
Fail-Operational Strategies for Highly-Integrated Automotive
ECUs

DIPLOMA THESIS

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Privatdoz. Dipl.-Ing. Dr. techn. Wilfried Steiner

submitted at the

TU Wien
Faculty of Electrical Engineering and Information Technology

Institute of Computer Engineering

by
Rupert Schorn

Matriculation number 01325700

Vienna, January 2021

Institute of Computer Engineering (E191)
A-1040 Wien, Treitlstraße 3, Internet: https://ti.tuwien.ac.at

Acknowledgements
I would like to thank Privatdoz. Dipl.-Ing. Dr.techn. Wilfried Steiner for the supervision
of this thesis. Furthermore, I want to thank Dr. Anna Ryabokon for her support, especially
for providing all the necessary infrastructure the practical part of this thesis is based on.

This work was funded by the ECSEL JU project PRYSTINE which receives grant from
the European H2020 research and innovation programme through the Electronic Compo-
nent Systems for European Leadership (ECSEL) Joint Undertaking under grant agreement
No 783190. And National Authorities such as the Austrian Ministry for Transport, In-
novation and Technology under the funding programme „IKT der Zukunft“(Austrian
national funding for ECSEL, grant agreement no 865307) and from the German Fed-
eral Ministry of Education and Research (BMBF funding, grant agreement no 16ESE0329).

I

Abstract
The ongoing transition towards fully automated systems for on-road vehicles requires
highly available and reliable Electrical and/or Electronic (E/E) systems. When an
Automated Driving System (ADS) is supposed to monitor the driving environment, Fail-
Operational (FO) systems providing high availability and reliability need to be developed.
If a single failure occurs, specific systems must remain operational for a certain amount of
time to either hand over control to a human driver or automatically manoeuvre the vehicle
into a safe state. Various approaches on architecture level exist to develop systems capable
of FO behaviour. Depending on the application, some approaches are more qualified
compared to others. However, it is always a trade-off between the degree of redundancy
and diversity added on hardware or software level and economic requirements.

This thesis is based on state-of-the-art approaches to build FO ADSs and on a detailed
analysis. For this purpose, e.g. failure modes, Automotive Safety Integrity Levels (ASILs)
or Fault Containment Regions (FCRs) are considered. Several design concepts were
elaborated in this thesis. Based on the evaluation of the proposed concepts, one of them
was selected for the implementation because it addresses the main challenges defined
by automotive industry. The implemented FO concept was successfully integrated in
a lab demonstrator using existing Electronic Control Units (ECUs), containing proper
safety controllers, number crunching processors and communication links. The FO
behaviour is demonstrated by using fault injection. Finally, the overall performance of
the demonstrator is evaluated by measuring the fail-over time of the system which shows
acceptable performance for real-world application scenarios.

II

Kurzzusammenfassung
Der derzeit stattfindende technologische Übergang zu voll autonomen Systemen für
Straßenfahrzeuge erfordert E/E-Systeme mit entsprechend hohen Verfügbarkeits- und
Zuverlässigkeitskennzahlen. Die Überwachung der Umgebung durch autonome Systeme
erfordert die Entwicklung fehlertoleranter Systeme, die den notwendigen Grad an Ver-
fügbarkeit und Zuverlässigkeit liefern. Beim Auftreten eines einzelnen Fehlers müssen
gewisse Systeme zumindest für eine gewisse Zeitspanne weiterhin funktionsfähig bleiben,
um entweder die Kontrolle an den Fahrer zu übergeben oder das Fahrzeug in einen sicheren
Zustand zu manövrieren. Für die Entwicklung von fehlertoleranten Systemen existieren
verschiedene Architekturen, wobei deren Verwendbarkeit anwendungsspezifisch ist und
immer ein Kompromiss zwischen dem Grad der Redundanz bzw. Diversität und den
wirtschaftlichen Vorgaben gefunden werden muss.

In dieser Arbeit liegt der Fokus auf einer State-of-the-Art-Recherche und einer detaillier-
ten Untersuchung von fehlertoleranten autonomen Systemen. Dabei werden unter anderem
Konzepte wie Fehler-Modes, ASILs oder FCRs berücksichtigt. Von den untersuchten
Architekturen wird ein ausgewählter Ansatz mithilfe von existierenden ECUs, bestehend
aus Safety-Prozessoren, Number-Crunching-Prozessoren und geeigneten Kommunikations-
verbindungen in Form eines Prototypen implementiert. Mithilfe von Fehlerinjektionen wird
das Fehlertoleranzverhalten demonstriert und dessen Leistungsfähigkeit durch Messung
der Fail-Over-Zeit evaluiert. Die Auswertung der Messergebnisse zeigt akzeptable Werte
für den Einsatz in realen Anwendungsszenarien.

III

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Standards . 1

1.2.1 SAE J3016 . 2
1.2.2 ISO26262 Road vehicles - Functional safety 5

1.3 Scope of the thesis . 6
1.4 Structure . 6

2 State of the art 8
2.1 Fail-operational architectures . 8

2.1.1 Triple Modular Redundancy (TMR) 8
2.1.2 Simplex architecture . 9
2.1.3 1-out-of-2 with Diagnostics (1oo2D) 10
2.1.4 2-out-of-2 with Diagnostics (2oo2D) 11
2.1.5 Hybrid architecture . 12
2.1.6 Fault-Tolerant Software architectures 13

2.2 Fail-over mechanisms . 14
2.3 Autonomous driving platforms . 17

3 FO architectures in the Automated Driving (AD) domain 20
3.1 Methodology . 20

3.1.1 Design according to ISO 26262 . 21
3.1.2 Design based on a fault hypothesis 22
3.1.3 Combined fault-tolerant design approach 23

3.2 Item definition . 26
3.3 Hazard Analysis and Risk Assessment (HARA) 30
3.4 Simplex architecture . 33

3.4.1 Fault hypothesis . 33
3.4.2 System Architectural Design (SAD) 37
3.4.3 Functional Safety Concept (FSC) 40

3.5 1oo2D architecture . 43
3.5.1 Fault hypothesis . 44
3.5.2 SAD . 48
3.5.3 FSC . 58

3.6 Hybrid architecture . 61
3.6.1 Fault hypothesis . 61
3.6.2 SAD . 65
3.6.3 FSC . 68

IV

Contents V

3.7 Common Never-Give-Up (NGU) strategy 71

4 FO demonstrator 72
4.1 Use case definition . 72
4.2 Selection of a FO architecture . 72

4.2.1 Simplified SAD . 73
4.2.2 Reliability model . 74

4.3 Implementation . 78
4.4 Evaluation . 80

5 Conclusion 88
5.1 Comparison of FO architectures . 88
5.2 Future challenges . 89

Appendix A Minimal HARA of a Automated Driving System Computing Plat-
form (ADS-CP) 90

Acronyms 93

List of Figures
1.1 Level 3 feature fallback use case sequence [6] 5
1.2 Level 4 feature fallback use case sequence [6] 6

2.1 Original proposed TMR architecture [14] 8
2.2 Analytic Redundant Unit (ARU) of a simplex architecture [19] 9
2.3 1oo2D in a cold standby configuration [5] 11
2.4 Hybrid redundancy approach [31] . 12
2.5 Generic single-version architecture [34] . 14
2.6 N-version programming [34] . 14
2.7 N-self-checking programming [34] . 15
2.8 Exemplary transformation xc = A ∗ xf [15] 15
2.9 Exemplary categorization of fail-over mechanisms 16
2.10 Architecture of Nvidia Drive OS [44] . 18
2.11 Architecture of the Classic AUTomotive Open System ARchitecture

(AUTOSAR) stack [45] . 19

3.1 Quality of Service (QoS) as a function of Fail-Over Time Interval (FOTI)
and task period . 21

3.2 Simplified extract of design approach according to ISO 26262 [8] 22
3.3 Design approach based on a fault hypothesis [4] 23
3.4 Combined fault-tolerant design approach 24
3.5 SAD input artefacts . 25
3.6 FSC input artefacts . 26
3.7 System overview . 27
3.8 Item definition and boundaries to the rest of the system 29
3.9 High level component decomposition of the ADS-CP 29
3.10 Simplex architectural pattern . 33
3.11 FCR decomposition of the Simplex approach (hardware components) . . . 35
3.12 FCR decomposition of the Simplex approach (software components) . . . 37
3.13 Hardware architecture of the Simplex approach 40
3.14 Software architecture of the Simplex approach (Software Components

(SWCs) per host) . 41
3.15 Software architecture of the Simplex approach (dataflow) 42
3.16 1oo2D architectural pattern . 44
3.17 FCR decomposition of the 1oo2D approach (hardware components) 45
3.18 FCR decomposition of the 1oo2D approach (software components) 47
3.19 Hardware architecture of the 1oo2D approach 51
3.20 Software architecture of the 1oo2D approach (SWCs per host) 53

VI

List of Figures VII

3.21 Software architecture of the 1oo2D approach (dataflow) 54
3.22 Categorization of the fail-over mechanism 55
3.23 Static schedule of tasks contributing to fail-over mechanism 56
3.24 Visualization of the worst case fail-over time 57
3.25 Hybrid architectural pattern . 61
3.26 FCR decomposition of the Hybrid approach (hardware components) . . . 62
3.27 FCR decomposition of the Hybrid approach (software components) 64
3.28 Hardware architecture of the Hybrid approach 67
3.29 Software architecture of the Hybrid approach (SWCs per host) - limp-home

system . 68
3.30 Software architecture of the Hybrid approach (SWCs per host) - primary

control system . 69
3.31 Software architecture of the Hybrid approach (dataflow) 70

4.1 Hardware (HW) architecture of the ADS-CP prototype 74
4.2 Software (SW) architecture of the ADS-CP prototype (SWCs per host) . 75
4.3 SW architecture of the ADS-CP prototype (dataflow) 76
4.4 Markov model of the 1oo2D approach . 77
4.5 Evaluation of the reliability . 77
4.6 Implementation according to an automotive toolchain approach 79
4.7 Test setup of the prototypical ADS-CP . 80
4.8 Static schedule and FOTI visualization (best case scenario) 82
4.9 Static schedule and FOTI visualization (worst case scenario) 85

List of Tables
1.1 Standards related to automated driving 2
1.2 Driving automation levels [6] . 4

3.1 System assumptions . 27
3.2 System requirements . 28
3.3 Safety Goals . 32
3.4 Simplex fault hypothesis: covered hardware faults 36
3.5 Simplex fault hypothesis: covered software faults 38
3.6 1oo2D fault hypothesis: covered hardware faults 46
3.7 1oo2D fault hypothesis: covered software faults 48
3.8 Tasks of the runtime monitor SWCs . 56
3.9 Hybrid fault hypothesis: covered hardware faults 63
3.10 Hybrid fault hypothesis: covered software faults 65

4.1 Markov parameters of the reliability model 75
4.2 Model evaluation using PRISM . 76
4.3 Relevant runnables for the FOTI calculation 83
4.4 Ethernet traffic of the ADS-CP captured with Wireshark [60] 87

A.1 HARA, functional block External communication 90
A.2 HARA, functional block Power management 90
A.3 HARA, functional block Steering data transmission 91
A.4 HARA, functional block Acceleration/braking data transmission 91
A.5 HARA, functional block Sensor fusion . 91
A.6 HARA, functional block Object detection 92
A.7 HARA, functional block Trajectory planning 92

VIII

1 Introduction
One of the present major challenges affecting multiple disciplines in the automotive domain
is related to the deployment of systems targeting driving automation. In terms of Electrical
and/or Electronic (E/E) systems this comes along with the current revolution in the
automotive industry regarding the ongoing transition from fail-safe to fail-operational
systems. The associated challenges are faced in evolving new technologies, but also in
establishing new development methods and processes besides considering social aspects
(e.g. human behaviour) [1].

1.1 Motivation
Enabling automated driving demands E/E systems with stringent dependability require-
ments. Besides fault prevention, fault removal and fault forecasting, fault tolerance is
an inevitable measure to eventually satisfy those requirements [2]. In the aerospace
industry fault-tolerant systems are already successfully deployed by utilizing suitable
Fail-Operational (FO) architectures. Mainly due to economic reasons, i.e. optimizing the
costs, those existing FO architectures can’t simply be transferred into the automotive
domain [3]. However, the required Mean Time to Failure (MTTF) of 109h must be
satisfied, or even outperformed because of higher exposure times in the automotive domain
compared to the aerospace domain [4].

Fundamental concepts of all FO architectures are applying redundancy and diversity
on Hardware (HW) (mechanical and electrical components) and Software (SW) (e.g.
information processing) level. Contrary to the aerospace domain, only single faults, po-
tentially leading to hazardous events, must be tolerated [5]. This is because vehicles can
be manoeuvred into a safe state usually easier and faster compared to an aircraft.

Considering all these aspects, FO architectures to be applied on automotive Electronic
Control Units (ECUs) suitable to host automated driving applications must be defined.
In literature various FO architectures are proposed (see Chapter 2), but still technical
challenges to satisfy safety levels required by applicable standards must be overcome.

1.2 Standards
Over the last years a couple of standards related to driving automation were published,
targeting various aspects in the automated driving domain. However, the standardization
process is still ongoing and the current (released) standards do not satisfy the required

1

1 Introduction 1.2 Standards 2

maturity to deploy autonomous driving systems on a profound basis. Some of relevant
standards are listed in Table 1.1.

Standard Description

SAE J3016_201806 Taxonomy and Definitions for Terms Related to Driving Au-
tomation Systems for On-Road Motor Vehicles [6]

ISO/PAS 21448:2019 Road vehicles - Safety of the intended functionality [7]
ISO 26262:2018 Road vehicles - Functional safety [8]
ISO/SAE DIS 21434 Road vehicles - Cybersecurity engineering [9]

ISO/CD TR 4804 Road vehicles - Safety and cybersecurity for automated driving
systems - Design, verification and validation methods [10]

Table 1.1: Standards related to automated driving

The research and development performed in this thesis mostly are based on the SAE
J3016 taxonomy [6] and on the ISO 26262 standard [8]. Relevant parts of those standards
are described in the following sections and in the description of the applied methodology
for the architecture investigations (see Section 3.1).

1.2.1 SAE J3016
A major reference for all stakeholders involved in the automated driving domain is the
J3016 taxonomy [6]. It is published and maintained by SAE International [11] and provides
a common understanding, terminology and classification related to driving automation
systems. The most important terms, definitions and classifications related to this thesis
are summed up in the following subsections.

Terminology

The following definitions are based on J3016 document released by SAE [6]:

A Dynamic Driving Task (DDT) refers to the vehicle operation in on-road traffic.
Examples for DDT are lateral or longitudinal vehicle motion control.

A driving automation system, composed of hardware and software capable of per-
forming at least parts of a DDT, is used to reference systems of driving automation levels
1-5.

Compared to a driving automation system, an Automated Driving System (ADS)
targets automation levels 3-5 and therefore performs entire DDTs.

Operational conditions (e.g. environmental, geographical, time-of-day restrictions, traf-
fic characteristics, ...) that a driving automation system is capable of by design is defined

1 Introduction 1.2 Standards 3

as an Operational Design Domain (ODD).

After a DDT fallback was performed, the risk of having a crash is reduced by bringing
the vehicle into a condition called Minimal Risk Condition (MRC). This condition
varies according to the driving automation level, the system failure or the ODD.

If a DDT performance relevant system failure occurs or the ODD is exited, the user
or the ADS must either continue the DDT or achieve a MRC, depending on the driving
automation level of the feature. This response is referred to as DDT fallback.

The environment monitoring (detection, recognition, classification, etc.) and appropriate
response calculation (if needed) related to the DDT is referred to as Object and Event
Detection and Response (OEDR).

Classification of driving automation levels

In J3016 [6] SAE defines 6 (0-5) descriptive and informative levels of driving automation.
They can be considered as minimum requirements a driving automation system must be
capable of to be assigned to a distinct level. The categorization is performed according to
the following parameters:

• driving automation system performs longitudinal and/or lateral motion control

• driving automation system performs OEDR

• driving automation system performs DDT fallback

• driving automation system is restricted by an ODD

According to these parameters, Table 1.2 summarizes the defined levels of driving
automation according to [6].

The driving automation levels are mutually exclusive on feature level, i.e. a feature
can only be correlated to one distinct level. But a driving automation system is able to
contain multiple features assigned to different driving automation levels. Each feature
in a driving automation system is the implementation of a usage specification, which
is the combination of a driving automation level and an ODD [6]. The level of driving
automation must be considered from the very beginning when developing any driving
automation system. There is no test that might be able to verify a specific level of driving
automation for a given feature, so these levels are assigned and not measured [6].

DDT fallback taxonomy

The responsibility for performing the DDT fallback depends on the level of driving au-
tomation (see Table 1.2). Switching to a DDT fallback must be executed in case a (DDT
performance-relevant) system failure or an out-of-ODD condition (i.e. a defined ODD for
the engaged feature is left) occurs. In that situation the driving automation system is not

1 Introduction 1.2 Standards 4

Level Name Narrative definition

Sustained lateral
and longitudinal
vehicle motion

control

OEDR DDT
fallback ODD

Driver performs part or all of the DDT

0 No Driving
Automation

The performance by the driver
of the entire DDT, even when

enhanced by active safety
systems.

Driver Driver Driver n/a

1 Driver
Assistance

The sustained and
ODDspecific execution by a

driving automation system of
either the lateral or the

longitudinal vehicle motion
control subtask of the DDT

(but not both simultaneously)
with the expectation that the
driver performs the remainder

of the DDT.

Driver and System Driver Driver Limited

2
Partial
Driving

Automation

The sustained and
ODDspecific execution by a

driving automation system of
both the lateral and

longitudinal vehicle motion
control subtasks of the DDT
with the expectation that the
driver completes the OEDR
subtask and supervises the
driving automation system.

System Driver Driver Limited

ADS ("System") performs the entire DDT (while engaged)

3
Conditional

Driving
Automation

The sustained and
ODD-specific performance by

an ADS of the entire DDT
with the expectation that the

DDT fallback-ready user is
receptive to ADS-issued

requests to intervene, as well as
to DDT performance-relevant
system failures in other vehicle

systems, and will respond
appropriately.

System System

Fallback-
ready

user (be-
comes

the
driver
during

fallback)

Limited

4 High Driving
Automation

The sustained and
ODD-specific performance by

an ADS of the entire DDT and
DDT fallback without any
expectation that a user will

respond to a request to
intervene.

System System System Limited

5 Full Driving
Automation

The sustained and
unconditional (i.e., not

ODD-specific) performance by
an ADS of the entire DDT and

DDT fallback without any
expectation that a user will

respond to a request to
intervene.

System System System Unlimited

Table 1.2: Driving automation levels [6]

1 Introduction 1.2 Standards 5

able to perform the entire DDT anymore and depending on the driving automation level
further actions are initiated [6]:

Level 1-2 : The driving automation feature stops its operation and the human driver
continues the DDT [6].

Level 3 : The ADS continues performing the DDT "for at least several seconds"
[6, p. 7]. The DDT fallback-ready user intervenes and either continues performing the
DDT or achieves a MRC if necessary. This decision is up to the user. If the user fails to
take over control when prompted, a failure mitigation strategy can be initiated by the
ADS. A failure mitigation strategy could be e.g. to stop a vehicle in the present traffic
lane and turn on hazard lamps [6]. A use case sequence for Level 3 fallback including
failure mitigation strategy is shown in Figure 1.1.

ADS

Ve
hi

cle
fa

ilu
re

or
ou

t-o
f-O

DD

Non-recep�ve fallback-
ready user

Recep�ve fallback-ready
user

Fallback-ready user does
not respond

Failure mi�ga�on strategy
(e.g. stop in place)

Driver performs fallback and if necessary
achieves minimal risk confi�on

ADS DDT
Performance

Driver DDT
Performance

Figure 1.1: Level 3 feature fallback use case sequence [6]

Level 4-5 : DDT fallback is performed by the ADS and a MRC must be achieved.
Design limitations (e.g. low speed) are allowed for the fallback and are referred to as
limp-home mode. If the vehicle is drivable, the user alternatively might choose to continue
the DDT manually. In addition to the automatic DDT fallback, a failure mitigation
strategy can be defined to react to rare, catastrophic events. A possible failure mitigation
strategy in this case could be a stop-in-place manoeuvre [6]. Figure 1.2 shows a use
case sequence for a DDT fallback including a failure mitigation strategy for a level 4 feature.

The J3016 taxonomy does not define specific time intervals (e.g. related to DDT
fallback) that must be satisfied to comply with a distinct level of driving automation.
General phrases like "timely manner", "timely request" or "sufficient time for a typical
person to respond appropriately to the driving situation at hand" are used instead [6].

1.2.2 ISO26262 Road vehicles - Functional safety
The ISO 26262 Road vehicles - Functional safety standard [8] is an adaptation of the
generic functional safety standard IEC 61508 Functional safety of electrical/electron-

1 Introduction 1.3 Scope of the thesis 6

ADS DDT fallback

Ca
ta

st
ro

ph
ic

ev
en

t

ADS incapacitated

DDT
Performance

Failure mi�ga�on strategy
(e.g. stop in place)

Minimal risk condi�on

Figure 1.2: Level 4 feature fallback use case sequence [6]

ic/programmable electronic safety-related systems [12]. It covers multiple aspects related
to functional safety of E/E systems in the automotive domain throughout the complete
safety lifecycle (e.g. management, concept, development, production, operation). Some
(simplified) processes and artefacts of the ISO 26262 standard are applied in Chapter 3.
However, e.g. safety analysis methods related to the ongoing transition from fail-safe to
fail-operational systems are not covered sufficiently [1]. Furthermore, the terminology
of the standard is vague and misleading with respect to automated driving [13]. The
ambiguity of developing ADSs caused by the limitations of ISO 26262 might be eliminated
by the upcoming standard ISO/CD TR 4804 [10].

1.3 Scope of the thesis
The main goal of this thesis is a comparison of selected FO architectures potentially suit-
able to be deployed on automotive ECUs for hosting Automated Driving Features (ADFs),
based on a state-of-the-art research. The selected architectures are investigated in detail,
applied on a hypothetically defined ADS and finally evaluated and compared. One of
the selected approaches is implemented in a prototypical ADS to demonstrate the DDT
fallback (also referred to as fail-over mechanism). The implemented ADS prototype must
ensure that the actuator consistently applies the output either from the primary or the
fallback node. If this is not already ensured implicitly by the selected FO architecture,
proper voting and signalling mechanisms must be implemented on the ADS.

It is explicitly not a goal of this thesis to develop a series proven FO system.

1.4 Structure
This thesis is structured as follows: At first, a research study about state-of-the-art,
i.e. existing FO architectures, fail-over mechanisms and autonomous driving platforms
was performed and is described in Chapter 2. Based on these research results, three
architectures were investigated in detail in Chapter 3, following a defined methodology.

1 Introduction 1.4 Structure 7

The 1-out-of-2 with Diagnostics (1oo2D) FO architectures was selected, implemented in
a prototypical ADS and evaluated as described in Chapter 4. Finally, in Chapter 5 the
results are compared and limitations as well as improvements regarding the FO concepts
are summed up. Appendix A contains a Hazard Analysis and Risk Assessment (HARA)
on the hypothetical ADS the investigations are based on.

2 State of the art
The current state-of-the-art of different aspects related to FO strategies is covered in this
chapter. Existing system, HW and SW architectures are described in Section 2.1, followed
by switch over handling from a primary to a fallback unit (DDT fallback or fail-over
mechanism) in Section 2.2. Finally, Section 2.3 contains existing autonomous driving HW
and SW platforms to be used for prototyping or series projects.

2.1 Fail-operational architectures
FO architectures aim at improving a system’s reliability by adding redundancy [14].
Several concepts already exist, all of them apply redundancy and diversity in a slightly
different way. Commonly utilized FO architectures in the automotive domain are two-
channel approaches. Most of the presented concepts focus on HW redundancy, however,
some of them reduce hardware redundancy by adding redundancy on software level [15].

