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Abstract

The movements of one and two interacting bubbles inside a weak acoustic incident pres-
sure field have been extensively studied in the past. The results have focused on bubble
systems with limited or no interaction, which greatly simplified the problem. It has
been shown that considering low order couplings between the bubbles produce sign re-
versal effects of the forces. This can produce multi bubble systems with stable separation
distances, which cannot be explained by a model with no coupling.
This thesis covers theoretical derivations of the movement of two fully interacting bubbles
inside an acoustic incident pressure field. A novel approach under the assumption of an
inviscous fluid is introduced. The total forces are approximated in a new way and the
governing equations are linearised, allowing the use of layer potential techniques. We
further calculate the asymptotic forces on one and two bubbles and show that the results
are consistent with past literature. Common approaches with only low order interac-
tions produce growing errors for smaller bubble separations due to higher order coupling
terms getting more significant. In contrast, our approach considers all coupling terms
in the linearised model and should more accurately approximate bubbles with strong
interactions. Partial results are verified by numerical computations and simulations of
two bubble systems are made. Multiple sign reversal effects are observed which show the
complex behaviour of the forces. Further applications and analysis of this approach could
be a fruitful path of understanding the Bjerknes forces near resonance frequencies and
for bubbles in close proximity with each other.





Kurzfassung

Die Bewegung von ein und zwei interagierenden Blasen in einem schwachen akustischen
Feld sind in der Vergangenheit genau untersucht worden. Die Resultate haben sich auf
Systeme mit wenig oder keiner Interaktion beschränkt, was die Analyse deutlich verein-
facht hat. Unter Beachtung von Kopplungstermen niedriger Ordnung ist gezeigt worden,
dass eine Vorzeichenumkehr der Kraft auftritt. Dadurch sind Mehr-Blasensysteme mit
stabilen Abständen möglich, welche nicht durch ungekoppelte Modelle erklärt werden
können.
Diese Arbeit enthält theoretische Ableitungen von Bewegungen von zwei Blasen mit Inter-
aktion in einem einfallenden akustischen Druckfeld. Ein neuer Ansatz unter der Annahme
von Flüssigkeiten ohne Viskosität wird eingeführt. Die Gesamtkraft wird auf eine neue
Weise approximiert und die bestimmenden Gleichungen werden linearisiert, welche die
Verwendung von potentialtheoretischen Techniken erlaubt. Weiters werden die asympto-
tischen Kräfte für ein und zwei Blasensysteme berechnet und Resultate, konsistent mit
der Literatur, werden abgeleitet. Bestehende Ansätze mit Interaktion niedriger Ordnung
erzeugen zunehmend Fehler für kleinere Blasenabstände, da die Kopplungsterme höherer
Ordnung an Signifikanz gewinnen. Im Gegensatz dazu betrachtet unser Ansatz alle In-
teraktionsterme höherer Ordnung im linearisierten Model und sollte Blasen mit starker
Interaktion besser beschreiben. Teilergebnisse werden durch numerische Berechnungen
verifiziert und Simulationen von Zwei-Blasensysteme werden analysiert. Mehrere Vorze-
ichenumkehreffekte sind sichtbar, welche das komplexe Verhalten der Kräfte verdeut-
lichen. Weitere Anwendung und Analyse dieses Ansatzes könnte das Verständnis der
Bjerknes Kräfte nahe der Resonanzfrequenzen und für Blasen mit kleinem Trennungsab-
stand erweitern.





Acknowledgements

I would like to express my deepest gratitude to Prof. Jens Markus Melenk for his support
that made this thesis possible. Further I would like to thank Prof. Habib Ammari for
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Nomenclature

ÃD Modified A0
D operator. Section 5.1.1

AD/F Operator and vector valued function of the system for the potentials. AD(ω, δ)φ =
F Section 5.1.1

Am,n
D Terms of the decomposition of AD. Section 5.1.2

βi/βi,j Phase shift for incident wave βi := k · zi and waves travelling between bubble
clusters βi,j := kldi,j . Section 6.1

κl/κb Bulk modulus of the liquid/bubble. Section 3.2

C/C̃ Capacity and normalized Capacity matrix; Ci,j := −�χ∂Di , ϕj�L2(∂D); C̃i,j :=

|Di|−1Ci,j . Section 4.1

yx Distance to the corresponding bubble cluster center yx := x − zi for x ∈ Di.
Section 6.1

δ Contrast; δ := ρb
ρl
. Section 3.2

ρl/ρb Density of the liquid/bubble. Section 3.2

F b
1/2 Primary/Secondary Bjerknes force. Section 3.4

F b,e
1/2 Classical approximation of the effective primary/secondary Bjerknes force. Section

2.3

χD Indicator function of D. χD|D = 1 and χD|Dc = 0.

kl/kb Wave vector in the liquid/bubble. Section 3.2

λi/vi Eigenvalue and eigenvector of D−1C. V is the matrix with the eigenvectors vi as
columns. Section 5.2

ω Frequency of the incident wave. Section 3.2

ωi Resonant frequency corresponding to eigenvalue λi. Section 5.2

ωM,i First order in δ of resonant frequency corresponding to eigenvalue λi. Section 5.2

p Pressure field of the linearised problem. Section 3.2.3

pin Incident pressure field. Section 3.2.3
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ζi Resonant potential ζi :=
�

i V i,jϕj . Section 5.3

Sk
D/K

k
D Single layer potential and Neumann Poincaré operator. Section 4.1

u Displacement field of the linearised problem. Section 3.2.3

Yv For a vector field Yv is the field v in the Lagrange picture. For a vector it is the
corresponding vector with unit length.

ϕi ϕi := (S0
D)

−1[χ∂Di ]. Section 4.1

φ Potential of solution with decomposition φ = ϕ+ φ̃ and φ̃ ⊥ ϕi for all i. Section
5.1.1

cl/cb Speed of sound in the liquid/bubble, c :=
u

κ
ρ . Section 3.2

Y m
l /Ỹ m

l Normalized and non-normalized spherical harmonics. Section 4.2

D Bubble domains D = ∪iDi. Section 4.0

d Distance between bubbles.

M/Me Mass/effective mass of a bubble. Section 2.1.1

Pm
l Associated Legendre Polynomials. Section 4.2

ri/zi Radius/Centre of spherical inclusion Di = Bri(zi).



1. Introduction

Bubbles are made up of at least two phases and can thus produce very complex problems.
There is a long history on the study of their interactions with other objects and among
themselves. Two pioneers of this field were C.A. Bjerknes and his son Vilhelm Bjerknes
who were the first to describe the forces on air bubbles inside a liquid [1] due to an incident
pressure field. In honor of their contributions the mean translatory forces are named after
them. They are mostly looked at in a linear regime, although nonlinear effects can also
be relevant if the forcing amplitude gets large. We will focus on the former case and refer
to a report by Werner Lauterborn and Thomas Kurz [2] for general results.

The interactions between the pressure field and bubbles are most easily measured by
placing them inside a weak standing wave [3, 4]. Depending on their size and the forcing
frequency they get pushed towards the pressure node or antinode. It was established
that the source of this translatory force is due to the oscillations of the bubble and its
interaction with the incident pressure field. Furthermore, for well separated bubbles the
main parameter that decides the direction of the Bjerknes force has been found to be the
phase shifts between the interface movement and an incident field. It was observed that
the direction of the forces has a sudden change near the Minnaert frequency of a bubble.
Minnaert [5] first noticed that bubble oscillations can be modeled by a driven harmonic
oscillator with associated resonance frequency. Most interestingly, the model predicts a
singularity in the coefficient of the scattered wave and thus a sudden sign reversal of the
force. The derivation was later refined with dampening factors, which are made up of
viscosity, thermal and radiative terms [6]. This results in a ”softening” of the singularity
and in a continuous change of phase.

Two contributions to the forces have commonly been stated. The primary Bjerknes force
is the result of the interaction between the forcing pressure field and the bubbles interface
movement. In contrast to that is the secondary Bjerknes force which acts between two
bubbles and results in mutual attraction or repulsion depending if their oscillations are
in or out of phase. Crum compared in his paper [3] the theoretical predictions with
experimental data and derived a simple formula for this interactive force for well separated
bubbles.

It turns out that the secondary Bjerknes force has a very complicated dependency on the
distance and thus has not been analyzed exhaustively. Generally, three main cases were
identified. The simplest cases are two bubbles repelling or attracting each other over all
distances. They appear for forcing frequencies far away from the Minnaert frequency and
are well understood. The most interesting situation occurs when two bubbles attract each
other over large distances, while at the same time they repel each other at closer ranges.
In that case the bubbles jitter at a distance from each other and make up a stable pair.

In this thesis we will cover a new model for the forces on the bubbles and present an
approach using layer potential techniques for solving the system. Our model considers

3



CHAPTER 1. INTRODUCTION 4

full interactions between the bubbles and is in comparison to conventional approaches
not limited by the approximation of uniform bubble expansion. Due to uniformity being
increasingly violated for closer separation distances this suggests that our model could
prove to be more accurate for systems of bubbles in close proximity to each other. Sim-
ulations in the last chapter done for two bubble systems show complex interactions, like
a bubble pair getting accelerated in the same direction by the secondary Bjerknes force,
that have to the knowledge of the author not been described so far. This could indicate
new movement patterns if the error due to linearisation does not get too large. This thesis
will look at two types of interactions. Firstly, we will look at general strongly interacting
systems. They contain full interaction terms between the bubbles and produce complex
resonance frequencies. We are going to look in detail into the single and two bubble case.
Second, we will look at weakly interacting systems, which are made up of bubbles, where
the separation distance scales indirectly proportional with the driving frequency. This
greatly simplifies the systems and allows us to use the solution of isolated bubbles to
calculate the Bjerknes force. We will now give a short outline of the chapters.

In chapter two we are going to take a closer look at some derivations that have been
used to arrive at the classical formulas for the Bjerknes forces. This will give us an
idea of the approach that is often taken and provide us with reference formulas for later
comparisons. In chapter three we will find a mathematical model using the Lagrange
representation of fluid dynamics formulas and apply linearisation under the assumption
of weak forcing amplitudes. Finally, a formula for the approximated forces on a bubble
will be derived. Chapter four will cover an introduction in layer potential techniques.
For later use we will also look at statements about spherical harmonics and layer poten-
tials on spheres. Readers familiar with these techniques can skip this chapter. Chapter
five will begin with some general observations about strongly interacting systems and
descriptions of the resonance frequency and scattered solution. We will then derive the
primary Bjerknes force for single spherical bubble systems. Chapter six introduces the
weakly interacting system and shows how one can use isolated systems to calculate the
resonance frequencies and scattered solutions of the full system. We will then calculate
the secondary Bjerknes force for weakly interacting spherical bubbles. This chapter is
independent of chapter seven and can thus be skipped if one is only interested in the
strongly interacting case. In Chapter seven the strongly interacting case of two spherical
bubbles is covered. We are going to derive the resonance potentials in spherical har-
monics and find a formula of the secondary Bjerknes force. This formula will match up
asymptotically with the classical approximation for well separated bubbles. Additionally,
we will take a look at some simulations using our formulas in the spherical harmonics
basis and discuss the observations. Finally, chapter eight will summarize the results and
talk about limitations and possible steps forward.



2. Historical considerations

In this chapter we will take a look at some historical derivations of the primary and
secondary Bjerknes forces. The classical experiment to see the primary Bjerknes force is
made up of a system with a standing incident wave pin(x, t) = p̃in sin(ωt) cos(k · x+ β).
Depending on the size of the bubbles and the forcing frequency ω the bubbles will get
pushed towards the pressure nodes cos(k · x + β) = 0 or anti-nodes sin(k · x + β) = 0.
The secondary Bjerknes force on the other hand is most easily calculated in a system
of well separated bubbles. There we can consider them separately and only include the
first order interactions afterwards. To achieve this we will first calculate how a bubble
oscillates inside of a primary pressure field and then look at the secondary pressure field
that gets radiated outward from said bubble. Finally, we can combine these two results
and arrive at an approximation of the secondary Bjerknes force.
For easier considerations we will assume that the liquid has no viscosity, has zero curl
and that the bubble is not rotating. In the kinetic bubble section we will look at how the
movement of a rigid sphere inside of a liquid can be approximated. In the pulsating bubble
section we will derive the movement of the bubble walls and the secondary pressure field.
Finally in the Bjerknes forces section we will derive the primary and secondary Bjerknes
forces.

2.1. The kinetic bubble

In this section we assume that a rigid sphere with radius r moves along the z axis of the
system with velocity vz(t). We neglect the viscosity and compressibility of the liquid and
assume that the homogeneous liquid has a curl free velocity field. This reduces the forces
on the bubble to only 2 contributions. The first one appears due to the undisturbed flow,
which we will approximate with Buoyancy considerations and the second one is a virtual
or added mass term [7, p. 100]. We will now use the conservation of energy for a simpler
description. The energy is made up of the kinetic energy of the sphere and the liquid and
some potential energy, namely

Ekin,l + Ekin,b + Epot = E = const. (2.1.1)

We thus have due to ∂tEkin,b = ∂t

d
Mv2z
2

k
= vzM∂tvz for M := |Br|ρb that

∂tEkin,l + vzM∂tvz = −∂tEpot. (2.1.2)

2.1.1. Added mass

This section is going to reproduce the arguments of [7, p. 91]. We will now start by
establishing the kinetic energy of the liquid.

5



CHAPTER 2. HISTORICAL CONSIDERATIONS 6

For that we first make the assumption rot(v) = 0 for the velocity field v of the liquid.
We have thus a potential φ with

v = ∇φ. (2.1.3)

The incompressibility of the liquid now gives us

Δφ = 0. (2.1.4)

Furthermore we approximate the bubble as a rigid sphere which pushes the liquid in
normal direction to the surface. We thus have the boundary condition

dφ

dn
(r, θ, φ) = vz cos(θ). (2.1.5)

Furthermore we assume that the impact of the bubble movement declines over the dis-
tance, more specifically for large x we have

dφ

d|x|(x) = O(|x|−2). (2.1.6)

A basis of the general solutions in spherical coordinates are the well known solid harmon-
ics, they can be derived by separation of variables of the laplace equation. We arrive at
the general solution

φ(x) =
�
l

l�
m=−l

al,m
1

|x|l+1
Y m
l (x̂) + bl,m|x|lY m

l (x̂) (2.1.7)

with the spherical harmonics Y m
l . For the definition of Y m

l see section 4.2.1. Under the
asymptotic condition the second terms disappears and we get

φ(x) =
�
l

1

|x|l+1

l�
m=−l

al,mY m
l (x̂). (2.1.8)

The solution to the boundary conditions is now

φ = − r3

2|x|2 vz cos(θ). (2.1.9)

Figure 2.1 (a) shows the velocity field of such a sphere moving through the liquid. The
red arrows represent the normal component of the sphere’s velocity on the boundary and
the blue arrows the velocity of the liquid.
Next we will look at the kinetic energy of the liquid. We note that due to φ being
harmonic and equation 2.1.9 we get

Ekin,l =
ρl
2

\
R3/Br

v2 dx =
ρl
2

\
R3/Br

∇ · (φ∇φ) dx

= −ρl
2

\
∂Br

φ
dφ

dn
dσ =

πr3v2zρl
3

.

(2.1.10)
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a b

Figure 2.1.: (a) Sketch of a bubble moving inside an incompressible liquid. The blue
arrows represent the velocity of the liquid, while the red arrows represent the
radial components of the velocity. (b) Sketch of a bubble getting accelerated
along with the liquid. The red arrows represent the acceleration field of the
liquid and the bubble.

We further see that

∂tEkin,l =
2πr3ρlvz∂tvz

3
. (2.1.11)

Plugging this into the energy equation 2.1.2 and dividing by vz we arrive at

|Br|ρb∂tvz + 2πr3ρl∂tvz
3

= |Br|
d
ρb +

ρl
2

k
∂tvz = −∂tEpot

vz
. (2.1.12)

This equation tells us that we can consider the impact of the movement of the liquid on
the bubble as an added inertial mass of the bubble. The total effective mass is thus

Me := |D|
d
ρb +

ρl
2

k
. (2.1.13)

We restate 2.1.12 now to

Me∂tvz = −∂tEpot

vz
=: F e (2.1.14)

with the effective force F e. For our calculations in the later chapters we will look at the
total force that acts directly on the gas inside the bubble, which has mass M = |Br|ρb.
We can see that the forces with effective mass F e and the forces with normal mass F are
related by

F e

Me
=

dv

dt
=

F

M
(2.1.15)

for v being the velocity of the bubble. We thus get

F = F e M

Me
= F e 2δ

1 + 2δ
= 2δF e +O(δ2). (2.1.16)

with the contrast δ := ρb
ρl

< 1
2 .
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2.1.2. Kinematic Buoyancy approximation

In the books by Vilhelm Bjerknes [1], where he wrote down the work done by him and
his father Carl Anton Bjerknes, he introduced a force acting on objects inside a liquid
flow. A translation of his explanation reads as follows.

A body moving at the same rate as a translatory accelerated liquid experiences
a buoyancy with the same direction as the acceleration and with a magnitude
of the acceleration times the mass of the displaced liquid.

This can be easily seen by considering a reference frame in which the liquid and bubbles
are stationary and experience a force in the opposite direction of the acceleration instead
of moving. In this transformed system we get a conventional Buoyancy force, which is
proportional to the displaced mass of the liquid. See figure 2.1 (b) for a sketch of such a
field.
Bjerknes now assumes two generalizations in order to apply this principle to real systems.

• First, he assumes that this law still holds if the liquid does not strictly follow a
linear movement, but instead a weakly curved path.

• Second, the bubble does not need to follow the movement of the liquid exactly. This
would result in an additional inertia, which gets neglected. He then observed that
the incident flow can be taken instead of the real flow to calculate the force.

Using these generalizations and Eulers equation we arrive at

F e ≈
\
D(t)

ρlv̇in dx = −
\
D(t)

∇pin dx, (2.1.17)

where pin is the incident pressure field in the liquid without the inclusion.
We can arrive at the same result using the energy equation if we assume that the pressure
field is approximately the incident field and that pin(z) is constant in time. We can then
write for the potential energy

Epot ≈ −
\
R3\D(t)

pin(z) dz = −
\
R3

pin(z) dz +

\
D(t)

pin(z) dz. (2.1.18)

We now get for the displacement vector u(t) of the sphere

d

dt
Epot ≈ d

dt

\
D(t)

pin(z) dz =
d

dt

\
D
pin(x+ u(t)) dx

=v ·
\
D
∇pin(x+ u(t)) dx = v ·

\
D(t)

∇pin dz.

(2.1.19)

This provides us with the approximation for the velocity v of the bubble (which can also
be found in [8])

Me∂tv ≈ −
\
D(t)

∇pin dx. (2.1.20)
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2.2. Pulsating bubble

We will now look at the case of a bubble, that is uniformly expanding and contracting
and has no translatory motion. Minnaert first noticed that the air water system can be
modeled by a harmonic oscillator. We are going to follow the guide of [9] to see this.
We will assume a background pressure of p0 and that near the bubble a uniform incident
pressure field pin(t) is the source of the movement. Further the bubble has the radius
r0 + u(t) which is changing in time. The velocity field v again follows rotv = 0 and thus
we have the potential φ with

v = ∇φ (2.2.1)

and

Δφ = 0. (2.2.2)

Additionally, we have in spherical coordinates (r, θ, ϕ) that

dφ

dn
= ∂tu (2.2.3)

at r = r0 + u(t). Using the asymptotic boundary condition 2.1.6 this leads to

φ(r, θ, ϕ) = −∂tu
(r0 + u)2

r
. (2.2.4)

The kinetic energy of the liquid can now be calculated

Ekin,l =
ρl
2

\
R3/D(t)

v2 dσ = 2πρl

\ ∞

r0+u(t)
r2

g
∂tu(t)

(r0 + u(t))2

r2

n2

dr

= 2πρl(∂tu(t))
2(r0 + u(t))4

\ ∞

r0+u(t)
r−2 dr

= 2πρl(∂tu(t))
2(r0 + u(t))3

(2.2.5)

Next, we will look at the bubble interior. We assume that a reversible adiabatic process
takes place, namely for the pressure inside the bubble P (t) we have

P (t)|D(t)|γ = const. (2.2.6)

Thus, the excess pressure p := P − p0 compared to the bubble in equilibrium with u = 0

on the inside only depends on the radius of the bubble. For D(u) = 4π(r0+u)3

3 this turns
the last equation to

p(u) = P − p0 = p0

g |D|γ
|D(u)|γ − 1

n
= p0

eg
1 +

u

r0

n−3γ

− 1

l
. (2.2.7)
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Next we will calculate the potential energy contribution due to the pressure inside the
bubble. We have

Epot,b = −
\
D(t)

p(t) dx = −
\ u(t)

0
4π(r0 + u)2p(u) du

= −4π

\ u(t)

0
(r0 + u)2p0

d
(r0 + u)−3γ r3γ0 − 1

k
du

= −4π

\ u(t)+r0

r0

u2p0

d
u−3γr3γ0 − 1

k
du

= −4πp0

e
r3γ0

3− 3γ
((u(t) + r0)

3−3γ − r3−3γ
0 )− 1

3
((u(t) + r0)

3 − r30)

l
.

(2.2.8)

Finally we get the potential energy due to the extra external pressure

Epot,e =

\
D(t)

pin(t) dx =
4π(r0 + u(t))3

3
pin(t). (2.2.9)

After neglecting the kinetic energy of the gas inside the bubble we have the Lagrangian

L := Ekin,l − Epot,b − Epot,e. (2.2.10)

Before proceeding we note that

∂Epot,b

∂u
= 4πp0(u(t) + r0)

2

e
1−

g
u(t)

r0
+ 1

n−3γ
l
. (2.2.11)

This results in the Euler Lagrange equation

d

dt

∂L

∂(∂tu)
− ∂L

∂u
=6π(r0 + u(t))2ρl(∂tu(t))

2 + 4π(r0 + u(t))3ρl(∂
2
t u(t))

+ 4π(r0 + u(t))2

e
pin(t) + p0

e
1−

g
u(t)

r0
+ 1

n−3γ
ll

=0.

(2.2.12)

We can rewrite this to

M(u)(∂2
t u(t)) +

∂uM(u)

2
(∂tu(t))

2

=− 4π(r0 + u(t))2

e
pin(t) + p0

e
1−

g
u(t)

r0
+ 1

n−3γ
ll (2.2.13)

for M(u) := 4π(r0 + u(t))3ρl. This is the Rayleigh-Plesset equation. If we linearise it for
small u then we get the equation of a driven harmonic oscillator

∂2
t u(t) + ω2

Mu(t) = −pin(t)

ρlr0
(2.2.14)



CHAPTER 2. HISTORICAL CONSIDERATIONS 11

with the frequency

ωM :=

v
3γp0
ρlr

2
0

. (2.2.15)

For pin(t) = p̃in sin(ωt) this gives us the solution

u(t) =
p̃in sin(ωt+ α)

ρlr0(ω2 − ω2
M )

. (2.2.16)

In our derivation we arrived at an undampened harmonic oscillator and have thus α = 0.
If we had done a more careful approach we would have gotten dampening terms for
radiation loss, viscosity and surface tension [6]. One can prove that

α = arctan

gg
2

µ

ρlr
2
0

+ 2
µth

ρlr
2
0

+
ω2r0
2cl

n
2ω

ω2 − ω2
0

n
, (2.2.17)

where the sum is made up of three terms, which are due to viscous, thermal and acoustic
effects respectively.
The oscillations are the source of a secondary pressure field. We have (due to the Euler
equation) for a liquid particle with trajectory r(t) that

∇p =− ρl∂t(v(r, t)) = −ρl

e
∂tv +

�
i

∂iv∂tri

l

=− ρl

g
∂t(∂tu(r0 + u)2)

r2
− 2

∂tu(r0 + u)2

r3
Yer · vnYer

=− ρl

g
∂2
t u(r0 + u)2 + 2(∂tu)

2(r0 + u)

r2
+ 2(∂tu)

2 (r0 + u)4

r5

nYer,
(2.2.18)

where we used equation 2.2.4, ∂tr = v and Yer is the unit vector in radial direction. We
now neglect all higher order terms in u and use equation 2.2.16 to get

∇p=̇− ρl
(∂2

t u)r
2
0

r2
Yer = p̃inr0ω

2

r2(ω2 − ω2
M )

sin(ωt+ α)Yer, (2.2.19)

We can see a sketch of the field in figure 2.2 (a). Overall we arrive at

p− pin − p0=̇− p̃inr0ω
2

r(ω2 − ω2
M )

sin(ωt+ α). (2.2.20)

2.3. Bjerknes forces

The force on the bubble is a result of the changing volume of the bubble interacting with
the changing pressure field near the bubble. The inclusion experiences a force that pushes
it back and forth depending on the point in time during the oscillation. Over a period
this will result in an overall translatory movement of the bubble.
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a b

Figure 2.2.: (a) Sketch of a pulsating bubble. The red arrows represent the velocity field.
(b) Sketch of the approach for calculating the secondary Bjerknes force. We
neglect the interactions between the bubbles and use the field created by the
oscillations of the first bubble to calculate the forces on the second bubble.

Before calculating this force we will first note that for rigid bubbles and a weak monochro-
matic incident wave pin(x, t) = sin(ωt + α)pin(x) no mean translatory force occurs. To
see this we set T := 2π

ω and have

1

T

\ T

0
F e(t) dt =− 1

T

\ T

0

\
D
∇pin(x, t) dx dt

=− 1

T

\ T

0
sin(ωt+ α) dt

\
D
∇pin(x) dx = 0.

(2.3.1)

In contrast to this we will now look at bubbles with changing volume. For a weak incident
pressure field with low frequency the bubble approximately still expands uniformly, as in
the last section. Due to the slow change of the pressure gradient, we assume that the
previous derivations still hold. We now define

Definition 2.3.1. The primary Bjerknes force F 1, for an incident pressure field of fre-
quency ω, is the mean force that a bubble experiences over a period.

We get by using the kinematic buoyancy approximation the effective Bjerknes force

F b,e
1 := − 1

T

\ T

0

\
D(t)

∇pin(x, t) dx dt, (2.3.2)

where T is the period length of the incident pressure field.
If we have a system with more than 1 bubble then we also get a secondary force.

Definition 2.3.2. The secondary Bjerknes force F 2,i, for an incident pressure field of
frequency ω, on bubble i is the additional force due to the interactions with the other
bubbles compared to the single bubble system containing only bubble i.

For the secondary Bjerknes force we will consider low order coupling between the bubbles.
Namely we calculate the scattered pressure field by only considering a single bubble
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system. Then we add this to the incident pressure gradient on the other bubble, while
calculating the pulsations directly with the incident pressure field. We can see a sketch
of this approach in figure 2.2 (b). The first bubble creates a secondary pressure field, the
gradient of this field is depicted as red arrows. The second bubble oscillates due to the
incident field, depicted by the blue arrows.

