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Abstract

Electron spectroscopy techniques based on the interaction of electrons with matter are
one of the most popular tools for surface analysis. Methods of electron spectroscopy
imply the irradiation of a solid surface with e.g. an electron beam with the subsequent
detection of the outgoing electron signal acquired in the form of the energy and angular
distribution of emitted electrons or the energy spectrum. The interpretation of such
electron spectra requires the knowledge on the interaction processes of electrons with
matter.

This thesis is dedicated to the investigation of electron transport in solids by means of two
different approaches: the invariant imbedding method and the Monte Carlo simulation.
The former approach is employed in problems of the interpretation and analysis of energy
spectra of complicated multi-component materials such as graphene oxide. The possibility
of the detection of light elements, including hydrogen and its isotopes, in different targets
by means of elastic peak electron spectroscopy (EPES) is demonstrated.

The latter approach is employed for the investigation of the secondary electron emission
phenomenon. Unfortunately, electron emission is still far from being quantitatively
understood which is partly due to the experimental difficulty associated with the in-
vestigation of very low energy electrons. From the theoretical point of view, secondary
electron emission modeling at a few eV is complicated by the absence of reliable data
on the electron-solid interaction at such low energies such as the inelastic mean free
path (IMFP). It turns out that secondary electron yield (SEY) values at any incident
energy depend sensitively on the IMFP values, in particular below 100 eV, which makes
it possible to get a realistic estimate for the IMFP values at low energies by comparing
calculated SEY values with experimental data during variation of the IMFPs. In this
work, a Monte Carlo model has been developed to describe the process of secondary
electron emission from solids and calculate the SEY. The determination of IMFPs at
low energies (below 100 eV) from analysis of SEYs at high energies was successfully
performed for several metals and the results indicate that the IMFP values based on the
Mermin dielectric function are more realistic. All the knowledge gained from this study
points to the possibility of building a reliable theoretical model on the phenomenon of
secondary electron emission. Experimental investigation of the IMFP at low energies
by means of EPES was also carried out and results on the IMFP determination for a
polycrystalline gold are presented.



Аннотация

Электронная спектроскопия, основанная на взаимодействии частиц и излучений с
поверхностью твёрдого тела, является одним из самых популярных методов для
анализа поверхности. Данная методика подразумевает облучение поверхности иссле-
дуемого образца, например, электронным пучком с последущим детектированием
выходящего с поверхности сигнала, фиксируемого в виде энергетического и углового
распределения вылетающих электронов или электронного спектра. Интерпретция
таких электронных спектров требует наличия знаний о законах взаимодействия
электронов с веществом.

Эта диссертация посвящена исследованию процессов переноса электронов в твёрдом
теле с использоанием двух подходов: метода инвариантого погружения и статисти-
ческого моделирования Монте Карло. Первый подход был использован в задачах
интерпретации электронных спектров от сложных многокомпонентных мишеней на
примере анализа оксида графена. Также в данной работе продемонстрирована воз-
можность детектирования водорода и его изотопов в различных мишенях используя
спектроскопию пиков упруго отражённых электронов (СПУЭ).

Второй подход использовался для исследования явления вторичной электронной
эмиссии твёрдых тел. К сожалению, вторичная электронная эмиссия всё ещё да-
лека от количественного понимания, что отчасти связано с экспериментальными
сложностями проведения каких-либо исследований, задействующих электроны с
очень низкой энергией. С теоретической точки зрения, моделирование вторичной
электронной эмиссии при нескольких эВ усложняется отсутствием надёжных данных
о характеристиках взаимодействия электронов с твёрдым телом при таких низких
энергиях. Одной из важнейших характеристик в данном случае является длина
свободного пробега между двумя последовательными неупругими соударениями
налеющего электрона с электронами мишени. В данной работе показано, что коэффи-
циент вторичной электронной эмиссии, измеренный при любых энергиях падающего
электронного пучка, зависит в основном именно от этой величины на низких энергиях.
Другими словами, число эмитируемых вторичных электронов наибольшим образом
зависит от длины неупругого пробега электронов с низкой энергией, независимо от
энергии падающего пучка. Таким образом, данный факт позволяет получить реали-
стичную оценку значений длины неупругого пробега электронов с низкой энергией
путём сравнения экспериментально измеренных значений коэффициента вторич-
ной электронной эмиссии с результатами расчёта этой величины, полученных при
подстановке теоретических значений неупругой длины, варьируемых между двумя
границами, найденными в литературе. Для этого была разработана модель Монте
Карло, позволяющая описать процесс вторичной электронной эмиссии и рассчитать
значения коэффициента вторичной электронной эмиссии. Определение неупругой
длины электронов с низкой энергией (ниже 100 эВ) из анализа этого коэффициента,
измеренного при высоких начальных энергиях, было успешно выполнено для несколь-
ких металлов. Результаты данного исследования показали, что величины неупругого



пробега, рассчитанные на основе диэлектрической функции Мёрмина, являются наи-
более реалистичными. Все знания, полученные в этом исследовании, указывают на
возможность построения надёжной теоретической модели для описания и понимания
явления вторичной электронной эмиссии. Также была проведена попытка экспери-
ментального определения неупруго пробега электронов с низкой энергией с помощью
метода СПУЭ. Данное исследование не показало значимых результатов, подтверждая
сказанное выше об экспериментальных трудностях измерения каких-либо величин
при низких электронных энергиях.



Kurzfassung

Eine der beliebtesten Methoden zur Oberflächenanalyse ist die Elektronenspektroskopie,
welche auf der Wechselwirkung von Teilchen und Strahlung mit der Oberfläche eines
Festkörpers beruht. Diese Technik basiert auf der Bestrahlung einer zu untersuchenden
Probe, z. B. mit Hilfe eines Elektronenstrahls, und der anschließenden Detektion eines
von der Oberfläche ausgehenden Signals. Welches in Form einer Energieverteilung der
austretenden Elektronen oder des elektronischen Spektrums aufgezeichnet wird. Die
Interpretation solcher elektronischer Spektren erfordert die Kenntnis der Wechselwirkungs-
gesetze von Elektronen mit Materie.

Diese Dissertation widmet sich der Untersuchung des Elektronentransports in einem
Festkörper unter Verwendung zweier Ansätzen: der invarianten Immersionsmethode und
der statistischen Monte Carlo Simulation. Der erste Ansatz wurde bei der Interpretation
Elektronenspektren von komplexen Mehrkomponententargets am Beispiel der Graphe-
noxidanalyse verwendet. Weiters wurde in dieser Arbeit die Möglichkeit des Nachweises
leichter Elemente, wie Wasserstoff und seiner Isotope, in verschiedenen Targets anhand
der elastischen Peak Elektronen Spektroskopie demonstriert.

Der zweite Ansatz wurde verwendet, um das Phänomen der Sekundärelektronenemission
von Festkörpern zu untersuchen. Bedauerlicherweise ist die Sekundärelektronenemission
immer noch weit von einem quantitativen Verständnis entfernt, was teilweise auf die exper-
imentellen Schwierigkeiten bei der Durchführung von Untersuchungen mit Elektronen mit
sehr geringen Energien zurückzuführen ist. Aus theoretischer Sicht wird die Modellierung
der Sekundärelektronenemission bei mehreren eV durch das Fehlen zuverlässiger Daten
über die Eigenschaften der Wechselwirkung von Elektronen mit einem Festkörper bei
derart niedrigen Energien erschwert. Im Bereich solch niedriger Energien ist eine der
wichtigsten Eigenschaften die unelastische mittlere freie Weglänge von Elektronen, welche
die Distanz zwischen zwei aufeinanderfolgenden unelastischen Kollisionen angibt. Diese
Arbeit zeigt, dass der Sekundärelektronenemissionskoeffizient bei beliebigen Energie
des einfallenden Elektronenstrahls hauptsächlich von der unelastischen mittleren freien
Weglänge bei niedrigen Energien abhängt. Mit anderen Worten, die Anzahl der emit-
tierten Sekundärelektronen hängt am stärksten von der Länge des unelastischen Weges der
niederenergetischen Elektronen ab, unabhängig von der Energie des einfallenden Strahls.
Diese Tatsache ermöglicht es eine realistische Schätzung des unelastischen mittleren
freien Weges für niederenergetische Elektronen zu erhalten. Hierfür werden experimentell
gemessenen Werte des Sekundärelektronenemissionskoeffizienten mit berechneten Werten
dieser Größe verglichen. Diese berechneten Sekundärelektronenemissionskoeffizienten
werden durch Ersetzen der theoretischen unelastischen Längenwerte zwischen den beiden
in der Literatur gefundenen Grenzen erhalten. Für diesen Zweck wurde ein Monte Carlo
Modell entwickelt, welches den Prozess der Sekundärelektronenemission beschriebt und
die Werte des Sekundärelektronenemissionskoeffizienten berechnet. Die Bestimmung der
unelastischen Länge von niederenergetischen Elektronen (unter 100 eV) aus einer Analyse
dieses Koeffizienten, gemessen bei hohen Anfangsenergien, wurde für mehrere Metalle



erfolgreich durchgeführt und wies gute Übereinstimmung mit Werten auf Grunde dielek-
trischen Function nach Mermin auf. Alle in dieser Studie gewonnenen Erkenntnisse weisen
auf die Möglichkeit hin, ein zuverlässiges theoretisches Modell zur Beschreibung und
zum Verständnis des Phänomens der Sekundärelektronenemission zu erstellen. Zusätzlich
wurde versucht die inelastische freie Weglänge der niederenergetischen Elektronen unter
Verwendung der elastischen Peak Elektronen Spektroskopie experimentell zu bestimmen.
Diese Studie zeigte keine signifikanten Ergebnisse und bestätigte die obigen Ausführungen
zu den experimentellen Schwierigkeiten bei Messungen niederenergetischer Elektronen.
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Vytautas Astašauskas and Martin Hronek having made my work there such a pleasant
experience. Their support, assistance, and friendliness helped me a lot to fulfill my
research.

A special gratitude I give to my husband Andrey Ridzel for supporting me in all of mine
undertakings. I am greatly thankful to him for having created an environment necessary
for my work.

Financial support by the FP7 People: Marie-Curie Actions Initial Training Network (ITN)
SIMDALEE2 (Grant No. PITN 606988) is gratefully acknowledged. The computational
results presented have been achieved using the Vienna Scientific Cluster (VSC).





Contents

1 Introduction and Motivation 11
1.1 Basic knowledge about the electron-induced energy spectrum . . . . . . . 13
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Electron transport in solids 21
2.1 Elastic scattering in solids . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Inelastic scattering in solids . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Calculation of the DIIMFP using optical data . . . . . . . . . . . . 33
2.2.2 Surface excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.3 Inner-shell ionization . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Production of secondary electrons . . . . . . . . . . . . . . . . . . . . . . . 39
2.4 Escape over the surface potential barrier . . . . . . . . . . . . . . . . . . . 41
2.5 Insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.1 Electron-phonon scattering . . . . . . . . . . . . . . . . . . . . . . 49
2.5.2 Polaronic effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Solution of the Boltzmann-type transport equation in non-crystalline
media 53
3.1 Invariant imbedding method . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1 Multi-layered systems . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.2 Inclusion of surface effects . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Monte Carlo model for the electron-induced secondary electron emission
from solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Approbation of the presented approaches . . . . . . . . . . . . . . . . . . 71
3.3.1 The slowing down regime . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.2 The quasi-elastic limit . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Applications of the IIM for surface analysis 81
4.1 Retrieval of the DIIMFP from REELS and XPS using the IIM . . . . . . 81

4.1.1 Investigation of the structural evolution of graphene oxide during
thermal reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.2 Detection and analysis of hydrogen isotopes using electron spec-
troscopy techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 92



5 Low energy (1 - 100 eV) electron inelastic mean free path (IMFP) 103
5.1 Determination of the IMFP at low energies from analysis of secondary

electron yields (SEY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.1.1 Input data for the MC simulation . . . . . . . . . . . . . . . . . . 108
5.1.2 Obtained results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.1.3 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Experimental determination of low energy IMFP using elastic peak electron
spectroscopy (EPES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2.2 Determination of IMFPs from elastic peak intensities . . . . . . . . 121

6 Summary and conclusions 129



Chapter 1

Introduction and Motivation

The electron was discovered more than a century ago. However there are still fundamental,

yet unresolved questions concerning the interaction of electrons (in particular low energy

electrons) with a solid surface. Nowadays, many scientific and technological fields

employ electron beam techniques to analyze and modify surfaces. For example, electron

spectroscopy techniques such as the Electron Energy Loss Spectroscopy (EELS) and the

X-ray Photoelectron Spectroscopy (XPS) are based on the interaction of electron and

photon beams with matter for surface analysis [1]. The use of electrons makes these

techniques highly surface sensitive due to the fact that the information depth in such

an analysis employing medium energy electrons as probing particles is about several

nanometers. This value is determined by the so-called Inelastic Mean Free Path (IMFP)

defined as the average distance between two successive inelastic collisions measured along

the electron trajectory. It is governed by the intense interaction of a probing electron

with the solid state electrons.

While for surface analysis usually medium energy (200 - 5000 eV) electrons are used, one

particular area of current interest in science concerns electrons with low kinetic energies

(below 50 eV). Generation of Low Energy Electrons (LEE) occurs upon the inelastic

interaction of charged particles with a solid medium. In an inelastic collision a part of the

energy of an impinging electron is transferred to a solid state electron or to the ensemble

of solid state electrons. As a consequence of such a collision, a Secondary Electron (SE)

can be generated. The motivation of studying the interaction of low energy electrons

(0− 100 eV) with matter comes from many scientific and technological applications. One

of them is accelerator physics. Here low energy SEs critically affect the operation of
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particle accelerators, since they can lead to electron cloud formation through multipacking

[2, 3], e.g. in the Large Hadron Collider at CERN. An incoming proton ionizes the

residual gas in the beam pipe, and as a result electrons are generated. However, it also

produces synchrotron radiation, and generated photons in turn also create photoelectrons.

These electrons collide with the vacuum chamber walls, resulting in emission of SEs

which are boosted by the proton beam coming by in the next bunch. In this way, SEs are

multiplied leading to electron stimulated desorption and thermal load. The mitigation

of the electron cloud becomes particularly important when the high-luminosity mode

will be taken into operation [4, 5, 6]. Another phenomenon where Secondary Electron

Emission (SEE) plays a crucial role is mitigation of charging of spacecrafts [7]. Detailed

understanding of the mechanisms of the emission of secondary electrons is also essential

when investigating the plasma-wall interaction in a fusion reactor [8]. Here the cloud of

low energy electrons emitted from the internal surface of the reactor, where the plasma

is maintained, influences its stability to an important degree.

SEs also play a crucial role in the visualization of nanostructured materials in the

Secondary Electron Microscope (SEM) [9, 10, 11]. In scientific apparatus, employing

electron spectroscopies, SEE is undesirable in electron optics, whereas at the same time

it is exploited in the same instrument for amplifying the electron signal coming from

the sample for its detection [12]. There is also an important class of applications where

the creation of secondary electrons in the form of hot electrons (below the vacuum level)

causes either desired or undesired effects [3]. These applications include nanopatterning

of surfaces employing electron beam lithography [13] and deals with the proximity effect

of diffusing hot electrons thus limiting the attainable lateral resolution. In the case

of biological tissue, LEEs cause damage in the form of bond breaking of DNA which

may lead to tumor formation, but at the same time the application of low energy

electrons for therapeutic purposes is also being investigated [14]. Finally, hot electrons

are employed in microelectronics and photovoltaics, underpinning the importance to

learn about fundamentals of their generation mechanism.

For all scientific cases and technological applications mentioned above, it is desirable to

control SEE to some extent which represents a highly demanding scientific goal.

12



1.1. Basic knowledge about the electron-induced energy spectrum
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Figure 1.1: Monte Carlo simulation of secondary electrons emitted from a Au target, for a primary
electron energy of E0 = 1000 eV for normal electron incidence and emission into the entire hemisphere
above the sample. The total energy distribution (blue curve) is made up of backscattered primary
electrons (green curve) and secondary electrons (red curve).

1.1 Basic knowledge about the electron-induced energy

spectrum

Generally, the bombardment of a solid surface by charged particles yields the backscat-

tering of the probing particles (primaries) and the emission of secondary electrons. As

a result, a characteristic energy distribution of emitted electrons is acquired known as

electron spectrum. Fig. 1.1 shows results of a Monte Carlo (MC) calculation of a typical

energy distribution of electrons emitted from a gold surface. The electrons detected in

such a spectrum can be subdivided into three groups namely: (1) elastically reflected

primary electrons; (2) inelastically backscattered primary electrons; (3) emitted secondary

electrons [15].

1. Elastically reflected primary electrons are those which escape from the solid without

suffering energy loss processes. As a consequence, they make up a peak in the

spectrum at the energy of the primaries referred to as the elastic or zero-loss peak

and marked as “I” in Fig. 1.1. Elastic scattering occurs by means of the interaction

13
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between the electron and a nucleus involving a deflection of the electron wave by

the (screened) Coulomb field of the nucleus. Such a collision is accompanied by

a large momentum transfer and by a small recoil energy loss. Due to the large

mass difference between electron and nucleus, this energy loss is usually negligible

compared to any energy loss experienced in inelastic collisions. Therefore the

electron gets deflected but its energy is considered to remain unchanged.

2. Inelastically backscattered primary electrons are those which escape from the solid

after having transferred part of their energy and momentum to a solid state electron

or to the ensemble of solid state electrons. After suffering single or multiple energy

losses during the inelastic scattering electrons contribute to the lower kinetic energy

side next to the elastic peak in the spectrum known as the inelastic background

(marked as “II” in Fig. 1.1). Since both probing electrons and solid state electrons

have the same mass the energy transferred to the electronic subsystem of the solid is

accompanied by a small momentum transfer. Therefore deflections during inelastic

scattering can be neglected implying rectilinear motion for impinging electrons.

3. True secondary electrons are defined as those emitted from the solid as a consequence

of the inelastic interaction between the probing electrons and the solid state electrons.

Some of these SEs can escape over the surface potential barrier after the generation

if their kinetic energy is sufficient to overcome the surface potential barrier. However,

after being created the SE can also undergo additional scatterings (elastic and

inelastic) along its path towards the surface. Therefore this SE can in turn produce

other SEs as a result of multiple inelastic collisions. Such a cascade process yields

an essentially featureless peak of a high intensity positioned at low energies in

the spectrum and referred to as the secondary electron peak (marked as “III” in

Fig. 1.1). As can be seen in the red curve in Fig. 1.1 a certain fraction of SEs

escapes from the solid with energies comparable with the primary energy, although

the majority is released with energies below ∼ 50 eV. On the other hand, the green

curve in Fig. 1.1 shows that the contribution of backscattered primaries to the

total spectrum is more than an order of magnitude smaller than the contribution of

secondaries, which is the reason why, by convention, electrons with energies below

∼ 50 eV are designated as secondary electrons.

The energy distribution of all these electrons is characteristic for a certain investigated

material since it is related to its electronic structure and chemical composition. For

example, measurement of the intensity of the elastic peak in the energy spectra allows the

14
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experimental determination of the value of the IMFP for the investigated target [16, 17, 18].

The IMFP is the quantity of paramount importance in all electron spectroscopy techniques

since it determines the surface sensitivity. For medium energy electrons (200 - 5000 eV)

this value is of the order of several nanometers which makes it very difficult to measure.

One of the commonly accepted approaches for doing that for homogeneous materials is

Elastic Peak Electron Spectroscopy (EPES) consisting in measurements of the intensity

of the elastic peak in absolute units [19]. The corresponding value of the IMFP is

then obtained after fitting the calculated intensity to the measured intensity. The

proportionality between the IMFP and the elastic peak intensity can be explained as

follows: the larger average distance between inelastic collisions, the more electrons are

elastically scattered because the probability that an inelastic process occurs on the way

into the target and out of the target is reduced. Therefore the elastic reflection coefficient

depends sensitively on the IMFP. The question remains as to whether the EPES technique

for the determination of the IMFP can be employed for electron beams of low incident

energies (below 100 eV).

The second application of EPES when measuring elastic peaks with a high energy

resolution (of the order of 0.01 eV) is quantitative identification of elements in the sample.

This is attributable to the fact that during an elastic event not only momentum is

transferred but depending on the energy of the impinging electron and the scattering

geometry there is also a measurable recoil energy loss. For higher incident energies

and lower atomic number Z, this value becomes significant implying that in the energy

spectrum the elastic peak will be shifted by this value from the position corresponding

to the incident energy. Therefore the elastic peaks, formed by electrons elastically

backreflected from different elements in the sample, split up into separate components.

Due to this fact, EPES can be utilized to quantify relative concentrations of different

elements in the target in particular light elements such as hydrogen [20, 21, 22, 23, 24,

25]. This constitutes a great advantage since by means of other electron spectroscopy

techniques, such as XPS, hydrogen cannot be detected. The problem remains as to

elastic peaks positioned at higher recoil energy losses are superimposed on the inelastic

background. It is then essential for a quantitative interpretation of the elastic peaks to

subtract the inelastic background in a meaningful way. In order to do this, knowledge

on the Differential Inverse Inelastic Mean Free Path (DIIMFP) is required which is an

important quantity describing inelastic scattering.

The DIIMFP is defined as the distribution of energy losses in an individual inelastic

scattering process. When the DIIMFP is known it can be used to retrieve optical
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constants of the solid [26]. On the other hand, using optical measurements and linear

response theory represents an attractive way to obtain the DIIMFP [27, 28]. However,

measuring the optical response in terms of the refractive index and the extinction

coefficient in a wide wavelength range is known to be not straightforward [28, 26].

This requires the use of monochromated synchrotron radiation or different sources and

monochromators for a different range of wavelengths [26]. In the case of transmission

measurements, samples with different thicknesses are required. All this points out to the

use of considerable experimental resources. The EELS technique represents an alternative

method to experimentally determine the DIIMFP. When using electrons instead of

photons, a wide range of energy losses is accessible in the same experiment which poses no

significant challenge [29]. The retrieval of the DIIMFP from electron energy loss spectra

is performed using deconvolution and fitting algorithms. Note that the determination of

the DIIMFP from an energy loss measurement is complicated on one hand by the fact

that multiple scattering occurs so that contributions of n−fold scattered electrons overlap.

On the other hand, due to the presence of the vacuum-surface interface, the energy loss

law in the near surface region differs from those deep inside the bulk of the solid [30].

Commonly the DIIMFP refers to bulk excitations and the so-called Differential Surface

Excitation Probability (DSEP), defined as the distribution of energy losses in a single

surface crossing, refers to surface excitations. The deconvolution method proposed by

Werner et al. [26] implies two EELS spectra acquired in bulk and surface sensitive modes.

The authors have demonstrated that results of this approach yields reasonable agreement

with predictions of Density Functional Theory (DFT) and generally satisfactorily agree

with literature data from optical experiments [27, 28] while significant differences were

found in some cases [29]. Furthermore, when a composite material is involved the use

of the deconvolution procedure becomes questionable. In this case fitting algorithms

can be used to retrieve the DIIMFP. Such an extracting procedure requires multiple

calculations of the energy spectrum in order to fit experimental data which makes it

significant to have an accurate and non-time-consuming computational method. Recently,

the approach first introduced by Ambartsumian [31, 32] for radiative transfer namely

the Invariant Imbedding Method (IIM) was demonstrated to be a powerful tool for an

accurate prediction of electron energy loss spectra [33, 34, 35, 36, 37]. The numerical

solution of the system of Ambartsumian-Chandrasekhar linear equations received within

the IIM was shown to be very efficient with respect to performance [35]. However, the

IIM does not account for the energy dependence of interaction characteristics such as

the DIIMFP and IMFP implying the so-called Quasi-Elastic (QE) approximation. This

means that all scattering properties are determined for the incident energy and remain
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fixed during the slowing down of electrons in the solid. The mean energy loss is indeed

known to exhibit a weak energy dependence for medium and higher energies (above

500 eV) whereas for electrons at lower energies (below 100-200 eV) it becomes significant

[17]. In particular it is important for the prediction of the SE peak positioned at energies

below 50 eV in the spectrum. Thus employing the QE approximation is only valid when

the mean energy loss is much less than the electron energy.

Due to the formation of the SE cascade, the SE peak represents the most prominent

contribution to the energy spectrum although it remains essentially featureless since the

details of interaction processes are smeared out [3]. This is one of the reasons why SE

emission is still far from being quantitatively understood. Usually, the quantity of interest

is the number of secondary electrons emitted per one primary electron which is known

as the so-called Secondary Electron Yield (SEY). The SEY measurements found in the

literature are usually performed for incident energies ranging from several eV to several

keV [38]. Many authors investigated the SEY developing approaches to describe and

predict this value, however, some of them are semi-empirical allowing only qualitative but

not quantitative understanding of the SEY. A commonly employed semi-empirical formula

to predict the SEY as a function of the incident energy was introduced by Lin and Joy

[39]. The authors performed a thorough examination of collected experimental data for

44 elements by means of Monte Carlo calculations in order to derive a universal formula

to predict the SEY. However, since there is a spread in experimental data themselves

it is difficult to provide a reliable quantification from these data. This yields only a

qualitative description of the SEY even though the Lin and Joy approach remains one of

the most commonly used.

