
Recommending Reviewers for
Theses using Artificial

Intelligence

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Logic and Computation

eingereicht von

David Penz, BA
Matrikelnummer 11703497

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger

Wien, 25. Jänner 2021
David Penz Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Recommending Reviewers for
Theses using Artificial

Intelligence

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Logic and Computation

by

David Penz, BA
Registration Number 11703497

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger

Vienna, 25th January, 2021
David Penz Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

David Penz, BA

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. Jänner 2021
David Penz

v

Acknowledgements

Throughout the writing of this thesis, I have received valuable support from many differ-
ent people.

First, I want to thank my supervisor Horst Eidenberger for the possibility to work on
one of his ideas as topic for my master thesis. Your insights and continued feedback
over the complete duration of this process helped me shaping the content of this document.

Furthermore, I want to give my special thanks to Tamara Drucks. Thank you for all
your emotional support, the many discussions about relevant topics and research, brain-
storming sessions about potential ideas of mine, and your time for proofreading this thesis.

Additionally, I want to acknowledge all of my friends of the BS Temple, who supported
me throughout various courses and projects, and pushed me with insightful discussions
about all kinds of different topics. In particular, I want to thank Anna-Maria Nau, Giulio
Pace, Matthias König, and Michael Bernreiter. I highly appreciate all your emotional
support and guidance you have provided to me throughout this process.

Last but not least, I want to thank my parents and my sister. You have been supporting
me for all of my life and continue to do so, which is invaluable to me.

vii

Kurzfassung

Die Evaluierung wissenschaftlicher Arbeiten, wie zum Beispiel bei der Einreichung für
eine Konferenz, spielt eine wichtige Rolle in der Wissenschaft, um deren Integrität und
Korrektheit zu gewährleisten. Dies gilt auch für die Erlangung eines Masterabschlusses an
der TU Wien, bei dem die Studierenden ihre Abschlussarbeit vor einer Prüfungskommis-
sion verteidigen müssen. Die Prüfungskommission besteht aus der Betreuerin oder dem
Betreuer der Arbeit und zwei weiteren Prüferinnen oder Prüfern, die im Rahmen des
Prozesses manuell ausgewählt werden müssen. Die manuelle Auswahl dieser Mitglieder
ist anfällig für Fehleinschätzungen, was zu einer fehlerhaften Beurteilung während der
Prüfung führen kann.

Ziel dieser Arbeit ist es, ein Programm für die Empfehlung der Mitglieder zu entwickeln,
basierend auf aktuellen Methoden im Bereich der künstlichen Intelligenz (KI). Als Basis
hierfür extrahieren wir notwendige Daten aus den internen Datenbanken der TU Wien.
In weiterer Folge definieren wir verschiedene Architekturen für Neuronale Netze, welche
anschließend mit Hilfe des Datensatzes trainiert werden. Die einzelnen Modelle basieren
auf den Architekturen von LSTMs, Autoencoder und Siamesischen Neuronalen Netzen.
Jedes Modell wird jeweils mit Hilfe von BERT, GPT2 und XLNet als Basis trainiert.
Anschließend evaluieren wir die Netze anhand der Aufgabe, potenzielle Forschungsprofile
auf Basis einer Abschlussarbeit zu bewerten, und vergleichen die Ergebnisse mit BM25.
Zusätzlich hierzu werden die Modelle anhand ausgewählter Abschlussarbeiten manuell
validiert, was zu einer besseren Aussagekraft der Ergebnisse führt. Wir kommen zu der
Schlussfolgerung, dass Architekturen basierend auf Siamesischen Neuronalen Netzen
vielversprechende Ergebnisse erzielen und angewandt für die Re-Evaluierung von Profilen
sogar BM25 übertreffen. Des Weiteren zeigen die Experimente, dass BERT als Basis die
besten Resultate für alle Architekturen liefert. Abschließend schlussfolgern wir, dass der
Auswahlprozess für die weiteren Prüferinnen und Prüfer optimiert werden kann, indem
die von uns beschriebenen Methoden im Bereich der KI verwendet werden.

ix

Abstract

Peer review in the area of scientific contributions, such as publishing papers to conferences,
plays a crucial role to evaluate the integrity and correctness of the respective work. This
is also the case for the process of obtaining a Master’s degree at TU Wien, where students
must defend their thesis in front of an examination board. The examination board
consists of the supervisor and two additional reviewers, which must be selected manually
as part of the process. The manual selection of those reviewers can be prone to human
misjudgment, causing a faulty evaluation during the examination.

In this thesis, we aim to develop a recommendation engine driven by state-of-the-art
methodology in the area of artificial intelligence. This process is done in three steps:
Firstly, we extract necessary data from TU Wien internal databases. Then, we define a
set of different deep learning architectures and train them on our data set. The presented
models are inspired by and incorporate the architectures of LSTMs, Autoencoder and
Siamese Neural Networks. Each model is trained based on three text embedding modules:
BERT, GPT2 and XLNet. Finally, we evaluate the models on the task of ranking potential
research profiles given a thesis as input and compare it with BM25, an established state-
of-the-art baseline. Furthermore, a manual evaluation for selected use cases is performed
to further validate their respective performances. We conclude that models based on
a Siamese Neural Network architecture achieve promising results and, in the setting
of neural re-ranking, even outperform BM25. Based on the conducted experiments,
we also observe that BERT as embedding module results in the best scores across all
architectures. Finally, we come to the conclusion that the matching and selection process
of reviewers can be optimised using the above presented state-of-the-art deep learning
methods.

xi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Approach . 2
1.3 Outline . 3

2 Preliminaries 5
2.1 Natural Language Processing (NLP) 5
2.2 Information Retrieval . 7
2.3 Related Work . 12
2.4 Document Ranking versus Classification 14
2.5 Similarity Measures . 15

3 Data 19
3.1 Sources . 19
3.2 Pipeline . 20
3.3 Preprocessing . 21
3.4 Base Data Set . 23

4 Experiment Setup 27
4.1 Hardware . 27
4.2 Technology Stack . 28
4.3 Reproducibility . 28
4.4 Approach . 29

5 Experiments 33
5.1 Baselines . 33
5.2 Base Embeddings . 36
5.3 Long Short-Term Memory (LSTM) . 37
5.4 Fully-Connected Autoencoder (FC AE) 41
5.5 LSTM-based Autoencoder (LSTM AE) 45
5.6 LSTM-based Dual Encoder . 49
5.7 Siamese Angular LSTM . 54
5.8 Siamese Manhattan LSTM . 57
5.9 Comparison & Concluding Remarks 62

xiii

6 Evaluation of Use Cases 65
6.1 Use Cases Definition . 66
6.2 Use Case 1 . 68
6.3 Use Case 2 . 69
6.4 Use Case 3 . 70
6.5 Comparison & Concluding Remarks . 71

7 Conclusion & Outlook 73
7.1 Summary and Conclusions . 73
7.2 Outlook . 76

List of Figures 77

List of Tables 79

Bibliography 81

CHAPTER 1
Introduction

When it comes to the integrity and correctness of contributions in the scientific domain
such as papers, the concept of peer review plays a crucial role. Based on the general topic
of the respective contribution and its related fields, reviewers with profound background
knowledge must be selected to ensure their ability to evaluate thoroughly. Therefore,
scientific conferences, journals and other instances for publishing work follow strict guide-
lines paired with an extended process for conducting peer review. However, finding the
best possible fit of reviewers for any given scientific work still is - in many cases - subject
to a manual process, making it vulnerable for human errors and, thus, mistakes in the
evaluation of the correctness and impact of the contribution.

In this context, we motivate the topic and content of this thesis as the process of
graduating at TU Wien shares many similarities with the above presented problem.

1.1 Motivation
As part of a successful graduation at TU Wien for any of the available master programmes,
students need to compose a master thesis with focus on parts of their studies content. Ad-
ditionally, after the thesis has been submitted to the dean of student affairs, the students
must defend their work in front of an examination board consisting of the supervisor
and two additional reviewers. Purpose of the examination is to prove that the respective
student understands and is able to apply the process of scientific research with focus on
the main topic of her or his composed thesis. Depending on the topic, the evaluation of
which reviewers represent the best fit for examining the student can range from being a
very simple and obvious choice, to being a rather complex and tedious task, leading to a
potential mismatch between reviewer and student. Any kind of mismatch in this scenario
could cause a faulty evaluation of the examinee, thus, the process of selecting potential
reviewers needs to be performed thoroughly. However, a perfect manual selection for

1

1. Introduction

every student is not always feasible due to the high number of employed researchers and
graduates at TU Wien as well as a variety of different constraints such as available time
slots and the topic of the thesis.

Therefore, an automated but trustworthy solution is desired by TU Wien with the aim
of optimising the matching and selection process of reviewers for a given master thesis.
With current advances in the field of machine learning and the recent success of natural
language processing algorithms using deep neural networks, this thesis aims to tackle
the above stated problem using state-of-the-art deep learning architectures. Successful
language models such as BERT [DCLT19] will be applied and evaluated based on our
research question:

Can the matching and selection process of thesis reviewers be auto-
mated, based on research profiles and the text corpus of a thesis as
input? Furthermore, can the quality of reviewer-thesis matches be
improved using state-of-the-art methodology in the area of Artificial
Intelligence?

Furthermore, this thesis aims to contribute to the general problem statement of matching
scientific content and peer reviewer with expertise in the corresponding field of research.
Due to the mentioned similarities between both topics, the results of the evaluation -
based on TU Wien as primary use case - suggest that similar performance might be
achievable for use cases of bigger scope such as paper-reviewer-matching for conferences.

1.2 Approach

As previously described, the outcome of this thesis is based on deep learning models acting
as recommendation engine to match and select potential reviewers for the committee of
the final exam. The content of the examination is strongly related to the subject of the
respective master thesis. The required data will be extracted from TU Wien internal
systems, with additional preprocessing performed to harmonise data.

For the development of the deep learning models, we conduct a literature review of
related work and state-of-the-art methodology in processing natural language. Based
on this research, we introduce suitable network architectures, which will be trained and
evaluated on the extracted data. For the final conclusion, all conducted experiments will
be compared and measured against each other, including state-of-the-art baselines.

2

1.3. Outline

1.3 Outline
Following the defined approach, this thesis will be structured into four main parts. In
the first part of this thesis, we introduce relevant background knowledge in the area
of Natural Language Processing and Information Retrieval including related work and
methodology, as this is required to follow the subsequent content and experiments.

Afterwards, we describe the underlying data set used for all of our experiments. This
includes the specification of all required data sources and the respective extraction process,
important pre-processing steps, as well as a detailed description of the resulting base
data set.

The main part of this thesis will present all developed deep learning models and conducted
experiments. As a prerequisite, we first specify the setup of the experiments and define
all technical requirements. Then, the respective experiments will be described in detail,
including a comprehensive overview of the corresponding evaluation results.

Finally, we conclude this thesis with a summary of our results and a detailed comparison
of the model’s performances. In addition to that, we also present possible areas of
improvements and further ideas as part of a general outlook on future work.

3

CHAPTER 2
Preliminaries

As motivated in the previous chapter, the scope of this thesis revolves around building
machine learning models which are able to process natural language in the form of
written text. Therefore, we need to introduce a set of preliminaries required to follow
and understand the content of this thesis.

We will start by presenting (1) a brief introduction to the research field of Natural
Language Processing (NLP), followed by a deep dive into (2) information retrieval for
NLP, introducing state-of-the-art language models which are used for the experiments in
Chapter 5. Subsequently, we will continue by presenting (3) related work and literature
influencing the content of this thesis. Finally, we will end the chapter with introducing
additionally required methodology such as (4) the comparison of document ranking and
classification in the context of this thesis and (5) measures to calculate similarity between
two given vectors.

2.1 Natural Language Processing (NLP)

The research field of Artificial Intelligence offers a wide variety of subcategories, such
as Computer Vision for processing images, Speech Recognition, and many more. When
it comes to natural language, we call the field of research Natural Language Processing
(NLP). NLP, as a general term, relates to the act of processing and understanding human
language from a technical point of view, i.e. using computers and algorithms designed
for the respective purpose. The main objective of NLP methods and algorithms lies in
the ability to mimic human abilities such as speaking, sharing knowledge, writing books
and reports, and understanding semantic information.

5

2. Preliminaries

There are various kinds of techniques within the area of NLP such as statistical language
modelling and parsing [RMPA16]. For the scope of this thesis, however, we will only give
a very brief overview over the methodology used for syntactic and semantic analysis, and
focus on explaining terms that are relevant in our context.

Syntactic Analysis. The term Syntax in the context of human language refers to
grammar and related rules to construct grammatically correct sentences. Part of the
syntactical analysis of text is the already mentioned Parsing method, which generates a
tree presenting the different components of a given sentence (see Figure 2.1 for reference).
Part-of-Speech (POS) Tagging, another related method, tries to identify and name each
individual part of the sentence, e.g. verbs, nouns, and adjectives.

Figure 2.1: Example of a Parsing Tree [RMPA16]

Two methods, which are more relevant for data preprocessing and, thus, for the context
of this thesis, are Lemmatization and Stemming. Both approaches aim to harmonise
inflected words by reducing them to a shared root. The process of Stemming uses the
related word stem as root, whereas Lemmatization looks for the lemma of the respective
words, i.e. a root word that shares the meaning of the respective words. As an example,
the stemmed form of the words change, changes, and changing is chang, the lemma is
change [KSMM20].

Semantic Analysis. In contrast to the syntactical analysis, the term Semantic is
strictly related to the intended meaning of words, sentences, and documents of any
kind. Methods related to the semantic analysis are Named Entity Recognition (NER)
[BRN+09], which aims to identify defined entities such as persons or locations within a
text, and Word Sense Disambiguation [Nav09], where the algorithm assigns meaning to
a word based on the given context.

Looking at applications such as document classification and ranking, however, the
resulting features generated by NLP methods are often used in combination with machine

6

2.2. Information Retrieval

and deep learning models, which rely on the information being presented in the form of
vectors. Thus, we will present additional methodology related to the field of Information
Retrieval in the next section.

2.2 Information Retrieval
When it comes to information retrieval for natural language, i.e. retrieving and processing
documents and other text related data, there are different approaches of transforming
written text to data which can be understood by machine or deep learning models.
Transforming text into a numeric format is required as every learning algorithm is making
use of numeric computations in order to process the data accordingly. Traditional one-hot
encodings for each possible word would lead to an unreasonable requirement of storage
space, while also not containing any kind of context information of the document they
appear in.

Established methods which make us of representing text data in vector form, while also
containing contextual information, are Term Frequency–Inverse Document Frequency
(TF-IDF) [Ram03] and BM25 [RWJ+94]. The first step for creating the required underly-
ing data structure is to generate a term frequency matrix. The term frequency matrix tf is
of dimension |T |× |D|, where T is the set of all terms occurring in all available documents
and D is the set of all documents. For each term t, e.g. language, the respective count
for each document d is stored as matrix element tft,d (see Table 2.1).

Document 1 Document 2 Document 3 ...

language 10 0 1 ...
learning 7 2 3 ...
machine 5 0 0 ...
natural 8 1 0 ...

processing 5 0 7 ...
task 2 3 1 ...

...

Table 2.1: Example Term Frequency Matrix

As the resulting matrix will contain many 0-elements, the term frequencies are usually
stored for non-0 entries only. The resulting data structure is called Inverted Index, where
for each term t a pair of document ID and term frequency in the respective document
is stored. The Inverted Index will then be used to calculate frequency scores for the
respective retrieval models below.

7

2. Preliminaries

TF-IDF. Let tft,d be the Term Frequency (TF) for the term t in the document d, and
dft the number of documents in which the term t occurs. The TF-IDF scoring function
is then defined as

TF-IDF =
�

t∈Td∩Tq

tft,d ∗ log(|D|
dft

) (2.1)

where D is the collection of all documents and log(|D|
dft

) the respective Inverse Document
Frequency (IDF). The final score is calculated as sum of all terms appearing in both, the
query q and the document d, thus �

t∈Td∩Tq
, where Tq and Td are the sets of terms for

the query and the document respectively [Hof19].

