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Abstract

The study of structure-property relations is a universal theme in contemporary materials science,
providing an ever-growing stage for interdisciplinary research endeavors of engineers, physicists,
chemist, and biologists. The challenge, however, lies in identifying the right levels throughout
the pronounced hierarchical organizations of many biological and man-made materials, which
are governing their various physical, and particular so, mechanical properties.

This requires a well-balanced blend of experimental methods set in a clear theoretical under-
standing; and the current thesis significantly extends the state-of-the-art exploitation of such
methods, namely nanoindentation, ultrasonic testing, scanning probe microscopy, scanning
electron microscopy, light microscopy, computed tomography, Mercury intrusion porosimetry,
mass spectroscopy, dehydration and demineralization testing, and weighing in combination with
Archimedes’ principle.

It does so in two complementing ways: On the one hand (see Chapters 3 to 5), well-accepted
structure-function relations are investigated up to a new level of completeness and through the
addition of unusual perspectives. This essentially concerns structural entities which have not yet
been at the focus of respective studies, such as micro cracks which significantly modulate elastic
properties in seemingly perfectly plastic materials such as steel for railway engineering, or the
multi- rather than uni-scale nature of the porosities found in a variety of different fired clay bricks.
In the same sense, while bone mineral (an impure form of hydroxyapatite) and type I collagen
have been known for some time to drive the extracellular matrix’s elastic and hardness/strength
properties, the very composition patterns which hydroxyapatite and collagen build up across
tissues of the same organ, but different species, has hardly been investigated systematically.
The somewhat surprising result obtained in the present thesis is that variations in mineral and
collagen content of femoral tissues of different species are (much) less pronounced than such
variations between different organs of the same organism (say femoral and vertebral tissues).
Such virtual invariances become particularly stable in genetically more relative vertebrates, such
as mammals.

On the other hand, the thesis provides, in its “main” chapter, labeled with 2, a basic framework
for structure-property relations in a material class, which as compared to bone, steel, or brick,
has remained almost untouched: namely jaw tissues harvested from different bristle worm
(Polychaeta) species. For the first time ever, elasticity, hardness, and chemical characteristics
of the extraskeleton of Platynereis dumerilii have been tested. The again surprising results
show a picture which is distinctively different from that known with bone, fired clay, or steel;
namely one where, in an unexpected fashion, features of very distinct metallic and biological
materials are combined. In more detail, a new level of nanoindentation miniaturization provided
access to a hardness scaling law similar to those known for crystalline metals, with even similar
strength and elasticity. However, in contrast to metals, the ion-spiked structure proteins making
up Polychaeta jaws are produced at room temperature, thanks to an unsurpassed, super-precise
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3D printing-type device in the form of particularly committed biological cells. The latter may
inspire unprecedented technological progress in the 3D printing field.

These results are framed by a general introduction to hierarchical structures in materials (in
Chapter 1), and rich perspectives for future research and development (see Chapter 6).
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Kurzfassung

Das Studium von Struktur-Eigenschafts-Beziehungen, einem allgegenwirtigen Thema in den
modernen Materialwissenschaften, bietet eine stetig wachsende Biihne fiir interdisziplinére
Forschungsanstrengungen an den Schnittstellen von Ingenieurwissenschaft, Physik, Chemie und
Biologie. Die Herausforderung dabei liegt auf der Identifikation der richtigen Ebenen innerhalb
der hierarchischen Organisation vieler biologischer und menschengemachter Materialien, welche
deren physikalische und vor allem mechanische Eigenschaften steuern.

Dies erfordert eine gut ausbalancierte Mischung experimenteller Methoden, basierend auf
einem klaren theoretischen Verstindnis; und die vorliegende Dissertation erweitert ganz wesent-
lich den Stand der Technik betreffend der Nutzung solcher Methoden, niamlich folgender: Na-
noindentierung, Ultraschallversuche, Rastersondenmikroskopie, Rasterelektronenmikroskopie,
Lichtmikroskopie, Computertomographie, Quecksilber-Intrusionsporosimetrie, Massenspektro-
metrie, Dehydratations- und Demineralisierungsversuche, sowie Wiegeversuche in Verbindung
mit dem archimedischen Prinzip.

