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Abstract

In this thesis the hadronic vacuum polarization (HVP) is calculated using a variety of
holographic QCD (hQCD) models. The results are then used to calculate the leading or-
der HVP contributions to the anomalous magnetic moment of the muon aHVP’LO. These
hQCD models (sometimes also called AdS/QCD models) are based on the gauge/gravity
duality (the generalization of the AdS/CFT correspondence). Since the low energy regime
of QCD is not accessible with perturbation theory, one usually has to rely on lattice QCD
(LQCD) or calculations using experimental data (usually cross sections). However, the
LQCD calculations and the experimental data give different results. Therefore, it is inter-
esting to see what AdS/QC D models predict for the HVP since they provide the possibility

of calculating observables in the low energy regime directly.

Both categories of models, the so-called top-down models which are directly based on
string theory and the bottom-up models which only use the main ideas from string theory,
are studied in this thesis. We begin by giving a broad introduction into the subject of
gauge/gravity duality and the motivation for the AdS/QCD "correspondence" from the
AdS|CFT correspondence. Then a detailed overview of the concrete models used for the
calculation of the HVP is given. This includes among others the soft-wall (SW) and the
hard-wall (HW) model as well as a model interpolating between these two. In addition
more advanced models such as a model from tachyon condensation, the Li-Huang dilaton
model and the Sakai-Sugimoto model are part of this study. Finally we calculate the
numerical values for the HVP and the resulting meson spectrum, compare them with each
other and discuss possible further improvements of the models.
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Chapter 1

Introduction

1.1 A brief history of holography

The idea of holography - the description of everything contained within a spacetime by
the information encoded at its surface - goes back to the past century. Originally this idea
came from string theory, which at first was developed to describe the strong interaction.
The intention was that a description of particles as strings rather than as points would
lead to an explanation of the strong nuclear force [1]. That was in the 1960s and early 70s.
However, in 1971 Wilczek, Gross [2| and Politzer [3] discovered the asymptotic freedom of
SU(3) Yang-Mills theory (nowadays an important ingredient of QCD) which allows per-
turbative calculation of observables at large energies. This idea gave a much more suitable
description of the strong interaction and the idea of string theory as a description of the
strong nuclear force was abandoned. Later in 2004 the three men mentioned above were
awarded the Nobel prize in physics for their discovery.

A few years later in 1974 Gerard 't Hooft (also by now a Nobel laureate in physics) pub-
lished his work on planar diagrams for the strong interaction [4]|, where he noticed that the
expansion of QCD for a large number of colors N, is very similar to string theory. In the
same year Scherk et al. [5] noticed that every string theory naturally includes a description
of gravity and further that string theory could be considered as a theory of quantum grav-
ity. At the same time Hawking et al. published a paper on black hole mechanics, stating
that black holes can be described by four laws very similar to the laws of thermodynamics
[6]. This discovery formed the basis of the holographic principle, since one can directly
conclude from it, that the entropy of a black hole is proportional to its surface area rather
than its volume [7]. Also, still in the same year, Kenneth Wilson proposed lattice QCD
and showed that quarks can be confined through strings [8]. These discoveries, especially
the last one, brought the idea of using string theory as a description of QCD back in the
game.

Fast forwarding to the early 1990s Gerard t” Hooft [9] and Leonard Susskind [10] first came
up with the idea that one might be able to describe the physics of a d-dimensional universe
entirely by the information encoded in its (d — 1)-dimensional boundary. A few years
later in 1997 - the probably most important year for holography so far - groundbreaking
discoveries were made. First Polyakov came to the conclusion that one should use a five
dimensional non-compact AdS like space for string theory in order to obtain a consistent
theory which is further dual to a field theory like QCD [11]|. Then later that same year Juan
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2 1.2. The idea of holographic QCD

M. Maldacena published his famous paper "The Large N Limit of Superconformal Field
Theories and Supergravity" [12], where he gives a concrete example for a duality between
a certain string theory in AdS spacetime and a conformally invariant field theory (CFT).
Today this is known as AdS/CFT correspondence (or sometimes Maldacena duality) and
is the most cited paper in the history of theoretical physics with approximately 20,000
citations. A few months later in 1998 Edward Witten was the first who noticed that this
is precisely the holographic duality proposed by Susskind [13]. Numerous other concrete
examples of holographic dualities have been found since then. One of the main features of
these dualities is that they enable us to calculate correlation functions on the field theory
side by considering the on shell action on the AdS side. To be more concrete we can identify
the generating functional in the exponent of the partition function Z [qﬁ(o)] = e WP with
the on-shell supergravity action evaluated under certain boundary conditions.

w [(b(o)] = Ssugra [¢]|1jmz_)0(¢(z7x)zA—d):¢(O)(x) . (1.1)

This provides the possibility to calculate correlation functions of a strongly coupled CFT
by calculating the variation of the action of the weakly coupled dual theory. For more
details see chapter 2 (note that in the stronger form of the duality one directly identifies
the partition function of the CFT and the string theory). Even though there is no rigorous
proof of the duality, there is a tremendous amount of evidence that it should be correct.

1.2 The idea of holographic QCD

As mentioned above, the description of QCD with string theory is not a new idea. It began
by noticing that flux tubes (Wilson lines) are objects behaving very much like strings. So
the idea came up to describe QCD with flux tubes realized by strings as basic objects.
Briefly after Maldacena published his first paper on AdS/CFT, Witten was the first to
propose a holographic approach to QCD in [13]. This idea has been further developed in
the 1999 review paper of the holographic correspondence [14]. After that a broad variety of
models has been proposed. In general one distinguishes between the so called bottom-up
and top-down models [15].

Top-down models are directly based on string theory and constructed analogously to the
AdS[CFT correspondence. The ultimate goal of such a model would be to find a weakly
coupled theory exactly dual to QCD. So far nobody has found such a theory, despite nu-
merous attempts, but there are many theories that can describe certain features of QCD in
certain energy regimes very well. One of them is the model of Sakai and Sugimoto [16, 17|
discussed in section 4.7.

Bottom-up models on the other hand are models where one only takes some key features
of string theory. Essentially one tries to guess the correct dual theory of QCD. There
are many bottom-up models which provide results in good agreement with experiment.
Such models are for example the hard-wall [18] and the soft-wall model [19] to name only
two. Actually all hQCD models we will discuss in chapter 4, except the Sakai-Sugimoto
model, are bottom-up models. However, some of them, such as the AdS/QC D model from
tachyon condensation of Kiritsis et al. [20, 21, 22|, are very much based on string theory,
but not directly obtained from the latter. Also there are a lot of models we do not discuss
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Chapter 1. Introduction 3

in detail in this thesis, as for example [23].

As in the case of the AdS/CFT correspondence, the main point for the calculation of
observables on the QCD side of the AdS/QCD models is that we can calculate correlation
functions of the strongly coupled gauge theory (here QCD) by identifying the generating
functional with the dual weakly coupled action. For the correlation function this means

that
(exp([ ddeqﬁ(O))) = ¢ Sdual
QCD

such that we have to calculate for example the second variation of (1.2) to obtain the
two-point correlation function. The left hand side is then per definition the two-point
correlator and on the right hand side we are left with the second variation of the action of
the dual theory.

(1.2)

1imz~>0(¢(zvm)ZA_d)=¢(O)(x) ’

1.3 The HVP in hQCD

As the title of the thesis suggests, our main goal is to calculate the hadronic vacuum
polarization (HVP) using hQCD models and further study their predictions for the leading
order HVP contributions to the anomalous magnetic moment of the muon. The vacuum
polarization at leading order is determined by the two-point correlation function of the
electromagnetic current

i f dtzel®® (0 |TJ$“(:C)J€’}’(O)| 0) = 52b (1" - ¢"¢") Iy (-¢%). (1.3)

In our hQCD picture this means that we have to evaluate the second variation of the dual
action Sgua with respect to the source V;f of the vector current Jg"

528dua1 [Vu]
SV (=q) oV (

5 :z'fd‘*xeiqz (0|72 () 72 (0)] 0). (1.4)

This is not a trivial task to do, as we will see in chapter 4 when we do explicit calculations.

1.4 The anomalous magnetic moment of the muon q,

Given the vacuum polarization Iy (—q2) it is straightforward to calculate the leading
order (LO) HVP contribution to the anomalous magnetic moment of the muon aEVP’LO.
As we will show in chapter 3, a, can be calculated from the vertex function by using the
projection techniques. The relevant Feynman diagram is given in figure 1.1. With a few
pages of calculation one can derive an integral where we just have to plug in Il (—q2) in

order to calculate the leading order HVP contribution to a,.
2 oo .
afIVPLO - (9) /0 AR f (K2)T1(K?) (1.5)
T

In (1.5) we integrate over the Euclidean momentum K2. f (KQ) is an analytic function

and 11 (K 2) depends only on vacuum polarization Ily (—q2), both are explicitly given in
section 3.2.
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4 1.5. Overview

" had

Figure 1.1: Leading order HVP Feynman diagram [24].

The reason why it is interesting to see what results hQCD models provide for the LO
HVP contributions to a, is the following. First of all there is still a discrepancy between
the experimentally measured value of a, and the theoretical predictions, at the level of
3.70 |25]. The highest uncertainties on the side of the theoretical calculations are from
the hadronic contributions. A big part of the hadronic contributions are the contributions
from the vacuum polarization, which at leading order we are going to calculate in this
thesis. Currently there is an ongoing discussion on the value of (LEVP’LO. Recent lattice
calculations [26] provide a value which is in better agreement with the experimental data
than the best calculations using dispersion relation and experimental cross section data.
More importantly they managed to shrink the error bar to a level comparable with the
dispersive approach. However, they had to correct their initially provided result in an
updated version of the paper which brings the predicted value out of the "no new physics
area", but it is still closer to the experimental value than the dispersive calculations using
cross section data. Moreover, there are still unresolved discrepancies between different ap-
proaches within lattic QCD [27]. So it is not only interesting to see what hQCD yields for
this value because the discrepancy of the experimental and theoretical result could possibly
be a hint for new physics, but also in order to see what it can contribute to the ongoing

. . HVP,LO
discussion on the value of a,, """

. H
For more details on the current values of a,, and a,

see section 3.1.

VELO f16m both experiment and theory

1.5 Overview

This thesis is organized in the following way. In chapter 2 we review the main concepts
leading to holographic QCD. Starting from the holographic principle we try to cover ev-
erything needed to understand the AdS/CFT correspondence and then also the hQCD
models. In chapter 3 the current status of the anomalous magnetic moment of the muon
is discussed. Also a sketch of the derivation of a compact integral formula for aEVP’LO is
presented. In chapter 4, the core part of this thesis, various hQCD models are presented
and the HVP is calculated explicitly. At the end of each section we summarize the re-
sulting meson spectra as well as the predicted values for aZIVP’LO. In the last chapter,
chapter 5, we summarize all our results and compare them with the predictions from other
approaches. Also possible improvements are discussed there. In appendix A we give a brief
overview of the transformations of a Liouville eigenvalue problem into the Liouville normal
form.
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Chapter 2

Gauge/Gravity duality

2.1 The holographic principle

In this section a brief overview of the holographic principle based on [7] and [28] is given.
Basically the holographic principle constrains the entropy S (and therefore the information)
of a finite volume V in spacetime. This bound is called the Bekenstein bound and is
proportional to the surface area A of the boundary AV of the volume V. This means that
all the information in a volume V can actually be described by just as much information
as can fit on the boundary. The amount of information is determined by the number of
microstates. One can therefore say that the degrees of freedom of a theory in the bulk are
sufficiently described by the degrees of freedom at the boundary. For this section let us set
all constants to unity

h=G=c=k=1. (2.1)

To motivate this statement let us recapitulate the four laws of black hole mechanics and
their thermodynamical counterparts in table 2.1. The right hand side of the table should

black hole mechanics thermodynamics
0t K = const. T = const.
1%t 6M = 8%514 + work terms 0E =T46S + work terms
ond §A>0 55 >0
3rd Kk — 0 impossible T — 0 impossible

Table 2.1: The four laws of black hole mechanics and their thermodynamical counterparts.

be clear. The left hand side states from top to bottom that the surface gravity is constant
for a stationary black hole, the change of mass is related to a change of the surface area
which always has to be non-negative and lastly that the surface gravity cannot vanish.
Comparing the two sets of laws we see that we could formally identify the surface gravity
k with the temperature T, the black hole surface area A with the entropy 5, and the black
hole mass M with the energy E. The last one is of course true as £ = M in our units.
The laws above are of course only true for black holes and not for arbitrary systems. The
Bekenstein entropy bound now states that

S <

|

(2.2)
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6 2.2. Anti-de Sitter space

For the case of a black hole one can show that Sgy = % (the constant % is fixed after
consideration of the Hawking temperature 7' = 5=). This means that a black hole is the
state of maximum stored information and all other systems contain less information.

In an optical hologram the information stored on a 2-dimensional surface pretends to be
3-dimensional. According to the holographic principle something similar should also be
true for our real world. This is where the idea of holographic dualities comes into play.
The idea is that a theory living in a d-dimensional bulk is related to another theory at its
(d - 1)-dimensional boundary. This is exactly what we are going to study in this thesis.

2.2 Anti-de Sitter space

The n-dimensional Anti-de Sitter space, or short AdS, space, is of great importance for
holographic models. Therefore we will give a short overview of its geometry in this subsec-
tion by stating some of its most important facts based on [29]. The AdS metric describes
a spacetime which is maximally symmetric and has constant negative curvature. As such
it is a solution of the vacuum Einstein equations with negative cosmological constant A < 0

1
Ry, — §ng +Agu =871, T, =0, (2.3)

in the same way as Minkowski spacetime is a solution of the Einstein equations (2.3) for
vanishing cosmological constant A = 0. A maximally symmetric spacetime with A > 0 is
called de Sitter space, or short dS space. Global AdS space with AdS-radius L is given by
the metric

ds* =17 (- cosh? pdr? + dp? + sinh? de%d_Q) peR,, 7€[0,27]. (2.4)

To avoid closed time-like curves one usually takes the universal cover where 7 € R. For two
dimensions the spacetime (AdSs) can be embedded in flat 3-dimensional RY? spacetime
by defining

X0 = Lcoshpcost

X' = Lsinhp (2.5)

X2= L cosh psinT.

For a schematic picture see figure 2.1. The metric of RY? is given by
ds® = = (dX?) + (dx1)” - (dX?)*. (2.6)

As one can easily check substituting (2.5) into (2.6) gives back the AdS metric of equation
(2.4). Actually the situation is even more general. One can always embed an AdS spacetime
in a Minkowski spacetime with one dimension higher in the same manner as in (2.6) for
arbitrary dimensions, but it is of course only possible to draw it for three dimensions as in
our example. Sometimes (in this thesis most of the time) the AdSy metric in the coordinates
of (2.4) is not the most useful one. Therefore we have to make a coordinate transformation.
Here we just give a few examples of the AdS; metric in different coordinates without
explicitly deriving them. The coordinate transformation tan @ = sinh p gives the metric of
the Einstein static universe

ds® = L

== (—dr? +d6* +sin® 0dQ7_,) . (2.7)
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Chapter 2. Gauge/Gravity duality 7

Figure 2.1: AdSs embedded in RY2 [29].