As individual documents within the collection D might differ in length, this might distort
the corresponding term frequency values. BM25 is another scoring model that considers
the length of the respective document as well as the average document length in the
complete set. Although originally introduced in the year 1994 [RWJ+94] and showing
better performance than TF-IDF for many tasks, BM25 was set as the default scoring
function in Apache Lucene only in the year 2015 [Tur15].

BM25. Let tft,d be the term frequency for the term t in the document d, and dft the
number of documents in which the term t occurs. For each document d, the respective
length is represented by dld, with avgdl being the average document length in the
complete set of documents D. The TF-IDF scoring function is then defined as

BM25 =
�

t∈Td∩Tq

tft,d
k1((1 − b) + b dld

avgdl) + tft,d
∗ log |D| − dft + 0.5

dft + 0.5 (2.2)

where k1 and b are additional hyperparameters to weight the corresponding variables. The
final score is calculated for all terms appearing in the query q as well as the document d,
where Tq and Td are the sets of terms for the query and the document respectively [Hof19].

Another possibility to encode text bodies into dense vectors is to make use of neural
network architectures. Variants like Word2vec [MSC+13] and Glove [PSM14] achieved
promising results in various application fields of NLP, becoming a new state-of-the-art
information retrieval method. With the introduction of a neural network architecture
called Transformer, new language models have been developed, outperforming the pre-
vious approaches. For details on the architecture of the Transformer, we refer to the
original paper [VSP+17]. In the following sections, we will introduce three different
language models which will be essential to our experiments: (1) Bidirectional Encoder
Representations from Transformers (BERT), (2) Generative Pre-Trained Transformer 2
(GPT2), and (3) XLNet.

8

2.2. Information Retrieval

2.2.1 BERT

The first language model we will present is BERT (Bidirectional Encoder Representations
from Transformers), which was originally introduced by the Google AI Language team in
[DCLT19]. BERT is based on the encoder part of the Transformer architecture and uses
bidirectional connections across each individual Transformer block. This means that
each word will be enriched with context words before and after its position within the
text. The architecture was inspired by OpenAI’s GPT language model, which only uses
context words before the respective word as additional information (see Figure 2.2 for
reference).

Figure 2.2: Architecture of BERT compared to GPT [DCLT19]

The language model is trained based on two unsupervised tasks: (1) Masked Language
Modelling (MLM) and (2) Next Sentence Prediction (NSP). An overview of the process
can be seen in Figure 2.3.

Figure 2.3: Training Procedure for BERT [DCLT19]

9

2. Preliminaries

MLM. Masked Language Modelling is performed by randomly masking out a word in a
given sentence: Let "my dog is hairy" be our sample sentence. BERT is then choosing a
random word in the sentence and then applies the masking procedure. In 80 percent of
the cases, the masking procedure replaces the word with the token [MASK] ("my dog is
[MASK]"), in another 10 percent, the word is replaced by another random word ("my
dog is apple"). For the last 10 percent, the word will remain untouched, resulting in the
same sentence as before. The task for the model during the training is to predict the
correct word for all respective [MASK] tokens.

NSP. The second part of the training consists of Next Sentence Prediction. In case of
BERT, this is done by using pairs of two sentences A and B with a corresponding label
representing whether sentence B follows sentence A. The model then has to correctly
predict the respective label, given a sentence pair as input.

The resulting model can be further used for transfer learning, i.e. using the pre-trained
model for tasks different to MLM and NSP. BERT achieves state-of-the-art performances
across several different categories such as general language understanding and question
answering [DCLT19].

2.2.2 GPT2
In contrast to BERT, the language model GPT2, as proposed by OpenAI in [RWC+19],
is based on the decoder part of the Transformer architecture. Another difference in
the models is also the learning objective: While BERT is trained using two different
unsupervised tasks, MLM and NSP, GPT2 has the main objective to generate language.
This means that GPT2 aims to predict subsequent words, one by one, based on the
previous context. Thus, as already mentioned in Section 2.2.1, GPT2 only uses a unidi-
rectional architecture (see Figure 2.2 for reference). The learning objective is achieved by
using autoregressive language modelling, i.e. the model tries to estimate the probability
distribution of different text bodies. In more technical terms, this means that, given a
sequence of text s = (s1, s2, ..., sn), the model calculates p(s) = �n

i=1 p(si | s1, ..., si−1)
[YDY+19].

In comparison to its predecessor GPT, the newer version GPT2 only uses minor changes
to improve. The team of OpenAI developed a new non-public data set, which is bigger
than the one used for the previous version of the model. Additionally, the architecture of
the biggest GPT2 model has ten times more parameters, which is achieved by scaling
the architecture using multiple decoder blocks [RWC+19].

As presented in [RWA+19], GPT2 achieves state-of-the-art performance when it comes
to text generation, where the model is able to write cohesive paragraphs for a suggested
topic close to human quality. For non-domain-specific tasks such as question answering

10

2.2. Information Retrieval

and reading comprehension, the Transformer based network fails to perform on the level
as other state-of-the-art models such as BERT, but achieves promising results nonetheless
as they indicate the possibility for using GPT2 for transfer learning. On an interesting
note, the authors also mention that they fear malicious use of the model, which is why
they refused to release the underlying data set and their biggest pre-trained model (a
smaller version was released instead).

2.2.3 XLNet

Similar to GPT2, the language model XLNet, introduced by the Google AI Brain Team
in [YDY+19], is based on the decoder part of the Transformer architecture. Both models
also share the underlying learning objective, i.e. estimating the probability distribution
of text corpora. However, XLNet tries to improve its performance on both, GPT2 and
BERT, which is done by considering bidirectional context information as in the case of
BERT but at the same time avoiding its discrepancy of input data in the training and
inference process caused by the random masking process.

As XLNet is based on a unidirectional architecture as well, the incorporation of bidi-
rectional context information needs to be handled differently. Therefore, Permutation
Language Modelling is introduced in [YDY+19], which uses all possible permutations of
the factorisation order (see Figure 2.4 for an example).

Figure 2.4: Permutation of the Factorisation in XLNet [YDY+19]

11

2. Preliminaries

It is important to note that the input sequence will retain its ordering and only the
permutation of the factorisation is considered. By integrating the benefits of autoregressive
language modelling and bidirectional context information, XLNet manages to outperform
BERT in several different domains of NLP such as language understanding, reading
comprehension, text classification, and document ranking [YDY+19].

2.3 Related Work
Following the introduction of Natural Language Processing including methods and models
of different kind, we now present various applications and other research related to the
context of this thesis.

As the main objective of this thesis is to match potential reviewers with a given thesis,
the relation to the review process of papers for conferences is obvious. In [AGB+19], the
authors introduce several approaches aiming to optimise the matching process of papers
and reviewers. The main concern stated in the publication is the mismatch of vocabulary
used in submitted papers and the related topics of potential reviewers. This also relates
to the scope of this thesis as we cannot expect perfect matches between a thesis and
researcher employed at TU Wien, meaning that a researcher might be a potential fit
without sharing the exact vocabulary with the given thesis as part of their scientific
background. The approach, as presented in [AGB+19], is based on word embeddings
generated by Word2vec [MSC+13] for both, paper and the background information of
the reviewer. They then continue to calculate a similarity score based on the Cosine
Similarity (see Equation 2.3 for reference) for topics extracted from both documents
respectively. In addition to that, they introduce a relevance scoring to quantify how
meaningful the selected common topics are for the submission, which is calculated using
the previously defined similarity value. For the final reviewer-submission relevance, the
authors use the harmonic mean of the relevance scores reviewer-submission as well as
submission-submission (by comparing the content to the respective topics).

A different approach, related to the problem of matching potential reviewers with paper
submissions, is presented in [ZZD+20]. Instead of using a similarity function to calculate
respective scores to rank the reviewers, the authors present a solution based on multi-
label classification. For each paper and profile of a reviewer, a hierarchical embedding
procedure is introduced. First, sentence embeddings are generated using a bidirectional
Gated Recurrent Unit (GRU) [CGCB14]. Then, an embedding for the complete text
corpus is calculated with a second bidirectional GRU. Based on the generated embeddings
for both, reviewer and paper submission, multi-label classification is performed to predict
possible categories of the respective documents. Afterwards, potential reviewers are being
matched with a given submission based on predicted labels they have in common (see
Figure 2.5 for reference).

12

2.3. Related Work

Figure 2.5: Process of Matching Reviewers with Paper Submissions [CGCB14]

Following the approach of multi-label classification, a variant of BERT for classifying
whole documents is introduced in [ARTL19]: DocBERT. In this publication, the authors
enhance the original architecture of BERT with a single fully-connected layer on top of
it for multi-label classification. They then further combine the task of classification with
the task of distilling knowledge (based on an LSTM) by calculating an added loss value
of both models during the training process.

In [BS20], a neural network with the purpose of entity matching - i.e. identify data
instances that match with real-life entities - is proposed. The model is also based on
BERT to extract embeddings for the respective instances and entities, paired with a
fully-connected layer resulting in two output neurons. Based on two given input samples,
a data instance and a real-life entity, the network concatenates them and feeds them
into the pre-trained BERT module, followed by the fully-connected layer calculating the
probability of being a potential match or not. Although this approach follows the method-
ology of classification, it differs from the ideas presented in [ARTL19] and [ZZD+20] as
it directly compares two given samples and determines a single label.

Figure 2.6: Example Architecture of Sentence-BERT [RG19]

Another variant of BERT, related to the approach of ranking documents rather than
classifying them, is introduced as Sentence-BERT in [RG19]. The authors propose

13

2. Preliminaries

a neural network architecture which takes two sentences as input and computes the
respective similarity score. The architecture, as seen in Figure 2.6, is inspired by Siamese
Neural Networks and uses Cosine Similarity (see Equation 2.3) to calculate the similarity
score.

In [MC17], the authors present a comprehensive overview over neural models in informa-
tion retrieval. In the context of learning to rank, Siamese Neural Networks are introduced
as core architecture for neural ranking models, consisting of three main components: (1)
generation of an embedding for the query in scope, (2) generation of an embedding for
the respective document which is compared to the query, and (3) a module to match
both embeddings and calculate the relevance of the document in regards to the query.

However, the idea of Siamese Neural Networks as architecture to calculate similarity
is not specific to the domain of Natural Language Processing. In [Koc15], Siamese
Neural Networks are introduced as application for Facial Recognition, which relates
to the research field of Computer Vision. The motivation of using a neural network
architecture that computes similarity scores for images rather than classifying them
lies in the availability of data. When training the network, the data set contains a
collection of images showing the faces of various people. However, when deploying a
model aiming to recognise the face of a specific person, he or she might not have been
represented in the training data set. Therefore, the model inspired by the concept of
Siamese Neural Networks aims to act as a similarity scoring such that images of unseen
persons can be added to the database without the need of retraining the model. As
an example, we consider person P to be added to the pool of potential faces to be
recognized, while not being included in the original training data set. Whenever the
model gets an image of the face of person P , it will compare it with all images in the pool
of potential matches including the newly added image of person P . The network will
then rank the similarity scores, with the likely scenario of the image of person P having
the highest similarity score. The concept of training neural network architectures which
are able to correctly match or classify input data based on only a few samples is also
known as Few-Shot Learning (or One-Shot Learning for a single given sample respectively).

2.4 Document Ranking versus Classification
As presented in Chapter 2.1 and 2.3, there are many different methods and applications
to process text and documents. In the context of this thesis, we can narrow them down
to two core ideas: (1) document ranking and (2) document classification. The motivated
goal for this thesis is to match a given thesis with potential reviewers as part of the
examination process, hence, we can either present a ranked list of reviewers to the user
or try to use the pool of reviewers as classification target.

14

2.5. Similarity Measures

Document Classification. For classifying a set of given documents, the machine
learning model is built based on a predefined number of possible classes, derived from
the target labels of the documents in the training data set. From a technical point of
view, this means that the machine learning model will output an n-dimensional vector,
where n is the number of classes. The Softmax function is commonly used to scale the
elements of the output vector such that �n

i=1 xi = 1, with xi being the ith element of
the vector, representing the corresponding class. The resulting vector elements can then
be understood as a kind of confidence score for the final classification of the underlying
document, where usually the element with the highest score dictates the class label. In
the context of this thesis, the pool of reviewers would represent the set of possible classes
and the thesis the corresponding input we want to classify.

Document Ranking. In the case of ranking documents, the machine learning model
calculates a ranking score for each query-document-pair. Thus, for each query, the model
generates a list of scores for the set of underlying documents, which can then be ordered
in descending order to create a ranked list of documents. In contrast to the classification
problem, the ranking model outputs a 1-dimensional vector representing the ranking score
regardless of the number of initially available reviewers. In our context, a given thesis
represents the query and the pool of reviewers the set of documents which has to be ranked.

Based on the above presented aspects related to classification and ranking, we decide
to follow the approach of Document Ranking for the scope of this thesis. The main
reason behind this decision is that the pool of potential reviewers might be fixed for our
experiments (see Chapter 5 for details), in the context of the future application of our
machine learning model, however, additional researchers could be added as potential
reviewer. Following the approach of Document Classification, we are only given a static
set of possible classes (or reviewers in this context) for our model, i.e. a given thesis can
only be matched with the initial reviewers our model was trained with. By using a model
which ranks the reviewers based on a given thesis, we hope that our neural network learns
to generalise well enough to generate meaningful ranking scores for previously unseen
reviewers. In other words, no re-training of the final machine learning model is required
when extending the original pool of potential reviewers.

2.5 Similarity Measures
In order to generate a ranked list of potential reviewers, we have to define a function that
measures the similarity of given thesis-reviewer-pairs. The intention of using similarity
between two documents as core measurement for the ranking process is the assumption
that embeddings of reviewer profiles closer to the embedding of a given thesis represent a
better match than those with a bigger distance (the term distance is used as opposite to
the term similarity). As introduced in Chapter 2.2, we can generate text embeddings in
the form of vectors, thus, we can use common distance and similarity metrics for vectors

15

2. Preliminaries

such as the Cosine Similarity [VK16].

Cosine Similarity. Let A and B be two given vectors, where ai and bi are the ith

element of each respective vector and |A| = |B|. The Cosine Similarity function is then
defined as

Cosine Similarity =
�n

i=1 aibi��n
i=1 a2

i

��n
i=1 b2

i

. (2.3)

with n representing the total number of elements in each given vector.

However, as the Cosine Similarity calculates a similarity score in the range [−1, 1] (where
−1 and 1 represent maximal dissimilarity and similarity respectively), we follow the sug-
gestion presented in [CYK+18] and use the Angular Similarity function as measurement
to generate similarity scores in the range [0, 1].

Angular Similarity. The Angular Similarity for two given vectors is defined as

Angular Similarity = 1 − Angular Distance (2.4)

where the Angular Distance metric is calculated based on the respective Cosine Similarity
between two given vectors:

Angular Distance = cos−1(Cosine Similarity)
π

. (2.5)

Using Angular Similarity instead of Cosine Similarity for calculating the similarity be-
tween two given vectors introduces an additional benefit for our application. In Figure
2.7, we present a comparison of both functions, where the Cosine Similarity function is
scaled to the range [0, 1] accordingly. We can see that the Angular Similarity function is
not strictly linear, meaning that high similarity or dissimilarity are separated by a bigger
margin.

In addition to Angular Similarity, we will introduce a similarity function based on the
Manhattan Distance metric [Thy15]. Similar to the motivation of using Angular Sim-
ilarity, we will take the exponential negative distance to create a stronger separation
of similar and dissimilar documents. Using the negative distance value instead of the
original one is important as we want the similarity function to calculate scores in the
range [0, 1], with 0 and 1 representing dissimilarity and similarity respectively.

