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Abstract 
High temperature combustion processes produce NOx 

emissions (mainly NO and NO2), which cause various health 
and environmental effects. Emission of NOx results in the 
formation of acid rain, ozone depletion and reacts with 
chemicals in the air to form particulate matter thereby 
resulting in air pollution [1]. To predict the formation of NOx 
in turbulent combustion, several models such as fluid 
dynamics, heat transfer and chemical kinetics need to be 
modelled. In recent years various research work have been 
done to reduce the NOx emissions. CFD has been proved 
to be an important tool in predicting the NOx emissions. But 
using CFD with a detailed chemistry model for modelling 
combustion in industrial burners requires a lot of 
computational effort and hence, the present study 
concentrates on further reduction in the computational time 
of the existing NOx postprocessor [2]. In this study, two 
optimisation approaches were investigated to further 
increase the performance. The existing postprocessor uses 
a constant temperature field, so that an optimisation 
approach was implemented to modify the reaction rate 
constant calculation method in OpenFOAM. Another 
optimisation approach was investigated by predicting the 
initial values for the postprocessor with Zeldovich 
mechanism [3]. Both optimisation approaches were 
analysed with the benchmark test case of Sandia Flame D 
[4]. The approaches are currently being investigated and the 
achieved results indicate that, even though a minimum 
increase in performance was achieved, further optimisation 
needs to be done for increasing the performance of the 
postprocessor.  

 
Introduction 

CFD is a valuable tool to determine NOx emissions more 
precisely which requires immense computational effort. The 
decrease in computational effort causes less accurate 
prediction of emissions. For determining realistic NOx 
emissions from combustion processes in a rapid approach, 
a postprocessor was developed by W. R. Pollhammer [2]. 
As a preliminary step, a flamelet model was used to describe 
the flame and then the data from this flamelet model was 
transformed to the postprocessor to estimate the NO mass 
fraction.  

 
The existing NOx postprocessor revolves around the idea 

that a detailed chemistry approach could be used only at the 
final stage of simulation and a computationally cheap 
approach could be used to model the flame. The discrete 
ordinate radiation model was implemented along with the 
flamelet model in OpenFOAM [5] [6] and was used to 
describe the flame temperature, pressure, flow field, 
turbulence and radiation.  

 
Subsequently the data from the flamelet model was 

transferred to the postprocessor in which only the species 
transport equations are solved, with chemical reaction rate 
as the source term, to estimate the NOx using PaSR 
(Partially Stirred Reactor) combustion model. The chemical 

kinetics were solved using the GRI 3.0 mechanism. The 
chemical reaction rate calculation was further optimized, so 
that the chemistry is solved only when the species 
concentration in a cell changes more than 5% and for other 
cells, where the change is less than 5%, values from the 
previous iterations are used. To avoid nonphysical values, 
i.e. if a concentration of certain species falls below zero, then 
the entire chemistry is computed again. As a final step, to 
avoid divergence, the entire chemistry is computed every 
200 Iterations. 

 
This paper presents further optimisation strategies to 

reduce the calculation time of the existing postprocessor and 
evaluates the performance and accuracy of the proposed 
approaches. The first approach modifies the reaction rate 
constant calculation method in OpenFOAM, and the second 
approach starts the postprocessor by generating initial 
values using the Zeldovich mechanism. 

 
Performance optimisation approach  

The current implementation of the reaction rate constants 
calculation in OpenFOAM is based on the concept that the 
temperature field is changing every iteration in the chemistry 
calculation.  

 
Based on the implemented chemistry model in 

OpenFOAM, the reaction progress rate Ωi , as in equation 
(1), is calculated for every iteration, for every cell, for every 
chemical time step and for every reaction.  
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where, [Mk] is the concentration of the species k and 𝜈௞ is 

the stoichiometric coefficient of the species k. The forward 
rate constant kf is calculated based on the Arrhenius 
equation as in Eq. (2), which is mainly dependent on the 
temperature field. Whereas the reverse rate constant kr is 
calculated from the forward rate constant kf and the 
equilibrium constant kp.  
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where, A is the pre-exponential constant, T is the 
temperature and β is the temperature exponent and Ta is the 
ratio of the activation energy Ea and the gas constant R. Hk 
and Sk are the molar enthalpy and entropy of the species k. 
The above shows an example calculation of reaction 
progress rate in reversible Arrhenius reaction. A similar 
procedure is followed for irreversible Arrhenius reaction, 
third-body reaction, and other reactions as in the standard 
OpenFOAM code. 
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For a single calculation of kf, approximately 30 floating 
point operations per second, would be used. This calculation 
is repeated N number of times (number of iterations times 
number of reactions times number of cells times number of 
chemical time steps) which is unnecessary in case of the 
existing postprocessor, where the temperature field remains 
constant. Hence calculating the rate constants only once 
would tremendously reduce the simulation time.  

