
Diplomarbeit
Bayesian Nonparametric Inference
in State-Space Models with an

Application to Extended Target Tracking

ausgeführt zur Erlangung des akademischen Grades
eines Diplom-Ingenieurs unter der Leitung von

Ao. Univ. Prof. Dipl.-Ing. Dr. techn. Franz Hlawatsch

Dipl.-Ing. Dr. techn. Günther Koliander

Dipl.-Ing. Rene Repp

am

Institute of Telecommunications

eingereicht an der Technischen Universität Wien
Fakultät für Elektrotechnik und Informationstechnik

von

Bernd Kreidl

1030519

Wien, 13.01.2021

c� Copyright 2021 Bernd Kreidl

Abstract

Tracking a hidden state, such as the position and velocity of a target based on noisy

measurements, is a common problem in statistical signal processing. There are scenarios

where multiple measurements are generated per target and time step, which enable the

additional estimation of the target’s size, shape, and orientation. This problem is known

as extended target tracking. For some extended target tracking scenarios, the targets can

be grouped into several target classes where the targets in each class are defined by the

same parameters. These parameters typically describe the target’s size, shape, and/or

dynamic behavior. If the classes and their parameters are known, the class affiliation

and, thereby, the parameters of each target can be inferred using classification.

In this thesis, however, we propose joint tracking and clustering of extended targets

for the case where the number of classes and the class parameters are unknown. Instead

of estimating the parameters for each target separately, clustering enables more accurate

parameter estimation by considering several targets jointly. We define a statistical model

for joint tracking and clustering of extended targets in which the target classes and their

parameters are described by a Dirichlet process and the target states given the target pa-

rameters by a state-space model. As our statistical model is a special case of a Bayesian

nonparametric state-space model, we develop two Monte Carlo algorithms for inference in

Bayesian nonparametric state-space models, one for batch processing and one for sequen-

tial processing. We present simulation results demonstrating the convergence of these

algorithms and the performance gain due to joint tracking and clustering of extended

targets compared to tracking without clustering. We observe a slight improvement for

tracking and a significant improvement for parameter estimation. Thus, we conclude that

joint tracking and clustering of extended targets can improve parameter estimation and

tracking for scenarios with an inherent but unknown class structure.

I

II

Kurzfassung

Die Verfolgung eines unbeobachteten Zustands, insbesondere der Position und

Geschwindigkeit eines Ziels aufgrund von verrauschten Messwerten, ist ein wichtiges Pro-

blem der statistischen Signalverarbeitung. In manchen Szenarien ruft ein Ziel mehrere

Messwerte pro Zeitschritt hervor, welche die zusätzliche Schätzung der Größe, Form und

Orientierung eines Ziels ermöglichen. Dieses Problem wird als Verfolgung ausgedehnter

Ziele bezeichnet. In manchen Fällen können die ausgedehnten Ziele in Klassen eingeteilt

werden, wobei die Ziele jeder Klasse durch dieselben Parameter definiert sind. Diese Pa-

rameter beschreiben häufig die Größe, die Form und/oder das dynamische Verhalten der

Ziele. Wenn die Klassen und ihre Parameter bekannt sind, können die Klassenzuordnung

und daher auch die Parameter der Ziele durch Klassifikation bestimmt werden.

In dieser Arbeit behandeln wir hingegen die gemeinsame Verfolgung und Clusterung

ausgedehnter Ziele für den Fall, dass die Anzahl der Klassen sowie deren Parameter un-

bekannt sind. Anstatt die Parameter für jedes Ziel einzeln zu schätzen, können durch

Clusterung die Parameter mehrerer Ziele gemeinsam und somit besser geschätzt werden.

Wir definieren ein statistisches Modell zur gemeinsamen Verfolgung und Clusterung aus-

gedehnter Ziele, bei dem wir die Klassen und Parameter durch einen Dirichlet-Prozess

und die Ziel-Zustände konditioniert auf ihre Parameter durch ein Zustandsraummo-

dell beschreiben. Da unser statistisches Modell ein Spezialfall eines Bayesschen nicht-

parametrischen Zustandsraummodells ist, entwickeln wir zwei Monte Carlo-Algorithmen

zur Inferenz in Bayesschen nicht-parametrischen Zustandsraummodellen. Mittels Simula-

tionen untersuchen wir das Konvergenzverhalten der Algorithmen und die Verbesserung

der Ergebnisse, die durch die gemeinsame Verfolgung und Clusterung ausgedehnter Ziele

im Vergleich zur Verfolgung ohne Clusterung erzielt werden kann. Dabei stellen wir eine

leichte Verbesserung der Verfolgung und eine signifikante Verbesserung der Parameter-

schätzung fest. Unsere Simulationen zeigen somit, dass durch die gemeinsame Verfolgung

und Clusterung ausgedehnter Ziele die Parameterschätzung und Verfolgung in Szenarien

mit einer inhärenten, aber unbekannten Klassenstruktur verbessert werden kann.

III

IV

Acknowledgments

I am profoundly grateful to my supervisors, Ao. Univ. Prof. Franz Hlawatsch, Dr. techn.

Günther Koliander, and Dipl.-Ing. Rene Repp, for their continuous guidance, valuable

feedback, and helpful insights. Furthermore, I would like to thank Dipl.-Ing. Thomas

John Bucco and Dipl.-Ing. Thomas Kropfreiter for their advice and assistance.

Finally, I am deeply indebted to my family and friends. This thesis would not have

been possible without their unconditional support and encouragement.

V

VI

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 State of the Art . 2
1.3 Thesis Outline . 3

2 Monte Carlo Methods 5

2.1 Motivation . 5
2.2 Importance Sampling . 6
2.3 Sequential Monte Carlo Methods . 8

2.3.1 General Principle . 8
2.3.2 Particle Filter . 9
2.3.3 State-Space Models . 10
2.3.4 Resample-Move Particle Filter . 12
2.3.5 Parameter Dependent State-Space Models 13

2.4 Markov Chain Monte Carlo . 16
2.4.1 General Principle . 16
2.4.2 Metropolis-Hastings Algorithm . 16
2.4.3 Cycles of MCMC Kernels . 18
2.4.4 Gibbs Sampling . 19
2.4.5 Particle Markov Chain Monte Carlo 20
2.4.6 Parameter Dependent State-Space Models 23

3 Bayesian Nonparametrics 25

3.1 Dirichlet Process . 25
3.1.1 Construction and Definition . 25
3.1.2 Properties . 28
3.1.3 Sampling from the Dirichlet Process 30

VII

3.2 Dirichlet Process Mixture . 31
3.2.1 Construction and Definition . 31
3.2.2 Inference . 32

4 Inference in Bayesian Nonparametric State-Space Models 41

4.1 Time Series of Equal Length . 42
4.1.1 Statistical Model and Inference . 42
4.1.2 Particle Markov Chain Monte Carlo Algorithm 44
4.1.3 Sequential Monte Carlo Algorithm 48

4.1.3.1 General Principle . 48
4.1.3.2 Gibbs Sampling Algorithm 54
4.1.3.3 Metropolis-Hastings Algorithm 54
4.1.3.4 Sufficient Statistics . 57

4.2 Time Series of Different Lengths . 60
4.2.1 Statistical Model and Inference . 60
4.2.2 Particle Markov Chain Monte Carlo Algorithm 61
4.2.3 Sequential Monte Carlo Algorithm 61

4.2.3.1 General Principle . 61
4.2.3.2 Gibbs Sampling Algorithm 63
4.2.3.3 Metropolis-Hastings Algorithm 66
4.2.3.4 Sufficient Statistics . 66

5 Application to Extended Target Tracking 69

5.1 Statistical Model . 70
5.1.1 Motion Model . 72
5.1.2 Measurement Model . 73
5.1.3 Parameters . 76
5.1.4 Independence Assumptions . 78

5.2 Inference . 79
5.2.1 Conditional Probability Distributions 79
5.2.2 Reference Algorithm . 84

5.2.2.1 Sampling the States . 85
5.2.2.2 Sampling the Indicator Variables and Parameters 92
5.2.2.3 Summary . 94

5.2.3 Particle Markov Chain Monte Carlo Algorithm 94

VIII

5.2.4 Sequential Monte Carlo Algorithm 97
5.3 Performance Evaluation . 98

5.3.1 Algorithm Convergence . 98
5.3.1.1 Data Sets . 99
5.3.1.2 Algorithms . 99
5.3.1.3 Performance Metrics . 101
5.3.1.4 Results . 102

5.3.2 Tracking and Parameter Estimation Performance 103
5.3.2.1 Algorithms . 104
5.3.2.2 Performance Metrics . 105
5.3.2.3 Time Series of Equal Length 108
5.3.2.4 Time Series of Different Lengths 108

6 Conclusion 111

Bibliography 113

IX

X

List of Figures

3.1 Graphical representation of the stick breaking procedure. 27

5.1 Example of the trajectory and the measurements of an elliptically shaped

target. 69
5.2 Bayesian network for our statistical model for extended target tracking.

Observed random variables are represented by shaded disks. 71
5.3 Illustration of the motion model. 73
5.4 Example of an elliptical target extent and corresponding measurements. . . 76
5.5 A data set for extended target tracking. 99
5.6 Ground truth MSEs of the state estimates as a function of the number of

samples. 103
5.7 Ground truth MSEs of the parameter estimates as a function of the number

of samples. 104
5.8 Posterior mean MSEs of the state estimates as a function of the number of

samples. 105
5.9 Posterior mean MSEs of the parameter estimates as a function of the num-

ber of samples. 106
5.10 CGs for state and parameter estimation as a function of the number of

observed time steps. 110

XI

XII

List of Abbreviations

BNP Bayesian nonparametric

CG clustering gain

CRP Chinese restaurant process

DP Dirichlet process

DPM Dirichlet process mixture

i.i.d. independent and identically distributed

IS importance sampling

MC Monte Carlo

MCMC Markov chain Monte Carlo

MH Metropolis-Hastings

MSE mean square error

pdf probabilty density function

PF particle filter

PGAS particle Gibbs sampler with ancestor sampling

PMCMC particle Markov Chain Monte Carlo

RMPF resample-move particle filter

SMC sequential Monte Carlo

TS time series

XIII

1

Chapter 1

Introduction

1.1 Motivation

An important task in statistical signal processing is target tracking, where the goal is to

track the state of a target or the states of multiple targets using noisy measurements [1].

One exemplary application is to track the positions and velocities of multiple objects

using measurements of a radar system [2]. Typically, target tracking considers at most

one measurement per target and time step. However, modern radar systems with increased

resolution may produce more than one measurement per target and time step. Besides

tracking the state, these multiple measurements may also be used to estimate the size,

shape, and orientation of each target. This problem is known as extended target tracking

[3] and is, for example, relevant to marine vessel tracking using X-band radar [4] and car

tracking using lidar [5].

Certain extended target tracking scenarios can be modeled as a parameter dependent

state-space model [6], where each target has random parameters that define the target’s

state-space model. The parameters can describe the size, shape, expected number of

measurements, and/or dynamic behavior of each target. Furthermore, if multiple targets

are tracked, it can be reasonable to assume that some targets share the same parameters.

According to these parameters, the targets can then be grouped into classes. If the

parameters of each class are known, then classification can be performed by assigning

each target to one of these classes [7, 8].

In this thesis, however, we consider the case, where we only know that some classes

exist but the parameters of the individual classes are unknown. Here, we can still exploit

this limited knowledge by clustering the targets and estimating the parameters of each

class in addition to tracking the targets’ states. Estimating the class parameters can be

2 1. Introduction

expected to be more accurate than estimating the parameters for each target separately as

we can use all measurements of all targets in each class instead of only the measurements

of each individual target. Additionally, improved parameter estimation may also result

in improved state estimation, as the target’s state depends on the parameters.

An elegant approach to clustering in this context is to perform inference in a combined

statistical model for the targets and their classes, which immediately enables joint tracking

and clustering of extended targets. In this thesis, we define a Bayesian nonparametric

(BNP) state-space model for joint tracking and clustering of extended targets, where

the prior distribution of the targets’ parameters (with an inherent class structure) is a

Dirichlet process (DP) and the time-varying target states given the target parameters are

distributed according to a state-space model. Note that the DP defines both the target

classes and the class parameters. The main advantage of the DP is that it considers

an unknown and random number of classes, which allows clustering without specifying

the number of classes in advance. Further, we develop two Monte Carlo algorithms for

inference in BNP state-space models, one for batch processing and one for sequential

processing. We investigate the convergence of these algorithms and the performance gain

due to joint tracking and clustering of extended targets compared to tracking without

clustering.

1.2 State of the Art

A problem related to clustering is classification, where one assigns targets to predefined

classes with known parameters. There is some previous work on joint tracking and classi-

fication [7,8] and on clustering after tracking [9]. However, to the best of our knowledge,

joint tracking and clustering has not been considered so far. A parameter dependent

state-space model for extended target tracking, which is related to a part of our statisti-

cal model for joint tracking and clustering of extended targets, was proposed in [6].

For clustering in our context, BNP statistical models [10], in particular the DP [11] [10,

Chapter 4] and the Dirichlet process mixture (DPM) [12] [10, Chapter 5], are of special

interest. Clustering of time series defined by state-space models and a DPM or a related

statistical model is discussed in [13–19]. The statistical model for joint tracking and

clustering of extended targets proposed in this thesis is a special case of a BNP state-

space model [13].

The algorithm proposed in [13] is a batch processing algorithm that is used for inference

1.3. Thesis Outline 3

on the class parameters and the targets’ class assignments, but not on the targets’ states.

However, as inference on the targets’ states is required for tracking, we introduce a Markov

chain Monte Carlo (MCMC) algorithm for batch processing that uses particle Markov

Chain Monte Carlo (PMCMC) [20, 21] to sample the targets’ states and Gibbs sampling

[22, 23] to sample the class parameters and the targets’ class assignments. Additionally,

we introduce a sequential Monte Carlo (SMC) algorithm for sequential processing based

on the resample-move particle filter (RMPF) [24–26] and sequential Markov chain Monte

Carlo (SMCMC) [27–29].

1.3 Thesis Outline

After this introductory chapter, we continue this thesis by discussing MC methods in

Chapter 2. More specifically, we present the general principle behind MC methods, as

well as various SMC and MCMC algorithms.

In Chapter 3, we describe the basics of BNP statistical models with a focus on the DP

and the DPM.

In Chapter 4, we propose two algorithms for inference in BNP state-space models.

The first algorithm is an MCMC algorithm for batch processing based on PMCMC. The

second algorithm is a sequential algorithm based on the RMPF and SMCMC.

In Chapter 5, we introduce a BNP state-space model for extended target tracking and

apply the inference algorithms of Chapter 4. Furthermore, we evaluate the convergence of

the algorithms and investigate the performance gain due to joint tracking and clustering.

Finally, Chapter 6 concludes this thesis by summarizing our contributions and suggest-

ing future research directions.

4 1. Introduction

5

Chapter 2

Monte Carlo Methods

This chapter gives a brief introduction to Monte Carlo (MC) methods [30]. MC methods

are numerical methods that play an important role in many different fields, such as science,

engineering, and finance. While there is a wide range of MC methods, we will focus on

importance sampling (IS), sequential MC (SMC), and Markov chain MC (MCMC). We

will discuss the general principle of these methods and their application to (parameter

dependent) state-space models. This chapter is based on the introductory paper [31] and

the book [30] unless stated otherwise.

While we will limit our discussion to real and continuous random vectors, every algo-

rithm in this chapter can also be adapted to other types of random variables by replacing

the probabilty density functions (pdfs), denoted by f , with the corresponding type of

density and, if appropriate, replacing the integrals by sums. In this thesis, we will also

consider discrete random variables, where we use probability mass functions, denoted by

p, and mixed random variables, where we use mixed densities, denoted by v.

2.1 Motivation

To illustrate the general principle of MC methods, consider a random vector x ∈ RX . We

will call its pdf, denoted as fx(x), the target pdf. Considering K ∈ N independent and

identically distributed (i.i.d.) random vectors x(k) with pdf fx(x) and k ∈ {1, . . . , K}, we
can “approximate”1 fx(x) with

f̂(K)
x (x) = 1

K

K%
k=1

δx(k)(x), (2.1)

1Approximate in the sense that the distribution defined by f̂(K)
x (x) converges to the distribution

defined by fx(x) as K −→ ∞, but not pointwise convergence of f̂(K)
x (x) to fx(x).

6 2. Monte Carlo Methods

where δx(k)(x) is the Dirac delta defined such that for any set A ⊆ RX and continuous

function2 f(x)

�
A

f(x)δx(k)(x)dx =

��f(x(k)) if x(k) ∈ A
0 else

. (2.2)

Note that f̂(K)
x (x) is random because the x(k) are random. To approximate an expectation

I = E(h(x)) =
�
RX

h(x)fx(x)dx, (2.3)

where h is an arbitrary function, we can calculate the expectation with respect to the

“approximation” f̂(K)
x (x) of the target pdf, that is,

Î(K) =
�
RX

h(x)̂f(K)
x (x)dx = 1

K

K%
k=1

h(x(k)). (2.4)

By the strong law of large numbers, under mild conditions, we have Î(K) a.s.−−→ I, that is,

Î(K) converges almost surely to I as K −→ ∞. This shows that if we can generate K

samples x(k) from the target pdf, then we can approximate the often intractable integral

in (2.3) by the tractable sum Î(K) = 1
K

&K
k=1 h(x(k)). While sampling directly from the

target pdf is difficult in many cases, we can use the methods discussed in the following

sections to generate samples. These methods allow us to “approximate” the target pdf

fx(x) similarly to (2.1), and the expectation (2.3) similarly to (2.4).

2.2 Importance Sampling

We can restate (2.3) as

I =
�
RX

h(x)w(x)g(x)dx, (2.5)

where

w(x) = fx(x)
g(x) (2.6)

and g(x) is an arbitrary pdf, with a support that includes the support of fx(x), that is,
supp g ⊃ supp fx. We will call g(x) the proposal pdf. According to (2.5), I is represented

as the expectation of h(x)w(x) with respect to the distribution defined by the proposal

2Note that this definition can be made rigorous by interpreting δx(k)(x)dx as the Dirac measure at
the point x(k).

2.2. Importance Sampling 7

pdf g(x). Therefore, we can approximate (2.3) by considering i.i.d. random vectors x(k)

with pdf g(x) for all k ∈ {1, . . . , K}, and calculating

Î(K) = 1
K

K%
k=1

w(x(k))h(x(k)). (2.7)

By the strong law of large numbers, under mild conditions, approximation (2.7) satisfies

Î(K) a.s.−−→ I.

It can be shown that the choice of the proposal pdf g(x) that minimizes the variance

of the approximation (2.7) is [30, p. 95]

g∗(x) = |h(x)|fx(x)�
RX |h(x
)|fx(x
)dx
 . (2.8)

Therefore, using g(x) = fx(x), that is, directly sampling from the target pdf fx(x), is
in general not optimal in terms of approximation variance. However, as the optimal pdf

g∗(x) can be difficult to sample from, it is usually preferable to choose a proposal pdf

g(x) such that it is easy to sample from and that g(x) is large where |h(x)|fx(x) is large.
If we are only able to evaluate the target pdf up to a normalizing constant, we can still

use the approximation

Î(K) =
K%

k=1
W(k)h(x(k)), (2.9)

where

W(k) ∝ w(x(k)) = fx(x(k))
g(x(k)) (2.10)

with
K%

k=1
W(k) = 1, (2.11)

as W(k) is only proportional to fx(x(k))
g(x(k)) and, thus, fx(x(k)) needs to be known only up to a

constant factor. We will call W(k) the normalized weights. We have

W(k) = w(x(k))&K
k�=1 w(x(k�))

. (2.12)

By restating (2.9) as

Î(K) =
K%

k=1

w(x(k))&K
k�=1 w(x(k�))

h(x(k))

= 1&K
k�=1 w(x(k�))

K%
k=1

w(x(k))h(x(k))

= 1
1
K

&K
k�=1 w(x(k�))

1
K

K%
k=1

w(x(k))h(x(k)), (2.13)

8 2. Monte Carlo Methods

where we have used (2.12) in the first step, it follows that Î(K) a.s.−−→ I under mild conditions

because 1
K

&K
k=1 w(x(k)) a.s.−−→ 1 by the strong law of large numbers (see (2.7) with h(x) = 1).

This approximation is equivalent to first “approximating” the target pdf by

f̂(K)
x (x) =

K%
k=1

W(k)δx(k)(x) (2.14)

and then calculating the expectation (2.3) with respect to this “approximation” of the

target pdf.

2.3 Sequential Monte Carlo Methods

2.3.1 General Principle

Many applications require the processing of sequential data that can be modeled by a

sequence of random vectors (xn)n∈N with xn ∈ RX . The target pdf, for each n ∈ N, is
then fx1:n(x1:n), where x1:n = (xn�)n�∈{1,...,n}. We will refer to n as time, even though it

does not neccessarily have a temporal interpretation. Similarly to the previous section,

we are interested in generating sequences of random vectors x(n,k)
1:n =

�
x(n,k)

n�
�

n�∈{1,...,n} with

k ∈ {1, . . . , K} for each n ∈ N to “approximate” the target pdf fx1:n(x1:n) by

f̂(K)
x1:n(x1:n) =

K%
k=1

W(n,k)δx(n,k)
1:n

(x1:n), (2.15)

and to approximate an expectation

In = E(hn(x1:n)) =
�
RX×n

hn(x1:n)fx1:n(x1:n)dx1:n (2.16)

by

Î(K)
n =

�
RX×n

hn(x1:n)̂f(K)
x1:n(x1:n)dx1:n =

K%
k=1

W(n,k)hn

�
x(n,k)

1:n

�
, (2.17)

where hn(x1:n) is an arbitrary function, K ∈ N, and &K
k=1 W(n,k) = 1. Note that each

sequence x(n,k)
1:n has a superscript n to avoid confusion of the random vectors of the ap-

proximations at different times. Typically SMC methods “approximate” the target pdf

based on an “approximation” of the target pdf of the last time step. An “approximation”

of the marginalized target pdf fxn(xn) can be obtained by marginalizing f̂(K)
x1:n(x1:n), which

yields

f̂(K)
xn

(xn) =
K%

k=1
W(n,k)δx(n,k)

n
(xn), (2.18)

2.3. Sequential Monte Carlo Methods 9

where x(n,k)
n denotes the nth component of x(n,k)

1:n . We will refer to the random sequences

of random vectors x(n,k)
1:n as particles.

While using IS to generate the particles x(n,k)
1:n as discussed in the previous section would

work in principle, it will typically be difficult to choose an appropriate and tractable

proposal pdf with growing n. Further, this choice is especially difficult if the random

vectors xn� for n
 ∈ {1, . . . , n} are highly dependent.

2.3.2 Particle Filter

One algorithm to generate the random vectors x(n,k)
1:n is the particle filter (PF), which is a

recursive algorithm that applies IS to “approximate” fx1:n(x1:n) based on an “approxima-

tion” of fx1:n−1(x1:n−1) for each n ≥ 2. To illustrate the general principle of this algorithm,

first note that we can factor fx1:n(x1:n) as

fx1:n(x1:n) = fxn|x1:n−1(xn | x1:n−1)fx1:n−1(x1:n−1). (2.19)

The PF “approximates” (2.19) by first “approximating” fx1:n−1(x1:n−1) with f̂(K)
x1:n−1(x1:n−1)

and then fxn|x1:n−1(xn | x1:n−1) based on IS.

More specifically, for n = 1, we generate i.i.d. particles x(1,k)
1 with proposal pdf g1

�
x

(1,k)
1

�
and set (see (2.10))

W(1,k) ∝ fx1

�
x(1,k)

1

�
g1

�
x(1,k)

1

� (2.20)

with
&K

k=1 W(1,k) = 1. For n ≥ 2, we first generate i.i.d. random vectors x(n,k)
1:n−1 with pdf

f̂(K)
x1:n−1

�
x

(n,k)
1:n−1

�
, where f̂(K)

x1:n−1

�
x

(n,k)
1:n−1

�
is defined as in (2.15), that is, we select

x(n,k)
1:n−1 = x(n−1,k�)

1:n−1 (2.21)

with probability W(n−1,k�), k
 ∈ {1, . . . , K}. Second, we generate x(n,k)
n given

x(n,k)
1:n−1 = x

(n,k)
1:n−1 with proposal pdf gn

�
x(n,k)

n

))) x
(n,k)
1:n−1

�
. The complete particle is then

x(n,k)
1:n =

�
x(n,k)

1:n−1, x(n,k)
n

�
(2.22)

with normalized weight

W(n,k) ∝ fxn|x1:n−1

�
x(n,k)

n

))) x(n,k)
1:n−1

�
gn

�
x(n,k)

n

))) x(n,k)
1:n−1

� (2.23)

such that
&K

k=1 W(n,k) = 1.

10 2. Monte Carlo Methods

Algorithm 2.1 Particle filter
Input:

�
x

(n−1,k)
1:n−1 , W (n−1,k)

�
k∈{1,...,K}, gn

1: for all k = 1, . . . , K do
2: sample x

(n,k)
1:n−1 = x

(n−1,k�)
1:n−1 with probability W (n−1,k�) for all k
 ∈ {1, . . . , K}

3: sample x(n,k)
n from gn

�
x(n,k)

n

))) x
(n,k)
1:n−1

�
4: set x

(n,k)
1:n =

�
x

(n,k)
1:n−1, x(n,k)

n

�
5: end for
6: for all k = 1, . . . , K do
7: calculate W (n,k) according to (2.23)
8: end for

Output:
�
x

(n,k)
1:n , W (n,k)

�
k∈{1,...,K}

One sufficient condition for the choice of the proposal pdfs to ensure Î(K)
n

a.s.−−→ In for all

n ∈ N is that supp g1 ⊃ supp fx1 , and supp gn(· | x1:n−1) ⊃ supp fxn|x1:n−1(· | x1:n−1) for all

x1:n−1 ∈ RX×(n−1) and n ≥ 2. In contrast to IS, we cannot directly apply the law of large

numbers, as the x(n,k)
1:n−1 are generated with pdf f̂(K)

x1:n−1

�
x

(n,k)
1:n−1

�
instead of fx1:n−1

�
x

(n,k)
1:n−1

�
.

However, it can still be shown that this algorithm converges under mild conditions [32].

The pseudo-code for one recursion of the PF algorithm is stated in Algorithm 2.1.

2.3.3 State-Space Models

Consider two sequences of random vectors (xn)n∈N with xn ∈ RX and

(yn)n∈N with yn ∈ RY , with pdf fx1(x1) and conditional pdfs fy1|x1(y1 | x1),
fxn|x1:n−1,y1:n−1(xn | x1:n−1, y1:n−1), and fyn|x1:n,y1:n−1(yn | x1:n, y1:n−1) for n ≥ 2. We will

speak of a state-space model if xn is conditionally independent of x1:n−2 and y1:n−1 given

xn−1, and yn is conditionally independent of x1:n−1 and y1:n−1 given xn, that is,

fxn|x1:n−1,y1:n−1(xn | x1:n−1, y1:n−1) = fxn|xn−1(xn | xn−1), (2.24)

and

fyn|x1:n,y1:n−1(yn | x1:n, y1:n−1) = fyn|xn(yn | xn) (2.25)

for all n ≥ 2. The sequences (xn)n∈N and (yn)n∈N will be referred to as the states and

the observations of the model, respectively. It follows from (2.24) and (2.25) that a

state-space model is defined by the initial pdf fx1(x1) = ζ(x1), as well as the state

transition model fxn|xn−1(xn | xn−1) = ξ(xn | xn−1) for n ≥ 2 and obvervation model

fyn|xn(yn | xn) = χ(yn | xn) for n ≥ 1.

2.3. Sequential Monte Carlo Methods 11

Our goal is to generate sequences of random vectors x(n,k)
1:n with k ∈ {1, . . . , K} for each

n ∈ N to “approximate” the target pdf fx1:n|y1:n(x1:n | y1:n) by

f̂(K)
x1:n|y1:n

(x1:n | y1:n) =
K%

k=1
W(n,k)δx(n,k)

1:n
(x1:n), (2.26)

and to approximate an expectation In = E(hn(x1:n) | y1:n = y1:n) by

Î(K)
n =

�
RX×n

hn(x1:n)̂f(K)
x1:n|y1:n

(x1:n | y1:n)dx1:n =
K%

k=1
W(n,k)hn

�
x(n,k)

1:n

�
, (2.27)

where hn(x1:n) is an arbitrary function, K ∈ N, and &K
k=1 W(n,k) = 1. Note that the

difference from our previous equations (2.15) and (2.17) is that all pdfs contain the con-

dition y1:n. Furthermore note that a closed-form calculation of the posterior distribution

of the states given the observations fx1:n|y1:n(x1:n | y1:n) and the integral In is possible only

for some special cases, such as a linear Gaussian model with the Kalman filter and some

functions hn(x1:n).
If we apply the PF algorithm from Section 2.3.2 to a state-space model, then, for n = 1,

our proposal pdf is g1(x1 | y1) and equation (2.20) can be expressed as

W(1,k) ∝ fx1|y1

�
x(1,k)

1

))) y1

�
g1

�
x(1,k)

1

))) y1

�
∝ fy1|x1

�
y1

))) x(1,k)
1

�
fx1

�
x(1,k)

1

�
g1

�
x(1,k)

1

))) y1

�
∝ χ

�
y1

))) x(1,k)
1

�
ζ

�
x(1,k)

1

�
g1

�
x(1,k)

1

))) y1

� . (2.28)

For n ≥ 2, we first resample from f̂(K)
x1:n−1|y1:n−1

(x1:n−1 | y1:n−1) as defined in (2.26). Then,

for the importance sampling step we use the proposal pdf gn

�
x(n,k)

n

))) x
(n,k)
1:n−1, y1:n

�
and

normalized weights (see (2.23))

W(n,k) ∝ fxn|x1:n−1,y1:n

�
x(n,k)

n

))) x(n,k)
1:n−1, y1:n

�
gn

�
x(n,k)

n

))) x(n,k)
1:n−1, y1:n

� (2.29)

12 2. Monte Carlo Methods

such that
&K

k=1 W(n,k) = 1. We can further simplify (2.29) according to

W(n,k) ∝ fxn|yn,x1:n−1,y1:n−1

�
x(n,k)

n

))) yn, x(n,k)
1:n−1, y1:n−1

�
gn

�
x(n,k)

n

))) x(n,k)
1:n−1, y1:n

�
∝ fyn|x1:n,y1:n−1

�
yn

))) x(n,k)
1:n , y1:n−1

�
fxn|x1:n−1,y1:n−1

�
x(n,k)

n

))) x(n,k)
1:n−1, y1:n−1

�
gn

�
x(n,k)

n

))) x(n,k)
1:n−1, y1:n

�
=

fyn|xn

�
yn

))) x(n,k)
n

�
fxn|xn−1

�
x(n,k)

n

))) x(n,k)
n−1

�
gn

�
x(n,k)

n

))) x(n,k)
1:n−1, y1:n

�
=

χ
�
yn

))) x(n,k)
n

�
ξ

�
x(n,k)

n

))) x(n,k)
n−1

�
gn

�
x(n,k)

n

))) x(n,k)
1:n−1, y1:n

� , (2.30)

where we first applied Bayes’ theorem and then (2.24) as well as (2.25). This shows that

to “approximate” the marginal pdf fxn|y1:n(xn | y1:n) (see (2.18)), it is sufficient to only

keep the samples x
(n−1,k)
n−1 and the current observation yn instead of the whole sequences

x
(n−1,k)
1:n−1 and y1:n if we choose the proposal distribution gn(xn | x1:n−1, y1:n) independent

of x1:n−2 and y1:n−1.

2.3.4 Resample-Move Particle Filter

Consider the PF from Section 2.3.2. The particles for time n are generated by

resampling particles from time n − 1 (see (2.21)) and extending them to time n

(see (2.22)). The resampling step has the disadvantage that there may exist par-

ticles x(n,k)
1:n =

�
x(n,k)

1:n−1, x(n,k)
n

�
and x(n,k�)

1:n =
�
x(n,k�)

1:n−1, x(n,k�)
n

�
with x(n,k)

1:n−1 = x(n,k�)
1:n−1.

Therefore, this step depletes the particle values x(n,k)
n� for time n
 ≤ n − 1, as)))�x(n,k)

1 : k ∈ {1, . . . , K}
�))) ≤

)))�x(n,k)
2 : k ∈ {1, . . . , K}

�))) ≤ . . . ≤ K. This depletion

can result in poor approximations (2.17) and (2.15) if the number of particles K is too

small.

One approach to avoid this problem is to add an additional step to move the resampled

particles from time n − 1 by a transition kernel. If this transition kernel, defined by a

conditional pdf tn−1(x1:n−1 | x̄1:n−1), has fx1:n−1(x1:n−1) as an invariant distribution, that

is, �
RX×(n−1)

tn−1(x1:n−1 | x̄1:n−1)fx1:n−1(x̄1:n−1)dx̄1:n−1 = fx1:n−1(x1:n−1), (2.31)

then we obtain the resample-move particle filter (RMPF), first proposed in [24]. One

recursion of the RMPF is presented in Algorithm 2.2.

However, while this algorithm can reduce the particle value depletion, the additional

step to move the particles can be computationally expensive for large n, if the transition

2.3. Sequential Monte Carlo Methods 13

Algorithm 2.2 Resample-move particle filter
Input:

�
x

(n−1,k)
1:n−1 , W (n−1,k)

�
k∈{1,...,K}, tn−1, gn

1: for all k = 1, . . . , K do
2: sample x̄

(n,k)
1:n−1 = x

(n−1,k�)
1:n−1 with probability W (n−1,k�) for all k
 ∈ {1, . . . , K}

3: sample x
(n,k)
1:n−1 from tn−1

�
x

(n,k)
1:n−1

))) x̄
(n,k)
1:n−1

�
4: sample x(n,k)

n from gn

�
x(n,k)

n

))) x
(n,k)
1:n−1

�
5: set x

(n,k)
1:n =

�
x

(n,k)
1:n−1, x(n,k)

n

�
6: end for
7: for all k = 1, . . . , K do
8: calculate W (n,k) according to (2.23)
9: end for

Output:
�
x

(n,k)
1:n , W (n,k)

�
k∈{1,...,K}

kernels move the complete particles x̄(n,k)
1:n . In order to reduce the computational complex-

ity of this step, it can be sufficient to only move a part of each particle, for example with

a transition kernel

tn−1
�
x

(n,k)
1:n−1

))) x̄
(n,k)
1:n−1

�
= tn�+1:n−1

�
x

(n,k)
n�+1:n−1

))) x̄
(n,k)
n�+1:n−1

�
δ

x̄
(n,k)
1:n�

�
x

(n,k)
1:n�

�
, (2.32)

where n
 < n − 1 and tn�+1:n−1
�
x

(n,k)
n�+1:n−1

))) x̄
(n,k)
n�+1:n−1

�
is a transition kernel with invariant

distribution fxn�+1:n−1

�
x

(n,k)
n�+1:n−1

�
.

2.3.5 Parameter Dependent State-Space Models

While we can often describe a system by a state-space model, it can be necessary to extend

it by a random but time-constant parameter that the states and observations depend on.

Due to this dependency, it can be important to perform inference on this parameter jointly

with the states. The inference on this parameter may even be the main objective of the

task.

Similarly to Section 2.3.3, consider sequences of states (xn)n∈N, where xn ∈ RX , and

observations (yn)n∈N, where yn ∈ RY , as well as an additional random parameter p ∈ RD,

with D ∈ N. We will speak of a parameter-dependent state-space model if (see (2.24))

fxn|x1:n−1,y1:n−1,p(xn | x1:n−1, y1:n−1, p) = fxn|xn−1,p(xn | xn−1, p) (2.33)

and (see (2.25))

fyn|x1:n,y1:n−1,p(yn | x1:n, y1:n−1, p) = fyn|xn,p(yn | xn, p) (2.34)

14 2. Monte Carlo Methods

for all n ≥ 2. A parameter dependent state-space model is defined by its initial pdf

fx1|p(x1 | p) = ζ(x1 | p), the state transition model fxn|xn−1,p(xn | xn−1, p) = ξ(xn | xn−1, p)
for n ≥ 2, the obvervation model fyn|xn,p(yn | xn, p) = χ(yn | xn, p) for n ≥ 1, and the

pdf of the random parameter fp(p). Here, our goal is to generate sequences of random

vectors x(n,k)
1:n and parameters p(n,k) with k ∈ {1, . . . , K} for each n ∈ N to “approximate”

the target pdf fx1:n,p|y1:n(x1:n, p | y1:n) by

f̂(K)
x1:n,p|y1:n

(x1:n, p | y1:n) =
K%

k=1
W(n,k)δ(x(n,k)

1:n ,p(n,k))(x1:n, p), (2.35)

and to approximate an expectation In = E(hn(x1:n, p) | y1:n = y1:n) by

Î(K)
n =

�
RD

�
RX×n

hn(x1:n, p)̂f(K)
x1:n,p|y1:n

(x1:n, p | y1:n)dx1:ndp

=
K%

k=1
W(n,k)hn

�
x(n,k)

1:n , p(n,k)
�
, (2.36)

where hn(x1:n, p) is an arbitrary function, K ∈ N, and &K
k=1 W(n,k) = 1.

