
Remote Sens. 2014, 6, 1739-1759; doi:10.3390/rs6021739 
 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

GIS-Based Roughness Derivation for Flood Simulations: 
A Comparison of Orthophotos, LiDAR and 
Crowdsourced Geodata  

Helen Dorn 1, Michael Vetter 2,3 and Bernhard Höfle 1,*  

1 Institute of Geography & Heidelberg Center for the Environment (HCE), Heidelberg University, 

Berliner Str. 48, D-69120 Heidelberg, Germany; E-Mail: Helen.Dorn@geog.uni-heidelberg.de  
2 Institute of Geography, University of Innsbruck, Innrain 52f, A-6020 Innsbruck, Austria;  

E-Mail: michael.vetter@uibk.ac.at 
3 Centre for Water Resource Systems; Research Groups Photogrammetry & Remote Sensing,  

Vienna University of Technology, Karlsplatz 13, A-1040 Vienna, Austria 

* Author to whom correspondence should be addressed; E-Mail: hoefle@uni-heidelberg.de;  

Tel.: +49-6221-54-5594; Fax: +49-6221-54-4529. 

Received: 4 October 2013; in revised form: 28 January 2014 / Accepted: 12 February 2014 /  

Published: 24 February 2014 

 

Abstract: Natural disasters like floods are a worldwide phenomenon and a serious threat  

to mankind. Flood simulations are applications of disaster control, which are used for  

the development of appropriate flood protection. Adequate simulations require not only  

the geometry but also the roughness of the Earth’s surface, as well as the roughness of  

the objects hereon. Usually, the floodplain roughness is based on land use/land cover maps 

derived from orthophotos. This study analyses the applicability of roughness map derivation 

approaches for flood simulations based on different datasets: orthophotos, LiDAR data, 

official land use data, OpenStreetMap data and CORINE Land Cover data. Object-based 

image analysis is applied to orthophotos and LiDAR raster data in order to generate land 

cover maps, which enable a roughness parameterization. The vertical vegetation structure 

within the LiDAR point cloud is used to derive an additional floodplain roughness map. 

Further roughness maps are derived from official land use data, OpenStreetMap and CORINE 

Land Cover datasets. Six different flood simulations are applied based on one elevation 

data but with the different roughness maps. The results of the hydrodynamic–numerical 

models include information on flow velocity and water depth from which the additional 

attribute flood intensity is calculated of. The results based on roughness maps derived from 
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LiDAR data and OpenStreetMap data are comparable, whereas the results of the other 

datasets differ significantly. 

Keywords: hydraulic modeling; land use/land cover classification; OpenStreetMap; ALS 

point cloud; floodplain; vertical vegetation structure; Volunteered Geographic Information; 

hydraulic friction coefficient  

 

1. Introduction 

Floods are natural disasters that are present all over the world. In recent years, their number has 

been increasing due to changes in land use and climate amongst others [1,2]. People are still settling in 

danger areas but in some cases they are forced to live there because of a worldwide increase of 

population over the last decades. Hence, the number of people affected by natural disasters has 

continuously been increasing [1]. 

In 2005 a major flood event took place in central Europe. In Austria the western part was strongly 

affected by this flood. In the Bregenzer Wald (Austria, Vorarlberg), the highest precipitation rate and 

discharge, since starting the measurements, was registered. An occluded front was the reason for heavy 

precipitation, which led to flooding in the whole region. In Vorarlberg, the severe flood claimed two 

lives and caused 178.2 million Euros of damage [3,4]. 

This incident shows that floods count to natural disasters with an increasing number [1]. The 

probability of flooding, as well as the vulnerability and the potential damage for each area, is an 

important part of risk prevention [2]. Hydrodynamic-numerical (HN-) models can be used to predict 

potential inundation areas [5] by computing flood risk and hence reduce “economic damage and 

human suffering” [6]. Therefore, the available data base plays an important role, because high quality 

of geographic data, especially regarding spatial resolution, is essential for reliable flood simulations. 

LiDAR and satellite data in combination with geographic information systems constantly improve the 

technical preconditions [2]. 