2.1.1 Triple Modular Redundancy (TMR)
An early Fault-Tolerance (FT) approach, originally applied in the space and military
domains, is TMR, proposed e.g. in [14]. Three identical modules (e.g. computers or less
complex systems) provide their outputs to a voter that forwards a majority opinion based
selected result to a consuming component (see Figure 2.1). The system does not fail as
long as none or only one module fails. In [14], the reliability of a TMR system is described
in detail.

Module

Module

Module

Vo�ng
circuit

Figure 2.1: Original proposed TMR architecture [14]

The TMR approach is further applied in the aerospace domain, as it is utilized in e.g.
the Boeing 777 flight computer (computing system, aeroplane electrical power, hydraulic

8

2 State of the art 2.1 Fail-operational architectures 9

power and communication path) [16]. In this proposed architecture, additional diversity
measures are applied to the system (n-version dissimilarity issue).

As besides fly-by-wire systems in the aerospace domain also drive-by-wire systems
in the automotive domain evolved, the TMR approach is used in safety critical auto-
motive applications, too. E.g. in [17], TMR is used for fault tolerant multiprocessor
architectures, where three identical Central Processing Units (CPUs) are forwarding their
results to a majority voter. Another approach according to [17] is to apply the TMR
pattern on a heterogeneous architecture, consisting of three loosely coupled cores. An-
other denotation for the TMR approach in the automotive domain is 2-out-of-3 (2oo3) [18].

Conflicting requirements of the TMR architecture are sufficient independency of the
Fault Containment Regions (FCRs) and output data consistency, since a certain amount
of coordination among the FT entities is needed that adds dependencies in return [3].

2.1.2 Simplex architecture
The Simplex architecture originally was developed to enable online upgrades of real-time
SW applications in the control engineering domain [19]. This is achieved by combining a
reliable controller, one or more high performance controllers and a switch (see Figure 2.2),
denoted as Analytic Redundant Unit (ARU). The output of the high performance
component(s) is used, unless a SW upgrade is initiated. In this case the (degraded)
calculations are performed by the reliable controller, until the high performance controllers
are online again. For safety critical applications the reliable controller and the switch
must be deployed on a separate HW to guarantee non-interference between the reliable
and high performance components. All components can be deployed on the same HW for
non-safety critical applications instead [19].

High Assurance Component

Reliable Controller

High Performance Component

Baseline So�ware

New So�ware

Performance Monitoring and Data Logging Unit
(op onal)

Decision Rules

Inputs

Output

Figure 2.2: ARU of a simplex architecture [19]

In [20] a reference model for the Simplex architecture was proposed, considering the
plant to be controlled, external context, machine, domain model and safety requirements.

2 State of the art 2.1 Fail-operational architectures 10

In a case study with a fleet of remotely controlled cars, this Simplex reference model was
applied.

To tolerate faults on application and system level (Real Time Operating System (RTOS),
microprocessor), a system level Simplex approach using HW/SW co-design was published
in [21]. In addition to the fault-tolerance on application level, the system level fault
tolerance is achieved by deploying the safety controller and the decision module onto a
dedicated processing unit and hence, isolate them from the high performance components.
The defined fault model in [21] tolerates logical and resource sharing faults. Faults in the
HW where the safety controller and the decision module are hosted on are assumed to be
rare events. If these faults are not considered as rare events, e.g. a TMR approach can be
used to mask faults in the safety components [21].

In [22] and [23], fault recovery is achieved via performing a restart of the full system,
where the safety controller of the Simplex architecture is used for fault detection and
triggering the restart. This approach requires that unavailability of the system caused by
the restart does not result in a deadline miss of a critical task.

2.1.3 1oo2D
The 1oo2D architecture consists of two channels, however, only one of them sends the
calculated results to the consuming entity (e.g. actuator) while the other acts as fallback.
The two channels of the 1oo2D architecture are referred to as e.g. primary mission
controller and secondary mission controller [24]. Both channels are implemented as
fail-silent computing platforms [25], hence, the computing platforms must be equipped
with diagnostic capabilities [26]. The primary mission controller is in charge of executing
the intended functionality initially. In case a failure occurs on the primary channel, a mode
transition to fail-silent is performed for this unit and the secondary mission controller
starts taking over the operation [5].

The performance of the fault-detection mechanisms is essential for the dependability at-
tributes of the overall system. Potential diagnostic methods are e.g. consistency checking,
comparison of results with redundant modules or information redundancy. The secondary
mission controller can either be configured in a hot-standby or cold-standby approach.
In a hot-standby mode (unit is powered up even if primary mission controller is working
correctly) a major drawback is wear-out, whereas for a cold-standby mode (unit is powered
up after fault on primary unit is detected), startup time has to be taken into account [5].
A 1oo2D cold-standby architecture is shown in Figure 2.3.

To implement a FT system, usually it is not sufficient to just add redundant ECUs.
The complete system has to be taken into account and analysed, hence, redundancy would
be required for sensors, actuators and other contributing components. In [24] a system
architecture based on the 1oo2D pattern is proposed. A hot standby approach is not
considered to be feasible because it does not meet cost-effectiveness requirements in terms
of a high energy consumption. Instead, the secondary mission controller is in standby

2 State of the art 2.1 Fail-operational architectures 11

Module 1

Module 2

Fault
Detec�on

Recon-
figura�on

xi xo

Figure 2.3: 1oo2D in a cold standby configuration [5]

mode, but a state and input data backup is provided to the redundant controller in
order to fasten switch-over to the fallback in case a failure occurs on the primary mission
controller. Once the secondary mission controller is activated the remaining operation
time is reduced because of the missing fault-tolerance capability. Therefore it is used for
fallback operations, e.g. reaching a safe state [24].

Another 1oo2D approach is proposed in [26]. Safety features like a lockstep mechanism
and a hardware watchdog are suggested here to provide fail-safe behaviour for each channel.
To significantly reduce the risk of common cause failures, diverse hardware platforms are
used. An automotive case study has been carried out where diversity among the channels
was achieved by using an Infineon Aurix safety controller for one channel and two ARM
Microcontroller Units (MCUs) with software based lockstepping for the other channel
[26].

Further examples where a 1oo2D architecture is supposed as a valid approach for enabling
ADFs are mentioned in [25] and [27].

2.1.4 2-out-of-2 with Diagnostics (2oo2D)
The 2oo2D utilizes two channels, too, but compared to the 1oo2D approaches, the voting
activity is shifted to the subsequent entity (e.g. actuator), hence both channels are
sending their computed results. In [18] a 2oo2D approach is proposed which either can be
implemented as fully redundant or as limp-home system. This pattern can be applied on
MCU level as well as on core level [18].

Similar to the 1oo2D pattern, both channels are implemented as fail-silent units, hence
the actuator is either controlled correctly or not at all. From long-term safety perspective
it is important to know whether all units of the system still operate correctly or if a
subsystem is faulty and therefore maintenance activities need to be triggered [28]. A

2 State of the art 2.1 Fail-operational architectures 12

similar 2oo2D approach is also proposed in [29].

2.1.5 Hybrid architecture
In the aerospace domain, a high degree of redundancy and diversity is commonly accepted
and used (see Section 2.1.1). This is not always done because of further increasing the
availability of the systems, but also to extend the maintenance intervals, since a faulty
unit doesn’t necessarily have to be replaced immediately [30]. As an alternative to e.g.
utilizing a TMR approach, architectural concepts using only two nodes may be the more
suitable solution in the automotive domain, mainly due to economic reasons [30]. Full
symmetric redundancy (as used in 1oo2D and 2oo2D) often is not necessary, since the
emergency operation, activated once a fault occurred on the primary node, is only used for
a short time period (to reach a safe state) [31]. A hybrid architectural approach, composed
of a self monitored primary system and a limp-home system (see Figure 2.4) can be used
as an alternative for deploying ADFs [28] [31].

Limp-home system

Processing

Power Clock Reset

ActuatorSensor

Primary control system

Processing

Monitoring

Power Clock Reset

Actuator

Monitoring
Sensor

Sensor

Figure 2.4: Hybrid redundancy approach [31]

The voting between the primary control and the limp-home system’s output data can
either be done by a separate voting component or on the actuator [31]. The hybrid archi-
tectural approach can be implemented on two independent ECUs or on the same board [18].

To deal with the dilemma of high performance, high Automotive Safety Integrity
Levels (ASILs) and high cost efficiency, an application level software implemented fault
detection is proposed in [31].

2 State of the art 2.1 Fail-operational architectures 13

In [32] a Automated Driving System Computing Platform (ADS-CP) targeting Society
of Automobile Engineers (SAE) levels 3+ is proposed based on a hybrid architecture (or
optional a 2oo2D approach if full redundancy is used). The primary system is composed
of two number crunching processors, one or two safety controllers (Infineon AURIX [33])
and a deterministic Ethernet switch [32]. The safety controller(s) are responsible for mon-
itoring the system. A backup stand-by system provides redundant and diverse processing
capabilities. It can either be designed as reduced (only one Performance Host (PH)) or
fully redundant [32].

Another hybrid architecture, potentially suitable for targeting SAE level 4 applications,
is proposed in [30]. On the main node a high diagnostic coverage is deployed to ensure
fail silent behaviour in case a fault occurred. The result of two PHs are verified by a
Safety Host (SH) and forwarded to the actuator in case the verification was successful.
The fallback node is equipped with less safety features compared to the main node and
always sends its calculated results to the actuator. The voting activity in this approach is
shifted from the ADS-CP to the actuator. As long as the main node sends data, it is used
by the actuator. Otherwise the data sent by the fallback node is selected by the actuator
and vehicle operation continues in a degraded mode [30].

2.1.6 Fault-Tolerant Software architectures
Besides FT mechanisms implemented on system or HW level, various measures purely im-
plemented on SW level exist. In [34] three different FT SW architectures are investigated
and compared in terms of parameters like development effort, Real-Time (RT) behaviour
or performance.

The first approach, analysed in [34], denoted as Generic single-version architecture,
combines fault detection, fault containment and fault recovery mechanisms. A diagnostic
Software Component (SWC) is responsible for detecting faults of the focused SWC. In
case a fault was detected, the diagnostic SWC notifies an interface SWC, responsible for
disabling the output of the monitored (faulty) SWC B. Further, a checkpoint memory is
used to restore the state of the faulty SWC to a healthy state and therefore potentially
enables SWC B to recover from the fault. Freedom from interference must be ensured
between the focused SWC and the other SWCs, e.g. by applying memory partitioning
mechanisms (see Figure 2.5).

The n-version programming approach utilizes n implementations of a SWC, based on
the same specification, but using diverse designs and implementations. The outputs of the
SWCs are masked by a voting SWC, selecting the outputs following a majority paradigm
(see Figure 2.6) [34]. On system and HW level, this approach corresponds to the TMR
approach, described in Section 2.1.1 (for n = 3).

Finally, the n-self-checking programming approach implements n diverse instances of
a SWC, each instance separately monitored by a diagnostic SWC (see Figure 2.7). The
diagnostic SWCs notify the individual health states to a voting SWC, which selects one
healthy output and forwards it to the receiver SWC [34]. For n = 2, this approach is

2 State of the art 2.2 Fail-over mechanisms 14

SWC
Diagnos�c

SWC
Checkpoint
Memory

SWC
InterfaceSWC A SWC C

Par��oning

SWC B
i o

ef

ef

o

i: input ef: error flag o: output

Figure 2.5: Generic single-version architecture [34]

SWC B1

SWC B2

SWC B3

SWC
VoterSWC A SWC C

o2 o

o1

o3

i

i: input o: output

Figure 2.6: N-version programming [34]

similar to the 1oo2D approach on system and hardware level (see Section 2.1.3).
All presented FO SW architectures finally are compared with respect to parameters

like development effort, RT behaviour or performance [34].

Another approach potentially contributing to enable FT capabilities on SW level is
coded processing. In [15] the Safely Embedded Software (SES) approach is proposed to
transform data and instruction codes into a coded value domain. Therefore an AN + B
code is utilized to add redundancy to the original code values to enable the detection of bit
error(s), depending on the selected transformation parameters (e.g. hamming distance),
as displayed in an exemplarily transformation in Figure 2.8.

The verification of the original and coded values can be performed e.g. at the end of
each task cycle. Main disadvantages of the coded processing approach is a higher memory
and processing power consumption [15].

2.2 Fail-over mechanisms
The switch-over from a primary unit to a fallback unit in case a failure occurred (DDT
fallback) is denoted as fail-over mechanism in this thesis. This includes a failure detection

2 State of the art 2.2 Fail-over mechanisms 15

SWC
Switch SWC C

SWC B1

SWC B1

SWC
Diagnos�c 1

SWC
Diagnos�c 2

SWC A

o1

o2

ef

ef

oi

i: input o: outputef: error flag

Figure 2.7: N-self-checking programming [34]

original
values xf

coded
values xc

0 1 2 3

valid

0*A 1*A 2*A 3*A

invalid invalid invalid

valid valid valid valid

Figure 2.8: Exemplary transformation xc = A ∗ xf [15]

mechanism and mode switch activities (deactivating the faulty unit and activating a
fallback unit). In literature various failure detection mechanisms are proposed for diverse
application areas, which are covered here.

Currently most implementations of failure detectors are using an all-to-all communica-
tional approach, where each node sends a "I am alive" message (heartbeat) to all other
nodes [35]. Depending on the platform (e.g. number of nodes), this might not always be
an efficient approach, hence a variety of failure detectors has been investigated and can
be categorized based on a state of the art research according to Figure 2.9.

Depending on which node initiates the diagnostic status exchange, a push or a pull
model is denoted [36]. For the pull approach (pinging), the observer node sends a dedicated
"Are you alive?" message to the monitored node, which responds with a "I am alive"
message in case no error occurs [37]. When the push model (heartbeat) is applied, the
monitored nodes periodically send "I am alive" messages to the observers, without being
pinged in advance [37]. Since the push approach requires a half number of messages, it is
more efficient compared to the pull model [35].

The state categorization classifies failure detectors into stateful and stateless mecha-

2 State of the art 2.2 Fail-over mechanisms 16

Fail-Over
mechanism

State Topology Observer
assignment Configura�onIni�a�on

hierarchical flatstatelessstatefulpush pull sta�c dynamic
(adap�v)determinis�c random

Figure 2.9: Exemplary categorization of fail-over mechanisms

nisms. The stateless approach uses individual messages to exchange diagnostic information,
whereas the stateful detection mechanism monitors application specific messages to track
the health state of participating nodes [38].

If a large number of nodes or processes need to be monitored, a hierarchical arrangement
of the observed entities reduces the communication overhead by combining information
[36]. Dividing the entities into groups, where a group member only monitors all other
members in the same group and one dedicated group leader communicates with all other
group leaders, is an example of a two-level hierarchical organization to reduce the amount
of traffic [35]. Hence, the topology categorization distinguishes between a flat and a
hierarchical approach.

The assignment of monitored entities to an observer can be done deterministic or
random. Gossip style protocols are an example of a random selection of nodes to be
monitored [36].

Another classification of the fail-over mechanisms is related to the persistence of the
entity assignment to observers. A static configuration does not change the assignment
during runtime, whereas a dynamic (adaptive) approach is able to dynamically react on
changing environmental conditions (e.g. network) [36].

An early approach of using a simple heartbeat mechanism to implement fault tolerant
real-time systems is proposed in [39]. Two processors periodically and synchronously
exchange heartbeats to indicate their health states. To determine the heartbeat period,
a zero-missed-deadline and one-missed-deadline approach are proposed. Among other
approaches in [40] the simple heartbeat mechanism is extended by applying a ping service
in case a heartbeat was missed.

A failure detector for high performance computing applications is proposed in [35]. In
this heartbeat based failure detector a virtual observation ring is established to reduce
communication overhead. This topology needs to be reconnected once a node is suspected
to be faulty.

2 State of the art 2.3 Autonomous driving platforms 17

Architectures for intra-host and inter-host failure detection are proposed in [36]. The
intra-host architecture is composed of a failure detection module (realized as a daemon
process) and a watchdog. Additionally, the modules to be monitored are using a specific
library, providing an interface to the failure detection module. For the inter-host failure
detection the failure detection modules directly exchange their state information, using a
publish-subscribe communication mechanism.

The heartbeat based failure detection mechanism proposed in [41] is implemented on
the application software layer. A warm standby mode or cold standby mode can be
applied on the secondary unit in this approach. The heartbeats are exchanged via User
Datagram Protocol (UDP) datagrams over Ethernet and additionally through a Universal
Asynchronous Receiver-Transmitter (UART) channel. The approach targets wireless
sensor network applications and the proposed implementation achieves an average failover
time of 379ms.

A stateful failure detection approach is the safety co-pilot, proposed in [42]. It performs
application specific correctness checks to coordinate the operation of the primary and
redundant units. Several verification modules were proposed and one of them (i.e. vehicle
collision verification) was presented in detail.

2.3 Autonomous driving platforms
Due to economic reasons (reduce time to market, costs, etc.) various platforms suitable
for executing ADFs evolved over the last years. These HW and SW platforms partly not
just assist the development phases, but also target to be utilized in automotive series
products.

More than 100 global members (e.g. Original Equipment Manufacturers (OEMs), Tier
1 suppliers) contribute to the Apollo open autonomous driving platform [43]. Additionally
HW development platforms (e.g. computing units, Global Positioning System (GPS),
Inertial Measurement Unit (IMU), camera, Radio Detection and Ranging (RADAR),
Light Detection and Ranging (LIDAR)) a SW platform (e.g. RTOS, runtime framework,
control, planning, perception) and cloud services (High-Definition (HD) map, Vehicle-to-
Everything (V2X)) are provided, too. Current Apollo version 5.5 supports ADFs towards
fully autonomous urban road driving, including 360° perception and upgraded prediction,
planning and control modules [43].

The Nvidia Drive autonomous vehicle development platforms contain HW, SW and
architectural contributions [44]. The Drive AGX developer kit (HW and SW) is used as
in-vehicle Artificial Intelligence (AI) computer in the car reference architecture (Drive
Hyperion). Further, a simulation platform (Drive Constellation) and a deep neural network
training platform (Nvidia DGX) are part of the Drive platforms [44]. The architecture of
the Nvidia Drive OS platform SW, utilized on the Drive AGX developer kit, is displayed

2 State of the art 2.3 Autonomous driving platforms 18

in Figure 2.10.

Te
ns

or
RT

cu
DN

N

CU
DA

Op
en

GL

VP
I

Nv
M

ed
ia

EG
L

OS Drivers, USB, File
System, Network

Linux or QNX BSPQNX or Linux OS

DRIVE OS

DRIVE AV

OEM / Tier 1 Applica�on

Da
ta

Di
st

rib
u�

on
Se

rv
ice

Co
m

m
un

ica
�o

n
Se

rv
ice

s

Se
cu

rit
y

Se
rv

ice
s

L1
Sa

fe
ty

Se
rv

ice
s

Fo
un

da
�o

n
Se

rv
ice

s

L2
Sa

fe
ty

Se
rv

ice
s

SO
M

E/
IP

Co
m

m
un

ica
�o

n
Se

rv
ice

s

Se
cu

rit
y

Se
rv

ice
s

L3
Sa

fe
ty

Se
rv

ice
s

Po
w

er
M

an
ag

em
en

t

Di
ag

no
s�

cs

Hypervisor

DRIVE AGX Xavier or DRIVE AGX Pegasus

AutoSAR

Safety MCU

So ware

Hardware

Legend:
OS/Third Party So ware

NVIDIA Licensed So ware

Hardware

Third Party with NV Customiza�ons

Figure 2.10: Architecture of Nvidia Drive OS [44]

The AUTomotive Open System ARchitecture (AUTOSAR) development partnership
(more than 280 partners) provides a standardized software architecture for automotive
ECUs [45]. A modular concept of the architecture abstracts the HW to increase SW
reusability. The classic platform targets applications of safety integrity levels up to ASIL
D, hosted on low computing power hosts, with high real-time requirements (micro seconds),
while the adaptive platform is hosted on high computing power hosts with mid real-time
requirements (milli seconds) and safety integrity levels of at least ASIL B [45]. Figure 2.11
shows the architecture of the Classic AUTOSAR stack.

Research results on the architecture of dependable distributed RT systems are summa-
rized in [46]. These orthogonal concepts are based on a highly reliable and available global
time base. The proposed architecture, denoted as Time-Triggered Architecture (TTA),
targets any type of dependable distributed real-time system, independent of the application
area or computational power of the nodes [46].

TTTech’s safety software platform MotionWise utilizes concepts proposed in [46] among
others [47]. It abstracts multiple hosts and provides e.g. RT, scheduling, communication
and automotive (e.g. persistency) services via an AUTOSAR like Application Program-
ming Interface (API) to the application layer [47].

An automated driving platform consisting of an ECU and MotionWise as software
platform is TTTech’s RazorMotion [48]. Multiple hosts (2x PH, 1x SH) provide different
computing power levels and ASILs. They are connected via a deterministic Ethernet
backbone and provide camera/display interfaces and automotive vehicle bus connectivity
like Controller Area Network (CAN) [48].

2 State of the art 2.3 Autonomous driving platforms 19

System Services

Microcontroller
Drivers

Onboard
Device

Abstrac�on

Memory
Services

Memory
Hardware

Abstrac�on

Crypto
Hardware

Abstrac�on

Wireless
Communica�on
HW Abstrac�on

Communica�on
Hardware

Abstrac�on

Crypto Services
Off Board

Communica�on
Services

Communica�on
Services

Memory
Drivers Crypto Drivers

Wireless
Communica�on

Drivers

Communica�on
Drivers I/O Drivers

I/O Hardware
Abstrac�on

Complex
Drivers

Microcontroller

Run�me Environment

Applica�on Layer

Figure 2.11: Architecture of the Classic AUTOSAR stack [45]

A cloud based storage and computing service solution is provided by Amazon AWS [49].
It further provides deep learning frameworks to support the development of autonomous
vehicles [49].

AutonomouStuff automotive platform support the development of ADFs by providing
vehicles equipped with suitable HW and SW components to enable e.g. development and
customization of drive-by-wire applications [50].

3 FO architectures in the Automated
Driving (AD) domain

This chapter contains investigations of the following three FO architectures:

• Simplex architecture

• 1oo2D architecture

• Hybrid architecture

These three FO architectures have been selected based on the discussion in Section 2.1.
A major requirement for FO architectures is to avoid deadline misses of safety critical
application tasks and therefore prevent dramatic hazards. This is conceptually illustrated
in Figure 3.1, where a Quality of Service (QoS) parameter is defined as a function of
missed deadlines. A missed deadline depends on the period of the application task and
on the time interval between the occurrence of an error and operation takeover by the
fallback, denoted as Fail-Over Time Interval (FOTI). If application task period and FOTI
are equal, a QoS value of 1 is defined in this model. This is the assumed minimum value
to be targeted for safety critical systems in the presented simplified approach, since a
zero-missed deadline approach is considered to be essential. 1

3.1 Methodology
Developing complex safety-critical systems while achieving required levels of dependability
is not a trivial task. To harmonize the development processes and therefore enforce
certain minimum quality levels, various standards, guidelines and methods have been
developed over the last decades (see Section 1.2). In the automotive domain the ISO
26262 standard has become a major reference for dealing with functional safety of road
vehicles [8]. However, a guideline of defining a fault-hypothesis for a safety-critical system
is missing in the ISO 26262 standard. A fault-hypothesis is one powerful tool in designing
safety-critical systems, and the guideline presented in [4] explains involved steps and
defines its position in a complete design process. In the following sections both approaches
are described briefly, benefits and drawbacks are analysed and a combined approach for
further investigations in this chapter is defined.

1A zero-missed deadline approach is applied if any missed deadline of safety critical tasks potentially
leads to a hazardous event [39].