16

2.5. Similarity Measures

Figure 2.7: Comparison of Cosine Similarity and Angular Similarity

Manhattan Similarity. Let A and B be two given vectors, where ai and bi are the ith

elements of each respective vector and |A| = |B|. The Manhattan Similarity function is
then defined as

Manhattan Similarity = exp(−
n�

i=1
|ai − bi|) (2.6)

where n is the total number of elements in each given vector.

In contrast to the Cosine Similarity function, the Manhattan Similarity is based on the
distance between all elements of two given vectors rather than their respective angle.
For example, two vectors with equal angles but differently scaled values will result in a
similarity of 1.0 when using the Cosine Similarity, but - based on the size of the vector -
yield a rather low score for the Manhattan Similarity.

After introducing the most important preliminaries in the context of this thesis, the
following chapters will present additional requirements needed for conducting our experi-
ments.

17

CHAPTER 3
Data

The first step towards building a machine learning model is defining the data set which
will be used to train the respective model. Thus, this chapter will introduce the data set
which will be used throughout all following chapters. As we are not relying on a publicly
available data set, motivated by the scope and the problem description of this thesis, we
will present the complete process from gathering the required data to the final base data
set for our experiments.

First, we will (1) define all source systems required to collect the needed data, followed
by (2) the pipeline and necessary supporting software in order to extract it accordingly.
Afterwards, we will provide a brief but comprehensive analysis of the extracted documents,
leading to (3) the description of important preprocessing steps. In the last section of this
chapter, we will (4) introduce the base data set, including the definition of the ground
truth and additional methodology required for the different experiments.

3.1 Sources
As motivated in the beginning of this thesis, we want to rank research profiles of potential
reviewers based on the content of any given thesis. Therefore, we need to extract two
different types of documents: theses and research profiles.

Research Profiles. In order to extract research profiles of potential reviewers, we will
refer to internal services of TU Wien: TU Information Systems and Services (TISS)1.
TISS provides an API and a comprehensive documentation2 of different API calls, which
also include the possibility to search for the profile of an employee. As this profile includes

1https://tiss.tuwien.ac.at, last visited on 10-01-2021
2https://tiss.tuwien.ac.at/api/dokumentation, last visited on 10-01-2021

19

https://tiss.tuwien.ac.at
https://tiss.tuwien.ac.at/api/dokumentation

3. Data

a section for professional background and research topics, we will use the API of TISS to
retrieve the required research profiles.

Theses. For the past years, all submitted theses at TU Wien have been stored and
uploaded to the online repository CatalogPlus3, including meta information such as
author, year, and abstract as well as the PDF of the original thesis. To collect semantic
information of a given thesis, the obvious choice would be the complete text body of the
written document. For the scope of our experiments, however, we will extract only the
abstract from the presented repository. There are two main reasons for this decision:
First, An abstract briefly describes the work presented in a given thesis, including the
general topic as well as methodology. Therefore, the semantic information of the abstract
should be sufficient to determine whether a specific research profile is a relevant match or
not. The second reason is the disproportionately higher effort that is required to extract
textual content from a PDF, compared to the additional amount of semantic information
it would provide.

3.2 Pipeline
Following the definition of the data sources, we continue by specifying the data pipeline,
i.e. the process of extracting the required data from its source systems. As we are using
two different document types - abstracts and research profiles - with different sources,
this section will be further split into a subsection for Research Profiles and Abstracts. For
the implementation of the data pipeline, the programming language Python [VRD09]
will be used.

3.2.1 Research Profiles
Following the definition of the source system for research profiles, we will use a sequence of
different API calls to extract information about potential reviewers from TISS, including
their respective research profile. First, we start by extracting all research units at TU
Wien4. By parsing the result of the API call, we extract the ID, Name, Code, and
Parent_Unit for each research unit.

In the next step, we iterate over all research units and use their respective Code as
input for the API call5. This will result in a list of all employees associated with
the research unit, for which we store the attributes First_Name, Last_Name, Pre-
ceding_Titles, Postpositioned_Titles, Function, Research_Unit, ID, and OID. In case
no ID is assigned to the employee, the entry will be populated with a unique default value.

3https://catalogplus.tuwien.at, last visited on 10-01-2021
4https://tiss.tuwien.ac.at/api/fpf/rest/research_unit/get_all
5https://tiss.tuwien.ac.at/api/orgunit/v22/code/<UnitCode>?persons=true

20

https://catalogplus.tuwien.at
https://tiss.tuwien.ac.at/api/fpf/rest/research_unit/get_all
https://tiss.tuwien.ac.at/api/orgunit/v22/code/<Unit Code>?persons=true

3.3. Preprocessing

Then, for each employee, we process a our next API call6 based on her or his ID to
retrieve the corresponding employee profile. The resulting XML document will be further
parsed to collect all relevant background information in English.

In addition to the complete list of research profiles, a separate subset will be generated,
including only employees which are eligible for the review process of theses. An employee
is eligible if she or he possesses one or more of the following titles: univ.prof, assoc.prof
or habil. This collection of profiles represents the final pool of potential reviewers as
required for the final evaluation of our experiments (see Chapter 6 for details).

3.2.2 Abstracts

The defined source system for retrieving the abstracts, CatalogPlus, does not provide an
API. Therefore, we use an additional Python library called Beautiful Soup [Ric07], which
will allow us to scrape content from websites.

Based on the retrieved research profiles, we will start collecting abstracts by looping
over all reviewers. For each reviewer, a search request is sent to CatalogPlus, using the
respective first and last name of the reviewer as additional search criteria. The resulting
website lists all theses related to the reviewer, i.e. all theses she or he supervised in
the past. However, as the results are limited to 20 entries per page, we use Beautiful
Soup to retrieve the URLs of all subsequent result pages, storing them in a separate list.
Then, for each individual result page, we will extract the URLs of all websites linking to
individual theses and their abstracts.

After storing the URLs of all results, the content of each of the websites will be retrieved
using the built-in HTML-parser of Beautiful Soup. The resulting text body contains
various information related to the respective thesis such as author or year, but also the
German and English version of its abstract. Thus, we will further process the content to
extract the English version of the abstract and store it accordingly with a reference to
the original supervisor.

3.3 Preprocessing
In order to use the raw data (retrieved from the presented data pipeline) for the creation
of the base data set, the format and quality of the documents need to be harmonised.
This section will describe all preprocessing steps for both, (1) research profiles and (2)
abstracts.

6https://tiss.tuwien.ac.at/api/fpf/rest/research_person/profile/<ID>

21

https://tiss.tuwien.ac.at/api/fpf/rest/research_person/profile/<ID>

3. Data

3.3.1 Research Profiles
As the research profiles are parsed from an XML file, there are various elements within
the text which do not represent semantic information, e.g. XML tags or timestamps (see
Listing 3.1). Therefore, the first part of the preprocessing of the profiles consists of the
removal of timestamps in the format of yyyy-mm-dd hh:mm, any special characters, and
XML tags of any kind. By inspecting some randomly selected samples, we can observe
that there are several terms included in the documents which do not represent valuable
information, e.g. editor, other, Patent number, or Beyond TUV-research foci. Thus, more
than 40 additional different terms will be removed from the content of the data set.

1 ...
2 <ns2:personData>
3 ...
4 <ns2:feiProfile>
5 <de>- Stereoselektive Synthese - Metabolitensynthese [...]</de>
6 <en>- Stereoselective synthesis - Synthesizing metabolites [...]</en>
7 ...
8 <ns2:keywords>
9 <keyword>

10 <value>
11 <de>Asymmetrische Synthese</de>
12 <en>asymmetric synthesis</en>
13 </value>
14 </keyword>
15 ...
16 <ns2:researchField>
17 <mainResearch>
18 <de>Ausserhalb der TUW-Forschungsschwerpunkte</de>
19 <en>Beyond TUV-research foci</en>
20 </mainResearch>
21 <name>
22 <de>Ausserhalb der TUW-Forschungsschwerpunkte</de>
23 <en>Beyond TUV-research foci</en>
24 </name>
25 <info>
26 <de>Ausserhalb der TUW-Forschungsschwerpunkte</de>
27 <en>Beyond TUV-research foci</en>
28 </info>
29 ...
30 <name>
31 <de>SCI (Science Citation Index)</de>
32 <en>SCI (Science Citation Index)</en>
33 </name>
34 </classification>
35 <period>
36 <startDate>2009-09-01+02:00</startDate>
37 <endDate>2014-08-01+02:00</endDate>
38 </period>
39 ...

Listing 3.1: Extract of a random Profile in XML Format

22

3.4. Base Data Set

In addition to the preprocessing of unwanted symbols and terms, some of the research
profiles include German content, which might have been caused by wrong user input.
To harmonise the language of all research profiles, we use the Google Translation API
of the Python library googletrans [Han18] to translate all non-English content into English.

Finally, as most of the profiles are represented by bullet points and keywords, we split
the documents into independent chunks of information based on line breaks and store
them as a list of character strings for each research profile.

3.3.2 Abstracts
As defined in Chapter 3.2.1, each abstract will be retrieved in English in the format of
a single character string. The online repository CatalogPlus seems to provide already
harmonised data formats for the abstracts, therefore, only one preprocessing step must
be performed in the scope of this thesis: In order to process the raw text body using
state-of-the-art language models such as BERT [DCLT19], we split the documents into
their individual sentences and represent each abstract as list of character strings.

3.4 Base Data Set
After all required data was extracted and preprocessed, we can specify the base data set
which will be used as input for all experiments. Therefore, this section will present the
content and structure of the base data set, including the definition of its ground truth
and supporting methodology.

3.4.1 Ground Truth
An important part of a data set well suited for machine learning experiments is the
ground truth of its data samples. The ground truth is represented by the target value of
each individual sample, i.e. in the case of classifying images, the respective ground truth
are the class labels such as bird or horse for the domain of animals.

In the scope of this thesis, where we want to match two documents, we need to define pairs
of documents that represent a good match. Following the procedure of retrieving abstracts
and research profiles (see Chapter 3.2), we already store pairs of related documents, i.e.
an abstract together with the research profile of its original supervisor. However, as
seen in the analysis of the documents (see Chapter 3.3), not every employee provides
a well documented research profile or simply no profile at all. Additionally, we can-
not be certain that, in all cases, the supervisor is indeed a good match for the given thesis.

There are other methods such as clustering or topic modelling [CDOK20], which could be
used to establish a ground truth. These methods, however, also strongly depend on the

23

3. Data

quality of our input documents and might produce an unwanted bias, i.e. the clustering al-
gorithm might exploit patterns caused by poor data quality. This will then further transfer
into any model as the learning process optimizes its parameters based on the target values.

Considering all of the above aspects, we decide that the original supervisor of each
abstract is the best fitting target value, resulting in the final ground truth for our base
data set. To mitigate some of the impact that research profiles with poor data quality
might have, we will not consider any abstracts where the profile of its supervisor was not
populated.

3.4.2 Structure of the Data Set
Following the definition of our ground truth, we can now specify the final format and
structure of our base data set. The data set itself is split into two different sets: (1)
the set containing all abstracts including the respective target in form of supervisor ID
together with his or her research profile, and (2) the list of all research profiles also
including the respective ID of the employee.

The reason for this split is based on the difference in the training and evaluation process
(for details see Chapter 4.4.4 and 4.4.5). The evaluation - and also the functionality of the
final model - will be based on the list of potential reviewers, which is directly derived from
the set of all research profiles. To avoid unnecessary computational overhead when using
the final model to generate a ranked list of research profiles, they will be stored separately.

Both, the data set containing all abstracts and the data set containing all research profiles,
can be further filtered to only include abstracts and profiles related to potential reviewers
(see Chapter 3.2.1 for the criteria of being a potential reviewer). An overview of the final
data sets can be seen in Table 3.1.

Data Set # of Samples

All available Abstracts 11,198
Thereof related to Reviewers only 7,906
All available Research Profiles 1,259
Thereof related to Reviewers only 488

Table 3.1: Overview of Data Sets

Additionally, in Figure 3.1, we can see the distribution plots for both, the data based on
all research profiles and the data based on only reviewer profiles. We can observe that
for more than 350 reviewers in the complete data set and more than 30 reviewers in the

24

3.4. Base Data Set

reviewer-only data we were not able to retrieve any related abstracts. This might impact
the performance of our experiments as the affected employees will not be represented by
any data samples contained in the training data set.

Figure 3.1: Data Distribution

3.4.3 Negative Sampling
For some of the experiments presented in Chapter 5, we need to be able to generate pairs
of abstract and research profile which represent a negative sample, i.e. the corresponding
reviewer is not a good match for the respective abstract. Therefore, we introduce a
method for negative sampling based on a given abstract and its original supervisor.

First, we need to revisit the creation of the set containing all research profiles. The initial
process for extracting the profiles (see Chapter 3.2.1 for reference) starts by iterating over
all extracted research units. This means that the profiles included in the corresponding
data set are ordered by research unit. The custom method get_negative_sample (as
presented in Listing 3.2) will then take the list of research profiles (parameter profiles),
the corresponding list of employee IDs (parameter labels), and the target value of the
respective abstract represented by the ID of its supervisor (paramter target). The algo-
rithm will then retrieve the position of the target value within the set of employee IDs
and calculate a random distance value with a minimum of n

4 , where n is the total number
of employee IDs in the set. Based on this distance value, a new index will be calculated
and the corresponding research profile returned. Due to the profiles being ordered by
research unit, the defined distance will ensure that a profile of an employee belonging
to a different faculty will returned. We further assume, by changing the target to a
new faculty, that the new research profile will represent a bad match for the given abstract.

25

3. Data

1 import random
2
3 def get_negative_sample(profiles, labels, target):
4 # get index of target
5 index = labels.index(target)
6
7 # calculate distance for new index
8 c = len(profiles) // 4
9 r = random.randint(0, len(profiles) // 2)

10
11 # calculate new index
12 new_index = (index + c + r) % len(profiles)
13
14 return profiles[new_index]

Listing 3.2: Algorithm for retrieving negative Samples

Based on the introduction of the base data set and related methodology such as the
negative sampling algorithm, we will continue by describing the experiment setup. The
definition of the setup and related components is mandatory as it presents technical
requirements and the structure needed for our experiments.

26

CHAPTER 4
Experiment Setup

In this chapter, we will provide an overview of the setup required to run each individual
experiment. Thus, we will present a brief overview of (1) the hardware, which was used
throughout all experiments, (2) the technology stack including all external libraries and
frameworks, and (3) important remarks on reproducibility. In addition to those topics,
we want to introduce (4) the approach used for conducting the experiments and present
preliminaries for (5) the training and (6) evaluation process.

4.1 Hardware
All experiments are conducted on a single desktop computer. The respective hardware
specifications can be found in Table 4.1.

CPU Intel Core i7-7700 (3.6 GHz)
RAM 16 GB
Storage 1 TB HDD
GPU NVIDIA GeForce GTX 1070
OS Windows 10 Home (64-bit)

Table 4.1: Hardware Specifications used for Experiments

Due to the ability of Graphics Processing Units (GPU) to process vector and matrix
operations in a more efficient way compared to Central Processing Units (CPU), they
are commonly used in the field of deep learning to reduce the training time of neural
networks and speed up predictions on unseen data.

27

4. Experiment Setup

4.2 Technology Stack
For the implementation of the experiments, several libraries and frameworks covering
different required algorithms and machine learning methods. In Table 4.2, we can see a
list of all libraries and frameworks which were used to preprocess data, implement neural
network architectures, or define custom methods and functions.

