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Abstract 

Real-time control of the particle size distribution of coarsely 
shredded mixed solid waste has a large potential for 
improving the performance of mechanical processing plants. 
In addition to controllers and actuators, online metrology for 
particle size distributions is needed. In this work, 2D-images 
of single waste particles from the material fractions wood and 
plastic are investigated. The materials were gained by 
handsorting of shredded mixed commercial waste and the 
individual particles were described through different 
descriptors, which were used in regression models for 
particle size determination. It is shown that univariate models 
are not very likely to perform well due to the overlapping of 
the descriptor values for different particle size classes. 
Though, using a Partial Least Squares regression, that 
considers many different descriptors, an accuracy of over 
70% was reached in most of the considered particle size 
classes for detecting the correct particle size in the 
investigated material fractions. Therefore, the potential of the 
method was proven, while further research is needed, to 
reach an accuracy level that is suitable for process control. 
Additionally, the evaluated particle size class must be 
combined with the particle weight to determine the effects of 
assigned particles in a particle size distribution. 

 
Introduction 

A coarse shredder is usually the first machine in 
mechanical treatment plants for processing mixed municipal 
and commercial solid waste. Together with the properties and 
composition of the waste input, it defines the particle sizes of 
the materials and therefore influences the performance of 
subsequent machines like screens, magnetic separators or 
sensor-based sorters.  

To beneficially influence particle sizes in real-time – e.g. to 
keep them as constant as possible, independent of the input 
materials’ variable particle size and material distribution – two 
components are needed in addition to a controller: 
controllable actuators like shredder gap width or shaft rotation 
speed as well as real-time-measurements of the particle size 
distributions. Among others, the intelligent connection of the 
mentioned components is part of the research within the K-
project ReWaste4.0. Hence, this work aims at the 
metrological component, finding parameters for shape 
description of irregularly formed objects and implementing a 
real-time particle size measurement.  

In general, there are different approaches for achieving 
this, including:  
 Visual assessment from the bulk on the conveyor belt 

using image evaluation techniques,  
 3D-measurements of singlified particles as well as 
 2D-measurements of singlified particles.  
In this contribution latter is focused by assessing the particle 
size class through 2D-images from single particles by a visual 
sensor. The software MATLAB® 2019 was used for image 

processing, calculation of different descriptors as well as 
performing univariate regressions and Partial Least Squares 
(PLS) regressions. 

 
Materials and Methods 
Descriptors for 2D-shapes 

To make particle size and shape available for regression 
modelling, different descriptors need to be found that can be 
applied to particles of all shapes. Literature shows a variety 
of parameters to describe shapes such as equivalent 
diameters, major and minor axis lengths, projected area and 
perimeter, as well as bounding shapes [1–3].  

Since coarsely shredded mixed waste shows a high 
irregularity in shapes and sizes, a broad range of descriptive 
factors was calculated from the binary images of the 
individual particles to empirically assess which factors deliver 
valuable information. These factors (later called particle 
descriptive factors) include the following and are presented 
at some exemplary particles in Figure 1Error! Reference 
source not found.: 
 Projected Area: Sum of the pixels of the projected area. 
 Projected Perimeter of the particle-circumscribing 

polygon: Due to the resolution of the images, strong 
unevenness (e.g. cracks, fine fringes) could be observed 
for all particles at the edges, which significantly influences 
the length of the perimeter through the selected 
calculation method in MATLAB®. For this reason, the 
perimeter of the particle-circumscribing polygon (with 
shrink factor = 0.5) was determined instead. 

 Area equivalent circle diameter: diameter of the circle that 
has the same area as the projected area of the particle. 

 Bounding Shapes: the smallest circumscribing rectangle 
(bounding box), triangle (bounding triangle) and circle 
(bounding circle), as well as the inner circle of the polygon 
(inscribed circle), are calculated and documented through 
their areas, radiuses and edge lengths.  

 Feret diameters: describe distances between two parallel 
tangents, which completely enclose the particle 
(measuring principle of a calliper) [1–3]. To describe the 
size of a particle in different directions various Feret 
diameters are calculated including maximum and 
minimum Feret diameter and the respective orthogonal 
dimensions. 

 Shape factors: To describe the shape of the particles, 
various dimensionless shape factors are examined. Here, 
the ratios between the actual particle area and the area of 
each bounding shape are considered. Additionally, the 
circularity was considered as a shape factor as well, 
which explains the difference of the particle from a circle. 
This factor was defined through equation (1) according to 
[4], where 𝐴  is the projected area of the particle and 
𝑃  is the perimeter of the circumscribing polygon, and 
was defined in a way, so that it becomes 1 for a circle. 
 