20

3 FO architectures in the AD domain 3.1 Methodology 21

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

0

0,2

0,4

0,6

0,8

1

1,2
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

SWC period

QoS

FOTI

1-1,2 0,8-1 0,6-0,8 0,4-0,6 0,2-0,4 0-0,2

Figure 3.1: QoS as a function of FOTI and task period

3.1.1 Design according to ISO 26262
The ISO 26262 standard references functional safety of road vehicles’ E/E systems and
provides frameworks, references and tools to support activities during the whole automo-
tive safety lifecycle [8].

A simplified extract of the workflow defined in ISO 26262 is shown in Figure 3.2. Start-
ing point of the concept phase is the definition of the item as system (or a combination of
systems), providing a function at vehicle level. Main inputs for this step are e.g. a system
description (at vehicle level), requirements (legal, quality, performance, availability) or
interfaces to the environment or other items [8].

Based on the results of the item definition, ISO 26262 suggests to perform a HARA. Its
main goal is to identify possible hazardous events in case the behaviour of the item differs
from the intended functionality. Safety goals, including associated ASILs are derived from
the identified hazards, which can be seen as top level safety requirements [8].

Both mentioned work products (item definition and HARA) are input for the last step
in the ISO 26262 concept phase: the definition of a Functional Safety Concept (FSC).
A FSC specifies strategies on item level related to e.g. fault detection, fault tolerant
mechanisms or functionality degradation to comply with the safety goals [8]. An additional
input to the FSC is a System Architectural Design (SAD), which is not covered by this
standard. FSC and SAD induce the next phases in ISO 26262 (Product development
at system/hardware/software level), starting with the definition of a Technical Safety
Concept (TSC) [8]. Since the focus of this chapter is on FO architectures at system

3 FO architectures in the AD domain 3.1 Methodology 22

ISO 26262
Product development

ISO 26262
Concept phase

Item definition

Hazard analysis and
risk assessment

(HARA)

Functional safety
concept (FSC)

System architectural
design (SAD)

Technical safety
concept (TSC)

ISO 26262 work product

external work product
(outside scope of ISO 26262)

Figure 3.2: Simplified extract of design approach according to ISO 26262 [8]

level, those phases are not investigated on hardware and software level. In practice, the
simplified uni-directional approach of Figure 3.2 is not feasible, therefore iterations and
bi-directional transitions between the design steps are accepted.

In literature, several limitations of the ISO 26262 standard, especially regarding the
design of FO systems, are documented. One limitation according to [51] is the focus at
one item at a time. This is a problem in case functions of different items are tightly
coupled to each other. Further limitations have been found regarding safety concepts or
safety analysis methods especially for FO systems [1]. In [52], some limitations related to
e.g. missing failure rate models or architectures to achieve certain ASILs for FO systems
in the ISO 26262 standard are addressed.

3.1.2 Design based on a fault hypothesis
A design approach tailored for safety-critical real-time computer systems is presented in
[4]. It has been published years before the ISO 26262 standard was released and does
not provide that degree of details regarding description and tools/methods to be used.
But still it consists some useful concepts that are missing in the ISO 26262 standard and

3 FO architectures in the AD domain 3.1 Methodology 23

should be considered for the design of FO systems.

Fault hypothesis

Architecture

Verification

Implementation

Figure 3.3:
Design approach based on
a fault hypothesis [4]

Figure 3.3 provides an overview of the suggested phases to
be performed for designing fault-tolerant systems. The fault
hypothesis must be defined at the beginning. It includes [4]:

• separation of fault space into covered and uncovered
faults (rare events)

• definition of FCRs

• specification of failure modes (assumptions)

• failure rate (assumptions)

• definition of detection and recovery timing

The results of the fault hypothesis are the main contri-
butions to the architectural design in this approach. The
architecture must be suitable to tolerate the defined cov-
ered faults, and also potentially react on uncovered faults,
e.g. by implementing a Never-Give-Up (NGU) strategy
[4]. Implementation and verification of the design are not
treated in this thesis, since the main focus is on architecture
level.

3.1.3 Combined fault-tolerant design approach
In order to further investigate three selected FO architectures, a methodology that inte-
grates the ISO 26262 (Section 3.1.1) and the fault-hypothesis approach (Section 3.1.2)
is used. The item definition and HARA can be performed without any knowledge of
the chosen architectural pattern, because in this phase the functionality of the system is
defined, but not any details regarding architectural design or implementation [8]. The
definition of the fault hypothesis already requires input regarding architectural design,
because e.g. the definition of FCRs must fit to the component decomposition of the
item. So the architectural patterns (Simplex, 1oo2D and Hybrid) are input for the fault
hypothesis and the SAD. The non-generic phases (fault hypothesis, SAD, FSC) are highly
depending on each other, so bidirectional transitions between them are unavoidable.

The common design tasks (item definition, HARA) are documented once in the following
sections. Fault hypothesis, SAD and FSC are done for each chosen architecture separately.

Fault Hypothesis: The first step of defining a fault hypothesis is a decomposition of
the given system into FCRs. It must be ensured, that the subsystems that form a FCR
fail independently, since already very small correlations of the FCR’s failure probabilities
might have a significant impact on the overall dependability [4]. For the fault hypothesis

3 FO architectures in the AD domain 3.1 Methodology 24

Fault hypothesis based design ISO 26262
Concept phase

Item definition

Hazard analysis and
risk assessment

(HARA)

Functional safety
concept (FSC)

System architectural
design (SAD)

Fault hypothesis

Architectural
pattern

Work product depending on architectural pattern

Work product independent of architectural pattern

Figure 3.4: Combined fault-tolerant design approach

of the ADS-CP hardware and software faults are treated separately, and therefore the
FCRs are defined differently for hardware and software investigations, as performed in [53].

SAD: The goal of the SAD is to provide a high level design on system level, considering
resulting artefacts of previously performed steps as well as the FSC. The inputs used in
this thesis are summarized in Figure 3.5.

Used artefacts from the item definition as inputs for the SAD are the system require-
ments and high level component decomposition (see Section 3.2). In addition to the
system requirements, several assumptions related to the available (HW) components are
made:

• Maximum ASIL of high computational power processors (referred to as PH): ASIL
B

• Arbitrary number of diverse (and therefore common-mode fault-free) PHs are
available

• Maximum ASIL of safety microcontrollers (referred to as SH): ASIL D

3 FO architectures in the AD domain 3.1 Methodology 25

System architectural
design (SAD)

High level component
decomposition

Assumptions/
requirements

Architectural patternSafety goals

Fault hypothesis Functional safety
concept (FSC)

Figure 3.5: SAD input artefacts

• Arbitrary number of diverse (and therefore common-mode fault-free) SHs are avail-
able

• Maximum ASIL of peripheral components (power management, communication, ...):
ASIL D

The safety goals (see Section 3.3) are used to determine the required ASILs for the
HW and SW components, while the fault hypothesis mainly provides input regarding the
required degree of independence between components.

The overall structure of the architectural design, hence the method how redundant
units are combined, is determined by the used architectural pattern. Finally, the inputs
provided by the FSC determine safety measures relevant for the system design to fulfil
the safety goals. All the inputs are considered in the following investigations, separated
into HW and SW architecture.

FSC: One of the FSC’s main objectives is to define safety measures in order to fulfil
the safety goals, which are top level requirements of the FSC. Further, the degraded
functionality mode of the ADS-CP is specified[8]. The FSC is tightly coupled with the
SAD and therefore both artefacts are created iteratively in the chosen approach (see
Section 3.1.3). Main input artefacts (represented in Figure 3.6) for defining the FSC are
requirements and assumptions from the item definition (see Section 3.2), the safety goals
as a result of the HARA (see Section 3.3), the SAD and the fault hypothesis.

The defined safety goals in Table 3.3 already consider high level safety measures. These
safety measures are refined in the FSC, assigned to specific components on vehicle and/or
system level and traced to specific safety goals and covered HW/SW faults.

3 FO architectures in the AD domain 3.2 Item definition 26

Functional safety
concept (FSC)

Assumptions/
requirements

Safety goalsFault hypothesis

System architectural
design (SAD)

Figure 3.6: FSC input artefacts

3.2 Item definition
The design process of the chosen combined approach is initiated with the item definition,
performed according to [8]. A hypothetical system is defined initially as a basis for all
further investigations. It is as generic as possible, but as detailed as necessary to provide
a profound basis for applying and discussing different architectural patterns. This system
description is used to identify the item, extract its functionality and define interfaces to
other items or the environment.

The described system targets applications towards autonomous driving compliant to
SAE levels 3+. A central high performance computing platform, referred to as ADS-CP,
receives sensor data (RADAR, LIDAR, camera) and performs calculations (sensor fusion,
object detection, trajectory planning) on the received data to find a safe trajectory for the
vehicle. The calculated trajectory is sent to the Vehicle Control Unit (VCU) in form of
steering, acceleration and braking data. All components of the system (sensors and ECUs)
are supplied by a power supply component. The supposed system is shown in Figure 3.7.

3 FO architectures in the AD domain 3.2 Item definition 27

ADS-CP

Camera

RADAR

LIDAR

VCU

Power
Supply

Figure 3.7: System overview

Based on this high level system description, the item, where the FO concepts are
evaluated on, is identified as the ADS-CP. Several assumptions and requirements on
system and item level are established in Table 3.1 and Table 3.2. Requirements related to
environmental conditions or legal, quality and performance requirements [8] are outside
the scope of this thesis.

Description

AS1
Parameters of the power supply are not considered in the ongoing design process.
If required by the FO architectural pattern, redundant and diverse power supplies
can be assumed.

AS2
Parameters of the sensors (RADAR, LIDAR, camera) are not considered in the
ongoing design process. If required by the FO architectural pattern, redundant
and diverse communication paths can be assumed.

AS3
Parameters of the VCU are not considered in the ongoing design process. If
required by the FO architectural pattern, redundant and diverse communication
paths can be assumed.

Table 3.1: System assumptions

The item’s boundary within the car is defined according to Figure 3.8. Considered
interfaces are:

• connection to power supply

• communication interface to sensor set (RADAR, LIDAR, camera)

• communication interface to VCU

The main purpose of the item is to enable the execution of ADFs with high reliability
and an availability according to the targeted SAE level. To accomplish that, a certain

3 FO architectures in the AD domain 3.2 Item definition 28

Description

REQ1

The system shall host SWCs, capable of executing safety critical functions
with high reliability and availability levels, requested by the targeted SAE
driving automation level. The necessary integrity level should be determined
through a HARA.

REQ2

The SWCs shall implement algorithms capable of processing sensor set data
(RADAR, LIDAR, camera) used for executing ADFs. Particularly, sensor
fusion, object detection, trajectory planning and calculation of steering,
acceleration and braking data shall be performed.

REQ3
The system shall remain operational in case a single failure occurs. The
covered and uncovered faults shall be specified in the definition of a fault
hypothesis.

REQ4
The system shall receive sensor data via suitable communication interfaces.
Therefore, all prevalent network technologies used in the automotive domain
may be used.

REQ5
The system shall send steering, acceleration and braking data to the VCU
via suitable communication interfaces. Therefore, all prevalent network
technologies used in the automotive domain may be used.

REQ6
The FO concept may also allow degraded functionality when executing
fallback functions, as long as the specifications of the targeted SAE driving
automation levels are not violated.

REQ7
The system is assumed to execute ADF of SAE driving automation levels 3+.
The maximum achievable driving automation level should be determined
individually for different architectural patterns.

REQ8 No restriction regarding power consumption is defined.

REQ9 No requirement regarding bandwidth of the used communication channels is
defined.

REQ10 No fail-over time limit is specified. The resulting fail-over time must fit for
the targeted SAE driving automation level.

REQ11 The ASIL level of a potential fallback system may be lower than the ASIL
level of the primary system. If so, the resulting restrictions must be defined.

Table 3.2: System requirements

3 FO architectures in the AD domain 3.2 Item definition 29

Item

ADS-CP

Camera

RADAR

LIDAR

VCU

Power
Supply

Figure 3.8: Item definition and boundaries to the rest of the system

degree of FO capability is required, which will be investigated in more detail in Section 3.4,
Section 3.5 and Section 3.6. A high level design of the item decomposes the ADS-CP into
a controller component, which is responsible for executing specific ADF algorithms (sensor
fusion, object detection, trajectory planning, steering/drive train data calculation), a
power management and an external communication component. This item decomposition
into components is shown in Figure 3.9 and does not yet consider any necessary redundancy
or diversity.

ADS-CP

Controller

Object
detec�on

Trajectory
planning

Steering/
drive train

Sensor
fusion

External
COM

Power
management

Figure 3.9: High level component decomposition of the ADS-CP

3 FO architectures in the AD domain 3.3 HARA 30

3.3 HARA
The suggested approach by ISO 26262 to identify safety goals and therefore top level
safety requirements is to perform a HARA. It is a method to determining hazardous
events resulting from any malfunctioning behaviour of the item, assigning ASILs and
deriving safety goals [8]. A HARA is commonly used in the concept phase for any safety
critical system, not just in the automotive industry, hence, several variants exist regarding
relevant information and assumptions to be considered for performing a HARA.

The proposed HARA variant in the ISO 26262 standard is based on the item definition.
Suggested supporting methods to systematically identify hazards are Failure Mode and
Effects Analysis (FMEA) and Hazard and Operability Analysis (HAZOP). The identified
hazards are used to determine relevant hazardous events, including their consequences and
associated operational situations and modes. The hazardous events are further classified
by assigning levels of severity, probability of exposure and controllability, which might then
result in a specific ASIL. For hazardous events rated with an ASIL, functional objectives
in form of safety goals are defined, which are input for the FSC [8].

With respect to AD, some definitions of terms in the ISO 26262 standard are vague.
An "operational situation" according to ISO 26262 is a "scenario that can occur during a
vehicle’s life" [8]. Since the terms "situation" and "scenario" are widely spread in the AD
domain, it must be distinguished between ISO 26262 definition and generic meaning in
the AD context [13]. In [13], the term "operational scenario" is therefore used instead of
"operational situation".

Another shortage of the suggested HARA procedure in ISO 26262 is the absence of
considering the driver’s role. In the description of the operational situations and modes
it should be defined whether the driver is in the loop or not [51]. Another mentionable
remark related to the HARA is the fact that for some ADFs the driver would not be able
to control the hazardous event in any way, because he is not designated to be in the control
loop for highly or fully automated functions. Hence, the controllability of these hazardous
events would always be rated as C3 (difficult to control or uncontrollable) [51]. A very low
controllability of hazardous events for highly automated functions is also mentioned in [13].

The chosen approach to perform a HARA for the defined ADS-CP is a simplified
combination of suggested approaches in [8], [13] and [51]. Since the ASILs for the high
level decomposed components in Section 3.2 need to be determined in order to apply the
chosen architectural patterns, a simplified, minimal HARA approach is sufficient here.
The following attributes are considered for each component:

• malfunction of the component

• operational (simplified) scenario

• impact of the malfunction

3 FO architectures in the AD domain 3.3 HARA 31

• probability of exposure, severity and controllability classification according to [8]

• resulting ASIL for the hazardous event according to [8]

• derivation of a associated safety goal

It is assumed that the driver is out of the control loop for all identified hazardous
events, hence, the controllability levels are specified as C3 (difficult to control or uncon-
trollable). Since the focus of this thesis is less on the HARA, but on the comparison
of FO architectures, no assisting systematic method for hazard determination has been
applied (e.g. FMEA or HAZOP). The HARA was performed using brainstorming to
identify malfunctions of the components. The minimal HARA of the ADS-CP is listed
in Appendix A. A more comprehensive HARA for an automated unmanned vehicle was
performed in [13].

3
FO

architectures
in

the
A

D
dom

ain
3.3

H
A

R
A

32

Safety Goal ASIL level Safety measure

SG1 A single invalid, corrupt or lost frame of 1 sensor type must not lead to any unsafe situation ASIL D compensation measure in trajectory planning (interpolation); End-to-
End (E2E) protection of sensor data

SG2 Permanent invalid, corrupt or lost frames of 1 sensor type must not lead to any unsafe situation ASIL D compensation measure in sensor fusion (interpolation); E2E protection
of sensor data

SG3 Invalid or corrupt frames must be detected ASIL D E2E protection of sensor data

SG4 Permanent loss of frames of at least 2 sensor types must trigger the emergency operation, i.e.
an emergency brake using the last calculated steering angle ASIL D sensor data reception via diverse channels; implementation of emergency

operation on SWC level
SG5 The power supply of the ADF-CP must not be interrupted ASIL D redundant/diverse power supply

SG6 The power supply must conform to the specified boundaries ASIL D voltage monitoring by power management; switch over capability to
redundant/diverse power supply

SG7 Correct steering data must be sent continuously ASIL D SWC (and hosting HW) development according to ASIL D; steering data
transmission via diverse channels; E2E protection of steering data

SG8 Correct drive train data must be sent continuously ASIL D
SWC (and hosting HW) development according to ASIL D; drive train
data transmission via diverse channels; E2E protection of drive train
data

SG9 Sensor fusion algorithm mustn’t be in a incorrect, not working state for more than 3 frames
per second ASIL D SWC (and hosting HW) development according to ASIL D

SG10 Sensor fusion data mustn’t contain incorrect, corrupt or missing data for more than 3 frames
per second ASIL D SWC (and hosting HW) development according to ASIL D

SG11 Object recognition algorithm mustn’t be in a incorrect, not working state for more than 3
frames per second ASIL D SWC (and hosting HW) development according to ASIL D

SG12 Object recognition algorithm mustn’t produce more than 6 frames per second containing false
positives ASIL B SWC (and hosting HW) development according to ASIL B

SG13 Object recognition algorithm mustn’t produce more than 3 frames per second containing false
negatives ASIL D SWC (and hosting HW) development according to ASIL D

SG14 Object recognition data mustn’t contain poor quality data (no/invalid/wrong data) for more
than 3 frames per second ASIL C SWC (and hosting HW) development according to ASIL C

SG15 Trajectory planning algorithm mustn’t be in an incorrect, not working state for more than 1
frame per second ASIL D SWC (and hosting HW) development according to ASIL D

SG16 Trajectory planning algorithm must provide a trajectory with minimum threat to human lives
(pedestrians, driver, other drivers) in case no safe trajectory could be found ASIL D SWC (and hosting HW) development according to ASIL D

SG17 Trajectory planning algorithm mustn’t provide no or an unsafe trajectory for more than 1
frame per second ASIL D SWC (and hosting HW) development according to ASIL D

Table 3.3: Safety Goals

3 FO architectures in the AD domain 3.4 Simplex architecture 33

The determined safety goals are listed in Table 3.3. For each safety goal, high level
safety measures independent of the architectural pattern are derived. More detailed safety
measures are treated individually in the FSCs and SADs for all selected FO architectures
(see Section 3.4, Section 3.5 and Section 3.6). As shown in Table 3.3 these high-level safety
measures are mostly a requirement for a certain ASIL. For each selected FO architecture
it is elaborated how the respective ASIL is established.

3.4 Simplex architecture
The basic concept of the Simplex architecture, based on the state of the art research
performed in Section 2.1.2, consists of high-performance processing components and
reliable processing components. The high-performance component is referred to as mission
controller, the reliable processing part is denoted as base controller. A decision module
verifies the result of the mission controller and forwards it to the communication channel
if no error was detected, otherwise the base controller ’s result is sent (see Figure 3.10).

Decision module

Communica�on channel

Base controller

Processing
light

Mission controller

Processing

Voter

Figure 3.10: Simplex architectural pattern

The Simplex architecture may not be a preferred choice as FO architecture for an
ADS as the complexity of even the base controller may not allow to realize a sufficiently
high reliability. However, the Simplex architecture was selected, because it is a basic
architecture that allows to introduce more advanced architectures more easily and it serves
well for comparison with the other selected architectures.

3.4.1 Fault hypothesis
Following the selected methodology to be applied for classifying the FO architectures (see
Section 3.1.3), the fault hypothesis is split up into HW and SW sections.

3 FO architectures in the AD domain 3.4 Simplex architecture 34

Hardware faults

The HW related FCRs of the ADS-CP following the Simplex architectural approach (see
Figure 3.10) are defined according to the high level component decomposition performed
in the item definition phase (see Section 3.2).

The FO capability of the ADS-CP is achieved by defining independent FCRs, forming a
Fault-Tolerant Unit (FTU). A single fault must be confined within the affected FCR and
must not lead to any failure of the overall system. Since according to the architectural
pattern a fault in the base controller or the decision module would cause the whole system
to fail, the FCR consisting of safety controller (acting as base controller and decision
module) and Supply 2 is considered to be verified completely and therefore considered as
free of any types of faults [21].2

A fault in power supply component Supply 1, power management, high-performance
controller or external Communication (COM) would cause a failure in the mission con-
troller, so all aforementioned components form a separate FCR (see Figure 3.11). If the
mission controller fails, the decision module inside the safety controller part selects the
base controller ’s output, hence the fault in the mission controller is masked out.

In order to tolerate a fault in the ADS-CP’s (external) communication channel, a
redundant channel is added. Both communication channels fail independently, assuming
that they are sufficiently diverse, and therefore can be considered as separate FCRs (see
Figure 3.11).

For specifying the fault hypothesis of the Simplex approach, the following assumptions
are considered:

• The FCR containing the safety controller and power supply Supply 2 is assumed to
be free of any type of faults.

• It is assumed that single faults occur. More than one fault at the same time are
considered to be rare events (uncovered faults). This is commonly accepted and
used e.g. in [4] and [53].

• The temporal classification of the covered faults (see Table 3.4) are considered to be
either transient or permanent.

• All other faults (not covered in Table 3.4) are assumed to be rare events. A NGU
strategy is defined to react on these uncovered faults (see Section 3.7).

• The FCR containing a communication channel is assumed to not create correct
frames spontaneously. The communication channels won’t add any arbitrary delay
when sending/receiving data [54]. Furthermore it is assumed that the communication
channels are designed in a way such that a faulty mission controller is contained.

2Since in practice a full verification is not feasible, faults in the safety controller part can be masked out
by e.g. using a TMR approach [21].

3 FO architectures in the AD domain 3.4 Simplex architecture 35

ADS-CP
[FTU]

FCR

FCR

Mission controller

Power
management

High-
performance

controller

External
COM

Supply 1

FCR

FCR

Safety controller

Power
management

Reliable
controller

External
COM

Supply 2

Communica�on
channel 1

Communica�on
channel 2

Figure 3.11: FCR decomposition of the Simplex approach (hardware components)

Based on these assumptions, the covered hardware faults are defined according to
Table 3.4.

Software faults

The specification of the fault hypothesis related to software faults is based on the ADS-CP’s
high level component decomposition (see Figure 3.9) and the Simplex architectural pattern
(see Figure 3.10). It is assumed, that the application layer relies on an underlying platform
SW and an Operating System (OS). For the software related FCR definition, the following
layers are considered:

• System SW (OS and platform SW)

• Application software (Sensor fusion, Object detection, Trajectory planning, Steer-
ing/drive train, Decision module SWCs)

It is assumed, that the (same) platform SW is deployed on the mission controller and on
the safety controller. Defining the platform SW as separate FCRs on mission controller and
safety controller would require sufficient degree of independence between both platform SW
instances, hence a single FCR is defined (see Figure 3.12). Using this approach requires
the assumption for the platform SW to be free of any type of faults to avoid a single point

3 FO architectures in the AD domain 3.4 Simplex architecture 36

Component Fault Impact

SCHWF1 Supply 1
Voltage level of power sup-
ply below the specified
range

Mission controller not supplied
anymore, no output can be pro-
duced

SCHWF2 Supply 1
Voltage level of power sup-
ply above the specified
range

Mission controller must shut
down to prevent potential dam-
age, no output produced any-
more

SCHWF3

Power man-
agement
(Mission
controller)

Mission controller’s power
management fails to pro-
vide the required voltage
levels for an arbitrary com-
ponent

Mission controller should per-
form a transition to a safe
state; Incorrect results would
be masked out by the decision
module

SCHWF4
Controller
(Mission
controller)

Controller provides no re-
sult on all interfaces (fail-
silent behaviour) on the
mission controller

Mission controller should per-
form a transition to a safe
state; Incorrect results would
be masked out by the decision
module

SCHWF5

External
COM (mis-
sion con-
troller)

External communication
component on the mission
controller fails to forward
received data from the bus
to the controller

Mission controller should per-
form a transition to a safe
state; Incorrect results would
be masked out by the decision
module

SCHWF6 Bus 1, Bus 2

Communication channel
not ready to transmit data
due to fault on the physical
level

Transition to a degraded mode
must be performed by the
ADS-CP

Table 3.4: Simplex fault hypothesis: covered hardware faults

of failure [53]. Since for the high performance controller and for the safety controller any-
way different and independent OSs are used (see Section 3.4.2), separate FCRs are defined.