The roughness of the Earth’s surface (e.g., roads, ground) and the objects hereon (e.g., buildings, 

vegetation) in terms of hydrodynamic friction are an essential input for flood simulations. This study 

aims at an analysis of roughness parameterization from different data sources. Roughness maps are 

derived from orthophotos, airborne LiDAR data, official land use data, CORINE Land Cover (CLC) 

data and crowdsourced OpenStreetMap (OSM) data. The main objective of the paper is the comparison 

of different roughness maps via an analysis of the effects of the diverse input layers on the flood 

simulation results to obtain an estimate for fitness-for-use. In this study the roughness parameter for 

the hydrodynamic simulation is defined through the Manning’s formula and based on literature. A land 

use/land cover classification (LULC) is part of the roughness derivation. This paper investigates river 

flooding in a study area in the Alps of Western Austria. 
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2. Related Work  

2.1. Flood Simulation  

The prediction of natural disasters like floods is an essential part of disaster control [7]. Flood 

simulations are research tools to predict inundation areas and flood situations. Using this prediction 

results, recommendations of proper protection measures can be given [8]. Input data for 2D HN-models 

are as follows: geometry, roughness information and boundary conditions (e.g., discharge, water level) [9].  

Two-dimensional HN-models are used to calculate flood parameters for the watercourse and the 

floodplain. Relevant parameters are water depth, inundation area and flow velocity [10]. Amongst other 

possibilities the results are used to calculate risk maps or to optimize river and lake regulation [11,12].  

Computer-assisted flood simulations are carried out as 1D, 2D or 3D HN-models [5,10].  

One-dimensional flood simulations deliver results on a regional scale and with a short computation 

time. In contrast, 2D HN-models are primarily used on a local scale and need a longer computation 

time of up to several days [10]. Three-dimensional HN-models are required for detailed analysis on a 

small scale [13]. In addition, 1D and 2D HN-models can be combined to complement each other with 

regard to computation time and high resolution (see [10]).  

Floodplain and objects hereon have a strong influence on the water flow [14]. Hence, floodplain 

roughness is an important flood parameter for river flow HN-modeling. The roughness values used by 

the HN-Model are mostly based on LULC classes, where a specific roughness value is added to one 

class. In practice, the roughness parameter is often used for model calibration. The roughness values  

of the different LULC classes are changed until the model results fit observations. Straatsma and 

Baptist [5] criticize this approach because the used values do not represent the physical conditions and 

cannot compensate for example shortcomings in the model. According to their opinion roughness 

values have to be accurately estimated to reduce variation of input parameters during calibration. They 

argue that in common practice discharges which do not fit reality are used and so the modeling results 

cannot fit observations [5].  

Calibration of HN-models is commonly performed using given roughness parameter values which 

are derived through LULC data [15]. This method is also criticized because land use and land cover 

constantly change and static values can lead to unsatisfactory simulation results [16]. Yet, roughness 

parameters like Manning’s n estimated through a lookup table are successfully applied to HN-models [17]. 

There are various authors who offer Manning’s n lookup tables for channels and floodplains, e.g., 

Chow [14] or Arcement and Schneider [18]. 

Besides roughness, geometry is an important input for HN-modeling. Especially the riverbed 

geometry has to be processed as accurate as possible. For a discharge which leads to flood  

(e.g., HQ100), the floodplain has also to be taken into account [19]. For the HN-model geometry can 

be represented as a computational grid, the so-called mesh or as rasterized data (regular grid). The 

mesh consists of triangular cells which vary in size. For each cell quantities are calculated such as 

water depth or flow velocity [10]. HN-simulation software is often not able to process a large amount 

of data. Hence, Mandlburger [19] developed an algorithm for reducing data volume in different zones 

(river bed, floodplain, etc.). In this way, highly detailed topographic data in the mesh is compressed 

while relevant data is preserved. 
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2.2. Hydraulic Roughness Coefficient 

It is necessary for hydrodynamic-numerical modeling to parameterize roughness through a friction 

coefficient like Manning’s n [14] or Chézy’s C [5], which are empirical values. A common approach 

in order to derive floodplain roughness focuses on the generation of LULC classes based on remote 

sensing data with roughness values from a lookup table. Another approach is to use one single 

roughness value for the whole floodplain area [6,20]. Vegetation and other objects on the Earth’s 

surface have strong influence on the flow [7]. Accordingly, roughness and its derivation is an 

important factor in HN-modeling. 

Straatsma and Baptist [5] developed a repeatable method for an automated derivation of roughness 

from multispectral and airborne LiDAR (ALS) data. In HN-modeling, near surface vegetation has the 

largest impact on the flow of water [9]. Therefore, Straatsma and Baptist analyze height and density of 

vegetation by using ALS data. This approach leads to a high-resolution roughness map [5]. Another 

study concerning friction parameterization from ALS data for 2D HN-modeling focuses on the height 

of vegetation in rural areas and uses a spatiotemporally varying friction factor [21]. 

In [9] they estimate hydraulic roughness from a 3D ALS point cloud by using a voxel data structure. 