If pi is the solution to the problem with bubble i removed then we get

F b,e
2,i :=− 1

T

\ T

0

\
Di(t)

∇pi(x, t) dxdt− F b,e
1,i

≈− 1

T

\ T

0

\
D̃i(t)

∇(pi − pin)(x, t) dx dt,

(2.3.3)

where F b,e
1,i is the first Bjerknes force of a system with only bubble i and D̃i(t) is the

oscillating volume of bubble i in this system. In total we can thus calculate the mean
acceleration on the bubble

Me�∂tv� ≈ �F b,e�. (2.3.4)

2.3.1. Primary Bjerknes Force

We will now look at a one bubble systems. We assume small k and a weak standing
incident wave pin(x, t) = p̃in sin(ωt) cos(k · x + β). In the lowest order of k we see that
∇pin is constant in space and get the approximation

F b,e
1 ≈ − 1

T

\ T

0
|D(t)|∇pin(t) dt. (2.3.5)

For easier calculations we place the bubble at the center of the coordinate system. |D(t)|
can now be calculated by fixing the position of the inclusion and allowing it to only
uniformly contract and expand like we did in section 2.2. This gives us for a bubble with
radius r1 that

F b,e
1 ≈ 1

T

\ T

0

4π

3

g
r1 +

p̃in cos(β) sin(ωt+ α)

ρlr1(ω2 − ω2
M )

n3

p̃ink sin(β) sin(ωt) dt

=̈
1

T

\ T

0

4π

3
r31p̃ink sin(ωt) dt

+
1

T

\ T

0
4πr21

p̃in cos(β) sin(ωt+ α)

ρlr1(ω2 − ω2
M )

p̃ink sin(β) sin(ωt) dt

=πr1
p̃2in cos(α) sin(2β)

ρl(ω2 − ω2
M )

k.

(2.3.6)

Note that we neglected the higher order parts in p̃in. This gives us

F b,e
1 ≈ πr1

p̃2in cos(α) sin(2β)

ρl(ω2 − ω2
M )

k. (2.3.7)
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2.3.2. Secondary Bjerknes Force

For a two bubble system with the same assumptions as in the 1 bubble case we get

F b,e
2 ≈ − 1

T

\ T

0
|D̃1(t)|∇(p1 − pin)(t) dt. (2.3.8)

Here p1 is the scattered pressure field if we remove bubble 1 and D̃1(t) the oscillating
volume of bubble 1 in a system with the other bubbles removed. We assume that the
distance between the bubbles is d and pin(zi, t)=̇p̃in cos(βi) sin(ωt) in the lowest order of
k at the location zi of bubble i. Yd is the unit vector in the direction from the centres of
bubble 1 to bubble 2. For the gradient we will use equation 2.2.19 for the second bubble
and equation 2.2 for D̃1(t). We thus get similarly to the case of the primary Bjerknes
force that

F b,e
2 ≈− 1

T

\ T

0

4π

3

e
r1 +

p̃in cos(β1) sin(ωt+ α1)

ρlr1(ω2 − ω2
M,1)

l3

p̃in cos(β2)r2ω
2

d2(ω2 − ω2
M,2)

sin(ωt+ α2)(−Yd) dt
=̇

1

T

\ T

0
4πr21

p̃in cos(β1) sin(ωt+ α1)

ρlr1(ω2 − ω2
M,1)

p̃in cos(β2)r2ω
2

d2(ω2 − ω2
M,2)

sin(ωt+ α2)Yd dt

=2πr1r2p̃
2
in

cos(β1) cos(β2) cos(α1 − α2)ω
2

d2ρl(ω2 − ω2
M,1)(ω

2 − ω2
M,2)

Yd.

(2.3.9)

This gives us

F b,e
2 ≈ 2πr1r2p̃

2
in

cos(β1) cos(β2) cos(α1 − α2)ω
2

d2ρl(ω2 − ω2
M,1)(ω

2 − ω2
M,2)

Yd. (2.3.10)

We can thus see that we get a repulsive force if the frequency is between the resonance
frequencies and an attractive force for the other cases. Note that the βi are due to spatial
positioning of the bubbles, while the αi correspond to the phase shifts of the bubble
oscillations due to dampening.



3. Mathematical model

In this chapter we will informally motivate a linear model and an expression for the
Bjerknes force for weak incident pressure fields. In the section Physical considerations
we introduce the Lagrange representation and derive the governing equations for the
displacement and pressure field using conservation of mass and momentum. After that
we will linearise the equations, set the boundary conditions and connect the bubble
interior to the liquid. Finally the last two sections cover our approximations of the forces
on the bubble by an integral that only depends on surface terms. This will be convenient
for our layer potential approach.

3.1. Physical considerations

The system is made up of a liquid with gas inclusions, namely connected Di(t), which
are not touching and have smooth surfaces. We further set D := ∪iDi. Our goal is now
to model the forces on the bubbles created by an incident pressure field.

3.1.1. Lagrange representation

We will work with the Lagrange representation, where we look at the evolution of mass
parcels in space and time. A reference system will be used which is made up of the static
inclusions Di that correspond to a system which does not evolve in time and transform it
onto the evolving system. The function ẑ : R3/(∂D)× (−T, T ) → Rd maps the reference
frame to the time slices for the liquid and the gas. We are further going to assume that
the bubbles do not combine or split up. Thus we require that ẑ(·, t) has a bijective
continuous continuation from Di to Di(t) and from R3/Di to R3/Di(t). We can see in
figure 3.1 a representation of the mapping. We further assume that

ẑ ∈ C2(Rd\∂D × (−T, T )), (3.1.1)

and the derivatives of ẑ have a continuous continuation on ∂D from both sides separately
and smooth ∂Di(t). We will also assume that the reference frame can be identified with
the system at time 0 by ẑ(x, 0) = x. We thus get for the displacement field û and the
transformation matrix T̂ that

û(x, t) := ẑ(x, t)− ẑ(x, 0) = ẑ(x, t)− x, T̂ i,j := ∂iẑj = δi,j + ∂iûj . (3.1.2)

In figure 3.2 (a) we can see a sketch of the displacement field. For weak incident fields we
get that det T̂ > 0, which provides us with the matrix inverse of T̂ and local invertability
of the first derivatives of ẑ(·, t). For this section we will notify a vector in the Lagrange
representation (reference system) with x, while z represents a vector in the Eulerian

15
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a

D

ẑ(x, t1)

D(t1)

ẑ(x, t2)

D(t2)

Figure 3.1.: (a) Sketch of reference frame and the mapping into the evolving system.

representation (at a time slice). For a function f in the Eulerian system we define a
corresponding function f̂ in the reference system,

f̂(x, t) := f(ẑ(x, t), t). (3.1.3)

In order to derive the differential equation we will look at the laws governing parcels of
the fluids. Figure 3.2 (a) shows an example on how parcles can change for an expanding
bubble.

3.1.2. Conservation of mass

We assume the conservation of mass M for a parcel V

dM

dt
(t) = 0. (3.1.4)

We will now use Reynolds transport theorem A.1. We have for the density ρ of the parcel
V (t) at z and time t that

dM

dt
(V, t) =

d

dt

\
V (t)

ρ(z, t) dz =

\
V

g
d

dt
ρ̂+ ρ̂(T̂

−1∇x) · dẑ
dt

n
det(T̂ )(x, t) dx. (3.1.5)

Due to det T̂ > 0, V being arbitrary and ∂tẑ = ∂tû this results in

d

dt
ρ̂+ ρ̂(T̂

−1∇) · dû
dt

= 0. (3.1.6)

This is the continuity equation in the reference frame.

3.1.3. Newtons law

We now assume that we can neglect the Lamé terms and thus have no shear stress.
We also assume that only the pressure gradient is a significant force contribution. By
Newtons second law we have for a parcel V

∂t

\
V (t)

ρ(z, t)(∂tẑ)(x(z, t), t) dz = −
\
V (t)

∇zp(z, t) dz. (3.1.7)
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Using Reynolds transport theorem A.1 and the continuity equation 3.1.6 we get\
V
ρ̂(x, t)

d2ẑ

dt2
(x, t) det(T̂ ) dx = −

\
V
(T̂

−1∇x)p̂(x, t) det(T̂ ) dx (3.1.8)

Due to V being arbitrary and ∂tẑ = ∂tû this gives us in the reference frameg
ρ̂
d2û

dt2

n
(x, t) = −

d
(T̂

−1∇)p̂
k
(x, t). (3.1.9)

This equation can also be directly derived by taking the Euler equation and transforming
it into the reference frame.

3.1.4. Equation of state

We now make the assumption that the pressure only depends on the density of the fluid.
This is especially true for an adiabatic process as we will see later on. We have the
equations of state

p̂ = fl(ρ̂), p̂ = fb(ρ̂) (3.1.10)

inside the liquid and bubble respectively. For p̂ = f(ρ̂) we get

dp̂

dt
(x, t) =

df(ρ̂(x, t))

dt
=

df

dρ̂
(ρ̂(x, t))

dρ̂

dt
(x, t) (3.1.11)

and we can thus define the bulk modulus

κ̂l/b(x, t) := ρ̂(x, t)
dfl/b

dρ̂
(ρ̂(x, t)). (3.1.12)

Next we rewrite equation 3.1.6 to

d

dt
p̂ + κ̂(T̂

−1∇) · dû
dt

= 0, (3.1.13)

where κ̂ is defined piecewise by the corresponding equations of state inside and outside
the bubble. Finally by combining equation (3.1.9) and (3.1.13) we arrive at

d

dt

1

κ̂

dp̂

dt
− (T̂

−1∇) · 1
ρ̂
(T̂

−1∇)p̂−
g
T̂

−1
g

d

dt
T̂

n
T̂

−1∇
n
· dû
dt

= 0. (3.1.14)

One thing to note is that historically the bubble is assumed to be an ideal gas with
the deformation as an adiabatic process. This approximation holds in the low frequency
domain and was often used to derive the bubble wall oscillations. A parcel V undergoing
a reversible adiabatic process follows p(t)V γ(t) = const. This gives us the equation of
state

p̂(x, t)ρ̂−γ(x, t) = p(ẑ(x, t), t)ρ−γ(ẑ(x, t), t) = p0ρ
−γ
b , (3.1.15)

where p0 is the pressure and ρb the density inside the static bubble. For the density this
would mean that

ρ̂ = ρb

g
p̂

p0

n 1
γ

. (3.1.16)
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a

u(x2, t)

u(x3, t)

u(x1, t)

b

t1 t2t3 t4

k

Figure 3.2.: (a) Sketch of displacement of volume elements due to bubble expansion using
the breathing approximation. The solid lines correspond to the system at
t = 0. (b) Sketch of movement of bubble due to Bjerknes force. The mean
translatory movement of the bubble is described by the Bjerknes force.

Further the bulk modulus inside of the bubble is then

κ̂ = γp̂(z, t) = κb
p̂(z, t)

p0
. (3.1.17)

We note that for our work we only need the assumption of conservation of mass and an
equation of state where p̂ only depends on ρ̂.

3.1.5. Surface connections

We have so far not looked at the connection between problems inside and outside the
bubble. For that we need additional assumptions. First we are going to assume that the
liquid and the gas do not mix up. This lead us to the no penetration condition, namely

v · n|+ = v · n|− (3.1.18)

on ∂D(t). Secondly we note that we neglect surface tension terms and assume that the
pressure is continuous

p|+ = p|− (3.1.19)

on ∂D(t).

3.2. The linearized solution

If the nonlinear effects are small then we find an approximation by linearizing the pde.
We look at the static solution

p0 := const,

u0 := 0
(3.2.1)

and with χD being the indicator function of D we have

κ0 := χD(x)κb + χ
Rd\D(x)κl,

ρ0 := χD(x)ρb + χ
Rd\D(x)ρl.

(3.2.2)
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Note that κb, κl represents the bulk modulus for the static bubble on the inside and
outside respectively. Similarly ρb, ρl is the density of the bubble and liquid for that
system. Finally we have the speed of sound

cl :=

x
κl
ρl
, cb :=

x
κb
ρb

. (3.2.3)

We now look at solutions of 3.1.14 close to the static solution, namely

p̂ = p0 + :p̃, û = u0 + :ũ, ρ̂ = ρ0 + :ρ̃, κ̂ = κ0 + :κ̃. (3.2.4)

Note that knowledge of the equations of state would allow us to find relations between
the terms. Recall for example the reversible adiabatic process, which allows us to deduce
terms for ρ̃, κ̃ inside the bubble depending only on p̂, see for example equations 3.1.17 and
3.1.16. Before linearising the differential equation note that we have ẑ(x, t) = x +O(:)
and thus T̂ = ✶ + :T̃ . We will assume that : Y 1 and only look at the lowest order in
the resulting differential equation. Equations 3.1.9 and 3.1.13 turn to

ρ0
d2ũ

dt2
+∇p̃ =O(:),

κ0∇ · dũ
dt

+
dp̃

dt
=O(:).

(3.2.5)

Combining the equations gives us

d

dt

1

κ0

dp̃

dt
−∇ · 1

ρ0
∇p̃ = O(:). (3.2.6)

We will denote the linearised solution of this differential equation by p with linearised
displacement field u.

3.2.1. Surface connections

For the surface connection terms we note that slippage can take place in our model. This
means that the outermost gas layer can move in relation to the innermost liquid layer.
The no penetration condition reads for all z ∈ ∂D(t) in the reference frame

(∂tû|+ · n)(x|+(z, t), t) = (∂tû|− · n)(x|−(z, t), t), (3.2.7)

where the subscript ± notifies the functions on the outside and inside of the bubble. Due
to the assumption of ẑ ∈ C2 and ∂D(t) smooth we have (∂tû|± ·n) ∈ C1 on the surface.
With this and |x|±(z, t)− x|±(z, 0)| = O(:) we get

(∂tû|± · n)(x|±(z, t), t) =(∂tû|± · n)(x|±(z, 0), t) +O(:2). (3.2.8)

We set x|+(z, 0) = x|−(z, 0) and thus get

(∂tû|+ · n)(x, t) = (∂tû|− · n)(x, t) +O(:2). (3.2.9)
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The same calculations work for p̂. Thus a natural choices for surface conditions of the
linearized equation is

p|+ =p|−,
∂tu|+ · n =∂tu|− · n (3.2.10)

on ∂D.

3.2.2. Boundary conditions

For our purposes we are going to work with an incident pressure wave pin and analyse the
response of the system. We will look at a plane incident waves pin(x, t) = p̃ine

i(k·x+ωt) of
a single frequency. Fourier transforming the pde 3.2.6 provides us with

ω2

κ0
p(x, ω) +∇ · 1

ρ0
∇p(x, ω) = 0. (3.2.11)

We now define the wave vectors in kl := ω/cl and kb := ω/cb inside the liquid and bubble
respectively. It is now natural to take the Sommerfeld Radiation Condition in order to
select the outgoing solutions for the scattered field.

Definition 3.2.1. For the Helmholtz equation in 3 dimensions the Sommerfeld Radiation
Condition (S.R.C.) for p with incident field pin is

lim
|x|→∞

|x|
g

d

d|x| − ikl

n
(p− pin) = 0 (3.2.12)

for kl := ω/cl.

To show the significance of the S.R.C. we note that it gets fulfilled by outgoing plane waves
and violated by incoming ones. Going forward we are only going to look at incident waves
with real ω and will assume that we have no resonance oscillations of the system. This
fixes our solution to the frequency of the incident wave also called the forcing frequency.

3.2.3. Problem formulation

We will combine the results of the last sections for the formulation of the problem. We
have an incident wave pin, which is solution to k2l pin + Δpin = 0. We now get that p is
solution to our model if and only if p has no resonance oscillations and

k2l p +Δp = 0 in R3/D,
k2bp +Δp = 0 in D,
p|− − p|+ = pin on ∂D,
dp
dn |− − δ dp

dn |+ = δ dpin
dn on ∂D,

lim|x|→∞ |x|
d

d
d|x| − ikl

k
(p− pin) = 0 (S.R.C.)

(3.2.13)
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for the contrast δ := ρ−1
l ρb, cl/b :=

u
ρ−1
l/bκl/b, kl/b = c−1

l/bω. We note that δ ∼ 10−3 for a

water air mixture. This will be the starting point later on for our expansion in ω and δ.
We also get for the displacement field

u = (ω2ρl)
−1∇p for x ∈ R3/D,

u = (ω2ρb)
−1∇p for x ∈ D.

(3.2.14)

3.3. Force integral approximation

In this section we will derive an approximation of the force on the bubbles. In the same
way as we did for the linearisation of the pde we will look at solutions close to the static
solution. The first relevant term is going to be of order :2. Then we will approximate this
force using the solution of the linearised problem and find a representation using surface
integrals, which are more convenient to evaluate in our layer potential approach.
First we start by considering the non linear momentum equation 3.1.9 and define the
force that acts on a bubble.

Definition 3.3.1. The total force on the bubble for a solution close to the static solution
p̂ = p0 + :p̃ and û = u0 + :ũ is

F (p̃, ũ, t) := −
\
D

d
(T̂

−1∇)p̂
k
det(T̂ ) dx. (3.3.1)

The next lemma expands the force in : for later use.

Lemma 3.3.2. The force on the inclusion close to the static solution can be written as

F (p̃, ũ) =−
\
D

∞�
m=0

:m+1
d
−T̃

km∇p̃

g
1 + :∇ · ũ+

:2

2
((∇ · ũ)2 − Tr T̃

2
) + :3 det(T̃ )

n
dx

(3.3.2)

where T̃ i,j := ∂iũj.

Proof. We note the Jacobi identity

∂: det(T̂ ) = det(T̂ ) Tr(T̂
−1

∂:T̂ ). (3.3.3)

Further this tells us for T̂ = ✶+ :T̃ that

∂2
: det(T̂ ) = det(T̂ )

d
(Tr(T̂

−1
∂:T̂ ))2 − Tr(T̂

−1
∂:T̂ T̂

−1
∂:T̂ )

k
. (3.3.4)

Finally using the Neuman series for the inverse of T̂ = ✶+ :T̃ provides the result.

Before the next lemma we are going to approximate this force by replacing the pres-
sure and displacement fields with the linearised solutions. We can then use the defining
differential equations to find a surface integral representation of the force.
Next we see that
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Lemma 3.3.3. We get for a solution inside the inclusion p ∈ H2(D) of 3.2.13 with
p|∂D ∈ H1(∂D) defined from the inside that

F 2(p,u, t) =
1

ρbω2

\
∂D

(∇T p)
2n− (∇p|− · n)∇T pdσ (3.3.5)

where ∇p|− is defined by continuous continuation from inside the bubble, F 2(p,u, t) de-
fined in lemma 3.3.2 and ∇T is the tangential derivative.

Proof. We note that

u =
1

ρbω2
∇p (3.3.6)

and

Δp∂ip = ∇ · (∇p∂ip)−∇p · ∇∂ip. (3.3.7)

This results in

((T −∇ · u)∇p)i =
1

ρbω2
(2(∂i∇p) · ∇p−∇ · (∇p∂ip))

=
1

ρbω2

f
∂i(∇p)2 −∇ · (∇p∂ip)

m
.

(3.3.8)

Using the divergence theorem and noting that

(∇p)2n− (n · ∇p)∇p = (∇Tp)
2n− (∇p|− · n)∇Tp (3.3.9)

provides the result.

Like in historical approaches we are going to consider the mean force over a period.

Definition 3.3.4. The mean force over one period T := 2π
ω for an incident wave with

frequency ω is

�F � := 1

T

\ T

0
F (t) dt. (3.3.10)

For the same reason as we saw that the force for a static bubble disappears over a period,
we will now see the same thing happening for the first order of the force.

Lemma 3.3.5. The mean Force on the inclusion over one period of an incident field with
frequency ω results in

�F � = �F 2�+O(:3). (3.3.11)

Proof. The linearised solution p is also of the same frequency and thus

�F 1� = 0. (3.3.12)
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3.4. Bjerknes Forces

In this section we will define the primary and secondary Bjerknes force in light of the
last section. The primary Bjerknes force is the mean force felt by a single bubble in a
pressure field,

F (p̂, û) := − 1

T

\ T

0

\
D

d
(T̂

−1∇)p̂
k
det(T̂ ) dx dt, (3.4.1)

where T is the period length of the incident pressure field. Using lemma 3.3.3 we arrive
at the approximation

F b
1(p) :=

1

ρbω2

1

T

\ T

0

\
∂D

(∇Tp)
2n− (∇p|− · n)∇Tp dσ dt. (3.4.2)

For simpler notation we omitted the :2 term. We will later see that the forces contain
the term p̃2in and we note that in the physical system the incident field is proportional
to :. This justifies not including :2 as we can move the factor into p̃in. The presence of
bubbles creates secondary pressure fields. The secondary Bjerknes force is the difference
between the force of the multi bubble system compared to the 1 bubble system where we
remove the other bubbles.
We define the approximation of the secondary Bjerknes force on bubble i by

F b
2,i(p) :=

1

ρbω2

1

T

\ T

0

\
∂Di

(∇Tp)
2n− (∇p|− · n)∇Tp dσ dt− F b

1,i(p), (3.4.3)

where F b
1,i is the first Bjerknes force for the system with only bubble i.





4. Mathematical background

In this chapter we are going to set some basic definitions and theorems that we will need
for later analysis. In the first section we will look at the layer potentials and some basic
properties. Then we will describe how the layer potentials behave for spherical bubbles
and state some properties of spherical harmonics. Readers familiar with these topics may
skip this chapter. We start out by defining the domain of the bubbles.

Definition 4.0.1. We have for the bubbles

D :=

M�
i=0

Di, (4.0.1)

where Di, Dj for i b= j are disjoint sets in R3 and each Di is a bounded and simply
connected domain with ∂D ∈ C1,s for s ∈ (0, 1).

4.1. Layer potentials

Now we will look at the single layer and the Neumann-Poincaré operator, which we
will later use to find the solution. This section orients itself on [10]. We start out by
characterizing the fundamental solution of the Helmholtz equation for outgoing solutions.
This will motivate the choice for the single layer potential.

Lemma 4.1.1. The outgoing fundamental solution of the Helmholtz equation (Δ+k2)p =
f is

Gk(x) := − 1

4π|x|e
ik|x|. (4.1.1)

Proof. We start with the Helmholtz equation

(Δ + k2)Gk(x) = −δ(x). (4.1.2)

For x ∈ R3/B: and due to rotational symmetry we get in spherical coordinates

1

r
∂2
r (rG

k(r)) + k2Gk(r) = 0. (4.1.3)

This gets solved by

Gk(r) = A±
e±ikr

r
. (4.1.4)

For φ ∈ C∞
c we now have

−
\
∂B:

d

dn
Gk(r)φ dσ = −

\
∂B:

φ dσ(∂rG
k)(:) → φ(0) lim

:→0
(−4π:2(∂rG

k)(:)). (4.1.5)

25
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We note that

lim
:→0

(−4π:2(∂rG
k)(:)) = −4πA± lim

:→0
:2
e±ik:

:

g
±ik − 1

:

n
= 4πA± = −1 (4.1.6)

we get A± = − 1
4π . Using the S.R.C. we choose the outgoing solution.

We are now ready to define the single layer potential. The definition tells us that we can
view the layer potential as the solution of the Helmholtz equation due to sources on the
surfaces of the bubbles.

Definition 4.1.2. The single layer potential Sk
D : L2(∂D) → H1

loc(R3) is defined by

Sk
D[Φ](x) :=

\
∂D

Gk(x− y)Φ(y) dσ(y). (4.1.7)

Furthermore we define the Neumann-Poincaré operator Kk,∗
D : L2(∂D) → L2(∂D) by

Kk,∗
D [Φ](x) :=

\
∂D

d

dnx
Gk(x− y)Φ(y) dσ(y), (4.1.8)

where nx is the outward normal derivative at x.

For more details on layer potential operators see [10, p. 68-75].

Note that the single layer potential follows the Sommerfeld Radiation Condition and is a
solution to the Helmholtz equation. The next theorem shows us that (for non resonance
frequencies) we even have a unique solution to our model 3.2.13 and that we can represent
the solution using layer potentials.

Theorem 4.1.3. Suppose that k2b is not a Dirichlet eigenvalue of −Δ on D. If p is a
solution of 3.2.13 then we get

p(x) =

$
Skl
D [ψ](x) + pin(x) x ∈ Rd/D,

Skb
D [φ](x) x ∈ D

(4.1.9)

for some (φ, ψ) ∈ L2(∂D)× L2(∂D) under the conditions$
Skb
D [φ](x)− Skl

D [ψ](x) = pin(x) x ∈ ∂D,d
−1

2 +Kkb,∗
D

k
[φ](x)− δ

d
1
2 +Kkl,∗

D

k
[ψ](x) = δ dpin

dn (x) x ∈ ∂D.
(4.1.10)

Proof. For the proof see [10, p. 73-75].

In order to approximate the Layer potential operators we are next going to define an
asymptotic expansion of them. We will see that we can split up the layer potentials into
an operator of a Laplace problem with a perturbation. This approach has been commonly
used before see for example [11].
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Definition 4.1.4. We define for n ∈ N, the continuous linear operators Sn
D : L2(∂D) →

H1
loc(R3) and Kn

D : L2(∂D) → L2(∂D) with

Sn
D[Φ](x) :=− in

4πn!

\
∂D

|x− y|n−1Φ(y) dσ,

Kn
D[Φ](x) :=− in(n− 1)

4πn!

\
∂D

(x− y) · nx|x− y|n−3Φ(y) dσ.

(4.1.11)

We note that K0
D is defined as the Cauchy principal value integral and corresponds to the

Neumann-Poincare operator of the Laplace equation.

For the well-definedness of S0
D and K0

D note that they are just Sk
D and Kk,∗

D for k = 0,
alternatively see [12].
We will now prove the well-definedness for n > 0. We have for a compact set K ⊂ R3

that

4∇Sn
D[Φ]42L2(K) =

\
K

g
(n− 1)

4πn!

\
∂D

(x− y)|x− y|n−3Φ(y) dσ(y)

n2

dx

≤
g
(n− 1)

4πn!

n2

|∂D|
\
K

\
∂D

f|x− y|n−2Φ(y)
m2

dσ(y) dx,

(4.1.12)

where we used the Jensen inequality. Similarly we see that

4Sn
D[Φ]42L2(K) =

\
K

g
1

4πn!

\
∂D

|x− y|n−1Φ(y) dσ(y)

n2

dx

≤
g

1

4πn!

n2

|∂D|
\
K

\
∂D

f|x− y|n−1Φ(y)
m2

dσ(y) dx.

(4.1.13)

For K having non zero measure, C1(K) := supx∈∂D,y∈K |x− y| we get

4Sn
D4L(L2(∂D),H1(K)) ≤

w|K||∂D|
4πn!

w
C1(K)2n−2 + C1(K)2n−4(n− 1)2 (4.1.14)

and thus Sn
D is continuous. We can prove the statement for Kn

D in a similar way.
We will now further simplify the inequalities to proof the next lemma. By introducing a
parameter k < min(C1(K), 1) we see that

kn 4Sn
D4L(L2(∂D),H1(K)) ≤ C0

w
|K||∂D|(C1(K)k)n−1

(n− 1)!
(4.1.15)

Note that we get after replacing the volume integral in the above proof by the boundary
integral of ∂D that

kn 4Sn
D4L(L2(∂D),H1(∂D)) ≤ C0

(C1k)
n−1

(n− 1)!
, (4.1.16)

where H1(∂D) denotes the space of functions with L2(∂D) tangential derivatives. Sn
D

can thus be viewed as an continuous operator between L2(∂D) and H1(∂D). Finally due
to d

dnS
n
D = Kn

D we get

kn 4Kn
D4L(L2(∂D)) ≤ C0k

(C1k)
n−2

(n− 2)!
. (4.1.17)

These inequalities provide us now with the following lemma.
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Lemma 4.1.5. For small k we get that

Sk
D − S0

D =
∞�
n=1

knSn
D, Kk,∗

D −K0
D =

∞�
n=1

knKn
D (4.1.18)

on L(L2(∂D), H1(∂D)) and L(L2(∂D), L2(∂D)) respectively.