If the PF is directly applied to an extended state x̌n = (xn, pn) with time-independent

parameter pn = pn−1 = p, then the algorithm will not move the parameter part of the

particles x̌(n,k)
1:n =

�
x(n,k)

1:n , p(n,k)
1:n

�
as time progresses. Therefore, the distribution of the

parameter is at all times approximated by the initial samples or, due to the particle

depletion discussed in Section 2.3.4, a subset of them.

However, it is possible to solve this problem by applying the RMPF algorithm de-

scribed in Section 2.3.4 to the extended state with a transition kernel that only moves

the parameter part [24]. This can be done by using a transition kernel defined by the

conditional pdf

tn−1
�
x̌

(n,k)
1:n−1

))) ¯̌x(n,k)
1:n−1, y1:n−1

�
= tn−1

��
x

(n,k)
1:n−1, p

(n,k)
1:n−1

�))) �
x̄

(n,k)
1:n−1, p̄

(n,k)
1:n−1

�
, y1:n−1

�
= δ

x̄
(n,k)
1:n−1

�
x

(n,k)
1:n−1

�
fp|x1:n−1,y1:n−1

�
p

(n,k)
n−1

))) x
(n,k)
1:n−1, y1:n−1

�
. (2.37)

From this transition kernel, we sample x
(n,k)
1:n−1 (note that x

(n,k)
1:n−1 = x̄

(n,k)
1:n−1) and p

(n,k)
1:n−1.

Furthermore, we set p
(n,k)
n� = p

(n,k)
n−1 for all n
 ≤ n − 1. Note that this transition kernel is

independent of p̄
(n,k)
1:n−1.

As the parameter p is constant over time, we can factor the proposal pdf according to

gn

�
x̌(n,k)

n

))) x̌
(n,k)
1:n−1, y1:n−1

�
= gn

��
x(n,k)

n , p(n,k)
n

�))) �
x

(n,k)
1:n−1, p

(n,k)
1:n−1

�
, y1:n−1

�
= δ

p
(n,k)
n−1

�
p(n,k)

n

�
g̃n

�
x(n,k)

n

))) x
(n,k)
1:n−1, p

(n,k)
n−1 , y1:n

�
, (2.38)

2.3. Sequential Monte Carlo Methods 15

where g̃n

�
x(n,k)

n

))) x
(n,k)
1:n−1, p

(n,k)
n−1 , y1:n

�
is a proposal pdf for the state vector for all n ≥ 2.

That is, the proposal pdf is only used to sample the state x(n,k)
n and leaves the parameter

p(n,k)
n , which was moved by the transition kernel tn−1

�
x̌

(n,k)
1:n−1

))) ¯̌x(n,k)
1:n−1, y1:n−1

�
, unchanged,

that is, p(n,k)
n − p

(n,k)
n−1 . With this choice of the proposal pdf gn

�
x̌(n,k)

n

))) x̌
(n,k)
1:n−1, y1:n−1

�
, we

can express the normalized weights of equation (2.20) as (see (2.28))

W(1,k) ∝ fy1|x1,p
�
y1

))) x(1,k)
1 , p(1,k)

1

�
fx1,p

�
x(1,k)

1 , p(1,k)
1

�
g1

��
x(1,k)

1 , p(1,k)
1

�))) y1

�
=

χ
�
y1

))) x(1,k)
1 , p(1,k)

1

�
ζ

�
x(1,k)

1

))) p(1,k)
1

�
fp(p(1,k)

1

�
g1

��
x(1,k)

1 , p(1,k)
1

�))) y1

� (2.39)

and of equation (2.23) as (see (2.30))

W(n,k) ∝ fyn|xn,p
�
yn

))) x(n,k)
n , p(n,k)

n

�
fxn|xn−1,p

�
x(n,k)

n

))) x(n,k)
n−1 , p(n,k)

n−1

�
g̃n

�
x(n,k)

n

))) x(n,k)
1:n−1, p(n,k)

n−1 , y1:n

�
=

χ
�
yn

))) x(n,k)
n , p(n,k)

n

�
ξ

�
x(n,k)

n

))) x(n,k)
n−1 , p(n,k)

n−1

�
g̃n

�
x(n,k)

n

))) x(n,k)
1:n−1, p(n,k)

n−1 , y1:n

� (2.40)

for n ≥ 2.
In general, we need the complete sequences x

(n,k)
1:n−1 and y1:n−1 to sample from the

transition kernel defined in (2.37). Let us assume that there exists a sufficient statistic

sn ∈ RE, with E ∈ N, such that fp|x1:n,y1:n(p | x1:n, y1:n) = fp|sn(p | sn). Further, assume

that sn can be calculated recursively according to s1 = u1(x1, y1) with some function

u1(x1, y1) and sn = u(sn−1, xn, yn) for all n ≥ 2 with some function u(sn−1, xn, yn).
These assumptions allow us to simplify the RMPF [25], as the conditional pdf defining

the transition kernel (2.37) can be expressed as

tn−1
�
x̌

(n,k)
1:n−1

))) ¯̌x(n,k)
1:n−1, y1:n−1

�
= δ

x̄
(n,k)
1:n−1

�
x

(n,k)
1:n−1

�
fp|sn−1

�
p

(n,k)
n−1

))) s̄
(n,k)
n−1

�
, (2.41)

where s̄
(n,k)
n−1 is the sufficient statistic corresponding to the particle x̄

(n,k)
1:n−1, that is,

s̄
(n,k)
1 = u1

�
x̄

(n,k)
1 , y1

�
and s̄

(n,k)
n� = u

�
s̄

(n,k)
n�−1, x̄

(n,k)
n� , yn�

�
for n
 ≥ 2. This shows that, simi-

larly to the PF, to “approximate” the marginal pdfs fxn,p|y1:n(xn, p | y1:n), it is sufficient to

only keep the samples
�
x

(n−1,k)
n−1 , p

(n−1,k)
n−1

�
and the sufficient statistic s

(n−1,k)
n−1 instead of the

whole sequences x
(n−1,k)
1:n−1 and y1:n−1, if we choose the proposal distribution gn independent

of x1:n−2 and y1:n−1. If there does not exist a sufficient statistic that can be calculated

recursively, then we can approximate the posterior distribution of the parameter with a

distribution where such a sufficient statistic exists [26].

16 2. Monte Carlo Methods

2.4 Markov Chain Monte Carlo

2.4.1 General Principle

Another method to generate random vectors x(k) ∈ RX with k ∈ {1, . . . , K} to approxi-

mate the expectation (2.3) as in (2.4), is to sample a homogeneous discrete-time Markov

chain which “explores” the target pdf.

A homogeneous discrete-time Markov chain is a sequence of ran-

dom vectors (x(k))k∈N with x(k) ∈ RX , that is constructed from a tran-

sition kernel defined by the conditional pdf t(x(k) | x(k−1)), such that

fx(k)|x(k−1),...,x(1)(x(k) | x(k−1), . . . , x(1)) = fx(k)|x(k−1)(x(k) | x(k−1)) = t(x(k) | x(k−1)) for

all k ≥ 2. The ergodic theorem ensures Î(K) a.s.−−→ I under mild conditions, if the Markov

chain is ergodic with the target pdf as its stationary pdf, that is, if fx(k)(x) = fx(x),
then fx(k+1)(x) = fx(x). This is the case if the Markov chain is irreducible and aperi-

odic [30, Section 6], and the target pdf is an invariant pdf of the transition kernel, that is,�
RX t(x(k) | x(k−1))fx(x(k−1))dx(k−1) = fx(x(k)). These properties ensure that the Markov

chain “explores” the support of the target pdf without getting stuck in cycles, and that

the pdf of the samples converges to the target pdf. We can sample such a Markov chain

by first initializing x(1) ∈ supp fx arbitrarily, and then sampling x(k) from t(x(k) | x(k−1))
at each step k ≥ 2.

There are several generic methods to construct suitable transition kernels for a wide

range of applications, some of which will be discussed below.

2.4.2 Metropolis-Hastings Algorithm

One of the most popular MCMC methods is the Metropolis-Hastings (MH) algorithm.

This algorithm is a “standard approach,” insofar as many other MCMC methods are

closely related to it.

At each step k ≥ 2, given the previous sample x(k−1) = x(k−1), a candidate x̃(k) is

sampled from a conditional proposal pdf g(x̃(k)|x(k−1)). This candidate is then accepted

2.4. Markov Chain Monte Carlo 17

Algorithm 2.3 MH algorithm
Input: x(k−1), g

1: sample x̃(k) from g(x̃(k) | x(k−1))
2: set x(k) = x̃(k) with probability P (k)

a (see (2.42))
else set x(k) = x(k−1)

Output: x(k)

x(k) = x̃(k) with probability

P (k)
a = Pa(x̃(k), x(k−1))

= min
�

1, fx(x̃(k))g(x(k−1) | x̃(k))
fx(x(k−1))g(x̃(k) | x(k−1))

�

=

�� 1, if fx(x̃(k))g(x(k−1) | x̃(k))
fx(x(k−1))g(x̃(k) | x(k−1)) > 1

fx(x̃(k))g(x(k−1) | x̃(k))
fx(x(k−1))g(x̃(k) | x(k−1)) , else

. (2.42)

If it is not accepted, then the previous sample is used again, that is, x(k) = x(k−1). To find

an expression for the resulting transition kernel t(x(k) | x(k−1)), note that the sample x(k)

is either the candidate generated with pdf g(x(k) | x(k−1)) and accepted with probability

Pa(x(k), x(k−1)), or the last sample x(k−1) with any candidate x, that was generated by

g(x | x(k−1)) and then rejected with probability 1−Pa(x, x(k−1)). Therefore, the transition
kernel is defined by the conditional pdf

t(x(k) | x(k−1)) = Pa(x(k), x(k−1))g(x(k) | x(k−1)) + r(x(k−1))δx(k−1)(x(k)), (2.43)

where

r(x(k−1)) =
�
RX

(1 − Pa(x, x(k−1)))g(x | x(k−1))dx. (2.44)

The pseudo-code for one step of this procedure is presented in Algorithm 2.3.

As with IS, equation (2.42) shows that in order to use the MH algorithm, we only have

to be able to evaluate the target pdf fx(x) up to a normalizing factor as it appears in both

the numerator and the denominator. A sufficient condition for the convergence of the algo-

rithm is that the conditional proposal pdf g(x̃(k) | x(k−1)) satisfies supp g(· | x) ⊃ supp fx

for all x ∈ RX . In order to ensure fast convergence, it is recommended to choose the

proposal pdf g(x̃(k) | x(k−1)) such that the acceptance probability Pa(x̃(k), x(k−1)) is close

to one for most x̃(k), x(k−1) ∈ RX to prevent the Markov chain from getting stuck for a

longer time.

18 2. Monte Carlo Methods

Algorithm 2.4 MCMC algorithm with kernel cycles
Input: x(k−1), (tm)m∈{1,...,NB}

1: for all m = 1, . . . , NB do
2: sample x(k)

m from tm

�
x(k)

m

))) x(k−1)
m , x(k,k−1)

¬m

�
3: end for

Output: x(k)

2.4.3 Cycles of MCMC Kernels

One problem of the MH algorithm is that for large dimension X, it can be diffi-

cult to find a conditional proposal pdf g(x̃(k) | x(k−1)) with a high acceptance prob-

ability Pa(x̃(k), x(k−1)). One way to circumvent this problem is to split the random

vector x = [x1 · · · xX]T into an arbitrary number NB ≤ X of blocks x1, . . . , xNB

and then use a transition kernel defined by the conditional pdf t(x(k) | x(k−1)) con-

structed from NB lower dimensional transition kernels, one for each block. We can

split the random vector x into NB blocks xm by first partitioning the set {1, . . . , X}
as {1, . . . , X} = 'NB

m=1 Bm, where Bm = {bm,1, . . . , bm,|Bm|} ⊆ {1, . . . , X} are non-empty

disjoint sets for all m ∈ {1, . . . , NB}, and then setting xm = [xbm,1 · · · xbm,|Bm|]T ∈ R|Bm|

for all m ∈ {1, . . . , NB}. If, for all m ∈ {1, . . . , NB}, we choose the transition kernel

defined by tm

�
x(k)

m

))) x(k−1)
m , x(k,k−1)

¬m

�
as an MCMC transition kernel (see Section 2.4.1)

for xm

)))�x¬m = x(k,k−1)
¬m

�
with x¬m =

�
xT

1 · · · xT
m−1 xT

m+1 · · · xT
NB

�T ∈ RX−|Bm| and

x(k,k−1)
¬m =

�
x

(k)T
1 · · · x

(k)T
m−1 x

(k−1)T
m+1 · · · x

(k−1)T
NB

�T
, then the transition kernel defined by

t(x(k) | x(k−1)) =
NB"

m=1
tm

�
x(k)

m

))) x(k−1)
m , x(k,k−1)

¬m

�
(2.45)

is an MCMC transition kernel for the complete random vector x. Therefore, at each step

k ≥ 2, each block is sampled separately conditioned on the already sampled blocks of this

step and the remaining blocks of the last step. The pseudo-code for one cycle is stated in

Algorithm 2.4.

A drawback of this approach is that the Markov chain can move slowly if some blocks

are highly dependent. Therefore, it is recommended to sample highly dependent compo-

nents jointly by combining them into a single block.

One special case of this algorithm is the MH algorithm with kernel cycles, where we

use an MH transition kernel for each block. For each block m ∈ {1, . . . , NB}, we sample

a candidate x̃(k)
m from a conditional proposal pdf gm

�
x̃(k)

m

))) x(k−1)
m , x(k,k−1)

¬m

�
, which will be

2.4. Markov Chain Monte Carlo 19

Algorithm 2.5 MH algorithm with kernel cycles
Input: x(k−1), (gm)m∈{1,...,NB}

1: for all m = 1, . . . , NB do
2: sample x̃(k)

m from gm

�
x̃(k)

m

))) x(k−1)
m , x(k,k−1)

¬m

�
3: set x(k)

m = x̃(k)
m with probability P (k)

a,m (see (2.46))
else set x(k)

m = x(k−1)
m

4: end for
Output: x(k)

accepted with probability

P (k)
a,m = min

�
1,

fxm|x¬m

�
x̃(k)

m

))) x(k,k−1)
¬m

�
gm

�
x(k−1)

m

))) x̃(k)
m , x(k,k−1)

¬m

�
fxm|x¬m

�
x

(k−1)
m

))) x
(k,k−1)
¬m

�
gm

�
x̃

(k)
m

))) x
(k−1)
m , x

(k,k−1)
¬m

��
. (2.46)

Note that compared to (2.42), we have the additional condition x¬m = x(k,k−1)
¬m in all pdfs.

The complete procedure for each step of this algorithm is stated in Algorithm 2.5.

2.4.4 Gibbs Sampling

By further specializing the MH algorithm with kernel cycles, we can derive the

Gibbs sampler, where transition kernels tm
�
x(k)

m

))) x(k−1)
m , x(k,k−1)

¬m

�
are MH transi-

tion kernels with the conditional pdf of xm|x¬m as the proposal pdf, that is,

gm

�
x̃(k)

m

))) x(k−1)
m , x(k,k−1)

¬m

�
= fxm|x¬m

�
x̃(k)

m

))) x(k,k−1)
¬m

�
(note that gm no longer involves

x(k,k−1)
¬m as a condition). In this case

fxm|x¬m

�
x̃(k)

m

))) x(k,k−1)
¬m

�
gm

�
x(k−1)

m

))) x̃(k)
m , x(k,k−1)

¬m

�
fxm|x¬m

�
x

(k−1)
m

))) x
(k,k−1)
¬m

�
gm

�
x̃

(k)
m

))) x
(k−1)
m , x

(k,k−1)
¬m

�
=

fxm|x¬m

�
x̃(k)

m

))) x(k,k−1)
¬m

�
fxm|x¬m

�
x(k−1)

m

))) x(k,k−1)
¬m

�
fxm|x¬m

�
x

(k−1)
m

))) x
(k,k−1)
¬m

�
fxm|x¬m

�
x̃

(k)
m

))) x
(k,k−1)
¬m

� (2.47)

= 1 (2.48)

and therefore the acceptance probability (2.46) is given by

P (k)
a,m = min{1, 1} = 1. (2.49)

This simplifies Algorithm 2.5, as every candidate is accepted. The drawback of this

method is that we need to be able to sample each block from the conditional distributions

defined by fxm|x¬m

�
x(k)

m

))) x(k,k−1)
¬m

�
. The pseudo-code for one iteration of the Gibbs sampler

is stated in Algorithm 2.6.

20 2. Monte Carlo Methods

Algorithm 2.6 Gibbs sampler
Input: x(k−1)

1: for all m = 1, . . . , NB do
2: sample x(k)

m from fxm|x¬m

�
x(k)

m

))) x(k,k−1)
¬m

�
3: end for

Output: x(k)

2.4.5 Particle Markov Chain Monte Carlo

Particle MCMC methods, first introduced in [20], are MCMC methods using transition

kernels based on SMC. These kernels allow efficient sampling of possibly highly dependent

states within an MCMC algorithm. In this section, we will focus on the particle Gibbs

sampler with ancestor sampling (PGAS) [21]. Let us, similarly to Section 2.3, consider

a sequence of random vectors x1:N , where xn ∈ RX , with target pdf fx1:N (x1:N) for some

N ∈ N. Our goal is to generate samples x
(k)
1:N , k = 1, . . . , K, of fx1:N (x1:N). The PGAS

transition kernel for the states is based on a modified PF with L ∈ N particles x(k,n,l)
1:n ,

l = 1, . . . , L, similar to the PF described in Section 2.3.2. The transition kernel of this

algorithm is defined by

t
�
x

(k)
1:N

))) x
(k−1)
1:N

�
=

L%
l=1

W(k,N ,l)δx(k,N ,l)
1:N

�
x

(k)
1:N

�
. (2.50)

That is, we sample from a particle approximation of fx1:N (x1:N): we choose x
(k)
1:N as

the particle x(k,N ,l)
1:N with probability W(k,N ,l). However, compared to the PF of Section

2.3.2, this transition kernel depends on a complete reference particle x
(k−1)
1:N in that we

deterministically set x(k,n,L)
n = x(k−1)

n for each n ∈ {1, . . . , N} during the construction of

the particle approximation (2.50). This change results in at least one probable sample at

each time n, even for an imprecise proposal density or a low number of particles L.

More specifically, for n = 1, we generate the first L − 1 particles x(k,1,l)
1 with l ≤ L − 1

as i.i.d. with proposal pdf g1
�
x

(k,1,l)
1

�
. For the last particle, we deterministically set

x(k,1,L)
1 = x

(k−1)
1 . Finally, we calculate (see (2.20))

W(k,1,l) ∝ fx1

�
x(k,1,l)

1

�
g1

�
x(k,1,l)

1

� (2.51)

for all l ∈ {1, . . . , L} with
&L

l=1 W(k,1,l) = 1.
For n ∈ {2, . . . , N}, we generate particles x

(k,N ,l)
1:N recursively using a modified PF

(since x(k,n,L)
n = x(k−1)

n for each n ∈ {1, . . . , N}). We first perform resampling, that is, we

2.4. Markov Chain Monte Carlo 21

generate L − 1 i.i.d. random vectors x(k,n,l)
1:n−1 , l = 1, . . . , L − 1, with pdf (see (2.15))

f̂(k,L)
x1:n−1

�
x

(k,n,l)
1:n−1

�
=

L%
l�=1

W(k,n−1,l�)δx(k,n−1,l�)
1:n−1

�
x

(k,n,l)
1:n−1

�
, (2.52)

that is, we set x(k,n,l)
1:n−1 = x(k,n−1,l�)

1:n−1 with probability W(k,n−1,l�) for all l
 ∈ {1, . . . , L}.
To complete these particles, we sample x(k,n,l)

n given x(k,n,l)
1:n−1 = x

(k,n,l)
1:n−1 with proposal

pdf gn

�
x(k,n,l)

n

))) x
(k,n,l)
1:n−1

�
for all l ∈ {1, . . . , L − 1} and form the complete particle as

x(k,n,l)
1:n =

�
x(k,n,l)

1:n−1 , x(k,n,l)
n

�
.

To obtain the last particle x(k,n,L)
1:n with x(k,n,L)

n = x(k−1)
n , we have to resample x(k,n,L)

1:n−1

from among the previous particles x(k,n−1,l)
1:n−1 conditioned on x(k,n,L)

n = x(k−1)
n . It can be

shown that the probability of x(k,n,L)
1:n−1 = x(k,n−1,l)

1:n−1 given x(k,n,L)
n = x(k−1)

n is

W
(k,n−1,l) ∝ W(k,n−1,l)fxn:N |x1:n−1

�
x

(k−1)
n:N

))) x(k,n−1,l)
1:n−1

�
(2.53)

for all l ∈ {1, . . . , L} with
&L

l=1 W
(k,n−1,l) = 1. In other words, we generate x(k,n,L)
1:n−1 with

pdf

f̂(k,L)
x(k,n,L)

1:n−1 |x(k,n,L)
n

�
x

(k,n,L)
1:n−1

))) x(k−1)
n

�
=

L%
l=1

W
(k,n−1,l)δx(k,n−1,l)
1:n−1

�
x

(k,n,L)
1:n−1

�
, (2.54)

that is, we set x(k,n,L)
1:n−1 = x(k,n−1,l)

1:n−1 with probability W
(k,n−1,l). The complete particle is

then x(k,n,L)
1:n =

�
x(k,n,L)

1:n−1 , x(k−1)
n

�
. The associated weights are calculated as (see (2.23))

W(k,n,l) ∝ fxn|x1:n−1

�
x(k,n,l)

n

))) x(k,n,l)
1:n−1

�
gn

�
x(k,n,l)

n

))) x(k,n,l)
1:n−1

� (2.55)

for all l ∈ {1, . . . , L} with
&L

l=1 W(k,n,l) = 1. Finally, the new sample x
(k)
1:N is obtained

by sampling from the transition kernel t
�
x

(k)
1:N

))) x
(k−1)
1:N

�
in (2.50), that is, x

(k)
1:N is chosen

as particle x(k,N ,l)
1:N with probability W(k,N ,l), for l ∈ {1, . . . , L}. The algorithm to sample

from the PGAS transition kernel is stated in Algorithm 2.7.

Suprisingly, while a transition kernel that directly samples from the PF “approxima-

tion” of the target pdf with a finite number of particles would not have the target pdf as

an invariant pdf, it can be shown that the addition of the reference particle x
(k−1)
1:N in the

PGAS transition kernel defined by (2.50) ensures this property for all L ≥ 2 [21, Theorem

1]. Furthermore, the number of particles can usually be chosen much smaller for the

PGAS transition kernel than what is necessary for a PF in a similar scenario.

22 2. Monte Carlo Methods

Algorithm 2.7 Particle Gibbs with ancestor sampling
Input: x

(k−1)
1:N , (gn)n∈{1,...,N}

1: for all l = 1, . . . , L − 1 do
2: sample x

(k,1,l)
1 from g1

�
x

(k,1,l)
1

�
3: end for
4: set x

(k,1,L)
1 = x

(k−1)
1

5: for all l = 1, . . . , L do
6: calculate W (k,1,l) according to (2.51)
7: end for
8: for all n = 2, . . . , N do
9: for all l = 1, . . . , L − 1 do

10: sample x
(k,n,l)
1:n−1 = x

(k,n−1,l�)
1:n−1 with probability W (k,n−1,l�) for all l
 ∈ {1, . . . , L}

11: sample x(k,n,l)
n from gn

�
x(k,n,l)

n

))) x
(k,n,l)
1:n−1

�
12: set x

(k,n,l)
1:n =

�
x

(k,n,l)
1:n−1 , x(k,n,l)

n

�
13: end for
14: for all l = 1, . . . , L do
15: calculate W
(k,n−1,l) according to (2.53)
16: end for
17: sample x

(k,n,L)
1:n−1 = x

(k,n−1,l)
1:n−1 with probability W
(k,n−1,l) for all l ∈ {1, . . . , L}

18: set x
(k,n,L)
1:n =

�
x

(k,n,L)
1:n−1 , x(k−1)

n

�
19: for all l = 1, . . . , L do
20: calculate W (k,n,l) according to (2.55)
21: end for
22: end for
23: sample x

(k)
1:N = x

(k,N ,l)
1:N with probability W (k,N ,l) for all l ∈ {1, . . . , L} (see (2.50))

Output: x
(k)
1:N

2.4. Markov Chain Monte Carlo 23

2.4.6 Parameter Dependent State-Space Models

As an alternative to the RMPF of Section 2.3.4, we can also use MCMC with the PGAS

transition kernel of the previous section for parameter estimation in state-space models.

Let us reconsider the parameter dependent state-space model of Section 2.3.3.

That is, we have the sequences of states (xn)n∈N, where xn ∈ RX , and observa-

tions (yn)n∈N, where yn ∈ RY , as well as an additional random parameter p ∈ RD.

They are defined by the initial pdf fx1|p(x1 | p) = ζ(x1 | p), the state transition

model fxn|xn−1,p(xn | xn−1, p) = ξ(xn | xn−1, p) for n ≥ 2 and observation model

fyn|xn,p(yn | xn, p) = χ(yn | xn, p) for n ≥ 1, and the pdf of the random parameter

fp(p). Our target pdf is the joint posterior pdf fx1:N ,p|y1:N (x1:N , p | y1:N) for a given

time interval with length N ∈ N. We are interested in generating sequences of ran-

dom vectors x(k)
1:N and parameters p(k) with k ∈ {1, . . . , K} to “approximate” the target

pdf fx1:N ,p|y1:N (x1:N , p | y1:N) by (see (2.35))

f̂(K)
x1:N ,p|y1:N

(x1:N , p | y1:N) =
K%

k=1
W(k)δ(x(k)

1:N ,p(k))(x1:N , p), (2.56)

and to approximate an expectation IN = E(hN(x1:N , p) | y1:N = y1:N) by (see (2.36))

Î(K)
N =

�
RD

�
RX×n

hN(x1:N , p)̂f(K)
x1:N ,p|y1:N

(x1:N , p | y1:N)dx1:Ndp

=
K%

k=1
W(k)hN

�
x(k)

1:N , p(k)
�
, (2.57)

where hN(x1:N , p) is an arbitrary function and
&K

k=1 W(k) = 1.
To generate samples

�
x(k)

1:N , p(k)
�
, we can use cycles of MCMC kernels (Section 2.4.3),

where we first sample x(k)
1:N with Algorithm 2.7 and then p(k) from an arbitrary MCMC

transition kernel tp
�
p(k)

))) p(k−1), x
(k)
1:N , y1:N

�
. We can make some simplifications for state-

space models compared to the general formulation of Algorithm 2.7. For this scenario,

the transition kernel is (see (2.50))

tPGAS
�
x

(k)
1:N

))) x
(k−1)
1:N , p(k−1), y1:N

�
=

L%
l=1

W(k,N ,l)δx(k,N ,l)
1:N

�
x

(k)
1:N

�
. (2.58)

At the first time step, we use a proposal pdf g1
�
x

(k,1,l)
1

))) y1, p(k−1)
�
and the normalized

24 2. Monte Carlo Methods

weights (2.51) can be simplified to

W(k,1,l) ∝ fx1|y1,p
�
x(k,1,l)

1

))) y1, p(k−1)
�

g1
�
x(k,1,l)

1

))) y1, p(k−1)
�

∝ fy1|x1,p
�
y1

))) x(k,1,l)
1 , p(k−1)

�
fx1|p

�
x(k,1,l)

1

))) p(k−1)
�

g1
�
x(k,1,l)

1

))) y1, p(k−1)
�

=
χ

�
y1

))) x(k,1,l)
1 , p(k−1)

�
ζ

�
x(k,1,l)

1

))) p(k−1)
�

g1
�
x(k,1,l)

1

))) y1, p(k−1)
� (2.59)

for all l ∈ {1, . . . , L}, where we have used Bayes’ theorem in the first step and the

properties of our parameter dependent state-space model in the second. For the time

steps n ∈ {2, . . . , N}, we use a proposal pdf gn

�
x(k,n,l)

n

))) x
(k,n,l)
1:n−1 , y1:n, p(k−1)

�
. We can then

express (2.53) as

W
(k,n−1,l) ∝ W(k,n−1,l)fxn|xn−1,p
�
x(k−1)

n

))) x
(k,n−1,l)
n−1 , p(k−1)

�
= W(k,n−1,l)ξ

�
x(k−1)

n

))) x
(k,n−1,l)
n−1 , p(k−1)

�
(2.60)

and simplify (2.55) to

W(k,n,l) ∝ fxn|x1:n−1,y1:n,p
�
x(k,n,l)

n

))) x
(k,n,l)
1:n−1 , y1:n, p(k−1)

�
gn

�
x(k,n,l)

n

))) x
(k,n,l)
1:n−1 , y1:n, p(k−1)

�
∝ fyn|xn,p

�
yn

))) x(k,n,l)
n , p(k−1)

�
fxn|xn−1,p

�
x(k,n,l)

n

))) x
(k,n,l)
n−1 , p(k−1)

�
gn

�
x(k,n,l)

n

))) x
(k,n,l)
1:n−1 , y1:n, p(k−1)

�
=

χ
�
yn

))) x(k,n,l)
n , p(k−1)

�
ξ

�
x(k,n,l)

n

))) x
(k,n,l)
n−1 , p(k−1)

�
gn

�
x(k,n,l)

n

))) x
(k,n,l)
1:n−1 , y1:n, p(k−1)

� (2.61)

for all l ∈ {1, . . . , L}, by again using Bayes’ theorem and the properties of our parameter

dependent state-space model.

25

Chapter 3

Bayesian Nonparametrics

This chapter gives an introduction to Bayesian nonparametric (BNP) models. We will

base this chapter on the recent book [10] unless stated otherwise. A statistical model

is a family of distributions that differ in the choice of a parameter. If this parameter is

infinite dimensional, then the statistical model is called nonparametric. We are referring

to a model as Bayesian if this parameter is modeled as a random variable defined by

a prior distribution. While there are many important BNP models, we will limit this

introduction to the Dirichlet process (DP) and the Dirichlet process mixture (DPM). The

DP, first introduced in [11], is fundamental to BNP, as it exhibits important properties

and serves as a building block in more complex BNP models, such as the DPM. One

common application of the DPM is clustering. In contrast to many clustering algorithms,

clustering based on the DPM does not require a predefined number of classes and allows

the number of classes to grow with an increasing number of data points. Further popular

BNP models are the hierarchical DP [10, Example 5.12], the Gaussian process [10, Chapter

11], and the Indian buffet process [10, Section 14.10].

3.1 Dirichlet Process

3.1.1 Construction and Definition

In this section, we will construct and define the DP as a random discrete pdf fDP(p),
closely following the definition in [33]. We note that the DP is usually defined as a

random discrete measure, with the most general definition given in [10, Definition 4.1].

However, the definition of the DP as a random discrete measure would require the use of

measure theory, which we will avoid by defining the DP as a random discrete pdf.

Let us consider a random discrete pdf on RD, with D ∈ N, that can be expressed as

26 3. Bayesian Nonparametrics

the weighted sum of Dirac deltas

fp(p) =
∞%

c=1
Bcδp∗

c
(p) (3.1)

with random positions p∗
c ∈ RD and random weights Bc ∈ [0, 1] for all c ∈ N such that

∞%
c=1

Bc = 1 a.s.. (3.2)

One way to construct the random weights (Bc)c∈N is the following recursive procedure.

The first weight B1 is equal to V1, which is a random variable between 0 and 1. For c ≥ 2,
the weight Bc is equal to 1 − &c−1

c�=1 Bc� multiplied by the random variable Vc ∈ [0, 1], that
is,

Bc = Vc

�
1 −

c−1%
c�=1

Bc�

�
. (3.3)

It can be shown that we can restate (3.3) as

Bc = Vc

c−1"
c�=1

(1 − Vc�). (3.4)

If we choose the random variables (Vc)c∈N as independent and such that&∞
c=1 E(log(1 − Vc)) = −∞, then it can be shown, similarly to [34, Lemma 1], that

the weights (Bc)c∈N satisfy (3.2).

To obtain a further specialized case of feasible random variables (Vc)c∈N, first note that

E(log(1 − Vc)) ≤ log(E(1 − Vc)) = log(1 − E(Vc)), (3.5)

where we have used Jensen’s inequality in the first step. By choosing the random variables

(Vc)c∈N as i.i.d. with E(Vc) > 0, we have

∞%
c=1

E(log(1 − Vc)) ≤
∞%

c=1
log(1 − E(Vc)) = log(1 − E(V1))

∞%
c=1

1 = −∞, (3.6)

where we have used (3.5) in the first step. Therefore, we can, for example, ensure (3.2)

by choosing the random variables (Vc)c∈N as i.i.d. with E(Vc) > 0.
This recursive procedure to construct the weights (Bc)c∈N is often called stick break-

ing, as the weights can be imagined as pieces of a stick with total length 1. A graphical

representation of the stick-breaking analogy is provided in Figure 3.1.

Consider now the special case of the stick breaking procedure with i.i.d. random vari-

ables (Vc)c∈N with a Beta(1, α) distribution, where α ∈ R+. The pdf of Vc is

fVc(Vc) = Γ(1 + α)
Γ(α) (1 − Vc)α−1 (3.7)

3.1. Dirichlet Process 27

B1 B2 B3
1

Fig. 3.1: Graphical representation of the stick breaking procedure.

for all Vc ∈ [0, 1] and c ∈ N, where Γ(x) =
� ∞

0 yx−1e−ydy for all x ∈ R+. The expectation

of Vc is

E(Vc) = 1
1 + α

> 0. (3.8)

Further consider i.i.d. random positions p∗
c with some pdf fG(p∗

c). The resulting random

pdf

fDP(p) =
∞%

c=1
Bcδp∗

c
(p) (3.9)

is called a DP with base pdf fG(p) and concentration α. Similarly to Chapter 2, note

that while we use a pdf fG(p) for simplicity in this chapter, we can also, with the obvious

changes, use densities of other types of random variables. The distribution of the DP

fDP(p) is briefly denoted as DP(α, fG). This choice of a Beta(1, α) distribution will allow

us to formulate important properties of the DP later in this chapter. The concentration α

determines the weight distribution of the DP fDP(p), where a small α leads to more weight

assigned to small indices c. Note that for α = 1, in particular, the random variables Vc

are distributed according to a Beta(1, 1) distribution, which is the uniform distribution

on the interval [0, 1]. Further note that if the base pdf fG(p) is continuous, then it can

be shown that there does not exist a pdf defining the distribution DP(α, fG). The above

definition of the DP is restated in Definition 3.1.

Definition 3.1: Let α ∈ R+, D ∈ N, and fG(p) be a pdf on RD. The random pdf

fDP(p) =
∞%

c=1
Bcδp∗

c
(p) (3.10)

28 3. Bayesian Nonparametrics

with

B1 = V1, Bc = Vc

c−1"
c�=1

(1 − Vc�) for all c ≥ 2, (3.11)

where

V1, V2, . . .
i.i.d.∼ Beta(1, α), (3.12)

and with

p∗
1, p∗

2, . . .
i.i.d.∼ fG (3.13)

is called a Dirichlet process (DP) with base pdf fG(p) and concentration α, and

we denote its distribution by DP(α, fG), that is,

fDP ∼ DP(α, fG). (3.14)

3.1.2 Properties

Consider the following construction of random vectors pi ∈ RD for all i ∈ N. First we

define a DP

fDP ∼ DP(α, fG) (3.15)

with α ∈ R+ and the continuous pdf fG(p). Then, we let the random vectors (pi)i∈N be

conditionally i.i.d. with pdf fDP, that is,

p1, p2, . . . | (fDP = fDP) i.i.d.∼ fDP. (3.16)

Note that we require fG(p) to be continuous to ensure that p∗
c� �= p∗

c�� a.s. iff c
 �= c

.

Therefore, if we use a density of a different type of random variable instead of fG(p), then
we have to choose it such that we have p∗

c� �= p∗
c�� a.s. iff c
 �= c

.

Marginal Distribution According to (3.10), we have

fDP(p) =
∞%

c=1
Bcδp∗

c
(p) (3.17)

for some random weights (Bc)c∈N and random positions (p∗
c)c∈N. It therefore follows that,

for each i ∈ N,

pi = p∗
c with probability Bc for all c ∈ N. (3.18)

As each p∗
c is individually distributed according to the pdf fG(p∗

c), the marginal pdf of

each pi is also fG(pi), that is,

fpi
(pi) = fG(pi). (3.19)

3.1. Dirichlet Process 29

Number of Distinct Values If we denote the number of distinct values among the first

I random vectors p1, . . . , pI as CI ∈ N, then it can be shown that E(CI)/(α log(I)) → 1 [10,

Proposition 4.8], that is, the expected number of distinct values CI grows logarithmically

and is close to α log(I) for large I.