Python 3.7 [VRD09] main programming language

NumPy [RMvdW+20] random number generator, array & list operations

Matplotlib [Hun07] visualisation of the training and evaulation pro-
cess (e.g. loss curve, evaluation)

Scikit-learn [PVG+11] split of data set into training, validation and test
set

NLTK [BKL09] preprocessing of research profiles (e.g. stop word
removal, word stemming)

Rank-BM25 [Bro20] implementation of BM25 and variants

HuggingFace [WDS+20] pre-trained models for BERT, GPT2 and XL-
Net including tokenizer and further preprocessing
functionality

PyTorch [PGM+19] core framework for implementing neural network
architectures, defining training and evaluation
methods, and creation of tensors based on the
given data sets

Table 4.2: Libraries & Frameworks used for Experiments

4.3 Reproducibility
Prior to describing the general approach for the experiments and details on training and
evaluation, it is important to note that any scientific experiment should be reproducible
- given that the environment and related settings are the same - as this is the only
possibility for reviewers and other readers to verify the correctness of the presented
results. In this context, we want to point out that randomness plays a crucial role in the
field of machine learning:

Data Set Preparation. Data sets are usually split into several subsets for training,
validation and evaluation, which in many cases is based on a random permutation on
the original data set. Depending on the samples contained in the training set and the

28

4.4. Approach

chosen machine learning algorithm, the performance of the developed models on unseen
data can vary heavily. As defined in the previous section, Scikit-learn will be used as
library for splitting the data set, where we can set a random seed for the parameter
random_seed accordingly.

Initialisation of Deep Neural Networks. Based on the chosen deep learning archi-
tecture, the resulting model will contain one or more weight matrices which are used
for the propagation of input vectors throughout the network. The initial value for each
element in the respective matrix will be calculated at random, following a predefined
initialisation method (e.g. Gaussian, Glorot). As we are using PyTorch as framework
to implement deep neural networks, we can set a random seed for the global parameter
torch.manual_seed.

Random Number Generator. In Chapter 3.5.2, we introduced an algorithm to
retrieve negative samples, which makes use of the random number generator built into
the library NumPy. Negative sampling is an important tool in the scope of this thesis
to populate the data set with additionally needed information. Therefore, we ensure
the reproducibility of the results by setting the random seed for the global parameter
numpy.random.seed.

4.4 Approach
In order to create comparable results when conducting the experiments, we define a
general approach for the structure of all experiments. This will also establish an easy
to follow structure for describing the individual models in Chapter 5. Each experiment
follows the same approach, which consists of (1) defining the underlying learning objective,
(2) preparing the data set accordingly, (3) implementing the chosen architecture and
initialising the model, (4) training the model, and (5) evaluating its performance.

4.4.1 Learning Objective
Different types of machine learning algorithms follow different objectives, e.g. classifica-
tion, regression, or sequence prediction. Therefore, it is important to define the main
learning objective of the respective model as this will dictate the preparation of the data
set as well as the required methodology for training and evaluation.

4.4.2 Data Set
Following the defined learning objective, the data set must then be populated with
required data samples and a target value for each individual sample. Without a correctly
specified target for the data points, the neural network will not be able to learn meaningful
patterns - and without a diverse representation of data samples, the network might inherit
unwanted bias after its training.

29

4. Experiment Setup

4.4.3 Architecture
In this step of the overall approach, we specify the initial idea of the experiment and
define the neural network. This includes structure and type of all network layers as well
as their corresponding parameters such as number of input and output neurons.

4.4.4 Training Process
After the preparation of the required data set and the initialisation of the chosen neural
network, the training process of the model can be started. Each model will be trained
over a duration of 50 epochs, using Adadelta [Zei12] as optimiser. The training process
will be monitored by calculating the average loss for both, training and validation data
set, prior to the first epoch as well as after every epoch has finished.

Figure 4.1: Example Plot for the Evaluation of the Training Process

In Figure 4.1, we can see an example plot showing the number of epochs on the x-axis and
the corresponding loss value on the y-axis. For each individual model, a plot containing
the loss curve for the training and validation data set will be generated. Additionally, for
each experiment, a separate plot comparing all different models based on their training
and validation error, respectively, will be used to determine the best performing model.
The loss at each epoch will be calculated using either Mean Squared Error [SW10] or
Binary Cross Entropy, depending on the defined learning objective of the model. The
definition for both loss metrics can be found in Equation 4.1 and Equation 4.2, respectively.

30

4.4. Approach

Mean Squared Error (MSE). Let n be the number of scalar values in a given output
vector, ŷi the predicted scalar at position i and yi the corresponding target value. The
Mean Squared Error is then defined as

MSE = 1
n

n�
i=1

(yi − ŷi)2. (4.1)

The Mean Squared Error loss function is typically used for learning objectives related to
regression tasks, thus, the calculation is based on the squared difference of two vectors as
we expect positive and negative values. For classification tasks, we will measure the loss
by taking the predicted probability of wrongly classified data samples. Therefore, we no
longer need to square the difference as we only expect positive values. However, we need
to differentiate between wrongly and correctly classified data samples. A loss function
commonly used for the given context is the Binary Cross Entropy.

Binary Cross Entropy (BCE). Let n be the number of scalar values in a given output
vector, ŷi the predicted scalar at position i and yi the corresponding target value. The
Binary Cross Entropy is then defined as

BCE = − 1
n

n�
i=1

[yi log ŷi + (1 − yi) log (1 − ŷi)] . (4.2)

4.4.5 Evaluation
Subsequent to the training of all individual models in a given experiment, each model
will be evaluated on the problem description of this thesis: ranking research profiles for
a specified abstract. Based on the definition of our base data set (see Chapter 3.5 for
reference), each abstract is connected to the research profile of the original supervisor,
which will serve as target for the evaluation process.

For each rank n, all correct matches will be divided by the total number of abstracts,
returning a value referred to as Accuracy in the range [0, 1]. A correct match at rank n
is achieved when the target research profile of the respective abstract is included within
the top n results of the ranking. Therefore, for a given rank n, an accuracy value of 0.7
represents that for 70 percent of the abstracts, the target research profile is included
within the first n ranked profiles. The resulting plot (as seen in Figure 4.2) then shows
the performance of the respective model measured by the accuracy at each rank as well
as the calculated Mean Reciprocal Rank [Cra09].

31

4. Experiment Setup

Figure 4.2: Example Plot for the Evaluation of a trained Model

Mean Reciprocal Rank (MRR). Let |A| be the total number of abstracts and ranki

the position of the target research profile of the ith abstract. The Mean Reciprocal Rank
is then defined as

MRR = 1
|A|

|A|�
i=1

1
ranki

. (4.3)

As an example: Consider the set of abstracts A = {a1, a2, a3} and the respective target
research profiles P = {p1, p2, p3}. We now assume that p1, p2 and p3 achieve the ranks 5,
10 and 25 respectively for the corresponding documents. The Mean Reciprocal Rank will
then be calculated by

MRR = 1
|A|

|A|�
i=1

1
ranki

= 1
3

�1
5 + 1

10 + 1
25

�
≈ 0.11333 (4.4)

With the definition of all required technical components and the overall approach, we
will continue by providing a comprehensive overview of all experiments.

32

CHAPTER 5
Experiments

In this chapter, we will present the conducted experiments, following the methodology
and approach as established in the previous chapter. First, we will set two baseline
models (random scoring and BM25) which will be taken as primary source of comparison
for each individual model. Subsequently, all experiments will be explained in detail
including (1) the main learning objective of the respective model, (2) the underlying
data set used for the training, (3) an evaluation of the training process, as well as (4)
the main evaluation based on the defined metrics in Chapter 4.4.5. An overview of all
models can be found below in Table 5.1.

Baselines Embeddings Similarity Networks

Random Scoring Base Embeddings LSTM-based Dual Encoder
BM25 Long Short-Term Memory (LSTM) Siamese Angular LSTM

Fully-Connected Autoencoder Siamese Manhatten LSTM
LSTM-based Autoencoder

Table 5.1: Overview of conducted Experiments

Finally, we will end the chapter with concluding remarks on the overall performance
throughout all experiments and a detailed comparison of the individual models.

5.1 Baselines
Establishing a state-of-the-art baseline is important for any experiments related to Ma-
chine Learning, especially when customized architectures are being used for the desired
learning outcome. Newly trained models need to be evaluated in order to measure their

33

5. Experiments

performance, but it is also crucial to measure the performance against one or more
methods which have already shown great success on similar tasks, as the main objective
is to outperform existing results.

For this reason, we will use two baseline models for our experiments: (1) a randomized
ranking function and (2) BM25 as state-of-the-art model. In the next subsections, each
baseline will be explained shortly and their respective performance will be discussed.

5.1.1 Random Ranking

A random model is often used as baseline for Machine Learning experiments as it repre-
sents a lower threshold every implemented architecture should exceed to be considered
useful.

In the scope of this thesis, the random baseline is a function which takes the complete list
of available research profiles as input. The abstract is missing from the required input
parameters as the random scoring function follows no specific logic related to the content
of the abstract other than randomly re-ordering the list of profiles. For each possible
research profile, a random score between 0 and 1 is being calculated and assigned accord-
ingly. Subsequently, the list will be sorted in descending order, i.e. rank 1 has the highest
score and the last rank the lowest. As this function does not require any training or fitting
to data, no train-test split is required. However, as we want to measure other experiments
against this baseline, the data set is split into a training and a test set using an 80-20 ratio.

Figure 5.1: Random Scoring Baseline

In Figure 5.1, we can observe the performance of the random scoring model for the
available test set of abstracts, taking the complete set of relevant research profiles as
input. As to be expected, the resulting graph shows a function stretching diagonally
across the plot and can be considered linear. As already mentioned in the previous

34

5.1. Baselines

section, this model will be used as lower bound for all experiments and referred to as
Baseline Random.

5.1.2 BM25

The second important baseline for our experiments will be set using BM25 as state-of-
the-art model for several problems related to information retrieval from text and NLP in
general (as described in Chapter 2.2).

In order to create the BM25 model, the underlying text corpus of available abstracts has
to be defined first. Therefore, the training data set consisting of the original abstracts
will be used. Each document The split into a training and a test set follows the same
80-20 ratio as used for the random model and all other experiments, with a predefined
random seed to ensure that no samples will be mixed between training and test data set
(see Chapter 4.3 for more details on the random seed).

The preprocessing for all documents consists of three steps: (1) lower casing of all words,
(2) removing stop words, and (3) stemming. After fitting a model onto the text corpus,
it can be used as a function taking the desired abstract and the complete list of available
research profiles as input. It will then calculate the respective score for each profile and
return the ranked list as output.

Figure 5.2: BM25 Baseline

In Figure 5.2, we can see the performance of the BM25 model on the test set, showing a
clear improvement compared to the random scoring model. Due to the defined ground
truth and its corresponding noisiness (see Chapter 3.5.1 for more details), however, the
model still performs poorly for later ranks. This baseline will be used together with the
random scoring model as baseline and referred to as Baseline BM25.

35

5. Experiments

5.2 Base Embeddings
The first experiment will be based on the different embedding modules used in later
experiments, but without any further processing of the resulting feature vectors. The
three different embedding modules are BERT [DCLT19], GPT2 [RWC+19], and XLNet
[YDY+19].

We will measure the performance by calculating the feature vectors for abstracts and
research profiles respectively and calculating a similarity score between each abstract-
profile-pair using our Angular Similarity function. Each embedding module will be
created based on the pre-trained model available within the HuggingFace framework
[WDS+20] and takes the untouched abstract or research profile as input. The model will
then return a feature vector for every sentence in the respective document, which will be
transformed into a single document embedding of similar dimensionality by averaging
across all sentence vectors.

Figure 5.3: Performance of different Embedding Modules

After calculating the similarity scores for each abstract, the resulting list will be sorted in
descending order and returned accordingly. As seen in Figure 5.3, GPT2 and XLNet show
similar performance to the random baseline, while BM25 still significantly outperforms

36

5.3. Long Short-Term Memory (LSTM)

them at all ranks. BERT, on the other hand, achieves a higher MRR than BM25.
However, the BM25 baseline model performs better at earlier ranks, which is crucial for
the scope of this thesis as the end user will be looking at the top ranked profiles only.

5.3 Long Short-Term Memory (LSTM)

As the different embedding modules generate feature vectors for each sentence of an
individual document, the resulting output for each document will be a sequence of vectors.
A very common network architecture for processing variable sized sequences as input is
the Long Short-Term Memory (LSTM) introduced in [HS97]. The LSTM (and Recurrent
Neural Networks in general) can be used for various tasks as seen in Figure 5.4.

Figure 5.4: Different Ways of processing Sequences with Recurrent Neural Networks
[Kar15]

For the intended idea of calculating similarity scores between two vectors for an abstract
and research profile respectively, we want to generate custom embeddings based on the
input sequence of sentence vectors.

5.3.1 Learning Objective

In order to learn custom embeddings which inherit semantic information of the document,
the idea is to use a many-to-many LSTM architecture to predict the feature vector of
the subsequent sentence based on the sentence given as input.

Therefore, the input will be the sequence of sentence embeddings s1 to sn−1, where si

is the feature vector for the ith sentence and n the total number of sentences in the
document. The target sequence will then reach from s2 to sn, i.e. the network will be
trained to predict si+1 for the given input si.

37

5. Experiments

5.3.2 Data Set
As described in the previous section, our LSTM model now takes the sequence of sentence
embeddings as input and outputs another sequence of sentence embeddings. Therefore,
the base data set has to be adapted in order to fit the network’s purpose.

First, the part of the data set consisting of all relevant research profiles can be disregarded
as the model does not need them as input. Next, for each abstract, the list of sentences
will be transformed into two different lists: (1) a list containing sentences s1 to sn−1
acting as input sequence, and (2) a list containing sentences s2 to sn for the target
sequence which is required to calculate the error between prediction and target at each
sequence step.

5.3.3 Architecture
The final model consists of multiple components: (1) the embedding module which is
generating the feature vectors for each sentence, (2) a recurrent layer consisting of two
stacked LSTMs, and (3) two fully-connected layers to transform the hidden representation
into the desired output vector.

Figure 5.5: Architecture of Many-to-Many LSTM

Embedding Module. The embedding module is based on either BERT, GPT2 or
XLNet - including the built-in functionality for preprocessing - and takes the respective
document as input. For each sentence, a 768-dimensional (768d) feature vector will be
calculated as output (referred to as Token in Figure 5.5).

38

5.3. Long Short-Term Memory (LSTM)

Recurrent Layer. The respective sentence embedding will then be fed into the first
LSTM, transforming it into a 512d vector. This will be further processed by a second
LSTM, outputting hidden representations with a dimensionality of 512 each.

Fully-Connected Layer. In order to generate the desired output vectors of size 768,
each hidden representation will be processed through two fully-connected (linear) layers.
The first linear layer transforms the input into a 512d vector, which will then be further
transformed by the second layer into the 768d output vector. Hyperbolic tangent (tanh)
is used as activation function.

Custom Embeddings. For the purpose of generating custom embeddings for each
document, the hidden representation at the last sequence step will be extracted (see
Figure 5.5 for reference).

5.3.4 Training Process
For the end-to-end training of the network, Mean Squared Error as defined in Equation
4.2 will be used as loss function. The data set is further split into training and validation
set, following the common practice for Machine Learning experiments.

Figure 5.6: Loss Curves for different Embedding Modules

In Figure 5.6, the loss per epoch for the training and validation data set is presented
for the different embedding modules. All three models show similar behaviour when it
comes to convergence, the only difference is that GPT2 and XLNet start with a higher
validation loss before training. Furthermore, we can clearly see the models overfit onto
the training data - especially in the case of BERT - which can be seen by the steadily
decreasing loss for training data, whereas the validation error starts rising again after a
few epochs.

When being compared to each other in a single plot (see Figure 5.7), the difference in the
validation error before training as well as the initial error on the training set is presented
more clearly. XLNet performs the worst in terms of loss, while starting off better than

39

5. Experiments

Figure 5.7: Comparison of Train and Validation Error

the GPT2 based model. The model which uses BERT as embedding module achieves the
best results for both training and validation error.