The application level components on the safety controller (Sensor fusion, Object de-
tection, Trajectory planning, Steering/drive train, Decision module SWCs) are assumed
to be free of faults (as all components on the safety controller) to avoid single point of
failures. So on the safety controller’s SW level all SWCs form a single FCR where this
assumption is applied on. The SWCs on the mission controller form separate FCRs, since
a fault in any SWC is isolated and not affecting other components.

3 FO architectures in the AD domain 3.4 Simplex architecture 37

Mission controller

Host

Safety controller

Host

FCR
Pla�orm SW Pla�orm SW

FCR
OS

FCR
Sensor fusion

FCR

FCRFCR

FCR

Object
detec on

Steering/drive
train

Trajectory
planning

Sensor fusion
light

Object
detec on light

Trajectory
planning light

Steering/drive
train light

FCR
OS

Decision
module

Figure 3.12: FCR decomposition of the Simplex approach (software components)

Fundamental assumptions regarding software faults of the Simplex approach are:

• The occurrence of a single fault is assumed. More than one fault at the same time
are considered to be a rare event (uncovered fault). This is commonly accepted and
used e.g. in [4] and [53].

• The temporal classification of the covered software faults (see Table 3.7) are perma-
nent faults by definition.

• All other faults (not covered in Table 3.7) are assumed to be rare events. A NGU
strategy is defined to react on these uncovered faults (see Section 3.7).

• The FCR containing the platform SW is assumed to be fault-free (as assumed e.g.
in [53]).

• The system SW handles the communication between SWCs and between mission
controller and safety controller. Since the absence of faults in the platform SW and
in the safety controller’s OS is assumed, failure modes like arbitrary timing/value
message failures in the communication system don’t have to be considered.

The covered SW faults of the fault hypothesis are defined according to Table 3.5.

3.4.2 SAD
The SAD is defined according to the selected methodology in Section 3.1.3. Similar to the
definition of the fault hypothesis, a separation into HW and SW related investigations is
done.

3 FO architectures in the AD domain 3.4 Simplex architecture 38

Component Fault Impact

SCSWF1
All SWCs (application
level) on the mission
controller

SWC produces no
output data

Mission controller should per-
form a transition to a safe
state; Incorrect results would
be masked out by the decision
module

SCSWF2
All SWCs (application
level) on the mission
controller

SWC produces in-
correct output data
(detectable by con-
sumer)

Mission controller should per-
form a transition to a safe
state; Incorrect results would
be masked out by the decision
module

SCSWF3
All SWCs (application
level) on the mission
controller

SWC fails to fetch in-
put data

Mission controller should per-
form a transition to a safe
state; Incorrect results would
be masked out by the decision
module

Table 3.5: Simplex fault hypothesis: covered software faults

HW architecture

The mission controller and safety controller (composed of base controller and decision
module) are integrated on a single ECU (see Figure 3.13). This is tolerated here because
no common mode faults related to spatial proximity are considered in the fault hypothesis.
The ongoing investigation on the HW architecture is separated into mission controller (i)
and safety controller (ii).

i) Mission controller: The core components of the mission controller are two diverse
PHs. Since it is assumed that the maximum ASIL of a PH is ASIL B, the requirement
to host SWCs of ASIL D depends on an ASIL decomposition from one ASIL D
component to two ASIL B components, denoted as ASIL B(D). This requires a
sufficient degree of independence among the components used for decomposition [8].
The communication between the PHs is realized via an Ethernet backbone, consisting
of Ethernet switch A (ASIL D). The switch is also connected to the safety controller’s
Ethernet backbone, hence a cascaded switch configuration is used. The mission
controller receives sensor data via two diverse communication interfaces (CAN,
Ethernet). The received Ethernet frames are forwarded from a transceiver component
(Ethernet transceiver A) to both PHs via Ethernet switch A, while the received
CAN messages are directly sent to the PHs from CAN transceiver A. The mission
controller must not send any data to the external communication channels, all
calculated results are sent to the safety controller instead.
All components of the mission controller are supplied via a separate power man-
agement unit, realized e.g. by deploying a Power Management Integrated Cir-
cuit (PMIC). It is responsible for providing all required voltage levels to the

3 FO architectures in the AD domain 3.4 Simplex architecture 39

components and for the state management of the mission controller. A safe state of
the mission controller is reached by disabling all power supplies, which is triggered
by the safety controller in the defined SAD.

ii) Safety controller: The safety controller, hosting the base controller and the decision
module in accordance with the Simplex architectural pattern, is assumed to be
free of any type of faults.3 It is composed of a SH, communication infrastructure
(Ethernet switch, Ethernet transceiver, CAN transceiver) and a power management
unit.
The power management unit again can be implemented using a PMIC, providing
the requested voltage levels to all components of the safety controller part. Since
the safety controller does not fail, no mode management is necessary here.
The external communication of the safety controller is realized via appropriate
transceivers for both used communication channels (Ethernet, CAN) and an Ethernet
backbone (implemented via Ethernet switch B). The SH receives sensor data via
both communication channels and verifies the mission controller’s calculated results.
In case the verification was successful, the mission controller’s data is forwarded
to the external communication channels. Otherwise the lightweight calculations
performed by the SH are sent. Besides sensor data processing and verification
tasks, the SH is also responsible for the mission controller’s mode management by
controlling the Power management A component.

SW architecture

The SW architecture for the Simplex approach describes the SWC design (i) and the
dataflow between all SWCs, the system SW and the vehicle (ii).

i) SWC design: The SW architecture is based on a layered approach, where the lowest
layer on top of the silicon are the OSs (see Figure 3.14). On the PHs a Portable
Operating System Interface (POSIX) compliant OS is deployed (e.g. QNX [55]),
while on the safety host an OS based on the AUTOSAR [45] standard is used (e.g.
MICROSAR [56]). On top of the OS layer a platform SW, implementing a time
triggered architecture, handles communication (between SWCs and vehicle) and
task scheduling.
The SW related functional blocks in the high level component decomposition (see
Section 3.2) are implemented as separate SWCs on top of the platform SW (sensor
fusion, object detection, trajectory planning, steering/drive train). To satisfy the
reliability requirement of ASIL D, a ASIL decomposition for the SWCs hosted on the
(ASIL B) PH is performed according to [8], hence a sufficient degree of independency
among the SWCs must be ensured. On the SH, lightweight versions of the sensor
fusion, object detection, trajectory planning and steering/drive train SWCs in terms
of reduced feature set are deployed. Additionally, a decision module SWC is hosted,

3In practice the reliability of a system utilizing a Simplex architecture is highly determined by the
reliability of the base controller and the decision module (and their respective FCRs).

3 FO architectures in the AD domain 3.4 Simplex architecture 40

ADS-CP

Performance
host 1

Performance
host 2

Ethernet switch A

Po
w

er
m

an
ag

em
en

tA

Ethernet
transceiver A

Supply A

Ethernet channel

CAN channel

Sensors (Camera, LIDAR, RADAR) Vehicle control unit (VCU)

Ethernet switch B

Safety host

Ethernet
transceiver B

CAN
transceiver B

Po
w

er
m

an
ag

em
en

tB

CAN
transceiver A

Supply B

ASIL D component ASIL B(D) component External component

Data Power Control

Fault-free component

Figure 3.13: Hardware architecture of the Simplex approach

responsible for verifying the PHs’ calculations and selecting the data to be sent to
the VCU accordingly.

ii) Dataflow definition: Sensor data (camera, LIDAR, RADAR) is sent via redundant
and diverse communication channels (Ethernet, CAN) to the sensor fusion SWCs
on all hosts. The results of the SWCs hosted on the PHs are verified by the decision
module SWC on the SH.4 If the verification was successful, the mission controller’s
data is sent to the VCU via the redundant and diverse external communication
channels, otherwise the base controller’s results are sent (see Figure 3.15).

3.4.3 FSC
As explained in Section 3.1.3, the high level safety measures (see Table 3.3) are refined in
the FSC and traced to the safety goals and covered faults defined in the fault hypothesis.

4Possible concepts to deal with replica indeterminism are explained in [42]. In this investigations on the
Simplex approach, these problems are neglected.

3 FO architectures in the AD domain 3.4 Simplex architecture 41

ADS-CP

Performance host 1 Performance host 2 Safety host

OS (POSIX) OS (POSIX) OS (AUTOSAR)

Pla�orm SW Pla�orm SW Pla�orm SW

Se
ns

or
fu

sio
n

1

Ob
je

ct
de

te
c

on
1

Tr
aj

ec
to

ry
pl

an
ni

ng
1

St
ee

rin
g/

dr
iv

e
tra

in
1

Se
ns

or
fu

sio
n

2

Ob
je

ct
de

te
c

on
2

Tr
aj

ec
to

ry
pl

an
ni

ng
2

St
ee

rin
g/

dr
iv

e
tra

in
2

HW (SoC) OS layer Pla�orm SW layer

Applica on layer [ASIL B(D)] Applica on layer (fault-free)

De
cis

io
n

m
od

ul
e

Se
ns

or
fu

sio
n

lig
ht

Ob
je

ct
de

te
c

on
lig

ht

Tr
aj

ec
to

ry
pl

an
ni

ng
lig

ht

St
ee

rin
g/

dr
iv

e
tra

in
lig

ht

Figure 3.14: Software architecture of the Simplex approach (SWCs per host)

SWC development according to ISO26262

As determined in the HARA, the SWCs must be developed according to ASIL D for the
mission controller. The SWCs hosted on the PHs are decomposed to independent ASIL
B(D) components (see Section 3.4.2).

Since the safety controller is assumed to be free of faults, no ASIL requirements are
assigned to the decision module, sensor fusion light, object detection light, trajectory
planning light and steering/drive train light SWCs.

Covered safety goals: SG7-SG17

HW development according to ISO26262

In order to be able to host ASIL D SWCs, the HW must be developed according to
ASIL D for the mission controller (Power management A, CAN transceiver A, Ethernet
transceiver A, Ethernet switch A).

The safety controller is assumed to be free of faults, so no ASIL requirements are
assigned to its HW components.

Covered safety goals: SG7-SG17

3 FO architectures in the AD domain 3.4 Simplex architecture 42

ADS-CP

Vehicle

Decision module

Sensor fusion 1

Object
detec�on 1

Trajectory
planning 1

Steering/drive
train 1

Sensor fusion 2

Object
detec�on 2

Trajectory
planning 2

Steering/drive
train 2

Sensors (Camera, LIDAR, RADAR

Vehicle control unit (VCU)

SWC ASIL B(D) External component DataSWC (fault-free)

Sensor fusion
light

Object detec�on
light

Trajectory
planning light

Steering/drive
train light

Figure 3.15: Software architecture of the Simplex approach (dataflow)

Functional safety measures implemented in SWCs

To compensate loss of sensor data appropriate measures (e.g. interpolation) must be
implemented in the ADF SWCs. If a permanent loss of sensor data (at least 2 types)
occurs, an emergency operation must be implemented in the trajectory planning SWC
(controlled breaking manoeuvre until standstill).

Covered safety goals: SG1, SG2, SG4

E2E protection of data sent over communication channels

All data sent over any communication channel must be checked to ensure its integrity.
Adding an E2E protection (Cyclic Redundancy Check (CRC), sequence counter) to all
data being sent (CAN messages, Ethernet frames) ensures proper error detection.

3 FO architectures in the AD domain 3.5 1oo2D architecture 43

Covered safety goals: SG1-SG3, SG7-SG8

Redundancy and diversity

On vehicle level the ADS-CP’s power supplies, the sensor sets and the communication
channels connected to the ADS-CP must be implemented in a redundant and diverse
way (CAN, Ethernet). Each sensor set uses a dedicated communication channel for data
transmission and mission controller and safety controller are supplied by dedicated power
supplies to minimize the risk of common cause faults.

The ADS-CP must provide independent interfaces to the redundant and diverse com-
munication channels (CAN, Ethernet) on vehicle level. The base controller is added as
redundant unit to the mission controller (Simplex architecture) and ensures (degraded)
operation in case a fault occurs on the mission controller. The mission controller’s result
is verified by the decision module and forwarded to the VCU in case the verification was
successful. The safety controller (hosting base controller and decision module) is also
responsible for monitoring the voltage levels and disabling the mission controller if the
specified voltage levels are violated.

The mission controller’s interfaces to the external communication channels (CAN, Eth-
ernet) only must be used for receiving data, but not for sending. Sending data to the
vehicle is only handled by the decision module, hosted on the safety controller.

Covered safety goals: SG4-SG8

Trace to fault hypothesis: SCHWF1-SCHWF5, SCSWF1-SCSWF3

Degradation strategy

Once a fault occurred on the mission controller, the driver must be alerted that the vehicle
is operating in a degraded mode in terms of features and operation time [8]. If the error
of the mission controller disappeared after a restart (transient fault), the ADS-CP is able
to operate in normal mode again and an appropriate notification to the driver must be
initiated again.

Trace to fault hypothesis: SCHWF6

3.5 1oo2D architecture
Some fail-operational approaches based on the 1oo2D architecture were already outlined
in Section 2.1.3. The fundamental architectural pattern all mentioned 1oo2D approaches
are based on is shown in Figure 3.16.

The concept of the 1oo2D approach is based on the combination of two fail-silent units,
referred to as primary mission controller and secondary mission controller. Providing

3 FO architectures in the AD domain 3.5 1oo2D architecture 44

Communica�on channel

Secondary mission controller

Monitor Processing

Primary mission controller

MonitorProcessing

Figure 3.16: 1oo2D architectural pattern

fail-silent capability requires sufficient diagnostic capabilities on both units to monitor its
behaviour and ensure that no data is sent to the communication bus anymore in case a
fault occurred. The monitoring components on both units exchange diagnostic data in
order to provide a consistent view on the current state of both units. Valid states for this
chosen 1oo2D approach are either one unit sends valid data or no unit sends data at all.
The mode switch of the units is handled by a defined fail-over mechanism, which covers
the definition of the exchanged diagnostic data and the agreement between the units to
ensure only one active unit at any point of time.

3.5.1 Fault hypothesis
As explained in the selected methodology (see Section 3.1.3), the fault hypothesis is split
up into HW and SW related faults.

Hardware faults

The definition of FCRs with respect to hardware faults is based on the high level component
decomposition of the ADS-CP (see Figure 3.9) and the 1oo2D architectural patten (see
Figure 3.16).

Since a mission controller in the presented approach contains shared physical resources
(power management, controller, power supply), primary and secondary mission controllers
including their power supplies are considered as separate FCRs. Both mission controllers
form a FTU, providing FT capabilities. Any fault affecting a shared physical resource is
very likely to result in a failure of the complete mission controller, so in accordance with
the criteria for a FCR [4], the definition is done as shown in Figure 3.17.

The assumption that the hardware components of the mission controller FCRs fail
independently requires a sufficient degree of diversity regarding design and component
selection in order to prevent common mode failures, similar to the approach in [53]. The
diversity requirement must be considered in the SAD (see Section 3.5.2).

Each communication channel (bus 1, bus 2) is defined as separate FCR. To fulfil the
definition criteria, both FCRs again must be designed considering sufficient diversity.

3 FO architectures in the AD domain 3.5 1oo2D architecture 45

ADS-CP
[FTU]

FCR

FCR

Primary mission controller

Power
management

Controller

External
COM

Supply 1

FCR

FCR

Secondary mission controller

Power
management

Controller

External
COM

Supply 2

Communica�on
channel 1

Communica�on
channel 2

Figure 3.17: FCR decomposition of the 1oo2D approach (hardware components)

The following assumptions regarding failure modes are defined for defining the fault
hypothesis:

• The occurrence of a single fault is assumed. More than one fault at the same time
are considered to be a rare event (uncovered fault). This is commonly accepted and
used e.g. in [4] and [53].

• The temporal classification of the covered faults (see Table 3.6) are considered to be
either transient or permanent.

• All other faults (not covered in Table 3.6) are assumed to be rare events. A NGU
strategy is defined to react on these uncovered faults (see Section 3.7).

• The FCR containing a communication channel is assumed to not create correct
frames spontaneously. Further the communication channels won’t add any arbitrary
delay when sending/receiving data [54].

3 FO architectures in the AD domain 3.5 1oo2D architecture 46

The covered hardware faults within the fault hypothesis, considering the defined as-
sumptions, are listed in Table 3.6.

Component Fault Impact

DCHWF1 Supply 1, Sup-
ply 2

Voltage level of power sup-
ply below the specified
range

Primary or secondary mission
controller not supplied anymore,
no output can be produced

DCHWF2 Supply 1, Sup-
ply 2

Voltage level of power sup-
ply above the specified
range

Primary or secondary mission
controller must shut down to
prevent potential damage, no
output produced anymore

DCHWF3 Power man-
agement

Power management fails to
provide the required volt-
age levels for an arbitrary
component apart from the
safety MCU

Affected mission controller
must perform a transition to a
safe state to prevent possible
incorrect results

DCHWF4 Controller
Controller provides no re-
sult on all interfaces (fail-
silent behaviour)

Affected mission controller
must perform a transition to a
safe state to prevent possible
incorrect results

DCHWF5 External
COM

External communication
component fails to forward
received data from the bus
to the controller

Affected mission controller
must perform a transition to a
safe state to prevent possible
incorrect calculations

DCHWF6 External
COM

External communication
component fails to forward
received data from the con-
troller to the bus

Affected mission controller
must perform a transition to a
safe state to prevent possible
incorrect calculations

DCHWF7 Bus 1, Bus 2

Communication channel
not ready to transmit data
due to fault on the physical
level

Transition to a degraded mode
must be performed by the
ADS-CP

Table 3.6: 1oo2D fault hypothesis: covered hardware faults

Software faults

In addition to the high level component decomposition of the ADS-CP (see Figure 3.9)
and the 1oo2D architectural pattern (see Figure 3.16) as input for the software related
FCR decomposition, a software platform is considered to be used on all hosts between the
underlaying OSs and the application layer (see Figure 3.18).

3 FO architectures in the AD domain 3.5 1oo2D architecture 47

Primary mission controller

Host

Secondary mission controller

Host

FCR
Pla�orm SW Pla�orm SW

FCR
OS OS

FCR Sensor
fusion A

FCR

FCR

FCR

FCR

FCR

FCR

FCR

Object
detec on A

Steering/
drive train A

Trajectory
planning A

Sensor
fusion B

Object
detec on B

Trajectory
planning B

Steering/
drive train B

Figure 3.18: FCR decomposition of the 1oo2D approach (software components)

For the software FCR decomposition two different types are distinguished:

• System SW (OS and platform SW)

• Application software (Sensor fusion, Object detection, Trajectory planning, Steer-
ing/drive train SWCs)

It is assumed, that primary and secondary mission controllers use the same OS and
platform SW due to economic reasons5. Since defining the system SW as separate FCRs
on both mission controllers would require sufficient degree of diversity regarding their
implementations, OS and platform SW form single FCRs. As a consequence, the absence
of faults in the system SW is assumed in this approach [53].

On application level it might be feasible to develop various implementations of specific
SWCs, ensuring sufficient diversity by e.g. performing the development by independent
teams and avoiding the usage of common SW modules to avoid common mode failures.
However, according to [53], even utilizing different development teams might not be
sufficient in terms of common mode failure avoidance. In the ongoing investigations in this
thesis it is assumed that diverse, independent implementations of the SWCs are available
and therefore it can be justified, that the main and redundant SWC implementations
form separate FCRs.

5Developing complex systems like a (safety qualified) OS or platform SW requires extremely high efforts
and therefore just a few candidates are available for specific needs.

3 FO architectures in the AD domain 3.5 1oo2D architecture 48

The following assumptions with respect to software faults are defined:

• The occurrence of a single fault is assumed. More than one fault at the same time
are considered to be a rare event (uncovered fault). This is commonly accepted and
used e.g. in [4] and [53].

• The temporal classification of the covered software faults (see Table 3.7) are perma-
nent faults by definition.

• All other faults (not covered in Table 3.7) are assumed to be rare events. A NGU
strategy is defined to react on these uncovered faults (see Section 3.7).

• The FCRs containing the platform SW and the OS are assumed to be fault-free (as
assumed e.g. in [53]).

• The system SW handles the communication between SWCs and between the mission
controllers. Since the absence of faults in the system software is assumed, failure
modes like arbitrary timing/value message failures in the communication system
don’t have to be considered.

Based on these assumptions, Table 3.7 lists the covered software faults of the defined
fault hypothesis:

Component Fault Impact

DCSWF1
All SWCs
(application
level)

SWC produces no output
data

Affected mission controller
must perform a transition to a
safe state to prevent possible
incorrect calculations

DCSWF2
All SWCs
(application
level)

SWC produces incorrect
output data (detectable by
consumer)

Affected mission controller
must perform a transition to a
safe state to prevent possible
incorrect calculations

DCSWF3
All SWCs
(application
level)

SWC fails to fetch input
data

Affected mission controller
must perform a transition to a
safe state to prevent possible
incorrect results

Table 3.7: 1oo2D fault hypothesis: covered software faults

3.5.2 SAD
All inputs defined in the used methodology for the SAD (see Section 3.1.3) are considered
in the following investigations and a separation into HW and SW architecture is done.

3 FO architectures in the AD domain 3.5 1oo2D architecture 49

HW architecture

Even though common mode failures caused by spatial proximity are not considered in
the fault hypothesis (see Section 3.5.1), the ADS-CP in this approach is composed of two
separate ECUs, acting as primary and secondary mission controller. If one ECU is used
instead (containing both mission controllers), a justification regarding a sufficient degree
of independence, and therefore the absence of common mode failures must be argued.6
The architecture of the HW related high level decomposed parts (see Section 3.2) are
described in the following paragraphs.

i) Power management: A power management unit (e.g. implemented by using one or
more PMICs) is responsible for providing all required voltage levels to the controllers
and communication components. In this approach it is also used to perform a mode
switch of a mission controller to a safe state, e.g. by disabling the voltage supplies
for all components (depending on the used peripheral components). The mode
switch can be triggered either by the SH or by specific external events detected by
the power management unit (e.g. a missing keep-alive signal from SH or a battery
voltage outside the specified range).
Both mission controllers are supplied by a dedicated battery (1:1 connection).
Connecting the batteries to both mission controllers instead (1:2 connection) would
introduce a risk for the occurrence of common mode failures (e.g. over voltage of 1
battery could affect both mission controllers).

ii) Controller: The controlling part of a mission controller is split up into a safety
related (covered by SH) and computationally intensive (covered by PHs) scope. This
is done, because state of the art PHs don’t provide necessary safety features yet,
and therefore the safety concept (see Section 3.5.3) envisages monitoring features on
different levels (external watchdog, SH, PH). Since the maximum ASIL of state of
the art PHs is up to ASIL B, the capability of hosting ASIL D SWCs requires an
ASIL decomposition. According to [8], an ASIL D component can be decomposed
to two ASIL B components, where the ASIL of the corresponding safety goal is
denoted in parenthesis: ASIL B(D). The decomposition requires a sufficient degree
of independency between the components [8].
Considering both mission controllers, the decomposition results in a requirement
to use 4 different PHs and 2 different SHs, again ensuring a sufficient degree of
independency among them.
The communication between all hosts on one ECU is realized via an Ethernet
backbone. Therefore an Ethernet switch is used to connect both PHs, the SH and
the Ethernet transceiver (used for vehicle communication). All traffic (including
external Ethernet and CAN communication) is sent to the SH and - if required
- forwarded to the PHs via the Ethernet backbone. The switch on the primary
and secondary mission controllers again must be sufficiently independent to avoid
common mode failures.