Posterior Distribution Another important property is the distribution of the random

pdf fDP given p1:I , for some I ∈ N. As shown in [11, Theorem 1], this random pdf is again

a DP with the same concentration α but a different base pdf, that is,

fDP | (p1:I = p1:I) ∼ DP(α, f̃G,I) (3.20)

with

f̃G,I(p) = 1
α + I

�
αfG(p) +

I%
i=1

δpi
(p)

�
. (3.21)

To further elucidate this property, we can use (3.18) to express (3.21) as

f̃G,I(p) = 1
α + I

�
αfG(p) + I

I%
i=1

1
I

δpi
(p)

�

= 1
α + I

�
αfG(p) + I

CI%
c=1

B̂I,cδp∗
c
(p)

�
, (3.22)

where CI is the number of distinct values p∗
c among the vectors p1, . . . , pI and B̂I,c is the

empirical probability of p∗
c , that is,

B̂I,c = 1
I

I%
i=1

11(pi = p∗
c). (3.23)

It follows that (3.22), and therefore also (3.20), is invariant under permutation of the

given samples p1, . . . , pI .

Induced Partition One property of the DP is that it induces a random partition1

on the natural numbers N. As stated above, each random vector pi is equal to p∗
c with

probability Bc for all c ∈ N. This motivates an equivalent formulation of (3.15) and (3.16)

using latent indicator variables c1, c2, . . . ∈ N. More specifically, with (Bc)c∈N and (p∗
c)c∈N

as in Definition 3.1, we define ci conditionally i.i.d. given (Bc)c∈N according to

P
�
ci = c

))) �
(Bc)c∈N = (Bc)c∈N

��
= Bc (3.24)

1A partition of a set X is a set P of non-empty and disjoint subsets of X such that
'

X ∈P X = X.

30 3. Bayesian Nonparametrics

for all c ∈ N, and we set

pi = p∗
ci

(3.25)

for all i ∈ N. This formulation shows that the DP naturally induces a random distribution

on the set of all partitions of N by grouping indices i with equal indicator variables ci.

If we choose an arbitrary continuous base pdf fG(p) and concentration α for the DP,

then the induced random distribution on the set of all partitions is called the Chinese

restaurant process (CRP) with concentration α [10, Section 14.1.1]. The distribution of

the CRP is only parametrized by the concentration α as the random vectors (p∗
c)c∈N in

Definition 3.1 have no influence on the CRP, provided the base pdf fG(p) is continuous.

Note that the resulting partition has CI subsets for the first I random vectors p1:I and

is invariant under permutation of the indicator variables (ci)i∈N as they are conditionally

i.i.d. given (Bc)c∈N.

3.1.3 Sampling from the Dirichlet Process

We are often interested in generating samples from a statistical model. One way to

generate samples p1:I from a DP would be to first sample the pdf fDP from DP(α, fG)
(see (3.15)), and then generating the samples p1:I from fDP(p) (see (3.16)). This, however,
is infeasible in practice as the pdf fDP(p) includes an infinite number of Dirac deltas.

Another approach to generating the samples, which is feasible in practice as it avoids

sampling a complete DP, is based on the DP’s posterior distribution (see (3.20)). By

applying the chain rule, we have

fp1:I (p1:I) = fp1(p1)
I"

i=2
fpi|p1:i−1(pi | p1:i−1). (3.26)

Therefore, we can start by sampling p1 from fp1(p1), and then sample pi given p1:i−1

from fpi|p1:i−1(pi | p1:i−1) for all i ∈ {2, . . . , I}. These pdfs can be simplified by using the

properties discussed in Section 3.1.2. Using (3.19), we can express fp1(p1) as

fp1(p1) = fG(p1). (3.27)

To simplify fpi|p1:i−1(pi | p1:i−1), first note that according to (3.20)–(3.23), with i−1 instead

of I, we have

fDP | (p1:i−1 = p1:i−1) ∼ DP(α, f̃G,i−1), (3.28)

3.2. Dirichlet Process Mixture 31

with

f̃G,i−1(p) = 1
α + i − 1

�
αfG(p) + (i − 1)

Ci−1%
c=1

B̂i−1,cδp∗
c
(p)

�
, (3.29)

where Ci−1 is the number of distinct values p∗
c among the vectors p1, . . . , pi−1 and

B̂i−1,c = 1
i − 1

i−1%
i�=1

11(pi� = p∗
c). (3.30)

As pi|p1:i−1 is distributed according to (3.28), we can apply (3.19) to (3.28) and obtain

fpi|p1:i−1(pi | p1:i−1) = f̃G,i−1(pi). (3.31)

In other words, it follows from (3.27) that we sample p1 from fG(p). Similarly, for

i ∈ {2, . . . , I}, it follows from (3.31) and (3.29) that we either sample pi from fG(p) with
probability α

α+i−1 , or we set pi = p∗
c with probability (i−1)B̂i−1,c

α+i−1 for all c ∈ {1, . . . , Ci−1}.

3.2 Dirichlet Process Mixture

3.2.1 Construction and Definition

One important application of the DP is its use as the pdf of the prior distribution for a

parameter p ∈ RD of a statistical model for a random vector x ∈ RX . More specifically,

in this case, the parameter p is distributed according to the DP fDP ∼ DP(α, fG), that is,

p | (fDP = fDP) ∼ fDP. (3.32)

Further, the random vector x is parametrized by p, that is,

x | (p = p) ∼ ψ(· | p) (3.33)

with some pdf ψ(x | p). Note that instead of a pdf ψ(x | p), we can also, with the obvious

changes, choose a density of a different type of random variable. Consistently with (3.32)

and (3.33), we assume that given p, x is conditionally independent of fDP. It follows from

(3.32) and (3.33) that the pdf of x given fDP(p) can be expressed as

fx|fDP(x | fDP) =
�
RD

fx|p,fDP(x | p, fDP)fp|fDP(p | fDP)dp

=
�
RD

fx|p(x | p)fDP(p)dp

=
�
RD

ψ(x | p)fDP(p)dp. (3.34)

32 3. Bayesian Nonparametrics

Using (3.10), we finally obtain

fx|fDP(x | fDP) =
�
RD

ψ(x | p)
∞%

c=1
Bcδp∗

c
(p)dp

=
∞%

c=1
Bc

�
RD

ψ(x | p)δp∗
c
(p)dp

=
∞%

c=1
Bcψ(x | p∗

c) (3.35)

for some (Bc)c∈N and (p∗
c)c∈N. As (3.35) is a mixture based on a DP, this model is called a

Dirichlet process mixture (DPM). This definition of the DPM is restated more concisely

in Definition 3.2.

Definition 3.2: Let α ∈ R+; D, N ∈ N; fG(p) be a pdf on RD; and ψ(x | p) be a pdf on

RX for each p ∈ RD. A random pdf defined by ψ(x | p), with p|(fDP = fDP) ∼ fDP and

fDP ∼ DP(α, fG) is called a Dirichlet process mixture (DPM).

3.2.2 Inference

Consider a DP

fDP ∼ DP(α, fG) (3.36)

with some α ∈ R+, some continuous pdf fG(p), and conditionally i.i.d. random vectors

(pi)i∈N such that

p1, p2, . . . | (fDP = fDP) i.i.d.∼ fDP. (3.37)

Further consider conditionally i.i.d. random vectors (xi)i∈N with a distribution

parametrized by (pi)i∈N, that is,

xi | (pi = pi) ∼ ψ(· | pi) (3.38)

for all i ∈ N, with some continuous pdf ψ(x | p) for p ∈ RD and with xi is conditionally

independent of p

i for all i
 �= i given pi. That is, the random vectors (xi)i∈N are distributed

according to a DPM.

Similarly to Chapter 2, we are mainly interested in generating samples p
(k)
1:I for

k ∈ {1, . . . , K}, or equivalently, c
(k)
1:I and p(k)

c for c ∈
�
c

(k)
1 , . . . , c

(k)
I

�
and k ∈ {1, . . . , K}

(see Section 3.1.2), to obtain MC approximations. For this, we will discuss two Gibbs

sampling algorithms below.

3.2. Dirichlet Process Mixture 33

Algorithm 3.1 Gibbs sampler for DPM
Input: p

(k−1)
1:I , x1:I

1: for all i = 1, . . . , I do
2: sample p

(k)
i from fpi|p¬i,x1:I

�
p

(k)
i | p

(k)
¬i , x1:I

�
(see (3.39))

3: end for
Output: p

(k)
1:I

Gibbs Sampler It can be shown that [10, Theorem 5.3]

fpi|p¬i,x1:I (pi | p¬i, x1:I) = fpi|p¬i,xi
(pi | p¬i, xi)

∝ 1
α + I − 1

�
αψ(xi | pi)fG(pi) +

%
i�∈{1,...,I}\{i}

ψ(xi | pi�)δpi� (pi)
�

, (3.39)

where p¬i = (p1, . . . , pi−1, pi+1, . . . , pI). Therefore, pi given p¬i and x1:I is distributed

according to a pdf proportional to ψ(xi | pi)fG(pi) with probability

bi,0 ∝ α

α + I − 1 (3.40)

and equal to pi� , for i
 ∈ {1, . . . , I} \ {i}, with probability

bi,i� ∝ ψ(xi | pi�)
α + I − 1 , (3.41)

where

%
i�∈{0,1,...,I}\{i}

bi,i� = 1. (3.42)

If we are able to sample from (3.39), then we can use Gibbs sampling (see Section 2.4.4) to

generate the samples p
(k)
1:I [22]. The procedure for each step of this Gibbs sampler is stated

in Algorithm 3.1, where p
(k)
¬i =

�
p

(k)
1 , . . . , p

(k)
i−1, p

(k−1)
i+1 , . . . , p(k−1)

I

�
. One drawback of this

algorithm is its slow convergence as it updates each p
(k)
i separately, even though several

of them can be equal. This algorithm is especially applicable if the base pdf fG(p) is a

conjugate prior2 of ψ(x | p), as this will typically simplify sampling from ψ(xi | pi)fG(pi)
in (3.39).

2Let q ∼ fG and r1, . . . , rJ |(q = q) i.i.d.∼ ψ(· | q) with J ∈ N. The pdf fG(q) is said to be a conjugate
prior of ψ(r | q) if the posterior distribution fq|r1:J (q | r1:J) is in the same family of pdfs as fG(q). That
is, fG(q) = φ(q | u) and fq|r1:J (q | r1:J) = φ(q | u�), for all r1:J , for some parametrized pdf φ(q | u�) and
some parameters u and u�.

34 3. Bayesian Nonparametrics

Gibbs Sampler Using Indicator Variables Similarly to (3.24) and (3.25), it is pos-

sible to introduce indicator variables to obtain an equivalent formulation of the model

(3.36)–(3.38), that is, we define ci conditionally i.i.d. given (Bc)c∈N with

P
�
ci = c

)))�(Bc)c∈N = (Bc)c∈N
��

= Bc (3.43)

for all c ∈ N, and

pi = p∗
ci

, (3.44)

xi | (pi = pi) ∼ ψ(· | pi), (3.45)

for all i ∈ N, with (Bc)c∈N and (p∗
c)c∈N as in Definition 3.1. We can use this model to

construct an alternative Gibbs sampler [23], where we first sample the indicator variables

ci, and then the parameters p∗
c for each distinct value of the ci.

We start by noting that it follows from (3.43)–(3.45) that

fpi|p¬i,x1:I (pi | p¬i, x1:I) = fpi|c¬i,p∗
c¬i

,x1:I (pi | c¬i, p∗
c¬i

, x1:I), (3.46)

where c¬i = (c1, . . . , ci−1, ci+1, . . . , cI) and p∗
c¬i

= (p∗
c)c∈{c1,...,ci−1,ci+1,...,cI}. Further, we can

restate (3.39) using the indicator variables ci and the parameters p∗
c according to

fpi|p¬i,x1:I (pi | p¬i, x1:I)

∝ 1
α + I − 1

�
αψ(xi | pi)fG(pi) +

%
i�∈{1,...,I}\{i}

ψ(xi | p∗
ci�)δp∗

ci� (pi)
�

= 1
α + I − 1

�
αψ(xi | pi)fG(pi)

+
%

c∈{c1,...,ci−1,ci+1,...,cI}

� %
i�∈{1,...,I}\{i}

11(ci� = c)
�

ψ(xi | p∗
c)δp∗

c
(pi)

�
. (3.47)

Combining (3.46) and (3.47), we obtain

fpi|c¬i,p∗
c¬i

,x1:I (pi | c¬i, p∗
c¬i

, x1:I)

∝ 1
α + I − 1

�
αψ(xi | pi)fG(pi)

+
%

c∈{c1,...,ci−1,ci+1,...,cI}

� %
i�∈{1,...,I}\{i}

11(ci� = c)
�

ψ(xi | p∗
c)δp∗

c
(pi)

�
. (3.48)

For all i ∈ {1, . . . , I}, the probability of the event ci = c, with

c ∈ {c1, . . . , ci−1, ci+1, . . . , cI}, given c¬i = c¬i, p∗
c¬i

= p∗
c¬i

, and x1:I = x1:I is (see (3.39))

bi,c = P(ci = c | c¬i = c¬i, p∗
c¬i

= p∗
c¬i

, x1:I = x1:I)

= P(pi = p∗
c | c¬i = c¬i, p∗

c¬i
= p∗

c¬i
, x1:I = x1:I)

=
�

{p∗
c}

fpi|c¬i,p∗
c¬i

,x1:I (pi | c¬i, p∗
c¬i

, x1:I)dpi, (3.49)

3.2. Dirichlet Process Mixture 35

where we have used that p∗
c� �= p∗

c�� a.s. iff c
 �= c

 as fG(p) is assumed continu-

ous. The probability of ci being distinct from all the other indicator variables, that

is, ci /∈ {c1, . . . , ci−1, ci+1, . . . , cI}, given the same random variables as above, is

bi,0 = P(ci /∈ {c1, . . . , ci−1, ci+1, . . . , cI} | c¬i = c¬i, p∗
c¬i

= p∗
c¬i

, x1:I = x1:I)

= P(pi /∈ {p∗
c1 , . . . , p∗

ci−1 , p∗
ci+1 , . . . , p∗

cI
} | c¬i = c¬i, p∗

c¬i
= p∗

c¬i
, x1:I = x1:I)

=
�
RD\{p∗

c1 ,...,p∗
ci−1 ,p∗

ci+1 ,...,p∗
cI

}
fpi|c¬i,p∗

c¬i
,x1:I (pi | c¬i, p∗

c¬i
, x1:I)dpi. (3.50)

Note that

%
c∈C¬i

bi,c = 1 (3.51)

with C¬i = {0} ∪ {c1, . . . , ci−1, ci+1, . . . , cI}. By applying (3.48), we can simplify (3.49) to

bi,c ∝
�

{p∗
c }

1
α + I − 1

�
αψ(xi | pi)fG(pi)

+
%

c�∈{c1,...,ci−1,ci+1,...,cI}

� %
i�∈{1,...,I}\{i}

11(ci� = c
)
�

ψ(xi | p∗
c�)δp∗

c� (pi)
�

dpi

= α

α + I − 1

�
{p∗

c}
ψ(xi | pi)fG(pi)dpi

+ 1
α + I − 1

�
{p∗

c}

%
c�∈{c1,...,ci−1,ci+1,...,cI}

� %
i�∈{1,...,I}\{i}

11(ci� = c
)
�

ψ(xi | p∗
c�)δp∗

c� (pi)dpi

= 1
α + I − 1

�
{p∗

c}

%
c�∈{c1,...,ci−1,ci+1,...,cI}

� %
i�∈{1,...,I}\{i}

11(ci� = c
)
�

ψ(xi | p∗
c�)δp∗

c� (pi)dpi.

(3.52)

Solving the integral in (3.52), we obtain

bi,c = 1
α + I − 1

� %
i�∈{1,...,I}\{i}

11(ci� = c)
�

ψ(xi | p∗
c), (3.53)

where 11 is the indicator function and with a proportionality constant such that (3.51) is

36 3. Bayesian Nonparametrics

true. Similarly, by applying (3.39), we can simplify (3.50) to

bi,0 ∝
�
RD\{p1,...,pi−1,pi+1,...,pI}

1
α + I − 1

�
αψ(xi | pi)fG(pi)

+
%

c�∈{c1,...,ci−1,ci+1,...,cI}

� %
i�∈{1,...,I}\{i}

11(ci� = c
)
�

ψ(xi | p∗
c�)δp∗

c� (pi)
�

dpi

= α

α + I − 1

�
RD\{p1,...,pi−1,pi+1,...,pI}

ψ(xi | pi)fG(pi)dpi

+ 1
α + I − 1

�
RD\{p1,...,pi−1,pi+1,...,pI}

%
c�∈{c1,...,ci−1,ci+1,...,cI}� %

i�∈{1,...,I}\{i}
11(ci� = c
)

�
ψ(xi | p∗

c�)δp∗
c� (pi)dpi

= α

α + I − 1

�
RD

ψ(xi | pi)fG(pi)dpi (3.54)

with the same proportionality constant as in (3.53). Using (3.37), (3.38), we can further

simplify (3.54) to

bi,0 ∝ α

α + I − 1

�
RD

fxi|pi
(xi | pi)fpi

(pi)dpi = α

α + I − 1fxi
(xi). (3.55)

As we have

fpi|xi
(p̃ | xi)fxi

(xi) = fxi|pi
(xi | p̃)fpi

(p̃) (3.56)

for any p̃ ∈ RD, it follows from (3.55) that

bi,0 = α

α + I − 1
fxi|pi

(xi | p̃)fpi
(p̃)

fpi|xi
(p̃ | xi)

= α

α + I − 1
ψ(xi | p̃)fG(p̃)

fpi|xi
(p̃ | xi)

(3.57)

for any p̃ ∈ RD with fpi|xi
(p̃ | xi) > 0.

The pdf of p∗
c given c1:I , p∗

¬c = (p∗
c�)c�∈{c1,...,cI}\{c}, and x1:I is

fp∗
c |c1:I ,p∗¬c,x1:I (p∗

c | c1:I , p∗
¬c, x1:I) ∝ fx1:I |p∗

c ,c1:I ,p∗¬c
(x1:I | p∗

c , c1:I , p∗
¬c)fp∗

c |c1:I ,p∗¬c
(p∗

c | c1:I , p∗
¬c),

(3.58)

for all c ∈ {c1, . . . , cI}, where we have used Bayes’ theorem. Let us simplify both factors

in (3.58). The first factor, fx1:I |p∗
c ,c1:I ,p∗¬c

(x1:I | p∗
c , c1:I , p∗

¬c), can be simplified to

fx1:I |p∗
c ,c1:I ,p∗¬c

(x1:I | p∗
c , c1:I , p∗

¬c) =
I"

i=1
fxi|p∗

c ,c1:I ,p∗¬c
(xi | p∗

c , c1:I , p∗
¬c)

∝ "
i:ci=c

fxi|p∗
c ,c1:I ,p∗¬c

(xi | p∗
c , c1:I , p∗

¬c)

=
"

i:ci=c

fxi|pi
(xi | p∗

c) =
"

i:ci=c

ψ(xi | p∗
c), (3.59)

3.2. Dirichlet Process Mixture 37

Algorithm 3.2 Gibbs sampler for DPM with indicator variables
Input: c

(k−1)
1:I , c(k−1)

max , p
∗(k−1)
c

(k−1)
1:I

, x1:I

1: for all i = 1, . . . , I do
2: sample c

(k)
i = c with probability bi,c for all c ∈

�
0, c

(k)
1 , . . . , c

(k)
i−1, c

(k−1)
i+1 , . . . , c

(k−1)
I

�
(see (3.53) and (3.57))

3: if c
(k)
i = 0

set c
(k)
i = max

�
maxi�∈{1,...,i−1} c

(k)
i� , c(k−1)

max

�
+ 1 and

sample p
∗(k−1)
c

(k)
i

from fp∗
c |c1:i,ci+1:I ,p∗¬c,x1:I

�
p∗(k−1)

c

))) c
(k)
1:i , c

(k−1)
i+1:I , p∗(k−1)

¬c , x1:I
�

(see (3.61))
4: end for
5: set c(k)

max = max
�

maxi∈{1,...,I} c
(k)
i , c(k−1)

max

�
6: for all c ∈

�
c

(k)
1 , . . . , c

(k)
I

�
do

7: sample p∗(k)
c from fp∗

c |c1:I ,p∗¬c,x1:I

�
p∗(k)

c

))) c
(k)
1:I , p∗(k)

¬c , x1:I
�

(see (3.61))
8: end for

Output: c
(k)
1:I , c(k)

max, p
∗(k)
c

(k)
1:I

where we have used the independence assumptions defined in at the beginning of this

section, (3.38), and that we are interested in (3.58) as a function of p∗
c . The second

factor, fp∗
c |c1:I ,p∗¬c

(p∗
c | c1:I , p∗

¬c), can be simplified to

fp∗
c |c1:I ,p∗¬c

(p∗
c | c1:I , p∗

¬c) = fp∗
c
(p∗

c) = fG(p∗
c), (3.60)

where we have used that the parameters p∗
c are i.i.d. (see Definition 3.1). By inserting

(3.59) and (3.60) into (3.58), we obtain

fp∗
c |c1:I ,p∗¬c,x1:I (p∗

c | c1:I , p∗
¬c, x1:I) =

� "
i:ci=c

ψ(xi | p∗
c)

�
fG(p∗

c). (3.61)

The pseudo code of the resulting Gibbs sampler is provided in Algorithm 3.2, where

p∗(k)
¬c is defined as p∗

¬c above with p
∗(k)
c� instead of p∗

c� if it has already been sampled and

p
∗(k−1)
c� otherwise. Note that in Algorithm 3.2, if an indicator variable c

(k)
i is sampled

different from every other indicator variable, that is, c
(k)
i �= c

(k−1)
i� for all i
 ∈ {1, . . . , I},

then it is temporarily set to 0 in Line 2 and assigned a new unique value in Line 3.

Furthermore, as c
(k)
i is a new class, we also sample a new parameter p

∗(k−1)
c

(k)
i

according to

(3.61) in Line 3.

Just as for the Gibbs sampler without indicator variables presented above, it is benefi-

cial if the base pdf fG(p) is a conjugate prior of ψ(x|p) to simplify sampling from (3.61).

This is demonstrated next.

38 3. Bayesian Nonparametrics

Example 3.3: Consider the Gaussian pdfs fG(p) = N (p; µ, σ2
1) and

ψ(x | p) = N (x; p, σ2
2), where µ ∈ R, and σ2

1, σ2
2 > 0. It follows from (3.61) that

p∗
c | (c1:I = c1:I , p∗

¬c = p∗
¬c, x1:I = x1:I) ∼ N (µ
, σ
2

1) (3.62)

with

µ
 = 1
1

σ2
1

+
&I

i=1 11(ci=c)
σ2

2

�
µ

σ2
1

+
&I

i=1 11(ci = c)xi

σ2
2

�
(3.63)

and

σ
2
1 =

�
1
σ2

1
+

&I
i=1 11(ci = c)

σ2
2

�−1

, (3.64)

as fG(p) is a conjugate prior to3 ψ(x | p).

Note that in Example (3.3), (3.61) is a Gaussian distribution (3.62) and, therefore, easy

to sample.

Expectation of the Posterior Distribution of the DP While there exists a closed

form solution for the expectation of the posterior distribution of fDP given the samples

x1:I = x1:I [10, Proposition 5.2], it is of limited use due to its computational complexity.

There is however a wide variety of algorithms to approximate it.

One approach is to first use an MC algorithm to generate samples p
(k)
1:I for

k ∈ {1, . . . , K} that approximate the posterior distribution of p1:I given x1:I . With the

help of (3.20), it can be shown that the DP fDP(p) given x1:I can be approximated by

f̂(K)
DP,I(p), which is distributed according to

f̂(K)
DP,I ∼ 1

K

K%
k=1

DP
�
α, f̃

(k)
G,I

�
(3.65)

with (see 3.21)

f̃
(k)
G,I(p) = 1

α + I

�
αfG(p) +

I%
i=1

δ
p

(k)
i

(p)
�

, (3.66)

which is to be interpreted in the sense that f̂(K)
DP,I(p) is distributed according to DP

�
α, f̃

(k)
G,I

�
with probability 1

K
for all k ∈ {1, . . . , K}. In other words, the expectation of the

posterior distribution of fDP given the samples x1:I = x1:I can be approximated by

1
K

&K
k=1 DP

�
α, f̃

(k)
G,I

�
.

3If p ∼ N (µ, σ2
1) and xi|(p = p) ∼ N (p, σ2

2) for i ∈ {1, . . . , I}, then

p|(x1 = x1, . . . , xI = xI) ∼ N (µ�, σ�2
1) with µ� = 1

1
σ2

1
+ I

σ2
2

�
µ1
σ2

1
+

&I

i=1
xi

σ2
2

�
and σ�2

1 =
� 1

σ2
1

+ I
σ2

2

�−1.

In other words, the Gaussian distribution is the conjugate prior for the mean of a Gaussian distribution
with known variance.

3.2. Dirichlet Process Mixture 39

Clustering As mentioned in the introduction of this chapter, one important application

of the DPM is clustering. The objective of clustering is to partition a set of observed

data points {xi : i = 1, . . . , I} into subsets, called classes or clusters, according to some

criterion. Equivalently, the solution to a clustering problem is a partition of the index set

{1, . . . , I}. If we assume that the data points xi were sampled from a DPM as defined

in (3.36)–(3.38), then we can use the partion induced by the indicator variables, that

is, the indices i with equal indicator variables ci are grouped into the same subset. We

can choose the most likely partition that is induced by the the indicator variables as our

solution to the clustering problem (see CRP in Section 3.1.2). More specifically, the most

likely partition is induced by

ĉjoint,1:I = argmaxc1:I∈NI P(c1:I = c1:I | x1:I = x1:I). (3.67)

In the case of an MC algorithm, for example, Algorithm (3.1) or Algorithm (3.2), we can

approximate the indicator variables c1:I that induce the most likely partition according

to

ĉjoint,1:I ≈ argmaxc1:I∈NI

K%
k=1

11
�
c

(k)
1:I ∼ c1:I

�
(3.68)

with the equivalence relation ∼, where c
(k)
1:I ∼ c1:I is true iff the induced partition of c

(k)
1:I

is equal to the induced partition of c1:I , where the samples c
(k)
1:I are generated by the MC

algorithm. In practice, for large I, we can also use the heuristic approximation

ĉi ≈ argmaxc∈N

K%
k=1

11
�
c

(k)
i = c

�
(3.69)

for all i ∈ {1, . . . , I}. One important aspect of using the DPM for clustering is that

the number of classes Ci (see Ci in Section 3.1.2) is random and does not have to be

set in advance. As the DPM is defined as a random mixture with an infinite number of

components, closely related to the DP, the number of classes CI grows with the number

of data points I [35] (see Section 3.1.2). If the number of classes is assumed to be random

but not growing with the number of data points, then it is recommended to use a mixture

of finite mixtures [36], which is closely related to the DPM and allows for similar inference

algorithms.

40 3. Bayesian Nonparametrics

41

Chapter 4

Inference in Bayesian Nonparametric
State-Space Models

In recent years, with the rise of big data, inference based on large data sets to extract useful

information has become increasingly important. Often, these data sets represent a large

number of time series (TSs). One approach to extract hidden structures is clustering.

Clustering of TSs is an active research topic that has been applied to a wide range of

different data sets [37]. As mentioned in Section 2.3.5, TSs can often be modeled by

a parameter dependent state-space model. In the present chapter, we introduce two

algorithms for inference in parameter dependent state-space models, where the parameters

are assumed to be distributed according to a Dirichlet process (DP) (see Section 3.1).

These statistical models were first introduced in [13] and we will call them Bayesian

nonparametric (BNP) state-space models. They combine parameter dependent state-

space models with the Dirichlet process mixture (DPM) (see Section 3.2), where the TSs

take the role of the random vectors xi in Section 3.2. The DPM results in a clustering of

the TSs, where the TSs in each group have equal parameter values.

In addition to the clustering, the equal parameter values in each group should also

improve the estimation of the parameter of each TS, as we can jointly use the observations

of all of the group’s TSs instead of using the observations of each TS separately. As the

states depend on the parameters, the improved estimation of the parameters should also

improve the state estimation. One example where such a statistical model could be applied

is extended target tracking of marine vessels using X-band radar [4], as it is likely that a

radar system in a harbor should track similar vessels, or the same vessel several times at

different points in time. Here, we could model the vessels using a BNP state-space model

with the states describing the vessels’ kinematic states and the parameters describing their

shapes, sizes, and dynamic behaviors. We will further explore extended target tracking

42 4. Inference in Bayesian Nonparametric State-Space Models

using BNP state-space models in Chapter 5.

To the best of our knowledge, inference and clustering for general BNP State-Space

Models has only been considered in [13]. Further, inference and clustering for special cases

of related parameter dependent state-space models has been previously considered for, for

example, clustering of hidden Markov models using a DP [14–17], linear Gaussian models

using a Dirichlet mixture model [18], and models related to linear Gaussian models using

a DP [19]. These methods, however, rely on analytical solutions that are not available for

state-space models in general.

We present algorithms for TSs of equal length in Section 4.1 and generalize them to

TSs of different lengths in Section 4.2. In Sections 4.1.2 and 4.2.2, we present a Particle

Markov chain Monte Carlo (PMCMC) algorithm for batch processing based on the particle

Gibbs sampler with ancestor sampling (see Section 2.4.5), and in Sections 4.1.3 and 4.2.3,

we present a sequential Monte Carlo (SMC) algorithm for sequential processing based on

the resample-move particle filter (see Section 2.3.4).

4.1 Time Series of Equal Length

4.1.1 Statistical Model and Inference

Assume that a data set contains I ∈ N TSs (yi,1:N)i∈{1,...,I} of equal length N ∈ N,
with yi,n ∈ RY for all n ∈ {1, . . . , N}, that are modeled as observations of a pa-

rameter dependent state-space model (see Section 2.3.5), where the prior distribution

of the parameter is chosen as a DP (see Section 3.1) [13]. Let us define the pa-

rameter dependent state-space model as follows. For each TS indexed by i ∈ N —

that is, we model an infinite number of TSs — we denote the sequence of states as

(xi,n)n∈N with xi,n ∈ RX for all n ∈ N, the sequence of observations as (yi,n)n∈N

with yi,n ∈ RY for all n ∈ N, and the parameter as pi ∈ RD, with dimensions

X, Y , D ∈ N. The states and observations, (xi,n, yi,n)n∈N, are modeled as mutually in-

dependent for different i given the parameters (pi�)i�∈N and independent from the pa-

rameters (pi�)i�∈N\{i} given pi. They are, for all i ∈ N, defined by conditional pdfs

fxi,1|pi
(xi,1 | pi) = ζ(xi,1|pi) and fxi,n|xi,n−1,pi

(xi,n | xi,n−1, pi) = ξ(xi,n | xi,n−1, pi) for all

n ≥ 2, as well as fyi,n|xi,n,pi
(yi,n | xi,n, pi) = χ(yi,n | xi,n, pi) for all n ≥ 1. Furthermore, for

parameter dependent state-space models, recall that the state xi,n is conditionally inde-

pendent of the states xi,1:n−2 given the previous state xi,n−1 and parameter pi, and that

the observation yi,n is conditionally independent of the states xi,1:n−1 and observations

4.1. Time Series of Equal Length 43

yi,1:n−1 given the current state xi,n and parameter pi for all n ≥ 2, that is, (see (2.33))

fxi,n|xi,1:n−1,yi,1:n−1,pi
(xi,n | xi,1:n−1, yi,1:n−1pi) = ξ(xi,n | xi,n−1, pi) (4.1)

and (see (2.34))

fyi,n|xi,1:n,yi,1:n−1,pi
(yi,n | xi,1:n, yi,1:n−1, pi) = χ(yi,n | xi,n, pi). (4.2)

Note that, with the obvious changes, we can also use densities of other types of random

variables instead of ζ(xi,1|pi), ξ(xi,n | xi,n−1, pi), and χ(yi,n | xi,n, pi).
The parameters (pi)i∈N are distributed according to a DP with concentration α and

base pdf fG(p), that is, (see Definition 3.1)

fDP ∼ DP(α, fG) (4.3)

and (see (3.16))

pi | (fDP = fDP) i.i.d.∼ fDP. (4.4)

As discussed in Chapter 3, the pdf of pi can be expressed as fp(p) = &∞
c=1 Bcδp∗

c
(p) (see

(3.17)) and therefore (see (3.18))

pi = p∗
ci

, (4.5)

where (ci)i∈N are indicator variables. Note that this model is a Dirichlet pro-

cess mixture (DPM) as discussed in Section 3.2, where the states and observations

(xi,1:N , yi,1:N) are equivalent to the random vectors xi in Section 3.2.2. Similarly, the

pdf fxi,1:N ,yi,1:N |pi
(xi,1:N , yi,1:N | pi) is equivalent to ψ(xi | pi) (see (3.38)). Here, the states

(xi,n)n∈N are latent random vectors and not directly observed.

The goal of the algorithms presented in this chapter is to calculate the expectation

J = E(h(x1:I,1:N , c1:I , p∗
c1:I

) | y1:I,1:N = y1:I,1:N), (4.6)

and in particular

J = E(h(x1:I,1:N) | y1:I,1:N = y1:I,1:N), (4.7)

where h(x1:I,1:N , c1:I , p∗
c1:I

) and h(x1:I,1:N) are arbitrary functions, or to infer the most

likely class assignment (see (3.67))

ĉjoint,1:I = argmaxc1:I∈NI P(c1:I = c1:I | y1:I,1:N = y1:I,1:N). (4.8)

44 4. Inference in Bayesian Nonparametric State-Space Models

The algorithms generate K ∈ N samples of the states x
(k)
1:I,1:N , indicator variables c

(k)
1:I ,

and parameters p
∗(k)
c

(k)
1:I

given the observations y1:I,1:N = y1:I,1:N , for all k ∈ {1, . . . , K}. The
samples can be used to approximate the expectation (4.6) by (see Section 2.1)

J ≈ 1
K

K%
k=1

h
�
x

(k)
1:I,1:N , c

(k)
1:I , p

∗(k)
c

(k)
1:I

�
, (4.9)

the most likely class assignment (4.8) by (see (3.68))

ĉjoint,1:I ≈ argmaxc1:I∈NI

K%
k=1

11
�
c

(k)
1:I ∼ c1:I

�
(4.10)

with the equivalence relation ∼, where c
(k)
1:I ∼ c1:I is true iff the induced partition of c

(k)
1:I

is equal to the induced partition of c1:I , or by the heuristic approximation (see (3.69))

ĉi ≈ argmaxc∈N

K%
k=1

11
�
c

(k)
i = c

�
(4.11)

for all i ∈ {1, . . . , I}.

4.1.2 Particle Markov Chain Monte Carlo Algorithm

This section presents a PMCMC algorithm that generates samples of the statistical model

described in Section 4.1.1. The algorithm uses cycles of Markov chain Monte Carlo

(MCMC) kernels (see Section 2.4.3) for the states x1:I,1:N , as well as the indicator variables

c1:I and parameters p∗
c1:I

. The algorithm then generates the samples x
(k)
1:I,1:N , c

(k)
1:I , and

p
∗(k)
c

(k)
1:I

by sampling from transition kernels as discussed in Section 2.4.3. More specifically,

we use a particle Gibbs sampler with ancestor sampling (PGAS) (see Section 2.4.6) to

sample the states, and Gibbs sampling (see Section 3.2.2) to sample the indicator variables

and the parameters. However, in contrast to the PGAS algorithm for inference in param-

eter dependent state-space models discussed in Section 2.4.6, this algorithm considers

multiple TSs and the parameters are distributed according to a DP prior. In comparison,

the algorithm introduced in [13] uses cycles of MCMC kernels to obtain indicator variable

samples c
(k)
1:I , and parameter samples p

∗(k)
c

(k)
1:I
, while the algorithm introduced in this section

uses cycles of MCMC kernels to generate state samples x
(k)
1:I,1:N , indicator variable sam-

ples c
(k)
1:I , and parameter samples p

∗(k)
c

(k)
1:I
, which additionally allows inference on the states

x1:I,1:N .

Initialization The algorithm is initialized with state particles x
(1)
1:I,1:N , where each x

(1)
i,n

is chosen arbitrarily from RX , with indicator variable samples c
(1)
1:I , where c

(1)
i = i, and

with parameter samples p
∗(1)
c

(1)
1:I
, where each p

∗(1)
c

(1)
i

is chosen arbitrarily from RD.