5.3.5 Evaluation

Figure 5.8: Performance of different Embedding Modules

For the evaluation of the model, the test set will be fed into the model. However, as
explained in the architecture section, we disregard the predicted output sequence and

40

5.4. Fully-Connected Autoencoder (FC AE)

take the last hidden representation as custom embedding for the respective document.
The resulting feature vector for the abstract will then be used to score all feature vectors
representing the research profiles using the Angular Similarity function.

As depicted in Figure 5.8, BERT outperforms GPT2 and XLNet, showing a significant
improvement on our random scoring baseline. All three of the presented models fail to
achieve the performance of the BM25 baseline and are only able to catch up in the later
ranks of the evaluation. Out of all models. the network based on BERT as embedding
module comes the closest to our state-of-the-art baseline.

5.4 Fully-Connected Autoencoder (FC AE)
For the next experiment, we will present a model based on the Autoencoder architecture.
Autoencoders are neural networks which can be used for a set of different tasks such as
denoising data or generating unseen data, and can be found in many different variants of
implementations [DLLK18]. The basic underlying idea of an Autoencoder, however, is
dimensionality reduction of a given input vector while preserving as much information as
possible to reconstruct the original vector.

Figure 5.9: Simple Architecture of an Autoencoder [AWN18]

In Figure 5.9, we can see a very simple architecture of an Autoencoder, where xi represents
the input vector, h(xi) the transformed input with reduced dimensionality, and x̃i the
reconstructed output vector. The part of the architecture transforming xi into h(xi)
is referred to as Encoder, whereas the reconstruction part from h(xi) to x̃i is called

41

5. Experiments

Decoder. We will use a model based on the Autoencoder architecture to generate custom
embeddings of the documents.

5.4.1 Learning Objective
As described in the previous section, an Autoencoder architecture is used to reduce the
dimensionality of any given input vector xi while maintaining its semantic information.
The learning objective for our model will be the same as for any other Autoencoder: First,
it takes the document embedding in the form of a feature vector xi as input and processes
it through the Encoder part to generate the hidden representation h(xi). Afterwards,
it will transform h(xi) into the output vector x̃i using the Decoder architecture. By
calculating the reproduction error between x̃i and xi, the network will be able to learn
and adjust its weights accordingly.

5.4.2 Data Set
The Autoencoder architecture uses the same feature vector it takes as an input also for
the respective target. For that reason, the base data set has to be adapted to meet the
presented criteria. The change in the data set is a very simple one as all we need is a
single document per data point as this will serve both as the input and the target. Thus,
the resulting data set is represented by the list of all available documents.

5.4.3 Architecture
The chosen model architecture for this experiment uses three different components: (1)
the embedding module including the aggregation module for generating a single represen-
tation for a given document (referred to as document embedding), (2) the Encoder as
well as (3) the Decoder.

Embedding Module. Basis for the embedding module is again either BERT, GPT2
or XLNet, which takes a given document as input and transforms it into a sequence
of 768d sentence embeddings (referred to as Token in Figure 5.10). In order to create
a feature vector for the whole document, the aggregation module averages across each
dimension of all sentence embeddings and outputs a single 768d embedding vector.

Encoder. The Encoder of our model is built using two fully-connected layers. The
first layer takes the 768d document embedding as input and transforms it into a vector
with a reduced size of 448. The second layer then processes the vector into a 128d
feature vector, which represents the hidden representation h(xi). The activation function
in-between the layers is tanh.

Decoder. Following the Encoder architecture, the Decoder aims at reproducing the
document embedding by mirroring the preceding architecture. Therefore, the 128d

42

5.4. Fully-Connected Autoencoder (FC AE)

Figure 5.10: Architecture of Fully-Connected Autoencoder

hidden representation will be fed through the first fully-connected layer to generate a
448d vector. Afterwards, the second fully-connected layer transforms its input back into
a 768d output vector. Again, tanh is used as activation functions in-between the layers.

Custom Embeddings. As we aim to generate comparable embeddings based on the
documents, we will use the hidden representation h(xi) - generated by the Encoder
module - as the respective custom embedding.

5.4.4 Training Process
To calculate the reproduction error of input and output vector, we will use Mean Squared
Error as loss function for the training of the network. The data set, again, is split into
training and validation set to monitor performance throughout the process.

Figure 5.11: Loss Curves for different Embedding Modules

In Figure 5.11, we can observe that all three models converge rapidly for both, training
and validation set. While the model based on BERT embeddings starts off with a very

43

5. Experiments

small error and is able to further improve on that, the models implementing GPT2 and
XLNet seem to struggle with the given learning objective.

Figure 5.12: Comparison of Train and Validation Error

Comparing the different models side-by-side for the training as well as the validation
data set as seen in Figure 5.12, the difference in the calculated loss per epoch clearly
shows that BERT is the best performing model. The fast convergence with little learning
effect on the models might imply that the chosen architecture does not transfer well to
the defined problem. Another reason for the poor performance could be the rather simple
approach of aggregating the sentence embeddings into a single document embedding.

5.4.5 Evaluation
The evaluation of our model will be done using only the Encoder architecture on top of
the embedding module. The embedding module will take a given document as input,
transform it into a single document embedding and feed it further into the Encoder.
This will result in the hidden representation vector, which will be calculated for both,
abstracts and research profiles. Afterwards, for each abstract, all research profiles will be
measured against it using the Angular Similarity function.

The network based on BERT embeddings is the best performing model on our evaluation
task, as seen in Figure 5.13. The model achieves a higher MRR, however, performs worse
at earlier ranks. With GPT2 and XLNet only performing better at very late ranks, the
BM25 baseline is the best model for earlier ranks.

44

5.5. LSTM-based Autoencoder (LSTM AE)

Figure 5.13: Performance of different Embedding Modules

5.5 LSTM-based Autoencoder (LSTM AE)
Following the idea of the first two experiments, we want to combine the principle of
dimensionality reduction with sequence processing. Therefore, the model presented in
this section will be an LSTM-based Autoencoder. The concept is clear: We want to take
a sequence of sentences as input and use the Encoder-Decoder architecture to compress
them at first, and then reproduce the original sequence again.

Compared to the simple Autoencoder described in the previous subchapter, the model
is intended to learn its own aggregation of sentence embeddings within the Encoder
architecture, hoping to preserve the semantic text information in a better way and achieve
better results.

5.5.1 Learning Objective
Similarly to the learning objective of the simple Autoencoder, we now want to use the
model to process a sequence S of different sentence embeddings si to sn to achieve a
hidden representation h(S) with lower dimensionality. As the input to the Encoder is not
a single feature vector anymore, the Decoder needs to be fed with additional information
- the expected sequence length n. To achieve this goal while maintaining a network

45

5. Experiments

architecture which is still differentiable, i.e. it is still able to learn using gradient descent
and backpropagation, the hidden representation h(S) is simply fed into the recurrent
Decoder n times. The resulting output vector is then a sequence S̃ containing individual
embeddings s̃i to s̃n. By calculating the reproduction error at each time step t - that is
calculating the error between st and s̃t - the network will be able to learn.

5.5.2 Data Set
The architecture for the LSTM-based Autoencoder follows the same structure as the
Autoencoder, hence, we need to change our base data set to meet the required input
criteria. Therefore, we will again take the list of all available documents as data set, as a
single data point represents both, the input and the target.

5.5.3 Architecture
The implementation of the LSTM-based Autoencoder is done using the same three
components as for the simple Autoencoder: (1) the embedding module which transforms
our given input sequence into sentence embeddings, (2) the Encoder architecture, and
the (3) Decoder architecture. However, as we are now processing sequences within the
Encoder-Decoder part, the building blocks of each component have changed.

Figure 5.14: Architecture of LSTM-based Autoencoder

Embedding Module. A document will be fed into the first module, the embedding
module, which is based on either BERT, GPT2 or XLNet. The embedding module will
then transform each sentence of the given document into a 768d sentence embedding
(referred to as Token in Figure 5.14). The resulting embedding vector will then be further
processed by the Encoder.

Encoder. The Encoder consists of two stacked LSTMs, taking a sentence embedding
at each sequence step as input. The first LSTM takes the 768d embedding vector and

46

5.5. LSTM-based Autoencoder (LSTM AE)

transforms it into a 448d vector. Subsequently, the second LSTM processes the given
vector to generate a hidden representation with reduced size of 128.

Decoder. Following the Encoder, our Decoder has the purpose of reproducing the
original sequence as close as possible. Therefore, as mentioned already in the beginning
of this subchapter, the generated 128d hidden representation will be fed n times into the
Decoder architecture (n being the length of the original sequence). In order to process a
sequence of inputs accordingly, the Decoder is implemented using two stacked LSTMs,
followed by a single fully-connected layer for the output. The first LSTM takes each
128d hidden representation and generates another 128d vector at each time step. This
vector will then be transformed by the second LSTM, resulting in a 448d feature vector.
The full batch of n different feature vectors is then forwarded into the linear layer. The
output matrix of this operation is of size n×768, where the first dimension represents the
original sequence length n and the second dimension the reproduced sentence embedding
s̃i.

Custom Embeddings. In order to evaluate the performance of this model, we will
generate a custom embedding for each document - abstract and research profile - using
the hidden representation h(S) calculated by the Encoder architecture.

5.5.4 Training Process
Similarly to the training process of the simple Autoencoder, we will use Mean Squared
Error as loss function for the training of the LSTM-based Autoencoder. The loss function
is used to calculate the reproduction error between the input and output sequence of the
model. Following previous guidelines, the data set is split into training and validation
set.

Figure 5.15: Loss Curves for different Embedding Modules

As with the fully-connected Autoencoder, all three different models of the LSTM-based
Autoencoder - BERT, GPT2 and XLNet based - converge very quickly with respect to
the calculated loss per epoch (see Figure 5.15). However, with this experiment, GPT2
and XLNet both achieve lower error scores which are closer to the one of the BERT

47

5. Experiments

model. In all three cases, the difference between validation and training data set is very
small, and no extreme overfitting can be observed.

Figure 5.16: Comparison of Train and Validation Error

In Figure 5.16, we can further see that while the three different models start with
significant differences in the loss at epoch 0, they meet after a few epochs. While BERT
is still the best performing model, the LSTM-based Autoencoder achieved better overall
results in the training process than the fully-connected Autoencoder. This might imply
that the use of the aggregation module in the fully-connected architecture indeed hinders
the model to preserve semantic information.

5.5.5 Evaluation

For the evaluation of the LSTM-based Autoencoder, the hidden representation of the
Encoder will be used for both, abstracts and research profiles. Subsequently, each abstract
will be compared to all available research profiles using the Angular Similarity function,
resulting in a ranked list of potential reviewers.

As described in the previous section, the LSTM-based Autoencoder achieves better
results for the main learning objective of compressing and reproducing the input vector
compared to the fully-connected Autoencoder. However, when it comes the problem
description of this thesis, the evaluation of the model shows rather poor performance. In
Figure 5.17, we can see that all of our three models achieve lower accuracy throughout
almost all ranks compared to BM25. In the earlier ranks, even our random baseline
outperforms the models based on GPT2 and XLNet, which is a clear indicator that the
learned architecture does not transfer well to the defined problem of this thesis. The
network based on BERT as embedding module still significantly outperforms the other
models. The overall performance, although, is not as high as with the fully-connected
Autoencoder.

48

5.6. LSTM-based Dual Encoder

Figure 5.17: Performance of different Embedding Modules

5.6 LSTM-based Dual Encoder
In the previous experiments, we used a single encoding architecture for both types of
documents, abstracts and research profiles. Due to the structural differences of those
two document types, a single Encoder might not achieve best possible results. Therefore,
with the inspiration of the Siamese Neural Network architecture presented in [RG19],
this experiment aims to improve previous results by using two different encoding modules.

Siamese Neural Networks, as depicted in Figure 5.18, take two different vectors as input
and feed them through their respective encoding architecture (referred to as Network 1
and Network 2). The word siamese describes that both these networks share the same
weights, i.e. it is implemented as one single network. The resulting vectors will then be
merged or compared (denoted with S for Similarity) and generate a single output vector.
In the scope of [Koc15], the output vector represents the similarity between two given
input pictures. As our model expects text bodies as input, the output will represent the
semantic similarity between two documents.

For the purpose of this experiment and due to the above stated difference in document
types, we propose a similar architecture but without shared weights.

49

5. Experiments

Figure 5.18: Basic Architecture of a Siamese Neural Network

5.6.1 Learning Objective

As described in the previous section, the proposed architecture aims to calculate the
similarity between two given input vectors x1 and x2. Therefore, we need to define a new
learning objective for the overall model. Given both inputs x1 and x2, the model will feed
them through two different networks respectively to generate the hidden representations
h1(x1) and h2(x2). Both vectors will then be compared with each other using a function
to measure vector similarity, returning a 1d output vector which represents the similarity
score in the range [0, 1]. A score of 1.0 is achieved when h1(x1) = h2(x2), while a score
of 0.0 represents dissimilarity. If trained correctly, the model will then act as custom
similarity function to score each research profile in respect to a given abstract.

5.6.2 Data Set

The proposed architecture expects two documents as input in order to calculate the
similarity. The presented base data set includes abstracts, research profiles, and the
respective connection in form of the target. However, a new target is also required, as
the output of the network is the similarity score in the range [0, 1].

Therefore, each abstract will be paired with the research profile defined by its target,
representing a pair of similar documents with a target of 1.0. Without having data points
as samples for dissimilarity, the network will most likely learn to maximize the output
for any given input pair. Thus, we will make use of the method for negative sampling as
described in Chapter 3.5.2 to populate the data set with further document pairs with a
target of 0.0. To summarize, for each abstract we will include two samples xpos and xneg

50

5.6. LSTM-based Dual Encoder

in the new data set:

xpos = (abstract, dpos, 1.0) (5.1)
xneg = (abstract, dneg, 0.0) (5.2)

where dpos is the research profile connected to the abstract by its original target, and
dneg is the research profile retrieved by our method for negative sampling.

5.6.3 Architecture
The architecture for the LSTM-based Dual Encoder is built using several individual
components: The main component of the architecture is the mirrored neural network
structure consisting of (1) the embedding module to retrieve sentence embeddings for
both, abstract and research profile, and (2) a recurrent layer represented by two stacked
LSTMs. Afterwards, the hidden representations of both networks will be processed by
(3) the similarity module to generate the final output vector.

Figure 5.19: Architecture of LSTM-based Dual Encoder

Embedding Module. The first building block of the mirrored neural network archi-
tecture is the embedding module. As with previous experiments, this is represented by
either BERT, GPT2 or XLNet. Both networks will be based on the same embedding
module, i.e. in the case of BERT, it will be used to extract sentence embeddings for the
input of both networks, i.e. abstract and research profile. The first network will take the
abstract as input, the second one any given research profile. Each embedding module

51

5. Experiments

will output a 768d sentence embedding at each time step.

Recurrent Layer. Each individual sentence embedding will then be forwarded through
the recurrent layer of the respective network, consisting of two stacked LSTMs. The
first LSTM takes the 768d feature vector as input and compresses it into a 448d vector.
The output of the second LSTM will be a 448d vector as well, however, only the hidden
representation at the last sequence step will be used. Each LSTM cell at time step t will
pass its activation as input to the LSTM cell at time step t + 1, following the design of a
recurrent neural network. At the end of the sequence, the hidden representation is being
calculated based on the aggregation of all previous activations. Thus, the recurrent layer
in our model represents a many-to-one LSTM architecture (see Figure 5.4 for reference),
where a given input sequence will be transformed into a single output vector.

Similarity Module. After generating both hidden representations for the abstract and
the research profile, the similarity module will compare these two vectors, calculating
the respective similarity score. For the LSTM-based Dual Encoder we will use the same
similarity module as for the evaluation process, the Angular Similarity function.