16th Minisymposium Verfahrenstechnik & 7th Partikelforum, TU Wien, Sept. 21/22, 2020 

DiV5-(02) page 2/5 

Circularity= 
4*π*APart

PPart
2  (1) 

 
Figure 1: Examples of original RGB images, binary images 
and calculated 2D-descriptors (e.g. bounding shapes and 
Feret diameters). 

Elliptic Fourier Coefficients 
An additional option for describing particle shapes is the 

use of Elliptic Fourier Coefficients (EFC) [5]. These describe 
a method, where Elliptical Fourier Transformation is used to 
approximate the shape through overlapping ellipses, 
documented through a set of descriptors – four for each 
harmonic oscillation. This method has been successfully 
used for several decades to mathematically describe closed 
outlines.  

As a starting point, the outline is described through its chain 
code, where each pixel of the particle outline is coded 
separately by assigning it a number, which gives information 
about its relative position to the adjacent pixels of the outline. 
An example is shown in Figure 2, where the particle and the 
way of coding are presented. The associated chain code for 
this example is: 0 1 1 0 0 7 6 7 6 6 5 4 4 3 4 3 3 2. 

 

 
Figure 2: Coding of the different directions and illustration on 
an example. 

Based on the chain code of a closed contour, the outline 
can be described using Fourier series development using 
ellipses. Starting with one harmonic oscillation (n = 1), the 
particle shape is described by an ellipse (see Figure 3), which 
is defined by four Elliptical Fourier Coefficients a, b, c and d. 
If the number of harmonic oscillations is increased, the 
overlap of the ellipses leads to a more detailed description of 
the shape. As an example, Figure 3 shows the outlines 
approximated by the Fourier transformation with different 
numbers of harmonic oscillations (n). It is shown that the 
accuracy of the approximation of the outline contour 
increases as the number of oscillations increases. In this 
work, the EFC up to the fifth oscillation were considered in 
the calculations. With a higher number of oscillations, 
improvements regarding the approximation of the shape to 
the actual particle could be found, but the changes are so 
small that no further benefit for describing the screening 
behaviour of the particles is expected. 

Particularly the normalised coefficients (independent from 
orientation and size) of the first harmonic oscillation were 
examined in depth. Per definition the coefficients for that case 
are always classified as a=1.0, b=0.0, c=0.0, |d|<1.0 [5]. The 
non-zero descriptors ‘a’ and ‘d’ give the length of the semi-
axis of the ellipse which describes the particle outline best. 
To relate the normalised coefficients with the original particle 
dimensions the scale factor was calculated and considered 
as a particle descriptive factor in the following regression 
model. 

 
Figure 3: Visualisation of the outlines of a waste particle 
predicted by Elliptic Fourier Descriptors with different 
numbers of oscillations (n). Dashed line: approximated 
contour of particle-based on EFC; dotted line: original contour 
of particle. 

Data acquisition 
This work is based on results obtained from RGB photos 

(in png format), where each photo represents a fully shown 
individual particle. The particles used come from samples of 
coarsely shredded mixed commercial waste, that were 
classified by a drum screen, using the following screen cuts 
(in mm): 40, 60 and 80. The samples were then manually 
sorted and the material fractions metals (ME), plastic (3D) 
and wood (WO) were further processed for this work.  

The fractions obtained this way were individually sent to a 
sensor-based sorting machine, which was able to photograph 
objects with a detectable NIR-signal as well as objects made 
of conductive metal on the moving conveyor belt using a 
visual sensor and to save the RGB-images of each particle. 
The photos were collected separately for different materials, 
as material classification could also be implemented online, 
e.g. through near-infrared sensors. 

In order to achieve a better singlified input stream and 
separately placed objects on the conveyor belt, the material 
was inserted into the machine by hand. Example RGB-
images that were gained this way are shown in Figure 1Error! 
Reference source not found.. 

 
Image processing  

The image files were evaluated using a code programmed 
in MATLAB®. The code consists of two main parts, where the 
first part covers the extraction of geometric dimensions and 
particle-describing factors, which are further processed in the 
second part of the program using statistical methods.  

 
1. Extraction of geometric dimensions: 

Due to the way the images were taken a distortion of the 
images in the direction of movement of the conveyor belt was 
observed and needs to be removed before calculating 
particle descriptive factors. The scale factor for resizing the 
images was conducted through an object with given 
dimensions and is applied to all images, which also allows 
evaluating the real dimensions in mm from the dimensions in 
pixels. Additionally, some very large particles were not fully 
captured on one single picture. To be sure to only consider 
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correctly displayed images in the calculations a manual 
screening of all images was carried out, where incorrectly 
presented images were removed. 

