
Diplomarbeit

Identification of muonic decays of tau pairs at the Belle

II experiment through the implementation of machine

learning algorithms

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Diplom-Ingenieurs eingereicht an der Technischen Universität Wien,

Fakultät für Physik

von

Lukas LINAUER, BSc

Mat.Nr.: 01373167

unter der Anleitung von

Dr. Gianluca Inguglia

Institut für Hochenergiephysik

Wien, Österreich Oktober 2020

Master Thesis

Identification of muonic decays of tau pairs at the Belle

II experiment through the implementation of machine

learning algorithms

submitted in satisfaction of the requirements for the degree of

Diplom-Ingenieur of the TU Wien, Faculty of Physics

by

Lukas LINAUER, BSc

Mat.Nr.: 01373167

under the supervision of

Dr. Gianluca Inguglia

Institute of High Energy Physics

Vienna, Austria October 2020

Affidavit

I declare in lieu of oath, that I wrote this thesis and performed the associated research myself,

using only literature cited in this volume. If text passages from sources are used literally, they

are marked as such. I confirm that this work is original and has not been submitted elsewhere

for any examination, nor is it currently under consideration for a thesis elsewhere.

Vienna, October, 2020 .

Signature

Contents

1 The Standard Model of particle physics 1
1.1 Lepton physics . 4

2 The BELLE II experiment 6
2.1 The BELLE II detector . 6

2.1.1 Vertex Detector . 7
2.1.2 Central Drift Chamber . 8
2.1.3 Particle Identification . 8
2.1.4 Electromagnetic Calorimeter . 9
2.1.5 KLM . 9

2.2 Physics program . 10
2.3 BASF2 . 11

3 Machine Learning 13
3.1 Classification algorithms . 15
3.2 Logistic Regression . 15
3.3 Decision Trees . 17

3.3.1 Boosting . 19
3.4 Gaussian Naive Bayes classifier . 19
3.5 Artificial Neural Networks . 21

3.5.1 Multilayer Perceptron . 22
3.6 Parameter tuning and validation . 23

4 Event Reconstruction 28
4.1 Pre-selection . 29
4.2 Data sets . 30
4.3 Variables . 32

5 Model selection 34
5.1 FastBDT . 34
5.2 Multilayer Perceptron . 37
5.3 Gaussian Naive Bayes . 39

6 Analysis 41
6.1 Rectangular cuts . 41
6.2 Comparison . 44
6.3 Combination of MLP with rectangular cuts 46

7 Results 50

8 Conclusion and Outlook 55

References 56

Kurzfassung

Das Belle II Experiment am Teilchenbeschleuniger SuperKEKB in Tsukuba, Japan,
welcher mit der derzeit weltweit höchsten Luminosität arbeitet, soll bis zum Ende seiner
Laufzeit ungefähr 50 ab−1 an Daten sammeln. Das sind 50 mal mehr als das Vorgänger-
Experiment Belle in den 11 Jahren seines Bestehens gesammelt hat. Diese große Menge
an Daten erlaubt es, die Zerfälle schwerer Leptonen mit noch nie dagewesener Präzi-
sion zu untersuchen. Speziell der myonische Zerfall von Paaren von Tau-Leptonen,
e+e− → τ+τ− → µ+(νµντ)µ

−(νµντ), ist von Interesse in dieser Arbeit.

Mittels Machine Learning Methoden soll dieser Zerfall untersucht und der Wirkungs-
querschnitt anhand simulierter Daten berechnet werden. Machine Learning erfreut sich
zunehmender Beliebtheit in vielen wissenschaftlichen Disziplinen, nicht zuletzt wegen der
stetig steigenden Rechenleistung von Verbraucher-Hardware. Ein Machine Learning Al-
gorithmus wird anhand eines Datensatzes trainiert und lernt die vorhandenen Merkmale.
Danach kann der trainierte Algorithmus auf neue, bisher unbekannte Daten angewandt
werden um diese zu klassifizieren. In der Teilchenphysik kann dies verwendet werden um
Signal- von Hintergrund-Prozessen zu unterscheiden. Die Hyptothese dieser Arbeit ist,
dass die verwendeten Machine Learning Methoden die Daten für den untersuchten Zerfall
besser unterscheiden können als dies mit klassischen Datenanalyse-Methoden möglich ist.
Dazu wurden mehrere Machine Learning Methoden auf Monte-Carlo simulierten Daten
trainiert und untereindander sowie mit manueller Analyse verglichen. Der Algorithmus,
der die höchste Präzision auf den Test-Daten aufwies, wurde dann auf unabhängige,
ebenfalls simulierte Daten angewandt, um den Wirkungsquerschnitt für die Reaktion
e+e− → τ+τ− zu berechnen.

Es zeigt sich, dass alle der verwendeten Machine Learning Methoden eine höhere Präzi-
sion bei der Klassifikation der untersuchten Teilchenzerfälle als die klassische Datenanalyse-
Methode aufweisen. Der mittels Machine Learning berechnete Wirkungsquerschnitt
stimmt besser mit dem wahren Wert überein.

Abstract

The Belle II experiment, installed at the electron-positron collider SuperKEKB in Tsukuba,
Japan, plans to collect around 50 ab−1 of data over the course of its lifetime; around
50 times more than its predecessor Belle. This presents a unique opportunity to study
heavy lepton decays with unmatched precision. The aim of this thesis is to implement
and test machine learning algorithms for the identification of muonic decays of tau pairs:
e+e− → τ+τ− → µ+(νµντ)µ

−(νµντ).

Machine Learning algorithms, which are increasingly popular in many areas of scientific
research, are well suited for the analysis of large data sets. A method is trained on a
set of data from which it learns to extract important features. Applied on independent
data, it then tries to distinguish the signal from the background. The hypothesis of this
thesis is, that these algorithms outperform humans in doing so. Different algorithms
were trained on monte-carlo simulated data and then compared to one another and to
classical cut-based analysis. The best performing algorithm was then used to calculate
the cross-section of the process e+e− → τ+τ− on an independent, also simulated data
set.

The results showed a superior performance of the Machine Learning models over cut-
based analysis and a more accurate calculated cross-section. This suggests that these
algorithms are indeed better at separating signal from background events than humans,
at least in the context of the decays investigated here.

1 The Standard Model of particle physics

The Standard Model of particle physics, or Standard Model (SM) in short, is the cur-
rently accepted model of elementary particles and their interactions. Combined in the
SM are three of the four currently known fundamental forces, the electromagnetic, the
weak and the strong force. The underlying theoretical concept is that of quantum field
theory (QFT), the combination of quantum theory with special relativity. Elementary
particles can be divided into two classes, fermions and bosons. Fermions are sources of
quantum fields through which they interact. Bosons are quanta of those fields. Fermions
can then be further subdivided into quarks and leptons.

Figure 1: The elementary particles of the Standard Model. Credit: By MissMJ, Cush
- Own work by uploader, PBS NOVA [1], Fermilab, Office of Science, United
States Department of Energy, Particle Data Group, Public Domain

Figure 1 shows a list of the elemtary particles in the SM. The fermions come in three
generations or flavours. Each generation is comprised of two quarks, one up-type, one
down-type and two leptons. Each charged fermion has an anti-particle with equal mass
but opposite charge, with exception of the neutrinos. They are mass-less and neutral
particles and their anti-particles also do not have mass or charge. Fermions have half-
integer spin and can be described by fermi-dirac statistics. Quarks can form bound
states known as hadrons, which can be further subdivided into mesons and baryons by
the number of quarks contained. A meson is formed by an even number of quarks, most
simply one quark and it’s anti-quark, resulting in integer spin. The lightest mesons

1

of this kind are the pi-mesons or pions π− , π0 and the K-mesons or Kaons K− ,K0.
Mesons with more than two quarks are also possible and a matter of current research,
e.g. tetraquarks and hexaquarks. Baryons contain an odd number of quarks, three in
the simplest case and have half-integer spin. The nucleons belong to this group.

The group of bosons is comprised of the four vector bosons photon, gluon, W and Z and
the Higgs boson. Each boson corresponds to one of the fundamental forces and is the
carrier of this force. The photon is associated with the electromagnetic force, the gluon
with the strong force and the W and Z bosons with the weak force. The Higgs boson is
the quantum of the Higgs field. All elementary particles except the neutrinos gain their
mass through their interaction with the Higgs field. Bosons have integer spin and follow
Bose-Einstein statistics.

All particles in the SM are assumed to be point-like, a result obtained from scattering
experiments. Other theories, e.g. String theory assumes that elementary particles have
non-zero dimension.

Table 1 lists some of the physical quantities which are conserved for interactions in the
SM.

Quantity Symbol
Energy E

Momentum p⃗

Angular momentum L⃗
Electric charge Q
Baryon number B
Lepton number L

Table 1: Quantities conserved by interaction within the SM.

Each of these conserved quantities corresponds to a symmetry of the SM under a con-
tinuous transformation. E.g. the conservation of energy is a result of the symmetry
under time-translations, the conservation of momentum arises due to the symmetry
under space-translations. Additionally, there are the three discrete transformations,
the charge, parity and time transformation. The actions of these transformations are
the following: the charge transformation takes a particle into its anti-particle and thus
flips the sign of the charge. Here, charge refers not only to electric charge but also to
charges relevant to the strong and weak force. For a particle, represented by the function
Ψ(x, y, z, t), this results in:

CΨ(x, y, z, t) = Ψ(x, y, z, t) (1)

where Ψ(x, y, z, t) is the anti-particle of Ψ(x, y, z, t). The parity transformation flips the
sign of all three of the spatial coordinates x,y and z.

2

PΨ(x, y, z, t) = Ψ(−x,−y,−z, t) (2)

It is identical to a point reflection at the origin. The time transformation flips the sign
of the temporal coordinate t. It is also called time reversal.

TΨ(x, y, z, t) = Ψ(x, y, z,−t) (3)

All combinations of these transformations are valid transformations as well:

CPΨ(x, y, z, t) = Ψ(−x,−y,−z, t)

CTΨ(x, y, z, t) = Ψ(x, y, z,−t)

PTΨ(x, y, z, t) = Ψ(−x,−y,−z,−t)

CPTΨ(x, y, z, t) = Ψ(−x,−y,−z,−t)

(4)

In the SM, the symmetries associated with C, P and T are violated respectively. The
combined transformation CP was believed long time to be a symmetry. However, already
a few processes have been observed which violate this symmetry. Only the combined
CPT operation is a symmetry for processes of the SM, which is known as the CPT
theorem. It states, physical processes are indistinguishable when space is reflected at
the origin, time is reversed and all particles are exchanged with their respective anti-
particles.

CPTΨ(x, y, z, t) = Ψ(−x,−y,−z,−t) = Ψ(x, y, z, t) (5)

The whole of QFT rests on the condition of the CPT theorem being true. Within the
limits of current experimental precision, the CPT theorem could not be falsified. There
are some theories however, which predict a violation of CPT symmetry.