Proof. We see that�����Kk
D −

N�
n=0

k2nKn
D

�����
L(L2(∂D))

≤C0k
∞�

n=N+1

(C1k)
n−2

(n− 2)!

N→∞−−−−→ 0 (4.1.19)

The convergence for Sk
D can be proven in the same way by taking lemma 4.1.6 and the

considerations before this lemma.

This shows us that for small k the lowest order dominates and the rest can be handled
as a perturbation. We can write Sk

D − S0
D = O(k) in the operator norm. If we restrict

S0
D to the surface of the inclusions then we have the following nice properties.

Lemma 4.1.6. S0
D : L2(∂D) → H1(∂D) is bijective with bounded inverse. Further

S0
D : L2(∂D) → L2(∂D) is self-adjoint.

Proof. For the first part see [12, p. 38]. Self-adjointness follows directly from the defini-
tion.

We will now state an important property of S0
D.

Lemma 4.1.7. We have on ∂D the following jump relations

d

dn
(S0

D[φ])

����
±
=

g
±1

2
+K0

D

n
[φ]. (4.1.20)

Proof. See [12].

The kernel of
f−1

2 +K0
D

m
will in our derivations play a special role and allow us to find

the resonance frequencies later on. We will now characterize it.

Lemma 4.1.8. For the inclusions Di the kernel of
f−1

2 +K0
D

m
has the basis functions

ϕi := (S0
D)

−1[χ∂Di ] (4.1.21)

for the indicator function χ∂Di on ∂Di.

Proof. If φ ∈ ker
f−1

2 +K0
D

m
then we have due to the jump condition that

0 =

g
−1

2
+K0

D

n
[φ] =

d

dn
S0
D[φ]|−. (4.1.22)

S0
D[φ] is harmonic inside the inclusions and fulfills the homogeneous Neumann boundary

condition. It is well known that the solutions are unique up to a constant. Due to the 0
function being a solution inside the inclusions, we arrive at the statement.
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The capacitance matrix contains important geometry information of our problem. We
will use the normalized capacity matrix later on to find approximations of the resonance
frequencies.

Definition 4.1.9 (Capacitance matrix). For inclusions Di the capacitance matrix is
defined by

Ci,j :=
�−S0

D[ϕi], ϕj

�
L2(∂D)

= −
\
∂Di

ϕj dσ. (4.1.23)

The normalized capacitance matrix is defined by

C̃i,j :=
Ci,j

|Di| . (4.1.24)

The next lemma will be used to prove some integral relations afterwards.

Lemma 4.1.10. The Plemelj’s symmetrization principle identity holds

S0
DK

0
D = K0,∗

D S0
D. (4.1.25)

Proof. For the proof see [10, p. 25] and note that the definition of K0
D and K0,∗

D are
exactly opposite in the reference.

We will next expand on a lemma found in [13].

Lemma 4.1.11. For all ξ ∈ L2(∂D) we have

1.
]
∂D S0

D[φ]
f−1

2 +K0
D

m
[η] dσ = 0 for all η ∈ L2(∂D) iff φ ∈ ker

f−1
2 +K0

D

m
,

2.
]
∂Dj

f−1
2 +K0

D

m
[ξ] dσ = 0,

3.
]
∂Dj

f
1
2 +K0

D

m
[ξ] dσ =

]
∂Dj

ξ dσ,

4.
]
∂Dj

Kn
D[ξ] dσ = − ]

Dj
Sn−2
D [ξ] dσ for n > 1,

5.
]
∂Dj

K3
D[ξ] dσ =

i|Dj |
4π

]
∂D ξ dσ.

Proof. We use the Plemelj’s symmetrization principle identity to get\
∂D

S0
D[φ]

g
−1

2
+K0

D

n
[ξ] dσ =

\
∂D

g
−1

2
+K0,∗

D

n
S0
D[φ]ξ dσ

=

\
∂D

S0
D

g
−1

2
+K0

D

n
[φ]ξ dσ.

(4.1.26)

The bijectivity of S0
D now proves the first statement. The second statement follows from

the first statement and lemma 4.1.8. The third statement follows from the second one.



CHAPTER 4. MATHEMATICAL BACKGROUND 30

For the fourth statement we see that for n > 1\
∂Dj

Kn
D[ξ] dσ =

\
∂Dj

d

dn
Sn
D[ξ] dσ =

\
Dj

ΔSn
D[ξ] dσ

=− in

4πn!

\
Dj

\
∂D

Δx|x− y|n−1Φ(y) dσ(y) dσ(x)

=− in

4πn!

\
Dj

\
∂D

n(n− 1)|x− y|n−3Φ(y) dσ(y) dσ(x)

=−
\
Dj

Sn−2
D [Φ] dσ(x)

(4.1.27)

Finally for the fifth statement we look at\
∂Dj

Kn
D[ξ] dσ =− in(n− 1)

4πn!

\
∂Dj

\
∂D

(x− y) · nx|x− y|n−3Φ(y) dσ(y) dσ(x)

= − in(n− 1)

4πn!

\
∂D

\
Dj

∇ · ((x− y)|x− y|n−3) dσ(x)Φ(y) dσ(y).

(4.1.28)

The proof is concluded by noting that\
Dj

∇ · (x− y) dσ(x) = 3|Dj |. (4.1.29)

4.2. Spherical inclusions

In this thesis we will do some final calculations for spherical inclusions. Note that al-
though we have a reference sphere that does not mean that our forces are only accurate
for spherical expansions. Due to the connection between the pressure gradient and the
displacement field we can get arbitrary deformations of the bubble during the oscillations.
In this section we will look at properties of spherical harmonics and the layer potentials
for a spherical inclusion.

4.2.1. Spherical harmonics

The Legendre Polynomials are defined for |t| ≤ 1 by the following generating function

1√
1 + t2 − 2tx

=
�
l

Pl(x)t
n. (4.2.1)

The associated Legendre polynomials Pm
l are now defined by

Pm
l (x) := (−1)m(1− x2)m/2 dm

dxm
Pl(x). (4.2.2)

Taking the derivative in t of the generating relation immediately gives us the following
lemma.
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Lemma 4.2.1. A well known recurrence relation for associated Legendre Polynomials is

(l −m+ 1)Pm
l+1(x) = (2l + 1)xPm

l (x)− (l +m)Pm
l−1(x). (4.2.3)

We can now define the non-normalized spherical harmonics

Ỹ m
l (θ, φ) := Pm

l (cos(θ))eimφ (4.2.4)

and the (normalized) spherical harmonics

Y m
l (θ, φ) :=

v
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos(θ))eimφ. (4.2.5)

Note that the spherical harmonics make up a complete orthonormal system on the unit
sphere. We will denote Y m

l (ẑ) := Y m
l (θ, φ) for a unit vector ẑ with spherical coordinates

θ, φ. The next theorem is the well known addition theorem for spherical harmonics

Theorem 4.2.2. We have

Pl(Yx · Yy) = 4π

2l + 1

l�
m=−l

Y m,∗
l (Yx)Y m

l (Yy). (4.2.6)

Finally we will state a shift lemma for spherical harmonics

Lemma 4.2.3. We can shift spherical harmonics by

1

|x− y|l+1
Ỹ m
l (�x− y) =

∞�
lk=0

lk�
mk=−lk

(l + lk −m−mk)!
(l −m)!(lk +mk)!

|y|lk(Ỹ mk
lk )∗(ŷ)

1

|x|l+lk+1
Ỹ m+mk
l+lk (x̂)

(4.2.7)
and

|x− y|lỸ m
l (�x− y) =

l�
lk=0

lk�
mk=−lk

(−1)l
k+mk

(l +m)!|y|lk |x|l−lk

(lk +mk)!(l − lk +m−mk)!
(Ỹ mk

lk )∗(ŷ)Ỹ m+mk
l−lk (x̂).

(4.2.8)

Proof. For a proof see [14].

4.2.2. Layer potentials on a sphere

The layer potentials on a sphere take on an especially easy form. We will first state a
relation between the Single Layer Potential and Neumann-Poincaré operator.

Lemma 4.2.4. For a spherical inclusion D = Br1(z1) we have

Kn
D[φ](x) =

n− 1

2r1
Sn
D[φ](x) (4.2.9)

and more specifically

K0
D[φ](x) = − 1

2r1
S0
D[φ](x) (4.2.10)

for x ∈ ∂D.
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Proof. For x,y ∈ ∂Br1(z1) and x b= y we have

(x− y) · nx

|x− y|2 =
1

2r1
. (4.2.11)

This can be seen by using spherical coordinates with x in z direction. Then (x−y) ·nx =
r1(1− cos(θ)) and |x−y|2 = 2r21(1− cos(θ)). Inserting this in the definition provides the
statement.

We will prove a spherical harmonic expansion that allows us to find an easy representation
of S0

D on the sphere.

Lemma 4.2.5. We have on a sphere x,y ∈ ∂Br1(z1) that

1

|x− y| =
1

r1

�
l

4π

2l + 1

l�
m=−l

Y m,∗
l (Yx)Y m

l (Yy). (4.2.12)

Proof. Without loss of generality we assume z1 = 0 and get

|x− y| =
w
x2 + y2 − 2x · y = r1

w
2− 2Yx · Yy. (4.2.13)

Using the generating function of the Legendre polynomials, namely

1√
1 + t2 − 2tz

=
�
l

Pl(z)t
n (4.2.14)

for t = 1 and z = Yx · Yy we arrive at

1

|x− y| =
1

r1

�
l

Pl(Yx · Yy). (4.2.15)

Finally using the addition theorem 4.2.2 we arrive at the statement.

This lemma provides us immediately with the relation for the Single Layer Potential.

Corollary 4.2.6. We have

S0
Br1

[Y m
l ] =− r1

2l + 1
Y m
l ,g

1

2
−K0

Br1

n
[Y m

l ] =
l + 1

2l + 1
Y m
l ,g

−1

2
−K0

Br1

n
[Y m

l ] =− l

2l + 1
Y m
l .

(4.2.16)

Proof. Inserting lemma 4.2.5 into the definition and using the orthonormality property
of the spherical harmonics provides the result.

This representation will now allow us to prove that the kernel of
f−1

2 +K0
D

m
for a single

sphere is made up of the constant functions.



CHAPTER 4. MATHEMATICAL BACKGROUND 33

Corollary 4.2.7. For a spherical inclusion D = Br1(z1) we have

K0
D[1] =

1

2
(4.2.17)

and

ϕ1 = (S0
D)

−1(χ∂D) = − 1

r1
. (4.2.18)

Proof. We have due to lemma 4.2.4 and lemma 4.2.6

K0
D[1] = − 1

2r1
S0
D[1] = − 1

2r1
(−r1) =

1

2
. (4.2.19)

Finally we will derive how the layer potential operators act on ϕ1.

Lemma 4.2.8. We have on a sphere D = ∂Br1(z1) that

Sn
D[ϕ1] =

in

(n+ 1)!
2nrn1 (4.2.20)

and

Kn
D[ϕ1] =

in(n− 1)

(n+ 1)!
2n−1rn−1

1 . (4.2.21)

Proof. Without loss of generality we assume z1 = 0 and have

|x− y| =
w
x2 + y2 − 2x · y. (4.2.22)

This results in

Sn
D[ϕ1] =

−in

4πn!

\
∂Br1

|x− y|n−1ϕ1 dθ

=
−inϕ1r

2
1

2n!

\ π

0
2

n−1
2

n−1
2 (r21 − r21 cos(θ))

n−1
2 sin(θ) dσ

=
−inϕ1r

n+1
1

n!
2

n−3
2

\ 2

0
u

n−1
2 du

=
inrn1

(n+ 1)!
2n.

(4.2.23)

Using lemma 4.2.4 we arrive at the second statement.





5. Strongly interacting systems

In this chapter we will look at multi bubble systems and analyse them using layer potential
techniques. In the first section we rewrite the equations for the potentials, invert the
system and simplify it by only consider the lowest asymptotic orders. For this we will
expand upon the approach by Ammari et al. [15]. In section 2 and 3 we will derive a
formula for the Minnaert frequency and a solution to our problem 3.2.13. Finally we will
look at the 1 bubble case and derive the primary Bjerknes force.

5.1. Bubble oscillation

We saw in the last chapter in theorem 4.1.3 that the solution to our model can be
formulated using the single layer potential. We have for an incident pin (which is solution
to the free Helmholtz equation in the liquid with frequency ω) that

p(x) =

$
Skl
D [ψ](x) + pin(x) x ∈ Rd/D,

Skb
D [φ](x) x ∈ D

(5.1.1)

with the conditions$
Skb
D [φ](x)− Skl

D [ψ](x) = pin(x) x ∈ ∂D,d
−1

2 +Kkb,∗
D

k
[φ](x)− δ

d
1
2 +Kkl,∗

D

k
[ψ](x) = δ dpin

dn (x) x ∈ ∂D,
(5.1.2)

kl := ω/cl, kb := ω/cb and δ := ρb/ρl. We note that in our application both δ and ω
are assumed to be very small values. We therefore are going to take the approach of
expanding the operators in said parameters. In order to find the potential functions φ, ψ
we need to invert the system of the boundary equations.

5.1.1. Inverting the system

In this subsection we will reformulate the equations in terms of an operator, then we
expand it asymptotically and see that it can be viewed as a perturbation of an operator
of a Laplace problem. We then make the latter invertible by some slight changes and use
the Neumann series to invert the operator equation.
For simpler notation we define the Hilbert spaces

H := L2(∂D)× L2(∂D), H1 := H1(∂D)× L2(∂D). (5.1.3)

and the operator

AD(ω, δ) :=

e
Skb
D −Skl

Dd
−1

2 +Kkb,∗
D

k
δ
d
1
2 +Kkl,∗

D

kl (5.1.4)

35
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with AD(ω, δ) : H → H1. We further set

φ :=

g
φ
ψ

n
, F :=

g
pin
δ dpin

dn

n
. (5.1.5)

We can rewrite equations 5.1.2 to

AD(ω, δ)φ = F . (5.1.6)

Our problem thus reduces to inverting the operator AD. We are working in the low
frequency ω and low contrast δ domain and thus AD can be considered as the AD(0, 0)
operator with a small error. This sort of approach is common in perturbation theory.
Due to S0

D being symmetric we can denote

A0
D := AD(0, 0) =

g
S0
D −S0

D

(−1
2 +K0

D) 0

n
, A0,∗

D := AD(0, 0)
∗ =

g
S0
D (−1

2 +K0,∗
D )

−S0
D 0

n
.

(5.1.7)
An easy way to solve perturbed systems is by using the Neumann series for the inversion
of the operator. Sadly, here this is not possible, because A0

D is not invertible. To fix this
we are going to extend this operator in the next lemmas. We will first look at its kernel
which is the problematic part of the domain.

Lemma 5.1.1. We have

kerA0
D = span

i
{ϕi} , ϕi :=

g
ϕi

ϕi

n
(5.1.8)

for ϕi :=
f
S0
D

m−1
[χ∂Di ] and Di being the connected parts of D. Further we get

kerA0,∗
D = span

i

&g
0

S0
D[ϕi]

n-
. (5.1.9)

Proof. We remind ourselves of lemma 4.1.8, namely

ker

g
−1

2
+KD

n
= span

i
{ϕi} . (5.1.10)

The first statement follows now due to S0
D being invertible. Next for u ∈ kerA0,∗

D we

see that the structure of A0,∗
D and the invertability of S0

D fixes the upper entry to 0. We
further get for arbitrary φ ∈ H that

0 =
�
A0,∗

D u,φ
�
H
=

�g
−1

2
+K0,∗

D

n
[u2],φ1

�
L2

=

�
u2,

g
−1

2
+K0

D

n
[φ1]

�
L2

. (5.1.11)

Due to lemma 4.1.11 1 this results in (S0
D)

−1[u2] ∈ ker
f−1

2 +K0
D

m
and thus the state-

ment.

We will now modify A0
D to make it invertible.
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Definition 5.1.2. We define an operator from kerA0
D to H1

P0

2�
i

ciϕi

9
:=

�
i

ci

e
0

χ∂Di√
|∂Di|

l
, (5.1.12)

We now define a modified A0
D operator, namely

ÃD[φ] := A0
D[φ] + P0[Pkerφ], (5.1.13)

for Pker being the orthogonal projection onto the kernel of A0
D.

The next lemma shows that the operator really has the properties that we want and can
thus be used in the inversion of the system if we can control the difference to A0

D.

Lemma 5.1.3. ÃD is a bijective bounded linear operator from H to H1, with

ÃD[ϕi] =

e
0

χ∂Di√
|∂Di|

l
. Further Ã∗

D is a bijective bounded linear operator from H1 to H.

Proof. Linearity and boundedness follows from the same properties of P0 and A0
D. For

injectivity note that ImA0
D ⊥ kerA0,∗

D and thus ImA0
D ⊥ ImP0. If we now assume that

ÃD[φ] = 0 then A0
D[φ] = 0, which results in φ1 = φ2 =

�
i ciϕi. Further we have

P0[Pkerφ] = 0 and �ϕi,φ�H for all i. In total this gives us φ = 0.
Next we will prove surjectivity. Due to the bijectivity of S0

D we only need to consider
the second coordinate of H1. We note that −1

2 +K0
D is invertible on L2

0(∂D) [10, p. 23],
which gives us surjectivity by construction. We get

ÃD[ϕi] = P0[ϕi] =

e
0

χ∂Di√
|∂Di|

l
. (5.1.14)

The bijectivity of Ã∗
D now follows directly from the bijectivity of ÃD due to H1 and H

being Banach spaces.

For easier notation we are going to split up the potential into the kernel of ÃD and an
orthogonal part.

Definition 5.1.4. We split up the solution into

φ = ϕ+ φ̃, (5.1.15)

with
ϕ :=

�
i

ciϕi (5.1.16)

and φ̃ ⊥ ϕi for all i.

We can now invert AD. The following theorem will set the defining equations for the
coefficients c from Definition 5.1.4. It further finds relations for φ that we regularly use
later on.
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Theorem 5.1.5. For BD := AD − A0
D,

���Ã−1
D BD

��� < 1 and c,φ,ϕ defined in definition

5.1.4 we get
φ = ID[Ã−1

D F +ϕ] (5.1.17)

with

ID[ξ] :=

e�
n=0

(−Ã−1
D BD)

n

l
ξ. (5.1.18)

Furthermore we have for the Matrix A with (Ac)i := T i[
�

j cjϕj ] and vector R[F ] with

Ri[F ] :=
]
∂Di

F 2 dσ − T i[Ã−1
D F ] for

T i[ξ] :=

\
∂Di

(BD ID ξ)2 dσ. (5.1.19)

that
Ac = R[F ]. (5.1.20)

Proof. We have
ADφ = F . (5.1.21)

Using definition 5.1.2 we get that AD = ÃD − P0Pker + BD, Pkerφ = ϕ and taking the
inverse (ÃD + BD)

−1 results in

φ− (ÃD + BD)
−1P0ϕ = (ÃD + BD)

−1F . (5.1.22)

We have P0ϕ = ÃDϕ and due to
���Ã−1

D BD

��� < 1 we arrive at the first result by taking

the Neumann series. Taking the scalar product of the first statement with ϕi gives us

ϕi, Ã−1

D BD

e�
n=0

(−Ã−1
D BD)

n

l
ϕ

�
H
=



ϕi, Ã−1

D

e�
n=0

(−BDÃ−1
D )n

l
F

�
H
. (5.1.23)

This turns to

Ã−1,∗

D ϕi,BD

e�
n=0

(−Ã−1
D BD)

n

l
ϕ

�
H1

=



Ã−1,∗

D ϕi,

e�
n=0

(−BDÃ−1
D )n

l
F

�
H1

.

(5.1.24)
Next we note that due to

�
χ∂Di , (−1

2 +K0
D)ξ

�
L2(∂D)

= 0 we get for ξ ∈ (kerA0
D)

⊥ that

Ã∗

D

e
0

χ∂Di√
|∂Di|

l
, ξ

�
L2(∂D)

=



χ∂Diw|∂Di|

, (ÃDξ)2

�
L2(∂D)

=



χ∂Diw|∂Di|

, (P0Pkerξ)2

�
L2(∂D)

=0.

(5.1.25)

We have thus
Ã∗

D[kerA0,∗
D ] = (kerA0

D)
⊥⊥ = kerA0

D. (5.1.26)
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This together with the bijectivity of Ã∗
D results in Ã−1,∗

D [kerA0
D] = kerA0,∗

D . After ap-
plying this to equation 5.1.24 we arrive at


χDi ,

e
BD

e�
n=0

(−Ã−1
D BD)

n

l
ϕ

l
2

�
L2(∂D)

=



χDi ,

ee�
n=0

(−BDÃ−1
D )n

l
F

l
2

�
L2(∂D)

(5.1.27)
for all i and thus the second statement.

Finally we will state some general relations that will be used for later calculations.

Lemma 5.1.6. We have

Ã−1
D

g
0

χ∂Di

n
=

w
|∂Di|ϕi

g
1
1

n
, Ã−1

D

g
χ∂Di

0

n
=

1

2
ϕi

g
1
−1

n
. (5.1.28)

Proof. For ÃD

g
φ
ψ

n
=

g
0

χ∂Di

n
we note that

g
0

χ∂Di

n
∈ kerA∗

D and thus φ = ψ =w|∂D|ϕi.

For ÃD

g
φ
ψ

n
=

g
χ∂Di

0

n
we get

φ− ψ = (S0
D)

−1[χ∂Di ] = ϕi. (5.1.29)

The second entry tells us that φ =
�

i ciϕi and �φ, ϕj�L2(∂D) + �φ, ϕj�L2(∂D) = 0 for all

j. Thus φ = −ψ = 1
2ϕi.

5.1.2. Strong interaction

We will now take a closer look at the interaction parts of AD for small perturbations.
Using the expansion terms for Sk

D,K
k
D that we stated in definition 4.1.4 we expand AD.

Definition 5.1.7. We have

AD =

∞�
m=0

ωm
�
n=0,1

δnAm,n
D (5.1.30)

with A0,0
D := A0

D and for m > 0

Am,0
D :=

e
1
cmb

Sm
D − 1

cml
Sm
D

1
cmb

Km
D 0

l
, Am,1

D :=

e
0 0
0 − 1

cmb
Km

D

l
, (5.1.31)

A0,1
D :=

g
0 0
0 − f

1
2 +K0

D

mn . (5.1.32)

We will especially note that the following operators have zero entries in the second row

A1,0
D :=

g 1
cb
S1
D − 1

cl
S1
D

0 0

n
, A1,1

D :=

g
0 0
0 0

n
(5.1.33)

The next lemma gives us an easier representation for the matrix of lemma 5.1.5. We will
use this to find the resonance frequency and the scattering coefficients later on.
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Lemma 5.1.8. The matrix A of theorem 5.1.5 can be up to order O(ω4 + δω2) written
as

A4(ω, δ) := −k2bD + δC +
i

8π
δ (kb − kl)C1MC − i

8π
k2b (kb + kl)D1MC, (5.1.34)

where 1M is a matrix of ones with dimensions M by M , D := Diag(|D1|, . . . , |DM |) and
C the capacity matrix.

Proof. Due to (A1,0
D c)2 = (A1,1

D c)2 = 0 we get

Ai,j =

\
∂Di

dd
ω2A2,0

D + ω3A3,0
D + δA0,1

D − ω3A2,0
D Ã−1

D A1,0
D − ωδA0,1

D Ã−1
D A1,0

D

k
[ϕj ]

k
2
dσ

+O(ω4 + δω2).

(5.1.35)

Next we note that

A1,0
D [ϕj ] =

g
( 1
cb

− 1
cl
)S1

D[ϕj ]

0

n
(5.1.36)

and by lemma 5.1.6 we get

Ã−1
D

g
cχ∂Dj

0

n
=

g
c
2ϕj

− c
2ϕj

n
. (5.1.37)

Due to S1
D being constant and lemma 4.1.11 this results in\

∂Di

A0,1
D Ã−1

D A1,0
D [ϕj ] dσ =

\
∂Di

1

2

g
1

2
+K0

D

ng
1

cb
− 1

cl

n
S1
D[ϕj ]

�
k

ϕk dσ

=
−i

8π

g
1

cb
− 1

cl

ng\
∂D

ϕj dσ

n\
∂Di

�
k

ϕk dσ

=
−i

8π

g
1

cb
− 1

cl

ne�
k

Ck,j

le�
k

Ci,k

l

=
−i

8π

g
1

cb
− 1

cl

n
(C1MC)i,j .

(5.1.38)

Further by again using lemma 4.1.11 we have\
∂Di

A2,0
D Ã−1

D A1,0
D [ϕj ] dσ =

1

2c2b

g
1

cb
− 1

cl

n\
∂Di

S1
D[ϕj ]

�
k

K2
D[ϕk] dσ

=
i

8πc2b

g
1

cb
− 1

cl

ng\
∂D

ϕj dσ

n\
Di

�
k

S0
D[ϕk] dσ

=
−i

8πc2b

g
1

cb
− 1

cl

ne�
k

Ck,j

l
|Di|

=
−i

8πc2b

g
1

cb
− 1

cl

n
(D1MC)i,j ,

(5.1.39)
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and \
∂Di

A2,0
D [ϕj ] dσ =

1

c2b

\
∂Di

K2
D[ϕj ] dσ = − 1

c2b

\
Di

S0
D[ϕj ] = − 1

c2b
Di,j ,\

∂Di

1

c3b
A3,0

D [ϕj ] dσ =
1

c3b

\
∂Di

K3
D[ϕj ] dσ =

1

c3b

i|Di|
4π

\
∂D

ϕj dσ

= − 1

c3b

i|Di|
4π

�
k

Ck,j =
−i

4π

1

c3b
(D1C)i,j\

∂Di

A0,1
D [ϕj ] dσ = −

\
∂Di

g
1

2
+K0

D

n
ϕj dσ = Ci,j .

(5.1.40)

Finally we get\
∂Di

g
1

2
+K0

D

n
(S0

D)
−1S1

D[ϕj ] dσ =
−i

4π

g\
∂D

ϕj dσ

n\
∂Di

(S0
D)

−1[1] dσ

=
−i

4π

e�
k

Ck,j

le�
k

Ci,k

l
=

−i

4π
(C1C)i,j .

(5.1.41)

Putting all equations together provides the result.

5.2. Resonant oscillation

In this section we are going to look at resonant oscillations, which are the oscillations that
can occur even if there is no incident pressure field. They are only possible for special
frequencies called the resonance frequencies. For our purposes we will only look at the
frequencies with positive real part.

Definition 5.2.1. For δ a complex value ωi(δ) with positive real part is a resonance
frequency of the inclusions iff the kernel of AD(ωi(δ), δ) is non trivial.

The resonances can be viewed as the characteristic values of the operator-valued analytic
function AD(·, δ). We will now note the following result of the Ghoberg Sigal theory.

Lemma 5.2.2. There exists a δ0 so that for all |δ| < δ0 the characteristic values ωi(δ),
to the operator valued analytic function AD(ω, δ), have ωi(0) = 0 and are smooth in δ.

Proof. For a proof see [16].