6It is assumed, that a complete fault hypothesis would have been done in this case, considering also
failure modes related to spatial proximity.

3 FO architectures in the AD domain 3.5 1oo2D architecture 50

iii) External COM: For enabling the ADS-CP to provide FT capability, two redundant
and diverse communication channels must be used, since each of the channels form a
FCR (see Section 3.5.1) and a fault occurring in any FCR must be tolerated [4]. In
this approach CAN and Ethernet are used for communication between both mission
controllers and between the ADS-CP and the vehicle7.
Therefore diverse transceivers (for CAN and Ethernet) are used on both mission
controllers. These transceivers must provide fail-safe capability to ensure that no
data is sent once a fault is detected. The transition to the safe state is assumed to
be done by disabling the voltage supply for the transceivers (handled by the power
management).

7It is assumed that these technologies are sufficiently diverse to avoid common mode failures.

3
FO

architectures
in

the
A

D
dom

ain
3.5

1oo2D
architecture

51

Primary mission controller Secondary mission controller

Performance
host A.1

Performance
host A.2 Safety host A

Ethernet switch A
Po

w
er

m
an

ag
em

en
tA

CAN
transceiver A

Ethernet
transceiver A

Supply A

Performance
host B.2

Performance
host B.1Safety host B

Ethernet switch B

Po
w

er
m

an
ag

em
en

tB

CAN
transceiver B

Ethernet
transceiver B

Supply B

Ethernet channel

CAN channel

Sensors (Camera, LIDAR, RADAR) Vehicle control unit (VCU)

ASIL D component ASIL B(D) component External component

Data Power Control

Figure 3.19: Hardware architecture of the 1oo2D approach

3 FO architectures in the AD domain 3.5 1oo2D architecture 52

SW architecture

The SW architecture section covers the SWC design (i), dataflow between SWCs, system
SW and vehicle (ii), and the chosen approach of handling activating a redundant/deacti-
vating a faulty mission controller, referred to as fail-over mechanism (iii).

i) SWC design: A layered architecture is chosen in the SW design, where the lowest
SW layer (on top of silicon) in this approach is the OS. On top of the OSs, a platform
SW is added, offering specific services to the application layer (highest layer). The
main services offered by this hypothetical platform SW are communication services
(handling communication between SWCs and/or vehicle buses) and scheduling
services (scheduling of SWC’s tasks). Used OSs are on performance host side a
POSIX compliant OS (e.g. QNX [55]) and on the safety host a AUTOSAR [45] OS
(e.g. Microsar [56]).
Each functional SW block according to the high level component decomposition (see
Section 3.2) is implemented as separate SWC on top of the platform SW (sensor
fusion, object recognition, trajectory planning, steering/drive train data). All SWCs
must be developed according ASIL D quality standard. Since on HW level an ASIL
decomposition was performed, resulting in 2x ASIL B(D) performance hosts, two
options on SW level arise:

• Development of 1 ASIL D SWC per functional SW block, hosted on both
performance hosts

• Development of 2 ASIL B(D) SWCs per functional SW block

The selected approach regarding SWC design is the development of 2 diverse ASIL
B(D) SWCs per mission controller for sensor fusion, object detection, trajectory
planning and steering/drive train functionality. A runtime monitor SWC, hosted on
the safety host and developed according to ASIL D quality standard is responsible
for monitoring the performance host’s SWCs’ status and the fail-over handling.
Figure 3.20 shows the layered SW architecture of the primary mission controller
of the 1oo2D approach. The diverse SWCs are marked with suffices A.1 and A.2,
the counterparts on the secondary mission controller must be developed ensuring
sufficient degree of independence to avoid common mode failures. Also the runtime
monitor SWC on both mission controllers must fulfil the independence criteria to
stick to the categorization regarding FCRs (see Section 3.5.1).

ii) Dataflow definition: The dataflow between SWCs and external components (sensors,
VCU) of the ADS-CP is displayed in Figure 3.21. Originating from the sensor set,
consisting of camera, LIDAR and RADAR, the data is transmitted via redundant
communication channels (Ethernet, CAN) to the Runtime monitor SWCs on the
mission controller’s SHs. Once basic checks on the sensor data were successful, it is
forwarded to the sensor fusion components simultaneously and further processed by
the ADF algorithms. The calculated result (steering and drive train control data)
again is checked by the runtime monitor SWCs before the active mission controller
transmits it to the VCU via the redundant vehicle communication channels.

3 FO architectures in the AD domain 3.5 1oo2D architecture 53

Primary mission controller

Performance host A.1 Performance host A.2 Safety host A

OS (POSIX) OS (POSIX) OS (AUTOSAR)

Pla�orm SW Pla�orm SW Pla�orm SW

Se
ns

or
fu

sio
n

A.
1

Ob
je

ct
de

te
c

on
A.

1

Tr
aj

ec
to

ry
pl

an
ni

ng
A.

1

St
ee

rin
g/

dr
iv

e
tra

in
A.

1

Se
ns

or
fu

sio
n

A.
2

Ob
je

ct
de

te
c

on
A.

2

Tr
aj

ec
to

ry
pl

an
ni

ng
A.

2

St
ee

rin
g/

dr
iv

e
tra

in
A.

2

Run me Monitor A

HW (SoC) OS layer Pla�orm SW layer

Applica on layer [ASIL B(D)] Applica on layer (ASIL D)

Figure 3.20: Software architecture of the 1oo2D approach (SWCs per host)

The approach of processing complex sensor data (like the sensor set data) in more
than two or more diverse streams must deal with the problem of replica indeterminism.
Concepts like approximate agreement or inexact voting are potential solutions to
mitigate replica indeterminism [42]. Since this is out of scope of this thesis, it
is assumed, that two diverse processing streams (suffix A.1/A.2 and B.1/B.2 in
Figure 3.21) produce exactly the same output for the same input data in the same
point of time (in the fault-free case).
In addition to the checks performed on the sensor datasets and on the calculated
steering/drive train data by the runtime monitor, the status of each SWC on the
mission controller are monitored continuously. Besides that, the mission controller
wide status is exchanged between both mission controllers to agree on the active
and passive states. This is covered by the fail-over mechanism, described in the next
paragraph.

iii) Fail-over mechanism: Based on the state of the art research on fail-over mechanisms
(see Section 2.2) a customized hierarchical heartbeat approach is defined for the
1oo2D FO architecture.
According to the defined system requirements (see Section 3.2), no maximum fail-over
time is specified, however, to minimize the fail-over time a hot-standby approach
is chosen. Implementing a cold-standby fail-over mechanism is critical in terms of

3 FO architectures in the AD domain 3.5 1oo2D architecture 54

Primary mission controller Secondary mission controller

Vehicle

Run�me monitor A

Sensor fusion
A.1

Object detec�on
A.1

Trajectory
planning A.1

Steering/drive
train A.1

Sensor fusion
A.2

Object detec�on
A.2

Trajectory
planning A.2

Steering/drive
train A.2

Run�me monitor B

Sensor fusion
B.1

Object detec�on
B.1

Trajectory
planning B.1

Steering/drive
train B.1

Sensor fusion
B.2

Object detec�on
B.2

Trajectory
planning B.2

Steering/drive
train B.2

Sensors (Camera, LIDAR, RADAR

Vehicle control unit (VCU)

SWC ASIL B(D) External component Data Diagnos�c dataSWC ASIL D

Figure 3.21: Software architecture of the 1oo2D approach (dataflow)

fulfilling the required fail-over time limits, because of considerably high RTOS boot
times compared to the application specific timing requirements8.
The selected fail-over mechanism can be categorized as outlined in Figure 3.22. The
heartbeats are sent periodically by the observed SWCs without being triggered by
the monitor, hence it is a push configuration. It is a stateless mechanism, because
explicit data is being sent (heartbeats) instead of tracking states using application
specific exchanged information. There are two levels of monitoring:

• Monitoring of SWCs hosted on the PHs (sensor fusion, object detection, tra-
jectory planning, steering/drive train) by the runtime monitor SWCs hosted
on the SHs

• Both runtime monitor SWCs, hosted on the primary and secondary mission
controller are monitoring each other by observing exchanged heartbeats

8E.g. in [24] a requirement regarding a maximum fail-over time of 300ms is defined.

3 FO architectures in the AD domain 3.5 1oo2D architecture 55

Fail-Over
mechanism

State Topology Observer
assignment Configura�onIni�a�on

hierarchical flatstatelessstatefulpush pull sta�c dynamic
(adap�v)determinis�c random

… category of selected approach

Figure 3.22: Categorization of the fail-over mechanism

Compared to a flat topology, where an observer is monitoring other components
while not being monitored by a component on another level, a 2-level hierarchical
approach is defined here. The observer assignment is done in a static, deterministic
way to cope with safety critical determinism and simplicity requirements.
The key components that implements the described fail-over mechanism are the
runtime monitor SWCs hosted on the SH on the mission controllers. Main tasks
of the runtime monitor is to maintain the mission controller’s ECU state (active,
inactive). In the initial configuration of the ADS-CP the primary mission controller
is in active state (sending the calculated steering/drive train data is activated),
whereas the secondary mission controller is inactive (sending of calculated data is
disabled)9. In Table 3.8 all tasks to be performed by the runtime monitor SWCs
are listed.
If an error is detected on a mission controller a mode switch to safe state (inactive)
is performed (no outputs are provided anymore), as covered in Section 3.5.3. By not
sending heartbeats to the redundant mission controller anymore, it is notified that an
error occurred and that the redundant mission controller has to take over operation
(mode switch to active). The timing behaviour of the fail-over mechanism is highly
determined by the diagnostic measures and the static schedule of the (time-triggered)
system. For the PHs one monitoring and one processing task are defined per SWC.
The processing task executes the SWC’s main functionality (sensor fusion, object
detection, trajectory planning, calculation of steering and drive train data) and is
not further investigated here. The monitoring task performs diagnostic checks on
the corresponding processing task and sends the heartbeat to the runtime monitor
SWC on the SH in case the checks were passed. The static schedule of all monitoring
tasks is represented in Figure 3.23.

9Another approach of handling the fail-over is to move the voting activity to the consuming component
(VCU), while primary and secondary mission controllers continuously send their calculated results
in distinct time slots (considering a time triggered architecture). The consuming component uses
the results of the primary mission controller, as long as data is received, otherwise the results of the
secondary mission controller are used. This approach reduces complexity from the ADS-CP and adds
complexity to the VCU instead.

3 FO architectures in the AD domain 3.5 1oo2D architecture 56

Component

T1
Periodic reception of sensor data via CAN and Ethernet communication links,
verification of the sensor data and distribution to the sensor fusion SWCs hosted
on the PH

T2 Periodic reception and verification of results from steering/drive train SWCs
(problem of replica-indeterminism is neglected) and distribution to the VCU

T3 Periodic reception of diagnostic information (heartbeats) from all SWCs hosted
on the PH

T4 Periodic reception of diagnostic information (heartbeats) from the redundant
mission controller’s runtime monitor via CAN and Ethernet communication links

T5 Periodic transmission of diagnostic information (heartbeats) to the redundant
mission controller’s runtime monitor via CAN and Ethernet communication links

T6 Monitoring of all supply voltages provided by the power management component

Table 3.8: Tasks of the runtime monitor SWCs

10ms

Run�me monitor A

Run�me monitor B

0ms

Sensor fusion A.1
Object detec�on A.1
Trajectory planning A.1
Steering/drive train A.1
Sensor fusion A.2
Object detec�on A.2
Trajectory planning A.2
Steering/drive train A.2

Sensor fusion B.1
Object detec�on B.1
Trajectory planning B.1
Steering/drive train B.1
Sensor fusion B.2
Object detec�on B.2
Trajectory planning B.2
Steering/drive train B.2

30ms20ms 40ms

PH
A.

1
PH

A.
2

PH
B.

2
PH

B.
1

SH
A

SH
B

Pr
im

ar
y

m
iss

io
n

co
nt

ro
lle

r
Se

co
nd

ar
y

m
iss

io
n

co
nt

ro
lle

r

Core 1

Core 2

Core 3

Core 4

Core 1

Core 2

Core 3

Core 4

Core 4

Core 3

Core 2

Core 1

Core 4

Core 3

Core 2

Core 1

HostMission controller Task [ASIL B(D)] Task (ASIL D) Heartbeat

5ms 15ms 25ms 35ms 45ms

Figure 3.23: Static schedule of tasks contributing to fail-over mechanism

3 FO architectures in the AD domain 3.5 1oo2D architecture 57

All monitoring tasks are configured to be scheduled periodically every 10ms. All
SWCs on a PH run on distinct cores, hence the tasks can be executed in parallel at
the same trigger points. The offset of the triggering points for the runtime monitor
tasks (on the SHs) is 5ms compared to the triggering points for all monitoring
tasks on the PHs, to optimize the event chain formed by the heartbeat transmission.
The vertical line labelled with 0ms is the starting point of the scheduler, which
implicates that the system SW on all hosts is powered up, (time) synchronized and
the schedulers are started. The monitoring tasks on the PHs perform diagnostic
checks on the processing components and transmit heartbeats to the responsible
runtime monitor task if no error was detected. The runtime monitor tasks receive
and verify the heartbeats from the monitoring tasks and initiate another heartbeat
transmission to the runtime monitor tasks scheduled on the redundant mission
controller in case no error was detected. Once the runtime monitor tasks are
triggered for the second time (25ms) they also receive and check the heartbeats
from the redundant mission controller’s runtime monitor. The calculation of the
worst case FOTI is derived based on Figure 3.24.

10ms

Run�me monitor A

Run�me monitor B

0ms

Sensor fusion A.1

30ms20ms

Task [ASIL B(D)] Task (ASIL D) Heartbeat

5ms 15ms 25ms 35ms

FDTI FRTI

FOTI

WCET Diagnos�c WCET State Management

deac�vated Task

deac�vated Heartbeat

FDTI … Fault detec�on �me interval FRTI … Fault reac�on �me interval FOTI … Fail-over �me interval

Fault occurence

Figure 3.24: Visualization of the worst case fail-over time

The Fault Detection Time Interval (FDTI) [8] encompasses its maximum value if
the fault occurs right after finishing a diagnostic procedure. Hence, the worst case
FDTI is equal to the configured period tSF _period of the associated monitoring task
(see Figure 3.24, Equation 3.1).

FDTI = tSF _period (3.1)

The time period between the detection of a fault and the associated reaction on

3 FO architectures in the AD domain 3.5 1oo2D architecture 58

it is defined as Fault Reaction Time Interval (FRTI) [8]. The fault reaction on
mission controller level is considered to be a mode transition to a safe state, whereas
the fault reaction of the ADS-CP is the activation of the redundant mission con-
troller. Equation 3.2 covers the calculation of the FRTI, which depends on the
triggering point offset between monitoring task on the PHs and runtime monitor
task on the SHs (tSF _RM_offset), the difference between the Worst Case Execu-
tion Times (WCETs) of the diagnostic procedures inside the monitoring tasks
(WCETRM_diag − WCETSF _diag) and the WCET of the state management proce-
dure inside the runtime monitoring task (WCETRM_st_mgmt).

FRTI = tSF _RM_offset +WCETRM_diag

−WCETSF _diag +WCETRM_st_mgmt
(3.2)

The fault reaction of the overall system (ADS-CP) is covered implicitly in the FOTI
(see Equation 3.3). It is composed of parameters FDTI and FRTI and the time pe-
riod between deactivating the faulty mission controller and activating the redundant
one, which is the configured period of the runtime monitor tasks (tRM_period).

FOTI = FDTI + FRTI + tRM_period (3.3)

The model for the calculation of FDTI, FRTI and FOTI neglects parameters related
to time synchronization between the hosts (e.g. jitter) and latencies between fin-
ishing runtime monitor task and achieving the new state (active/inactive), as well
as introduced overhead by the system SW (e.g. latency introduced by the OS or
communication stack). In practice, using this approach of immediately assuming a
fault after missing only one heartbeat might result in an unacceptable number of
false positives, depending on the robustness of the system (e.g. reliability of used
communication links). Hence, assuming a fault after n missing heartbeats might be
a better approach. However, this would result in an increased FDTI (+n ∗ FDTI)
and thus also in an increased FOTI.

The exchanged heartbeats among all components contributing to the fail-over
mechanism are based on UDP datagrams on the transport layer since the potential
overhead introduced by using Transmission Control Protocol (TCP) instead delays
the heartbeat transmission [57], [41].

3.5.3 FSC
In the FSC the high level safety measures of Table 3.3 are refined and traced to the safety
goals and the fault hypothesis’ covered faults.

3 FO architectures in the AD domain 3.5 1oo2D architecture 59

SWC development according to ISO26262

To satisfy the determined ASILs as a result of the HARA (see Section 3.3), all SWCs
would have to be developed according ASIL D. Since the SWCs implementing ADFs are
hosted on PHs with ASIL B capability, an ASIL decomposition of the SWCs according to
[8] is done.

The runtime monitor SWC, hosted on the SHs is developed according to ASIL D, since
the hosting HW has ASIL D capability and therefore no ASIL decomposition is required
here.

Covered safety goals: SG7-SG17

HW development according to ISO26262

In order to be able to host ASIL D SWCs, the selected HW components (PMIC, SH,
PH, CAN transceivers, Ethernet transceivers, Ethernet switch) must be capable and the
development must be done according to ASIL D (decomposed to ASIL B for PHs).

Covered safety goals: SG7-SG17

Functional safety measures implemented in SWCs

To compensate loss of sensor data appropriate measures (e.g. interpolation) must be
implemented in the ADF SWCs. If a permanent loss of sensor data (at least 2 types)
occurs, an emergency operation must be implemented in the trajectory planning SWC
(controlled breaking manoeuvre until standstill).

Covered safety goals: SG1, SG2, SG4

E2E protection of data sent over communication channels

All data sent over any communication channel must be checked to ensure its integrity.
Adding an E2E protection (CRC, sequence counter) to all data being sent (CAN messages,
Ethernet frames) ensures proper error detection.

Covered safety goals: SG1-SG3, SG7-SG8

Redundancy and diversity

On vehicle level the ADS-CP’s power supplies, the sensor sets and the communication
channels provided to the ADS-CP must be implemented in a redundant and diverse way
(CAN, Ethernet). Each sensor set uses a dedicated communication channel for data
transmission and each mission controller is supplied by a dedicated power supply to
minimize the risk of common cause faults.

3 FO architectures in the AD domain 3.5 1oo2D architecture 60

The ADS-CP must provide independent interfaces to the redundant and diverse com-
munication channels (CAN, Ethernet) on vehicle level.

Covered safety goals: SG4, SG5, SG7, SG8

State management

The 1oo2D approach requires specific ECU state management for both mission controllers
and a fail-over mechanism to provide FT capabilities. The defined measures to fulfil the
requirements regarding state management are:

• Voltage monitoring: All voltages provided to the mission controller and provided
by the PMIC must be monitored by the SH. In case any voltage level deviates from
the specified range, a transition to a safe state (no outputs are produced anymore)
is initiated.

• Host monitoring: The host monitoring is done on various levels. The PMIC
monitors the SH (e.g. question/answer protocol) and the PHs are monitored by the
SH (e.g. question/answer protocol). If any host does not respond according to the
specified behaviour, a transition to a safe state (no outputs are produced anymore)
is initiated.

• Shutdown path: The PMIC is responsible of maintaining the safe state, either if
the SH does not respond or the SH notifies the PMIC to perform a switch to the
safe state. This requires the deployment of highly reliable transceivers, capable of
ensuring a safe state of the ECU by not occupying the communication channels,
even if not supplied anymore.

• Fail-over mechanism: If an error is detected on the active mission controller, a
fail-over to the redundant unit must be performed. This is handled by the runtime
monitor SWC, hosted on the SHs (see Section 3.5.2).

Covered safety goal: SG6

Trace to fault hypothesis: DCHWF1-DCHWF7, DCSWF1-DCSWF3

Degradation strategy

Once a fail-over to the redundant mission controller was performed because an error was
detected, the driver must be alerted that the vehicle is operating in a degraded mode [8].
If the error on the faulty unit disappears after a restart (transient fault), the ADS-CP is
able to operate in normal mode again and an appropriate notification to the driver must
be initiated again.

Trace to fault hypothesis: DCHWF7

3 FO architectures in the AD domain 3.6 Hybrid architecture 61

3.6 Hybrid architecture
In Section 2.1.5 some proposals for utilizing a hybrid architectural approach to be used
for ADSs are outlined based on a state of the art research. The generic pattern of the
hybrid architecture is displayed in Figure 3.25.

Communica�on channel

Limp-home system

Processing

Primary control system

MonitorProcessing

Figure 3.25: Hybrid architectural pattern

A primary control system, equipped with a high diagnostic coverage, is designed as
fail-silent system. As soon as a fault is detected on the primary unit, it transitions into a
safe state and stops sending data to the communication channel. A limp-home system,
designed with less features, continuously sends its calculated results to the actuator. The
voting activity regarding which data to be used is done on the actuator. As long as data
from the primary control system is available on the actuator it is used. Once data from
the primary control system is not received, the results from the limp-home system are
used and the vehicle operates in a degraded mode.

3.6.1 Fault hypothesis
The separation of the fault hypothesis into HW and SW related faults is performed
according to the selected methodology in Section 3.1.3.

Hardware faults

The high level component decomposition of the item definition (see Figure 3.9) is a major
input for the separation into FCRs. Compared to the fully redundant 1oo2D architecture
(see Section 3.5) the primary unit (primary control system) and fallback unit (limp-home
system) use dedicated communication channels (see Figure 3.26).

Any fault in the power supply, power management, controller, external communication
or communication channel components affect the operation of a complete control system
(either primary control system or limp-home system), hence, the FCRs are defined accord-
ing to Figure 3.26 and contain all aforementioned components.

3 FO architectures in the AD domain 3.6 Hybrid architecture 62

ADS-CP
[FTU]

FCR

Primary control system

Power
management

Controller

External
COM

Supply 1

FCR

Limp-home system

Power
management

Controller

External
COM

Supply 2

Communica�on
channel 1

Communica�on
channel 2

Figure 3.26: FCR decomposition of the Hybrid approach (hardware components)

Several assumptions for the HW related part of the fault hypothesis are defined:

• A single fault hypothesis is used. More than one fault at the same time are considered
to be rare events (uncovered faults). This is commonly accepted and used e.g. in [4]
and [53].

• The temporal classification of the covered faults (see Table 3.9) are considered to be
either transient or permanent.

• All other faults (not covered in Table 3.9) are assumed to be rare events. A NGU
strategy is defined to react on these uncovered faults (see Section 3.7).

• The communication channels don’t create correct frames spontaneously. Further
they won’t add any arbitrary delay when sending/receiving data [54].

The covered hardware faults are listed in Table 3.9.