Also, there is the possibility of a completely different parameterization of the AdS, space-
time embedded in R%12 given by

2 2
XO—L (1+r—(f2—t2+L2))

ST T
, i
X' =2 foriefl,....d-2}
L
(2.8)
a1 _ L e o 1o
X =1+ — (3% -t - L?)
2r LA
Xd _ rt
=7
resulting in the metric
L2 7"2
ds? = —2dr2 * 13 (udatda”), " eRT21 reR,. (2.9)
T

This metric is also called the Poincaré patch of AdS. Note that we only cover half of the

AdS spacetime, because r > 0. The conformal 12:)oundary of this spacetime is located at
L

r — oo. Making further the transformation z = = gives
L2
ds® = = (dz® + mpdatda), (2.10)

with the conformal boundary at z — 0. Note that it looks like this metric is singular at
z = 0. This is however not a real singularity. The curvature of this metric is constant
and negative for the whole spacetime. As a last transformation we can also make the
substitution z = exp(-1) such that we obtain

ds® = dr? + LQezr/anjdx“dx”, (2.11)

with the conformal boundary again at » - co. Each one of these AdS metrics might be
useful in one or the other way. Note that here (and also in the following sections of this
chapter) we have used the metric convention with negative temporal and positive spatial
signs 1, = diag(-1,1,...,1), since most of the literature on general relativity uses this
convention. Later, as for example in chapter 4, we will use mainly the other convention,
which is more commonly used in particle physics. Which convention is used is always
stated clearly when necessary to avoid confusion. Also in most of the calculations we do
in this thesis it will not matter anyway.
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8 2.3. Yang-Mills theory

2.3 Yang-Mills theory

Yang-Mills theory is a generalization of electromagnetism to a theory of interacting spin-1
fields. A Yang-Mills theory without additional matter is sometimes referred to as pure
spin-1 Yang-Mills theory [30]. To generalize electromagnetism we alter the gauge potential
A, electromagnetic tensor F), = 0,4, - 0,A, by introducing Lie groups. We define the
Lie-algebra valued gauge potential by

A= AT (2.12)
and further the Lie-algebra valued field strength by
Fu=04A, - 0,A, —i[Au,A)]. (2.13)

Aj, describes a single spin 1 field with the index a = 1,...,dimG, where dimG is the
dimension of the Lie group (the number of its generators 7%). We choose the generators
such that

Tr{T“Tb}=%5“b and [T, 7°] =i f*T". (2.14)

Matter fields are represented by some spinor field ¢) which couples to the gauge fields via
the covariant derivative

Dy = 01p — i A, (2.15)

In the adjoint representation, where the dimension of the group dimG and the dimension
of its representation dimR are equal, the covariant derivative acting on ¢ = ¢*T* can be
written as

D¢ =0,0—1[Au ¢]. (2.16)

Under gauge transformations with Q(z) € G the gauge fields and the field strength trans-
form according to

Ay = Q) A0 (2) +iQ(2) 0,07 (z) (2.17)
and
Fl = Q2)F Q7 (). (2.18)
The action of the Yang-Mills theory without matter fields is given by
1 4 v 1 4 va a
Syu = —=— f Ao Tr {F"™ Fl} = —— / d*e M, (2.19)
29%m 493yt

with the Yang-Mills coupling constant gyy. The resulting equations of motion are the
non-Abelian generalisations of the Maxwell equations given by

D, FM =0

2.20
D, F* =0, (2.20)

The question arises whether one can generalize the action (2.19) in a way such that it is
still gauge invariant as well as Lorentz invariant. If we also impose the restriction that the
power of A, in the action should not be higher than 4 (such that the action is quadratic in
field strengths) there is only one possible candidate we can add, the so called theta term

0
1672

So f d*z Te " F"F,,} . (2.21)
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Chapter 2. Gauge/Gravity duality 9

If # depends on the spacetime coordinates it has to be written inside the integral. It is then
called the axion field. As mentioned one can alter the pure Yang-Mills theory by adding
matter fields to the action. For scalar field this can be done by adding the term

Sscalar = f d4$Du¢TDu¢ - V(¢) (2'22)

to the action. Here V(¢) can include mass terms proportional to ¢? as well as ¢* interac-
tions. Fermions can by added by an additional term of the form

Sfermion =[d4$“51p1/)—m¢_”/) (223)

If we take the action (2.19) with the symmetry group SU(3) and add six fermions (the
quarks) with the correct charge coupling constant analogous to (2.23) we obtain the theory
of QCD.

2.4 N =4 Super Yang-Mills theory in 3+1 dimensions

In this section we give an overview of the most important facts of A = 4 Super Yang-
Mills (SYM) theory. Here AN/ = 4 refers to the number of independent supersymmetries.
A supersymmetry is a symmetry that transforms physical Bose fields into physical Fermi
fields [31]. As the first part of this chapter, also this section is heavily based on [29]. To
construct the Lagrangian for such a theory based on the previous section, we start by
taking the pure Yang-Mills action terms (2.19) and (2.21) and add a term for four massless
Weyl fermions A% (x) with a =1,2,3,4 to the Lagrangian.

EWeyl = _ij\a&ﬂD#)\a (2.24)

Under the supersymmetry transformation these fermion fields should transform into bosonic
fields and vice versa. Therefore also the degrees of freedom of the bosonic and fermionic
fields in the theory have to match. Since so far the only bosonic field is the vector gauge
field A, we have to add further fields. In this case we add six real scalar fields ¢’(x) with
i=1,...,6 to the Lagrangian by adding

Lscatar = = ), Du¢' D¢ (2.25)

Note that in this case we use the definition of the covariant derivative of the form D, e =
Oy e +i[A,,e] as described in the previous section. Also, we want all those fields to (self-)
interact with the coupling strength gyn. This can be realized by adding interaction terms
(additionally to the naturally included interaction terms) in the Yang-Mills theory of the
form

2

. — — PR g . . 2

Lint = gvm Y, CON [0', 0] + gvm Y. Ciap\® [¢', 3] + 22 S ¢, ¢7] (2.26)
a,b,i a,b,i 2 2,]

to the Lagrangian. Here C’fb are the Clebsch-Gordan coefficients that couple the Weyl

fermions to the real scalars. So finally we can put together all the terms and obtain the

full Lagrangian for the supersymmetric A' = 4 Super Yang-Mills theory in 3-+1 dimensions

N=4 1 0
ESYM =Tr (_2TF/LVF“V + 1

; = “Fu " —iX'G" Dy = ) D¢ D"¢'
YM %

(2.27)
2
+gyM Z Cgb)\a [¢z7 )\b] +gyM Z éiabXa [¢27 j‘b] + % Z [(ﬁl’ ¢j]2) :

2y

a,b,i a,b,i
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10 2.5. AdS|CFT correspondence

The variable 8 can be set to zero since the terms proportional to it are only boundary terms.
This Lagrangian (2.27) is invariant under the supersymmetry transformations given by

S’ = €2CM N
OeAsh = F,L:rveocb (O'/w)aﬁ + [qbz’ ¢]] €Ba (Cij)ab
0N’ = O g 4Dud’ (2.28)
0 A = €& () I X,

with Fy, = %(F/w +*F,;,). This theory is renormalizable since the coupling constant is
dimensionless and it is conformally invariant which means that its beta function vanishes
to all orders of perturbation theory. The conformal symmetry group is given by SO(4,2).

2.5 AdS|CFT correspondence

In this section we will motivate the AdS/CFT correspondence proposed by Maldacena [12]
based on [32] and [29]. In its strongest form the conjecture states that N =4 SU(N) Super
Yang-Mills theory in 3+1 dimensions with coupling gywn is dynamically equivalent to type
I1B superstring theory in 9+ 1 dimensions on AdSsxS® with string length I = v/, coupling
gs, curvature radius L and N units of F{5) flux on S5 As we will see the parameters of
the two theories are identified such that

2
29YM 4719s 2 (2.29)
gymlN =L [a”.
This conjecture is a concrete realization of the holographic principle described in section
2.1, since the degrees of freedom of the 5-dimensional theory in AdS are mapped to a four
dimensional conformal field theory (CFT) living on its conformal boundary. Before we
can understand this duality in more detail we have to understand D-branes.

D-branes

D-branes, or often called Dp-branes with p the number of spatial dimensions it extends
to, are objects where open strings with certain boundary conditions can end. The D in
D-brane stands for Dirichlet. The strings attached to a Dirichlet brane have to satisfy
Dirichlet boundary conditions in a certain number of directions. In the other directions
they have to satisfy Neumann boundary conditions. For example in 3+ 1 spacetime dimen-
sions strings ending on a D2-brane at 2° = 0 (a plane) fulfill Neumann boundary conditions
in the directions 2! and 22 as well as in the time direction 2° and Dirichlet boundary con-
dition in the z® direction. Intuitively this is clear because a plane at 23 = 0 fixes the
x3 coordinate of a string ending on it. It is straightforward to generalize this concept to

arbitrary numbers of spacetime dimensions and values of p.

In the next subsection the most important branes are D3-branes embedded in (9 + 1)-
dimensional spacetime. Here the open strings are constrained by Neumann boundary
conditions in z°,z', 2% and 3. In the other directions z*, z°, 2%, 27, 2% and 2° they have

to fulfill Dirichlet boundary condition.
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Chapter 2. Gauge/Gravity duality 11

Low energy limit and gsN « 1

We consider type IIB superstring theory in (9 + 1)-dimensions with N D3-branes and take
the low energy limit as well as the limit of small coupling gsN <« 1. In this limit the theory
is appropriately described by massless open strings ending on the D3-branes. According to
their transformation properties under worldvolume rotations of the D3-branes, the bosonic
massless open string excitations longitudinal to the D3-branes give rise to a gauge field A,
and the bosonic massless open string excitations transversal to the D3-branes are described
by six real scalar fields ¢!. The action for the open strings and the interaction part of the
action can be derived from the Dirac-Born-Infeld action

1
SpBI = @iy Tr / dze™?\/-det (P[g] + 2ma’F) + fermions, (2.30)

where P[g] 0 = guo + (27) (gi+3vaugbi + gm+38v¢j) + (27Toz’)292-+3j+38u¢iﬁy¢j is the pull-
back with the coordinate directions of the Dirichlet boundary condition z™*3 = 2ra/¢'.
Expanding this action and taking the limit o’ - 0 (Is = 0) gives exactly the action of the
SU(N) N =4 Super Yang-Mills theory of equation (2.27) if we identify the two different
coupling constants by

4T gs = g (2.31)
The interaction part of the action, which would also follow from the Dirac-Born-Infeld

action (2.30) vanishes in this limit. This means that open and closed strings decouple.
The closed strings in this limit would be effectively described by flat supergravity.

Low energy limit and gsN > 1

In this case the N D3-branes are massive charged objects sourcing the supergravity fields
in which the closed strings propagate. Here the open string description is not feasible
because gs/N is related with the loop corrections and one has to deal with the strongly
coupled open strings. An ansatz for the solution of the equations of motion of supergravity
that preserves the SO(3,1) x SO(6) symmetry of R%! is

ds? = H(r)_l/Qnm,dx“d:c” + H(r)l/zéijd;vidxj

Cuy = (1—H(T)_1)d560/\d1,‘1 Adz? ada? + - (2.32)

Plugging this into the equations of motion of (9 + 1)-dimensional type IIB supergravity
OgyH (r) =0 yields the solution

I\
HUQ:1+(—). (2.33)
r
The constant L has to be determined from string theory

1 * 4 2
N=— Fizy= L" =4ngsNa'™”. (2.34)
2/@%0 S5
In the limit » — oo the resulting metric is just flat (9+1)-dimensional Minkowski spacetime.
If we take the limit r - 0, which is the limit of low energies, we obtain the metric

45 = T datde® + g daide) 2.35
—ﬁn,wx x+r—2wx 7 (2.35)
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12 2.5. AdS|CFT correspondence

which is simply Ad52’5 x S% gpacetime. As we saw at the end of section 2.2 under the
transformation z = LT it can be written as

L2
ds® = = (mudada’ + d?) + Ldsgs. (2.36)

Maldacena’s conjecture

We now summarize the results of the previous two sections. Starting with N D3-branes we
took two different low energy limits. In the limit of gsN <« 1 we find that the open strings
are the dominant ones and that this theory describes N = 4 Super Yang-Mills theory in
3 + 1 dimensions and type IIB supergravity on R%!. Taking on the other hand the limit
gsN > 1 we find that the closed strings are the dominant ones. As shown in the previous
section this leads either to type IIB supergravity on flat space for » - oo or to type IIB
supergravity on AdSs x S°.

The conjecture is now the following: In both limits type IIB supergravity on flat R%!
spacetime is present and also both limits should be equivalent descriptions of the same
physics. Therefore the other two theories should be equivalent. This means that N = 4
Super Yang-Mills theory in 3 + 1 dimension is equivalent to type IIB supergravity on
AdSs x S, If we further relax the condition of low energies we find the even stronger
statement that A/ = 4 Super Yang-Mills theory in 3 + 1 dimension is equivalent to type
IIB string theory on AdSs x S5. A sketch of the correspondence is shown in figure 2.2. A

open string R i [::l
closed string :
A=giNe > 1 og S
Adsoxss gl

closed string h

g AdSI/CFT correspondence g
=S ]
23 4mg. = g 28
g : g
g = closed strings
kﬁj‘?{b t In O3 brane throat
£z g o
KA A=gniNe > 1 A O
P =0 -
ﬁ"\fﬁ- ; L [ .:
E N ~
=4 SUING Yang-Mills AdSsx 5

Figure 2.2: Sketch of the AdS/CFT correspondence [32].
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Chapter 2. Gauge/Gravity duality 13

hint that this conjecture is correct comes also from the symmetries of the two theories.
The symmetry group of the N =4 super Yang-Mills theory is PSU(2,2|4). The isometry
group of AdSs is SO(4,2), this follows from the embedding of AdSy in R*12 as discussed
in section 2.2. The isometry group of S° are the rotations in 6-dimensional Euclidean
space also known as SO(6). The symmetry groups of the spacetime coincide with the
bosonic parts of the symmetry group PSU(2,2|4), which are SU(2,2) ~ SO(4,2) and
SU(4) ~ SO(6). Further string theory in AdSs x S° preserves the PSU(2,2|4) symmetry
and therefore the symmetries of the two theories are identical.

Correlation functions

Having established the duality between two theories the question raises whether we can
use it practically. As one might guess, the answer to this question is yes. But it is not
trivial to do so. The idea is the following: Since both theories are invariant under the
same symmetries it should be possible to relate the operators of the C'FT side with fields
of the AdS side, such that they transform in the same representation of the symmetry
group. This can be realized by a one-to-one map between composite operators, which are
invariant under symmetry transformations (gauge invariant) and classical fields in type ITB
supergravity. An example for such an operator Oa(x) with conformal scaling dimension
A would be any symmetrized trace over A elementary scalar fields ¢’

Ona(x) = Str (gbil ()¢ (z)...¢" (z)). (2.37)

The dual fields on the AdS side can be found by calculating and solving the linearised
equations of motion of the supergravity. Here we will not do this in detail, we will just
state the main ideas and results. First of all we can decompose every field ¢ in a part living
on the S° and an other one living in AdSs, analogous to separating radial and angular
coordinate depending parts in a theory in R3, namely by introducing spherical harmonics.
As for S?, one can introduce spherical harmonics on the S°, which satisfy the differential
equation

1
Ogs Y7 = —ﬁzu +4)Y7L (2.38)
Using this we can write
o (2,2,05) = 3 ¢ (2, 2)Y" (25). (2.39)
1=0

One can now derive the equations of motion of the supergravity for small fluctuations of
the metric and F(s), then expand them in the same manner as in equation (2.39) and
further simplify the equation by defining fields s’(z,2) as below. It turns out that these
fields have to satisfy the equations of motion

Dadss s° (2, ) = %l(l -4)s (2, 2). (2.40)
The idea is now that we can identify the field s’ (z, ) on the gravity side with the operators
Oa(z) on the field theory side by setting [ = A. Similarly one can find the gravity dual of
the stress energy tensor hy, <— T}, and, most importantly for this thesis, the four current
A, < J,. Using equation (2.40) we can also define the five-dimensional mass, since this
is just a Klein-Gordon equation in five-dimensional AdS spacetime. For the simple case
of scalar fields in equation (2.40) we find m2L? = A(A —4). This means that the mass of
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14 2.5. AdS|CFT correspondence

the gravity field is related to the dimension of the dual operator. In the general case of
AdSg41 the analog of equation (2.40) is

1
DadSen @ = 75 A(A = d)p = m’L” = A(A - d). (2.41)

Additionally for p-form fields (e.g. for vector mesons p = 1) one can show that the five-
dimensional mass is given by

m?L? = (A -p)(A +p-d). (2.42)

The last thing left to do is to calculate the field theory correlation functions using the
dual gravity theory. Exactly this possibility, to determine the correlation functions of the
strongly coupled gauge theory by doing calculation within the weakly coupled dual theory,
is what makes the AdS/CFT correspondence such a useful and interesting conjecture. As
mentioned the field theory is defined on the boundary of the AdS space. Thus we have
to expand a field ¢(z,x) (here without an index to distinguish it from the field theory
operator) of the gravity side at the boundary z - 0

O(2,2)], 0 ~ D)2 2 +{0a)2 + .. (2.43)

Here ¢y is the source of the operator Oa and (Oa) its vacuum expectation value. As
usually in QFT we can add the source terms to the action and calculate the partition
function

5'=5- fddxqﬁ(o)(m)OA(m)

p (2.44)
Z ] = eWleol = (exp (f d l’¢(o)(x)0A(l’))) :
CFT
So the AdS/CFT correspondence stated in one single equation is
W [¢(0)] = Ssugra [0k o(6(22)22-0) =60y () | (2.45)

The correlation functions can be calculated as in QFT by calculating the variation of
w [(;5(0)] with respect to the sources. For an arbitrary number of sources gbz(o) this means
that the correlation function is given by

oW

B 6@%()) (1‘1) &b%o) (x2) s 5925?0) (75) i
(0)

(01 (Jfl)OQ (xg)(’)n (wn»CFT = (2.46)

=0

This conjecture will be generalized in the next section such that we can also apply it
to QCD. However, the method for calculating the correlation function will stay the same.
First we have to take the action of the dual gravity theory and derive the relevant equations
of motion. The solution of this equation with appropriate boundary conditions at z - 0
can be plugged back into the action. Then we calculate the variation of the action in order
to obtain the desired correlation function. In chapter 4 we will see how this works for
concrete theories, where the dual gauge theory will be QCD rather than a CFT.
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Chapter 2. Gauge/Gravity duality 15

2.6 From AdS/CFT to AdS/QCD

The things discussed so far are all based on a conformal supersymmetric field theory. Our
goal is however to apply the gauge/gravity duality to QCD, which is by no means confor-
mal or supersymmetric. Nevertheless we can use the same formalism developed above and
extend it to QCD. We "just" have to find a weakly coupled theory that is dual to QCD,
or at least reproduces some of its most important features. One conjectures then that a
theory I (in our case QCD) describes the same physical system as theory II. As in the
case of the AdS/CFT correspondence we call such a relation a duality between two theo-
ries, see figure 2.3. Usually one of the two theories is strongly coupled and the other one
weakly. In our case QCD is of course strongly coupled and its dual theory is supposed to
be weakly coupled. The construction of such a theory is however by far not obvious and no

Theoryl | Puwlity [ Theoryl
(Action/Hamiltonian 1) (Action/Hamiltonian II)

Physical System

Figure 2.3: Two physical theories describing the same physical system are related by a
duality [33].

theory that is exactly dual to QCD has been found yet. Nevertheless many theories which
reproduce certain features have been proposed. The first attempts in this direction were
made in [13] and [14]. Today there is a variety of different models, which are proposed to
be dual to QCD in certain energy regimes, mainly low energy, and exhibit certain features
in the same way as QCD does. For example, one such feature is chiral symmetry breaking.