We can now expand the resonance frequencies for small δ.

Lemma 5.2.3. For each resonance frequency ωi we have a normalized eigenvector vi with
eigenvalue λi of the normalized capacity matrix D−1C for D := Diag(|D1|, . . . , |DM |) so
that we get

ωi = ωM,i + iτi +O(δ3/2), (5.2.1)
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with the frequency

ωM,i :=
u

δλic2b (5.2.2)

and

τi := − 1

8π

c2b
cl
δλ2

i

vH
i D1MDvi

vH
i Dvi

, (5.2.3)

where 1M is a matrix of ones with dimensions M by M .

Proof. Due to lemma 5.1.8 we haveg
−k2bD + δC +

i

8π
δ (kb − kl)C1MC − i

8π
k2b (kb + kl)D1MC

n
c = O((ω2 + δ)2|c|).

(5.2.4)
Up to order O((ω3 + δω + δ2)|c|) this gives usf−k2bD + δC +O(ω3 + δω + δ2)

m
c = 0. (5.2.5)

Thus we have

c = v + c̃, (5.2.6)

where v is an eigenvector of D−1C with eigenvalue λ, the vector c̃ = O((δ + ω)|c|) and

ω2 = ω2
M +O

d
δ

3
2

k
(5.2.7)

for ωM :=
u
δλc2b . Using lemma 5.1.8 up to full order we get

g
−k2bD + δC +

i

8π
δ (kb − kl)C1MC − i

8π
k2b (kb + kl)D1MC

n
c = O(δ2|c|). (5.2.8)

This turns to

O(δ2|c|) = f−k2bD + δC
m
c̃

+

g
−k2bD + δC +

i

8π
δ (kb − kl)C1MC − i

8π
k2b (kb + kl)D1MC

n
v.

(5.2.9)

Next we note that C is symmetric because of the self adjointness of S0
D. With this

and the symmetry of D we can follow symmetry for
f−k2bD + δC

m
. We thus have

vH
f−k2bD + δC

m
= O((δ + ω)|c|). With this we get

vH

g
−k2bD + δC +

i

8π
δ (kb − kl)C1MC − i

8π
k2b (kb + kl)D1MC

n
v = O(δ2|c|2).

(5.2.10)
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Due to v being a normalized eigenvector we have |c| = O(1) and

ω2 =c2bv
H δC + i

8π δ (kb − kl)C1MC − i
8πk

2
b (kb + kl)D1MC

vHDv
v +O(δ2)

=c2bv
H λδD + i

8π δωM

f
c−1
b − c−1

l

m
C1MC − i

8πλ
−1ω3

Mc−2
b (c−1

b + c−1
l )C1MC

vHDv
v +O(δ2)

=c2bv
H λδD + i

8π δωM

ff
c−1
b − c−1

l

m− (c−1
b + c−1

l )
m
C1MC

vHDv
v +O(δ2)

=ω2
M − i

4π

c2b
cl
δωM

vHC1MCv

vHDv
+O(δ2).

(5.2.11)

Using the Ansatz ω = ωM + iτ +O(ω3 + δω), with τ ∝ δ we see that

2τωM = − 1

4π

c2b
cl
λ2δωM

vHC1MCv

vHDv
+O(δ2). (5.2.12)

Finally we arrive at

τ := − 1

8π

c2b
cl
δ
vHC1MCv

vHDv
. (5.2.13)

For a single spherical bubble this simplifies to a simple equation.

Corollary 5.2.4. For a single spherical inclusion the resonance frequency ω1 is

ω1 =

v
3δc2b
r21

− iδ
3

2

c2b
clr1

+O(δ3/2). (5.2.14)

Proof. With V = 1,

D =
4πr31
3

, C = 4πr1 (5.2.15)

and lemma 5.2.3 we arrive at the statement.

Remark 5.2.5. We will now verify that this result is consistent with past results by
considering a reversible adiabatic process and especially use equation 3.1.17. We then get

ωM,1 =

v
3δc2b
r21

=

v
3c2bρb

r21ρl
=

v
3κb
r21ρl

=

v
3γp0
r21ρl

. (5.2.16)

The right side is exactly the historic Minnaert frequency that we saw in 2.2.15 in the lowest
order. We also have for frequencies close to the resonance frequency ω − ω1 = O(δ) that

τ1 = − r1
2cl

ω2
M,1 = − r1

2cl
ω2 +O(δ3/2). (5.2.17)

Which corresponds to the acoustic dampening term in equation 2.2.17. Note that the
different sign appears due to the resonance frequency and thus the complex term appearing
in the denominator of the solution.
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5.3. Scattered solution

In this section we will consider the impact of an incident plane wave

pin = p̃ine
ik·x (5.3.1)

and derive the scattered solution. Note that all terms share the time dependence eiωt and
therefore we do not need to consider it for now. We will first prove an auxiliary lemma
which will help us in the main proof of lemma 5.3.4. The main idea is to work in the
basis of eigenvectors of C̃ in order to diagonalize the relations for the coefficients of the
functions.

Lemma 5.3.1. A defined in theorem 5.1.5 in the basis of the normalized eigenvectors V
of D−1C turns, up to order O(

�
i(ωi − ω)(ωi + ω)2), to

Ã4 :=− 1

c2b
DV (ω2 −Ω2) (5.3.2)

where Ω := Diag(ω1, . . . , ωM ) contains resonance frequencies corresponding to the eigen-
vectors vi, ω is the identity matrix times ω, D = Diag(|D1|, . . . , |DM |) and V = O(1).
Further R defined in theorem 5.1.5 turns up to order ω3 + ωδ to

R3 :=
p̃in
2c2b

DV
f
ω2 +Ω2

M

m
V −11M,1 (5.3.3)

for ΩM := Diag(ωM,1, . . . , ωM,M ) being the matrix of ωM,i.

Proof. For ω = ωi with corresponding ci so that

A(ωi, δ)ci = 0 (5.3.4)

we get

O((ω2 + δ)2) =(A4(ω, δ)−A4(ωi, δ))ci

=− c−2
b Dci(ω

2 − ω2
i ) +O((ω − ωi)(ω + ωi)

2|ci|).
(5.3.5)

We note that ci = vi +O(ωi), where vi is a normalized eigenvalue of C̃ and thus get

−c−2
b Dvi(ω

2 − ω2
i ) = O((ω − ωi)(ω + ωi)

2). (5.3.6)

This provides the first statement. We get that\
∂Di

d
−ω2A2,0

D Ã−1
D F − δA0,1

D Ã−1
D F

k
2
dσ

=
p̃in
2

�
j

\
∂Di

−k2bK
2
D[ϕj ]− δ

g
1

2
+K0

D

n
[ϕj ] dσ +O(ω3 + ωδ)

=
p̃in
2

k2b |Di|+ δ
�
j

Ci,j

+O(ω3 + ωδ) =

g
p̃in
2

f
k2bD + δC

m
1M,1

n
i

+O(ω3 + ωδ)

=

g
p̃in
2c2b

DV
f
ω2 +Ω2

M

m
V −11M,1

n
i

+O(ω3 + ωδ).

(5.3.7)
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Next we introduce a scaling relation between ω and δ.

Definition 5.3.2. We have the scaling relation

ω − ωM,i ∼ δµi (5.3.8)

for all i with 1
2 ≤ µi ≤ 1, µ− := mini µi, µ+ := maxi µi and µ := 2 + 2(µ− − 2µ+).

This relation signifies that the forcing frequency stays close or at least does not in a
relative sense move away from the resonance frequencies of the system. We proof the
following auxiliary lemma for later use.

Lemma 5.3.3. For the scaling relation 5.3.2 and c defined in 5.1.4 we get

cj +
p̃in
2

= (V dV −11M,1)j +O(ωµ) (5.3.9)

and

cj − p̃in
2

= ω2(V Ω−2
M dV −11M,1)j +O(ωµ) (5.3.10)

for d = Diag(d1, . . . , dM ) and

di := p̃inω
2
M,i

−(ω2 − ω2
M,i) + 2iτiωM,i

(ω2 − ω2
M,i)

2 + 4τ2i ω
2
M,i

=
−p̃inω

2
M,ie

iαix
(ω2 − ω2

M,i)
2 +

d
4τ2i ω

2
M,i

k (5.3.11)

with

αi :=

����
arctan

g
− 2τiωM,i

ω2−ω2
M,i

n
+ π, ω < ωM,i,

arctan

g
− 2τiωM,i

ω2−ω2
M,i

n
, ω > ωM,i.

(5.3.12)

Proof. We denote by ΩM , iτ the diagonal matrices containing the two lowest orders of
the resonance frequency. Lemma 5.3.1 gives us

AV +O(ω2+2µ−) = Ã4 := − 1

c2b
DV (ω2 − (Ω2

M + i2ΩMτ )). (5.3.13)

and

R+O(ω3) = R3 :=
p̃in
2c2b

DV (ω2 +Ω2
M )V −11M,1. (5.3.14)

We note that Ac = R+O(ω3) and by using the Neumann series thus get

(V −1c)i =(Ã
−1
4 R3)i +O(ω2+2(µ−−2µ+))

=

gdf
c−2
b DV

m−1
Ã4

k−1 f
c−2
b DV

m−1
R

n
i

+O(ω2+2(µ−−2µ+)).
(5.3.15)

Next we note thatdf
c−2
b DV

m−1
Ã4

kH
(
f
c−2
b DV

m−1
Ã4) = (ω2 −Ω2

M )2 + 4τ 2Ω2
M . (5.3.16)
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On the same line we havedf
c−2
b DV

m−1
Ã4

kH f
c−2
b DV

m−1
R3 =− p̃in

2

f
ω4 −Ω4

M − 4iτω2ΩM

m
V −11M,1

+O(ω4+2µ−).

(5.3.17)

Finally we can use these two results to arrive at

Ã
−1
4 R3 =

gdf
c−2
b DV

m−1
Ã4

kH
(
f
c−2
b DV

m−1
Ã4)

n−1

(
f
c−2
b DV

m−1
Ã4)

H
f
c−2
b DV

m−1
R3

=− p̃in
2
((ω2 −Ω2

M )2 + 4τ 2Ω2
M )−1

f
ω4 −Ω4

M − 4iτω2ΩM

m
V −11M,1

+O(ω2+2(µ−−2µ+))

(5.3.18)

Next we note that we can replace ω by ωM,i in the highest order. Due to this we have

cj +
p̃in
2

=
�
i

V j,i
p̃in
2

e
1− ω4 − ω4

M,i + 4iτiωM,iω
2
M,i

(ω2 − ω2
M,i)

2 + 4τ2i ω
2
M,i

l
(V −11M,1)i +O(ω2+2(µ−−2µ+))

=−
�
i

V j,ip̃inω
2
M,i

e
−ω2

M,i + ω2 + 2iτiωM,i

(ω2 − ω2
M,i)

2 + 4τ2i ω
2
M,i

l
(V −11M,1)i +O(ω2+2(µ−−2µ+)).

(5.3.19)

The formula for cj − p̃in
2 can be seen in the same way.

Finally we can find the approximations for the coefficients of the resonance potential in
the basis of eigenvectors.

Lemma 5.3.4. Under the scaling assumption 5.3.2 we get for the solutions φ, ψ to 5.1.6
that

φ =
�
i

ζidi(V
−11M,1)i +O(ωµ) (5.3.20)

and

ψ =
�
i

ζi
ω2

ω2
M,i

di(V
−11M,1)i +O(ωµ). (5.3.21)

for the resonance potentials ζi :=
�

j V j,iϕj and di defined in lemma 5.3.3.

Proof. We note that due to theorem 5.1.5 we get

φ̃ =
d
Ã−1

D F
k
+O(ω2−2µ+) =

p̃in
2

�
i

ϕi

g
1
−1

n
+O(ω2−2µ+)

=
p̃in
2

�
i

ζi(V
−11M,1)i

g
1
−1

n
+O(ω2−2µ+).

(5.3.22)

This results in the potentials φ =
�

i
p̃in
2 ϕi + ϕ and ψ = −�

i
p̃in
2 ϕi + ϕ. Using lemma

5.3.3 we get the result.
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The single bubble case again simplifies a lot.

Corollary 5.3.5. Under the scaling assumption 5.3.2 we get for a single inclusion

d1 =
−p̃inω

2
Meiαu

(ω2 − ω2
M )2 +

f
C
4πklω

2
M

m2 (5.3.23)

with

α :=

����
arctan

g
C
4π

ω2
Mkl

ω2−ω2
M

n
+ π, ω < ωM

arctan

g
C
4π

ω2
Mkl

ω2−ω2
M

n
, ω > ωM

(5.3.24)

for µ = 1
2 we get the more simple form

d1 =
−p̃inω

2
M

ω2 − ω2
M

+O(ω2−2µ). (5.3.25)

Proof. We note that V = 1 and

τ = −Cω2
M

8πcl
. (5.3.26)

Inserting this in lemma 5.3.4 provides the statement.

Note that we can exchange ω with ωM in the imaginary term due to the difference being
of higher order. As we already noted in remark 5.2.5 this provides the well known phase
shift term for a bubble with no viscosity and thermal effects [17].

5.4. Single spherical bubble systems

In this section we will derive the pressure field and its gradient on the bubble surface for
a single spherical bubble. Afterwards we will use these relations to find a formula for the
primary Bjerknes force and compare the result to historical derivations.

5.4.1. Operator relations

This subsection contains basics calculations for Ã−1
D and Ai,j

D for a single bubble and can
be skipped for readers not interested in the details. We will first state some results for
the operator Ã−1

D .

Lemma 5.4.1. We have for D = Br1 and l > 0 that

Ã−1
D

g
0

Y m
l

n
= −2l + 1

l
Y m
l

g
1
1

n
, Ã−1

D

g
Y m
l

0

n
=

2l + 1

r1
Y m
l

g
0
1

n
. (5.4.1)

We further have

Ã−1
D

g
0
Y 0
0

n
= −

√
4πY 0

0

g
1
1

n
, Ã−1

D

g
Y 0
0

0

n
= − 1

2r1
Y 0
0

g
1
−1

n
. (5.4.2)
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Proof. For ÃD

g
φ
ψ

n
=

g
0

Y m
l

n
we note that due to the first entry being 0 and the bijec-

tivity of S0
D we get φ = ψ. Further using lemma 4.2.4 we see thatg

−1

2
+K0

D

n
[φ] = −1

2

g
1 +

1

r1
S0
D

n
[φ] = Y m

l . (5.4.3)

Using the Ansatz φ = cY m
l and lemma 4.2.6 we arrive at

− 1

2

g
1− 1

2l + 1

n
cY m

l = Y m
l . (5.4.4)

This gives us φ = −2l+1
l Y m

l . We note that
�
Y m
l , Y 0

0

�
L2(∂D)

= 0 and P0Pker

g
Y m
l

Y m
l

n
= 0.

This concludes the proof of the first statement.

For the second statement we set ÃD

g
φ
ψ

n
=

g
Y m
l

0

n
. We get

g
−1

2
+K0

D

n
[φ] = 0 (5.4.5)

and thus φ = cY 0
0 . We now have

S0
D[cY

0
0 − ψ] = Y m

l (5.4.6)

and due to lemma 4.2.6 arrive at ψ = 2l+1
r1

Y m
l +cY 0

0 . With
�
φ, Y 0

0

�
L2(∂D)

+
�
ψ, Y 0

0

�
L2(∂D)

=

0 this results in c = 0.
The last 2 statements follow directly from lemma 5.1.6.

We now rewrite this for the first orders of a plane wave.

Corollary 5.4.2. We have

Ã−1
D

g
n · k
0

n
=

g
0

3
r1
n · k

n
, Ã−1

D

g
(n · k)2

0

n
=

g − 1
6r1

k2

5
r1
(n · k)2 − 3

2r1
k2

n
(5.4.7)

and

Ã−1
D

g
0

n · k
n

= −3

g
n · k
n · k

n
, Ã−1

D

g
0

(n · k)2
n

=

e
−5

2
(n · k)2 + k2

5
2 −√

4π

3

lg
1
1

n
.

(5.4.8)

Proof. Follows directly from lemma 5.4.1. We choose the coordinate system with z entry
in k direction. We thus have

k · n = |k|
x

4π

3
Y 0
1 (5.4.9)

and

(k · n)2 = k2 1

3

ex
16π

5
Y 0
2 +

√
4πY 0

0

l
. (5.4.10)
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We thus have

Ã−1
D

e
k2 1

3

du
16π
5 Y 0

2 +
√
4πY 0

0

k
0

l
= k2 1

3

ex
16π

5

5

r1
Y 0
2

g
0
1

n
−

√
4π

1

2r1
Y 0
0

g
1
−1

nl

=

g − 1
6r1

k2

5
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(k · n)2 − 3

2r1
k2

n
.

(5.4.11)

Furthermore we get

Ã−1
D

e
0

k2 1
3

du
16π
5 Y 0

2 +
√
4πY 0

0

kl = k2 1

3

e
−
x

16π

5
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2
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2 −

√
4π

√
4πY 0
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1
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=

e
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√
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1
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(5.4.12)

The last lemma covers some terms that will appear in our derivations.

Lemma 5.4.3. We have for a constant c̃ that

A0,1
D Ã−1

D

g
ik · nr1

0

n
=

g
0

−2ik · n
n
, A0,1

D Ã−1
D

g
(k · nr1)2

0

n
=

g
0

−3r1(n · k)2 + c̃

n
.

(5.4.13)

Proof. We see that

A0,1
D Ã−1

D

g
ik · nr1

0

n
= A0,1

D

g
0

3ik · n
n

=

g
0

−(12 +K0
D)[3ik · n]

n
=

g
0

−2ik · n
n
. (5.4.14)

Further we get

A0,1
D Ã−1

D

g
(k · n)2

0

n
=A0,1

D

g
c1

5
r1
(n · k)2 + c2

n
=

g
0

−(12 +K0
D)[

5
r1
(n · k)2 + c2]

n
=

g
0

−1
2(1 +

1
5)

5
r1
(n · k)2 + c̃

n
=

g
0

− 3
r1
(n · k)2 + c̃

n
.

(5.4.15)

5.4.2. Internal pressure gradient

Using the calculations of the last subsection we can now prove formulas for the pressure
and its gradient on the surface. We are going to prove the following theorem in this
subsection.
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Theorem 5.4.4. For a single bubble and a standing wave pin = p̃in cos(k · z + γ) we get
for some constant c̃ that

p = c̃− 3p̃inδ sin(γ)k · nr1 − δp̃in
5

4
r21 cos(γ)(k · n)2 +O(ω5) (5.4.16)

and for another constant c̃ that

∇p|− = c̃n− 3δp̃in sin(γ)k − δp̃in
5

2
r1(k · n)k cos(γ) +O(ω5) (5.4.17)

on ∂D. We further have in lower orders

∇p|− = −d1k
2
b

r1
3
cos(γ)n+O(ω4−2µ), (5.4.18)

where d1 is defined in 5.3.5 and the scaling relation 5.3.2.

We can see that due to u|− = 1
ρbω2∇p

���
−

that the term of order ωδ corresponds to a

translatory motion and the term of order δω2 correspond to a deformation of the bubble,
thus in order δω2 the bubble does not in general follow the breathing approximation
anymore (i.e. getting uniformly stretched/contracted), especially if it is at an antinode
of a standing wave. We can see an exaggerated sketch of this in 5.1.

We will now show a few statements in order to proof theorem 5.4.4. We start out by
defining vector spaces that allow us to more easily denote the next statements.

Definition 5.4.5. We define

H̃s := span{Y 0
j , j = 0, . . . , s} (5.4.19)

and

Hs,t
D := H̃s × H̃t. (5.4.20)

The following corollary summarizes which parts of φ have to be looked at.

Corollary 5.4.6. We have for all i, j that

Ã−1
D (H0,j

D ) ⊆ Hj,j
D , Ã−1

D (H i,0
D ) ⊆ H0,i

D ,

Ai,j
D (H0,0

D ) ⊆ H0,0
D , A2,0

D (H0,1
D ) ⊆ H1,0

D ,

A1,0
D (H i,j

D ) ⊆ H0,0
D .

(5.4.21)

Proof. The first 2 statements follow directly from lemma 5.4.1.
Statement 3 holds due to symmetry and lemma 4.2.4. Statement 4 follows from 7.2.2.
The last one follows directly from the definition.

We will now look at the potentials of the system.
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Lemma 5.4.7. We define ID,5 as the operator that contains all terms below order ω5, ω3δ
of Id defined in lemma 5.1.5. We have

ID,5[ϕi] ∈ H0,0
D . (5.4.22)

We further have with the scaling relation 5.3.2 that

(I5[Ã−1
D F ])1 = −δp̃in9ik · n+ δp̃in

g
5

2

n2

r1(k · n)2 + c̃ϕ1 +O(ω5) (5.4.23)

Proof. Corollary 5.4.6 immediately proves the first statement. With the corollary we also
see that only A0,1

D provides a non constant second entry in φ up to order ω5. We get due
to lemma 5.4.3 for a constant c̃ that

(I5[Ã−1
D F ])1 =Ã−1

D

g
0

δp̃in(ik · n− r1(k · n)2)
n

− δÃ−1
D A0,1

D Ã−1
D

g
p̃inr1(ik · n− r1(k · n)2 12)

0

n
+ c̃ϕ1

=Ã−1
D

g
0

3δp̃inik · n
n
− Ã−1

D

g
0

δp̃in
5
2r1(k · n)2

n
+ c̃ϕ1.

(5.4.24)

Using lemma 5.4.1 we arrive at the statement.

With this statement about the potentials we will proceed by looking at the normal deriva-
tive of the pressure.

Lemma 5.4.8. For a single spherical inclusion, an incident field pin = p̃ine
i(k·z) and the

scaling relation 5.3.2 we get

dp

dn

���
−
= c̃+ 3p̃inδik · n− δp̃in

5

2
r1(k · n)2 +O(ω5) (5.4.25)

on ∂D. We further have in the lower order

dp

dn

���
−
= −d1k

2
b

r1
3

+O(ω4−2µ). (5.4.26)

Proof. We have

dp

dn

���
−
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d

dn
Skb
D [ϕ1] +

g
−1

2
+K0

D
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−δp̃in9ik · n+ δp̃in

g
5
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n2

r1(k · n)2
9
+O(ω5)

=c
d

dn
Skb
D [ϕ1] + δp̃in3ik · n− δp̃in

5

2
r1(k · n)2 +O(ω5).

(5.4.27)

Note that d
dnS

kl
D [ϕ1] is constant due to symmetry/ϕi being constant. Next we see, using

lemma 4.2.8, thatg
−1

2
+Kkb

D

n
[ϕ1] = k2bK

2
D[ϕ1] + k3bK

3
D[ϕ1] +O(ω5−2µ) = −k2b

r1
3

− k3b
ir21
3

+O(ω5−2µ).

(5.4.28)
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a

k

x1

û(x1, t1)

ẑ(x1, t1)

b

k x1

û(x1, t2)

ẑ(x1, t2)

Figure 5.1.: Sketch of the deformation of a bubble at different times during a period. For
this sketch we consider deformations up to order δω3.

In the same way we can derive the pressure on the surface.

Lemma 5.4.9. For a single spherical inclusion, an incident field pin = p̃ine
i(k·z) and the

scaling relation 5.3.2 we get for a constant c̃ that

p = c̃+ 3p̃inδik · nr1 − δp̃in
5

4
r21(k · n)2 +O(ω5) (5.4.29)

on ∂D and

∇T p = 3p̃inδi(k − (k · n)n)− δp̃in
5

2
r1(k · n)(k − (k · n)n) +O(ω5). (5.4.30)

Proof. We have

p =Skb
D [φ] = cSkb

D [ϕ1] + S0
D

2
−δp̃in9ik · n+ δp̃in

g
5

2

n2

r1(k · n)2
9
+O(ω5)

=c̃+ 3p̃inδik · nr1 − δp̃in
5

4
r21(k · n)2 +O(ω5).

(5.4.31)

Now in order to finish the proof of theorem 5.4.4 we add up the contributions for the
standing wave pin = 1

2(p̃ine
iγeik·x+p̃ine

−iγe−ik·x). We are now equipped to calculate the
primary Bjerknes force.

5.4.3. Primary Bjerknes force

The following theorem shows that the first Bjerknes force is consistent with the results
in literature [17]. We can see with this formula that for the case ω > ωM our bubble



CHAPTER 5. STRONGLY INTERACTING SYSTEMS 53

experiences a force toward the nearest pressure node (cos(β) = 0). While for ω < ωM

it is towards the closest pressure antinode (cos(β) = 1). We can see a sketch of this in
figure 5.2. Note that in the literature the force gets applied to the Minnaert bubble with
added mass. This means that our force has an additional factor 2δ, see section 2.1.1.

Theorem 5.4.10. We assume a standing incident field pin = p̃in cos(k · x+ β) and the
scaling relation 5.3.2. Then the first Bjerknes force for a spherical bubble turns to

F b
1 = 2δp̃2in

πr1
ρl

cos(α1) sin(2β)u
(ω2 − ω2

M )2 +
f
r1klω

2
M

m2k +O(ρ−1
l ω3−2µ). (5.4.32)

Proof. We remind ourselves of lemma 3.3.3,

F b
1 =

1

ρbω2

1

T

\ T

0

\
∂D

(∇Tp|−)2n− (∇p|− · n)∇Tp|− dσ dt. (5.4.33)

We see that

∇Tp = −3p̃inδ sin(β)(k− (k ·n)n) sin(ωt)− δp̃in
5

2
r1(k ·n)(k− (k ·n)n) cos(β) +O(ω5).

(5.4.34)
We thus see that due to theorem 5.4.4 we get

(∇Tp1|−)2n− (∇p1|− · n)∇Tp1|− =

=
p̃inω

2
M sin(ωt+ α1)u

(ω2 − ω2
M )2 +

f
C
4πklω

2
M

m2k2b r13 cos(β)3p̃inδ sin(β)(k − (k · n)n) sin(ωt)

+ c̃1k
2n+ c̃2(k · n)2n+ c̃3(k · n)k +O(ω7 + ω8−2µ)

=
p̃inω

2
M sin(ωt+ α1)u

(ω2 − ω2
M )2 +

f
C
4πklω

2
M

m2 sin(ωt)k2b r12 p̃inδ sin(2β)(k − (k · n)n)

+ c̃1k
2n+ c̃2(k · n)2n+ c̃3(k · n)k +O(ω8−2µ).

(5.4.35)

We further have \
∂D

k − (k · n)n dσ = k|∂D| − k
1

r1
|D| = 8

3
πr21k (5.4.36)

and the following integrals disappear\
∂D

k2n dσ =

\
∂D

(k · n)2n dσ =

\
∂D

(k · n)k dσ = 0. (5.4.37)

Further we see that

1

T

\ T

0
sin(ωt+ α1) sin(ωt) dt =

cos(α1)

2
. (5.4.38)
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a

Figure 5.2.: Sketch of the directions of the primary Bjerknes forces for different config-
urations of a bubble in a standing wave of fixed forcing frequencies ω. The
red/blue circles represent bubbles with a resonance frequency smaller/larger
than this frequency. They get pushed toward the nodes/anti-nodes respec-
tively. Note that the length of the arrows are arbitrary and that we do not
consider the secondary Bjerknes forces here.