Another widely used approach to describe the SEE process employs a statistical Monte

Carlo simulation [40, 41]. The MC algorithm employs the so-called three-step model

implying (1) transport of a primary electron in a solid, (2) generation of a secondary

electron, and (3) transport and escape over the surface potential barrier of the produced

SE. Already the first step includes some assumptions concerning mechanisms of the

emission of SEs. Commonly it is assumed that in each inelastic event a SE is produced

with energy ESE = EF + ω, where ω is the energy transferred from the impinging

electron. However, the question remains as to whether each such an event generates a

single secondary electron or a swarm of secondaries, instead. Another concern is related to

the assumption that SEs are mainly ejected from the Fermi level whereas it is important

to consider electron emission from anywhere within the valence band.
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Figure 1.2: Comparison of the IMFP data for Cu calculated using the Mermin dielectric function (solid
green curve) [38] and the Penn algorithm (solid red curve) [42]. Data points represent the collection of
literature data [43, 42, 44, 18, 45, 46, 47, 48].

The second step describing the transport of SEs requires a quantitative knowledge

of electron scattering processes at energies below 100 eV. In particular, quantitative

knowledge of IMFP values at low energies is needed. Fig. 1.2 shows the inelastic mean

free path in angstroms against the energy above the Fermi level in eV for copper. Note

that the vacuum level is located at the energy of 5.65 eV indicated by the vertical bar

marked φ being the work function. The solid curves show the energy dependence of

the IMFP calculated on the basis of Penn’s algorithm (red curve) [42] and the Mermin

dielectric function (green curve) [49] which represent two different ways to approximate

the dielectric function within linear response theory as will be explained in Section 2.2.

Data points show experimentally measured and theoretically calculated values found in

the literature [43, 42, 44, 18, 45, 46, 47, 48]. As can be clearly seen from Fig. 1.2 at high

electron energies (above 100 eV) the IMFP values measured experimentally or calculated

using different theoretical approaches are found to be in a good agreement to each other.

Whereas at low energies (below 100 eV) there is a huge spread in these data as depicted

in Fig. 1.2. Below 100 eV it is complicated in principle to conceive any experimental

method to verify theoretical calculations. As mentioned above, the EPES technique is

usually employed for the experimental determination of the IMFP. There is also a number

of other experimental techniques but all of them require measurements at low energies,

which is essentially a big challenge [38]. The experimental difficulties arising to measure
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any physical quantity at low energies include: strictly controlled vacuum conditions, a

rigorous sample preparation, and control of stray electromagnetic fields.

Besides the IMFP at low energies the knowledge on the mean inner potential Ui is also

lacking or there is a spread between these values in the literature [50]. The value of the

inner potential Ui is usually defined as the sum of the Fermi energy EF and the work

function φ. For medium energy electrons when E � Ui the inner potential does not play

a crucial role, whereas for low energy electrons when E ' Ui this value becomes essential

since it determines the possibility to escape over the surface potential barrier (the last

step in the three-step model).

Even though the three-step model represents a simplistic approach it seems to work

quite reasonably for many applications such as calculations of energy loss spectra and

secondary electron yields and is frequently employed by many authors. Nevertheless, a

quantitative prediction of most of the important characteristics of the SEE phenomenon

still awaits for a complete description and understanding of this process.

1.2 Outline of the thesis

This thesis is split into two parts dedicated to the investigation of electron transport at

both medium and low energies. First, in Chapter 2 the key aspects of electron transport

in solids are presented. Chapter 3 describes two computational methods employed in

this work for finding a solution to the Boltzmann-type transport equation: the invariant

imbedding method and the Monte Carlo simulation. The IIM is employed within the

Partial Intensity Approach (PIA) implying the quasi-elastic energy regime. The multi-

layered model for the description of REELS and XPS spectra with the inclusion of surface

excitations is discussed. The Monte Carlo simulation is based on the direct simulation

algorithm and is used in the Slowing Down (SD) energy regime to describe the SEE in

solids within the three-step model. Comparisons between the two presented approaches

are demonstrated.

In Chapter 4 applications of both approaches (IIM and MC) are shown. In this work,

the IIM approach is employed to retrieve the DIIMFP using a direct fitting algorithm

for the investigation of the structural evolution at the thermal reduction of graphene

oxide. Furthermore the possibility to use the IIM for the interpretation of hydrogen

peaks in EPES spectra is described. This has been pursued employing several electron

spectroscopy techniques for an accurate subtraction of the inelastic background from the
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EPES spectra of Be-D samples. The application and tests of the MC simulation model

are demonstrated using as an example the calculation of the backreflection coefficient as

a function of the incident energy for several materials. The implementation of surface

excitations is made on the basis of the position-dependent DIIMFP for electrons crossing

solid surfaces for different crossing angles and electron distances relative to the crossing

point at the surface [51]. The results of MC calculations of the angular distribution of

the average number of surface excitations taken from Ref. [52] were used in order to test

the MC code developed in this work.

The possibility to extract the information on low energy (below 100 eV) IMFP values

from measurements of the SEY at high energies is demonstrated in Chapter 5. The SEY

is typically measured over the incident energy range from several eV to several keV and

represents the number of the emitted secondary electrons divided by the number of the

incident electrons. It is demonstrated in this work that the SEY for arbitrary energies

depends sensitively on the IMFP values at low energies (below 100 eV) providing a useful

tool to estimate this quantity. The estimation of IMFP values at low energies using

analysis of SEYs is performed on the basis of the Monte Carlo simulation of SEE process

in solids. For most investigated materials optimum IMFP values are found to be close to

those based on the Mermin dielectric function. Therefore the presented approach allows

reverse engineering the IMFP at low energies.

An attempt of measuring the IMFP at low energies (1-100 eV) by means of EPES

is also discussed in this work. A good agreement of the extracted IMFP values with

literature data is obtained at energies above 500 eV whereas at lower energies results are

unsatisfactory. First of all, this is due to the fact that below 100 eV it is complicated to

perform any measurements at low energies [38]. From the other side, the reliability of

obtained IMFPs strongly depends on the theoretical method used for their derivation

from measurements. The method used in the present work is well established at medium

energies (above 500 eV) whereas at lower energies its reliability can be questionable.
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Chapter 2

Electron transport in solids

A quantitative understanding of any electron spectroscopy technique based on the

analysis of reflected, transmitted, or photo-emitted electrons from solid surfaces requires

an accurate description of the interaction of the probing particles with the target. Many

different physical processes play a role in the generation of the outgoing electron signal

after such an interaction with the sample which is measured experimentally and then

has to be interpreted. In materials with out long-range order the electron transport in

a solid can be conveniently described by means of non-coherent scattering of particles

[3]. If spin disregarded, the description of the electron transport in the solid requires

quantitative knowledge of the processes that cause changes in the electron state given

in terms of its direction of motion and the speed [17]. These processes responsible for

the change of the direction of motion and the energy of an electron are called elastic

and inelastic scattering which will be described further in the text. Before the probing

electron is emitted its transport in the solid involves multiple scattering including both

elastic and inelastic processes, which makes the resulting signal a complex combination

of these effects.

2.1 Elastic scattering in solids

The elastic interaction between an electron and a solid surface involves a deflection of

the electron by the (screened) Coulomb field of the nucleus over scattering angle ψ,

accompanied by a small recoil energy loss. Due to the large mass difference between

electron and atomic nuclei this energy loss is negligible compared to an energy loss
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experienced in inelastic collisions. The description of elastic scattering requires data

for the Elastic Mean Free Path (EMFP), the total and the Differential Elastic Cross

Section (DECS). The latter quantity represents the distribution of polar scattering

angle in an individual collision. The azimuthal scattering angles are assumed to be

isotropically distributed for spherically symmetric scattering potential. The EMFP is

defined as the average path length an electron travels in between two successive elastic

collisions. The total elastic scattering cross section σel is obtained by integrating the

DECS Wel

(
~Ω, E0

)
=
dσel
dΩ

over the solid angle Ω:

σel =

∫
4π

Wel (ψ) dΩ = 2π

π∫
0

Wel (ψ) sin θdθ (2.1)

The EMFP λel is then given by:

λel =
1

nσel
(2.2)

where n is the atomic density. Different codes are available for the calculation of these

data. One of the most reliable and frequently used approaches is the code system

ELSEPA [53] which performs relativistic (Dirac) partial-wave calculations for scattering

by a local central interaction potential. For atoms and ions, the static-field approximation

is adopted, with the potential set equal to the electrostatic interaction energy between

the particle and the target, plus an approximate local exchange interaction when the

projectile is an electron [53]. Fig. 2.1 shows the DECS in units of a2
0 per steradian

(where a0 = 0.529 Å is the first Bohr radius) for a light (Si) and a heavy element (Au)

at various incident energies E0 calculated using the ELSEPA software. It is seen that

the pronounced forward scattering peak can be observed always, irrespective of the

energy, for both Si and Au. However, in the case of Au the forward scattering peak

is also accompanied by peaks corresponding to larger angle deflections. For Au such

oscillations in the angular dependence are observed to be most pronounced at the energy

of 500 eV (red curve in Fig. 2.1b). These features, which are sometimes referred to as

generalized Ramsauer–Townsend oscillations, are due to interference of the incident with

the scattered wave [17]. For light elements, such as Si, the elastic scattering is generally

dominated by forwarding deflections over small angles.

When an electron with an incident energy E0 interacts with the Coulomb field of a nucleus

it will be deflected over the scattering angle ψ from its initial direction transferring a

small amount of energy to the solid. The energy transfer ∆E between the impinging

electron and target atoms depends on the electron energy, the mass of the scattering atom
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2.1. Elastic scattering in solids

Figure 2.1: Differential cross-section for elastic scattering Wel (ψ) of electrons by: (a) Si; and (b) Au
atoms at several incident energies: E0 = 100, 500, and 1000 eV.

M , and the scattering angle ψ and is described by the energy/momentum conservation

law as follows:

∆E ≈ 2me

M
(1− cosψ)E0 (2.3)

where me is the electron rest mass and the polar scattering angle ψ is given by:

ψ = 180◦ − arccos

(
µ0µ+

√
1− µ2

0 ·
√

1− µ2 · cosϕ

)
where µ0 = cos θ0 is the cosine of the incident polar angle and µ = cos θ is the cosine of

the emission polar angle. ϕ is the azimuthal angle between the plane of incidence and the

plane of emission. Note that the polar scattering angle is given between the initial and

final directions after the deflection as depicted in Fig. 2.2 which schematically illustrates

the deflection during an elastic scattering event. In this example the situation with the

azimuthal angle ϕ = 0◦ is considered.

Consider the elastic scattering of an electron on a gold atom. The value of ∆E in Eq. 2.3

is then equal to 0.0138 eV assuming a scattering angle ψ = 180◦ (backscattering) and

an incident energy E0 = 500 eV. For higher incident energies the value of ∆E is getting
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Figure 2.2: Schematic illustration of the deflection in an elastic process. θ0 is the incident polar angle,
θ is the emission polar angle, and ψ is the scattering polar angle. The azimuthal angle ϕ = 0◦.

larger but it is still much less than those in an inelastic event, an average value of which

is ∼ e2/a0 = 27.2 eV as will be shown in Section 2.2. Therefore the recoil energy loss

during an elastic event is usually neglected, in particular for heavy elements. What

is more relevant is the transferred momentum. It is useful to introduce the so-called

Transport Mean Free Path (TrMFP) that measures the momentum transfer along the

initial direction [17]:

λ−1
tr = n

∫
4π

(1− cosψ)Wel (ψ) dΩ (2.4)

Since the momentum transfer along the original direction is proportional to (1− cosψ) it

becomes comparable to the initial momentum only for large scattering angles ψ >
π

2
. In

other words, only those deflections, for which the transferred momentum is of the order

of the original momentum of the impinging particle, mainly contribute to the TrMFP.

Therefore the transport mean free path is the typical distance that a particle travels

before it ’forgets’ its original direction or, in other words, its scattering becomes isotropic

owing to large-angle deflections. For materials with high atomic number Z the value of

TrMFP is much smaller than those for light elements. For example, for electrons with

energy 1000 eV propagating in Au the TrMFP is equal 24.5 Å whereas in the case of Al

this value is equal 137.7 Å. It means that the isotropisation process in gold occurs much

faster than in aluminum.
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2.2 Inelastic scattering in solids

Inelastic scattering involves the interaction of an electron with solid state electrons,

accompanied by a small momentum transfer and a large energy loss compared to the

recoil energy loss in elastic collisions. The response of the electronic subsystem of the

solid to the energy deposition depending on the incident energy of electrons proceeds via

different excitation channels including collective plasma oscillations, inner-shell ionization,

intrinsic and inter- or intra-band transitions. When intrinsic losses mainly involve a

direct energy transfer from probing electrons to electrons in the valence band, the inter-

and intra-band transitions consist in the promotion of electrons either from the valence

to the conduction band (interband) or within the same band (intraband) [15].

Knowledge of the inelastic scattering properties, such as the Inelastic Mean Free Path

(IMFP), the total inelastic cross section and the Differential Inverse Inelastic Mean Free

Path (DIIMFP), is important for quantitative understanding of the energy loss process.

The DIIMFP Win (ω,E0) is defined as the energy-loss probability in an individual inelastic

collision and for an electron with energy E0 is related to the dielectric function ε (ω, q)

as follows:

Win (ω,E0) =
1

πE0

q+∫
q−

Im

[ −1

ε (ω, q)

]
dq

q
(2.5)

In expression 2.5 and below, atomic units are used (~ = e = me = 1). The dimensionless

quantity Im

[ −1

ε (ω, q)

]
in Eq. 2.5 represents the so-called Energy Loss Function (ELF)

and will be described further in the text. The limits of integration which depend both

on the incident energy E0 and the energy loss ω are a consequence of conservation of

energy and momentum, as explained in Fig. 2.3 and are given by:

q± =
√

2E0 ±
√

2 (E0 − ω) (2.6)

The IMFP is obtained by integrating the DIIMFP over the energy losses:

λ−1
in (E0) =

∫ E0−EF

0
Win (ω,E0) dω (2.7)

The inelastic interaction of charged particles with matter can be described in terms of

the dielectric response theory. The dielectric description of inelastic scattering was first

introduced by Fermi when he investigated the influence of the polarization of the medium

25



Chapter 2. ELECTRON TRANSPORT IN SOLIDS

Figure 2.3: Schematic illustration of the kinematics in an inelastic process. (a) The kinematics at
constant energy loss ω. The transferred momentum q is the difference in momentum |k0| =

√
2meE0

before and |k1| =
√

2me (E0 − ω) after the energy loss event and varies from q− = |k0| − |k1| for ψ = 0◦

to q+ = |k0|+ |k1| for ψ = 180◦; (b) The kinematics at constant magnitude of q. The largest energy loss
is ωmax = k20/2me − (k0 − q)2 /2me ' qv0 for ψ = 180◦. The dashed part of the small circle corresponds
to energy gain, and can not be accessed [54]. Adapted from Ref. [54].

having dielectric properties on the electric field of a charged particle moving through it

[55]. The dielectric function ε (ω, q) is a complex-valued dielectric constant:

ε (ω, q) = ε1 (ω, q) + iε2 (ω, q)

where ε1 (ω, q) and ε2 (ω, q) are the real (dispersive) and the imaginary (absorptive) part of

the dielectric function, respectively. The dielectric function ε (ω, q) is generally unknown

because experimental tools for measuring ε (ω, q) in the entire domain of changing of

the energy transfer ω and the momentum transfer q don’t exist. ε (ω, q ≈ 0) in the

optical limit can be extracted from optical measurements of the refractive index and

the extinction coefficient [27, 28]. If this data are not available one can calculate ε (ω, q)

using model dielectric functions which describe a set of bound electrons as oscillators

with weighting amplitudes Ci, binding energies ωi, and damping parameters Γi. The

imaginary part of the reciprocal dielectric function or the ELF Im

[ −1

ε (ω, q)

]
in Eq. 2.5

can be expressed from the modelled dielectric function in terms of ε1 and ε2 as follows:

Im

[ −1

ε (ω, q)

]
=

ε2 (ω, q)

ε1 (ω, q)2 + ε2 (ω, q)2 (2.8)

One of the widely used approaches to describe ε (ω, q) is the electron gas statistical model

which is usually referred to as the Drude-Lindhard model which directly operates with
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the reciprocal dielectric function ε (ω, q)−1 [54]:

Im

[ −1

ε (ω, q)

]
=
∑
i

Ci
ωΓiωi (q = 0)2(

ω2 − ωi (q)2
)2

+ ω2Γ2
i

(2.9)

where ωi is the binding energy which may depend on q, Γi corresponds to the damping

of the excitation. This width has an important physical interpretation as it is inversely

related to the lifetime τ of the excitation [56]. Therefore a small value of Γi implies a

long-lived excitation lifetime. The sum of the weighting coefficients Ci is related to the

free electron density of the solid. A simple dispersion relation is often used to describe

the momentum dependence of the resonance frequencies ωi (q) given by:

ωi (q) = ωi (q = 0) + αq2/2me (2.10)

where α is a constant between 1 (for free electrons in metals) and 0 (for deeper levels

and insulators).

A quantum approach of calculating the dielectric function was introduced for a free-

electron gas by Lindhard [57]. To express the Lindhard dielectric function εL (ω, q) for

an electron gas with density n it is convenient to use a few designations: z =
q

2vF
,

u =
ω

qvF
and χ2 =

1

πvF
, where vF is the Fermi velocity defined as vF =

√
2EF with

EF =
1

2

(
3π2n

)2/3
. The density n here is associated with a corresponding density for

each oscillator n =
ω2
i

4π
. By using these dimensionless variables one can write [57, 54]:

εL (ω, q) = 1 +
χ2

z2

(
f1 (u, z) + if2 (u, z)

)
(2.11)

where

f1 (u, z) =
1

2
+

1

8z

(
g (z − u) + g (z + u)

)

f2 (u, z) =



π

2
u, for z + u < 1

π

8z

(
1− (z − u)2

)
, for |z − u| < 1 < z + u

0, for |z − u| > 1

(2.12)
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with g (x) =
(
1− x2

)
ln

∣∣∣∣1 + x

1− x

∣∣∣∣. εL (ω, q) consists of two parts related to the collective

plasmon oscillations (described by a delta function) and single-particle excitation. Ac-

cording to the Lindhard dielectric theory there is a plasmon damping or so-called Landau

damping at the values of q above a critical momentum transfer value qc. It means that

for q > qc plasmons decay by transferring all their energy to a single electron. At small

values of momentum transfer q < qc plasmons are supposed to be undamped, therefore

relaxation processes at these values are neglected in the Lindhard model, which gives

rise to the delta function. However, in real materials plasmon oscillations exhibit a finite

lifetime at any q. Mermin added the damping of the plasmon oscillations into Lindhard’s

description by including a damping constant that represent phonon-assisted electronic

transitions via e-ion collisions [49, 56]:

εM (ω, q) = 1 +

(
1 + iΓ/ω

) (
εL (ω + iΓ, q)− 1

)
1 + iΓ/ω

[
εL (ω + iΓ, q)− 1

]
/
[
εL (0, q)− 1

] (2.13)

The Mermin model has the dispersion ‘built in’ so no dispersion relation is needed

to calculate the ELF at any value of momentum transfer q. Fig. 2.4 shows the ELF

calculated on the basis of the Drude-Lindhard and Mermin models for different q. It is
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Figure 2.4: Im

[ −1

ε (ω, q)

]
for Drude-Lindhard and Mermin models at the q values as indicated. Parame-

ters were taken from [58]: Drude-Lindhard (A = 1, ωi (0) = 15 eV, Γ = 1 eV, α = 1) and Mermin (A = 1,
ωi (0) = 15 eV, Γ = 1 eV).
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clearly seen that away from q = 0 the width of the peak in the Mermin ELF increases and

becomes much larger than the width of the corresponding Drude-Lindhard loss function

[54]. Such a behavior is due to the improved description of damping in the Mermin model

which makes it more realistic compared to the Drude-Lindhard model.

Fig. 2.5 shows the DIIMFP for Al and Au for different incident energies. As seen from

Fig. 2.5 the DIIMFP of Al has a strong and sharp peak at ≈ 15 eV corresponding to

plasmon excitation. Whereas in the case of Au the DIIMFP is seen to be much broader

and has a maximum at ∼ e2/a0 = 27.2 eV, corresponding to the binding energies of

outer electrons [17]. At low incident energies (E0 < 100 eV) the shape of the DIIMFP

considerably changes with the increasing incident energy for both materials. Whereas

at higher E0 (E0 > 200 eV) the shape of the DIIMFP barely depends on the incident

energy. Therefore at higher incident energies the mean energy loss is expected to be

practically independent of E0 to a good approximation. The dependence of the DIIMFP

on the incident energy is mainly related to the value of the lower limit of integration of

the DIIMFP over momentum transfer q− (Eq. 2.6), which is essential for the outcome

of the integral in Eq. 2.5. The momentum transfer during inelastic collisions plays an

important role as will be explained below. Fig. 2.6 shows the projection of the ELF for

Figure 2.5: Differential inverse inelastic mean free path (DIIMFP) for Al and Au at different incident
energies: E0 = 25, 50, 100, 200, 500, 1000, and 5000 eV.

Al in the (ω, q) plane calculated using the Drude-Lindhard and the Mermin model. Solid
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black curves subdivide this projection into three regions describing different inelastic

scattering regimes:

• Region I: Neither single particles nor collective excitations exist in this region.

The lowest possible energy transfer to an electron in the Fermi sea accompanied

with a certain momentum transfer can be found as follows:

ωlow = −q
2

2
+ q
√

2EF

• Region II: This domain is defined by collective plasmon excitations, whereas

single-particle excitations are not possible. An important quantity to describe

the difference in the possibility to excite a collective of particles or to create an

electron-hole pair is the critical momentum transfer qc. In Fig. 2.6 the value of

qc is obtained as a result of the intersection of plasmon line ωpl and ωmax curve

(will be given further in the text). For momentum transfer values q < qc collective

oscillations have a long lifetime. The corresponding wavelength of such excitation

is too long to interact with an individual electron in the Fermi sea. Therefore

plasmons are supposed to be ”undamped” in this region which means that energy

deposited in the solid via plasmon excitation cannot be transferred to a single

particle.

• Region III: In this region electron-hole pairs creation is dominant. The solid

curves depicted in Fig. 2.6, which separate this domain from the others, are

plotted according to the conservation rules for Fermi sea electrons, representing

the minimum and maximum energy transfer which an electron in the Fermi sea is

able to receive which also depends on the corresponding momentum transfer:

ωmin =
q2

2
− q
√

2EF

ωmax =
q2

2
+ q
√

2EF

Individual collisions correspond to the domain where ε2 (ω, q) 6= 0. ε2 (ω, q) is the

part responsible for the damping and it differs from zero only in the domain between

these two parabolas, where q > qc and the collective excitations are damped since

ω (q) is then a possible energy transfer to an individual electron of the Fermi sea [59].

This fact can be also explained in terms of the wavelength, which is getting shorter

with the increasing value of momentum transfer and at some point it becomes
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2.2. Inelastic scattering in solids

(a)

(b)

Figure 2.6: Projection of the ELF of Al, calculated on the basis of (a) the Drude-Lindhard (Eq. 2.9),
and (b) the Mermin (Eq. 2.13) model dielectric function, in the (ω, q) plane. The dashed black curves
correspond to the integration limits q− and q+ for different incident energies E0 according to Eq. 2.6.
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comparable with the distance between free electrons in the solid. This condition

determines the interaction possibility with an individual particle. This implies that

either the damping of a plasmon may lead to the creation of an electron-hole pair,

or the incoming electron can transfer part of its energy directly to a target electron

by means of a knock-on collision. The cut-off momentum transfer qc in terms

of wavelength can be conceived as the cut-off wavelength λc in the photoelectric

effect, that is only photons with a specific wavelength (or the threshold frequency),

depending on the material, are able to generate photoelectrons. Thus, the damping

of collective excitations leads to significant contribution to SEE.

In general words it can be deduced that a plasmon can be considered as a collective

excitation (or a quasi-particle) only for low values of the momentum transfer q. The

corresponding wavelength associated with a particle is related to its momentum as

λ = h/p = 2π/k. When the plasmon wavelength is larger than the average distance

between free electrons, it can not transfer its energy to a single particle in the solid,

however it can interact with a collective of particles. With the value of momentum

transfer increasing the scattering becomes single-particle, the plasmon line enters the

single-scattering region. As a consequence, plasmon oscillations have a rapid decay with

the generation of a SE.

An important feature in Fig. 2.6 concerns the different description of damping in the

Drude-Lindhard and the Mermin models as it was discussed earlier in Fig. 2.4. It is

clearly seen that the plasmon remains undamped in the case of the Drude-Lindhard

approach at q < qc while for higher values of momentum transfer only a slight damping

is observed when the scattering becomes single-particle (Fig. 2.6A). Whereas in the case

of the Mermin approach plasmons are seen to be strongly damped at q > qc in region III

but a slight damping is observed also at q < qc (Fig. 2.6B).

Furthermore, another important point concerning the integration limits q± needs to be

discussed. In Fig. 2.6 the integration limits q± (Eq. 2.6) as a function of energy loss are

shown by dashed parabolas for different values of the incident energy E0 as indicated.