The SM is the current best tested scientific theory but it is incomplete. Apart from
the fact that it does not include gravity, there have been found a number of physical
phenomena which cannot be explained by it. One example would be the neutrino os-
cillations, which require the existence of neutrinos with mass. In the SM however, the
neutrinos have zero mass. Another example are the proposed dark matter and dark
energy. Dark matter has been introduced as an explanation for the observed rotational
velocities of stars in the outskirts of spiral-galaxies. These stars orbit at much higher
speeds than would be expected if the masses of the galaxies are calculated by the visible
matter contained in them. The missing mass is attributed to so-called dark matter. The
SM also has the drawback of not being self-consistent. There are 19 free parameters,
e.g. the mass of the leptons and quarks, which cannot be derived from theory alone but
have to be measured in experiments. A wide variety of theories has been proposed to

3

date, which try to enhance or extend the SM. These theories are commonly referred to
as Beyond Standard Model (BSM) theories.

1.1 Lepton physics

In this section, we will explain the leptons and especially the tau lepton or simply tau
in more detail. As seen in the previous section, leptons belong to the fermions and have
spin 1/2. The twelve leptons are: electron (e−), muon (µ−), tau (τ−), electron-neutrino
(νe), muon-neutrino (νµ), tau-neutrino (µτ) and their respective anti-particles e+, µ+,
τ+, νe, νµ, ντ . The masses and mean lifetimes of the leptons are shown in table 2.

Particle Mass [MeV] Mean lifetime [s]
e− 0.5109989461± 0.0000000031 -
µ− 105.6583745± 0.0000024 (2.1969811± 0.000002) · 10−6

τ− 1776.86± 0.12 (290.3± 0.5) · 10−15

νe, νµ, ντ 0 -

Table 2: Masses and mean lifetimes of the SM leptons according to the particle data
group (PDG) [1]

The neutrinos in the SM have zero mass and are stable. Masses and mean lifetimes are
identical for particle and anti-particle. The tau is about 17 times heavier than the muon
and about 3550 times heavier than the electron. Its lifetime is only around one tenth of
a million of that of the muon. The fact that the tau is so short-lived is also a reason for
why its mass and lifetime are not nearly as accurately measured as those of the electron
and muon.

The electron is the only stable lepton, apart from the SM neutrinos, being the lightest
one. Muons and taus decay into lighter particles. While the muon can only decay into
an electron, the tau is heavy enough to decay not only into other leptons, but also into
hadrons. E.g. the decay of a tau into a pion.

τ− → π− ντ (6)

As stated in table 1, the lepton number L is a conserved quantity in the SM. However,
this lepton number is conserved for every lepton generation independently. One defines
a lepton number for every lepton generation, for electrons, Le, for muons, Lµ and for
taus, Lτ . Leptons are assigned a lepton number of 1 and their anti-particles a lepton
number of -1. If we consider the β− decay:

n → p+ e− νe (7)

4

where a neutron decays into a proton via the emission of an electron and an electron-
antineutrino, the lepton number of both sides of the arrow is zero. The lepton number
Le is conserved for the β− decay. A hypothetical process of a muon decaying into an
electron:

µ− → e− νµ (8)

would conserve the muonic lepton number Lµ, but not the electron lepton number Le.
Such process are subject of currently ongoing research.

5

2 The BELLE II experiment

The BELLE II experiment is the direct successor of BELLE, which operated from 1999-
2010 at the KEKB electron-positron collider located at the Japanese High-Energy Ac-
celerator Research Organisation (KEK) in Tsukuba, Japan. KEKB is a so-called B-
factory. Its center-of-mass energy is calibrated for the Υ(4S) resonance at 10.58 GeV,
which nearly exclusively decays into two B mesons, hence the name. Over the course
of 12 years lifetime, BELLE collected around 1 ab−1 of data, most of which for Υ(4S)
but also for the other Υ resonances. In late 2010, work began to upgrade KEKB. In
2016 beam commissioning started for the new SuperKEKB accelerator. SuperKEKB is
designed to work at the same center-of-mass energy as KEKB but with 40 times higher
luminosity which is achieved mostly by decreasing the beam sizes at the interaction
point, the so-called nanobeam scheme. Furthermore the energies of the electron beam
and the positron beam have been increased from 3.5GeV to 4GeV and decreased from
8GeV to 7.007GeV respectively, leading to the same center-of-mass energy but also to a
decreased boost of the center-of-mass system. The BELLE detector has been upgraded
as well and will be explained in more detail in the next section. BELLE II is projected
to gather around 50 ab−1 of data until 2025, 50 times more than its predecessor. This
enables an extensive physics program which is explained in more detail in section 2.2.

2.1 The BELLE II detector

Belle II fits the same casing as BELLE and reuses some of its components, therefore
major changes on the detector hull were not necessary while the performance could still
be significantly increased. First data was taken in 2018 for accelerator and component
commissioning. Figure 2 shows a cross section of the upper half of the detector.

Figure 2: The BELLE II detector with its components. Shown is only the upper half
of the detector, the lower half being identical. The beam pipe is located at
the bottom of the picture. The backward direction is to the left, the forward
direction to the right. Picture taken from [2] and slightly modified to only
show BELLE II relevant parts.

6

The lower half of the detector is not shown but is identical to the upper half. The detector
is asymmetrical in the beam pipe axis. Since the electron ring is operated at higher
energy than the positron ring, the center of mass system of colliding particles is not at
rest. The direction of movement of the center of mass system is called forward direction.
The opposite direction is called backwards direction. The detector components from the
center outwards are: Silicon Vertex Detector (SVD) and Pixel Detector (PXD), Central
Drift Chamber (CDC), Particle Identification (PID) barrel and endcaps, Electromagnetic
Calorimeter (ECL) barrel and endcaps and K0

L and muon detector (KLM). Also indicated
is the super conducting solenoid magnet. All detector components except for KLM lie
within the magnet. The return yoke of the magnet consists of iron plates, which are
interlaced with detector plates from the KLM detector.

2.1.1 Vertex Detector

The Vertex Detector (VXD) is the innermost detector and is, as the name states, used
for vertex detection. It consists of six concentric layers, each layer comprised of so called
ladders. The ladders are printed circuit boards, containing both the semiconductor
sensors and the read-out electronics. They are arranged symmetrically around the beam
pipe. The two innermost layers are comprised of pixelated DEPFET sensors. They are
located at 14 mm and 21 mm distance from the beam pipe respectively. These two
layers together form the Pixel Detector PXD. It has a spatial resolution of around 10 µ
m. Figure 3 shows a schematic of the PXD.

Figure 3: Schematic of PXD. Picture taken from [2]

The four outer layers comprise the Silicon Vertex Detector SVD, they are equipped with
double-sided silicon strip sensors and are placed at 38 mm, 80 mm 115 mm, 140 mm,
respectively. The spatial resolution of the strip sensors is lower than those of the pixel
detectors. Due to close proximity to the beam pipe and the high luminosity of the
accelerator, the VXD is exposed to very high particle hit rates. The material stress on
the VXD is very high and the semiconductor as well as the electronics have to withstand

7

high physical stress. High hit rates also lead to a high occupancy of the silicon strip
detectors. Therefore the usage of pixel detectors in the two inner layers is crucial.

2.1.2 Central Drift Chamber

The next detector is the Central Drift Chamber (CDC). Its main functions are to re-
construct trajectories and to measure momenta p⃗ and energy loss dE/dx of charged
particles. The drift chamber volume is filled with He−C2H6 gas and is riddled with 56
layers of sense wires, resulting in 14,336 sense wires in total. Charged particles traversing
through the chamber volume ionize the gas. The ions then drift through the chamber and
induce electromagnetic fields, which are picked up by the sense wires. In this way, the
trajectory of the particles can be reconstructed. From the curvature of this trajectory,
the momentum can be calculated and the change in curvature allows a measurement of
the energy loss inside the drift chamber volume. CDC has a spatial resolution of about
100 µm and a resolution in dE/dx of about 11.9 %.

Figure 4: Wire configuration of the CDC. The dots indicate the sense wires. Picture
taken from [2] and modified to only show the BELLE II relevant part.

Figure 4 shows a cross section of the CDC. On the inner side of the detector, the wires are
more densely placed. This is necessary to cope with high the high occupancy resulting
from high hit rates on the inner part of the detector.

2.1.3 Particle Identification

The particle identification (PID) system is comprised of a barrel detector placed in radial
direction and one endcap detector in the forward direction. The barrel PID system
features an array of Time-Of-Propagation (TOP) counters. A TOP counter measures
the time of propagation of Cherenkov photons which are produced by particles traversing
a quartz radiator which are then internally reflected. The time of propagation, together
with two-dimensional information from Photo-multiplier tubes allows the identification
of charged particles. In the endcap, there is an Aerogel Ring Imaging Cherenkov detector
(ARICH). Here, Cherenkov photons are produced when charged particles pass the aerogel

8

radiator. The photons are picked up by a photo detector and the incidence angle is
measured. The particle identity can be derived from this angle.

(a) Schematic side-view of a quartz radiator
used for TOP. Shown are the path of a
charged particle and the two cherenkov pho-
tons for Kaons and pions. Picture taken
from [2].

(b) Schematic side-view of the ARICH detec-
tor. A charged particle traverses the aero-
gel radiator and produces cherenkov pho-
tons. The photon detector is actually ring-
shaped. Picture taken from [2].

Figure 5: TOP and ARICH

Figure 5 illustrates the underlying principles of TOP and ARICH.

2.1.4 Electromagnetic Calorimeter

Above the PID is the electromagnetic calorimeter (ECL). There are a barrel ECL and
two endcap detectors, both in forward and backward direction. The main tasks of ECL
are: photon detection and photon energy measurement, electron identification and K0

L

detection. The ECL consists of CsI crystals doped with Ti. The barrel ECL has a total
of 6624 crystals, the endcaps have 1056 such crystals each. The CsI(Ti) crystals have
been in use since the start of BELLE and the ECL will be upgraded in the future. There
are several options for improving the reaction time of the crystals e.g. by replacing Ti
doped crystals with pure CsI. At the time of writing, the old CsI(Ti) are still in use.

2.1.5 KLM

The K0
L and muon detector (KLM) is the outermost detector at BELLE II. Its main

purposes are to identify K0
L mesons and muons, as the name states. There is a barrel

and two endcap detectors, one in forward and one in backward direction. KLM fea-
tures a layer structure, where detector layers and iron plates are interweaved. The iron
plates form the return yoke for the super conducting coil and also serve as absorbers
for traversing particles. The detector layers are comprised of glass-electrode resistive
plate chambers (RPCs). Muon identification requires combined information of CDC

9

and KLM. The reconstructed tracks of charged particles inside CDC are extrapolated
into the KLM region and combined with information from the RPCs. K0

L mesons can
be identified with either ECL or KLM information or with a combination of the two,
leading to an increased accuracy.

2.2 Physics program

We only briefly mention the general physics program of BELLE II and mainly focus
on the part concerning tau physics. The major areas of interest of BELLE II are the
search for new physics (NP) in the flavour sector and the improvement of SM parameter
measurements. Some questions regarding this subjects from the BELLE II Physics Book
[3] are:

• Are there new CP violating phases in the quark sector?

• Does nature have multiple Higgs bosons?

• Are there sources of lepton flavour violation (LFV) beyond the SM?

• Is there a dark sector of particle physics at the same mass scale as ordinary matter?

• What is the nature of the strong force in binding hadrons?