 

Accordingly, the chemistry model in OpenFOAM was 
adapted to reduce the calculation time as the first 
optimisation approach. The rate constants are different for 
every reaction and every cell but remain constant throughout 
the simulation. Therefore, volScalarFields are created for kf 
and kr for every reaction and the rate constants are 
calculated and stored in the first iteration, thereby instead of 
calculating the rate constant N number of times, they are 
calculated only once for each cell and each reaction. In 
further iterations, the rate constants are looked up from the 
stored data. 

 
To analyse the computational effort of this approach 

initially the forward reaction rate calculation was modified 
(hereafter called ‘code 1’), and the efficiency of the code was 
compared with the existing postprocessor and then both 
forward and reverse reaction rate constant calculations were 
modified (hereafter called ‘code 2’) and compared. 

 
As a second optimisation approach, initializing the NO 

concentration with more proximate and realistic values to the 
experimental data was analysed. According to W.R. 
Pollhammer [7], the flamelet model overpredicts the NOx 
mass fraction ([8] and [9]) and hence transferring the species 
concentration data from the flamelet model to the 
postprocessor results in increased simulation time. Instead, 
starting the postprocessor by initializing some of the species, 
which take part in the formation of NOx with zero 
concentration results in reduced simulation time.  

 
To initialize the postprocessor with more proximate 

values, the NO mass fraction was predicted by computing 
the source term, the rate of NO formation, from Zeldovich 
mechanism and then solving the species transport equation. 
The Zeldovich mechanism is formulated by the elementary 
reactions with rate coefficients k1, k2 and k3 as follows. 
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The rate of NO formation [10] from the above reactions is 
 

                                
𝑑[𝑁𝑂]

𝑑𝑡
= 2𝑘ଵ[𝑂][𝑁ଶ]                             (3) 

 
The N2 concentration is obtained from the flamelet model 

whereas the concentration of oxygen atoms is determined 
by the partial equilibrium approach as in Eq. (4) of hydrogen 
combustion mechanism [10], by using the concentration of 
O2, H2 and H2O from the flamelet model and the appropriate 
rate coefficients. 

 

                           [𝑂] =
𝑘ுାைమ 𝑘ைுାுమ

[𝑂ଶ] [𝐻ଶ]

𝑘ைுାை 𝑘ுାுమை [𝐻ଶ𝑂]
                  (4) 

Eq. (3) was further extended by using the equilibrium 
oxygen atom concentration as in Eq. (5) to predict the NO 
formation rate as in Eq. (6) [11]. The temperature, 

concentration of O2 and N2 were used from the flamelet 
model. 

                                [𝑂] =
𝑘௣(ை)[𝑂ଶ]଴.ହ

(𝑅𝑇)଴.ହ
                                  (5) 

 
where kp(o) is the equilibrium rate constant of the oxygen 

atom.  
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The NO concentration was predicted by both methods, 

one by using Eqs. (3) and (4) (hereafter called ‘code 3’) and 
another by using Eq. (6) (hereafter called ‘code 4’). After 
predicting the NO concentration by both methods, the data 
was transferred to the postprocessor and the simulation was 
carried out to evaluate the performance.  

 
Performance Evaluation 

To evaluate the performance of the optimisation 
approaches, numerical simulations were performed, and the 
results were compared with the existing postprocessor on 
AMD Ryzen 7 3800x, 8 core processor. As a benchmark 
test, numerical simulations were performed and compared 
with experimental data [4]. The optimised postprocessor was 
evaluated with a mesh size of 204,800 cells on a 2D-
axisymmetric mesh and chemical kinetics were solved using 
the GRI 3.0 mechanism with 325 reactions and 53 species. 
After calculating the flame properties using the flamelet 
model, the data was transferred to the optimised 
postprocessor and simulated. 