This results in

F b
1 =

1

ρbω2

cos(α1)

2

p̃inω
2
Mu

(ω2 − ω2
M )2 +

f
C
4πklω

2
M

m2k2b 4πr313
p̃inδ sin(2β)k +O(ρ−1

b ω5−2µ)

=p̃2in
k2b
ρlω2

2πr31
3

ω2
Mu

(ω2 − ω2
M )2 +

f
r1klω

2
M

m2 cos(α1) sin(2β)k +O(ρ−1
l ω3−2µ)

=2δp̃2in
πr1
ρl

cos(α1) sin(2β)u
(ω2 − ω2

M )2 +
f
r1klω

2
M

m2k +O(ρ−1
l ω3−2µ)

(5.4.39)



6. Weakly interacting system

In this chapter we will define weakly interacting systems, which are made up of clusters
of strongly interacting bubbles with scaling distances to the other clusters. We will the
derive an appropriate scaling and separate the system into isolated and interacting parts.
Finally we will apply this to separated spherical bubbles and calculate the secondary
Bjerknes force for them.

6.1. Scaling distance decomposition

We will start out by the description of weakly interacting systems. The main idea of
this approach is to fix the phase shift that a wave experiences travelling between bubble
clusters. This naturally results in a scaling of the distance due to changing ω. The system
is made up of weakly interacting inclusion clusters Di with centres zi,0 for i = 1, . . . ,M ,
which can be split into connected inclusions Di,j for j = 1, . . . ,Mi. We can see a sketch
of the setup in figure 6.1. Next we define the scaled cluster centres

zi(d) := dzi,0 (6.1.1)

a

•z1D1,1

yx

D1,2

D1,3

•z2
D2,1

•z3D3,1 D3,2

d1,2 β2,3 = kd2,3

Figure 6.1.: Sketch of a far field system. The distance between the dotted areas scales
and is indirect proportional to the frequency. This results in a constant
phase shift for a wave propagating between inclusion clusters. We see that
M1 = 3,M2 = 1,M3 = 2 and M = 3.

55
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for the scaling factor d. The inclusion clusters will be shifted away from each other from
zi,0 to zi(d), namely Di(d) = Di+zi(d−1). For simpler notation we write yx := x−zi

for x ∈ ∂Di, di,j := zj − zi, di,j := |di,j | = d|zi,0 − zj,0| and Ydi,j the unit vector in
direction di,j . Next we define the phase shifts that an incident plane wave and a wave
travelling between the clusters experience, namely

βi := k · zi, βi,j := kldi,j . (6.1.2)

We will further assume that the distance parameter d scales indirect proportional to
the frequency ω, more specifically we have constant βi and βi,j . This also guarantees
ri Y d for ω Y 1, which will simplify the geometrical structure ”felt” by the other
bubble clusters. We define the incident plane wave for a wave vector k as

pin(x) := p̃ine
ik·x. (6.1.3)

It is noteworthy that the problem x ∈ Di(d) with

k2bp(x) + Δp(x) = 0 (6.1.4)

can be rewritten to x ∈ d−1(Di − zi,0) + zi,0 with

(k̃b
2
p̃ + Δp̃) (x) = 0 (6.1.5)

for k̃b
2
:= k2bd

2 = const and p̃(x) := p(xd). Similar statements hold for the liquid part
and the boundary conditions. This shows that we can rescale the size of the inclusions
and move them closer together instead of increasing the distance and decreasing the
frequency.

6.1.1. Far field expansion

Due to the distances between the clusters scaling indirect proportional to the frequency
we need to find a new decomposition of AD for the parts coupling between different
bubble clusters. For coupling inside the same cluster we can use the expansion of strongly
interacting systems. We will first look at Skl

Di
and find a new expansion

Skl
Di
[φ](x) =

�
n

knl
�Sβi,j ,n
Di,Dj

[φ](yx) (6.1.6)

for x ∈ ∂Dj with j b= i. Note that the expansion operators �Sβi,j ,n
Di,Dj

only depend onyx and
thus do not scale with distance. In general this can be achieved by using the generating
function of the Legendre polynomials and the recurrence relation (lemma 4.2.1). We then
get for |x| > |y| that

|x− y| = 1

|x|
�
l

g |y|
|x|

nl

(x2 + y2)Pl(Yx · Yy). (6.1.7)
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This gives us for large d, x ∈ ∂Di, y ∈ ∂Dj and Yv the unit vector in direction yx−yy
that

|x− y| =d

����Ydi,j + (yx−yy)
1

d

����
=d

�
l

|yx−yy |l
dl

(1 + |yx−yy |2)Pl

dYv · Ydi,j

k
.

(6.1.8)

We can now insert this in the definition of the layer potentials 4.1.2, use the relation
between d and ω and derive the expansion in ω. The well definiteness and convergence
can be proven in the same manner as we did in the strongly interacting case in lemma
4.1.5. For our purposes this is not necessary as we only need the first orders of the
expansion. This leads us to the following lemma.

Lemma 6.1.1. We have

�S0,βi,j

Di,Dj
[φ](yx) = 0, �S1,βi,j

Di,Dj
[φ](yx) = − eiβi,j

4πβi,j

\
∂Di

φ(y) dσ(y),

�S2,βi,j

Di,Dj
[φ](yx) =

eiβi,j (1− iβi,j)

4πβ2
i,j

\
∂Di

Ydi,j · (yx−yy)φ(y) dσ(y),

d

dnx

�S0,βi,j

Di,Dj
[φ](yx) =

d

dnx

�S1,βi,j

Di,Dj
[φ](yx) = 0

d

dnx

�S2,βi,j

Di,Dj
[φ](yx) =

eiβi,j (1− iβi,j)

4πβ2
i,j

\
∂Di

Ydi,j · nxφ(y) dσ(y)

(6.1.9)

for x ∈ ∂Dj and j b= i.

Proof. Let us first examine |x − y| for x ∈ Dj ,y ∈ Di. Using the Taylor expansion of√
1 + x we get

|x− y| =d

����Ydi,j + (yx−yy)
1

d

����
=d+ Ydi,j · (yx−yy) +O

g
1

d2

n
.

(6.1.10)

This can be applied to the single layer potential to get

Skl
D1

[ψ](x) =
−1

4π
eikld

\
∂D1

eikl
�di,j ·(�x−�y)

g
1

d
− Ydi,j · (yx−yy)

1

d2

n
ψ(y) dσ(y) +O(ω3)

=
−1

4π

eikld

d

\
∂D1

g
1− Ydi,j · (yx−yy)

1

d
(1− ikld)

n
ψ(y) dσ(y) +O(ω3).

(6.1.11)
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In order to use this decomposition more easily we are going to apply it to a different
single layer representation (see [10]) of the multi bubble system compared to the strongly
interacting case. We have

p(x) =

$�
i S

kl
Di
[ψi](x) + pin(x) x ∈ Rd/D,

Skb
Di
[φi](x) x ∈ Di,

(6.1.12)

withSkb
Di
[φi](x)− Skl

Di
[ψi](x) = pin(x) +

�
j b=i S

kl
Dj

[ψj ](x),d
−1

2 +Kkb
Di

k
[φi](x)− δ

d
1
2 +Kkl

Di

k
[ψi](x) = δ

d
dpin
dni

(x) +
�

j b=i
d

dni
Skl
Dj

[ψj ](x)
k

(6.1.13)
on ∂Di. Next we will again rewrite the surface condition in terms of an operator equation.
We define the operator

AD

g
φ
ψ

n����
∂Di×∂Di

:=

e
Skb
Di
[φi]−

�
j S

kl
Dj

[ψj ]d
−1

2 +Kkb
Di

k
[φi]− δ

d
1
2 +Kkl

Di

k
[ψi]−

�
j b=i

d
dni

Skl
Dj

[ψj ]

l
(6.1.14)

and the vector valued function

FDi
:= F |∂Di×∂Di

:=

g
pin

δ d
dni

pin

n
=

g
p̃ine

ik·zieik·�z

δp̃ine
ik·zieik·�zik · nDi

n
. (6.1.15)

We get

AD

g
φ
ψ

n
= F . (6.1.16)

6.1.2. Separated and interaction parts

In this section we will split up the operators into interaction and seperated parts. Then
we will invert the system in equation 6.1.16 in a similar way as we did in the strongly
interacting case. Like before the potentials will then be decomposed.

We will now start out by splitting up the contributions into a separated and an interaction
part. The former corresponds to only internal interactions, namely only the terms that
map between the inclusionsDi,j andDi,k of the same inclusion clusterDi. The interaction
part on the other hand contains the terms that ”feel” the other inclusion clusters. Further
a singular subscript Di of an operator denotes the operator of a system that is made up of
onlyDi and |∂Di next to a vector valued function denotes the vector, where all coordinates
are limited to the domain ∂Di. We will denote operators on all inclusion with a subscript
D. In the next section we will expand ADi,Dj

in ω and δ, namely

ADi,Dj
=

∞�
m=0

1�
n=0

ωmδnAm,n
Di,Dj

. (6.1.17)
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But first we will be using the embedding ιDi of ∂Di into ∂D to define other useful
operators

ιDi(φ)(x) :=

$
φ(x) x ∈ ∂Di,

0 x ∈ ∂D/∂Di

(6.1.18)

and ιDi = ιDi × ιDi . Further we define the Projection onto a bubble cluster PDi(φ) :=
φ|∂Di×∂Di . We decompose the operator BD = Am,n

D ,AD into parts mapping from bubble
cluster i to cluster j, namely

BDi,Dj
:= PDj ◦ BD ◦ ιDi . (6.1.19)

Note that BDi
:= BDi,Di

can be viewed as the operator for a system with only the strongly
interacting inclusion cluster Di and we are thus able to analyse it by using the theory of
the last chapter. We further define the separated and interaction operators piecewise by

PDj ◦ Bs
D ◦ ιDi

:= δi,jBDi
, Bi

D := BD − Bs
D, (6.1.20)

which correspond to the part acting inside a bubble cluster and between them respectively.
We now get the following expansion between different bubble clusters.

Lemma 6.1.2. We get for i b= j, n > 0 that

A0,0
Di,Dj

= A0,1
Di,Dj

= A1,1
Di,Dj

=

g
0 0
0 0

n
, An,0

Di,Dj
:=

e
0 − 1

cl
�Sn,βi,j

Di

0 0

l
, (6.1.21)

An+1,1
Di,Dj

=

e
0 0

0 − d
dnx

�Sn+1,βi,j

Di

l
(6.1.22)

and Am,n
Di

= Am,n
Di,Di

corresponding to the operators of the strongly interaction case de-
scribed in definition 5.1.7.

Proof. Follows directly from lemma 6.1.1.

With this lemma we can immediately see that

A0,0
D = A0,0,s

D . (6.1.23)

We can thus define the invertible extension for the whole system by considering the
extension of it for the clusters separately. We get again for all i, j by piecewise definition

PDj ◦ ÃD ◦ ιDi
:= δi,jÃDi

. (6.1.24)

We will now split up the potentials again.

Definition 6.1.3. For ϕDi,j being defined in lemma 5.1.1 and extended with 0 on ∂Dj

for j b= i we set
φ = ϕ+ φ̃, (6.1.25)

with
ϕ :=

�
i,j

cDi,jϕDi,j (6.1.26)

and φ̃ ⊥ ϕDi,j for all i, j.



CHAPTER 6. WEAKLY INTERACTING SYSTEM 60

With this we are going to extend theorem 5.1.5 to weakly interacting systems. The
main difference is going to be that we will split up all contributions into interacting and
separated parts. Interaction operators are made up of at least one term that couples
between bubble clusters, while for separated operators only contain operators acting on
one cluster.

Lemma 6.1.4. For inclusions clusters Di with connected parts Di,j, BD := AD − A0
D,���Ã−1

D BD

��� < 1 and c,φ,ϕ defined in definition 6.1.3 we get

φ|∂Dk
=

φs|∂Dk� "!  d
IDk

[(ÃDk
)−1F |∂Dk

+ϕ|∂Dk
]
k
+

φi|∂Dk� "!  d
Ii[(ÃD)

−1F +ϕ]
k���

∂Dk

. (6.1.27)

with

Ii[ξ] :=

e�
n=0

(−Ã−1
D BD)

n − (−Ã−1
D Bs

D)
n

l
ξ. (6.1.28)

Furthermore we have a Matrix AD and a vector RD[F ] with tuples (k, l) as indices, where
k notifies the cluster and l the bubble in said cluster with

(ADc)(k,l) :=

(As
Dc)(k,l)� "!  

(ADk
cDk

)l +

(Ai
Dc)(k,l)� "!  

T i
(k,l)[ϕ],

(RD[F ])(k,l) :=

Rs
(k,l)[F ]� "!  

(RDk,l[F |∂Dk
])

Ri
(k,l)[F ]� "!  

−T i
(k,l)[Ã−1

D F ] .

(6.1.29)

for ADk
,RDk,l being the matrix and vector defined for the strongly interacting case in

theorem 5.1.5 and

T i
(k,l)[ξ] :=

\
∂Dk,l

f
(Bi

D ID +BD IiD)ξ
m
2
dσ. (6.1.30)

We then get
ADc = RD[F ]. (6.1.31)

Proof. Equivalent proof. We just separate the interaction and separated part.

6.1.3. Resonance frequency and resonance coefficient

This section will generalize the statements of the strongly interacting system. It will show
that in the lowest order we can calculate the potentials of the whole system by calculating
the potentials for the isolated bubble clusters. In the next lemma we will calculate AD

up to order ω4+ω2δ. For this we will denote it as a matrix with row and column indices
(i, j), which correspond to the coefficients of the functions ϕDi,j and inclusion Di,j .

Lemma 6.1.5. The matrices As
D and Ai

D of lemma 6.1.4 can be, up to order O(ω4+δω2)
written as

(As
D,4)(i,l),(i,j) :=

g
−k2bDDi + δCDi +

i

8π
δ (kb − kl)CDi1MiCDi

n
j,l

−
g

i

8π
k2b (kb + kl)DDi1MiCDi

n
j,l

,

(6.1.32)
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(As
D,4)(k,l),(i,j) = 0 for k b= l and

(Ai
D,4)(k,l),(i,j) :=

1

8π
M i,kkl

f
δCDi1Mi,Mk

CDk
+ k2bDDi1Mi,Mk

CDk

m
j,l
, (6.1.33)

where DDi
:= Diag(|DDi,1|, . . . , |DDi,Mi |), CDi is the capacity matrix of Di, M i,j :=

eiβi,j

βi,j

for i b= j, M i,i = 0 and 1Mi,Mk
a matrix filled with ones and dimensions Mi by Mk.

Proof. The separated part directly follows from the systems with only one bubble cluster,
see lemma 5.1.8.
We note that due to lemma 6.1.2 we have for m+ 2n < 4 that (Am,n

Di,Dj
c)2 = (A1,0

Di
c)2 =

(A1,1
Di

c)2 = 0 and thus not get a second component up to order (ω2+δ)2 through operators
coupling between clusters. We now need for i b= k to only consider

Ai
(k,l),(i,j) =

\
∂Di,j

dd
−ω3A2,0

Di
(ÃDi

)−1A1,0
Dk,Di

− ωδA0,1
Di

(ÃDi
)−1A1,0

Dk,Di

k
[ϕDk,l

]
k
2
dσ

+O(ω4 + δω2).

(6.1.34)

We get\
∂Di,j

(A0,1
Di

(ÃDi
)−1A1,0

Dk,Di
[ϕDk,l

])2 dσ = −
\
∂Di,j

1

2

1

cl
�S1,βk,i

Dk
[ϕDk,l]

�
n

ϕDi,n dσ

=
eiβk,i

8πβk,icl

�
m

(CDk
)m,l

�
n

(CDi)j,n

=
1

8πcl
Mk,i(CDi1Mi,Mk

CDk
)j,l

(6.1.35)

and\
∂Di,j

(A2,0
Di

(ÃDi
)−1A1,0

Dk,Di
[ϕDk,l

])2 dσ =
−1

2c2b

1

cl

\
∂Di,j

�S1,βk,i

Dk
[ϕDk,l]

�
n

K2
Di
[ϕDi,n] dσ

=
eiβk,i

8πβk,ic
2
b

1

cl

�
n

(DDi)j,n
�
m

(CDk
)m,l

=
1

8πc2bcl
Mk,i(DDi1Mi,Mk

CDk
)j,l.

(6.1.36)

We note for the case i = j that we only get a component inside the integral if the last
operator does not act between bubble clusters. Thus for the interaction part we would
need to couple to another cluster, back and then use an operator to couple to the second
component. This is however of higher order and we arrive thus at the statement.

The next lemma shows that the resonance frequency of the system is in the lowest order
equivalent to the frequency of the isolated inclusions.
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Lemma 6.1.6. For each resonance frequency ωDi,j we have a normalized eigenvector
vDi,j with eigenvalue λDi,j of D−1

Di
CDi for DDi

:= Diag(|DDi,1|, . . . , |DDi,Mi |) so that we
get

ωDi,j = ωM,Di,j +O(δ3/2), (6.1.37)

for the frequencie ωM,Di,j :=
u
δλDi,jc

2
b . If the matrices D−1

Di
CDi for all i do not share

eigenvalues then we get

ωDi,j = ωM,Di,j + iτDi,j +O(δ3/2), (6.1.38)

and

τDi,j := − 1

8π

c2b
cl
δλ2

Di,j

vH
Di,j

DDi1MiDDivDi,j

vH
Di,j

DDivDi,j
, (6.1.39)

with the matrix of ones 1Mi of dimension Mi ×Mi.

Proof. The lowest order does not contain any interaction. Thus we can use the arguments
for a single cluster. If λDi,j is only eigenvalue for a single cluster Di then for i b= j we get
vDj = O(ω|v|) and thus all interaction terms disappear up to order δ2.

We will again introduce a scaling relation.

Definition 6.1.7. We have the scaling relation

ω − ωM,Di,j ∼ δµDi,j (6.1.40)

for all i with 1
2 ≤ µDi,j ≤ 1, µ− := mini,j µDi,j, µ+ := maxi,j µDi,j and µ := 2 + 2(µ− −

2µ+)

The interactions disappear in the lowest orders, therefore we find the following corollaries.

Corollary 6.1.8. If the matrices D−1
Di

CDi do not share eigenvalues, the scaling relation
6.1.7 holds then we have for c defined in 6.1.3 that

cDi,j +
p̃in
2

= eiβi(V DidDiV
−1
Di

1Mi,1)j +O(ωµ) (6.1.41)

and

cDi,j −
p̃in
2

= eiβiω2(V DiΩ
−2
M,Di

dDiV
−1
Di

1Mi,1)j +O(ωµ) (6.1.42)

for dDi being the matrix d for Di defined in lemma 5.3.3.

Proof. We will first note that by subtracting

AD(ωDi,j , δ)vDi,j = 0 (6.1.43)

we get

As
4 =

r
i

1

c2b
DDi

f−V Di(ω
2 −Ω2

Di
)
m
+O(ω2+2µ−), (6.1.44)
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and the interaction part

Ai
4 = O(ω2+2µ−). (6.1.45)

Next we have

(A1,0
Di,Dj

ξ)2 = (A2,0
Di,Dj

ξ)2 = (A0,1
Di,Dj

ξ)2 = 0 (6.1.46)

and thus no interaction part of R, namely

Ri
3 = 0 (6.1.47)

up to order ω3. Using

F |∂Di =

g
p̃ine

ik·zieik·�z

δp̃ine
ik·zieik·�zik · ni

n
(6.1.48)

and lemma 5.3.1 we get

Rs
3 =

p̃in
2

r
i

eik·zi
DDi

c2b
(ω2 +Ω2

Di
). (6.1.49)

We can use the same prove as in lemma 5.3.3.

Finally we will state a corollary for the potentials. It shows that it suffices to calculate
the potentials in the bubble clusters individually.

Corollary 6.1.9. If the matrices D−1
Di

CDi do not share eigenvalues and the scaling re-
lations hold 6.1.7 then we get

φ =
�
i,j

ζDi,je
iβidDi,j(V

−1
Di

1Mi,1)j +O(ωµ) (6.1.50)

and

ψ =
�
i,j

ζDi,je
iβidDi,j

ω2

ω2
M,Di,j

(V −1
Di

1Mi,1)j +O(ωµ) (6.1.51)

the resonance potentials ζDi,j :=
�

l(V Di)l,jϕDi,l and dDi,j defined in lemma 5.3.3.

Proof. We have

Ii[ξ] = O(ω) (6.1.52)

and thus

Ii[ϕ] = O(ω2−2µ+). (6.1.53)

This results in

φ̃
s
=

r
i

p̃ine
ikzi

2

MDi�
j=0

ϕDi,j

g
1
−1

n
+O(ω2−2µ+). (6.1.54)
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6.2. Far field interaction between spheres

We will now look at the case of bubble clusters Di being made up of a single sphere each.
This allows us to prove the following theorem for the pressure and its derivative on the
surfaces. Note that we gain an additional term compared to a one bubble system. This
will be the source of the secondary Bjerknes force as we will see later. Note that we will
drop the second index that notifies which bubble we choose in a cluster, for example dDi,j

is now dDi .

Theorem 6.2.1. For spherical inclusions and a flat incident wave 6.1.3 and the scaling
relation 6.1.7 we get

∇p
���
Dj ,−

=c̃n− 3p̃inδ sin(βj)k − δp̃in cos(βj)
5

2
rj(k · n)k

−
�
ib=j

δk2l cos(βi)
dDiω

2

ω2
M,Di

eiβi,j

4πβ2
i,j

(1− iβi,j)CDi3
Ydi,j +O(ω4+µ)

(6.2.1)

on ∂Dj. We further have in a lower order that

∇p
���
Dj ,−

= − cos(βj)dDjk
2
b

rj
3
n+O(ω2+µ). (6.2.2)

The rest of this section will prove this theorem, readers not interested in the details may
skip this part. We start out by categorizing the images of different different spaces under
Am,n

D . We can immediately by the definition of the operators see the following corollary.

Corollary 6.2.2. For all s, t we have

A1,0
Di,Dj

(Hs,t
Di
) ⊆ H0,0

Dj
, Ar,0

Di,Dj
(Hs,t

Di
) ⊆ L2(∂Dj)× R (6.2.3)

for Hs,t
D defined in 5.4.5.

We will next look at the interaction terms

Lemma 6.2.3. We have for i b= j that

(IiDi,Dj
)1

g
0

ϕDi

n
= c̃ϕDj + δω2 eiβi,j

4πβ2
i,j

(1− iβi,j)CDi9
Ydi,j · nj +O(ω5) (6.2.4)

and

(IiDi,Dj
)1

g
ϕDi

0

n
= c̃ϕDi +O(ω5). (6.2.5)

Furthermore we get

(IiDi,Di
)1

g
c̃1ϕDi

c̃2ϕDi

n
= c̃ϕDi +O(ω5). (6.2.6)

We also have the separated part

IsDi,Di
= −δp̃ine

ik·zi9ik · n+ δp̃ine
ik·zi

g
5

2

n2

ri(k · n)2 + c̃ϕDi +O(ω5). (6.2.7)
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Proof. We get due to the previous corollary that

(IiDi,Dj
)1

g
0

ϕDi

n
=c̃ϕDj +O(ω5)

+

gd
δω2(ÃDj

)−1A0,1
Dj

(ÃDj
)−1A2,0

Di,Dj
− δω2(ÃDj

)−1A2,1
Di,Dj

kg
0

ϕDi

nn
1

=c̃ϕDj − δk2l
eiβi,j

4πβ2
i,j

(1− iβi,j)CDi

g
(ÃDj

)−1

g
0

3Ydi,j · nj

nn
1

+O(ω5)

=c̃ϕDj + δk2l
eiβi,j

4πβ2
i,j

(1− iβi,j)CDi9
Ydi,j · nj +O(ω5).

(6.2.8)

We note for the other statements that only A2,1
Di,Dj

,A2,0
Di

,A0,1
Di

,A3,0
Di

,A2,1
Di

,A4,0
Di

results in

a second coordinate up to order O(ω5) and thus need to be the last operator that gets
applied before Ã−1

D . The coupling of two bubbles has at least order ω. Thus for i = j

we only need to consider A2,0
Di

,A0,1
Di

. Due to the coupling being only of lowest order this
results in both coordinates being constant and getting transformed to constants by the
operators. For i b= j we note thatg

Am,n
Di,Dj

g
ϕDi

0

nn
2

= 0 (6.2.9)

and we thus apply the operators that we listed above only on constant functions, which
results in a constant second coordinate. The seperated part directly follows from the
statement for strongly interacting systems.

Using the last lemma we arrive at the layer potential corresponding to the function on
the inside of the sphere

Lemma 6.2.4. We get

φ|∂Dj =
�
i b=j

δk2l cos(βi)
dDiω

2

ω2
M,Di

eiβi,j

4πβ2
i,j

(1− iβi,j)CDi9
Ydi,j · n

+ sin(βj)δp̃in9k · n+ cos(βj)δp̃in

g
5

2

n2

rj(k · n)2 + c̃ϕDj +O(ω4+µ)

(6.2.10)

and

φ|∂Dj = cos(βj)dDjϕDj +O(ωµ). (6.2.11)

To finish the proof of the theorem we note that we have to only calculate Skb
D [φ] on a

single bubble and can thus proceed exactly like in lemma 5.4.9 and 5.4.8.
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6.3. Secondary Bjerknes force

We will look at a special case of the scaling relation 6.1.7 with

µ+ − µ− ≤ 1

6
− : (6.3.1)

for 0 < : ≤ 1
6 and thus

µ− 2µ+ = 2 + 2(µ− − 3µ+) ≥ 1− 4µ− + 6:. (6.3.2)

We have to take this assumption so that the force is not of higher order. The condition
is especially true if

ω − ωM,Di ∼ δ
1
2 for all i. (6.3.3)

The next lemma gives an estimate for the second Bjerknes force in the far field.

Lemma 6.3.1. In the case of a standing wave pin = p̃in cos(k ·x) cos(ωt) with the scaling
described in equation 6.3.1 the force estimate on the bubble turns in the far field to

F b
2 =2δp̃2in

�
ib=j

2πω2rirj
ρld

2
i,j

cos(αDi + βi,j + β̃i,j − αDj )x
(ω2 − ω2
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)2 +

d
rjklω

2
M,i

k2

×
cos(βj) cos(βi)

u
1 + β2

i,jx
(ω2 − ω2

M,Dj
)2 +

d
rjklω

2
M,i

k2

Ydi,j +O(ρ−1
l ω4−4µ−+6:).

(6.3.4)

β̃i,j is defined by the relation u
1 + β2

i,je
iβ̃i,j = 1− iβi,j . (6.3.5)

Especially the following corollary holds true with β0 small (Note that we need to choose
β0 first and for this fixed β0 we look at the ω limit).

Corollary 6.3.2. Under the same conditions as lemma 6.3.1 we get

F b
2 =2δp̃2in

�
i b=j

2πω2rirj
ρld

2
i,j

cos(αDj − αDi) cos(βj) cos(βi)x
(ω2 − ω2

M,j)
2 +

d
rjklω

2
M,j

k2
x

(ω2 − ω2
M,i)

2 +
d
rjklω

2
M,i

k2

Ydi,j

+O
ρ−1

l ω4−4µ−+6: +
�
j

βi,j

 .

(6.3.6)

Remark 6.3.3. This result is consistent with the classical results 2.3.10 if we take two
bubbles. Note that we again get a factor 2δ due to us not working with the effective mass.