In their approach voxels are 3D bounding boxes, with defined length, width and height. Point cloud 

echoes are sorted into cells and then into voxels by their normalized height above ground. They assign 

roughness values according to Manning’s equation based on literature [9]. 

2.3. Risk Estimation 

Damages due to natural disasters have increased over the years. Catastrophes are—besides the 

natural phenomenon—attributable to political, social and economic factors [22]. Moreover, natural 

disasters always have economic damage and strong influence on mankind. Accordingly, it is important 

to prevent damage for example by building appropriate protection measures. 

The estimation of potential flood damage strongly depends on the water depths of the river and 

inundation areas which are computed by HN-models. Further information like contamination can be 

considered for detailed damage estimation on a local scale [23]. There is a distinction between direct 

and indirect damage. On the one hand, direct damage is related to the flood itself, while indirect 

damage occurs spatially and temporally outside the main incidence. Furthermore, there is tangible and 

intangible damage. The first is monetarily valuable whereas the latter one is not. Hence, damage 

estimation concentrates on tangible damage [24,25]. Economic loss can also be subdivided into 

categories e.g., agriculture, industry or residential building (see [26]). 

Apart from different damage categories, there are several flood risk estimation approaches on 

mesoscale and on microscale basis [27,28]. The “Schweizer Modell” [29] can be applied to simulation 

results for a first risk estimation. It subdivides the area in weak, moderate and high flood intensity 

according to water depth or product of water depth and flow velocity (see [28,29]). 
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3. Study Area and Datasets 

The aim of the study is to compare flood simulations based on different datasets. Official as well as 

freely available geodata is required for this purpose. The Federal State of Vorarlberg, Austria, provides 

different datasets which are suitable for HN-models.  

3.1. Study Area 

The study area has an extent of approximately 3 km2 and is located in the West of Austria 

(Vorarlberg) close to the river mouth of the Bregenzer Ache into Lake Constance (Figure 1). The 

Bregenzer Ache is about 80 km long and a reach with a length of 2.8 km is object of investigation in 

this study [30,31].  

Figure 1. Location of the study site in the Austrian Alps at the Lake Constance. 

 

In the study area, the river is straightened to a width between 100 m and 110 m. Until the middle of 

the 20th century, there had been some large-area gravel banks but only a few of them remained. 

Today, there is an artificial rock barrier to reduce sedimentation around the river mouth [32]. 

The closest gauging station in the study area is located near Kennelbach approximately 3 km 

upstream. A specific discharge which is statistically reached at least once every 100 years is also called 

HQ100 and actually lies at 1,450 m3/s for the gauging station in Kennelbach [31]. In this study a 

discharge of 1,391 m3/s is used for the HN-model. This value is related to the highest registered 

discharge during the flood in 2005 with 1,350 m3/s, which was the HQ100 until 2012.  
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3.2. Datasets 

There is several official data available for the study area. The Federal State of Vorarlberg provides 

orthophotos, airborne LiDAR data and land use data. Freely available geodata like CORINE Land 

Cover data and OSM data also plays an important role in this study (Table 1). 

Table 1. Overview of data sources and datasets used as input for roughness map derivation 

and flood simulation. 

Data Source Provider Date Dataset 

Orthophotos  Federal State of Vorarlberg 2009 TC and CIR image 

LiDAR data  Federal State of Vorarlberg 2003 Point cloud, nDSM, signal intensity 

Official land use data Federal State of Vorarlberg 2001/2002 Vector polygons 

OpenStreetMap data (OSM) OpenStreetMap contributors 2013 Vector polygons and polylines 

CORINE Land Cover (CLC) Environment Agency Austria 2006 Vector polygons 

In this study the LULC classification is based on orthophotos which were orthorectified using an 

ALS elevation model. There are true color (TC) orthophotos and color near infrared (CIR) orthophotos 

taken by the Vexcel Ultracam Xp camera [33].  

The ALS point cloud was captured by Topscan with an OPTECH ALTM 2050 System. The average 

point density is 2.3 points/m2 and the average ground point density lies at 1.6 points/m2. A digital 

surface model (DSM) and a digital terrain model (DTM) with a resolution of 1 m were derived from 

the original point cloud. Furthermore, an nDSM (normalized digital surface model) which contains all 

objects above the earth surface was calculated [34]. Besides the elevation data, signal intensity values 

are provided. The signal intensity values are uncorrected (see [35]) first- and last-pulse DIM’s (digital 

intensity models). Not only LiDAR raster data (nDSM, DIM’s) but also the original ALS point cloud 

is used for two separate roughness map derivations. 

