and the receiver operating characteristic (ROC) curve. 

5.4 Statistical Evaluation 
5.4.1 Manual evaluation measure (MEM) 
5.4.1.2 Positive controls 
The manual evaluation measures (MEMs) for all positive controls were calculated according to 
chapter 4.4. Tree comparison and with them matrices were assembled (Supplement 9.3 - 
Supplement 9.31). These matrices were used to visualize the data with heatmaps, dendrograms and 
for establishing a principal component analysis (PCA). As the MEMs represented the similarity 
between two phylogenetic trees of genes within a biosynthetic gene cluster (BGC), the evaluation 
was done to analyse whether there was a similar coevolution between cluster genes. Due to the 
missing comparisons, a Random forest algorithm was used to infer the missing data points in the 
matrices from the analysed comparisons to enable the calculation of PCAs. The approximated data 
were also used for the computation of the dendrograms and heatmaps. Before analysis, the data was 
scaled, and two different wards approaches were applied yielding four divergent datasets. The 
dendrograms were then calculated for all parameters (without and with missing data, scaled and 
unscaled data as well as both wards approaches). In total, 58 heatmaps, 232 dendrograms and 29 
PCAs of the positive controls were calculated.  
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The differently computed dendrograms were compared with each other and no differences between 
the two ward’s approaches could be determined. Furthermore, no differences in the clustering 
between scaled and unscaled dendrograms were apparent. Discrepancies were only visible for 
dendrograms that were approximated by the random forest algorithm when comparing with the 
ones with missing data (Supplement 9.33 - Supplement 9.61). However, as 28 of 29 matrices included 
more than 20% missing data, the PCA results were in question. Thus, the PCA results were critically 
discussed and a higher focus on the heatmaps and dendrograms without approximated data were 
set during evaluation.  

In the following subchapters the MEMs and their statistical analysis of eleven of the 29 positive 
controls were introduced in more detail. Contrary to the estimation, eight positive controls exhibited 
low average manual evaluation measures (aMEM). They were therefore also presented in the 
following. The plots of the remaining controls were listed in the supplement (Supplement 9.33 - 
Supplement 9.61).  

The manual evaluation of FunOrder was used to range the distances calculated by FunOrder using 
the TreeKO algorithm. To review if the manual evaluation made sense, an additional BGC (fusaric acid 
BGC from Fusarium fujikoroi) was added and automatically analysed by FunOrder itself. This time the 
distances calculated by FunOrder were used for the evaluation of the biosynthetic gene cluster. The 
results were attached in the supplement (Supplement 9.63).  

1. Mycophenolic acid BGC from Penicillium roqueforti and Penicillium brevicompactum (mpa) 

Mycophenolic acid is a natural antibiotic, which is also used as immunosuppressive drug for organ 
transplantations and autoimmune diseases.173 It inhibits the production of inosine-5’-
monophosphate dehydrogenase (IMPDH), which is a rate-controlling enzyme in the guanosine-5’-
monophosphate (GMP) biosynthesis that converts inosine-5’-monophosphate (IMP) to xanthosine-
5’-monophosphate (XMP). This is an important reaction in almost all living organisms. Hence, the 
producing organism will need a resistance gene against mycophenolic acid, which was found to be 
produced by the gene mpaF.156 

Three different Mycophenolic acid BGCs were analysed. The first two BGCs were derived from the 
species Penicillium roqueforti (Positive control 03 and positive control 04) and the third from 
Penicillium brevicompactum (Positive control 02). These three BGCs were downloaded from the 
MIBiG repository and served as a first exemplary positive control analysis. The main difference in the 
clusters were that P. brevicompactum had two single genes for mpaD and mpaE, while in P. 
roqueforti the genes for mpaD und mpaE came together as mpaDE.  

The illustrated biosynthetic pathway for P. brevicompactum in Figure 5.4 was used as a basis for the 
analysis of the three Mycophenolic acid BGCs. 
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Figure 5.4: Biosynthetic pathway of the production of mycophenolic acid (MPA, 1) in P. brevicompactum according to 
Zhang et al., 2019.173 The gene mpaC uses Acetyl-CoA, Malonyl-CoA and S-adenosyl-L-methionine (SAM) to produce the 
first intermediate 5-methylorsellinic acid (5-MOA, 2) which is then converted to 3,5-dihydroxy-7-(hydroxymethyl)-6-
methylbenzoic acid (DHMB, 3) by the C8 hydroxylation activity of mpaD. Subsequently, 3,5-dihydroxy-6-methylphtalide 
(DHMP) is produced by mpaE. According to literature the products of mpaD (a cytochrome P450 domain) and mpaE (a 
hydrolase domain) are fused together and represented as mpaDE’. The next steps in the pathway are proposed only. 
DHMP is farnesylated using farnesyl pyrophosphate (FPP) and the gene mpaA to 4-farnesyl-3,5-dihydroxy-6-
methylphtalide (FDHMP, 5). According to Zhang et al. (2019), all further steps until the production of 
demethylmcyophenolic acid (DMMPA, 6) are speculated, e.g., the production of 5-O-methyl-FDHMP (MFDHMP, 7). The 
last step includes the O-methylation of DMMPA by mpaG yielding the final product (MPA).173 

Genes, which follow the previous one in the pathway, were compared to each other. For example, 
the gene mpaA was checked against mpaDE (or mpaD and mpaE, respectively), mpaG and mpaB. As 
mpaF was identified to be a self-resistance gene135, it was compared to all genes in the cluster. The 
core gene mpaC produces a polyketide synthase (PKS).135 Like mpaF, mpaC was also compared to all 
genes in the cluster.   

The resulting MEMs were assembled to matrices and heatmaps with and without missing data were 
calculated to show the evolutionary linkage between biosynthetic cluster genes. (Figure 5.5) 
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Figure 5.5: Heatmaps of the manual evaluation measures (MEMs) with missing data (left) and without (right) for control 
02 (top), control 03 (middle) and control 04 (bottom). The missing data were approximated by a random forest approach 
(MissForest package in RStudio), yielding complete matrices and therefore complete heatmaps. The colour key on the 
upper left side of each heatmap illustrated the MEM value range between 0 and 3, where 3 implied a coevolutionary 
linkage between two genes and 0 did not. According to the MEM values, dendrograms were assigned automatically to 
the heatmaps, clustering the genes. Positive control 02 referred to the cluster from P. brevicompactum (MIBiG 
BGC0000104), control 03 and 04 derived from P. roqueforti. While control 03 referred to MIBiG BGC0001360, control 04 
referred to MIBiG BGC0001677.  

According to literature, the gene mpaG, a S-adenosyl-L-methionine-dependent O-methyltransferase, 
catalyzed the last step of the synthesis of the final product, the mycophenolic acid (MPA).172 As 
previously stated, mycophenolic acid is an antibiotic, for which the organism needed the resistance 
gene mpaF.156 A co-evolutionary linkage between mpaG and mpaF therefore appeared to be 
appropriate. In fact, the calculated heatmaps (Figure 5.5) showed that the genes mpaG and mpaF 
cluster together, especially for the controls 02 and 04, indicating that the genes share evolutionary 
traits. In the organism P. brevicompactum the core enzyme mpaC clustered together with mpaG, too, 
suggesting a co-evolutionary linkage and supporting the previously stated importance of mpaG in the 
biosynthesis.   

Additionally to the heatmaps, dendrograms were computed using two different Ward’s minimum 
variance approaches: ward.D2, which implemented the Ward’s clustering criterion from 1963, and 
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ward.D, which did not implement that criterion. Comparing the dendrograms generated with ward.D 
and ward.D2, no differences were apparent.  

 
Figure 5.6: Scaled Dendrogram with missing data of positive controls 02, 03 and 04 (mpa BGC). The former conducted 
matrices were scaled and a distance matrix were returned using the functions scale and dist in RStudio. The illustrated 
dendrograms were computed using the hclust function and the ward clustering method ward.D in RStudio. The clustering 
of mpaF and mpaG suggested a coevolutionary linkage between them, which was expected, because mpaG catalyzes the 
production of mycophenolic acid (MPA) and mpaF is the selfresistance gene against MPA.  

The dendrograms in Figure 5.6 were computed by Ward’s minimum variance (ward.D) using scaled 
data without approximation by MissForest algorithm. Similar to the heatmaps, the genes mpaF and 
mpaG cluster together for the controls 02 and 04, supporting the previously assumed evolutionary 
linkage between them. However, mpaG did not cluster with mpaF, but with mpaC, the core enzyme, 
and mpaA for the control 03, whereas the self-resistance gene mpaF clustered with mpaB. According 
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to literature, the gene mpaB is a membrane-associated oxygenase mediating the cleavage of the 
farnesyl side chain yielding mycophenolic aldehyde.173 A coevolutionary linkage between mpaB and 
mpaF could not be shown in the other two controls though. Notably, control 02 and control 04 
derived from two different organisms, whereas control 03 and control 04 both originated from P. 
roqueforti. However, the presumption of resemblances in the clustering patterns between the 
controls 03 and 04 could not be confirmed, whereas there were similar patterns between the 
controls 02 and 04.  

The scores of the principal component analysis (PCA) of all three mpa clusters were illustrated in 
Figure 5.7. To overcome the missing values in the matrices, the data were approximated by a random 
forest approach (see Figure 5.5) and these new data sets were used to perform PCA. As shown in 
Figure 5.5 subpart control 02, the genes mpaC, mpaF and mpaG clustered together, confirming the 
previous statements, and indicating a coevolutionary linkage. However, in the subparts control 03 
and control 04 a likewise pattern was not apparent. The core gene mpaC clustered with mpaDE 
(control 04) or with mpaA and mpaG (control 03). The self-resistance gene mpaF diverged (control 
03) or clustered with mpaG (control 04), similar to control 02. A discrepancy between control 03 and 
04 could be already represented in the previously illustrated heatmaps and dendrograms. The BGCs 
derived from the same species (P. roqueforti) but different loci. Hence, the results indicated that the 
two BGCs (control 03 and control 4) diverged differently. 
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Figure 5.7: Scores of the calculated principal component analysis (PCA) of the mycophenolic acid BGCs. A PCA calculates 
linear combination of the original variables in multivariate data sets yielding principal components, whose scores were 
plotted. The clustering of the scores indicates a coevolutionary linkage. Hence, the plots suggested that the genes mpaF 
mpaC and mpaA in control 03, mpaC, mpaA and mpaG in control 03, and mpaC and mpaDE in control 4 shared 
evolutionary traits.  
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2. Tenellin BGC from Beauveria bassiana (ten) and 2-Pyridon-Desmethylbassianin BGC from 
Beauveria bassiana (dmb)   

Tenellin (ten) and 2-Pyridon-Desmethylbassianin (dmb) are both yellow pigments found in and 
produced by Beauveria bassiana.162 Heneghan et al. compared these two clusters and revealed that 
the structure of the BGCs is identical having a 90% identity value, and that the core genes tenS and 
dmbS are homologous (Figure 5.8).140 Due to these similarities, the clusters ten and dmb were 
visualized and described together in the following.  

Figure 5.8: Comparison of tenellin biosynthetic gene cluster (BGC) and desmethylbassianin BGC, which produced 
orthologues enzymes according to Heneghan et al., 2011.140 The arrows on the top illustrated the structure of the BGCs 
according to literature. The figure was extracted from Heneghan et al. (2011), figure 2, in which the domain sequences 
were compared and showed similar identities. Abbrevations: KS, β-ketoacyl synthase; AT, acyl transferase; DH, 
dehydratase; ER, enoyl reductase; ER0, defective enoyl reductase; CMeT, C-methyl transferase; KR, β-ketoacyl reductase; 
ACP, acyl carrier protein; C, condensation; A, adenylation; T, thiolation; DKC, Dieckmann cyclase; P450, cytochrome P450 
oxidase.140  

Tenellin BGC (Positive control 08) contains a hybrid PKS-NRPS (tenS), the core enzyme, two 
cytochrome P450 oxidases (tenA, tenB) and a trans-acting enoyl reductase (tenC). The dmb BGC is 
producing orthologous proteins. Like tenA and tenB, dmbA and dmbB encode for cytochrome P450 
oxidases. The orthologue gene of tenC is dmbC encoding a trans-acting enoyl reductase. The core 
enzyme of 2-Pyridon-Desmethylbassianin (Positive control 10), a hybrid PKS-NRPS, is produced by 
dmbS.140 According to the proposed biosynthetic pathway of Tenellin BGC, tenC and the core enzyme 
tenS are producing the backbone pretenellin-A that is further used for synthesizing the final product 
by the genes tenA and tenB.133 139 140 The production of 2-Pyridon-Desmethylbassianin is following a 
similar pathway.129 

During analysis, the dmb BGC was completely evaluated, while the ten BGC included an additional 
gene (ten1), for which the only references was the figure of the comparison with the dmb BGC, 
marked as ten0 (Figure 5.9). However, no further details about ten0 were discussed in the respective 
literature.140 Other papers assumed that the Tenellin BGC did not include this additional gene.133 129 
Furthermore, the extracted dmb BGC did not include a dmb0 gene, either (Figure 5.9). The gene ten1 
was therefore assumed to be an additional gene dispensable for the biosynthetic pathway and was 
compared to the core enzyme, only.  



47 
 

Figure 5.9: Heatmaps of the manual evaluation measures (MEMs) with missing data (left) and without (right) for control 
08 (top) and control 10 (bottom). A random forest approach (MissForest package in RStudio), yielding complete matrices 
and therefore complete heatmaps approximated the missing data. The colour key on the upper left side of each heatmap 
illustrated the MEM value range between 0 and 3, where 3 implied a coevolutionary linkage between two genes and 0 
did not. According to the MEM values, dendrograms were assigned automatically to the heatmaps, clustering the genes. 
The BGCs for tenellin (control 08) and desmethylbassianin (control 10) were extracted from MIBiG (BGC0001049 & 
BGC0001136). While control 10 was completely evaluated and no approximation was needed, control 08 included an 
additional gene (ten1) which was compared to the core gene tenS.  

As expected, the MEM between the genes ten1 and tenS was low, assuming that ten1 did not share 
any evolutionary traits with the core enzyme tenS (Figure 5.9), while the rest of the evaluated genes 
of control 08 clustered together indicating a strong co-evolutionary linkage. Comparing the two 
heatmaps of control 08, the approximation of the missing data apparently overestimated the values 
of ten1 indicating that ten1 shared more evolutionary traits with the rest of the cluster than the core 
enzyme. As the gene ten1 was compared to the core gene only, the approximation of its remaining 
values was arguable, particularly because ten1 was assumed to be an additional gene. The 
examination of the heatmap containing the missing data showed that the genes tenA and tenC had a 
strong evolutionary linkage, similar to the genes dmbA and dmbC in the dmb BGC. Positive control 10 
was completely evaluated and therefore no approximation was needed. The results for the dmb BGC 
could be therefore seen as reliable. Interestingly, the gene dmbB, encoding a cytochrome P450 
oxidase like dmbA, hardly cluster with the rest of the dmb genes, implying that dmbB had less 
evolutionary linkages with the other genes.140 
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Figure 5.10: Scaled Dendrogram with missing data of positive controls 08 (tenellin BGC), and 10 (2-pyridon-
desmethylbassianin BGC). The former conducted matrices were scaled and a distance matrix were returned using the 
functions scale and dist in RStudio. The illustrated dendrograms were computed using the hclust function and the ward 
clustering method ward.D in RStudio. The dendrogram suggested a coevolutionary linkage between tenB and tenC in 
control 08, and between dmbA and dmbC, confirming the results from the heatmaps in Figure 5.9. 

The dendrogram of the Tenellin BGC showed similar results as the approximated heatmap, assuming 
that the additional gene ten1 clustered more with the rest of the BGC than the core enzyme and that 
tenB and tenC were strongly coevolutionary linked (Figure 5.10). The dendrogram of control 10 
confirmed the previously stated results from the heatmaps, indicating that dmbA and dmbC shared 
more evolutionary traits than the other genes.   
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Figure 5.11: Scores of the calculated principal component analysis (PCA) of the tenellin BGC (control 08) and 2-pyridon-
desmethylbassianin (control 10). A PCA calculates linear combination of the original variables in multivariate data sets 
yielding principal components, whose scores were plotted. The clustering of the scores indicates a coevolutionary linkage. 
Hence, the plots suggested that the genes tenC and tenB in control 08, dmbC and dmbA shared evolutionary traits. 

The principal component analysis (PCA) was computed using the approximated data and its scores 
were illustrated in Figure 5.11. Like the heatmaps and the dendrograms they show an aggregation of 
tenC and tenB (Control 08) as well as of dmbC and dmbA (Control 10), while tenS and dmbB were 
shifting to different directions. As PCA used the approximated data, the analysis for the Tenellin BGC 
was in question. However, the scores confirmed the previous statements, especially for the dmb 
BGC, for which all MEMs were analysed and calculated.   