We will now proceed with the proof of lemma 6.3.1.



CHAPTER 6. WEAKLY INTERACTING SYSTEM 67

Proof. We remind ourselves that the secondary Bjerknes force on the bubble can be
written as

F b
2 =

1

T

\ T

0

1

ρbω2

\
∂D

(∇Tp|−)2n− (∇p|− · n)∇Tp|− dσ dt− F b
1,i. (6.3.7)

We have due to theorem 6.2.1 that

∇Tp = O(ω2+µ). (6.3.8)

We also get

dp

dn
= − cos(βj)

p̃inω
2
M,Dj

cos(αDj + ωt)x
(ω2 − ω2

M,Dj
)2 +

d
4τ2Dj

ω2
M,Dj

kk2b rj3 +O(ω2+µ). (6.3.9)

and

∇Tp
���
Dj ,−

=c̃n− 3p̃inδ sin(βj)k − δp̃in cos(βj)
5

2
rj(k · n)k

−
�
ib=j

δk2l cos(βi)
dDiω

2

ω2
M,Di

eiβi,j

4πβ2
i,j

(1− iβi,j)CDi3
Ydi,j +O(ω4+µ)

(6.3.10)

The term 3p̃inδ sin(βj)k corresponds to the primary Bjerknes force, we are thus going to
ignore it for calculating the secondary Bjerknes force. Furthermore we note that\

∂Dj

(k · n)(k − (k · n)n) dσ = 0 (6.3.11)

and \
∂Dj

(Ydi,j − (Ydi,j · n)n) dσ = Ydi,j

g
|∂Dj | − 1

rj
|Dj |

n
= Ydi,j

8πr2j
3

. (6.3.12)

We thus arrive at

F b
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4πk2l k
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3ρl�
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d2i,j

x
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M,Di
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d
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cos(βj) cos(βi)
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M,Dj
)2 +

d
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(6.3.13)

Using µ− 2µ+ ≥ 1− 4µ− + 6: concludes the proof.





7. Multiple strongly interacting bubbles

In this chapter we will calculate the secondary Bjerknes force for strongly interacting
bubble systems. We will first state the main results of the first three sections. Readers
not interested in the details of the proof may skip to section 7.5. In section 7.1 we
will find a formula for general systems. In the two sections afterwards we will derive
representations of the operators and potentials in spherical harmonics for two sphere
systems. After that we will derive a general form of the capacity matrix and see that it
is consistent with past results. Section 7.4 covers a derivation of the capacity matrix and
resonance frequencies. Then we will look at the asymptotic cases: bubbles that are close
to touching or far apart. We will derive an approximation of the force for the later case
and compare it to past results. Finally, in the last section some empirical studies will
be performed in the basis of the spherical harmonics on the bubble surfaces and the sign
reversal is discussed.
We will now state the two main results of this chapter. The following theorem describes
the secondary Bjerknes force for general systems. Remarkably we can see in the asymp-
totic regime that the force depends only on the frequency and amplitude of the incident
wave but not the orientation. Thus the secondary Bjerknes forces dominate for bubbles
that are not too far apart.

Theorem 7.0.1. We have for a system of bubbles Di and ω−ωM,i ∼ δ1/2 the secondary
Bjerknes force

F b
2,i =

k4b
2ω2δρl

�
j,k

ejekFDi,j,k
+O(ω) (7.0.1)

for the force coefficients ei := di(V
−11M )i with di defined in lemma 5.3.3, the force

contributions FDi,j,k
and

• FDi,j,k
:= Fn

Di
(qn[ζj , λj ], q[ζk, λk]) + F T

Di
(q[ζj , λj ], q[ζk, λk]),

• Fn
Di
(q1, q1) := − ]

∂Di
q1∇T q2 dσ,

• F T
Di
(q1, q2) :=

]
∂Di

(∇T q1)(∇T q2)n dσ,

• q[ζi, λi] :=
d
(−N−1

D PK2
D + PS2

D) +
1
λi
N−1

D P
k
[ζi],

• qn[ζi, λi] :=
d
(1− P )K2

D + 1
λi
P
k
[ζi],

where λi are the eigenvalues of C̃ and V is the corresponding matrix of normalized
eigenvectors. Further ζi :=

�
j V j,iϕj are the resonance functions, 1−P is the orthogonal

69
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projection onto the functions cχDi and ND is the Dirichlet-to-Neumann operator, which
is defined in 7.1.1. We further have

dp

dn
=k2b

�
i

eiq
n[ζi, λi] +O(ω3),

p =k2b
�
i

eiq[ζi, λi] +O(ω3).
(7.0.2)

Proof. The theorem follows from lemma 3.3.3 and lemma 7.1.6. The factor 1
2 is due to

the time integral.

Remark 7.0.2. We can also see that we get force contributions FDi,j,k
to the Bjerknes

force for all combinations of eiej. ei contains a singularity at the resonance frequency ωi.
We thus can expect that the term e2i dominates close to that frequency. We are going to
see such a pattern at the end of this chapters in the simulations. Furthermore this shows
us that the sign of FDi,j,j

defines the sign of the total Bjerknes force close to the singu-
larity and is one of the mechanisms for sign reversal of that force. This happens because
changes in distance between the bubbles result in shifting resonance frequencies and can
thus move one of them closer to the forcing frequency. If the term near corresponding
to that singularity has the opposite sign then we can locally expect a sign reversal to take
place. Another mechanism is the change due to the changing of relative magnitude of the
force contributions FDi,j,k

towards each other. We will see in the two spherical bubble
case that for bubbles far apart one of the contributions declines asymptomatically slower
than the rest, while for closer ranges another force contribution dominates.

Next, we are going to describe the forces for systems made up of two spherical bubbles.
Due to symmetry of the system the direction of the force is fixed by the vector between
the centres of the bubbles. The next formula is going to find explicit formulas for the
forces, by working in the basis made up of two sets of spherical harmonics centred at
the first and second spherical bubble. We will further assume without loss of generality
that the bubble centres lie on the z-axis. One has a positive and the other a negative z
component. The spherical harmonic parameters θ, φ correspond to the common spherical
coordinates with the centres of the bubbles being the origins. For simpler notation we
will in this chapter use the indices ±. They represent a variable with choice + or − and
will be used as an index and as a sign in mathematical operations. Note that ±1,±2

represent two different variables with the before mentioned properties. + as an index will
be used to represent the upper bubble except for ζ+, where it corresponds to the resonance
function of the bigger frequency ω+. This does not create an inconsistency because we
choose r− > r+ and note that the frequency ω+ corresponds to the upper bubble D+ in
the far field. We will also write Y 0

l± short for Y 0
l±(θ±, φ±)χ∂D± the spherical harmonic

centred in ∂D± to reduce clutter. The next lemma summarizes the results of sections
7.2, 7.3 and 7.4. Although it is very complex it can be used to simulate the secondary
Bjerknes force and most importantly the force contributions separately. Compared to the
direct numerical inversion of the system we thus get additional information, which can
help analyse the system.
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Lemma 7.0.3. For two spherical bubbles with ω−ωM,± ∼ δ1/2 we can describe the force
contributions described in theorem 7.0.1 in the spherical harmonic basis

Fn
D±(Y

0
l , Y

0
lk ) = −r±Yez

����
(l+1)(l+2)√
(2l+1)(2l+3)

l� = l + 1,

− (l−1)(l+1)√
(2l−1)(2l+1)

l� = l − 1,

0 else,

(7.0.3)

and

F T
D±(Y

0
l , Y

0
lk ) = Yez

����
l(l+1)(l+2)√
(2l+1)(2l+3)

l� = l + 1,

l(l+1)(l−1)√
(2l+1)(2l−1)

l� = l − 1,

0 else.

(7.0.4)

We further have the relations

q[Y 0
l±1

, λ]|∂D±2
=
�
l

Gl,D±2
(Y 0

l±1
, λ)Y 0

l . (7.0.5)

where for l±2 > 0
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(7.0.6)
and Gl,D±(Y

0
l± , λ) := 0 for l b= l±. Additionally we get
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l . (7.0.7)
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(7.0.8)

and Gn
l,D±(Y

0
l± , λ) := 0 for l b= l±. We further have for the matrix of eigenvectors V of

C̃ that

• ζ±1
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�
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l Y
0
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,
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u

4π
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�
±3

�∞
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|η±2
,

• Ãl,±1,±3
|η±2

:=±3 le
∓3η±2 (Al,±1,±3

− Al−1,±1,±3
)

±3 (l + 1)e±3η±2 (Al,±1,±3
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• Al,±1,±2
:= (±11)(±21)

e
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2 )(−|η±1
|±2η±1

−2|η±2
|)

1−e−(2l+1)(|η+|+|η−|) ,
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l,h,±|η± :=
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k −m
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l,h,∓|η± :=
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ng
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k −m
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(±1)m+h
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d
1− e−2|η±|
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Furthermore the bi-spherical parameters are defined as

a :=

w
(d+ r+ + r−)(d− r+ + r−)(d+ r+ − r−)(d− r+ − r−)

2d
,

η± :=± sinh−1

g
a

r±

n
,

(7.0.9)

the capacity matrix is

C±2,±1 = 4πf
�
l

e−(2l+1)|η±1 |

1− e−(2l+1)(|η+|+|η−|) ×
$
1 ±1 = ±2,

−e−(2l+1)|η∓1 | ±1 b= ±2
(7.0.10)

and C̃i,j := |Di|−1Ci,j.

Proof. The relation for the forces follow from lemma 7.2.5. We get G by lemma 7.2.4
and lemma 7.2.3. Corollary 7.3.6 can be used to find the expansion of ϕ± in spherical
harmonics. The capacity matrix representation can be found in lemma 7.4.4.

7.1. Surface pressure and displacement

In this section we will prove theorem 7.0.1. We start out by defining the Dirichlet-to-
Neumann operator ND.

Definition 7.1.1. We have the Dirichlet-to-Neumann operator ND : H1
0 (∂D) → L2

0(∂D)
with L2

0(∂D) := {f ∈ L2(∂D) :
]
∂Di

f dσ = 0, ∀i}, H1
0 (∂D) := H1(∂D) ∩ L2

0(∂D) and

ND[u]|∂Di
:= dvi

dn |∂Di
for vi solution to$

Δvi = 0 in Di,

vi = u on ∂Di.
(7.1.1)

We will now prove useful relations for later use.
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Lemma 7.1.2. We have g
−1

2
+K0

D

n
[(Ã−1

D v)1] = Pv2 (7.1.2)

and for some c̃i that

S0
D[(Ã−1
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D Pv2 +

�
i

c̃iχ∂Di , (7.1.3)

with the Dirichlet to Neumann operator ND and the orthogonal projection P onto L2
0(∂D).

Proof. We assume
φ = Ã−1

D v (7.1.4)

and get g
−1

2
+K0

D

n
[φ1] + (P0Pker[φ])2 = v2. (7.1.5)

Applying P to both sides provides the first result. The Neumann condition fixes the
function on the boundary up to a constant on all bounded domains. Due to d

dnS
0
D|− =f−1

2 +K0
D

m
this concludes the proof.

The next lemma gives us a representation of the pressure and its normal derivative on
the surface by calculating the potentials defined in theorem 5.1.5.

Lemma 7.1.3. We have for an incident plane wave pin and resonance potentials ζi that
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(7.1.6)

for ej := dj(V
−11M )j.

Proof. We have with theorem 5.1.5 that
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D A1,0

D )2)

g
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D provides only constant functions, which in turn get transformed to ϕi by Ã−1
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(7.1.8)
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We now have for some c̃i by using lemma 5.3.3 and 7.1.2 that
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m
+ δ

ω2

ω2
M,j

N−1
D P

l
[ζj ]

+O(ω3 + ωδ + δ2),

(7.1.9)

where N−1
D goes from L2

0(∂D) to H1
0 (∂D). Further we get

dSkb
D [φ]

dn
=
�
i

g
p̃in
2

+ ci

nf−k2bPK2
D[ζi] + k2bK

2
D[ζi]

m
+

g
− p̃in

2
+ ci

n
δP

g
1

2
+K0

D

n
[ϕi]

+O(ω3 + ωδ + δ2)

=
�
j

ej

e
k2b (1− P )K2

D + δ
ω2

ω2
M,i

P

l
[ζj ] +O(ω3 + ωδ + δ2).

(7.1.10)

7.2. Coupling spherical bubbles

In this section we will prove lemma 7.0.3 by looking at spherical bubbles and deriving
formulas for S0

D, S
2
D in spherical harmonics. For simplicity we will assume that their

centres lie on the z-axis and we will work with spherical coordinate systems, where the
bubble centres are the origins. For the proof of the following statement see appendix B.

Theorem 7.2.1. We have

1. S0
D± [Y

m
l± ]|∂D∓ = −r2±

�∞
l∓=0

r
l+
+ r

l−
−

dl++l−+1al+,l−,mY m
l∓ ,

2. K0
D± [Y

m
l± ]|∂D∓ = − r2±

r∓

�∞
l∓=0

r
l+
+ r

l−
−

dl++l−+1al+,l−,ml∓Y m
l∓ ,

3. S2
D± [Y

m
l± ]|∂D∓ = 1

2r
2±
�∞

l∓=0
r
l+
+ r

l−
−

dl++l−+1Y
m
l∓ al+,l−,mbl+,l−,m(r+, r−, d),

4. K2
D± [Y

m
l± ]|∂D∓ =

r2±
2r∓

�∞
l∓=0

r
l+
+ r

l−
−

dl++l−+1Y
m
l∓ al+,l−,mcl±,l∓,m(r±, r∓, d)
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a b

Figure 7.1.: (a) and (b) show plots of the absolute values of the coefficients for the spher-
ical harmonic basis of S0

D and S2
D. The system is made up of 2 spheres with

radii 5/6 and a distance of 20. The color represents the spherical harmonic
on which we apply the operators. The x axis represents discrete coefficients
but for easier readability we plotted continuous lines. Note that we validated
the results by using Lebedev quadrature on the spheres, where we replaced
the singularity by an analytical expression, which is exact for locally constant
functions. We get a maximal absolute error of ∼ 2 · 10−14 and ∼ 5 · 10−14.

with

al,lk,m :=
(l + lk)!(−1)l+mw

(2l + 1)(2lk + 1)(l +m)!(l −m)!(lk +m)!(lk −m)!
,

bl,lk,m(r, rk, d) :=

$
r2

2l+3 + rk2
2lk+3 − d2 2llk−(l+lk)+2m2

(2l−1)(2lk−1)(l+lk) l + lk b= 0,
r2

2l+3 + rk2
2lk+3 + d2 l + lk = 0,

cl,lk,m(r, rk, d) :=
2rk2

2lk + 3
+ lkbl,lk,m

(7.2.1)

for |m| ≤ l+ ∧ l−.

Note that the asymmetric (−1)l+ term in al,lk,m is due to the direction of the axis. If
we reflect the coordinate system on the upper bubble through its center (so that the
spherical harmonics point at each other) then this term disappears due to Y m

l+
(−n+) =

(−1)l+Y m
l+
(n+).

We also have the following formula for a self coupling term of a bubble.

Corollary 7.2.2. We have on a sphere

S2
D± [Y

m
l ]|∂D± = −2r3±

1

(2l − 1)(2l + 1)(2l + 3)
Y m
l . (7.2.2)

The proof can be found in appendix B.

Lemma 7.2.3. We have
(ND[v])|∂Di = NDi [v|∂Di ] (7.2.3)

and for spherical inclusions with l > 0 we have

N−1
Di

[Y m
l ] =

ri
l
Y m
l . (7.2.4)
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Proof. Assume that v is the solution of$
Δv = 0 in Di,
dv
dn = Y m

l on ∂Di.
(7.2.5)

The Laplace equation without singularity is solved by

v =
�
k

akr
kY m

k . (7.2.6)

We can see that

δk,l = akkr
k−1
i (7.2.7)

and thus

v =
rl

lrl−1
i

Y m
l . (7.2.8)

We will now look at the operators that appear in the force terms.

Lemma 7.2.4. We have

(−N−1
D PK2

D+PS2
D)[Y

m
l±
χ∂D± ]|∂D∓ = −

∞�
l∓=1

r
l++2
+ r

l−+2
−

dl++l−+1

1

(2l∓ + 3)l∓
Y m
l∓ al+,l−,m. (7.2.9)

and for l± > 0 that

(−N−1
D PK2

D + PS2
D)[Y

m
l±
χ∂D± ]|∂D± = − r3±

(2l± + 1)(2l± + 3)l±
Y m
l± . (7.2.10)

Additionally we can see that we have

(1− P )K2
D[Y

m
l±
χ∂D± ]|∂D∓ =

r
l±+2
± r∓
dl±+1

(∓1)l±

3
w

2l± + 1
Y 0
0 (7.2.11)

and

(1− P )K2
D[Y

m
l±
χ∂D± ]|∂D± = δl±,0

r2±
3
Y 0
0 . (7.2.12)

Proof. We have

N−1
D PK2

D[Y
m
l±
χ∂D± ]|∂D∓ =

r2±
2r∓

∞�
l∓=1

r
l+
+ r

l−
−

dl++l−+1
(ND∓)

−1Y m
l∓ al+,l−,mcl±,l∓,m(r±, r∓, d)

=
r2±
2

∞�
l∓=1

r
l+
+ r

l−
−

l∓dl++l−+1
Y m
l∓ al+,l−,mcl±,l∓,m(r±, r∓, d).

(7.2.13)
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We get

− cl±,l∓,m(r±, r∓, d)
l∓

+ bl+,l−,m(r+, r−, d) = − 2r2∓
(2l∓ + 3)l∓

. (7.2.14)

This proves the first statement. We have due to lemma 4.2.4

N−1
D K2

D[Y
m
l±
χ∂D± ]|∂D± =

1

2r±
N−1

D S2
D[Y

m
l±
χ∂D± ]|∂D±

=− r3±
1

(2l± − 1)(2l± + 1)(2l± + 3)l±
Y m
l±

(7.2.15)

and we now see that

1

(2l± − 1)(2l± + 1)(2l± + 3)l±
− 2

1

(2l± − 1)(2l± + 1)(2l± + 3)
= − 1

(2l± + 1)(2l± + 3)l±
.

(7.2.16)
To arrive at the third statement we note that we get

al,0,0 =
(−1)l√
2l + 1

, a0,l,0 =
1√

2l + 1
(7.2.17)

and

cl,0,0(r, r
k, d) =

2rk2

3
. (7.2.18)

The formula of the forces relies on the tangential derivative on the surface, which we will
now calculate. We first transform the gradient in spherical coordinates and see that

∇ = n∂r +
1

r

cos(θ) cos(φ)
cos(θ) sin(φ)
− sin(θ)

 ∂θ +
1

r sin(θ)

− sin(φ)
cos(φ)

0

 ∂φ. (7.2.19)

Due to rotational symmetry in φ we are able to neglect the last term and get

∇TS
kb
D [φ] =

1

r

cos(θ) cos(φ)
cos(θ) sin(φ)
− sin(θ)

 ∂θS
kb
D [φ]. (7.2.20)

and

(∇TS
kb
D [φ])2 =

1

r2
(∂θS

kb
D [φ])2. (7.2.21)

Lemma 7.2.5. We have on a sphere Br that

\
∂Br

Y 0
l ∇TY

0
lk dσ = rYez

������
(l+1)(l+2)√
(2l+1)(2l+3)

lk = l + 1,

− (l−1)l√
(2l−1)(2l+1)

lk = l − 1,

0 else.

(7.2.22)
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and \
∂Br

f∇TY
0
l

m f∇TY
0
lk
m
n dσ = Yez

������
l(l+1)(l+2)√
(2l+1)(2l+3)

lk = l + 1,

l(l+1)(l−1)√
(2l+1)(2l−1)

lk = l − 1,

0 else.

(7.2.23)

Furthermore we can see that

(∇TY
0
l )3 =

l(l + 1)

r
√
2l + 1

g
1√

2l − 1
Y 0
l−1 −

1√
2l + 1

Y 0
l+1

n
. (7.2.24)

Proof. We are going to use the well known recurrence relation for Legendre polynomials

(P 0
l )

k(x)(1− x2) =
l(l + 1)

2l + 1
(P 0

l−1 − P 0
l+1). (7.2.25)

Thus we have

− sin(θ)∂θ(P
0
l (cos(θ))) =(1− cos2(θ))(P 0

l )
k(cos(θ))

=
l(l + 1)

2l + 1
(P 0

l−1(cos(θ))− P 0
l+1(cos(θ)))

(7.2.26)

from this follows the first statement. We next see thatf∇TP
0
l

m f∇TP
0
lk
m
cos(θ) =

1

r2
∂θ(P

0
l (cos(θ))∂θ(P

0
lk (cos(θ))) cos(θ)

=
1

r2
(P 0

l )
k(cos(θ))(P 0

lk )
k(cos(θ)) sin2(θ) cos(θ).

(7.2.27)

We will also use another well known relation for Legendre polynomials, namely

xP 0
l =

1

2l + 1
((l + 1)P 0

l+1 + lP 0
l−1). (7.2.28)

Combining the two recurrence relations results in

(P 0
l )

k(x)(x− x3) =

e
(l − 1)l(l + 1)P 0

l−2

(2l − 1)(2l + 1)
+

l(l + 1)P 0
l

(2l − 1)(2l + 3)
− l(l + 1)(l + 2)P 0

l+2

(2l + 1)(2l + 3)

l
.

(7.2.29)
On the other hand we also have the relation

(P 0
lk )

k = (2lk − 1)P 0
lk−1 + (P 0

lk−2)
k (7.2.30)

and thus

(P 0
lk )

k =
8lk/2−19�

k=0

(2lk − 1− 4k)P 0
lk−1−2k. (7.2.31)

Due to
] 1
−1 P

0
l (x)P

k0
l (x) dx = δl,lk

2
2l+1 we see that l + lk has to be odd for the integral to

be nonzero. Next we note that due to equation 7.2.29 and 7.2.31 we get for lk − 1 < l− 2
that \ 1

−1
(P 0

l )
k(x)(P 0

lk )
k(x)(x− x3) dx = 0. (7.2.32)
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Due to symmetry the same is true for l − 1 < lk − 2. Thus only l = lk + 1, lk − 1 provide
values. For l = lk + 1 we get\

∂Br

f∇TY
0
l

m f∇TY
0
lk
m
n3 dσ =

w
(2l + 1)(2lk + 1)

2

\ 1

−1
(P 0

l )
k(x)(P 0

lk )
k(x)(x− x3) dx

=
w
(2l + 1)(2l − 1)

(l − 1)l(l + 1)

(2l − 1)(2l + 1)
=

(l − 1)l(l + 1)w
(2l − 1)(2l + 1)

.

(7.2.33)

Finally we exchanging l and lk provides the result for l = lk − 1.

7.3. Eigenfunction of two spheres

The Helmholtz equation is invariant under translation and rotation. We can therefore
position both spheres along the z axis and consider them in bispherical coordinates. The
bispherical coordinates have an associated focal length f := 2a and parameters η ∈ R,
ξ ∈ [0, π), φ ∈ [0, 2π) so that

rx =a
sin(ξ) cos(φ)

cosh(η)− cos(ξ)
, ry = a

sin(ξ) sin(φ)

cosh(η)− cos(ξ)
,

rz =a
sinh(η)

cosh(η)− cos(ξ)
.

(7.3.1)

Figure 7.2 (a) shows the bispherical coordinates for constant η or ξ. Note that for η → ±∞
we focus in on the focal points with rx = ry = 0 and rz = ±a respectively. We can see
that for constant η b= 0 the coordinates describe spheres around the focal point on the
same side of the z axis. In order to describe the two bubbles we define, for d being the
distance between the centres of the spheres,

a :=

w
(d+ r+ + r−)(d− r+ + r−)(d+ r+ − r−)(d− r+ − r−)

2d
,

η± :=± sinh−1

g
a

r±

n
,

(7.3.2)

where r± for consistency with the other sections r− ≥ r+. If we now place the centres of
the spheres along the z axis with coordinates

z± := a coth(η±) (7.3.3)

then the surfaces of the spheres are described by bispherical coordinates with constant
η = η±. A sketch of this is shown in figure 7.2 (b).
It is further well known that

e±η =
ra∓
ra±

(7.3.4)

where ra± is the distance from the upper and lower focal point respectively. We also note
that ξ is the angle between these connecting lines and φ takes on the same role as in
spherical coordinates. We can see a sketch of this in figure 7.3 (a).
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a

η = 1

η = 0.5

η = 0.1
η = 0

η = −0.1

η = −0.5

η = −1

ξ = 0
ξ = π/18 ξ = π/18

ξ = π/6 ξ = π/6

b

z+
r+

η+
a

z−
r−

η−
-a

Figure 7.2.: In figure (a) we can see a sketch of the bispherical coordinate system for fixed
η and ξ respectively. Note that φ corresponds to a rotation around the z axis.
Figure (b) shows a sketch of the bubbles D± and the focal points at z = ±a.
Each sphere can be represented by bispherical coordinates by an appropriate
fixed η±.

The Laplace equation separates in bispherical coordiantes and we are going to make use
of the bispherical harmonics to solve for the resonance potential of two spheres.

Definition 7.3.1. Using bispherical coordinates we define the bispherical harmonics

Bm
l,±(η, ξ, φ) :=

w
2(cosh(η)− cos(ξ))e±(l+ 1

2
)ηỸ m

l (ξ, φ). (7.3.5)

We note that going forward we are going to notify B0
l,± by Bl,±. Finally we will later on

need thatw
2(cosh(η)− cos(ξ))e±η =

1

ra±

u
r2a∓ + r2a± − 2 cos(ξ)ra∓ra± =

f

ra±
(7.3.6)

and the following fact.

Remark 7.3.2. We get

z±1 ±2 a =
a

sinh(η±1)
(cosh(η±1)±2 sinh(η±1)) = ±1r±1e

±2η±1 (7.3.7)

and

f

r±
= e|η±|(1− e−2|η±|). (7.3.8)

7.3.1. Eigenfunction in bispherical coordinates

We will in this section derive the resonance potential in a similar way as in [11]. It is well
known that the φ symmetric solution to the laplace equation can be written as

v(η, ξ) :=
�
l

Al+Bl,+ +Al−Bl,−. (7.3.9)
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Using the generating function of the legendre function we get

1w
cosh(η)− cos(ξ)

=

√
2

e|η/2|
w

1 + e−2|η| − 2 cos(ξ)e−|η| =
√
2
�
l

e−(l+ 1
2
)|η|Pl(cos(ξ)).