An official land use classification dataset based on orthophotos with additional data (e.g. network of 

roads) from 2001/2002 is also provided by the Federal State of Vorarlberg [36]. Eight classes are 

included in the dataset; five of them are within the study area and are used for the roughness 

parameterization. 

The latest CLC data for the study area is from 2006. Five out of 44 CLC classes are relevant for this 

study [37]. In Austria, the data was generated on a scale of 1:100,000 based on satellite imagery. 

Furthermore, OpenStreetMap (OSM) data is used as input for flood simulation. OSM provides open 

data; thus users are allowed to copy or to adapt data taking the “Open Database License (ODbl) v1.0” 

into consideration. It is one of the most popular Volunteered Geographic Information (VGI) projects and 

the common acceptance and significant increase of data shows the potential of crowdsourced data [38]. 

Therefore, OSM data is very up-to-date and investigations among the crowdsourced community reveal 

that a high number of contributors have an OSM-related background ensuring the quality [39]. 

4. Methods 

Geometric information, roughness and a hydrograph are the main parameters in a hydrodynamic 

numerical model. This study focuses on the roughness parameter and the effects of the roughness 
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layers on the flood simulation results. Geometry as well as roughness can be derived from LiDAR data. 

Orthophotos, official land use data, CLC and OSM data are used for further roughness map derivations.  

Figure 2 shows the study’s workflow. The first step is to extract a proper geometry dataset out of 

the provided ALS data similar to methods of Mandlburger et al. [8] and Vetter [40]. For each input 

dataset the related LULC classes are derived with different ways of proceeding. A Manning’s n value 

is added to each LULC class and combined with the mesh. A mesh is a triangular network of 

computational nodes with roughness information for each node. Together with boundary conditions 

(e.g., hydrograph) the mesh is an input to a hydrodynamic-numerical model with BASEMENT [12]. 

Finally, six different models are calculated based on one geometry mesh and the six different 

roughness maps. The results are depicted as water depth and flow velocity. 

Figure 2. Workflow of GIS-based roughness derivation and comparison for flood simulations. 

 

4.1. Roughness Parameterization  

The roughness parameterization consists of different parts. On the one hand, there is the LULC 

classification defining the roughness classes, which is the focus of this study, and on the other hand, 

there is the friction parameter in the HN-model defined by Manning’s n values. 

Two LULC classifications are processed by a supervised classification method in order to gain 

applicable results. In this study, Feature Analyst (Overwatch) [41] is applied to orthophotos and ALS 

data. The study area determines the region of interest for the classification. Small areas below 30 m2 

are aggregated. The calculated LULC classes can be improved separately, e.g., by adding missed 

features or removing clutter. Finally, the improved classes are combined to a LULC classification. 

For the first classification, a true color orthophoto was used in combination with a color infrared 

orthophoto. The second classification using LiDAR data was based on nDSM and signal intensity data 

of first pulses/echoes (IFP) and last pulses/echoes (ILP). The river needed to be extracted separately 

with the feature type wide linear feature because the results of a combination with the other classes 
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were not suitable. This has no effect on the flood simulations because exactly the same river has to be 

used in all roughness maps. An alternative method to derive the river based on LiDAR data is 

presented by [40]. 

An accuracy assessment helps to check automated feature extraction classification results. Fifty 

random samples with a width of 3 × 3 pixels were manually checked by using the input data sets of the 

classification. The results are the basis of an error matrix as well as a confusion matrix, which are used 

for the calculation of completeness, correctness [42] and kappa [43,44]. 

An additional way of proceeding with LiDAR data uses a voxel structure. This method developed 

by [9] is especially suitable for vegetation classes, which exhibit a specific vertical vegetation structure 

and extent. Therefore, laser echoes are counted in predefined cells; then the cells are aggregated to 

voxels and finally neighboring voxels are aggregated to connections, which are representing vertical 

connected vegetation structures. In this study, only the lowest connections (No. 1, surface near 

connection) are used [9] because they are most relevant for flood simulations. As mentioned before, 

the method is appropriate for vegetation classes such as forest, crop/grass and shrub. The vegetation 

classes are defined by the maximum height of the lowest connections and the relation of points per 

connection (pCon) to points per cell (pCell) (Table 2).  

Table 2. Definition of vegetation classes in the voxel approach. 

Class Max. Height (Con. no. 1) Threshold on pCon/pCell 

Crop/Grass ≤0.25 m  

Shrub >0.25 m and <5 m ≤0.75 

Forest ≥5 m ≥0.75 

The road class is extracted using low signal intensity values and nDSM height below 0.5 m. The 

building class is based on OSM buildings because it is not possible to extract this class using the voxel 

approach. Since the same river is needed in every roughness map for comparing the simulation results, 

the Bregenzer Ache is classified by a supervised classification based on orthophotos. 