 
For code 1, the postprocessor completes 0.3 s of real time 

simulation in 32,459 s of computation time and the existing 
postprocessor takes 49,983 s as could be seen in Fig.1. 
Whereas in case of code 2, it takes 43,969 s of computation 
time. This certainly proves that the optimized approach 
reduces the calculation time. The discrepancies between 
both codes is because of the memory consumption during 
the simulation. Creating a volScalarField for every reaction 
result in additional 325 data fields for the used GRI 3.0 
mechanism. When both kf and kr calculation methods were 
modified, it results in additional 650 data fields. Hence code 
2 consumes more memory and thereby slows down the 
simulation. 

 

 
 

Fig. 1 Comparison of performance between the existing 
and optimization approaches (code 1 and 2) 
 

By doing further studies with increased mesh size, which 
increases the size of the data fields, thereby consuming 
more memory and results in slower calculation time.  Also, 
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creating a volScalarField in OpenFOAM results in additional 
fields for storing the values of previous iteration, which is 
unnecessary for the proposed optimised approach. The 
reaction constants do not change throughout the entire 
simulation and they are only dependent on the temperature 
field on each cell, which is also constant throughout the 
simulation. Hence reducing the memory consumption and 
optimizing the code further will reduce the simulation time. 
To verify that the code did not influence the results, a 
comparison with experimental data was done and the code 
produces exact results as the existing post processor, which 
could be seen in Fig.2. Since, only the calculation method 
was modified, there is no change in the results between the 
existing postprocessor and the optimisation approach. 

 

 
 
Fig. 2 Comparison of accuracy between the existing and 
optimisation approaches (code 1 and 2) along the centreline 
with experimental data 
 

 
 
Fig. 3 NO mass fraction computed from existing post 
processor. 

 
The computations show that the optimisation approach 

using Zeldovich mechanism modifies the results, since the 
NO mass fraction values are initialized. In the existing 
postprocessor, the NO concentration is initialized with zero, 
whereas in the optimization approach the NO concentration 
is initialized as shown in Fig. 4 and Fig. 5. When using the 
equilibrium concentration of the oxygen atoms with code 4, 
the NO mass fraction is overpredicted throughout the flame 
and when using the partial equilibrium approach with code 
3, even though NO mass fraction is slightly higher, the 
predictions are closer to the experimental values than the 
code 4. The equilibrium approach always underestimates 
the concentration of oxygen atoms and the better 
approximation for estimating the concentration of oxygen 
atoms is the partial equilibrium approach [12]. Due to the 
data transfer from the flamelet model, which overpredicts the 
NO concentration, Zeldovich mechanism also overestimates 
the NO concentration. Initializing the postprocessor with NO 
mass fraction values from code 3 and code 4, reduces the 
accuracy of the results. 

 

 
 
Fig. 4 Initialized NO mass fraction values using code 3 
 

 

 
 
Fig. 5 Initialized NO mass fraction values using code 4 
 

This optimisation approach using Zeldovich mechanism 
modifies the results and requires longer time for 
convergence. The convergence of the postprocessor was 
evaluated by calculating the integrated reaction rate of NO. 
The existing postprocessor requires around 0.004 s for 
convergence while the postprocessor started with NO mass 
fraction values obtained from code 3 and code 4, requires 
more time for convergence as could be seen in the following 
figure.  

 

 
 
Fig. 6 Comparison of Integrated Reaction Rates between 
existing post processor and the optimised approaches. 
 

Also, starting the postprocessor with initial values 
produces a hump shaped prediction of the NO mass fraction 
as shown in Fig.7 which is due to the initialization of the 
values in the same pattern as in Fig. 4 and 5.  Even though 
both code 3 and 4 are initialized with different values, solving 
the steady state transport equation with the converged data 
produce almost similar results. To achieve the exact results 
as the existing postprocessor, the simulation needs to be 
continued for a longer time. Fig.7 shows the results obtained 
at 0.01 s from the optimized code 3 and 4. The simulation 
was stopped at this point, since the existing postprocessor 
was able to produce better results at 0.004 s.   As the 
accuracy of the results is not as expected, predicting more 
precise initial values will optimize the performance of the 
postprocessor.  

 



16th Minisymposium Verfahrenstechnik & 7th Partikelforum, TU Wien, Sept. 21/22, 2020 

DiV2-(04) page 4/4 

 
 
Fig. 7 Comparison of experimental data with the optimisation 
approaches along the centreline at 0.01 s – code 3 and code 
4. 
 