4.1. Time Series of Equal Length 45

Sampling the States The PGAS kernel used to sample the states xi,1:N can be ex-

pressed as (see (2.58))

tPGAS
�
x

(k)
i,1:N

))) x
(k−1)
i,1:N , p

∗(k−1)
c

(k−1)
i

, yi,1:N

�
=

L%
l=1

W
(k,N ,l)
i δ

x
(k,N ,l)
i,1:N

�
x

(k)
i,1:N

�
, (4.12)

where L ∈ N and the weights W
(k,N ,l)
i and particles x

(k,N ,l)
i,1:N are generated as discussed

below. That is, we have x
(k)
i,1:N = x

(k,N ,l)
i,1:N with probability W

(k,N ,l)
i . Note that the kernel

used to sample the states xi,1:N does not depend on the other states and observations, that

is, xi�,1:N and yi�,1:N for i
 ∈ {1, . . . , I} \ {i}, as the states and observations are modeled as

mutually independent given the parameters p1:I or equivalently p∗
c1:I

and c1:I (see Section

4.1.1). For the first time step, n = 1, the particles x
(k,1,l)
i,1 are sampled from a proposal

pdf g1
�
x

(k,1,l)
i,1

))) p
∗(k−1)
c

(k−1)
i

, yi,1

�
for all l ∈ {1, . . . L − 1}, and for l = L we deterministically

set x
(k,1,L)
i,1 = x

(k−1)
i,1 . Furthermore, for l ∈ {1, . . . , L}, the associated weight W

(k,1,l)
i is

calculated according to (see (2.59))

W
(k,1,l)
i ∝

χ
�
yi,1

))) x
(k,1,l)
i,1 , p

∗(k−1)
c

(k−1)
i

�
ζ

�
x

(k,1,l)
i,1

))) p
∗(k−1)
c

(k−1)
i

�
g1

�
x

(k,1,l)
i,1

))) p
∗(k−1)
c

(k−1)
i

, yi,1

� , (4.13)

with the proportionality constant such that
&L

l=1 W
(k,1,l)
i = 1. For the time steps

n ∈ {2, . . . , N}, for all l ∈ {1, . . . , L−1}, we sample x
(k,n,l)
i,1:n−1 such that x

(k,n,l)
i,1:n−1 = x

(k,n−1,l�)
i,1:n−1

with probability W
(k,n−1,l�)
i for all l
 ∈ {1, . . . , L}. Then, we set x

(k,n,l)
i,1:n =

�
x

(k,n,l)
i,1:n−1, x

(k,n,l)
i,n

�
,

where the vector x
(k,n,l)
i,n is sampled from proposal pdf g

�
x

(k,n,l)
i,n

))) x
(k,n,l)
i,n−1 , p

∗(k−1)
c

(k−1)
i

, yi,n

�
. The

vector x
(k,n,L)
i,n is deterministically set to x

(k−1)
i,n . For all l ∈ {1, . . . , L}, x

(k,n,L)
i,1:n−1 is equal to

x
(k,n−1,l)
i,1:n−1 with probability (see (2.60))

W

(k,n−1,l)
i ∝ W

(k,n−1,l)
i ξ

�
x

(k−1)
i,n

))) x
(k,n−1,l)
i,n−1 , p

∗(k−1)
c

(k−1)
i

�
, (4.14)

where
&L

l=1 W

(k,n−1,l)
i = 1. As before, we set x

(k,n,L)
i,1:n =

�
x

(k,n,L)
i,1:n−1, x

(k,n,L)
i,n

�
. Finally, for

l ∈ {1, . . . , L}, the weight W
(k,n,l)
i is calculated according to (see (2.61))

W
(k,n,l)
i ∝

χ
�
yi,n

))) x
(k,n,l)
i,n , p

∗(k−1)
c

(k−1)
i

�
ξ

�
x

(k,n,l)
i,n

))) x
(k,n−1,l)
i,n−1 , p

∗(k−1)
c

(k−1)
i

�
g

�
x

(k,n,l)
i,n

))) x
(k,n−1,l)
i,n−1 , p

∗(k−1)
c

(k−1)
i

, yi,n

� (4.15)

with
&L

l=1 W
(k,n,l)
i = 1.

Sampling the Indicator Variables and Parameters As the indicator variables c1:I

and parameters p∗
c1:I

are generated by a DPM, we can sample them by adopting the Gibbs

46 4. Inference in Bayesian Nonparametric State-Space Models

sampler described in Algorithm 3.2 in Section 3.2. We sample ci = c with the conditional

probability (see (3.49))

b
(k)
i,c = P

�
ci = c

))) c¬i = c
(k)
¬i , p∗

c¬i
= p

∗(k−1)
c

(k)
¬i

, x1:I,1:N = x
(k)
1:I,1:N , y1:I,1:N = y1:I,1:N

�
(4.16)

for all c ∈
�
c

(k)
1 , . . . , c

(k)
i−1, c

(k−1)
i+1 , . . . , c

(k−1)
I

�
, where c¬i = (c1, . . . , ci−1, ci+1, . . . ,

cI) =
�
c

(k)
1 , . . . , c

(k)
i−1, c

(k−1)
i+1 , . . . , c

(k−1)
I

�
= c

(k)
¬i and p∗

c¬i
= (p∗

c)c∈{c1,...,ci−1,ci+1,...,cI}

=
�
p∗(k−1)

c

�
c∈{c

(k)
1 ,...,c(k)

i−1,c(k−1)
i+1 ,...,c(k−1)

I } = p
∗(k−1)
c

(k)
¬i

, and we sample ci as being distinct from

all the other indicator variables, that is, ci /∈
�
c

(k)
1 , . . . , c

(k)
i−1, c

(k−1)
i+1 , . . . , c

(k−1)
I

�
, with the

conditional probability (see (3.55))

b
(k)
i,0 = P

�
ci /∈

�
c

(k)
1 , . . . , c

(k)
i−1, c

(k−1)
i+1 , . . . , c

(k−1)
I

�))) c¬i = c
(k)
¬i , p∗

c¬i
= p

∗(k−1)
c

(k)
¬i

, x1:I,1:N = x
(k)
1:I,1:N ,

y1:I,1:N = y1:I,1:N

�
. (4.17)

The samples of the indicator variables c
(k)
i that are distinct from the other indicator vari-

ables need to be assigned a new value, that is, c
(k)
i = max

�
maxi�∈{1,...,i−1} c

(k)
i� , c(k−1)

max

�
+ 1

with c(k−1)
max = maxk�∈{1,...,k−1},i�∈{1,...,I} c

(k�)
i� . Furthermore, a parameter p

∗(k−1)
c

(k)
i

has to be

sampled, which will be discussed presently. Before we further simplify (4.16) and (4.17),

note that

fxi,1:n,yi,1:n|pi

�
xi,1:n, yi,1:n

))) p
�

= fyi,1:n|xi,1:n,pi

�
yi,1:n

))) xi,1:n, p
�
fxi,1:n|pi

�
xi,1:n

))) p
�

=
�

n"
n�=1

fyi,n� |xi,n� ,pi

�
yi,n�

))) xi,n� , p
��

fxi,1|pi

�
xi,1

))) p
� n"

n��=2
fxi,n�� |xi,n��−1,pi

�
xi,n��

))) xi,n��−1, p
�

=
�

n"
n�=1

χ
�
yi,n�

))) xi,n� , p
��

ζ
�
xi,1

))) p
� n"

n��=2
ξ

�
xi,n��

))) xi,n��−1, p
�
. (4.18)

Using the same derivation as for (3.53) with xi replaced by (xi,1:N , yi,1:N), and further

(4.18), we can simplify (4.16) to

b
(k)
i,c ∝ 1

α + I − 1

�
i−1%
i�=1

11
�
c

(k)
i� = c

�
+

I%
i�=i+1

11
�
c

(k−1)
i� = c

��
fxi,1:N ,yi,1:N |pi

�
x

(k)
i,1:N , yi,1:N

))) p∗(k−1)
c

�

= 1
α + I − 1

�
i−1%
i�=1

11
�
c

(k)
i� = c

�
+

I%
i�=i+1

11
�
c

(k−1)
i� = c

���
N"

n=1
χ

�
yi,n

))) x
(k)
i,n , p∗(k−1)

c

��

× ζ
�
x

(k)
i,1

))) p∗(k)
c

� N"
n�=2

ξ
�
x

(k)
i,n�

))) x
(k)
i,n�−1, p∗(k)

c

�
. (4.19)

4.1. Time Series of Equal Length 47

Similarly, by using the same derivation as for (3.57) with xi replaced by (xi,1:N , yi,1:N),
and furthermore using (4.18), we can simplify (4.17) to

b
(k)
i,0 ∝ α

α + I − 1
fxi,1:N ,yi,1:N |pi

�
x

(k)
i,1:N , yi,1:N

))) p̃
�
fp(p̃)

fpi|xi,1:N ,yi,1:N

�
p̃

))) x
(k)
i,1:N , yi,1:N

�
= α

α + I − 1
fp(p̃)

fpi|xi,1:N ,yi,1:N

�
p̃

))) x
(k)
i,1:N , yi,1:N

��
N"

n=1
χ

�
yi,n

))) x
(k)
i,n , p̃

��

× ζ
�
x

(k)
i,1

))) p̃
� N"

n�=2
ξ

�
x

(k)
i,n�

))) x
(k)
i,n�−1, p̃

�
, (4.20)

with the same proportionality constant as in (4.18), and an arbitrary p̃ ∈ RD

with fp(p̃) �= 0. Note that we assume here that we are able to calculate

fpi|xi,1:N ,yi,1:N

�
p̃

))) x
(k)
i,1:N , yi,1:N

�
.

The parameter samples p∗(k)
c for c ∈ {c

(k)
1 , . . . , c

(k)
I } are sampled from the conditional

pdf of p∗
c given every other random variable (see (3.58))

fp∗
c |x1:I,1:N ,c1:I ,p∗¬c,y1:I,1:N

�
p∗(k)

c

))) x
(k)
1:I,1:N , c

(k)
1:I , p∗(k)

¬c , y1:I,1:N

�
, (4.21)

with p∗
¬c = (p∗

c�)c�∈{c1,...,cI}\{c} and p∗(k)
¬c =

�
p

∗(k)�
c�

�
c�∈{c

(k)
1 ,...,c(k)

I }\{c}, where p
∗(k)�
c� is the

newest sample of p∗
c� , that is, either p

∗(k−1)
c� or p

∗(k)
c� . Note that the parameter p

∗(k−1)
c

(k)
i

for a newly generated class, as discussed above, is also sampled from (4.21), but with the

newest currently available samples of the other random variables. Using Bayes’ theorem,

that the states and observations, (xi,1:N , yi,1:N), are mutually independent for different i

given p1:I or equivalently p∗
c1:I

and c1:I , and that the parameters p∗
c are i.i.d. and inde-

pendent of c1:I , we can simplify (4.21) to

fp∗
c |x1:I,1:N ,c1:I ,p∗¬c,y1:I,1:N

�
p∗(k)

c

))) x
(k)
1:I,1:N , c

(k)
1:I , p∗(k)

¬c , y1:I,1:N

�
∝ fx1:I,1:N ,y1:I,1:N |p∗

c ,c1:I ,p∗¬c

�
x

(k)
1:I,1:N , y1:I,1:N

))) p∗(k)
c , c

(k)
1:I , p∗(k)

¬c

�
fp∗

c |c1:I ,p∗¬c

�
p∗(k)

c

))) c
(k)
1:I , p∗(k)

¬c

�
=

�
I"

i=1
fxi,1:N ,yi,1:N |p∗

c ,c1:I ,p∗¬c

�
x

(k)
i,1:N , yi,1:N

))) p∗(k)
c , c

(k)
1:I , p∗(k)

¬c

��
fp∗

c |c1:I ,p∗¬c

�
p∗(k)

c

))) c
(k)
1:I , p∗(k)

¬c

�

=
�

I"
i=1

fxi,1:N ,yi,1:N |p∗
c ,c1:I ,p∗¬c

�
x

(k)
i,1:N , yi,1:N

))) p∗(k)
c , c

(k)
1:I , p∗(k)

¬c

��
fp∗

c

�
p∗(k)

c

�
. (4.22)

As p∗
c1:I

and c1:I is equivalent to p1:I , the states and observations, (xi,1:N , yi,1:N), are

48 4. Inference in Bayesian Nonparametric State-Space Models

Algorithm 4.1 PMCMC algorithm for a BNP state-space model
Input: x

(k−1)
1:I,1:N , c

(k−1)
1:I , c(k−1)

max , p
∗(k−1)
c

(k−1)
1:I

, y1:I,1:N , L, g1, g

1: for all i = 1, . . . , I do
2: sample x

(k)
i,1:N using Algorithm 4.2 with input x

(k−1)
i,1:N , p

∗(k−1)
c

(k−1)
i

, yi,1:N , L, g1, g

3: end for
4: sample c

(k)
1:I , c(k)

max, and p
∗(k)
c

(k)
1:I

using Algorithm 4.3 with input x
(k)
1:I,1:N , c

(k−1)
1:I , c(k−1)

max ,

p
∗(k−1)
c

(k)
1:I

, y1:I,1:N

Output: x
(k)
1:I,1:N , c

(k)
1:I , c(k)

max, p
∗(k)
c

(k)
1:I

independent of p¬i given pi, and fp∗
c

�
p∗(k)

c

�
= fG

�
p∗(k)

c

�
, we can further simplify (4.22) to

fp∗
c |x1:I,1:N ,c1:I ,p∗¬c,y1:I,1:N

�
p∗(k)

c

))) x
(k)
1:I,1:N , c

(k)
1:I , p∗(k)

¬c , y1:I,1:N

�
∝

�
I"

i=1
fxi,1:N ,yi,1:N |pi

�
x

(k)
i,1:N , yi,1:N

))) p∗(k)
ci

��
fp∗

c

�
p∗(k)

c

�
∝

� "
i:c(k)

i =c

fxi,1:N ,yi,1:N |pi

�
x

(k)
i,1:N , yi,1:N

))) p∗(k)
ci

��
fp∗

c

�
p∗(k)

c

�

∝
� "

i:c(k)
i =c

fxi,1:N ,yi,1:N |pi

�
x

(k)
i,1:N , yi,1:N

))) p∗(k)
ci

��
fG

�
p∗(k)

c

�
. (4.23)

That is, in order to use this algorithm, we need to be able to sample from (4.23).

Summary The pseudo-code for one iteration of the complete algorithm is stated in

Algorithm 4.1. It first samples the states using Algorithm 4.2 and then the indicator

variables and parameters using Algorithm 4.3.

4.1.3 Sequential Monte Carlo Algorithm
4.1.3.1 General Principle

This section presents an SMC algorithm to sequentially generate K samples, or particles,

of the states x1:I,1:n, indicator variables c1:I , and parameters p∗
c1:I

for all n ∈ N. This

algorithm can be seen as a combination of the resample-move particle filter (RMPF) (see

Section 2.3.4) and the algorithm presented in Section 4.1.2. At each time step n ∈ N, the
algorithm first extends the state particles of the previous time step

�
x

(n−1,k)
1:I,1:n−1

�
k∈{1,...,K}

to intermediate state particles of the current time step
�
x̄

(n,k)
1:I,1:n

�
k∈{1,...,K}. These inter-

mediate particles are then used within an MCMC algorithm to jointly generate the state

4.1. Time Series of Equal Length 49

Algorithm 4.2 PMCMC algorithm for a BNP state-space model: states cycle
Input: x

(k−1)
i,1:N , p

∗(k−1)
c

(k−1)
i

, yi,1:N , L, g1, g

1: for all l = 1, . . . , L − 1 do
2: sample x

(k,1,l)
i,1 from g1

�
x

(k,1,l)
i,1

))) p
∗(k−1)
c

(k−1)
i

, yi,1

�
3: end for
4: set x

(k,1,L)
i,1 = x

(k−1)
i,1

5: for all l = 1, . . . , L do
6: calculate W

(k,1,l)
i according to (4.13)

7: end for
8: for all n = 2, . . . , N do
9: for all l = 1, . . . , L − 1 do

10: sample x
(k,n,l)
i,1:n−1 = x

(k,n−1,l�)
i,1:n−1 with probability W

(k,n−1,l�)
i for all l
 ∈ {1, . . . , L}

11: sample x
(k,n,l)
i,n from g

�
x

(k,n,l)
i,n

))) x
(k,n,l)
i,1:n−1, p

∗(k−1)
c

(k−1)
i

, yi,n

�
12: set x

(k,n,l)
i,1:n =

�
x

(k,n,l)
i,1:n−1, x

(k,n,l)
i,n

�
13: end for
14: for all l = 1, . . . , L do
15: calculate W

(k,n−1,l)
i according to (4.14)

16: end for
17: sample x

(k,n,L)
i,1:n−1 = x

(k,n−1,l�)
i,1:n−1 with probability W

(k,n−1,l�)
i for all l
 ∈ {1, . . . , L}

18: set x
(k,n,L)
i,1:n =

�
x

(k,n,L)
i,1:n−1, x

(k−1)
i,n

�
19: for all l = 1, . . . , L do
20: calculate W

(k,n,l)
i according to (4.15)

21: end for
22: end for
23: sample x

(k)
i,1:N from (4.12)

Output: x
(k)
i,1:N

50 4. Inference in Bayesian Nonparametric State-Space Models

Algorithm 4.3 PMCMC algorithm for a BNP state-space model: indicator variables and
parameters cycle
Input: x

(k)
1:I,1:N , c

(k−1)
1:I , c(k−1)

max , p
∗(k−1)
c

(k−1)
1:I

, y1:I,1:N

1: for all i = 1, . . . , I do
2: sample c

(k)
i = c with probability b

(k)
i,c (see (4.19) and (4.20))

for all c ∈
�
0, c

(k)
1 , . . . , c

(k)
i−1, c

(k−1)
i+1 , . . . , c

(k−1)
I

�
3: if c

(k)
i = 0

set c
(k)
i = max

�
maxi�∈{1,...,i−1} c

(k)
i� , c(k−1)

max

�
+ 1

sample p
∗(k−1)
c

(k)
i

from (4.23)
4: end for
5: set c(k)

max = max
�

maxi∈{1,...,I} c
(k)
i , c(k−1)

max

�
6: for all c ∈

�
c

(k)
1 , . . . , c

(k)
I

�
do

7: sample p∗(k)
c from (4.23)

8: end for
Output: c

(k)
1:I , c(k)

max, p
∗(k)
c

(k)
1:I

particles
�
x

(n,k)
1:I,1:n

�
k∈{1,...,K}, the indicator variable samples

�
c

(n,k)
1:I

�
k∈{1,...,K}, and the pa-

rameter samples
�
p

∗(n,k)
c

(n,k)
1:I

�
k∈{1,...,K}. Note that we have added an additional time index

to the indicator variable and parameter samples as they are sampled at each time step.

In contrast, the RMPF, at each time step, first resamples the particles, extends them,

and then uses a transition kernel to resample the parameters of each TS separately. This

modification to jointly sample the states, indicator variables, and parameters using the

MCMC algorithm is necessary because, due to the DP, the TSs are not independent. An-

other related algorithm is sequential Markov chain Monte Carlo [38, Section 2.2] [27–29],

where random vectors x1:n are sampled sequentially at each time n ∈ N using an MCMC

algorithm. There, the MCMC algorithm is used to sample x1:n from the approximated

pdf fx1:n(x1:n) ≈ fxn|x1:n−1(xn | x1:n−1)̂fx1:n−1(x1:n−1), where f̂x1:n−1(x1:n−1) is the MC ap-

proximation of fx1:n−1(x1:n−1) built from the samples of the time step n − 1. The main

difference of our approach from sequential Markov chain Monte Carlo is that we first

extend our state particles and then resample them within our MCMC step.

Intermediate State Particles To initialize the algorithm at the first time step, we

start by setting c
(0,k)
i = i and sampling p

∗(0,k)
c

(0,k)
i

from the base pdf fG
�
p

∗(0,k)
c

(0,k)
i

�
for all TSs

i ∈ {1, . . . , I}. That is, we initialize the intermediate state particles with a separate

class for each TS. The intermediate state particles
�
x̄

(1,k)
1:I

�
k∈{1,...,K} are initialized by sam-

4.1. Time Series of Equal Length 51

pling x̄
(1,k)
i from a proposal pdf g1

�
x̄

(1,k)
i

))) p
∗(0,k)
c

(0,k)
i

, yi,1

�
. These intermediate state particles

are then later resampled using the MCMC algorithm to obtain the final state particles�
x

(1,k)
1:I

�
k∈{1,...,K} for the first time step.

For the time steps n ≥ 2, the algorithm updates the state particles of the

previous time step
�
x

(n−1,k)
1:I,1:n−1

�
k∈{1,...,K} to intermediate state particles of the current

time step
�
x̄

(n,k)
1:I,1:n

�
k∈{1,...,K}. More specifically, we sample x̄

(n,k)
i,n from a proposal pdf

g
�
x̄

(n,k)
i,n

))) x
(n−1,k)
i,n−1 , p

∗(n−1,k)
c

(n−1,k)
i

, yi,n

�
and then set x̄

(n,k)
i,1:n =

�
x

(n−1,k)
i,1:n−1 , x̄

(n,k)
i,n

�
for each TS. As in

the first time step, these intermediate state particles are later resampled using an MCMC

algorithm to obtain the final state particles
�
x

(n,k)
1:I,1:n

�
k∈{1,...,K}.

Initialization of the MCMC Algorithm The MCMC algorithm is first initial-

ized with state particles
�
x

(n,1)
1:I,1:n

�
k∈{1,...,K}, where x

(n,1)
i,1:n is chosen arbitrarily from�

x̄
(n,k)
i,1:n : k ∈ {1, . . . , K}

�
, with indicator variables samples c

(n,1)
1:I , where c

(n,1)
i = i, and

with parameter samples p
∗(n,1)
c

(n,1)
1:I

, where p
∗(n,1)
c

(n,1)
i

is chosen arbitrarily from RD.

Sampling the States At each iteration of the MCMC algorithm, the states are sampled

from a transition kernel based on an approximation of the true conditional distribution

of the states that is developed in the following. We start by noting that the MCMC

algorithm should ideally use a transition kernel to generate samples x
(n,k)
1:I,1:n of the states

x1:I,1:n given the indicator variables c1:I , parameters p∗
c1:I

, and observations y1:I,1:n, that

is, a transition kernel with target pdf

fx1:I,1:n|c1:I ,p∗
c1:I ,y1:I,1:n

�
x1:I,1:n

))) c
(n,k−1)
1:I , p

∗(n,k−1)
c

(n,k−1)
1:I

, y1:I,1:n

�
=

I"
i=1

fxi,1:n|c1:I ,p∗
c1:I ,y1:I,1:n

�
xi,1:n

))) c
(n,k−1)
1:I , p

∗(n,k−1)
c

(n,k−1)
1:I

, y1:I,1:n

�

=
I"

i=1
fxi,1:n|pi,yi,1:n

�
xi,1:n

))) p
∗(n,k−1)
c

(n,k−1)
i

, yi,1:n

�
, (4.24)

where we have used the conditional independence of the TSs, and (4.5) as well as that

the states and observervations, (xi,1:N , yi,1:N), are independent of p¬i given pi. Di-

rectly sampling from the pdf (4.24) at time step n would require us to sample the n

states xi,1:n for each i ∈ {1, . . . , I}. That is, the computational complexity of sam-

pling from the pdf (4.24) grows with n. Therefore, we propose to approximate each

fxi,1:n|pi,yi,1:n

�
xi,1:n

))) p
∗(n,k−1)
c

(n,k−1)
i

, yi,1:n

�
in (4.24) by

fxi,1:n|pi,yi,1:n

�
xi,1:n

))) p
∗(n,k−1)
c

(n,k−1)
i

, yi,1:n

�
≈

K%
k�=1

W
(n,k,k�)
i δ

x̄
(n,k�)
i,1:n

(xi,1:n), (4.25)

52 4. Inference in Bayesian Nonparametric State-Space Models

where at the first time step (see (2.39))

W
(1,k,k�)
i ∝

χ
�
yi,1

))) x̄
(1,k�)
i,1 , p

∗(1,k−1)
c

(1,k−1)
i

�
ζ

�
x̄

(1,k�)
i,1

))) p
∗(1,k−1)
c

(1,k−1)
i

�
g1

�
x̄

(1,k�)
i,1

))) p
∗(0,k�)
c

(0,k�)
i

, yi,1

� , (4.26)

with
&K

k�=1 W
(1,k,k�)
i = 1, and at the time steps n ≥ 2 (see (2.40))

W
(n,k,k�)
i ∝

χ
�
yi,n

))) x̄
(n,k�)
i,n , p

∗(n,k−1)
c

(n,k−1)
i

�
ξ

�
x̄

(n,k�)
i,n

))) x̄
(n−1,k�)
i,n−1 , p

∗(n,k−1)
c

(n,k−1)
i

�
g

�
x̄

(n,k�)
i,n

))) x̄
(n−1,k�)
i,n−1 , p

∗(n−1,k�)
c

(n−1,k�)
i

, yi,n

� , (4.27)

with
&K

k�=1 W
(n,k,k�)
i = 1.

The advantage of this approximation is that it allows us to sample the states from the

discrete distribution over K particles defined by (4.25) for each TS at each time step. In

fact, the computational complexity of sampling from the approximation (4.25) is constant

over time. However, we are still required to save the complete particles x̄
(n,k�)
i,1:n , which grow

with n, for all k
 ∈ {1, . . . , K} and i ∈ {1, . . . , I}. Saving the complete particles x̄
(n,k�)
i,1:n is

often required even if (4.6) only depends on xi,N instead of xi,1:N for all i ∈ {1, . . . , I}, as, in
general, ci and p∗

ci
depend on the complete sequence xi,1:N . As will be explored in detail in

Section 4.1.3.4, despite the dependence of ci and p∗
ci
on xi,1:n, we can sometimes introduce

recursively calculated sufficient statistics si,n = (si,n,1, si,n,2) with fixed dimension E1 × E2

for all n ∈ N and i ∈ {1, . . . , I} such that ci and p∗
ci
given si,n are independent of xi,1:n.

These sufficient statistics then allow us to only save the last intermediate sample x̄
(n,k�)
i,n

and the corresponding sufficient statistics s̄
(n,k�)
i,n instead of the complete particle x̄

(n,k�)
i,1:n

for all k
 ∈ {1, . . . , K} and i ∈ {1, . . . , I}. We will present procedures to sample from

approximation (4.25) based on Gibbs sampling in Section 4.1.3.2 and based on the MH

algorithm in Section 4.1.3.3.

Sampling the Indicator Variables and Parameters Within the MCMC algorithm,

the indicator variables c1:I and parameters p∗
c1:I

are sampled using Gibbs sampling, sim-

ilarly to the algorithm discussed in Section 4.1.2. That is, we sample ci = c with the

conditional probability (see (4.16))

b
(n,k)
i,c = P

�
ci = c

))) c¬i = c
(n,k)
¬i , p∗

c¬i
= p

∗(n,k−1)
c

(n,k)
¬i

, x1:I,1:n = x
(n,k)
1:I,1:n, y1:I,1:n = y1:I,1:n

�
(4.28)

for all c ∈
�
c

(n,k)
1 , . . . , c

(n,k)
i−1 , c

(n,k−1)
i+1 , . . . , c

(n,k−1)
I

�
, where c¬i = (c1, . . . , ci−1, ci+1, . . . ,

cI) =
�
c

(n,k)
1 , . . . , c

(n,k)
i−1 , c

(n,k−1)
i+1 , . . . , c

(n,k−1)
I

�
= c

(n,k)
¬i and p∗

c¬i
= (p∗

c)c∈{c1,...,ci−1,ci+1,...,cI}

=
�
p∗(n,k−1)

c

�
c∈{c

(n,k)
1 ,...,c(n,k)

i−1 ,c(n,k−1)
i+1 ,...,c(n,k−1)

I } = p
∗(n,k−1)
c

(n,k)
¬i

, and we sample ci being distinct

4.1. Time Series of Equal Length 53

from all the other indicator variables, that is, ci /∈
�
c

(n,k)
1 , . . . , c

(n,k)
i−1 , c

(n,k−1)
i+1 , . . . , c

(n,k−1)
I

�
,

with the conditional probability (see (4.17))

b
(n,k)
i,0 = P

�
ci /∈

�
c

(n,k)
1 , . . . , c

(n,k)
i−1 , c

(n,k−1)
i+1 , . . . , c

(n,k−1)
I

�))) c¬i = c
(n,k)
¬i , p∗

c¬i
= p

∗(n,k−1)
c

(n,k)
¬i

,

x1:I,1:n = x
(n,k)
1:I,1:n, y1:I,1:n = y1:I,1:n

�
. (4.29)

The samples of the indicator variables c
(n,k)
i that are distinct

from the other indicator variables need to be assigned a new

value, that is, c
(n,k)
i = max

�
maxi�∈{1,...,i−1} c

(n,k)
i� , c(n,k−1)

max

�
+ 1 with

c(n,k−1)
max = maxk�∈{1,...,k−1},i�∈{1,...,I} c

(n,k�)
i� . Furthermore, a parameter p

∗(n,k−1)
c

(n,k)
i

has to

be sampled, which will be discussed presently. Similarly to (4.19), we can simplify (4.28)

to

b
(n,k)
i,c ∝ 1

α + I − 1

�
i−1%
i�=1

11
�
c

(n,k)
i� = c

�
+

I%
i�=i+1

11
�
c

(n,k−1)
i� = c

���
n"

n�=1
χ

�
yi,n�

))) x
(n,k)
i,n� , p∗(n,k−1)

c

��

× ζ
�
x

(n,k)
i,1

))) p∗(n,k)
c

� n"
n��=2

ξ
�
x

(n,k)
i,n��

))) x
(n,k)
i,n��−1, p∗(n,k)

c

�
. (4.30)

Furthermore, similarly to (4.20), we can simplify (4.29) to

b
(n,k)
i,0 ∝ α

α + I − 1
fp(p̃)

fpi|xi,1:n,yi,1:n

�
p̃

))) x
(n,k)
i,1:n , yi,1:n

��
n"

n�=1
χ

�
yi,n�

))) x
(n,k)
i,n� , p̃

��

× ζ
�
x

(n,k)
i,1

))) p̃
� n"

n��=2
ξ

�
x

(n,k)
i,n��

))) x
(n,k)
i,n��−1, p̃

�
, (4.31)

with the same proportionality constant as (4.30), and an arbitrary p̃ ∈ RD with fp(p̃) �= 0.
Note that we assume here that we are able to calculate fpi|xi,1:n,yi,1:n

�
p̃

))) x
(n,k)
i,1:n , yi,1:n

�
.

The parameters p∗
c for c ∈

�
c

(n,k)
1 , . . . , c

(n,k)
I

�
are sampled from their conditional distri-

bution given all the other random variables, that is, p∗(n,k)
c is sampled from (4.21)

fp∗
c |x1:I,1:n,c1:I ,p∗¬c,y1:I,1:n

�
p∗(n,k)

c

))) x
(n,k)
1:I,1:n, c

(n,k)
1:I , p∗(n,k)

¬c , y1:I,1:n

�
(4.32)

with p∗
¬c = (p∗

c�)c�∈{c1,...,cI}\{c} and p∗(n,k)
¬c =

�
p

∗(n,k)�
c�

�
c�∈{c

(n,k)
1 ,...,c(n,k)

I }\{c}, where p
∗(n,k)�
c� is

the newest sample of p∗
c� , that is, either p

∗(n,k−1)
c� or p

∗(n,k)
c� . Note that the parameter

p
∗(n,k−1)
c

(n,k)
i

for a newly generated class, as discussed above, is also sampled from (4.32), but

with the newest currently available samples of the other random variables. Using the

same derivation as for (4.23) with N replaced by n and using the samples of the time step

n, we can show that

fp∗
c |x1:I,1:n,c1:I ,p∗¬c,y1:I,1:n

�
p∗(n,k)

c

))) x
(n,k)
1:I,1:n, c

(n,k)
1:I , p∗(n,k)

¬c , y1:I,1:n

�
∝

� "
i:c(k)

i =c

fxi,1:n,yi,1:n|pi

�
x

(n,k)
i,1:n , yi,1:n

))) p∗(n,k)
ci

��
fG

�
p∗(n,k)

c

�
. (4.33)

54 4. Inference in Bayesian Nonparametric State-Space Models

Therefore, in order to use this algorithm, we need to be able to sample from (4.33).

Similarly to the generation of the state particles x
(n,k)
1:I,1:n using the approximation in

(4.25), sampling the indicator variables c
(n,k)
1:I and the parameters p

∗(n,k)
c

(n,k)
1:I

using (4.30)–

(4.33) requires us to process the state particles x
(n,k)
1:I,1:n and observations y1:I,1:n, which

also grow with n. Therefore, in general, the computational complexity of this algorithm

grows with n. As noted in the paragraph above, it is, however, sometimes possible to

introduce sufficient statistics, with the same dimensionality at each time step, which

allow us to avoid saving and computing an increasing amount of data as time progresses.

This scenario will be discussed in Section 4.1.3.4.

While the development of a proof of convergence for this algorithm is out of the scope of

this thesis, we argue that the performance evaluation in Section 5.3 suggests convergence

to the true distribution with an increasing number of samples.

4.1.3.2 Gibbs Sampling Algorithm

In this section, we present a version of the SMC algorithm discussed above that generates

samples of the states x1:I,1:n, indicator variables c1:I , and parameters p∗
c1:I

. Here, the

MCMC algorithm samples the states directly from their approximated conditional pdf

(4.25). That is, we have to calculate the weights
�
W

(n,k,k�)
1:I

�
k�∈{1,...,K} at each iteration

of the MCMC algorithm according to (4.26) and (4.27) using the current samples. The

algorithm for the first time step is stated in Algorithm 4.4 and for the time steps n ≥ 2
in Algorithm 4.5, with the MCMC algorithm stated in Algorithm 4.6.

4.1.3.3 Metropolis-Hastings Algorithm

One drawback of the algorithm presented in Section 4.1.3.2 is that the Gibbs sampling

step in Algorithm 4.6 requires the calculation of IK2 weights, that is, K weights for each

of the I TSs and K samples, which makes this method infeasible for large K. Therefore,

we now propose an algorithm where we use the MH algorithm from Section 2.4.2 to sample

the states from approximation (4.25), which only requires the calculation of IK weights

and IK acceptance probabilities at each time step.

In order to apply the MH algorithm, we need to define a proposal pdf whose support

includes the support of (4.25). This can be done by using the particles
�
x̄

(n,k)
1:I,1:n

�
k∈{1,...,K}

and calculating their weights for the parameters that were used to generate them. That

4.1. Time Series of Equal Length 55

Algorithm 4.4 SMC algorithm using Gibbs sampling for a BNP state-space model:
initialization
Input: y1:I,1, K, g1

1: for all i = 1, . . . , I do
2: for all k = 1, . . . , K do
3: set c

(0,k)
i = i

4: sample p
∗(0,k)
c

(0,k)
i

from fG
�
p

∗(0,k)
c

(0,k)
i

�
5: sample x̄

(1,k)
i,1 from g1

�
x̄

(1,k)
i,1

))) p
∗(0,k)
c

(0,k)
i

, yi,1

�
6: end for
7: end for
8: sample

�
x

(1,k)
1:I,1, c

(1,k)
1:I , p

∗(1,k)
c

(1,k)
1:I

�
k∈{1,...,K} using Algorithm 4.6 with input

(x̄(1,k)
1:I,1)k∈{1,...,K}, y1:I,1, K, g1

Output:
�
x

(1,k)
1:I,1, c

(1,k)
1:I,1, p

∗(1,k)
c

(1,k)
1:I,1

�
k∈{1,...,K}

Algorithm 4.5 SMC algorithm using Gibbs sampling for a BNP state-space model:
iteration
Input:

�
x

(n−1,k)
1:I,1:n−1, c

(n−1,k)
1:I , p

∗(n−1,k)
c

(n−1,k)
1:I

�
k∈{1,...,K}, y1:I,1:n, K, g

1: for all i = 1, . . . , I do
2: for all k = 1, . . . , K do
3: sample x̄

(n,k)
i,n from g

�
x̄

(n,k)
i,n

))) x
(n−1,k)
i,n−1 , p

∗(n−1,k)
c

(n−1,k)
i

, yi,n

�
4: set x̄

(n,k)
i,1:n =

�
x

(n−1,k)
i,1:n−1 , x̄

(n,k)
i,n

�
5: end for
6: end for
7: sample

�
x

(n,k)
1:I,1:n, c

(n,k)
1:I , p

∗(n,k)
c

(n,k)
1:I

�
k∈{1,...,K} using Algorithm 4.6 with input�

x̄
(n,k)
1:I,1:n

�
k∈{1,...,K}, y1:I,1:n, K, g

Output:
�
x

(n,k)
1:I,1:n, c

(n,k)
1:I , p

∗(n,k)
c

(n,k)
1:I

�
k∈{1,...,K}

56 4. Inference in Bayesian Nonparametric State-Space Models

Algorithm 4.6 SMC algorithm using Gibbs sampling for a BNP state-space model:
MCMC part
Input:

�
x̄

(n,k)
1:I,1:n

�
k∈{1,...,K}, y1:I,1:n, K, g1 or g

1: for all i = 1, . . . , I do
2: initialize x

(n,1)
i,1:n arbitrarily from

�
x̄

(n,k)
i,1:n : k ∈ {1, . . . , K}

�
3: set c

(n,1)
i = i

4: initialize p
∗(n,1)
c

(n,1)
i

arbitrarily from RD

5: end for
6: set c(n,1)

max = I
7: for all k = 2, . . . , K do
8: for all i = 1, . . . , I do
9: for all k
 = 1, . . . , K do

10: calculate W
(n,k,k�)
i according to (4.26) or (4.27)

11: end for
12: sample x

(n,k)
i,1:n from (4.25)

13: end for
14: for all i = 1, . . . , I do
15: sample c

(n,k)
i = c with probability b

(n,k)
i,c (see (4.30) and (4.31))

for all c ∈
�
0, c

(n,k)
1 , . . . , c

(n,k)
i−1 , c

(n,k−1)
i+1 , . . . , c

(n,k−1)
I

�
16: if c

(n,k)
i = 0

set c
(n,k)
i = max

�
maxi�∈{1,...,i−1} c

(n,k)
i� , c(n,k−1)

max

�
+ 1

sample p
∗(n,k−1)
c

(n,k)
i

from (4.33)
17: end for
18: set c(n,k)

max = max
�

maxi∈{1,...,I} c
(n,k)
i , c(n,k−1)

max

�
19: for all c ∈

�
c

(n,k)
1 , . . . , c

(n,k)
I

�
do

20: sample p∗(n,k)
c from (4.33)

21: end for
22: end for
Output:

�
x

(n,k)
1:I,1:n, c

(n,k)
1:I , p

∗(n,k)
c

(n,k)
1:I

�
k∈{1,...,K}

4.1. Time Series of Equal Length 57

is, we define the proposal pdf for the MH step as (see (4.25))

gMH,n
�
xi,1:n

))) �
x̄

(n,k)
i,1:n , p

∗(n−1,k)
c

(n−1,k)
i

�
k∈{1,...,K}, yi,n

�
=

K%
k=1

W

(n,k)
i δ

x̄
(n,k)
i,1:n

�
xi,1:n

�
, (4.34)

where at the first time step (see (4.26))

W

(1,k)
i ∝

χ
�
yi,1

))) x̄
(1,k)
i,1 , p

∗(0,k)
c

(0,k)
i

�
ζ

�
x̄

(1,k)
i,1

))) p
∗(0,k)
c

(0,k)
i

�
g1

�
x̄

(1,k)
i,1

))) p
∗(0,k)
c

(0,k)
i

, yi,1

� , (4.35)

and at the time steps n ≥ 2 (see (4.27))

W

(n,k)
i ∝

χ
�
yi,n

))) x̄
(n,k)
i,n , p

∗(n−1,k)
c

(n−1,k)
i

�
ξ

�
x̄

(n,k)
i,n

))) x̄
(n,k)
i,n−1, p

∗(n−1,k)
c

(n−1,k)
i

�
g

�
x̄

(n,k)
i,n

))) x̄
(n,k)
i,n−1, p

∗(n−1,k)
c

(n−1,k)
i

, yi,n

� (4.36)

with
&K

k=1 W

(n,k)
i = 1. Note that the proposal pdf (4.34) is equal to the approximation

(4.25) using the parameter p
∗(n−1,k)
c

(n−1,k)
i

that was used to generated the intermediate particle

x̄
(n,k)
i,1:n instead of the parameter p

∗(n,k−1)
c

(n,k−1)
i

of the last MCMC iteration.