5.6.4 Training Process
The loss function for the training process differs to the one we used for previous exper-
iments. All of the previous models aim at generating custom embeddings, where the
target vector(s) is based on the input vector(s). However, the LSTM-based Dual Encoder
calculates a single similarity score of two given input documents, i.e. the purpose of the
network is to classify two documents as either similar or dissimilar. Thus, instead of
using Mean Squared Error, we will use Binary Cross Entropy as loss function.

Figure 5.20: Loss Curves for different Embedding Modules

Interestingly, all three different models (BERT, GPT2 and XLNet) behave differently
when it comes to the training of the neural network (as seen in Figure 5.20. The model
based on BERT as embedding module shows a loss curve very typical for overfitting.
While both, training and validation error, continue to decrease over the first epochs, the
validation error starts to increase again after approximately 15 epochs. In contrast to
BERT, the models using GPT2 and XLNet do not seem to overfit on the provided training

52

5.6. LSTM-based Dual Encoder

set. the XLNet model slowly converges over the duration of 50 epochs, whereas GPT2
starts to heavily fluctuate in the calculation of the validation error after approximately 20
epochs. Even though the validation error seems to be unstable, the model performance
seems to keep improving without converging after 50 epochs.

Figure 5.21: Comparison of Train and Validation Error

However, when comparing to the overall picture as presented in Figure 5.21, GPT2 ranks
last when it comes to the prediction of unseen data. At the end of 50 epochs, XLNet and
BERT seem to achieve similar loss values, over the course of all epochs, though, BERT
clearly is the best performing model with a validation error of 0.11419 at epoch 13.

5.6.5 Evaluation
In contrast to previous experiments, the LSTM-based Dual Encoder itself functions
already as a similarity scoring module. Hence, there is no need for a separate similarity
function in order to evaluate the model on our test data set. Each abstract will be
paired with all research profiles and used as input for the model, which then calculates
a similarity score for the respective research profile. After scoring all profiles for the
respective abstract, a ranking list with descending similarity scores will be computed and
used for the evaluation plots.

As seen in Figure 5.22, the LSTM-based Dual Encoder is the first model which achieves
an increased performance compared to BM25 for all three different embedding modules
(based on the respective MRR). While GPT2 and XLNet are closer to the MRR of our
BM25 baseline, the BERT based model outperforms the baseline with an MRR increase
of a factor greater than 2. However, BM25 still achieves better performance than all
three models at early ranks.

53

5. Experiments

Figure 5.22: Performance of different Embedding Modules

5.7 Siamese Angular LSTM
Due to the good overall performance of the LSTM-based Dual Encoder, as introduced
in Chapter 5.6, this experiment is designed as comparison between the initial idea of a
Siamese Neural Network using shared weights and the implemented adaptation using two
independent networks. For further details on the basic architecture of Siamese Neural
Networks, please refer to Chapter 5.6.

The main purpose of this model is - similar to the LSTM-based Dual Encoder - to act as
a similarity scoring function between two different documents.

5.7.1 Learning Objective
The Siamese Angular LSTM expects two input documents, in our case an abstract and
a research profile. As defined in Section 5.6.1, the siamese network architecture will
generate two hidden representations h(x1) and h(x2) based on both input vectors x1 and
x2. We want to point out that in the case of this model, the hidden representation is
denoted using h only instead of h1 and h2 because both neural networks will behave
in the same manner due to the shared weights. Afterwards, the model will calculate a
similarity score between the two given input documents.

54

5.7. Siamese Angular LSTM

5.7.2 Data Set
The data set will be adjusted similarly to the data set defined in Section 5.6.2. To
summarize, each available abstract will be paired with the respective research profile of
its original target, and assigned with a new target similarity of 1.0. Additionally, using
the presented negative sampling method, the same abstract will be paired with the newly
retrieved research profile and assigned with the target 0.0 to represent dissimilarity.

5.7.3 Architecture
The Siamese Angular LSTM is based on the architecture of a Siamese Neural Network.
Thus, the model consists of three main building blocks: The siamese networks - im-
plemented by defining only one neural network which is then used for both inputs in
parallel - consists of (1) the embedding module to generate sentence embeddings for the
given input document and (2) the recurrent layer built with two stackes LSTMs. The
generated hidden representations of this network will then be compared and scored by
(3) the similarity module.

Figure 5.23: Architecture of Siamese Angular LSTM

The technical details of each individual component are the same as defined in Section
5.6.3, where we introduced the architecture of the LSTM-based Dual Encoder. In short,
the embedding module generates a sequence of 768d sentence embeddings for each of
the two documents. Each sentence embedding is then further processed by the recurrent
layer, where the first LSTM transforms the embedding into a 448d vector. The 448d
hidden representation at the last sequence step of the second LSTM is then being used as
input for the similarity module. The similarity module is represented by the Angular
Similarity function and outputs a single 1d output vector in the range [0, 1].

55

5. Experiments

5.7.4 Training Process

For the training process of the Siamese Angular LSTM, we will use Binary Cross Entropy
as loss function. Reasoning for using Binary Cross Entropy over Mean Squared Error is
the same as defined for the LSTM-based Dual Encoder: We want to classify two given
input documents as either similar, with a target of 1.0, or dissimilar, with a target of 0.0.

Figure 5.24: Loss Curves for different Embedding Modules

In Figure 5.24, we can observe the performance on the training process using our training
and validation data set. The models using GPT2 and XLNet as embedding modules
behave in a very similar manner, slowly converging over the duration of 50 epochs without
any unexpected fluctuations in the calculated loss per epoch. Our BERT based model
learns faster as seen in the decrease of the loss curve of the training set. However, after
about 10 epochs, the model starts to overfit which can be observed by the validation
error increasing again.

Figure 5.25: Comparison of Train and Validation Error

When comparing all three models to each other (as seen in Figure 5.25, the close
performance of GPT2 and XLNet can be observed even more clearly, while XLNet has a
slight edge over GPT2. Overall, BERT performs the best out of all three models.

56

5.8. Siamese Manhattan LSTM

5.7.5 Evaluation
To evaluate the presented architecture on the main problem description of this thesis,
we will use the network for both embedding and similarity scoring. Each abstract will
be paired with all research profiles as input for the network, which then calculates a
similarity score in the range [0, 1] for the two documents. Once all available research
profiles are scored for the respective abstract, the list of research profiles will be ranked
descending based on their score and used for the evaluation plots.

Figure 5.26: Performance of different Embedding Modules

Figure 5.26 shows the performance of all three different models and its comparison. Here
we can see that all models manage to outperform our baselines, with BERT being the best
performing model as already anticipated within the training process. Compared to the
LSTM-based Dual Encoder, the MRR of the BERT based model further increased from
0.01078 to 0.01098. However, the BERT model still does not achieve the performance of
the BM25 baseline when it comes the earlier ranks (top 100).

5.8 Siamese Manhattan LSTM
For the final experiment, we will present another architecture based on the principle of
Siamese Neural Networks. Our previous models show significantly increased performance

57

5. Experiments

compared to the models which are not based on a siamese architecture. As we want to
keep the recurrent property of our network due to the input format and the pre-built
embedding modules, we are changing the last building block: the similarity module.

So far, we have used Angular Similarity as evaluation metric for earlier models and
similarity module for our models based on Siamese Neural Networks. In [Thy15], the
MaLSTM is being presented, using a similarity measure derived from the Manhattan
Distance function. We will call the derived similarity measure Manhattan Similarity as
defined in Equation 2.6.

5.8.1 Learning Objective

The main learning objective for the Siamese Manhattan LSTM is defined similarly to the
Siamese Angular LSTM and the LSTM-based Dual Encoder (for reference see Chapter
5.6.1). The network will take two documents x1 and x2 as input, an abstract and a
research profile, and will generate two hidden representations h(x1) and h(x2). These
hidden representations will then be compared and a similarity score in the range of [0, 1]
will be calculated as output.

5.8.2 Data Set

As for the learning objective, we will refer to Chapter 5.6.2, which defines the data
set adjustment for the LSTM-based Dual Encoder. Each data point is represented as
tuple, containing an abstract, a research profile and a target of either 1.0 or 0.0. The
respective research profiles will be retrieved by the original target of the abstract for
positive samples, and using the negative sampling method for negative samples.

5.8.3 Architecture

Following the previous experiments based on Siamese Neural Networks, the Siamese
Manhattan LSTM will be built with the same three building blocks: both, (1) the
embedding module to extract sentence embeddings and (2) the recurrent layer consisting
of two stacked LSTMs, as part of the siamese network, and (3) the similarity module.

In Figure 5.27, we can see that the network is very similar to the architecture of the
Siamese Angular LSTM (see Figure 5.23 for reference). The only difference is that we
use Manhattan Similarity as our similarity function, which is based on the Manhattan
Distance. The embedding module will output a 768d embedding for each sentence
of a respective document, which will then be further transformed into a 448d vector
by the first LSTM and, subsequently, into a 448d hidden representation by the second
LSTM. Afterwards, the similarity module takes the hidden representations of both
input documents and calculates a 1d output vector representing the similarity in the
range [0, 1].

58

5.8. Siamese Manhattan LSTM

Figure 5.27: Architecture of Siamese Manhattan LSTM

5.8.4 Training Process

For the training of the presented network, we will use Binary Cross Entropy as loss
function due to the purpose of the model being to classify two documents as either similar,
with a target of 1.0, or dissimilar, with a target of 0.0.

Figure 5.28: Loss Curves for different Embedding Modules

In Figure 5.28, we can observe that the change from Angular Similarity to Manhattan
Similarity as similarity function reduced the amount of overfitting for the BERT based
model. Overall, all three models continuously improve their performance on the provided
training set over the duration of 50 epochs, whereas the validation error converges rather
quickly. The model using GPT2 as embedding module shows interesting behaviour as
the loss for both, training and validation set, suddenly starts decreasing again after
approximately 10 epochs.

59

5. Experiments

Figure 5.29: Comparison of Train and Validation Error

In the comparison of training and validation error across all three models (see Figure
5.29), we can observe that the BERT based model once again presents itself as best
performing model. In contrast to previous experiments, though, GPT2 manages to
perform slightly better than XLNet on the prediction of the unseen validation data set.

5.8.5 Evaluation

Figure 5.30: Performance of different Embedding Modules

60

5.8. Siamese Manhattan LSTM

For the evaluation of the Siamese Manhattan LSTM, we use the same approach as defined
in Section 5.7.5, i.e. for each abstract, the similarity scores for all research profiles will
be calculated. The resulting list of scored research profiles will be ranked in descending
order based on the similarity scores.

In Figure 5.30, we see the performance of all three models individually and in comparison
to each other. Compared to the Siamese Angular LSTM, all models of the Siamese
Manhattan LSTM show an improved MRR, meaning that they outperform our baselines
as well. The Siamese Manhattan LSTM using BERT as embedding module achieves
the best performance with a MRR of 0.02005, which is almost double the score of the
Siamese Angular LSTM (MRR of 0.01098).

Due to the very similar performance of the BERT based model and the BM25 baseline
in the very early ranks, we will compare the top ranks based on each individual accuracy
score. In Table 5.2, we can see that BM25 starts with a higher accuracy for the first
9 ranks. However, starting with an n of 10, the Siamese Manhattan LSTM achieves a
better score (marked in blue), which then rapidly improves over the baseline (as seen in
Figure 5.30).

n BM25 BERT n BM25 BERT

1 0.05685 0.04043 11 0.25584 0.27037
2 0.10044 0.06443 12 0.26784 0.28932
3 0.13076 0.08781 13 0.27921 0.30259
4 0.15413 0.11939 14 0.28869 0.31775
5 0.17687 0.14403 15 0.29500 0.33101
6 0.19583 0.16866 16 0.30259 0.34744
7 0.21225 0.18888 17 0.30764 0.36639
8 0.21983 0.20972 18 0.31585 0.38534
9 0.23436 0.22994 19 0.32280 0.40366

10 0.24699 0.25268 20 0.32596 0.42008

Table 5.2: Comparison of Siamese Manhattan LSTM (BERT) and BM25 for the top n
Ranks based on Accuracy

61

5. Experiments

5.9 Comparison & Concluding Remarks
For our concluding remarks on the performance of all different networks, we will compare
each network architecture with the others. In Figure 5.31, we can observe the performance
of all individual experiments, including the very first experiment using the embedding
modules without any further processing.

Figure 5.31: Comparison of Model Performance

Overall, the Siamese Manhattan LSTM achieves the best performance across all three
different embedding modules, with BERT being the best model. The models based
on the Siamese Neural Network architecture clearly outperform the first experiments,
where we generated custom embeddings for each document. This might be due to the
fact that our siamese networks learn to act as a similarity scoring function as their pri-
mary learning objective, whereas the other experiments were trained for different purposes.

Table 5.3 presents more details on the performance of individual models by listing their
respective MRR. We can observe that our models based on the Siamese Neural Network
architecture managed to achieve better results than the BM25 baseline, while previous

62

5.9. Comparison & Concluding Remarks

Model BERT GPT2 XLNet

Base Embeddings 0.00458 0.00189 0.00206
Many-to-many LSTM 0.00343 0.00203 0.00235

Fully-Connected Autoencoder 0.00529 0.00239 0.00224
LSTM-based Autoencoder 0.00284 0.00180 0.00164
LSTM-based Dual Encoder 0.01078 0.00442 0.00570

Siamese Angular LSTM 0.01098 0.00456 0.00511
Siamese Manhattan LSTM 0.02005 0.00693 0.00797

Table 5.3: Comparison of Model Performance based on MRR - measured against Random
Scoring Baseline (0.00158 MRR) and BM25 Baseline (0.00420 MRR)

experiments achieved a lower score (marked in red). The best MRR score for each embed-
ding module is highlighted in bold font, where we can see that the Siamese Manhattan
LSTM is the overall best architecture.

However, the evaluation of our experiments was based on the predefined ground truth,
i.e. the supervisor for each of abstract. As our final goal is to compute a list of possible
reviewers other than the original supervisor, there is an additional need to evaluate
the returned ranking list of research profiles. Some of the research profiles used for the
training and evaluation process, however, are of poor quality, e.g. very little content on
previous research or only visited conferences being listed. Therefore, the performance as
depicted in Figure 5.31 and Table 5.3 might be misleading.

63

CHAPTER 6
Evaluation of Use Cases

In this chapter, we will introduce three different use cases for the previously presented
methods. Each use case represents the abstract of a diploma thesis, written by students
as part of their graduation in the master’s programme Logic and Computation.

As motivated in Chapter 5.9, all three use cases will be evaluated manually to mea-
sure the respective performance. Manual evaluation means that each trained model
will take each abstract as input and compute a ranking of possible reviewers based
on the data set defined in Chapter 3. For each ranking list, the top 5/10/20 ranked
research profiles will be compared to the abstract in order to determine whether or not
it is a relevant match. The results will then be presented in form of a table, listing
all models and comparing them using a calculated precision score Precision @ k [AGB+19].

Precision @ k (P@k). Let k be the number of documents (research profiles) in scope,
starting with rank 1 of the resulting ranking list. The metric Precision @ k is defined as

P@k = r

k
(6.1)

with r being the number of relevant documents in respect to the model input (abstract).

Based on the performance observed in Chapter 5, the evaluation will be done using
BERT as embedding module for all models. As with former experiments, we use BM25
as baseline model. Additionally, we will use the top 50/100 results from our BM25 model
and rerank them using both Siamese Networks. The selection of use cases was limited
to topics familiar to the author of this thesis as the manual evaluation process requires
basic understanding and background knowledge to mark each document as relevant or

65

6. Evaluation of Use Cases

non-relevant. In the following section, each use case will be presented with its title and
abstract.

6.1 Use Cases Definition
Use Case 1. Graph-classes of Argumentation Frameworks with Collective Attacks -
Properties and Complexity Results [Kö20]

"Abstract Argumentation Frameworks (AFs) constitute a simple formalism to represent
and reason over knowledge. The simple way of modelling information just as a directed
graph lead to a rapid rise of its popularity. However, the simplicity came with the cost of
strict syntactic restrictions, and as it is often inconvenient to formalize certain natural
structures in the original notion of frameworks, many extensions have been proposed.
We deal with one such extension, namely Argumentation Frameworks with Collective
Attacks (SETAFs), which allow attacks to origin from sets of arguments. In particular,
this means that instead of a directed graph, the underlying structure of the framework is
a directed hypergraph.