It is straightforward to generalize our main formulas (2.44) and (2.45) for the evaluation
of the correlation function in the AdS/CFT correspondence to AdS/QCD models. The
partition function of QCD for a general source field ¢(z,z) of an operator Oa with scaling
dimension A

Z [qﬁ(o)] = e Wlow] = (exp (/ ddxgb(o)(a:)OA(a:))) (2.47)

QCD
is identified with the exponential of the action of a dual weakly coupled 5-dimensional
theory, such that

_ d — _Sdual
Z[éw] = (eXP ( JK $O¢><o>)) o~ & i o(o(z.a)22 )00y ) (248)
For the generating functional this means analogous to (2.45) that
W o] = Sanal[ @) lim. o (p(z.2)22-0)=p0) () | (2.49)

The n-point correlation functions are evaluated by calculating the n'® variation of both
sides of equation (2.48) with respect to the source of the operator. Of particular interest
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16 2.6. From AdS/CFT to AdS/QCD

in this thesis is of course the two-point correlation function of the vector current Ji*(x)

i / d*ze® (0 |TJ3‘“(I‘)J‘b/V(O)| 0) = b (qgn’“’ -q¢'q") v (—q2) . (2.50)

This expression defines the hadronic vacuum polarization. It is calculated by taking the
second derivative of the dual action Sgua [V,,] with respect to the source field V,# under
certain conditions for the fields at the boundary of the AdS space

528dua1 [Vu]
SV (=q)oVi(

5 :z'fd‘*xeiqx (0|72 () 72 (0)] 0). (2.51)

In practice the variation of the on shell action is calculated (this means under the as-
sumption that the equations of motion are fulfilled). The generalization to the n-point
correlation functions is straightforward. An important feature of the two-point function,
which we will use a lot, is that we just need to calculate the linearized equations of motion
(and therefore only take into account terms in the action which are quadratic in the fields).
For all models we will discuss the procedure of calculating the hadronic vacuum polariza-
tion is in principle the same. We start by deriving the linearized equations of motion. Then
we solve them either analytically or numerically. The solution is then plugged back into the
dual action. After that we calculate the second variation of the action with respect to the
field dual to the vector current. This gives us our final result for the vacuum polarization,
which we will then further use to calculate the leading order HVP contributions to the
anomalous magnetic moment of the muon aEVP’LO.

As mentioned in section 1.2 there are roughly speaking two different types of models. The
so called top-down models which are directly derived from string theory. The goal of
such a theory would be to find the dual theory of QCD directly from string theory that
reproduced the IR behavior of QCD at large-NN [15]. One example for such a model is the
Sakai-Sugimoto model [16, 17]. As mentioned no theory that is exactly dual to QCD has
been found yet. The other type of models are the bottom-up models. These models are
most of the time only loosely based on string theory, only the main ideas are taken from it.
Usually one constructs a five-dimensional action with the same symmetries as QCD and
fixes various constants of the action by comparing results of the holographic model with
gauge theory results. Examples for such models are the W and SW model discussed in
section 4.1 and 4.2. In both cases observable quantities are determined by calculating the
correlation functions as described above. One key reason why it is interesting to study
such models is that the low energy regime of QCD is not accessible by perturbation theory.
So all our standard analytical techniques fail there. Finding a model which is exactly dual
to QCD at all energy regimes would be equivalent to completely solving QCD. So far such
a model is not within our reach.
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Chapter 3

The anomalous magnetic moment of
the muon

3.1 Current status of g,

The anomalous magnetic moment for a general lepton is defined as a; := %(gl -2), with g
being the gyromagnetic ratio of the lepton indicated by the index [. In this section we give
a brief overview of the current theoretical and experimental values of a,, = %(gM -2) with a
focus on the leading order HVP contribution. If not stated differently, all values are taken
from the latest review of the status of the Standard Model calculation of the anomalous
magnetic moment of the muon [25].

The best experimental result for a, so far were achieved at the Brookhaven National
Laboratory (BNL) at the beginning of this century providing the value

a® =116592089(63) x 10~ (3.1)

for the anomalous magnetic moment of the muon [34]. Currently there is an experiment
running at Fermilab that aims to provide experimental data even more precise than that
of the BNL experiment. The results of the experiment are expected to be released in the
near future, but so far (3.1) is the best experimental value we have. An experiment with
a different design than the ones at BNL and Fermilab, the J-PARC experiment, is under
construction and aims to surpass everything previous in precision.

On the theoretical side the Standard Model predicts the value

aHVP,NNLO + aHLbL

+al + gHLPL.NLO

¢ . . (3.2)

SM _ QED EW HVP,LO HVP,NLO
wo- au + CLu + CL# + CL“

=116591810(43) x 107,

where all different contributions are listed in the first line of (3.2). Besides the QED terms
there are also contributions from the electroweak interaction (EW) and the two types of
hadronic contributions, the HVP and the light-by-light (LbL) terms. We will only discuss

aEVP’LO in this thesis. The difference between experimental and theoretical result is given
by
SM 11
Aay, = a,P —ay, =279(76) x 107, (3.3)

17
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18 3.2. Calculation of leading order HVP contribution to a,

corresponding to a 3.70 discrepancy.

As mentioned, in this thesis we are interested in the leading order HVP contributions to
: HVP,LO

the anomalous magnetic moment of the muon a, . There are currently two more

or less established ways of calculating this value. The first one is data-driven and uses

experimental cross section data and dispersion relations to evaluate the leading order HVP

contributions. The currently established value using this method is

a; VPO = 693.1(4.0) x 10710, (3.4)

The second method is to use lattice QCD (LQCD) results. With LQCD one has the
possibility of an ab initio determination of the HVP. However the uncertainty is quite high
compared to the dispersive cross section data method. The LQCD calculations yield the
value
O —
a, VPO = 711.6(18.4) x 10717, (3.5)

These are the values we have to compare to our results from holographic QCD calculations.
Nevertheless we expect our values for aEVP’LO to be lower than (3.4) and (3.5) as discussed
in chapter 5. There we also give a complete discussion of the results obtained in this thesis
and compare them to other data. Additionally the values for the dispersive approach
structured by each contributing decay channel as well as the lattice data structured by the
value of Ny can be found there.

3.2 Calculation of leading order HVP contribution to a,

The aim of this section is to derive a formula for the calculation of the of the leading order
(LO) HVP contributions to the anomalous magnetic moment of the muon a, = %(gu -2),
where we just need the function IIy (—qQ) for the vacuum polarization as an input plus
some additional constants such as the muon mass. We are not going to give a full deriva-
tion with all details, since this would be a few pages of explicit calculations which are not
really the main topic of this thesis. Instead we are just giving the main ideas of the deriva-
tion, such that one can use this section as a kind of manual for doing all the calculations
explicitly.

The value for a, is "hidden" inside the one-particle-irreducible (1PI) dressed vertex func-
tion with two external muon propagators and one photon propagator. We are of course

i F,u.fh.? =

Figure 3.1: Pictorial representation of the dressed vertex function [24].

interested in the leading order HVP diagram of this vertex given in figure 3.2. Once we
can write down the vertex function for the Feynman diagram in figure 3.2 it is straightfor-
ward to calculate a, via projection techniques. However, writing down this vertex function
(explicitly) is not so easy since the hadronic "blob" of the diagram includes QCD inter-
actions and is therefore not accessible by perturbation theory. This is the reason why we
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Chapter 3. The anomalous magnetic moment of the muon 19

{4
T & 7

Figure 3.2: Leading order vertex diagram for the HVP [24].

use holographic QCD in order to describe the vertex. If we take the photon self energy
function HQ/ (k:2) as a known function (we can do so because this is exactly the two-point
correlation function times a constant, which we are calculating using hQCD models), we
can write down the vertex function by just using our basic QED knowledge. Expanding
the full photon propagator in leading order gives

—ighv —ighv
ik (K Y - 1-10 (K2) +...). 3.6

( ) k2(1+H’ (kz)) 2 ( ’V( ) ) ( )
Clearly we are interested in the Feynman diagram where the photon propagator is denoted
by igH T oy (k?) /k*. Here the renormalized self-energy function with I, (0) = 0 is used.

So we end up with the vertex corresponding to figure 3.2 given by

2
IT* = —iPe2 f d'k e (%) (@2 - K;"’ m) " (301 -k '2" m) PYP. (3.7)
(2m)* k2 ((p2 - k)" —=m?) ((p1 - k)" - m?)

Here p; and po are the momenta of the two external fermions, k is the loop momentum.
Note that compared to the previous definition of the vertex we now have IT* = el'*. It is
well known, see e.g. [35], that given the vertex II#, one can project out a, by using

a, =- (1121210 Tr {(pl +m) Ay (152 +m) H#} , (3.8)

where ¢ = ps — p1 and (Zbl +m) AY (?2 +m) is the projection operator corresponding to
the magnetic form factor. Explicitly performing this calculation using the vertex given in
equation (3.7) one obtains
’ 2 4 2,
a,HVP’LO _ —2'62 [ d4k‘ nyren (k ) [—4(pk:) - §k 3m2 (pk) ] (3 9)
Iz 2 2 : :
(2m)* K ((p—k:)2—m2)

Now we can make a Wick rotation to Euclidean momentum space by substituting

K~ iK"Y, KMk, > -K?

[tk i [atw (3.10)

After integrating out the angular part of the resulting integral we find

HVPLO / K2, (K) m?K?Z%(1- K*Z) Z__KQ— K4+ 4m2K2
oen 1+mek2zz 0 O7 om2K? ’

=f(K?2) ( )

3.11
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20 3.2. Calculation of leading order HVP contribution to a,

with the muon mass m =m,. Now we have to use some QED/QCD arguments to manip-
ulate this formula even further. We know that the electromagnetic current of the quarks
is given by

e = £ Qunr (3.12)

where f represents the different flavors of the quarks. The charge matrix Qe for two and
three flavours are given by

2 0 0
o 12 o1
gvngtg(o _01), o=zl 1 0. (3.13)
0 0 -1

We can write them in terms of the generators of SU(Ny) as

Ny=2 1 Ng=3 1
crrfl = §TO + Tg, QCH{ = T3 + —Tg. (314)

V3

In this fashion we can also decompose the electromagnetic current

n Ng=3

Np=2 1 1
Tow ! =§J3“+J§”, Tow 1= T+ —

V3

where the J“ﬁ“ ’s depend on the corresponding 7%’s. The hadronic electromagnetic current
correlator is defined in the same way as the usual correlator by

T (3.15)

ie? [ dteet (O, ()5, (0)10) = (™ - ") I (<) (3.16)
However, the vector current correlator we can calculate in hQCD,
i f dtzel?® (O |TJ;”(1’)J‘I)/V(O)| O) =% (q217’“’ - q“q”) Ty, (—qg) , (3.17)

is not equal to the electromagnetic current correlator in the first place. It rather gives
us exactly the current correlators we need to calculate 1234 (—q2), such as (J‘g/“ J3) for
example. Working this out we find the following relations

5 (-¢%) = ?eQHV (—¢%), T (=) = geZHV (—¢%). (3.18)
This is equivalent to
et (=) = 26> Tr Q2 Ty (=¢°) - (3.19)

We do not need to consider a higher number of flavours, because we are interested in ob-
servables in the low energy regime. All other quarks beside up, down and strange are too
heavy to play a significant role in these processes. Sometimes it is not even possible to
include the strange quark because its mass differs by more than one order of magnitude
from the mass of the lighter two quarks. Despite this fact we can still use the Ny = 3 result
as an upper bound for a "real Ny = 3" holographic theory, as we will see in the case of the
model of Kiritsis [20, 21, 22] in section 4.6. The reason why this gives an upper bound is
that increasing the quark mass reduces its contribution, but SU(3) flavor symmetry ignores
the fact that the strange quark is relatively heavy.
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Chapter 3. The anomalous magnetic moment of the muon 21

Now we are ready to substitute for II (KQ) in equation (3.11). With the definition

yren

I1(K?) := 4n? [y (K?) - Iy (0)] we finally obtain

gVPLO _ (%)2/000dKQf(K2)fI(K2) | (3.20)

To emphasize the main statement of this section once more: If we can calculate IIy (—q2)
in any theory or model, e.g. lattice QCD or in our case holographic QCD, we just have to
plug it into the formula (3.20) and evaluate the integral to obtain the value of the leading
order HHVP contributions to the anomalous magnetic moment of the muon.

As we shall see in the next section, in holographic QCD we are essentially describing the
hadronic blob of figure 3.2 as an exchange of neutral vector mesons. Pictorially this is
illustrated in figure 3.3. In the large-N limit of hQCD the leading order term is supposed

to be this vector meson exchange. Therefore the dominant contributions to Iy (—qQ) and

further aEVP’LO are from the vector mesons. The masses as well as the decay constants

of these vector mesons can be explicitly calculated in the holographic QCD model. As we
will discuss in chapter 5, considering only the first term in the large- N expansion can lead
to a significant error in the end.

Figure 3.3: The hadronic blob as an exchange of a neutral vector meson [36].
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Chapter 4

Holographic QCD models and their
HVP

This chapter is the core of this thesis. Here we study the different holographic QCD models
and calculate their associated hadronic vacuum polarization. For the first few models we
will go into more detail for each of the steps to make things clearer. In the models after
them the calculations are very similar and so we will not show all the steps explicitly but
rather refer to the previous sections.