At each iteration, the algorithm first samples a proposal particle x

(n,k)
i,1:n from (4.34) and

then accepts it x
(n,k)
i,1:n = x

(n,k)
i,1:n with probability P

(n,k)
a,i , which will be defined presently, and

rejects it x
(n,k)
i,1:n = x

(n,k−1)
i,1:n with probability 1−P

(n,k)
a,i . We define the acceptance probability

P
(n,k)
a,i as (see (2.42))

P
(n,k)
a,i = min

1,
fpi|xi,1:n,yi,1:n

�
p

∗(n,k−1)
c

(n,k−1)
i

))) x

(n,k)
i,1:n , yi,1:n

�
W

(n,k−1)
MH,i

fpi|xi,1:n,yi,1:n

�
p

∗(n,k−1)
c

(n,k−1)
i

))) x
(n,k−1)
i,1:n , yi,1:n

�
W

(n,k,prop)
MH,i

, (4.37)

where W

(n,k,prop)
MH,i and W

(n,k−1)
MH,i are the probabilities of x

(n,k)
i,1:n and x

(n,k−1)
i,1:n , respectively,

when they are sampled from the proposal pdf gMH,n
�
xi,1:n

))) �
x̄

(n,k)
i,1:n , p

∗(n−1,k)
c

(n−1,k)
i

�
k∈{1,...,K}, yi,n

�
in (4.34). That is, for all k
 ∈ {1, . . . , K}, W

(n,k,prop)
MH,i = W

(n,k�)
i if x

(n,k)
i,1:n = x̄

(n,k�)
i,1:n . Simi-

larly, again for all k
 ∈ {1, . . . , K}, W

(n,k−1)
MH,i = W

(n,k�)
i if x

(n,k−1)
i,1:n = x̄

(n,k�)
i,1:n . Note that com-

pared to (2.42), we use the probabilities W

(n,k,prop)
MH,i and W

(n,k−1)
MH,i instead g(x̃(k) | x(k−1))

and g(x(k−1) | x̃(k)), respectively, as gMH,n
�
xi,1:n

))) �
x̄

(n,k)
i,1:n , p

∗(n−1,k)
c

(n−1,k)
i

�
k∈{1,...,K}, yi,n

�
defines a

discrete distribution.

The complete algorithm for the first time step is outlined in Algorithm 4.7 and for the

time steps n ≥ 2 in Algorithm 4.8, with the MCMC algorithm stated in Algorithm 4.9.

4.1.3.4 Sufficient Statistics

For many applications, the expectation (4.6) only depends on the state current time step

n. That is we can express h(x1:I,1:n, c1:I , p∗
c1:I

) in (4.6) as

h(x1:I,1:n, c1:I , p∗
c1:I

) = h
(x1:I,n, c1:I , p∗
c1:I

), (4.38)

58 4. Inference in Bayesian Nonparametric State-Space Models

Algorithm 4.7 SMC algorithm using MH for a BNP state-space model: initialization
Input: y1:I,1, K, g1

1: for all i = 1, . . . , I do
2: for all k = 1, . . . , K do
3: set c

(0,k)
i = i

4: sample p
∗(0,k)
c

(0,k)
i

from fG
�
p

∗(0,k)
c

(0,k)
i

�
5: sample x̄

(1,k)
i,1 from g1

�
x̄

(1,k)
i,1

))) p
∗(0,k)
c

(0,k)
i

, yi,1

�
6: calculate W

(1,k)
i according to (4.35)

7: end for
8: end for
9: sample

�
x

(1,k)
1:I,1, c

(1,k)
1:I , p

∗(1,k)
c

(1,k)
1:I

�
k∈{1,...,K} using Algorithm 4.9 with input�

x̄
(1,k)
1:I,1, W

(1,k)
1:I

�
k∈{1,...,K}, K, y1:I,1

Output:
�
x

(1,k)
1:I,1, c

(1,k)
1:I , p

∗(1,k)
c

(1,k)
1:I

�
k∈{1,...,K}

Algorithm 4.8 SMC algorithm using MH for a BNP state-space model: iteration
Input:

�
x

(n−1,k)
1:I,1:n−1, c

(n−1,k)
1:I , p

∗(n−1,k)
c

(n−1,k)
1:I

�
k∈{1,...,K}, y1:I,1:n, K, g

1: for all i = 1, . . . , I do
2: for all k = 1, . . . , K do
3: sample x̄

(n,k)
i,n from g

�
x̄

(n,k)
i,n

))) x
(n−1,k)
i,n−1 , p

∗(n−1,k)
c

(n−1,k)
i

, yi,n

�
4: set x̄

(n,k)
i,1:n = (x(n−1,k)

i,1:n−1 , x̄
(n,k)
i,n)

5: calculate W

(n,k)
i according to (4.36)

6: end for
7: end for
8: sample

�
x

(n,k)
1:I,1:n, c

(n,k)
1:I , p

∗(n,k)
c

(n,k)
1:I

�
k∈{1,...,K} using Algorithm 4.9 with input�

x̄
(n,k)
1:I,1:n, W

(n,k)
1:I

�
k∈{1,...,K}, K, y1:I,1:n

Output:
�
x

(n,k)
1:I,1:n, c

(n,k)
1:I , p

∗(n,k)
c

(n,k)
1:I

�
k∈{1,...,K}

4.1. Time Series of Equal Length 59

Algorithm 4.9 SMC algorithm using MH for a BNP state-space model: MCMC part
Input:

�
x̄

(n,k)
1:I,1:n, W

(n,k)
1:I

�
k∈{1,...,K}, K, y1:I,1:n

1: for all i = 1, . . . , I do
2: initialize x

(n,1)
i,1:n arbitrarily from

�
x̄

(n,k)
i,1:n : k ∈ {1, . . . , K}

�
3: set c

(n,1)
i = i

4: initialize p
∗(n,1)
c

(n,1)
i

arbitrarily from RD

5: end for
6: set c(n,1)

max = I
7: for all k = 2, . . . , K do
8: for all i = 1, . . . , I do
9: sample x

(n,k)
i,1:n = x̄

(n,k�)
i,1:n with probability W

(n,k�)
i for all k
 ∈ {1, . . . , K}

10: set x
(n,k)
i,1:n = x

(n,k)
i,1:n with probability P

(n,k)
a,i (see (4.37))

else set x
(n,k)
i,1:n = x

(n,k−1)
i,1:n

11: end for
12: for all i = 1, . . . , I do
13: sample c

(n,k)
i = c with probability b

(n,k)
i,c (see (4.30) and (4.31))

for all c ∈
�
0, c

(n,k)
1 , . . . , c

(n,k)
i−1 , c

(n,k−1)
i+1 , . . . , c

(n,k−1)
I

�
14: if c

(n,k)
i = 0

set c
(n,k)
i = max

�
maxi�∈{1,...,i−1} c

(n,k)
i� , c(n,k−1)

max

�
+ 1

sample p
∗(n,k−1)
c

(n,k)
i

from (4.33)
15: end for
16: set c(n,k)

max = max
�

maxi∈{1,...,I} c
(n,k)
i , c(n,k−1)

max

�
17: for all c ∈

�
c

(n,k)
1 , . . . , c

(n,k)
I

�
do

18: sample p∗(n,k)
c from (4.33)

19: end for
20: end for
Output:

�
x

(n,k)
1:I,1:n, c

(n,k)
1:I , p

∗(n,k)
c

(n,k)
1:I

�
k∈{1,...,K}

60 4. Inference in Bayesian Nonparametric State-Space Models

with some function h
(x1:I,n, c1:I , p∗
c1:I

), and therefore

Jn = E
�
h(x1:I,1:n, c1:I , p∗

c1:I
)

))) y1:I,1:n = y1:I,1:n

�
= E

�
h
(x1:I,n, c1:I , p∗

c1:I
)

))) y1:I,1:n = y1:I,1:n

�
≈ 1

K

K%
k=1

h
�x
(n,k)
1:I,n, c

(n,k)
1:I , p

∗(n,k)
c

(n,k)
1:I

�
. (4.39)

While the expectation (4.39) does not directly involve the states of the previous time steps

x1:I,1:n−1, we may still have to sample them in practice to generate samples of the indicator

variables c1:I and parameters p∗
c1:I

. Similarly, we also have to consider all observations up

to the current time step, y1:I,1:n. That is, we often sample c1:I and p∗
c1:I

given x1:I,1:n and

y1:I,1:n (see (4.30)–(4.33)). As discussed previously in Section 4.1.3, this generally means

that the computational complexity and the amount of data saved grow with n.

However, it is sometimes possible to simplify the expressions (4.30)–(4.33) by intro-

ducing recursively calculated sufficient statistics, with constant dimensionality for all time

steps, so that the computational complexity and the amount of data saved at each time

step remain constant over time. More formally, we assume that we have sufficient statis-

tics si,n = (si,n,1, si,n,2) ∈ RE1×E2 for all n ∈ N and i ∈ {1, . . . , I} with E1, E2 ∈ N, where
si,1 = u1(x1, y1) and, for n ≥ 2, si,n = u(si,n−1, xn, yn) for some functions u1 and u, such

that

fpi|xi,1:n,yi,1:n(pi,n | xi,1:n, yi,1:n) = fpi|si,n,1(pi,n | si,n,1), (4.40)

fp∗
c |x1:I,1:n,c1:I ,y1:I,1:n(p∗

c,n | x1:I,1:n, c1:I,n, y1:I,1:n) = fp∗
c |c1:I ,s1:I,n,2(p∗

c,n | c1:I,n, s1:I,n,2). (4.41)

We can then simplify (4.30) and (4.31) using (4.40), as well as (4.32) using (4.41). This

allows us to sample the indicator variables and parameters given the sufficient statistics

without directly using the states and observations.

4.2 Time Series of Different Lengths

4.2.1 Statistical Model and Inference

The statistical model of Section 4.1.1 can be generalized to TSs of possibly different

lengths. The data set now contains I ∈ N TSs (yi,NS,i:NE,i)i∈{1,...,I} with yi,n ∈ RY for

all n ∈ {NS,i, . . . , NE,i}, between starting time NS,i ∈ N and ending time NE,i ∈ N.
The TSs are again modeled as observations of a parameter dependent state-space model

4.2. Time Series of Different Lengths 61

(see Section 2.3.5), where the prior distribution of the parameter is chosen as a DP

(see Section 3.1). Similarly to Section 4.1.1, we define the parameter dependent state-

space model as follows. For each TS indexed by i ∈ N, we denote the sequence of

states as xi,NS,i:NE,i with xi,n ∈ RX , the sequence of observations as yi,NS,i:NE,i with

yi,n ∈ RY , and the parameter as pi ∈ RD, with dimensions X, Y , D ∈ N. The states

and observations (xi,n, yi,n)n∈{NS,i,...,NE,i}, are modeled as mutually independent for dif-

ferent i given the parameters (pi�)i∈N. They are defined, for all i ∈ N, by conditional

pdfs fxi,NS,i |pi
(xi,NS,i | pi) = ζ(xi,NS,i | pi), fxi,n|xi,n−1,pi

(xi,n | xi,n−1, pi) = ξ(xi,n | xi,n−1, pi)
for all n ∈ {NS,i + 1, . . . , NE,i}, and fyi,n|xi,n,pi

(yi,n | xi,n, pi) = χ(yi,n | xi,n, pi) for all

n ∈ {NS,i, . . . , NE,i}.
As in Section 4.1.1, the parameters (pi)i∈N are distributed according to a DP with

concentration α and base pdf fG(pi) (see Definition 3.1).

In this case, we are interested in generating samples to approximate the expectations

(4.6) and (4.7), and the most likely class assignments (4.8), with the obvious changes for

TSs of different lengths.

4.2.2 Particle Markov Chain Monte Carlo Algorithm

The PMCMC algorithm discussed in Section 4.1.2 can be adapted to TSs of different

lengths with minimal changes. That is, for each TS i ∈ {1, . . . , I}, we simply run the

algorithm from time step NS,i to time step NE,i instead of from 1 to N .

4.2.3 Sequential Monte Carlo Algorithm
4.2.3.1 General Principle

In this section, we will adapt the SMC algorithm for TSs of equal length discussed in

Section 4.1.3 to TSs of different lengths. Compared to Section 4.2.2, this adaptation is

more challenging. As the TSs can start at different times, we are required to be able

to initialize TSs at each time step, instead of only at the first time step. Further, at

each time step, some TSs may have already ended; however, they still influence the class

assignment and the parameter inference.

To distinguish between TSs that are starting at the current time step n or have already

ended in a previous time step, we introduce the index set of all TSs starting at the current

time step, IS,n = {i ∈ {1, . . . , I} : NS,i = n}, the index set of all currently active TSs,

that is, started but not ended, IA,n = {i ∈ {1, . . . , I} : NS,i ≤ n ≤ NE,i}, and the index

set of all TSs that ended before the current time step, IE,n = {i ∈ {1, . . . , I} : NE,i < n},

62 4. Inference in Bayesian Nonparametric State-Space Models

for all n ∈ N. Note that IS,n ⊆ IA,n. In contrast to Section 4.1.3, we will have to iterate

over the indices of the currently active and already ended TSs, that is, i ∈ IA,n ∪ IE,n,

instead of the indices of the TSs i ∈ {1, . . . , I}. Therefore, we use an arbitrary bijective

mapping τn from {1, . . . , |IA,n ∪ IE,n|} to IA,n ∪ IE,n to induce an order on this set.

Intermediate State Particles At each time step n ∈ N, we have to initialize the

intermediate state particles of the currently starting TSs. That is, for all i ∈ IS,n, we

sample
�
x̄

(n,k)
i,n

�
k∈{1,...,K} using the initialization procedure to generate the intermediate

state particles for time step 1 of Section 4.1.3 with the obvious changes for TSs of different

lengths. Similarly, for each active but not currently starting TS i ∈ IA,n \ IS,n, we adapt

the procedure to generate the intermediate state particles for time steps n ≥ 2 of Section

4.1.3 to obtain the intermediate state particles
�
x̄

(n,k)
i,NS,i:n

�
k∈{1,...,K}. Due to the dependence

of the indicator variables and parameters on the already ended TSs, we also need to

sample the states of the ended TSs using the MCMC algorithm. Therefore, we use the

intermediate state particles of the last time step where these TSs were active, that is,�
x̄

(NE,i,k)
i,NS,i:NE,i

�
k∈{1,...,K} generated at time step NE,i for each i ∈ IE,n.

After the proposal particles are generated, an MCMC algorithm is used at each time

step n ∈ N to generate samples of the states,
�
x

(n,k)
i,NS,i:n

�
i∈IA,n

and
�
x

(n,k)
i,NS,i:NE,i

�
i∈IE,n

, of the

indicator variables,
�
c

(n,k)
i

�
i∈IA,n∪IE,n

, and of the parameters
�
p∗(n,k)

c

�
c∈{c

(n,k)
i :i∈IA,n∪IE,n},

for all k ∈ {1, . . . , K}.

Initialization of the MCMC Algorithm The MCMC algorithm is initialized with

samples of the states
�
x

(n,1)
i,NS,i:n

�
i∈IA,n

and
�
x

(n,1)
i,NS,i:NE,i

�
i∈IE,n

, where x
(n,1)
i,NS,i:n is chosen ar-

bitrarily from
�
x̄

(n,k)
i,NS,i:n : k ∈ {1, . . . , K}

�
for all i ∈ IA,n and x

(n,1)
i,NS,i:NE,i

is chosen arbi-

trarily from
�
x̄

(NE,i,k)
i,NS,i:NE,i

: k ∈ {1, . . . , K}
�
for all i ∈ IE,n, with samples of the indicator

variables
�
c

(n,1)
i

�
i∈IA,n∪IE,n

, where c
(n,1)
i = τ−1

n (i), and with samples of the parameters�
p∗(n,1)

c

�
c∈{c

(n,1)
i :i∈IA,n∪IE,n}, where p∗(n,1)

c is chosen arbitrarily from RD.

Sampling the States We sample the states from the approximation (see (4.25))

fxi,NS,i:n|pi,yi,NS,i:n

�
xi,NS,i:n

))) p
∗(n,k−1)
c

(n,k−1)
i

, yi,NS,i:n

�
≈

K%
k�=1

W
(n,k,k�)
i δ

x̄
(n,k�)
i,NS,i:n

�
xi,NS,i:n

�
(4.42)

for i ∈ IA,n, and

fxi,NS,i:NE,i |pi,yi,NS,i:NE,i

�
xi,NS,i:NE,i

))) p
∗(n,k−1)
c

(n,k−1)
i

, yi,NS,i:NE,i

�
≈

K%
k�=1

W
(n,k,k�)
i δ

x̄
(NE,i,k�)
i,NS,i:NE,i

�
xi,NS,i:NE,i

�
(4.43)

4.2. Time Series of Different Lengths 63

for i ∈ IE,n, with W
(n,k,k�)
i defined as follows. For i ∈ IS,n, we define W

(n,k,k�)
i as in (4.26)

with the time step index 1 replaced by NS,i. For i ∈ IA,n \ IS,n, we define W
(n,k,k�)
i as in

(4.27). Finally, for i ∈ IE,n, we define W
(n,k,k�)
i as in (4.27) with the time step index n

replaced by NE,i. We will present procedures to sample from this approximation based

on Gibbs sampling in Section 4.2.3.2 and based on the MH algorithm Section 4.2.3.3.

Sampling the Indicator Variables and Parameters For i ∈ {1, . . . , |IA,n ∪ IE,n|},
the conditional probability of cτn(i) = c, with c ∈

�
c

(n,k−1)
i : i ∈ IA,n ∪ IE,n

�
, is given

in (4.30) and the conditional probability of cτn(i) /∈
�
c

(n,k−1)
i : i ∈ IA,n ∪ IE,n

�
is given in (4.31), with c¬i = c

(n,k)
¬i replaced by c¬τn(i) = (cτn(1), . . . ,

cτn(i−1), cτn(i+1), . . . , cτn(|IA,n∪IE,n|)) =
�
c

(n,k)
τn(1), . . . , c

(n,k)
τn(i−1), c

(n,k−1)
τn(i+1), . . . , c

(n,k−1)
τn(|IA,n∪IE,n|)

�
= c

(n,k)
¬τn(i), c(n,k−1)

max = maxk�∈{1,...,k−1},i�∈{1,...,I} c
(n,k�)
i� replaced by

c(n,k−1)
max = maxk�∈{1,...,k−1},i�∈{1,...,|IA,n∪IE,n|} c

(n,k�)
τn(i�), and further obvious changes for

TSs of different lengths.

The parameters p∗
c for c ∈

�
c

(n,k)
i : i ∈ IA,n ∪ IE,n

�
are sampled from their conditional

pdf given the other random variables, similar to (4.33) with the obvious changes for TSs

of different lengths.

The complete algorithm for TSs of different lengths using Gibbs sampling for the states

is presented in Section 4.2.3.2, and the algorithm using the MH algorithm to sample the

states in Section 4.2.3.3.

4.2.3.2 Gibbs Sampling Algorithm

The samples of the states (xi,NS,i:n)i∈IA,n and (xi,NS,i:NE,i)i∈IE,n , indicator variables

(ci)i∈IA,n∪IE,n , and parameters (p∗
c)c∈{ci:i∈IA,n∪IE,n} can be generated using Gibbs sampling

(see Section 4.1.3.2). As in Section 4.1.3.2, the states are directly sampled from their

approximated conditional pdf, that is, from (4.42) and (4.43), which requires the calcu-

lation of the weights
�
W

(n,k,k�)
i

�
k�∈{1,...,K} (see (4.26) and (4.27)) for all i ∈ IA,n ∪ IE,n at

each iteration of the MCMC algorithm using the current samples. The pseudo-code for

one iteration of the SMC algorithm is stated in Algorithm 4.10, with the MCMC algo-

rithm stated in Algorithm 4.11. Note that Algorithm 4.10 includes the initialization of

the starting TSs as they can start at any time step, that is, Algorithm 4.10 is equivalent

to Algorithms 4.4 and 4.5 for TSs of equal length.

64 4. Inference in Bayesian Nonparametric State-Space Models

Algorithm 4.10 SMC algorithm using Gibbs sampling for a BNP state-space model with
different lengths: iteration

Input:
��

x
(n−1,k)
i,NS,i:n−1

�
i∈IA,n\IS,n

,
�
x̄

(NE,i,k)
i,NS,i:NE,i

�
i∈IE,n

,
�
c

(n−1,k)
i

�
i∈IA,n\IS,n

,�
p∗(n−1,k)

c

�
c∈{c

(n−1,k)
i :i∈IA,n\IS,n}

�
k∈{1,...,K}

, (yi,NS,i:n)i∈IA,n , (yi,NS,i:NE,i)i∈IE,n , K, g1, g, τn

1: for all i ∈ IS,n do
2: for all k = 1, . . . , K do
3: set c

(0,k)
i = τ−1

n (i)
4: sample p

∗(0,k)
c

(0,k)
i

from fG
�
p

∗(0,k)
c

(0,k)
i

�
5: sample x̄

(n,k)
i from g1

�
x̄

(n,k)
i

))) p
∗(0,k)
c

(0,k)
i

, yi,n

�
6: end for
7: end for
8: for all i ∈ IA,n \ IS,n do
9: for all k = 1, . . . , K do

10: sample x̄
(n,k)
i,n from g

�
x̄

(n,k)
i,n

))) x
(n−1,k)
i,NS,i:n−1, p

∗(n−1,k)
c

(n−1,k)
i

, yi,n

�
11: set x̄

(n,k)
i,NS,i:n =

�
x

(n−1,k)
i,NS,i:n−1, x̄

(n,k)
i,n

�
12: end for
13: end for
14: sample

��
x

(n,k)
i,NS,i:n

�
i∈IA,n

,
�
x

(n,k)
i,NS,i:NE,i

�
i∈IE,n

,
�
c

(n,k)
i

�
i∈IA,n∪IE,n

,�
p∗(n,k)

c

�
c∈{c

(n,k)
i :i∈IA,n∪IE,n}

�
k∈{1,...,K}

using Algorithm 4.11 with input��
x̄

(n,k)
i,NS,i:n

�
i∈IA,n

,
�
x̄

(NE,i,k)
i,NS,i:NE,i

�
i∈IE,n

�
k∈{1,...,K}

,

(yi,NS,i:n)i∈IA,n , (yi,NS,i:NE,i)i∈IE,n , K, g1, g, τn

Output:
��

x
(n,k)
i,NS,i:n

�
i∈IA,n

,
�
x

(n,k)
i,NS,i:NE,i

�
i∈IE,n

,
�
x̄

(n,k)
i,NS,i:n

�
i∈IA,n

,
�
x̄

(NE,i,k)
i,NS,i:NE,i

�
i∈IE,n

,�
c

(n,k)
i

�
i∈IA,n∪IE,n

,
�
p∗(n,k)

c

�
c∈{c

(n,k)
i :i∈IA,n∪IE,n}

�
k∈{1,...,K}

4.2. Time Series of Different Lengths 65

Algorithm 4.11 SMC algorithm using Gibbs sampling for a BNP state-space model with
different lengths: MCMC part

Input:
��

x̄
(n,k)
i,NS,i:n

�
i∈IA,n

,
�
x̄

(NE,i,k)
i,NS,i:NE,i

�
i∈IE,n

�
k∈{1,...,K}

,

(yi,NS,i:n)i∈IA,n , (yi,NS,i:NE,i)i∈IE,n , K, g1, g, τn

1: for all i ∈ IA,n do
2: initialize x

(n,1)
i,NS,i:n arbitrarily from

�
x̄

(n,k)
i,NS,i:n : k ∈ {1, . . . , K}

�
3: set c

(n,1)
i = τ−1

n (i)
4: initialize p

∗(n,1)
c

(n,1)
i

arbitrarily from RD

5: end for
6: for all i ∈ IE,n do
7: initialize x

(n,1)
i,NS,i:NE,i

arbitrarily from
�
x̄

(NE,i,k)
i,NS,i:NE,i

: k ∈ {1, . . . , K}
�

8: set c
(n,1)
i = τ−1

n (i)
9: initialize p

∗(n,1)
c

(n,1)
i

arbitrarily from RD

10: end for
11: set c(n,1)

max = |IA,n ∪ IE,n|
12: for all k = 2, . . . , K do
13: for all i ∈ IA,n do
14: for all k
 = 1, . . . , K do
15: calculate W

(n,k,k�)
i according to (4.26) or (4.27) with the necessary changes

16: end for
17: sample x

(n,k)
i,NS,i:n from (4.42)

18: end for
19: for all i ∈ IE,n do
20: for all k
 = 1, . . . , K do
21: calculate W

(n,k,k�)
i according to (4.26) or (4.27) with the necessary changes

22: end for
23: sample x

(n,k)
i,NS,i:NE,i

from (4.43)
24: end for
25: for all i = 1, . . . , |IA,n ∪ IE,n| do
26: sample c

(n,k)
τn(i) = c with probability b

(n,k)
τn(i),c (see (4.30) and (4.31))

for all c ∈
�
0, c

(n,k)
τn(1), . . . , c

(n,k)
τn(i−1), c

(n,k−1)
τn(i+1), . . . , c

(n,k−1)
τn(|IA,n∪IE,n|)

�
27: if c

(n,k)
τn(i) = 0

set c
(n,k)
τn(i) = max

�
maxi�∈{1,...,i−1} c

(n,k)
τn(i�), c(n,k−1)

max

�
+ 1

sample p
∗(n,k−1)
c

(n,k)
τn(i)

from (4.33) with the necessary changes
28: end for
29: set c(n,k)

max = max
�

maxi�∈{1,...,|IA,n∪IE,n|} c
(n,k)
τn(i�), c(n,k−1)

max

�
30: for all c ∈

�
c

(n,k)
i : i ∈ IA,n ∪ IE,n

�
do

31: sample p∗(n,k)
c from (4.33) with the necessary changes

32: end for
33: end for
Output:

��
x

(n,k)
i,NS,i:n

�
i∈IA,n

,
�
x

(n,k)
i,NS,i:NE,i

�
i∈IE,n

,
�
c

(n,k)
i

�
i∈IA,n∪IE,n

,�
p∗(n,k)

c

�
c∈{c

(n,k)
i :i∈IA,n∪IE,n}

�
k∈{1,...,K}

66 4. Inference in Bayesian Nonparametric State-Space Models

4.2.3.3 Metropolis-Hastings Algorithm

As with TSs of equal length, we can also use an MH algorithm instead of Gibbs sampling

(see Section 4.1.3.3). For this, we use the MH algorithm discussed in Section 4.1.3.3

with the obvious changes for TSs of different lengths. The algorithm for one iteration is

outlined in Algorithm 4.12, with the MCMC algorithm stated in Algorithm 4.13.

4.2.3.4 Sufficient Statistics

We can simplify the algorithms for TSs of different lengths introduced above by using

sufficient statistics as discussed in Section 4.1.3.4, with obvious changes due to the different

TS lengths.

4.2. Time Series of Different Lengths 67

Algorithm 4.12 SMC algorithm using MH for a BNP state-space model with different
lengths: iteration

Input:
��

x
(n−1,k)
i,NS,i:n−1

�
i∈IA,n\IS,n

,
�
p∗(n−1,k)

c

�
c∈{c

(n−1,k)
i :i∈IA,n\IS,n}

�
k∈{1,...,K}

,��
x̄

(NE,i,k)
i,NS,i:NE,i

, W

(NE,i,k)
i

�
i∈IE,n

�
k∈{1,...,K}

, (yi,NS,i:n)i∈IA,n , (yi,NS,i:NE,i)i∈IE,n , K, g1, g, τn

1: for all i ∈ IS,n do
2: for all k = 1, . . . , K do
3: set c

(0,k)
i = τ−1

n (i)
4: sample p

∗(0,k)
c

(0,k)
i

from fG
�
p

∗(0,k)
c

(0,k)
i

�
5: sample x̄

(n,k)
i from g1

�
x̄

(n,k)
i

))) p
∗(0,k)
c

(0,k)
i

, yi,n

�
6: calculate W

(n,k)
i according to (4.35) with the necessary changes

7: end for
8: end for
9: for all i ∈ IA,n \ IS,n do

10: for all k = 1, . . . , K do
11: sample x̄

(n,k)
i,n from g

�
x̄

(n,k)
i,n

))) x
(n−1,k)
i,n−1 , p

∗(n−1,k)
c

(n−1,k)
i

, yi,n

�
12: set x̄

(n,k)
i,NS,i:n =

�
x

(n−1,k)
i,NS,i:n−1, x̄

(n,k)
i,n

�
13: calculate W

(n,k)
i according to (4.36) with the necessary changes

14: end for
15: end for
16: sample

��
x

(n,k)
i,NS,i:n

�
i∈IA,n

,
�
x

(n,k)
i,NS,i:NE,i

�
i∈IE,n

,
�
c

(n,k)
i

�
i∈IA,n∪IE,n

,�
p∗(n,k)

c

�
c∈{c

(n,k)
i :i∈IA,n∪IE,n}

�
k∈{1,...,K}

using Algorithm 4.13 with input��
x̄

(n,k)
i,NS,i:n, W

(n,k)
i

�
i∈IA,n

,
�
x̄

(NE,i,k)
i,NS,i:NE,i

, W

(NE,i,k)
i

�
i∈IE,n

�
k∈{1,...,K}

, (yi,NS,i:n)i∈IA,n ,

(yi,NS,i:NE,i)i∈IE,n , K, g1, g, τn

Output:
��

x
(n,k)
i,NS,i:n

�
i∈IA,n

,
�
x

(n,k)
i,NS,i:NE,i

�
i∈IE,n

,
�
x̄

(n,k)
i,NS,i:n, W

(n,k)
i

�
i∈IA,n

,�
x̄

(NE,i,k)
i,NS,i:NE,i

, W

(NE,i,k)
i

�
i∈IE,n

,
�
c

(n,k)
i

�
i∈IA,n∪IE,n

,
�
p∗(n,k)

c

�
c∈{c

(n,k)
i :i∈IA,n∪IE,n}

�
k∈{1,...,K}

68 4. Inference in Bayesian Nonparametric State-Space Models

Algorithm 4.13 SMC algorithm using MH for a BNP state-space model with different
lengths: MCMC part

Input:
��

x̄
(n,k)
i,NS,i:n, W

(n,k)
i

�
i∈IA,n

,
�
x̄

(NE,i,k)
i,NS,i:NE,i

, W

(NE,i,k)
i

�
i∈IE,n

�
k∈{1,...,K}

, (yi,NS,i:n)i∈IA,n ,

(yi,NS,i:NE,i)i∈IE,n , K, g1, g, τn

1: for all i ∈ IA,n do
2: initialize x

(n,1)
i,NS,i:n arbitrarily from

�
x̄

(n,k)
i,NS,i:n : k ∈ {1, . . . , K}

�
3: set c

(n,1)
i = τ−1

n (i)
4: initialize p

∗(n,1)
c

(n,1)
i

arbitrarily from RD

5: end for
6: for all i ∈ IE,n do
7: initialize x

(n,1)
i,NS,i:NE,i

arbitrarily from
�
x̄

(NE,i,k)
i,NS,i:NE,i

: k ∈ {1, . . . , K}
�

8: set c
(n,1)
i = τ−1

n (i)
9: initialize p

∗(n,1)
c

(n,1)
i

arbitrarily from RD

10: end for
11: set c(n,1)

max = |IA,n ∪ IE,n|
12: for all k = 2, . . . , K do
13: for all i ∈ IA,n do
14: sample x

(n,k)
i,NS,i:n = x̄

(n,k�)
i,NS,i:n with probability W

(n,k�)
i for all k
 ∈ {1, . . . , K}

15: set x
(n,k)
i,NS,i:n = x

(n,k)
i,NS,i:n with probability P

(n,k)
a,i (see (4.37))

else set x
(n,k)
i,NS,i:n = x

(n,k−1)
i,NS,i:n

16: end for
17: for all i ∈ IE,n do
18: sample x

(n,k)
i,NS,i:NE,i

= x̄
(NE,i,k�)
i,NS,i:NE,i

with probability W

(NE,i,k�)
i

for all k
 ∈ {1, . . . , K}
19: set x

(n,k)
i,NS,i:NE

= x

(n,k)
i,NS,i:NE

with probability P
(n,k)
a,i (see (4.37))

else set x
(n,k)
i,NS,i:NE

= x
(n,k−1)
i,NS,i:NE

20: end for
21: for all i = 1, . . . , |IA,n ∪ IE,n| do
22: sample c

(n,k)
τn(i) = c with probability b

(n,k)
τn(i),c (see (4.30) and (4.31))

for all c ∈
�
0, c

(n,k)
τn(1), . . . , c

(n,k)
τn(i−1), c

(n,k−1)
τn(i+1), . . . , c

(n,k−1)
τn(|IA,n∪IE,n|)

�
set c

(n,k)
τn(i) = max

�
maxi�∈{1,...,i−1} c

(n,k)
τn(i�), c(n,k−1)

max

�
+ 1

sample p
∗(n,k−1)
c

(n,k)
τn(i)

from (4.33) with the necessary changes
23: end for
24: set c(n,k)

max = max
�

maxi�∈{1,...,|IA,n∪IE,n|} c
(n,k)
τn(i�), c(n,k−1)

max

�
25: for all c ∈

�
c

(n,k)
i : i ∈ IA,n ∪ IE,n

�
do

26: sample p∗(k)
c,n from (4.33) with the necessary changes

27: end for
28: end for
Output:

��
x

(n,k)
i,NS,i:n

�
i∈IA,n

,
�
x

(n,k)
i,NS,i:NE,i

�
i∈IE,n

,
�
c

(n,k)
i

�
i∈IA,n∪IE,n

,�
p∗(n,k)

c

�
c∈{c

(n,k)
i :i∈IA,n∪IE,n}

�
k∈{1,...,K}

69

Chapter 5

Application to Extended Target
Tracking

In our context, target tracking refers to the estimation of a sequence of target states

based on a sequence of noisy measurements. Usually the target is a moving object that

is observed by a sensor and we are interested in its kinematic state. In many scenarios

it is assumed that a target gives rise to at most one measurement per time step. There

are, however, applications where this assumption is not valid and each target may pro-

duce multiple measurements per time step. In these scenarios, it can be of interest to

additionally estimate the size and orientation, which is often referred to as the extent, of

the target. This is called extended target/object tracking. A recent overview of extended

target tracking is provided in [3]. Figure 5.1 shows an example of the trajectory and the

measurements of an elliptically shaped target.

Fig. 5.1: Example of the trajectory and the measurements of an elliptically shaped target.

As extended target tracking can be applied in a wide range of applications, there are

many different models for the target state, extent, and measurements. One common choice

is the spatial model, described in [6, 39, 40], where a random number of measurements is

assumed to be spatially distributed around the target’s position. In this chapter, we adapt

70 5. Application to Extended Target Tracking

the multiplicative noise model with known extent from [6], which is a special case of the

spatial model, to our purposes.