The left-hand half of the parabolas relates to the lower integration limit over momentum

transfer q− and the right-hand half relates to the upper limit q+. As can be seen from

Fig. 2.6 for low incident energies (E0 = 25 eV) the minimum momentum transfer q−

is always almost entirely lies in Region III which means that the main contribution to

the DIIMFP is made up by single-particle excitations but not by plasmons, since they

cannot be excited at such low values of the incident energy. At higher incident energies
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(E0 > 50 eV) the integration domain over momentum transfer covers both collective and

single-particle excitation regions. As can be clearly noted in Fig. 2.6 the ELF along the

plasmon line has the highest intensity, getting lower for higher values of the momentum

transfer due to the damping. Therefore the most contribution to the DIIMFP is made

up by plasmons. Since for incident energies above 100 eV the way the lower integration

limit q− crosses the most prominent plasmon features in Region II does not considerably

change with the increasing incident energy the shape of the DIIMFP in Fig. 2.5 is seen to

remain similar. Whereas the intensity of the DIIMFP is observed to decrease for higher

E0 since the integration domain becomes larger giving rise to a slight contribution to the

right shoulder of the DIIMFP at higher losses.

Already here one can deduce that the inelastic scattering at low incident energies

significantly differs from those at higher E0. Any change in the DIIMFP can influence

secondary electron emission being the result of the inelastic interaction of probing electrons

with the solid. Plasmon decay was shown to be the main mechanism for the generation of

SEs. An important question remains: how far the plasmon propagates from its creation

region until its decay. There is not much data available on the MFP for plasmon decay.

The correct way of treating this process is still not clear and further study should be

carried out, theoretically and experimentally [60].

2.2.1 Calculation of the DIIMFP using optical data

The analytical expressions given by the Drude-Lindhard and Mermin dielectric functions

provide a convenient framework to calculate the dielectric properties in the entire (ω, q)-

plane. Parameters for the model dielectric function are usually determined by fitting

the ELF to optical data, which are much more widely available [27, 28]. The dielectric

function ε (ω, q) with ω the energy loss and q the transferred momentum provides an

important connection between measurable optical properties of materials and their

electronic response to an external excitation. Such optical constants are the refractive

index n and extinction coefficient k. By measuring these constants the dielectric function

ε (ω, q) at q ≈ 0 can be then determined through the relations:

ε1 (ω, 0) = n2 − k2

ε2 (ω, 0) = 2nk
(2.14)
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The ELF in the optical limit can be calculated as follows:

Im

[ −1

ε (ω, q ≈ 0)

]
=

ε2 (ω, 0)

ε1 (ω, 0)2 + ε2 (ω, 0)2 =
2nk(

n2 − k2
)2

+ (2nk)2
(2.15)

Usually, the experimental ELF in the optical limit Im
[
− 1/ε (ω, q ≈ 0)

]
is fitted with a set

of oscillators within a model ELF. Then in order to calculate the DIIMFP defined by

Eq. 2.5 one needs to extend the model ELF, using the parameters obtained from the

fit, to all finite momentum transfers q. For example, in the case of the Drude-Lindhard

model the simple quadratic dispersion from Eq. 2.10 can be used. In the case of the

Mermin dielectric function the dispersion is already ’built-in’.

Acquiring such experimental data is not straightforward. In order to measure the optical

response using photons in a wide wavelength range different sources and monochroma-

tors as well as other optical components are needed [26]. In the case of transmission

experiments, accessing a wide wavelength range over which ε varies significantly requires

measurements on a series of samples with different thicknesses. However, one can avoid

these difficulties by using electrons as probing particles instead of photons. Electron scat-

tering experiments are routinely carried out in the Ultra High Vacuum (UHV) equipment

and a wide energy range is accessible in a single experiment. This is the reason why the

possibility to extract the optical constants using experimental EELS spectra is widely

used by many authors [26, 34, 37].

2.2.2 Surface excitations

Surface oscillations of loosely bound electrons in solid were theoretically introduced

by Ritchie [30] in 1957. Their experimental observation by Powell and Swan [61, 62]

provided convincing evidence for different modes of collective excitation in bulk and

surface to exist. The gas of negatively charged electrons and positively charged ions

combine into a neutral plasma of the solid. On a simple qualitative model, one can define

a sphere of the minimum radius r0, within which the net charge is equal to zero. The

electric field of a fast incoming electron disturbs this equilibrium system by moving a

part of the electrons beyond the sphere r0. It means that some uncompensated charge

appears within this sphere causing the electric interaction between charges according to

the Coulomb’s law. This leads to oscillations of free solid-state electrons or plasmons

with the resonance frequency ωpl =
√

e2N
ε0me

, where N is the free electron density, ε0 is the

the vacuum permittivity. Such a spherically symmetric situation is acceptable only deep
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inside the solid where all electrons are surrounded by other electrons within the same

volume. In the near surface layer electrons, compensated the ion charge, contribute only

to half of the sphere of the zero net charge due to the solid-vacuum boundary. Hence,

the resonance frequency of the surface oscillations ωspl =
√

e2N/2
ε0me

or ωspl =
ωpl√

2
. Thus, the

boundary effect at the solid-vacuum interface causes a decrease in loss at the plasma

frequency near the surface.

When an electron with energy E0 crosses the surface at the angle θ with respect to the

surface normal it can experience energy losses during surface excitations. The Differential

Surface Excitation Probability (DSEP) is defined as the distribution of an energy loss ω

in a single surface crossing. For an electron with energy E the DSEP can be obtained as

follows [63]:

Ws (ω, θ, E) = η−s (ω, θ, E) + η+
s (ω, θ, E) (2.16)

where the quantity η±s (ω, θ, E) is defined according to the theory of Tung et al. [64] as

follows:

η±s (ω, θ, E) =
1

πE

q+∫
q−

Im

 (
ε (ω, q)− 1

)2
ε (ω, q)

(
ε (ω, q) + 1

)
 |qs|dq

q3
(2.17)

with qs being the parallel component of momentum transfer along the surface plane:

qs =

q2 −
(
ω + q2/2√

2E

)2
1/2

cos θ ±
(
ω + q2/2√

2E

)
sin θ (2.18)

It is important to introduce the so-called Surface Excitation Parameter (SEP) defined as

the average number of surface excitations an electron experiences when it crosses the

surface once. The total SEP ηs (θ,E) is obtained by integrating the DSEP Ws (ω, θ, E)

over the energy loss ω. Knowledge of this quantity allows to evaluate the probability

for a certain number of surface excitations to occur in a single surface crossing in a

straightforward way by involving Poisson statistics [63].

Since in the Tung model the normal component of momentum transfer is not taken

into account the conservation of energy and momentum is not completely satisfied.

The authors of Ref. [51] performed theoretical derivations of the position and direction

dependent total DIIMFP W s→v
in (ω, θ, E, r) describing the probability for bulk and surface

excitations for electrons crossing the solid surface for different crossing angles θ and

electron distances r relative to the crossing point at the surface. In the case of an electron
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traveling from solid to vacuum the total DIIMFP is given by [51]:

W s→v
in (ω, θ, E, r) =

2

πv2

q+∫
q−

Im

[ −1

ε (ω, ~q)

]
Θ (−r) dq

q
−

−2 cos θ

π3

q+∫
q−

dq

π/2∫
0

dα

2π∫
0

dϕ
q sin2 α cos (qzr cos θ) exp

(
− |r|Q cos θ

)
ω̃2 +Q2v2

⊥
Im

 −1

ε
(
ω, ~Q

)
Θ (−r) +

+
4 cos θ

π3

q+∫
q−

dq

π/2∫
0

dα

2π∫
0

dϕ

× q sin2 α cos (qzr cos θ) exp
(
− |r|Q cos θ

)
ω̃2 +Q2v2

⊥
Im

 −1

ε
(
ω, ~Q

)
+ 1

Θ (−r)

+
4 cos θ

π3

q+∫
q−

dq

π/2∫
0

dα

2π∫
0

dϕ

× q sin2 α exp
(
− |r|Q cos θ

)
ω̃2 +Q2v2

⊥
Im

 −1

ε
(
ω, ~Q

)
+ 1


×
[

2 cos

(
ω̃r

v

)
− exp

(
− |r|Q cos θ

)]
Θ (r) (2.19)

where ω̃ = ω − qv sinα cosϕ sin θ, Q = q sinα, qz = q cosα, v⊥ = v cos θ, and Θ (r) is

the Heaviside step function. The integration limits q± are given by Eq. 2.6. The terms

involving Im
[
−1
ε+1

]
relate to surface excitations whereas terms involving Im

[
−1
ε

]
relate

to bulk excitations. Fig. 2.7 shows the total DIIMFP (data represented by the green

curve) with the contribution of surface and bulk components calculated using Eq. 2.19

for electrons escaping from different depths inside a gold sample along the surface normal

with energy E = 100 eV. Data represented by the blue curve relates to the first term in

Eq. 2.19 which represents the DIIMFP describing true bulk excitations (as in Eq. 2.5)

and is independent of depth. However, in the vicinity of the surface, the bulk excitations

become depolarized due the presence of the surface leading to a decrease of the bulk

modes near the surface [65]. This phenomenon is often referred to as the “Begrenzungs

effect” after the German word for boundary [30, 64, 66]. The decrease of the bulk modes

is described by a result of the subtraction of the second term from the first term in
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Eq. 2.19. The resulting reduced contribution of bulk to the total DIIMFP due to the

presence of the surface shown by the red curve in Fig. 2.7. The third and the fourth

terms in Eq. 2.19 relate to the probability of surface excitations inside and outside the

solid, respectively. In Fig. 2.7 the contribution of these terms is shown by the yellow

curve. Therefore, the total DIIMFP (the green curve) is given by the sum of the reduced

bulk and surface contributions represented by the red and yellow curves, respectively.

Fig. 2.7 clearly demonstrates a decreasing of the contribution of surface excitations to

the total DIIMFP for further distances away from the surface giving rise to an increasing

contribution of bulk excitations.

Figure 2.7: The DIIMFP calculated using the Mermin dielectric function for an electron escaping from
Au to vacuum with energy E = 100 eV along the surface normal (θ = 0◦) for different depths inside
the solid: r = 0, 0.5, and 1 Å. Data labelled “clear bulk” represent the true bulk excitations whereas
data labelled “reduced bulk” relate to the reduced contribution of bulk to the total DIIMFP due to the
presence of surface excitations labelled “clear surface”.

37



Chapter 2. ELECTRON TRANSPORT IN SOLIDS

The Inverse Inelastic Mean Free Path (IIMFP)
(
λs→vin

)−1
(θ,E, r) is obtained by integrat-

ing W s→v
in (ω, θ, E, r) over energy losses:

(λs→vin )−1 (θ,E, r) =

E∫
0

W s→v
in (ω, θ, E, r) dω (2.20)

The depth distribution of the IIMFP
(
λs→vin

)−1
(θ,E, r) is shown in Fig. 2.8 for electrons

escaping from different depths inside a gold sample along the surface normal with energy

E = 100 eV. It is seen that the surface IIMFP represented by the blue line decays rapidly

both into vacuum (r < 0) and into the solid (r > 0). A characteristic width of the surface

scattering zone is seen to be ∼ 1 − 2 Å which is smaller than, or of the order of, the

elastic mean free path. Therefore elastic deflections within the surface scattering zone

are expected to be quite rare [65].

The value of the total SEP for escaping electrons is given by the integration of the IIMFP(
λs→vin

)−1
(θ,E, r) over the surface scattering zone [51]:

ηs→vs (θ,E) =

∫
r

(λs→vin )−1 (θ,E, r) dr (2.21)

Figure 2.8: Depth distribution of the IIMFP (λs→v
in )−1 (θ, E, r) calculated using the Mermin dielectric

function for an electron escaping from Au to vacuum with energy E = 100 eV along the surface normal
(θ = 0◦).
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2.3. Production of secondary electrons

2.2.3 Inner-shell ionization

During inelastic scattering impinging electrons mainly interact with the electrons in

the outer (less tightly bound) shells of atoms in the solid [67]. As a result of such an

interaction plasma oscillations of the electron gas or plasmons are excited. However, when

an electron energy is sufficient, it can interact with the electrons of the ion inner-shells

and cause their ionization. The total IMFP is given by the superposition of partial

IMFPs for the corresponding inelastic process as follows:

λ−1
in = λ−1

pl + λ−1
ion (2.22)

where λpl is the IMFP between two successive plasmon excitations, and λion is the IMFP

between two successive inner-shell ionizations. Even if λ−1
ion has such a small contribution

to the total inelastic cross section, it is non-negligible [59]. A vacancy created in the

inner-shell as a result of an energetic electron ionization may be followed by radiative

(fluorescence radiation) or nonradiative (Auger) emission. There is a large branching of

possible transitions, in particular for heavy atoms. Reliable data on the electron-impact

cross sections for ionization λ−1
ion for all elements, from hydrogen (Z = 1) to einsteinium

(Z = 99), can be found in Ref. [67]. Various empirical and semi-empirical formulas are

also available based on simple physical models and/or fitted to available experimental

data [68, 69]. Fig. 2.9 shows the ionization cross sections (in units of squared angstroms)

versus incident electron energy E0 for the L1 and L2 shells of Si calculated using different

analytical approaches [68, 69, 67]. It is clearly seen from Fig. 2.9 that results given by the

formulas of Casnati and Bote (the blue and yellow solid curves) are in a good agreement

to each other. Whereas the energy dependence of the ionization cross section represented

by Gryzinsky’s formula (the red solid curve) considerably differs from the others. In this

work the Bote formula from Ref. [67] is used to calculate the ionization cross sections by

means of the FORTRAN software provided by the authors.

2.3 Production of secondary electrons

The inelastic scattering of impinging electrons implies an energy and momentum transfer

to the solid state electrons. Since energy and momentum are always conserved this

energy deposition and momentum transfer brought the electronic subsystem of the solid

to an excited state. Quantum mechanically this implies the electronic transitions as the
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Figure 2.9: Comparison of cross sections for ionization of the L1 and L2 shells of silicon atoms by
electron impact calculated using the analytical formulas of Casnati (the blue solid curve) [69], Gryzinsky
(the red solid curve) [68], and the Bote analytical formula from Ref. [67] (the yellow solid curve) obtained
through the FORTRAN software provided by the authors.

most relevant processes, consisting of the promotion of an electron from an occupied

to an unoccupied state (provided that the unoccupied state is available) by the energy

and momentum transferred in the collision. These available unoccupied states represent

accessible channels through which promoted secondary electrons manage to escape above

vacuum [3].

In the MC model it is assumed that at each inelastic interaction the energy loss ω,

experienced by the primary electron, is transferred to a secondary electron. In the case

of the interaction with the valence band the SE produced has the energy ESE = EF + ω.

Here it is assumed that SEs are excited only from the Fermi level. While this is a

commonly adopted approach [41], the authors of Ref. [40] took into account the band

structure effect, within which the probability distribution of electron excitation in the

valence band with a certain energy E is assumed to be proportional to the density of

states of a free electron gas:

P (E,ω) ∝
√
E (E + ω) (2.23)

where E < EF . The excited secondary electron gains the energy ESE = E + ω. In this

case a larger fraction of produced secondary electrons has a smaller energy. The smaller

energy SEs have the less their probability to escape over the surface barrier. Therefore

40



2.4. Escape over the surface potential barrier

the SEY is decreasing. The question remains whether the only one secondary electron

is generated as a result of the inelastic scattering of the primary electron. As it was

suggested in Refs. [70, 71] the single electron generation process is indeed dominant.

However, the possibility of creating a swarm of secondaries in a single collision cannot be

ruled out [3].

In the case of ionization of an inner-shell electron a secondary electron with the energy

ESE = ω − Eb is produced, where Eb is the binding energy of the ionised shell.

Usually in the three-step MC model the momentum transfer during the production of

SEs is essentially neglected [38]. The initial angular distribution of SEs is assumed to

be isotropic since by the time the electron comes out it completely ’forgets’ its initial

momentum due to the momentum relaxation after multiple elastic scatterings.

2.4 Escape over the surface potential barrier

The physical model employed in the three-step MC algorithm implies a binary encounter

approximation. This approach assumes that the volume occupied by an atom significantly

exceeds the volume in which the electron interaction takes place [17]. Thus, electron

wavelengths are considered to be smaller than the inter-atomic distance or the electron

correlation lengths. This condition is generally satisfied for medium energy electrons,

whereas for low energy electrons this is no longer valid since the electron wavelength

becomes larger than the inter-atomic distance by several orders of magnitude. However,

inside the solid this wavelength is decreased due to the potential step at the surface-

vacuum interface as depicted by the purple curve in Fig. 2.10 which shows the model

for the potential barrier at the surface-vacuum interface. Since only those electrons that

can escape and then be detected are relevant inside the solid, the electron wavelength is

always limited by the one corresponding to the inner potential, which is usually of the

order of 15 eV. Therefore for electrons which reach vacuum the validity of the employed

model is connected to the presence of the surface potential barrier.

A simple model for the potential difference between the vacuum and the solid consists

in assuming a step-barrier potential with a height equal to the so-called inner potential

Ui [72]. Disruption of the periodicity of the crystal lattice at the surface leads to the

potential step, represented by the inner potential Ui as the energy difference between

the bottom of the valence band and the vacuum level [38]. Here and below the bottom

of the valence band is used as zero for the energy scale. The value of Ui is defined as
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Valence band
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Figure 2.10: Model for the potential barrier at the surface-vacuum interface for metals. The bottom of
the valence band is taken as zero energy scale. φ and EF together constitute to Ui. Consequently, the
energy in vacuum Ev differs from the energy in solid Es just by the height of Ui. Adapted from [72].

Ui = EF + φ, where φ is the work function of the solid. The work function φ dictates the

energy conservation law to be satisfied for electrons escaping from the solid. Electrons

with energy E < φ cannot escape from the solid. The inner potential Ui dictates the

momentum conservation law. When an electron, considered as a plane wave, travels

from vacuum with a given energy Ev to a medium with the inner potential Ui at any

angle other than zero from the normal it will be refracted at the solid surface boundary.

The energy of the incoming electron is increased by Ui and the energy of the outgoing

electron is decreased by Ui (see Fig. 2.10):

Es = Ev + Ui

Ev = Es − Ui
(2.24)

At the boundary between the vacuum and the medium, the wave’s phase velocity is

changed, usually causing a change in direction. An electron beam traveling along the

normal (perpendicular to the boundary) will suffer a change in its energy, but not in

the direction according to Snell’s law. Consider an electron crossing the solid-vacuum

interface. Using the relationship between the energy and momentum

E =
~2k2

2m
(2.25)
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and expanding the momentum into its parallel and perpendicular components

E =
~2

2m

(
k2
‖ + k2

⊥

)
=

~2

2m

(
k2 sin2 θ + k2 cos2 θ

)
(2.26)

let us write a relationship between the energies in vacuum and inside the solid, using

only the parallel momentum component as it remains unchanged after crossing the solid

surface boundary ks‖ = kv‖ :

k2
s sin2 θs = k2

v sin2 θv (2.27)

or in terms of the energy:
Es
Ev

=
sin2 θv

sin2 θs
(2.28)

Thus, for an electron traveling from vacuum to the solid:

sin θs = sin θv

√
Ev
Es

= sin θv

√
Ev

Ev + Ui
(2.29)

where θs and θv are the polar angles inside the solid and in vacuum, respectively, both

defined with respect to the surface normal. For an electron traveling from the solid to

vacuum

sin θv = sin θs

√
Es
Ev

= sin θs

√
Es

Es − Ui
(2.30)

Alternatively, Eqs. 2.29 and 2.30 can be rewritten as follows, respectively:

cos θs =

√
Ev cos2 θv + Ui

Ev + Ui
(2.31)

cos θv =

√
Es cos2 θs − Ui

Es − Ui
(2.32)

When an electron strikes the solid boundary at an angle larger than a particular critical

angle with respect to the surface normal θs > θc, it can be reflected back inside the solid

instead of escaping over the solid surface. Such a phenomenon is known as total internal

reflection. The critical angle θc represents the largest possible angle of incidence still

resulting in a refracted trajectory and is given by:

sin θc =

√
Es − Ui
Es

(2.33)

cos θc =

√
Ui
Es

(2.34)
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Therefore, the trajectories inside the solid with a polar angle θs > θc are reflected back

into the solid. In the case θs = θc the refracted beam travels along the boundary between

the two media. In other words, the critical angle θc determines an escape cone inside the

solid. It means that not only does the electron need to have enough energy to overcome

the surface potential barrier (E > φ), but it must also travel toward the surface-vacuum

interface within the escape cone with a given solid angle:

∆Ωesc = 2π

θc∫
0

sin θdθ = 2π

(
1−

√
Ui
E

)
(2.35)

For high energy electrons (E � Ui) the refraction effect at the surface-vacuum interface

is negligible whereas for low energy electrons, which are mostly represented by SEs, it

becomes crucial since their energy becomes comparable with the value of Ui, which is

typically about 15 eV [72]. In other words, the inner potential determines the way the

SE peak goes to zero in the electron spectrum. Fig. 2.11 demonstrates the impact of the

presence of the refraction effect at the surface-vacuum interface. The green curve is the

result of the MC simulation of the SE peak assuming a total absence of the refraction

effect. The red curve is the result of the MC simulation including the barrier. The blue

curve is calculated using a simple analytic expression aiming to predict the SE peak given

by:

dj (E)

dE
= exp

(
− E

ωmean

)
· exp

(
− EF
ωmean

)
·
(

1−
√
φ+ EF
E + EF

)
(2.36)

where dj (E) /dE is the differential energy distribution of SEs at the emitted energy E

measured with respect to the Fermi level, ωmean is the mean energy loss. As can be seen

from Fig. 2.11 when the presence of the barrier is not considered all electrons are able

to escape from the solid giving rise to an exponentially increasing intensity of the SE

peak (data represented by the green curve). When the barrier is considered this growth

is limited due to the formation of the escape cone inside the solid only within which

electrons can overcome the surface potential barrier.

Another important question concerns the description of the escape process which is

of particular importance since it controls the final shape of the SE peak [73]. The

transmission probability over the surface potential barrier can be represented assuming a
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Figure 2.11: Results of the calculations of the SE peak. Red datapoints: MC simulation assuming the
presence of the refraction effect at the surface-vacuum interface. Green curve: MC simulation assuming
the absence of the refraction effect at the surface-vacuum interface. Blue curve: analytic calculation
using Eq. 2.36.

simple step function as follows:

T =

1 if E cos2 θs > Ui

0 otherwise
(2.37)

Further improvement of the expression describing the transmission probability is accom-

plished by using the quantum mechanical representation given as follows [74, 41]:

T =


4
√

1− Ui/E cos2 θs(
1 +

√
1− Ui/E cos2 θs

)2 if E cos2 θs > Ui

0 otherwise

(2.38)

which requires a random number to sample the probability for the electron to escape

or to be internally refracted otherwise. As seen from Fig. 2.12 for large escape angles

θs the difference between the two approaches (Eqs. 2.37,2.38) is bigger than in the case

of the electron escape along the angles closer to the surface normal. The quantum
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Figure 2.12: Comparison of the transmission coefficient T given by Eqs. 2.37,2.38 for different escape
angles θs inside the solid with Ui = 21 eV.

mechanical transmission probability over the surface potential barrier introduces an

additional probability for an electron to be internally reflected at the surface boundary.

The reflected electrons can additionally lose their energy and therefore a lower number

of electrons are able to overcome the surface potential barrier. Fig. 2.13 shows the

comparison of SE peaks calculated using the two approaches for the description of the

transmission over the surface potential barrier. It is clearly seen from Fig. 2.13 that the

use of the quantum-mechanical approach leads to a decreasing of the SE peak.

A final aspect in this section concerns the value of the inner potential Ui. Calculated

values of the inner potential can be found in Ref. [50] for most materials. In Ref. [50]

theoretical calculations of Ui employ two approaches to determine extreme boundaries

for this value. The neutral-atom scattering factors of Doyle and Turner provide an upper

bound for Ui [75], whereas a lower limit can be obtained from calculations based on

the ionized-free-atom bonding model of Radi [76]. For some materials, the values of Ui

between these boundaries show discrepancies of a factor of 2 giving rise to an uncertainty

of the inner potential. An empirical approach to evaluate the value of Ui between the

two limits was proposed by Ross and Stobbs [77]:

Ui (Radi)

Ui (Doyle-Turner)
≈ 0.0325

Z

Ω
+ 0.6775 (2.39)

where Z is the atomic number and Ω is the volume of a single cell of the lattice. There
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Figure 2.13: Comparison of the intensities of SE peaks calculated using the step and the quantum-
mechanical transmission coefficient T given by Eqs. 2.37,2.38. The detection of electrons into the entire
hemisphere above the surface is used.

are not a lot of experimental techniques available for measurements of the inner potential

and the scatter in measured values found in the literature is wide [50]. Only limited

experimental data for Ui are available so far [78]. For example, measurements of Ui using

refraction and phase-shifting techniques have been performed Gajdardziska-Josifovska

and Carim and can be found in Ref. [50]. Therefore an accurate determination of values

of the inner potential is still unresolved question. The influence of the value of Ui on the

SEY will be discussed further in the text in Section 5.1.

