
This article is part of the

Proceedings of the 16th Minisymposium Verfahrenstechnik and 7th Partikelforum
(TU Wien, Sept. 21/22, 2020)

Title:

Deep Neural Network-based View factor Modelling of Radiative Heat Transfer between Particles

Corresponding author:

Josef Tausendschön (TU Graz), josef.tausendschoen@tugraz.at

Date of submission:

28.02.20

Date of revision:

10.09.20

Date of acceptance:

10.09.20

Chapter ID:

MoV5-(03)

Length:

3 pages

License:

This work and all the related articles are licensed under a CC BY 4.0 license:

Download available from (online, open-access):

http://www.chemical-engineering.at/minisymposium

ISBN (full book):

978-3-903337-01-5

All accepted contributions have been peer-reviewed by the Scientific Board of the 16.

Minisymposium Verfahrenstechnik (2020): Bahram Haddadi, Christian Jordan, Christoph Slouka,

Eva-Maria Wartha, Florian Benedikt, Markus Bösenhofer, Roland Martzy, Walter Wukovits

16th Minisymposium Verfahrenstechnik & 7th Partikelforum, TU Wien, Sept. 21/22, 2020

MoV5-(03) page 1/3

Deep Neural Network-based View factor Modelling of
Radiative Heat Transfer between Particles

Josef Tausendschön1*, Stefan Radl1

1: Dept. of Process and Particle Technology, Graz University of Technology, Austria

* Correspondent author: josef.tausendschoen@tugraz.at

Keywords: Radiative Heat Transfer, Data-driven Modeling, Machine Learning, Deep Neural Networks

1. Introduction
Above 700 °C radiative heat transfer is the most dominating

heat transfer mechanism. Such high temperature processes
occur in a wide range of industrial applications. Examples are:
pebble bed reactors, laser sintering and high-temperature
particle oxidation or reduction processes [1].

The modelling of heat radiation is an ongoing challenge in
many simulation fields, e.g. Computational Fluid Dynamics
(CFD) and the Discrete Element Method (DEM). In this study
we investigate radiative heat modelling from a particle
perspective. In principle the emitted heat flux 𝑄̇௜,௝ between two
particles depends on the following factors: particles
temperatures 𝑇 , surfaces 𝐴 , emissivity 𝜖 and the view factor
𝜀௜ି௝ between these particles, as well as the Boltzmann
constant 𝜎௦ (see Eq.1). The view factor is the ratio of the
radiation leaving a surface 𝑖 and the radiation that is striking
surface 𝑗.

𝑄̇௜,௝ =
𝜎௦ (𝑇௜

ସ − 𝑇௝
ସ)

ଵିఢ೔

஺೔ ఢ೔
+

ଵିఢೕ

஺ೕ ఢೕ
+

ଵ

ఌ೔షೕ ஺೔

 (1)

View factors can be found by analytical or numerical
integration of the solid angles under which the surfaces can
see each other. Typical industrial processes feature billions of
particles and even in small research devices millions of
particles are interacting. Therefore, the view factor calculation
based on integration cannot be performed for real-sized
systems due to the astronomical computational cost. Walker
et al. [2] presented the so-called “Monte Carlo Raytracing” that
is derived from the scientifically widely adopted Monte Carlo
algorithm to determine view factors. Another (computationally
much more efficient) option is the “Projection Method” from
Forgber & Radl [3], where a certain number of test points is
distributed on the particle surfaces and then by using the solid
angle between the particles, the area fraction which the
absorbing particle actually sees is determined. The area
fraction is composed by an assemble of the distributed test
points. The view factor is then the number of test points on
surface 𝑗 divided by the total number of test points distributed
on the emitting surface 𝑖.

The Monte Carlo Raytracing and the Projection Method
reflect the in simulation science widespread tradeoff between
accuracy and speed. The Monte Carlo raytracing achieves
very accurate view factors, but takes up high computational
cost. The projection method provides precise view factors in
specified systems at significantly less computational effort,
although the demand is still too big to adopt the method in
general for heat radiation modelling in DEM simulations.