Additional official land use data is provided by the federal state Vorarlberg. It is used for a further 

roughness parameterization, in which the data does not need further editing. Roughness layer and mesh 

are directly combined for the flood simulation.  

The OSM data has to be prepared. Linear features (river, roads, railways) are buffered with 

adequate width to generate areal information, while buildings and natural structures are available as 

polygons. Railways are considered as a part of the road class for the simulation. Some land cover 

classes are merged to meaningful and comparable classes (farmland, grass, meadow and orchard to 

crop/grass). There is no information about any shrub, so in this case the class has to be dropped. 

However, the class “forest” exists in OSM data. In the housing areas, there are many data gaps. 

Shrubs, single trees, gardens and some agricultural area or meadows are not edited. Thus, a “no data” 

class with a defined roughness value (0.03; see Table 3) is required for the OSM roughness layer.In 

contrast, CLC data for the study area is complete but with a coarse resolution. The roughness classes 

result from the CLC nomenclature. There are no single buildings or roads but “discontinuous urban 

fabric” and “industrial or commercial units”. These classes are combined in the road class. Gardens, 

shrubs and other objects are missing; therefore the roughness value for roads is more appropriate than 
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the building value. The CLC category “agricultural areas” is suitable for the crop/grass class and also 

forest areas are listed. To conclude, three out of five target classes are provided besides the river.  

The described LULC classifications as a part of the roughness derivation are prepared for a 

combination of roughness and geometry. Thereafter, HN-models can be processed. 

4.2. Hydrodynamic-Numerical Modeling 

Two-dimensional HN-models generate information about flood waves, maximal inundation depth, 

inundation areas and the reflow of flood waves [45]. Therefore, differential equations are solved to 

simulate the flow of water. In this study, the software BASEMENT is used to solve the shallow water 

equation by using a cell-centered finite volume method in combination with a Riemann solver. In 

BASEMENT an unstructured mesh of the floodplain and a dense hydraulic mesh of the river bed 

which represents the geometry in the study area are used as in many other HN-models. The terrain 

height and the roughness parameter are defined at each mesh vertex (see [8,12,46,47]).  

The mesh is generated with a method developed by Mandlburger [19] and based on ALS DTM with 

1 m resolution. It consists of inner angles with 20–140 degree. In the channel area a hydraulic grid 

with edge length 14 m to 3 m is used. Further, existing flood protection—dykes on both river sides and 

temporary concrete elements on top—is included. Due to the fact that the vertex distance correlates 

with the slope and therefore it is large in plane areas and small in steep areas. The maximal area of a 

triangle is 75 m2. Thereafter, the mean height difference between final mesh and DTM is 15 cm and 

has a median with 9 cm. The bridge in the middle of the study area acts as a flow barrier, where a log 

jam is included in the model. 

In addition to geometry, friction is an important simulation parameter. A popular empirical equation 

for open channel flow is the Manning Equation (1) [17]. The Manning roughness values in this study 

are based on the today well-known form in metric units [14]: 

ܸ ൌ
1
݊
ൈ ܴ

ଶ
ଷ ൈ ܵ

ଵ
ଶ (1) 

V = mean flow velocity ቂ
௦
ቃ  

R = hydraulic radius ሾ݉ሿ  

S = slope ቂ

ቃ  

n = Manning’s roughness coefficient  

The roughness value lookup table of this study is based on the values provided by [14], except the 

building class (Table 3, [14,48]). 

There are several possibilities to include buildings in flood simulations. Usually, buildings are 

blocked out or their roughness value is increased. Syme [48] compares both approaches. However, in 

the block out simulation scenario water cannot enter buildings or underground parking lots. Yet, there 

are some underground parking lots near the river and therefore the simulation will gain more realistic 

results with a higher roughness value for buildings. According to Syme a Manning’s n value of 0.4  

is appropriate [48]. 
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Table 3. Manning’s n values according to Chow [14]. The value of the building class is 

provided by Syme [48]. 

LULC Class Manning’s n Values LULC ID 

Building 0.4 1 

Forest 0.15 3 

Shrub 0.1 2 

River 0.05 5 

Road 0.016 4 

Crop/grass 0.035 7 

No data 0.03 6 

As mentioned before, the river is equal in all roughness maps. Furthermore, the river is buffered 

with 3 m distance in order to ensure a homogenous area for the simulation. Each LULC class has a 

unique LULC ID which is added to the mesh. In this way, every vertex has defined topographic and 

roughness information. The specific Manning’s n value is added during the simulation in 

BASEMENT. Further input data for the 2D HN-models are boundary conditions (e.g., discharge data). 

