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1. Introduction 
Above 700 °C radiative heat transfer is the most dominating 

heat transfer mechanism. Such high temperature processes 
occur in a wide range of industrial applications. Examples are: 
pebble bed reactors, laser sintering and high-temperature 
particle oxidation or reduction processes [1]. 

The modelling of heat radiation is an ongoing challenge in 
many simulation fields, e.g. Computational Fluid Dynamics 
(CFD) and the Discrete Element Method (DEM). In this study 
we investigate radiative heat modelling from a particle 
perspective. In principle the emitted heat flux �̇� ,  between two 
particles depends on the following factors: particles 
temperatures 𝑇 , surfaces 𝐴 , emissivity 𝜖  and the view factor 
𝜀    between these particles, as well as the Boltzmann 
constant 𝜎   (see Eq.1). The view factor is the ratio of the 
radiation leaving a surface 𝑖 and the radiation that is striking 
surface 𝑗.  

�̇� , =
𝜎  (𝑇 − 𝑇 )

 
+

 
+

 

 (1) 

View factors can be found by analytical or numerical 
integration of the solid angles under which the surfaces can 
see each other. Typical industrial processes feature billions of 
particles and even in small research devices millions of 
particles are interacting. Therefore, the view factor calculation 
based on integration cannot be performed for real-sized 
systems due to the astronomical computational cost. Walker 
et al. [2] presented the so-called “Monte Carlo Raytracing” that 
is derived from the scientifically widely adopted Monte Carlo 
algorithm to determine view factors. Another (computationally 
much more efficient) option is the “Projection Method” from 
Forgber & Radl [3], where a certain number of test points is 
distributed on the particle surfaces and then by using the solid 
angle between the particles, the area fraction which the 
absorbing particle actually sees is determined. The area 
fraction is composed by an assemble of the distributed test 
points. The view factor is then the number of test points on 
surface 𝑗 divided by the total number of test points distributed 
on the emitting surface 𝑖.  

The Monte Carlo Raytracing and the Projection Method 
reflect the in simulation science widespread tradeoff between 
accuracy and speed. The Monte Carlo raytracing achieves 
very accurate view factors, but takes up high computational 
cost. The projection method provides precise view factors in 
specified systems at significantly less computational effort, 
although the demand is still too big to adopt the method in 
general for heat radiation modelling in DEM simulations. 

To overcome this tradeoff in the presented approach we use 
Machine Learning (ML) techniques to create a pre-trained 
heat radiation model based on a deep neural net (DNN), that 
predicts accurate view factors at high speed. The training data 
is generated with the Monte Carlo Raytracing method from a 
small particle bed (see Figure 1). 

The outcome of the presented approach will be compared 
to the projection method and a simple regression analysis in 
terms of accuracy and computational cost. 

 

 
Figure 1: View factors in a typical random particle packing 

2. Neural Net Model Parameters 
DNNs consist of an input layer, hidden layer and an output 

layer. Each layer consists of an arbitrary number of nodes and 
a DNN contains an arbitrary number of hidden layers. 
Therefore, two important decisions are made when 
implementing a DNN: the number of hidden layers and the 
number of nodes for each of these layers. 

Basically, a neural net with zero hidden layers can represent 
linear separable functions or decisions. However, without a 
hidden layer the neural net is not considered to be “deep” and 
cannot model nonlinear behavior. With one hidden layer a 
neural net can approximate any function that contains a 
continuous mapping from one finite space to another. Using 
two hidden layers enables the DNN to model an arbitrary 
decision boundary to an arbitrary accuracy [4]. Therefore, two 
versions of each DNN with different input layer will be 
investigated: a one hidden layer version and a two hidden 
layer version. 

The input layer is defined by the features of the training data, 
that are often called markers. Consequently, the number of 
nodes for the input layer is the number of markers of your 
training data. The output layer is then defined by the desired 
output and the number of nodes for that reason equals one, 
namely the view factor. The choice of the activation layers and 
the used optimizer are also considered as neural network 
model design. The Stochastic Gradient Descent (SGD) 
optimizer is used as standard optimizer and the Adam 
optimizer as advanced option [5]. In regression tasks no 
activation function is applied to the output layer. The input 
layer and the hidden layer are typically followed by the 
Rectifying Linear Unit (ReLU) activation function in regression 
tasks [6]. To avoid overfitting of the neural net two options are 
tested: using so-called “Dropout Layers” or applying the early 
stopping method [7]. The learning rate and if used the dropout 
rate are called the hyperparameters of the neural network. 
Together the model design and the hyperparameters form the 
neural net model parameters. To achieve the best possible 
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generalization with the DNN-based model it is essential to 
optimize these model parameters. The optimization is 
performed by the randomized search approach [8]. 
 