Dies passiert auf zwei, sich gegenseitig ergidnzende Arten: Einerseits, und zwar in den Ka-
piteln 3 bis 6, werden wohlbekannte Struktur-Eigenschafts-Beziehungen in bisher unerreichter
Vollstindigkeit bzw. aus ungewohnlichen Perspektiven untersucht. Das betrifft im Wesentlichen
Strukturelemente, welche typischerweise nicht Teil einschldgiger Studien sind, ndmlich Mikro-
risse, welche die elastischen Eigenschaften in scheinbar perfekt plastischen Werkstoffen wie
Schienenstahl modulieren; oder die mehrskalige Natur von Porenrdumen in gebranntem Ton un-
terschiedlicher Provenienz. Im selben Sinne ist es wohlbekannt, dass das Knochenmineral (eine
unreine Form von Hydroxyapatit) und Typ1-Kollagen die Hérte- und Elastiztitseigenschaften der
extrazellularen Knochenmatrix steuern, wahrend die Dosierung dieser elementaren Bausteine
im selben Organ unterschiedlicher Wirbeltierarten kaum einer systematischen Untersuchung
unterzogen wurde. Dazu wird in der vorliegenden Dissertation ein durchaus iiberraschendes
Ergebnis vorgelegt: Variationen im Mineral- und Kollagengehalt von Oberschenkelknochen
verschiedener Wirbeltierarten sind (wesentlich) kleiner als solche zwischen verschiedenen Orga-
nen desselben Organismus (z.B. solche zwischen Oberschenkel- und Wirbelknochen). Solche
praktisch invarianten Zusammensetzungsverhiltnisse sind besondern stabil innerhalb genetisch
niher verwandter Wirbeltiere, wie der Sdugetiere.

Andererseits wird im ,,Hauptkapitel*, dem Kapitel 2 der Dissertation, ein fundamentaler
Rahmen fiir Struktur-Eigenschaftsbeziehungen einer im Vergleich zu Knochen, gebrantem Ton
oder Stahl bislang nahezu unerforschten Materialklasse vorgestellt: Exoskelett-Material, aus
welchem die Kiefer verschiedener Borstenwurmarten bestehen. Dazu wurden, zum allerersten
Mal iiberhaupt, die chemischen, elastischen und Hirte-Eigenschaften des Kiefermaterials von
Platynereis dumerilii untersucht. Die zugehorigen Ergebnisse zeigen ein iiberraschendes Bild,
wo - ganz im Gegensatz zur Situation bei Knochen, Stahl oder gebranntem Ton - Merkmale
biologischer und metallischer Materialien miteinander verbunden werden. Namentlich fordert
eine Miniatur-Version von Nanoindentierungsversuchen ein Harte-Skalierungsgesetz zu Tage,
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wie es bisher nur von kristallinen Metallen bekannt war, sogar mit dhnlichen Elastizitéts- und
Festigkeitseigenschaften. Allerdings werden die die Polychaeta-Kiefer aufbauenden, mit Ionen
angereicherten Strukturproteine, im Gegensatz zu Metallen, energieeffizient bei Raumtemperatur
im Rahmen eines duBerst prizisen biologischen 3D-Druckverfahrens hergestellt. Letzeres konnte
neue technologische Entwicklungen inspirieren.

Diese Ergebnisse werden von einer Einleitung betreffend hierarchische strukturierte Materiali-
en (Kapitel 1) und einen Ausblick auf weiterfithrende Forschungs- und Entwicklungsschritte
eingerahmt.
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Chapter

Introduction

1.1 Biological materials

Through biomimetics, biological systems have served humanity as an inspiration source due to
their unparalleled effectiveness [295]. The composition of biological materials such as bone,
teeth, and sea shells have been studied for decades. These natural structures show surprisingly
comparable or improved mechanical properties as to the man-made counterparts [200]. The
organic macro-molecules which build these biological systems are primarily assembled from
common elements such as carbon, hydrogen, nitrogen, and oxygen. However, the mechanical
properties of these organic macro-molecules are commonly “poor” whenever they are isolated
[55, 164]. Thus, most biological materials are composed not only of an organic part, but also an
inorganic part, and these are assembled in hierarchical and complex structures [70].