3. Fumonisin BGC from Fusarium oxysporum and Fusarium verticillioides (fum) 

Fumonisins belong to the sphinganine-analog mycotoxins (SAMT) and are common contaminants of 
corn and maize produced by the genus Fusarium.126 Furthermore, they cause several diseases in 
animals which are associated to human oesophageal cancer and neural tube defects.126 During this 
thesis, two Fumonisin BGCs were analysed. Positive control 28 derived from Fusarium verticillioides 
and positive control 15 derived from Fusarium oxysporum. According to Proctor et al. (2008) and 
their analysis the overall identity of the coding regions of the two BGCs lies in the range of 88-92% 
identity.154 
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Figure 5.12: Comparison of the fumonisin (fum) BGC in F. oxysporum and in F. verticillioides obtained from Proctor et al, 
2008.154 The arrows illustrated the structure of the BGCs according to literature. According to Proctor et al. (2008), the 
fumonisin BGC in the M-3125 strain of F. verticilloides is located between the genes ZBD1 and ORF21. Hence, the genes 
before and after did not belong to the fum cluster.154 

The genes fum13, fum14, fum1, and fum10 were found to be core enzymes in the Fumonisin BGC 
and were therefore compared to all other genes in the cluster (Figure 5.12). Further gene 
comparisons were made according to the proposed biosynthetic pathway.126 119 As it had high 
similarity to acyl-CoA synthetases, fum16 was analysed and compared with all other genes of the 
BGC as well. However, according to deletion studies in Butchko et al. (2006) the knockout of fum16 
did not apparently alter the fumonisin production.119 Fum10, like fum16, had also a high degree of 
similarity to acyl-CoA synthetases, while the prediction of fum14 was the encoding of a protein with 
high similarity to a NRPS.119 However, the deletion of fum10 and fum14 resulted in an accumulation 
of two fumonisin derivatives.119 Following the disruption of fum1, the production of fumonisin was 
reduced by 99%. Fum1 was formerly referred to as fum5 and encodes a type I PKS.155 The knockout 
of fum8 resulted in no production of any fumonisin.154 However, fum8 was not compared to all genes 
in the cluster. Another gene that significantly reduced fumonisin production when knocked out was 
fum13, a hypothetical short chain dehydrogenase/reductase.117 
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Figure 5.13: Proposed biosynthetic pathway of fumonisin BGC. According to Butchko et al. (2006), the first intermediate is 
produced by the gene fum1 using acetate as precursor molecule.119 The intermediate is then converted to HFB4 (hydro-
fumonisin B4) using the genes fum8, fum6, fum13 and fum2. The final products (Fumonisin B1, B2, B3 and B4 
abbreviated as FB1, FB2, FB3 and FB4) are synthesized out of HFB4 and its derivative HFB3. To obtain FB2 and FB4, the 
gene fum11 makes a precursor available for biosynthesis which is then converted by fum10 and fum7.119 

As previously explained, the analysis of the Fumonisin BGCs, too, were done using the biosynthetic 
pathway (Figure 5.13). In total, 10 out of 18 (Control 15) and 10 out of 23 (Control 28), respectively, 
were set as empirically verified genes necessary for the secondary metabolite production.  

Heatmaps of both clusters, with and without missing data, are shown in Figure 5.14. As shown in 
Figure 5.14 subpart control 15, the genes fum6 and fum13, as well as fum1 and fum8 clustered 
together, confirming their coevolutionary linkage according to their biosynthetic pathway. However, 
this could not be shown in the heatmap of control 28. According to the colour key of the histogram, 
the comparisons of fum10 with the rest of the cluster genes yielded in high values, assuming the 
share of evolutionary traits between fum10 and the rest of the BGC. Contrary, cpm1 in control 15 
yielded comparatively low values. In fact, according to Figure 5.14. cpm1 appeared in control 15, 
only, and was not a part of the BGC in control 28.  

When comparing the two heatmaps, resemblances in the clustering patterns of the genes fum1, 
fum14 and fum16 could be found, supporting a coevolutionary linkage between them. Further 
resemblances could be found between the genes fum6, fum10 and fum19.  
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Figure 5.15: Scores of the calculated principal component analysis (PCA) of the fumonisin BGCs. A PCA calculates linear 
combination of the original variables in multivariate data sets yielding principal components, whose scores were plotted. 
The clustering of the scores indicates a coevolutionary linkage. Hence, the plots suggested that most genes shared 
evolutionary linkages. As the BGCs contained a high number of missing data, a clustering of those genes was expected 
and can be seen as an artifact. Regarding the evaluated genes, the clustering patterns in both clusters indicated a 
coevolutionary linkage between fum1, fum8 and fum16. 

As shown in Figure 5.15, both BGCs comprised a lot of missing data which were approximated to 
perform PCA. The core genes (fum1, fum10, fum14, and fum16) were the only ones that were 
compared to all other cluster genes during evaluation. Focusing on the examination of these four 
genes indicated a similar clustering pattern between the control 15 and 28, especially for the genes 
fum1, fum8 and fum16. As the other MEMs were approximated and the heatmaps in Figure 5.15 
indicated an overestimation of their values, the clustering of these genes in the scores plot was 
therefore reasonable.  

4. Penicillin BGC from Penicillium chrysogenum (pen) 

Penicillin, a β-lactam drug, is the probably most famous antibiotic and was discovered in 1929. 
Improved industrial strains of Penicillium chrysogenum are still used for the production of penicillin, 
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exceeding 45.000 tons annually.160 Two penicillin BGCs from different strains of P. chrysogenum were 
used for evaluation (Positive control 21 and 22).  

 
Figure 5.16: Biosynthetic pathway for Penicillin production according to van den Berg et al., 2007.160 The gene pcbAB 
encodes for ACV synthetase, penDE encodes for isopenicillin N-acyltransferase and pcbC is encoding isopenicillin 
synthase. Together they form a tri-partite biosynthetic gene cluster (BGC) to build up Penicillin out of the precursors α-
aminoadipate, cysteine and valine. ACV, L-α-aminoadipoyl-L-cysteinyl-D-valine; IPN, isopenicillin N, PenG, penicillin G; 
PAA, phenylacetic acid; PAA-CoA, phenylacetyl-coenzyme A.160 

The Penicillin BGC contains three biosynthetic genes (pcbAB, pcbC, penDE) and 12 other Open 
Reading Frames (ORF) in P. chrysogenum. However, previous studies have shown that the three 
enzymes alone are sufficient to restore full β-lactam synthesis in a mutant lacking the complete 
region, not needing transporters or further genes that catalyse direct or indirect steps in the 
pathway.160 Hence, comparison was made only between those genes, as they were form a tri-partite 
BGC according to literature (Figure 5.16).160 The core gene pcbAB, encoding α-aminoadipoyl-D-
cysteinyl-D-valine (ACV) synthetase, was additionally compared to all the ORFs. 
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Figure 5.17: Heatmaps of the manual evaluation measures (MEMs) with missing data (left) and without (right) for control 
21 (top) and control 22 (bottom). The missing data were approximated by a random forest approach (MissForest package 
in RStudio), yielding complete matrices and therefore complete heatmaps. The colour key on the upper left side of each 
heatmap illustrated the MEM value range between 0 and 3, where 3 implied a coevolutionary linkage between two genes 
and 0 did not. According to the MEM values, dendrograms were assigned automatically to the heatmaps, clustering the 
genes. Both clusters were Penicillin BGCs from two different strains (AS-P-78 and Wisconsin 54-1255) of the organism P. 
chrysogenum. Positive control 21 referred to MIBiG entry BGC0000404, whereas positive control 22 were extracted from 
NCBI GenBank®, accession number EF601124.1. 

In Figure 5.17 the heatmaps of both BGC is illustrated, showing a high clustering pattern between the 
genes pcbAB, penDE, pcbC and further ORF genes. In control 21, the additional genes ORF2, ORF3, 
ORF6 and ORF11 clustered together with the tri partite BGC, whereas in control 22 the genes ORF70c 
and ORF130w were clustering with pcbAB and penDE. According to the approximated heatmaps, the 
ORF genes shifted to a strong coevolutionary linkage. As the ORF genes were compared to the core 
gene, only, the clustering pattern was in question, though. The examination of the tri partite BGC in 
control 21 indicated that all three genes were highly clustered, supporting their coevolutionary 
linkage. However, in control 22 only two parts of the previously introduced tri-partite BGC clustered 
together (pbcAB and penDE).160  
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Figure 5.18: Scaled Dendrogram with missing data of positive controls 21, and 22 (two penicillin BGC from P. 
chrysogenum). The former conducted matrices were scaled and a distance matrix were returned using the functions scale 
and dist in RStudio. The illustrated dendrograms were computed using the hclust function and the ward clustering 
method ward.D in RStudio. Even though the penicillin BGCs included more genes, the product was produced by a tri 
partite BGC, consisting of the genes pcbAB, penDE, and pcbC.160 These genes were clustering together in one clade 
indicating a coevolutionary linkage, as expected. 

As illustrated in Figure 5.18 the genes pcbAB, penDE and pcbC were clustered in one clade in both 
controls. In control 22 the gene pcbC could be found in the same superclade, unlike the heatmap. 
Hence, more additional genes could be found there. As the ORF genes were singly compared to the 
core enzyme pcbAB, the splitting of the dendrogram was arguable. However, as the tri partite BGC 
genes clustered together in one clade, a coevolutionary linkage was reasonable.  
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Figure 5.19: Scores of the calculated principal component analysis (PCA) of the penicillin BGCs. A PCA calculates linear 
combination of the original variables in multivariate data sets yielding principal components, whose scores were plotted. 
The clustering of the scores indicates a coevolutionary linkage. Hence, the plots suggested that most genes shared 
evolutionary linkages. As the BGCs contained a high number of missing data, a clustering of those genes was expected. 
Regarding the evaluated genes, penDE, pcbAB, and pcbC, the gene scores diverged, indicating no coevolutionary linkage, 
other than assumed.  

The PCA were computed using the approximated data. As the approximation overestimated the 
values (see Figure 5.17), the ORF genes clustered together in the scores plot, while the three main 
genes diverged (Figure 5.19). Further plots based on the MEM matrices of the two Penicillin BGCs can 
be found in the supplement (Supplement 9.53 and Supplement 9.54) 

5. Sorbicillin BGC from Penicillium rubens and Trichoderma reesei (sor)  

Sorbicillinoids are yellow pigments produced by various fungi having antiviral, anti-inflammatory, and 
anti-microbial activities.157 175 To ensure a wider perspective during the evaluation the BGC from 
Penicillium rubens (Positive control 23) and the BGC from Trichoderma reesei (Positive control 27) 
were used.  
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Figure 5.20: Sorbicillin cluster from Penicillium chrysogenum (Positive control 23). The arrows illustrated the structure of 
the BGC according to literature. The figure was extracted from Guzman-Chavez et al. (2017), figure 1. Pc21 g05050 
(sorR1; transcriptional factor), Pc21 g05060 (sorC; monooxygenase), Pc21 g05070 (sorB; non-reduced polyketide 
synthase), Pc21 g05080 (sorA; highly reduced polyketide synthase), Pc21 g05090 (sorR2; transcriptional 
factor), Pc21 g05100 (sorT; MFS transporter) and Pc21 g05110 (sorD; oxidase).132 

 
Figure 5.21: Comparison between Sorbicillin BGC from Trichoderma reesei (Positive control 27) and from P. chrysogenum. 
The arrows illustrated the structure of the BGC according to literature and arrows with the same filling were homologs. 
The figure was extracted from Derntl et al. (2017), figure 2. FCD, FAD/FMN-containing dehydrogenase; MFS, transporter 
of the multifacilitator superfamily; TF, transcription factor; PKS, polyketide synthase; FMO, FAD-dependent 
monooxygenase; HYD, hydrolase.125 

As shown in Figure 5.21 the BGC structures of the two clusters varied. The extracted cluster from T. 
reesei (Positive control 27) lacked gene sor3, but included 7 additional genes (118, 119, 120, 121, 
122, 123, 124). Gene 128 was annotated as a major facilitating transporter and therefore assumed to 
be the gene between sor3 and ypr2 in Figure 5.21, marked as “MFS”.  

The genes sor1, sor3, sor4 and ypr1 in T. reesei were knocked out in gene deletion studies, resulting 
in no pigment for Δypr1, Δsor1 and Δsor3, while Δsor4 mutants produced reduced amounts of 
sorbicillinoids.125 Therefore, the proposed biosynthetic pathway was defined as shown in Figure 5.23. 
As described, the key intermediates are produced by the genes sor1 and sor2. A Knoevenagel 
cyclization yield in the production of sorbicillin and dihydrosorbicillin, which both can be converted 
into further derivatives (sorbicillinol and dihydrosorbicillinol) by the gene products of sor3 and 
sor4.125 132 In P. chrysogenum, gene deletion studies showed that ΔsorA and ΔsorB were core genes, 
generating the intermediates sorbicillin and dihydrosorbicillin (Figure 5.22).132 157  
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Figure 5.22: Proposed biosynthetic pathway of the sorbicillin cluster in P. chrysogenum according to Guzman-Chavez et 
al., 2007.132 Starting with two precursors, the PKS sorA is forming the backbone with its domains KR (ketoreductase), DH 
(dehydratase) and ER (enoylreductase). The intermediate is then cyclized and released by the PKS sorB, yielding sorbicillin 
and dihydrosorbicillin. Further sorbicillin derivatives can be achieved using the genes sorC and sorD to convert the 
previously generated products.132  

 
Figure 5.23: Proposed biosynthetic pathway of the sorbicillin cluster in T. reesei according to Derntl et al., 2017.125 The 
key intermediates are produced by the core genes sor1 and sor2. A Knoevenagel cyclization forms the products sorbicillin 
and dihydrosorbicillin, which can be further converted by the genes sor3 and sor4, yielding sorbicillinol and 
dihydrosorbicillinol.125  
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According to literature, the gene sor1 is the homolog of sorA in P. chrysogenum, which is the first PKS 
of the biosynthetic pathway (Figure 5.23). Analogical, sor2 is homologous to sorB, which is a PKS as 
well.125 Both genes were therefore operated as core enzymes and compared to all other genes in the 
cluster. In positive control 28 a further gene was annotated as a PKS/NRPS like protein (124). Hence, 
it was compared to all other genes as well.  

According to the biosynthetic pathway of T. reesei and P. chrysogenum, the genes sor3 and sor4 in T. 
reesei were homologous to the genes sorC and sorD in P. chrysogenum (Figure 5.22, and Figure 5.23) 

Figure 5.24: Heatmaps of the manual evaluation measures (MEMs) with missing data (left) and without (right) for control 
21 (top) and control 22 (bottom). The missing data were approximated by a random forest approach (MissForest package 
in RStudio), yielding complete matrices and therefore complete heatmaps. The colour key on the upper left side of each 
heatmap illustrated the MEM value range between 0 and 3, where 3 implied a coevolutionary linkage between two genes 
and 0 did not. According to the MEM values, dendrograms were assigned automatically to the heatmaps, clustering the 
genes. Sorbicillin cluster from P. chrysogenum (Positive Control 23) derived from MIBiG (BGC0001404), while the cluster 
from T. reesei (Positive Control 27) was extracted from GenBank® with the accession number GL985056 

The calculated heatmaps were illustrated in Figure 5.24. The genes sor1, sor2 and 124 clustered in 
the heatmap of positive control 27 indicating a coevolutionary relationship. As this cluster was 
missing the sor3 gene, no comparison to sor4 could be achieved. In P. chrysogenum (control 23) the 
clustering patterns of sorA and sorC as well as sorB and sorT indicated that these two pairs share 
evolutionary traits. Interestingly, the comparison of the genes sorD and sorC yielded in comparably 
low MEM, assuming that they were not coevolutionary linked.  
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Figure 5.25: Scaled Dendrogram with missing data of positive controls 23, and 27 (two sorbicillin BGC from P. 
chrysogenum and T. reesei, respectively). The former conducted matrices were scaled and a distance matrix were 
returned using the functions scale and dist in RStudio. The illustrated dendrograms were computed using the hclust 
function and the ward clustering method ward.D in RStudio. The genes sorC, sorR1 and sorA were clustering together in 
control 23, while the genes sor1, 124 and sor2 shared the same clade in control 27, both indicating a coevolutionary 
linkage. 