Therefore, a test discharge with 1,391 m3/s is applied to the model. The calibration of the HN-model is 

based on Manning’s n values extracted from literature. The Manning’s n values are changed, within 

the range of values of each LULC class presented in literature, until the extent of the inundated area of 

the 2005 event is reached. The resulting Manning’s n value for each LULC class is finally assigned to 

the different roughness maps. After the calibration, the newly installed flood protection measures are 

integrated into the topographic data. This modified LiDAR topographic information is finally used for 

the HN-model. 

4.3. Risk Estimation 

Additional data on vulnerable objects is required to give detailed flood damage estimation on 

microscale especially for buildings. The aim of the study is to compare simulation models on the basis 

of different roughness maps. A straightforward approach based on three flood intensity classes is 

applied to water depth data. In this way, it is possible to gain overview information about risk in 

residential areas. This leads to a flood intensity map with three classes: weak, moderate and high flood 

intensity or risk classified by water depth (Table 4). Additionally, buildings which are affected by the 

flood with certain flood intensity are determined. For this purpose, OSM buildings are used and 

combined with the different flood simulation results.  

Table 4. Risk Estimation: Used flood intensity classes according to [28,29]. 

Flood Intensity Water Depth h (m) 

I (weak) <0.5 

II (moderate) 0.5 ≤ h ≤ 2.0 

III (high) >2.0 
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5. Results and Discussion 

The results of this study are divided into two parts. The first one displays the differences of the 

roughness maps included in the hydrodynamic model. The second part illustrates the results of the 

hydrodynamic simulations for inundation area, water depth and flood intensity. The flood intensity is 

used to gain more detailed information about the simulation results. 

5.1. Roughness Maps 

The roughness maps with up to six roughness classes are depicted in Figure 3. The maps based on 

official data (Figure 3a–d) are more detailed than the ones with freely available data (Figure 3e,f).  

The object-based image analysis for LULC classification with Feature Analyst achieves suitable 

results as reflected in the accuracy assessment. The results of the accuracy assessment are listed in 

Table 5 and reveal a high kappa in both classifications (based on LiDAR data or orthophotos). Further, 

overall and average accuracy show a high percentage. Accordingly, the orthophoto classification has 

only little advantage but the significance of numbers should not be overestimated because all 

calculations are based on random samples. 

The single classes indicate more significant differences. In particular the shrub class in the ALS 

raster data classification reaches only a correctness of 50.44%. This is also visible in the LULC map 

(Figure 3b). Hence, this class is not sufficiently classified by Feature Analyst with nDSM and signal 

intensity data. Better results may be gained in combination with orthophotos. 

A map derived from orthophotos reveals difficulties with flat roofs because they have similar 

spectral characteristics like roads. A combination of both data types could lead to an improvement  

(see [49]). In this study, however, a combination was not applied for two reasons. First, there are six 

years in between the reference years (2003, 2009). Second, the aim of the study is to compare different 

datasets and their suitability for hydrodynamic simulations instead of a combination of datasets. 

The roughness of the river bank area is important, especially during floods. There grows a lot of 

shrub which has theoretically a significant effect to the flow regime during floods. The shrub class is 

more distinctive in the orthophoto roughness map (Figure 3a) than in the one based on nDSM/signal 

intensity (Figure 3b). Vetter [50] suggests a combination of nDSM/signal intensity with the voxel 

approach to gain an improvement of the classified shrub. The anthropogenic classes (building, road) 

indicate low to moderate accuracies for both classifications (Table 5) but they are sufficiently 

classified for the hydrodynamic simulations.  

The voxel approach (Figure 3c) mainly focuses on vegetation classes; therefore, vegetation is well 

extracted. There is a forest next to the river in the western part of the study area. In comparison to the 

other roughness maps, a lot of shrub is classified within the forest, which also applies to the forest in 

the north eastern part. This is the result of the voxel classification by height only using the surface near 

connection class. Hence, roughness parameterization with voxels leads to the largest shrub class. 

Additional data (ALS signal intensity, OSM) is required for the derivation of roads and buildings. 
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Figure 3. LULC classifications based on (a) orthophotos; (b) nDSM, IFP, ILP; (c) voxel; 

(d) official land use data; (e) CLC data; (f) OSM data. 
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Table 5. Accuracy assessment for LULC classification. 