In some scenarios there are several known target classes defining certain parameters of

the targets that belong to these classes. As we usually do not know a priori to which class

each target belongs, we can use joint tracking and classification algorithms [7,8] to infer it.

In practice, however, it is not always the case that the target classes are known. Clustering

of multiple targets for joint class identification and target classification is considered in [9],

where it is required that the target has already been tracked. The algorithm in [9] takes

a complete feature sequence as an input, which may depend on the complete estimated

state sequences of the targets. A different approach is joint tracking and clustering. Here,

we jointly infer the class structure and track the targets, in contrast to inferring the class

structure and tracking the targets separately as in [9]. As the parameters, which are

defined by the class, may influence the state estimate, joint tracking and clustering can

improve state, parameter, and class assignment estimation. To the best of the author’s

knowledge, there is no previous work on joint tracking and clustering.

We start by statistically modeling the extended target tracking problem as a Bayesian

nonparametric state-space model (see Chapter 4) in Section 5.1. Then, in Section 5.2,

we discuss the application of the algorithms of Chapter 4, and evaluate the algorithms’

convergence as well as the performance gain from joint tracking and clustering in Section

5.3.

5.1 Statistical Model

In order to statistically model the problem outlined above, we model the dynamic behavior

and the measurements of each target. We consider a known number of targets I ∈ N where

each target i ∈ {1, . . . , I} is observed in discrete time from time NS,i ∈ N to time NE,i ∈ N
with NS,i ≤ NE,i. For time steps n ∈ {NS,i, . . . , NE,i} the behavior of target i is described

by a parameter dependent state-space model (see Section 4.1.1) as illustrated in Figure 5.2.

Each target i has a kinematic state xi,n, composed of its position and velocity, for all times

n ∈ {NS,i, . . . , NE,i}. The temporal evolution of this kinematic state is described by the

motion model defined in Section 5.1.1 below. At each time n ∈ {NS,i, . . . , NE,i}, for each
target i, we observe a random number Mi,n of random vectors yi,n,m for m ∈ {1, . . . , Mi,n},
or equivalently the random sequence yi,n =

�
yi,n,1, . . . , yi,n,Mi,n

�
, which is described by the

measurement model in Section 5.1.2. Furthermore, the motion and measurement models

5.1. Statistical Model 71

fDP

pi

Qi Di M̄i

vi,n vi,n+1

· · · xi,n xi,n+1 · · ·

Mi,n Mi,n+1

zi,n zi,n+1

yi,n yi,n+1

I

Fig. 5.2: Bayesian network for our statistical model for extended target tracking. Observed random
variables are represented by shaded disks.

72 5. Application to Extended Target Tracking

of each target i depend on a random parameter triple pi = (Di, Qi, M̄i), where Di describes

the target’s extent, Qi describes its dynamic behavior, and M̄i is the average number of

measurements per time step associated with target i. Each target in our statistical model

belongs to a class, which is described by a class indicator ci. The targets in each class share

the same parameter triple, that is, pi = p∗
ci
, where p∗

c = (D∗
c , Q∗

c , M̄∗
c) is the parameter

triple of class c. The parameters and classes are modeled in Section 5.1.3.

5.1.1 Motion Model

Each target state xi,n = [xi,n,1 xi,n,2 ẋi,n,1 ẋi,n,2]T ∈ R4 is composed of the position

[xi,n,1 xi,n,2]T and velocity [ẋi,n,1 ẋi,n,2]T. At time NS,i, the state xi,NS,i
is modeled as

i.i.d. across i according to

xi,NS,i
∼ N (0, Σx), (5.1)

where Σx ∈ R4×4 is an uninformative covariance matrix.

There are several ways to model the motion of the target [1]. We use the nearly

constant velocity model, where the state at time n ∈ {NS,i + 1, . . . , NE,i} is related to the

previous state by

xi,n = F xi,n−1 + vi,n. (5.2)

Here, vi,n ∈ R4 is called the driving noise and F ∈ R4×4 is the state transition matrix

given by

F =

 I2 ΔT I2

02×2 I2

 , (5.3)

with ΔT ∈ R denoting the sampling period. Furthermore, we assume that the driving

noise vi,n given the random covariance matrix Qi ∈ R4×4, which will be explained below,

is zero-mean Gaussian and i.i.d. across n and independent across i, that is,

vi,n | (Qi = Qi) ∼ N (0, Qi), (5.4)

where

Qi =

q2
i,1I2 02×2

02×2 q2
i,2I2

 (5.5)

is a random parameter with q2
i,1 ∈ R>0 and q2

i,2 ∈ R>0 being the position and velocity

driving noise variances, respectively. The distribution of q2
i,1 and q2

i,2 will be defined in

5.1. Statistical Model 73

Section 5.1.3. It follows from (5.2)–(5.5) that the state transition distribution given Qi is

also Gaussian, that is,

xi,n | (xi,n−1 = xi,n−1, Qi = Qi) ∼ N (F xi,n−1, Qi). (5.6)

Note that xi,n is independent across i as both xi,NS,i
and vi,n are independent across i.

By further defining the states as being conditionally independent of the parameters Di

and M̄i given Qi, we can now completely describe our motion model by (see (5.1))

ζ
�
xi,NS,i

| pi

�
= fxi,NS,i

|pi

�
xi,NS,i

| pi

�
= fxi,NS,i

�
xi,NS,i

�
= N

�
xi,NS,i

; 0, Σx
�

(5.7)

and (see (5.6))

ξ(xi,n | xi,n−1, pi) = fxi,n|xi,n−1,pi
(xi,n | xi,n−1, pi) = N (xi,n; F xi,n−1, Qi) (5.8)

for all n ∈ {NS,i + 1, . . . , NE,i}.
An illustration of the motion model is given in Figure 5.3.

Fig. 5.3: Illustration of the motion model.

5.1.2 Measurement Model

For each target i, we observe at each time n ∈ {NS,i, . . . , NE,i} a random number Mi,n ∈ N
of measurements yi,n,m, m ∈ {1, . . . , Mi,n}, that, given a random parameter M̄i ∈ R>0, is

independent across i and i.i.d. across n according to a Poisson distribution

Mi,n | (M̄i = M̄i) ∼ Pois(M̄i). (5.9)

Note that M̄i is the average number of measurements of target i, that is,

E(Mi,n|M̄i = M̄i) = M̄i.

To model the measurements yi,n,m ∈ R2, we adapt the model of [41]. Ideally, in many

applications, we would like to model the measurements yi,n,m as noisy observations of ran-

dom points on the target’s extent. That is, each measurement yi,n,m could be constructed

74 5. Application to Extended Target Tracking

by randomly selecting a point on the target’s extent and then adding measurement noise

to this point.

In order to simplify the inference, we approximate this ideal construction by a Gaussian

distribution [41]. More specifically, we define

yi,n,m = Hxi,n + R(xi,n)zi,n,m, (5.10)

for n ∈ {NS,i, . . . , NE,i}, where H ∈ R2×4, R(xi,n) ∈ R2×2, and zi,n,m ∈ R2 will be

defined in detail presently. The first component of the sum in (5.10), Hxi,n, is used

to center the measurements around the target’s position, and the second component,

R(xi,n)zi,n,m, is used to model the measurements spreading across the target’s extent

with added measurement noise. The measurement matrix

H =
�
I2 02×2

�
(5.11)

singles out the position of the target, [xi,n,1 xi,n,2]T, from its state

xi,n = [xi,n,1 xi,n,2 ẋi,n,1 ẋi,n,2]T. The pre-measurements zi,n,m determine, up to a

rotation by the matrix R(xi,n), the shape and size of the target as well as the measure-

ment noise. To model elliptical shapes, we choose zi,n,m to be distributed according

to

zi,n,m | (Di = Di) ∼ N (0, Di), (5.12)

conditionally independent across i and i.i.d. across n and m given Di, with the random

parameter

Di =

d2
i,1 0
0 d2

i,2

 (5.13)

and the half axis lengths di,1, di,2 ∈ R>0, which are determined by the target’s shape and

size, and the measurement noise. We summarize the pre-measurements zi,n,m for target i

at time n in the random sequence

zi,n =
�
zi,n,1, . . . , zi,n,Mi,n

�
. (5.14)

To align the target’s extent with the direction of the target’s velocity [ẋi,n,1 ẋi,n,2]T, we
define the rotation matrix

R(xi,n) = 1$
ẋ2

i,n,1 + ẋ2
i,n,2

ẋi,n,1 −ẋi,n,2

ẋi,n,2 ẋi,n,1

 . (5.15)

5.1. Statistical Model 75

That is, R(xi,n) rotates a two-dimensional vector counterclockwise by the angle

∠[ẋi,n,1 ẋi,n,2]T ∈ (0, 2π]. Therefore, this matrix aligns the first half axis with the di-

rection of the target’s movement. It follows that yi,n,m given xi,n and Di is distributed

according to

yi,n,m | (xi,n = xi,n, Di = Di) ∼ N (Hxi,n, R(xi,n)DiR(xi,n)T), (5.16)

independent across i and n, and i.i.d. across m. The overall observation of the state-space

model for target i at time n is then given the measurement sequence

yi,n =
�
yi,n,1, . . . , yi,n,Mi,n

�
. (5.17)

Note that the number of vectors in zi,n and also in yi,n is Mi,n, and therefore random. We

could, for example, treat zi,n and yi,n rigorously using random finite sets [42]. However, for

the purpose of this text, we will treat zi,n and yi,n as mixed random variables, combining

the continuous random variables zi,n,m and yi,nm for m ∈ {1, . . . , Mi,n} with the discrete

random variable Mi,n. Thus, we can describe our measurement model by the mixed density

(see Section 4.1.1)

χ(yi,n | xi,n, pi) = vyi,n|xi,n,pi
(yi,n | xi,n, pi) = vyi,n|xi,n,Di,Qi,M̄i

(yi,n | xi,n, Di, Qi, M̄i) (5.18)

for all n ∈ {NS,i, . . . , NE,i}. By defining the measurements yi,n as conditionally indepen-

dent of Qi given xi,n, Di, and M̄i, we can simplify (5.18) to

χ(yi,n | xi,n, pi) =
∞%

M �=0
vyi,n,Mi,n|xi,n,Di,M̄i

(yi,n, M
 | xi,n, Di, M̄i)

= vyi,n,Mi,n|xi,n,Di,M̄i
(yi,n, Mi,n | xi,n, Di, M̄i)

= fyi,n|Mi,n,xi,n,Di,M̄i
(yi,n | Mi,n, xi,n, Di, M̄i)pMi,n|xi,n,Di,M̄i

(Mi,n | xi,n, Di, M̄i),

(5.19)

where we have used that yi,n defines Mi,n. By further defining yi,n as conditionally inde-

pendent of M̄i given Mi,n, and Mi,n as conditionally independent of xi,n and Di given M̄i,

it follows that

χ(yi,n | xi,n, pi) = fyi,n|Mi,n,xi,n,Di
(yi,n | Mi,n, xi,n, Di)pMi,n|M̄i

(Mi,n | M̄i). (5.20)

Inserting (5.9) and (5.16) into (5.20), we finally obtain

χ(yi,n | xi,n, pi) =
� Mi,n"

m=1
N (yi,n,m; Hxi,n, R(xi,n)DiR(xi,n)T)

�
Pois(Mi,n; M̄i) (5.21)

76 5. Application to Extended Target Tracking

Fig. 5.4: Example of an elliptical target extent and corresponding measurements.

with yi,n =
�
yi,n,1, . . . , yi,n,Mi,n

�
. Figure 5.4 shows an example of an elliptical target

extent and example measurements.

Our model differs from [41] in that it assumes Di as a time-constant random parameter

and not as part of the target state. The underlying assumption of our model is that the

targets are rigid and can only change their orientations, but not their shapes, over time.

5.1.3 Parameters

The motion and measurement models in Sections 5.1.1 and 5.1.2 are parametrized by

the random parameter triple pi = (Di, Qi, M̄i) ∈ R2×2 × R4×4 × R, which we will use

for clustering the targets. We will use a Dirichlet process to define the joint distribution

of all parameter triples p1:I = (p1, . . . , pI). However, let us first discuss the marginal

distribution of a single parameter triple pi before we introduce this Dirichlet process.

We define the elements of pi, that is, Di, Qi, and M̄i, as mutually independent and

with their marginal distributions defined as follows. We define Di as (see (5.13))

Di =

d2
i,1 0
0 d2

i,2

 , (5.22)

where d2
i,1 and d2

i,2 are independent and distributed according to

d2
i,1 ∼ Γ−1(αd,1, βd,1), (5.23)

d2
i,2 ∼ Γ−1(αd,2, βd,2) (5.24)

with the hyperparameters αd,1, βd,1, αd,2, βd,2 ∈ R>0. Further, we define Qi as (see (5.5))

Qi =

q2
i,1I2 02×2

02×2 q2
i,2I2

 , (5.25)

where q2
i,1 and q2

i,2 are independent and distributed according to

q2
i,1 ∼ Γ−1(αv,1, βv,1), (5.26)

5.1. Statistical Model 77

q2
i,2 ∼ Γ−1(αv,2, βv,2) (5.27)

with the hyperparameters αv,1, βv,1, αv,2, βv,2 ∈ R>0. Finally, we define

M̄i ∼ Γ(αM, βM) (5.28)

with the hyperparameters αM, βM ∈ R>0. By combining (5.22)–(5.28), we obtain

fpi
(pi) = fDi

(Di)fQi
(Qi)fM̄i

(M̄i)

= Γ−1(d2
i,1; αd,1, βd,1) Γ−1(d2

i,2; αd,2, βd,2)

× Γ−1(q2
i,1; αv,1, βv,1) Γ−1(q2

i,2; αv,2, βv,2)

× Γ(M̄i; αM, βM) (5.29)

with

pi = (Di, Qi, M̄i) =


d2
i,1 0
0 d2

i,2

 ,

q2
i,1I2 02×2

02×2 q2
i,2I2

 , M̄i

. (5.30)

As mentioned above, the joint distribution of all parameter triples p1:I is defined by a

Dirichlet process according to Definition 3.1, that is,

fDP ∼ DP(αDP, fG), (5.31)

where αDP ∈ R>0 is the concentration parameter and fG(pi) is the base pdf, and

pi | (fDP = fDP) i.i.d.∼ fDP. (5.32)

As fG(pi) = fpi
(pi) (see (3.19)), we have (see (5.29))

fG(pi) = Γ−1(d2
i,1; αd,1, βd,1) Γ−1(d2

i,2; αd,2, βd,2)

× Γ−1(q2
i,1; αv,1, βv,1) Γ−1(q2

i,2; αv,2, βv,2)

× Γ(M̄i; αM, βM). (5.33)

The targets in each class have equal parameter triples (see (3.25)), that is,

pi = p∗
ci

, (5.34)

where ci ∈ N is the random class indicator (which assigns a class to target i) and

p∗
c = (D∗

c , Q∗
c , M̄∗

c) (5.35)

is the random parameter triple of class c.

78 5. Application to Extended Target Tracking

5.1.4 Independence Assumptions

Let us briefly summarize some (conditional) independence assumptions that will be needed

in the following section. Some of the following assumptions were already discussed above

or can be found in Figure 5.2.

A.1) The states and measurements (xi,NS,i:NE,i
, yi,NS,i:NE,i

) given the parameters pi are

conditionally independent of the states and measurements (xi�,NS,i� :NE,i� , yi�,NS,i� :NE,i�)
as well as the parameters pi� of every other target i
 �= i.

A.2) The state xi,n is conditionally independent of the states xi,NS,i:n−2 given the previous

state xi,n−1 and the parameters pi.

A.3) The measurement yi,n is conditionally independent of the states xi,NS,i:n−1 and mea-

surements yi,NS,i:n−1 given the state xi,n and the parameters pi.

A.4) The state xi,NS,i
is independent of the parameters pi.

A.5) The states xi,NS,i:n are conditionally independent of the parameters Di and M̄i given

the parameter Qi.

A.6) The numbers of measurements Mi,NS,i:n
are conditionally independent of the states

xi,NS,i:n, and the parameters Qi and Di given the parameter M̄i.

A.7) The measurements yi,n are conditionally independent of the parameters Qi and M̄i

given the number of measurements Mi,n, the state xi,n, and the parameter Di.

A.8) The pre-measurement zi,n,m is conditionally independent of the number of measure-

ments Mi,n given the parameter Di.

A.9) The pre-measurement zi,n,m is conditionally independent of the state xi,n given the

parameter Di.

A.10) The parameter Di is independent of the numbers of measurements Mi,1:n and the

states xi,NS,i:n.

A.11) The parameter Di is conditionally independent of the states xi,NS,i:n given the pre-

measurements zi,NS,i:n.

A.12) The parameter Qi is conditionally independent of the states xi,NS,i:n given the driving

noise vi,NS,i+1:n.

5.2. Inference 79

5.2 Inference

In this section, we will concretize the distributions used in the algorithms in Chapter 4

when applied to the statistical model for extended target tracking described in Section

5.1. Furthermore, we will introduce a simple MCMC algorithm for inference in our sta-

tistical model, which will be used as a reference algorithm to illustrate the performance

of the algorithms introduced in Chapter 4. This reference algorithm, however, can only

be derived for some special cases of a Bayesian nonparametric state-space model, while

the algorithms introduced in Chapter 4 can be applied to a wide range of Bayesian non-

parametric state-space models. For simplicity, we will only discuss the case NS,i = 1 and

NE,i = N for all targets i ∈ {1, . . . , I}. This setting can easily be adapted to the general

case as discussed in Section 4.2.

As discussed in Section 4.1.1, the algorithms are used to generate samples in order to

approximate an expectation (see (4.6))

J = E(h(x1:I,1:N , c1:I , p∗
c1:I

) | y1:I,1:N = y1:I,1:N), (5.36)

or to infer the most likely class assignment (see (4.8))

ĉjoint,1:I = argmaxc1:I∈NI P(c1:I = c1:I | y1:I,1:N = y1:I,1:N). (5.37)

5.2.1 Conditional Probability Distributions

Before we discuss the specific algorithms, let us first derive, within our statistical model,

the conditional probability distributions that are used in the algorithms presented in

Chapter 4.

Conditional pdf fpi|xi,1:n,yi,1:n
We first consider the conditional pdf of the parameter

triple pi given the states xi,1:n and measurements yi,1:n. By applying Bayes’ theorem and

the chain rule we obtain

fpi|xi,1:n,yi,1:n
(pi | xi,1:n, yi,1:n) ∝ vxi,1:n,yi,1:n|pi

(xi,1:n, yi,1:n | pi)fpi
(pi)

=
∞%

M �=0
vxi,1:n,yi,1:n,Mi,1:n|pi

(xi,1:n, yi,1:n, M
 | pi)fpi
(pi). (5.38)

80 5. Application to Extended Target Tracking

Using that yi,n defines Mi,n, the chain rule, and (5.29), we have

fpi|xi,1:n,yi,1:n
(pi | xi,1:n, yi,1:n)

= vxi,1:n,yi,1:n,Mi,1:n|pi
(xi,1:n, yi,1:n, Mi,1:n | pi)fpi

(pi)

= vxi,1:n,yi,1:n,Mi,1:n|Di,Qi,M̄i
(xi,1:n, yi,1:n, Mi,1:n | Di, Qi, M̄i)fDi

(Di)fQi
(Qi)fM̄i

(M̄i)

= fyi,1:n|Mi,1:n,xi,1:n,Di,Qi,M̄i
(yi,1:n | Mi,1:n, xi,1:n, Di, Qi, M̄i)fDi

(Di)

× fxi,1:n|Di,Qi,M̄i
(xi,1:n | Di, Qi, M̄i)fQi

(Qi)

× pMi,1:n|xi,1:n,Di,Qi,M̄i
(Mi,1:n | xi,1:n, Di, Qi, M̄i)fM̄i

(M̄i). (5.39)

Let us simplify the factors in (5.39), starting with

fyi,1:n|Mi,1:n,xi,1:n,Di,Qi,M̄i
(yi,1:n | Mi,1:n, xi,1:n, Di, Qi, M̄i)fDi

(Di)

= fyi,1:n|Mi,1:n,xi,1:n,Di
(yi,1:n | Mi,1:n, xi,1:n, Di)fDi

(Di)

= fyi,1:n|Mi,1:n,xi,1:n,Di
(yi,1:n | Mi,1:n, xi,1:n, Di)fDi|Mi,1:n,xi,1:n(Di | Mi,1:n, xi,1:n), (5.40)

where the first step can be shown using assumptions A.7 and A.3, and the second step

follows from assumption A.10. Using Bayes’ theorem, that (5.10) is a bijective trans-

formation of zi,n,m given xi,n, and then finally assumption A.11, we can further simplify

(5.40) to

fyi,1:n|Mi,1:n,xi,1:n,Di,Qi,M̄i
(yi,1:n | Mi,1:n, xi,1:n, Di, Qi, M̄i)fDi

(Di)

∝ fDi|yi,1:n,Mi,1:n,xi,1:n(Di | yi,1:n, Mi,1:n, xi,1:n)

= fDi|zi,1:n,Mi,1:n,xi,1:n(Di | zi,1:n, Mi,1:n, xi,1:n)

= fDi|zi,1:n,Mi,1:n
(Di | zi,1:n, Mi,1:n) (5.41)

with zi,n =
�
zi,n,1, . . . , zi,n,Mi,n

�
and (see (5.10))

zi,n,m = R(xi,n)−1(yi,n,m − Hxi,n) = R(xi,n)T(yi,n,m − Hxi,n). (5.42)

In order to further simplify (5.41), first note that we have

fzi,1:n|Mi,1:n,Di
(zi,1:n | Mi,1:n, Di) =

n"
n�=1

M
i,n�"

m=1
fz

i,n�,m|Di
(zi,n�,m | Di)

=
n"

n�=1

M
i,n�"

m=1
N (zi,n�,m; 0, Di), (5.43)

where we have used assumption A.8, (5.12), and that the zi,n,m were assumed conditionally

i.i.d. across n and m given Di. As Di is a diagonal matrix with independent inverse

5.2. Inference 81

gamma distributed entries (see (5.22)–(5.24)) and as the inverse gamma distribution is

the conjugate prior for the variance of the Gaussian distribution,1 it finally follows from

(5.41) and (5.43) that

fyi,1:n|Mi,1:n,xi,1:n,Di,Qi,M̄i
(yi,1:n | Mi,1:n, xi,1:n, Di, Qi, M̄i)fDi

(Di)

∝ Γ−1
�

d2
i,1; αd,1 + 1

2

n%
n�=1

Mi,n� , βd,1 + 1
2

n%
n�=1

M
i,n�%

m=1
z2

i,n�,m,1

�

× Γ−1
�

d2
i,2; αd,2 + 1

2

n%
n�=1

Mi,n� , βd,2 + 1
2

n%
n�=1

M
i,n�%

m=1
z2

i,n�,m,2

�
. (5.44)

with zi,n,m,1, zi,n,m,2, d2
i,1, and d2

i,2 being the elements of zi,n,m and Di, that is,

zi,n,m = [zi,n,m,1 zi,n,m,2]T = R(xi,n)T(yi,n,m − Hxi,n) (5.45)

and (see (5.13))

Di =

d2
i,1 0
0 d2

i,2

 . (5.46)

The second factor in (5.39) to simplify is

fxi,1:n|Di,Qi,M̄i
(xi,1:n | Di, Qi, M̄i)fQi

(Qi) = fxi,1:n|Qi
(xi,1:n | Qi)fQi

(Qi)

∝ fQi|xi,1:n(Qi | xi,1:n), (5.47)

where we have used assumption A.5 and Bayes’ theorem. As

vi,n = xi,n − F xi,n−1 (5.48)

for n ∈ {2, . . . , N}, by (5.2), we can express vi,2:n using xi,1:n, and thus, we can restate

(5.47) as

fxi,1:n|Di,Qi,M̄i
(xi,1:n | Di, Qi, M̄i)fQi

(Qi) ∝ fQi|vi,2:n,xi,1:n(Qi | vi,2:n, xi,1:n)

= fQi|vi,2:n
(Qi | vi,2:n), (5.49)

where we have used assumption A.12. In order to further simplify (5.49), first note that

we have

fvi,2:n|Qi
(vi,2:n | Qi) =

n"
n�=2

fv
i,n� |Qi

(vi,n� | Qi) =
n"

n�=2
N (vi,n� ; 0, Qi), (5.50)

1If p ∼ Γ−1(α, β) and xi|(p = p) i.i.d.∼ N (µ, p) for i ∈ {1, . . . , I}, then p|(x1:I = x1:I) ∼ Γ−1(α�, β�) with
α� = α + I

2 and β� = β + 1
2

&I
i=1(xi − µ)2.

82 5. Application to Extended Target Tracking

as the vi,n are i.i.d. across n given Qi, and Gaussian according to (5.4). Using again the

fact that the inverse gamma distribution is the conjugate prior for the variance of the

Gaussian distribution and that Qi is a diagonal matrix with inverse gamma distributed

entries (see (5.25)–(5.27)), we obtain

fxi,1:n|Di,Qi,M̄i
(xi,1:n | Di, Qi, M̄i)fQi

(Qi)

∝ Γ−1
�

q2
i,1; αv,1 + n − 1, βv,1 + 1

2

n%
n�=2

(v2
i,n�,1 + v2

i,n�,2)
�

× Γ−1
�

q2
i,2; αv,2 + n − 1, βv,2 + 1

2

n%
n�=2

(v2
i,n�,3 + v2

i,n�,4)
�

(5.51)

with vi,n,1, vi,n,2, vi,n,3, vi,n,4, q2
i,1, and q2

i,2 being the elements of vi,n and Qi, that is,

vi,n = [vi,n,1 vi,n,2 vi,n,3 vi,n,4]T (5.52)

and (see (5.5))

Qi =

q2
i,1I2 02×2

02×2 q2
i,2I2

 . (5.53)

The last factor in (5.39) that we will simplify is

pMi,1:n|xi,1:n,Di,Qi,M̄i
(Mi,1:n | xi,1:n, Di, Qi, M̄i)fM̄i

(M̄i) = pMi,1:n|M̄i
(Mi,1:n | M̄i)fM̄i

(M̄i)

∝ fM̄i|Mi,1:n
(M̄i | Mi,1:n), (5.54)

where we have used assumption A.6 and Bayes’ theorem. Note that the Mi,1:n given M̄i

are Poisson distributed according to (5.9) and that M̄i is gamma distributed according to

(5.28). As the gamma distribution is the conjugate prior of the Poisson distribution,2 it

follows that

pMi,1:n|xi,1:n,Di,Qi,M̄i
(Mi,1:n | xi,1:n, Di, Qi, M̄i)fM̄i

(M̄i)

∝ Γ
�

M̄i; αM +
n%

n�=1
Mi,n� , βM + n

�
. (5.55)

Having simplified all factors of (5.39) with (5.44), (5.55), and (5.51), we finally arrive

2If p ∼ Γ(α, β) and xi|(p = p) i.i.d.∼ Pois(p) for i ∈ {1, . . . , I}, then p|(x1:I = x1:I) ∼ Γ(α�, β�) with
α� = α +

&I
i=1 xi and β� = β + I.

5.2. Inference 83

at

fpi|xi,1:n,yi,1:n
(pi | xi,1:n, yi,1:n) = Γ−1

�
d2

i,1; αd,1 + 1
2

n%
n�=1

Mi,n� , βd,1 + 1
2

n%
n�=1

M
i,n�%

m=1
z2

i,n�,m,1

�

× Γ−1
�

d2
i,2; αd,2 + 1

2

n%
n�=1

Mi,n� , βd,2 + 1
2

n%
n�=1

M
i,n�%

m=1
z2

i,n�,m,2

�

× Γ−1
�

q2
i,1; αv,1 + n − 1, βv,1 + 1

2

n%
n�=2

(v2
i,n�,1 + v2

i,n�,2)
�

× Γ−1
�

q2
i,2; αv,2 + n − 1, βv,2 + 1

2

n%
n�=2

(v2
i,n�,3 + v2

i,n�,4)
�

× Γ
�

M̄i; αM +
n%

n�=1
Mi,n� , βM + n

�
(5.56)

with

pi = (Di, Qi, M̄i), (5.57)

Di =

d2
i,1 0
0 d2

i,2

 , (5.58)

Qi =

q2
i,1I2 02×2

02×2 q2
i,2I2

 , (5.59)

yi,n� =
�
yi,n�,1, . . . , yi,n�,M

i,n�

�
, (5.60)

zi,n�,m = R(xi,n�)T(yi,n�,m − Hxi,n�) = [zi,n�,m,1, zi,n�,m,2]T, (5.61)

vi,n� = xi,n� − F xi,n�−1 = [vi,n�,1 vi,n�,2 vi,n�,3 vi,n�,4]T. (5.62)

Conditional pdf fp∗
c |x1:I,1:n,c1:I ,p∗¬c,y1:I,1:n We will also need the conditional pdf of the class

parameter triple p∗
c given the states x1:I,1:n, indicator variables c1:I , other class parameter

triples p∗
¬c, and measurements y1:I,1:n. Using (4.23), we have

fp∗
c |x1:I,1:n,c1:I ,p∗¬c,y1:I,1:n(p∗

c | x1:I,1:n, c1:I , p∗
¬c, y1:I,1:n)

∝
� "

i:ci=c

vxi,1:n,yi,1:n|pi
(xi,1:n, yi,1:n | p∗

c)
�

fG(p∗
c). (5.63)

84 5. Application to Extended Target Tracking

Further, using the same derivation as in (5.39), but using the states and observations of

all targets i with ci = c instead of just a single target, we can restate (5.63) as

fp∗
c |x1:I,1:n,c1:I ,p∗¬c,y1:I,1:n(p∗

c | x1:I,1:n, c1:I , p∗
¬c, y1:I,1:n)

∝ "
i:ci=c

�
fyi,1:n|Mi,1:n,xi,1:n,Di,Qi,M̄i

(yi,1:n | Mi,1:n, xi,1:n, D∗
c , Q∗

c , M̄∗
c)fDi

(D∗
c)

× fxi,1:n|Di,Qi,M̄i
(xi,1:n | D∗

c , Q∗
c , M̄∗

c)fQi
(Q∗

c)

× pMi,1:n|xi,1:n,Di,Qi,M̄i
(Mi,1:n | xi,1:n, D∗

c , Q∗
c , M̄∗

c)fM̄i
(M̄∗

c)
�
. (5.64)

By using almost the same derivations as for (5.44), (5.55), and (5.51), but again using

the states and observations of all targets i with ci = c instead of just a single target, and

then inserting the results into (5.64), we obtain (see (5.56))

fp∗
c |x1:I,1:n,c1:I ,p∗¬c,y1:I,1:n(p∗

c | x1:I,1:n, c1:I , p∗
¬c, y1:I,1:n)

= Γ−1
�

d∗2
c,1; αd,1 + 1

2
%

i:ci=c

n%
n�=1

Mi,n� , βd,1 + 1
2

%
i:ci=c

n%
n�=1

M
i,n�%

m=1
z2

i,n�,m,1

�

× Γ−1
�

d∗2
c,2; αd,2 + 1

2
%

i:ci=c

n%
n�=1

Mi,n� , βd,2 + 1
2

%
i:ci=c

n%
n�=1

M
i,n�%

m=1
z2

i,n�,m,2

�

× Γ
�

M̄∗
c ; αM +

%
i:ci=c

n%
n�=1

Mi,n� , βM +
%

i:ci=c

n

�

× Γ−1
�

q∗2
c,1; αv,1 + (n − 1)

%
i:ci=c

1, βv,1 + 1
2

%
i:ci=c

n%
n�=2

(v2
i,n�,1 + v2

i,n�,2)
�

× Γ−1
�

q∗2
c,2; αv,2 + (n − 1)

%
i:ci=c

1, βv,2 + 1
2

%
i:ci=c

n%
n�=2

(v2
i,n�,3 + v2

i,n�,4)
�

(5.65)

with (5.57)–(5.62). Note that in (5.65) we use the data of all targets in each class, instead

of the data of a single target as in (5.56).

5.2.2 Reference Algorithm

To illustrate the performance of the algorithms introduced in Chapter 4 for the statistical

model of this chapter, we will first derive a simple MCMC algorithm that uses cycles of

MCMC kernels (see Section 2.4.3) as a reference. That is, we develop kernels to sample

each random vector of the states x1:I,1:N , indicator variables c1:I , and parameter triples

p∗
c1:I

separately given the current samples of every other random vector. Note that this

algorithm can only be derived for some special cases of a Bayesian nonparametric state-

space model.

The algorithm starts with an intialization of arbitrary samples x
(1)
1:I,1:N , c

(1)
1:I , and p

∗(1)
1:c(1)

1:I
.

5.2. Inference 85

5.2.2.1 Sampling the States

We use a separate Metropolis-Hastings kernel (see Sections 2.4.2 and 2.4.3) to sample

the states x1:I,n at each time n of each target i. We treat the states and measurements

(xi,1:N , yi,1:N) of each target i separately as the states and measurements (xi,1:N , yi,1:N)
given the parameter triple pi or equivalently p∗

ci
are independent of the states and mea-

surements (xi�,1:N , yi�,1:N) of every other target i
 �= i (see assumption A.1).

Time Step n ∈ {2, . . . , N − 1} Before we define the Metropolis-Hastings kernel for

the first time step, let us first consider the time steps n ∈ {2, . . . , N − 1}. We choose

our proposal pdf for xi,n for all n ∈ {2, . . . , N − 1} as the conditional pdf of the state

xi,n given every other state xi,1:n−1, xi,n+1:N and the parameter triple p∗
ci
, that is, every

random variable except the state xi,n and the measurements yi,1:N , that is,

gi,n
�
xi,n

))) x
(k)
i,1:n−1, x

(k−1)
i,n+1:N , p

∗(k−1)
c

(k−1)
i

�
= fxi,n|xi,1:n−1,xi,n+1:N ,p∗ci

�
xi,n

))) x
(k)
i,1:n−1, x

(k−1)
i,n+1:N , p

∗(k−1)
c

(k−1)
i

�
. (5.66)

Using assumption A.2, it can be shown that the state xi,n is conditionally independent of

the states xi,NS,i:n−2 and xi,n+2:NE,i
given the previous state xi,n−1, the next state xi,n+1,

and the parameter triple p∗
ci
, and therefore, we can simplify (5.66) to

gi,n
�
xi,n

))) x
(k)
i,1:n−1, x

(k−1)
i,n+1:N , p

∗(k−1)
c

(k−1)
i

�
= fxi,n|xi,n−1,xi,n+1,p∗ci

�
xi,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

�
(5.67)

Using Bayes’ theorem, we obtain further

gi,n
�
xi,n

))) x
(k)
i,1:n−1, x

(k−1)
i,n+1:N , p

∗(k−1)
c

(k−1)
i

�
∝ fxi,n+1|xi,n−1,xi,n,p∗ci

�
x

(k−1)
i,n+1

))) x
(k)
i,n−1, xi,n, p

∗(k−1)
c

(k−1)
i

�
fxi,n|xi,n−1,p∗ci

�
xi,n

))) x
(k)
i,n−1, p

∗(k−1)
c

(k−1)
i

�
.

(5.68)

The first factor in (5.68) can be expressed as

fxi,n+1|xi,n−1,xi,n,p∗ci

�
x

(k−1)
i,n+1

))) x
(k)
i,n−1, xi,n, p

∗(k−1)
c

(k−1)
i

�
= fxi,n+1|xi,n,p∗ci

�
x

(k−1)
i,n+1

))) xi,n, p
∗(k−1)
c

(k−1)
i

�
. (5.69)

where we have used assumption A.2. Using assumptions A.2 and A.5, it can be shown

that xi,n+1 is conditionally independent of D∗
ci
and M̄∗

ci
given xi,n and Q∗

ci
, and therefore,

86 5. Application to Extended Target Tracking

we have

fxi,n+1|xi,n−1,xi,n,p∗ci

�
x

(k−1)
i,n+1

))) x
(k)
i,n−1, xi,n, p

∗(k−1)
c

(k−1)
i

�
= fxi,n+1|xi,n,Q∗

ci

�
x

(k−1)
i,n+1

))) xi,n, Q
∗(k−1)
c

(k−1)
i

�
. (5.70)

Inserting (5.6) into (5.70), we obtain

fxi,n+1|xi,n−1,xi,n,p∗ci

�
x

(k−1)
i,n+1

))) x
(k)
i,n−1, xi,n, p

∗(k−1)
c

(k−1)
i

�
= N

�
x

(k−1)
i,n+1 ; F xi,n, Q

∗(k−1)
c

(k−1)
i

�
= N

�
F −1x

(k−1)
i,n+1 ; xi,n, F −1Q

∗(k−1)
c

(k−1)
i

(F −1)T
�
. (5.71)

The second factor in (5.68) can be expressed as

fxi,n|xi,n−1,p∗ci

�
xi,n

))) x
(k)
i,n−1, p

∗(k−1)
c

(k−1)
i

�
= N

�
xi,n; F x

(k)
i,n−1, Q

∗(k−1)
c

(k−1)
i

�
, (5.72)

where we have also used (5.6). As the conjugate prior for the mean of a Gaussian distri-

bution is the Gaussian distribution,3 and as (5.72) is the prior for the mean of (5.71), it

follows that we can simplify (5.68) to obtain the final expression for our proposal pdf

gi,n
�
xi,n

))) x
(k)
i,1:n−1, x

(k−1)
i,n+1:N , p

∗(k−1)
c

(k−1)
i

�
= N

�
xi,n; µ(k)

gi,n , Σ(k)
gi,n

�
(5.73)

with

µ(k)
gi,n =

��
Q

∗(k−1)
c

(k−1)
i

�−1
+

�
F −1Q

∗(k−1)
c

(k−1)
i

(F −1)T
�−1�−1

×
��

Q
∗(k−1)
c

(k−1)
i

�−1
F x

(k)
i,n−1 +

�
F −1Q

∗(k−1)
c

(k−1)
i

(F −1)T
�−1

F −1x
(k−1)
i,n+1

�
=

��
Q

∗(k−1)
c

(k−1)
i

�−1
+ F T

�
Q

∗(k−1)
c

(k−1)
i

�−1
F

�−1

×
��

Q
∗(k−1)
c

(k−1)
i

�−1
F x

(k)
i,n−1 + F T

�
Q

∗(k−1)
c

(k−1)
i

�−1
x

(k−1)
i,n+1

�
(5.74)

and

Σ(k)
gi,n =

��
Q

∗(k−1)
c

(k−1)
i

�−1
+

�
F −1Q

∗(k−1)
c

(k−1)
i

(F −1)T
�−1�−1

=
��

Q
∗(k−1)
c

(k−1)
i

�−1
+ F T

�
Q

∗(k−1)
c

(k−1)
i

�−1
F

�−1
. (5.75)

Following Section 2.4.3, our target pdf is

fxi,n|xi,1:n−1,xi,n+1:N ,x¬i,1:N ,p∗
c1:I ,c1:I ,y1:I,1:N (xi,n | xi,1:n−1, xi,n+1:N , x¬i,1:N , p∗

c1:I
, c1:I , y1:I,1:N).