Software faults

The architectural pattern of the Hybrid approach (see Figure 3.25) and the high level
component decomposition (see Figure 3.9) are the main inputs for the SW related definition
of the fault hypothesis. Similar to the previously described approaches, the application
layer is located on top of a platform SW and OSs. The considered layers for the definition
of the FCRs are:

• System SW (OS and platform SW)

3 FO architectures in the AD domain 3.6 Hybrid architecture 63

Component Fault Impact

HCHWF1 Supply 1, Sup-
ply 2

Voltage level of power sup-
ply below the specified
range

Primary control system/Limp-
home system not supplied any-
more, no output can be pro-
duced

HCHWF2 Supply 1, Sup-
ply 2

Voltage level of power sup-
ply above the specified
range

Primary control system/Limp-
home system must shut down
to prevent potential damage, no
output produced anymore

HCHWF3

Power man-
agement
(primary con-
trol system)

Power management fails to
provide the required volt-
age levels for an arbitrary
component

Primary control system should
perform a transition to a safe
state

HCHWF4

Power man-
agement
(Limp-home
system)

Power management fails to
provide the required volt-
age levels for an arbitrary
component

Data integrity must be ensured
by HW design

HCHWF5
Controller
(primary con-
trol system)

Controller provides no re-
sult on all interfaces (fail-
silent behaviour)

Primary control system must
perform a transition to a safe
state to prevent possible incor-
rect results

HCHWF6
Controller
(Limp-home
system)

Controller provides no re-
sult on all interfaces (fail-
silent behaviour)

Data integrity must be ensured
by HW design

HCHWF7 External
COM

External communication
component fails to forward
received data from the bus
to the controller

Primary control system/Limp-
home system must perform a
transition to a safe state to pre-
vent possible incorrect calcula-
tions

HCHWF8 External
COM

External communication
component fails to forward
received data from the con-
troller to the bus

Primary control system/Limp-
home system must perform a
transition to a safe state to pre-
vent possible incorrect calcula-
tions

HCHWF9 Bus 1, Bus 2

Communication channel
not ready to transmit data
due to fault on the physical
level

Transition to a degraded mode
must be initiated

Table 3.9: Hybrid fault hypothesis: covered hardware faults

3 FO architectures in the AD domain 3.6 Hybrid architecture 64

• Application SW (sensor fusion, object detection, trajectory planning, steering/drive
train, monitor)

Primary control system and limp-home system both use the same system SW, hence
the defined FCRs for the platform SW and the OS (see Figure 3.27) are assumed to be
free of any type of faults to remove the risk of a single point of failure in the ADS-CP.

Primary control system

Host

Limp-home system

Host

FCR
Pla�orm SW Pla�orm SW

FCR
OS OS

FCR Sensor
fusion A

FCR

FCR

FCR

FCR

FCR

FCR

FCR

Object
detec on A

Steering/
drive train A

Trajectory
planning A

Sensor
fusion B

Object
detec on B

Trajectory
planning B

Steering/
drive train B

Figure 3.27: FCR decomposition of the Hybrid approach (software components)

All SWCs on application level form separate SWCs, since a detected fault is contained
within a SWC and not affecting other SWCs. It must be ensured that the SWCs hosted
on the primary control system and on the limp-home system are developed sufficiently
independent to avoid the risk for common mode failures.

Assumptions to be considered for the definition of the covered SW faults are:

• A single fault hypothesis is used. More than one fault at the same time are considered
to be a rare event (uncovered fault). This is commonly accepted and used e.g. in [4]
and [53].

• The temporal classification of the covered software faults (see Table 3.10) are
permanent faults by definition.

• All other faults (not covered in Table 3.10) are assumed to be rare events. A NGU
strategy is defined to react on these uncovered faults (see Section 3.7).

• The FCR containing the system SW is assumed to be fault-free (as assumed e.g. in
[53]).

3 FO architectures in the AD domain 3.6 Hybrid architecture 65

• The system SW handles the communication between SWCs and between primary
control system/limp-home system and vehicle. Since the absence of faults in the
platform SW and in the OSs is assumed, failure modes like arbitrary timing/value
message failures in the communication system don’t have to be considered.

Following these assumptions, the defined covered SW faults are listed in Table 3.10.

Component Fault Impact

HCSWF1
All SWCs
(application
level)

SWC produces no output
data

Primary control system: tran-
sition to safe state; Limp-home
system: data integrity must be
ensured

HCSWF2
All SWCs
(application
level)

SWC produces incorrect
output data (detectable by
consumer)

Primary control system: tran-
sition to safe state; Limp-home
system: data integrity must be
ensured

HCSWF3
All SWCs
(application
level)

SWC fails to fetch input
data

Primary control system: tran-
sition to safe state; Limp-home
system: data integrity must be
ensured

Table 3.10: Hybrid fault hypothesis: covered software faults

3.6.2 SAD
As outlined in Section 3.1.3, output artefacts from several design steps (item definition,
HARA, architectural pattern, fault hypothesis, FSC) are used for the SAD. Again, HW
and SW related parts are described separately.

HW architecture

Following to the hybrid architectural pattern, the HW architecture of the primary control
system (i) and the limp-home system (ii) are described in the following paragraphs. Both
control systems are deployed on the same ECU, which is accepted here because faults
related to spatial proximity are not covered in the fault hypothesis.

i) Primary control system: The computational part of the primary control system is
composed of high performance processing units and a safety controller. Since PHs
with ASIL B capability are available, an ASIL decomposition must be performed
to satisfy the requirement for hosting ASIL D SWCs [8]. All hosts of the primary
control system (2x PH, 1x SH) are connected via an Ethernet backbone, realized via
an Ethernet switch (see Figure 3.28). A power management unit (Power management
A) is responsible for providing all necessary voltage levels to the deployed components
forming the primary control system. The power management unit is controlled

3 FO architectures in the AD domain 3.6 Hybrid architecture 66

by the safety controller, enabling mode transitions to fail-silent. Compared to the
Simplex (Section 3.4) and 1oo2D (Section 3.5) approaches, the primary unit is
not connected via redundant communication channels to the vehicle. Primary and
fallback node use distinct, diverse communication channels in the Hybrid approach.

ii) Limp-home system: The limp-home system of the ADS-CP using the Hybrid ap-
proach is not intended to host SWCs of the same ASIL as the hosted SWCs on the
primary control system, hence no ASIL decomposition must be performed for the
fallback system’s high performance computational part (assuming that an ASIL
B capability is sufficient). This can be justified by the reduced operation time of
the vehicle in degraded mode once a fault on the primary control system occurred.
In order to satisfy the diversity requirement related to independency of the used
communication links, CAN is used for the limp-home system (compared to Ethernet
on the primary control system). The power management for the redundant system
(Power management B) provides all required voltage levels for the PH and the CAN
transceiver (see Figure 3.28) and is not explicitly controlled by any component, since
no fail-silent behaviour is required here10.

SW architecture

The derived SWCs (i) from the high level component decomposition (see Section 3.2),
their assignment to hosts and the dataflow between SWCs, system SW and vehicle (ii)
are covered in the following paragraphs.

i) SWC design: The SW architecture of the primary control system in the Hybrid
approach is similar to the primary and secondary channel’s architecture of the 1oo2D
approach.
As already described for the Simplex (Section 3.4) and 1oo2D (Section 3.5) approach,
a layered architecture, consisting of OS layer, platform SW and application layer
is used. On the PHs a POSIX compliant OS is deployed (e.g. QNX [55]), while a
AUTOSAR [45] OS (e.g. MICROSAR [56]) is utilized on the SH. Basic services
like communication and scheduling are handled by the platform SW on top of the
OSs. The limp-home system’s SWCs (see Figure 3.29), hosted on top of the system
SW (OS and platform SW) on Performance host B, are developed to satisfy a
safety integrity level of ASIL B. To ensure that the primary control system and the
limp-home system fail independently with respect to SW faults, the SWCs (sensor
fusion, object detection, trajectory planning, steering/drive train) on all PHs must
be developed guaranteeing a sufficient level of diversity.

The Monitor SWC, hosted on the primary control system’s SH (see Figure 3.30)
verifies the results of its PHs and is responsible for the mode management of the

10Since the voting activity is shifted to the actuator, received data from the fallback unit is not used as
long as the primary unit operates correctly.

3 FO architectures in the AD domain 3.6 Hybrid architecture 67

ADS-CP

Performance
host A.1

Performance
host A.2 Safety host

Ethernet switch

Po
w

er
m

an
ag

em
en

tA

CAN
transceiver

Ethernet
transceiver

Supply A Supply B

Ethernet channel

CAN channel

Sensors (Camera, LIDAR, RADAR) Vehicle control unit (VCU)

ASIL D component ASIL B component External component

Data Power Control

Performance
host B

Po
w

er
m

an
ag

em
en

tB

Figure 3.28: Hardware architecture of the Hybrid approach

primary node. The problem of replica indeterminism is neglected here, as already
done in the Simplex (Section 3.4) and 1oo2D (Section 3.5) approaches.

ii) Dataflow definition: Camera, LIDAR and RADAR data is sent via Ethernet to the
primary control system’s sensor fusion SWCs (Sensor fusion A.1, Sensor fusion A.2).
The sensor set data is further processed by the PHs and sent to the monitor SWC
to be verified (see Figure 3.31)11. The monitor SWC sends the successfully verified
results to the VCU via Ethernet. If the verification was not successful, the primary
control system performs a transition to a safe state (no data sent anymore to the
VCU).
In parallel, the limp-home system’s sensor fusion SWC (Sensor fusion B) receives

11The problem of replica indeterminism is neglected in this investigation. Possible mitigation strategies
are proposed in [42].

3 FO architectures in the AD domain 3.6 Hybrid architecture 68

Limp-home system

HW (SoC) OS layer Pla�orm SW layer

Applica on layer (ASIL B)

Performance host B

OS (POSIX)

Pla�orm SW

Se
ns

or
fu

sio
n

B

Ob
je

ct
de

te
c

on
B

Tr
aj

ec
to

ry
pl

an
ni

ng
B

St
ee

rin
g/

dr
iv

e
tra

in
B

Figure 3.29: Software architecture of the Hybrid approach (SWCs per host) - limp-home
system

sensor data via a CAN communication channel. In the end of the processing chain
(sensor fusion, object detection, trajectory planning, steering/drive train) the results
are sent to the VCU using the CAN interface (see Figure 3.31).

3.6.3 FSC
According to the used methodology (Section 3.1.3), the high level safety measures (defined
in Table 3.3), are refined and referenced to the fault hypothesis (covered faults) and to
the safety goals.

SWC development according to ISO26262

Several safety goals are satisfied by developing SWCs according to the functional safety
standard ISO 26262 [8], targeting ASIL D. On the primary control system, the SWCs
(hosted on the PHs) require a ASIL decomposition because of the PHs’ safety integrity
level (see Section 3.6.2) to ASIL B(D).

On the limp-home system, SWC development according to ASIL B is sufficient for the
Hybrid approach, which can be argued with the limited vehicle operation time in the
degraded mode.

Covered safety goals: SG7-SG17

3 FO architectures in the AD domain 3.6 Hybrid architecture 69

Primary control system

Performance host A.1 Performance host A.2 Safety host

OS (POSIX) OS (POSIX) OS (AUTOSAR)

Pla�orm SW Pla�orm SW Pla�orm SW

Se
ns

or
fu

sio
n

A.
1

Ob
je

ct
de

te
c

on
A.

1

Tr
aj

ec
to

ry
pl

an
ni

ng
A.

1

St
ee

rin
g/

dr
iv

e
tra

in
A.

1

Se
ns

or
fu

sio
n

A.
2

Ob
je

ct
de

te
c

on
A.

2

Tr
aj

ec
to

ry
pl

an
ni

ng
A.

2

St
ee

rin
g/

dr
iv

e
tra

in
A.

2

Monitor

HW (SoC) OS layer Pla�orm SW layer

Applica on layer [ASIL B(D)] Applica on layer (ASIL D)

Figure 3.30: Software architecture of the Hybrid approach (SWCs per host) - primary
control system

HW development according to ISO26262

The primary control system must be capable of hosting ASIL D SWCs, hence the HW
(Power management A, Safety host, Ethernet switch, Ethernet transceiver) must be
developed according to ASIL D, too, while the PHs are decomposed to ASIL B(D).

The limp-home system’s HW (Power management B, Performance host B, CAN
transceiver) is sufficient to be developed according to ASIL B, since the vehicle op-
eration time is reduced due to the degraded mode.

Covered safety goals: SG7-SG17

Functional safety measures implemented in SWCs

To compensate loss of sensor data appropriate measures (e.g. interpolation) must be
implemented in the ADF SWCs. If a permanent loss of sensor data (at least 2 types)
occurs, an emergency operation must be implemented in the trajectory planning SWC
(controlled breaking manoeuvre until standstill).

Covered safety goals: SG1, SG2, SG4

3 FO architectures in the AD domain 3.6 Hybrid architecture 70

ADS-CP

Vehicle

Monitor

Sensor fusion
A.1

Object
detec�on A.1

Trajectory
planning A.1

Steering/drive
train A.1

Sensor fusion
A.2

Object
detec�on A.2

Trajectory
planning A.2

Steering/drive
train A.2

Sensors (Camera, LIDAR, RADAR

Vehicle control unit (VCU)

SWC ASIL B External component DataSWC ASIL D

Sensor fusion B

Object
detec�on B

Trajectory
planning B

Steering/drive
train B

Figure 3.31: Software architecture of the Hybrid approach (dataflow)

E2E protection of data sent over communication channels

All data sent over any communication channel must be checked to ensure its integrity.
Adding an E2E protection (CRC, sequence counter) to all data being sent (CAN messages,
Ethernet frames) ensures proper error detection.

Covered safety goals: SG1-SG3, SG7-SG8

Redundancy and diversity

On vehicle level the ADS-CP’s power supplies, the sensor sets and the communication
channels provided to the ADS-CP must be implemented in a redundant and diverse way
(CAN, Ethernet). Each sensor set uses a dedicated communication channel for data
transmission and primary control and limp-home system are supplied by dedicated power

3 FO architectures in the AD domain 3.7 Common NGU strategy 71

supplies to minimize the risk of common cause failures.

The ADS-CP must provide independent interfaces to the redundant and diverse com-
munication channels (CAN, Ethernet) on vehicle level, where each control system uses a
dedicated communication channel. The limp-home system is added as redundant system
to the primary control system (Hybrid architecture) and continues vehicle operation in a
degraded mode once a fault occurred on the primary control system. The voting activity is
shifted from the ADS-CP to the actuator (VCU). The primary control system must ensure
fail-silent behaviour in case a fault is detected, otherwise the voting component on the
VCU uses the primary control system’s invalid results. Monitoring of the supply voltage
levels is one measure to satisfy the fault hypothesis with respect to covered faults. The
power management components on both controllers must ensure proper safety measures
to react on over voltage of the power supplies (i.e. shutdown of the controller). The data
integrity of the steering/drive train data, sent by the limp-home system must be ensured
by selecting proper HW components.

Covered safety goals: SG4-SG8

Trace to fault hypothesis: HCHWF1-HCHWF8, HCSWF1-HCSWF3

Degradation strategy

Once a fault occurred on the primary control system, the driver must be alerted that the
vehicle operates in a degraded mode in terms of features and remaining operation time
[8]. If the error of the primary control system disappears after a restart (transient fault),
the ADS-CP is able to operate in normal mode again and an appropriate notification to
the driver must be initiated.

Trace to fault hypothesis: HCHWF9

3.7 Common NGU strategy
If a fault occurs that is not covered in the fault hypothesis, a NGU strategy should be
defined, e.g. on vehicle level. The proposed NGU strategy to mitigate rare events (i.e.
not-covered faults) affecting the ADS-CP is to manoeuvre the vehicle into a safe state by
braking while maintaining the last received steering angle. This could be initiated by the
VCU if no data from the ADS-CP is received at all, or if a applied integrity check on the
received data fails persistently. Performing a reboot of the ADS-CP is not considered to be
a feasible approach because of stringent timing requirements of the (critical) steering/drive
train data12.

12In [24] an exemplary maximum fail-over time of 300ms is required.

4 FO demonstrator
In Chapter 3 three FO architectures, suitable for ADSs, were investigated. The 1oo2D
approach is selected (Section 4.2) and used for implementing a specific use case, defined in
Section 4.1. This first proof of concept is developed according to prototype quality level, but
automotive processes and toolchains are used. Finally, the prototypical implementation,
performed in Section 4.3 is evaluated with respect to FO relevant parameters in Section 4.4.

4.1 Use case definition
Prior to the selection of a FO architecture to be implemented, a simple use case for the
prototypical ADS-CP is defined. Therefore it is assumed, that a single SWC, requiring
high computational performance, shall be executed on a suitable host, while FO behaviour
is ensured by choosing an appropriate FO architecture.

The SWC to be hosted could implement one of the identified software related functional
blocks of the high level component decomposition (sensor fusion, object detection, trajec-
tory planning, steering/drive train), as performed in Section 3.2. Since the prototypical
implementation focusses on the FO behaviour (and not e.g. on high computational per-
formance), a pseudo implementation of a AI component is used. This SWC periodically
generates and transmits random data to a Personal Computer (PC) used for evaluation
purposes. The evaluation makes use of certain fault injection methods, performed on the
prototypical ADS-CP, to trigger the investigated fail-over activity.

4.2 Selection of a FO architecture
Selecting one of the investigated FO architectures (see Chapter 3) is driven by the avail-
ability of prototypical ECUs on the one hand1 and the applicability of investigating the
fail-over mechanism of the prototypical ADS-CP on the other hand.

The fail-over mechanism of the Simplex architecture (see Section 3.4) is implemented
implicitly in the SH’s decision module SWC. Since all fail-over activities are managed
inside one SWC and are not measurable via external interfaces of the ADS-CP per default,
the Simplex architecture is not considered for the prototypical ADS-CP implementation.

Triggering and evaluating a fail-over activity is a key aspect in Section 4.3 and Sec-
tion 4.4. The voting activity in the Hybrid architecture (Section 3.6) is shifted from the

1Since developing a prototypical ECU (HW) is far beyond out of scope of the thesis, Commercial
Off-The-Shelf (COTS) components are the preferable choice for implementing the ADS-CP.

72

4 FO demonstrator 4.2 Selection of a FO architecture 73

ADS-CP to the actuator, hence the Hybrid architecture is not chosen for the prototypical
ADS-CP implementation, since this thesis is focussing on the ADS-CP level rather than
on the vehicle level.

The 1oo2D approach (see Section 3.5) fits best to the criteria for selecting a FO architec-
ture to be implemented. Since the fail-over mechanism of the 1oo2D architecture is based
on exchanging heart beats between the primary and secondary mission controllers, the
requirement for a simple fail-over activity measurement is met. However, the prototypical
ADS-CP does not fully comply with the defined SAD in Section 3.5.2 due to the following
reasons:

• The prototypical implementation of the ADS-CP does not require development
according to any ASIL, hence no ASIL decomposition has to be applied on the PH.

• The main focus of the evaluation is on the fail-over mechanism, hence there is no
need to apply HW or SW diversity on the primary or secondary mission controller.

• No redundant communication channel is required for the prototypical implementation
of the ADS-CP.

• Instead of the SW related functional blocks, defined in the high level component
decomposition (see Figure 3.9), one dummy AI SWC is implemented, periodically
sending random data.

The simplifications compared to the 1oo2D architecture in Section 3.5 are specified in
the following sections.

4.2.1 Simplified SAD
The simplified HW architecture of the ADS-CP prototype is composed of two separate
ECUs. Since no diversity is required among both mission controllers, the same COTS
prototypical ECU can be used for the primary and secondary mission controllers (see
Figure 4.1).

No ASIL requirements are considered for the prototypical implementation, so no ASIL
decomposition needs to be performed for the PH. Hence, the high computational part of
the mission controller is composed of one PH.

Ethernet is used as communication channel between both mission controllers and a PC,
used for evaluation tasks. No redundant and diverse communication channel (e.g. CAN)
or power supply is considered for the prototype. Both ECUs are connected to a power
supply and a fault injection on a mission controller can be performed e.g. by disconnecting
it from the power supply.

Compared to the SW architecture of the 1oo2D approach investigated in Section 3.5.2
only one SWC is hosted on the PHs, denoted with Fusion A and Fusion B. For the

4 FO demonstrator 4.2 Selection of a FO architecture 74

Primary mission controller Secondary mission controller

Performance
host Safety host

Ethernet switch

Po
w

er
m

an
ag

em
en

t

Ethernet
transceiver

Performance
hostSafety host

Ethernet switch

Po
w

er
m

an
ag

em
en

t

Ethernet
transceiver

Ethernet switch

PC

Prototypical HW component External component

Data Power Control

Supply

Figure 4.1: HW architecture of the ADS-CP prototype

prototypical implementation of the ADS-CP no ASIL related requirements are applicable,
so all SWCs in Figure 4.2 (Fusion, Runtime monitor) are developed with prototype quality.

The dataflow between the SWCs and the PC is represented in Figure 4.3. The fail-over
management is implemented through the Runtime monitor SWCs by retrieving diagnostic
information from the monitored Fusion SWCs and by exchanging periodic heartbeats.
The Fusion SWC of the active mission controller periodically sends random data to the
PC used for evaluating the fail-over mechanism.

The fail-over concept to be implemented is based on the investigated high level concept
in Section 3.5.2 and defined in more detail in Section 4.3.

4.2.2 Reliability model
Assumptions regarding failure rates of the assigned failure modes are used as input for
the reliability model. For investigating the reliability of the selected 1oo2D approach the
simplified model, described in Table 4.1 is used.

Four distinct system states are defined for the markov model (see Figure 4.4), using the

4 FO demonstrator 4.2 Selection of a FO architecture 75

HW (SoC) OS layer Pla�orm SW layer Prototypical SWC

Primary mission controller

Safety host A

OS (AUTOSAR)

Pla�orm SW

Run me Monitor A

Performance host A

OS (POSIX)

Pla�orm SW

Fusion A

Secondary mission controller

Safety host B

OS (AUTOSAR)

Pla�orm SW

Run me Monitor B

Performance host B

OS (POSIX)

Pla�orm SW

Fusion B

Figure 4.2: SW architecture of the ADS-CP prototype (SWCs per host)

Symbol Description Value

λP
Permanent, independent failure rate
(HW and SW)

1.000 Failure In
Time (FIT)

λT
Transient, independent failure rate
(HW and SW) 100.000 FIT

λCCF
Common cause failure rate (HW and
SW) 100 FIT

c Assumption coverage 90%
µ Repair rate of transient faults {0,1,10} 1

h

Table 4.1: Markov parameters of the reliability model

parameters defined in Table 4.1 as input:

• S0: State of primary and secondary unit is OK

• S1: Transient fault occurred on primary or secondary unit - Degraded state
(recoverable)

• S2: Permanent fault occurred on primary or secondary unit - Degraded state (non
recoverable)

• S3: State of primary and secondary unit is Not OK

The model-checking tool PRISM [58] is used to evaluate the markov model and prove
that the overall reliability of the selected FO architecture is higher than the reliability of

4 FO demonstrator 4.2 Selection of a FO architecture 76

Prototypical SWC External component

Data Diagnos�c data

PC

Primary mission controller

Run�me monitor
A

Fusion

Secondary mission controller

Run�me monitor
B

Fusion

Figure 4.3: SW architecture of the ADS-CP prototype (dataflow)

a single unit.

The reliability of the overall system using three different values for the repair rate µ
is displayed in Figure 4.5, where the dependency of the reliability on the repair rate is
evident (the higher the repair rate, the higher the reliability).

Besides the reliability graph of Figure 4.5, the MTTF is a common parameter to
characterize a system’s reliability. Evaluating the markov model of Figure 4.4 using
PRISM, the following values for the MTTF and the duration of running and degraded
states are determined in Table 4.2.

µ MTTF tOK tdegraded_t tdegraded_p

0 1
h 13, 854.53h 4, 948.05h 8, 818.30h 88.18h

1 1
h 46, 025.19h 45, 211.35h 8.14h 805.75h

10 1
h 46, 051.97h 45, 244.81h 0.81h 806.34h

Table 4.2: Model evaluation using PRISM

The evaluation of the model verifies that increasing the repair rate (e.g. from 1 1
h to 10 1

h)
does not necessarily increase the MTTF significantly. This is because at a certain point
of time the permanent (unrecoverable) degraded state prevails and therefore is mainly
determining the MTTF.