2.5 Insulators

The energy loss mechanisms for electrons differ in metals and insulators [11]. In metals,

electrons lose energy by interacting mainly with the valence band electrons. The kinetic

energy of a secondary electron must be more than the value of the inner potential Ui

when it reaches the surface in order to escape. The value of Ui for metals is typically

about 15 eV. This large minimum escape energy and the high collision probability due

to the large number of conduction electrons result in low SEYs for metals. In insulators,

the minimum kinetic energy for a secondary electron to escape is the electron affinity χ,

represented by the difference between the vacuum level and the bottom of the conduction

band as shown in Fig. 2.14. The critical polar angle inside the solid in the case of
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Figure 2.14: Model for the potential barrier at the surface-vacuum interface for insulators. The bottom
of the conduction band is taken as zero energy scale. The electron affinity χ is considered to be the mean
inner potential Ui for insulators. Eg is the band gap, ∆V is the width of the valence band.

insulators is then given by:

sin θc =

√
Es − χ
Es

(2.40)

cos θc =

√
χ

Es
(2.41)

The value of χ is typically on the order of 1 eV. Electrons mainly lose energy through

the excitation of valence band electrons into the conduction band. The wide band gap

prevents secondary electrons with kinetic energy less than the band gap energy Eg from

participating in such electron-electron collisions. For these electrons, electron-phonon

collisions are mainly responsible for the energy loss. Because of the absence of electron-

electron scattering, the secondary electron loses much less energy as it moves through

material and the escape depth becomes large. Therefore, in general, the SEY in insulators

is higher compared to one in metals.

In each inelastic event, provided that ω > Eg + E′, a SE is produced with energy

ESE = ω − Eg − E′, where E′ is the energy of the target electron in the valence band.

The secondary electron which is promoted from the valence band to the conduction

band can then participate in the transport process [79]. However, the main mechanism

responsible for the creation of cascades of secondary electrons is no longer effective at
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energies below Eg. It means that the electrons with energies E < Eg move in the solid

without multiplication but they can lose (or gain) energy by interacting with the lattice

via electron-phonon scattering [60].

2.5.1 Electron-phonon scattering

A phonon is the quantum mechanical description of an elementary vibrational motion

in which a lattice of atoms or molecules uniformly oscillates at a single frequency ω

[80]. Solids exhibit two types of phonons: acoustic phonons and optical phonons. The

interaction of low energy electrons with Longitudinal Optical (LO) phonons is dominant

[81]. The optical energy loss function Im

[ −1

ε (ω, q ≈ 0)

]
for insulator materials contains

the contribution of optical phonons. This allows to calculate the inverse IMFP with

inclusion of phonons using the first Born approximation as soon as accurate optical data

are available:

λ−1 (E) =

∫ E−EF

0

dω

πE

∫ q+

q−

Im

[ −1

ε (ω, q)

]
dq

q
(2.42)

However, the first Born approximation is no longer valid at very low energies where

phonons actually exhibit.

According to Fröhlich the inverse IMFP for electron-phonon scattering is given by the

expression describing the probability of LO phonon emission (’+’) and absorption (’–’)

[82, 81, 83]:

λ−1
e−ph± (E) =

e2

4πε0~2

me

2E
~ω
(

1

ε∞
− 1

ε

)(
NLO +

1

2
± 1

2

)
ln

(
1 +

√
1∓ ~ω/E

±1∓
√

1∓ ~ω/E

)
(2.43)

where ~ω is the phonon energy, ε is the static dielectric constant, ε∞ is the square of

refractive index, NLO is the average number of phonons in one mode at temperature T

given by the Bose-Einstein distribution:

NLO =
1

exp
(
~ω/kBT

)
− 1

The authors of Ref. [81] have shown that the IMFP obtained by means of the dielectric

theory in context of Eq. 2.42 and presented in Fig. 2.15 corresponds to those calculated by

the phonon-assisted model Eq. 2.43. In Fig. 2.15 the IMFP based on the dielectric theory

was calculated using the oscillator parameters obtained from the fitting of the model
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Drude-Lindhard ELF (Eq. 2.9) to optical ELF [28]. The last allows concluding that

the use of the dielectric theory for the first-principle calculation of the IMFP with the

inclusion of electron-phonon scattering is possible providing that accurate optical data

are available. However, for a more precise description of the electron-phonon scattering,

one should use a more reliable phonon-assisted model, e.g. the one based on the Fröhlich

theory [82].

Figure 2.15: The IMFP in SiO2 based on the dielectric theory Eq. 2.42 (red data points) and Fröhlich
theory Eq. 2.43 (LO phonos, blue solid line).

2.5.2 Polaronic effect

The polaron concept was first introduced by Landau in 1933 to describe an electron

moving in a dielectric crystal where the atoms move from their equilibrium positions

to effectively screen the charge of an electron. An electron induces the polarization

field around it when moving in an insulating material. It can then suffer a stabilizing

interaction and get trapped in the ionic lattice. Such an effect is essential for quantitative

understanding the SEE from insulating targets. The probability for an electron with

energy E to get trapped in the ionic lattice is given as follows [79]:

λ−1
trap (E) = Strap exp

(
−γtrapE

)
(2.44)
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As seen from Eq. 2.44 the lower the electron energy, the more chance for the electron to

get trapped. The constant γtrap limits the energy domain and the constant Strap refers

to the frequency of this type of process. Moreover, as soon as the electron got trapped as

a polaron its mobility is assumed to be neglected.

Therefore the total IMFP for an electron moving in an insulator is given by:

λ−1
in = λ−1

pl + λ−1
ion + λ−1

e−ph + λ−1
trap (2.45)

where λ−1
ion is the probability to interact with inner-shell electrons. The SE generated

upon the ionization has the energy ESE = ω − Eb.
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Chapter 3

Solution of the Boltzmann-type

transport equation in

non-crystalline media

In Section 1.1 a typical energy distribution of electrons reflected from the solid surface

was considered with a detailed description of the three main parts distinguished in the

spectrum. Experimentally these data are acquired by means of electron spectroscopy

techniques such as EELS and XPS. There are other techniques available which produce

the same type of data but in this work, we consider EELS and XPS. In the case of

Reflection Electron Energy Loss Spectroscopy (REELS) a target is bombarded with an

electron beam with the subsequent acquirement of the energy loss spectrum of reflected

electrons. In the XPS technique, the solid surface is irradiated by an X-ray beam. As a

result of the interaction of photons with atoms of the solid, photo-electrons are generated

with a characteristic energy of core shells. The resulting energy distribution of electrons

emitted from the solid surface contains an elastic peak and an inelastic background (as

in a REELS spectrum). However, in XPS elastic peaks are positioned at the energy

characteristic for certain core shells of atoms in the solid. Therefore this technique allows

performing the elemental analysis of the investigated target.

Quantitative interpretation of electron energy loss spectra needs a theoretical description.

Assume we have an electron or an X-ray beam incident on a solid surface with incident

energy E0 in direction ~Ω0 = {µ0, ϕ} with µ0 = cos θ0 as schematically depicted in Fig. 3.1.

The quantity of interest is the flux density of electrons reflected or emitted from the solid
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Figure 3.1: Illustration of the experimental geometry. A sample is illuminated by the electron beam
(or the X-ray irradiation). Here θ0 is the polar angle of incidence, θ is the emission polar angle, ϕ is the
azimuthal angle, and ψ is the scattering angle.

in a certain direction above the surface with a certain energy. For this reason, we consider

the transport of the electron beam in the solid for the problem of reflection (REELS) or

the photon-induced electron emission (XPS). As was discussed in Section 1.1 electron

transport in solids implies elastic and inelastic scattering. The DECS Wel

(
~Ω, E0

)
and

the DIIMFP Win (ω,E0) are used to describe elastic and inelastic scattering, respectively,

where ω is the energy loss. Considering a case with plane symmetry, the transport

equation for the flux density N
(
z, ω, ~Ω

)
of electrons travelling at depth z in direction ~Ω

with energy E = E0 − ω due to sources at z = z0 emitting in the direction ~Ω = ~Ω0 can

be written as follows [17]:

µ
∂

∂z
N
(
z, ω, ~Ω

)
= − 1

λtot
N
(
z, ω, ~Ω

)
+

+
1

λin

ω∫
0

N
(
z, ε, ~Ω

)
xin (ω − ε, E0 − ε) dε+

+
1

λel

∫
4π

N
(
z, ω, ~Ω′

)
xel

(
~Ω′ → ~Ω, E0 − ω

)
d~Ω′ +

+ f0 (E) δ (z − z0) δ
(
~Ω− ~Ω0

)
(3.1)

Here, µ = cos θ is the polar direction of the electron’s motion with respect to the
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inward surface normal; λin and λel are the IMFP and the EMFP, respectively; λtot =

λinλel/ (λin + λel) is the Total Mean Free Path TotMFP; f0 (E) is the normalized energy

distribution at the source; and δ is the Dirac delta-function. xin (ω,E0) and xel

(
~Ω, E0

)
are the normalized DIIMFP and DECS, respectively:

xin (ω,E0) =
Win (ω,E0)

E0∫
0

Win (ω,E0) dω

xel

(
~Ω, E0

)
=

Wel

(
~Ω, E0

)
∫
4π

Wel

(
~Ω, E0

)
d~Ω

(3.2)

fulfilling the following normalization conditions:

E0∫
0

xin (E0, ω) dω = 1∫
4π

xel

(
~Ω, E0

)
d~Ω = 1

(3.3)

The first term on the right-hand side of Eq. 3.1 represents the probability that a particle

is scattered out of the solid surface either by an elastic deflection or an energy loss

event in an inelastic process. The second and third terms represent the gain in the flux

density N
(
z, ω, ~Ω

)
due to inelastic and elastic collisions, respectively. Eq. 3.1 needs to be

complemented with boundary conditions for a given problem (reflection or photo-electron

emission).

Finding a solution to the integral-differential transport equation (Eq. 3.1) represents a

challenging task [17]. First a simplified version of Eq. 3.1 was considered by Chwolson

for the radiative transfer assuming only elastic scattering processes [84, 36]. Schuster

and Schwarzschild also investigated this simplified form of Eq. 3.1 dividing the radiation

field into an outward and an inward intensity streams [32]. The solution of the obtained

system of two equations provides in fact a ’first’ approximation for the solution of Eq. 3.1.

However, such a division of the radiation field into two streams does not include any effects

of the anisotropic scattering or polarisation being extremely important for the radiative

transfer. Nowadays one of the exact approaches to find a solution of Eq. 3.1 accounting for

the boundary conditions and interaction characteristics is the so-called Partial Intensity

Approach (PIA). In reality it is known that the energy and angular variable in the

flux density coming from the surface after the interaction of the incident beam with

the solid are interrelated [85, 86]. Therefore the flux density cannot be factorized into
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functions that depend on the energy and directional variable only. However, assuming

that the energy loss process is independent of the deflection process and that energy

fluctuations after a given number of inelastic collisions n are weak, it follows that the

energy and angular variable in the partial flux density of n-fold scattered electrons should

be uncorrelated [17]. Then it is possible to find the formal solution of the transport

equation (Eq. 3.1) for the energy spectrum I
(
ω, ~Ω

)
in the PIA. The energy spectrum

I
(
ω, ~Ω

)
is defined as the number of electrons escaping from a unit area of the surface

per unit time and energy into a certain direction ~Ω and is related to the flux density

N
(
z, ω, ~Ω

)
as follows:

I
(
ω, ~Ω

)
= µN (z = 0, ω,−1 ≤ µ ≤ 0) (3.4)

Therefore the energy distribution I
(
ω, ~Ω

)
in the PIA is given by a superposition of

the partial loss distributions Ln (ω) after n collisions weighted with the number of

electrons within the group of n-fold inelastically scattered electrons or the so-called

partial intensities Cn [87, 88]:

I
(
ω, ~Ω

)
=

∞∑
n=0

Cn

(
~Ω
)
Ln (ω) (3.5)

Note that the zero-order partial intensity C0

(
~Ω
)

corresponds to the intensity of the

elastic peak formed by electrons escaping from the solid without suffering inelastic

events. The partial loss distribution Ln (ω) represents the n-fold self-convolution of the

normalized DIIMFP as follows:

Ln (ω) =

ω∫
0

xn−1
in (ε)xin (ω − ε) dε (3.6)

where L0 (ω) = δ(ω), x 0
in (ω) = δ(ω), x 1

in (ω) = xin (ω).

When the distribution of path lengths s of electrons for the considered problem is known

the partial intensities Cn

(
~Ω
)

can be found after multiplying the Path Length Distribution

(PLD) K
(
s, ~Ω

)
with the probability for n-fold scattering as a function of the path length

Wn (s) and integrating [17]:

Cn

(
~Ω
)

=

∫
K
(
s, ~Ω

)
Wn (s) ds (3.7)
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The PLD can be conveniently calculated employing a Monte Carlo simulation or analytical

approaches [89, 90]. However, partial intensities can be directly obtained by means of

the so-called Invariant Imbedding Method (IIM) which allows to skip the computation of

the PLD. In the following Section 3.1 this approach is described in more detail.

3.1 Invariant imbedding method

As it was shown above in order to compute the partial intensities Cn one has to make an

extra step to calculate the path length distribution. However, the concept of invariant

imbedding allows computing these coefficients directly by means of the Numerical Solution

(NS) of the Ambartsumian-Chandrasekhar (AC) equations which can be derived within

the framework of the classical radiative transfer theory [31, 32, 91]. The principles of

invariance originally introduced by Ambartsumian [31] stated that the diffusely reflected

intensity from a semi-infinite medium cannot be changed if a plane layer of finite thickness

having the same scattering properties as those of the medium is added [91]. On the basis

of this idea, Ambartsumian [31] obtained a non-linear integral equation for the radiance

factor in the case of a semi-infinite medium on the basis of the IIM. Chandrasekhar [32]

developed the ideas of Ambartsumian and derived four integral-differential equations

for the reflection and the transmission problem for a layer of finite thickness. Dashen

first started to use the IIM for electrons [92] inspired by earlier works of Belman [93].

Afanas’ev [33, 94] finalized the general derivation of four nonlinear equations for the

transmission and the reflection function for electrons. Borodyansky first employed the

IIM for the photo-emission problem using a simplified elastic scattering cross section [89].

The final system of the non-linear AC equations for all three considered problems namely

the reflection, the transmission, and the photo-emission can be found in Ref. [36] where

it was written down on the basis of the following assumptions:

1. The sample surface is considered as a plane.

2. The sample has amorphous or polycrystalline structure.

3. The sample is homogeneous within the information depth.

4. In the case of the photo-emission problem:

• processes of reflection and refraction of X-ray beams are neglected.

• the photon mean free path exceeds the photoelectron IMFP and TrMFP by
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several orders of magnitude, and therefore the atoms excited by radiation are

assumed to be uniformly distributed inside the sample.

• elastic scattering of photons is assumed to be negligible.

5. The energy dependence of electron scattering characteristics is neglected assuming

that they are fixed for the incident energy E0 and stay the same while an electron

slows down in the solid being the essence of the so-called Quasi-Elastic (QE)

approximation.

The obtained equations are non-linear and heterogeneous. However, they are more

convenient for the solution of the boundary problem for the transport equation from

the numerical point of view. The numerical solution of the system of the non-linear

AC equations for the reflection, the transmission, and the photo-emission problem was

developed by Kaplya [36, 35] based on the discrete ordinate formalism by reducing the

AC equations to the algebraic Ricatti and Lyapunov equations.

Let us consider a representative example of using the principles of invariance for the

derivation of the non-linear equation for the reflection problem where only elastic scat-

tering processes are considered. For this purpose, it is useful to introduce the so-called

reflection function R (z, µ0, µ, ϕ) defined as the number of electrons reflected from a solid

layer of thickness z in the direction ~Ω = {µ, ϕ} divided by the number of electrons incident

on the solid surface in the direction ~Ω0 = {µ0, ϕ0 = 0}. The derivation of the non-linear

equation for the reflection function R (z, µ0, µ, ϕ) involves the following considerations

[94, 36]:

1. Consider a layer of thickness z. Let’s add a thin layer of the same material of

thickness ∆z on top of it thereby increasing its thickness by ∆z. The added layer

is thin enough for multiple scattering to be neglected (
∆z

λtot
� 1) meaning that only

single scattering processes are allowed whereas higher-order scattering processes

are ignored assuming that their contribution is negligible with respect to the single

scattering processes.

2. The matter of interest is to determine the difference in the reflected electron

flow appeared after the addition of the thin layer. This difference is derived by

considering possible single scattering processes in the layer ∆z.

Consider the reflection function R (z + ∆z, µ0, µ, ϕ) of the system (z + ∆z) which is

formed by the reduced electron flux reflected from the layer z and the additional electron

flux formed as a result of single scattering processes in the layer ∆z. Fig. 3.2 schematically
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1 2 3 4
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Figure 3.2: Illustration of the reflection processes formed in the layer ∆z. Yellow circles: the single
elastic scattering. Solid arcs: the reflection function R (z, µ0, µ, ϕ).

demonstrates additional single scattering processes taking place in the layer ∆z which

are described as follows:

“0”: the electron flux reflected from the layer z is reduced due to the presence of

the layer ∆z which can expressed as follows:

R (z, µ0, µ, ϕ) exp

[
−∆z

λtot

(
1

µ0
+

1

µ

)]
(3.8)

Eq. 3.8 describes the electrons which travelled through the layer ∆z in incoming

and outgoing directions without suffering any scattering events.

“1”: a single elastic backscattering over the angle of interest in the layer ∆z.

“2”: after the transport in the substrate layer z the electron direction can be

changed into upwards by means of the reflection in the way that the electrons

are still outside the detection cone. However, after experiencing a small angle

deflection in the course of a single elastic process in the layer ∆z the electrons can

be scattered into the detector.

“3”: the opposite effect can take place, in which electrons first experience a small

angle deflection in the layer ∆z and then their direction can be corrected into the

angle of interest by means of the reflection from the substrate medium.

“4”: after the reflection from the substrate with the subsequent elastic backscat-

tering from the layer ∆z the electrons can again be reflected from the substrate

over the detection angle. This process can take place several times with several

subsequent reflections and backscattering though it has a small probability.

“5”: higher-order scattering processes are ignored.
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Note that all cases “0”–“5” presented in Fig. 3.2 are for the same incidence and emission

angles. Let us introduce the ’+’ and ’−’ superscripts for the DECS xel referring to the

sign of the cosine of the polar angle:x
+
el (µ0, µ, ϕ) = xel (µ0, µ, ϕ) , sign (µ0 · µ) = 1,

x−el (µ0, µ, ϕ) = xel (±µ0,∓µ, ϕ) , sign (µ0 · µ) = −1.
(3.9)

Here the ’−’ index is applied for the back scattering, whereas the ’+’ sign is used for the

forward scattering. Therefore the reflection function of the system z + ∆z can be written

as follows:

R (z + ∆z, µ0, µ, ϕ) = R (z, µ0, µ, ϕ) exp

[
−∆z

λtot

(
1

µ0
+

1

µ

)]
+

+
1

λel
·∆z · x−el (µ0, µ, ϕ) +

+
1

λel
∆z

1∫
0

2π∫
0

R
(
z, µ0, µ

′, ϕ′
)
x+
el

(
µ′, µ, ϕ− ϕ′

)
dϕ′

dµ′

µ′
+

+
1

λel
∆z

1∫
0

2π∫
0

x+
el

(
µ0, µ

′, ϕ′
)
R
(
z, µ′, µ, ϕ− ϕ′

)
dϕ′

dµ′

µ′
+

+
1

λel
∆z

1∫
0

2π∫
0

1∫
0

2π∫
0

R
(
z, µ0, µ

′, ϕ′
)
x−el
(
µ′, µ′′, ϕ′′ − ϕ′

)
R
(
z, µ′′, µ, ϕ− ϕ′′

)
dϕ′

dµ′

µ′
dϕ′′

dµ′′

µ′′

(3.10)

By expanding the exponential function exp

[
− ∆z
λtot

(
1
µ0

+ 1
µ

)]
into a Taylor series:

exp

[
−∆z

λtot

(
1

µ0
+

1

µ

)]
≈ 1− ∆z

λtot

(
1

µ0
+

1

µ

)
(3.11)

setting ∆z to zero and replacing it by dz, and dividing both sides of Eq. 3.10 by dz we

receive the following:

R (z + dz, µ0, µ, ϕ)−R (z, µ0, µ, ϕ)

dz
+R (z, µ0, µ, ϕ)

1

λtot

(
1

µ0
+

1

µ

)
=

=
1

λel
x−el (µ0, µ, ϕ) +
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+
1

λel

1∫
0

2π∫
0

R
(
z, µ0, µ

′, ϕ′
)
x+
el

(
µ′, µ, ϕ− ϕ′

)
dϕ′

dµ′

µ′
+

+
1

λel

1∫
0

2π∫
0

x+
el

(
µ0, µ

′, ϕ′
)
R
(
z, µ′, µ, ϕ− ϕ′

)
dϕ′

dµ′

µ′
+

+
1

λel

1∫
0

2π∫
0

1∫
0

2π∫
0

R
(
z, µ0, µ

′, ϕ′
)
x−el
(
µ′, µ′′, ϕ′′ − ϕ′

)
R
(
z, µ′′, µ, ϕ− ϕ′′

)
dϕ′

dµ′

µ′
dϕ′′

dµ′′

µ′′

(3.12)

Using the dimensionless variable for the thickness τ = z/λtot yields the equation for the

reflection function [33]:

∂

∂τ
R (τ, µ0, µ, ϕ) +

(
1

µ0
+

1

µ

)
R (τ, µ0, µ, ϕ) = Λx−el (µ0, µ, ϕ) +

+ Λ

1∫
0

2π∫
0

R
(
z, µ0, µ

′, ϕ′
)
x+
el

(
µ′, µ, ϕ− ϕ′

)
dϕ′

dµ′

µ′
+

+ Λ

1∫
0

2π∫
0

x+
el

(
µ0, µ

′, ϕ′
)
R
(
z, µ′, µ, ϕ− ϕ′

)
dϕ′

dµ′

µ′
+

+ Λ

1∫
0

2π∫
0

1∫
0

2π∫
0

R
(
z, µ0, µ

′, ϕ′
)
x−el
(
µ′, µ′′, ϕ′′ − ϕ′

)
R
(
z, µ′′, µ, ϕ− ϕ′′

)
dϕ′

dµ′

µ′
dϕ′′

dµ′′

µ′′

(3.13)

where Λ = λ−1
el /λ

−1
tot is the single scattering albedo.

Introducing the transmission and photo-electron flux density functions the non-linear

equations for the transmission and photo-emission problems can be obtained in a similar

way [36, 37]. The transmission function T (z, µ0, µ, ϕ) is defined as the number of electrons

transmitted through a solid layer of thickness z in the direction ~Ω = {µ, ϕ} divided by the

number of electrons incident on the solid surface in the direction ~Ω0 = {µ0, ϕ0 = 0}. The

derivation of the non-linear equation for the transmission function T (z, µ0, µ, ϕ) proceeds

via considering single scattering processes taking place in the layer ∆z added on top of

the layer z as depicted in Fig. 3.3. Note that the transmission function T (z, µ0, µ, ϕ) does

not describe the electrons that have passed through the layer z without suffering elastic

or inelastic scattering. These electrons can be described by the Poisson distribution
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1 2 3 4

��

0

Figure 3.3: Illustration of the transmission processes taking place in the layer ∆z. Yellow circles: the

single elastic scattering. Solid lines: the function Hn

(
τ

µ

)
describes the electrons that have passed

through the layer z without suffering elastic or inelastic scattering. Solid arcs: the reflection function
R (z, µ0, µ, ϕ). Zigzag lines: the transmission function T (z, µ0, µ, ϕ).

function Hn

(
τ

µ

)
given by:

Hn

(
τ

µ

)
= exp

(
− τ
µ

)(
1− Λ

µ
τ

)n 1

n!

The photo-electron flux density function Q (z, µ0, µ, ϕ) is defined as the number of

photo-electrons emitted from a solid layer of thickness z in the direction ~Ω = {µ, ϕ}
divided by the number of photons incident on the surface of this layer in the direction

~Ω0 = {µ0, ϕ0 = 0}. The derivation of the non-linear equation for the photo-electron flux

density function Q (z, µ0, µ, ϕ) proceeds via considering single scattering processes taking

place in the layer ∆z added on top of the layer z as depicted in Fig. 3.4. Note that in

order to obtain the equation for the transmission function and the photo-electron flux

density function, one should first determine the reflection function. In this connection

the equation for the reflection function is self-consistent. As seen from Fig. 3.4 in the

photo-emission problem the knowledge of the differential photo-ionization cross section

xph

(
~Ω0, ~Ω, E0

)
is required to describe the emission of photo-electrons inside the solid

which can be calculated using the formalism described in Ref. [95].

In general case when energy loss processes are taken into account the NS implies that

the obtained non-linear equations are first discretized in the angular domain by defining

a set of Gaussian quadrature points and weights in the polar angle direction. The

obtained differential matrix equations can be solved by using either the Backward

Differentiation Formula (BDF) [96] or the matrix exponential formalism [97] providing

the partial intensities Rn

(
~Ω
)

, Tn

(
~Ω
)

, and Qn

(
~Ω
)

to describe the energy loss spectrum
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1 2 3 40

��

Figure 3.4: Illustration of the photo-electron emission processes taking place in the layer ∆z. Green
circles: the single photo-electron emission process described by the differential photo-ionization cross

section xph
(
~Ω0, ~Ω, E0

)
. Yellow circles: the single elastic scattering. Solid arcs: the reflection function

R (z, µ0, µ, ϕ). White circles with zigzag path: the photo-electron flux density function Q (z, µ0, µ, ϕ).

of reflected, transmitted, and photo-emitted electrons in the PIA, respectively, as follows:

R
(
ω, ~Ω

)
=
∞∑
n=0

Rn

(
~Ω
)
Ln (ω)

T
(
ω, ~Ω

)
=
∞∑
n=0

Tn

(
~Ω
)
Ln (ω)

Q
(
ω, ~Ω

)
=
∞∑
n=0

Qn

(
~Ω
)
Ln (ω)

(3.14)

The entire computational procedure is implemented using the ESCal software [98]

developed on the basis of the object-oriented programming on the MATLAB platform.