(7.3.10)
We will now derive the solutions v± with v±|∂D = χ∂D± . We have ±η± = |η±| and
looking at v± on ∂D± we get�

l

Al+Bl,+ +Al−Bl,− =
�
l

Bl,∓ (7.3.11)

and thus
Al+ = e(l+

1
2
)(−|η±|−η±) −Al−e−(2l+1)η± . (7.3.12)

On the other hand we see on ∂D∓ that�
l

Al+Bl,+ +Al−Bl,− = 0, (7.3.13)

which results in
Al− = −Al+e

(2l+1)η∓ . (7.3.14)

Finally we see that for v± we get

Al,±,+ :=
e(l+

1
2
)(−|η±|+η±)

e(2l+1)η± − e(2l+1)η∓
, Al,±,− :=

e(l+
1
2
)(−|η±|−η±)

e−(2l+1)η± − e−(2l+1)η∓
. (7.3.15)

This can be rewritten, using the choices of sign ±1,±2,

Al,±1,±2
:= (±11)(±21)

e(l+
1
2
)(−|η±1 |±2η±1−2|η±2 |)

1− e−(2l+1)(|η+|+|η−|) . (7.3.16)

Next we note that
dr

dη

����
η±

=
∓a

cosh η± − cos ξ
n± (7.3.17)

and see that

dBl,±1

dn±2

����
η±2

=∓2 a
−1(cosh η±2 − cos ξ)

dBl,±1

dη

����
η±2

=∓2 (2a)
−1 (sinh(η±2)±1 (2l + 1)(cosh η±2 − cos ξ)) Bl,±1 |∂D±2

=∓2 (2a)
−1(sinh(η±2)±1 (2l + 1) cosh η±2) Bl,±1 |η±2

∓2 (∓11)(2a)
−1

d
(l + 1)e∓1η±2 Bl+1,±1 |η±2

+ le±1η±2 Bl−1,±1 |η±2

k
.

(7.3.18)

Finally we see that

ϕ±1 |∂D±2
=

dv±1

dn±2

����
∂D±2

=
�
l

Al,+
dBl,+

dn±2

����
∂D±2

+Al,−
dBl,−
dn±2

����
∂D±2

. (7.3.19)

Combining these results gives us
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a

a
z+

z−-a

ξ r

ra−

ra+

b

a

-a

f

rra−

ra+

θa+

θa− ξ

θa+

d
f2

ra−

k

r
d

f2

ra−

kf2

ra−

ra+

d
f2

ra−

k

Figure 7.3.: Figure a shows ξ and ra±, which can be used to calculate the bispherical
coordinates. We can see in b the change in the spherical coordinates centered
at the upper focal point due to a transformation of ra−.

Lemma 7.3.3. We have for two spheres in bispherical coordinates

ϕ±1 |∂D±2
= ∓2f

−1
�
l

Ãl,±1,+|η±2
Bl,+|η±2

+ Ãl,±1,−|η±2
Bl,−|η±2 (7.3.20)

with

Ãl,±1,±3 |η±2
:=±3 le

∓3η±2 (Al,±1,±3 −Al−1,±1,±3)±3 (l + 1)e±3η±2 (Al,±1,±3 −Al+1,±1,±3).

(7.3.21)

7.3.2. Connecting bispherical to spherical coordinates

In this section we are following the proof of [18] to connect the bispherical harmonics
to spherical harmonics with centers in the focal points. Then we will shift them to the
centers of the two bubbles.

Lemma 7.3.4. We have for two bubbles

Bm
l±(η, ξ, φ) =

l�
k=m

g
l +m

k +m

n
(±1)k+m

g
f

ra±

nk+1

Ỹ m
k (θa±, φ). (7.3.22)

Proof. We will denote by ra± → f2

ra± the transformation of ra± to f2

ra± , i.e. ra∓(ra± → f2

ra± )
is the distance towards a focal point if we transform the distance to the other one. See
figure 7.3(b) for a sketch.
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We first note by using the cosine law that

f2 + r2a− − r2a+
2fra−

= cos(θ−) =
f2 +

d
f2

ra−

k2 − r2a+

d
ra− → f2

ra−

k
2f f2

ra−

. (7.3.23)

This provides us with ra+

d
ra− → f2

ra−

k
= ra+f

ra− . In general we get

ra±
g
ra∓ → f2

ra∓

n
=

ra±f
ra∓

. (7.3.24)

Next we note that

cos θa+

g
ra− → f2

ra−

n
= −

f2 +
d
ra+f
ra−

k2 −
d

f2

ra−

k2

2f ra+f
ra−

= −r2a+ + r2a− − f2

2fra+ra−
= − cos(ξ),

(7.3.25)
where we again used the cosine rule and in general we get

cos θa±
g
ra∓ → f2

ra∓

n
= ∓ cos(ξ). (7.3.26)

We can now connect the spherical with the bispherical harmonic, namely

Bm
l± =

w
2(cosh(η)− cos(ξ))e±(l+ 1

2
)ηỸ m

l (ξ, φ)

=(±1)l+m f

ra±

eg
ra∓
f

nl

Ỹ m
l (θa∓, φ)

lg
ra± → f2

ra±

n
(7.3.27)

where we used equation 7.3.26 and that Pm
l (−x) = (−1)l+mPm

l (x). We are next using
the shift lemma for spherical harmonics 4.2.3 to shift them to the other focal point

Bm
l± =(±1)l+m 1

ra±f l−1

l�
lk=0

(−1)l
k
(l +m)!(∓f)l

k

lk!(l − lk +m)!

d
rl−lk
a± Ỹ m

l−lk(θa±, φ)
kg

ra± → f2

ra±

n

=(±1)l+m 1

ra±f l−1

l�
lk=0

g
l +m

lk

n
(±f)l

k
g

f2

ra±

nl−lk

Ỹ m
l−lk(θa±, φ)

=(±1)l+m
l�

lk=0

g
l +m

lk

n
(±1)l

k
g

f

ra±

nl−lk+1

Ỹ m
l−lk(θa±, φ)

=

l�
k=m

g
l +m

k +m

n
(±1)k+m

g
f

ra±

nk+1

Ỹ m
k (θa±, φ),

(7.3.28)

where we used that Ỹ mk
lk (±f̂) = δmk,0(±1)l

k
.
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a b

Figure 7.4.: (a) shows the coupling coefficients for different bispherical harmonics. The
system is made up of two spheres with radius r± = 5, 6 and separation
d = 20. The color represents the coefficient l of Bl,+ (For better readability
every third line is bold) and on the x axis we have the parameter lk of the
spherical harmonics. In the upper/lower plot we see the coefficient on the
upper/lower sphere. The results were checked by Lebedev quadrature and
produced a maximal L2 error of ∼ 4.6 ·10−2 for the upper and ∼ 2 ·10−10 for
the lower case. In (b) we instead look at B5,+ for different distances. This
time the color corresponds to the spherical harmonic. The maximal L2 errors
to the quadrature are ∼ 7.7 · 10−3 and ∼ 1.8 · 10−12 respectively.

Finally we will shift the spherical harmonics to the centers z± := (0, 0, z±) with z± :=
a coth(η±) of the two spheres with radius r± := a

sinh(|η±|) . We will look at the points on
the surfaces of the spheres and derive a series of spherical harmonics to represent the
bispherical harmonics.

Lemma 7.3.5. We have

Bm
l,±1

|η±2
=

∞�
h=m

Ỹ m
h (θ±2 , φ)C

m
l,h,±1

|η±2
(7.3.29)

for

Cm
l,h,±|η± :=

l∧h�
k=m

g
l +m

k +m

ng
h−m

k −m

n
(±1)k+m (−z± ± a)h−kfk+1

rh+1
±

,

Cm
l,h,∓|η± :=−

l�
k=m

g
l +m

k +m

ng
k + h

k −m

n
(±1)k+m+1rh±fk+1

(−z± ∓ a)k+h+1
.

(7.3.30)

Proof. First we will shift the spherical harmonics along the z-axis from ±a to z±. We
have |z± ∓ a| ≤ r± and can thus see that

1

rl+1
a±

Ỹ m
l (θa±, φ) =

∞�
h=l

g
h−m

l −m

n
(−z± ± a)h−l

rh+1
±

Ỹ m
h (θ±, φ). (7.3.31)
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Inserting this for the bispherical harmonics we get on the sphere D± that

Bm
l±|η± :=

w
2(cosh(η±)− cos(ξ))e(l+

1
2
)|η±|Ỹ m

l (ξ, φ)

=
l�

k=m

g
l +m

k +m

n
(±1)k+m

∞�
h=k

g
h−m

k −m

n
(−z± ± a)h−kfk+1

rh+1
±

Ỹ m
h (θ±, φ)

=
∞�

h=m

Ỹ m
h (θ±, φ)

l∧h�
k=m

g
l +m

k +m

ng
h−m

k −m

n
(±1)k+m (−z± ± a)h−kfk+1

rh+1
±

.

(7.3.32)

On the other hand shifting the spherical harmonics from ∓a to z±. We have |z±∓a| > r±
and can thus see that

1

rl+1
a∓

Ỹ m
l (θa∓, φ) = ∓

∞�
h=m

g
l + h

l −m

n
(−1)l+mrh±

(−z± ∓ a)l+h+1
Ỹ m
h (θ±, φ) (7.3.33)

where we used Ỹ m
l (�x− y) = (−1)lỸ m

l (�y − x) and (Y −m
l )∗ = (−1)mY m

l . Inserting this
in equation 7.3.28 results in

Bm
l∓ |η± :=

w
2(cosh(η±)− cos(ξ))e−(l+ 1

2
)|η±|Ỹ m

l (ξ, φ)

=

l�
k=m

g
l +m

k +m

n
(±1)k+m+1

∞�
h=m

(−1)l+m

g
k + h

k −m

n
rh±fk+1

(−z± ∓ a)k+h+1
Ỹ m
h (θ±, φ)

=−
∞�

h=m

Ỹ m
h (θ±, φ)

l�
k=m

g
l +m

k +m

ng
k + h

k −m

n
(±1)k+m+1rh±fk+1

(−z± ∓ a)k+h+1
.

(7.3.34)

This concludes the proof.

Finally combining the results of the last two sections provides us with

Corollary 7.3.6. The basis functions of the kernel of
f−1

2 +K0
D

m
has the following

spherical harmonic representation

ϕ±1 |∂D±2
=
�
l

Y 0
l (θ±2 , φ)El,±1 |η±2 (7.3.35)

for

El,±1,D±2
:= ∓2f

−1

x
4π

2l + 1

�
±3

∞�
h=0

Ãh,±1,±3 |η±2
Ch,l,±3 |η±2

. (7.3.36)

7.4. Capacity matrix

We will first establish a general form for the eigenvalues and eigenvectors of the normalized
capacity matrix for general inclusions. Then we establish the capacity matrix for a two
sphere system and see that the result is consistent with literature.
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a b

Figure 7.5.: In this figure we look at the coefficients of the resonance potential ϕ+ in
spherical harmonics for two bubbles with radii r = 5, 6. The color of the lines
correspond to the parameter l of the spherical harmonics Y 0

l . In (a)/(b) we
look at the potential on the upper/lower sphere. The black curve represents
the L2 error to the function χD+ after applying the formula of S0

D to the
potential.

Lemma 7.4.1. For two inclusions, which do not need to be spheres, the resonance fre-
quency ω± is

ω± =
u

δc2bλ± − iδ
1

8π

c2b
cl
λ2
±
|D1|(λ± + C̃1,2 − C̃2,2)

2

(C̃2,2 − λ±)2 + C̃2,1C̃1,2

+O(δ3/2), (7.4.1)

for the eigenvalues λ± of the matrix C̃,

λ± :=
1

2

g
C̃1,1 + C̃2,2 ±

u
(C̃1,1 − C̃2,2)2 + 4C̃1,2C̃2,1

n
(7.4.2)

with eigenvectors

v+ :=
d
λ+ − C̃2,2, C̃2,1

kT
(7.4.3)

and

v− :=
d
C̃1,2, λ− − C̃1,1

kT
. (7.4.4)

Proof. The eigenvalues and eigenvectors can be directly checked. We can also see due to
the symmetry of C that

vH
+D1M,MDv+

vH
+Dv+

=
(|D1|(λ+ − C̃2,2) + |D2|C̃2,1)

2

|D1|(C̃2,2 − λ+)2 + |D2|C̃2
2,1

=
|D1|2(λ+ + C̃1,2 − C̃2,2)

2

|D1|((C̃2,2 − λ+)2 + C̃2,1C̃1,2)
.

(7.4.5)
We can now use lemma 5.2.3 to conclude the proof.

Remark 7.4.2. For two identical inclusions, which do not need to be spheres, we get
C̃1,1 = C̃2,2 and thus

λ± = C̃1,1 ± C̃1,2. (7.4.6)
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Together with lemma 7.4.1 this results in the following corollary.

Corollary 7.4.3. For two identical inclusion we have

ω+ =

u
δc2b(C̃1,1 + C̃1,2)− iδ

1

4π

c2b
cl
(C̃1,1 + C̃1,2)

2|D1|+O(δ3/2),

ω− =

u
δc2b(C̃1,1 − C̃1,2) +O(δ3/2).

(7.4.7)

In the next lemma we will derive a formula for the capacity matrix, which is consistent
with the known results, see for example [11].

Lemma 7.4.4. The capacity matrix for two spheres, which do not need to be spheres, is

C±2,±1 = 4πf
�
l

e−(2l+1)|η±1 |

1− e−(2l+1)(|η+|+|η−|) ×
$
1 ±1 = ±2,

−e−(2l+1)|η∓1 | ±1 b= ±2.
(7.4.8)

Proof. We use formula corollary 7.3.6 and the orthogonality of spherical harmonics to get

C±2,±1
:=−

\
∂D±2

ϕ±1 dσ

=±2 f
−1

�
l

\
∂D±2

x
4π

2l + 1
Y 0
l (θ±2 , φ)

�
±3

∞�
h=0

Ãh,±1,±3 |η±2
Ch,l,±3 |η±2

dσ

=±2 f
−1r2±2

4π
�
±3

∞�
h=0

Ãh,±1,±3 |η±2
Ch,0,±3 |η±2

=±2 4πf
�
±3

∞�
h=0

Ãh,±1,±3 |η±2

(e±η± − e∓η±)2
×

$
e±η± − e∓η± ± = ±2 = ±3,

e±2(h+1)η∓ − e±2η∓h ± = ±2 = −±3 .

(7.4.9)

Where we use that

h�
k=0

g
h

k

n
(∓1)k+1fk+1

(−z∓ ± a)k+1
=

±f

(z∓ ∓ a)

g
1± f

z∓ ∓ a

nh

=(e±2η∓ − 1)e±2η∓h = e±2(h+1)η∓ − e±2η∓h.

(7.4.10)

We further have that�
l

Ãl,±1,±3 |η±2
=
�
l

±3le
∓3η±2 (Al,±1,±3 −Al−1,±1,±3)

±3 (l + 1)e±3η±2 (Al,±1,±3 −Al+1,±1,±3)

=±3

�
l

Al,±1,±3(e
±3η±2 − e∓3η±2 )

=±3 (e
±3η±2 − e∓3η±2 )

�
l

e(l+
1
2
)(−|η±1 |±3η±1 )

e±3(2l+1)η±1 − e±3(2l+1)η∓1

(7.4.11)
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and further for ±2 = ±3 = ± that�
l

Ãl,±1,±|η±(e±2(l+1)η∓ − e±2η∓l) =

=±3

�
l

Al,±1,±e
∓η±(l(e±2(l+1)η∓ − e±2η∓l)− (l + 1)(e±2(l+2)η∓ − e±2η∓(l+1)))

±3

�
l

Al,±1,±e
±η±((l + 1)(e±2(l+1)η∓ − e±2η∓l)− l(e±2lη∓ − e±2η∓(l−1)))

=0.

(7.4.12)

Combining these equations provides the result.

Using the last lemma we can derive a formula for the rescaled capacity matrix

C̃ := D−1C = 3f

ii
�

l
r−3
+ e−(2l+1)|η+|

1−e−(2l+1)(|η+|+|η−|)
�

l
−r−3

+ e−(2l+1)(|η+|+|η−|)

1−e−(2l+1)(|η+|+|η−|)

�
l
−r−3

− e−(2l+1)(|η+|+|η−|)

1−e−(2l+1)(|η+|+|η−|)
�

l
r−3
− e−(2l+1)|η−|

1−e−(2l+1)(|η+|+|η−|)

pp . (7.4.13)

7.5. Asymptotic case

In this section we will look at the two extreme cases of bubble separation. For bubbles
close to touching we are going to see that in the lowest order only the resonance coefficient
of the in phase oscillation of the bubbles is going to have an impact on the scattered solu-
tion. Furthermore we will describe the asymptotic behaviour of the resonance frequencies
for that case. For bubbles far apart we will see that in the lowest order the resonance
frequencies correspond to systems of isolated bubbles. Then we will derive a formula for
low order coupling and see that it is consistent with past results. Finally we will look at
the Bjerknes forces in this regime and arrive at the historical approximation.

7.5.1. Close to touching

For this approximation we will assume that the separation : := d − r+ − r− scales with

: ∼ e−δ(β−1)
for 0 < β < 1. We will rely on [11] and cite the results. We have the

eigenvectors

v+ =

e
1

− r3+
r3−

l
+O(δβ/2), v− =

g
1
1

n
+O(δβ/2). (7.5.1)

We can see that the first eigenvector represents bubbles oscillating out of phase, while
the second one are bubbles in phase. This results in

V −112,1 =

g
0
1

n
+O(δβ/2) (7.5.2)

for V being the matrix of these eigenvectors. This shows us that the contribution of
the out of phase oscillation gets scaled down for the scattered field. This makes sense
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insofar as that the bubbles get driven by the same field and due to the large wavelength
experience almost the same incident pressure field. We further have

Theorem 7.5.1. We have in the close to touching case

ω+ =
u

δc2bλ+,0(:) +O(δ1/2),

ω− =
u

δc2bλ−,0 +O(δ3/2−β)
(7.5.3)

for

λ+,0(:) :=
3

2

g
1

r3+
+

1

r3−

n
r+r−

r+ + r−
log

g
2r+r−

(r+ + r−):

n
,

λ−,0 :=
r3+σ+ + r3−σ−

r3+ + r3−

(7.5.4)

with

σ± :=
3r∓

(r+ + r−)2r±

∞�
n=1

1

n(n− r±
r++r− )

. (7.5.5)

Proof. See Theorem 4.4 in [11] for the proof. We extend it with the statement for ω− by
inserting

a

|η+|+ |η−| =
r1r2

r1 + r2
+O(:) (7.5.6)

into the definition of σi in the reference.

In the simulations we are going to see these relations empirically.

7.5.2. Far field

In the far field case we assume that the distance between the bubble centres d is large.
We can then expand the capacity matrix and the force in d−1. We will next prove the
representation of the resonance frequencies. Readers not interested in the calculations
may skip to equation 7.5.14. We will start by stating the following expansions

a =
d

2

vg
1− (r+ + r−)2

d2

ng
1− (r+ − r−)2

d2

n
=

d

2

g
1− r2+ + r2−

d2

n
+O(d−3) (7.5.7)

and

e−|η±| =

 a

r±
+

v
1 +

g
a

r±

n2
−1

=
r±
a

e
1 +

x
1 +

dr±
a

k2
l−1

=
r±
a

g
2 +

1

2

dr±
a

k2
+O(a−4)

n−1

=
r±
2a

g
1−

dr±
2a

k2
n
+O(a−4)

=
r±
d

g
1 +

r2+ + r2−
d2

ng
1−

dr±
d

k2
n
+O(d−5)

=
r±
d

g
1 +

r2∓
d2

n
+O(d−5).

(7.5.8)
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This results in

2a

1− e−(|η+|+|η−|) = d

g
1 +

r+r− − (r2+ + r2−)
d2

n
+O(d−3). (7.5.9)

The last two equations allow us to restate the capacity matrix

C = 4π

r+ + r2+
r−
d2

− r+r−
d

− r+r−
d r− + r2−

r+
d2

+O(d−3) (7.5.10)

In order to find the resonance frequencies we will state the normalized capacity matrix

C̃ = 3

iir−2
+ + r−

d2r+
− r−2

+ r−
d

− r+r−2
−
d r−2

− + r+
d2r−

pp+O(d−3). (7.5.11)

We note thatg
r−2
+ − r−2

− +
r−
d2r+

− r+
d2r−

n2

= (r−2
+ − r−2

− )2 + 2
(r2− − r2+)

2

d2r3+r
3−

+O(d−4). (7.5.12)

Using lemma 7.4.1 and equation 7.5.11 we see that

λ± =
3

2

e
r−2
+ + r−2

− +
r2− + r2+
d2r+r−

±
v
(r−2

+ − r−2
− )2 + 2

(r2− − r2+)
2

d2r3+r
3−

+ 4
1

d2r+r−
+O(d−4)

l

=
3

2

e
r−2
+ + r−2

− +
r2− + r2+
d2r+r−

±
v
(r−2

+ − r−2
− )2 + 2

r4− + r4+
d2r3+r

3−

l
+O(d−4)

=
3

2

g
r−2
+ + r−2

− +
r2− + r2+
d2r+r−

±
g
|r−2
+ − r−2

− |+ r4− + r4+
d2r+r−|r2− − r2+|

nn
+O(d−4).

(7.5.13)

Due to r− > r+ this results in

λ± = 3r−2
± ± 3r4∓

d2r+r−(r2− − r2+)
+O(d−4). (7.5.14)

Note that ω± =
u

δλ±c2b now solves

(ω2
M,+ − ω2

±)(ω
2
M,− − ω2

±)−
r+r−
d2

ω4
± = O(d−4) (7.5.15)

for ω2
M,± := δc2b3r

−2
± being the resonance frequency corresponding to the isolated bubble.

This equation has been previously used to estimate the change in the resonance fre-
quency due to the inclusion of the lowest order interactions between the bubbles [19, 20].
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Note that our general lemma for the capacity matrix (lemma 7.4.4) contains all linear
interactions between the bubbles and holds therefore over all distances.

We now get using the Taylor expansion of
√
1 + x that

ω± =
u

3δc2br
−2
±

g
1± r3∓r±

2d2(r2− − r2+)

n
+O(δ + δ1/2d−4). (7.5.16)

Note that in the above equation the larger resonance frequency is increasing and the lower
one decreasing for decreasing distances. Although this is only a low order approximation
we will later on observe this over the whole simulation domain.

We now get for the matrix of eigenvectors of C̃ by using lemma 7.4.1 and rescaling that

V =

g
1 0
0 1

n
+ d−1

 0 − r3−
r2+−r2−

r3+
r2+−r2−

0

+O(d−2) (7.5.17)

and

V −112,1 =

g
1
1

n
− d−1

− r3−
r2+−r2−
r3+

r2+−r2−

+O(d−2). (7.5.18)

The first equation tells us that in the lowest order the resonance functions correspond to
oscillations of the individual bubbles. The latter equation thus tells us that the resonance
potentials will both be present in the potential of the scattered field for bubbles far apart.

Bjerknes force

In this subsection we will now calculate an approximation of the secondary Bjerknes force.
For that we use lemma 7.0.3 and evaluate G.

Lemma 7.5.2. We have in the far field

Gn
0,D±(ϕ±, λ) =−

√
4π

3
r± +O(d−3),

Gn
1,D±(ϕ∓, λ) =∓

√
12π

1

λ

r∓
d2

+O(d−3)

(7.5.19)

and Gn
l,D±2

(ϕ±1 , λ) = O(d−3) for the rest. We also have

G1,D±(ϕ±, λ) =∓
√
12π

λ

r±r+r−
d3

+O(d−3),

G1,D±(ϕ∓, λ) =∓
√
12π

λ

r+r−
d2

+O(d−3)

(7.5.20)

and Gl,D±2
(ϕ±1 , λ) = O(d−3) for l ≥ 2.

Proof. For a proof see appendix C.
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Note that this tells us that the bubbles oscillate uniformly up to order O(d−2). We can
now calculate the pressure gradient.

Lemma 7.5.3. We have

dp

dn

����
D±

=− k2b

√
4πr±
3

p̃inω
2±

ω2± − ω2

g
1 +

r∓
d

ω2

ω2∓ − ω2

n
Y 0
0 +O(ω3 + d−2), (7.5.21)

Proof. We use lemma 7.5.2 and lemma 7.0.3 to get

dp

dn

����
D±

=− k2b

√
4πr±
3

g
V±,±

ω2±
ω2± − ω2

(V −112,1)± + V±,∓
ω2∓

ω2∓ − ω2
(V −112,1)∓

n
Y 0
0

+O(ω3 + d−2)

=− k2b

√
4πr±
3

g
ω2±

ω2± − ω2
− ω2±

ω2± − ω2

r3∓
d(r2∓ − r2±)

+
ω2∓

ω2∓ − ω2

r3∓
d(r2∓ − r2±)

n
Y 0
0

+O(ω3 + d−2)

=− k2b

√
4πr±
3

g
ω2±

ω2± − ω2
+

r∓ω2±
d

ω2

(ω2∓ − ω2)(ω2± − ω2)

n
Y 0
0 +O(ω3 + d−2)

=− k2b

√
4πr±
3

ω2±
ω2± − ω2

g
1 +

r∓
d

ω2

ω2∓ − ω2

n
Y 0
0 +O(ω3 + d−2),

(7.5.22)

where we used
ω2∓

ω2∓ − ω2
− ω2±

ω2± − ω2
=

ω2(ω2± − ω2∓)
(ω2∓ − ω2)(ω2± − ω2)

(7.5.23)

to arrive at the result.

We can see that this corresponds to the solution of the linearized Rayleigh-Plesset equa-
tion of two bubbles with linear coupling [21, p. 10]. It is now straightforward to calculate
the secondary Bjerknes force.

Lemma 7.5.4. In the far field the secondary Bjerknes force on Bubble D± turns to

F 2,D± =∓ 2δ
2πω2p̃2in

ρl

1

ω2
+ − ω2

1

ω2− − ω2

r+r−
d2

Yez +O(ω + d−3). (7.5.24)

Proof. Lemma 7.0.3 tells us that

Fn
D±(Y

0
0 , Y

0
1 ) = −r±Yez 2√

3
. (7.5.25)

Further we remind ourselves that λ± = 3/r2±, ω2± = λ±c2bδ and e± = d± + O(d−1). We
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get

F 2,D± =
k4b

2ω2δρl
e+e−Fn

D±(ϕ±, ϕ∓) +O(ω + d−3)

=− k4b
2ω2δρl

e+e−r±
2√
3
Gn

0,D±(ϕ±, λ±)G1,D±(ϕ∓, λ∓)Yez +O(ω + d−3)

=∓ k4b
2ω2δρl

e+e−r±
2√
3

√
4π

3
r±

√
12π

λ∓
r+r−
d2

Yez +O(ω + d−3)

=∓ 4πk4b
3ω2δρl

d+d−
1

λ∓
r3±r∓
d2

Yez +O(ω + d−3)
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+
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=∓ 2δ
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ρl

1
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+ − ω2

1
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r+r−
d2

Yez +O(ω + d−3).

(7.5.26)

We can see that this matches up nicely with the historic considerations that we derived
in lemma 2.3.10. For later reference in our simulations we will describe the asymptotic
behaviour of the force contributions defined in theorem 7.0.1.

Lemma 7.5.5. We have the asymptotic scaling

FD+,+,+ ∼ d−3, FD+,+,− ∼ d−2,

FD+,−,+ ∼ d−4, FD+,−,− ∼ d−3.
(7.5.27)

Proof. We have

FD+,+,+ ∼Gn
0,D+

(ϕ+)G1,D+(ϕ+) ∼ d−3,

FD+,+,− ∼Gn
0,D+

(ϕ+)G1,D+(ϕ−) ∼ d−2,

FD+,−,+ ∼V+,−Gn
0,D+

(ϕ+)G1,D+(ϕ+) ∼ d−4,

FD+,−,− ∼V+,−Gn
0,D+

(ϕ+)G1,D+(ϕ−) ∼ d−3.