4.1 Hard-Wall Model (HW)

The hard-wall model [18] or short HW model is the simplest model discussed in this
thesis. Based on this model the HVP was already calculated in [36] and applied to the
problem of the anomalous magnetic moment of the muon. It is an example for a bottom-
up model, since it is not constructed directly by deforming the super Yang-Mills theory,
but rather a model constructed by hand such that the field content of the 5-dimensional
theory reproduces holographically the dynamics of chiral symmetry breaking in QCD. The
5-dimensional action of the model is given by

|
S:fd5x\/§Tr{|DX|2+3|X|2—4—92(F§+F§)}. (4.1)
5

Here we made the following definitions for the fields, field strength tensor and covariant

derivative
a a
Ap,r=AL T

FMN:(?MAN—ﬁNAM—i[AM,AN] (4.2)
DMX = 8MX - iALMX +iXARM.
The indices M and N refer here to the 5-dimensional quantities. For the 4-dimensional
part of them we will use Greek indices. The matrices T¢, with Tr [T“Tb] = %5“67 are
the generators of the underlying symmetry group SU(Ny), furthermore using the mostly
minus convention the 5-dimensional metric is given by
1
ds® = = (—d22 +datdr,), 0<z< 2z, (4.3)
Here we have set the AdS radius L to unity. Since the z-coordinate is bounded from above
by a "hard boundary" at z = z,,, the model is called the hard-wall model. The introduction

23
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24 4.1. Hard-Wall Model (HW)

of this boundary at z = z,, breaks the conformal symmetry. As mentioned above there is
also a so called soft-wall model, where 0 < z < oo. In this case however one introduces a
dilaton background in the action to break conformal symmetry. The fields Ay, and Ag,
are referred to as left and right handed chiral gauge fields. Later it will be useful to use
them in order to define the vector gauge field V,, and the axial vector gauge field A, by

V=%(AL+AR), A=-(AL-AR). (4.4)

DO | =

The field content of the 5-dimensional theory and their 4-dimensional dual quantities as
well as the 5-dimensional mass ms = (A - p)(A + p —4) for each operator pair are given
in table 4.1. In the same way as described in equation (2.45) in section 2.5, we will relate

4D:O(x) 5D:¢(z,2) p A m?
T AL, T 3 0
qr"Tqr  Agy, 1 3 0
ahd) (2/2)X*F 0 3 -3

Table 4.1: Field content of the hard-wall model [18].

the generating functional of the 4-dimensional theory (which is supposed to describe QCD)
Wap [¢o(x)] and the effective action of the 5-dimensional theory Ssp e [¢(x, €)] evaluated
under certain conditions at the boundary z =€ with ¢ > 0

Wap [¢o(2)] = S5p, et [¢(z,€)]  at  ¢(z,€) = do(2). (4.5)

We now want to calculate the vacuum polarization function. In order to do so we first
have to solve the equations of motion of the dual theory. Since we are interested in the
correlation function of the vector currents (ij(:v)Js (O)), we have to solve the equations
of motion of the vector gauge potential V,, defined above. Using the gauge V. = 0 and
0,V# =0 we find them to be given by

1, 1 @
0. (20 (0.2)) + Lvita. ) 0. (4.6)

Here we already Fourier transformed with respect to the first four spacetime coordinates.
Evaluating the relevant part of the action on shell (this means that the equations of motion
are satisfied) gives the boundary term

§=-— [ dt (1v;azv““)
295 z

An explicit derivation of this term is given in equation (4.43) and (4.44) for the case of the
soft-wall model. To adapt the calculation for the case of the hard-wall model one just has
to set ¢(z) = 0, such that e"®(*) = 1. V, can be decomposed as

(4.7)

Z=€

VH(q,2) =V (q,2)Vg (a), (4.8)

where V{*“(¢) is the Fourier transform of the source of the vector current Jjj = gy,t’q
we are interested in. From equation (2.46) we know that in order to obtain a n-point
correlation function on the field theory side we have to calculate the n'" variation of the
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Chapter 4. Holographic QCD models and their HVP 25

5-dimengional action. Doing so we can calculate the two-point correlation function of the
vector current

zf dre'® (J;j(x)J,lj(O)) =g (quqy - qzn,“,) Iy (—q2) (4.9)
by calculating the second variation of (4.7) with respect to V{'. We find that

2) _ L(?ZV((],Z)

_ 4.10
2Pz (4.10)

Iy (—q

zZ=€

Luckily the equations of motion can be solved analytically. Using the boundary conditions
V(g,e) =1 and 9.V (q,2)|._,, =0 yields

eJ1(q€)Yo (g2m) - €¥1(q€)Jo (a2m) | g
Taking explicitly the limit € = 0 gives
1 Yo (qzm
V(g,z) = =7mqz (Jl(qz) 0 (@zm) _ Yl(qz)) . (4.12)
2 JO (qzm)
Plugging this result into equation (4.10) yields
L 1 Jo(q2m) Yo(qe) = Yo (qzm) J
95 4¢ Jo (¢2m) Y1(q€) = Yo (q2m) J1(ge)
expanding this at € — 0 gives
1 Yo (qzm
Ty, (—qQ) 7TM+7—log2+logqe+0(e2) . (4.14)

A RED)

There are two parameters in this model which have to be fitted, the coupling constant gs
and the parameter z,,. Fixing them is possible in many different way. Below we are going
to discuss three different values, where one is coming from the HW1 model and the other
two from two different fits in the HW2 model.

Before we tackle this problem we have to deal with another issue. The expression (4.14)
obviously diverges like log(e€) for € = 0. This means we have to somehow get rid of the
log(€) term in (4.14). This can be done by renormalizing Iy (—¢?), i.e. that we add a
counter term S.() to the action resulting in an additional term

1
1§, (Q%) = - log(pe), (4.15)

95
which exactly cancels the divergent term in (4.14). How this works precisely is described
in more detail for the case of the soft-wall model in section 4.2. The corresponding renor-
malized vacuum polarization is

1 [ 7 Yo (gzm)

B (—¢?) = lim [ITy (=¢%) + 10 (=¢2)] = +v-log2 +logg . (416
() =l (=) 1 (7)) - o[- 300020 2. o
For the calculation of a, we have to subtract II{?"(0) from this expression in order to plug

it into the integral (3.20). We do this because the coupling constant « is defined in the
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26 4.1. Hard-Wall Model (HW)

low energy limit. This is equivalent to a minimal subtraction followed by the addition of
a finite counterterm. Using the relations [37]

2 1 4 &
Yo(z):—[q/+log(§z)] ——Z Jgn(z) and J,(0)=0 forn>0, (4.17)
™ T p=1
we find ) .
e (0) = — [—log (2) + log (—)] , (4.18)
g5 M
and thus ( )
L 7 Yo(gzm 4Zm
B (—¢?) - T (0) = [ —+7+10g( )] 4.19
V) IO = G S Rt 2 1

Next we discuss an alternative method to the one above. We can also derive an expression
for the vacuum polarization by using Green’s function for the differential equation (4.6).
As shown in [38] the Green’s function of the differential equation

LG (q;z,z’) =20(2-2'), L=z20, (laz) +q° (4.20)
z

can be written as the spectral sum of the product of the eigenfunctions divided by their
eigenvalues i.e.

G(q;2,2") = Zn: —wq‘/?nfzgjévnf;)' (4.21)

The eigenfunctions ¢y, (z) of the differential equation (4.6) can be obtained by replacing
Vii(g,z) = ¢y, (2) and @ - m%/n under the boundary conditions ¥y, (¢ - 0) = 0 and
0.0y, (2m) = 0. The eigenfunctions are normalized such that

[ L=t 4.22)

In the following we will drop the ie prescription to simplify our notation. Explicitly the
eigenfunctions are given by

V2z2J1 (zmy;)

. 4.23
ZmJ1 (zmmy;,) ( )

Yy, (2) =

For a plot of the normalized eigenfunctions vy, (2) see figure 4.1.

We now show that V (¢, 2") = lim,. (-(1/2)0.G (q; z, 2") ) by using Green’s second identity.
In its general form it states

dp 310
vip- Vi)V = @ ( 22 )dS 4.24

/U(d’“""w) o \"on ¥ on (4.24)
with ¢ and v twice continuously differentiable in a region U. Here V stands for a general
differential operator. In our case U is the one-dimensional region z € [0, z,,,] and V? = L.
The directional derivative is given as a = —8 Applying (4.24) to our problem, we identify
Y =V(q,z) and ¢ =G (¢; z,2"), which gives

/ozm & (V(2:2)LG (g:2,2") = G (4:2,2") LV (g,2)) =

z
B 10G (q;2,7) N LoV(g )™
_V(Q)Z)z o2 G(Q7Z7Z)Z Oz .

(4.25)

Z=€
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Figure 4.1: Plot of the first five eigenstates for the hard-wall model.

Using (4.20) as well as LV (¢, z) = 0 and all the boundary conditions we imposed on ty;,
and V(q, z) we find

L0G(3:2,2) ) . (4.26)

L7 v =i (Vi 9 22

z—€
Carrying out the integral on the left-hand side we find the desired formula stated above
V(q,z') =lziiré(—(1/z)(3zG (q;z,z')). (4.27)
Plugging this now into equation (4.10) yields the vacuum polarization

TR . (LG S

(4.28)
95 W (¢ —mi, +ig)mi,

From this expression we can read off the decay constants Fy, defined by {0[J5*(0)| V) =
Fy 6% as

o1
= lim = [0f, (e) /€] = P S [, O (4.29)
Y5 95
For the calculation of a, we of course need II{f" ( ) IT{" (0). From (4.28) it is straight-
forward to see that
m 2F2 2
" (-¢%) -1 (0) = ). s (9( ! ) (4.30)
n=1 ( V )mVn mvm

Here we also indicated the error if we truncate the sum at a certain value n = m. The
equation (4.30) is equal to equation (4.19) in the case of m — oo. However usually it is
simpler to use expression (4.30), since solving for eigenfunctions is simpler in problems
not solvable analytically. Also, by solving for the eigenfunctions one obtains the mass
spectrum "for free", which is also an advantage compared to searching for all poles of a
non-analytical function.
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28 4.1. Hard-Wall Model (HW)

For this simple model we can perform calculations analytically for both cases. Also more
importantly, they both provide the same results. The calculated values for the masses of
the vector mesons as well as the corresponding decay constants can be found in table 4.2.
The results obtained by applying the HW model to the anomalous magnetic moment of
the muon can be found in table 4.3.

4.1.1 HWI1 model

Now we are ready to fix the parameters. We can do this by switching to Euclidean momen-
tum Q? = —¢? and expanding Il (QQ) for large Q2. The result can then be compared with
the operator product expansion OPE of IIy, (QQ). The constant gy is fitted such that the
leading term of the OPE and the holographic result for Iy (Qz) have the same prefactor.
At large Q2 the holographic result in leading order is given by

1

log @2, 4.31
252 (4.31)

Iy (Q?)

which can be seen directly from equation (4.14). The OPE is given by [39, 40]

N, a Q? as N, (G?) 14N, ro(qq)?
Iy (Q° =—c(1 —3)1 = |-—== c— : 4.32
V(Q ) a2\ 7 Og(,uz) 247w 3 Q* "7 Qb (432)

By comparing equation (4.32) and (4.31) we find

1 N,
E = 1277_2. (433)

After Wick rotation (4.19) to Euclidean space this is exactly the expression we need in the
integral (3.20). However there is still one parameter left to fix, namely the upper bound
of the z-coordinate z,,. It is fixed such that the mass of the lightest eigenmode equals the
mass of the first rho meson p(770), m, = 775.5 MeV. This can by done by analyzing the
poles of TI{7" (—q2). It has poles exactly at ¢ = m%,n, where my, = m, (the mass of the
lightest rho meson). So we have to solve the equation Jy (g2, ) =0 for ¢. Doing so gives

Zm = 3.101 GeV ™!, (4.34)

The masses of the other meson states are also determined by the poles of ITI{7" (—q2). As we
will see later, this is of course consistent with the other method of calculating the vacuum
polarization given below.

4.1.2 HW2 model

The model discussed so far is usually referred to as HW1 model. However, there is also an-
other HW model called HW2 (or Hirn-Sanz model) [41] with 2 different sets of parameters.
The usual set is obtained by fitting the rho meson mass (HW2) and the other by fitting
the UV asymptotic (UV-fit). For our application the only difference between the HW1
and HW2 model are the values of the parameters g5 and z,,. The fit for the "standard"
hard-wall model - HW1 - is the one discussed above. We will not go into too much detail
about how the fit in the HW2 works, but rather just state the main arguments. The HW2



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Chapter 4. Holographic QCD models and their HVP 29

model imposes different boundary conditions on the eigenfunctions for the axial vector
sector than the HW1 model

$7H(0) = ¥ (2m) = 0. (4.35)
This raises the need of either modifying gs or z,,. The value of g5 is changed in the HW2
model, whereas in the HW2 (UV-fit) model the value for z,, is changed compared to the
HW1 model. Summarizing the values of the parameters we have
HW1 : g5=27 2z, =3.101GeV !,
HW2 : ¢5=4.932 2z, =3.101GeV !, (4.36)
HW2 (UV-fit): g5=21 2z, = 2.4359 GeV ™!,

The resulting numerical values are given in table 4.2 and 4.3.

HW1 HW2 HW2 (UV-fit)
My, R My, F? My, R

775.5 329.3 7755 3717 9872 419.2
1780 616.2 1780 695.5 2266 784.5
2791 863.8 2791 975.0 3553 1100
3802 1090 3802 1230 4841 1387
4815 1301 4815 1468 6130 1656
o827 1501 5827 1694 7419 1911
6840 1693 6840 1911 8708 2155
7863 1878 7863 2119 9997 2390

0O O U Wi —|B

Table 4.2: Vector meson masses My, and decay constants F‘l,i % in MeV.

values for (LEVP’LO (10719)

N;=2 N;=3
HW1 476.3 571.6
HW?2 773.1 927.7
HW2 (UV-fit)  303.9 364.7

Table 4.3: Calculated values for aEVP’LO [xlO‘lO] for different parameter fits of the HW
model.

4.2 Soft-Wall Model (SW)

For the so called soft-wall model the action of the full 5-dimensional dual gravity theory
is given by [19, 42]

1

S = / d%e-‘l’(ZWgTr{wxﬁ+3|X|2- -
95

(Fp + F;i)}, (4.37)

with d°z = d*zdz where d*z denotes the usual 3 + 1 spacetime components. The metric is
given by the AdS metric ds® = gyndeMdzN = Z% (mwd:v“dx” —dz2), therefore /g = z%
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30 4.2. Soft-Wall Model (SW)

The dilaton coupling e"®() will be discussed in more detail later. Here the covariant

derivative of the scalar field X is defined via
DMx =oMXx -i[vM X]-i{AM X}, (4.38)
the field strength tensor for the vector field is given by
N = oMy N Ny M i ([vM V] + [AM, AN]), (4.39)
whereas for the axial vector field it is given by
FAMN = oM AN - 9N AM — i ([VM AN + [AM, V]). (4.40)

We also note that Vi = Vi, T and Apy := Ap T, where the T%’s are the generators of
the gauged isospin symmetry. Varying the action with respect to the vector gauge field
VM gives the following equations of motion

O (e—@(z)\/gFMNa) +6_<I)(Z)\/§fabCFMNaV]€[FMNC =0, (441)

where F;y is understood to be the a-th coefficient in F&JN = F‘J/WN“T“. Note that we use
capital Latin letters as the summation index for the five spacetime components and lower
case letters for the summation index contracted with the generators 7% of the symmetry
group. As usual upper spacetime indices can only be contracted with lower once and vice
versa. For the indices of the 4-dimensional part of the spacetime we will use Greek letters
in the following. The coefficients f®° are the structure coefficients of the corresponding
symmetry group. We can linearize the equations of motion, since we are here only interested
in the two-point correlator as pointed out for the case of the HW model in [18]. We can
use an axial-like gauge V. = 0 as well as the condition for isospin conservation 0"V, =
0. Further we can Fourier transform the 4-dimensional spacetime coordinates such that
[ d*ze Vi (at, z) = Vg, z) to obtain

- 2 -0
9. (%azv:) s Vi =0. (4.42)
Here 220, = —97 was used. We need to solve this equation in order to calculate the two-
point correlation function. There are again two possible ways to calculate the correlation
function. Either by straightforward solving (4.42) or by expanding the correlator in an
infinite tower of vector mesons. But before we discuss these two methods we first have a
closer look at the relation between V7 and the correlator itself.

4.2.1 The SW two-point correlation function

The holographic duality states that there is a one-to-one correspondence between the fields
in the 5-dimensional gravity theory and the field theory operators. At the boundary the
value of the gravity fields can be directly interpreted as the source of the field theory
operator [29]. In our specific case this means that we can take the vector gauge field V!
and use it to deduce the correlation function of the sources (JZ(x)J,Ij(O)) In order to do
so we first split the field into two parts V(g 2) = V(q,z)f/lf(q). The latter one f/;f(q) is
interpreted as the source of the vector current Jj. V(g,z) is normalized to V(g,¢€) = 1,
where z = ¢ means that we take the limit ¢ - 0 as z approaches the boundary. The



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Chapter 4. Holographic QCD models and their HVP 31

correlator can now be calculated as usually in QFT by taking the second variation of the
partition function (which is related to the 5-dimensional action). In order to do that it is
best to first isolate the part of the action which does not vanish by validity of the equations
of motion. Again, since we are only interested in the two-point correlation function, linear
equations of motions are sufficient. This means that we can drop all the terms in the action
which are of degree four or higher. Partially integrating the relevant part of the equations
of motion gives

o 1
S = fd5xe & )\/ETr{—ﬁF\Z/}

= 4 /d5xe (I’(Z)\/_(aMVN aNVM)FMNa
95 (4.43)

_ /dee fI’(z)\/—(aMVa)FMNa
295

_ 295/d5 5’M( @(z)\/—VaFMNa) V“@M( CID(z)\/—FMNa)].

We used the fact that Tr [T“Tb] = %(5“. The second term in the brackets is equal to zero,
since it fulfills the linearised equations of motion. For the first term we can use Stokes’
theorem to get rid of the integration over z.