In Ref. [35] the numerical solution of the system of the AC equations is validated against

Monte Carlo simulations and experimental angular distributions of scattered electrons. An

agreement within 1% is obtained between them, while the computational time for solving

the system of non-linear AC equations is in the order of a second on Intel Xeon CPU

E5-1620 3.60GHz (the performance can be enhanced even further by using acceleration

techniques for the discrete ordinate method [99] or by parallel computing [100]). Due to

the high performance the proposed technique for the calculation of partial intensities can

be effectively used in the direct search methods of nonlinear optimization.

3.1.1 Multi-layered systems

As was discussed above the IIM approach can be applied only for homogeneous samples.

In the case of the samples consisting of several layers of a different material, the reflection

function can be calculated through corresponding reflection functions derived for each

of these layers which are homogeneous when considered separately. Fig. 3.5 shows a

two-layered system consisting of the top layer of thickness z1 of one material and a

semi-infinite bottom layer of another material. Using dimensionless variable τ1 = z1/λtot
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Figure 3.5: Schematic processes of the formation of (a) the reflection; and (b) the photo-emission
functions for multi-layered systems.

the reflection function is given by [36, 37]:

R (ω, µ0, µ, ϕ) = R1 (τ1, ω, µ0, µ, ϕ) +

+

ω∫
0

dε

ε∫
0

dε′
2π∫
0

1∫
0

2π∫
0

1∫
0

T1

(
τ1, ω − ε, µ0, µ

′, ϕ′
)
R2

(
ε− ε′, µ′, µ′′, ϕ′′ − ϕ′

)
· T1

(
τ1, ε

′, µ′′, µ, ϕ− ϕ′′
) dµ′
µ′
dϕ′

dµ′′

µ′′
dϕ′′ (3.15)

whereR1 and T1 are the reflection and transmission functions for the top layer, respectively,

while R2 stands for the reflection function of the semi-infinite bottom layer (τ2 →∞).

Analogously, the photo-electron flux density for the two-layered system (Fig. 3.5b) reads

as follows [36, 37]:

Q (ω, µ0, µ, ϕ) = Q1 (τ1, ω, µ0, µ, ϕ) +

+

ω∫
0

dε

2π∫
0

1∫
0

Q2

(
ω − ε, µ0, µ

′, ϕ′
)
T1

(
τ1, ε, µ

′, µ, ϕ− ϕ′
) dµ′
µ′
dϕ′+

+

ω∫
0

dε

ε∫
0

dε′
2π∫
0

1∫
0

2π∫
0

1∫
0

Q1

(
τ1, ω − ε, µ0, µ

′, ϕ′
)

·R2

(
ε− ε′, µ′, µ′′, ϕ′′ − ϕ′

)
T1

(
τ1, ε

′, µ′′, µ, ϕ− ϕ′′
) dµ′
µ′
dϕ′

dµ′′

µ′′
dϕ′′ (3.16)
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Here Q1 and Q2 are the photo-electron flux densities for the top and bottom layers,

respectively.

When the thickness of the top layer is much less than the transport mean free path the

trajectories in this layer can be approximated by straight lines. As shown in Ref. [101],

the error induced by this assumption does not exceed 3% excluding the cases of glancing

sighting angles. Consequently, Eqs. 3.15 and 3.16 can be simplified as follows [36, 37]:

R (ω, µ0, µ, ϕ) = R1 (τ1, ω, µ0, µ, ϕ) +

+
ω∫
0

R2 (ω − ε, µ0, µ, ϕ)L

[
τ1

(
1

µ
+

1

µ0

)
, ε

]
dε

(3.17)

Q (ω, µ0, µ, ϕ) = Q1 (τ1, ω, µ0, µ, ϕ) +

+
ω∫
0

Q2 (ω − ε, µ0, µ, ϕ)L

(
τ1

µ
, ε

)
dε

(3.18)

3.1.2 Inclusion of surface effects

In order to account for surface excitations an energy loss signal from the surface can be

described employing the Poisson statistics for plural surface scattering as follows [63, 58]:

IS (ω, µ,E0) =
∞∑
k=0

Pk
(
ηs (µ,E0)

)
Lk (ω) (3.19)

where the function Pk represents the Poisson distribution:

Pk (x) = xk
e−x

k!
(3.20)

In Eq. 3.19 the partial loss distribution Lk (ω) represents the k-fold self-convolution of the

direction dependent DSEP xinS (ω, µ,E0) (as in Eq. 3.6) which is found after integrating

the part of the total DIIMFP (Eq. 2.19) related to surface excitations over all depths

outside and inside the solid:

xinS (ω, µ,E0) =

τs∫
−τs

W s→v
in (ω, µ,E0, r) dr (3.21)

where ±τs = ±zs/µ define the boundaries for the region where surface excitations are

considered. “−” refers to the vacuum side and “+” refers to the inner side of the solid.
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Note that according to Eq. 2.19 the total DIIMFP W s→v
in (ω, µ,E0, r) includes both

bulk and surface contributions. Whereas in Eq. 3.21 only surface components from this

equation are used in order to calculate the DSEP:

W s→v
in (ω, µ,E0, r) =

4µ

π3

q+∫
q−

dq

π/2∫
0

dα

2π∫
0

dφ

× q sin2 α cos (qzrµ) exp
(
− |r|Qµ

)
ω̃2 +Q2v2

⊥
Im

 −1

ε
(
ω, ~Q

)
+ 1

Θ (−r)

+
4µ

π3

q+∫
q−

dq

π/2∫
0

dα

2π∫
0

dφ

× q sin2 α exp
(
− |r|Qµ

)
ω̃2 +Q2v2

⊥
Im

 −1

ε
(
ω, ~Q

)
+ 1


×
[

2 cos

(
ω̃r

v

)
− exp

(
− |r|Qµ

)]
Θ (r) (3.22)

The value of the total SEP ηs (µ,E0) in Eq. 3.19 is found by integrating the DSEP

xinS (ω, µ,E0) over energy losses. An experimental REELS spectrum can be then de-

scribed as follows:

R (ω, µ0, µ, ϕ) = IS ⊗RB ⊗ IS ⊗G =

= IS (ω, µ0, E0)⊗

 ∞∑
n=0

Rn (µ0, µ, ϕ)Ln (ω)

⊗ IS (ω, µ,E0)⊗G (ω) (3.23)

where RB (µ0, µ, ϕ) represents the reflection function from the semi-infinite bulk, and

G (ω) represents the Gaussian function which approximates the broadening of the elastic

peak. The symbol ⊗ relates to the convolution operator defined as follows:

F1 ⊗ F2 =

ω∫
0

F1 (ε) · F2 (ω − ε) dε (3.24)

The double convolution of the bulk signal RB with the surface signal IS is performed

due to the fact that electrons cross the surface twice, i.e. during its incoming to and
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outgoing from the solid. In fact, the authors of Ref. [51] provide a separate equation for

the DIIMFP for electrons travelling from vacuum to solid W v→s
in (ω, µ0, E0, r), however

this was shown to be quite similar with the DIIMFP for electrons travelling from solid to

vacuum W s→v
in (ω, µ,E0, r). Therefore the latter quantity can be used for the calculation

of both signals IS to a good approximation.

3.2 Monte Carlo model for the electron-induced secondary

electron emission from solids

Monte Carlo simulation is a widely used approach for the solution of electron transport

problems related to surface analysis. Currently, the results of MC simulation can act as

a substitute for experimental data during the approbation of computational techniques.

One of the greatest advantages of the MC method is the possibility to deal with the most

complex boundary conditions concerning the medium where electron transport takes

place, as well as the experimental geometrical arrangement [17]. From the mathematical

point of view, the MC method allows evaluation of the complicated multidimensional

integral of the transport equation by statistical sampling of the integrand. Assuming that

the electron path consists of linear steps interrupted by scattering processes, a computer

is utilized to simulate the trajectories of particles as they move inside the solid. The

scattering events and the duration of particle path is determined through the use of

random numbers. For electron transport, an average number of stochastically generated

trajectories is used as representative for the particle flux density in the considered situation.

Each individual trajectory is generated according to the physical laws governing the

electron–solid interaction. This implies that the generated scattering angles and energy

losses are distributed according to the physical quantities describing these scattering

processes: the DECS and the DIIMFP [17].

In this work, the Monte Carlo model is presented to describe the electron-induced

secondary electron emission from solids. For this purpose, it is of paramount importance

to account for the true slowing down of electrons in order to describe the transport of

both primary and secondary electrons in the solid. This approach accounts for the energy

dependence of scattering characteristics of an electron while it slows down in the solid [17]

which is highly important to describe the formation of the secondary electron cascade.

In the present algorithm trajectories of individual electrons are modeled by assuming

that their paths can be described by straight lines between scattering processes. The
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considered scattering processes comprise elastic and inelastic interaction of electrons with

the solid. The frequency of elastic and inelastic events is governed by the total mean free

path given by:

λ−1
tot = λ−1

el + λ−1
in (3.25)

Elastic processes are responsible for change of the direction of motion whereas the electron

energy is assumed to remain unchanged. Inelastic processes are responsible for change of

the energy and the direction of motion, and creation of a secondary electron. Deflections

during energy loss processes are considered by means of the binary collision model. When

an electron with energy E loses energy ω in an inelastic event the scattering angle ψin

due to the deflection after such a collision is given by the following equation [102]:

sinψin =

√
ω

E
(3.26)

In the present model, it is assumed that each inelastic process leads to an electronic

transition inside the solid from the Fermi edge to an unoccupied state since the unoccupied

state is always available due to the band structure considered within a free-electron

model. Provided that the final state is above the vacuum level, i.e. the energy ω lost by

the primary electron exceeds the work function φ of the solid, an electron in the solid has

been liberated with energy E = EF + ω which can escape from the surface as a SE. Note

that the bottom of the valence band is used as the energy reference for elastic scattering

processes whereas the Fermi level is used as the energy reference for inelastic scattering

processes. Each time a SE is created all the information about the correspondent inelastic

event lead to the production of this electron is stored in the simulation stack until the

current trajectory of the primary electron is terminated. Further, all SEs are simulated

along the same scheme as primaries one after another. If these SEs undergo energy

losses, further SEs are added to the simulation stack, giving rise to the formation of the

secondary electron cascade [72].

The description of elastic scattering is based on the DECS and EMFPs calculated using

the ELSEPA code [53]. Linear response theory based on empirical optical constants is

used to describe inelastic scattering [42, 41]. Inelastic scattering is considered assuming

both bulk and surface excitations. The model proposed by Li in Ref. [51] based on the

position and direction dependent DIIMFP is used to describe surface excitations. For

the sampling algorithm in the absence of surface excitations the reader is referred to

Refs. [17, 36]. The procedure of sampling a scattering angle and an energy loss from the

databases for the DECS and DIIMFP (prepared beforehand) is performed according to
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the sampling algorithm of Coleman [103], which is also described in Refs. [40, 72]. The

determination of the type of event happening during the electron transport in the solid

involves the use of the following quantities: the inverse elastic mean free path λ−1
el , the

inverse inelastic mean free path λ−1
in , which consists of those for surface scattering λ−1

inS

and for bulk scattering λ−1
inB.

The core of the MC algorithm reads:

1. Initialize the trajectory at the origin of the coordinate system which is located at

the surface with direction pointing towards the inside of the solid and with the

primary energy E0.

2. Track the electron trajectory using the following steps:

If the electron travels in vacuum (z ∈ [−20 : 0] Å, only surface scattering is possible):

(a) Find the minimum mean free path λmin among those between surface scattering

events (for all E, z, θ, where z is the depth).

(b) Sample a step s = −λminln (ξ) along the current direction, where ξ is a random

number.

(c) Determine the type of the event:

• no interaction with probability λ−1
min/

(
λ−1
min + λ−1

inS

)
. As the minimum step is

used one needs to check whether an interaction takes place at all.

• surface excitation with probability λ−1
inS/

(
λ−1
min + λ−1

inS

)
with subsequent sam-

ple of an energy loss ω from the database for the current electron energy E,

depth z and direction of motion θ, and subsequent calculation of a deflection

during the inelastic process according to Eq. 3.26. Provided that ω > φ a

trajectory for the secondary electron produced as a result of the inelastic

event with primary energy E = ω +EF is added to the simulation stack. The

position of the SE is set to the symmetrized position inside the solid.

If the electron travels inside the solid (z > 0):

(a) Calculate the total mean free path λ−1
tot = λ−1

el + λ−1
in .

(b) Sample a step s = −λtotln (ξ) along the current direction.

(c) Determine the type of the event:
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• elastic interaction with probability λ−1
el /

(
λ−1
el + λ−1

in

)
with subsequent update

of the electron direction of motion.

• inelastic interaction with probability λ−1
in /

(
λ−1
el + λ−1

in

)
with subsequent sam-

ple an energy loss ω from the database for the current E.

Determine the type of the inelastic interaction if the electron is in the surface

scattering region (z ∈ [0 : 20] Å):

– surface excitation with probability λ−1
inS/

(
λ−1
inB + λ−1

inS

)
with subsequent

sampling of an energy loss ω from the database for the current electron

energy E, depth z and direction of motion θ, and subsequent calculation

of a deflection during the inelastic process according to Eq. 3.26.

– bulk excitation with probability λ−1
inB/

(
λ−1
inB + λ−1

inS

)
with subsequent

sampling an energy loss ω from the database for the current electron

energy E, and subsequent calculation of a deflection during the inelastic

process according to Eq. 3.26.

Provided that ω > φ a trajectory for the secondary electron produced as a

result of the inelastic event with primary energy E = ω + EF is added to the

simulation stack.

3. If the electron crosses the solid surface when travelling from vacuum to solid (z = 0,

cos θ > 0) its trajectory is refracted according to Eq. 2.29 and its energy is increased

by the value of the work function φ.

If the electron crosses the solid surface when travelling from solid to vacuum (z = 0,

cos θ < 0) within the escape cone defined by Eq. 2.35, i.e. provided that E cos2 θ

exceeds the value of the inner potential Ui, its trajectory is refracted according to

Eq. 2.30 and its energy is decreased by the value of the work function φ. Otherwise,

the electron trajectory is reflected back into the solid (total internal reflection) and

is sampled further by going back to step 2.

4. If the electron leaves the solid without entering the analyzer or if the electron leaves

the energy window of interest, disregard the trajectory and initialize the next one

starting from the trajectories for SEs collected in the simulation stack. Otherwise,

sample the current trajectory further by going back to step 2.

If the electron hits the analyzer, update the corresponding histograms of measured

quantities.
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3.3 Approbation of the presented approaches

In this section an experimental confirmation of the reliability of the methods presented

above is performed. The comparison of results of any analytical, numerical or statistical

method with experimental data is the most reliable way to confirm the validity of the

used approaches. Let us first start with the reliability testing of the MC algorithm

employing the slowing down energy regime.

3.3.1 The slowing down regime

In this work, the Monte Carlo approach is employed in the SD regime and used to

simulate the generation of secondary electrons in solids and to predict secondary electron

yields. As a reminder, the MC model within the slowing down regime accounts for the

energy dependence of interaction characteristics of an electron during its slowing down in

a solid. Since the secondary electron emission process involves three steps – production,

transport, and escape over the surface potential barrier of secondary electrons – a lot of

parameters influence the resulting SEY value, such as the elastic and inelastic mean free

path, the elastic and inelastic cross sections, the work function φ and the inner potential

Ui, etc. The implemented MC algorithm is based on widely used by many authors MC

codes and described in Section 3.2. In order to test the software reliability results of

the MC simulation of the reflection coefficient from several targets were compared with

experimental results. Another testing of the implemented MC algorithm was performed

by comparing results of the MC calculation of the average number of surface excitations

with experimental data. In the following Subsubsections results of such comparisons are

presented.

3.3.1.1 Reflection coefficient

The reflection coefficient η is defined as the number of electrons inelastically backreflected

from the solid divided by the number of incident electrons. In fact, the quantity measured

experimentally is the Total Electron Yield (TEY) σ made up by the true secondary

electron yield δ and the inelastic reflection coefficient η:

σ = δ + η (3.27)
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One of the main mechanisms for an electron to slow down in the solid is the production

of true secondary electrons during the inelastic interaction with the solid state electrons.

Thus there are three groups among electrons escaping from the solid: elastically reflected

primary electrons, inelastically scattered (or backreflected) primary electrons, which have

lost part of their energy in the solid, and true secondary electrons with low energies (below

50 eV) [104]. It is not possible to experimentally draw an exact energetic boundary

between inelastically scattered primary and true secondary electrons since both fast

secondaries (with energies above 50 eV) and slow primaries (with energies below 50 eV)

can contribute to the resulting spectrum. Nevertheless, on the basis of some commonly

accepted considerations, true secondary electrons are supposed to be those with energies

below 50 eV. Those electrons with energies above 50 eV are designated as inelastically

reflected primaries. One of the reasons for such a separation is a significant exceeding of

the number of secondary electrons with low energies over the number of primary electrons

due to the creation of the secondary electron cascade as explained in Section 1.1 (see

Fig. 1.1).

The acquirement of the TEY is carried out in vacuum instruments of different configu-

rations having such common constituents as an electron gun and a collector. A typical

experimental set-up can be found in Refs. [104, 105]. The total electron yield is generally

measured for perpendicular incidence of electrons as a function of the incident energy

ranging up to several keV, using a hemispherical collector with a suppressor grid aimed

to decrease the number of stray electrons [104]. The anode of the electron gun and the

sample are at ground potential. The value of σ is acquired by applying a positive bias

on the grid. A negative voltage drop (- 50 V) applied between the grid and the sample

prevents electrons with energies below 50 eV from reaching the collector and is used for

measuring η. Then, the SEY δ is obtained as follows:

δ = σ − η (3.28)

where the reflection coefficient η contains electrons backreflected from the solid surface

with energies above 50 eV including elastically reflected electrons. As it was mentioned

above it is not possible experimentally distinguish between primary and secondary

electrons, whereas in the MC simulation primary and secondary electrons can be traced

separately. Therefore in order to predict the reflection coefficient as close as possible to

the experiment in the MC calculation, updating of correspondent histograms for this

quantity is done when both primary and secondary electrons with energies above 50 eV

hit the detector. The results of the calculation of the reflection coefficient η by means of
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Figure 3.6: Comparison of results of the MC simulation for the reflection coefficient η as a function of
the incident energy with collected experimental data [39, 104] for (a) Cu, and (b) Au.

the MC simulation are shown in Fig. 3.6 for Cu and Au compared with experimental

data from Refs. [39, 104]. As seen from Fig. 3.6 the results of the MC simulation describe

the experimental data with a sufficient accuracy. This example provides a good test for

the developed MC code described in detail in Section 3.2.

3.3.1.2 Inclusion of surface excitations

Super-surface electron scattering, i.e., electron energy losses and associated deflections in

vacuum above the surface of a medium, is shown to contribute significantly to electron
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spectra [52]. For the super–surface scattering process, the momentum transfer during

inelastic collisions plays an essential role [102] and can be taken into account by means of

the binary collision model (see Eq. 3.26). Fig. 3.7 illustrates the super-surface scattering

process for 500 eV electrons backscattered from a gold surface [52] showing (a) the

situation without deflection, (b) a finite super-surface scattering with a deflection angle

ψin before elastic backscattering, and (c) after elastic backscattering. As illustrated

in Fig. 3.7(b), an electron during its approaching to the surface may suffer a super-

surface energy loss transferring a small amount of momentum, which gives rise to a

deflection over the scattering angle ψin. After such a super-surface energy loss process,

the scattering angle during the subsequent elastic interaction then corresponds for the

strong deflection over the scattering angle ψ′ since it is no longer at the minimum of the

DECS [52]. Therefore the reflection probability increases significantly when the incoming

electron experiences a deflection in a super-surface collision. The opposite effect can take

place when an electron is scattered out of a maximum in the DECS in the course of a

super-surface collision (Fig. 3.7(c)).

The authors of Ref. [52] have demonstrated that when deflections in inelastic scattering are

taken into account, both the vacuum and medium contribution of the surface excitation

probability (solid curves) exhibit strong oscillations which are anticorrelated with the

oscillations observed in the elastic backscattering probability. In the present work, surface

excitations were incorporated into the MC algorithm on the basis of Li’s theory [51] briefly

described in Subsection 2.2.2. In order to provide an independent test of the validity of

this implementation the results of MC calculations of the angularly distributed average

(a) (b) (c)

vacuum

Au

elastic
super–surface inelastic

Figure 3.7: Super-surface scattering processes: (a) without deflections during surface excitations; surface
excitation before (b) and after (c) back scattering with correspondent deflections ψin. Adapted from
Ref. [52].
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Figure 3.8: (a) Solid curves: results of Monte Carlo calculations obtained in this work (red) and the
ones from Ref. [52] (blue). Data points with solid curves: measured elastic peak intensity normalised to
theory at a scattering angle of 80◦; (b) Solid curves: results of the Monte Carlo calculations of the average
number of surface excitations performed with deflections during inelastic scattering (this work). Solid
curves with data points: results of Monte Carlo calculations taken from Ref. [52]. Lower curves (blue):
surface excitations taking place inside the medium; Middle curves (red): surface excitations in vacuum;
Upper curves (black): surface excitations in vacuum and medium (total); Note that this comparison is in
absolute units.

number of surface excitations taken from Ref. [52] were used. Fig. 3.8(a) compares the

angular distribution of the elastic reflection coefficient calculated on the basis of the MC

model presented in this work and results of MC calculations obtained by the authors of

Ref. [52]. The experimental results are also shown. The present results for the surface

excitations, shown as solid curves in Fig. 3.8(b), are compared with results from Ref. [52],

shown as data points with solid curves. The latter comparison is performed for the

situation when surface excitations take place inside the medium (blue curves), in vacuum

75



Chapter 3. SOLUTION OF THE BOLTZMANN-TYPE TRANSPORT EQUATION IN
NON-CRYSTALLINE MEDIA

(red curves), and both inside the medium and in vacuum (black curves). The agreement

between the present MC calculations and the ones taken from Ref. [52] allows to conclude

that the implementation of surface scattering effects in the present MC code is correct.

3.3.2 The quasi-elastic limit

For the approbation of the IIM approach the results provided by this method are compared

with results of the MC simulation. An example of application of the MC algorithm and

the IIM method is shown in Figs. 3.9-3.12. Fig. 3.9 shows the angular distribution of the

elastic peak intensity (zero-order partial intensity) for 500 eV electrons incident on a gold

sample at the angle θ0 = 70◦ with respect to the surface normal. The experimental data

are taken from Ref. [52]. For comparison, the results of the Small-Angle Approximation

(SAA) (green dash-dotted curves) and the Single Scattering Approximation (SSA) (purple

dashed curves) are also shown. The SAA (green dash-dotted curve in Fig. 3.9) is based

on the direct accounting for flux isotropization due to small angle scattering events

Figure 3.9: Solid curves: angular distribution of the elastic peak intensity according to the numerical
solution of the non-linear equation for the reflection function within the invariant imbedding method
(IIM) [36, 35] (blue), and the Monte Carlo (MC) simulation (yellow) [52]; Data points with solid curve:
measured elastic peak intensity normalised to theory at an emission angle of 5◦ [52]; Dashed curve: the
single scattering approximation; Dash-dotted curve: the small angle approximation.
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[33, 35]. This approach as well as the IIM are seen to reproduce the experimental data

quite well and are in close agreement with Monte Carlo model calculations (yellow solid

curve). The SSA is based on the approach known as the Straight Line Approximation

(SLA) introduced by Rubin and Everhart [106, 107]. This model neglects changing of

the direction of motion for particles since the elastic scattering cross section has a sharp

peak for forward scattering xel (ψ ≈ 0◦) � xel (ψ > 90◦). In the case of the reflection

problem considered the SSA implies that electrons travel along straight lines before and

after the one elastic backscattering [36]. The SSA model is seen to fail in reproducing

the results of measurements and the MC simulation, demonstrating the importance of

accounting for multiple elastic scattering. In Fig. 3.9 the elastic reflection coefficient is

observed to exhibit several minima at emission angles of −45◦, 0◦, and 43◦ referred to as

the so-called Ramsauer-Townsend minima. This phenomenon relates to the interference

of partial waves experiencing different phase shifts during their passage through the

screened Coulomb field of the nuclei in the gold sample [52].

Fig. 3.10 shows the higher order (reduced) partial intensities in the reflection problem

cn = Cn/C0 plotted versus the number of inelastic collisions n that electrons suffer in

the solid calculated by means of the IIM and the MC approach for Cu, Ag, and Au.