(7.5.28)

7.6. Numerical illustration

In this section we will empirically analyse the two bubble system by considering a specific
example. We will look at a system of two bubbles for characteristic lengths :/(r+ + r−)
between 10−2 and 102. Further we set

δ = 10−13, cb = 1, cl = 1. (7.6.1)

The simulations were done in the basis of the spherical harmonics on the bubble surfaces
and by using the formulas derived in this chapter.
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a b

Figure 7.6.: In the figures we look at the case of two spheres with radii 5 and 6 for
different separations. In a we show the eigenvalues of the normalized capacity
matrix C̃. We have indicated the theoretical predictions of the asymptotic
approximation with dotted and slashed lines. Note that the constant d was
fitted by least square error. In figure b we look at the coordinates of the
vector (1, 1)T in the normalized eigenbasis of C̃.

Remark 7.6.1. For easier comparisons we will invert the sign of the Force on the upper
bubble. Thus a positive force on a bubble represents an attractive force toward the other
bubble.

We are going to cover two cases. On the one hand we will look at a system with similar
sized bubbles r = 5, 6 and on the other hand a system with bubbles of very different sizes
r = 1, 5.

Before going into detail we will shortly summarize the patterns of the two systems, which
can be seen in figures 7.8 and figure 7.10. The numerics show different patterns in our
scope, some of which are already well known [21]. The first one describes the bubbles
attracting each other over all distances, which will be seen for example in the first system
for ω1. Further bubbles can repel each other if they are far apart, which turns to attraction
at shorter distances, we will see this in the first system for ω4. The inverse is also the case,
where bubbles attract each other at large separations but repel at shorter ones. This will
be seen in the second system for ω5. This creates a stable distance for the bubbles.

Further we are going to see a few more complex patterns. In the first system for ω5 we
will see that the bubbles attract each other at large distances, but when they move closer
they will start to repel but finally at very short ranges this will change again to attraction.
Another interesting example are ω1 and ω2 in the second system, where at close ranges the
smaller bubble feels an attractive force, while the larger one gets accelerated away. This
is noteworthy insofar that the two bubble system experiences a total acceleration and
it does not depend on the direction of the incident waves. If the simulations accurately
depict reality this could create a travelling bubble pair without the direct influence of the
incident wave gradient.

We will first look at the case of the similar sized bubbles. Then we will look at the
second system of differently sized bubbles. For some consideration of the accuracy of our
formulas by comparing it to direct inversion of the system see appendix D.
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a b

Figure 7.7.: In (a) the choice of driving frequencies in relation to the resonance frequencies
is visualized. (b) shows the change of the coefficients d±.

7.6.1. Similar sized bubbles

We set the radii of the bubbles to 5 and 6. We will first take a look at the eigenvalues and
eigenvectors of C̃, which correspond to the resonance frequencies. In figure 7.6 (a) the
change of eigenvalues due to the interactions is presented. For large characteristic lengths
we can see that they match up nicely with the asymptotic behaviour for the far field.
This corresponds to the frequencies of two isolated spheres. For decreasing distances we
can see that the upper resonance frequency, which in the far field is associated to the
smaller sphere, starts increasing. On the other hand the eigenvalue corresponding to the
other sphere decreases slightly and stays similarly sized. We see that the divergence rate
of the bigger eigenvalue and the asymptotic value of the smaller eigenvalue matches up
nicely for the prediction for the close to touching case.

In figure 7.6 (b) we look at the vector

g
1
1

n
in the normalized eigenbasis of C̃. This

corresponds to an equal and constant stimulation of both bubbles. In the far field we
have almost no interactions and each resonance function is associated to a bubble. On
the other hand for the close to touching case the resonance functions correspond to the
bubbles oscillating exactly in or exactly out of phase. We can see in the figure how the
coefficients move between these extremes.

We will now take a look at the coefficients d±. Figure 7.7 (a) shows different scenarios for
incident frequencies and (b) the corresponding coefficients. We can see the singularities
of d± at the crossing points of ω2, ω5 with the resonance frequencies.

We will now look at the forces on the smaller bubble D+. We can see in figure 7.8 a plot
of the scaled force contributions for the upper bubble defined by

F s
±1,±2

:= FD+,±1,±2

g
V −1

g
1
1

nn
±1

g
V −1

g
1
1

nn
±2

. (7.6.2)

The relations that we derived in lemma 7.5.5 for the far field match up with the growth
rate in (a). Thus in the far field F s

+,− dominates and declines slower than the rest. In
our range F s−,− is one order bigger than the other contributions for small distances. We
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a b

Figure 7.8.: A two bubble system with radii 5,6 is considered. (a) shows the scaled force
contributions acting on the smaller bubble for a range of distances. Note
that due to the scaling the contribution of F s−,− dominates for small :. (b)
shows the total forces on the smaller bubble for different driving frequencies.
A stable distance can be seen in ω5.

can also see that both of these contributions are positive over the part where they are
largest respectively.

As long as d+ is not significantly bigger than d− this results in the force being attractive
for small distances due to F s−,− dominating. On the other hand for large distances we
also get an attractive force if d+d− is positive and repulsive otherwise. That are exactly
the cases described in the historical formula for the secondary Bjerknes force. In Figure
7.8 (b) we can see the total force at different incident frequencies. For ω1 both d+, d−
are similarly sized, have the same sign and thus we get an attractive force over the
whole domain. ω2 lies just below the lower resonance frequency for the far field and is
just above it in the near field. The behaviour is similar to ω1, except that due to the
lowering of the resonance frequency for closer distances d− has a singularity. This results
in a stronger attraction of the bubble at that point. Although for closer distances d− is
negative any positive contributions of F s

+,− get dominated by the contributions of F s−,−
because of d+d− Y d2−. Next we look at ω3. It lies just above the lower resonance
frequency. In the far field this produces a repulsive force, but for smaller distances due to
the growth of F s−,− the force gets attractive. ω4 lies in the middle between both resonance
frequencies. The case is almost identical to ω3 except that now due to |d−| being smaller
the attractive behavior sets on later. Finally ω5 lies a bit above the larger resonance
frequency. For large distances the far field behavior produces an attractive force. If the
bubbles move closer together then when the bigger resonance frequency hits the driving
frequency the term F s

+,+ becomes significant and creates a repulsive force. This creates a
stable distance where the bubble does not move closer or further away. For even smaller :
we get an attractive force again. The forces on the larger bubble (r=6) are not completely
symmetric to the ones on the smaller bubble (r=5) for smaller distances. We note that
the liquid also has momentum and thus the momentum of the bubbles in general does
not get conserved. For more details see appendix D.
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a b

Figure 7.9.: (a) shows the change of resonance frequencies for changing distances and the
choice of driving frequencies. In (b) the forces on the smaller bubble (r=1)
due to a larger bubble (r=5) are presented.

7.6.2. Differently sized bubbles

Here we will work with two bubbles with radius 1 and 5. We will again first look at the
forces on the smaller bubble. In 7.9 (a) we can see that the lower resonance frequency
hardly changes, while the upper one increases for small distances. The driving frequencies
that we will use are also shown in (a). In (b) we consider the force on the smaller bubble.
The forces are similar to the case of two bubbles of similar size that we already covered.
ω1 and ω2 have curves of an attractive force over the whole domain. Note that we now
do not get a singularity for ω2 because the lower frequency is changing only slightly. ω4

is again a repulsive force and changes to an attractive one at close ranges. Finally we
again get a stable distance for ω5, because of the singularity due to the increase in the
upper resonance frequency. For a plot of the force contributions see appendix D.
Figure 7.10 (a) shows the force contributions for the larger bubble. We can see that four
sign changes take place, two for F s

+,−, and one for F s
+,+ and F s−,+ each. This time the

forces at ω5 stay attractive even at the singularity. This is the case because of F+,+ being
attractive near the singularity and F−,− for small separation distances. Interestingly this
would suggest that both bubbles get accelerated in the direction from the bigger to the
smaller bubble. Also noteworthy is that for small separations we again see an attraction
for all frequencies due to dominating F−,−.
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a b

Figure 7.10.: (a) shows the force contributions of the larger bubble in the 2 bubble system
(r=1,5). In (b) the total forces are presented for a range of frequencies.



8. Summary, limitations and outlook

In this thesis we derived an approach of analyzing the Bjerknes forces and applied it to
one or two strongly-interacting and multiple weakly-interacting spherical bubble systems.
To the best knowledge of the author this is the first time that the system with complete
interaction in the linear regime has been considered for analyzing the Bjerknes forces.
The derived analytic formula proved to be consistent with past results for well separated
bubbles, see lemma 7.5.4. Traditionally only uniform expansion of the bubbles has been
looked at, which as we have seen in lemma 7.5.3, does only hold up to order O(d−2).
Our new method allows us to observe complex effects at small separations caused in part
by deformations of the bubble interface. Due to the scope of the thesis already being
very large, we looked in section 7.6 empirically at two systems and considered different
cases of interactions. We saw multiple occasions, where sign reversal of the Bjerknes
force took place and even observed an example of both bubbles getting accelerated in
the same direction. Multiple simulations for verification of partial results and asymptotic
approximations of our formula, to show consistency with past results, were performed.
Due to the complexity of the topic some simplifications had to be made to allow a reason-
able formulation of the problem. First, we neglected the viscosity and lamé terms in the
Navier-Stokes equation. In past derivations they were often considered and resulted in
phase shifts of the oscillations near the resonance frequencies, see 2.2.17. It may be pos-
sible to modify our approach to include these contributions to achieve higher accuracy.
Furthermore, our approach is limited by the linear nature of the differential equation,
which breaks for high amplitudes of the incident wave. Finally, we limited ourselves so
far to frequencies not too close to resonance, but our approach allows for higher order
calculations of the coefficients di, which would provide better approximations of the phase
shifts near the singularity.
This thesis shows that our approach produces consistent results with literature and al-
lows an analysis of bubbles, which are strongly interacting. We saw that layer potential
techniques can be used to derive the Bjerknes forces and future investigations, especially
for the close to touching regime, could provide insight into the sign reversal and further
effects at closer ranges.
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Appendix

A. Reynolds transport theorem

Cn(D̄) stands for the n times continously differentiable functions inD where the function
and its derivatives can be continously extended to D̄.

Theorem A.1. (Reynolds transport theorem) For a coordinatisation ẑ ∈ C2(D×(t0, t1))
of the volume D(t), where the inverse in space x(·, t) is C(D(t)), with reference domain
D and a function f ∈ C1(M) with

M := {(z, t)|t ∈ (t0, t1), z ∈ D(t)}. (A.1)

We get

d

dt

\
D(t)

f =

\
D

g
d

dt
f̂ + f̂((T−1∇) · ∂tu)

n
det(T ) dx =

\
D(t)

df

dt
+

\
∂D(t)

f (v · n) dσ
(A.2)

with the velocity v(z, t) := (∂tu)(x(z, t), t) with displacement u(x, t) := ẑ(x, t)− x.

Proof. The proof of reynolds theorem is similar to the proof of [22]. We define

f̂(x, t) := f(ẑ(x, t), t), T i,j(x, t) := ∂iẑj(x, t) = δi,j + ∂iuj(x, t) (A.3)

and note that f̂ ∈ C1(D × (t0, t1)), T ∈ C1(D × (t0, t1)). Next we see that\
D(t)

f(z, t) dz =

\
D
f(ẑ(x, t), t) det(T )(x, t) dx. (A.4)

For invertible T
∂t det(T ) = det(T ) Tr(T−1∂tT ), (A.5)

which follows from the fact that ∂: det(1+ :T )|:=0 = Tr(T ). Further we can see that

∂tT i,j(x, t) =
d

dxi
(∂tuj)(x, t) =

d

dxi
(∂tuj)(x(ẑ(x, t), t), t)

=

e
d(∂tuj)(x(·,t),t)

dzk
(∂tuj)(x(·,t),t)

l
(ẑ(x, t))

dẑk

dxi
(x, t)

=
�
k

T i,k(x, t)
d

dzk
vj(ẑ(x, t), t).

(A.6)

This results in
∂t det(T )(x, t) = det(T )(x, t)(∇ · v)(ẑ(x, t), t). (A.7)
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We thus arrive at

d

dt

\
D(t)

f dz =

\
D

d

dt
f̂ det(T ) + f̂(∇ · v) det(T ) dx

=

\
D(t)

d

dt
f + v · ∇f + f∇ · v dz.

(A.8)

We additionally note that

∇z · ((∂tu)(x(z, t), t)) = (T−1∇x · (∂tu))(x(z, t), t). (A.9)

B. Coupling spherical bubbles

First we will decompose |x− y| in spherical harmonics.

Lemma B.1. We have for |x| ≥ |y| that

|x− y| =4π|x|
�
l

g |y|
|x|

nl 1

2l + 1

g
− 1

2l − 1
+

1

2l + 3

y2

x2

n l�
m=−l

Y m,∗
l (Yy)Y m

l (Yx). (B.1)

Proof. By the generating function of the Legendre polynomials we get that

1

|x− y| =
1

|x|
�
l

g |y|
|x|

nl

Pl(Yx · Yy). (B.2)

Using the recurrence relation (lemma 4.2.1) we get

|x− y| = 1

|x|
�
l

g |y|
|x|

nl

(x2 + y2)Pl(Yx · Yy)
− 2

g |y|
|x|

nl
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2l + 1
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=|x|
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− 2
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2l + 3

nn
Pl(Yx · Yy)

=|x|
�
l

g |y|
|x|

nl g
− 1
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+

1

2l + 3

y2
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n
Pl(Yx · Yy).

(B.3)

Finally with the addition theorem 4.2.2 we conclude the proof.

This immediately provides us with

Corollary B.2. We have for x,y on a sphere with radius r that

|x− y| =− 16πr
�
l

1

(2l − 1)(2l + 1)(2l + 3)

l�
m=−l

Y m,∗
l (ny)Y

m
l (nx). (B.4)
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Next we will look at the case of separated spheres

Lemma B.3. For two spheres B−, B+, where the vector from the center of B− to the
center of B+ is called d. We have for spherical harmonics with z coordinate in the
direction of d that

|x+ − x−| =4π

∞�
l+,l−=0

r
l+
+ r

l−
−

dl++l−+1

l+∧l−�
m=−(l+∧l−)

Y m,∗
l+

(n+)Y
m
l− (n−)al+,l−,mbl+,l−,m,

(x+ − x−) · n−
|x+ − x−| =4π

∞�
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r
l+
+ r

l−−1
−

dl++l−+1

l+∧l−�
m=−(l+∧l−)

Y m,∗
l+

(n+)Y
m
l− (n−)al+,l−,mcl+,l−,m.

(B.5)

Proof. We set y := r−n− − d and have

|x+ − x−| = |r+n+ − y|. (B.6)

We note that |y| ≥ r+. Next we will use lemma B.1 and then lemma 4.2.3 to shift Y m
l (Yy)

to the center of the lower bubble (we set x = d and y = r−n− in said lemma). This
provides us with

|x+ − x−| =
√
4π

�
l

(−1)l√
2l + 1

g
− y2
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(B.7)

Furthermore we will next note by using the recurrence relation that

(n− · d)(Ỹ −m
lk )∗(n−) =d

g
lk +m+ 1

2lk + 1
(Ỹ −m

lk+1)
∗(n−) +

lk −m

2lk + 1
(Ỹ −m

lk−1)
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n
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APPENDIX C. FAR FIELD 106

This gives us
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(B.9)

Noting that (Y −m
l )∗ = (−1)mY m

l provides the first result. Taking the derivative in r+
gives us the second one.

In the same way as the last lemma we can arrive at the following statement.

Lemma B.4. For two spheres B−, B+, where the vector from the center of B− to the
center of B+ is called d. We have for spherical harmonics with z coordinate in the
direction of d that

1

|x+ − x−| =4π

∞�
l+,l−=0

r
l+
+ r

l−
−

dl++l−+1

l+∧l−�
m=−(l+∧l−)

(Y m
l+ )∗(n+)Y

m
l− (n−)al+,l−,m, (B.10)

where al+,l−,m is defined in lemma B.3.

C. Far field

In this section we will prove lemma 7.5.3. We have

C0
h,l,±|η± = O(d2(l∧h)+1−l), C0

h,l,∓|η± = O(d−l) (C.1)

and more specifically

C0
0,0,±|η± = d

r±

d
1− r2++r2−

d2

k
+O(d−3), C0

1,0,±|η± = d
r±

d
1− r2++r2−

d2

k
+O(d−3),

C0
0,1,±|η± = ∓

d
1− r2++r2−

d2

k
+O(d−4), C0

1,1,±|η± = ±
gd

d
r±

k2 − 1

n
+O(d−2),

C0
0,0,∓|η± =

d
1− r2±

d2

k
+O(d−4), C0

1,0,∓|η± =
r2±
d2

d
1− r2±

d2

k
+O(d−6),

C0
0,1,∓|η± = ± r±

d +O(d−3), C0
1,1,∓|η± = ± r±

d +O(d−5),

C0
0,2,±|η± = r±

d +O(d−3), C0
1,2,±|η± = d

r± +O(d−1)

C0
2,2,±|η± =

d
d
r±

k3
+O(d1)

(C.2)
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Furthermore for l > 0 we have

Ãl,±,±|η± = O(d−2l), Ãl,±,∓|η± = O(d3−4l),

Ãl,∓,±|η± = O(d1−4l), Ãl,∓,∓|η± = O(d2−2l)
(C.3)

and

Ã0,±,±|η± = ±
d
1 +

r+r−−r2±
d2

k
+O(d−4), Ã0,±,∓|η± = O(d−3),

Ã1,±,±|η± = ± f r±
d

m2 d
1− r+r−+r±+r2∓

d2

k
+O(d−6), Ã1,±,∓|η± = ∓ r∓

d +O(d−3),

Ã0,∓,±|η± = ∓ r∓
d +O(d−3), Ã0,∓,∓|η± = ∓ r+r−

d2
+O(d−4),

Ã1,∓,±|η± = ± r2±r∓
d3

+O(d−5), Ã1,∓,∓|η± = ± r∓
r± +O(d−4),

Ã2,±,±|η± = ∓2
f r±

d

m4
+O(d−6).

(C.4)
For

El,±1,D±2
:= ∓2f

−1

x
4π

2l + 1

�
±3

∞�
h=0

Ãh,±1,±3 |η±2
Ch,l,±3 |η±2

(C.5)

we can now immediately see that

Lemma C.1. We have

E0,±,D± =−
√
4π

r±

d
1 +

r+r−
d2

k
+O(d−4),

E0,∓,D± =
√
4π

r∓
dr±

+O(d−3),

E1,±,D± =±
x

4π

3
3
r±r∓
d3

+O(d−5),

E1,∓,D± =∓
x

4π

3
3
r∓
d2

+O(d−4).

(C.6)

Further for l > 1 we get
El,±,D± = O(d−3). (C.7)

Proof.

El,±,D± =O
e
d−1

e
d1−l + d−ld−3 +

∞�
h=1

d2(l∧h)+1−ld−2h + d−ld3−4h

ll
= O(d−l),

El,∓,D± =O
e
d−1

e
d1−ld−1 + d−l +

∞�
h=1

d2(l∧h)+1−ld1−4h + d−ld2−2h

ll
= O(d−l−1).

(C.8)

Further we get

E0,±,D± =∓
√
4πd−1

g
1 +

r2+ + r2−
d2

n4
±

g
1 +

r+r− − r2±
d2

n
d

r±
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d2

n
±

dr±
d

k2 d

r±

;
+O(d−3)

=−
√
4π

r±

d
1 +

r+r−
d2

k
+O(d−4)

(C.9)
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and

E0,∓,D± =∓
√
4πd−1

4
∓ r∓

d

d

r±

;
+O(d−3)

=
√
4π

r∓
dr±

+O(d−3).
(C.10)

Further we see that
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x

4π

3
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1 +

r+r− − r2±
d2

ng
1− r2+ + r2−

d2

n
−

dr±
d

k2
g
1− r+r− + r2± + r2∓

d2

neg
d

r±

n2

− 1

l
+

r±r∓
d2

;
+O(d−4)

=±
x

4π

3
3
r±r∓
d3
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(C.11)

and

E1,∓,D± =∓
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4π

3
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4
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d3
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r±
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(C.12)

Finally we note that

E2,±,D± =−
x

4π

5
d−1

4
r±
d

+
dr±
d

k2 d

r±
− 2

dr±
d

k4
g

d
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+O(d−4)
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(C.13)

Lemma C.2. Using this we can see that

Gn
0,D±(ϕ±, λ) =−

√
4π

3
r± +O(d−3),

Gn
1,D±(ϕ∓, λ) =∓

√
12π

1

λ

r∓
d2

+O(d−3)

(C.14)

and Gn
l,D±2

(ϕ±1 , λ) = O(d−3) for the rest. We also have

G1,D±(ϕ±, λ) =∓
√
12π

λ

r±r+r−
d3

+O(d−3),

G1,D±(ϕ∓, λ) =∓
√
12π

λ

r+r−
d2

+O(d−3)

(C.15)

and Gl,D±2
(ϕ±1 , λ) = O(d−3) for l ≥ 2.
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Proof. We use lemma 7.0.3 to get

Gn
l±2 ,D±2

(ϕ±1 , λ) =
�
l∓2

El∓2 ,±1,D∓2

r
l∓2+2
∓2
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2l∓2 + 13
δ0,l±2

+ δl±2 ,0
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3
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1
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.

(C.16)

We have

Gn
0,D±(ϕ∓, λ) =

r2∓r±
d

1

3
E0,∓,D∓ + E0,∓,D±

r2±
3

+O(d−3) = O(d−3) (C.17)

and
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0,D±(ϕ±, λ) =

r2∓r±
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1

3
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3

+O(d−3)
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√
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3
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d
1 +
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d2
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+O(d−3)

=−
√
4π

3
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(C.18)

For l > 1 or l > 0 and ±1 = ±2 we have

Gn
l,D±2

(ϕ±1 , λ) =
1

λ
El,±1,D±2

+O(d−3) = O(d−3). (C.19)

Finally we see that

Gn
1,D±(ϕ∓1 , λ) = ∓

√
12π

1

λ

r∓
d2

+O(d−3). (C.20)

We again use lemma 7.0.3 to get for l±2 > 0 that

Gl±2 ,D±2
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�
l∓2

El∓2 ,±1,D∓2
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+ r
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n
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(C.21)

Next we have

G1,D±(ϕ±, λ) =± E0,±,D∓
r2∓r3±
d2

1

5
√
3
+
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12π
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(C.22)

and

G1,D±(ϕ∓, λ) =± E0,∓,D∓
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1
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(C.23)
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Further we see for l±2 ≥ 2 that

Gl±2 ,D±2
(ϕ±1 , λ) =O(d−3 + El±2 ,±1,D±2

) = O(d−3). (C.24)

D. Empirical study

D.1. Additional simulations

First we will revisit a system of two similar sized bubbles with radius 5 and 6. Figure
D.1 shows the scaled force contributions and the total force on the bigger bubble. In
(a) we can see that the main differences are the signs of F s

+,− and F s−,+ and that the
sign changes occur at larger distances. Furthermore (b) looks similar to the case of the
smaller bubble except that for ω5 due to the sign reversal of F s−,− we get an area where
the bubble gets attracted again. For smaller values we get a second repulsive area due to
F s
+,−, F s−,+ both being positive and dominating.

a b

Figure D.1.: (a) shows the scaled force contributions for a bubble of radius 6 interact-
ing with one of radius 5. In (b) the total Bjerknes force is shown for the
frequencies defined in figure 7.7.

In figure D.2 we look at the case of two bubbles with radii 1 and 5. We already looked
at the scaled force contributions for the bigger bubble and will now consider the smaller
bubble. In our scope no sign transition takes place and the total force can be easily
explained by F+,+ near the singularity and by F+,− and F−,− dominating. We can again
see that the force for ω4 is repellent up to a closer distance compared to the similarly
sized bubble case.

D.2. Error

To check the numeric simulations we will be using an exact formula for AD. For this we
will be using the formulas found in [23, Appendix A].
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a b

Figure D.2.: (a) shows the scaled force contributions for a bubble of radius 1 interact-
ing with one of radius 5. In (b) the total Bjerknes force is shown for the
frequencies defined in figure 7.9.

Lemma D.1. For spherical inclusions we have for c := −ikr2i that

Sk
Di
[Y m

l ]|Di =

$
cjl(kri)h

(1)
l (kr)Y m

l , |r| > ri,

cjl(kr)h
(1)
l (kri)Y

m
l , |r| ≤ ri

(D.1)

and for j b= i that

Sk
Di
[Y m

l ]|Dj = ch
(1)
l (kri)

∞�
lk=0

�
|mk|≤lk

Alm
lkmkjlk(kr)Y

m
lk (D.2)

for

Alm
lkmk :=

∞�
λ=0

x
2λ+ 1

4π
h
(1)
λ (kd)C(l,m, lk,mk, λ, 0), (D.3)

d being the distance between the centers of the inclusions,

C(l,m, lk,mk, λ, ν) :=il
k−l+λ(−1)m

w
4π(2l + 1)(2lk + 1)(2λ+ 1)×g

l lk λ
0 0 0

ng
l lk λ

−m mk ν

n
(D.4)

and jl, h
(1)
l denotes the spherical bessel and hankel function of the first kind.

Using these formulas we can build a matrix by truncating the spherical harmonic contri-
butions and inverting the system to arrive at the potential functions. Applying S0

D and
K0

D on them provides us with the derivatives on the surface. This provides us with a way
to check the results of the simulations.
Looking at figure D.3 we can see that the curves match up for most of the bigger values.
The plots show the forces calculated by inversion of AD like we described above compared
to the analytic formula. In the first line we cover the case of similarly sized bubbles
(r = 5, 6) and in the second one the differently sized spheres(r = 1, 5).The relative error
gets large if the driving frequency gets close to a resonance frequency, near points where
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a b

c d

Figure D.3.: The figures show the forces calculated by direct inversion of AD (reference)
compared to the derived formula in this thesis. (a) and (b) cover the case of
similar sized bubbles, where in the former we have the forces on the smaller
bubble (r=5) and in the later (r=6). (c) (with r=1) and (d) (with r=5) in
the same way describe the differently sized system.

the force changes sign and for very small bubble separations.
We can see the relative error in figure D.4. We removed all values with a characteristic
distance of less than 2 ·10−1, that are within 10% of a sign transition or where the driving
frequency is within one percent of a resonance frequency. We can see that the relative
error for (a), (b) and (c) around or below 1% except for the ω5. Finally, we can see
that the relative error for (d) is very large, which is mainly present for small separations.
There are multiple reasons that could explain these errors. For one, we work with non-
zero δ therefore the formula that we derived cannot be exact as it describes an asymptotic
behavior. Secondly the operator AD for small δ and ω is almost singular and thus the
inversion is ill conditioned. This is especially the case near the resonance frequencies,
which are defined by the singularity of AD. Finally, near the sign reversal of the forces
we can expect high relative errors due to the small values we get there.
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Maximal relative error

Frequency Similar size Different size

(a) F b
D+

(b) F b
D− (c) F b

D+
(d) F b

D−
ω1 1.0% 1.5% 0.93% 27 %
ω2 0.42% 0.43% 0.28% 13 %
ω3 0.34% 0.85% - -
ω4 0.27% 1.5% 0.37% 6.8%
ω5 0.66% 15% 0.62% 1.5%

Figure D.4.: This table shows the relative error of our method and the reference. Note
that we removed all values with :/(r++r−) < 0.2 and if the driving frequency
is within 1% of a singularity or : within 10% of a sign reversal.
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