The particle descriptive factors were calculated based on 
the binary image. This was obtained from the RGB image via 
image processing (colour reversal, adjusting/utilizing 
brightness and contrast, converting to grayscale). Due to the 
image processing, small holes were detected in the binary 
data of the objects. In this context, holes are identified as 
regions indicated as background within the particle. To ignore 
falsely identified holes, all pixels of holes with a size smaller 
than 1% of the total image size were relabelled in the binary 
image from background to particle. Holes bigger than the 
chosen threshold were ignored in this step. Mechanical 
stressing from the sorting process of the material led to the 
separation of dust and fine particles, which were detected in 
the images. To ignore these objects in the evaluation only the 
biggest region of connected pixels was detected as the 
particle and displayed in the final binary image. With the 
resulting binary image, a series of size descriptive factors is 
calculated. Examples of original RGB images, corresponding 
binary images and the computed bounding shapes, as well 
as Feret diameters (minimum, maximum), are shown in 
Figure 1Error! Reference source not found.. 

 
2. Regression model  

Due to the high irregularity of shapes and the fact that large 
data sets with multiple (correlated) predictor variables were 
present, a Partial Least Squares (PLS)- Regression was 
finally used. The aim was to predict the particle size based on 
the particle descriptive factors and assign it to the related 
particle size class of the screen. Here, the following 
descriptive factors were used for the regression: projected 
particle area, perimeter of the polygon of the projected area, 
area of the bounding box and bounding triangle, shape 
factors for bounding box, bounding circle, bounding triangle, 
inscribed circle and circularity, minimal and maximal Feret 
diameter. 

 
Results and Discussions 

Overall, more than 4.500 valid images, with assigned 
particle size classes (in mm: 40-60, 60-80 or >80) for the 
material fractions wood (WO), plastic (3D) and metals (ME) 
were evaluated through the code. Latter presenting less than 
1% of the gathered images, were not evaluated further, due 
to problems with image quality. The remaining fractions were 
investigated to find similarities and differences in the 
descriptive factors. 

 
Figure 4: Visualisation of the correlations between (A) the 
minimum Feret radius and non-normalised EFC d (first 
oscillation) and (B) the maximum Feret radius and the non-
normalised EFC a (first oscillation). 

First, correlations between descriptors were examined, as 
shown in the following example: Multiplying the Fourier 
Coefficients ‘a’ and ‘d’ of the first harmonic oscillation by the 
scale factor that was calculated during the normalisation 
process for the Elliptic Fourier Transformation, the 
descriptors ‘a’ and ‘d’ can give information about the original 
dimensions of the particle. It turns out that they strongly 
correlate with half of the length of the determined Feret 
diameters (minimum and maximum) for both considered 
material classes. Figure 4 shows the relation between these 
variables, where the semi-Feret diameter is stated as the 
Feret radius. Here, the correlations between the minimum 
Feret radius and EFC ‘d’ (A) as well as between the maximum 
Feret radius and EFC ‘a’ (B) for wood particles are presented.  
 

 
Figure 5: Visualisation of the correlation between real screen 
particle class size (in mm) and calculated descriptors (A) 



16th Minisymposium Verfahrenstechnik & 7th Partikelforum, TU Wien, Sept. 21/22, 2020 

DiV5-(02) page 4/5 

minimal Feret diameter, (B) particle size, (C) width bounding 
box for the materials wood (wo) and plastic (pl). 

Additionally, similar correlations can be detected between 
the width of the bounding box and the diameter of the 
inscribed circle and the minimum Feret diameter, the 
diameter of the bounding circle and the length of the bounding 
box and the maximum Feret diameter, between the diameter 
of the inscribed circle and the minimum Feret diameter as well 
as for the length of the bounding box and the maximum Feret 
diameter. 

Subsequently, the values of the different calculated 
descriptors for the different particle size classes were 
compared, to evaluate the eligibility of the descriptors for 
detecting size classes. Figure 5 shows that the median of 
different variables (e.g. minimum Feret diameter, particle 
size, width of the bounding box presented on y-axis) for each 
screen class (x-axis) shows a trend to the assigned screen 
class. However, the fluctuation of the values doesn’t allow a 
correct classification towards the real screen class. The 
results show as well that the material fraction plastic has a 
broader distribution than wood, which can be associated with 
the more consistent shape (flat and rectangular) of the 
investigated wooden particles. 