The SM has been tested and found to be in very good agreement with experiments up to
the TeV scale. High-energy physics (HEP) experiments can address the questions stated
above in two ways. In the direct or energy frontier approach, particles are collided at very
high energies in order to directly produce new particles. This is the approach followed
by the LHC, which collides protons at center-of-mass energies of around 14 TeV. The
indirect or intensity frontier approach, followed by BELLE II, strives to examine NP by
measuring discrepancies with the SM. Crucial for this approach are large amounts of
data, produced in high-luminosity or high-intensity colliders, which give this approach
its name.

Due to the high luminosity of the SuperKEKB accelerator, tau physics can be studied
at BELLE II with unprecedented precision. Around 45 ·109 tau pairs are expected in
the full data set. Another advantage of SuperKEKB regarding tau physics, is the fact
that it is an electron positron collider and therefore the production cross-section for tau
pairs is comparatively high. One important phenomenon under consideration at BELLE
II is the charged lepton flavour violation in tau decays. Lepton flavour violation (LFV)
is not known in the SM but has already been observed in the neutrino sector in the form
of neutrino oscillations. Charged LFV on the other hand has not yet been observed.
LFV decays are e.g. the decays µ− → e−γ or τ− → µ−γ. Decays involving µ have
already been examined and stringent bounds found for the branching ratios. LFV decays
including τ have not been as thoroughly tested. Especially the decays τ− → µ−µ+µ−

and τ− → µ−γ are promising candidates for the study of charged LFV.

10

In the SM, the Cabibbo-Kobayashi-Maskawa (CKM) matrix describes the mixing of
quarks of the three flavours. It can be described by three real parameters and one
complex phase. The physical importance of this complex phase lies in the CP violation
of electro-weak decays i.e. decays which involve the electromagnetic as well as the weak
force. This CP violation affects quarks, but not leptons. CP violation in the lepton sector
is subject to current research. At BELLE II, semi-hadronic tau decays, i.e. decays which
have hadrons and other particles in the final state like τ+ → π+K0

Sντ , are of special
interest for this matter. If CP violation is found in one of these decays, it is an indication
of an existence of a CP violating processes outside of the CKM mechanism.

2.3 BASF2

The Belle 2 Analysis Framework (BASF2), is the main software framework for simu-
lation, reconstruction, visualization and analysis for BELLE II. There are around 40
packages, e.g. one for each detector, a package for reconstruction, one for analysis, etc.
These packages are written in C++. BASF2 is available on central servers like the DESY
NAF or at the KEK Computing Center. It is also possible to install BASF2 locally on
a machine, either by building the source code or via a Docker Image. BASF2 has an
extensive Python interface. Python is an increasingly popular programming language.
It is designed for readable code and straightforward software design and is widely used
for Data Science applications. Users can write Python scripts, so-called steering files
and execute them via BASF2. A typical analysis workflow combines different modules
to a chain, which is sequentially processed. In BASF2, such a chain of modules is called
path. Figure 6 shows a sample path in BASF2.

Figure 6: Modules are linked together to form a path. Picture taken from [4].

Each module in the path can have access to data. The path processing is strict, only
when a module has finished successfully, the next will start processing. Besides steer-
ing files, users can work with BASF2 as a Python interpreter. Based on the Ipython

11

interpreter, it features functionalities like tab completion, system shell access and his-
tory retrieval. With this interpreter, it is possible to work with data interactively or to
test modules. This interpreter can also be used inside Jupyter Notebooks. Jupyter is a
web-based interactive environment which lets users run code in notebooks. A notebook
consist of a list of cells which can be used to run code or display text or images. Besides
interactive access, Jupyter Notebooks also have the advantage of an internal documen-
tation. Notebook can be saved and re-executed, whereas the command line interpreter
does not save progress. Along with BASF2, it is also possible to use ROOT inside a
Jupyter Notebook.

A module which is heavily used in this thesis is called BASF2_MVA. It features software
for methods of multivariate analysis, most notably Machine Learning. The module
provides an interface, which is written for C++, bash and Python, for several backends,
e.g. TensorFlow and scikit-learn. The standard machine learning backend is called
FastBDT. It is an implementation of a boosted decision tree classifier specifically written
for the use in the BASF2 framework. The main goal of the BASF2_MVA module is
to work backend-independent. Functions like, training, validation and inference should
be applicable to all available backends, which also enables it to compare methods from
different backends.

12

3 Machine Learning

In this section, an introduction to machine learning is given together with a closer look
at some classification algorithms.

In HEP, what one often wants, is the classification of certain data points as belonging
to one of two classes, signal and background. Signal events are all those, which belong
to the process of interest, background events all those who don’t. A very simple, yet
widely used and powerful way of classification is by rectangular cuts.

A cut is a simple restriction of the domain of a variable. For example, if the variable
x ∈ R is restricted to values x > 0, x < 10, we speak of a cut. The systematic approach
for a cut-based analysis looks like the following. First, simulated data is examined.
Distributions of relevant variables are plotted for signal and background events. Then,
cuts are applied to each variable so that the number of background events which are
dismissed is maximized while at the same time the number of signal events dismissed
is minimized. The ordering in which the cuts are applied is relevant. If a cut has no
marginal effect, that is, if no events are ruled out by this cut after all other cuts have
been applied, it should not be included. The marginal effects of every cut should be
examined. Then, after all cuts have been applied, one counts the remaining signal and
background events and calculates the quantities of interest. After the analysis has been
optimized on simulated data, one can proceed to apply it on real data.

Figure 7 shows two example variable distributions and the corresponding cuts.

(a) Example histogram of the distribution of
the variable missingMomentumOfEvent.

(b) Example histogram of the distribution of
the variable tau0_p_CMS.

Figure 7: Two distributions of variables for the process e+e− → τ+τ− → µ+µ− (signal)
and background processes. The vertical black lines indicate where the variable
was cut.

All events inside the cut region are treated as signal events, all events outside as back-
ground events. We speak of rectangular cuts, because the cut chooses a rectangular

13

region in the one dimensional distribution of a variable. It is also possible to cut on two
dimensional distributions of variables and therefore make use of possible correlations
of these variables. Manual cutting in higher-dimensional regions is difficult. Even the
depiction of distributions in more than two dimensions is not straightforward, let alone
finding the optimal choice of cuts. This is a severe limitation of the cut-based approach
and machine learning methods provide a way of dealing with this issue.

Machine learning or statistical learning describes a collection of algorithms which aim
to learn certain features from data to build up a model and then infer this model on
unseen data. To formalize this concept, consider the functional relation

y = f(x⃗), x⃗ ∈ Rn, y ∈ R,N (9)

where x⃗ = (x1, x2, ..., xn)
T are called independent or input variables and y is called the

dependent or output variable. The goal is to find a function

ŷ = f̂(x⃗) (10)

which approximates y. To achieve this, we first have to make assumptions on the form
of f̂ . There are a variety of possibilities for the choice of f̂ which define the learning
algorithm. For example, f̂ can be a linear or a polynomial function, but also more
sophisticated models, like non-parametric or additive functions are possible. The next
step is to look at labeled pairs of data (x⃗1, y1), (x⃗2, y2), ..., evaluate the predictions ŷ
and calculate the error or loss function E(y, ŷ), which is a measure of the deviation
of ŷ from the actual y. The model is then updated to minimize this error function.
After this learning or training phase, the model is applied to a test data set and the
error again calculated. The correctness of the model can be assessed with this error.
Data from which the model learns is called training data, data on which the model
performance is evaluated is called test or validation data. After the model has been
trained, it can be used to predict properties on unseen data. This procedure is called
supervised learning, as the training data has to be correctly labeled. There are also
methods for unsupervised learning, where no labels are supported or a mixture of both,
where only some data points are labeled. We will focus here only on supervised learning
methods. The described process is very general and there are many different algorithms,
which differ in the form of f̂ , which error function E(y, ŷ) to use and the domain of the
output variable y.

Two classes of machine learning algorithms, regression and classification algorithms can
be distinguished. We speak of regression algorithms if y ∈ R and of classification if
y ∈ N. We restrict ourselves to classification algorithms in the following sections.

14

3.1 Classification algorithms

A classification problem is such that all data points can be identified as belonging to
one of several classes, i.e. y ∈ {0, 1, 2, 3 . . . N}. In the easiest case, and the one we are
interested in here, only two classes are present, e.g. y ∈ {Signal, Background}. For
every data point, the algorithm has to decide which class it belongs to.

3.2 Logistic Regression

The simplest classification algorithm is the logistic regression. It can separate two classes
with a linear decision boundary. The name logistic regression stems from the logistic
function

f : R → (0, 1)

f(x) =
1

1 + e−x

(11)

also known as sigmoid curve, which is shown in figure 8. Despite the name, logistic
regression is actually a method for classification.

Figure 8: Logistic function in the range x ∈ [−10, 10]

The logistic function takes on values between 0 and 1, so we can interpret its output as
the probability p(x) of a data point x belonging to one of two classes. The probability
of x belonging to the other class is then 1 − p(x). Logistic regression therefore can
only be used for distinguishing between two classes. For data with more than one input
variables, we form the linear combination of the inputs

z = β0 + β1x1 + β2x2 + ... (12)

with the parameters βi. These parameters, also called weights, are to be estimated from
the training data. The probabilities of an input x⃗ are then calculated by applying the
logistic function to this linear combination

15

p(x⃗) = f(z) =
1

1 + eβ0+β1x1+...
(13)

In practice, one sets a critical value and treats all observations which result in proba-
bilities higher than this value as belonging to class 1 and all other as belonging to class
2. Although the logistic function is non-linear, because one calculates the linear com-
bination of input values, the resulting decision boundary is indeed linear. The decision
boundary is the hyperplane in the input variable space, which separates class 1 from
class 2. In two dimensions, this is just a straight line. Figure 9 illustrates this for two
input variables x1 and x2.

A
1

A
2

Figure 9: The decision boundary from logistic regression in two dimensions is a straight
line. The markers indicate to which class each data point actually belongs.

The line separates the variable space into two distinct regions A1 and A2. All points
to the right of the decision boundary would be assigned to class 1 and all points to the
left to class 2. In this example, quite a few data points from class 2 would be wrongly
classified as belonging to class 1. This indicates, that a straight line cannot separate the
two classes perfectly and logistic regression is too simple for this problem.

16

3.3 Decision Trees

Decision trees are a general method for decision making. A generic example of a decision
tree is depicted in figure 10.

Figure 10: Example of a decision tree for a heating control system.