In the case of the IIM these quantities were calculated using the numerical solution of

of the non-linear equation for the reflection function within the IIM [36, 35]. For the

emission angle θ = 60◦ a slight difference between the two approaches is observed for

Cu (Fig. 3.10a). Whereas reasonable agreement is seen for other emission angles (θ = 0◦

and θ = 30◦) presented in Fig. 3.10. Consider as a representative example the partial

intensities for Au. For emission angles of 0◦ and 60◦ a monotonic decrease in the reduced

partial intensities with increasing n is observed. For emission angle of 60◦ a maximum in

the partial intensities is seen, which is attained at around n = 3. This behavior can be

explained as follows. For those emission angles at which the DECS exhibit a minimum an

electron has a higher probability for inelastic collision to happen giving rise to a higher

Cn for n > 0. For those emission angles at which the DECS exhibit a maximum an

electron can be reflected immediately at the very surface region giving rise to a higher

Cn for n = 0.

Using the partial intensities the energy distribution can be obtained according to Eq. 3.5.

Fig. 3.11 shows the results of the MC simulation and the calculation using the IIM

approach for REELS spectra for Cu, Ag, and Au. Note that here only bulk scattering

effects are taken into account, whereas surface excitations are not considered. For the

presented materials, a reasonable agreement between the two computational approaches

77



Chapter 3. SOLUTION OF THE BOLTZMANN-TYPE TRANSPORT EQUATION IN
NON-CRYSTALLINE MEDIA

Figure 3.10: Reduced partial intensities (cn = Cn/C0) for (a) Cu, (b) Ag, and (c) Au for normal
incidence of 500 eV electrons and for three angles of emission as indicated. Circles: Monte Carlo (MC)
simulation results; solid curves: the invariant imbedding method (IIM).

is observed.

Fig. 3.12 shows the results of the comparison of REELS spectra with account for surface

excitations calculated using the MC simulation and the IIM approach for Cu, Ag, and Au.

For the presented materials the agreement between the two computational approaches is

seen to be satisfied. However one can notice that the inelastic background in the range

of energy losses up to 40 eV is lower in the case of the IIM approach. Such a difference

is caused by different ways to describe surface excitations used in the two methods. In

the IIM approach, the DIIMFP averaged over depth is used assuming that electrons

cross the surface only along the angle of incidence and emission. Whereas in the MC

simulation the electron movement is traced step by step, using the DIIMFP for the

current position, angle, and energy at each inelastic event in the surface region. Note

also that in Fig. 3.12 the case of normal incidence is considered. In the case of glancing

incident or emission angles, the difference between the two approaches is getting larger
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Figure 3.11: Reflection electron energy loss spectra for (a) Cu; (b) Ag; and (c) Au for normal incidence
of 500 eV electrons and for the emission angle of θ = 60◦. Blue curves: results of the Monte Carlo
simulation (MC). Red curves: results of analytic calculations on the basis of the invariant imbedding
approach (IIM). Note that here the one-layered model including only bulk scattering is considered.

(this case is not shown). This is mainly due to the fact that for glancing geometries

surface effects have a stronger contribution to the electron spectrum and therefore should

be considered more accurately as it is done in the MC approach.
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Figure 3.12: Reflection electron energy loss spectra with account for surface excitations for (a) Cu; (b)
Ag; and (c) Au for normal incidence of 1000 eV electrons and emission into the entire hemisphere above
the sample. Blue curves: results of the Monte Carlo simulation (MC). Red curves: results of analytical
calculations on the basis of the invariant imbedding approach (IIM).
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Applications of the IIM for

surface analysis

4.1 Retrieval of the DIIMFP from REELS and XPS using

the IIM

Employing the EELS technique is a widely used approach to measure dielectric properties

of a target in terms of the ELF [26, 37, 29]. In EELS experiments a wide range of energy

losses is accessible which is a great advantage compared to measurements using photons

as probing particles (see Subsection 2.2.1). Usually the technique called Transmission

Electron Energy Loss Spectroscopy (TEELS) is employed for the measurement of the ELF

in a transmission electron microscope. However, in this case, one has to use samples of

different thicknesses in order to get the ELF in a wide range of energy losses for different

materials. The REELS technique represents a good alternative to the TEELS technique

having similar advantages but not requiring for the samples of different thicknesses. A

REELS spectrum represents an overlapped contribution of n-fold scattered electrons

whereas the ELF is a property of a single scattering of electrons. Therefore the retrieval

of the ELF from such a signal requires an accurate description of electron transport in

the solid accounting for both elastic and inelastic scattering. It is important to emphasize

that inelastic scattering should be considered in terms of bulk and surface excitations.

Note that in fact, the property extracted from a REELS spectrum is the DIIMFP and the

DSEP. The ELF is obtained from the DIIMFP by means of the fitting procedure using a

model dielectric function. One of the most reliable approaches to retrieve the DIIMFP is
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deconvolution. The method proposed by Werner et al. [26] consist in the measurement of

two REELS spectra in bulk and surface sensitive modes. Then the contribution of plural

scattering is eliminated by means of the deconvolution procedure providing the DIIMFP

and the DSEP. The use of two spectra allows (with due implementation) obtaining a

unique result for these quantities.

Another approach to retrieve the DIIMFP is using direct fitting algorithms. In this case,

in order to obtain the dielectric function from a REELS experiment one assumes a model

function and determines the parameters for which it describes the measured spectrum

best. In order to fit a spectrum, one modifies these parameters of the dielectric function

and calculates the spectrum using the partial intensity approach. Then it is possible

to estimate its quality by comparison of the calculated energy loss spectrum with the

experimental one. The value of the DIIMFP xin (ω,E0) is derived by means of the fitting

procedure on the base of minimizing a functional:

M =

ωmax∫
0

[
R (ω, µ0, µ, ϕ)−Rexp (ω, µ0, µ, ϕ)

]2
dω (4.1)

Such an algorithm requires multiple calculations of an energy loss spectrum, which

implies that the method used for this purpose to be not time-consuming. The invariant

imbedding method is therefore considered to be a perfect candidate for this goal. The

fitting procedure employs the following steps for the calculation of energy loss spectra

by means of the numerical solution of the nonlinear equation for the reflection function

obtained within the IIM:

1. Setting initial oscillator parameters for a model ELF.

2. Calculation of the DIIMFP xin (ω,E0) using Eq. 2.5 for a considered primary energy

E0 for which the energy loss spectrum to be calculated.

3. Computation of partial intensities Rn by means of the numerical solution of the

non-linear AC equation for the reflection function [36, 37].

4. Calculation of the energy loss distribution employing the PIA within the QE

approximation:

R (ω, µ0, µ, ϕ) =

∞∑
n=0

Rn (µ0, µ, ϕ)Ln (ω) (4.2)

5. Comparison of the obtained energy loss spectrum with experimental results. Those
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oscillator parameters that give the minimum value of M in Eq. 4.1 are considered

to be the resulting ones.

The above procedure allows one to retrieve the DIIMFP even from composite materials

of a complicated structure for which optical data might be not available. Note that the

retrieval of the DIIMFP is possible to perform by using not only the REELS technique

but also the XPS technique. Let us first consider a representative example of the DIIMFP

extraction from XPS spectra for graphene oxide samples annealed in a wide range of

temperatures. Furthermore it, an interpretation procedure of EPES and REELS signals

from the samples containing hydrogen isotopes will be also discussed after that. This

procedure is considered for the interpretation of deuterium in Be-D samples with different

fluence of D-ions.

4.1.1 Investigation of the structural evolution of graphene oxide during

thermal reduction

Graphene has unique chemical and physical properties which opens great opportunities for

its utilization in electronics, electrochemistry, solar energetics and other fields of science

and engineering. Graphene Oxide (GO) is known as a precursor for the cost-effective and

mass production of graphene-based materials [108]. The thermal reduction of GO is one

of the most perspective methods of the production of graphene [109, 110, 111, 112, 113].

Investigation of physical and chemical changes occurring in GO samples during the

annealing process at different temperatures is high of interest. This problem was studied by

different authors using different measurement techniques. In Ref. [114] Hall measurements

were used to define the conductivity of graphene-like samples obtained from GO at

different heating temperatures. Authors of Ref. [111, 112] used the X-Ray diffraction

analysis to study thermal recovery dynamics. Combination of diffraction scanning

calorimetry, thermogravimetric analysis, mass-spectroscopy and XPS allowed authors of

Ref. [110] to determine thermodynamic properties of thermal recovery of GO and define

the evaporating gas compounds. The gas compounds were also studied in Ref. [115] by

mass-spectrometry and infrared spectrometry. The authors of Ref. [116] have studied

the evolution of the chemical composition of GO samples experienced by the thermal

treatment using the XPS method and determined the structural changes in multi-layered

GO utilizing X-ray diffraction analysis. In this work, the structural evolution of GO

samples during the annealing in a wide temperature range of T = 20 − 1000◦C was

studied by means of XPS.
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4.1.1.1 Preparation of GO samples

GO samples were prepared in the National Research University “Moscow Power Engineer-

ing Institute” in Russia employing a widely used Hummers method [117]. The standard

synthesis procedure has resulted in the production of a paper-like multi-layered GO film

with the thickness of 40 – 60 µm. The film was cut into 11 peaces of about 30×15 mm

in size, which then were subjected to the thermal treatment at different temperatures.

The heat treatment of the samples was performed in the high-temperature oven setup

Planar GROW-2S, designed for the growth of carbon nanotubes by Chemical Vapor

Deposition (CVD). The samples were placed into the oven in a quartz container with

dimensions of 20×3×2.5 cm (length, width, height). The annealing process of the samples

was performed in a slow argon flow (50 cm3/min) with the pressure up to 10 Torr. Only

the slow heating process leads to the stable reproducible results as it was shown by the

experiments. For example, if the heating temperature is about 1◦C/sec uncontrolled

“explosion” damage occurs to the sample. The annealing temperatures used are 20, 100,

150, 160, 170, 200, 300, 400, 600, 800, and 1000◦C. The duration of the thermal treatment

was 10 minutes for all temperatures.

4.1.1.2 Conductivity and density measurements

The current-voltage characteristics of the samples annealed at different temperatures were

measured by means of a standard apparatus. A sample was clamped between contacts of

the measurement device by means of copper foil crampons providing a homogeneous flow

of electric current through the sample. The density of the samples treated at different

temperatures was measured by the use of the balance Sartorius QUINTIX124. Therewith

the size of the samples was measured by means of a micrometer. The measurements

indicate the spread in the thickness of the samples of about 20%. Since this parameter is

used at determination of the conductivity of the samples, this non-homogeneity is the

main source of the measurement error.

4.1.1.3 Measurement of XPS spectra

XPS spectra for the eleven reduced graphene oxide (rGO) samples were measured on the

Kratos Axis Ultra DLD experimental setup in Moscow State University in Russia. The

pass energy for survey energy spectra was set on Ep = 160 eV, for short energy range of

approximately 100 eV near the C 1s peak – Ep = 40 eV. Four samples were being placed
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in the measurement plate simultaneously. The Al Kα anode monochromatic X-Ray

source was used for the measurements. Measurements of the samples which suffered heat

treatment at 100◦C were performed with neutralizer because of a charging. The samples

annealed at higher temperatures had enough conductivity not to cause the charging

effect, therefore no neutralizer was needed. The acquired experimental XPS spectra for

the eleven GO samples annealed at different temperatures are shown in Fig. 4.1. In

Fig. 4.1 the XPS spectra are split into three groups according to observed similarities.

Fig. 4.1A shows the XPS spectra for GO samples annealed in the temperature range

of T = 20− 170◦C, Fig. 4.1B shows the XPS spectra for GO samples annealed in the

temperature range of T = 200− 400◦C, and Fig. 4.1C shows the XPS spectra for GO

samples annealed in the temperature range of T = 600− 1000◦C. In Fig. 4.1A the elastic

C 1s peak (positioned at 0 eV energy loss) is observed to be accompanied by a peak

of similar intensity shifted to higher energy losses (or to higher binding energies) and

referred to as chemical shift which is a manifestation of the oxidation in the sample,

which is the reason why the π plasmon peak (usually positioned at energy loss of 6−7 eV)

is not present in the spectra. In Fig. 4.1A the amount of the oxidation is seen to decrease

with the annealing temperature increasing, and in Fig. 4.1B it becomes barely noticeable

whereas the π plasmon peak becomes observable at ∼ 6.5 eV in the spectra related to

the GO samples annealed at temperatures above 300◦C. In Fig. 4.1C the presence of

any oxidation at the XPS spectra is not observed anymore. The discussed observations

clearly demonstrate the relation of the π plasmon peak to the conductivity of the sample.

In order to investigate this phenomenon in more detail, it is necessary first to retrieve

the information on the single scattering properties or the DIIMFP for all 11 samples.

This allows one to determine the evolution of the intensity of the π plasmon peak with

the annealing temperature. Then the results of measurements of the conductivity for the

eleven rGO samples can be compared with the temperature dependence of the intensity

of the π plasmon peak.

4.1.1.4 Retrieval of the DIIMFP using the acquired XPS spectra

In the following, a description is provided for the procedure employed for fitting the

acquired XPS spectra via modelling of the ELF as described in Section 4.1. The

description of the XPS signal is based on the boundary problem solution for the transport

equation (Eq. 3.1) using the IIM approach described in Section 3.1. The XPS spectrum
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(a)

(b)

(c)

Figure 4.1: Experimental XPS spectra of rGO for three groups of annealing temperatures. ω = Eb−EC 1s
b
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Q (ω, µ0, µ, ϕ) in the PIA is represented as follows:

Q (ω, µ0, µ, ϕ) =
∞∑
n=0

Qn (µ0, µ, ϕ)Ln (ω) (4.3)

The partial intensities Qn are found from the numerical solution of the system of the

non-linear AC equations for the reflection and the photo-emission functions obtained

within the IIM, which is described in detail in Refs. [36, 35].

It is well known that reduced graphene oxide contains a wide variety of oxygen groups

attached to carbon [118]. The C 1s region at the XPS spectra (see Fig. 4.1) is dominated

by four signals. The signal positioned at 0 eV energy loss (related to the kinetic energy

E = 1198.6 eV and the binding energy Eb = 284.6 eV) originates from carbon (C-C). The

signal shifted by ∼ 2 eV from C-C peak to higher energy losses (higher binding energies)

originates from carbon in epoxide (C-O) functional groups. The third peak shifted by

∼ 3 eV to higher binding energies is attributed to carbonyl groups (C=O). The fourth

peak shifted by ∼ 4 eV originates from carbon in carboxyl groups (O=C-OH). Epoxide,

located on the basal plane of rGO, is the major component; carbonyl and carboxyl,

distributed at the edges of rGO, are minor [119]. Therefore the summary energy spectrum

of the C 1s region for the rGO can be described as the sum of contributions of the four

identified components:

Q (ω, µ0, µ, ϕ) = QC−C (ω, µ0, µ, ϕ) +QC−O (ω, µ0, µ, ϕ) +

+QC=O (ω, µ0, µ, ϕ) +QO=C−OH (ω, µ0, µ, ϕ) (4.4)

Each of these four components is represented within the PIA according to Eq. 4.3. The

coefficients QC−C0 , QC−O0 , QC=O
0 and QO=C−OH

0 are identified with the intensities of

elastic peaks and correspond to photo-electron emission from C-C, C-O, C=O, and

O=C-OH each having different chemical shifts.

To take into account the instrumental function of the energy analyzer and the Doppler

broadening of peaks, which depends on experimental parameters, the energy distribution

of photoelectrons Q (ω, µ0, µ, ϕ) is convoluted with the Gaussian function defined as

follows:

QG (ω, µ0, µ, ϕ) =

ω∫
0

Q (ω − ε, µ0, µ, ϕ)G (ε) dε (4.5)
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G (ε) =
1√

2πσg
exp

(
− ε2

2σ2
g

)
It is also necessary to consider effects that lead to the asymmetric form of the photoelectron

line which can be performed using the standard Doniach-Sunjic (DS) line shape [120]:

QDS (ω, µ0, µ, ϕ) =

ω∫
0

QG (ω − ε, µ0, µ, ϕ)Y (ε) dε (4.6)

Y (ε) =
Γ (1− α)(

ε2 + γ2
)(1−α)/2

cos

(
πα

2
+ (1− α) arctan

(
ε

γ

))
where Γ (x) is the gamma function, α is the asymmetric parameter, γ is the full width at

the half height. Thus we have three parameters σ, α, and γ to describe the elastic peak

shape in the XPS spectrum.

To describe inelastic scattering the ELF was computed as a sum of Drude-Lindhard

oscillators with parameters Ai, ωi, and γi. Then the correspondent DIIMFP was calculated

using Eq. 2.5. Note that the one-layered model was used, i.e. surface excitations were

not taken into account. Thus, the parameters used in the fitting procedure on the base

of minimizing a functional:

M =

ωmax∫
0

[
QDS (ω, µ0, µ, ϕ)−Qexp (ω, µ0, µ, ϕ)

]2
dω (4.7)

Therefore such a minimisation procedure implies varying of the following parameters:

σg, α, γ, zero partial intensities QC−C0 , QC−O0 , QC=O
0 , and QO=C−OH

0 (each with the

correspondent energy position in the spectrum) for elastic peaks, a set of oscillators

with Ai, ωi, and γi for the ELF. The fitting parameters vary until the minimum of the

functional M in Eq. 4.7 has been reached.

4.1.1.5 Analysis of the obtained results

Figs. 4.2, 4.3 show representative examples of fits of the calculated XPS spectra to the

experimental data for the GO samples annealed at T = 160◦, where no π-plasmon peak

is observed, and at T = 800◦, where it is clearly seen. The resulting normalized DIIMFPs

(NDIIMFPs) extracted from the XPS spectra for several annealing temperatures are

depicted in Fig. 4.4. Here the evolution of the π-plasmon peak (at ∼ 6.5 eV) is clearly
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Figure 4.2: The resulting fit to the experimental XPS spectrum of the GO sample annealed at T = 160◦.

Figure 4.3: The resulting fit to the experimental XPS spectrum of the GO sample annealed at T = 800◦.

observed with the annealing temperature increasing starting from T = 200◦. Whereas no

changes in the intensity of (π + σ) plasmon (at ∼ 26 eV) are seen.

Fig. 4.5 shows the comparison of the evolution of the intensity of the π plasmon peak and

the conductivity of the samples with the increasing annealing temperature. The most

significant changes in these quantities are observed to occur in the temperature range
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Figure 4.4: Evolution of the NDIIMFP of GO samples annealed at different temperatures.

Figure 4.5: Dependency of π plasmon excitation probability and conductivity of rGO samples on the
annealing temperature. The intensity of the π plasmon is normalised to those at T = 1000◦.

of 100− 200◦C. The intensity of π plasmon rapidly increases at about 200◦C and then

only a slight increasing of its intensity is observed. The conductivity in this temperature

range changes by five orders of magnitude from 10−3 up to approximately 100 S/m.

The consequent heating of the material results in a considerably smoother increasing

of the conductivity. The maximum value of the conductivity reached is v 3500 S/m,

which is about one order of magnitude lower than the reference value of the conductivity
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Figure 4.6: Dependence of the density of rGO samples on the annealing temperature.

of natural graphite [121]. Such a rapid increase in the conductivity indicates that the

percolation mechanism is responsible for the transition of the material from insulating to

conducting state [122, 123]. The percolation transition occurs due to the formation of one

or several conducting channels formed by the chains of adjacent conducting fragments

of reduced GO. Further annealing results in a smoother increasing of the conductivity

through the formation of a larger number of conducting fragments in rGO and, therefore,

a larger number of conducting channels. A detailed description of this process can be

found in Ref. [123].

The reduction process of GO is also accompanied by a decrease in the density of the

material. Fig. 4.6 presents the dependence of the density of the GO samples on the

annealing temperature. The density measurements indicate that the thermal treatment

does not change the thickness of the samples so that the observed changes in the density

of the material due to annealing are caused by the removal of oxygen and other elements

engaged into the structure of graphene oxide. Therefore the removal of oxygen makes

the GO samples more brittle. As is seen from Fig. 4.6, heating the samples up to 800◦C

results in a decrease of their density by about 2.4 times, from 1.2 to 0.5 g/cm3. The

density of graphite is about 2.2 g/cm3, which exceeds the one for the GO sample annealed

at T = 800◦C by about 4-5 times. Therefore the average distance between the graphene

sheets in the GO sample annealed at 800◦C is 4 – 5 times larger than that in graphite.

This fact allows to expect that the inter-layer interaction in the reduced graphene oxide
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is negligible.

4.1.1.6 Summary

The proposed framework on the calculation of XPS spectra allows to describe not only

zero-loss peaks but also complete XPS spectra including the inelastic background. Using

the calculation routine of the framework the reconstructed DIIMFP can be used to

describe EELS and XPS spectra of the samples [37]. It is shown that photoelectron

spectra can provide a great amount of information about processes that take place during

the annealing of the GO samples. Heat treatment of the GO samples in the temperature

range of 150− 170◦C causes the percolation transition, at which the conductivity of the

material increases by 5 orders of magnitude. The correlation between the conductivity

and π plasmon intensity was demonstrated. The analysis shows that a material has been

obtained has electronic properties of graphite but its density is much lower. This very

interesting fact makes reduced graphene oxide a unique material which can be relevant

for different technological applications.

4.1.2 Detection and analysis of hydrogen isotopes using electron spec-

troscopy techniques

The field of plasma-wall interaction comprises all processes involved in the exchange of

mass and energy between plasma and the surrounding wall materials. Plasma facing

materials experience particularly adverse conditions since they are intended to withstand

intense neutron flux for a sufficient period of time, and high heat loads. Plasma facing

materials must have high thermal conductivity for the efficient heat transport, high

cohesive energy for low erosion by particle bombardment, and low atomic number Z to

minimize plasma cooling [124]. Current fusion reactors are fueled by deuterium-tritium

(D-T) fusion reactions, which produce high-energy neutrons that can damage the first

wall. A divertor is a device that allows the online removal of waste material from

the plasma while the reactor is still operating. The divertor is usually protected by a

different material than the one used for the major area of the first wall. Presently, in the

International Thermonuclear Experimental Reactor (ITER) beryllium is chosen as the

plasma-facing material for the first wall and tungsten/carbon for the divertor. Carbon

has traditionally been used as a plasma facing material because it has a favourable

combination of low Z, high thermal conductivity and strong bonding [124]. However,
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it is known to have a susceptibility to chemical sputtering by hydrogen isotopes. Any

tritium that reacts with the carbon surface will redeposit elsewhere in the reactor vessel

in the form of hydrocarbons, which is difficult to detect and recover. This is the reason

why it is high of importance to have a technique for the precise detection of hydrogen

isotopes in solids. Plasma facing components in ITER will receive most of the particle

flux and/or heat loads is the tungsten divertor, while others will be composed of beryllium

[125]. Hydrogen isotope retention in beryllium can play a role in the lifetime of ITER’s

beryllium inner walls because of erosion [126]. Several studies based on the ion irradiation

of Be samples have been devoted to D behavior to ensure that tritium retention will not

be a limiting issue in ITER operations [127].

Methods based on electron spectroscopy usually have problems with direct detection

of hydrogen and helium [22, 128]. Nevertheless, recently several techniques have been

proposed for measuring the bound hydrogen by means of electron spectroscopy [20,

21, 22, 23]. Elastic peak electron spectroscopy (EPES) is a perspective tool for this

goal [129, 23, 24] used in combination with other electron spectroscopy techniques such

as EELS and XPS. This technique is analogous with the Rutherford backscattering

spectroscopy, but utilizes electrons instead of ions as primary projectiles [130]. Using

electrons instead of ions as projectiles allows to avoid the ion damage to the sample. Thus,

EPES has the same experimental conditions as the EELS method. For RBS analysis

accelerators are required, which are not only huge in footprint but also come with a huge

price tag. EPES and EELS only require commercially available electron sources, and

an electron energy analyzer, and can be integrated into laboratory photoelectron setups.

This also enables to combine common surface analysis techniques such as XPS and EELS

allowing valuable, well defined in-situ measurements without exposing the sample to the

air.

The EPES technique is based on the sensibility to small energy losses during elastic

processes, since nucleus of atoms have different mass. This requires a high energy

resolution of energy analyzers in order to resolve elastic peaks in the energy spectrum

shifted due to this small energy loss. Therefore this method allows to analyze even light

elements including hydrogen. Eq. 2.3 shows that the elastic energy loss is of the order of

10 eV for E0 = 30 keV and decreases with decreasing primary energy. For example, for

30 keV electrons and ψ = 45◦ the energy shift of elastic peaks of tritium, deuterium, and

hydrogen is ∆E = 3.2, 4.8, and 9.6 eV, respectively. Therefore it becomes possible to

resolve and then interpret the elastic peak of hydrogen in the EPES spectrum due to

such a sufficient energy shift ∆E.
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Figure 4.7: Comparison of the experimental REELS spectrum for the hydrocarbon sample (red circles)
[23] with the calculated REELS spectrum using the DIIMFP retrieved from the XPS data (dashed line).
The green line corresponds to the derived EPES signal after subtracting the inelastic background.