 LiDAR Data Orthophotos 

Correctness Completeness Correctness Completeness 

River 100.00% 99.34% 100.00% 100.00% 

Crop/Grass 94.22% 88.89% 96.15% 70.64% 

Forest 90.22% 86.94% 89.29% 88.24% 

Shrub 50.44% 75.67% 70.08% 87.91% 

Building 77.33% 60.95% 79.37% 76.40% 

Road 83.78% 87.27% 71.81% 89.17% 

Overall accuracy 82.67% 83.17% 

Average accuracy 83.99% 85.39% 

Quality 70.45% 72.40% 

Kappa 0.9253 0.9124 

The last roughness map based on official data is shown in Figure 3d. The dataset is the oldest one, 

based primarily on orthophotos from 2001/2002. The official land use is not as detailed as the formerly 

mentioned land uses, e.g., the paths on top of the dykes are missing and the shrub class is not captured. 

Yet, forest and crop/grass are available and the data is applicable to the roughness of the floodplain area. 

The maps based on freely available data using CLC (Figure 3e) and OSM data (Figure 3f) show 

coarser LULC data than the other ones. There are no data gaps in the CLC data; yet, any details are 

missing (e.g., buildings). In comparison, Figure 3f shows a detailed map but also areas without any 

objects mapped. As mentioned before, this “no data” class also has an allocated roughness value. 

Further, the OSM data is the latest one. Users are able to edit at any time so that the data is 

permanently improved. 

A city consists of various types of buildings. Details like pathways below buildings could be 

included in a 2D HN-model and improve the results. In this study, such pathways as well as the 

sewage system and groundwater processes are not included. Six different roughness maps are used for 

2D hydrodynamic simulations; thus, some details are missing and not every map contains all 

roughness classes. In addition, a combination of datasets should be considered (see [49]). 

5.1. Water Depth and Flood Intensity 

Hydrodynamic simulations generate results, which are visible in water depth and flow velocity. The 

analyses are done for inundation area and water depth in combination with flood intensity. In Figure 4, 

the development of the inundation area according to the roughness layers are depicted. In addition to 

this, Figure 5 shows the extent of the inundation areas and the water depth. Finally, Figure 6 illustrates 

the distribution of flood intensity in combination with inundation area. 

The HN-model simulates a flood over a timespan of six hours (21,600 s). At a certain point, the 

maximum water amount is reached and the backflow starts. This point represents the maximal stage of 

inundated area for each simulation and is shown in Figure 4. Thereafter, the time step of the peak is 

similar except for the orthophoto and LiDAR (nDSM, signal intensity) roughness data. However, at 

11,400 s, all models reach a peak extent of water, which is used for a comparison. Further, Figure 4 
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indicates that the inundation area from the models based on roughness derived from orthophoto and 

official land use data is smaller than the other ones.  

Figure 4. Development of the inundation area with time steps (s). 

 

Figure 5 shows the water depth and inundated area after a simulation time of 11,400 s. There are 

three noticeable inundation areas for all hydrodynamic simulations. Firstly, in the Southeast directly 

after the mouth of a canal in the Bregenzer Ache; secondly, in the center of the study area, right before 

a bridge linking Bregenz in the eastern part and Hard in the western part; thirdly, the flooded areas 

located after the bridge on both river sides in the Northwest of the study area. Thus, in Bregenz, there 

is a housing area by the river in the North of the study area the so-called “Achsiedlung” and in Hard; 

there we can find a forest affected by the flood.  

In Figure 5a the result of the simulation with the roughness map based on orthophotos is depicted 

and a small inundation area is visible. In comparison to the other ones, the flooded area in front of the 

bridge in the middle of the study area is very small. A reason for this might be that a lot of shrub in the 

bank area was classified there. This assumption cannot be verified because in the voxel approach there 

is also a lot of shrub but more flooding. Concerning water depth, the river itself is the deepest area. 

Further, one dark blue location in the Achsiedlung is visible. An artificial terrain depression was built 

there because of underground parking lots and the dyke. This place is filled with water up to more than 

two meters in all simulations. If underground parking lots and pathways below the buildings were 

inserted, the water depth would be lower. However, the model based on orthophotos does not 

realistically simulate the flood.  
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Figure 5. Results of the flood simulation at time step 11,400 s with water depth in meter 

based on the roughness derivation with (a) orthophotos; (b) nDSM, IFP, ILP; (c) voxel;  

(d) official land use data; (e) CLC data; (f) OSM data. 
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Figure 6. Flood intensity with water depth (m) as impact parameter. 

 

The simulation using nDSM and signal intensity data roughness map (Figure 5b) is more suitable. 