Shown is a tree for a simple heating control system. If the temperature surpasses the
defined threshold of 21 degrees Celsius, the heater will be turned on. If the temperature
falls below this value, the heater will be turned off. This tree has only one split and
therefore a depth of one. Decision trees can be of arbitrary complexity, depending on the
problem. Splits in the tree are called branches and terminal nodes are called leafs. The
rectangular cuts explained above are equivalent to trees of depth one. Decision trees can
be used for both classification and regression. The procedure of training a classification
tree on data looks as follows:

First, we split the input variable space of the training data into two regions x1 < c1 and
x1 > c1 and calculate the Gini index

G =

K∑
k=1

p̂k(1− p̂k) (14)

in both regions. Here p̂k is the proportion of data points which belong to the class k in a
region and K is the total number of classes. The Gini index is close to zero, if many data
points are correctly classified. Therefore it is also called node purity. The optimal value
for c1 is such that it minimizes the sum of the Gini indices of both regions. For the next
step, split these regions further using the same measure to calculate the optimal split
values. We stop when every terminal node has reached a certain purity. This process
is called recursive binary splitting. Another measure for calculating the optimal split
values is the cross-entropy D

17

D = −
K∑
k=1

p̂klog(p̂k) (15)

Like the Gini index, the cross-entropy takes on small values if many data points are
correctly classified. If the number of possible classes K = 2, then we speak of binary
cross-entropy.

With a grown tree, the classification is straightforward. Figure 11 illustrates this proce-
dure.

x
1
> c

1
?

Yes

No

Class 1x
2
> c

2
?

Yes

No

Class 2Class 1

(a) A decision tree with two splits and three
leave nodes

(b) The solid line indicates the final decision
boundary. The dashed line indicates the
first split.

Figure 11: Classification with a decision tree.

The data set is the same as in the logistic regression example. Starting at the top of the
decision tree in figure 11(a), the data is split into two regions x1 > c1 and x1 < c1 at the
first branch. Data points with x1 > c1 are assigned to class 1. The second branch splits
the region with x1 < c1 further. Data points with x2 > c2 are assigned to class 2 and
those with x2 < c2 to class 1. The result is two disjoint regions A1 and A2 with a highly
nonlinear boundary. Graphically, all data points which lie inside region A1 are assigned
to class 1, and vice versa. The resulting decision boundary better separates the two
classes than in the case of logistic regression. The decision boundaries of classification
trees are straight line pieces joined together at right angles. This case is the other
extreme to the linear decision boundary of logistic regression. Growing a single tree is
often vastly inferior to many other classification methods. To improve the performance,
one can use a method called boosting.

18

3.3.1 Boosting

Boosting is a method of improving the accuracy of any statistical learning method and
not just limited to the use in decision trees. The main idea of boosting is to subsequently
train identical methods on modifications of the same data and average the predictions.
The goal is to improve the predictions that one method alone would give.

Here, we give an overview of how boosting works with classification trees. First, scale
the training data with weights wi =

1
N , i = 1, 2, ..., N , where N is the number of data

samples. Train a single tree of depth d on this scaled data. For d = 1, the tree only has
a single split. This classifier is called T1. Increase the weights for data points which were
wrongly classified by T1 and decrease the weights for correctly classified ones. The rate
of de-/increase depends on the number of wrongly classified and a parameter λ called
learning rate. Train a new classifier T2 on the scaled data and update the weights again.
Repeat this procedure K times. The probability of an input x⃗j belonging to a class is
then

p(x⃗j) =

M∑
i=1

λTi(x⃗j) (16)

where Ti(x⃗j) is the probability prediction of the i-th classifier. The probability of be-
longing to the other class is again 1− p(x⃗j). This algorithm is known as AdaBoost [10].
The advantage of boosting is that the resulting method learns "slowly", meaning that it
gradually improves the predictions with each iteration. This approach is less susceptible
to over-fitting.

Boosted decision trees (BDT) have three hyper-parameters: the number of iterations
M , the learning rate λ and the depth of the trees d. While d = 1 is often a good choice
for boosting, it can be difficult to find good values for λ and M , since they are inter-
dependent. Decreasing λ can lead to better performance but requires a larger M which
in turn can lead to over-fitting the data. The optimal set of hyper-parameters can be
found with cross-validation. It is also possible to calculate a specific learning rate λi for
each iteration. Often however, a constant λ produces good results.

Hyper-parameters and cross-validation will be explained in more detail in section 3.6.

3.4 Gaussian Naive Bayes classifier

The Gaussian Naive Bayes (GNB) classifier is a special form of Naive Bayes (NB) clas-
sifier. NB classifiers are a family of methods which "naively" assume conditional inde-
pendence between every pair of data points (xi, xj) given the class label y.

P (xi|y, x1, x2, . . . xi−1, xi+1, . . . xn) = P (xi|y), ∀i (17)

19

With this assumption, we can classify events according to the following scheme. Starting
from Bayes rule for a set of input data points x1, . . . , xn

P (y|xi, . . . xn) = P (y)P (x1, . . . , xn|y)
P (x1, . . . xn)

(18)

The joint conditional probability P (x1, . . . , xn|y) can be written as

P (x1|y, x2, . . . xn) · P (x2|y, x3, . . . xn) · · ·P (xn|y)
=P (x1|y) · P (x2|y) · · ·P (xn|y)

=

n∏
i=1

P (xi|y)
(19)

using the conditional independence assumption. We then can rewrite Bayes rule accord-
ingly:

P (y|xi, . . . xn) = P (y)
∏n

i=1 P (xi|y)
P (x1, . . . xn)

(20)

P (x1, . . . xn) is constant for given x1, . . . , xn i.e. for the training data. This constant can
be neglected for the calculation of the predicted class label. The predicted class label is
then calculated as

ŷ = arg m
y
ax

(
P (y)

n∏
i=1

P (xi|y)
)

(21)

The predicted class label is the value of y, which maximizes P (y)
∏n

i=1 P (xi|y). Now,
both P (y) and P (xi|y) are unknown, so further assumptions have to be made. For
training data with known class labels, we can assume P (y) to be the relative frequency
of the class label in the training data set. For the conditional probability P (xi|y), we can
make different assumptions which serve as a distinction between different NB classifiers.
For the GNB, we assume P (xi|y) to be

P (xi|y) = 1√
2πσ2

y

exp

(
−(xi − µy)

2

2σ2
y

)
(22)

The parameters µy and σ2
y are estimated using the maximum likelihood method. The

GNB classifier performs relatively well while being reasonably fast during training.

20

3.5 Artificial Neural Networks

Artificial Neural Networks (ANNs) are inspired by and somewhat modeled after the
human brain. An artificial neuron, like a real neuron can receive input signals which
when strong enough cause the neuron to "fire", meaning to produce an output signal. A
number of such neurons can be combined in a network and used for learning purposes.
There are a wide variety of ANNs used for such purposes as computer vision, natural
language processing or reinforcement learning. These are typical use cases for deep
learning and in fact the name deep learning stems from the usage of deep neural networks,
meaning neural networks with many layers of neurons. However it is also possible to
use ANNs for simple two-class classification problems. This section shows the learning
process of artificial neurons and how these neurons can be combined to form ANNs.

A single artificial neuron can be thought of as a function

f : Rn → R,N
f(x) = φ(β0 + β1x1 + β2x2 + ...)

(23)

where φ is called the activation function of the neuron. The neuron takes the weighted
sum of the inputs and applies to it the activation function. There are many different
choices for φ. Two prominent ones are the Heaviside theta function Θ(x) or the identical
function id(x) = x. The choice φ(x) = Θ(x) is called Perceptron, while the neuron with
φ(x) = id(x) is called adaptive linear neuron or Adaline. In the case of the Perceptron,
the output of the activation function is either 0 or 1, so it can only be used for distinction
of two classes. The Adaline may be used for regression as well as classification. In the
latter case, one can interpret the output as the probability for class membership.

In order for an artificial neuron to learn, we need to specify a loss function E(y, ŷ). For
the Adaline, we choose the loss function

E(y, ŷ) =
1

2

N∑
i=1

(
y(i) − φ(x⃗(i))

)2
(24)

the mean squared error. This loss can be expressed as a function of the weights βi,
E(y, ŷ) = L(β⃗), where β⃗ = (β0, β1, ..., βN)T . The goal is to minimize the loss function.
This is done by gradient descent.

β⃗′ = β⃗ − λ∇L(β⃗) (25)

The weights are updated with the gradient of the loss function multiplied with the
learning rate λ and the neuron trained again. This is done in an iterative way, until
the loss function reaches a minimum. By specifying the activation function, the loss
function and initializing the weights, the artificial neuron is completely defined. It is

21

a simple and easily understandable model. The disadvantage however is the relative
weak performance in comparison with other methods, especially when facing many input
variables. To alleviate this, we can combine single neurons to an ANN.

3.5.1 Multilayer Perceptron

A simple form of ANN is called the multilayer Perceptron (MLP). It consists of multiple
layers of neurons, the input layer, the output layer and one or more hidden layers. The
input layer contains one neuron for every input variable, the output layer has Nclasses−1
neurons. The hidden layers lie between input and output and are therefore isolated
from the outside, hence the name. How many hidden layers and how many neurons in
each layer depends strongly on the given problem. A good starting point for a binary
classification problem is to just use one hidden layer with (Ninput +Noutput)/2 neurons.
Every neuron in one layer is connected to every neuron in the following layer. Figure 12
shows an example of a MLP.

Input Layer Output LayerHidden Layer

x
1

x
2

x
3

y

β
1

β
2

β
3

Figure 12: Example structure of a MLP with three input neurons, one output neuron
and one hidden layer with two neurons. The weights between the input and
hidden layer and between the hidden and output layer are omitted.

The input layer neurons only have one input, the input variables xi. Figure 12 is an
example of a fully-connected neural network with identical neurons. Every neuron in one
layer is connected to every neuron in the next layer, with each neuron having the same
activation function. Networks which are not fully-connected or which feature multiple
types of neurons are also possible. The learning procedure of a ANN is similar to that
of a single neuron. After a loss function is specified and all weights are initialized,
the data is fed to the network. For every data point in the training set, each input is

22

assigned to one input layer neuron. Each neuron applies the activation function to its
input and transmits the output to the neurons of the next layer. This is done until the
output layer is reached, where the loss is calculated. Via gradient descent, the weights
are updated beginning from the output layer neurons recursively until all weights are
updated. This method is called back-propagation. When the number of training samples
becomes large, the gradient descent method becomes infeasible to calculate. In order to
cope with this, only a subset of the training data is used for calculating the gradient
of the loss function. The true gradient is then estimated and the weights are updated
accordingly. This method is called stochastic gradient descent (SGD) and is the basis of
all modern deep learning algorithms.

3.6 Parameter tuning and validation

Choosing the right model for a problem is an important step in the process. The model
has to be just complex enough to be appropriate for the data at hand, so that predictions
are accurate. If one chooses a too simple or too complex model, the prediction error
increases. This is known as the bias-variance tradeoff. The terms bias and variance
are tied with the concepts of over- and underfitting. Underfitting means trying to fit a
distribution of data with a too simple model where it will not be possible to model the
true distribution of data correctly. The resulting error is called bias. Overfitting occurs
when the model can fit the training data too good. If the data would change only a
little, the model prediction would decrease dramatically. This is called variance. An
example of the effect of model complexity on two-dimensional data is shown in figure
13. Three different models with increasing complexity are trained and their predictions
plotted together with the actual class affiliation.