1.1.1 Bristle worms

Polychaeta, also known as bristle worms, are marine organisms living in pelagic habitats.
Platynereis Dumerilii is a type of Polychaeta and part of the annelid phylum [245]. Since 1953,
Platynereis Dumerilii has been considered a model organism for developmental research due
to regular and controlled reproduction at a laboratory [97, 98]. Platynereis Dumerilii develops
epidermal extracellular structures better known as chaetae. The chaetae formation model was
first coined by [33] as chaetogenesis and describes how chaetoblast, a specialized follicular
cell, forms an assembly of microvilli. These particular microvilli allow the growth by basal
apposition of new chaetal material on its surface [219, 297]. Although the process of new chaetal
material deposition remains largely unclear, it is known that there is no vesicular transport in
between the microvilli and the chaetoblast. Therefore, new chaetal material should be form
by an ectodermal sac called chaetal follicle, which is formed by the chaetoblast and other few
follicle cells [277, 305, 306]. The beforementioned apposition of chaetal material reminds of
the emerging technology of 3D printing. Thus, it can be considered a “biological 3D printing
process”. Moreover, compared with the current status of man-made 3D printing techniques, the
Platynereis Dumerilii can 3D print complex and precise structures in a remarkable fast manner.

Chaetae are composed of beta-chitin and are extremely well-tailored beam-like structures that
exhibit different morphologies [126]. According to [97], chaetae first appears after approximately
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1 Introduction 11

2 days of development, also called the late trochophore development stage. Nevertheless,
trochophore stage individuals swim exclusively by means of multiciliated equatorial prototroch
cells. Approximately 3 days after egg fertilization, also known as the nectochaetae development
stage, as seen in Figure 1.1, parapodia aid larvae with mobilization. Until the nectochaetae stage,
larvae have not developed the ability of ingesting food and use sacs for nutrition.

Fig. 1.1: Microcomputed tomography image of a Platynereis Dumerilii specimen at nectochaetae
stage.

To understand better the external morphology of chaetae, adult and larvae chaetae were
harvested and investigated by means of imaging techniques such as light microscopy and field
emission gun scanning electron microscopy. Interestingly, four different types of chaetae were
observed. This information has not been published before.
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(a) LM image of paddle-like chaetae (b) LM image of saber-like chaetae

Fig. 1.2: Light microscopy (LM) images of different chaetae morphologies from an adult female
Platynereis Dumerilii specimen.

(a) FEGSEM image of saber-like chaetae from a (b) FEGSEM image of comb-like chaetae from a
larva specimen of Platynereis Dumerilii female adult specimen of Platynereis Dumerilii

Fig. 1.3: Types of chaetae observed through Field Emission Gun Scanning Electron Microscopy
(FEGSEM) images of Platynereis Dumerilii specimen.

Additionally, internal morphology was investigated by means of state-of-the-art synchrotron
based micro-computed tomography and x-ray phase contrast imaging (PCI) methods. The before-
mentioned protocol was performed at the European Synchrotron Radiation Facility (ESRF).
Synchrotron based micro computed tomography is a valuable new non-destructive tool and
capable of imaging soft biological specimens [38]. This method was able to achieve resolutions
of 0.7 um. The interaction in between x-rays from the radiation source and electrons of the
Platynereis Dumerilii produces low-energy excitation of the system, resulting in different forms
of x-ray scattering traveling to the detector, as seen in Fig.1.4. Phase contrast imaging techniques
establish distributions of the scattering through the registration of the attenuation and the phase
changes of the transmitted x-ray beam [52].

Chapter 2 explores further through light microscopy, micro-computed tomography, and nano-
indentation techniques another interesting part of the Platynereis Dumerilii, the jaw. The jaws, as
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Fig. 1.4: Synchrotron based micro-computed tomography setup diagram.