The scaled dendrograms in Figure 5.25 included the missing data. A similar result compared to the 
heatmap was therefore apparent. In control 23 (P. chrysogenum) the genes sorC and sorA clustered 
together with sorR1, while sorB and sorT share the same clade with sorR2. According to literature, 
the genes sorR1 and sorR2 expressed transcriptional factors.132 Like the heatmaps, the T. reesei genes 
sor1, 124, and sor2 shared the same clade in the dendrogram (control 27 in Figure 5.25).  
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Figure 5.26: Scores of the calculated principal component analysis (PCA) of the sorbicillin BGCs. A PCA calculates linear 
combination of the original variables in multivariate data sets yielding principal components, whose scores were plotted. 
The clustering of the scores indicates a coevolutionary linkage. Hence, the plots suggested that the genes sorA and sorR1 
in control 23, and the approximated genes in control 27 shared evolutionary linkages. As the BGCs contained a high 
number of missing data, a clustering of those genes in control 27 was expected. Regarding the evaluated core genes, the 
scores diverged, indicating no coevolutionary linkage, other than assumed.  

Examining the PCA scores in Figure 5.26 subpart control 23 indicated that the genes sorA and sorR1 
clustered together, while sorC diverged from them clustering with sorB, other than illustrated in the 
previous plots. The subpart control 27 showed a clustering of all genes, except of ypr1, sor1, 124 and 
sor2 which diverged. As the PCA scores were calculated using the approximated data sets, a 
discrepancy was expected. However, the core enzymes (sor1, sor2, 124) were completely analysed 
and were still located in the same quadrant of the plot indicating a slight coevolutionary linkage. As 
control 23 lacked less data compared to control 27, the PCA scores of control 23 could be therefore 
regarded as more reliable. However, the core enzymes diverged instead of clustering together 
indicating no evolutionary linkage, other than illustrated in the heatmap and dendrogram. 
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6. Positive control BGCs with low aMEM 

Eight out of 29 positive controls had only low average manual evaluation measures (aMEM), despite 
high MEM values or because of low MEM values. As the aMEMs were calculated averages of the 
genes that were empirically verified as necessary for secondary metabolite production, high aMEMs 
were expected for all BGCs. Hence, a deeper insight into the diversity among these positive controls 
was illustrated in the following.  

Figure 5.27: Heatmaps of the manual evaluation measures (MEMs) with missing data (left) and without (right) for control 
07 (top), control 12 (middle), and control 13 (bottom). Despite high MEM values the average manual evaluation 
measures (aMEM) were very low for these clusters (1.63, 1.66, and 1.62, respectively). The missing data were 
approximated by a random forest approach (MissForest package in RStudio), yielding complete matrices and therefore 
complete heatmaps. The colour key on the upper left side of each heatmap illustrated the MEM value range between 0 
and 3, where 3 implied a coevolutionary linkage between two genes and 0 did not. According to the MEM values, 
dendrograms were assigned automatically to the heatmaps, clustering the genes. Positive control 07 referred to the 
fumitremorgin BGC from Aspergillus fumigatus (MIBiG BGC0000356). The fumagillin BGC (control 12, MIBiG 
BGC0001067) derived from A. fumigatus as well, whereas control 13 referred to the terrain BGC from A. terreus (MIBiG 
BGC0000161).   

Despite high MEM values, the aMEMs of fumitremorgin BGC (Positive control 07), fumagillin BGC 
(Positive control 12), and terrein BGC (Positive control 13) were very low (1.63, 1.66, and 1.62, 
respectively).  
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The first intermediate of fumitremorgin B, brevianamide F, is produced out of the precursors L-
tryptophane and L-proline using the ftmA product, a NRPS. A further conversion by FtmB, a 
dimethylallyltryptophan synthase, yields the intermediate tryprostatin B.144 149 In another study, it 
was pointed out that the gene ftmH, a tryptophane dimethylallyltransferase, was involved in the last 
step of the biosynthetic pathway forming fumitremorgin B.131 144 These three genes were 
therefore assigned as core enzymes. Further gene deletion studies indicated that ftmC, ftmE and 
ftmG, which all showed similarities to fungal cytochrome P450, were important for hydroxylation, C-
N bond formation and dihydroxylation, while the disruption of ftmF, a verruculogen synthase, 
suggested that it is not involved in the biosynthesis of fumitremorgin B, but catalyzes the conversion 
of fumitremorgin B to verruculogen.144 145 According to the illustrated heatmap in Figure 5.27 
subpart control 07, the core genes clustered together indicating an evolutionary relationship, as 
expected. However, when examining the MEM values, it became obvious that they fell below the 
threshold of 2.0 for almost all gene comparisons which were identified as necessary for the 
secondary metabolite production (see 5.4.2 Average manual evaluation measure (aMEM)) (see 
Supplement 9.3 - Supplement 9.31). Hence, the BGC yielded a low aMEM. 

Fumagillin, an anti-angiogenic secondary metabolite, is produced by the core gene Af370, a PKS, in A. 
fumigatus. The fumagillin BGC (control 12) included 15 genes, but only 3 genes (Af370, Af380, Af520) 
were assumed to be necessary for the biosynthetic pathway.103 However, as Af500 was annotated as 
a NRPS-like protein, it was also treated like a core gene. According to Lin et al. (2013) the genes 
Af370 and Af380 encode a highly reducing polyketide synthase (HR-PKS) and a α/β hydrolase, 
respectively, while Af520 was assumed to encode a terpene cyclase and be responsible for the 
production of the intermediate β-trans-bergamotene.103 According to the heatmap in Figure 5.27 
subpart control 12, the genes Af370 and Af380 clustered together as expected. Interestingly, the 
gene Af500 showed high MEMs for all other genes, which were assigned to be not necessary for the 
production of fumagillin, indicating that they were coevolutionary linked forming another, unknown 
BGC.  

Positive control 13 referred to the terrain BGC from A. terreus. Terrein has antimicrobial, 
antiproliferative, and antioxidative activities and has a phytotoxic effect on plant growth.170 Gene 
deletion studies showed that the genes terA, the core gene producing a NRPS, terR, an essential 
coregulator, and terF were indispensable for the biosynthesis. Furthermore, the disruption of the 
genes terB, terC, terD, and terF, respectively, showed no terrain production, indicating that they 
contribute to the biosynthetic pathway. Contrariwise, the genes terH and terI were assumed to be 
dispensable.170 Examining the biosynthesis, terA produces the backbone intermediate which is 
further converted by terB yielding 6-hydroxymellein. The final product is then formed by several 
steps using the genes terC, terD, terE and terF.170 FunOrder did not produced any tree for gene terI, 
which indicated that the database did not have homologs to this gene.170 The heatmap in Figure 5.27 
subpart control 13 illustrated that terA and terB cluster together, which went with the biosynthetic 
pathway. Notably, the gene terE had the least clustering patterns with other genes. Moreover, the 
comparison of the phylogenetic trees with terF and terD showed no congruence and exhibited low 
MEMs, other than expected. However, the MEMs of those genes (terF, terD) compared with the core 
gene terA were high and additionally, they shared the same clade in the heatmap, supporting a 
coevolutionary linkage.  
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Figure 5.28: Heatmaps of the manual evaluation measures (MEMs) with missing data (left) and without (right) for control 
14 (top), and control 19 (bottom). These clusters scored low average manual evaluation measures (aMEM) and had a 
suspiciously big number of missing data. The missing data were approximated by a random forest approach (MissForest 
package in RStudio), yielding complete matrices and therefore complete heatmaps. However, as illustrated the 
approximation were overestimated by the algorithm. The colour key on the upper left side of each heatmap illustrated 
the MEM value range between 0 and 3, where 3 implied a coevolutionary linkage between two genes and 0 did not. 
According to the MEM values, dendrograms were assigned automatically to the heatmaps, clustering the genes. Positive 
control 14 referred to the pneumocandin BGC from Glaera Iozoyensis (MIBiG BGC0001035), while control 19 referred to 
the pestheic acid BGC (MIBiG BGC0000121) from Pestalotiopsis fici.  

The clusters illustrated in Figure 5.28 had a suspiciously big number of missing data, because of the 
size of their clusters. As shown in the right part of Figure 5.28, the two BGCs constituted as good 
examples for the overestimation of the approximation of the data sets, which were calculated by the 
Miss Forest algorithm. The plots calculated with the approximated data were therefore                                                        
observed with suspicion.  

Control 14 referred to the pneumocandin BGC from the fungus Glarea Iozoyensis yielding an aMEM 
of 1.57. Pneumocandins are lipohexapeptides with antifungal activities.121 123 The cluster contained 
two core genes, a NRPS (GL10035) and a PKS (GL10034), that were disrupted in gene deletion 
studies, which interrupted the production of pneumocandin.123 Further studies demonstrated that 
GL10043, an acyl adenonsine-5’-monophosphate (AMP) -ligase, was important for the shuttling of 
the PKS to the core hexapeptide initiating the lipoinitation step. Furthermore, the optimal function of 
the PKS was assumed to be maintained by a second gene (GL10032).121 The core genes (GL10034 and 
GL10035), as well as the gene producing the ligase (GL10032) were compared to all other genes. 
Furthermore, as the gene GL10039 was annotated as a synthase, the analysis was made similarly to 
the core genes. According to literature, the genes between GL10037 and GL10041 belong to a 
different BGC, the L-homotyrosine BGC.123 Hence, a coevolutionary linkage with the other genes in 
the pneumocandin BGC was not estimated. In fact, the majority of the genes between GL10037 and 
GL10041 shared the same super clade in the heatmap (Figure 5.28, subpart control 14). Notably, the 
second core gene GL10035 did also cluster with the L-homotyrosine BGC. However, the PKS gene 
(GL10034) and the gene GL10043 were clustering together in the heatmap, as estimated, indicating a 
coevolutionary linkage. The low aMEM resulted due to low contributing MEMs between GL10034 
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and the genes GL10032 and GL10035. This pointed to the direction that either the two gene pairs 
apparently did not share evolutionary traits, or there was too much missing data for a clear clustering 
pattern.  

As shown in the heatmap, the pestheic acid BGC (Positive control 19) showed generally low MEM 
values. A low aMEM (1.91) was therefore expectable. Pestheic acid is a diphenyl ether produced by a 
NRPKS (ptaA) in the endophytic fungus Pestalotiopsis fici.167 According to literature, ptaA forms the 
backbone, which is further converted by ptaB and ptaC to the intermediate endocrocin. Further 
conversions by the genes ptaH, ptaI, ptaJ, ptaF, ptaM and ptaE result in the final product, pestheic 
acid.167 Gene deletion studies further showed that the disruption of ptaA and ptaE, respectively, 
resulted in no product, indicating an importance for the biosynthesis of pestheic acid. The gene ptaA 
was used as a core gene and compared to all other cluster genes. Additionally, the received trees of 
associated genes were compared to trees of those genes that were followed by them due to the 
pathway. According to analysis, the ptaA showed high MEM values when compared with ptaB and 
ptaC, but also compared to ptaE. Furthermore, they shared the same superclade in the heatmap. 
However, according to literature a further exploration of the genetic and biochemical mechanisms 
was still outstanding.167 Hence, the contributions of the genes in biosynthetic pathway and therefore 
their contribution to the calculation of the aMEMs were questionable. In fact, most of these gene 
comparison yielded low MEMs, supporting the suggestion of a further exploration of this cluster.   
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Figure 5.29: Heatmaps of the manual evaluation measures (MEMs) with missing data (left) and without (right) for control 
11 (top), control 26 (middle), and control 29 (bottom). Because of low MEM values the average manual evaluation 
measures (aMEM) were also comparably low for these clusters (1.91, 1.86, and 1.77, respectively). The missing data were 
approximated by a random forest approach (MissForest package in RStudio), yielding complete matrices and therefore 
complete heatmaps. The colour key on the upper left side of each heatmap illustrated the MEM value range between 0 
and 3, where 3 implied a coevolutionary linkage between two genes and 0 did not. According to the MEM values, 
dendrograms were assigned automatically to the heatmaps, clustering the genes. Positive control 11 referred to the 
xanthocillin BGC from Aspergillus fumigatus (MIBiG BGC0001990). The compactin BGC (control 26, MIBiG BGC0000039) 
derived from Penicillium citrinum, whereas control 29 referred to the cyclosporine BGC from Beauveria felina (MIBiG 
BGC0001565).   

The three positive controls illustrated in Figure 5.29 generally demonstrated low MEM values and 
were therefore further discussed in the following.  

Xanthocillin is an isocyanide produced by various fungi. Isocyanides are assumed to be chalkophores, 
meaning that they are involved in the copper-uptake of the organism. In fact, in Aspergillus 
fumigatus, xanthocillin is produced under copper-depleted conditions.102 During the analysis, a 
xanthocillin BGC from A. fumigatus (positive control 11) comprising 7 genes was used. Gene deletion 
studies demonstrated that xanB was the core enzyme producing an isocyanide synthase-
dioxygenase, and xanC was a regulation factor that upregulated all other genes, except of xanD.102 
Hence, these two genes were compared to all other cluster genes. As described by Lim et al. (2018), 
xanB produces the intermediate which is further converted by xanG to yield xanthocillin. A 
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subsequent conversion by xanA and/or xanE result in the production of various xanthocillin 
derivatives.102 When inspecting the heatmap in Figure 5.29, subpart control 11, the genes xanB, xanG 
and xanD clustered together, suggesting that they share evolutionary traits. In fact, the comparison 
between xanB and the genes xanG and xanD, respectively, yielded in high MEMs, whereas the rest of 
the comparisons scored low values. Notably, the regulation factor xanC did not scored high MEMs, 
indicating no coevolutionary linkage with the rest of the genes. Hence, a low aMEM value (1.91) was 
expectable.  

Control 26 referred to the compactin BGC. Compactin is an inhibitor of 3-hydroxy-3-methylglutaryl-
coenzynme A (HMG-CoA) reductase and used as a substrate to produce the pharmaceutical drug, 
pravastatin sodium.111 The compactin cluster contained 10 genes (mlcA – mlcI and mlcR), including 
two backbone producing enzymes (mlcA and mlcB), which both were PKSs. According to the gene 
disruption study, the deletion of mlcA yielding no product demonstrated its importance for the 
biosynthesis. The disruption of mlcB meanwhile resulted in the production of a compactin-precursor, 
indicating that mlcB is involved in the biosynthetic pathway.111 Hence, a strong evolutionary linkage 
between those two genes was estimated. As illustrated in the heatmap in Figure 5.29 subpart control 
26, the core genes cluster together, supporting the previously estimation. The aMEM value was 
calculated based on the proposed biosynthetic pathway. Abe et al. (2001) proposed that mlcE and 
mlcD were resistant genes and in 2002, the functional analysis of mlcR revealed that it was a 
regulatory gene.110 111 A coevolutionary linkage of all three genes (mlcE, mlcD, and mlcR) to the 
pathway genes was therefore estimated. However, those gene comparison yielded only low MEM 
values which contributed to the low aMEM score.   

The cyclosporine BGC (control 29) from Beauveria felina (also known as Amphichorda felina) 
comprised 14 genes. According to literature, the core gene was simA, a NRPS, yielding cyclosporine C 
(CsC), a similar compound of the characterized immunosuppressant drug cyclosporine A (CsA).165 In 
fact, the gene clusters for CsA and CsC shared a high sequence similarity according to literature.165 
However, as the cyclosporine BGC from Tolypocladium inflatum was not available and the only 
available BGC derived from Beauveria felina, which lacked a proposed biosynthetic pathway, the 
evaluation was done using the biosynthetic pathway of CsA. A low aMEM (1.77) was therefore not 
surprising. According to that pathway, an important intermediate for cyclosporine production was 
(4R)-4-([(E)-2-butenyl]-4-methyl-L-threonine (BMT), which was produced by the PKS simG, and the 
genes simI and simJ. The gene simB converts L-Alanin into D-Alanin, which, together with BMT, is 
subsequently used by simA as starting material to produce cyclosporine A.107 The genes simA and 
simG were therefore marked as core genes and compared to all other genes. Examinating the 
heatmap in Figure 5.29 subpart control 29, the genes simG, simI, simB and simD clustered together 
and shared a superclade with simA, which went along with the biosynthetic pathway indicating a 
slight coevolutionary linkage. However, the MEMs of simA were low compared to the MEMs of simG, 
which pointed to the direction that simG shared more evolutionary traits with the other genes than 
simA.  

5.4.1.1 Negative controls 
The analysis of the negative controls was carried out as described in the chapter 4.4. Tree 
comparison. Heatmaps, dendrograms and PCAs were calculated for 59 out of the 60 random 
controls. The remaining control (negative control 60) included only two phylogenetic trees yielding 
only one MEM. To establish an array for the statistical analysis, at least three phylogenetic trees were 
needed. Hence control 60 was excluded for the further analysis. However, the MEM value of 
negative control 60, which equalled the aMEM value, was 1.5 (see Table 5.5).   
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In the following, nine random controls were picked to show the diversity of the analysis of the 
negative control BGCs.  