The logistic regression leads to a linear decision boundary, which is too inflexible for
the shown data. Bias is likely to be high in that case. Quadratic Discriminant Analysis
results in a parabolic decision boundary, which appears to be adequate for this problem.
The 1-Nearest-Neighbour Classifier results in a very curvy decision boundary. While for
this problem, it correctly classifies all data points, the accuracy would decrease greatly
if the data points were to be altered only a little. The accuracy of a classifier can be
measured by the training and test errors. The training error is the proportion of correctly
classified events in the training data set. The test error is the same measure calculated
for the test or validation data set. While the training error can be reduced indefinitely
with increasing model complexity, the test error will vary non-linearly. High bias as well
as high variance will lead to large test errors with a minimum in between, resulting in
a u-shaped curve depicted for the example of a K-Nearest-Neighbour Classifier (KNN)
in figure 14. This u-shaped curve for the test error appears for all machine learning
methods and illustrates the problem of the bias-variance tradeoff.

To minimize the test error, model complexity has to be carefully selected. This can be
done via hyper-parameters. The model parameters, or weights, are estimated during the
learning process. Hyper-parameters cannot be chosen from data alone, one has to select

23

(a) Logistic Regression (b) Quadratic Discriminant analysis

(c) 1 Nearest Neighbour Classifier

Figure 13: Visualization of over- and underfitting. Three models with different complex-
ity are trained on the same data. Markers indicate the actual class of the
data points and the shaded region correspond to the predicted classes. All
points inside the horizontally hatched region is assigned to class 1, all points
inside the vertically hatched regions to class 2.

them either manually or by validation. Examples of hyper-parameters are the number
and depth of trees in BDTs, the learning rate and the number of neurons in ANNs. One
way of determining hyper-parameters is cross-validation.

The training data is split up into m subsets. The model is trained on m − 1 of those
subsets and the test error evaluated on the remaining one. This process is repeated m
times and then all test errors are averaged. This average is used as a measure to assess
the hyper-parameters. We speak of m-fold cross-validation. In the case where m is equal
to N , the number of data points in the set, the process is called Leave-One-Out cross-
validation. Depending on the size of the data set, performing cross-validation can be
very compute intensive. For very large data sets, it is also possible to do the validation

24

Figure 14: Training and test error of a K Nearest Neighbour Classifier as function of
1/K.

with a single validation set. Here, a subset of the training data is held out of the training
process and the model evaluated on this validation set. In this case, the training only
has to be done once, which reduces computation demands. Figure 15 shows an example
of data set splitting in the case of m = 3.

Training

Validation

Figure 15: Exemplary splitting of a data set for three-fold cross-validation. The blue,
vertically hatched part are used for training and the orange, horizontally
hatched part is used for evaluation.

A way to evaluate the performance of a model in HEP applications is by plotting back-
ground rejection vs. signal efficiency and signal purity vs. signal efficiency curves and

25

calculating the area under these curves. These quantities are defined as follows:

Signal efficiency : SE =
Nsig,corr

Nsig,tot

Background rejection : BR =
Nbkg,corr

Nbkg,tot

Purity : PU =
Nsig,corr

Nsig,corr +Nbkg,inc

(26)

Here, Nsig,corr, Nbkg,corr is the number of signal and background events respectively,
which are correctly classified as such. Nbkg,inc is the number of incorrectly classified
background events. Nsig,tot, Nbkg,tot are the total numbers of signal and background
events respectively, meaning the correctly and incorrectly classified events. So signal ef-
ficiency is the proportion of correctly classified signal events. Background rejection is the
proportion of correctly classified background events. Purity is the fraction of correctly
identified signal events over the total number of identified signal events, which consists
of correctly classified signal events and incorrectly classified background events. While
signal efficiency and background rejection are fractions of signal events and background
events respectively, they do not explicitly depend on the ratio of signal to background
events. Purity does however and therefore one has to take into account the ratio of total
signal to background events in the test set when evaluating purity.

Figure 16 shows examples of background rejection vs. signal efficiency and purity vs.
signal efficiency plots.

(a) Background rejection vs. Signal efficiency (b) Purity vs. Signal efficiency

Figure 16: Background rejection vs. Signal efficiency and Purity vs. Signal efficiency
plots for a BDT classifier.

26

Both curves lie within the unit square. The area under the curve (AUC) for these plots is
a measure of how well the model performs. The closer the curve approaches the top right
corner of the unit square, the higher the AUC and the better the classification accuracy.
With these measures, we can also compare the performance of different models.

27

4 Event Reconstruction

This section will describe the data sets which were used for the analysis and how this
data was obtained.

The process of interest in this thesis is the purely muonic decay of a tau pair:

e+e− → τ+τ− → µ+(ντνµ) µ
−(ντνµ) (27)

This process is the signal for the following analysis and will be referred to as such in
the subsequent sections. The final state consists of two muons and two neutrinos. Since
the neutrinos cannot be detected, their presence can only be inferred by missing energy.
Table 3 lists the signal process together with the processes which are considered to be
the main sources of background and their cross-sections. Neutrinos are omitted.

Process cross-section [nb]
e+e− → τ+τ− → µ+µ− 0.028
e+e− → τ+τ− → 1prong 0.271
e+e− → µ+µ− 1.148
e+e− → e+e−µ+µ− 18.9
e+e− → µ+µ−µ+µ− 0.340
e+e− → e+e− 300
e+e− → e+e−e+e− 39.7
e+e− → qq 3.69
e+e− → mixed 0.565
e+e− → charged 0.535

Table 3: Signal and background processes together with the corresponding cross-sections.

The production of tau pairs at SuperKEKB has a cross-section of 0.919nb. By multiply-
ing this number with the branching ratio of a tau decaying to a muon and two neutrinos,
we obtain the cross-section of the signal process:

σ(e+e− → τ+τ− → µ+µ−) = σ(e+e− → τ+τ−) ·BR(τ− → µ−ντνµ)2

= 0.919 nb · 0.17392 = 0.028 nb
(28)

28

We do the same for the decays e+e− → τ+τ− → 1prong. 1prong is a placeholder for
three different final states containing a single charged particle:

• e+e− → τ+τ− → e+e− ; BR(τ− → e−) = 0.1785

• e+e− → τ+τ− → π+π− ; BR(τ− → π−) = 0.1091

• e+e− → τ+τ− → ρ+ρ− ; BR(τ− → ρ−) = 0.2551

qq denotes quark anti-quark pairs, mixed denotes decays to B0B0 pairs and charged
decays to B+B− pairs.

4.1 Pre-selection

For the event reconstruction, we first need to specify which pre-selection cuts should be
applied. Here, we adhere to the selections made in [14] with a few changes due to the
different event topology. The selection criteria are in detail:

Photons and π0

The selection criteria for Photons and π0s are identical to those in [14]. π0s are recon-
structed from Photon candidates, which satisfy:

• E > 0.1 GeV

• clusterNHits > 1.5

• -0.866 < cos(θ) < 0.9565 (CDC acceptance)

• 0.115 GeV < Mπ0 < 0.152 GeV

The selection on Mπ0 is applied to candidates for the process π0 → γγ. Photons which
are not used for the reconstruction of π0, are subject to

• E > 0.2 GeV

Tracks

For the signal process, we expect two muons in the final state. We therefore select two
charged tracks and imply a cut on the muon ID. Corresponding to the short lifetime of
the tau, all its decay products are assumed to origin from a region around the interaction
point. Furthermore, the two tracks shall lie within the barrel ECL region, i.e. the region
of the detector which excludes the ECL endcaps. The applied selections are:

• muonID > 0.9

• -0.625 < cos(θ) < 0.846

• -3.0 < dz < 7.0 cm

29

• dr < 1.0 cm

• nGoodTracks = 2

We don’t expect π0s in the final state and therefore can select only tracks without those.
Furthermore, we require less than three photons in the final state. This is a result of a
preliminary analysis. These selections apply for both tracks:

• NPhotonsTrack1 < 3 , NPhotonsTrack2 < 3

• NPi0Track1 = 0, NPi0Track2 = 0

4.2 Data sets

We are dealing with three different data sets in total. One for the training of the
machine learning models, one for evaluation of their performance and another one for
the measurement of the cross-section of the process e+e− → τ+τ−.

All three data sets are monte-carlo simulated (MC) data. The application of the models
on real data requires careful validation and would have taken more time than feasible
for this thesis. For all data sets, the same selection criteria apply.

Training data set

The data set for the training of the machine learning models was reconstructed from run-
independent data. Run-independent data is not adjusted to specific conditions which
vary from run to run, e.g. magnetic field settings or luminosity. We split the training data
set into two parts, one for the actual training and one for validation. This validation
data set will be used to get a first performance estimate of the models. There is no
restriction on how large the training data set can be other than the available computer
memory, so we want to use as many data points as possible. The validation data set
however should resemble real data. The expected number of events per process can be
calculated via the formula:

N̂i =
σi

σsignal
∗Nsignal ∗ ϵrec,i (29)

where σi is the cross-section of the i-th process, Nsignal is the desired number of signal
events in the data set and ϵrec,i is the efficiency of event reconstruction for the i-th
process. Each process is scaled according to its cross-section and multiplied with the
corresponding reconstruction efficiency. Nsignal can be chosen arbitrarily, and we chose
a number which achieves a compromise between data set size and purity.

Table 4 shows the number of events in the training data set, the scaling factor σi/σsignal,
the reconstruction efficiencies and the number of events in the validation data set.

30

Process Ntrain Scaling factor ϵrec Nval

e+e− → τ+τ− → µ+µ− 2.21 ·106 1 0.395 2017
e+e− → τ+τ− → 1prong 15 ·103 9.677 0.0001 4
e+e− → µ+µ− 4.51 ·106 41.071 0.013 2741
e+e− → e+e−µ+µ− 24 ·106 675 0.013 43800
e+e− → µ+µ−µ+µ− 112 ·103 12.143 0.068 4226
e+e− → e+e− 0 10714 0 0
e+e− → e+e−e+e− 14 1417 0 0
e+e− → qq 1.27 ·106 131.786 0.002 1415
e+e− → mixed 583 ·103 20.178 0.003 354
e+e− → charged 1.06 ·106 19.107 0.007 643

Table 4: Number of training events, scaling factors, reconstruction efficiency and number
of validation set events for each process.

All e+e− → e+e− and nearly all e+e− → e+e−e+e− events got rejected by the event
reconstruction. The most import background processes are, as expected, those with
at least two muons in the final state, namely e+e− → e+e−µ+µ−, e+e− → µ+µ− and
e+e− → µ+µ−µ+µ−.

Test data set

In order to compare the trained methods and to make the necessary estimations, another,
independent data set was gathered again using run-independent data. This data set and
the data set on which the cross-section measurement is conducted are designed to be
as close as possible to real data from the proc11 data taking campaign. proc11 is
the combined luminosity-weighted data of the BELLE II experiments 7,8 and 10. The
integrated luminosity of these experiments sums up to Lint = 8764.2 pb−1 for the Υ(4S)
resonance. Additionally we assume a trigger efficiency of 90 %. The expected number
of events for every process is calculated by:

Nexp = Lint · σ · 0.9 (30)

Table 5 lists the expected event numbers and the number of actually reconstructed events
for each process.