1

S = ) d5$aM (e_q)(z)\/g V]%F‘]/V[Na)
95

[d4:1:z e <I>(z)\/— (Va z,ua)

1 4 e—<I>(z) a Eua
_2_g?)fdx - (VMFV )Z:G

f dx ( 6ZV““)
2g5

In the last line the gauge condition V, = 0 has been used. With the help of (4.44) we
can now calculate the two-point correlator of the source by taking the second variation.
Using the previously mentioned isospin conservation constraint 0*V, =0 (¢"V,, = 0), and
therefore f/;f/”a = Vinﬂ“”éab with TI® = n — ghq" [q?, we find

295

zZ=€

(4.44)

Z=€

-®
. qx a € a asz q,z
i / d*ze' (Ju(x)Jllj(())) =-—50 b (qan - quq) # (4.45)
g5 q-z Z=€
This makes it possible for us to isolate the self energy function
-®
€ an(Qa Z)
Oy (-¢?) = - —=2—2~2 4.46
) R 40

4.2.2 Calculating the self energy function for the SW Model

For the SW model we choose a non-trivial background dilaton function ®(z) = x*2%. This
achieves a Regge-type spectrum of mesons of the form M 2n = 4k%(n + 1) [43], as we will
show later.
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32 4.2. Soft-Wall Model (SW)

Variant A

The first method to calculate the self energy function is to solve equation (4.42) for V#(q, 2)
with the boundary conditions V(g,€) = 1 in the limit € - 0 and lim,_0 V(q,2) = 0. The
general analytical solution to this equation is given by [43]

2

q 2
V(qu) =A1F (—4—52,

0, (m)2) +BU(—4%,0, (nz)Q), (4.47)

with the confluent hypergeometric function of first kind 1 F; and one of second kind U.
Imposing the boundary conditions we find that the solution is

2 2

V(g,z )—F(1_4%)U(;q2,0( )2). (4.48)

Plugging this into equation (4.46), switching to the Euclidean momentum Q% = —¢* and
expanding in a series for small € gives

Iy (Q?) = 292 (1@(0)(% +1)+log( )+210g(6)+2'y)+(9(6). (4.49)

Here v =0.577... is the Euler-Mascheroni constant, 1/1(0) is the polygamma function, which
is in general given as the derivative of logarithm of the gamma function by (™ (z) =
dyi;ll logT'(z). In our special case we have (0 (z) = ¢(2) = 1;((;)). All terms of higher

order in e denoted by O(e) vanish as € - 0. However the term proportional to log(e) does
not. To get rid of it we have to introduce a counterterm analogous to [44] by

= [ e

which leads to a counterterm in the self energy function according to

—<I>(e)

log(eu))Tr {Fy(z,€)}?, (4.50)

IT§, (Q%) = —%bg(ue). (4.51)

Here p is the renormalization scale. Together this yields

2
M7 (@) =g v () + 15 ()] = s (10 (25 #1) w10 (5 )+ 20). a2

We can use the fact that PO (n) = —y + Tt ]1, and the n-th harmonic number H,, =

1+3+ % ++ 1 =0 L to simplify this even more

TEN 1 /{2
1Ly, (622):@(]-15_22 +log(?)+’y). (4.53)

Note that here we actually use the analytic continuation of the harmonic number to the

T 2
complex plane H, fl Lt Tordt = -¥r ( ) CL” , since f? can (and in our application

will) be a real number. For the calculation of the observable quantity a,, we need Iy (QZ) =
I (Q?) - IT§5™(0), which we find is given by
1
My (Q%) = 5=

: 4.54
22 He (4.54)
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Chapter 4. Holographic QCD models and their HVP 33

Variant B expansion in an infinite tower of vector mesons

The second way to calculate the hadronic vacuum polarization is to expand the self energy
function in terms of the infinite tower of vector mesons. For Minkowski momentum ¢° =
~Q? the exact self energy function has poles at ¢ = M‘Q/n. The vector gauge field can be
expanded in the following way [45]

V(s ) = iﬂv;%")(x)wvn(z). (4.55)

After Fourier transformation and replacing ¢ in equation (4.42) by M‘Q/n we can solve for
a normalizable function ¢y, (2) for each value of M‘Q/n = M2 9y (2) = ¢¥n(2) has to be
normalizable (and therefore vanishes at z — oo) and also has to fulfill ¢,,(€) = 0. In order

to solve the resulting equation (still with the dilaton function ®(z) = x22?)
—K222 2 —k222
M
0. (e azwn) sy, =0, (4.56)
z z

we can make simplifications analogous to [43] and [19] by substituting

wn(z) _ 6“222/2\/2\1%(;;). (4.57)

This is essentially the same as described in appendix A with u = z. The resulting differential

equation is then

3
-4 (5422 + E) W, = MU, (4.58)

Solving this equation with the mentioned conditions gives

[ 2 L} (k222
‘I/n(Z) = I‘$222 me_kzzg/z%, (459)

which directly leads us to the solution of equation (4.56)

Yn(2) = K222 2 Ll (Ii222) . (4.60)

The first four eigenfunctions ¥, (z) are given in figure 4.2. The eigenvalues (squared meson
masses) provide a linear spectrum

M, =4k(n+1). (4.61)

Here n starts with n = 0 for the lightest vector meson. As we have shown for the case of
the hard-wall model explicitly in section 4.1, one can derive the current correlator by using
basic knowledge about the Green’s function in terms of the eigenstates of a differential
operator. The generalization to the soft-wall model is straightforward and the resulting
current correlator is given by

()= 5§ it
Iy (-¢°) == >, n , (4.62)
95 a=0 (¢% = My, ) My,
where
1 2.2
FVn = —€ zd}n(z) (463)
g5z z=e—0
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¥,(2)

0 2 4 6 8 10 12 14
zin GeV™!

Figure 4.2: Plot of the first four eigenstates W, (z) for the standard soft-wall model.

One can show by using (4.60) that the decay constant Fy, is given by the simple form
1
Fy, = —r*/8(n+1). (4.64)
95

For the subtracted and renormalized current correlator in Euclidean momentum Q2 this
finally leads to

@R,

(Q2 +M‘2/H)Mén' (4.65)

v, (Q?) = IS (Q?) — ™ (0) = io

The results for the mass spectrum of the SW model as well as the decay constants can be
found in table 4.4. The result for the calculated leading order HVP contribution to the
anomalous magnetic moment of the muon a, is given in table 4.5 at the end of the next
section 4.3.

n My, F
1 775.0 260.0
2 1096 309.2
3 1342 342.2
4 1550 367.7
5 1733 388.8
6 1898 406.9
72050 422.9
8 2192 437.2

Table 4.4: Vector meson masses My;, and decay constants F‘I/T/L ? of the standard SW model
in MeV.

4.3 Generalized SW Model

Following [45] we can generalize the action of the 5-dimensional gravity theory in a way such
that we can shift our meson mass spectrum by an arbitrary constant M‘Q/n =43 (n+1+b).



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

Chapter 4. Holographic QCD models and their HVP 35

We again use the AdS metric for the 5-dimensional space and work with the general ansatz

1
S:fd‘*xdzf?(——QFfm), (4.66)
4gs
for the relevant part of the holographic action. We do not trace over any indices therefore
we have a factor # in front, also the indices are all lower ones. Our task is now to
5

determine a function f(z) which provides a differential equation for the meson states and
the desired mass spectrum. The differential equation corresponding to the action (4.66) is
0, (f28z¢vn) + fQM‘Q/nq/)Vn = 0. After some manipulation (¢y;, = %) this gives

144

SVt qun = M>W,,. (4.67)

For fT" =rt2? 4 % we know from (4.61) above that we would obtain the mass spectrum

M‘2/n =4x%(n +1). To get our desired spectrum we find

144
n = k122 + 4—32 +4k°b, (4.68)
z
and therefore
-K222/2
f(z)=T(1+b) 7 U (b,0,1%2%). (4.69)
This generalizes the action to
1
S = / dzdzy/ge 2 U? (b,0,x%2°) (—FFMNFM N ) . (4.70)
95

With this action we will now calculate the HVP for some specific choices of the parameters
k and b. For V(q, z) and the condition lim,_. V(gq,2) = 0 we find

r(—% +h+ 1)U(b— %,0,&222)
I'(b+ 1)U (b,0,K%22)

Vi{g,z) = (4.71)

Furthermore, for the self energy function, by using (4.46) as well as subtracting the self-
energy function for ¢% = 0 as in (4.52), we find

i ) (¢* - 4k%b) (Hb - Hb_%)

Iy (¢?) = ——
v () 293 q

. +ouM(b+1) ). (4.72)

The last thing left to determine before calculating the HVP are the parameters « and b.
In [45] this is done by comparing the expansion of (4.72) for large ¢* (or equivalently large
Euclidean Q?) with the operator product expansion (OPE). There the following values

have been chosen
Kk = 0.4525 GeV b=10.046

k =0.55 GeV |b] = 0.3,

where the first set of values are simple numerical fits of the OPE, whereas the latter ones
are for x the correct value to match the O (Q’4) term (for the b = 0 case) and for b the

(4.73)
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36 4.3. Generalized SW Model

correct value to obtain a realistic value for the gluon condensate. The calculated value for
the leading order HVP effects on the anomalous magnetic moment of the muon can be
found in table 4.5. Here we used b = -0.3 since this gives the more realistic result.
Another idea is to use the decay width for the estimation of the parameters. In the paper
[45] they found

Kk =0.524GeV b=-0.3, (4.74)
where the predicted value for b is the same as above. This fit does provide an even higher
result for aEVP’LO as can be seen in table 4.5. The mass spectra for each case can easily
be calculated via M‘Q/n =4rk%(n+1+b). We did not explicitly calculate the decay constants

here, since we used the analytical result (4.72) for the calculation of aEVP’LO.

Another approach to generalize the SW model is taken in [46], here a 5-dimensional mass
is introduced in the action. In the simplest form (linearised form) it is given by

1
Ssp = 3 f d'zdz\/ge?® (-0 VN Vv + mEV V). (4.75)
5

The goal is to completely leave out the dilaton background ¢?(*) = 1 and obtain the correct
mass spectrum due to the ansatz

m2(z) = bz + 221 (4.76)

for the 5-dimensional mass. The corresponding equations of motion are

[q2 + 20, (%az) - migz) ] Vi.(q,2) =0. (4.77)

Proceeding as usual by solving the equations of motion under the conditions V{q,0) =1
and lim, . V(g,2) =0 we find

2 2
V(q,z)=e_%(czz)l1 ¢ rbde U b=q ,0,¢2% ). (4.78)
4c 4c

Passing to Euclidean momentum Q? = —¢? gives

2 2
Vi(g,z) = em3 () (1 + Q4+ b) U (Q * b, 0,022) . (4.79)

c 4c

Before proceeding further we would like to determine the mass spectrum provided by
equation (4.77). We can do this by making a very similar substitution to (4.57),

V(g,2) > Vzyv, (2), (4.80)
which yields
— ¥V, + (0222 + %) by, = (M, = b)v,. (4.81)
z

Comparing this with our result from section 4.2.2, especially equation (4.61), we immedi-
ately notice that
MZ =4c(1+n) +b. (4.82)
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Because of the obvious analogy to the standard SW model from now on we write x2 = c.
Now we can continue with the calculation of the HVP. Expanding (4.79) in powers of z
yields

Vg, z) = 1+iz2 ((b + q2) (H@ +log (/<a2) + 210g(z)) +(y-1)b-26%+ (7 - 1)q2)+(9(z3)

" (4.83)
in the limit z - 0. Here a different renormalization than above (see equation (4.51)) is used.
We simply drop the logarithmically divergent term log(z—i) in equation (4.83) instead of
renormalizing the current correlator afterwards. (The results for both methods are equal,
but since we are following [46] we use this method.) Doing so we find

(b-Q*) Hyge + (- 1)b-2r" —7Q* + Q

Iy (Q%) = - An” T . (4.84)

This expression has a serious problem for the calculation of the HVP. It does diverge at
Q? - 0. We solve this problem by simply subtracting the divergent part. However this
is not an acceptable solution since this is not equivalent to a renormalization with a local
counterterm. Further we again subtract IIy (0) to obtain

o 4K? (b—QQ)Hﬁ - 452 (b—QZ)H% -bQ* M (& +1)
Iy (Q )= 8K4Q2

(4.85)

The parameters s and b are again fitted using the OPE. The values found for the parameters
are

K =0.5477 GeV  |b| = 0.36 GeVZ. (4.86)

The resulting value for aZIVP’LO can be found in Table 4.5.

values for aEVP’LO (10719)

model parameters Ny=2 Ny=3
standard SW k = 387.5 GeV 276.4  331.7
Kk =0.4525 GeV, b=0.046 188.1  225.8

generalized SW [45] k =0.55GeV, b=-0.3 320.9  385.0
k=0.524 GeV, b=-0.3 350.8  421.0

generalized SW [46] # = 0.5477 GeV, b=0.36 GeVZ 3045 3654

Table 4.5: Calculated values of aEVP’LO from the standard SW model and two generaliza-
tions of it. Note that for the model in the last line the definition of b is different than for
the one above. Therefore it has dimension of energy squared.

4.4 Interpolating between HW and SW model

In this section we discuss two models that interpolate between the previously discussed
hard-wall and soft-wall models. The idea is to combine some features of the HW and the
SW model into one single model.
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38 4.4. Interpolating between HW and SW model

4.4.1 Dilaton background for the HW model

The idea here is to introduce a dilaton background in the hard-wall model. This is of course
equivalent to introducing an upper bound to the z-coordinate in the soft-wall model. By
doing so we have got an additional parameter that needs to be fixed (in total we have to
fix the three constants gs, z, and k). How we are going to fix them in detail is shown
below. But before we do so, we have to calculate Iy (—q2) explicitly.

Since we only introduce an upper bound in the z-coordinate the differential equations for
the dual fields are the same as in the soft-wall model

q26—°1>

Vi=0. 4.87
— ;i (457

o
0 (—(%Vj ) +
z
However the boundary conditions need to be adapted such that we have
Vig,e)=1, 9:V(q,2)|.—., =0, (4.88)
which for the eigenfunctions would mean the same as in the HW model

Yy, (€) =0, 9.9y, (2m) =0, (4.89)

The general solution of (4.87) is of course the same as in equation (4.47). Determining the
constants gives

() 1 (U (1 ) ()0 (-, 2]

oy 42 4K20 )
V(g,z) = - —_ -
(¢:2) 16K%L - ) (K222) 452
Z-
(4.90)
Using, as in the soft-wall model, that Ily (—q2) = - i—j%(;l’z) we find by taking the
5 =
limit € - 0 and renormalizing in the same way as in section 4.2 -
-2 @ k2,2
Hren (_q2)zi +F(1 452)U(1 4/{2717% Zm) +/y (4 91)
v 203 1= L o  (Kk%2%) ' '
m_l

As we know, the poles of this function are located at the values of the meson masses. This
can be seen by expanding it in a sum over normalizable eigenstates as we did previously in
section 4.1 and 4.2. For later convenience let us also calculate the subtracted self-energy
function IIy (q2) =TI (—q2) -1y (0)

2 2
_ 1 _ M1-L5)U(1-5,1,5%2] _
Iy (q2)=2_g§ Chl(nzzfn)+H_%+ ( HL)qz (1(n2;,%1) m) —Shl(/{QZTQR) ,
£

(4.92)
with Shi(z) = f; sinh(¢)/tdt and Chi(z) = v +log(z) + [, (cosh(t) — 1)/tdt. To fix the
parameters g5, 2z, and kK we are going to do the following. First we fix g?) and x by
matching the first two terms of the OPLE. Then z,, is determined such that the mass of
the first vector meson is m, = 775MeV. As mentioned we do this by looking at the poles
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Chapter 4. Holographic QCD models and their HVP 39

of equation (4.91) (one can also use (4.92), since it has the same poles). Again switching
to Euclidean momentum Q? = —¢* and expanding (4.91) at large Q* we find

Q*\ < 2+ 16s°

ron 1 1 1
" (Q%) = 7z (7+ Elog(m) * 300 508 +0(Q10)). (4.93)

Comparing this to the OPE (also used before in equation (4.32))

2\ _ Ne¢ g Q2 as Ne (GQ) 14NC7TQS<QQ)2
HV(Q)——(1+?)log(F)—24W? ot v (4.94)

we find first of all that g2 = 472 as it is the case in the SW and the standard HW model.

Secondly we see that
(567) 2’
K= (2—4679) , (4.95)

where (%Gz) can be calculated as in [39]. However this is where we encounter a problem.
It is supposed that (%Gz) = 0.012 GeV, which yields £ » 0.415 GeV. But this value for
k would make it impossible to fit z,, to match the mass of the first vector meson. The
reason for this is that we cannot have a meson mass in this model being lower than the
lowest meson mass of the soft-wall model with the same value for . This is something not
completely obvious to see, but intuitively it is clear when we think about the expansion
of the vector gauge field in its eigenfunctions. Since we have the same differential equa-
tion in both models, just the upper z boundary is finite in our current case, we expect
the eigenvalues to get higher with a lower boundary in the same way as the energy eigen-
values of a particle in an infinite square well get higher when the walls come closer together.

Anyway, we still have the problem of the "too high" value for (%GQ) in our model. However,
this quantity is not known that precisely and so we will choose it in the following simply
by hand loosely based on its value given in [39] by (%GQ) = 0.012 GeV%. To be more
precise, we are going to do calculations for different values of the gluon condensate. These
values together with their associated values for x and z,, are given in table 4.6. Given now

(%GQ) (GeV?Y) Kk (GeV)  zp (GeVT

0.003 0.2933 3.775
0.005 0.3333 4.169
0.007 0.3625 4.743
0.008 0.3748 5.237
0.009 0.3860 6.642

Table 4.6: Parameters x and z,, corresponding to the chosen value of (%GQ).

these parameters, we can calculate the mass spectrum for each set of them by solving the
eigenvalue equation with the boundary conditions (4.89). Doing so we obtain the mass
spectra given in table 4.7. The results for aEVP’LO using this model for the five parameter
fits described above are given in table 4.8 for Ny =2 and Ny = 3.
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(2G?) (GeV") 0.003 0.005 0.007 0.008 0.009

My, (MeV) 775 775 775 716 775
My, (MeV) 1531 1429 1319 1250 1140
My, (MeV) 2337 2145 1929 1786 1524
My, (MeV) 3156 2879 2564 2352 1944
My, (MeV) 3981 3622 3210 2931 2383
My, (MeV) 4808 4368 3861 3517 2834

Table 4.7: Masses of the first six vector meson state for each value of (%GQ).

values for CLEVP’LO (10719)
(2G?) (GeV") 0.003 0.005 0.007 0.008 0.009
Ny=2 366.2 332.6 3043 291.1 2783
Ny=3 439.5 399.1 365.1 349.4 333.9

Table 4.8: Results for aEVP’LO for each value of (%GQ) and Ny =2,3.