Figure 5.30: Heatmaps of the manual evaluation measures (MEMs) of the negative controls that all scored the lowest 
average manual evaluation measure (aMEM) of 0.4: negative control 01 (top left), control 13 (top right), control 14 
(bottom left), and control 40 (bottom right). The colour key on the upper left side of each heatmap illustrated the MEM 
value range between 0 and 3, where 3 implied a coevolutionary linkage between two genes and 0 did not. According to 
the MEM values, dendrograms were assigned automatically to the heatmaps, clustering the genes.  

The heatmaps with the lowest and the highest score for aMEM were shown in Figure 5.30 and Figure 
5.31. Random control no. 14 had the lowest aMEM score (0.4), alongside with the random controls 
number 1, 13 and 40, indicating that FunOrder could differentiate between randomly generated 
genes and real biosynthetic gene clusters. However, some MEMs were comparably high, e.g., the 
comparison of exool and melbi2_6 in negative control 14 or rdk and xp_002 in negative control 13, 
indicating a coevolutionary linkage between them. Though, the rest of the phylogenetic trees did not 
share similar topologies. This pointed to the direction, that the MEM values were only valid, when 
the aMEM of the cluster was high.  

 
Figure 5.31: Heatmaps of the manual evaluation measures (MEMs) of negative control 30, which scored the highest 
average manual evaluation measure (aMEM) of 2.1 indicating an evolutionary linkage. As shown, the MEMs were 
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comparably high (2.09, 2.20, and 1.96), yielding a high aMEM. This BGC was regarded as false positive. The colour key on 
the upper left side of each heatmap illustrated the MEM value range between ~1.9 and 3, where 3 implied a 
coevolutionary linkage between two genes and 0 did not. According to the MEM values, dendrograms were assigned 
automatically to the heatmaps, clustering the genes. 

Negative control 30 resulted in the highest aMEM (2.1), followed by control 60 with an aMEM of 1.5. 
While control 30 contained only 3 phylogenetic trees (Figure 5.31), negative control 60 included only 
two and could therefore not be further analysed. According to that, control 60 could not be regarded 
as truly false positive. As illustrated in Figure 5.31 negative control 30 yielded comparably high MEM 
values (2.09, 2.20, and 1.96), indicating a coevolutionary linkage of the randomly generated genes. As 
FunOrder calculated only a few phylogenetic trees out of control 30 indicated that the identification 
of BGCs of only three genes must be regarded with suspicion. However, when comparing the number 
of used random controls the likelihood of receiving a false positive was rather low (1:60 or rather 
1:30).   

Figure 5.32: Heatmaps of the manual evaluation measures (MEMs) of the negative control 07, 14, 24, 47, 49, and 56, 
which indeed had moderate average manual evaluation measures (aMEM), but at least one high MEM score equalling or 
exceeding 2.5. Among them, negative control 49 scored the highest aMEM (1.3), because of two high MEM scores 
(xp_024:corca1 á 2.67, acrchr1:corca1 á 2.69). The colour key on the upper left side of each heatmap illustrated the MEM 
value range between 0 and 3, where 3 implied a coevolutionary linkage between two genes and 0 did not. According to 
the MEM values, dendrograms were assigned automatically to the heatmaps, clustering the genes. 
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Six random controls resulted in low aMEM scores but had single high MEM scores that equalled or 
exceeded a value of 2.5. Out of these six controls, negative control 49 yielded the highest aMEM 
(1.3), because two tree comparisons had a high MEM score of 2.67 and 2.69 (Figure 5.32). All other 
controls scored aMEMs lower than 1.0. Additionally, control 14 belonged to the controls that scored 
the lowest aMEM of all random controls (0.4). All that supported the previously assumption, that 
MEM values were only valid if the aMEM of the cluster was high.  

5.4.2 Average manual evaluation measure (aMEM) 
One goal of this thesis was to establish whether FunOrder estimates biosynthetic gene clusters 
correctly. Hence, the previously measured manual evaluation measures (MEMs) were combined to 
average manual evaluation measures (aMEM). They were used for establishing a receiver operating 
curve (ROC) and a confusion matrix.  

Table 5.6: Overview of the average manual evaluation measures (aMEM) of all controls (negative controls on the left, 
positives on the right). The threshold for the negative controls were set to 1.5, while for the positive controls it was set to 
2.0. False positives and false negatives were highlighted red, whereas true positives and true negatives were highlighted 
green. “No” referred to the characterized number of the respective biosynthetic gene cluster (BGC) in case of the positive 
controls, or rather the respective random cluster in the case of the negative controls, which were used for this thesis. The 
tables were split for a better overview. 

Negative Controls  Positive Controls 
No aMEM No aMEM No aMEM  No aMEM No aMEM 

1 0.41 21 1.15 41 1.15   1 2.52 21 2.53 
2 1.15 22 1.07 42 0.49   2 2.15 22 2.46 
3 1.33 23 1.21 43 1.02   3 2.00 23 2.35 
4 0.55 24 0.92 44 0.61   4 2.35 24 2.21 
5 0.86 25 1.03 45 0.70   5 2.28 25 2.28 
6 1.17 26 0.57 46 1.11   6 2.35 26 1.86 
7 0.85 27 1.05 47 0.56   7 1.63 27 2.12 
8 1.38 28 0.84 48 0.90   8 2.46 28 2.21 
9 1.21 29 0.99 49 1.31   9 2.38 29 1.77 

10 0.83 30 2.08 50 1.49   10 2.40   
11 0.96 31 0.84 51 0.68  11 1.91   
12 1.00 32 0.46 52 0.73  12 1.66   
13 0.38 33 0.68 53 0.69  13 1.62   
14 0.38 34 0.50 54 0.67  14 1.57   
15 0.51 35 0.71 55 0.74  15 2.25   
16 0.84 36 1.09 56 0.86  16 2.70   
17 0.90 37 0.53 57 0.88  17 2.24   
18 0.94 38 0.98 58 1.34  18 2.06   
19 0.87 39 1.13 59 0.70  19 1.91   
20 0.68 40 0.44 60 1.50  20 2.27   

 

The threshold for the negative controls were set to 1.5. Because of the high amount of missing data 
in the positive controls, a higher threshold (2.0) was used for them. All aMEMs were illustrated in 
Table 5.6. and true negatives (TN) and true positives (TP) were highlighted in green, while the false 
positives (FP) and false negatives (FN) were highlighted in red.  

A boxplot was established to visualize the differences between the aMEMs of the positive and 
negative controls (Figure 5.33). Only one negative control cluster (negative control 30) overlapped 
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with the positive controls. Hence, a good distinction between the controls was possible, indicating 
that FunOrder could discriminate between randomly generated clusters and truly BGCs.  

 
Figure 5.33: Boxplot of all average manual evaluation measures (aMEM) of positive controls (blue) and negative controls 
(orange) visualizing the distinction between them. True negative controls scored aMEMs below 1.5, while true positive 
controls had aMEM values above 2.0. The only outlier was negative control 30 whose aMEM overlapped with those of 
the positive controls.  

A confusion matrix was established (Table 5.7) and all calculations concerning sensitivity, selectivity, 
accuracy, and precision were done (see 4.5. Statistical Evaluation) (Table 5.8).  

Table 5.7: Confusion matrix of all average manual evaluation measures (aMEMs). In total 89 controls were used (29 positive 
and 60 negative controls). The aMEMs of these controls were examined upon their thresholds and defined whether the 
controls could be declared as positive or negative. In total 21 of 29 positive controls were stated as true positives and 58 of 
60 negative controls were stated as true negatives. Meanwhile, 2 of 60 negative clusters were declared as false positives 
and 8 of 29 positive clusters were declared as false negatives.  

   True Condition Total 
Population    Positive Negative 

 Predicted 
Condition 

Total 
Population 29 60 89 

Predicted 
Condition 

Positive 23 21 2  

Negative 66 8 58  

 Total 
Population 89    

 

As shown in Table 5.8, 21 out of 29 positive BGCs were stated as true positives and 58 out of 60 
random clusters were stated as false positives. Based on these values, metrics such as sensitivity, 
selectivity, accuracy, and precision were calculated to analyse the performance of the evaluation 
(Table 5.8). The true positive rate, also called sensitivity, was measured according to chapter 4.5. 
Statistical Evaluation, and scored 72.41%. The true negative rate, also called specificity or selectivity, 
scored 96,67%, whereas the accuracy, the ratio between the number of correctly classified controls 
and the total number of controls176, scored 88,76%. The predictive power of the model was 
represented by those three metrics: selectivity, sensitivity, and accuracy.177 The higher these metrics, 
the better the classification. Furthermore, the precision, also called positive predicted value, was 
calculated, which specified the proportion of correct positive predictions.177 A precision score of 
91,30% gave therefore good reasons to confide the 23 positive predictions, which was supported by 
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the F1 score (80.77%), the mean of precision and sensitivity. The negative predicted value which 
specified the proportion of correct negative predictions was slightly lower than the precision and 
scored 87,88%. According to Chicco et al., 2020, the accuracy and the F1 score lacked the ratio 
between positive (TP, FP) and negative variables (TN, FN). Hence, they can yield in misleading 
results.176 As both, negative and positive controls were of interest, the Matthews correlation 
coefficient was calculated which represented the correlation between true and predicted class (see 
4.5. Statistical Evaluation). The higher the Matthews correlation coefficient, also called phi-
coefficient, the better the classification.178 As the coefficient returned a number between -1 and +1, 
the score of 0.74 indicated a reliable classification.   

Hence, the performance metrics pointed to the direction, that FunOrder predicted positive genes 
correctly and that it was able to differentiate between positive and negative controls. 

Table 5.8: Metrics based on the values derived from confusion matrix representing the performance of the classification 
(performance metrics). The score and its unit of each metric were illustrated. The predictive power of the model was 
represented by the sensitivity, selectivity, and the accuracy. The higher these values, the better the classification.  

Performance metrics Score Unit 
True positive rate (Sensitivity) 72.41 % 
True negative rate (Selectivity) 96.67 % 
False Positive rate 3.33 % 
False Negative rate 2.76 % 
Accuracy 88.76 % 
Positive Predicted Value (Precision) 91.30 % 
Negative Predicted Value 87.88 % 
F1 Score 80.77 % 
Matthew Correlation Coefficient 0.74 - 

 

A manual receiver operating characteristics (ROC) curve illustrated the plotting of the true positive 
rate over the false positive rate. It was established using Microsoft Excel, receiving an area under the 
curve (AUC) of 0.857 for two thresholds and an AUC of 0.895 for one threshold (Figure 5.34). Next to 
the accuracy, the AUC represented the predictive power of the model. The more AUC reached 1.00 
the better was the classification.177 A higher AUC for only one threshold was expectable, because the 
two thresholds should involve the imprecision of the approximated values. However, the AUC for 
two thresholds were still high, indicating that FunOrder differentiated between positive and negative 
controls and furthermore, that it predicted positive genes correctly.  
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Figure 5.34: Receiver operating curve (ROC) of the average manual evaluation measures (aMEM). The red dot represented 
the used threshold of 1.5 for negative und 2.0 for positive controls. The area under the curve (AUC) was 0.86 for the yellow, 
and 0.90 for the red curve. The more AUC reached 1.00 the better was the classification. 

5.4.3 PLS DA of raw data 
To compare the previous results a partial least discriminant analysis of the raw data was established 
using DataLab, Version 4.0. In this connection, the branch length differences, node differences, 
branch colours and topologies were used for the classification. The result of the PLS DA was 
illustrated in Figure 5.35, resulting in an AUC of 0.83, supporting the analysis presented in the 
previous chapters. The sensitivity was even higher than in the manually calculated confusion matrix, 
but the False Positive Rate (FPR or FP) was higher as well.   

 
Figure 5.35: Partial least square discriminant analysis (PLS-DA) results of raw data (branch length difference, node 
difference, branch colour, topology), performed in DataLab, Version 4.0. As shown, the area under the curve (AUC) in the 
PLS-DA scored 0.83, and the true positive (TP) rate and the false positive rate (FP) were both higher than in the manually 
conducted confusion matrix.   
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The loadings of the predictors were shown in Figure 5.36, illustrating their input on the classification. 
According to that, the values of the predictors colour and topology contributed most to the PLS DA 
and the classification, while the distances and nodes did not. As the colour was a representation of 
the tree topology based on the description of the online tree visualization tool phylo.io96 (see 4.4. 
Tree comparison), the main predictor for inferring coevolutionary linkage was therefore the topology 
of the phylogenetic trees.  

Figure 5.36: Loadings of the predictors in partial least discriminant analysis (PLS DA), showing which predictor has which 
input on the classification. Hence, the predictor 3 (colour) and 4 (topology) contributed most to the PLS DA.  
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6. Discussion 
The main goal during this thesis was to infer, whether FunOrder had the ability to predict genes 
involved in the biosynthesis of a compound and hence, can be used as a genome mining tool for 
novel biosynthetic gene clusters (BGC). To answer this question, a set of 102 negative, and 29 
positive controls were used. 42 out of the 102 negative controls consisted of completely in-silico 
created clusters, called synthetic BGC, while the remaining 60 clusters were created by concatenating 
random fungal gene sequences, called random BGCs. Regarding the positive controls, the selected 
BGCs showed a great diversity among the fungal taxa (see Table 5.2). The products of these clusters 
represented a high variety, too. They included antibiotics (e.g., penicillin and mycophenolic acid), 
other pharmaceuticals (e.g., lovastatin and fumagillin), pigments (e.g., tenellin and sorbicillin), and 
mycotoxins (e.g., aflatoxin and fumonisin), among others. This provided a broad compilation of the 
29 different, positive controls.  

The controls were analysed by FunOrder, the 42 synthetic BGCs yielded no phylogenetic tree, while 
for each of the random controls trees were obtained. Therefore, it was concluded that FunOrder can 
distinguish between completely randomized negative controls (synthetic BGCs) and controls based 
on real sequences. Regarding the random clusters, the number of the established phylogenetic trees 
ranged between two trees per cluster (Negative control 60) and eight trees per cluster (Negative 
controls 25, 31, 46, and 57). The calculated heatmaps of the negative controls showed generally low 
MEMs indicating no coevolutionary linkages, as expected. Examining the positive controls revealed 
the absence of 9 phylogenetic trees in five controls (see Table 5.3). Except of one gene (ustP1 in 
positive control 24), these genes were not involved in the biosynthetic pathway, which supported the 
postulation of Demerec and Hartman (1959) that cluster genes were coevolutionary linked and genes 
outside the clusters were not.83 However, while all negative controls were compared, genes 
necessary for the biosynthetic production, only, were analysed in the positive controls. 910 
phylogenetic trees of in total 2588 were compared during the thesis. This biased the further 
statistical analysis, preventing a reliable statement upon the question whether FunOrder can 
distinguish between core genes and adjacent genes. The positive controls showed therefore a great 
amount of missing data (> 20%) and thus were approximated it by a random forest approach. The 
used MissForest algorithm calculated the missing values based on the available ones. A certain 
analysis upon their evolutionary linkages was therefore not provided. Furthermore, the comparisons 
between heatmaps with missing and with approximated data illustrated that the random forest 
approach overestimated these values, as all of the predicted values were higher than the original 
ones. In fact, this approach considers only a randomly drawn subset of variables to predict a missing 
one, called out-of-bag (OOB) observations.179 These OOBs can be used to estimate the prediction 
error of the random forest approach, namely the OOB-error, which overestimates the true-prediction 
error in two-class-problems, especially with few observations like in the used positive controls.179 
This led to the conclusion, that the approximated MEMs of the positive controls must be observed 
with suspicion. Nevertheless, the coevolutionary linkages of the genes were analysed using the 
established heatmaps, dendrograms, and principal component analysis (PCA). During the evaluation 
of the heatmaps and dendrograms, the examination of the overestimated data was de-emphasized 
and instead the plots with missing data were reviewed.  The PCA results, which were calculated using 
the approximated data, showed that the earlier missing genes were clustering together, while the 
evaluated genes mostly diverged, other than actually assumed (e.g., penDE, pcbAB and pcbC in the 
penicillin BGC, Figure 5.19). This derived from the overestimation by the random forest approach and 
can be seen as an artifact. On that basis, evaluated genes that in fact clustered together in the PCA 
scores must be regarded as highly coevolutionary related (e.g., fum1 and fum16 in the fumonisin 
BGC, Figure 5.15). All the results (see 5.4.1 Manual evaluation measure ) pointed to the direction, 
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that FunOrder has the ability to predict positive genes correctly. Still, the previously explained bias 
could not be eliminated. To overcome that bias, a complete evaluation and the comparison of 1678 
more phylogenetic trees would have been needed. 