Measurement data set

Finally, to actually carry out the measurement, a third data set was constructed. Un-
aware to the author, the cross-section of the signal process was defined to be 17% smaller
than the actual value of 0.919 nb:

σ̂(e+e− → τ+τ−) = 0.919 nb · 0.83 = 0.7628 nb (31)

31

Process Expected events Reconstructed events
e+e− → τ+τ− → µ+µ− 221 ·103 87852
e+e− → τ+τ− → 1prong 2.138 ·106 577
e+e− → µ+µ− 9.055 ·106 7839172
e+e− → e+e−µ+µ− 149.079 ·106 2967554
e+e− → µ+µ−µ+µ− 2.682 ·106 105019
e+e− → e+e− 2366.334 ·106 7
e+e− → e+e−e+e− 313.145 ·106 380
e+e− → qq 29.106 ·106 69766
e+e− → mixed 4.457 ·106 35152
e+e− → charged 4.220 ·106 14077

Table 5: Expected number of events for proc11 data and actually reconstructed events
for the test data.

This was a precautionary measure to uncover any bias which may have entered the
analysis. This affects the processes with intermediate tau pair states leading to a 17
% decrease in the number of signal and e+e− → τ+τ− → 1prong events. All other
background events were created according to the expected numbers in table 5.

4.3 Variables

The variables used for the analysis are:

• Event variables:
thrust, visibleEnergyOfEventCMS, missingMomentumOfEvent

• Muon variables:
nPhotons, p, E, cos(θ), φ, E/p, ECMS , pCMS

• Tau variables:
p, E, cos(θ), φ, ECMS , pCMS

Here, nPhotons is the number of photons detected in the region of the corresponding
muon, p is the momentum and E the energy of the muon/tau. Variables sub-scripted with
CMS are measured in the center-of-mass frame. Each muon and tau variable is measured
for both muons and taus. The variables cos(θ) and φ refer to the azimuthal and polar
angle measured in the coordinate system of the detector. MissingMomentumOfEvent
refers to the momentum of the neutrinos and visibleEnergyOfEventCMS is the total
energy visible energy, that is the energy of all final state particles except for neutrinos,
in the center of mass frame. The thrust variable is the magnitude of the thrust vector.
The thrust vector is defined as the unit vector in the direction of the axis along which
the total projection of the momenta of all particles is maximized.

32

T =

∑ |T⃗ · p⃗i|∑ |p⃗i| (32)

This particular choice of variables was made because of the relatively good performance
of the machine learning models in a preliminary analysis.

A reduced variable set will be used for comparison with rectangular cuts:

• Reduced variable set:
visibleEnergyOfEventCMS, missingMomentumOfEvent, thrust
tau0_p_CMS, tau1_p_CMS, tau0_E_CMS, tau0_phi, tau1_phi and mu0_EoP

How this reduced set is chosen is described in detail in section 5.1.

33

5 Model selection

As a first step in the analysis, three different models were chosen, a BDT classifier, a
GNB classifier and a MLP classifier. For the BDT, the FastBDT framework from BASF2
was chosen. The GNB classifier was implemented in Python with scikit-learn and the
MLP is built with the Deep Learning frameworks Keras and TensorFlow. All three
methods were used within the BASF2 framework to be able to compare them. Since the
FastBDT is a BASF2 built-in method, we can simply use it with a function call. For the
GNB and MLP however, it is necessary to overload some of the BASF2_MVA functions.
The process of implementing and tuning the chosen methods shall be explained in more
detail in the following sections.

5.1 FastBDT

As mentioned, FastBDT is the default machine learning method in BASF2. Its use is
therefore straightforward. One only has to specify which variables and parameters to be
used by it. To find out the optimal parameters for the training data set, we used a three-
fold cross-validation approach. The training data set is split up randomly into two parts,
a large one for training and a small one for evaluation. The metrics of evaluation are the
AUC values of the background rejection vs. signal efficiency and of the purity vs. signal
efficiency plots, in the following referred to as rejection and purity plots respectively.
This procedure is repeated three times and the AUC values are then averaged. Figures
17 and 18 show the resulting AUC values plotted for different BDT parameters.

(a) d=1 (b) d=2

Figure 17: Purity vs. signal efficiency AUC for different parameter values N, d, λ. On
the left, results for d=1 are plotted, on the right for d=2.

34

(a) d=1 (b) d=2

Figure 18: Rejection AUC for different parameter values N, d, λ.

We used two different values d=1 and d=2 for the maximum tree depth, three different
values λ = 0.1, λ = 0.05 and λ = 0.01 for the learning rates and 20 different values
N = 100 . . . N = 2000 for the number of trees. The AUC values of the purity plots
increase for increasing N while the AUC values of the rejection plots stay nearly constant
over the whole range of possible N values. Classifiers trained with d = 2 show overall a
better performance than those trained with d = 1. The maximum values of purity plot
AUC and rejection plot AUC are 0.602 and 0.970 respectively. The parameters with
which these values were achieved are:

d = 2, λ = 0.1, N = 1600 (33)

which were therefore used for further analysis.

The FastBDT is now trained with these parameters and the evaluated metrics are given
in table 6.

Training time 2.32h
Rejection AUC 0.944

Purity AUC 0.516

Table 6: Training time and AUC value for rejection and purity plots of the FastBDT
classifier.

The FastBDT has functions for the calculation of feature importance and correlations.
Feature importance is the relative importance of each of the input variables, where
importance in this sense means the distinctive power of the variable. In figure 19 the
importance ranking of the input variables is plotted.

35

Figure 19: Importance ranking of the input variable set calculated from FastBDT.

The importance values are scaled to the interval [0, 100] and abbreviations for the
variable names introduced. t0, t1, mu0, mu1 label the first and the second tau and
muon respectively. As can be seen, the importance values drop rapidly after even
the first variable. After the ninth variable, all importance values are zero. We use
this fact to construct a reduced variable set, which consists only of the top nine vari-
ables: visibleEnergyOfEventCMS, missingMomentumOfEvent, thrust tau0_p_CMS,
tau1_p_CMS, tau0_E_CMS, tau0_phi, tau1_phi and mu0_EoP . The idea is that
variables with little to zero importance will not contribute to the overall performance of
the classifier and can therefore be left out.

With this reduced variable set, we can train and evaluate the FastBDT again. Results
are shown in table 7.

Figure 20 shows the rejection and purity plots for both the full and the reduced variable
set. The performance of the classifier in terms of the rejection AUC is nearly identical.

36

Training time 1h 12min
Rejection AUC 0.943

Purity AUC 0.491

Table 7: Metrics of the FastBDT classifier trained on the reduced variable set.

The purity AUC value decreases by 5% going from the full to the reduced variable set.
The performance of the classifier trained on the reduced variable set is comparable to
the one trained on the full variable set while the training time nearly halved.

Figure 20: Rejection and purity plots of FastBDT for full and reduced variables. The
dotted line shows the plots for reduced variables. In braces are the AUC
values for the corresponding classifier.

Figure 21 shows the correlations of the input variables in the reduced variable set for
both the signal and background. Positive correlations are indicated by blue coloring and
positive values and negative correlations by red coloring and negative values. As can
be seen, correlations are lower for signal than for background events. Another way of
reducing the number of input variables is by dismissing those variables which are highly
correlated with others, until the correlations fall below a threshold value. The idea here
is that pairs of highly correlated variables do not provide more information than any one
of these variables alone. We however, don’t modify dismiss any further variables and
accept some correlations between them.

5.2 Multilayer Perceptron

For the MLP classifier, we use the Deep Learning framework Keras. Keras is a high-level
API which can work in conjunction with the Deep Learning platform TensorFlow. In
order to build an MLP classifier with Keras and BASF2, we need to rewrite some of the
functions from the BASF2_MVA module e.g. the fit function. As described in section
3.5, we define the the topology of the MLP to be as easy as possible, one hidden layer

37

Figure 21: Correlation matrix for the reduced input variable set calculated from
FastBDT.

with a number of neurons equal to (Nvariables + 1)/2. We choose a sigmoid function as
the activation function and binary cross-entropy as the loss function. The properties of
the MLP are given in table 8.

Input Neurons Nvariables

Hidden Neurons (Nvariables+1)

2
Output Neurons 1

activation function sigmoid
loss function binary cross-entropy

optimization algorithm ADAM

Table 8: Properties of the MLP classifier.

The MLP does not have hyper-parameters which can be optimized by cross-validation.
During the training phase, the trained model is evaluated on a small subset of the
training data in every iteration. If the difference in performance per iteration falls below
a certain threshold, the training is stopped. This evaluation data set can be customized
to resemble expected future data. However, comparison with a random chosen evaluation
data set did not show significant differences in performance on unseen data. The MLP
classifier cannot determine feature importance values or feature correlations. Table 9
shows the evaluated metrics of the MLP classifier for the full and the reduced variable

38

set.

full variables reduced variables
Training time 1h 10min 41min

Rejection AUC 0.968 0.951
Purity AUC 0.692 0.547

Table 9: Metrics of the MLP classifier trained on the full and reduced variable set.

For the MLP, the difference in training times for full and reduced variable sets are not
as high as for the FastBDT. Figure 22 shows the Rejection and purity plots for both the
full and the reduced variable set. The performance is again worse for reduced variables
with a drop in the AUC value for rejection by 1% and a decrease by 26% for purity.
This corresponds to a difference of 0.017 and 0.145 in absolute values for rejection and
purity respectively.

Figure 22: Rejection and purity plots of MLP for full and reduced variables. The dotted
line shows the plots for reduced variables. In braces are the AUC values.

5.3 Gaussian Naive Bayes

The GNB classifier is part of the scikit-learn Python library. Its implementation is
similar to the one of the MLP, however there are no options to specify. The conditional
probability P (xi|y) is defined by the method itself. This makes the GNB classifier easier
to use but at the same time more rigid. There is no way to adapt the classifier to the
characteristics of the problem, which can lead to worse performance. As the MLP, it does
not have the possibility of determining the feature importance and feature correlations.

Table 10 shows the metrics of the GNB classifier evaluated on the validation set for the
full and reduced variables.

Figure 23 shows the rejection and purity plots for both the full and the reduced variable
set. The classifier trained on the reduced set apparently performs better in this case.

39

full variables reduced variables
Training time 4min 46sec 1min 42sec

Rejection AUC 0.878 0.915
Purity AUC 0.126 0.376

Table 10: Metrics of the GNB classifier trained on the full and reduced variable set.

The comparison is not fully conclusive however, because not the full range of signal
efficiencies is covered by the GNB trained on the full variable set. The AUC values for
the GNB trained on the reduced variable set increase by 4% or 0.037 for rejection and
by a factor of roughly 3 for purity. With training times of only about 5 and 2 minutes
for full and reduced variables respectively, the GNB classifier is significantly faster in
training than the other methods for this data set.

Figure 23: Rejection and purity plots of GNB for full and reduced variables. The dotted
line shows the plots for reduced variables. In braces are the AUC values.

40

6 Analysis

This section is concerned with the selection of rectangular cuts, the comparison with the
machine learning models and with a possible combination of the two methods.

6.1 Rectangular cuts

The reason we chose to construct a reduced variable set is to keep the analysis with
rectangular cuts simpler. As shown in section 5, the performance of the machine learning
models is comparable for both variable sets, but to choose cuts on the 31 variables in the
full variable set is significantly more complex. Due to the correlations of the variables,
many of them will have no marginal effects and would therefore be dismissed anyway,
so we restrict ourselves to the reduced variable set. Additionally, the angular variables
tau0_phi and tau1_phi were excluded for the analysis with rectangular cuts. The reason
for this is that these variables are nearly uniformly distributed and there is no reasonable
way of applying cuts on them. This issue is displayed in figure 24.