4.4.2 TImproved holographic QCD background

In this subsection we discuss the model proposed in [47]. The idea there is to replace the
dilaton background of the soft-wall model e™® = "% with a background that interpolates
between HW and SW model. This background is given by

2 2
e)\zo_l

e - (4.96)

. :
N5 4 N 9

This background has one parameter more than the HW and SW model and exhibits certain
features as we can see in figure 4.3. For z - 0 we find that lim,_0e ®(*) =1 as in the case

1.0 = - -

zin GeV~!

Figure 4.3: Plot of the dilaton background e~®(*) for the HW model (dashed green), the
SW model (dashed orange) and the model interpolating between these two (blue). The
latter one is given in equation (4.96). As we can see, the proposed background has features
of both of the other two models.

of the soft-wall model. At z = zg, the usual upper bound of the hard-wall model we find
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Chapter 4. Holographic QCD models and their HVP 41

that e_q’(z)‘zzz() = % Formally we can recover the hard-wall model in the limit Azg — oo,
the soft-wall model is given by the limit Az > Azp. For Az we stick to the fit of [47], for 2z
we use the same value as in the case of the HW model which is slightly different compared
to the value in the reference paper. So the parameters we use are

)\Z() = 2.1, 20 = 3.101 GeV. (497)

The value Azg = 2.1 provides a very good fit of the pion electromagnetic form factor
Fr (QQ), whereas the pion decay constant is poorly fitted by the value f, =88.0 MeV.

For the calculation of the mass spectrum, the decay constant and further the leading order
HVP contribution to a, pretty much nothing changes compared to the soft-wall model in
section 4.2. We simply can substitute our expression for e~®() in all the equations given
there. Therefore we will not write down all the terms and equations explicitly here, but
rather refer to the section on the soft-wall model for them. It is clearly not possible to solve
our equations analytically, so we have to rely on numerical calculations of the eigenvalues
and eigenfunctions. As in the case of the pure soft-wall model we obtain the eigenvalue
equation

o~®(2) MZ e ®()
0 ( 8zwn) + ———1, = 0. (4.98)
z z

Applying the same transformation as in the SW model, ¢, (2) = e®2, /20, (2), yields
— U+ V(2) T, = M U, (4.99)
with the potential

47 (40121 = 3) + V7 (ANt +3) 1+ (6 - 8X%2t) N (FTH20) — 12X 1 3¢227H0 112

Vo(z) =
(%) 422 (eX*#* + e — 2)2
(4.100)
Solving equation (4.99) for the mass spectrum as well as calculating the decay constants

Fyp, = =@ 0.45,(2)
952

(4.101)

z=e—0

is straightforward. The 5-dimensional coupling constant gs has also the same value as in

the SW model, because in the limit g5 is fitted both models yield the same result. The

resulting values of My, and Fy, for the first eight meson states can be found in table 4.9.
Given them and as usually

[Iten (QQ) _ Hren(O) - i QQF‘%n
' ' a0 (QF+ M ) My,

(4.102)

HVP,L . . .
we can calculate auv LO The resulting values using the first sixteen vector meson states

can be found in table 4.10.
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42 4.5. Li and Huang dilaton model

n MVn 5;/12
1 769.4 319.8
2 1590 5219
3 2202 6024
4 2608 636.2
5 2953 6754
6 3256 709.3
7 3531 736.6
8 3786 761.8

Table 4.9: Vector meson masses My, and decay constants F‘l/r/l ? of the model interpolating
between HW and SW model in MeV.

values for aEVP’LO (10710)

Ny =2 Ny=3
Interpolating model [47]  452.6 543.1

Table 4.10: Calculated values for aELO within a model interpolating between HW and SW
model.

4.5 Li and Huang dilaton model

The so far discussed models have been giving a quite good description of the meson spectra
and their decay constants. However they have also some very big shortcomings. As we
have seen, the hard-wall model of section 4.1 pr0v1des a meson mass spectrum mv ~n?,
different from the expected linear Regge behavior mv ~ n. The soft-wall model of sec-
tion 4.2 on the other hand shows exactly this linear Regge behavior. When it comes to
the description of chiral symmetry breaking only the HW model can provide a consistent
realization of it. The question is now whether one can find a model that provides the
correct Regge trajectory as well as a consistent realization of chiral symmetry breaking.
The model proposed by Li and Huang in [48] and [49] does provide exactly these features.

The self-consistent hQCD model developed by them is formulated in the framework of
graviton-dilaton systems, such that the dilaton field is dual to the dimension-2 gluon con-
densate responsible for the linear confinement. The scalar field corresponding to the quark
anti-quark condensate can explain chiral symmetry breaking. The 5-dimensional action of
the graviton-dilaton system is given by

S = V75 2® (R + 40y 20M @ - V(D)) . (4.103)

167rG

In the pure soft-wall model the quadratic dilaton factor was introduced by hand in order
for the model to yield a linear spectrum for the vector mesons. The metric was still AdS
and in the action the factor e™® was multiplied, which altered the equations of motion
compared to the HW model. Here the dilaton field is introduced dynamically. Solving the
equations of motion (the Einstein equations and additional field equations in this case)
selfconsistently, automatically gives a deformation of the AdS metric. As we will see, the
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Chapter 4. Holographic QCD models and their HVP 43

resulting metric will be of the form
ds? = b2(2) (nw,dx“dx” - sz) , bs(2) = et ), (4.104)

Note that for As(z) = —log(z/L) we would again obtain the pure AdS metric ds® =
gundzMdaN = 5—22 (nm,dx“dx” —sz). Previously we left out (set to unity) the factor
L?, as it does not alter our results in any way, but in order to stick to the notation of [49]
we include it here. The 5-dimensional action for the mesons propagating in the dilaton
background is basically the same as for the soft-wall model

1
SMZ_/d5$ gse—CPTr{lDX|2+VX(X+X7(I))+4—2(F£+F}%)}. (4105)
95

The only difference here is that we left the scalar potential Vx arbitrary for now, such that
it can also contain terms where the scalar field and the dilaton field mix. The complete
action is then given by

Ny
S=8q+ FSM, (4.106)

where we also have a different prefactor in front of the field strength tensor compared to
section 4.2. This does not matter in the end, but as mentioned we keep it here to stick to
the notation of the paper of Li and Huang. In [49] it is shown that two different dilaton
backgrounds can reproduce the glueball spectra of lattice calculations. We call the two
resulting models Model T and Model IT with the corresponding background fields

Model I: ®(z) = puZ 2>

4.107
Model IT:  ®(z) = pgz” tanh (pg2?) . ( )

The scalar field X is expected to have a nonzero VEV x(z), which yields the vacuum
action to be given by

N
Svac =SG,Uac + FiSM,vac

1
S WC=—/d5 2% (R + 49, B0 & - Ve (B 4108
Grae =Ta 2/gs¢°" (R + 40y a(®)) ( )

et
SM,vac:_fd5$ gs€ <I>(EaMXaAMX"'VvC'(X7(I)))'

The variation of the action (4.108) with respect to the metric and the scalar field yields
(after a lengthy calculation, which we skip here)

2 4 A
AT+ A §c1>” - gAgcb’ -Ze?\? =0,

6
@Il + (314; _ 2@/) (I), _ %€¢X12 _ 262145_%@6@ (VG(@) + )\G%CDVC(X, q))) — 07 (4109)
X"+ (3AL - @") X' - Ve (x, @) =0,
where Ve, is the derivative of Vi with respect to x. We also defined X\ = 162:?]3]\[” i

order to simplify our notation. The idea is now the following: Given one of the dilaton
fields ®(z) of (4.107) and the scalar field x, we can solve self-consistently the equations
in (4.109) for the metric deformation As(z), the dilaton potential Vg (®) and the scalar
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44 4.5. Li and Huang dilaton model

potential Vo (x, ®). In our case most important is of course the field Ag(z), since we will
need it to calculate the meson spectrum and the associated HVP. To solve for Ag(z) it is
actually sufficient to know x’(2). The field x(z) itself is constrained in the UV region by
the condition

X(2) 23 mgCe + %z3, (4.110)
with ¢% = %. In the IR we demand the following conditions for As(z) to hold
Al(2) =50, A(2) == const. (4.111)

Using (4.111) together with the first equation of (4.109), we see that y(z) at z > oo has
to fulfill the equation

2 A
29" - Ze®y2 20, 4.112
3 e X ( )
This means that in the IR we have
— 00 8
¥(2) Z3 4/ 2pge . (4.113)

A

Using the UV and IR behavior, we can parameterize x'(z) for our two different dilaton
backgrounds of equation (4.107).

Model T: X'(z2) = \/%uge_@/2 (1+ cre® + ch_zq))

(4.114)
8 1
Model IT: X'(2) = \/;,uGe_CD/Q (1 +die™® +dy2Pe™® - 56_?@)
The various constants that appear here are defined by
5+ V2 myC . 3V2Ao 3V2 meC  3v2Ao
1 =— 5 C2=1- - )
Slte; ACug, 8uc ACug, (4.115)
1 VAmyC 3V Ao
di=—=+ ) dyg = ——.
2 2V2uq 22 pe

By integrating (4.114) we can easily calculate x(z), but for our purpose it is not necessary
to do so. Our focus is now rather on solving the first equation in (4.109) for As(z). Keep in
mind that we have to impose the boundary conditions (4.111) on As. As we expect As(z)
to approach —log(z) at z = 0 in order to obtain the pure AdS background, we define

A(z) = As(z) +1og(z). (4.116)
So we get rid of the divergence of As(z) at z =0 and can impose the boundary conditions
A(0) =0, A'(0)=0. (4.117)

These conditions automatically yield a solution for As(z) that satisfies (4.111). The re-
sulting differential equation for A(z) reads

2 ue
AT - g (A’(z) - %) B'(2) + (A’(z) _ %) _ Zi2 _ %AX'%@(Z) . 2@3( ) 0. (@118)
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2.0 T T T 2.0

1.5} 1 1.5}
3 o} ] & 1o}
< <

0.5 1 0.5¢

0.0 L L L 0.0 L L L

0 5 10 15 20 0 5 10 15 20
zin GeV™! zin GeV™!
(a) Model IA for Ny =2 (b) Model IIA for Ny =2

Figure 4.4: Plot of the metric function by(z) = €**(*) for the Li-Huang model in blue
compared to bs(z) for the standard SW model (dashed orange line). Here we only plot the
two cases Model TA and ITA with Ny =2. For the other ones the plots are very similar.

Model TA Model IB Model ITA Model IIB

Gs/L? 0.75 0.75 0.75 0.75
mq(MeV) 5.8 5.0 8.4 6.2
o3 (MeV) 180 240 165 226

e 0.43 0.43 0.43 0.43

Table 4.11: Parameters for the different Li-Huang models.

Equation (4.118) can be solved by choosing a suitable UV cutoff. Using equation (4.116)
we can then determine A,(z) and therefore also bs(z) = e4+(*). In fig 4.4 we plot b,(z) and
compare it to the corresponding expression from the standard SW model, where we simply
have As(z) = —log(z). The various parameters and constants appearing in our equations
so far are fixed in table 4.11. These values have been found in [49] to produce meson
spectra in good agreement with the experimental data. The difference between parameter
set A and B has to do with the pion states. Set A gives better values for the pion form
factor, the results for the decay constants are worse. For the set B it is exactly the other
way round.

4.5.1 Vector meson states and the HVP

Having determined the metric deforming function Ag(z), we are ready to calculate the
vector meson states and their contribution to the hadronic vacuum polarization. The way
this is done is very similar to the previous sections. Up to quadratic order in the fields the
action for the vector mesons can be written as

(2) _ Ny 5. -®;5 2 v
T e U AV T AL G B CRLL)

Deriving the equations of motion is straightforward and analogous to the SW and HW
model. Also the expansion in a tower of vector mesons works in completely the same way.
The resulting differential equation for the vector meson states after making the substitution
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46 4.5. Li and Huang dilaton model

Yy, = e%(q)_As)\Iln is
U+ VU, =mi 0, (4.120)

with the potential Vj, given by !
2
AL (- )
2 4

In figure 4.5 we plot this potential for two sets of parameters and compare it to the potential
resulting from the standard soft-wall model. We have performed the numerical calculations

V, = (4.121)

zin GeV~! zin GeV~!
(a) Model IA for Ny =2 (b) Model IIA for Ny =2

Figure 4.5: Plot of the potential V,(z) for the Li-Huang model in blue compared to the
potential for the standard SW model (dashed orange line). The potential for the Li-Huang
model is plotted for Model IA and IIA with Ny = 2. For the other models the plots are

very similar.

for all four models. In figure 4.6 one can see the first few eigenfunctions for Model TA.

Vector meson masses My, (MeV)

Ny =2 Ny =3

Mod IA° Mod IB  Mod IIA Mod IIB  Mod IA Mod IB Mod IIA  Mod IIB

n
1 7199 744.0 747.6 771.6 727.6 771.5 754.4 796.6
2 1133 1138 1133 1136 1135 1143 1134 1139
3 1424 1427 1428 1430 1425 1431 1429 1432
4 1664 1666 1667 1670 1665 1670 1668 1672
) 1873 1875 1875 1878 1874 1878 1876 1880
6 2061 2063 2063 2065 2062 2065 2063 2067
7 2233 2235 2235 2236 2234 2237 2235 2238
8 2393 2395 2395 2396 2394 2396 2395 2397

Table 4.12: Calculated masses for the first eight vector mesons.

The masses of the eight lightest vector mesons are given in table 4.12 2. As in the models

'Tn [49] they made a typo by only writing down first derivatives in the first term of V,,. The same error
has been made there for all other hadronic states too, however their calculation seems to be correct in the
end.

*Note that in [49] the values for Ny = 3 are falsely stated to belong to Ny = 2. The same is the case for
the decay constant of the vector meson with the lowest mass.
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0.6F
0.4}
0.2}
0.0f
—02f

¥,(2)

~0.4}

_0.6:“,|,,,|,,,,,.|...|...|.-
0 2 4 6 8 10 12

zin GeV~!

Figure 4.6: Plot of the first four eigenstates for the Li-Huang model (Model IA and Ny = 2).
The number of nodes determines the value n. For example the ground state has zero nodes.
Also here the plots of other sets of parameters are very similar.

discussed before, we are again interested in the decay constants (0 ‘J“ja(O)| 1744 ) = Fy, 6%t
In the same manner as we did for the soft-wall model in equation (4.43), (4.44) and the
following lines we can derive an expression for the decay constant. Doing the calculation

explicitly one finds
‘ N
Fy, = 2]]\; A ¢82¢Vn(z)

It should be immediately clear that we would obtain the result for the decay constants of
the hard-wall model (4.29) for As(z) = —log(z) and ®(z) = 0. To obtain the result for
the soft-wall model (4.63) one would have to set Ag(z) = —log(z) and ®(z) = k%22, The

(4.122)

z—0

N .
prefactor N
from the previous sections, the coupling constant g5 is fitted such that the leading order
term in the OPE is matched. Doing so for the model here, we find

N 1
= (4.123)
gsNe 4w
This means that g5 then depends on Ny and N, but no longer the prefactor e N itself.