To overcome this tradeoff in the presented approach we use
Machine Learning (ML) techniques to create a pre-trained
heat radiation model based on a deep neural net (DNN), that
predicts accurate view factors at high speed. The training data
is generated with the Monte Carlo Raytracing method from a
small particle bed (see Figure 1).

The outcome of the presented approach will be compared
to the projection method and a simple regression analysis in
terms of accuracy and computational cost.

Figure 1: View factors in a typical random particle packing

2. Neural Net Model Parameters
DNNs consist of an input layer, hidden layer and an output

layer. Each layer consists of an arbitrary number of nodes and
a DNN contains an arbitrary number of hidden layers.
Therefore, two important decisions are made when
implementing a DNN: the number of hidden layers and the
number of nodes for each of these layers.

Basically, a neural net with zero hidden layers can represent
linear separable functions or decisions. However, without a
hidden layer the neural net is not considered to be “deep” and
cannot model nonlinear behavior. With one hidden layer a
neural net can approximate any function that contains a
continuous mapping from one finite space to another. Using
two hidden layers enables the DNN to model an arbitrary
decision boundary to an arbitrary accuracy [4]. Therefore, two
versions of each DNN with different input layer will be
investigated: a one hidden layer version and a two hidden
layer version.

The input layer is defined by the features of the training data,
that are often called markers. Consequently, the number of
nodes for the input layer is the number of markers of your
training data. The output layer is then defined by the desired
output and the number of nodes for that reason equals one,
namely the view factor. The choice of the activation layers and
the used optimizer are also considered as neural network
model design. The Stochastic Gradient Descent (SGD)
optimizer is used as standard optimizer and the Adam
optimizer as advanced option [5]. In regression tasks no
activation function is applied to the output layer. The input
layer and the hidden layer are typically followed by the
Rectifying Linear Unit (ReLU) activation function in regression
tasks [6]. To avoid overfitting of the neural net two options are
tested: using so-called “Dropout Layers” or applying the early
stopping method [7]. The learning rate and if used the dropout
rate are called the hyperparameters of the neural network.
Together the model design and the hyperparameters form the
neural net model parameters. To achieve the best possible

16th Minisymposium Verfahrenstechnik & 7th Partikelforum, TU Wien, Sept. 21/22, 2020

MoV5-(03) page 2/3

generalization with the DNN-based model it is essential to
optimize these model parameters. The optimization is
performed by the randomized search approach [8].

3. Training of the deep neural net
As previously mentioned, the view factor data is generated

with the Rayfactor tool from a randomly-positioned
monodisperse particle bed. The particle bed contains of 587
particles. The particle volume fraction of the system is 0.40.
Therefore, a dataset with 586∙ 586 can be generated since
every particle is emitting and absorbing. To ease up the
training a dataset with 33 emitting particles is considered. The
dataset is split into a training set, validation set and test set,
where 80 % is used for training and respectively 10 % for
testing and validation.

Figure 2 shows exemplarily the view factors that are
calculated by the Rayfactor tool for one emitting particle and a
simple regression over the dimensionless surface to surface
distance 𝑆௜ି௝.

Figure 2: Exemplary view factor data for one emitting particle
in the particle bed shown in Figure 1.

The creation and the training of the DNN is performed within
the Keras® framework in Python®. The preparation of the raw
data and the randomized search optimization is made by using
the Scikit-learn® environment. One has to note that very small
view factors lead to negligibly small heat fluxes and are set to
zero if they are below a threshold value of 5 ∙ 10-6. The
thresholding is applied to the training data and also to the
prediction of the DNN. The mean squared error (MSE)
between the target and the prediction is one metric to describe
the performance of the DNN. Because the MSE is significantly
more influenced by big view factors and does not reflect the
overall quality of the prediction, the calculated view factors are
correlated to the view factors determined via Monte Carlo
Raytracing. The coefficient of determination (Rଶ) is then used
to describe this correlation. For the use in dense settled
particle beds with very high particle volume fractions, separate
datasets need to be created. The derived DNN-based model
can be used for non-settled particle beds without limitation.
Particle distances or system sizes are also not restrictive,
since input markers are typically normalized before being fed
to the neural net.