Figure 24: Distributions of angular variables tau0_phi and tau1_phi for signal (red,
shaded) and background (blue, unshaded) in the test data set.

41

We make the assumption here, that even when we forego using the phi variables, the
performance of the manual cut analysis will not be impaired by much. This leads to the
following variables for cut-based analysis:

• tau0_p_CMS, tau1_p_CMS, tau0_E_CMS

• mu0_EoP

• visibleEnergyOfEventCMS,

• missingMomentumOfEvent,

• thrust

To choose cuts, we first plot the distributions of the variables for signal and background
in the test data set. Cuts are applied by visually selecting regions which should be
excluded from the data. Figure 25 shows the distributions of the relevant variables. The
vertical lines indicate the value of the variable at which it was cut.

42

Figure 25: Distributions of variables missingMomentumOfEvent, thrust, tau0_p_CMS,
tau1_p_CMS, tau0_E_CMS, mu0_EoP and visibleEnergyOfEventCMS for
signal (red, shaded) and background (blue, unshaded) in the test data set.
The vertical black lines indicate the cuts.

43

After an analysis of the marginal effects, the variable tau0_E_CMS was excluded. This
is because it is highly correlated with the tau0_p_CMS variable and placing a cut on
one of these variables has nearly identical effects on the other. Finally, the applied cuts
are:

• 0.7 < tau0_p_CMS, tau1_p_CMS < 5

• -1.2 < mu0_EoP < 0.7

• 0.6 < missingMomentumOfEvent < 5.5

• 0.68 < thrust < 0.995

• 1.5 < visibleEnergyOfEventCMS < 9.2

These cut-values lead to a signal efficiency of 0.672, a background rejection of 0.877 and
a purity of 0.041.

6.2 Comparison

The results of these cuts and the comparison with the classifiers are listed in table 11.
The values of the classifiers are shown for the signal efficiency 0.672.

Method Background rejection Purity
Rectangular cuts 0.877 0.041
MLP 0.987 0.289
FastBDT 0.985 0.258
GNB 0.979 0.200

Table 11: Purity and background rejection for the different methods at signal efficiency
0.672.

Figure 26 shows the rejection and purity plots for all three classifiers together with the
calculated values for manual cutting.

Of the three classifiers, the MLP performs the best, the FastBDT and GNB are similar
in performance with the GNB achieving lower AUC values for the purity curve. With
manual cuts, the values for background rejection and purity achieved are considerably
lower for fixed efficiency than those of all three classifiers.

As a comparison, figure 27 shows the same plots for all three classifiers trained on the
full variable set.

The ranking is the same as with the reduced variables. Since the MLP classifier has the
best performance on the test data set, we will use it for the cross-section measurement.
Also, we will use the full variable set for the measurement, to achieve the best possible
results. But what values of purity and background rejection should be used? To answer

44

Figure 26: Rejection and purity plots for FastBDT, MLP, GNB and rectangular cuts.
The dash-dotted lines indicate the achieved values for the rectangular cuts.

Figure 27: Rejection and purity plots for FastBDT, MLP and GNB trained on full vari-
ables.

this question, we first look at how the classification is done in practice. After applying
the MLP to the test data set, it assigns a real value in the interval (0, 1) to each data
point. Values closer to 0 indicate a higher change of being a background event and vice
versa for signal. We interpret this number as the probability of being a signal event.
The classification is then simply a cut on this signal probability. We can plot the metrics
as functions of the signal probability. This is done in figure 28.

Both the background rejection and the purity are increasing functions while the signal
efficiency is a decreasing function of signal probability. One method of choosing a cut is
to take the signal probability value at the intersection of the curves of purity and signal
efficiency, if it exists. A more systematic approach is to maximize a figure of merit
(FOM). We choose to maximize the Punzi FOM, which is defined by:

45

Figure 28: Background rejection, signal efficiency and purity of the MLP trained on the
full variable set as functions of the signal probability. The vertical black line
indicates the chosen cut at 0.658.

Punzi FOM =
Nsig√

Nsig +Nbkg

(34)

The maximum value of the FOM is 177.07 and is achieved when cutting at signal prob-
ability 0.658. This cut leads to a signal efficiency of 0.589, a purity of 0.606 and a
background rejection of 0.996. Figure 29 shows the histogram of signal probabilities for
the test data set together with the chosen cut.

All events with signal probability lower than 0.658 will be treated as background events
and those with higher signal probabilities as signal events.

6.3 Combination of MLP with rectangular cuts

We now have established which machine learning method we will be using for the mea-
surement and at which signal probability the cut should be placed. Before actually
doing the measurement, we take a look at the variable distributions after the MLP is
applied. Figure 30 shows the distributions for the thrust variable before and after the
MLP classifier.

We can place a cut on the distribution of the thrust variable after the MLP was applied
and can get rid of further background events. When no signal events are being cut, the
signal efficiency remains unchanged.

46

Figure 29: Histogram of the MLP classifier output for signal (red, shaded) and back-
ground (blue, unshaded) events in the test data set. The vertical black line
indicates the cut at 0.658.

Figure 30: Distributions of the thrust variable for signal (red, shaded) and background
(blue, unshaded) before (left) and after (right) application of the MLP clas-
sifier. MLP cut applied at 0.658 signal probability.

Figure 31 shows the distributions of all variables in the reduced variable set after appli-
cation of the MLP at signal probability 0.658. The black lines indicate the cuts on the
variables. The cuts were chosen so that no additional signal event was lost. Marginal
effects were neglected in this case.

47

Figure 31: Distributions of variables missingMomentumOfEvent, thrust, tau0_p_CMS,
tau1_p_CMS and visibleEnergyOfEventCMS for signal (red, shaded) and
background (blue, unshaded) in the test data set after application of the
MLP classifier. The vertical black lines indicate the cuts.

48

The full list of applied cuts is:

• 0.658 < Signal probability

• 0.70 < thrust

• 2.37 < visibleEnergyOfEventCMS < 9.32

• 0.34 < missingMomentumOfEvent < 6.08

• 0.10 < tau0_p_CMS < 5.11

• 0.09 < tau1_p_CMS < 5.11

• mu0_EoP < 1.34

With these cuts, an additional 351 background events could be dismissed. The per-
formance gain however is minimal in this case and did not change the purity, signal
efficiency or background rejection for the given precision. For the given problem, the
combination of machine learning model and rectangular cuts does not lead to improved
performance. Moreover, as will be seen in the following chapter, the measurement of
the cross-section is less accurate when combining the two methods. This is an indica-
tor, that it the combination of rectangular cuts with machine learning models is not
straightforward. However, further investigations could be made in this subject.

49

7 Results

This section is now concerned with the measurement of the cross-section of the process
σ(e+e− → τ+τ−). In order to obtain the cross-section, we need to measure the number
of signal events in the decay e+e− → τ+τ− → µ+µ−. We expect the measurement data
set to contain a number of signal events equal to

Nsig = σ(e+e− → τ+τ−) ·BR(τ− → µ−ντνµ)2 · Lint · ϵrec · ϵtrg · ϵsig (35)

Here, BR(τ− → µ−ντνµ) is the branching ratio of a tau decaying into a muon. This
branching ratio is squared since we need to consider both τ− and τ+ decaying into
muons, which have identical branching ratios. Lint is the integrated luminosity, ϵtrg is
the trigger efficiency, ϵrec is the reconstruction efficiency of the signal process and ϵsig
the signal efficiency of the chosen method of analysis. We reshape the equation to

σ(e+e− → τ+τ−) =
Nsig

BR(τ− → µ−ντνµ)2 · Lint · ϵrec · ϵtrg · ϵsig (36)

thus obtaining a formula for the cross-section. BR(τ− → µ−ντνµ) and Lint are known
and ϵtrg is assumed to be 90%. Nsig can be obtained via the MLP or by applying
rectangular cuts. Since it is not known if an event from the measurement data set is a
signal or a background event, we have to estimate Nsig with the formula

Nsig = Nsig +Nbkg · Nsig

Nsig +Nbkg
= Ncand · purity

Ncand = Nsig +Nbkg

(37)

where Ncand is the number of correctly classified signal events and the number of incor-
rectly classified background events. We multiply the number of signal candidates Ncand

by the purity as it was defined above. Since the purity is calculated from the test data
set and unknown in the measurement data set, we can only get an estimation of the
number of signal events. The reconstruction efficiency ϵrec and the signal efficiency ϵsig
are also calculated from the test data set. Thus we arrive at the formula

σ(e+e− → τ+τ−) =
Ncand · purity

BR(τ− → µ−ντνµ)2 · Lint · ϵrec · ϵtrg · ϵsig (38)

The uncertainty in the branching ratio is known and we assume zero uncertainty for
Lint and ϵtrg. For the calculation of the other uncertainties, we assume independence of
the respective quantities. Since the measurement of a number of Ncand events can be

50

interpreted as a counting experiment, we can assume that number of candidate events is
following a poisson distribution with mean Ncand. The uncertainty in Ncand is therefore

δ(Ncand) =
√

Ncand (39)

The same assumptions hold for the number of signal and background events respec-
tively:

δ(Nsig) =
√

Nsig

δ(Nbkg) =
√

Nbkg

(40)

The relative uncertainty in the number of candidate events is therefore:

fNcand
=

Ncand

δ(Ncand)
=

1√
Ncand

(41)

For the calculation of the uncertainty in the purity, we make use of propagation of
uncertainty:

f2
purity =

(
δ(purity)

purity

)2

=

(
δ(Nsig)

Nsig

)2

+

(
δ(Nsig +Nbkg)

Nsig +Nbkg

)2

=

(
1√
Nsig

)2

+
δ(Nsig)

2 + δ(Nbkg)
2

(Nsig +Nbkg)2

=
1

Nsig
+

Nsig +Nbkg

(Nsig +Nbkg)2

=
1

Nsig
+

1

Nsig +Nbkg

(42)

We obtain the relative uncertainty in purity:

fpurity =

√
1

Nsig
+

1

Nsig +Nbkg
(43)

The relative uncertainties in ϵrec and ϵsig are calculated in the same manner:

51

f2
ϵrec =

(
δϵrec
ϵrec

)2

=

(
δNrec

Nrec

)2

=
1

Nrec
→ fϵrec =

√
1

Nrec

f2
ϵsig =

(
δϵsig
ϵsig

)2

=

(
δNsig

Nsig

)2

=
1

Nsig
→ fϵsig =

√
1

Nsig

(44)

Here, Nrec is the number of reconstructed events and Nsig is the number of correctly
identified signal events in the test data set. Note that ϵrec, ϵtrg, Lint and BR(τ− →
µ−ντνµ) are independent of the method of analysis. Their values are:

ϵrec = 0.4009± 0.0014 ; fϵrec = 0.34%

BR(τ− → µ−ντνµ) = 0.1739± 0.0004 ; fBR = 0.23%

ϵtrg = 0.9

Lint = 8764200 nb−1

(45)