However the theory itself is of course different for each value of Ny and N.. We performed
calculations with N, = 3 for Ny = 2 as well as Ny = 3. In table 4.13 we summarize the
values of the decay constants squared F‘Q/n for the first eight vector mesons of each of the
four different models. The expansion of the hadronic vacuum polarization in terms of the
meson eigenfunctions (and therefore the decay constants) works in the same way as shown
explicitly in section 4.1. Hence the Euclidean HVP reads

m 2 2
g (@) -1 0)- £ R, +o(% ) (4.124)

Q* + mv )mv my,,

The resulting values for the LO IIVP contributions to the anomalous magnetic moment
of the muon a, are given in table 4.14. For the latter calculation we included all vector
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48 4.6. Holographic QCD model from Sen’s tachyon action

Vector meson decay constants F‘l/: 2 (MeV)
Ny =2 N;=3
Mod TA  Mod IB Mod ITA Mod IIB  Mod IA  Mod IB  Mod ITA  Mod TIB

n
1 268.7 275.4 288.2 293.8 270.9 282.4 289.9 298.8
2 3310 331.4 329.2 332.3 331.0 332.8 329.9 336.7
3 3714 370.8 367.7 366.5 371.2 370.1 367.3 365.7
4 4014 401.2 400.8 399.1 401.4 400.7 400.3 397.2
5 4258 425.8 426.5 425.6 425.9 425.7 426.3 424.2
6  446.7 446.7 447.4 447.2 446.7 446.8 447.4 446.7
7 465.0 465.0 465.4 465.6 465.0 465.1 465.5 465.6
8  481.3 481.4 481.5 481.8 481.3 481.5 481.6 482.1

Table 4.13: Calculated values for the decay constants of the first eight vector mesons.

values for aZWP O (10719

Model IA  Model IB  Model ITA  Model IIB

Ny=2 386.8 359.7 402.3 371.6
Ny=3 453.5 397.5 472.1 410.7

Table 4.14: Results for aEVP’LO using the Li-Huang model. The calculation includes states
up to n =16.

meson states up to n = 16. Therefore the error we make in the calculation of the Euclidean
Q? )

M2
Vit

vacuum polarization is O(—%—

4.6 Holographic QCD model from Sen’s tachyon action

In this section we are going to work with a model proposed by Kiritsis et al. |20, 21, 22],
which has several string theory ingredients. Most prominently is tachyon condensation,
which is still to be considered a main mechanism of chiral symmetry breaking in this
model. This model is still considered to be a bottom-up model even though it contains a
lot of input from string theory. However a full derivation from string theory is far out of
reach. In several ways this model is an improvement of the above discussed hard-wall and
soft-wall model (see section 4.1 and 4.2). Therefore it is very interesting to see what the
model of Kiritsis et al. predicts for the hadronic vacuum polarization compared to these
other models.

From string theory we suppose that the meson physics, and therefore also the physics of
vector mesons we are mainly interested in, is described by the dynamics of a D4-D4-brane
systems in a background of closed strings. The corresponding gravity action (we choose it
in the following to be 6-dimensional) reads

S = /dx\/g?[ (R+4 96)? + ;,) ;61' (6)] (4.125)

where c is just a constant and o = 2. We will not go into more detail about this action.
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The solution of the equations of motion resulting from the action (4.125) relevant for us is

2
— [dat s+ fr'd2? + fadn?], (4.126)

ds% = —gttahf2 + gzzsz + gmd:ﬁg + gm,dn2 = =

where R? is just a constant we could already set to unity at this point (in the same manner
as we did for the HW model) and

fa=1-% (4.127)
“A
With the constant ). we have
Qc 6
F(ﬁ) = \/J —g(ﬁ)d x, (4128)

the dilaton is constant and given by

b o QL, /%_ (4.129)

The n-coordinate is compactified and identified periodically. The z-coordinate runs from
0 to z5. In this background we place our D4-D4-brane pair. However, we are placing the
branes not arbitrary, but rather in such a way that it makes our life easier. The pair is
placed at a fixed value of n with zero distance. So what we have here is a 5-dimensions
quark model embedded in a 6-dimensional glue model. We describe this by an effective
DBI-like action for the dynamics of the tachyon on the brane pair given by [50]

S=—/d4a:sz(|T|)(\/—detAL+\/—detAR). (4.130)

This is not that different from what we will use for the formulation of the Sakai-Sugimoto
model in section 4.7. The relevant quantities in the action (4.130) are

2o’ (i N *
AGyMN =9gMN + 7 F]f/N + 7’ A((DyT) (DNT) + (DNT) (DyT)) (4.131)
\%

DT = (On +iAY, —iARNT, T =r1e", (4.132)
and the tachyon potential
1
V=Ke 3T (4.133)
We included two constants gy and A, which we will fix later. The metric here is induced
from (4.126)
R2
dsg = —gudt® + g..dz* + gmd:vg =— [dm% 3+ fxleQ] ) (4.134)
Z K

The constants in the definitions above should not bother us here. As we will see, most of
them will drop out anyway.

The plan to "solve" the model for the (vector) meson states is now the following. First
we are going to solve for the vacuum solution, where we set all the fields to zero except
the tachyon field 7(z). The vacuum solution for 7(z) is then plugged back into the action
(4.130). After that we expand the resulting action in quadratic order in the fields dual
to the vector current. In principle we could also do that for the other fields, but here
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50 4.6. Holographic QCD model from Sen’s tachyon action

we are just interested in the two-point correlation function of the vector current. Having
the quadratic action we proceed as for all the other models discussed before in this thesis,
namely by deriving the equations of motion, solving them, calculating the second variation
of the (on shell) action with respect to the dual fields at the boundary and finally evalu-
ating the vacuum polarization.

The vacuum action with 0, Ay, Ar = 0 reads

13
S ==-2K f d4xdze_%“2729t2tg£z\/gzz +2ma’ \ (827')2. (4.135)

The variation with respect to the tachyon field 7(z) yields the differential equation

" 4M2Zf/\ 3 3 f//\ ’ ( 3 2 /2)
_P <A _Z i 2A - =0. 4.136
T 3 77+ Z+2fA T+ ZQfA+MT T ( )

This equation has two important features we will use in the following. The first is its UV
asymptotic given by two constants c¢; and c3

2
T=ciz+ %c:{’zs logz+03z3+(’)(z5). (4.137)

The second one is that it is invariant under the a rescaling of z
z2—Z=2z[zp, (4.138)

and also under the rescaling of the tachyon function 7(z) itself by a constant. The latter
means in fact that we can choose p freely. Here we will always use p? = 7. The solution
of equation (4.136) does diverge at some point. As described in [21], we need to find the
solution which diverges exactly at z = zp. This is by far not easy, since one encounters
numerous numerical issues. We solve the equation using the shooting technique. We know
that in the UV the solution of the equation has to behave as in (4.137). So we fix the value
for ¢; and then adapt the value ¢3 such that the divergence occurs in the IR at z = z5. For
the numerical calculations one also has to choose an UV as well as an IR cutoff additional
to the physical IR cutoff. In [22] it is suggested to use the values

23t = 522MeV, ¢ = 0.0125, (4.139)

in order to obtain the best fit of the meson spectrum in the end. So we will stick to this
choice of the values for the whole section. The function 7(z) we obtain as the solution of
equation (4.136) is plotted in figure 4.7. The value we obtain for the other constant is

c3 % 0.37. (4.140)

We now have 7(z) of the vacuum. In case of the full theory this is then equivalent to its
vacuum expectation value (7)(z). Now we can proceed by expanding the action (4.130)
up to quadratic order in the fields. As for all the other models discussed before we also
define the vector and axial vector gauge fields here by

_AN AN, AL A

1% : el i’ V) 4141
M 5 M 5 ( )
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Figure 4.7: The resulting tachyon field 7(z) for the values of (4.139). As we can see, it
diverges exactly at z = zp.

with their associated field strength tensors Viyyny and Ajrn and work in the gauge A, =
V. =0, 0"V, =0"A, = 0. For convenience let us also define g.. = g.. +2ma’A ((‘?Z(T))Q, as it
will simplify our notation a bit. The vector part of the action up to quadratic order then
reads

(2
Sy ma) IC / d4xdze—%u2T2[ gZZVWV b o0, V, 0.V ] (4.142)

Using the Euler-Lagrange equations, expanding in a tower of vector meson states and
replacing as usual ¢? = —M‘Q/n (note our metric convention here, see (4.134)) we find the
eigenvalue equation for the meson states

1 _1
- ;laz (e-aﬂ272gm5222 8Z¢Vn(z)) = M2 v, (2). (4.143)

To make things a little bit clearer we substitute for all the metric coefficients and set p? = 7.
The latter one is allowed as argued above.

71'7'(z) 7r7‘(z)2
2

_ =0: by, (2) | = MY, vv,, (2)
J%%W J + Ir (7 (2))
22(1—5)5\-) 22 1-%
(4.144)

As we see the constant R? drops out completely of the equation, the only constant left is
zp- The factor %71 in the square root of the denominators is obtained after imposing

R2M2
2wal’ A -

(4.145)

This choice is explained in [21]. To solve this equation we would like to first transform it
to a form such that only a single second derivative is left. This can be done analogously
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52 4.6. Holographic QCD model from Sen’s tachyon action

to appendix A. The variable transformation is given by

z 2’5 -1 7.‘.212
u(z)=/0 \}(1-§) # T (7 () (4.146)

This transformation maps the values of z € [0, z5] to u € [0, 00) as we can see in figure 4.8.
For the transformed differential equation in the Liouville normal form we find

14} ' ' '
12f
10F
ORR:
= 6k
4f
0.0 05 1.0 15 .

zin GeV™!

Figure 4.8: Dependence of the new coordinate u of the old one z. The compact coordinate
z is mapped on the non compact coordinate u(z).

40---|---|---|---|---|---|---

Figure 4.9: Plot of the potential V(u). Note that this already looks very similar to the
potential obtained for the soft-wall model.

d?ou, (u)

-+ V(w)an(u) = My, om(u), (4.147)
u
where
_ 6_%7('2(“))2 1 d2E _
=(u) = W E e an(u) = E(u)py, (2(u)). (4.148)
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Chapter 4. Holographic QCD models and their HVP 23

Clearly, neither the potential V' (u) nor the function Z(u) are given by analytical expres-
sions. Here we have to completely rely on numerical calculations from the beginning. The
potential V(u) as well as the first few eigenfunctions a,(u) are plotted in figure 4.9 and
4.10. After solving (4.147) we are ready to start calculating the hadronic vacuum polar-

a,(u)

Figure 4.10: Plot of the first four eigenstates «,(u) for the tachyon condensation model.

ization. The steps here are not completely obvious from what we know from the soft-wall
model of section 4.2, so we are trying to write down most things explicitly. From (4.142)
we find the on shell action

210’ )? 1.1 _1
SV = _( Wf ) de4xdze_%H2T2 [igzzzvlﬂ/vw} +gx:c§zzzazvuazv#
Iy
(271'0/)2 4 v wy v wy v
- lC/d 2dz [0 (01 (2) V0. V") + an(2) (8, (VL 0"VY) - 8, (V0" V7))]
1%
271'0/ 2 v12=2
__( gé) IC/d4a:[oz1(z)VM6zV =2
ora)?
_ ”f) K / d*zay (2)V,0,V"
9y 2-0
(2ra/)’ K d*q
= gé (27T)4041(Z)VH(Q7Z)azvu(_QVZ) 2267
(4.149)
where from top to bottom we first partially integrated, then defined
_1 1
a1(z) = e‘%“2ngm§ZZQ, as(z) = T G2, (4.150)

threw away the boundary terms proportional to a(z), evaluated the z integral and finally
performed a Fourier transformation for all spacetime coordinates except z. In our usual
expansion V,(g,z) = V(q, z)VM(q) we than have to take the second variation with respect
to V,.(q) using the boundary condition V(¢,0) = 1. Thus we find

9 (2ra’)? K 8.V (g, 2)

Iy (=¢%) = ) 4.151
V( q ) gil/ q2 e ( )
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o4 4.6. Holographic QCD model from Sen’s tachyon action

Expanding a1 (z) in the limit z — 0 yields

122 -1
O(l(Z)lz_)O =e 3T gzpwgz22

z—0

|

o
ol
=
3

22 2 N,
\J 2(ii) #2malA (7 ()" (4.152)

5
z
A z—0

\/Rj§4 +2mal 24N (17 (2))?
R 1 R
—_ - —
Sl B () *

So we now have to fit the constant left over in the self energy function

R~

(2ra’) KR O.V (q,2)

4
9v qQZ z—€

Iy (-¢°) = -2 (4.153)
using the OPE expansion. Luckily one can show that in the UV as well as in the IR our
model is equal to the soft-wall model. This means that at least in these limits we know
how V' (g, z) does look like from section 4.2. Therefore fitting the prefactor for N, = 3 yields
2ra’)? 1

QM - (4.154)

9y 47

In the same manner as for all the previous models we can then find the decay constants
expressed in terms of the eigenfunctions of equation (4.144), by using Green’s function as
described explicitly for the case of the hard-wall model in section 4.1. So in the end we

obtain )
1 [w’vn(e)] 1

F‘2/n=hm— =4—2
78

e~0 472
with the full subtracted self energy function as usually given by

[0 ()], (4.155)

€

9 m q2F‘2/ q2
M (=0%) - T (0) = 30 ———5— +<9( 2 ) (4.156)
n=1 (q N mV )mV me
Note that the eigenfunctions vy, (u) are normalized as
ZA _xr(x)? 1 1 2
[ e[ |5+ 37 )0 (e, (2) | = G (4.157)
0

03
whereas the transformed eigenfunctions are normalized canonically as
f ducr, (u) o, (u) = dmp- (4.158)
0

The eigenfunctions, the mass spectrum and further the decay constants can be calculated
numerically. The results for the first eight vector mesons can be found in table 4.15. The
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Chapter 4. Holographic QCD models and their HVP 25

n My, F
1 7654 3132
2 1382 418.0
3 1806 488.7
4 2158 5384
5 2466 577.3
6 2744 6104
72999  639.4
8 3236 665.5

Table 4.15: Vector meson masses My, and decay constants F‘l/r/l ? of the tachyon condensa-
tion model in MeV.

values for aEVP’LO (10719)

Ny=2 Ny=3
tachyon condensation model  442.3 530.8 3

Table 4.16: Calculated values for aEVP’LO within the tachyon condensation model including

the contributions from the first 16 meson states.

leading order HVP contributions to a, calculated in this model can be found in table 4.16.

Note, however, that the value for Ny = 3 can just be viewed as an upper bound for
the value of aEVP’LO. The cause of this is hidden in the construction of the model. The
approximate mass symmetry of the quark masses is an essential ingredient there. Adding
a third quark, in this case the strange quark, with a mass more than ten times as high as
the mass of the other quarks leads to a violation of this symmetry and therefore cannot
give a correct value. The reason why we expect it to be the upper bound is pretty simple.
Including the third quark and assuming the symmetry still holds implies that the mass
of the additional quark should not be of the same order as the other two. However, this
means that its production in decay processes as an example would become much more
likely than it would be for a higher quark mass. A more likely production of the quark
results in an higher contribution to aEVP’LO and so we conclude that this approximation

can just give us an upper bound.

4.7 Sakai-Sugimoto model

The Sakai-Sugimoto model [16, 17] is a top-down hQCD model, which can be derived
from type IIA superstring theory by introducing Ny D8-D8-brane pairs and N, D4-branes.
Sakai and Sugimoto constructed their model similar to [23], which is supposed to be the
dual theory of 4-dimensional Yang-Mills theory. The difference is that Sakai and Sugimoto
used D8-D8-brane pairs instead of D6-D6-brane pairs in the D4-brane background.

The D4/D8/DS8 configuration is given in the following way. The D4-brane background is
embedded such that the 4" spatial coordinate is compactified on a S with radius Mf}lK.

% As discussed above this value can just be viewed as an upper bound
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o6 4.7. Sakai-Sugimoto model

This compact direction is used to break supersymmetry by imposing appropriate boundary
conditions. The D8-DS8 probe brane pairs are added such that in the UV they are transverse
to the S'. We obtain the boundary conditions for the strings as shown in table 4.17. There

0 1 2 3 (4
Di N N N N N
D&D8 N N N N D

Z| Do
Z| Ol
Z|9|—
Z| 0| »
Z|O|e

Table 4.17: Boundary conditions defined by the brane configuration of the Sakai-Sugimoto
model. N stands for Neumann- and D for Dirichlet boundary condition. The 4" spatial
coordinate is in brackets, since it is compactified.

are now basically six different ways in which open strings can end at the different branes. In
[16] it is argued that strings stretching between the D8- and D8-brane do not influence the
theory in the low energy regime and are therefore irrelevant. The strings between either D4-
and D8- or D4- and D8-brane are Ny flavors of massless fermions interpreted as the quarks
of QCD with different chirality. Further the U (N f)Ds xU (N f)D_s gauge symmetry of the
Ny D8-DS pairs is interpreted as the U (Nf)L x U (Nf)R chiral symmetry of QCD. The
three missing types of strings are the ones starting and ending at the same brane. For the
4-4 case their low-energy excitations are described by the gauge field ALD4)(M =0,1,2,3)
and the scalar fields Aim) and ®%(i = 5,---,9). For the 8-8 case and its anti-counterpart
there exists a 9-dimensional gauge field A, for each. The latter ones are interpreted as the
dual fields of the mesons and are important in the following. But before we can calculate
the mesons states we have to discuss the background metric as well as the induced metric
on the D8-branes.