Fig. 1.5: Synchrotron-based computed tomography of an adult male Platynereis Dumerilii
specimen (a) exemplary slice with parapodia highlighted; (b) 3D phase rendering of
parapodia.

seen in Figure 1.6, contain a socket area which is where the body attaches to the jaw, a primary
teeth and several other smaller ones, and two channels. The functionality of the channels is until
the moment unknown. However, they could be used as a poison delivery system like in other
Glycera species [210].

Several jaw were harvested from laboratory animals through a chemical process with perchloric
acid. The jaws were then first embedded and later polished through a novel polishing protocol
achieving a remarkable low roughness. The jaw was later probed by means of nanoindentation.
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socket

channels

e ~_ teeth

Fig. 1.6: Light microscopy image at 100 fold magnification of a Platynereis Dumerilii’s jaw.

The nanoindentation results were later compared to other studies performed in Nereis and
Glycera specimens. The compared species can be seen in Figure 1.7.
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Dosidicus gigas
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Platynereis dumerilii A Lophotrochozoa
ID 6359 (clade, ID 1206795)
B Polychaeta
Nereis limbata © | (class, ID 6341)

ID 981110 4 C Nereididae
(family, ID 39820)
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(genus, ID 6349)
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ID 880429

Fig. 1.7: Phylogenetic tree of Polychaeta and Dosidicus gigas specimens studied in Chapter 2.

The microscopy and nanoindentation protocols were further complemented by means of a
novel chemical protocol (LA-ICP-MS) to detect the halogen elements within the jaw. The
distribution of the halogens can be related to the existence of macromolecules, further described
in Section 1.1.2.

The jaws of Platynereis Dumerilii exhibit an extremely precise complex geometry and have an
extracellular structure with non-organic mineral inclusions. The literature in Chapter 2 remarks
the predominant existence of proteins as the main building block of this structure. Studies
performed in jumbo squid Dosidicus gigas beaks indicate that stiffness of around 9 GPa and
hardness of around 0.7 GPa are comparable with the ones obtained from the jaws of Polychaeta
worms [202]. Additionally, they agree with the rest of the community on the existence of
histidine- and glycine-rich proteins, which accounts for 45% of its mass, but they also detected
around 20% of chitin. This strongly supports the idea that chitin can also play an important role
in the mechanical properties of the jaws from Platynereis Dumerilii.
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1 Introduction 16

1.1.2 Halogen and metallic elements present at macromolecules

The elemental WF results obtained in Chapter 2 by means of LA-ICP-MS, and images recon-
structed through ImagelLab-software version 2.99 (Epina GmbH, Austria) give access to the
weight fraction maps of the element ions of interest distributed across the tested jaw. The total
WF for each tested element ion in the jaw was obtained by color thresholding each elemental
ion weight fraction map into three different color sections, the latter representing maximum
WF, half the maximum WF and a third of the maximum WF, respectively, as seen in Fig. 1.8.
Subsequently, to obtain the pixel-wise concentration, the P belonging to each of the color sections
was divided by the total amount of P comprising the jaw. Next, the pixel-wise concentration was
multiply by their respective WF. Finally, the weighted WF of the three different color sections
were added to obtain the total WF™ for each element ion, given in percentage and computed as

WF; =

pmax W Fmax P}.lalf
) L x +
Ptotal 2 Ptotal

(WF;nax D% 1 1

(1.1

3 X Ptotal

W Fmax Pl{hird
! . x100 for i=Br,Cu,Fe,I,Zn

These weight fractions give access to element ion specific volume fractions f* computed as

follows
{otal

fi=p'"x—~-— for i=Br,Cu,FelZn with (1.2)
l
M.
pi = 7’ for i=Br,Cu,Fe,I,Zn (1.3)
1
g g

and the real mass densities of pg, = 3.12 PCu = 8.94%, pre = 1.86 %, pr =493

cm3’ cm3’

pZn = 7.13%, al’ld pjaw = 2.00%.

Tab. 1.1: Weight fraction and volume fractions of element ions detected in all the jaw

bromide  copper iron iodine  zinc

WF* 10.69% 0.002% 2.48% 0.60% 0.49%
fr 6.86% 0.0006% 0.63% 0.24% 0.14%
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(a) Maximum WF (b) % the maximum WF (c) % the maximum WF

Fig. 1.8: Color thresholding determination, by example of weight fraction WF maps of bromide
ions. The selected pixels are denoted as red.