MLP

The quantities obtained with the analysis with the MLP classifier are:

Ncand = 71145± 266.73 ; fNcand
= 0.37%

purity = 0.6059± 0.0034 ; fpurity = 0.56%

ϵsig = 0.5888± 0.0026 ; fϵsig = 0.44%

(46)

The calculated cross-section is:

σ(e+e− → τ+τ−) =
71145 · 0.6059

0.17392 · 8764200nb−1 · 0.4009 · 0.9 · 0.5888 = 0.7656 nb (47)

To obtain the relative uncertainty in the cross-section, we sum up the squared relative
uncertainties:

fσ =
√
f2
Ncand

+ f2
purity + f2

BR + f2
ϵrec + f2

ϵsig

=
√
0.00372 + 0.00562 + 0.00232 + 0.00342 + 0.00442

= 0.90%

(48)

52

The final result is:

σ(e+e− → τ+τ−) = 0.7656± 0.0069 nb (49)

Rectangular cuts

For the analysis with the rectangular cuts, we obtain:

Ncand = 1158313± 1076.25 ; fNcand
= 0.09%

purity = 0.0415± 0.0002 ; fpurity = 0.42%

ϵsig = 0.6696± 0.0028 ; fϵsig = 0.41%

(50)

which leads to the cross-section:

σ(e+e− → τ+τ−) = 0.7507± 0.0054 nb

fσ = 0.72%
(51)

Combination

When combining the two methods, we obtain:

Ncand = 70203± 264.96 ; fNcand
= 0.37%

purity = 0.606± 0.0033 ; fpurity = 0.56%

ϵsig = 0.5888± 0.0026 ; fϵsig = 0.44%

(52)

σ(e+e− → τ+τ−) = 0.7556± 0.0068 nb

fσ = 0.90%
(53)

As stated above, the cross-section with which the data was generated is 0.7628 nb. Figure
32 shows a comparison of the measurements. The true value lies within the uncertainty
calculated with the MLP. It is not within the uncertainty calculated via rectangular cuts
or via a combination of the two methods. Possible explanations are, that the uncertainty
was underestimated due to the neglect of uncertainty in the integrated luminosity or that

53

systematic errors arise in the procedure. The combination of both methods does lead to
a significant improvement over the case where only rectangular cuts are used.

Figure 32: Comparison of the measured cross-section for MLP, rectangular cuts and a
combination of the two. The vertical black line indicates the true value of the
cross-section.

54

8 Conclusion and Outlook

To answer the main hypothesis of this thesis: machine learning models can classify
muonic decays of tau-pairs better in terms of signal efficiency, background rejection and
purity than what is possible with simple cut-based analysis. We saw that the MLP
classifier outperformed the FastBDT and GNB classifiers and that the cross-section
measurement was more accurate with the MLP classifier than with rectangular cuts.
Still, the model we used for it was the most basic model possible. We had constructed
a neural network with one hidden layer and a small number of neurons contained in
it. There is much room to test more sophisticated neural networks, possibly with many
hidden layers and different types of neurons. A natural next step also would be to repeat
this analysis on real data. Furthermore, we saw that by combining machine learning
models with cut-based analysis, we could get rid of additional background events from the
sample. This did not lead to a more precise cross-section measurement however. Here,
further investigations are possible, e.g. by observing all variables which the machine
learning model uses. The benefit of using the FastBDT classifier lies in the possibility to
investigate the variable importance and correlations between variables, which the MLP
classifier cannot do. It is also possible to use both methods in conjunction, with the
drawback of an increased training time.

While machine learning is being increasingly used in a wide variety of scientific disci-
plines, it is still a rather new technique in the classification of HEP events, especially
involving taus. There is just not enough expertise on this subjects yet. By giving a
short but detailed introduction into some machine learning algorithms and then readily
applying them to data, we hopefully conveyed at least a little of their usefulness. This
is not to say, that the analysis can be fully automated yet. The experimenter still has
to choose meaningful variables and an algorithm which fits the problem at hand. But
these are tools that the physicist can use in his or her work, and probably will be using
more and more in the future.

55

References

[1] Partice Data Group, official website: http://pdg.lbl.gov

[2] Abe, T; Adachi, I; Adamczyk, K et. al.: Belle II Technical Design Report,
arXiv:1011.0352v1, 2010

[3] Kou, E.; Urquijo, P. ; et. al.: BELLE II Physics Book, 2018

[4] BASF2 documentation https://software.belle2.org

[5] Nishimura, K.: The time-of-propagation counter for Belle II, arXiv:1009.0876v1,
2010

[6] Akai, K.; Furukawa, K.; Koiso, H.: SuperKEKB collider, arXiv:1809.01958v2,
2018

[7] Sandilya, S.: Particle Identification at Belle II, arXiv:1610.00264v1, 2016

[8] Kuhr, T.; Pulvermacher, C.; Ritter, M., Hauth, T.; Braun, N.: The Belle II Core
Software, arXiv:1809.04299v2, 2018

[9] James, G.; Witten, D.; Hastie, T.; Tibshirani, R.: An Introduction to Statistical
Learning, Springer, 2017

[10] Hastie, T.; Friedman, J.; Tibshirani, R.: The Elements of statistical learning,
Springer, 2017

[11] Raschka, S.: Python Machine Learning, packt, 2015

[12] Goodfellow, I.; Bengio, Y.; Courville, A.: Deep Learning, mitp, 2018

[13] Rosenblatt, F. : The perceptron, a perceiving and recognizing automaton, Cornell
Aeronautical Laboratory, 1957.

[14] De La Cruz-Burelo, E.; Salinas, L.; Rad, N. K.; Rostomyan, A.; Hernández-
Villanueva, M.: τ lepton mass measurement at Belle II, Version 0.1, BELLE2-
NOTE-PH-2020-001, April 2, 2020

[15] Anastassov, A.; et.al.: Experimental tests of lepton universality in τ decay,
10.1103/PhysRevD.55.2559, March, 1997

56

List of Figures

1 The elementary particles of the Standard Model. Credit: By MissMJ,
Cush - Own work by uploader, PBS NOVA [1], Fermilab, Office of Science,
United States Department of Energy, Particle Data Group, Public Domain 1

2 The BELLE II detector with its components. Shown is only the upper
half of the detector, the lower half being identical. The beam pipe is
located at the bottom of the picture. The backward direction is to the
left, the forward direction to the right. Picture taken from [2] and slightly
modified to only show BELLE II relevant parts. 6

3 Schematic of PXD. Picture taken from [2] 7
4 Wire configuration of the CDC. The dots indicate the sense wires. Picture

taken from [2] and modified to only show the BELLE II relevant part. . . 8
5 TOP and ARICH . 9
6 Modules are linked together to form a path. Picture taken from [4]. . . . 11
7 Two distributions of variables for the process e+e− → τ+τ− → µ+µ−

(signal) and background processes. The vertical black lines indicate where
the variable was cut. 13

8 Logistic function in the range x ∈ [−10, 10] 15
9 The decision boundary from logistic regression in two dimensions is a

straight line. The markers indicate to which class each data point actually
belongs. 16

10 Example of a decision tree for a heating control system. 17
11 Classification with a decision tree. 18
12 Example structure of a MLP with three input neurons, one output neuron

and one hidden layer with two neurons. The weights between the input
and hidden layer and between the hidden and output layer are omitted. . 22

13 Visualization of over- and underfitting. Three models with different com-
plexity are trained on the same data. Markers indicate the actual class of
the data points and the shaded region correspond to the predicted classes.
All points inside the horizontally hatched region is assigned to class 1, all
points inside the vertically hatched regions to class 2. 24

14 Training and test error of a K Nearest Neighbour Classifier as function of
1/K. 25

15 Exemplary splitting of a data set for three-fold cross-validation. The blue,
vertically hatched part are used for training and the orange, horizontally
hatched part is used for evaluation. 25

16 Background rejection vs. Signal efficiency and Purity vs. Signal efficiency
plots for a BDT classifier. 26

17 Purity vs. signal efficiency AUC for different parameter values N, d, λ.
On the left, results for d=1 are plotted, on the right for d=2. 34

18 Rejection AUC for different parameter values N, d, λ. 35
19 Importance ranking of the input variable set calculated from FastBDT. . 36

57

20 Rejection and purity plots of FastBDT for full and reduced variables. The
dotted line shows the plots for reduced variables. In braces are the AUC
values for the corresponding classifier. 37

21 Correlation matrix for the reduced input variable set calculated from
FastBDT. 38

22 Rejection and purity plots of MLP for full and reduced variables. The
dotted line shows the plots for reduced variables. In braces are the AUC
values. 39

23 Rejection and purity plots of GNB for full and reduced variables. The
dotted line shows the plots for reduced variables. In braces are the AUC
values. 40

24 Distributions of angular variables tau0_phi and tau1_phi for signal (red,
shaded) and background (blue, unshaded) in the test data set. 41

25 Distributions of variables missingMomentumOfEvent, thrust, tau0_p_CMS,
tau1_p_CMS, tau0_E_CMS, mu0_EoP and visibleEnergyOfEventCMS
for signal (red, shaded) and background (blue, unshaded) in the test data
set. The vertical black lines indicate the cuts. 43

26 Rejection and purity plots for FastBDT, MLP, GNB and rectangular cuts.
The dash-dotted lines indicate the achieved values for the rectangular cuts. 45

27 Rejection and purity plots for FastBDT, MLP and GNB trained on full
variables. 45

28 Background rejection, signal efficiency and purity of the MLP trained on
the full variable set as functions of the signal probability. The vertical
black line indicates the chosen cut at 0.658. 46

29 Histogram of the MLP classifier output for signal (red, shaded) and back-
ground (blue, unshaded) events in the test data set. The vertical black
line indicates the cut at 0.658. 47

30 Distributions of the thrust variable for signal (red, shaded) and back-
ground (blue, unshaded) before (left) and after (right) application of the
MLP classifier. MLP cut applied at 0.658 signal probability. 47

31 Distributions of variables missingMomentumOfEvent, thrust, tau0_p_CMS,
tau1_p_CMS and visibleEnergyOfEventCMS for signal (red, shaded) and
background (blue, unshaded) in the test data set after application of the
MLP classifier. The vertical black lines indicate the cuts. 48

32 Comparison of the measured cross-section for MLP, rectangular cuts and
a combination of the two. The vertical black line indicates the true value
of the cross-section. 54

58

List of Tables

1 Quantities conserved by interaction within the SM. 2
2 Masses and mean lifetimes of the SM leptons according to the particle

data group (PDG) [1] . 4
3 Signal and background processes together with the corresponding cross-

sections. 28
4 Number of training events, scaling factors, reconstruction efficiency and

number of validation set events for each process. 31
5 Expected number of events for proc11 data and actually reconstructed

events for the test data. 32
6 Training time and AUC value for rejection and purity plots of the FastBDT

classifier. 35
7 Metrics of the FastBDT classifier trained on the reduced variable set. . . . 37
8 Properties of the MLP classifier. 38
9 Metrics of the MLP classifier trained on the full and reduced variable set. 39
10 Metrics of the GNB classifier trained on the full and reduced variable set. 40
11 Purity and background rejection for the different methods at signal effi-

ciency 0.672. 44

59