Another question to answer was whether FunOrder can distinguish between positive and negative 
controls. Hence, the MEMs were averaged, yielding the so-called average manual evaluation 
measures (aMEM). To ensure a strict differentiation, the bias was de-emphasized by using two 
thresholds for aMEMs, which was set to 1.5 and lower for negative controls, and 2.0 and above for 
positive controls. The discrimination was shown in a boxplot (Figure 5.33) indicating a good 
distinction. However, two negative controls yielded high aMEMs (see Table 5.6) and were considered 
as false positives. When examining the amount of obtained phylogenetic trees, both controls 
contained only two (negative control 60) or rather three (negative control 30) trees, indicating that 
the correct identification of small BGCs by FunOrder had a likelihood of 30:1. After establishing a 
confusion matrix based on the aMEMs (Table 5.7) the performance metrics were calculated. Best 
classification results tend to 100% regarding sensitivity, selectivity, accuracy, and precision, 
respectively, while the false positive rate and the false negative rate approach 0 %. Their values (see 
Table 5.8) gave therefore reason to confide the classification. However, as these metrics did not 
include the ratio between positive and negative variables yielding probably misleading results176, the 
Matthews correlation coefficient was determined (see Table 5.8). The coefficient scored 0.74 
indicating a good classification of the negative and positive controls. Based on the confusion matrix, a 
ROC curve was established (see Figure 5.34) and the AUC was calculated, which score 1.00 for best 
models. In this thesis the AUC was calculated for two thresholds to overcome the bias which derived 
from the comparison of the positive controls. Despite two thresholds, the AUC scored 0.86. All these 
results indicated that FunOrder can distinguish between positive and negative controls. Furthermore, 
the classification results point to the direction that the discrimination is robust. 

To confirm these results, a partial least discriminant analysis (PLS DA) was established using the 
parameters of the raw data (branch length differences, node differences, branch colours, and 
topologies). According to Figure 5.35, the PLS DA was comparable to the manually established 
classification results. In fact, PLS DA scored an even higher sensitivity. Thus, the analysis therefore 
confirmed the previously illustrated results. Furthermore, PLS DA clarified that the topologies and 
the branch colours, which were representations of the topologies, had the most input to the 
classification, indicating they were sufficient for inferring coevolutionary linkages (Figure 5.36).  

Finally, the evaluation results were used to range the distances calculated by FunOrder using the 
TreeKO algorithm. An additional BGC (fusaric acid BGC from Fusarium fujikoroi) was automatically 
analysed by FunOrder itself and this time the distances calculated by TreeKO algorithm were used for 
the evaluation of the BGC. The obtained results verified the evolutionary connection between the 
cluster genes (see Supplement 9.63), for which examples are introduced in the following. According 
to the respective literature159 one of the core genes of the BGC (fub8) encoding a non-ribosomal 
peptide synthetase should have high coevolutionary linkages with the gene fub6, a NAD(P)-
dependent dehydrogenase. Based on the biosynthetic pathway, fub8 binds O-acetyl-L homoserine 
yielding an NRPS-bound intermediate which is further converted by fub6.159 The second core gene 
(fub1) encoding a polyketide synthase produces trans-2-hexenal, which is released by fub4, a 
homoserine O-acetyltransferase. This indicates that they share evolutionary traits. These 
assumptions were confirmed by the results (see Supplement 9.63). Studt et al. proposed that fub1, 
fub8, and fub4 form an enzyme complex.159 In fact, the distances between fub1 and fub8, as well as 
fub4 and fub8 indicated some evolutionary linkages. Further important genes are fub12 which is 
involved in the production of two fusaric acid derivatives, and fub11, which exports fusaric acid out 
of the cell.159 Their evolutionary linkages were confirmed by the results as well (see Supplement 
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9.63). According to these results, FunOrder is able to provide information upon the coevolutionary 
linkage of the investigated genes. This indicates that the program can contribute to the discovery of 
novel BGCs.  

Taken together, the data and all the results point to the direction that FunOrder has the ability to 
predict fungal cluster genes correctly and that it differentiates between real biosynthetic gene 
clusters (BGC) and randomly assembled, negative controls. Furthermore, they indicate that the 
differentiation done by FunOrder is robust. However, it remains unclear whether FunOrder can 
distinguish between biosynthetic genes needed for the biosynthesis of a secondary metabolite and 
adjacent ones, as not all established phylogenetic trees of the positive controls were evaluated.  

7. Conclusion 
Fungal cluster border prediction based on computational coevolution (FunOrder) is able to predict 
genes involved in the biosynthesis of a secondary metabolite by means of coevolutionary linkages. 
The approach works with common Genbank® files as input providing a simple handling. The program 
is based on sequence similarity searches using BLAST, multiple sequence alignments by means of 
emma, an EMBOSS approach, RAxML, and TreeKO algorithm yielding evaluation and strict distances. 
FunOrder offers the possibility of inferring novel fungal biosynthetic gene clusters (BGC) based on 
their coevolutionary linkage, similar to EvoMining, a genome mining tool for bacteria and archaea 
species.44 Thereby, FunOrder is a promising genome mining tool for unknown fungal BGCs based on 
phylogenetics and – to the writer’s knowledge – the first suchlike approach for fungal species. 
Furthermore, it is an auspicious approach for the ongoing research of novel fungal secondary 
metabolites that can be used as pharmaceuticals. 
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9. Supplement 
Supplement 9.1: R script used for the statistical analysis of the positive controls, yielding heatmaps, dendrograms, 
scatterplots and PCA results. Prior analysis, the data matrix was prepared to obtain numeric matrices and the data was then 
approximated with a random forest approach (MissForest). The calculation of heatmaps and dendrograms were executed 
using data with and without missing data.  

########################################### 
##                                                                                      ## 
##                               BGC-Analysis                                ## 
##                            Positive control                              ## 
##                                                                                      ## 
########################################### 
 
########################################################### 
#                             written by Gabriel Alexander Vignolle                             # 
#                                     modified by Denise Schaffer                                      # 
########################################################### 
     
library("readr"); packageVersion("readr") 
library("stats"); packageVersion("stats") 
library("outliers"); packageVersion("outliers") 
library("dplyr"); packageVersion("dplyr") 
library("ggplot2"); packageVersion("ggplot2") 
library("gplots"); packageVersion("gplots") 
library("car"); packageVersion("car") 
library("moonBook"); packageVersion("moonBook") 
library("e1071"); packageVersion("e1071") 
library("lmtest"); packageVersion("lmtest") 
library("metaheuristicOpt"); packageVersion("metaheuristicOpt") 
library("factoextra"); packageVersion("factoextra") 
library("pls"); packageVersion("pls") 
library("idx2r"); packageVersion("idx2r") 
library("mdatools"); packageVersion("mdatools") 
library("missForest"); packageVersion(“missForest”) 
 
#### Matrix Preparation #### 
positive_cluster_01 <- read_delim ("~/Pos_control/positive_cluster_01/distance_matrix/positive_cluster_01.csv",  
                                  ";", escape_double = FALSE, col_types = cols(Gen = col_skip()), trim_ws = TRUE) 
positive_cluster_01_numeric <- as.matrix(sapply(positive_cluster_01, as.numeric)) 
rownames(positive_cluster_01_numeric) <- colnames(positive_cluster_01) 
pc01.imp <- missForest(positive_cluster_01_numeric) 
 
#### Heatmap computation #### 
#With approximated data 
heatmap.2(pc01.imp$ximp, trace="none", margins = c(8, 8), srtRow=0, srtCol=45, keysize = 1.5, 
          col= colorRampPalette(c("yellow", "orange", "red", "darkred", "black"))(100), main = "") 
title(main = "Positive Control 01 - Heatmap") 
#With Missing Data 
heatmap.2(positive_cluster_01_numeric, trace="none", margins = c(8, 8), srtRow=0, srtCol=45, keysize = 1.5,  
          col= colorRampPalette(c("yellow", "orange", "red", "darkred", "black"))(100), main="") 
title(main = "Positive Control 01 - Heatmap") 
 
#### Scaling #### 
#With approximated data 
pc01_unscaled <- scale(pc01.imp$ximp, center = TRUE, scale = FALSE) 
pc01_scaled <- scale(pc01.imp$ximp, center = TRUE, scale = TRUE) 
#With missing data 
positive_cluster_01_unscaled <- scale(positive_cluster_01_numeric, center = TRUE, scale = FALSE) 
positive_cluster_01_scaled <- scale(positive_cluster_01_numeric, center = TRUE, scale = TRUE) 
 
#### Euclidean Distance computation #### 
#With approximated data 
pc01_d_unscaled = dist(pc01_unscaled) 
pc01_d_scaled = dist(pc01_scaled) 
#With missing data 
positive_cluster_01_d_unscaled = dist(positive_cluster_01_unscaled) 
positive_cluster_01_d_scaled = dist(positive_cluster_01_scaled) 
 
#### Ward Clustering #### 
#Scaled and unscaled approximated data clustered with ward.D2 
pc01_dendro_unscaled <- hclust(pc01_d_unscaled, method = "ward.D2") 
pc01_dendro_scaled <- hclust(pc01_d_scaled, method = "ward.D2") 
#Scaled and unscaled missing data clustered with ward.D2 
positive_cluster_01_dendro_unscaled <- hclust(positive_cluster_01_d_unscaled, method = "ward.D2") 
positive_cluster_01_dendro_scaled <- hclust(positive_cluster_01_d_scaled, method = "ward.D2") 
 
#Scaled and unscaled approximated data clustered with ward.D 
pc01_dendro_unscaled_w <- hclust(pc01_d_unscaled, method = "ward.D") 
pc01_dendro_scaled_w <- hclust(pc01_d_scaled, method = "ward.D") 
#Scaled and unscaled missing data clustered with ward.D 
positive_cluster_01_dendro_unscaled_w <- hclust(positive_cluster_01_d_unscaled, method = "ward.D") 
positive_cluster_01_dendro_scaled_w <- hclust(positive_cluster_01_d_scaled, method = "ward.D") 
 
#### Dendrogram computation #### 
#Scaled and unscaled approximated data clustered with ward.D2 
plot(pc01_dendro_unscaled, main = "") 
title(main = "Unscaled Positive Cluster 01 - Dendrogram with Ward.D2") 
plot(pc01_dendro_scaled, main = "") 
title(main = "Scaled Positive Cluster 01 - Dendrogram with Ward.D2") 
 
#Scaled and unscaled missing data clustered with ward.D2 
plot(positive_cluster_01_dendro_unscaled, main = "") 
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title(main = "Unscaled Positive Cluster 01, Missing Data - Dendrogram with Ward.D2") 
plot(positive_cluster_01_dendro_scaled, main = "") 
title(main = "Scaled Positive Cluster 01, Missing Data - Dendrogram with Ward.D2") 
 
#Scaled and unscaled approximated data clustered with ward.D 
plot(pc01_dendro_unscaled_w, main = "") 
title(main = "Unscaled Positive Cluster 01 - Dendrogram with Ward.D") 
plot(pc01_dendro_scaled_w, main = "") 
title(main = "Scaled Positive Cluster 01 - Dendrogram with Ward.D") 
 
#Scaled and unscaled missing data clustered with ward.D 
plot(positive_cluster_01_dendro_unscaled_w, main = "") 
title(main = "Unscaled Positive Cluster 01, Missing Data - Dendrogram with Ward.D") 
plot(positive_cluster_01_dendro_scaled_w, main = "") 
title(main = "Scaled Positive Cluster 01, Missing Data - Dendrogram with Ward.D") 
 
#### PCA #### 
tree_PCA_pc01 <- pca(pc01.imp$ximp, scale = T, center = T) 
plot(tree_PCA_pc01) 
title(main = "Positive Control 01 - PCA") 
plotScores(tree_PCA_pc01, comp = c(1, 2), show.labels = TRUE, main = "Positive Control 01 - PCA Scores" ) 

 

 
Supplement 9.2: R script used for the statistical analysis of the negative controls, yielding heatmaps, dendrograms, 
scatterplots and PCA results. Prior analysis, the data matrix was prepared to obtain numeric matrices. 

########################################### 
##                                                                                      ## 
##                               BGC-Analysis                                ## 
##                            Negative control                            ## 
##                                                                                      ## 
########################################### 
 
########################################################### 
#                             written by Gabriel Alexander Vignolle                             # 
#                                     modified by Denise Schaffer                                      # 
########################################################### 
 
library("readr"); packageVersion("readr") 
library("stats"); packageVersion("stats") 
library("outliers"); packageVersion("outliers") 
library("dplyr"); packageVersion("dplyr") 
library("ggplot2"); packageVersion("ggplot2") 
library("gplots"); packageVersion("gplots") 
library("car"); packageVersion("car") 
library("moonBook"); packageVersion("moonBook") 
library("e1071"); packageVersion("e1071") 
library("lmtest"); packageVersion("lmtest") 
library("metaheuristicOpt"); packageVersion("metaheuristicOpt") 
library("factoextra"); packageVersion("factoextra") 
library("pls"); packageVersion("pls") 
library("idx2r"); packageVersion("idx2r") 
library("mdatools"); packageVersion("mdatools") 
 
##### Data preparation ##### 
random_cluster_01 <-read_delim("~/Neg_control/random_cluster_01.fasta.analysis/distance_matrix/random_cluster_01.csv",  
                                ";", escape_double = FALSE, col_types = cols(X1 = col_skip()),  
                                trim_ws = TRUE) 
random_cluster_01_numeric <- as.matrix(sapply(random_cluster_01, as.numeric)) 
rownames(random_cluster_01_numeric) <- colnames(random_cluster_01) 
 
#### Heatmap computation #### 
heatmap.2(random_cluster_01_numeric, trace="none", margins = c(8, 8), srtRow=0, srtCol=45, keysize = 1.5, col= 
colorRampPalette(c("yellow", "orange", "red", "darkred", "black"))(100), main = "") 
title(main = "Negative Control 01 - Heatmap") 
 
#### Scaling #### 
random_cluster_01_unscaled <- scale(random_cluster_01_numeric, center = TRUE, scale = FALSE) 
random_cluster_01_scaled <- scale(random_cluster_01_numeric, center = TRUE, scale = TRUE) 
 
#### Euclidean Distance computation#### 
 
random_cluster_01_d_unscaled = dist(random_cluster_01_unscaled) 
random_cluster_01_d_scaled = dist(random_cluster_01_scaled) 
 
#### Ward Clustering #### 
random_cluster_01_dendro_unscaled <- hclust(random_cluster_01_d_unscaled, method = "ward.D2") 
random_cluster_01_dendro_scaled <- hclust(random_cluster_01_d_scaled, method = "ward.D2") 
 
#### Dendrogram computation #### 
plot(random_cluster_01_dendro_unscaled, main = "") 
title(main = "Ward's minimum variance - random cluster 01 unscaled") 
plot(random_cluster_01_dendro_scaled, main = "") 
title(main = "Ward's minimum variance - random cluster 01 scaled") 
 
#### Principal component analysis#### 
tree_PCA_rc01 <- pca(random_cluster_01_numeric, scale = T, center = T) 
plot(tree_PCA_rc01, main = "") 
title(main = "Negative Control 01 - PCA") 
plotScores(tree_PCA_rc01, comp = c(1, 2), show.labels = TRUE, main="") 
title(main = "Negative Control 01 - Scores") 
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Supplement 9.3: Manual evaluation measures (MEM) of the genes in the positive control 01, tetramic acid biosynthetic gene 
cluster (BGC) of Hapsidospora irregularis (GenBank® KP8352.02). The MEM values of the gene comparisons are represented 
in the matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted 
green.  