3. Training of the deep neural net 
As previously mentioned, the view factor data is generated 

with the Rayfactor tool from a randomly-positioned 
monodisperse particle bed. The particle bed contains of 587 
particles. The particle volume fraction of the system is 0.40. 
Therefore, a dataset with 586∙ 586 can be generated since 
every particle is emitting and absorbing. To ease up the 
training a dataset with 33 emitting particles is considered. The 
dataset is split into a training set, validation set and test set, 
where 80 % is used for training and respectively 10 % for 
testing and validation.  

Figure 2 shows exemplarily the view factors that are 
calculated by the Rayfactor tool for one emitting particle and a 
simple regression over the dimensionless surface to surface 
distance 𝑆 . 

 
Figure 2: Exemplary view factor data for one emitting particle 
in the particle bed shown in Figure 1. 

The creation and the training of the DNN is performed within 
the Keras® framework in Python®. The preparation of the raw 
data and the randomized search optimization is made by using 
the Scikit-learn® environment. One has to note that very small 
view factors lead to negligibly small heat fluxes and are set to 
zero if they are below a threshold value of 5 ∙ 10-6. The 
thresholding is applied to the training data and also to the 
prediction of the DNN. The mean squared error (MSE) 
between the target and the prediction is one metric to describe 
the performance of the DNN. Because the MSE is significantly 
more influenced by big view factors and does not reflect the 
overall quality of the prediction, the calculated view factors are 
correlated to the view factors determined via Monte Carlo 
Raytracing. The coefficient of determination (R ) is then used 
to describe this correlation. For the use in dense settled 
particle beds with very high particle volume fractions, separate 
datasets need to be created. The derived DNN-based model 
can be used for non-settled particle beds without limitation. 
Particle distances or system sizes are also not restrictive, 
since input markers are typically normalized before being fed 
to the neural net. 

 
 

4. Marker Selection 
As can be seen in Figure 2 a certain distance 𝑆  between 

the emitting and absorbing particle can lead to varying view 
factors. A neural net with a single input node always 
represents the same output for the same input. Therefore, 
additional markers that can be fed into the neural net need to 
be found within the particle data. 

The solid angle between the interacting particles is an 
important quantity in the analytical integration of view factors. 
For that reason, the solid angle will be investigated as marker. 

Representative for a local particle volume fraction the volume 
of Voronoi cells achieved from Voronoi tessellation is also 
considered as marker. Shadows between particles 
significantly influence the radiative heat transfer, therefore an 
algorithm that detects particles that are between the emitting 
and the absorbing particle in a certain volume was 
implemented. The number of particles in that volumetric area 
is counted and the significance of that marker for the 
prediction is also investigated. To adjust the results to 
polydisperse systems additional markers, e.g., the ratio of the 
radii could be used.  
 

5. Results 
The Projection Method (number of test points = 400) 

achieves an MSE of 7.8∙10-7 on the test dataset. It took 16.24 
s to distribute the test points and 24.55 s to calculate the view 
factors on a single CPU core. The coefficient of determination 
is 0.986.  

A simple linear regressor derived from the total dataset (for 
an example regression see Figure 2) achieves an MSE of 
7.6∙10-7 on the test dataset at a basically instantaneous speed. 
However, as can be seen quantitively in Figure 2, the simple 
regression cannot accurately predict the spread of the view 
factors for large distances between the particles.  

Figure 3 shows the correlation of the DNN view factors with 
that of the Monte Carlo Raytracing method. The DNN-based 
Model achieves an MSE of around 5∙10-7 while taking around 
0.30 s to calculate the view factors and 0.55 s to load the 
pretrained model. The R  value is 0.9906. 

 
Figure 3: Prediction of the DNN-based model vs. target from 
Monte Carlo Raytracing of a test dataset 

It is demonstrated that a pretrained DNN can model view 
factors at higher accuracy and with significantly less 
computational effort than other models in literature.  
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