Conclusion 

Performance optimisation approaches were implemented 
on the existing NOx postprocessor and were investigated 
with the benchmark case of Sandia Flame D. The reaction 
rate calculation method reduces the computation time as 
expected for some cases. Increasing the mesh size, number 
of reactions or modifying both forward and reverse rate 
constant calculation method results in increased memory 
consumption which slows down the simulation and hence 
the developed code needs to be further optimised. 
Predicting the initial values with Zeldovich mechanism 
requires more time for convergence and influences the 
results of the postprocessor. Therefore, more precise 
prediction of the initial values would increase the efficiency 
of the postprocessor.  

 
Outlook 

The investigations from the proposed optimisation 
approaches provide inputs for further optimisation. The next 
step is to develop a more efficient code for the reaction rate 
calculation method and as a third optimisation strategy, 
dynamic mesh refinement would be used. After the flamelet 
calculation, the mesh could be coarsened in far regions from 
the flame and only the necessary regions near the flame 
would be solved with a fine mesh. All these optimisation 
strategies will be further developed, and benchmark 
simulations will be performed to produce a more efficient and 
accurate NOx postprocessor. 
 
Acknowledgements 

The authors gratefully acknowledge the funding support of 
K1-MET GmbH, metallurgical competence center. The 
research program of the competence center K1-MET is 
supported by COMET (Competence Center for Excellent 
Technologies), the Austrian program for competence 
centers. COMET is funded by the Federal Ministry for 
Transport, Innovation and Technology, the Federal Ministry 
for Science, Research and Economy, the province of Upper 
Austria, Tyrol, and Styria and the Styrian Business 
Promotion Agency. 
 

 
References 
[1]   C. E. Baukal Jr, Oxygen enhanced combustion. CRC   

press, 2013. doi: 10.1201/b13974 
 

[2]  W. R. Pollhammer, C. Spijker, H. Raupenstrauch, and 
M. Koller, “Numerical modelling of industrial burners for 
reduction of no x emissions using flamelet methods in 

combination with a newly developed postprocessor for 
fast and accurate emission prediction,” AIChE Annual 
Meeting, AIChE, 2017. ISBN: 978-0-8169-1102-8  

 
[3]   Y. B. Zeldovich, “The oxidation of nitrogen in combustion 

and explosions.,” ActaPhysiochem USSR 21:577, 1946. 
doi: 10.1515/9781400862979 

 
[4]   R. Barlow and J. Frank, Piloted ch4/air flames c, d, e, 

and f–release 2.1 15-jun-2007, 2007. Available: 
http://www.sandia.gov/TNF/DataArch/FlameD/SandiaP
ilotDoc21.pdf [Accessed Sep 1, 2020] 

 
[5]  A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, 

“Formation of soot and nitrogen oxides in   unsteady   
counterflow   diffusion   flames,” Combustion   and   
Flame, vol.   156, no.   10, pp. 2010–2022, 2009. doi: 
10.1016/j.combustflame.2009.06.023 

 
[6]  A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, 

“Kinetic modeling of soot formation in turbulent   non 
premixed   flames,” Environmental   Engineering   
Science, vol.   25, no.   10, pp. 1407–1422, 2008. doi: 
10.1089/ees.2007.0193 

 
[7]   W. R. Pollhammer, “A cfd-dem model for nitrogen oxide 

prediction in shaft furnaces using openfoam,” PhD 
thesis, Montan Universität Leoben, Feb. 2019. 

 
[8] L. Cutrone, P. de Palma, G. Pascazio, and M. 

Napolitano, “A rans flamelet-progress-variable method 
for computing reacting flows of real-gas mixtures.” 
Computers and Fluids, 39(3):485-498, 2010. doi: 
10.1016/j.compfluid.2009.10.001 

 
[9] M. Ihme and H. Pitsch. Modeling of radiation and nitric 

oxide formation in turbulent nonpremixed flames using 
a flamelet/progress variable formulation. Physics of 
Fluids, 20(5):055110, 2008. doi: 10.1063/1.2911047 

 
[10] J. Warnatz, “Concentration, pressure, and temperature 

dependence of the flame velocity in hydrogen oxygen 
nitrogen mixtures,” Combustion Science and 
Technology, vol. 26, no. 5-6, pp. 203–213, 1981. doi: 
10.1080/00102208108946961 

 
[11] J. B. Heywood, “Internal combustion engine fundam- 

entals,” McGraw-Hill, Inc., 1988. Available: 
https://www.accessengineeringlibrary.com/content/boo
k/9781260116106 [Accessed: Sep 1, 2020] 

 
[12] J. Warnatz, U. Maas and R. W. Dibble, Combustion. 

Springer, 1996, vol. 2 doi: 10.1007/978-3-540-45363-5 