4 FO demonstrator 4.2 Selection of a FO architecture 77

S0 S1

S2

S3

2cλT

µ
λP + λT

2(1 − c)λT

λCCF

2(1 − c)λP2cλP λP + λT

Figure 4.4: Markov model of the 1oo2D approach

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
×105

0

0.5

1

time(h)

re
li

a
bi

li
ty

µ = 10 1
h

µ = 1 1
h

µ = 0 1
h

Figure 4.5: Evaluation of the reliability

4 FO demonstrator 4.3 Implementation 78

4.3 Implementation
For the prototypical implementation of the ADS-CP TTTech’s Advanced Driver Assistance
System (ADAS) ECU RazorMotion [48] is used. Primary and secondary mission controller
are composed of one RazorMotion each, however, only the identified components of the
simplified SAD in Section 4.2.1 are utilized.

As platform SW TTTech’s MotionWise [47] is implemented on all hosts, where com-
munication and scheduling services are deployed. For the OS layer the AUTOSAR
implementation of Vector (Microsar [56]) is deployed on the SHs while on the PHs a Linux
distribution of the Yocto project [59] is used.

The selected HW and SW components are implemented using the automotive toolchain
described in Figure 4.6, separated into the following phases:

• System model definition

• System model integration

• Application development

• Building and flashing

• Static schedule visualization2

The system model definition is the initial phase of the defined approach and is based
on the (simplified) SW related artefacts of the SAD (see Section 4.2.1). In this phase the
SWCs, their runnables, interfaces and parameters like runnable periods are defined using
a 3rd party AUTOSAR modelling tool, following a platform specific modelling guide.

According to the SW architecture, defined in the SAD, two SWCs are defined per
mission controller:

• Runtime monitor (hosted on the SH)

• Fusion (hosted on the PH)

The diagnostic data (heartbeats), exchanged between the SWCs, is composed of one
data element (sequence counter), implemented as an unsigned integer (32 bit). This se-
quence counter is periodically incremented inside the monitored SWC (Fusion or Runtime
monitor A/B) before the heartbeat is sent to the observing SWC (Runtime monitor A/B).
The observer periodically checks the received sequence counter to verify whether the
monitored SWC is still alive or not.

The data sent by the (active) Fusion SWC consists of an array (120 elements) of
unsigned integer (8 bit) values. It is periodically filled with random numbers and sent via

2The optional visualization of the generated static schedule is used for evaluating the implemented
fail-over mechanism.

4 FO demonstrator 4.3 Implementation 79

Automotive
toolchain

SAD

System model
definition

System model
integration

Application
development

Scheduling
visualizationBuilding & flashing

Evaluation

3rd party
modelling tool

Modelling
guide

Figure 4.6: Implementation according to an automotive toolchain approach

Ethernet to the PC to evaluate the fail-over mechanism.

Both SWCs include cyclically triggered runnables (RRuntimeMonitor, RFusion) with a
configured period of 10ms. No additional scheduling constraints (e.g. earliest activation
time, deadline, ...) are configured for the evaluation, since optimizing the fail-over mecha-
nism is not the main focus here.3

Once the system model definition is finalized, the model must be integrated into
the platform SW. MotionWise offers a toolchain to integrate the AUTOSAR conform
system model, assuming it complies with the provided modelling guide. The platform
toolchain includes all necessary steps to generate implementation templates for the SWCs,
configuration and generation of the AUTOSAR stack (using a 3rd party AUTOSAR config-
uration tool) and configuration and generation of the platform specific embedded code [47].

The implementation templates, generated in the system model integration phase, are the
entry point for the application development. The templates include all defined runnables
and provide an API to access the modelled interfaces. For the ADS-CP prototype, the
Runtime monitor and Fusion SWCs must be developed.

3By systematically applying scheduling constraints on the runnables (including e.g. runnables of the
AUTOSAR Basic Software (BSW)), the event chain from the transmission of the Fusion’s heartbeat
to the transmission of the Runtime monitor’s heartbeat can be optimized, hence, the FOTI can be
minimized.

4 FO demonstrator 4.4 Evaluation 80

The implementation of the Fusion SWC (runnable RFusion) generates 120 random
numbers of type uint8 (unsigned integer 8-bit) each time the execution of the runnable is
triggered (10ms period). Those random numbers are sent via Ethernet to the PC if the
mission controller is active. Otherwise the Ethernet communication SWC (part of the
platform) is deactivated to ensure the fail-silent behaviour of the redundant unit.

Runnable RRuntimeMonitor (part of SWC Runtime monitor) implements the fail-over
concept defined in Section 3.5.2. A maximum error counter of 2 is defined for this pro-
totype, meaning that after the 2nd missing heartbeat (received from the Fusion SWC or
from the redundant Runtime monitor SWC) a state change is triggered.

As soon as the application development is finalized, the binaries can be built and finally
flashed onto the targets (RazorMotions). Additionally, a visualization of the generated
static schedule is created and used in Section 4.4 to compare it with the measurements
for evaluation purposes.

4.4 Evaluation
To evaluate the fail-over mechanism of the implemented (simplified) 1oo2D architecture
a test setup as shown in Figure 4.7 is established. Primary and secondary mission
controllers, implemented on TTTech’s RazorMotion ECUs, are connected via Ethernet
using an unmanaged Ethernet switch. In addition, a PC is connected to sniff the active
mission controller’s generated packets using Wireshark [60].

Ethernet Switch

PC
192.168.1.40/24

RazorMo�on
Primary mission controller

SH: 192.168.1.50/24
PH: 192.168.1.60/24

RazorMo�on
Secondary mission controller

SH: 192.168.1.80/24
PH: 192.168.1.90/24

Figure 4.7: Test setup of the prototypical ADS-CP

The Internet Protocol (IP) addresses of all hosts are statically configured according to
Figure 4.7.

To compare and evaluate the measured results, the output of the scheduling visualization
step of Section 4.3 is used to calculate the FOTI (best case and worst case scenario). Since

4 FO demonstrator 4.4 Evaluation 81

in the implemented prototypical ADS-CP primary and secondary mission controllers are
not synchronized, the best case and worst case FOTI not only depends on the timing
of the fault occurrence, but also on the time offset between the primary and secondary
mission controller’s schedule. In Figure 4.8 the best case scenario regarding fault timing
and schedule offset between both mission controllers for the minimal FOTI is displayed.

4
FO

dem
onstrator

4.4
Evaluation

82

10ms0ms

RBSW_EthCom

RComGatewaySH

RMiddlewareSH

RRun�meMonitor

RMiddlewarePH

30ms20ms 40ms

SH
PHPr
im

ar
y
m
iss

io
n
co
nt
ro
lle
r

HostMission controller Task Missing heartbeat

5ms 15ms 25ms 35ms 45ms 50ms 55ms 60ms 65ms 70ms

RComGatewayPH

RBSW_TcpIpCom

RBSW_EthCom

RComGatewaySH

RMiddlewareSH

RRun�meMonitor

RMiddlewarePH

SH
PH

Se
co
nd

ar
y
m
iss

io
n

co
nt
ro
lle
r

RComGatewayPH

RBSW_TcpIpCom

Mode switch command Fault occurence

1,5ms

53ms

FOTI = 51,5ms

(deac�vated) task

Figure 4.8: Static schedule and FOTI visualization (best case scenario)

4 FO demonstrator 4.4 Evaluation 83

This visualized schedule only considers relevant runnables for the calculation of the
FOTI. These runnables are further described in Table 4.3.

Runnable name Type Host Period Description

RBSW_EthCom AUTOSAR
BSW SH 10ms

AUTOSAR BSW specific
runnable handling the Link
layer [61] related communi-
cation (Receive (Rx) and
Transmit (Tx))

RBSW_TcpIpCom AUTOSAR
BSW SH 10ms

AUTOSAR BSW specific
runnable handling the Trans-
port layer (TCP, UDP) and
Internet layer (IP) [61] related
communication (Rx and Tx)

RComGatewaySH Middleware SH 10ms
Gateway SWC between
AUTOSAR communication
stack and application SWCs

RMiddlewareSH Middleware SH 10ms Core SWC of the used middle-
ware (MotionWise [47])

RRuntimeMonitor Application SH 10ms Monitoring SWC of the imple-
mented FO approach

RMiddlewarePH Middleware PH 10ms Core SWC of the used middle-
ware (MotionWise [47])

RComGatewayPH Middleware PH 10ms
Gateway SWC between OS
communication stack and appli-
cation SWCs

Table 4.3: Relevant runnables for the FOTI calculation

The minimal FOTI is experienced if the fault occurs immediately before a heartbeat is
sent by the primary mission controller on the one hand, and if the offset between both
mission controller’s schedule yields to a minimal delay between sending and receiving
a heartbeat via runnables RBSW_EthCom on the other hand. The secondary mission
controller’s runtime monitor (runnable RRuntimeMonitor) detects the missing heartbeat
after the delay introduced by the event chain labelled as missing heartbeat. A maximum
error counter of 2 is defined (see Section 4.3), so the mode switch on the secondary mission
controller (inactive to active) is triggered after the second missing heartbeat, detected by
the runtime monitor SWC. The event chain to enable the external Ethernet communi-
cation on the PH’s runnable RComGatewayPH is labelled as mode switch command in
Figure 4.8. The time period between the first sent Ethernet frame of the secondary mission
controller’s Fusion SWC (via runnable RComGatewayPH) and the occurred fault on the
primary mission controller adds up to a calculated minimal FOTI of FOTImin = 51.5ms.

4 FO demonstrator 4.4 Evaluation 84

The worst case scenario regarding fault timing and offset between primary and secondary
mission controller’s schedule, leading to the maximum FOTI, is displayed in Figure 4.9.
Similar to the calculation of the minimal FOTI, event chains for the (missing) heartbeat
and the mode switch command are used to visualize the time period between the occur-
rence of a fault on the primary mission controller and the activation of sending Ethernet
frames by the secondary mission controller.

4
FO

dem
onstrator

4.4
Evaluation

85

10ms0ms

RBSW_EthCom

RComGatewaySH
RMiddlewareSH
RRun�meMonitor
RMiddlewarePH

30ms20ms 40ms

SH
PHPr
im

ar
y

m
iss

io
n

co
nt

ro
lle

r

5ms 15ms 25ms 35ms 45ms 50ms 55ms 60ms 65ms 70ms

RComGatewayPH

RBSW_TcpIpCom

RBSW_EthCom

RComGatewaySH
RMiddlewareSH
RRun�meMonitor
RMiddlewarePH

SH
PH

Se
co

nd
ar

y
m

iss
io

n
co

nt
ro

lle
r

RComGatewayPH

RBSW_TcpIpCom

1,5ms

72,9ms

FOTI = 71,4ms

HostMission controller Task Missing heartbeat Mode switch command Fault occurence(deac�vated) task

ΔtWCET

Figure 4.9: Static schedule and FOTI visualization (worst case scenario)

4 FO demonstrator 4.4 Evaluation 86

To calculate the maximum FOTI, the fault must occur immediately after the heartbeat
is sent by the primary mission controller (runnable RBSW_EthCom). Additionally, the
scheduling offset between both mission controllers must maximize the delay between
heartbeat transmission by the primary mission controller and heartbeat reception by the
secondary mission controller. This is experienced if runnable RBSW_EthCom on the
secondary mission controller starts right before runnable RBSW_EthCom on the primary
mission controller ends. Based on the event chains in Figure 4.9, FOTImax = 71.4ms is
calculated.

The calculation of the minimum and maximum FOTI neglects the following parameters:

• Transmission delay and jitter of the Ethernet frames exchanged between primary
and secondary mission controllers (via runnables RBSW_EthCom)

• Delay introduced by the OS’s communication stack on the PHs

• Scheduling jitter (activation time jitter)

• Timing differences (offset, drift) between SHs and PHs4

• Only WCETs of the runnables are used for the calculations

The measurement is expected to result in a FOTI between the calculated time interval:

FOTImin = 51.5ms <= FOTImeasured <= FOTImax = 71.4ms (4.1)

Table 4.4 shows the relevant section of the sniffed network traffic, where the fail-over
between primary and secondary mission controllers is experienced. The delta time between
the first sent Ethernet frame by the secondary mission controller’s PH (source IP address
192.168.1.90) and the last sent Ethernet frame by the primary mission controller’s PH
(source IP address 192.168.1.60) is 60.355ms.

Since this measured time interval allocates the period between the last (complete)
execution of the primary mission controller’s runnable RComGatewayPH and the first
execution of the secondary mission controller’s runnable RComGatewayPH (in active
mode), it’s not meaningful to directly compare this value to the calculated FOTIs (which
considers the time instant where the fault occurs). The exact timing of the injected fault
is not known for the performed measurement, since the HW voltage buffering delays the
voltage drop on the ECU after disconnecting it from the power supply. However, the
difference between the assumed WCET parameters of runnables RBSW_EthCom and
RComGatewayPH (ΔtW CET in Figure 4.9) is small compared to the calculated FOTIs
(< 0.1ms) and therefore it is neglected. Hence, the measured delta time can be considered
as measured FOTI and fits to the calculated range of FOTIs.

4In the implemented prototypical ADS-CP, Generalized Precision Time Protocol (gPTP) is used to
synchronize the SH’s and PH’s local clocks. The quality of the synchronization is not further evaluated
here and (unavoidable) differences between the local clocks are neglected.

4 FO demonstrator 4.4 Evaluation 87

Time (sec) Δ Time (sec) Source Destination Protocol Length (Byte)
...
61.014852 0.009692 192.168.1.60 192.168.1.40 UDP 120
61.025136 0.010284 192.168.1.60 192.168.1.40 UDP 120
61.035044 0.009908 192.168.1.60 192.168.1.40 UDP 120
61.045246 0.010202 192.168.1.60 192.168.1.40 UDP 120
61.055089 0.009843 192.168.1.60 192.168.1.40 UDP 120
61.115444 0.060355 192.168.1.90 192.168.1.40 UDP 120
61.125648 0.010204 192.168.1.90 192.168.1.40 UDP 120
61.135404 0.009756 192.168.1.90 192.168.1.40 UDP 120
61.145550 0.010146 192.168.1.90 192.168.1.40 UDP 120
61.155417 0.009867 192.168.1.90 192.168.1.40 UDP 120
...

Table 4.4: Ethernet traffic of the ADS-CP captured with Wireshark [60]

The calculated and measured maximum FOTI of 71.4ms (see Equation 4.1) implies,
that a minimum application specific deadline of 71.4ms can be handled while fulfilling the
minimum QoS value of 1 (see Figure 3.1). An application deadline higher than 71.4ms
results in a QoS value greater than 1 with the implemented approach, while a smaller
application deadline would result in a QoS value smaller than 1 and hence, (critical)
deadline misses would occur.

5 Conclusion
In this thesis FO strategies enabling ADSs of SAE levels 3+ were analysed. At first a
state of the art research on existing standards and taxonomies related to AD, on FO
architectures (including fail-over mechanisms) and on existing AD platforms was per-
formed. Based on that, three FO architectures (Simplex, 1oo2D and Hybrid) suitable to
host ADFs were selected and investigated in detail, following a proposed methodology
approach, based on existing standards and publications.

The 1oo2D architecture was implemented in a proof of concept prototypical setup,
following an automotive toolchain approach. The experiments performed in this thesis
show in general that the proposed concepts implemented are feasible for the application in
practice and thus contributing to the development of autonomous vehicles of the future.

5.1 Comparison of FO architectures
In order to simplify and harmonize the investigations of the selected FO architectures sev-
eral assumptions are defined in the fault hypothesis of the approaches. These (restrictive)
assumptions are mainly used to compare the approaches and evaluate their applicability
to enable ADSs.

The architectural pattern of the Simplex approach defines a voting component, selecting
either the mission controller’s or the base controller’s output. This is a major weakness
of this architecture for safety critical systems like ADSs, since the voter introduces a
single point of failure. To mitigate this drawback, further redundancy and diversity must
be added to the voting component (e.g. via a TMR approach), since the assumption of
deploying a voter free of any types of faults is not valid in practice. Furthermore, the
assumption that the platform software is fully verified and therefore free of faults is likely
unrealistic. This must be checked in existing platform software’s safety manuals. The fact
that the voting component forms a single point of failure if no additional measures are
applied currently eliminates this approach to be utilized in ADSs.

The most restrictive assumption in the 1oo2D and Hybrid architectures’ fault hypothesis
considered to be not valid in practice is the free-of-faults assumption regarding the system
SW. This can be mitigated by using diverse OSs and platform SW implementations in
both approaches. However, this must be investigated individually anyway for each (series
targeting) project, since this thesis only provides a high level overview and comparison of
the architectures. Other than this limiting factor, the 1oo2D and Hybrid architectures are
considered to be capable of enabling ADSs, hosting ADFs of SAE levels 3+. Since the

88

5 Conclusion 5.2 Future challenges 89

1oo2D approach utilizes fully redundant and equivalent channels, the valid operation time
in degraded mode is increased compared to the degraded mode of the Hybrid approach.

5.2 Future challenges
Currently, a major challenge is to improve existing or develop new standards to be applied
in particular in the AD domain. The existing functional safety standard ISO26262 [8]
does not cover the ADS lifecycle sufficiently (see Section 1.2.2). The J3016 taxonomy [6]
is vague e.g. with respect to timing specifications (e.g. required minimum fail-over time
for specific SAE levels of driving automation), too. This should be covered by upcoming
standards (e.g. ISO/CD TR 4804 [10]). Providing standards with a maximum meaningful
coverage of AD related topics is of interest in industry to provide equal opportunities
among the OEMs and suppliers.

In order to satisfy requirements related to a minimal power consumption of ADSs, a
pure hot standby approach might not be feasible, hence further research must be done to
achieve required fail-over times while the startup time of PHs currently is quite high.

The evaluation of the prototypical ADS-CP showed that implementing the fail-over
mechanism on application level is not optimal, since the latency introduced by the system
SW is quite high. Future work should focus on adding fault-tolerance capabilities to a
platform SW and potentially utilize HW features of the deployed hosts to minimize the
FOTI. Since the proposed FO architectures in this thesis also highly depend on a high
fault detection coverage it is essential to deploy suitable failure detection mechanisms to
reduce the error detection latency and increase the fault detection coverage to a maximum.

Besides the mentioned challenges related to standardization and technical issues, several
other challenges (e.g. legislation, social aspects, etc.) require synchronized future research
and development of several stakeholders in order to enable automated driving of SAE
driving automation levels 3 and above.

A Minimal HARA of a ADS-CP

Malfunction Operational scenario Impact Exposure Severity Controllability ASIL Safety Goal

1 Single camera/RADAR/LIDAR frame not received by ADS-CP (other 2 sensor
type frames still available) Highway/Urban/Rural response time (motion control) slightly decreased - for one frame

period E4 S3 C3 ASIL D A single invalid, corrupt or lost frame of 1 sensor type must not
lead to any unsafe situation

2 No camera/RADAR/LIDAR frames received by ADS-CP anymore (other 2 sensor
type frames still available) Highway/Urban/Rural

fusion capabilities and therefore quality of motion control sig-
nificantly decreased; manoeuvre into safe state possible with
degraded functionality

E4 S3 C3 ASIL D Permanent invalid, corrupt or lost frames of 1 sensor type must
not lead to any unsafe situation

3 Single invalid camera/RADAR/LIDAR frame received by ADS-CP (other 2 sensor
type frames still available) Highway/Urban/Rural response time (motion control) slightly decreased - for one frame

period; E4 S3 C3 ASIL D A single invalid, corrupt or lost frame of 1 sensor type must not
lead to any unsafe situation

4 Multiple invalid camera/RADAR/LIDAR frames received by ADS-CP (other 2
sensor type frames still available) Highway/Urban/Rural fusion capabilities and therefore quality of motion control signifi-

cantly decreased E4 S3 C3 ASIL D Permanent invalid, corrupt or lost frames of 1 sensor type must
not lead to any unsafe situation

5 Single, valid camera/RADAR/LIDAR frame received by ADS-CP containing
wrong data (other 2 sensor type frames still available) Highway/Urban/Rural fusion capabilities and therefore quality of motion control slightly

decreased for a single frame period E4 S3 C3 ASIL D Invalid or corrupt frames must be detected

6 Multiple camera/RADAR/LIDAR frames received by ADS-CP containing wrong
data (other 2 sensor type frames still available) Highway/Urban/Rural quality of motion control decreases significantly; possible calcula-

tion of bad trajectories causing catastrophic events E4 S3 C3 ASIL D Invalid or corrupt frames must be detected

7 2 out of 3 sensor type frames not received by ADS-CP anymore (only frames for 1
sensor type still received) Highway/Urban/Rural quality of motion control decreases to a very low level, normal

operation not possible anymore; possible catastrophic hazards; E4 S3 C3 ASIL D
Permanent loss of frames of at least 2 sensor types must trigger
the emergency operation, i.e. an emergency brake using the last
calculated steering angle

8 no sensor data received anymore by ADS-CP Highway/Urban/Rural no sufficient quality of motion control possible anymore E4 S3 C3 ASIL D
Permanent loss of frames of at least 2 sensor types must trigger
the emergency operation, i.e. an emergency brake using the last
calculated steering angle

Table A.1: HARA, functional block External communication

Malfunction Operational scenario Impact Exposure Severity Controllability ASIL Safety Goal

9 ADS-CP power supply interrupted Highway/Urban/Rural ADAS functionality can’t be provided anymore; may lead to
catastrophic events E4 S3 C3 ASIL D The power supply of the ADS-CP must not be interrupted

10 ADS-CP power supply voltage below lower threshold Highway/Urban/Rural
ADAS functionality might not be able to be provided for a
necessary amount of time anymore; may lead to catastrophic
events if no safe state is reached

E4 S3 C3 ASIL D The power supply must conform to the specified boundaries

11 ADS-CP power supply voltage exceeds upper threshold Highway/Urban/Rural
ADAS functionality might not be able to be provided for a
necessary amount of time anymore; may lead to catastrophic
events if no safe state is reached

E4 S3 C3 ASIL D The power supply must conform to the specified boundaries

Table A.2: HARA, functional block Power management

90

A
M

inim
alH

A
R

A
ofa

A
D

S-C
P

A
M

inim
alH

A
R

A
ofa

A
D

S-C
P

91

Malfunction Operational scenario Impact Exposure Severity Controllability ASIL Safety Goal

12 steering data not sent by ADS-CP Highway/Urban/Rural intended trajectory not followed because missing steering data;
leads to catastrophic hazards E4 S3 C3 ASIL D Correct steering data must be sent continuously

13 wrong steering data sent by ADS-CP Highway/Urban/Rural safe trajectory not followed; leads to catastrophic hazards E4 S3 C3 ASIL D Correct steering data must be sent continuously

Table A.3: HARA, functional block Steering data transmission

Malfunction Operational scenario Impact Exposure Severity Controllability ASIL Safety Goal

14 drive train/brake data not sent by ADS-CP Crossover/grade crossing
no acceleration/deceleration according to driving situation possi-
ble; might lead to catastrophic hazard (e.g. standing on a grade
crossing);

E4 S3 C3 ASIL D Correct drive train/brake data must be sent continuously

15 wrong drive train/brake data sent by ADS-CP Highway/Urban/Rural safe trajectory not followed regarding speed; leads to catastrophic
hazards E4 S3 C3 ASIL D Correct drive train/brake data must be sent continuously

Table A.4: HARA, functional block Acceleration/braking data transmission

Malfunction Operational scenario Impact Exposure Severity Controllability ASIL Safety Goal

16 fusion algorithm does not respond (permanent error) Highway/Urban/Rural input data for subsequent algorithms cannot be provided; no
trajectory calculation possible E4 S3 C3 ASIL D Sensor fusion algorithm mustn’t be in a incorrect, not working

state for more than 3 frames per second

17 fusion algorithm calculates invalid data (permanent error) Highway/Urban/Rural subsequent algorithms cannot perform any calculations because
of invalid input data; no trajectory calculation possible E4 S3 C3 ASIL D Sensor fusion data mustn’t contain incorrect, corrupt or missing

data for more than 3 frames per second

18 fusion algorithm calculates wrong data (permanent error) Highway/Urban/Rural wrong input data might lead to wrong (unsafe) trajectory planning E4 S3 C3 ASIL D Sensor fusion data mustn’t contain incorrect, corrupt or missing
data for more than 3 frames per second