Many applications motivated the search for efficient reasoning tools for the frameworks,
and as most reasoning problems are intractable in general, a more fine-grained complexity
analysis was needed. In this thesis we try to identify tractable fragments for reasoning
tasks on SETAFs. In particular, we investigate how certain restrictions on the hypergraph-
structure such as acyclicity, symmetry, and bipartiteness can be formulated and whether
they allow us to reason more efficiently. We show that the low complexity of acyclicity
carries over from AFs to SETAFs, and give the even more general result that this frag-
ment extends to frameworks that have cycles of length 1. Moreover we establish tractable
fragments in even-cycle-freeness, self-attack-free �-symmetry, and β-bipartiteness, the
respective defining properties are introduced in the course of this thesis."

Use Case 2. A General Framework for Choice Logics [Ber20]

"The topic of preferences is of importance in many areas of research, including computer
science, and, more specifically, artificial intelligence. Two formal systems in the litera-
ture that are designed for preference handling are Qualitative Choice Logic (QCL) and
Conjunctive Choice Logic (CCL). Both of these logics extend classical propositional logic
by a non-classical choice connective, with which preferences can be expressed. Instead of
evaluating formulas to true or false, formulas in QCL and CCL are ascribed a satisfaction
degree, by which interpretations are ranked. In this thesis, QCL and CCL are generalized
by the formal introduction of a choice logic framework. Besides showing that QCL and
CCL are captured by this framework, several new choice logics, based on new choice
connectives, are introduced. Since the specified framework is not very restrictive, and
therefore a multitude of different choice logics can be expressed, several classes of choice
logics are defined and examined. A notion of strong equivalence between the formulas

66

6.1. Use Cases Definition

of a choice logic is introduced and related to other notions of equivalence. In the course
of this analysis, it is proven that for QCL and CCL, our notion of strong equivalence
is interchangeable with another notion of equivalence introduced by Brewka et al. in the
original QCL paper. Lastly, the computational complexity of different reasoning tasks
relevant for choice logics is examined. Although this complexity analysis is conducted in
a general manner, it also yields new results regarding QCL and CCL. For example, the
main decision problem regarding preferred models is Θ2P-complete in both of these logics.
For the same problem, we show Δ2P-completeness for Lexicographic Choice Logic (LCL),
a logic introduced in this thesis."

Use Case 3. Model Checking Automotive Software Components [Dur20]

"Software systems developed for the automobile industry are currently witnessing a tremen-
dous increase in complexity, happening in concert with an escalation of safety requirements.
Ensuring their correctness is a challenging and costly task, which motivates the research
for new technological solutions. While not yet broadly adopted in industry, software
verification tools targeting C code demonstrate impressive performance improvements
every year, which makes them good candidates for ensuring the safety of embedded systems.

This study aims at evaluating the capacity of state-of-the-art verification tools for proving
the absence of run-time errors on four software components of various complexity. These
real-world components are developed by TTTech, a firm specialized in safety-related auto-
motive solutions.

Firstly, we establish a generic environment model based on the AUTOSAR standard,
which is broadly adopted in the automobile industry. This model aims at isolating a
component from the rest of the software platform for verification, and uses already-existing
specifications defined by the standard. We then check the code using Ultimate Automizer,
CPAChecker and CBMC extended with several ideas, such as k-induction or variable
range analysis.

Our results show that verification tools are able to successfully prove the absence of
errors in three out of four components, and cannot give a definite answer for the most
complex one. The most capable verification method is obtained by combining the results of
different code analyzes, with CBMC establishing the final verdict using k-induction. For
the problematic case, we give insights into the causes of difficulties, and next steps required
to overcome them. We conclude that introducing verification tools in the development
process can bring positive changes to the general code quality."

67

6. Evaluation of Use Cases

6.2 Use Case 1
The first use case, Graph-classes of Argumentation Frameworks with Collective Attacks -
Properties and Complexity Results [Kö20], will focus on (but not limited to) research pro-
files which show one or more of the following skills: complexity (theory), argumentation
frameworks/theory, non-monotonicity, legal reasoning, hypergraphs, graph properties/the-
ory, knowledge representation, and artificial intelligence in a broader sense.

Model P@5 P@10 P@20

Baseline BM25 0.8 0.8 0.5

Base Embeddings 0.4 0.3 0.25
Many-to-many LSTM 0.2 0.1 0.1

Fully-Connected Autoencoder 0.4 0.3 0.25
LSTM-based Autoencoder 0.2 0.1 0.15
LSTM-based Dual Encoder 0.4 0.2 0.15

Siamese Angular LSTM 0.4 0.5 0.4
Siamese Manhattan LSTM 0.0 0.1 0.25

Re-rank Top 50 (Siamese Angular LSTM) 0.6 0.8 0.65
Re-rank Top 50 (Siamese Manhattan LSTM) 0.6 0.6 0.5

Re-rank Top 100 (Siamese Angular LSTM) 0.6 0.7 0.65
Re-rank Top 100 (Siamese Manhattan LSTM) 0.4 0.5 0.6

Table 6.1: Comparison of Model Performance based on P@k

The BM25 baseline model achieves the best results, with 4 relevant profiles in the top
5 and 8 in the top 10. The experiments introduced in Chapter 5, however, achieve
only average performance. Especially surprising is the poor performance of the Siamese
Manhattan LSTM, which fails to find a good match within the top 5 (marked red in
Table 6.1). 6 of our models (highlighed in blue) even present one of the actual supervisors
of the original thesis within the top 20 results.

Following the reranking strategy, i.e. combining the top 2 perfoming models as presented
in Chapter 5.9 with the BM25 baseline, we manage to outperform our baseline in terms
of overall number of relevant profiles and achieve 13 good matches in the top 20. Overall,
we can observe that using BM25 as initial ranking model and, subsequently, our Siamese
Angular LSTM to rerank the top 50 results, generates the best possible ranking list for
the respective user.

68

6.3. Use Case 2

6.3 Use Case 2

For our second use case, A General Framework for Choice Logics [Ber20], we will use
the following (incomplete) list of keywords to manually evaluate the performance of
the models: preferences, non-monotonicity, complexity (theory), logic, non-classical
logics, knowledge representation, computational properties, and artificial intelligence in a
broader sense.

Model P@5 P@10 P@20

Baseline BM25 1.0 0.9 0.65

Base Embeddings 0.4 0.2 0.25
Many-to-many LSTM 0.2 0.1 0.1

Fully-Connected Autoencoder 0.6 0.4 0.35
LSTM-based Autoencoder 0.2 0.1 0.15
LSTM-based Dual Encoder 0.2 0.2 0.15

Siamese Angular LSTM 0.4 0.5 0.35
Siamese Manhattan LSTM 0.0 0.3 0.35

Re-rank Top 50 (Siamese Angular LSTM) 0.4 0.5 0.65
Re-rank Top 50 (Siamese Manhattan LSTM) 0.8 0.6 0.65

Re-rank Top 100 (Siamese Angular LSTM) 0.4 0.5 0.45
Re-rank Top 100 (Siamese Manhattan LSTM) 0.6 0.5 0.5

Table 6.2: Comparison of Model Performance based on P@k

In Table 6.2, we can see that BM25 outperforms all other models for the top 10 documents,
where 9/10 profiles represent a good match as possible reviewer. As with use case 1,
the Siamese Manhattan LSTM does not result in any matches within the top 5 results
(highlighted in red), but achieves average results when it comes to overall number of
relevant documents in the top 20. The models in blue include the supervisor of the original
thesis in the top 20 results, with some of them even presenting one of the actual examiners.

In the bottom rows of Table 6.2, we can observe that our reranking models based on
the top 50 results from BM25 achieve top performance for Precision @ 20, tied with
the BM25 baseline. For this specific use case, however, the plain BM25 model without
reranking achieves the best results across all metrics.

69

6. Evaluation of Use Cases

6.4 Use Case 3
The final use case presented within this chapter, Model Checking Automotive Software
Components [Dur20], will focus on research profiles related to computer/software verifica-
tion and model checking.

Model P@5 P@10 P@20

Baseline BM25 0.4 0.6 0.5

Base Embeddings 0.2 0.2 0.2
Many-to-many LSTM 0.0 0.0 0.0

Fully-Connected Autoencoder 0.4 0.3 0.25
LSTM-based Autoencoder 0.2 0.1 0.15
LSTM-based Dual Encoder 0.2 0.1 0.05

Siamese Angular LSTM 0.0 0.0 0.1
Siamese Manhattan LSTM 0.2 0.1 0.1

Re-rank Top 50 (Siamese Angular LSTM) 0.6 0.5 0.45
Re-rank Top 50 (Siamese Manhattan LSTM) 0.6 0.4 0.35

Re-rank Top 100 (Siamese Angular LSTM) 0.2 0.4 0.35
Re-rank Top 100 (Siamese Manhattan LSTM) 0.4 0.5 0.35

Table 6.3: Comparison of Model Performance based on P@k

In contrast to the other two use cases, the top performing model for Precision @ 5 is our
reranking model based on the top 50 results of BM25. Both models, the Siamese Angular
LSTM as well as the Siamese Manhattan LSTM, improve the baseline score to 3 out of 5
good matches. For later ranks, however, BM25 manages to find more relevant documents
within the top 10 as well as the top 20. The many-to-many LSTM architecture fails to
find any matches (marked in red) and the plain Siamese Angular LSTM only returns 2
relevant documents in the top 20 results.

70

6.5. Comparison & Concluding Remarks

6.5 Comparison & Concluding Remarks
For the overall comparison of the three presented use cases, we will look at the number
of relevant documents retrieved from the top 20 results of each individual model (see
Table 6.4). While some models might perform better at earlier ranks than others, the
end user might want to look at more than 5 or 10 possible reviewers for his or her thesis.
Therefore, we arrive at the assumption that the top 20 research profiles represent the
best method for comparability of models.

Model UC 1 UC 2 UC 3

Baseline BM25 0.5 0.65 0.5

Base Embeddings 0.25 0.25 0.2
Many-to-many LSTM 0.1 0.1 0.0

Fully-Connected Autoencoder 0.25 0.35 0.25
LSTM-based Autoencoder 0.15 0.15 0.15
LSTM-based Dual Encoder 0.15 0.15 0.05

Siamese Angular LSTM 0.4 0.35 0.1
Siamese Manhattan LSTM 0.25 0.35 0.1

Re-rank Top 50 (Siamese Angular LSTM) 0.65 0.65 0.45
Re-rank Top 50 (Siamese Manhattan LSTM) 0.5 0.65 0.35

Re-rank Top 100 (Siamese Angular LSTM) 0.65 0.45 0.35
Re-rank Top 100 (Siamese Manhattan LSTM) 0.6 0.5 0.35

Table 6.4: Comparison of P@20 for all 3 Use Cases

Individually, the deep learning models presented in Chapter 5 fail to perform on a similar
level with BM25. Using a network based on the Siamese Neural Network architecture
to rerank the top 50 results of BM25, however, achieves top performance for both,
Use Case 1 and Use Case 2. Use Case 3, on the other hand, presents lower scores
across all models. This could be due to the fact that the topic of the underlying thesis
is computer verification and model checking, but the vocabulary used in the abstract
is very similar to general software engineering and fields related to the automotive industry.

The difference in the presented performance compared to Chapter 5.9 can be caused
by several possible reasons. One of them is that our experiments are based on a newly
defined ground truth, the supervisor of the original thesis, which might not represent the
best possible similarity between abstracts and research profiles. Another reason might be
that the selection of use cases is heavily influenced by the background knowledge of the

71

6. Evaluation of Use Cases

author of this thesis, resulting in a very small and not very diverse sample size. In order
to generate better insights in which model is performing the best, a separate case study
of bigger scope should be conducted, i.e. using a bigger pool of unseen abstracts from a
variety of different study programmes/topics.

As an additional note, the core focus of Use Case 1 and Use Case 2 is on logic and related
frameworks, which - as a topic - consists of a very specific vocabulary. Non-relevant
documents retrieved in our case study are mostly related to research profiles with a
Mathematics background, which shares a significant part of the vocabulary.

72

CHAPTER 7
Conclusion & Outlook

In the final chapter of this thesis, we present the main outcomes and conclusions based on
all experiments we conducted in previous chapters. Therefore, we start by providing (1)
a brief summary of the most important results, including potential areas of improvement
and concluding statements. Finally, we finish this thesis with (2) an outlook on future
work that can be done for the provided context.

7.1 Summary and Conclusions

The main objective of this thesis is to develop a deep learning model which takes the
abstract of a thesis as input and returns a ranking list of potential reviewers. As part of
this problem, we extracted required data and created our own base data set. Given this
data set, we conducted a set of experiments based on different architectures and learning
objectives. The purpose of all introduced neural networks can be grouped into two main
categories: generating custom embedding vectors and calculating a similarity score.

For the models, which calculate hidden embeddings based on a given document as input,
we used the architecture of the base embedding modules BERT, GPT2 and XLNet and
presented three additional models. Two of those models process the sentences of the
given text corpus as sequence using LSTM layers. For the third model, the averaged sum
across all sentence embedding vectors was used to generate a single document embedding,
which was then further processed. In Figure 7.1, we see that both LSTM based networks
(Custom Embeddings and LSTM AE) did not manage to outperform the base embeddings
of BERT and such. Surprisingly, however, the autoencoder using the single document
embedding achieved the best results across all three different embedding modules.

73

7. Conclusion & Outlook

Figure 7.1: Comparison of Custom Embedding generating Models

An even better performance was achieved using the Siamese Neural Network inspired
architectures, which aim at calculating the similarity score based on two input documents:
the abstract of a given thesis and a research profile. In Figure 7.2, we can observe that
all three different models outperform our state-of-the-art baseline BM25. For earlier
ranks, though, BM25 still remains to be the best performing model. Additionally, we
can see that the Manhattan Similarity function achieves better results by comparing the
Siamese Angular LSTM with the Siamese Manhattan LSTM. Both networks share the
exact same architecture with only one difference: the similarity scoring function. Also, it
seems that sharing weights across both subnetworks in the siamese network architecture
performs slightly better than using two independent subnetworks, which can bee seen in
the comparison of the Siamese Angular LSTM with the Dual Encoder.

Figure 7.2: Comparison of Siamese Network based Models

However, the performance measured as part of the training process of the different models
does not transfer equally to the performance on the main task of this thesis. During the

74

7.1. Summary and Conclusions

training process, the aim of the models was to rank the supervisor of a given thesis as high
as possible, whereas in the context of this thesis we also desire similar research profiles
to be ranked high. In Table 7.1, we can see that although the Siamese Manhattan LSTM
clearly outperforms all other networks, including the baseline model, it only achieves a
good P@20 score for one of the three use cases presented in Chapter 6. The best scores,
excluding the baseline, are highlighed in bold, while the lowest scores are marked red.

Model MRR UC 1 UC 2 UC 3

Baseline BM25 0.00420 0.5 0.65 0.5

Base Embeddings 0.00458 0.25 0.25 0.2
Many-to-many LSTM 0.00343 0.1 0.1 0.0

Fully-Connected Autoencoder 0.00529 0.25 0.35 0.25
LSTM-based Autoencoder 0.00284 0.15 0.15 0.15
LSTM-based Dual Encoder 0.01078 0.15 0.15 0.05

Siamese Angular LSTM 0.01098 0.4 0.35 0.1
Siamese Manhattan LSTM 0.02005 0.25 0.35 0.1

Table 7.1: Comparison of Model Performance based on MRR and P@20

Overall, we can conclude that for our given learning objective in the training process, the
Siamese Neural Network architecture shows promising results. The Siamese Manhattan
LSTM even manages to outperform the BM25 baseline starting with a rank of 10. We
assume that with enough fine-tuning of the model, including the architecture, it is possible
to achieve better results across all ranks. However, in the setting of ranking similar re-
search profiles as potential reviewers, the BM25 baseline retains the best performance. As
presented in Chapter 6.5, we can achieve similar performance by employing a re-ranking
strategy, i.e. using BM25 for the initial ranking list and, afterwards, re-rank the top 50
results with the Siamese Angular LSTM (see Table 7.2 for reference).