In this case, the regression was performed individually for 
each material, while only the first four PLS components were 
considered as these already present most of the describable 
variance from the data. The results for the materials wood 
and plastic are presented in Table 1. To compare 
measurements with different units the data sets were 
normalized in a way that each variable had a mean of zero 
and a standard deviation of 1. To properly evaluate the 
models the data was split into two separate groups, one 
containing 80% of the data from each particle size class, 
which was randomly picked. This data is later called the 
calibration data. The remaining data is used to test the quality 
of the developed model and is therefore called test data. 

Furthermore, the quality of the regression models is 
described by counting the particles which were assigned to 
the right and wrong particle size classes based on the PLS-
results. The results are presented as a mean from 15 
individual tests. Here, the test samples consisted of 100 
randomly picked particles for each particle size class (total of 
300 particles per sample) that were virtually put together from 
the created test data sets for each material fraction. 
 
Table 1: Detailed mean results from the applied regression 
models of 15 randomly arranged data sets consisting of 300 
particles (100 in each particle size class) for the materials 
wood and plastic (values in %). 

 
classified to 
particle size  
40-60mm 

classified to 
particle size  
60-80mm 

classified to 
particle size  

>80mm 

Material: wood 

real particle size 
40-60mm 

78 21 1 

real particle size 
60-80mm 

23 50 27 

real particle size 
>80mm 

8 16 76 

Material: plastic 

real particle size 
40-60mm 

77 18 5 

real particle size 
60-80mm 

23 45 32 

real particle size 
>80mm 

9 19 72 

 
The samples composition based on the predicted particle 

sizes were then evaluated with the PLS-regression model, 
reaching a mean total accuracy of 68.0% for wood and 64.7% 
for plastics. Table 1 shows the mean results over the fifteen 

test samples, where information about correctly and falsely 
classified particles for each particle size class is given 
individually. Here, in all investigated particle size classes the 
majority of the particles was classified correctly. Overall the 
number of correctly classified object was slightly higher for 
wood than for the plastic fraction, which can be explained by 
the more uniform wooden objects (more rectangular) in the 
samples while the plastic particles showed more irregularity 
in the shapes.  

The results show the potential of the method, while there 
are still challenges to be faced. On one hand, for some 
materials (in this case metals) the image quality is not 
sufficient, mainly due to the darkness of the images, so that 
they could not be distinguished from the background. Large 
plastic objects were often cropped and not fully displayed on 
the images, which made them not useable in the regression.  

For the recording of images by the RGB sensor of the 
sensor-based sorting machine a detected NIR-signal was 
crucial. This factor mainly caused dark (especially black and 
grey) objects to not be considered in the evaluation. 
Additionally, certainly shaped objects (one-dimensional) 
were recorded on multiple separate images and therefore not 
useable in the investigation. 

Therefore, suitable imaging methods need to be 
developed, while considering the harsh conditions on a 
conveyor belt in a real waste treatment plant.   
 
Conclusions 

This work gathers several descriptors for particle size and 
shape. It also shows correlations between many of these, so 
that some information is redundant when calculating all of 
them. Therefore, the application of feature reduction 
methods, such as PLS is obvious.  

It is shown for some descriptors, such as the minimum 
Feret diameter, that univariate regression models will hardly 
be able to detect screen particle size classes, due to 
scattering and therefore overlapping of the descriptors’ 
values for the different size classes. Though, when using a 
PLS model, considering multiple descriptors, an accuracy of 
68.0% in total is reached for wood. This reached accuracy is 
likely not to be sufficient for advantageous process control. 
Thus, further research is needed, to improve the classification 
quality of the model. This research might include the creation 
of a data set with narrower particle size classes, as well as 
using higher-order models or additional descriptors. 
Furthermore, classification through machine learning 
algorithms, as well as 3D-imaging should be examined. If the 
effects on a particle size distribution should be investigated, 
the partly compensating effect between falsely classified 
particles must be considered which might lead to a more 
correct representation of the material distribution in 
respective particle size classes. 

Finally, the method still requires signification of the 
material, which will not be possible at every interesting point 
in a plant. But it could provide a first automated method for 
measuring the particle size distribution for mixed solid waste, 
that can be used for material analysis, as well as for the 
creation of the huge datasets that will most likely be 
necessary for visual particle size distribution assessment 
from the bulk. 

Extended research regarding this topic was already 
performed. The results are currently under review and are 
going to be published in a peer-reviewed journal under the 
title “Sensor-based particle size determination of shredded 
mixed commercial waste based on two-dimensional images” 
[6]. 
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