19 fusion algorithm fails to calculate data and responds with error (permanent error) Highway/Urban/Rural input data for subsequent algorithms cannot be provided; no
trajectory calculation possible E4 S3 C3 ASIL D Sensor fusion algorithm mustn’t be in a incorrect, not working

state for more than 3 frames per second

20 fusion algorithm provides no/invalid/wrong data for 3 frames at most (transient
error) Highway/Urban/Rural quality of trajectory calculation temporary decreased E4 S2 C3 ASIL C Sensor fusion data mustn’t contain incorrect, corrupt or missing

data for more than 3 frames per second

Table A.5: HARA, functional block Sensor fusion

A
M

inim
alH

A
R

A
ofa

A
D

S-C
P

A
M

inim
alH

A
R

A
ofa

A
D

S-C
P

92

Malfunction Operational scenario Impact Exposure Severity Controllability ASIL Safety Goal

21 object recognition algorithm does not respond (permanent error) Highway/Urban/Rural input data for subsequent algorithms cannot be provided; no
trajectory calculation possible E4 S3 C3 ASIL D Object recognition algorithm mustn’t be in a incorrect, not

working state for more than 3 frames per second

22 object recognition algorithm fails to execute and responds with error (permanent
error) Highway/Urban/Rural input data for subsequent algorithms cannot be provided; no

trajectory calculation possible E4 S3 C3 ASIL D Object recognition algorithm mustn’t be in a incorrect, not
working state for more than 3 frames per second

23 object is recognized although no object is present (false positive) for some frames Highway/Urban/Rural quality of trajectory calculation temporary decreased E4 S0 C3 QM Object recognition algorithm mustn’t produce more than 6
frames per second containing false positives

24 object is not recognized although object is present (false negative) for some frames Highway/Urban/Rural quality of trajectory calculation temporary decreased E4 S0 C3 QM Object recognition algorithm mustn’t produce more than 3
frames per second containing false negatives

25 object is recognized although no object is present (false positive) permanently Highway/Urban/Rural user experience significantly decreased; might also lead to injuries
due to unnecessary brake manoeuvres E4 S1 C3 ASIL B Object recognition algorithm mustn’t produce more than 6

frames per second containing false positives

26 object is not recognized although object is present (false negative) permanently Highway/Urban/Rural not detecting obstacles might lead to catastrophic events E4 S3 C3 ASIL D Object recognition algorithm mustn’t produce more than 3
frames per second containing false negatives

27 object recognition algorithm provides no/invalid/wrong data for 3 frames at most
(transient error) Highway/Urban/Rural quality of trajectory calculation temporary decreased E4 S2 C3 ASIL C Object recognition data mustn’t contain poor quality data

(no/invalid/wrong data) for more than 3 frames per second

Table A.6: HARA, functional block Object detection

Malfunction Operational scenario Impact Exposure Severity Controllability ASIL Safety Goal

28 trajectory planning algorithm does not respond (permanent error) Highway/Urban/Rural no trajectory planning leads to catastrophic events E4 S3 C3 ASIL D Trajectory planning algorithm mustn’t be in an incorrect, not
working state for more than 1 frame per second

29 trajectory planning algorithm doesn’t find any safe trajectory (permanent error) Highway/Urban/Rural no safe trajectory (including full braking) planning leads to catas-
trophic events E4 S3 C3 ASIL D

Trajectory planning algorithm must provide a trajectory with
minimum threat to human lives (pedestrians, driver, other
drivers) in case no safe trajectory could be found

30 trajectory planning algorithm fails to execute and responds with error (permanent
error) Highway/Urban/Rural no trajectory planning leads to catastrophic events E4 S3 C3 ASIL D Trajectory planning algorithm mustn’t be in an incorrect, not

working state for more than 1 frame per second

31 trajectory planning algorithm calculates unsafe trajectory (permanent error) Highway/Urban/Rural using an unsafe trajectory leads to catastrophic events E4 S3 C3 ASIL D Trajectory planning algorithm mustn’t provide no or an unsafe
trajectory for more than 1 frame per second

32 Trajectory calculation provides no or an unsafe trajectory for some frames (tran-
sient error) Highway/Urban/Rural a missing or an unsafe trajectory for some frames might already

lead to catastrophic events E4 S3 C3 ASIL D Trajectory planning algorithm mustn’t provide no or an unsafe
trajectory for more than 1 frame per second

Table A.7: HARA, functional block Trajectory planning

Acronyms
1oo2D 1-out-of-2 with Diagnostics
2oo2D 2-out-of-2 with Diagnostics
2oo3 2-out-of-3
AD Automated Driving
ADAS Advanced Driver Assistance System
ADF Automated Driving Feature
ADS Automated Driving System
ADS-CP Automated Driving System Computing Platform
AI Artificial Intelligence
API Application Programming Interface
ARU Analytic Redundant Unit
ASIL Automotive Safety Integrity Level
AUTOSAR AUTomotive Open System ARchitecture
BSW Basic Software
CAN Controller Area Network
COM Communication
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DDT Dynamic Driving Task
E2E End-to-End
ECU Electronic Control Unit
E/E Electrical and/or Electronic
FCR Fault Containment Region
FDTI Fault Detection Time Interval
FIT Failure In Time
FMEA Failure Mode and Effects Analysis
FO Fail-Operational
FOTI Fail-Over Time Interval

93

Acronyms 94

FRTI Fault Reaction Time Interval
FSC Functional Safety Concept
FT Fault-Tolerance
FTU Fault-Tolerant Unit
GPS Global Positioning System
gPTP Generalized Precision Time Protocol
HARA Hazard Analysis and Risk Assessment
HAZOP Hazard and Operability Analysis
HD High-Definition
HW Hardware
IP Internet Protocol
IMU Inertial Measurement Unit
LIDAR Light Detection and Ranging
MCU Microcontroller Unit
MRC Minimal Risk Condition
MTTF Mean Time to Failure
NGU Never-Give-Up
ODD Operational Design Domain
OEDR Object and Event Detection and Response
OEM Original Equipment Manufacturer
OS Operating System
PC Personal Computer
PH Performance Host
PMIC Power Management Integrated Circuit
POSIX Portable Operating System Interface
QoS Quality of Service
RADAR Radio Detection and Ranging
RT Real-Time
RTOS Real Time Operating System
Rx Receive
SAD System Architectural Design
SAE Society of Automobile Engineers
SES Safely Embedded Software
SH Safety Host

Acronyms 95

SW Software
SWC Software Component
TCP Transmission Control Protocol
TMR Triple Modular Redundancy
TSC Technical Safety Concept
TTA Time-Triggered Architecture
Tx Transmit
UART Universal Asynchronous Receiver-Transmitter
UDP User Datagram Protocol
V2X Vehicle-to-Everything
VCU Vehicle Control Unit
WCET Worst Case Execution Time

Bibliography
[1] T. Schmid, “Safety Analysis for highly automated driving,” in 2018 IEEE Interna-

tional Symposium on Software Reliability Engineering Workshops (ISSREW), 2018,
pp. 154–157.

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Concepts and
Taxonomy of Dependable and Secure Computing,” IEEE Transactions on Dependable
and Secure Computing, vol. 1, no. 1, pp. 11–33, 2004.

[3] A. Mehmed, M. Antlanger, and W. Steiner, “The Monitor as Key Architecture
Element for Safe Self-Driving Cars,” in 2020 50th Annual IEEE-IFIP International
Conference on Dependable Systems and Networks-Supplemental Volume (DSN-S),
2020, pp. 9–12.

[4] H. Kopetz, “On the Fault Hypothesis for a Safety-Critical Real-Time System,”
in Automotive Software - Connected Services in Mobile Networks, M. Broy, I. H.
Krüger, and M. Meisinger, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 31–42, isbn: 978-3-540-37678-1.

[5] R. Isermann, R. Schwarz, and S. Stolzl, “Fault-Tolerant Drive-by-Wire Systems,”
IEEE Control Systems Magazine, vol. 22, no. 5, pp. 64–81, 2002.

[6] SAE J3016, Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles, Norm, 2018.

[7] ISO/PAS 21448:2019, Road vehicles - Safety of the intended functionality, Norm,
2019.

[8] ISO 26262, Road vehicles - Functional safety, Norm, 2018.
[9] ISO/SAE DIS 21434, Road vehicles - Cybersecurity engineering, Norm.

[10] ISO/CD TR 4804, Road vehicles - safety and cybersecurity for automated driving
systems - design, verification and validation methods, Norm.

[11] SAE International, [Online]. Available: https://www.sae.org/
(visited on 04/13/2020).

[12] IEC 61508:2010, Functional safety of electrical/electronic/programmable electronic
safety-related systems, Norm, 2010.

[13] T. Stolte, G. Bagschik, A. Reschka, and M. Maurer, “Hazard Analysis and Risk As-
sessment for an Automated Unmanned Protective Vehicle,” in 2017 IEEE Intelligent
Vehicles Symposium (IV), 2017, pp. 1848–1855.

[14] R. E. Lyons and W. Vanderkulk, “The Use of Triple-Modular Redundancy to
Improve Computer Reliability,” IBM Journal of Research and Development, vol. 6,
no. 2, pp. 200–209, 1962.

96

https://www.sae.org/

Bibliography 97

[15] J. Braun and J. Mottok, “Fail-Safe and Fail-Operational Systems safeguarded with
Coded Processing,” in Eurocon 2013, 2013, pp. 1878–1885.

[16] Y. C. Yeh, “Triple-Triple Redundant 777 Primary Flight Computer,” in 1996 IEEE
Aerospace Applications Conference. Proceedings, 1996, 293–307 vol.1.

[17] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, M. Peri, and
S. Pezzini, “Fault-Tolerant Platforms for Automotive Safety-Critical Applications,”
Jan. 2003, pp. 170–177.

[18] A. Kohn, M. Käßmeyer, R. Schneider, A. Roger, C. Stellwag, and A. Herkersdorf,
“Fail-Operational in Safety-Related Automotive Multi-Core Systems,” in 10th IEEE
International Symposium on Industrial Embedded Systems (SIES), 2015.

[19] L. Sha, “Dependable System Upgrade,” in Proceedings 19th IEEE Real-Time Systems
Symposium (Cat. No.98CB36279), 1998, pp. 440–448.

[20] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. R. Kumar, “The
Simplex Reference Model: Limiting Fault-Propagation due to Unreliable Components
in Cyber-Physical System Architectures,” in 28th IEEE International Real-Time
Systems Symposium (RTSS 2007), 2007, pp. 400–412.

[21] S. Bak, D. K. Chivukula, O. Adekunle, M. Sun, M. Caccamo, and L. Sha, “The
System-Level Simplex Architecture for Improved Real-Time Embedded System
Safety,” in 2009 15th IEEE Real-Time and Embedded Technology and Applications
Symposium, 2009, pp. 99–107.

[22] F. Abdi, R. Mancuso, R. Tabish, and M. Caccamo, “Restart-Based Fault-Tolerance:
System Design and Schedulability Analysis,” in 2017 IEEE 23rd International Con-
ference on Embedded and Real-Time Computing Systems and Applications (RTCSA),
2017, pp. 1–10.

[23] F. Abdi, R. Tabish, M. Rungger, M. Zamani, and M. Caccamo, “Application and
System-Level Software Fault Tolerance Through Full System Restarts,” in 2017
ACM/IEEE 8th International Conference on Cyber-Physical Systems (ICCPS), 2017,
pp. 197–206.

[24] T. Ishigooka, S. Honda, and H. Takada, “Cost-Effective Redundancy Approach for
Fail-Operational Autonomous Driving System,” in 2018 IEEE 21st International
Symposium on Real-Time Distributed Computing (ISORC), 2018, pp. 107–115.

[25] A. Ruiz, G. Juez, P. Schleiss, and G. Weiss, “A safe generic adaptation mechanism
for smart cars,” in 2015 IEEE 26th International Symposium on Software Reliability
Engineering (ISSRE), 2015, pp. 161–171.

[26] P. Schleiss, C. Drabek, G. Weiss, and B. Bauer, “Generic Management of Availability
in Fail-Operational Automotive Systems,” in Computer Safety, Reliability, and
Security, S. Tonetta, E. Schoitsch, and F. Bitsch, Eds., Cham: Springer International
Publishing, 2017, pp. 179–194, isbn: 978-3-319-66266-4.

[27] J. Wolf, “Is This What the Future Will Look Like? Implementing fault tolerant
system architectures with AUTOSAR basic software,” Elektronik automotive, Nov.
2015.

Bibliography 98

[28] C. Temple and A. Vilela. (2014). Fehlertolerante Systeme im Fahrzeug - von fail-
safe zu fail-operational, [Online]. Available: https://www.elektroniknet.de/
elektronik- automotive/assistenzsysteme/fehlertolerante- systeme- im-
fahrzeug-von-fail-safe-zu-fail-operational-110612.html
(visited on 07/11/2020).

[29] J. Meunier. Automotive Functional Safety: The Evolution of Fail Safe to Fail Op-
erational Architecture, [Online]. Available: https://blog.nxp.com/automotive/
automotive- functional- safety- the- evolution- of- fail- safe- to- fail-
operational-architecture
(visited on 04/21/2020).

[30] C. Helpa. (2017). Fail-Operational-Plattform für vollautomatisiertes Fahren, [Online].
Available: https://www.all-electronics.de/325813-2-fail-operational-
vollautomatisiertes-fahren-plattform-ecu/
(visited on 07/12/2020).

[31] M. Ghadhab, M. Kuntz, D. Kuvaiskii, and C. Fetzer, “A Controller Safety Concept
Based on Software-Implemented Fault Tolerance for Fail-Operational Automotive
Applications,” in Formal Techniques for Safety-Critical Systems, C. Artho and P. C.
Ölveczky, Eds., Cham: Springer International Publishing, 2016, pp. 189–205, isbn:
978-3-319-29510-7.

[32] N. Druml, G. Macher, M. Stolz, E. Armengaud, D. Watzenig, C. Steger, T. Herndl,
A. Eckel, A. Ryabokon, A. Hoess, S. Kumar, G. Dimitrakopoulos, and H. Roedig,
“PRYSTINE - PRogrammable sYSTems for INtelligence in AutomobilEs,” in 2018
21st Euromicro Conference on Digital System Design (DSD), 2018, pp. 618–626.

[33] 32-bit AURIX Microcontroller based on TriCore, [Online]. Available: https://
www . infineon . com / cms / en / product / microcontroller / 32 - bit - tricore -
microcontroller/
(visited on 07/12/2020).

[34] A. Schnellbach, M. Hirz, and J. Fabian, “Comparison of fail-operational software
architectures from the viewpoint of an automotive application,” e & i Elektrotechnik
und Informationstechnik, pp. 283–293, Sep. 2016.

[35] G. Bosilca, A. Bouteiller, A. Guermouche, T. Herault, Y. Robert, P. Sens, and
J. Dongarra, “A failure detector for HPC platforms,” The International Journal of
High Performance Computing Applications, vol. 32, pp. 139–158, Jan. 2018.

[36] X. Defago, N. Hayashibara, and T. Katayama, “On the Design of a Failure Detection
Service for Large-Scale Distributed Systems,” Apr. 2004.

[37] M. Bertier, O. Marin, and P. Sens, “Implementation and performance evaluation of an
adaptable failure detector,” in Proceedings International Conference on Dependable
Systems and Networks, 2002, pp. 354–363.

[38] F. A. Arshad, G. Khanna, S. Bagchi, and I. Laguna, “Stateful Detection in High
Throughput Distributed Systems,” in IEEE Symposium on Reliable Distributed
Systems, IEEE Computer Society, Oct. 2007, pp. 275–287.

https://www.elektroniknet.de/elektronik-automotive/assistenzsysteme/fehlertolerante-systeme-im-fahrzeug-von-fail-safe-zu-fail-operational-110612.html
https://www.elektroniknet.de/elektronik-automotive/assistenzsysteme/fehlertolerante-systeme-im-fahrzeug-von-fail-safe-zu-fail-operational-110612.html
https://www.elektroniknet.de/elektronik-automotive/assistenzsysteme/fehlertolerante-systeme-im-fahrzeug-von-fail-safe-zu-fail-operational-110612.html
https://blog.nxp.com/automotive/automotive-functional-safety-the-evolution-of-fail-safe-to-fail-operational-architecture
https://blog.nxp.com/automotive/automotive-functional-safety-the-evolution-of-fail-safe-to-fail-operational-architecture
https://blog.nxp.com/automotive/automotive-functional-safety-the-evolution-of-fail-safe-to-fail-operational-architecture
https://www.all-electronics.de/325813-2-fail-operational-vollautomatisiertes-fahren-plattform-ecu/
https://www.all-electronics.de/325813-2-fail-operational-vollautomatisiertes-fahren-plattform-ecu/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/

Bibliography 99

[39] P. Croll and P. Griffiths, “Modelling Real-Time Behaviour of Parallel and Distributed
Systems Under Failure Conditions,” IFAC Proceedings Volumes, vol. 28, no. 5,
pp. 543–550, 1995.

[40] A. S. M. Noor and M. M. Deris, “Extended Heartbeat Mechanism for Fault Detection
Service Methodology,” in FGIT-GDC, 2009.

[41] J. Na, D. Lee, M. Zorigbold, D. Lee, and S. Moon, “Simple and Low-Cost Heartbeat-
Based Dual Modular Redundant Systems for Wireless Sensor Networks,” in Advances
in Computer Science and Ubiquitous Computing, J. J. Park, V. Loia, G. Yi, and
Y. Sung, Eds., Singapore: Springer Singapore, 2018, pp. 546–552, isbn: 978-981-10-
7605-3.

[42] A. Mehmed, W. Steiner, M. Antlanger, and S. Punnekkat, “System Architecture
and Application-Specific Verification Method for Fault-Tolerant Automated Driving
Systems,” in 2019 IEEE Intelligent Vehicles Symposium (IV), 2019, pp. 39–44.

[43] Apollo Auto, [Online]. Available: http://www.apollo.auto/index.html
(visited on 08/31/2020).

[44] Nvidia Drive, [Online]. Available: https://developer.nvidia.com/drive
(visited on 08/31/2020).

[45] AUTOSAR (AUTomotive Open System ARchitecture), [Online]. Available: https:
//www.autosar.org/
(visited on 06/21/2020).

[46] H. Kopetz and G. Bauer, “The Time-Triggered Architecture,” Proceedings of the
IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[47] MotionWise, [Online]. Available: https://www.tttech- auto.com/products/
automated-driving/motionwise/
(visited on 07/22/2020).

[48] ADAS ECU - RazorMotion, [Online]. Available: https://www.tttech-auto.com/
products/automated-driving/razormotion-tttech-auto/
(visited on 07/22/2020).

[49] AMAZON Autonomous Driving, [Online]. Available: https://aws.amazon.com/
automotive/autonomous-driving/
(visited on 08/31/2020).

[50] AutonomouStuff, [Online]. Available: https://autonomoustuff.com/
(visited on 08/31/2020).

[51] H. Martin, K. Tschabuschnig, O. Bridal, and D. Watzenig, “Functional Safety of
Automated Driving Systems: Does ISO 26262 Meet the Challenges?” In. Sep. 2017,
pp. 387–416, isbn: 978-3-319-31893-6.

[52] M. Wood, P. Robbel, M. Maass, R. D. Tebbens, and M. Meijs, Safety first for
Automated Driving, 2019.

[53] R. Obermaisser and P. Peti, “A Fault Hypothesis for Integrated Architectures,” in
2006 International Workshop on Intelligent Solutions in Embedded Systems, 2006,
pp. 1–18.

http://www.apollo.auto/index.html
https://developer.nvidia.com/drive
https://www.autosar.org/
https://www.autosar.org/
https://www.tttech-auto.com/products/automated-driving/motionwise/
https://www.tttech-auto.com/products/automated-driving/motionwise/
https://www.tttech-auto.com/products/automated-driving/razormotion-tttech-auto/
https://www.tttech-auto.com/products/automated-driving/razormotion-tttech-auto/
https://aws.amazon.com/automotive/autonomous-driving/
https://aws.amazon.com/automotive/autonomous-driving/
https://autonomoustuff.com/

Bibliography 100

[54] G. Bauer, H. Kopetz, and W. Steiner, “The Central Guardian Approach to Enforce
Fault Isolation in the Time-Triggered Architecture,” in The Sixth International
Symposium on Autonomous Decentralized Systems, 2003. ISADS 2003., 2003, pp. 37–
44.

[55] QNX Operating System, [Online]. Available: https://blackberry.qnx.com/en/
products/neutrino-rtos/index
(visited on 06/12/2020).

[56] Vector Microsar Operating System, [Online]. Available: https://www.vector.com/
int/en/products/products-a-z/embedded-components/microsar/
(visited on 06/21/2020).

[57] J. M. Lozano Domínguez, T. d. J. Mateo Sanguino, and M. J. Redondo González,
“Evaluation of a Robust Fault-Tolerant Mechanism for Resilient IoT Infrastructures,”
in Broadband Communications, Networks, and Systems, V. Sucasas, G. Mantas, and
S. Althunibat, Eds., Cham: Springer International Publishing, 2019, pp. 3–12, isbn:
978-3-030-05195-2.

[58] PRISM - Model Checker, [Online]. Available: https://www.prismmodelchecker.
org/
(visited on 09/15/2020).

[59] Yocto Project, [Online]. Available: https://www.yoctoproject.org/
(visited on 07/26/2020).

[60] Wireshark, [Online]. Available: https://www.wireshark.org/
(visited on 07/22/2020).

[61] RFC1122, [Online]. Available: https://tools.ietf.org/html/rfc1122
(visited on 08/18/2020).

https://blackberry.qnx.com/en/products/neutrino-rtos/index
https://blackberry.qnx.com/en/products/neutrino-rtos/index
https://www.vector.com/int/en/products/products-a-z/embedded-components/microsar/
https://www.vector.com/int/en/products/products-a-z/embedded-components/microsar/
https://www.prismmodelchecker.org/
https://www.prismmodelchecker.org/
https://www.yoctoproject.org/
https://www.wireshark.org/
https://tools.ietf.org/html/rfc1122

Eidesstattliche Erklärung
Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct – Regeln
zur Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung des jeweiligen
Mitteilungsblattes der TU Wien), insbesondere ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen
Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der
Quelle gekennzeichnet. Die Arbeit wurde bisher weder im In– noch im Ausland in gleicher
oder in ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Vienna, January 2021

Rupert Schorn

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Standards
	1.2.1 SAE J3016
	1.2.2 ISO26262 Road vehicles - Functional safety

	1.3 Scope of the thesis
	1.4 Structure

	2 State of the art
	2.1 Fail-operational architectures
	2.1.1 TMR
	2.1.2 Simplex architecture
	2.1.3 1oo2D
	2.1.4 2oo2D
	2.1.5 Hybrid architecture
	2.1.6 Fault-Tolerant Software architectures

	2.2 Fail-over mechanisms
	2.3 Autonomous driving platforms

	3 FO architectures in the AD domain
	3.1 Methodology
	3.1.1 Design according to ISO 26262
	3.1.2 Design based on a fault hypothesis
	3.1.3 Combined fault-tolerant design approach

	3.2 Item definition
	3.3 HARA
	3.4 Simplex architecture
	3.4.1 Fault hypothesis
	3.4.2 SAD
	3.4.3 FSC

	3.5 1oo2D architecture
	3.5.1 Fault hypothesis
	3.5.2 SAD
	3.5.3 FSC

	3.6 Hybrid architecture
	3.6.1 Fault hypothesis
	3.6.2 SAD
	3.6.3 FSC

	3.7 Common NGU strategy

	4 FO demonstrator
	4.1 Use case definition
	4.2 Selection of a FO architecture
	4.2.1 Simplified SAD
	4.2.2 Reliability model

	4.3 Implementation
	4.4 Evaluation

	5 Conclusion
	5.1 Comparison of FO architectures
	5.2 Future challenges

	Appendix A Minimal HARA of a ADS-CP
	Acronyms