Gene/ 
Gene tasS tasH tasG tas3 tasK tasR tasC tasA 

tasS 3.00 2.25 2.21 2.72 2.56 2.30 2.66 2.71 

tasH 2.25 3.00             

tasG 2.21   3.00         2.20 

tas3 2.72     3.00         

tasK 2.56       3.00       

tasR 2.30         3.00     

tasC 2.66           3.00 2.61 

tasA 2.71   2.20       2.61 3.00 
 

Supplement 9.4: Manual evaluation measures (MEM) of the genes in the positive control 02, mycophenolic acid biosynthetic 
gene cluster (BGC) of Penicillium brevicompactum (MIBiG BGC0000104). The MEM values of the gene comparisons are 
represented in the matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are 
highlighted green. False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene mpaF mpaA mpaB mpaD mpaE mpaG mpaH mpaC 

mpaF 3.00 1.88 2.21 1.90 1.85 2.35 2.23 2.40 

mpaA 1.88 3.00 1.90   2.23 2.08   2.13 

mpaB 2.21 1.90 3.00     2.06   2.52 

mpaD 1.90     3.00 2.15     2.33 

mpaE 1.85 2.23   2.15 3.00     2.11 

mpaG 2.35 2.08 2.06     3.00 2.14 2.63 

mpaH 2.23         2.14 3.00 1.94 

mpaC 2.40 2.13 2.52 2.33 2.11 2.63 1.94 3.00 
 

Supplement 9.5: Manual evaluation measures (MEM)  of the genes in the positive control 03, mycophenolic acid biosynthetic 
gene cluster (BGC) of Penicillium roqueforti (MIBiG BGC0001360). The MEM values of the gene comparisons are represented 
in the matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted 
green. False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene mpaC mpaA mpaB mpaDE mpaF mpaG mpaH 

mpaC 3.00 2.23 2.21 1.47 1.52 2.46 1.63 

mpaA 2.23 3.00 2.23 2.04 1.63     

mpaB 2.21 2.23 3.00 1.88 2.47 2.30   

mpaDE 1.47 2.04 1.88 3.00 2.38     

mpaF 1.52 1.63 2.47 2.38 3.00 2.32 2.21 

mpaG 2.46   2.30   2.32 3.00 1.44 

mpaH 1.63       2.21 1.44 3.00 
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Supplement 9.6: Manual evaluation measures (MEM) of the genes in the positive control 04, mycophenolic acid biosynthetic 
gene cluster (BGC) of Penicillium roqueforti (MIBiG BGC0001677). The MEM values of the gene comparisons are represented 
in the matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted 
green. False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene mpaC mpaA mpaB mpaDE mpaF mpaG mpaH 

mpaC 3.00 2.28 1.97 2.41 1.92 2.53 2.19 

mpaA 2.28 3.00 1.93 2.31 1.66     

mpaB 1.97 1.93 3.00 1.91 2.54 2.54   

mpaDE 2.41 2.31 1.91 3.00 2.23     

mpaF 1.92 1.66 2.54 2.23 3.00 2.78 2.36 

mpaG 2.53   2.54   2.78 3.00 2.48 

mpaH 2.19       2.36 2.48 3.00 
 

Supplement 9.7: Manual evaluation measures (MEM) of the genes in the positive control 05, botrydial biosynthetic gene 
cluster (BGC) of Botrytis cinera (MIBiG BGC0000631). The MEM values of the gene comparisons are represented in the 
matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene bot1 bot2 bot3 bot4 bot5 bot6 bot7 

bot1 3.00 2.50 2.73 2.55 2.44 2.16 2.50 

bot2 2.50 3.00 2.38 1.83 2.13 2.19 2.54 

bot3 2.73 2.38 3.00         

bot4 2.55 1.83   3.00       

bot5 2.44 2.13     3.00     

bot6 2.16 2.19       3.00   

bot7 2.50 2.54         3.00 
 

Supplement 9.8: Manual evaluation measures (MEM) of the genes in the positive control 06, leporin B biosynthetic gene 
cluster (BGC) of Aspergillus flavus (MIBiG BGC0001445). The MEM values of the gene comparisons are represented in the 
matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene lepA lepB Gen1 lepC lepD lepE lepF lepG lepH lepI 

lepA 3.00 2.25 1.38 2.38 2.46 2.31 2.31 2.50 2.35 2.25 

lepB 2.25 3.00                 

Gen1 1.38   3.00               

lepC 2.38     3.00             

lepD 2.46       3.00 2.44     2.45   

lepE 2.31       2.44 3.00 2.02 2.63 1.79   

lepF 2.31         2.02 3.00 2.31     

lepG 2.50         2.63 2.31 3.00 2.73   

lepH 2.35       2.45 1.79   2.73 3.00   

lepI 2.25                 3.00 
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Supplement 9.9: Manual evaluation measures (MEM) of the genes in the positive control 07, fumitremorgin biosynthetic 
gene cluster (BGC) of Aspergillus fumigatus (MIBiG BGC0000356). The MEM values of the gene comparisons are represented 
in the matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted 
green. False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene ftmA ftmC ftmD ftmB ftmE ftmF ftmG ftmH ftmI 

ftmA 3.00 1.27 2.25 1.82 1.75 1.43 1.58 1.93 2.16 

ftmC 1.27 3.00 0.00 1.91       1.69   

ftmD 2.25 0.00 3.00 2.09 1.88     1.88   

ftmB 1.82 1.91 2.09 3.00 1.94 2.11 1.70 2.11 1.81 

ftmE 1.75   1.88 1.94 3.00   2.04 1.81   

ftmF 1.43     2.11   3.00   2.11   

ftmG 1.58     1.70 2.04   3.00 1.67   

ftmH 1.93 1.69 1.88 2.11 1.81 2.11 1.67 3.00 1.80 

ftmI 2.16     1.81       1.80 3.00 
 

Supplement 9.10: Manual evaluation measures (MEM) of the genes in the positive control 08, tenellin biosynthetic gene 
cluster (BGC) of Beauveria bassiana (MIBiG BGC0001049). The MEM values of the gene comparisons are represented in the 
matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene tenS ten1 tenA tenB tenC 

tenS 3.00 1.20 2.03 2.04 2.33 

ten1 1.20 3.00       

tenA 2.03   3.00 2.47 2.57 

tenB 2.04   2.47 3.00   

tenC 2.33   2.57   3.00 
 

Supplement 9.11: Manual evaluation measures (MEM) of the genes in the positive control 09, ilicicolin H biosynthetic gene 
cluster (BGC) of Neonectria sp. DH2 (MIBiG BGC0002035). The MEM values of the gene comparisons are represented in the 
matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene iliA gene1 iliE iliB iliD iliC 

iliA 3.00 1.79 2.33 2.27 2.04 2.41 

gene1 1.79 3.00         

iliE 2.33   3.00       

iliB 2.27     3.00   2.65 

iliD 2.04       3.00 2.22 

iliC 2.41     2.65 2.22 3.00 
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Supplement 9.12: Manual evaluation measures (MEM) of the genes in the positive control 10, 2-pyridon-desmethylbassianin 
biosynthetic gene cluster (BGC) of Beaveria bassiana (MIBiG BGC0001136). The MEM values of the gene comparisons are 
represented in the matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are 
highlighted green. False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene dmbA dmbB dmbC dmbS 

dmbA 3.00 2.41 2.61 2.53 

dmbB 2.41 3.00 2.11 2.06 

dmbC 2.61 2.11 3.00 2.40 

dmbS 2.53 2.06 2.40 3.00 
 

Supplement 9.13: Manual evaluation measures (MEM) of the genes in the positive control 11, xanthocillin biosynthetic gene 
cluster (BGC) of Aspergillus fumigatus (MIBiG BGC0001990). The MEM values of the gene comparisons are represented in 
the matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene xanB xanG xanF xanE xanD xanC xanA 

xanB 3.00 2.59 1.75 1.63 2.53 1.83 2.31 

xanG 2.59 3.00   1.69   2.16 1.94 

xanF 1.75   3.00     1.63   

xanE 1.63 1.69   3.00   1.44 1.50 

xanD 2.53       3.00 2.00   

xanC 1.83 2.16 1.63 1.44 2.00 3.00 1.61 

xanA 2.31 1.94   1.50   1.61 3.00 
 

Supplement 9.14: Manual evaluation measures (MEM) of the genes in the positive control 12, fumagillin biosynthetic gene 
cluster (BGC) of Aspergillus fumigatus (MIBiG BGC000107). The MEM values of the gene comparisons are represented in the 
matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene Af370 Af380 Af390 Af400 Af410 Af420 Af430 Af440 Af460 Af470 Af480 Af490 Af500 Af510 Af520 

Af370 3.00 2.28 1.63 1.31 1.71 1.48 1.75 2.06 1.66 0.00 2.08 1.88 1.50 2.13 1.38 

Af380 2.28 3.00 1.69                   1.63   1.13 

Af390 1.63 1.69 3.00                   2.68   1.86 

Af400 1.31     3.00                 2.68     

Af410 1.71       3.00               2.50     

Af420 1.48         3.00             1.53     

Af430 1.75           3.00           2.68     

Af440 2.06             3.00         2.60     

Af460 1.66               3.00       2.09     

Af470 0.00                 3.00     1.95     

Af480 2.08                   3.00   2.03     

Af490 1.88                     3.00 2.48     

Af500 1.50 1.63 2.68 2.68 2.50 1.53 2.68 2.60 2.09 1.95 2.03 2.48 3.00 2.48 2.29 

Af510 2.13                       2.48 3.00   

Af520 1.38 1.13 1.86                   2.29   3.00 
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Supplement 9.15: Manual evaluation measures (MEM) of the genes in the positive control 13, terrein biosynthetic gene 
cluster (BGC) of Aspergillus terreus (MIBiG BGC0000161). The MEM values of the gene comparisons are represented in the 
matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene terA terB terC terD terE terF terR terG terH terJ 

terA 3.00 2.30 1.96 2.43 1.97 2.06 1.73 1.43 1.57 2.05 

terB 2.30 3.00 1.75 1.83 1.63 1.50 2.53       

terC 1.96 1.75 3.00 2.24 1.56 1.79 2.00       

terD 2.43 1.83 2.24 3.00 0.00 1.81 1.72       

terE 1.97 1.63 1.56 0.00 3.00 0.00 1.75       

terF 2.06 1.50 1.79 1.81 0.00 3.00 1.44       

terR 1.73 2.53 2.00 1.72 1.75 1.44 3.00       

terG 1.43             3.00     

terH 1.57               3.00   

terJ 2.05                 3.00 
 

Supplement 9.16: Manual evaluation measures (MEM) of the genes in the positive control 15, fumonisin biosynthetic gene 
cluster (BGC) of Fusarium oxysporum (MIBiG BGC0000063). The MEM values of the gene comparisons are represented in the 
matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene
/ 
Gene 

Fum
1 

Fum2
1 

Fum
6 

Fum
7 

Fum
8 

Fum
3 

Fum1
0 

Fum1
1 

Fum
2 

Fum1
3 

Fum1
4 

Fum1
5 

Fum1
6 

Fum1
7 

Fum1
8 

Fum1
9 

Cpm
1 

Fum
1 3.00 1.95 2.79 2.67 2.53 2.30 2.47 1.72 2.23 2.75 2.31 2.75 2.30 2.17 1.91 2.77 1.48 
Fum 
21 1.95 3.00     1.81   2.10       1.93   2.31         
Fum
6 2.79   3.00       2.94 1.94   2.92 2.46   2.56         
Fum
7 2.67     3.00     2.78 2.29 2.50   2.18   2.53         
Fum
8 2.53 1.81     3.00   2.47     2.50 2.45   2.44         
Fum
3 2.30         3.00 2.04   2.08   1.70   2.16         
Fum 
10 2.47 2.10 2.94 2.78 2.47 2.04 3.00 2.19 2.08 2.98 2.63 2.96 2.72 2.28 2.52 2.98 1.50 
Fum 
11 1.72   1.94 2.29     2.19 3.00     1.65   2.23         
Fum
2 2.23     2.50   2.08 2.08   3.00   1.85   2.54         
Fum 
13 2.75   2.92   2.50   2.98     3.00 2.50   2.69         
Fum 
14 2.31 1.93 2.46 2.18 2.45 1.70 2.63 1.65 1.85 2.50 3.00 2.34 2.15 2.09 1.85 2.67 1.28 
Fum 
15 2.75           2.96       2.34 3.00 2.44         
Fum 
16 2.30 2.31 2.56 2.53 2.44 2.16 2.72 2.23 2.54 2.69 2.15 2.44 3.00 2.18 2.21 2.63 1.25 
Fum 
17 2.17           2.28       2.09   2.18 3.00       
Fum 
18 1.91           2.52       1.85   2.21   3.00     
Fum 
19 2.77           2.98       2.67   2.63     3.00   
Cpm
1 1.48           1.50       1.28   1.25       3.00 
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Supplement 9.21: Manual evaluation measures (MEM) of the genes in the positive control 19, pestheic acid biosynthetic 
gene cluster (BGC) of Pestalotiopsis fici (MIBiG BGC0000121). The MEM values of the gene comparisons are represented in 
the matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene ptaA ptaB ptaC ptaD ptaE ptaF ptaG ptaH ptaR1 ptaR2 ptaI ptaJ ptaK ptaL ptaR3 ptaM orf1 orf2 

ptaA 3.00 2.23 2.00 2.11 2.38 2.05 2.46 2.08 1.75 1.28 1.52 2.15 1.75 2.06 1.63 1.50 1.33 1.44 

ptaB 2.23 3.00 2.21                               

ptaC 2.00 2.21 3.00         1.78     1.74               

ptaD 2.11     3.00                             

ptaE 2.38       3.00     1.85     1.77         1.84     

ptaF 2.05         3.00   2.01     1.52 2.35             

ptaG 2.46           3.00                       

ptaH 2.08   1.78   1.85 2.01   3.00     1.59 2.11       1.46     

ptaR1 1.75               3.00                   

ptaR2 1.28                 3.00                 

ptaI 1.52   1.74   1.77 1.52   1.59     3.00 2.38       1.75     

ptaJ 2.15         2.35   2.11     2.38 3.00             

ptaK 1.75                       3.00           

ptaL 2.06                         3.00         

ptaR3 1.63                           3.00       

ptaM 1.50       1.84     1.46     1.75         3.00     

orf1 1.33                               3.00   

orf2 1.44                                 3.00 
 

Supplement 9.22: Manual evaluation measures 34 of the genes in the positive control 20, cephalosporine biosynthetic gene 
cluster (BGC) of Acremonium chrysogenum (MIBiG BGC0000317). The MEM values of the gene comparisons are represented 
in the matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted 
green. False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene pcbAB cefG cefD1 cefD2 pcbC orf3 cefT 

pcbAB 3.00 1.92 2.38 2.53 2.46 1.77 1.73 

cefG 1.92 3.00 2.41         

cefD1 2.38 2.41 3.00 2.45 2.06 2.25 2.63 

cefD2 2.53   2.45 3.00 2.28     

pcbC 2.46   2.06 2.28 3.00     

orf3 1.77   2.25     3.00   

cefT 1.73   2.63       3.00 
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Supplement 9.23: Manual evaluation measures 34 of the genes in the positive control 21, penicillin biosynthetic gene cluster 
(BGC) of Penicillium chrysogenum (MIBiG BGC0000404). The MEM values of the gene comparisons are represented in the 
matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene pcbAB ORF2 ORF3 ORF4 ORF5 ORF6 ORF7 pcbC penDE ORF11 ORF12 ORF13 ORF14 ORF15 ORF16 

pcbAB 3.00 2.63 2.63 1.79 1.71 2.50 1.94 2.36 2.71 2.59 2.00 1.42 1.94 1.70 1.38 

ORF2 2.63 3.00                           

ORF3 2.63   3.00                         

ORF4 1.79     3.00                       

ORF5 1.71       3.00                     

ORF6 2.50         3.00                   

ORF7 1.94           3.00                 

pcbC 2.36             3.00 2.68             

penDE 2.71             2.68 3.00             

ORF11 2.59                 3.00           

ORF12 2.00                   3.00         

ORF13 1.42                     3.00       

ORF14 1.94                       3.00     

ORF15 1.70                         3.00   

ORF16 1.38                           3.00 
 

Supplement 9.24: Manual evaluation measures (MEM) of the genes in the positive control 22, penicillin biosynthetic gene 
cluster (BGC) of Penicillium chrysogenum (GenBank® EF601124.1). The MEM values of the gene comparisons are 
represented in the matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are 
highlighted green. False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene 

pcbA
B 

ORF1
0c 

ORF3
0c 

ORF40
w 

ORF50
w 

ORF60
w 

ORF7
0c 

ORF8
0c 

pcb
C 

penD
E 

ORF12
0c 

ORF13
0w 

ORF14
0w 

ORF15
0w 

ORF1
60 

pcbAB 3.00 1.94 2.13 2.25 2.33 1.71 2.50 2.15 
2.3

2 2.60 2.33 2.56 1.42 1.67 1.63 

ORF10c 1.94 3.00                           

ORF30c 2.13   3.00                         
ORF40
w 2.25     3.00                       
ORF50
w 2.33       3.00                     
ORF60
w 1.71         3.00                   

ORF70c 2.50           3.00                 

ORF80c 2.15             3.00               

pcbC 2.32               
3.0

0 2.55           

penDE 2.60               
2.5

5 3.00           
ORF120
c 2.33                   3.00         
ORF130
w 2.56                     3.00       
ORF140
w 1.42                       3.00     
ORF150
w 1.67                         3.00   