(5.76)

3If p ∼ N (µ, Σ1) and xi|(p = p) ∼ N (p, Σ2) for i ∈ {1, . . . , I}, then p|(x1:I = x1:I) ∼ N (µ�, Σ�
1) with

µ� = (Σ−1
1 + IΣ−1

2)−1�
Σ−1

1 µ + Σ−1
2

&I
i=1 xi

�
and Σ�

1 =
�
Σ−1

1 + IΣ−1
2

�−1.

5.2. Inference 87

Using assumption A.1 and then assumptions A.2 and A.3, it can be shown that

fxi,n|xi,1:n−1,xi,n+1:N ,x¬i,1:N ,p∗
c1:I ,c1:I ,y1:I,1:N (xi,n | xi,1:n−1, xi,n+1:N , x¬i,1:N , p∗

c1:I
, c1:I , y1:I,1:N)

= fxi,n|xi,1:n−1,xi,n+1:N ,p∗ci
,yi,1:N (xi,n | xi,1:n−1, xi,n+1:N , p∗

ci
, yi,1:N)

= fxi,n|xi,n−1,xi,n+1,p∗ci
,yi,n(xi,n | xi,n−1, xi,n+1, p∗

ci
, yi,n). (5.77)

Therefore, a candidate x̄
(k)
i,n , sampled from gi,n

�
x̄

(k)
i,n

))) x
(k)
i,1:n−1, x

(k−1)
i,n+1:N , p

∗(k−1)
c

(k−1)
i

�
, is accepted

x
(k)
i,n = x̄

(k)
i,n with probability

P
(k)
a,i,n = min

�
1, ρn

�
x̄

(k)
i,n , x

(k−1)
i,n , x

(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, yi,n

��
, (5.78)

where

ρn

�
x̄

(k)
i,n , x

(k−1)
i,n , x

(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, yi,n

�

=
fxi,n|xi,n−1,xi,n+1,p∗ci

,yi,n

�
x̄

(k)
i,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, yi,n

�
fxi,n|xi,n−1,xi,n+1,p∗ci

,yi,n

�
x

(k−1)
i,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, yi,n

�

×
gi,n

�
x

(k−1)
i,n

))) x
(k)
i,1:n−1, x

(k−1)
i,n+1:N , p

∗(k−1)
c

(k−1)
i

�
gi,n

�
x̄

(k)
i,n

))) x
(k)
i,1:n−1, x

(k−1)
i,n+1:N , p

∗(k−1)
c

(k−1)
i

� , (5.79)

or rejected x
(k)
i,n = x

(k−1)
i,n with probability 1 − P

(k)
a,i,n.

In order to simplify (5.79), we insert (5.67) to obtain

ρn

�
x̄

(k)
i,n , x

(k−1)
i,n , x

(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, yi,n

�

=
fxi,n|xi,n−1,xi,n+1,p∗ci

,yi,n

�
x̄

(k)
i,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, yi,n

�
fxi,n|xi,n−1,xi,n+1,p∗ci

,yi,n

�
x

(k−1)
i,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, yi,n

�

×
fxi,n|xi,n−1,xi,n+1,p∗ci

�
x

(k−1)
i,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

�
fxi,n|xi,n−1,xi,n+1,p∗ci

�
x̄

(k)
i,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

� . (5.80)

88 5. Application to Extended Target Tracking

Before we continue with the simplification of (5.80), first note that

fxi,n|xi,n−1,xi,n+1,p∗ci
,yi,n

�
xi,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, yi,n

�
fxi,n|xi,n−1,xi,n+1,p∗ci

�
xi,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

�

=
fxi,n|xi,n−1,xi,n+1,p∗ci

,yi,n,Mi,n

�
xi,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, yi,n, Mi,n

�
fxi,n|xi,n−1,xi,n+1,p∗ci

,Mi,n

�
xi,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, Mi,n

�

=
fyi,n|Mi,n,xi,n,xi,n−1,xi,n+1,p∗ci

�
yi,n

))) Mi,n, xi,n, x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

�
fyi,n|Mi,n,xi,n−1,xi,n+1,p∗ci

�
yi,n

))) Mi,n, x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

�

×
fxi,n|xi,n−1,xi,n+1,p∗ci

,Mi,n

�
xi,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, Mi,n

�
fxi,n|xi,n−1,xi,n+1,p∗ci

,Mi,n

�
xi,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, Mi,n

�

=
fyi,n|Mi,n,xi,n,xi,n−1,xi,n+1,p∗ci

,
�
yi,n

))) Mi,n, xi,n, x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

�
fyi,n|Mi,n,xi,n−1,xi,n+1,p∗ci

�
yi,n

))) Mi,n, x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

� , (5.81)

where the first step can be shown using assumption A.6 and we have used Bayes’ theorem

in the second step. Inserting (5.81) into (5.80) twice, we further obtain

ρn

�
x̄

(k)
i,n , x

(k−1)
i,n , x

(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, yi,n

�

=
fyi,n|Mi,n,xi,n,xi,n−1,xi,n+1,p∗ci

�
yi,n

))) Mi,n, x̄
(k)
i,n , x

(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

�
fyi,n|Mi,n,xi,n−1,xi,n+1,p∗ci

�
yi,n

))) Mi,n, x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

�

×
fyi,n|Mi,n,xi,n−1,xi,n+1,p∗ci

�
yi,n

))) Mi,n, x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

�
fyi,n|Mi,n,xi,n,xi,n−1,xi,n+1,p∗ci

�
yi,n

))) Mi,n, x
(k−1)
i,n , x

(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

�

=
fyi,n|Mi,n,xi,n,xi,n−1,xi,n+1,p∗ci

�
yi,n

))) Mi,n, x̄
(k)
i,n , x

(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

�
fyi,n|Mi,n,xi,n,xi,n−1,xi,n+1,p∗ci

�
yi,n

))) Mi,n, x
(k−1)
i,n , x

(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

� . (5.82)

It can be shown, using assumption A.3, that we can simplify 5.82 to

ρn

�
x̄

(k)
i,n , x

(k−1)
i,n , x

(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, yi,n

�

=
fyi,n|Mi,n,xi,n,p∗ci

�
yi,n

))) Mi,n, x̄
(k)
i,n , p

∗(k−1)
c

(k−1)
i

�
fyi,n|Mi,n,xi,n,p∗ci

�
yi,n

))) Mi,n, x
(k−1)
i,n , p

∗(k−1)
c

(k−1)
i

�

=
fyi,n|Mi,n,xi,n,D∗

ci

�
ȳ

(k)
i,n

))) Mi,n, x̄
(k)
i,n , D

∗(k−1)
c

(k−1)
i

�
fyi,n|Mi,n,xi,n,D∗

ci

�
y

(k−1)
i,n

))) Mi,n, x
(k−1)
i,n , D

∗(k−1)
c

(k−1)
i

� , (5.83)

where we have used assumption A.7 in the second step. Finally, as (5.10) is a bijective

5.2. Inference 89

affine transformation, it follows that

ρn

�
x̄

(k)
i,n , x

(k−1)
i,n , x

(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

, yi,n

�

=
fzi,n|Mi,n,xi,n,D∗

ci

�
z̄

(k)
i,n

))) Mi,n, x̄
(k)
i,n , D

∗(k−1)
c

(k−1)
i

�
fzi,n|Mi,n,xi,n,D∗

ci
,
�
z

(k−1)
i,n

))) Mi,n, x
(k−1)
i,n , D

∗(k−1)
c

(k−1)
i

�

=
fzi,n|Mi,n,D∗

ci

�
z̄

(k)
i,n

))) Mi,n, D
∗(k−1)
c

(k−1)
i

�
fzi,n|Mi,n,D∗

ci

�
z

(k−1)
i,n

))) Mi,n, D
∗(k−1)
c

(k−1)
i

�

=

#Mi,n
m=1 N

�
z̄

(k)
i,n,m; 0, D

∗(k−1)
c

(k−1)
i

�
#Mi,n

m=1 N
�
z

(k−1)
i,n,m ; 0, D

∗(k−1)
c

(k−1)
i

� , (5.84)

with z̄
(k)
i,n,m = R(x̄(k)

i,n)T(yi,n,m −Hx̄
(k)
i,n) and z

(k−1)
i,n,m = R(x(k−1)

i,n)T(yi,n,m −Hx
(k−1)
i,n), where

we have used assumption A.9 in the second step as well as assumption A.8, (5.12), and

that the zi,n,m were assumed conditionally i.i.d. across n and m given Di in the second

step. Therefore, (5.78) becomes

P
(k)
a,i,n = min

1,

#Mi,n
m=1 N

�
z̄

(k)
i,n,m; 0, D

∗(k−1)
c

(k−1)
i

�
#Mi,n

m=1 N
�
z

(k−1)
i,n,m ; 0, D

∗(k−1)
c

(k−1)
i

�
. (5.85)

Time Step 1 Similarly to (5.66), we choose our proposal pdf for the first time step as

gi,1
�
xi,1

))) x
(k−1)
i,2:N , p

∗(k−1)
c

(k−1)
i

�
= fxi,1|xi,2:N ,p∗ci

�
xi,1

))) x
(k−1)
i,2:N , p

∗(k−1)
c

(k−1)
i

�
. (5.86)

We can simplify (5.86), using same derivation as for (5.68) but without the condition on

xi,1:n−1 or xi,n−1 in all occurring pdfs, to

gi,1
�
xi,1

))) x
(k−1)
i,2:N , p

∗(k−1)
c

(k−1)
i

�
∝ fxi,2|xi,1,p∗ci

�
x

(k−1)
i,2

))) xi,1, p
∗(k−1)
c

(k−1)
i

�
fxi,1|p∗ci

�
xi,1

))) p
∗(k−1)
c

(k−1)
i

�
. (5.87)

The first factor in (5.87) is (5.72) for n = 2, and the second factor is

fxi,1|p∗ci

�
xi,1

))) p
∗(k−1)
c

(k−1)
i

�
= N (xi,1; 0, Σx), (5.88)

where we have used assumption A.4 and (5.1). Similarly to (5.73), we can use the facts

that (5.88) is the prior for the mean of the first factor in (5.87) and that the conjugate

prior for the mean of a Gaussian distribution is the Gaussian distribution, and obtain

gi,1
�
xi,1

))) x
(k−1)
i,2:N , p

∗(k−1)
c

(k−1)
i

�
= N

�
xi,1; µ(k)

gi,1 , Σ(k)
gi,1

�
(5.89)

90 5. Application to Extended Target Tracking

with

µ(k)
gi,1 =

�
Σ−1

x +
�
F −1Q

∗(k−1)
c

(k−1)
i

(F −1)T
�−1�−1

×
�
Σ−1

x 0 +
�
F −1Q

∗(k−1)
c

(k−1)
i

(F −1)T
�−1

F −1x
(k−1)
i,2

�
=

�
Σ−1

x + F T
�
Q

∗(k−1)
c

(k−1)
i

�−1
F

�−1
F T

�
Q

∗(k−1)
c

(k−1)
i

�−1
x

(k−1)
i,2 (5.90)

and

Σ(k)
gi,1 =

�
Σ−1

x +
�
F −1Q

∗(k−1)
c

(k−1)
i

(F −1)T
�−1�−1

=
�
Σ−1

x + F T
�
Q

∗(k−1)
c

(k−1)
i

�−1
F

�−1
. (5.91)

The target pdf for the first time step is

fxi,1|xi,2:N ,x¬i,1:N ,p∗
c1:I ,c1:I ,y1:I,1:N (xi,1 | xi,2:N , x¬i,1:N , p∗

c1:I
, c1:I , y1:I,1:N). (5.92)

Using assumption A.1 and then assumptions A.2 and A.3, it can be shown that

fxi,1|xi,2:N ,x¬i,1:N ,p∗
c1:I ,c1:I ,y1:I,1:N (xi,1 | xi,2:N , x¬i,1:N , p∗

c1:I
, c1:I , y1:I,1:N)

= fxi,1|xi,2:N ,p∗ci
,yi,1:N (xi,1 | xi,2:N , p∗

ci
, yi,1:N)

= fxi,1|xi,2,p∗ci
,yi,1(xi,1 | xi,2, p∗

ci
, yi,1). (5.93)

Therefore, a candidate x̄
(k)
i,1 , sampled from gi,1

�
x̄

(k)
i,1

))) x
(k−1)
i,2 , p

∗(k−1)
c

(k−1)
i

�
, is accepted

x
(k)
i,1 = x̄

(k)
i,1 with probability

P
(k)
a,i,1 = min

�
1, ρ1

�
x̄

(k)
i,1 , x

(k−1)
i,1 , x

(k−1)
i,2 , p

∗(k−1)
c

(k−1)
i

, yi,1

��
, (5.94)

where

ρ1
�
x̄

(k)
i,1 , x

(k−1)
i,1 , x

(k−1)
i,2 , p

∗(k−1)
c

(k−1)
i

, yi,1

�

=
fxi,1|xi,2,p∗ci

,yi,1

�
x̄

(k)
i,1

))) x
(k−1)
i,2 , p

∗(k−1)
c

(k−1)
i

, yi,1

�
gi,1

�
x

(k−1)
i,1

))) x
(k−1)
i,2 , p

∗(k−1)
c

(k−1)
i

�
fxi,1|xi,2,p∗ci

,yi,1

�
x

(k−1)
i,1

))) x
(k−1)
i,2 , p

∗(k−1)
c

(k−1)
i

, yi,1

�
gi,1

�
x̄

(k)
i,1

))) x
(k−1)
i,2 , p

∗(k−1)
c

(k−1)
i

� , (5.95)

or rejected x
(k)
i,1 = x

(k−1)
i,1 with probability 1 − P

(k)
a,i,1.

Using the same derivation as for (5.84) with n = 1 and without the condition on xi,1:n−1

or xi,n−1 in all occurring pdfs, we can simplify (5.95) to

ρ1
�
x̄

(k)
i,1 , x

(k−1)
i,1 , x

(k−1)
i,2 , p

∗(k−1)
c

(k−1)
i

, yi,1

�
=

#Mi,1
m=1 N

�
z̄

(k)
i,1,m; 0, D

∗(k−1)
c

(k−1)
i

�
#Mi,1

m=1 N
�
z

(k−1)
i,1,m ; 0, D

∗(k−1)
c

(k−1)
i

� , (5.96)

5.2. Inference 91

with z̄
(k)
i,1,m = R(x̄(k)

i,1)T(yi,1,m − Hx̄
(k)
i,1) and z

(k−1)
i,1,m = R(x(k−1)

i,1)T(yi,1,m − Hx
(k−1)
i,1), and

therefore (5.94) becomes

P
(k)
a,i,1 = min

1,

#Mi,1
m=1 N

�
z̄

(k)
i,1,m; 0, D

∗(k−1)
c

(k−1)
i

�
#Mi,1

m=1 N
�
z

(k−1)
i,1,m ; 0, D

∗(k−1)
c

(k−1)
i

�
. (5.97)

Time Step N For the last time step N , we choose our proposal pdf as

gi,N
�
xi,N

))) x
(k)
i,1:N−1, p

∗(k−1)
c

(k−1)
i

�
= fxi,N |xi,1:N−1,p∗ci

�
xi,N

))) x
(k)
i,1:N−1, p

∗(k−1)
c

(k−1)
i

�
. (5.98)

Using assumption A.2, we obtain

gi,N
�
xi,N

))) x
(k)
i,1:N−1, p

∗(k−1)
c

(k−1)
i

�
= fxi,N |xi,N−1,p∗ci

�
xi,N

))) x
(k)
i,N−1, p

∗(k−1)
c

(k−1)
i

�
, (5.99)

which is

gi,N
�
xi,N

))) x
(k)
i,1:N−1, p

∗(k−1)
c

(k−1)
i

�
= N

�
xi,N ; F x

(k−1)
i,N−1, Q

∗(k−1)
c

(k−1)
i

�
, (5.100)

according to (5.6).

Here, the target pdf is

fxi,N |xi,1:N−1,x¬i,1:N ,p∗
c1:I ,c1:I ,y1:I,1:N (xi,N | xi,1:N−1, x¬i,1:N , p∗

c1:I
, c1:I , y1:I,1:N). (5.101)

Using assumption A.1 and then assumptions A.2 and A.3, it can be shown that

fxi,N |xi,1:N−1,x¬i,1:N ,p∗
c1:I ,c1:I ,y1:I,1:N (xi,N | xi,1:N−1, x¬i,1:N , p∗

c1:I
, c1:I , y1:I,1:N)

= fxi,N |xi,1:N−1,p∗ci
,yi,1:N (xi,N | xi,1:N−1, p∗

ci
, c1:I , yi,1:N)

= fxi,N |xi,N−1,p∗ci
,yi,N (xi,N | xi,N−1, p∗

ci
, yi,N), (5.102)

Therefore, a candidate x̄
(k)
i,N , sampled from gi,N

�
x̄

(k)
i,N

))) x
(k)
i,1:N−1, p

∗(k−1)
c

(k−1)
i

�
, is accepted

x
(k)
i,N = x̄

(k)
i,N with probability

P
(k)
a,i,N = min

�
1, ρN

�
x̄

(k)
i,N , x

(k−1)
i,N , x

(k)
i,N−1, p

∗(k−1)
c

(k−1)
i

, yi,N

��
, (5.103)

where

ρN

�
x̄

(k)
i,N , x

(k−1)
i,N , x

(k)
i,N−1, p

∗(k−1)
c

(k−1)
i

, yi,N

�

=
fxi,N |xi,N−1,p∗ci

,yi,N

�
x̄

(k)
i,N

))) x
(k)
i,N−1, p

∗(k−1)
c

(k−1)
i

, yi,N

�
gi,N

�
x

(k−1)
i,N

))) x
(k)
i,1:N−1, p

∗(k−1)
c

(k−1)
i

�
fxi,N |xi,N−1,p∗ci

,yi,N

�
x

(k−1)
i,N

))) x
(k)
i,N−1, p

∗(k−1)
c

(k−1)
i

, yi,N

�
gi,N

�
x̄

(k)
i,N

))) x
(k)
i,1:N−1, p

∗(k−1)
c

(k−1)
i

� , (5.104)

92 5. Application to Extended Target Tracking

or rejected x
(k)
i,N = x

(k−1)
i,N with probability 1 − P

(k)
a,i,N .

Using the same derivation as for (5.84) with n = N and without the condition on

xi,n+1:N or xi,n+1 in all occurring pdfs, we can simplify (5.104) to

ρN

�
x̄

(k)
i,N , x

(k−1)
i,N , x

(k)
i,N−1, p

∗(k−1)
c

(k−1)
i

, yi,N

�
=

#Mi,N
m=1 N

�
z̄

(k)
i,N ,m; 0, D

∗(k−1)
c

(k−1)
i

�
#Mi,N

m=1 N
�
z

(k−1)
i,N ,m; 0, D

∗(k−1)
c

(k−1)
i

� (5.105)

with z̄
(k)
i,N ,m = R(x̄(k)

i,N)T(yi,N ,m −Hx̄
(k)
i,N) and z

(k−1)
i,N ,m = R(x(k−1)

i,N)T(yi,N ,m −Hx
(k−1)
i,N), and

therefore have

P
(k)
a,i,N = min

1,

#Mi,N
m=1 N

�
z̄

(k)
i,N ,m; 0, D

∗(k−1)
c

(k−1)
i

�
#Mi,N

m=1 N
�
z

(k−1)
i,N ,m; 0, D

∗(k−1)
c

(k−1)
i

�
. (5.106)

5.2.2.2 Sampling the Indicator Variables and Parameters

As for the particle Markov chain Monte Carlo Algorithm outlined in Section 4.1.2, we

use Algorithm 4.3 to sample the indicator variables c1:I and parameter triples p∗
c1:I

. More

specifically, we sample ci = c ∈
�
c

(k)
1 , . . . , c

(k)
i−1, c

(k−1)
i+1 , . . . , c

(k−1)
I

�
with the conditional

probability (see (4.16))

b
(k)
i,c = P

�
ci = c

))) c¬i = c
(k)
¬i , p∗

c¬i
= p

∗(k−1)
c

(k)
¬i

, x1:I,1:N = x
(k)
1:I,1:N , y1:I,1:N = y1:I,1:N

�
, (5.107)

for which an expression is obtained by inserting (5.7), (5.8), and (5.21) into (4.19), that

is,

b
(k)
i,c ∝ 1

α + I − 1

�
i−1%
i�=1

11
�
c

(k)
i� = c

�
+

I%
i�=i+1

11
�
c

(k−1)
i� = c

��

×
�

N"
n=1

Pois
�
Mi,n; M̄∗(k−1)

c

� Mi,n"
m=1

N
�
yi,n,m; Hx

(k)
i,n , R

�
x

(k)
i,n

�
D∗(k−1)

c R
�
x

(k)
i,n

�T��

× N
�
x

(k)
i,1 ; 0, Σx

� N"
n�=2

N
�
x

(k)
i,n� ; F x

(k)
i�,n�−1, Q∗(k−1)

c

�
. (5.108)

Furthermore, we sample ci as being distinct from all the other indicator variables, that

is, ci /∈
�
c

(k)
1 , . . . , c

(k)
i−1, c

(k−1)
i+1 , . . . , c

(k−1)
I

�
, with the conditional probability (see (4.17))

b
(k)
i,0 = P

�
ci /∈

�
c

(k)
1 , . . . , c

(k)
i−1, c

(k−1)
i+1 , . . . , c

(k−1)
I

�))) c¬i = c
(k)
¬i , p∗

c¬i
= p

∗(k−1)
c

(k)
¬i

, x1:I,1:N = x
(k)
1:I,1:N ,

y1:I,1:N = y1:I,1:N

�
, (5.109)

5.2. Inference 93

for which an expression is obtained by inserting (5.7), (5.8), (5.21), (5.29), and (5.56) into

(4.20), that is,

b
(k)
i,0 ∝ α

α + I − 1

× Γ−1
�
d̃2

1; αd,1, βd,1

�
Γ−1

�
d̃2

1; αd,1 + 1
2

&N
n=1 Mi,n, βd,1 + 1

2
&N

n=1
&Mi,n

m=1

�
z

(k)
i,n,m,1

�2�
× Γ−1

�
d̃2

2; αd,2, βd,2

�
Γ−1

�
d̃2

2; αd,2 + 1
2

&N
n=1 Mi,n, βd,2 + 1

2
&N

n=1
&Mi,n

m=1

�
z

(k)
i,n,m,2

�2�
× Γ

� ˜̄M ; αM, βM

�
Γ

� ˜̄M ; αM + &N
n=1 Mi,n, βM + N

�
× Γ−1

�
q̃2

1; αv,1, βv,1

�
Γ−1

�
q̃2

1; αv,1 + N − 1, βv,1 + 1
2

&N
n=2

��
v

(k)
i,n,1

�2
+

�
v

(k)
i,n,2

�2��
× Γ−1

�
q̃2

2; αv,2, βv,2

�
Γ−1

�
q̃2

2; αv,2 + N − 1, βv,2 + 1
2

&N
n=2

��
v

(k)
i,n,3

�2
+

�
v

(k)
i,n,4

�2��
×

 N"
n=1

Pois
�
Mi,n; ˜̄M

� Mi,n"
m=1

N
�
yi,n,m; Hx

(k)
i,n , R

�
x

(k)
i,n

�
D̃R

�
x

(k)
i,n

�T�
× N

�
x

(k)
i,1 ; 0, Σx

� N"
n�=2

N
�
x

(k)
i,n� ; F x

(k)
i,n�−1, Q̃

�
(5.110)

for any p̃ =
�
D̃, Q̃, ˜̄M

�
with

D̃ =

d̃2
1 0

0 d̃2
2

 , (5.111)

Q̃ =

 q̃2
1I2 02×2

02×2 q̃2
2I2

 , (5.112)

and fpi
(p̃) > 0 (where fpi

(p̃) is given by (5.33) with pi replaced by p̃). The samples of

the indicator variables c
(k)
i that are distinct from the other indicator variables are assigned

a new value c
(k)
i = max

�
maxi�∈{1,...,i−1} c

(k)
i� , c(k−1)

max

�
+ 1. Furthermore, a parameter triple

p
∗(k−1)
c

(k)
i

has to be sampled, which will be discussed presently.

The parameter triple samples p∗(k)
c are generated from the conditional pdf (5.65), that

94 5. Application to Extended Target Tracking

is,

fp∗
c |x1:I,1:n,c1:I ,p∗¬c,y1:I,1:n

�
p∗(k)

c

))) x
(k)
1:I,1:N , c

(k)
1:I , p∗(k)

¬c , y1:I,1:N

�
= Γ−1

d∗2
c,1; αd,1 + 1

2
%

i:ci=c

N%
n=1

Mi,n, βd,1 + 1
2

%
i:ci=c

N%
n=1

Mi,n%
m=1

�
z

(k)
i,n,m,1

�2


× Γ−1

d∗2
c,2; αd,2 + 1

2
%

i:ci=c

N%
n=1

Mi,n, βd,2 + 1
2

%
i:ci=c

N%
n=1

Mi,n%
m=1

�
z

(k)
i,n,m,2

�2


× Γ
M̄∗

c ; αM +
%

i:ci=c

N%
n=1

Mi,n, βM +
%

i:ci=c

N


× Γ−1

q∗2
c,1; αv,1 + (N − 1)

%
i:ci=c

1, βv,1 + 1
2

%
i:ci=c

N%
n=2

��
v

(k)
i,n,1

�2
+

�
v

(k)
i,n,2

�2
�

× Γ−1

q∗2
c,2; αv,2 + (N − 1)

%
i:ci=c

1, βv,2 + 1
2

%
i:ci=c

N%
n=2

��
v

(k)
i,n,3

�2
+

�
v

(k)
i,n,4

�2
� (5.113)

with (5.57)–(5.62) and the obvious changes to include the sample index k. Note that

the parameter triple p
∗(k−1)
c

(k)
i

for a newly generated class, as discussed above, is also sam-

pled from (5.113), but with the newest currently available samples of the other random

variables.

5.2.2.3 Summary

The pseudo-code for one iteration of the complete algorithm is provided in Algorithm 5.1.

5.2.3 Particle Markov Chain Monte Carlo Algorithm

In this section, we discuss the Particle Markov Chain Monte Carlo (PMCMC) algorithm

for inference in Bayesian nonparametric state-space models from Section 4.1.2 applied to

the extended target tracking model of this chapter. The algorithm can be directly applied

by using (5.7), (5.8), (5.21), the conditional pdfs presented in Section 5.2.1, and one of

the following two proposal pdfs.

Bootstrap-Type Proposal pdf The first proposal pdfs that we consider are (see (5.1))

g1(xi,1 | p∗
ci

, yi,1) = N (xi,1; 0, Σx), (5.114)

and (see (5.6))

g(xi,n | xi,n−1, p∗
ci

, yi,n) = N (xi,n; F xi,n−1, Q∗
ci

). (5.115)

5.2. Inference 95

Algorithm 5.1 Gibbs sampler for extended target tracking
Input: x

(k−1)
1:I,1:N , c

(k−1)
1:I , c(k−1)

max , p
∗(k−1)
c

(k−1)
1:I

, y1:I,1:N

1: for all i = 1, . . . , I do
2: sample x̄

(k)
i,1 from gi,1

�
x̄

(k)
i,1

))) x
(k−1)
i,2 , p

∗(k−1)
c

(k−1)
i

�
(see (5.89))

3: set x
(k)
i,1 = x̄

(k)
i,1 with probability P

(k)
a,i,1 (see (5.97))

else set x
(k)
i,1 = x

(k−1)
i,1

4: for all n = 2, . . . , N − 1 do
5: sample x̄

(k)
i,n from gi,n

�
x̄

(k)
i,n

))) x
(k)
i,n−1, x

(k−1)
i,n+1 , p

∗(k−1)
c

(k−1)
i

�
(see (5.73))

6: set x
(k)
i,n = x̄

(k)
i,n with probability P

(k)
a,i,n (see (5.85))

else set x
(k)
i,n = x

(k−1)
i,n

7: end for
8: sample x̄

(k)
i,N from gi,N

�
x̄

(k)
i,N

))) x
(k)
i,N−1, p

∗(k−1)
c

(k−1)
i

�
(see (5.100))

9: set x
(k)
i,N = x̄

(k)
i,N with probability P

(k)
a,i,N (see (5.106))

else set x
(k)
i,N = x

(k−1)
i,N

10: end for
11: for all i = 1, . . . , I do
12: sample c

(k)
i = c with probability b

(k)
i,c (see (5.108) and (5.110))

for all c ∈
�
0, c

(k)
1 , . . . , c

(k)
i−1, c

(k−1)
i+1 , . . . , c

(k−1)
I

�
13: if c

(k)
i = 0

set c
(k)
i = max

�
maxi�∈{1,...,i−1} c

(k)
i� , c(k−1)

max

�
+ 1

sample p
∗(k−1)
c

(k)
i

from (5.113)
14: end for
15: set c(k)

max = max
�

maxi∈{1,...,I} c
(k)
i , c(k−1)

max

�
16: for all c ∈

�
c

(k)
1 , . . . , c

(k)
I

�
do

17: sample p∗(k)
c from (5.113)

18: end for
Output: x

(k)
1:I,1:N , c

(k)
1:I , c(k)

max, p
∗(k)
c

(k)
1:I

96 5. Application to Extended Target Tracking

with p∗
ci

= (D∗
ci

, Q∗
ci

, M̄∗
ci

). Note that g1(xi,1 | p∗
ci

, yi,1) and g(xi,n | xi,n−1, p∗
ci

, yi,n) do not

involve the measurements yi,n. A particle filter for a state-space model that uses the pdf

of the state transition model as its proposal pdf, as we have here, is known as a bootstrap

filter [43].

Auxiliary-Type Proposal pdf To refine the bootstrap-type proposal pdf, we can

incorporate the measurements yi,n of each time step in the proposal pdf. We do this by

using the method of [44] while assuming a circular extent. The circular extent is assumed

because the orientation of the true elliptical extent is unknown and depends on the state

xi,n, which we are sampling. This leads us to defining the proposal pdf for the first state

as [44]

g1(xi,1 | p∗
ci

, yi,1) = N (xi,1; µg1 , Σg1), (5.116)

with p∗
ci

= (D∗
ci

, Q∗
ci

, M̄∗
ci

),

µg1 = HT 1
Mi,1

Mi,1%
m=1

yi,1,m, (5.117)

Σg1 =
d∗2

ci,avg

Mi,1

 I2 02,2

02,2 02,2

 + q∗2
ci,2

02,2 02,2

02,2 I2

 , (5.118)

and d∗2
ci,avg = d∗

ci,1d
∗
ci,2, where we have chosen d∗2

ci,avg such that a circle with radius d∗
ci,avg

has the same area as an ellipse with half axis lengths d∗
ci,1 and d∗

ci,2. Further, the proposal

pdf for every other state is defined as

g(xi,n | xi,n−1, p∗
ci

, yi,n) = N (xi,n; µg, Σg) (5.119)

with

µg = F xi,n−1 +
q∗2

ci,1

q∗2
ci,1 + d∗2

ci,avg
Mi,n

HT

 1
Mi,1

Mi,n%
m=1

yi,n,m − F xi,n−1

, (5.120)

Σg = Q∗
ci

− q∗2
ci,1

q∗2
ci,1

q∗2
ci,1 + d∗2

ci,avg
Mi,n

 I2 02,2

02,2 02,2

 . (5.121)

Note that compared to the bootstrap-type proposal pdf, this proposal pdf has its

mean shifted towards the mean of the measurements and its variance is reduced, which

is especially beneficial in the case of a large number of measurements. A particle filter

for a state-space model that uses the observations in the proposal pdf, as we have here,

is known as an auxiliary particle filter [45].

5.2. Inference 97

5.2.4 Sequential Monte Carlo Algorithm

In this section, we discuss the SMC algorithm of Section 4.1.3 applied to the extended

target tracking model of this chapter. That algorithm, too, can be directly applied using

(5.7), (5.8), (5.21), the conditional pdfs presented in Section 5.2.1, and one of the proposal

pdfs discussed in Section 5.2.3 to generate the intermediate state particles.

As discussed in Section 4.1.3.4, one drawback of directly using the pdfs presented

in Section 5.2.1 is that we require data from the current and all previous time steps.

That is, the required data and the computational complexity grow with n. However, for

the statistical model of this chapter, it is possible to summarize the required data by

a recursively calculated sufficient statistic with constant dimensionality, to be discussed

presently, which results in a constant computational complexity at each time step n.

For this statistical model, it follows from (5.56) and (5.65) that we obtain the simpli-

fications (4.40) and (4.41) with si,n = (si,n,1, si,n,2) ∈ R6×6, where

si,n,1 =



n&n
n�=1 Mi,n�&n

n�=1
&M

i,n�
m=1 z2

i,n�,m,1&n
n�=1

&M
i,n�

m=1 z2
i,n�,m,2&n

n�=2

�
v2

i,n�,1 + v2
i,n�,2

�
&n

n�=2

�
v2

i,n�,3 + v2
i,n�,4

�


(5.122)

and

si,n,2 = si,n,1. (5.123)

These sufficient statistics can be calculated recursively according to

si,n,1 =



1
Mi,1&Mi,1

m=1 z2
i,1,m,1&Mi,1

m=1 z2
i,1,m,2

0
0


+

n%
n�=2



1
Mi,n�&M

i,n�
m=1 z2

i,n�,m,1&M
i,n�

m=1 z2
i,n�,m,2

v2
i,n�,1 + v2

i,n�,2

v2
i,n�,3 + v2

i,n�,4


= si,1,1 +

n%
n�=2

sΔ,i,n�,1 = si,n−1,1 + sΔ,i,n,1

(5.124)

98 5. Application to Extended Target Tracking

for n ≥ 2, where

si,1,1 =



1
Mi,1&Mi,1

m=1 z2
i,1,m,1&Mi,1

m=1 z2
i,1,m,2

0
0


(5.125)

and

sΔ,i,n,1 =



1
Mi,n&Mi,n

m=1 z2
i,n,m,1&Mi,n

m=1 z2
i,n,m,2

v2
i,n,1 + v2

i,n,2

v2
i,n,3 + v2

i,n,4


. (5.126)

Therefore, we define u1(xi,1, yi,1) and u(si,n−1, xi,n, yi,n) (see Section 4.1.3.4) such that

si,1 = u1(xi,1, yi,1) = (si,1,1, si,1,1) (5.127)

and

si,n = u(si,n−1, xi,n, yi,n) = (si,n−1,1 + sΔ,i,n,1, si,n−1,1 + sΔ,i,n,1) (5.128)

for n ≥ 2.

5.3 Performance Evaluation

In this section, we will investigate the performance of the MC algorithms outlined in

Sections 5.2.2–5.2.4 for joint tracking and clustering based on the statistical model de-

scribed in Section 5.1. In particular, in Section 5.3.1 we will discuss the convergence of

the algorithms, and in Section 5.3.2 we will investigate the performance gain due to joint

tracking and clustering.

5.3.1 Algorithm Convergence

We first investigate the convergence of the MC algorithms discussed in Sections 5.2.2–

5.2.4.