In order to interpret an elastic peak in the energy spectrum one has to determine the area

under this peak, which requires the subtraction of the inelastic background from the total

energy loss signal. This is known to be a very challenging task [24] since elastic peaks,

formed by electrons reflected by different atoms in a solid, overlap with the inelastic

signal of a dominant element in the spectrum. In Ref. [24] a hydrocarbon sample was

analyzed using the joint interpretation of the REELS and XPS spectra measured for this

sample. Since H 1s valence electrons are not useful in elemental identification using the

XPS method [131], the resulting energy spectrum does not contain the contribution from

hydrogen which allows to conveniently retrieve the DIIMFP, which then can be used for

the calculation of the REELS spectrum. The result is shown in Fig. 4.7 with dashed blue

curve. The subsequent comparison of the calculated (dashed blue curve in Fig. 4.7) and

measured (red data points in Fig. 4.7) REELS spectra allows the interpretation of the

elastic peak of hydrogen which remains unaccounted for (green curve in Fig. 4.7). The

interpretation procedure is described further in the text. Note that it is important to

acquire both XPS and REELS spectra in-situ for the same sample.

Another possibility to interpret the presence of hydrogen or its isotopes in a sample is

by employing different geometrical arrangements. Such an approach allows obtaining
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different values of the recoil energy loss due to different values of the scattering angle

and therefore one can avoid the intersection of the elastic peak of hydrogen with the

inelastic background of a dominating element in the energy loss spectrum. In this work,

this technique is employed for the investigation of deuterium implantation into beryllium

samples [25].

4.1.2.1 Investigation of deuterium implantation into beryllium samples

4.1.2.1.1 Experiment

Investigated samples were prepared and measured in the Forschungszentrum Jülich

GmbH. A polished, quadratic beryllium sample with a side length of 10 mm was used

as base material for the experiments. The average roughness Ra of the samples was

below 0.1 µm. The samples were supplied by MaTecK and had a bulk purity of at least

99.8% Be. All experiments were conducted in a multi-chamber UHV-setup with a base

pressure of 10−8 Pa from Prevac. The system is equipped with the hemispherical analyser

(HSA) R4000 and a monochromatic Al Kα X-ray source MX 650 for XPS both from

Scienta-Omicron. Two electron sources EM-802 from Staib serve as excitation sources

for EELS. The angle between the first electron source and the HSA is 60◦ (“normal”

geometry) and between the second source and the HSA 120◦ (“glancing” geometry). The

sample is located at a 4-axis manipulator with heating capabilities up to 1370 K and can

be rotated towards the electron sources. For sample cleaning and the implantation of

the hydrogen isotope deuterium, a Prevac ion source IS 40E1 is used. The sample was

cleaned by annealing at 900 K and sputtering with Ar+ ions with a kinetic energy of

5 keV. The cleaning steps were repeated cyclically until no surface contamination was

visible in the XPS survey spectrum. There was no beryllium oxide detectable in the high

resolution XPS spectrum of the Be 1s core level. Thus, the sample surface was atomically

clean. After the cleaning process D-ions were implanted with an acceleration voltage of

3 kV and a fluence of 5.5 · 1021 m−2. After the implantation a XPS survey scan showed

no contamination of the sample. No beryllium oxide was visible in the Be 1s core level

spectrum. After the cleaning procedure and after the implantation, EELS spectra were

recorded at three different primary electron energies E0: 1500, 3000, and 5000 eV. Each

spectrum was recorded two times: in “normal” and ”glancing” geometries as shown in

Fig. 4.8.

In between the recording of the EELS spectra the sample was analysed by XPS in order
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to analyser to analyser

electron source 60° electron source 60°

electron source 120° electron source 120°

(a) (b)

Figure 4.8: Schematic view of the sample rotation in the experimental set-up: (a) ”normal” geometry:
the rotation angle is 30◦, the angle between the electron gun and the analyser is 60◦, the scattering angle
ψ = 120◦ (θ0 = 30◦, θ = 30◦); (b) ”glancing” geometry: the rotation angle is 60◦, the angle between the
electron gun and the analyser is 120◦, the scattering angle ψ = 60◦ (θ0 = 60◦, θ = 60◦). The azimuthal
angle ϕ = 0◦

to check for surface oxidation during the experiments. No BeO was detectable in the

high resolution spectra of the Be 1s region. The difference in the spectra of the clean

reference measurements and the measurements of the implanted sample therefore can all

be assigned to the implantation of deuterium. The same procedure was performed for

the implantation of the Be sample with De-ions with the fluence of 20.1 · 1021 m−2.

4.1.2.1.2 The interpretation procedure

The interpretation of elastic peaks in energy spectra requires knowledge of three parame-

ters [25]:

1. The recoil energy loss characterizing the energy position of the elastic peak according

to Eq. 2.3. Results of the calculation of ∆E for Be and D depending on the incident

energy E0 and the scattering angle ψ are summarized in Table 4.1.

2. The broadening of the elastic peak which can be approximated by the Gaussian

distribution (Eq. 4.5) [132] with the HWHM given by:

σ =
√
σ2
D + σ2

A + σ2
E (4.8)

where σD is the Doppler broadening, σA is the broadening due to the energy

analyzer slit function, σE is the broadening of the electron beam. The quantities

96



4.1. Retrieval of the DIIMFP from REELS and XPS using the IIM

Table 4.1: The recoil energy loss ∆E for Be and D for different incident energies E0 and geometry
arrangements.

E0 ψ ∆EBe ∆ED ∆ED −∆EBe
(keV) (deg.) (eV) (eV) (eV)

1.5 120 0.28 1.23 0.95
1.5 60 0.09 0.41 0.32
3 120 0.55 2.46 1.91
3 60 0.18 0.82 0.64
5 120 0.91 4.09 3.18
5 60 0.31 1.37 1.06

Table 4.2: Physical quantities describing the broadening of elastic peaks for Be samples with different
D-ion fluences.

Fluence (m−2) E0 (keV) σ (eV) σAE (eV) σD (eV)
Be D Be D

5.5 · 1021 5 0.57* 0.98 0.37 0.43 0.91

20.1 · 1021 5 0.60* 1.00 0.42 0.43 0.91

* taken from the experimental data.

σA and σE are characteristics of an analytic equipment, which can be conveniently

rewritten as σ2
AE = σ2

A + σ2
E . In order to determine the hardware peak broadening

σAE one can use the following expression:

σ2
AE = σ2 − σ2

D

with the Doppler broadening σD given by:

σD = 4E0
vth
u

vth =

√
3kBT

M

(4.9)

where u =
√

2E0/me is the electron velocity, vth is the velocity of the thermal

motion of atoms, kB is the Boltzmann constant, and T is the temperature. The

value of σ is obtained from the fit to the experimentally observed elastic peak of Be

using the Gaussian function. Table 4.2 contains resulting values for all broadening

quantities for Be samples with different D-ion fluences.
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3. The electron signal intensity or the area under the peak of elastically scattered

electrons which is determined by the zero-loss partial intensity R0 (ω, µ0, µ, ϕ) which

in the case of Be-D material is found as the sum of the zero-loss partial intensities

for Be and D.

As seen from Table 4.1 the difference in the energy position between elastic peaks of Be

and D in the spectra at incident energies ' 1.5 and ' 3 keV is ranging from 0.32 up

to 1.91 eV. The energy resolution of the experimental set-up does not allow to resolve

the elastic peak of deuterium from the elastic peak of beryllium in the energy spectra.

Therefore, the concentration of deuterium atoms was determined only for the spectra

measured at the incident energy of ' 5 keV where ∆ED −∆EBe = 3.18 eV in ”normal”

geometry (ψ = 120◦). The DIIMFPs were retrieved from the experimental REELS

spectra of beryllium samples implanted with different fluences of deuterium ions 5.5 · 1021

and 20.1 · 1021 m−2 on the basis of the fitting algorithm described in Section 4.1. Note,

that the REELS spectrum acquired in the ”glancing” geometry was used to retrieve the

DIIMFP since for the scattering angle ψ = 60◦ the recoil energy loss ∆E = 1.37 eV (see

Table 4.1) is not enough to distinguish the elastic peak of deuterium in the spectrum.

Therefore this no-loss peak is not overlapped with the inelastic background of Be which

allows to perform the retrieval procedure. Then the same DIIMFP can be used for the

calculation of the REELS spectrum in the ”glancing” geometry since the DIIMFP does

not depend on the geometry factors. Different laws for energy losses in the near-surface

region and in the bulk were used in terms of the DSEP to describe surface excitations

and the DIIMFP for excitations in bulk. In Fig. 4.9 results of the fitting procedure are

shown for REELS spectra measured at E0 ' 5 keV incident energy in ”normal” and

”glancing” geometries for the Be-D spectra with a fluence of 5.5 · 1021 m−2. The entire

calculation procedure is described in detail in Refs. [34, 37]. The calculated REELS

spectra are seen to be in a satisfactory agreement with the experimental data. Similar

results were obtained for the Be-D spectra with a fluence of 20.1 · 1021 m−2 (not shown).

The value of the recoil energy loss for the scattering angle ψ = 120◦ in ”normal” geometry

∆E = 3.18 eV makes the elastic peak of deuterium visible in the spectrum overlapped

with the inelastic background of Be. Therefore the main purpose is now to make an

accurate subtraction of this inelastic background in order to determine the area under

the elastic peak of deuterium. After doing that the relative concentrations of Be and D

can be calculated.

The comparison of the calculated and experimental REELS spectra for Be samples

implanted by D-ions with the fluence of 5.5 · 1021 and 20.1 · 1021 m−2 acqiured in the
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Figure 4.9: REELS spectra of the Be sample with deuterium ion fluence of 5.5 · 1021 m−2 for E0 ' 5
keV: a) “normal” geometry; b) “glancing” geometry.

”normal” geometry is shown in Fig. 4.10. Calculated REELS spectra without taking

into account the elastic peak of deuterium are presented in Fig. 4.10 by green lines. The

discrepancy between the calculation and the experiment (red circles) at the energy loss

of 2-5 eV is due to the presence of the elastic peak of deuterium. In order to take it into

account the elastic peak of deuterium was calculated according to Eqs. 2.3, 4.8 and the

area under this peak SD was determined (black dash-line). The result of the complete

calculation with D is shown with blue lines in Fig. 4.10. Determining the area under

the elastic peak of beryllium SBe and using the DECS WBe
el (ψ) and WD

el (ψ), the relative

concentrations can then be determined. Obtained values of the areas under elastic peaks

of Be and D are summarized in Table 4.3. The composition ratio is given by:

nD
nBe

=
SDW

Be
el (ψ)

SBeWD
el (ψ)

(4.10)
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Figure 4.10: Energy loss spectra of electrons reflected from the Be substrate with deuterium ion fluence
of a) 5.5 · 1021 m−2, b) 20.1 · 1021 m−2.

Table 4.3: Results of the determination of the areas under elastic peaks of Be and D for different D-ion
fluences.

Fluence SBe SD

(m−2)

5.5 · 1021 3.6 · 10−5 2.6 · 10−7

20.1 · 1021 3.4 · 10−5 3.0 · 10−7

For the fluence of 5.5 · 1021 m−2:

nD
nBe

=
2.6 · 10−7 · 9.6 · 10−7

3.6 · 10−5 · 5.8 · 10−8
= 0.12± 0.03

For the fluence of 20.1 · 1021 m−2:

nD
nBe

=
3.0 · 10−7 · 9.6 · 10−7

3.4 · 10−5 · 5.8 · 10−8
= 0.15± 0.03

From these results it is followed that the concentration ratio nD/nBe in the very surface

layer with thickness d ' 9.2 nm is 0.12± 0.03 at fluence of 5.5 · 1021 m−2 and 0.15± 0.03

at fluence of 20.1 · 1021 m−2.
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4.1.2.2 Summary

The possibility of quantitative analysis of hydrogen isotopes by means of the combination

of EELS and EPES techniques was demonstrated [25]. In conclusion, the possibility

of using the EPES technique for the determination of hydrogen in metals with D-

concentrations down to 11% has been shown. This method has a great potential to

address recent problems in material research for nuclear fusion, energy storage and

fuel cells. Classical methods of surface analysis like, e.g. XPS and Auger Electron

Spectroscopy, will greatly benefit if paired with the EPES and EELS techniques for

hydrogen detection in-situ.
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Chapter 5

Low energy (1 - 100 eV) electron

inelastic mean free path (IMFP)

In the past 30 years, the determination of IMFP values at energies above 200 eV has

been an active area of research and nowadays commonly accepted values are calculated

using dielectric response theory, employing optical constants [28, 27]. It is important to

emphasize that different approaches give a similar IMFP in this energy range and are in a

good agreement with experimental results. However, different models give widely different

values for the IMFP at low energies as illustrated in Fig. 1.2, which shows the IMFP for

Cu according to the Penn algorithm based on the Simplified Single-Pole Approximation

(SSPA) (represented by the solid red curve) [42] and the IMFP theoretically calculated

using the Mermin dielectric function, which gives significantly lower values (represented

by the solid green curve). Data points show experimentally measured or theoretically

calculated values found in the literature [43, 42, 44, 18, 45, 46, 47, 48]. Below 100 eV it

is complicated to conceive any experimental method to verify theoretical calculations.

EPES technique is usually employed for the experimental determination of IMFPs [18],

although, it becomes less reliable at energies below 100 eV. There is a number of other

experimental techniques but all of them require measurements at low energies, which is

essentially a big challenge [46]. In the present work, an approach is presented to retrieve

the low energy IMFP values from measurements of Secondary Electron Yields (SEY) at

high energies. An attempt of the experimental measurement of the IMFP at low energies

by means of the EPES is also discussed.



Chapter 5. LOW ENERGY (1 - 100 EV) ELECTRON INELASTIC MEAN FREE
PATH (IMFP)

5.1 Determination of the IMFP at low energies from anal-

ysis of secondary electron yields (SEY)

The SEY is the main parameter describing secondary electron emission. Since it is

impossible to experimentally distinguish between primary and secondary electrons, those

electrons in the electron energy spectrum with an energy below 50 eV are usually

designated as secondary electrons. This is based on the assumption that the number of

inelastically backreflected primaries with energies below 50 eV is low in comparison with

those in the SE cascade, which is mainly made up of low energy electrons. This is clearly

seen from Fig. 1.1 which shows the results of the Monte Carlo simulation for electron

emission from a gold surface. While some features characterising the inelastic process

can be distinguished near the peak of elastically backscattered electrons at 1000 eV, the

SE peak below ∼ 50 eV is essentially featureless. The model calculations demonstrate

that secondary electrons (red curve in Fig. 1.1) with considerable kinetic energies of

the order of the elastic peak energy may be emitted from the surface, although the

majority is released with energies below ∼ 50 eV. For such low energies, the contribution

of backscattered primaries (green curve in Fig. 1.1) to the total spectrum is more than

an order of magnitude smaller than the contribution of secondaries, which is the reason

why by convention electrons with energies below ∼ 50 eV are designated as secondary

electrons. The physical reason for the peak at energies below ∼ 50 eV is the fact that the

typical energy of the solid state electrons is of the order of 1 Hartree (27.2 eV), giving

rise to a mean energy loss in an inelastic collision of the same order of magnitude, for

arbitrary incident energies. Fig. 5.1 shows the results of the Monte Carlo simulation for

electron emission from a gold surface for incident energy E0 = 100 eV. It is clearly seen

from Fig. 5.1 that for low incident energies (below ∼ 100 eV) the contribution of low

energy primary electrons in the SE peak becomes more significant, although the main

contribution is still determined by secondary electrons.

Since the emission of secondary electrons for any incident energy always involves the

formation and emission of a cascade of slow electrons (< 50 eV) the SEY for arbitrary

energies depends sensitively on the inelastic mean free path (IMFP) values at low energies

(below 100 eV). This makes it possible to retrieve the information about the low energy

IMFP from the high energy SEY experiments. The SEY measurements found in the

literature are usually performed for incident energies ranging from several eV to several

keV. To theoretically describe the secondary electron emission from solids one needs

quantitative knowledge of electron scattering processes including those at energies below
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Figure 5.1: Monte Carlo simulation of secondary electrons emitted from a Au target, for a primary
electron energy of E0 = 100 eV for normal electron incidence and emission into the entire hemisphere
above the sample. The total energy distribution (blue curve) is made up of backscattered primary
electrons (green curve) and secondary electrons (red curve).

100 eV. In particular, quantitative knowledge of IMFP values at low energies are needed.

Fig. 5.2A shows the IMFP for Au according to the formalism by Penn within the SSPA

(represented by the dot-dashed green curve) [133] and the IMFP theoretically calculated

using the Mermin dielectric function, which gives significantly lower values (represented

by the dashed black curve). Further, let the Penn algorithm be defined as the one based

on the SSPA. Data points show experimentally measured or theoretically calculated

values found in the literature [134, 135, 136, 42, 18, 137, 47]. Note that IMFP values

based on the Penn algorithm are known to be less reliable for energies below 100 eV,

this approach is used in the present paper for comparison only. The Mermin dielectric

function εM (ω, q) [49] represents an improvement over the Lindhard dielectric function

since it includes broadening due to the finite lifetime of excitations, which makes this

model a more realistic and widely-used to calculate the IMFP [138, 139, 54].

Fig. 5.2B shows results of the MC simulation of the SEY for Au assuming the two extreme

sets of IMFP data addressed above. Note that the IMFP data in Fig. 5.2A are identical

for energies above 100 eV. It is clearly seen that even at high energies the SEY values

depend very strongly on the IMFP values at energies below 100 eV. Fig. 5.3 conveys

this idea very clearly. Each panel of Fig. 5.3 shows 20 trajectories of primary electrons

impinging on a gold target and concurrently the secondary electron cascade for different

energies (50, 500 and 5000 eV) for the two extreme energy dependencies of the IMFP
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Figure 5.2: (a) Comparison of IMFPs obtained from the SEY analysis for Au (solid blue line) with
IMFPs calculated using the Mermin dielectric function (dashed black line) and Penn algorithm (dashdotted
green line). Red points represent the collection of literature data [134, 135, 136, 42, 18, 137, 47]. (b)
Comparison of results of the MC calculation for SEYs using IMFP data from Fig. 5.2A (represented by
solid lines) with experimental data [39, 104, 105] for normal electron incidence and emission into the
entire hemisphere above the sample.
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shown in Fig. 5.2A. The upper panel corresponds to the IMFP data calculated using

Mermin dielectric function and the lower panel corresponds to the data calculated by

Penn algorithm [133]. The penetration of incident electrons into the solid is seen to

be deeper for higher incident energies due to the increasing of the IMFP (Fig. 5.2A).

However, the main difference is the fact that at all incident energies (50, 500 and 5000 eV)

the number of outgoing electrons is also very different for the two assumed low energy

dependencies of the IMFP: for higher IMFP values a higher fraction of electrons within

the cascade is indeed emitted from the surface. Therefore, even the high energy SEY

data contain the information on the low energy IMFP.
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Figure 5.3: Electron trajectories with generation of secondaries corresponding to IMFP values based
on the Mermin dielectric function (upper row) and Penn algorithm [133] (lower row) for Au. Note the
differences in the scale for different incident energies.

In the present work, MC calculations were performed using different energy dependencies

of the IMFP values below 100 eV ranging between the two extreme cases shown in

Fig. 5.2A and determining those IMFP values which give the minimum least squares

deviation of the simulated SEY curves with experimental data available in the literature.

An MC code has been developed to simulate electron scattering processes in solids,

including the production of the secondary electron cascade, based on a commonly

employed algorithm [17, 40, 41]. This common model describes the secondary electron

emission process implying three steps: primary electron transport in the solid, production

of a secondary electron, transport and escape over the surface potential barrier of the

produced secondary electron. In Section 3.2 this Monte Carlo algorithm is described in
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more detail. Sections 2.3 and 2.4 describe the production of secondary electrons and

the escape over the surface potential barrier, respectively. Subsection 5.1.1 contains

the information on the input parameters needed for the MC simulation of the SEY. In

section 5.1.2 results of comparisons of the simulated SEY data with available experimental

literature data [39] are given as well as a comparison with individual extensive data sets

produced by Bronstein [104] and Zadrazil [105]. First results of this work are published

in Ref. [38]. The MC model has been implemented using the BRUCE software developed

within the SIMDALEE2 (Sources, Interaction with Matter, Detection and Analysis of

Low Energy Electrons) Marie-Curie Initial Training Network. The computational results

presented have been achieved using the Vienna Scientific Cluster (VSC).

5.1.1 Input data for the MC simulation

In the present work, elastic and inelastic scattering processes are assumed to be indepen-

dent [17]. Although this assumption is questionable in principle for low energy electrons,

it is expected to not significantly affect the SEY. For the MC calculation data are needed

for the elastic and inelastic mean free paths, the DECS, the DIIMFP, the inner potential

Ui and the work function φ. The DECS data have been generated with the ELSEPA

code [53]. Individual contributions from bulk and surface excitations were determined

on the basis of the position- and direction dependent DIIMFP calculated employing the

surface-excitation model introduced by Li [51] (Eq. 2.19). According to the Li formalism,

an electron with certain energy has a probability for surface excitations depending on its

position (inside the solid or in vacuum) and the direction of motion.

To calculate IMFP values using the Penn algorithm we used software provided by the

authors of Ref. [133]. For this calculation, as well as for calculation of the DIIMFP, optical

constants from Refs. [28, 27] were used employing linear response theory. Experimental

data for Ui were used for all materials for which such values are available whereas for

other materials Ui values were calculated according to an empirical formula proposed

by Ross and Stobbs [50]. Besides values for the IMFP the inner potential Ui also is not

accurately known or at least there is a big discrepancy in the literature. Fortunately, as

explained further below, the value of Ui does not critically influence the determination of

the IMFP. Values used for the work function φ were taken from Ref. [140].

It is important first to consider the differences between the two sets of used IMFP data. In

both cases IMFP values were calculated following the well-known relationship within the

first Born approximation Eq. 2.42. The energy loss function Im
[
−1/ε (ω, q)

]
in the entire
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(ω, q) plane was determined on the basis of the Mermin dielectric function εM (ω, q) and

the Penn algorithm. In the former approach, the energy loss function in the optical limit

Im
[
−1/ε (ω, q ≈ 0)

]
[28, 27] was fitted in terms of Drude-Lindhard oscillators (Eq. 2.9).

In the optical limit q ≈ 0 the Mermin ELF coincides with the Drude-Lindhard ELF while

it becomes broader for larger values of q due to the plasmon damping included into the

Mermin model (Eq. 2.13) [54]. Since it is more convenient to perform the fitting of the

optical ELF as a sum of Drude-Lindhard oscillators, the latter approach was used:

Im

[ −1

ε (ω, q ≈ 0)

]
exp

=
∑
i

Ai
ωγiω

2
i (q = 0)(

ω2 − ω2
i (q = 0)

)2
+ ω2γ2

i

(5.1)

with Ai related to the density of electrons with the binding energy ωi [54]. The oscillator

parameters are chosen to reproduce the main features in the optical ELF and to satisfy

the perfect screening sum rule. The fitting parameters for the 17 materials investigated

in this work can be found in Ref. [38]. In the case of Si the parameters were taken from

Ref. [141]. The ELF fitted at q ≈ 0 was then extended to all values of q through the

’built-in’ dispersion within the Mermin dielectric function, therefore no dispersion relation

was needed.

The IMFP was then calculated using the Mermin ELF with the Drude-Lindhard oscillators

obtained for q = 0 using Eq. 2.5. Fig. 5.4 shows the results of the fitting of the model

ELF to experimental optical data [28, 27] for Cu, Ag, and Au in the optical limit.

The Penn algorithm is based on a modification of the statistical approximation [42]

developed by Lindhard and can be employed within the Full Penn Algorithm (FPA)

and the simple Penn algorithm or Single-Pole Approximation (SPA) [142, 143, 144].

The SPA approach implying a quadratic dispersion relation to extend the experimental

optical ELF to all values of q is referred to as the simplified SPA or SSPA. The presented

approach assumes the validity of the Born approximation, neglects the vertex correction,

self-consistency, and exchange and correlation. It should also be mentioned that the

present theory is expected to be reliable only for energies >100 eV. Although the authors

of [133] recommend not to use this algorithm for energies below 100 eV, it was used in

the present work just in order to have large sample values for the IMFP at low energies.

The main difference in the two presented approaches is the description of plasmon

damping. The inclusion of plasmon damping into the model dielectric function and an

accurate description of the ELF at low energy losses are known to have a significant

influence on the low energy IMFP [145, 54]. Since a low energy electron can no longer
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Figure 5.4: The Mermin energy loss function in the optical limit q ≈ 0 of: (a) Cu; (b) Ag; (c) Au. The
blue circles represent the experimental optical ELF taken from [28, 27].
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E - E
F
 (eV)

Figure 5.5: Comparison of the IMFP for Au calculated using: the Penn algorithm (dot-dashed green
curve), the Chantler algorithm [145] (yellow points), and the Mermin dielectric function (dashed black
curve). Red points represent results of the IMFP calculation from Ref.[146].

excite a plasmon, the IMFP increases with decreasing incident energy. However, for Penn

IMFP values this increase is observed to be faster than in the case of the Mermin IMFP.

In the Lindhard approach, which is used in the Penn algorithm, plasmon excitations are

supposed to be undamped below the critical value of the momentum transfer. Whereas

the Mermin approach implies an increase of plasmon broadening at any q, which makes

the ELF peaks broader not only away from q = 0 but also at small values of q, giving

a contribution to the DIIMFP intensity at low energy losses which is absent in Penn’s

theory. Therefore, the increased intensity of the DIIMFP at low energies causes the

reduction of the IMFP values (Eq. 2.5).

There are other ways to determine the momentum-dependent ELF. Chantler and co-

authors used DFT concurrently with developments in many-pole dielectric theory [145].