4.7.1 Background and induced metric

The background without the probe D8-branes consists just of the N, D4-branes with the
compactified coordinate z* as given in the first line of table 4.17. As first noticed by Witten
in 1998 [51], this gives the dual of four dimensional Yang-Mill theory in the low energy
regime. The solution for the metric is given by

3/2 3/2 2
ds® = (g) (N datda” + f(U)d7'2) + (E) (;i([{])
Ug

R U
with the function f(U) = 1 - —8K. The Greek indices u,v = 0,1,2,3 refer to the first

U
. . 3/2 . . .
four spacetime coordinates. 7 ~ 7 + %’r% is the periodic coordinate of the compactified

KK
dimension and U is a radial coordinate with the holographic boundary at U - co. Uk is
the lower bound of U and R a constant related to string theory parameters by R? = g, N 2.
The later very useful Kaluza-Klein mass is given by

+ U%Qﬁ) , (4.159)

or  3ULL

From the background metric (4.159) we can calculate the induced metric on the D8-brane
transverse to the 4" space direction as in table 4.17 by making U = U(7) dependent of 7
2

3/2 3/2 3/2 772 3/
dsi)gz(%) nwdxﬂdxw((%) f(U)+(g) f((]U))dT2+(§) U2dQ3. (4.161)
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Chapter 4. Holographic QCD models and their HVP a7

For later convenience let us also introduce new coordinates for U and 7 given by

y=rcos, z=rsinf ( )
i UL/ 4.162
U3=UI3<K+UKK7”2, QE%T:%RWT’

4.7.2 Meson states

Now we are ready to derive the equations of motion for the fields dual to the mesons. As
mentioned before we have a 9-dimensional gauge field on the D8-brane with the components
A, A, and A, with ¢ =0,1,2,3 and a = 5,6,7,8. We are only interested in the 5-
dimensional states A,, A., so we assume that they are independent of the other four and
set Ay = 0. Note that the index z of A, refers to the coordinate defined in (4.162). The
dynamics of the fields is described by the DBI action plus additional Chern-Simons (CS)
terms

Spg oc f e~/ det (gav + 2ra’ Farn ) + Scs, (4.163)

with e? = g, (%)3/4. Integrating over the 4-dimensional sphere parametrized by =%, requir-
ing that all fields do not depend on them, and expanding up to second order in the gauge
field yields

4 v, po Lz v 3
SDS o< / d*xzdz Tr [—Z 7]” 7]p F,uprg + —8—77‘u FMZF,/Z +0O (F ) . (4.164)

We can now expand the gauge field in complete sets of orthonormal functions v, (z) and
¢n(z). Additionally we can add external gauge fields Ay, (¢") and Ag, (z") to the ex-
pansion of A, (z", z), such that we have

A (2, 2) = Apy (1) (2) + A (2 0-(2) + 32 BO ()t (2)
n=l (4.165)

A (2", 2) = 0O (@) do(2) + 3 o™ () 6 (2).

n=1

Here we used 9.(z) = % (1 £40(2)) with ¢g(z) = %arctan z, which is the non-normalizable
zero mode of the differential equation (4.169) given below. For now we set the external
gauge field to Ap, = A, = 0 to simplify our notation. Before we substitute (4.165) into
equation (4.164) let us make the very useful coordinate transformation

z

U. \?
UKK) ’

Z = K(Z)=1+27* =( (4.166)

Uk’
First substituting only A4, (z",z) = Y02, B,S") (z") ¥ (2) and ignoring all other terms gives

1 - n m 14 1 n m
Sps = nfd%dz 3 Tr[ZK VB EE POmMY g, + §MI2<KKB£ VB ap D yth | + ..

(4.167)
In order to obtain the action for a massive vector gauge field with canonical normalization,
we impose the normalization condition

K / AZ K33, = B (4.168)
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o8 4.7. Sakai-Sugimoto model

for the orthonormal fields ¢, given as solutions of the eigenvalue equation
~ K30, (Kdz,) = Mitbn,  mi, = A\, M. (4.169)

Integrating over the Z coordinate as well as imposing an analogous condition for the fields

bn,
9
(éms én) = 0Uisc [ AZK G = Sunn (4.170)

we obtain for the DBI action (now also including the expansion of A,)

SBE e [ dtamy [(0u<p(°))2 ) (% (0,557 ~0,B(7) "+ 0, (B(" - A’_LI/QEW(H))Q)] ’
n=1

(4.171)
up to interaction terms. The scalar fields <p(”) are eaten by the gauge field, such that we
have no mixing between vector mesons and pions. Now we are ready to also include the
external gauge fields as in the expansion of equation (4.165). We can manipulate the first
two terms a little bit

1 1
Arp (27) e (2) + Apy (27) 9-(2) = Ay (2") 5 (1+ 90(2)) + Ay (2") 5 (1= %0(2))
1 1
= 5 (A () + A (7)) + 3 (A (2) = Apy () o 2)
= V,u + Auwo(z),

(4.172)
where we have defined V, = %(AL}L +Agy) and A, = %(AL# — Apy) for the vector and
axial part of the external gauge field. As we will see, solutions of equation (4.169) v, (z)
with odd number n are even function and will be interpreted as vector meson states. The
ones with even n are odd functions and will therefore be interpreted as axial-vector mesons.

It is reasonable to redefine the coefficients B,Sn) by
v, = Bl(f"_l), a, = B;(f"). (4.173)

So we obtain for the gauge field from equation (4.165) with our new defined coefficients
A# = VM + Auwo(z) + Z UZ¢2n—1 + Z azwgn. (4174)
n=1 n=1

The multiplet of fields contained in A, represents the Goldstone bosons according to spon-
taneously broken Uz (N f) symmetry

U(z") =Pexp {z /_: d2' A (2", z')} = exp {211 (z") [ f~} € U(Ny). (4.175)

But since the analysis of the pion field II (z*) is not the main interest of this study we will
not go into detail about this too much and continue with our study of the vector meson
states.

Continuing our study of the vector meson states we plug the gauge field expansion (4.174)
back into the DBI action (4.164) to obtain an effective action up to quadratic order of the
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form
1 n n 1 n n
Sps = f dx [5 Tr (OHUV - 8,,%)2 t3 Tr (Guay - &,au)2
+ ayyn Tr (9"VY = 0"V*) (9vp) - 81,1)2) +apqn Tr (O* A - 0" A") (80, - 8Vaz)
Fon T (u)” + Ao Tr (af) ]

(4.176)
Here we used the following definitions
)\v" = )\Qn—la )\a" = )\Qn
4.177
Ayyn =K [ de_l/gz/Jgn_l, Apqn = /<;/ de_l/gwgnwo. ( )
Diagonalizing the kinetic term by redefining
Uy 20y, +ayppnVy, @ = ap + agan Ay (4.178)

yields

Sps= [ a5 T (00 - 0,00) + 5 T (0,0 - ) + A T ()7 Ao Tr (37)°

~2Fn Tt (@A) + Aan @24n Tr (A,)? = 2F,0 Tr (00V") + Aynagyn Tt (VH)2],
(4.179)
where we already identified the decay constants by making the substitution

Fa, = Xagnagan, Fy, = Apnayyn. (4.180)

A complete derivation of this action and also for higher order terms is given in the appendix

0.6f" ! ! '
0.45
0.2f
0.0:

Yy, (2)

-0.2f

-0.4f

Figure 4.11: Plot of the first four eigenstates 1y, (z) for the Sakai-Sugimoto model. As
mentioned those are the symmetric eigenstates, which are interpreted as the vector meson
states.

of [17]. From this form of the action (4.179) we can easily read off the decay constants for
the vector and axial vector mesons

(0] 0y v™) = B 5%e, (0] 7D(0)] ™) = Fa, e (4.181)



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

60 4.7. Sakai-Sugimoto model

Using equation (4.177), Fy,, is given by
py,:&mmjlukfﬂﬁbmﬂ. (4.182)
Using the equations of motion for 19,-1 (4.169) this equates to

FVn =—K / dz@z (Kazi/lgn—l) =—K (Kaz¢2n—1)|i: =-2kK (Kaszn—l)lz:ﬂx; ’ (4'183)

where in the last step we have used that 9,-1 and also its derivative are the same at
z — xo00. Note that in order to be consistent with the notation of the previous section, the
eigenfunctions of the meson states are denoted by vy, = 12,-1. The first four functions
py;, are plotted in figure 4.11.

To summarize, we have to solve the equation of motion (4.169) with the boundary condi-
tions ¢, (x00) = 0 and then plug the results into equation (4.183) to calculate Fy;,. Once we
have Fy,, it is straightforward to calculate the hadronic vacuum polarization by expanding
the self-energy function in terms of the meson states, as shown extensively for the case
of the hard-wall model in section 4.1. The masses and decay constants calculated for the
Sakai-Sugimoto model can be found in table 4.18. The resulting contributions to a, to
leading order from the IIVP are given for the case of two and three flavors of quarks in
table 4.19.

n My, F/’
1 7764 4281
2 1609 889.7
3 2436 1344
4 3259 1796
54081 2247
6 4901 2696
7 5721 3144
8 6540 3592

Table 4.18: Vector meson masses My, and decay constants F‘z % of the Sakai-Sugimoto
model in MeV.

values for aEVP’LO (10710)

Ny=2 Ny=3
Sakai-Sugimoto 1890 2268

Table 4.19: Values for aEVP’LO within the Sakai-Sugimoto model including the contribu-
tions from the first 16 meson states.
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Chapter 5

Conclusion and Outlook

In this chapter we summarize our results for the leading order HVP contributions to the
anomalous magnetic moment of the muon aEVP’LO. We also discuss the results of the other
two commonly used techniques - dispersion relation and lattice QCD - and compare them
with the hQCD predictions. All values for the results of other techniques are taken from
[25] if no other source is cited.

5.1 Results from holographic QCD

5.1.1 Anomalous magnetic moment

The numerous models presented in chapter 4 give a broad range of predictions for a,I;IVP’LO.

All the values we calculated are summarized in table 5.1. To assess all the values we have
to compare them with results obtained from other techniques. Those are given in section
5.2.

As we can see, nearly all our values lie below the ones calculated using other techniques.
This could have several reasons. One might be simply that the models we used are not
accurate enough for the description of QCD. In some sense this might be true, however
since other quantities such as the mass spectrum are predicted quite well, it could also have
other reasons. One of them has already been pointed out for the hard-wall model by Hong
et al. [36]. It seems that we are missing higher order contributions of meson loops in the
large- N, expansion, which are not accessible to calculations in current holographic frame-
works established only in the large- N, limit. Despite this fact it should still be possible
to compare our results to the dispersive result when we consider the ete”™ — 777~ pro-
cesses (in regards to the dispersion relation calculations) only, since for example four pion
processes are expected to be described by higher order terms in the large- N, expansion.
Comparing our Ny = 2 results from table 5.1 to the e*e™ — 77~ contributions of table
5.3 we see that at least for some models these values fit quite well (within 20% or less).
Unfortunately not even the more advanced models such as the tachyon condensation model
and the interpolating model do match the data well enough. Additionally it is interesting
that most of the models underestimate the leading order HVP contribution to a, except
the Sakai-Sugimoto model, which yields by far to high values.

61
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62 5.1. Results from holographic QCD

Values for aEVP’LO in units of 1071°
Model Nf =2 Nf =3
HW1 476.3  571.6
HW2 773.1 927.7
HW2 (UV-fit) 303.9  364.7
standard SW 276.4  331.7
188.1 225.8
generalized SW [45] 3209  385.0
350.8  421.0
generalized SW [46] 304.5  365.4
366.2  439.5
332.6  399.1
Interpolating model 304.3  365.1
291.1 349.4
278.3 3339
Interpolating model [47] 452.6  543.1
Sakai-Sugimoto model 1890 2268
tachyon condensation model |20, 21, 22] 442.3  530.8
386.8  453.5
. . 359.7 3975
Li and Huang dilaton model [48, 49| 103 1791
371.6  410.7

Table 5.1: Summary of all the calculated values for the leading order HVP contributions
to the anomalous magnetic moment of the muon aEVP’LO in units of 107°. For details of
the calculations for each model consider chapter 4. The citations are just to clarify about
which model we are talking. The values given are the ones calculated in chapter 4 and not
from any of the cited papers.
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5.1.2 Mass spectrum

In chapter 4 we have also calculated the mass spectrum for each of the models. In each
section the masses of the first eight vector mesons are given. It is useful to compare them
to the experimental masses given in table 5.4. Even though the experimental results have
quite some uncertainties (except for p(770)) we should find a very similar prediction for
the spectrum in the holographic models. Some of the models of chapter 4 indeed match
the experimental values, but many do not as we will discuss in the following.

The hard-wall model masses of table 4.2 are far away from the experimental values. How-
ever the soft-wall model with its linear M‘Q/n spectrum (see table 4.4) does fit the experi-
mental masses quite well, even better than all the models interpolating between HW and
SW model. This is surprising since the latter ones are supposed to provide a more accurate
description of QCD.

The more advanced models do match the mass spectrum reasonably well. The best fit is
obtained from the model of Kiritsis et al. (see table 4.15), but also the predictions of the
Li Huang dilaton model and the Sakai-Sugimoto model of table 4.12 and 4.18 are not too
far away from the experimental data.

5.2 Other results

5.2.1 Results from lattice QCD

To compare with the lattice QCD results is a little bit simpler than for the dispersive
results, because this kind of calculations give a separated value for each quark flavor in the
first place. The values in this case are given in table 5.2. The value considering only the
up and down quark is the Ny = 2 value. Adding also the strange quark contribution gives
the Ny = 3 value. In total the result from the lattice calculations (including all six quarks)
is

a, VPO = 711.6(18.4) x 10717, (5.1)

which differs from the dispersion relation result. For more details see section 3.1.

GEVP,LO (Ud) GEVP,LO (S)

650.2 53.2

Table 5.2: Contributions of the different quarks to aEVP’LO up to Ny = 3 from lattice QCD
in units of 10710 [25].

5.2.2 Results from dispersive calculations

In the dispersive approach the hadronic vacuum polarization is calculated from cross section
data of a virtual photon decaying into hadrons. From the contributions of the different

decay channels it is possible to isolate the N; = 2,3 contributions. This is important in
order to compare them with our holographic QCD results. The contributions to aBVP’LO
found by two different groups are listed by decay channel in table 5.3. Both groups used

slightly different methods, so the results differ from each other. The contributions from
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5.2. Other results

the heavier quarks are not listed in this table.

As mentioned in chapter 3 the best total
leading order prediction from this method is given by

a, V"0 = 693.1(4.0) x 1077,

The total values in table 5.3 are the ones we want to compare with.

Contribution up to Ny =3

DHMZ19 [52] KNTI19 [53]

atn” 507.85 504.23
atr w0 46.21 46.63
Tt 13.68 13.99
arr 7070 18.03 18.15
K"K~ 23.08 23.00
KqKj, 12.82 13.04
70y 4.41 4.58

Total N;y=2 590.18 587.58
Total Ny =3 626.08 623.62

HVP,LO

Table 5.3: Contributions of the different decay channels to a,,

of 10719 [25].

5.2.3 Experimental vector meson masses

(5.2)

up to Ny =3 in units

Experimental vector meson masses My;, in units of MeV

n  Meson Measured mass in MeV
1 p(770) 775.3
2 p(1450) 1465
&) p(1570)) 1570
3 p(1700) 1720
4 p(1900) 1909
&) p(2000)™) 2000
5 p(2150) 2201
6 p(2270) 2265

Table 5.4: Experimentally measured vector meson masses My, in units of MeV [54]. The
values with a star (*) are not very well confirmed experimentally, so we only consider the
values for the states without the stars in our discussion. The p(1570) state seems to be a
resonance of the vector meson with higher and lower mass, which we refer to as n =2, 3.

The experimentally obtained vector meson masses can be found in table 5.4. For our
discussion only the values without an asterisk *) are considered. For more details on the

meson states see [54].
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5.3 Possible improvements

HVP,LO
m are not

As we have seen, the mass spectra as well as the obtained values for a
always well described by the holographic QCD models we considered in this thesis. One
possible idea would be to use more advanced hQCD models. Of course we did only cover
a few specific (and somehow also very simple) hQCD models. There are also a few even
more advanced models out there which would be worth investigating. Another possible
improvement would be to include higher order corrections which are not accessible by our
current holographic framework. Admittedly, this is not a trivial task to do.

These improvements are both beyond the scope of this thesis and we leave them for the

future.
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Appendix A

Transformation into Liouville normal
form

In this short appendix we are going to describe a transformation of an arbitrary Sturm-
Liouville eigenvalue problem

= [p2 |0 +a) + A=) 0. (A1)

with eigenvalue A, to the so called Liouville normal form
d2
- Ww(u) +[V(u) = A]w(u) =0, (A.2)

which contains no first order derivative term any more. The whole section is based on [38]
and the appendix of [21]. The transformation can be achieved by first making a change of

variables
u(z) :/OZ\ gzz;ds (A.3)

Second we have to redefine the function we solve for by

w(u) = V/p(2(u))p(z(w))y(=(u)), (A4)

as well as to introduce a new function

V(u) = % [—q ~ /ppo- (paz (é%p_p))] : (A.5)

Note that from equation (A.3) we also know that

du_ |2 (A.6)

dz \ p(2)’

Since it will be important for most holographic models we discuss in this thesis, let us
briefly focus on the case ¢(z) = 0. Also for convenience let us define

E(u) = Vp(2(u)p(2(w)),  w(u) =E(u)y(=(u)). (A7)

67
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Using

(A.8)

we can simplify equation (A.5) as
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