5.3. Performance Evaluation 99

5.3.1.1 Data Sets

We use T = 10 synthetic data sets sampled from the statistical model discussed in Section

5.1. The data sets are samples of the measurements yi,NS,i:NE,i
for all targets i ∈ {1, . . . , I}.

Each data set is based on I = 10 targets that are observed over 5 time steps with starting

time NS,i = 1 and ending time NE,i = 5 for all targets i ∈ {1, . . . , I}. Furthermore, we

generate at least one measurement at the starting time, that is, M
(t)
i,NS,i

≥ 1 for all targets

i ∈ {1, . . . , I} and data sets t ∈ {1, . . . , T}. The hyperparameters are chosen as αDP = 1,
αd,1 = αd,2 = 3, βd,1 = βd,2 = 50, αv,1 = αv,2 = 3, βv,1 = βv,2 = 50, αM = 3, βM = 0.6,
ΔT = 1, and Σx = diag([1002 1002 102 102]) for all data sets; they are assumed to be

known by all algorithms. Note that4 E(D∗
c) = diag([52 52]), E(Q∗

c) = diag([52 52 52 52]),
and5 E(M̄∗

c)) = 5 for this hyperparameter choice. One of the data sets is illustrated in

Figure 5.5, where we have plotted the measurements of all targets at all time steps.

yi;n;m;1

-200 -100 0 100 200

y i
;n

;m
;2

-250

-200

-150

-100

-50

0

50

100

150

200

250

yi;n;m

Fig. 5.5: A data set for extended target tracking.

5.3.1.2 Algorithms

The MC algorithms are applied to the data sets in order to generate K samples of the

states xi,n and parameter triple pi = (Di, Qi, M̄i) for all targets i ∈ {1, . . . , I}, conditioned

4The expectation of the inverse gamma distribution Γ−1(α, β) with α > 1 is β
α−1 .

5The expectation of the gamma distribution Γ(α, β) is α
β .

100 5. Application to Extended Target Tracking

on the measurements yi,NS,i:NE,i
for all i ∈ {1, . . . , I}.

We compare the reference algorithm discussed in Section 5.2.2, the PMCMC algorithm

discussed in Section 5.2.3 with L = 10, and the SMC algorithm using the Metropolis-

Hastings algorithm to sample the states discussed in Section 5.2.4. Note that we do not

consider the SMC algorithm using the Gibbs sampling algorithm to sample the states as

it is too computationally intensive for larger numbers of samples K. Furthermore, we

do not consider the SMC algorithm using the bootstrap-type proposal pdf as it performs

significantly worse than the other algorithms. This is mainly because the particles at

the starting time of each target are sampled from (5.114) using the uninformative co-

variance matrix Σx , resulting in poor approximations. The PMCMC algorithm using

the bootstrap-type proposal pdf does not suffer from this problem to a similar extent

due to the deterministically set particle within the particle Gibbs sampler. We denote

the reference algorithm as RA, the PMCMC algorithm using the bootstrap-type proposal

pdf as PMCMC-BS, the PMCMC algorithm using the auxiliary-type proposal pdf as

PMCMC-AUX, and the SMC algorithm using the auxiliary-type proposal pdf and the

Metropolis-Hastings algorithm to sample the states as SMC-MH-AUX.

The MCMC algorithms, that is, the RA, PMCMC-BS, and PMCMC-AUX algo-

rithms, are initialized as follows. For each data set t ∈ {1, . . . , T} and each tar-

get i ∈ {1, . . . , I}, the target’s position initialization x
(t,1)
i,n,1:2 is chosen as the mean of

the measurements y
(t)
i,n for all time steps n ∈ {NS,i, . . . , NE,i} with a non-zero number

of measurements, that is, M
(t)
i,n ≥ 1, and chosen using linear inter- or extrapolation

for all time steps n ∈ {NS,i, . . . , NE,i} with M
(t)
i,n = 0. The target’s velocity initial-

ization is calculated according to x
(t,1)
i,n,3:4 = 1

ΔT

�
x

(t,1)
i,n+1,1:2 − x

(t,1)
i,n,1:2

�
for the time steps

n ∈ {NS,i, . . . , NE,i − 1}, and set to x
(t,1)
i,n,3:4 = x

(t,1)
i,n−1,3:4 for the ending time n = NE,i. We

initialize the class indicator variables according to c
(t,1)
i = i and the parameter triples

according to p
∗(t,1)
c(t,1) = (E(D∗

c),E(Q∗
c),E(M̄∗

c)).
As the RA, PMCMC-BS, and PMCMC-AUX algorithms are MCMC algorithms, we

execute them only once for each data set in order to generate the maximum number of

samples Kmax that we will require for our analysis. We can then evaluate the algorithm

performance for different values of K ∈ {1, . . . , Kmax} by simply using the first K of our

generated samples. However, as the SMC-MH-AUX algorithm is an SMC algorithm, we

have to run it for each K separately.

5.3. Performance Evaluation 101

5.3.1.3 Performance Metrics

For our performance evaluation, we will use, for all targets i ∈ {1, . . . , I}, the state

estimates

x̂
(t,K)
i,n = 1

K

K%
k=1

x
(t,k)
i,n (5.129)

for all n ∈ {NS,i, . . . , NE,i} and i ∈ {1, . . . , I} and the parameter estimates

D̂
(t,K)
i = 1

K

K%
k=1

D
(t,k)
i , Q̂

(t,K)
i = 1

K

K%
k=1

Q
(t,k)
i , ˆ̄M (t,K)

i = 1
K

K%
k=1

M̄
(t,k)
i , (5.130)

which are approximations of the respective posterior means. To evaluate algorithm con-

vergence, we would ideally use the mean square errors (MSEs) of the state and parameter

estimates (5.129) and (5.130) relative to their respective true posterior mean — subse-

quently called posterior mean MSEs — as a function of the number of samples K, that

is,

MSE(K)
x̌1:2

= 1
TI

T%
t=1

I%
i=1

1
NTS,i

NE,i%
n=NS,i

(((x̂
(t,K)
i,n,1:2 − x̌

(t)
i,n,1:2

(((2

2
, (5.131)

MSE(K)
x̌3:4

= 1
TI

T%
t=1

I%
i=1

1
NTS,i

NE,i%
n=NS,i

(((x̂
(t,K)
i,n,3:4 − x̌

(t)
i,n,3:4

(((2

2
, (5.132)

and

MSE(K)
Ď

= 1
TI

T%
t=1

I%
i=1

(((D̂
(t,K)
i − Ď

(t)
i

(((2

F
, (5.133)

MSE(K)
Q̌

= 1
TI

T%
t=1

I%
i=1

(((Q̂
(t,K)
i − Q̌

(t)
i

(((2

F
, (5.134)

MSE(K)
ˇ̄M

= 1
TI

T%
t=1

I%
i=1

� ˆ̄M (t,K)
i − ˇ̄M (t)

i

�2
, (5.135)

where 	 · 	2 is the Euclidean norm,6 	 · 	F is the Frobenius norm,78 NTS,i = NE,i − NS,i + 1
is the number of time steps, and x̌

(t)
i,n, Ď

(t)
i , Q̌

(t)
i , ˇ̄M (t)

i are the true posterior means.

6The Euclidean norm of a vector x = [x1 . . . xM]T ∈ RM is 	x	2 =
� &M

m=1 |xm|2� 1
2 .

7The Frobenius norm of a matrix A = (am,n)m∈{1,...,M},n∈{1,...,N} ∈ RM×N is 	A	F

=
� &M

m=1
&N

n=1 |am,n|2� 1
2 .

8Calculating the MSEs of the complete matrices D̂
(t,K)
i in (5.133) and Q̂

(t,K)
i in (5.134) instead of the

MSEs of their individual entries is reasonable because D̂
(t,K)
i and Q̂

(t,K)
i are diagonal matrices where,

due to our hyperparameter choice, the diagonal entries are distributed according to the same distribution.

102 5. Application to Extended Target Tracking

However, as the true posterior means are unknown, we will approximate them according

to

x̌
(t)
i,n ≈ x̂

(t,Ǩ)
i,n , Ď

(t)
i ≈ D̂

(t,Ǩ)
i , Q̌

(t)
i ≈ Q̂

(t,Ǩ)
i , ˇ̄M (t)

i ≈ ˆ̄M (t,Ǩ)
i , (5.136)

where we use a sufficiently large number of samples Ǩ, and the samples generated with

an MCMC algorithm that is proven to converge to the true posterior mean. We choose

the number of samples Ǩ and the algorithm generating these samples such that the MSEs

relative to the respective ground truth x
(t)
i,n, D

(t)
i , Q

(t)
i , M̄

(t)
i — subsequently called ground

truth MSEs — seem to have converged. The ground truth MSEs are given by

MSE(K)
x1:2

= 1
TI

T%
t=1

I%
i=1

1
N

(t)
TS,i

N
(t)
E,i%

n=N
(t)
S,i

(((x̂
(t,K)
i,n,1:2 − x

(t)
i,n,1:2

(((2

2
, (5.137)

MSE(K)
x3:4

= 1
TI

T%
t=1

I%
i=1

1
N

(t)
TS,i

N
(t)
E,i%

n=N
(t)
S,i

(((x̂
(t,K)
i,n,3:4 − x

(t)
i,n,3:4

(((2

2
, (5.138)

and

MSE(K)
D = 1

TI

T%
t=1

I%
i=1

(((D̂
(t,K)
i − D

(t)
i

(((2

F
, (5.139)

MSE(K)
Q = 1

TI

T%
t=1

I%
i=1

(((Q̂
(t,K)
i − Q

(t)
i

(((2

F
, (5.140)

MSE(K)
M̄

= 1
TI

T%
t=1

I%
i=1

� ˆ̄M (t,K)
i − M̄

(t)
i

�2
. (5.141)

Note that the ground truth x
(t)
i,n, D

(t)
i , Q

(t)
i , M̄

(t)
i is known as we are using synthetic data

sets.

5.3.1.4 Results

In order to evaluate the convergence of our algorithms, we first evaluate the ground

truth MSEs, defined in (5.137)–(5.141), as a function of the number of samples K. The

results are illustrated in Figure 5.6 for the ground truth MSEs of the state estimates

and in Figure 5.7 for the ground truth MSEs of the parameter estimates. While all

algorithms seem to converge, the PMCMC-AUX algorithm tends to converge significantly

faster than the other algorithms. Further, the PMCMC-AUX algorithm converges faster

than the PMCMC-BS algorithm, which suggests that the auxiliary-type proposal pdf

performs better than the bootstrap-type pdf. The superior performance of the auxiliary-

type proposal pdf is not surprising, considering that the auxiliary-type proposal pdf uses

the previous state and the measurements, instead of just the previous state.

5.3. Performance Evaluation 103

K
10 1 10 2 10 3

M
S
E

(K
)

x 1
:2

1.2 "10 1

2 "10 1

4 "10 1

RA
PMCMC-BS
PMCMC-AUX
SMC-MH-AUX

K
10 1 10 2 10 3

M
S
E

(K
)

x 3
:4

3 "10 1

1 "10 2

3 "10 2

RA
PMCMC-BS
PMCMC-AUX
SMC-MH-AUX

Fig. 5.6: Ground truth MSEs of the state estimates as a function of the number of samples.

While Figures 5.6 and 5.7 suggest that all algorithms converge in terms of the ground

truth MSEs, we still need to investigate if all algorithms converge to the true posterior

mean. Therefore, in Figures 5.8 and 5.9, we illustrate the (approximated) posterior mean

MSEs, defined in (5.131)–(5.135), as a function of the number of samples K. Here, for

the approximations (5.136), we have chosen Ǩ = 104 samples generated by the PMCMC-

AUX algorithm. Note that the PMCMC-AUX algorithm is an MCMC algorithm that is

proven to converge to the true posterior mean. The fact that the posterior mean MSEs

in Figures 5.8 and 5.9 decrease with an increasing number of samples K suggests that all

algorithms converge to the true posterior mean.

5.3.2 Tracking and Parameter Estimation Performance

In this section, we will evaluate the tracking and parameter estimation performance gain

due to target clustering. We will consider cases where the targets belong to different

classes, but the number of classes and the class parameters are unknown. In particular,

we will compare inference based on the statistical model discussed in Section 5.1, which

includes target clustering, to inference based on a simplified statistical model, which does

not include target clustering and will be discussed in Section 5.3.2.1.

104 5. Application to Extended Target Tracking

K
10 1 10 2 10 3

M
S
E

(K
)

D

1.3 "10 2

2.1 "10 2

3.5 "10 2

RA
PMCMC-BS
PMCMC-AUX
SMC-MH-AUX

K
10 1 10 2 10 3

M
S
E

(K
)

Q

1.5 "10 -3

1 "10 4

6 "10 4

RA
PMCMC-BS
PMCMC-AUX
SMC-MH-AUX

K
10 1 10 2 10 3

M
S
E

(K
)

7 M

5 "10 -1

8 "10 -1

1.3 "10 0

RA
PMCMC-BS
PMCMC-AUX
SMC-MH-AUX

Fig. 5.7: Ground truth MSEs of the parameter estimates as a function of the number of samples.

5.3.2.1 Algorithms

Similarly to Section 5.3.1, we apply MC algorithms to different data sets in order to

generate K samples of the states xi,n and the parameter triple pi = (Di, Qi, M̄i) for all

targets i ∈ {1, . . . , I}, conditioned on the measurements yi,NS,i:NE,i
for all i ∈ {1, . . . , I}.

For the case with clustering, we use the PMCMC algorithm discussed in Section 5.2.3

with the auxiliary-type proposal pdf, which is based on the statistical model discussed

in Section 5.1, as it was the fastest converging algorithm in Section 5.3.1. We will use

K = 103 and L = 10, as these parameters provided accurate results.

For the case without clustering, we use the same algorithm as for the case with clus-

tering, but with small modifications. More specifically, we adapt the PMCMC algorithm

discussed in Section 5.2.3 to a simplified version of the statistical model discussed in Sec-

tion 5.1. The simplified statistical model uses the same motion model (see Section 5.1.1)

5.3. Performance Evaluation 105

K
10 1 10 2 10 3

M
S
E

(K
)

5x 1
:2

5 "10 -2

1 "10 0

5 "10 1

RA
PMCMC-BS
PMCMC-AUX
SMC-MH-AUX

K
10 1 10 2 10 3

M
S
E

(K
)

5x 3
:4

1 "10 -1

2 "10 0

3 "10 2

RA
PMCMC-BS
PMCMC-AUX
SMC-MH-AUX

Fig. 5.8: Posterior mean MSEs of the state estimates as a function of the number of samples.

and measurement model (see Section 5.1.2), but the parameter triple pi of the individual

targets i ∈ {1, . . . , I} are i.i.d. according to the base pdf fG(pi) (see (5.33)) instead of

distributed according to the the Dirichlet process (see (5.32)). In the statistical model

discussed in Section 5.1, the class parameter triple p∗
c are i.i.d. according to the base pdf

fG(p∗
c) (see (3.13)), and therefore it follows that the simplified statistical model is equiv-

alent to the statistical model discussed in Section 5.1 with each target deterministically

assigned to a separate class, that is, ci = i for all targets i ∈ {1, . . . , I}. This allows us

to easily adapt the PMCMC algorithm discussed in Section 5.2.3 to the simplified statis-

tical model by deterministically setting c
(k)
i = i for all targets i ∈ {1, . . . , I} instead of

obtaining the c
(k)
i by sampling ci.

5.3.2.2 Performance Metrics

To evaluate the tracking and parameter estimation performance gain due to target clus-

tering, we use the clustering gains (CGs) in decibels (dB)

CG(K)
x1:2

= 10 log10

 MSE(K)
x1:2,C

MSE(K)
x1:2,NC

, (5.142)

CG(K)
x3:4

= 10 log10

 MSE(K)
x3:4,C

MSE(K)
x3:4,NC

, (5.143)

106 5. Application to Extended Target Tracking

K
10 1 10 2 10 3

M
S
E

(K
)

5 D

5 "10 -1

1 "10 1

2.5 "10 2

RA
PMCMC-BS
PMCMC-AUX
SMC-MH-AUX

K
10 1 10 2 10 3

M
S
E

(K
)

5 Q

3 "10 1

1 "10 3

7 "10 4

RA
PMCMC-BS
PMCMC-AUX
SMC-MH-AUX

K
10 1 10 2 10 3

M
S
E

(K
)

5 7 M

1 "10 -3

3 "10 -2

1 "10 0

RA
PMCMC-BS
PMCMC-AUX
SMC-MH-AUX

Fig. 5.9: Posterior mean MSEs of the parameter estimates as a function of the number of samples.

and

CG(K)
D = 10 log10

 MSE(K)
D ,C

MSE(K)
D ,NC

, (5.144)

CG(K)
Q = 10 log10

 MSE(K)
Q,C

MSE(K)
Q,NC

, (5.145)

CG(K)
M̄

= 10 log10

 MSE(K)
M̄ ,C

MSE(K)
M̄ ,NC

, (5.146)

where MSE(K)
x1:2,C, MSE(K)

x3:4,C, MSE(K)
D ,C, MSE(K)

Q,C, MSEM̄ ,C are the ground truth MSEs using

the samples generated with the PMCMC algorithm discussed in Section 5.2.3, that is, with

clustering, and MSE(K)
x1:2,NC, MSE(K)

x3:4,NC, MSE(K)
D ,NC, MSE(K)

Q,NC, MSEM̄ ,NC are the ground

truth MSEs using the samples generated with the PMCMC algorithm adapted to the

simplified statistical model discussed in Section 5.3.2.1, that is, without clustering. We

5.3. Performance Evaluation 107

recall that the ground truth MSEs were defined in (5.137)–(5.140).

As parameter estimation is more challenging for targets that only exist for a small

number of time steps NTS,i, the benefit from target clustering is typically larger in that

case. To illustrate this in the case of time series of different lengths, we additionally

calculate the ground truth MSEs and CGs of all targets with a given number of time

steps NTS, that is, for all targets i with NTS,i = NTS. More specifically, we calculate the

ground truth MSEs of all targets with NTS time steps according to (see (5.137)–(5.140))

MSE(NTS,K)
x1:2

= 1
TI

T%
t=1

%
i:NTS,i=NTS

1
NTS

NE,i%
n=NS,i

(((x̂
(t,K)
i,n,1:2 − x

(t)
i,n,1:2

(((2

2
, (5.147)

MSE(NTS,K)
x3:4

= 1
TI

T%
t=1

%
i:NTS,i=NTS

1
NTS

NE,i%
n=NS,i

(((x̂
(t,K)
i,n,3:4 − x

(t)
i,n,3:4

(((2

2
, (5.148)

and

MSE(NTS,K)
D = 1

TI

T%
t=1

%
i:NTS,i=NTS

(((D̂
(t,K)
i − D

(t)
i

(((2

F
, (5.149)

MSE(NTS,K)
Q = 1

TI

T%
t=1

%
i:NTS,i=NTS

(((Q̂
(t,K)
i − Q

(t)
i

(((2

F
, (5.150)

MSE(NTS,K)
M̄

= 1
TI

T%
t=1

%
i:NTS,i=NTS

� ˆ̄M (t,K)
i − M̄

(t)
i

�2
, (5.151)

and the CGs of all targets with NTS time steps (see (5.142)–(5.146))

CG(NTS,K)
x1:2

= 10 log10

MSE(NTS,K)
x1:2,C

MSE(NTS,K)
x1:2,NC

, (5.152)

CG(NTS,K)
x3:4

= 10 log10

MSE(NTS,K)
x3:4,C

MSE(NTS,K)
x3:4,NC

, (5.153)

and

CG(NTS,K)
D = 10 log10

MSE(NTS,K)
D ,C

MSE(NTS,K)
D ,NC

, (5.154)

CG(NTS,K)
Q = 10 log10

MSE(NTS,K)
Q,C

MSE(NTS,K)
Q,NC

, (5.155)

CG(NTS,K)
M̄

= 10 log10

MSE(NTS,K)
M̄ ,C

MSE(NTS,K)
M̄ ,NC

. (5.156)

108 5. Application to Extended Target Tracking

5.3.2.3 Time Series of Equal Length

Data Sets As Section 5.3.1.1 already used data sets with time series of equal length,

we will use these data sets again in this section. That is, we use T = 10 synthetic data

sets generated as discussed in Section 5.3.1.1. Each data set includes I = 10 targets that

are observed over 5 time steps with starting time NS,i = 1 and ending time NE,i = 5 for

all targets i ∈ {1, . . . , I}.

Results in Table 5.1, we summarize the inference results in terms of the ground truth

MSEs, defined in (5.137)–(5.141), for the samples generated with clustering and without

clustering, as well as in terms of the CGs, defined in (5.142)–(5.146). We can observe

that clustering improves parameter estimation noticebly, whereas there is effectively no

improvement of state estimation. The improved parameter estimation can be explained

by the fact that the algorithm with clustering can use the measurements of all the targets

in each class to estimate the class parameters instead of having to estimate the parameters

for each target separately.

C NC

MSE(K)
x1:2

13.5 13.5 CG(K)
x1:2

−0.02 dB

MSE(K)
x3:4

37.3 37.8 CG(K)
x3:4

0.06 dB

MSE(K)
D 146 157 CG(K)

D 0.3 dB

MSE(K)
Q 2049 4809 CG(K)

Q 3.7 dB

MSE(K)
M̄

0.6 0.7 CG(K)
M̄

1 dB

Tab. 5.1: Ground truth MSEs with and without clustering, denoted as C and NC, respectively, as well
as the CGs.

5.3.2.4 Time Series of Different Lengths

Data Sets Again similarly to Section 5.3.1.1, we generate T = 10 synthetic data sets

that are sampled from the statistical model described in Section 5.1. However, these

data sets now involve I = 10 targets that are observed over a varying number of time

steps NTS,i = NE,i − NS,i + 1. In particular, we use NS,i = ceil(i
2) and NE,i = 5 for all

targets i ∈ {1, . . . , I}, where ceil(·) is the ceiling function. That is, for example, targets

5.3. Performance Evaluation 109

1 and 2 are observed over five time steps, and targets 9 and 10 are only observed over

a single time step. Furthermore, we generate at least one measurement at the starting

time, that is, Mi,NS,i
≥ 1 for all targets i ∈ {1, . . . , I} and data sets t ∈ {1, . . . , T}. We

use the hyperparameters defined in Section 5.3.1.1 for all data sets, and assume that these

hyperparameters are known by all algorithms.

Results The inference results in terms of the ground truth MSEs, defined in (5.137)–

(5.141), for the samples generated with clustering and without clustering, as well as in

terms of the CGs, defined in (5.142)–(5.146), are summarized in Table 5.2. Further, in

Figure 5.10 we plot the CGs separately calculated for targets with the same number of

observed time steps N
(t)
TS,i = N

(t)
E,i − N

(t)
S,i + 1, defined in (5.152)–(5.156). We can again

observe that clustering significantly improves parameter estimation, whereas it improves

state estimation only slightly. In particular, we can see in Figure 5.10 that state and

parameter estimation for targets that have only been observed for a low number of time

steps (small NTS,i) showed a larger improvement. As for the case of time series of equal

length (see Section 5.3.2.3), the improved parameter estimation is probably due to the

fact that the algorithm with clustering can use all the targets in each class for parameter

estimation instead of estimating the parameters for each target separately. This improve-

ment is especially noticable for targets that are observed over small number of time steps

as they provide only a few data points that can be used for parameter estimation.

C NC

MSE(K)
x1:2

16.6 16.8 CG(K)
x1:2

0.05 dB

MSE(K)
x3:4

70.9 82 CG(K)
x3:4

0.6 dB

MSE(K)
D 195 910 CG(K)

D 6.7 dB

MSE(K)
Q 1789 3292 CG(K)

Q 2.6 dB

MSE(K)
M̄

1.8 2.5 CG(K)
M̄

1.4 dB

Tab. 5.2: Ground truth MSEs with and without clustering, denoted as C and NC, respectively, as well
as the CGs.

110 5. Application to Extended Target Tracking

NTS

1 2 3 4 5

C
G

(N
T

S
;K

)
(d

B
)

-1

0

1

2

3

x1:2

x3:4

NTS

1 2 3 4 5

C
G

(N
T

S
;K

)
(d

B
)

-10

0

10
D

Q
7M

Fig. 5.10: CGs for state and parameter estimation as a function of the number of observed time steps.

111

Chapter 6

Conclusion

After giving an introduction to Monte Carlo methods and Bayesian nonparametrics, we

discussed Bayesian nonparametric state-space models, that is, parameter dependent state-

space models with a Dirichlet process prior. We developed two Monte Carlo based al-

gorithms for inference in these models. As a specific application, we concretized the

Bayesian nonparametric state-space models to an extended target tracking scenario and

applied these algorithms to perform joint tracking and clustering. Finally, we evaluated

the convergence of these algorithms and investigated the performance gain due to joint

tracking and clustering.

Since the Dirichlet process prior of the parameters in our Bayesian nonparametric state-

space models introduces a random class structure, we can use our algorithms not only to

perform inference for the states and parameters, but also to cluster the targets. This is

possible without prior knowledge of number of classes and the parameter values of each

class. The first algorithm we proposed is based on particle Markov chain Monte Carlo

and is suited to batch processing. The second algorithm is based on the resample-move

particle filter and is suited to sequential processing.

Our performance evaluation showed that parameter estimation improved significantly

due to the inherent clustering, especially for short time series. However, state estimation

improved only slightly. This can be explained by the fact that our motion and measure-

ment models allow precise state estimation even with imprecise parameter estimation.

Our statistical model for extended target tracking assumes that the number of targets

is fixed and known, the measurements are already assigned to the individual targets,

and there is no clutter. Thus, further research is necessary to extend our model and

algorithms to the case where the number of targets is time-varying and unknown, some

of the measurements may be clutter, and the assignment of the measurements to a target

or to clutter is unknown. In addition, our model can be adapted to more sophisticated

112 6. Conclusion

motion and measurement models as well as to additional statistical dependencies between

the targets. Finally, a performance evaluation using real world data sets besides synthetic

data would be desirable.

113

Bibliography

[1] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. Part I. Dynamic
models,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, no. 4, pp. 1333–1364, 2003.

[2] S. S. Blackman, Multiple-Target Tracking with Radar Applications. Norwood, MA:
Artech House, 1986.

[3] K. Granström, M. Baum, and S. Reuter, “Extended object tracking: Introduction,
overview and applications,” J. Adv. Inf. Fusion, vol. 12, no. 2, pp. 139–174, 2017.

[4] K. Granström, A. Natale, P. Braca, G. Ludeno, and F. Serafino, “Gamma Gaussian
inverse Wishart probability hypothesis density for extended target tracking using
X-band marine radar data,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 12,
pp. 6617–6631, 2015.

[5] A. Scheel, K. Granström, D. Meissner, S. Reuter, and K. Dietmayer, “Tracking and
data segmentation using a GGIW filter with mixture clustering,” in Proc. 17th Int.
Conf. Inf. Fusion (FUSION), (Salamanca, Spain), pp. 1–8, 7 2014.

[6] J. S. Fowdur, M. Baum, and F. Heymann, “Tracking targets with known spatial
extent using experimental marine radar data,” in Proc. 22th Int. Conf. Inf. Fusion
(FUSION), (Ottawa, Canada), pp. 1–8, 7 2019.

[7] S. Challa and G. W. Pulford, “Joint target tracking and classification using radar and
ESM sensors,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 3, pp. 1039–1055,
2001.

[8] Y. Gao, Y. Liu, and X. R. Li, “Tracking-aided classification of targets using multi-
hypothesis sequential probability ratio test,” IEEE Trans. Aerosp. Electron. Syst.,
vol. 54, no. 1, pp. 233–245, 2017.

[9] X. He, R. Tharmarasa, T. Kirubarajan, A.-L. Jousselme, and P. Valin, “Joint class
identification and target classification using multiple HMMs,” IEEE Trans. Aerosp.
Electron. Syst., vol. 50, no. 2, pp. 1269–1282, 2014.

[10] S. Ghosal and A. van der Vaart, Fundamentals of Nonparametric Bayesian Inference.
Cambridge, United Kingdom: Cambridge University Press, 2017.

[11] T. S. Ferguson, “A Bayesian analysis of some nonparametric problems,” Ann. Stat.,
vol. 1, no. 2, pp. 209–230, 1973.

114 BIBLIOGRAPHY

[12] T. S. Ferguson, “Bayesian density estimation by mixtures of normal distributions,”
in Recent Advances in Statistics, pp. 287–302, New York, NY: Academic Press, 1983.

[13] A. Lin, Y. Zhang, J. Heng, S. A. Allsop, K. M. Tye, P. E. Jacob, and D. Ba,
“Clustering time series with nonlinear dynamics: A Bayesian non-parametric and
particle-based approach,” in Proc. 22st Int. Conf. Artif. Intell. Stat. (AISTATS),
(Naha, Japan), pp. 2476–2484, 4 2019.

[14] P. Smyth, “Clustering sequences with hidden Markov models,” in Proc. 9th Int. Conf.
Neural Inf. Process. Syst. (NIPS), (Denver, CO), pp. 648–654, 12 1996.

[15] K. P. Lennox, D. B. Dahl, M. Vannucci, R. Day, and J. W. Tsai, “A Dirichlet process
mixture of hidden Markov models for protein structure prediction,” Ann. Appl. Stat.,
vol. 4, no. 2, pp. 916–942, 2010.

[16] V. Bastani, L. Marcenaro, and C. Regazzoni, “Unsupervised trajectory pattern classi-
fication using hierarchical Dirichlet process mixture hidden Markov model,” in Proc.
IEEE Int. Workshop Mach. Learn. Signal Process. (MLSP), (Reims, France), pp. 1–
6, 9 2014.

[17] N. Bathaee and H. Sheikhzadeh, “Non-parametric Bayesian inference for continuous
density hidden Markov mixture model,” Stat. Methodol., vol. 33, pp. 256–275, 2016.

[18] S. Chiappa and D. Barber, “Dirichlet mixtures of Bayesian linear Gaussian state-
space models: A variational approach,” Tech. Rep. 161, Tübingen, Germany: Max
Planck Institute for Biological Cybernetics, 2007.

[19] L. E. Nieto-Barajas, A. Contreras-Cristán, et al., “A Bayesian nonparametric ap-
proach for time series clustering,” Bayesian Anal., vol. 9, no. 1, pp. 147–170, 2014.

[20] C. Andrieu, A. Doucet, and R. Holenstein, “Particle Markov chain Monte Carlo
methods,” J. R. Stat. Soc. Series B, vol. 72, no. 3, pp. 269–342, 2010.

[21] F. Lindsten, M. I. Jordan, and T. B. Schön, “Particle Gibbs with ancestor sampling,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 2145–2184, 2014.

[22] M. D. Escobar, “Estimating normal means with a Dirichlet process prior,” J. Am.
Stat. Assoc., vol. 89, no. 425, pp. 268–277, 1994.

[23] S. N. MacEachern, “Estimating normal means with a conjugate style Dirichlet process
prior,” Comm. Stat. Simul. Comput., vol. 23, no. 3, pp. 727–741, 1994.

[24] W. R. Gilks and C. Berzuini, “Following a moving target – Monte Carlo inference
for dynamic Bayesian models,” J. R. Stat. Soc. Series B, vol. 63, no. 1, pp. 127–146,
2001.

[25] G. Storvik, “Particle filters for state-space models with the presence of unknown
static parameters,” IEEE Trans. Signal Process., vol. 50, no. 2, pp. 281–289, 2002.

[26] Y. B. Erol, Y. Wu, L. Li, and S. Russell, “Towards practical Bayesian parameter and
state estimation,” arXiv preprint arXiv:1603.08988, 2016.

BIBLIOGRAPHY 115

[27] C. Berzuini, N. G. Best, W. R. Gilks, and C. Larizza, “Dynamic conditional indepen-
dence models and Markov chain Monte Carlo methods,” J. Am. Stat. Assoc., vol. 92,
no. 440, pp. 1403–1412, 1997.

[28] F. Septier, S. K. Pang, A. Carmi, and S. Godsill, “On MCMC-based particle methods
for Bayesian filtering: Application to multitarget tracking,” in Proc. 3rd IEEE Int.
Workshop Comput. Adv. Mult. Sensor Adapt. Process. (CAMSAP), (Aruba, Dutch
Caribbean), pp. 360–363, 12 2009.

[29] A. Brockwell, P. Del Moral, A. Doucet, et al., “Sequentially interacting Markov chain
Monte Carlo methods,” Ann. Stat., vol. 38, no. 6, pp. 3387–3411, 2010.

[30] C. Robert and G. Casella, Monte Carlo Statistical Methods. New York, NY: Springer-
Verlag, 2 ed., 2004.

[31] C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan, “An introduction to MCMC
for machine learning,” Mach. Learn., vol. 50, pp. 5–43, 2003.

[32] H. R. Künsch, “Recursive Monte Carlo filters: Algorithms and theoretical analysis,”
Ann. Stat., vol. 33, no. 5, pp. 1983–2021, 2005.

[33] J. Sethuraman, “A constructive definition of Dirichlet priors,” Stat. Sin., vol. 4, no. 2,
pp. 639–650, 1994.

[34] H. Ishwaran and L. F. James, “Gibbs sampling methods for stick-breaking priors,”
J. Am. Stat. Assoc., vol. 96, no. 453, pp. 161–173, 2001.

[35] J. W. Miller and M. T. Harrison, “Inconsistency of Pitman-Yor process mixtures for
the number of components,” J. Mach. Learn. Res., vol. 15, no. 96, pp. 3333–3370,
2014.

[36] J. W. Miller and M. T. Harrison, “Mixture models with a prior on the number of
components,” J. Am. Stat. Assoc., vol. 113, no. 521, pp. 340–356, 2018.

[37] S. Aghabozorgi, A. S. Shirkhorshidi, and T. Y. Wah, “Time-series clustering – A
decade review,” Inf. Syst., vol. 53, pp. 16–38, 2015.

[38] L. Mihaylova, A. Y. Carmi, F. Septier, A. Gning, S. K. Pang, and S. Godsill,
“Overview of Bayesian sequential Monte Carlo methods for group and extended ob-
ject tracking,” Digit. Signal Process., vol. 25, pp. 1–16, 2014.

[39] K. Gilholm, S. Godsill, S. Maskell, and D. Salmond, “Poisson models for extended
target and group tracking,” in Proc. Signal Data Process. Small Targets, vol. 5913,
(San Diego, CA), pp. 230–241, 8 2005.

[40] K. Gilholm and D. Salmond, “Spatial distribution model for tracking extended ob-
jects,” IEE Radar, Sonar Navig., vol. 152, no. 5, pp. 364–371, 2005.

[41] S. Yang and M. Baum, “Extended Kalman filter for extended object tracking,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), (New Orleans, LA),
pp. 4386–4390, 3 2017.

116 BIBLIOGRAPHY

[42] R. P. Mahler, Advances in Statistical Multisource-Multitarget Information Fusion.
Norwood, MA: Artech House, 2014.

[43] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation,” IEE Proc. F, vol. 140, no. 2, pp. 107–113,
1993.

[44] M. Feldmann, D. Franken, and W. Koch, “Tracking of extended objects and group
targets using random matrices,” IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1409–
1420, 2010.

[45] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,” J.
Am. Stat. Assoc., vol. 94, no. 446, pp. 590–599, 1999.

Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct, insbesondere
ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfs-
mittel, angefertigt wurde. Die aus anderen Quellen direkt oder indirekt übernommenen
Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.
Die Arbeit wurde bisher weder im In– noch im Ausland in gleicher oder in ähnlicher
Form in anderen Prüfungsverfahren vorgelegt.

Wien, 13.01.2021 Bernd Kreidl

	Contents
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	State of the Art
	Thesis Outline

	Monte Carlo Methods
	Motivation
	Importance Sampling
	Sequential Monte Carlo Methods
	General Principle
	Particle Filter
	State-Space Models
	Resample-Move Particle Filter
	Parameter Dependent State-Space Models

	Markov Chain Monte Carlo
	General Principle
	Metropolis-Hastings Algorithm
	Cycles of MCMC Kernels
	Gibbs Sampling
	Particle Markov Chain Monte Carlo
	Parameter Dependent State-Space Models

	Bayesian Nonparametrics
	Dirichlet Process
	Construction and Definition
	Properties
	Sampling from the Dirichlet Process

	Dirichlet Process Mixture
	Construction and Definition
	Inference

	Inference in Bayesian Nonparametric State-Space Models
	Time Series of Equal Length
	Statistical Model and Inference
	Particle Markov Chain Monte Carlo Algorithm
	Sequential Monte Carlo Algorithm
	General Principle
	Gibbs Sampling Algorithm
	Metropolis-Hastings Algorithm
	Sufficient Statistics

	Time Series of Different Lengths
	Statistical Model and Inference
	Particle Markov Chain Monte Carlo Algorithm
	Sequential Monte Carlo Algorithm
	General Principle
	Gibbs Sampling Algorithm
	Metropolis-Hastings Algorithm
	Sufficient Statistics

	Application to Extended Target Tracking
	Statistical Model
	Motion Model
	Measurement Model
	Parameters
	Independence Assumptions

	Inference
	Conditional Probability Distributions
	Reference Algorithm
	Sampling the States
	Sampling the Indicator Variables and Parameters
	Summary

	Particle Markov Chain Monte Carlo Algorithm
	Sequential Monte Carlo Algorithm

	Performance Evaluation
	Algorithm Convergence
	Data Sets
	Algorithms
	Performance Metrics
	Results

	Tracking and Parameter Estimation Performance
	Algorithms
	Performance Metrics
	Time Series of Equal Length
	Time Series of Different Lengths

	Conclusion
	Bibliography