ORF160 1.63                           3.00 
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Supplement 9.25: Manual evaluation measures (MEM) of the genes in the positive control 23, sorbicillin biosynthetic gene 
cluster (BGC) of Penicillium rubens (MIBiG BGC0001404). The MEM values of the gene comparisons are represented in the 
matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene sorA sorR1 sorC sorB sorR2 sorT sorD 

sorA 3.00 2.75 2.50 2.58 2.00 1.97 1.92 

sorR1 2.75 3.00   2.31 1.83     

sorC 2.50   3.00 2.51     1.83 

sorB 2.58 2.31 2.51 3.00 2.48 2.71 2.06 

sorR2 2.00 1.83   2.48 3.00 2.47   

sorT 1.97     2.71 2.47 3.00   

sorD 1.92   1.83 2.06     3.00 
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Supplement 9.27: Manual evaluation measures (MEM) of the genes in the positive control 25, lovastatin biosynthetic gene 
cluster (BGC) of Aspergillus terreus. The MEM values of the gene comparisons are represented in the matrix. Empirically 
verified gene comparisons necessary for the secondary metabolite production are highlighted green. False negatives 
according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene lovB orf1 orf2 lovA lovG lovC lovD orf8 lovE orf10 lovF orf13 orf14 orf15 orf16 orf17 orf18 

lovB 3.00 1.13 1.84 2.06 2.57 2.43 2.18 1.50 1.33 2.00 2.15 0.00 1.40 2.00 1.75 1.25 1.98 

orf1 1.13 3.00                 1.25             

orf2 1.84   3.00               1.56             

lovA 2.06     3.00 2.41           2.33             

lovG 2.57     2.41 3.00 2.41         2.20             

lovC 2.43       2.41 3.00         1.85             

lovD 2.18           3.00       2.13             

orf8 1.50             3.00     1.95             

lovE 1.33               3.00   1.50             

orf10 2.00                 3.00 2.25             

lovF 2.15 1.25 1.56 2.33 2.20 1.85 2.13 1.95 1.50 2.25 3.00 1.56 1.25 2.03 1.75 1.63 1.96 

orf13 0.00                   1.56 3.00           

orf14 1.40                   1.25   3.00         

orf15 2.00                   2.03     3.00       

orf16 1.75                   1.75       3.00     

orf17 1.25                   1.63         3.00   

orf18 1.98                   1.96           3.00 
 

Supplement 9.28: Manual evaluation measures (MEM) of the genes in the positive control 26, compactin biosynthetic gene 
cluster (BGC) of Penicillium citrinum (MIBiG BGC0000039). The MEM values of the gene comparisons are represented in the 
matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene mlcA mlcB mlcC mlcD mlcE mlcF mlcG mlcH mlcR 

mlcA 3.00 2.80 2.61 1.69 2.00 2.73 2.68 2.50 1.21 

mlcB 2.80 3.00 2.19 1.59 2.18 2.48 1.99 2.53 1.75 

mlcC 2.61 2.19 3.00 1.52 2.23   2.35     

mlcD 1.69 1.59 1.52 3.00 1.81   1.54 1.63 1.00 

mlcE 2.00 2.18 2.23 1.81 3.00   1.90 2.15   

mlcF 2.73 2.48       3.00       

mlcG 2.68 1.99 2.35 1.54 1.90   3.00   1.42 

mlcH 2.50 2.53   1.63 2.15     3.00 1.56 

mlcR 1.21 1.75   1.00     1.42 1.56 3.00 
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Supplement 9.29: Manual evaluation measures (MEM) of the genes in the positive control 27, sorbicillin biosynthetic gene 
cluster (BGC) of Trichoderma reesei (GenBank® GL985056). The MEM values of the gene comparisons are represented in the 
matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene sor1 118 119 120 121 122 123 124 sor2 128 ypr2 sor4 ypr1 

sor1 3.00 1.75 2.33 1.93 1.92 2.31 1.93 2.28 2.39 2.22 2.02 2.28 1.82 

118 1.75 3.00           2.39 2.04         

119 2.33   3.00         2.64 2.63         

120 1.93     3.00       2.32 2.08         

121 1.92       3.00     2.41 2.63         

122 2.31         3.00   2.45 2.63         

123 1.93           3.00 2.18 2.63         

124 2.28 2.39 2.64 2.32 2.41 2.45 2.18 3.00 2.63 2.22 2.04 2.33 1.97 

sor2 2.39 2.04 2.63 2.08 2.63 2.63 2.63 2.63 3.00 2.77 2.50 2.40 1.94 

128 2.22             2.22 2.77 3.00       

ypr2 2.02             2.04 2.50   3.00   2.10 

sor4 2.28             2.33 2.40     3.00 2.06 

ypr1 1.82             1.97 1.94   2.10 2.06 3.00 
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Supplement 9.31: Manual evaluation measures (MEM) of the genes in the positive control 29, cyclosporine biosynthetic gene 
cluster (BGC) of Beauveria felina (MIBiG BGC0001565). The MEM values of the gene comparisons are represented in the 
matrix. Empirically verified gene comparisons necessary for the secondary metabolite production are highlighted green. 
False negatives according to the threshold of 2.0 and above are highlighted in red. 

Gene/ 
Gene simA 

ATQ 
39424 

ATQ 
39425 

ATQ 
39426 simB simD simE simF simG simH simI simJ simK 

simA 3.00 1.77 1.13 1.27 1.56 1.81 1.96 1.48 1.28 1.65 1.34 1.13 1.29 

ATQ39424 1.77 3.00 0.00           1.25         

ATQ39425 1.13 0.00 3.00 1.40 1.31 1.75 1.35 1.57 1.73 1.04 1.44 1.46 1.33 

ATQ39426 1.27   1.40 3.00         1.00         

simB 1.56   1.31   3.00       2.19     1.63   

simD 1.81   1.75     3.00     2.23         

simE 1.96   1.35       3.00   1.56         

simF 1.48   1.57         3.00 1.75         

simG 1.28 1.25 1.73 1.00 2.19 2.23 1.56 1.75 3.00 1.59 2.67 1.75 1.48 

simH 1.65   1.04           1.59 3.00       

simI 1.34   1.44           2.67   3.00 1.84   

simJ 1.13   1.46   1.63       1.75   1.84 3.00   

simK 1.29   1.33           1.48       3.00 
 

Supplement 9.32: Manual evaluation measures (MEM) of each phylogenetic tree in the negative controls (number 1 – 60), 
represented as matrices. Their names of the trees were abbreviated and therefore some names occur more often. The 
matrices were used as the basis for the statistical evaluation. False Positives according to the threshold of 1.5 and below are 
highlighted in red. 

1 

Tree/Tree claim1 kil589 xp_7519 xp_0145 xp_0187    
claim1 3.00 0.00 1.13 0.00 0.00    
kil589 0.00 3.00 1.13 0.00 0.00    
xp_7519 1.13 1.13 3.00 0.00 1.88    
xp_0145 0.00 0.00 0.00 3.00 0.00    
xp_0187 0.00 0.00 1.88 0.00 3.00    

2 

Tree/Tree exosp1 morco1 xp0023 xp0183     
exosp1 3.00 0.00 1.64 1.31     
morco1 0.00 3.00 1.50 1.35     
xp0023 1.64 1.50 3.00 1.13     
xp0183 1.31 1.35 1.13 3.00     

3 

Tree/Tree acrchr1 exosp1 neute paevar rfu808 ryo654 xp_0160  
acrchr1 3.00 2.25 2.39 0.00 1.88 0.00 0.00  
exosp1 2.25 3.00 2.19 1.63 1.63 1.71 1.13  
neute 2.39 2.19 3.00 0.00 1.84 1.00 1.69  
paevar 0.00 1.63 0.00 3.00 1.63 1.25 1.88  
rfu808 1.88 1.63 1.84 1.63 3.00 1.00 1.50  
ryo654 0.00 1.71 1.00 1.25 1.00 3.00 1.41  
xp_0160 0.00 1.13 1.69 1.88 1.50 1.41 3.00  

4 
Tree/Tree exosp1 necha2 xp0234 xp0245     
exosp1 3.00 0.00 0.00 1.50     
necha2 0.00 3.00 1.77 0.00     
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xp0234 0.00 1.77 3.00 0.00     
xp0245 1.50 0.00 0.00 3.00     

5 

Tree/Tree cadsp1 phisc1 triru1 tubae1     
cadsp1 3.00 1.35 1.69 0.00     
phisc1 1.35 3.00 2.13 0.00     
triru1 1.69 2.13 3.00 0.00     
tubae1 0.00 0.00 0.00 3.00     

6 

Tree/Tree mat_a1 verga1 xylhe1      
mat_a1 3.00 1.75 0.00      
verga1 1.75 3.00 1.75      
xylhe1 0.00 1.75 3.00      

7 

Tree/Tree magpo1 paevar xp668 xp622     
magpo1 3.00 0.00 1.28 1.31     
paevar 0.00 3.00 0.00 0.00     
xp668 1.28 0.00 3.00 2.50     
xp622 1.31 0.00 2.50 3.00     

8 

Tree/Tree capse1 phisc1 xp_002      
capse1 3.00 1.92 1.08      
phisc1 1.92 3.00 1.13      
xp_002 1.08 1.13 3.00      

9 

Tree/Tree conap1 dipse1 exool1 hypco275 tgo886 thv476 thv560  
conap1 3.0 2.3 1.7 0.0 1.6 1.4 1.0  
dipse1 2.3 3.0 0.0 2.3 1.3 1.9 0.0  
exool1 1.7 0.0 3.0 0.0 1.4 1.5 1.4  
hypco275 0.0 2.3 0.0 3.0 0.0 1.6 0.0  
tgo886 1.6 1.3 1.4 0.0 3.0 2.3 1.8  
thv476 1.4 1.9 1.5 1.6 2.3 3.0 2.0  
thv560 1.0 0.0 1.4 0.0 1.8 2.0 3.0  

10 

Tree/Tree exoxe ppr05 tgo22      
exoxe 3.00 1.50 0.00      
ppr05 1.50 3.00 1.00      
tgo22 0.00 1.00 3.00      

11 

Tree/Tree cdm colsi dalec glost hypco xp_013 xp_018  
cdm 3.00 1.00 0.00 1.88 0.00 0.00 0.00  
colsi 1.00 3.00 1.42 1.56 1.63 1.88 1.33  
dalec 0.00 1.42 3.00 1.44 1.38 1.25 1.44  
glost 1.88 1.56 1.44 3.00 2.16 0.00 0.00  
hypco 0.00 1.63 1.38 2.16 3.00 0.00 0.00  
xp_013 0.00 1.88 1.25 0.00 0.00 3.00 1.85  
xp_018 0.00 1.33 1.44 0.00 0.00 1.85 3.00  

12 

Tree/Tree colny1_101 colny1_102 maggr1 neute paevar    
colny1_101 3.00 2.44 1.38 2.21 0.00    
colny1_102 2.44 3.00 1.13 1.85 0.00    
maggr1 1.38 1.13 3.00 0.00 1.00    
neute 2.21 1.85 0.00 3.00 0.00    
paevar 0.00 0.00 1.00 0.00 3.00    

13 Tree/Tree color melva rdk xp_002 xp_014    
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color 3.00 1.38 0.00 0.00 0.00    
melva 1.38 3.00 0.00 0.00 0.00    
rdk 0.00 0.00 3.00 2.44 0.00    
xp_002 0.00 0.00 2.44 3.00 0.00    
xp_014 0.00 0.00 0.00 0.00 3.00    

14 

Tree/Tree exool gaegr melbi2_5 melbi2_6 rii2 zymps   
exool 3.00 0.00 0.00 2.50 0.00 0.00   
gaegr 0.00 3.00 0.00 0.00 0.00 0.00   
melbi2_5 0.00 0.00 3.00 1.58 0.00 0.00   
melbi2_6 2.50 0.00 1.58 3.00 1.65 0.00   
rii2 0.00 0.00 0.00 1.65 3.00 0.00   
zymps 0.00 0.00 0.00 0.00 0.00 3.00   

15 

Tree/Tree neucr2 oaa50 xp01      
neucr2 3.00 1.53 0.00      
oaa50 1.53 3.00 0.00      
xp01 0.00 0.00 3.00      

16 

Tree/Tree colsa1 melva1 xp0113      
colsa1 3.00 0.00 1.25      
melva1 0.00 3.00 1.27      
xp0113 1.25 1.27 3.00      

17 

Tree/Tree cadsp1 capse1 oidma1 tgo074     
cadsp1 3.00 1.59 1.28 0.00     
capse1 1.59 3.00 1.00 0.00     
oidma1 1.28 1.00 3.00 1.50     
tgo074 0.00 0.00 1.50 3.00     

18 

Tree/Tree conlig eit7 eit8 melva neucr xp_001 xp_018  
conlig 3.00 0.00 0.00 1.34 0.00 0.00 2.13  
eit7 0.00 3.00 2.13 0.00 1.78 1.88 1.85  
eit8 0.00 2.13 3.00 1.88 0.00 2.15 0.00  
melva 1.34 0.00 1.88 3.00 1.33 1.25 0.00  
neucr 0.00 1.78 0.00 1.33 3.00 0.00 1.96  
xp_001 0.00 1.88 2.15 1.25 0.00 3.00 0.00  
xp_018 2.13 1.85 0.00 0.00 1.96 0.00 3.00  

19 

Tree/Tree colny kid pseve rii xp_001 xp_011   
colny 3.00 0.00 2.13 0.00 0.00 0.00   
kid 0.00 3.00 1.13 1.19 1.21 1.43   
pseve 2.13 1.13 3.00 0.00 0.00 1.43   
rii 0.00 1.19 0.00 3.00 1.08 1.63   
xp_001 0.00 1.21 0.00 1.08 3.00 1.82   
xp_011 0.00 1.43 1.43 1.63 1.82 3.00   

20 

Tree/Tree cochec cocvi colsi crl19 por37    
cochec 3.00 2.03 0.00 1.04 0.00    
cocvi 2.03 3.00 0.00 1.00 1.13    
colsi 0.00 0.00 3.00 0.00 1.58    
crl19 1.04 1.00 0.00 3.00 0.00    
por37 0.00 1.13 1.58 0.00 3.00    

21 Tree/Tree hgy_1_10 hgy_1_23 xp_0187      
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hgy_1_10 3.00 1.75 0.00      
hgy_1_23 1.75 3.00 1.69      
xp_0187 0.00 1.69 3.00      

22 

Tree/Tree claim colsi monha xp_002 xp_003    
claim 3.00 0.00 0.00 1.50 2.10    
colsi 0.00 3.00 1.44 1.04 0.00    
monha 0.00 1.44 3.00 1.15 1.88    
xp_002 1.50 1.04 1.15 3.00 1.56    
xp_003 2.10 0.00 1.88 1.56 3.00    

23 

Tree/Tree colny1 crl18 exoxe1 xp_0234     
colny1 3.00 0.00 1.88 0.00     
crl18 0.00 3.00 1.88 2.00     
exoxe1 1.88 1.88 3.00 1.50     
xp_0234 0.00 2.00 1.50 3.00     

24 

Tree/Tree gaegr maggr magpo neucr oqe ptb xp_007  
gaegr 3.00 1.25 2.63 0.00 0.00 0.00 1.25  
maggr 1.25 3.00 1.45 1.00 0.00 0.00 1.70  
magpo 2.63 1.45 3.00 1.00 0.00 1.33 1.89  
neucr 0.00 1.00 1.00 3.00 0.00 1.00 1.00  
oqe 0.00 0.00 0.00 0.00 3.00 1.75 0.00  
ptb 0.00 0.00 1.33 1.00 1.75 3.00 2.00  
xp_007 1.25 1.70 1.89 1.00 0.00 2.00 3.00  

25 

Tree/Tree botdo capse chove kho perma tgo tubae xp_028 

botdo 3.00 1.88 1.60 0.00 1.69 1.50 1.13 1.77 

capse 1.88 3.00 0.00 0.00 1.25 0.00 0.00 1.38 

chove 1.60 0.00 3.00 0.00 1.81 1.45 1.88 1.81 

kho 0.00 0.00 0.00 3.00 1.67 0.00 1.28 0.00 

perma 1.69 1.25 1.81 1.67 3.00 1.45 0.00 1.63 

tgo 1.50 0.00 1.45 0.00 1.45 3.00 1.23 1.40 

tubae 1.13 0.00 1.88 1.28 0.00 1.23 3.00 1.06 

xp_028 1.77 1.38 1.81 0.00 1.63 1.40 1.06 3.00 

26 

Tree/Tree cochec kil paevar phisc tgo xp_009 xp_025  
cochec 3.00 0.00 0.00 1.13 0.00 1.38 0.00  
kil 0.00 3.00 0.00 0.00 0.00 0.00 0.00  
paevar 0.00 0.00 3.00 1.72 1.50 0.00 1.32  
phisc 1.13 0.00 1.72 3.00 1.22 1.94 1.88  
tgo 0.00 0.00 1.50 1.22 3.00 0.00 0.00  
xp_009 1.38 0.00 0.00 1.94 0.00 3.00 0.00  
xp_025 0.00 0.00 1.32 1.88 0.00 0.00 3.00  