Nguyen-Truong used the Mermin dielectric function to include damping in the ELF within

the Penn algorithm [146]. The advantage of this method is that it does not demand any

fitting parameters but only the knowledge of the optical dielectric function. Comparison

of the IMFP values for Au calculated in this work using the Mermin dielectric function

with the IMFP data obtained by Chantler and Nguyen-Truong is shown in Fig. 5.5. All

three data sets are seen to be similar demonstrating that the ELF accurately calculated

in the entire (ω, q) plane from the first principles yields the IMFP values in a good
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agreement with those calculated in more specific ways.

5.1.2 Obtained results

Determination of IMFPs was performed for the following materials: Be, Al, Si, Ti, V, Fe,

Ni, Cu, Ge, Nb, Mo, Pd, Ag, Ta, W, Pt, Au by varying the energy dependence of the

IMFP at low energies (< 100 eV) between two extreme values according to the following

expression:

λη = λMermin + 0.1 · (η − 1) (λPenn − λMermin) (5.2)

where the number η ranges from 1 for Mermin IMFP to 11 for Penn IMFP. Then the SEY

calculated using each of the IMFP values from Eq. 5.2 were compared with different data

sets of SEY values from the literature. These data sets comprise: (a) collected literature

data [39, 104, 105]; (b) Bronstein data [104]; (c) Zadrazil data [105]. Those IMFP values

that give the best χ2 fit of SEY values with experimental results are considered to be

the most reliable ones. The χ2 optimisation finds those model parameters that minimize

the sum of quadratic residues between experimental and theoretical values.

Figs. 5.6–5.11 show results of the IMFP determination from the SEY analysis using the

presented algorithm for Ag, W, Al, Cu, Fe, and Pt. Each set of figures contains the upper

panel with comparison of the IMFP values obtained from the SEY analysis (solid blue

line) with the IMFP calculated using the Mermin dielectric function (dashed black line)

and Penn algorithm (dashdotted green line), and literature data. The three lower panels

show comparisons of SEY values corresponding to the three IMFP data sets mentioned

above with: (b) collected literature data [39, 104, 105]; (c) Bronstein data [104]; (d)

Zadrazil data [105]. The collected literature data [39, 104, 105] in Figs. 5.6–5.11 (c,d)

are shown as grey data points in order to highlight the chosen data set (red points) for

the SEY comparison and to demonstrate its position with respect to all experimental

data. The optimum values of η for 17 investigated materials are tabulated in Table 5.1.

There is a monotonic relation between η and the IMFP on one hand, and η and the SEY

on the other hand. Thus, lower values of η correspond to lower SEY values and lower

IMFP values at low energies. Note that the results in Table 5.1 are obtained in the case

when surface excitations were not considered in the MC model.

The SEY is typically characterized in terms of the maximum SE yield δm at the corre-

sponding energy Em. Different values of δm and Em are observed during the inspection

of different SEY data sets for such materials as Al and Cu (Figs. 5.8 and 5.9). The reason
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Table 5.1: Physical quantities used in the SEY calculation and optimum IMFP numbers η.

Z φ Ui ηa ηb ηc

(eV) (eV)

Be 4 4.98 7.8 4 1 -
Al 13 4.28 12.0 2 1 2
Si 14 4.85 12.1 1 1 1
Ti 22 4.33 16.62 2 2 5
V 23 4.3 20.13 4 - 3
Fe 26 4.5 20.93 10 7 8
Ni 28 5.15 20.14 5 5 5
Cu 29 4.65 18.5 6 4 3
Ge 32 5.0 15.6 3 5 6
Nb 41 4.3 22.1 3 2 2
Mo 42 4.6 22.66 2 2 2
Pd 46 5.12 22.37 5 5 -
Ag 47 4.26 17.11 1 1 1
Ta 73 4.25 27.58 3 2 2
W 74 4.55 23.4 1 1 1
Pt 78 5.65 30.14 9 9 8
Au 79 5.1 21.32 6 7 7

a Collected SEY data [39, 104, 105].
b Bronstein SEY data [104].
c Zadrazil SEY data [105].

for this spread in the experimental SEY data is likely due to the fact that these materials

oxidize easily. Even a slight oxidation of a sample leads to a significant rise of the SEY.

Since SEs are mainly emitted from the very surface region the SEY measurements, in

particular at low energies, require strictly controlled vacuum conditions and, consequently,

the purity of the sample surface. Bronstein and Fraiman [104] carried out particularly

careful in-situ SEY measurements in the former Soviet Union. The authors used different

methods to obtain clean surfaces such as annealing at high temperatures during the

measurements (refractory metals), evaporation of the investigated material in vacuum,

electron, and ion sputtering and had a good control of vacuum conditions during their

measurements. The value of η in Table 5.1 for this data set is considerably lower than

for other data sets and the energy dependence of the SEY is in a good agreement with

the MC results. The fact that the IMFP increases with the increased thickness of the

oxidized layer on top of the sample and that Bronstein SEY data correspond to the

lowest IMFP values points to a good cleanliness of samples during the measurements,
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which were documented in a very careful way. Therefore, we conclude that this set of

SEY data is more reliable than the total collection of SEY data. Another extensive set

of SEY measurements, selected for separate consideration, was carried out by Zadrazil

and co-authors in Ultra High Vacuum (UHV) conditions with samples of a high purity

(99.99% or better) as reported in [147, 105]. The SEY values from these two data sets

are believed to be the most reliable since they are always lower than other measurements,

which might indicate bad vacuum conditions or a contamination of the samples in the

case of other data.

As can be seen from Table 5.1 for most materials the value of η is close to those which

corresponds to the IMFP values calculated using the Mermin dielectric function (η = 1).

Figs. 5.8, 5.6, and 5.7 show the situation when η is equal or close to 1 for Al, Ag, and

W. The opposite situation when η value is close to 11, which corresponds to the Penn

IMFP, is shown in Figs. 5.10, 5.11 for Fe and Pt. The case of an intermediate η value

between 1 and 11 is demonstrated as an example for Cu in Fig. 5.9. Here, and also in

the case of Mo (not shown), IMFP values predicted by XAFS measurements [46] are

much lower than the Mermin IMFPs, which seems to be contradicting all available IMFP

data including the results of this work. As seen from the upper panels of Figs. 5.8–5.7

there is always at least an order of magnitude difference between Mermin and Penn

IMFP values at the vacuum level in all cases with the exception for Fe, which is very

important for quantitative understanding of the secondary electron emission process. It

is also seen that most of the IMFP data found in the literature tend to be close to the

Mermin IMFPs, which is in a reasonable agreement with the results obtained in this

work. Note that most of the literature data for the IMFP shown in the upper panels

of Figs. 5.6–5.11 are theoretical data, since it is a quite challenging task to determine

IMFP values at low incident energies using any experimental technique. However, the

present work demonstrates an approach to do so using experimental SEY curves.
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Figure 5.6: (a) Comparison of the IMFP for
Ag obtained from the SEY analysis (solid blue
line) with the IMFP calculated using the Mer-
min dielectric function (dashed black line) and
Penn algorithm (dashdotted green line), and lit-
erature data [148, 135, 42, 18, 47]. Comparison
of SEYs for Ag calculated using IMFP values
shown in Fig. 5.8A by lines with: (b) all liter-
ature data [39, 105]; (c) Bronstein data [104];
(d) Zadrazil data [105].
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Figure 5.7: The same as Fig. 5.6 but for W.
Literature data from Fig. 5.7A are taken from
[18, 47].
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Figure 5.8: The same as Fig. 5.6 but for Al.
Literature data from Fig. 5.8A are taken from
[149, 150, 86, 151].

Cu

100

101

102

103

104

105

100 101 102 103 104

φ = 4.65 eV

ηopt = 6(a)

IM
F

P
 (

Å
)

E−EF (eV)

Tanuma et al. (2011)
Bourke and Chantler (2010)

Campillo et al. (2000)
Tanuma et al. (2005)
Ogawa et al. (1997)

Penn (1987)
Knapp et al. (1979)

Mermin
Penn

Optimum

 0.1

 1

Ui = 18.5 eV

φ = 4.65 eV

(b)

S
E

Y
 δ

Experimental data
Mermin

Penn
Optimum

 0.1

 1

(c)

S
E

Y
 δ

Bronstein data
Mermin

Penn
Optimum

 0.1

 1

 0.01  0.1  1  10  100

(d)

S
E

Y
 δ

E-Evac (keV)

Zadrazil data
Mermin

Penn
Optimum

Figure 5.9: The same as Fig. 5.6 but for Cu.
Literature data from Fig. 5.9A are taken from
[43, 42, 44, 18, 45, 46, 47].
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Figure 5.10: The same as Fig. 5.6 but for Fe.
Literature data from Fig. 5.10A are taken from
[152, 153, 18, 137, 47, 154].
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Figure 5.11: The same as Fig. 5.6 but for Pt.
Literature data from Fig. 5.11A are taken from
[18, 47].
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Table 5.2: Optimum IMFP numbers η after including surface excitations into the MC model.

Without
surface

With
surface

Z ηa ηa

Al 13 2 2
Ti 22 2 2
V 23 4 2
Fe 26 10 3
Ni 28 5 4
Cu 29 6 5
Mo 42 2 2
Pd 46 5 5
Ag 47 1 2
Ta 73 3 3
W 74 1 1
Pt 78 9 9
Au 79 6 6

a Collected SEY data [39, 104, 105].

In the case of transition metals, such as Fe and Pt, the obtained optimum η values are

large compared with most of the investigated materials (see Table 5.1). In Ref. [147] the

energy Em corresponding to the maximum SE yield δm was shown to increase across each

of the transition metal series. This dependence was explained by the concurrent increase

of the IMFP with the number of electrons in the d band. However, since the authors

did not use energy dependent IMFPs but only one IMFP value to describe the electron

escape, the above statement does not explain the high η values. IMFP values close to

the ones predicted by the Penn model are already large and do not limit the emission of

the secondary electron cascade from the surface. It shows that the behavior of the SEY

curves of the transition metals cannot be quantitatively explained by an appropriate

choice of the low energy IMFP only. This means that further development of the SE

emission model in the case of transition metals is needed with a detailed consideration of

the electronic structure of these materials.

Accounting for surface excitations is also one of the possible improvements of the MC

model which is known to have an important impact on the SE yield [70]. Table 5.2

demonstrates the comparison of the ηa values from Table 5.1 and those obtained when

surface excitations were accounted for in the MC model for 13 materials for which surface
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Figure 5.12: χ2 test results for different Ui values in Au.

scattering data were available. In Table 5.2 η values are shown which were obtained from

the comparison of the calculated SEY data with collected literature data [39, 104, 105].

Accounting for surface excitations is seen to not considerably change the values of η

for most materials except the case of Fe. A seen from Table 5.2 after including surface

excitations into the MC model the value of η in the case of Fe decreased from 10 to 3.

Whereas in the case of Pt this value remained the same.

Finally, another important point concerning the presented approach needs to be discussed,

namely the fact that the SEY not only depends on the IMFP at low energies which is not

well known but also on the value of the inner potential Ui, which is also not well known.

For this reason, the influence of the value of Ui on the outcome of our study has been

investigated. Fig. 5.12 shows the results of the χ2 fit for three different Ui values for Au.

It demonstrates that the error introduced by the uncertainty of the inner potential makes

an influence of plus or minus 1 in average on the resulting value of η. A similar result

was found for all materials investigated in the present study. Therefore the optimum

value of the energy dependent IMFP (characterized by the value of η as explained before)

does not depend critically on the inner potential.
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5.1.3 Summary and conclusions

Determination of the IMFP at energies below 100 eV was performed by analyzing the

SEY in the incident energy range of 0.1 - 10 keV. A Monte Carlo model was employed to

simulate SEYs for two different energy dependencies of the IMFP at low energies (below

100 eV), calculated using the Mermin dielectric function [49] and the Penn algorithm

[42, 133]. Subsequent comparison of the simulated SEYs based on these IMFPs with the

experimental SEY data [39, 104, 105] give an estimate for the IMFP values at energies

below 100 eV. The optimum values of η (ranging from 1 for IMFP values based on the

Mermin dielectric function to 11 for IMFP values based on the Penn algorithm) for 17

investigated materials are presented in Table 5.1. The general conclusion that can be

drawn on the basis of Table 5.1 is that for most materials, with the exception of the

transition metals, the more realistic energy dependence of the IMFP at low energies is

given by the Mermin model. These optimum IMFP values were shown to be not critically

affected by the choice of the inner potential Ui.

The presented MC model has some deficiencies in that it does not consider the band

structure effect, a quantum-mechanical representation of the potential barrier, etc. The

main purpose of this work is to demonstrate the possibility of the presented approach to

analyse high energy SEYs and to reverse engineer the IMFP at low energies. Further

development of the MC model taking into account all possible considerations will allow

obtaining more reliable IMFPs at low energies.

5.2 Experimental determination of low energy IMFP using

elastic peak electron spectroscopy (EPES)

Elastic peak electron spectroscopy is a widely used technique for the experimental deter-

mination of the IMFP [18]. IMFP values can be conveniently derived from measurements

of the elastic reflection coefficient since it is easily assessed experimentally and depends

sensitively on the IMFP [17]. The dependence of the elastic reflection coefficient ηel on

the IMFP can be explained by writing the following expression:

R0 ≡ ηel (λin) =

∞∫
0

e
−
s

λinK (s) ds (5.3)
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where R0 is the zero-order (elastic) partial intensity in the quasi-elastic limit, K (s) is

the path length distribution for the considered reflection geometry. Finding the value of

λin that minimizes the residue between the experimentally measured and theoretically

calculated (Eq. 5.3) reflection coefficient allows retrieving the IMFP. In the present work

such a technique was employed to determine the values of the IMFP for Au at energies

below 200 eV.

5.2.1 Experimental

In the laboratory of the Technical University in Vienna measurements of the elastic

reflection coefficient were performed in the SE2ELCS (Secondary Electron- Electron

Energy Loss Coincidence Spectroscopy) spectrometer on a polycrystalline gold sample.

In SE2ELCS (illustrated in Fig. 5.13) the sample is irradiated with a continuous beam

of electrons. Back reflected electrons can be detected with a Hemispherical Analyser

(HMA), which is positioned in specular reflection with the electron gun at 60◦ with

respect to the surface normal, and with a Time-Of-Flight (TOF) analyser, which has an

enhanced energy resolution at low energies and a wide accepted solid angle of the order

of ±10◦ [3]. During measurements the TOF analyser records event flight times, while

the energy observed by the HMA is scanned from the incident energy down to several

eV. The energy resolution at the HMA is 2.5% of the pass energy, whereas in the TOF

analyser the energy resolution depends on the kinetic energy of the detected electrons.

Before the EPES measurements, the surface of a gold sample was rinsed with ethyl

alcohol followed by cleaning in an ultrasonic bath for 10 minutes to remove surface

contamination. Then the cleanliness of the surface of the gold sample was verified by

means of XPS. The measurements of elastic peaks were carried out consistently using

the two analysers (TOF and HMA) in the incident energy range of 10 – 1600 eV.

5.2.2 Determination of IMFPs from elastic peak intensities

Elastic peaks in the energy spectra measured with the TOF and HMA analysers were

fitted with a gaussian for each incident energy with subsequent calculation of the areas

under these peaks. An example of the fitting is shown in Fig. 5.14 for the spectra

measured at 50 eV incident energy with the TOF (Fig. 5.14A) and the HMA (Fig. 5.14B)

analysers. Values of the reflection coefficient were determined by dividing the areas under
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Figure 5.13: Schematic view of the SE2ELCS spectrometer. The angle of the incidence of the electron
beam encloses 60◦ with respect to the surface normal of the sample. The HMA, equipped with 5
channeltrons, is in specular reflection and detects the reflected electrons, while the TOF-analyser is
placed along the surface normal and the emitted electrons are detected with a detector consisting of
Multi Channel Plates (MCP) and a Delay Line Anode (DLA).

elastic peaks on the primary current measured at each incident energy before the EPES

measurements.

Theoretical calculations of the elastic reflection coefficient were performed using the

Monte Carlo simulation. Using the path length distribution calculated in the quasi-elastic

regime by means of the MC simulation the reflection coefficient ηel was then obtained

using Eq. 5.3. In Eq. 5.3 the calculation of the PLD K (s) and the zero-order partial

intensity R0 require the knowledge of the differential elastic scattering cross sections

for the scattering angles and energies used in the EPES experiments. Fig. 5.15 shows

the energy dependence of the differential elastic scattering cross section for Au. Black

dashed lines shown in Fig. 5.15 refer to the scattering angles corresponding to those

in the experimental arrangement with the TOF (ψ = 120◦) and the HMA (ψ = 60◦)

analysers. A cut along these lines allows predicting the energy dependence of the

reflection coefficient for the experimental geometries with the scattering angles ψ = 120◦

and ψ = 60◦. In Fig. 5.16 the resulting energy dependence of the experimental reflection

122



5.2. Experimental determination of low energy IMFP using elastic peak electron
spectroscopy (EPES)

(a)

 0

 100

 200

 300

 400

 500

 400  450  500  550  600  650  700  750  800

In
te

ns
ity

, r
el

.u
n.

Time of flight, ns
Sat Jun 23 23:30:38 2018

/home/moves/disk/2018/0619

toffitau.g

Experiment
Fitted elastic peak

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 53  54  55  56  57  58  59

In
te

ns
ity

, r
el

.u
n.

E - Evac, eV

Sat Jun 23 23:45:41 2018
/home/moves/disk/2018/0620/overnight/en50/reels

reelsfitau.g

Experiment
Fitted elastic peak

Figure 5.14: Fitting of elastic peaks in: (a) the TOF spectrum, and (b) the REELS spectrum for E0 =
50 eV.

coefficient acquired by means of the TOF (Fig. 5.16A) and the HMA (Fig. 5.16B) is

compared with theoretical calculations using the MC simulation. The experimental data

were normalized to the MC results at the incident energy of 800 eV where the IMFP is

assumed to be accurately known. Indeed, a similarity between the energy dependence

of the reflection coefficient and the DECS as a function of the incident energy for both

scattering angles can be clearly observed from Fig. 5.16.
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Figure 5.15: The energy dependence of the differential elastic scattering cross section of Au as a function
of the polar scattering angle. Note that the intensity is shown in the logarithmic scale.

In order to derive the IMFP values from the measured elastic reflection coefficient the

latter quantity was calculated by means of the MC simulation for each incident energy

by varying IMFP values in a certain range. This range was determined by taking

the reference value from those calculated using the Penn algorithm and multiplying it

by 2 to get the upper limit and dividing by 2 to get the lower limit. The obtained

dependence of the reflection coefficient on the IMFP was fitted with a polynomial. The

experimental IMFP value is then determined from the approximating polynomial by

using the experimental value for the reflection coefficient as shown in Fig. 5.17. Fig. 5.18

shows the comparison of the resulting IMFP values (blue data points) derived from the

measurements of the elastic reflection coefficient using the TOF (Fig. 5.18A) and the

HMA (Fig. 5.18B) with theoretical calculations using the Mermin dielectric function

[49] and the Penn algorithm [42]. In the case of the TOF analyser (Fig. 5.18A) a good

agreement between the experimental and theoretical IMFP values is observed for energies

above 500 eV whereas at lower energies the experimental results do not follow an expected

behavior demonstrating too low values of the IMFP. In the case of the HMA analyser an

opposite takes place where the experimental IMFP values are seen to be closer to the

Penn data in the energy range of 30-500 eV. At energies above 500 eV the experimental

IMFP values are seen to decrease with the incident energy increasing whereas at energies

below 30 eV these data are observed to be much higher than those for the Penn algorithm.
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Figure 5.16: Red data points: the energy dependence of the reflection coefficient for Au measured
using: (a) the TOF analyser, and (b) the HMA analyser. Blue solid curves: results of the Monte Carlo
simulation. The experimental data were normalized to the MC results at the incident energy of 800 eV.

A general conclusion that can be drawn is that the IMFP values derived from the

measurements of elastic peak intensities do not seem to be reasonable at low incident

energies (below 200 eV). There are several reasons to explain this. First of all, it is very

challenging to perform an experiment at such low energies. The presence of electric or

magnetic fields, charging can have tremendous influence for the trajectories and energies

of the electrons and therefore have to be accounted for, which is complicated and not
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always possible due to hardware limitations. Furthermore, the extracted values depend

on the reliability of the theoretical model, describing the elastic backscattering from

the solid. Since the theoretical approach used in this work has been established for the

processes at medium energies (above 500 eV), it might be inaccurate or not work at all

at low energies, thus retrieving meaningless results of the IMFP.

Figure 5.17: Fitting curve for the IMFP extraction.
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Figure 5.18: IMFP values derived from the EPES measurements using: (a) the TOF analyser, and (b)
the HMA analyser. Comparison of obtained results on the IMFP with theoretical data calculated on the
basis of the Mermin dielectric function (green solid line) and the Penn SSPA algorithm (red solid line).
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Chapter 6

Summary and conclusions

In this work, the transport of electrons with medium (200− 5000 eV) and low (below

100 eV) kinetic energies in solids was considered. Two approaches were employed to

find a solution to the transport equation namely the Invariant Imbedding Method (IIM)

and the Monte Carlo (MC) simulation. The IIM was employed to consider the electron

transport at medium energies and was demonstrated to be a powerful technique for the

interpretation of electron energy loss spectra and the study of material properties from

these data. This approach enables to solve the boundary problem for the transport

equation by means of the Numerical Solution (NS) of the system of nonlinear equations

for the transmission, reflection, and photoelectron flux density functions known as the

Ambartsumian–Chandrasekhar (AC) equations. This NS is based on the discrete ordinate

formalism and relies on a transformation of the AC equations to the algebraic Ricatti and

Lyapunov equations, which are solved by using the backward differential formula. Besides,

this numerical technique is very efficient with respect to performance. For instance, it

takes about a second to reproduce a Reflection Electron Energy Loss (REELS) spectrum

with the initial electron energy of several keV on an Intel Xeon CPU E5-1620 3.60 GHz.

This fact allows the use of the IIM for the retrieval of the Differential Inverse Inelastic

Mean Free Path (DIIMFP) from a REELS spectrum. Such a procedure described in

Section 4.1 represents a fitting algorithm consisting of the finding the oscillator parameters

for the Energy Loss Function (ELF) which minimize the residue between calculated

REELS spectra and experimental data.

In the present work, the fitting algorithm using the IIM was employed to investigate the

evolution of X-ray Photoelectron spectra (XPS) at the thermal reduction of Graphene
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Oxide (GO) [155, 122]. It has been shown that photoelectron spectra can provide a

great amount of information about processes that take place during the annealing of GO

samples. As long as a sufficient amount of oxygen is present in the samples (at annealing

temperatures below 150◦C), the π plasmon cannot be identified in the spectrum. The

heat treatment of the GO samples at the annealing temperature range of 170− 200◦C

causes the percolation transition, at which the conductivity of the material increases by

5 orders of magnitude accompanied by increasing intensity of the π plasmon, therefore,

demonstrating a correlation between the latter quantities.

Another application of the IIM approach concerns the possibility of detection and

interpretation of hydrogen isotopes in solids. An extended survey was conducted on

beryllium samples implanted with different doses of deuterium ions employing two

analytical techniques comprising Elastic Peak Electron Spectroscopy (EPES) and REELS

[25]. The possibility of quantitative analysis of hydrogen isotopes by means of the

combination of these techniques was demonstrated.

The MC approach was employed to consider the electron transport at low energies in

order to investigate the phenomenon of Secondary Electron Emission (SEE) from solid

surfaces. For this purpose, an MC code has been developed on the basis of the so-called

three-step model implying the following steps: (1) transport of a primary electron in

a solid, (2) generation of a secondary electron, and (3) transport and escape over the

surface potential barrier of the produced SE. This MC model was employed to determine

the electron Inelastic Mean Free Path (IMFP) at low incident energies (below 100 eV)

by means of analysis of Secondary Electrons Yields (SEY) measured in the incident

energy range of 0.1 - 10 keV. This was performed by varying the energy dependence

of the IMFP at low energies (below 100 eV) during the MC simulation of the SEY

between two extremes, calculated on the basis of the Mermin dielectric function and

the Penn algorithm within the simplified single-pole approximation (SSPA) [38]. Those

IMFP values that gave the best χ2 fit of the simulated SEY values with experimental

results were considered as the most reliable. The MC model was employed with and

without accounting for surface excitations. The described algorithm was employed for

the investigation of Al, Ti, V, Fe, Ni, Cu, Mo, Pd, Ag, Ta, W, Pt, and Au. For most

materials the optimum IMFP values are found to be close to those calculated using

the Mermin dielectric function. The inclusion of surface excitations did not make a

great impact on the obtained results except in the case of Fe, where the optimum IMFP

values became closer to the Mermin IMFPs instead of the Penn IMFPs as it was without

considering surface effects. The possibility to get an estimation on the IMFP at energies
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below 100 eV from analysis of SEYs measured at high energies provides an important

guideline and allows to reverse engineer the IMFP at low energies. So far this approach

was used only to investigate metals whereas the investigation of insulator materials is

also of high importance.

An attempt to measure the IMFP at low energies (below 100 eV) by means of the EPES

technique was also performed and is presented in Section 5.2. Unfortunately, this study

did not yield meaningful results on the IMFP values at low energies demonstrating, on

one hand, the difficulty of carrying out measurements at energies below 100 eV and on

the other hand calling into question the reliability of the employed theoretical model at

low energies.
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