As the BM25 baseline was not trained with the theses supervisors as target, we assume
that one reason for the discrepancy in the evaluation metrics is the quality of our base
data set. Research profiles for a given target reviewer might not be complete or lack
information related to the underlying thesis content. This will cause the models to learn
patterns of similar documents, which show similarly poor data quality, resulting in a bad
performance for the problem setting of this thesis. Additionally, the assignment of target
reviewers using the initial supervisors can potentially lead to poor reviewer-thesis pairs,
which are the main input for our neural networks to learn.

75

7. Conclusion & Outlook

Model UC 1 UC 2 UC 3

Baseline BM25 0.5 0.65 0.5

Re-rank Top 50 (Siamese Angular LSTM) 0.65 0.65 0.45
Re-rank Top 50 (Siamese Manhattan LSTM) 0.5 0.65 0.35
Re-rank Top 100 (Siamese Angular LSTM) 0.65 0.45 0.35

Re-rank Top 100 (Siamese Manhattan LSTM) 0.6 0.5 0.35

Table 7.2: Evaluation of the Re-ranking Strategy based on the top performing Models

7.2 Outlook
This leads us to the outlook on future work and possible improvements, where we mainly
cover three different areas: (1) the data set, (2) the network architecture, and (3) the
problem setting.

Data Set. A potential area for future work is the creation of a new data set. Especially
the task of generating meaningful reviewer-thesis pairs seems promising as this dictates
the performance of our models, regardless of the chosen architecture. A well balanced
and diverse data set could also further improve the results of the already presented
architectures. Therefore, we suggest the creation of a bigger data set, including additional
positive and - more importantly - negative samples for each of the reviewers, where the
definition of a novel negative sampling method in the given context can be considered
another area of improvement.

Network Architecture. In the scope of this thesis, we mainly focused on the genera-
tion of custom embeddings using encoder-decoder architectures and similarity scoring
based on Siamese Neural Networks. For future work, we could search for other suitable
types of architectures or try to improve existing approaches by further fine-tuning its
hyperparameters such as the layers. In addition to that, we could also explore different
learning approaches such as semi-supervised learning and active learning.

Problem Setting. Finally, we suggest to extend the work presented in this thesis by
looking at different problem settings or expand the context of application. For a different
problem setting, we would take the same architectures as introduced in the main part
of this thesis and train them on different data sets such as citation networks, i.e. using
connected papers as target values for similar documents. The resulting models can then
be evaluated in the context of this thesis. Another possibility is to use the already trained
models and measure their performance in related problem settings such as the selection
process of reviewers for paper submissions at conferences.

76

List of Figures

2.1 Example of a Parsing Tree . 6
2.2 Architecture of BERT compared to GPT 9
2.3 Training Procedure for BERT . 9
2.4 Permutation of the Factorisation in XLNet 11
2.5 Process of Matching Reviewers with Paper Submissions 13
2.6 Example Architecture of Sentence-BERT 13
2.7 Comparison of Cosine Similarity and Angular Similarity 17

3.1 Data Distribution . 25

4.1 Example Plot for the Evaluation of the Training Process 30
4.2 Example Plot for the Evaluation of a trained Model 32

5.1 Random Scoring Baseline . 34
5.2 BM25 Baseline . 35
5.3 Performance of different Embedding Modules 36
5.4 Different Ways of processing Sequences with Recurrent Neural Networks . 37
5.5 Architecture of Many-to-Many LSTM . 38
5.6 LSTM: Loss Curves for different Embedding Modules 39
5.7 LSTM: Comparison of Train and Validation Error 40
5.8 LSTM: Performance of different Embedding Modules 40
5.9 Simple Architecture of an Autoencoder . 41
5.10 Architecture of Fully-Connected Autoencoder 43
5.11 Fully-Connected Autoencoder: Loss Curves for different Embedding Modules 43
5.12 Fully-Connected Autoencoder: Comparison of Train and Validation Error 44
5.13 Fully-Connected Autoencoder: Performance of different Embedding Modules 45
5.14 Architecture of LSTM-based Autoencoder 46
5.15 LSTM-based Autoencoder: Loss Curves for different Embedding Modules 47
5.16 LSTM-based Autoencoder: Comparison of Train and Validation Error . . 48
5.17 LSTM-based Autoencoder: Performance of different Embedding Modules 49
5.18 Basic Architecture of a Siamese Neural Network 50
5.19 Architecture of LSTM-based Dual Encoder 51
5.20 LSTM-based Dual Encoder: Loss Curves for different Embedding Modules 52
5.21 LSTM-based Dual Encoder: Comparison of Train and Validation Error . 53

77

5.22 LSTM-based Dual Encoder: Performance of different Embedding Modules 54
5.23 Architecture of Siamese Angular LSTM 55
5.24 Siamese Angular LSTM: Loss Curves for different Embedding Modules . . 56
5.25 Siamese Angular LSTM: Comparison of Train and Validation Error . . . 56
5.26 Siamese Angular LSTM: Performance of different Embedding Modules . . 57
5.27 Architecture of Siamese Manhattan LSTM 59
5.28 Siamese Manhattan LSTM: Loss Curves for different Embedding Modules 59
5.29 Siamese Manhattan LSTM: Comparison of Train and Validation Error . . 60
5.30 Siamese Manhattan LSTM: Performance of different Embedding Modules 60
5.31 Comparison of Model Performance . 62

7.1 Comparison of Custom Embedding generating Models 74
7.2 Comparison of Siamese Network based Models 74

78

List of Tables

2.1 Example Term Frequency Matrix . 7

3.1 Overview of Data Sets . 24

4.1 Hardware Specifications . 27
4.2 Technology Stack . 28

5.1 Overview of conducted Experiments . 33
5.2 Comparison of Siamese Manhattan LSTM (BERT) and BM25 61
5.3 Comparison of Model Performance based on MRR 63

6.1 Use Case 1: Comparison of Model Performance based on P@k 68
6.2 Use Case 2: Comparison of Model Performance based on P@k 69
6.3 Use Case 3: Comparison of Model Performance based on P@k 70
6.4 Comparison of P@20 for all 3 Use Cases . 71

7.1 Comparison of Model Performance based on MRR and P@20 75
7.2 Evaluation of the Re-ranking Strategy based on the top performing Models 76

79

Bibliography

[AGB+19] Omer Anjum, Hongyu Gong, Suma Bhat, Wen-Mei Hwu, and JinJun
Xiong. PaRe: A paper-reviewer matching approach using a common topic
space. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 518–528, Hong
Kong, China, November 2019. Association for Computational Linguistics.

[ARTL19] Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and Jimmy Lin.
DocBERT: BERT for Document Classification. arXiv e-prints, page
arXiv:1904.08398, April 2019.

[AWN18] Hosameldin Ahmed, M. Wong, and Asoke Nandi. Intelligent condition
monitoring method for bearing faults from highly compressed measure-
ments using sparse over-complete features. Mechanical Systems and Signal
Processing, 99:459–477, 01 2018.

[Ber20] Michael Bernreiter. A general framework for choice logics. Master’s thesis,
TU Wien, 2020.

[BKL09] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing
with Python: analyzing text with the natural language toolkit. " O’Reilly
Media, Inc.", 2009.

[BRN+09] Dominic Balasuriya, Nicky Ringland, Joel Nothman, Tara Murphy, and
James R. Curran. Named entity recognition in wikipedia. In Proceedings
of the 2009 Workshop on The People’s Web Meets NLP: Collaboratively
Constructed Semantic Resources, People’s Web ’09, page 10–18, USA,
2009. Association for Computational Linguistics.

[Bro20] Dorian Brown. Rank-bm25: A two line search engine. https://github.
com/dorianbrown/rank_bm25, 2020. last visited on 10-01-2021.

[BS20] Ursin Brunner and Kurt Stockinger. Entity matching with transformer
architectures - A step forward in data integration. In Angela Boni-
fati, Yongluan Zhou, Marcos Antonio Vaz Salles, Alexander Böhm, Dan

81

https://github.com/dorianbrown/rank_bm25
https://github.com/dorianbrown/rank_bm25

Olteanu, George H. L. Fletcher, Arijit Khan, and Bin Yang, editors,
Proceedings of the 23rd International Conference on Extending Database
Technology, EDBT 2020, Copenhagen, Denmark, March 30 - April 02,
2020, pages 463–473. OpenProceedings.org, 2020.

[CDOK20] Stephan A. Curiskis, Barry Drake, Thomas R. Osborn, and Paul J.
Kennedy. An evaluation of document clustering and topic modelling
in two online social networks: Twitter and reddit. Information Processing
& Management, 57(2):102034, 2020.

[CGCB14] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
Modeling. arXiv e-prints, page arXiv:1412.3555, December 2014.

[Cra09] Nick Craswell. Mean Reciprocal Rank, pages 1703–1703. Springer US,
Boston, MA, 2009.

[CYK+18] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco,
Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan,
Chris Tar, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. Universal
Sentence Encoder. arXiv e-prints, page arXiv:1803.11175, March 2018.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota, June 2019. Association for Computational Lin-
guistics.

[DLLK18] G. Dong, G. Liao, H. Liu, and G. Kuang. A review of the autoencoder
and its variants: A comparative perspective from target recognition in
synthetic-aperture radar images. IEEE Geoscience and Remote Sensing
Magazine, 6(3):44–68, 2018.

[Dur20] Timothée Durand. Model checking automotive software components.
Master’s thesis, TU Wien, 2020.

[Han18] SuHun Han. Googletrans. https://github.com/ssut/
py-googletrans, 2018. last visited on 10-01-2021.

[Hof19] Sebastian Hofstätter. Lecture: Advanced information retrieval, 2019.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9:1735–80, 12 1997.

[Hun07] John D. Hunter. Matplotlib: A 2d graphics environment. Computing in
science & engineering, 9(3):90–95, 2007.

82

https://github.com/ssut/py-googletrans
https://github.com/ssut/py-googletrans

[Kar15] Andrej Karpathy. The unreasonable effectiveness of recurrent neural
networks. 2015. last visited on 06-01-2021.

[Koc15] Gregory R. Koch. Siamese neural networks for one-shot image recognition.
2015.

[KSMM20] Divya Khyani, Siddhartha B S, Niveditha N M, and Divya B M. An
interpretation of lemmatization and stemming in natural language pro-
cessing. Journal of University of Shanghai for Science and Technology,
22(10):350–357, October 2020.

[Kö20] Matthias König. Graph-classes of argumentation frameworks with collec-
tive attacks. Master’s thesis, TU Wien, 2020.

[MC17] Bhaskar Mitra and Nick Craswell. Neural Models for Information Retrieval.
arXiv e-prints, page arXiv:1705.01509, May 2017.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositional-
ity. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems,
volume 26, pages 3111–3119. Curran Associates, Inc., 2013.

[Nav09] Roberto Navigli. Word sense disambiguation: A survey. ACM computing
surveys (CSUR), 41(2):1–69, 2009.

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances
in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe:
Global vectors for word representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, Doha, Qatar, October 2014. Association for Computa-
tional Linguistics.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

83

[Ram03] Juan Ramos. Using tf-idf to determine word relevance in document queries.
2003.

[RG19] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. arXiv e-prints, page arXiv:1908.10084,
August 2019.

[Ric07] Leonard Richardson. Beautiful soup documentation. April, 2007.

[RMPA16] Nihar Ranjan, Kaushal Mundada, Kunal Phaltane, and Saim Ahmad.
Article: A survey on techniques in nlp. International Journal of Computer
Applications, 134(8):6–9, January 2016. Published by Foundation of
Computer Science (FCS), NY, USA.

[RMvdW+20] Charles R., K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian
Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer,
Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern’andez,
Mark Wiebe, Pearu Peterson, Pierre G’erard-Marchant, Kevin Sheppard,
Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. Harris, array programming with NumPy. Nature,
585(7825):357–362, September 2020.

[RWA+19] Alec Radford, Jeffrey Wu, Dario Amodei, Daniela Amodei, Jack Clark,
Miles Brundage, and Ilya Sutskever. Bm25 the next generation of lucene rel-
evance. https://openai.com/blog/better-language-models/
#sample1, February 2019. last visited on 18-01-2021.

[RWC+19] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

[RWJ+94] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-
Beaulieu, and Mike Gatford. Okapi at trec-3. In Donna K. Harman,
editor, TREC, volume 500-225 of NIST Special Publication, pages 109–126.
National Institute of Standards and Technology (NIST), 1994.

[SW10] Claude Sammut and Geoffrey I. Webb, editors. Mean Squared Error, pages
653–653. Springer US, Boston, MA, 2010.

[Thy15] Aditya Thyagarajan. Siamese recurrent architectures for learning sentence
similarity. 11 2015.

[Tur15] Doug Turnbull. Bm25 the next generation of lucene rele-
vance. https://opensourceconnections.com/blog/2015/10/
16/bm25-the-next-generation-of-lucene-relevation/, Oc-
tober 2015. last visited on 17-01-2021.

84

https://openai.com/blog/better-language-models/#sample1
https://openai.com/blog/better-language-models/#sample1
https://opensourceconnections.com/blog/2015/10/16/bm25-the-next-generation-of-lucene-relevation/
https://opensourceconnections.com/blog/2015/10/16/bm25-the-next-generation-of-lucene-relevation/

[VK16] M.K. Vijaymeena and K. Kavitha. A survey on similarity measures in text
mining. Machine Learning and Applications: An International Journal,
3(2):19–28, 2016.

[VRD09] Guido Van Rossum and Fred L. Drake. Python 3 Reference Manual.
CreateSpace, Scotts Valley, CA, 2009.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30, pages 5998–6008. Curran
Associates, Inc., 2017.

[WDS+20] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations, pages 38–45, Online, October 2020. Association for
Computational Linguistics.

[YDY+19] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhut-
dinov, and Quoc V Le. Xlnet: Generalized autoregressive pretraining for
language understanding. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 32, pages 5753–5763. Curran
Associates, Inc., 2019.

[Zei12] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method.
arXiv e-prints, page arXiv:1212.5701, December 2012.

[ZZD+20] Dong Zhang, Shu Zhao, Zhen Duan, Jie Chen, Yanping Zhang, and
Jie Tang. A multi-label classification method using a hierarchical and
transparent representation for paper-reviewer recommendation. ACM
Trans. Inf. Syst., 38(1), February 2020.

85

	Introduction
	Motivation
	Approach
	Outline

	Preliminaries
	Natural Language Processing (NLP)
	Information Retrieval
	Related Work
	Document Ranking versus Classification
	Similarity Measures

	Data
	Sources
	Pipeline
	Preprocessing
	Base Data Set

	Experiment Setup
	Hardware
	Technology Stack
	Reproducibility
	Approach

	Experiments
	Baselines
	Base Embeddings
	Long Short-Term Memory (LSTM)
	Fully-Connected Autoencoder (FC AE)
	LSTM-based Autoencoder (LSTM AE)
	LSTM-based Dual Encoder
	Siamese Angular LSTM
	Siamese Manhattan LSTM
	Comparison & Concluding Remarks

	Evaluation of Use Cases
	Use Cases Definition
	Use Case 1
	Use Case 2
	Use Case 3
	Comparison & Concluding Remarks

	Conclusion & Outlook
	Summary and Conclusions
	Outlook

	List of Figures
	List of Tables
	Bibliography