27 

Tree/Tree color corca rfu74 venin xp_007    
color 3.00 1.31 1.71 2.08 1.28    
corca 1.31 3.00 1.31 1.77 1.00    
rfu74 1.71 1.31 3.00 0.00 1.46    
venin 2.08 1.77 0.00 3.00 0.00    
xp_007 1.28 1.00 1.46 0.00 3.00    

28 Tree/Tree erynec oidma paevar verda verga xp_01   
erynec 3.00 1.06 0.00 1.31 1.75 1.09   
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oidma 1.06 3.00 0.00 1.88 1.38 1.47   
paevar 0.00 0.00 3.00 0.00 0.00 1.38   
verda 1.31 1.88 0.00 3.00 0.00 1.33   
verga 1.75 1.38 0.00 0.00 3.00 0.00   
xp_01 1.09 1.47 1.38 1.33 0.00 3.00   

29 

Tree/Tree cdm exode kzn hgy_1_18 hgy_1_29 xp_002 xp_007  
cdm 3.00 1.33 2.08 1.60 1.19 1.85 0.00  
exode 1.33 3.00 1.75 1.25 0.00 0.00 0.00  
kzn 2.08 1.75 3.00 1.84 1.25 1.38 0.00  
hgy_1_18 1.60 1.25 1.84 3.00 1.75 1.30 0.00  
hgy_1_29 1.19 0.00 1.25 1.75 3.00 1.25 1.00  
xp_002 1.85 0.00 1.38 1.30 1.25 3.00 0.00  
xp_007 0.00 0.00 0.00 0.00 1.00 0.00 3.00  

30 

Tree/Tree hgy_1_97 hgy_1_24 xp_003      
hgy_1_97 3.00 2.09 2.20      
hgy_1_24 2.09 3.00 1.96      
xp_003 2.20 1.96 3.00      

31 

Tree/Tree cdm knd necha paevar rfu xp_018 xp_025 xylhe 

cdm 3.00 0.00 0.00 1.88 0.00 0.00 1.63 0.00 

knd 0.00 3.00 1.96 0.00 2.13 1.80 0.00 1.97 

necha 0.00 1.96 3.00 0.00 1.67 2.25 0.00 1.50 

paevar 1.88 0.00 0.00 3.00 0.00 0.00 1.88 0.00 

rfu 0.00 2.13 1.67 0.00 3.00 1.69 0.00 1.67 

xp_018 0.00 1.80 2.25 0.00 1.69 3.00 0.00 1.50 

xp_025 1.63 0.00 0.00 1.88 0.00 0.00 3.00 0.00 

xylhe 0.00 1.97 1.50 0.00 1.67 1.50 0.00 3.00 

32 

Tree/Tree penvul xp_0183 xp_0245      
penvul 3.00 0.00 1.38      
xp_0183 0.00 3.00 0.00      
xp_0245 1.38 0.00 3.00      

33 

Tree/Tree amore colny ryo xp_007 xp_014    
amore 3.00 1.83 0.00 2.00 1.75    
colny 1.83 3.00 0.00 0.00 0.00    
ryo 0.00 0.00 3.00 0.00 0.00    
xp_007 2.00 0.00 0.00 3.00 1.21    
xp_014 1.75 0.00 0.00 1.21 3.00    

34 

Tree/Tree capse hypco venin xp_01 xp_02    
capse 3.00 0.00 0.00 0.00 1.85    
hypco 0.00 3.00 0.00 1.98 0.00    
venin 0.00 0.00 3.00 0.00 1.19    
xp_01 0.00 1.98 0.00 3.00 0.00    
xp_02 1.85 0.00 1.19 0.00 3.00    

35 

Tree/Tree ascim conlig exode phach xp_02    
ascim 3.00 0.00 0.00 0.00 0.00    
conlig 0.00 3.00 1.65 2.04 1.75    
exode 0.00 1.65 3.00 1.63 0.00    
phach 0.00 2.04 1.63 3.00 0.00    
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xp_02 0.00 1.75 0.00 0.00 3.00    

36 

Tree/Tree colsi knd paevar xp_01 xp_02    
colsi 3.00 2.00 1.63 1.78 0.00    
knd 2.00 3.00 0.00 1.94 1.70    
paevar 1.63 0.00 3.00 0.00 0.00    
xp_01 1.78 1.94 0.00 3.00 1.90    
xp_02 0.00 1.70 0.00 1.90 3.00    

37 

Tree/Tree chagl corca1 kid67 phach1     
chagl 3.00 0.00 1.69 0.00     
corca1 0.00 3.00 0.00 1.50     
kid67 1.69 0.00 3.00 0.00     
phach1 0.00 1.50 0.00 3.00     

38 

Tree/Tree ptb80 ryo62 xp_003 xp_013     
ptb80 3.00 0.00 1.21 1.63     
ryo62 0.00 3.00 0.00 1.28     
xp_003 1.21 0.00 3.00 1.75     
xp_013 1.63 1.28 1.75 3.00     

39 

Tree/Tree cadsp dalec kil thv16 thv50    
cadsp 3.00 1.75 1.75 1.75 1.88    
dalec 1.75 3.00 0.00 0.00 0.00    
kil 1.75 0.00 3.00 1.75 0.00    
thv16 1.75 0.00 1.75 3.00 2.44    
thv50 1.88 0.00 0.00 2.44 3.00    

40 

Tree/Tree acrchr claba melva monha oaa paevar   
acrchr 3.00 0.00 0.00 0.00 1.40 0.00   
claba 0.00 3.00 1.13 0.00 0.00 1.48   
melva 0.00 1.13 3.00 1.44 0.00 1.13   
monha 0.00 0.00 1.44 3.00 0.00 0.00   
oaa 1.40 0.00 0.00 0.00 3.00 0.00   
paevar 0.00 1.48 1.13 0.00 0.00 3.00   

41 

Tree/Tree arb_038 claim1 neucr rdk4 xp_007    
arb_038 3.00 1.63 1.81 1.63 0.00    
claim1 1.63 3.00 0.00 2.18 0.00    
neucr 1.81 0.00 3.00 1.83 2.45    
rdk4 1.63 2.18 1.83 3.00 0.00    
xp_007 0.00 0.00 2.45 0.00 3.00    

42 

Tree/Tree hgy_1_262 xp_0187 xp_0247      
hgy_1_262 3.00 0.00 0.00      
xp_0187 0.00 3.00 1.48      
xp_0247 0.00 1.48 3.00      

43 

Tree/Tree claim1 hgy_1 xp_001 xp_0255     
claim1 3.00 1.13 0.00 0.00     
hgy_1 1.13 3.00 1.28 1.68     
xp_001 0.00 1.28 3.00 2.03     
xp_0255 0.00 1.68 2.03 3.00     

44 Tree/Tree magpo paevar verda verga xp_001 xp_014 xp_024  
magpo 3.00 0.00 2.13 1.88 0.00 0.00 0.00  
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paevar 0.00 3.00 0.00 0.00 1.85 1.81 0.00  
verda 2.13 0.00 3.00 1.67 0.00 0.00 1.77  
verga 1.88 0.00 1.67 3.00 0.00 0.00 0.00  
xp_001 0.00 1.85 0.00 0.00 3.00 1.65 0.00  
xp_014 0.00 1.81 0.00 0.00 1.65 3.00 0.00  
xp_024 0.00 0.00 1.77 0.00 0.00 0.00 3.00  

45 

Tree/Tree claim oaa paevar xp_013 xp_014 xp_018 xp_025  
claim 3.00 0.00 1.19 0.00 0.00 0.00 1.04  
oaa 0.00 3.00 0.00 1.83 2.05 1.46 0.00  
paevar 1.19 0.00 3.00 0.00 0.00 0.00 1.80  
xp_013 0.00 1.83 0.00 3.00 1.75 2.00 0.00  
xp_014 0.00 2.05 0.00 1.75 3.00 1.50 0.00  
xp_018 0.00 1.46 0.00 2.00 1.50 3.00 0.00  
xp_025 1.04 0.00 1.80 0.00 0.00 0.00 3.00  

46 

Tree/Tree ascim1 necha2 neute verga1 xp_003 xp_018 xp_023 xp_024 

ascim1 3.00 0.00 0.00 1.25 0.00 0.00 0.00 0.00 

necha2 0.00 3.00 1.25 0.00 1.27 1.76 1.61 1.69 

neute 0.00 1.25 3.00 1.88 1.25 1.50 1.28 1.50 

verga1 1.25 0.00 1.88 3.00 0.00 1.94 1.75 1.50 

xp_003 0.00 1.27 1.25 0.00 3.00 1.13 1.10 1.15 

xp_018 0.00 1.76 1.50 1.94 1.13 3.00 2.45 1.99 

xp_023 0.00 1.61 1.28 1.75 1.10 2.45 3.00 1.75 

xp_024 0.00 1.69 1.50 1.50 1.15 1.99 1.75 3.00 

47 

Tree/Tree crl27 hypec38 paevar tgo822 xp_024    
crl27 3.00 0.00 1.81 0.00 0.00    
hypec38 0.00 3.00 0.00 0.00 1.00    
paevar 1.81 0.00 3.00 0.00 0.00    
tgo822 0.00 0.00 0.00 3.00 2.83    
xp_024 0.00 1.00 0.00 2.83 3.00    

48 

Tree/Tree khn98 neute hgy_1_2 hgy_1_3 xp_02    
khn98 3.00 0.00 0.00 0.00 1.23    
neute 0.00 3.00 0.00 0.00 1.78    
hgy_1_2 0.00 0.00 3.00 2.41 1.92    
hgy_1_3 0.00 0.00 2.41 3.00 1.63    
xp_02 1.23 1.78 1.92 1.63 3.00    

49 

Tree/Tree acrchr1 corca1 paevar xp_001 xp_024    
acrchr1 3.00 2.69 0.00 0.00 2.19    
corca1 2.69 3.00 1.88 1.75 3.00    
paevar 0.00 1.88 3.00 1.63 0.00    
xp_001 0.00 1.75 1.63 3.00 0.00    
xp_024 2.19 3.00 0.00 0.00 3.00    

50 

Tree/Tree capse1 claba1 gaegr1 rii08     
capse1 3.00 1.99 1.77 1.00     
claba1 1.99 3.00 1.50 1.25     
gaegr1 1.77 1.50 3.00 1.41     
rii08 1.00 1.25 1.41 3.00     

51 Tree/Tree arb ascim capse magpo thv xp_001   
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arb 3.00 0.00 1.41 1.50 1.00 1.44   
ascim 0.00 3.00 0.00 0.00 0.00 0.00   
capse 1.41 0.00 3.00 1.00 1.00 1.88   
magpo 1.50 0.00 1.00 3.00 0.00 0.00   
thv 1.00 0.00 1.00 0.00 3.00 1.00   
xp_001 1.44 0.00 1.88 0.00 1.00 3.00   

52 

Tree/Tree botdo cadsp chove maggr oaa xp_013   
botdo 3.00 1.50 0.00 1.40 1.19 1.31   
cadsp 1.50 3.00 0.00 1.46 0.00 0.00   
chove 0.00 0.00 3.00 0.00 0.00 0.00   
maggr 1.40 1.46 0.00 3.00 1.77 1.13   
oaa 1.19 0.00 0.00 1.77 3.00 1.24   
xp_013 1.31 0.00 0.00 1.13 1.24 3.00   

53 

Tree/Tree conap1 fonmo1 hgy_1_1 hgy_1_2 xp_01    
conap1 3.00 1.50 0.00 0.00 1.63    
fonmo1 1.50 3.00 1.00 1.00 0.00    
hgy_1_1 0.00 1.00 3.00 1.73 0.00    
hgy_1_2 0.00 1.00 1.73 3.00 0.00    
xp_01 1.63 0.00 0.00 0.00 3.00    

54 

Tree/Tree ryo557 xp_0013 xp_0077 xp_0078 xp_0187    
ryo557 3.00 0.00 0.00 0.00 1.42    
xp_0013 0.00 3.00 0.00 0.00 1.75    
xp_0077 0.00 0.00 3.00 1.47 2.04    
xp_0078 0.00 0.00 1.47 3.00 0.00    
xp_0187 1.42 1.75 2.04 0.00 3.00    

55 

Tree/Tree exoxe1 Pseudest1 xp_016 xp_018 xp_023    
exoxe1 3.00 2.00 0.00 1.88 0.00    
Pseudest1 2.00 3.00 1.15 0.00 0.00    
xp_016 0.00 1.15 3.00 0.00 0.00    
xp_018 1.88 0.00 0.00 3.00 2.40    
xp_023 0.00 0.00 0.00 2.40 3.00    

56 

Tree/Tree colny conlig exool hgy_1_20 hgy_1_25 xp_009 xp_023  
colny 3.00 1.73 1.21 0.00 0.00 1.28 1.27  
conlig 1.73 3.00 1.71 0.00 0.00 1.25 1.38  
exool 1.21 1.71 3.00 1.44 0.00 1.25 1.30  
hgy_1_20 0.00 0.00 1.44 3.00 2.63 0.00 0.00  
hgy_1_25 0.00 0.00 0.00 2.63 3.00 0.00 0.00  
xp_009 1.28 1.25 1.25 0.00 0.00 3.00 1.63  
xp_023 1.27 1.38 1.30 0.00 0.00 1.63 3.00  

57 

Tree/Tree cadsp erynec melva hgy_1_19 hgy_1_21 xp_016 xp_025 zymps 

cadsp 3.00 0.00 1.19 1.17 0.00 0.00 0.00 1.25 

erynec 0.00 3.00 1.00 0.00 0.00 0.00 0.00 0.00 

melva 1.19 1.00 3.00 1.75 0.00 1.63 0.00 1.52 

hgy_1_19 1.17 0.00 1.75 3.00 1.92 1.00 1.19 1.48 

hgy_1_21 0.00 0.00 0.00 1.92 3.00 1.34 1.82 1.44 

xp_016 0.00 0.00 1.63 1.00 1.34 3.00 1.44 1.75 

xp_025 0.00 0.00 0.00 1.19 1.82 1.44 3.00 1.75 



115 
 

zymps 1.25 0.00 1.52 1.48 1.44 1.75 1.75 3.00 

58 

Tree/Tree parbra1 phaal1 venin xp0012     
parbra1 3.00 1.63 1.75 1.66     
phaal1 1.63 3.00 1.54 0.54     
venin 1.75 1.54 3.00 0.91     
xp0012 1.66 0.54 0.91 3.00     

59 

Tree/Tree colsa paevar xp_001 xp_003 xp_007    
colsa 3.00 0.00 0.00 1.80 0.34    
paevar 0.00 3.00 1.71 0.00 2.13    
xp_001 0.00 1.71 3.00 0.00 0.00    
xp_003 1.80 0.00 0.00 3.00 1.00    
xp_007 0.34 2.13 0.00 1.00 3.00    

60 
Tree/Tree MeBi MeVa       
MeBi 3.00 1.50       
MeVa 1.50 3.00       
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Supplement 9.33: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 01 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach. 
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Supplement 9.34: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 02 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach. 
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Supplement 9.35: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 03 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.36: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 04 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach
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Supplement 9.37: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 05 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.38: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 06 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.39: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 07 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.40: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 08 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.41: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 09 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.42: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 10 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.43 Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 11 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.44: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 12 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.45: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 13 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.46: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 14 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.47: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 15 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.48: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 16 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.



147 
 

  



148 
 

Supplement 9.49: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 17 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.50: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 18 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9 51: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 19 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.52: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 20 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.



155 
 

  



156 
 

Supplement 9.53: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 21 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.54: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 22 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.55: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 23 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.56: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 24 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.57: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 25 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.58: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 26 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.59: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 27 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.60: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 28 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.61: Heatmaps, Dendrograms and principal component analysis (PCA) of Positive control 29 used for the 
statistical analysis. The heatmaps were calculated using approximated data (top) and the missing data (bottom). To obtain 
the dendrograms, the former conducted matrices were scaled, and a distance matrix were returned. The illustrated 
dendrograms were then computed using the hclust function and the ward clustering method ward.D in RStudio. PCA and 
their scores were plotted using the datasets approximated by MissForest approach.
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Supplement 9.62: Heatmaps, Dendrograms and principal component analysis (PCA) of all negative controls. As all of the 
phylogenetic trees obtained from FunOrder were evaluated, they include no missing data. Hence, only one heatmap plot per 
control were computed. To calculate the dendrograms (labelled as “Ward’s minimum variance – random cluster”), the 
former conducted matrices were scaled, and a distance matrix were returned. The illustrated dendrograms were then 
computed using the hclust function and the ward clustering method ward.D in RStudio. PCA was calculated using the pca 
function of the package mdatools 99. 
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Supplement 9.63: Heatmaps, Dendrograms, and principal component analysis (PCA) of Positive control 30 which were 
automatically calculated by the TreeKO approach of FunOrder based on the manually evaluated data. 
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