The inundation areas on both river sides next to the bridge are larger than in Figure 5a. Further, on the 

left river side the water depth is higher in all simulation results apart from Figure 5a. Many buildings 

are affected on the east river side. The simulation results based on nDSM and signal intensity 

information offer a suitable way to estimate the spatial impact of a flood. 

Another roughness map based on LiDAR data derived by the voxel-based approach (Figure 5c) 

shows a large inundation in the Achsiedlung but a smaller one in front of the bridge. In the results 

gained with official land use data (Figure 5d), a large inundation area in the center of the study area as 

well as in the North Western area is depicted. 

The models with roughness maps based on freely available data (Figure 5e,f) lead to different 

flooded areas. The inundated area by using CLC data for the roughness map calculation is very small 

in comparison to the other one (Figure 4). The roughness map is too coarse in the study area. More 

realistic results are gained with OSM data as illustrated in Figure 5f. The inundation areas are similar 

to Figure 5b and only small deviations especially in the Achsiedlung are visible. However, the areas 

without any objects mapped can be considered as disadvantage. In this study area, it was possible to 

choose an appropriate roughness value for these areas but further research is required in order to 

confirm the results.  

In Figure 6 the flood intensities with water depth as impact parameter are depicted. The values 

reflect the total area value of inundated regions in square meters. The deepest regions regarding 

elevation are in between the dykes and therefore the river bed area is subtracted from the total area 

values. This illustration confirms former descriptions. Simulations based on orthophotos or CLC data 

lead to smaller area values of inundated regions, while the other values are similar to each other. 

Regarding the entire inundated areas (m2), the largest inundation area has 30% more flooded area than 

the smallest inundation area. The values of inundated areas are similar, however, the locations where 
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the inundation takes place differ due to the different roughness values close to the river course  

(Figures 3 and 5). 

The results of using nDSM and OSM are very alike regarding to the division to the flood intensity 

classes. In contrast, the values of inundation area with weak flood intensity in the voxel and official 

land use data simulations are larger. Seventy-five up to 189 buildings are potentially affected by the 

flood. However, only up to two buildings are threatened by high flood intensity. These numbers in 

combination with the affected area give a hint with regard to risk estimation. Further data is required 

for a risk assessment on microscale or mesoscale by using methods e.g., of Maiwald and Schwarz [28] 

or Thieken [25].  

6. Conclusions 

Floods are recurring natural disasters and therefore flood protection is needed. Flood simulations 

help to make decisions to improve flood protection measures by visualizing affected areas. The aim of 

this study was to simulate floods based on different roughness maps. The simulations used various 

roughness maps, which are derived with different methods. The results differ in inundation area, water 

depth and flood intensity. The analysis revealed that the simulation results with roughness maps based 

on orthophotos and CLC data with maximum inundation areas less than 337,578 m² were lower by a 

factor of 1.29 compared to the other four roughness maps which resemble each other with maximum 

simulated inundation areas between 434,186 m² and 466,961 m². The OSM data is not complete and 

thus it is not entirely applicable to every study area. Therefore, the assessment of the OSM data quality 

is essential. However, in most areas regularly updated crowdsourced data is available depending on the 

activity of the community [51]. Moreover, further research is required for using LiDAR data (e.g., 

fusion with additional image data, combined approach using signal intensity, nDSM and voxel). The 

study revealed that there is no visible effect of shrub on the water flow but theoretically there is a 

remarkable influence. A combination of the voxel and nDSM/signal intensity for deriving roughness 

maps in a different study area could help to investigate possible influences. 

In conclusion, the study shows that the commonly used orthophotos and CLC data were not the best 

solution for a roughness parameterization in this analysis. Regarding CLC data the spatial resolution 

for small test sites such as the one used in this study is too coarse. In contrast, LiDAR data and OSM 

data gained reasonable results. Using LiDAR data for the roughness map derivation can solve occurring 

data fusion problems, because LiDAR data is also used to derive the geometry for HN-models. 

Depending on the study area LiDAR data might not be up-to-date. Thus, using OSM data for 

roughness maps is beneficial in areas with high OSM data quality, because the contributors are able to 

update the dataset regularly. 

An appropriate roughness map considering the study area should be chosen for estimating 

consequences of floods as natural disasters. Therefore, LiDAR and OSM data should be taken into 

account. It is important to keep the data base up to date in order to enable realistic flood predictions. 

Prevention measures can be planned on basis of flood simulations and reduce the impact on residents. 

Further, existing flood protection has to be constantly checked, e.g., by using hydrodynamic–numerical 

models, and improvements can be carried out accordingly.  
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