4. Marker Selection
As can be seen in Figure 2 a certain distance 𝑆௜ି௝ between

the emitting and absorbing particle can lead to varying view
factors. A neural net with a single input node always
represents the same output for the same input. Therefore,
additional markers that can be fed into the neural net need to
be found within the particle data.

The solid angle between the interacting particles is an
important quantity in the analytical integration of view factors.
For that reason, the solid angle will be investigated as marker.

Representative for a local particle volume fraction the volume
of Voronoi cells achieved from Voronoi tessellation is also
considered as marker. Shadows between particles
significantly influence the radiative heat transfer, therefore an
algorithm that detects particles that are between the emitting
and the absorbing particle in a certain volume was
implemented. The number of particles in that volumetric area
is counted and the significance of that marker for the
prediction is also investigated. To adjust the results to
polydisperse systems additional markers, e.g., the ratio of the
radii could be used.

5. Results
The Projection Method (number of test points = 400)

achieves an MSE of 7.8∙10-7 on the test dataset. It took 16.24
s to distribute the test points and 24.55 s to calculate the view
factors on a single CPU core. The coefficient of determination
is 0.986.

A simple linear regressor derived from the total dataset (for
an example regression see Figure 2) achieves an MSE of
7.6∙10-7 on the test dataset at a basically instantaneous speed.
However, as can be seen quantitively in Figure 2, the simple
regression cannot accurately predict the spread of the view
factors for large distances between the particles.

Figure 3 shows the correlation of the DNN view factors with
that of the Monte Carlo Raytracing method. The DNN-based
Model achieves an MSE of around 5∙10-7 while taking around
0.30 s to calculate the view factors and 0.55 s to load the
pretrained model. The Rଶ value is 0.9906.

Figure 3: Prediction of the DNN-based model vs. target from
Monte Carlo Raytracing of a test dataset

It is demonstrated that a pretrained DNN can model view
factors at higher accuracy and with significantly less
computational effort than other models in literature.

[1] M.F. Modest, Radiative Heat Transfer - Second

Edition, Academic Press, 2003.
https://doi.org/10.1017/CBO9781107415324.004.

[2] T. Walker, S.C. Xue, G.W. Barton, Numerical
determination of radiative view factors using ray
tracing, J. Heat Transfer. 132 (2010) 1–6.
https://doi.org/10.1115/1.4000974.

[3] T. Forgber, S. Radl, A novel approach to calculate
radiative thermal exchange in coupled particle
simulations, Powder Technol. 323 (2018) 24–44.
https://doi.org/10.1016/j.powtec.2017.09.014.

[4] J. Heaton, Artficial Intelligence For Humans, Volume
3: Deep Learning and Neural Networks, Heaton
Research, Inc., 2015.

[5] D.P. Kingma, J.L. Ba, Adam: A method for stochastic
optimization, 3rd Int. Conf. Learn. Represent. ICLR
2015 - Conf. Track Proc. (2015) 1–15.

[6] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning,
The MIT Press, 2016.

16th Minisymposium Verfahrenstechnik & 7th Partikelforum, TU Wien, Sept. 21/22, 2020

MoV5-(03) page 3/3

http://www.deeplearningbook.org/.
[7] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,

R. Salakhutdinov, Dropout: A Simple Way to Prevent
Neural Networks from Overfitting, J. Mach. Learn.
Res. 15 (2014) 1929–1958.
https://doi.org/10.1016/0370-2693(93)90272-J.

[8] J. Bergstra, Y. Bengio, Random search for hyper-
parameter optimization, J. Mach. Learn. Res. 13
(2012) 281–305.