The halogen ions tend to form self-assemble macro molecules [13, 226, 275, 299]. [181]
suggests in Polychaeta jaws, the formation of Zn(His)3;Cl based protein matrix. Furthermore,
bromoiodohistidine CgH7BrIN3;O, and bromotyrosine CoHjoBrNO3 were reported by [27].
Besides proteinous macromolecules, [90] and [180] observed the formation of minerals from the
cross-links with halogen ions in marine organism, atacamite CuyCI(OH)3; and magnetite Fe304
respectively.

The molecular weight fraction mWF of each element contained in macro-molecules, i.e.
Zn(His)3Cl, CgH7BrIN3O,, CoH19BrNO3, CuyCI(OH)3, and Fe3Oy4, can be computed from the
molecular mass mm of each element contained in the macro-molecules and the sum of them as
follows:

mWF j=

for j=elements in macromolecule (1.4)
2. mm;

The mWF from ions of interest i.e. Br—, Cu~, Fe™, I", and Z~ contained in each of the macro-
molecules are the maximum weight fraction mW F ;. The amount of elements needed pn for 1
part of ion to form each macro-molecule can be computed as follows:

mWFj

g 1.5
mWF,,.x (-5

pnj=
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The weight fraction of the macro-molecule in the jaw can be calculated from the addition of
the weight fraction from the ion of interest contained in the macro-molecule and the sum of
weighted WF.

WF, = Z WF;xpn; for i=Br,Cu,Fel,Zn (1.6)
The volume fraction f of the macro-molecules was computed according to Eq.1.7, and together
with the results of W can be observed in Table 1.2.

; WF
fk :p]aw X AL for k= CyoH0BrNO;3,
Pk

Cu2Cl(0H)3,
Fe30y,
CeH7BrIN3O;,
Zn(His)3Cl

(1.7)

and the real mass densities of pcym,e8rv0s = 1.7 =55, pcuycicony, = 376 =5, and preso, = 7.87
g

cm3”

The density of bromoiodohistidine pc,u,Brin;0, the macro-molecule Zn(His)3Cl pz,wis)sci
can be approximated by relating their molecular weight with the molecular weight and density
of histidine for 1 unit of volume, as follows

Phistidine ( 1 8)

Pk = mmy X
Mmpistidine

Tab. 1.2: Mass fraction and volume fractions of amino acids and minerals detected in the jaw

tip middle
WF f WF f

CoHioBrNO3  34.81% 40.95% 34.81% 40.95%
CuyCI(OH);3 0.005% 0.003% 0.005% 0.003%
Fe30q4 343% 0.87% 3.43% 0.87%
CsH7BrIN3O,  5.57%  3.41% - -
Zn(His);Cl 15.99%  5.65% - -

1.1.3 Bones

Bones specifically show an extraordinary variability and their optimization is mainly induced
by biological evolution. Nevertheless, the probability of producing optimal bone material is
quiet low [218]. Meaning that the probable optimization happen at the whole organism level and
not at the material level [105]. However, elementary organizational patterns can still be found
inside the “chaotic” bone system, and this is due to “architectural constraints” [116]. These
patterns can be observed over many length scales, and understanding the organization of the
elementary building blocks can be the key to a more profound understanding of the mechanical
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properties from bone. The main building blocks can be organized in the following hierarchical
organization:

e The macro-structure level is the structural level where size and shape of whole bones are
considered. At this observational length scale, you can classify bone into cortical and
trabecular bone.

e The micro-structure level can be found at the length scale of approximately 100 pm.
It includes complex structures such as osteons, as seen in Fig.1.9.a. These osteons
are constructed through substructures called lamellae. [196] classified these lamellae
substructures as collagen rich (dense) and collagen poor (loose) lamellae, and can be
observed in Fig.1.9.e.

The center of an osteon is composed of a vascular canal. Haversian and Volksmann canals
conform the vascular porosity, enclose the vasculature, the nerves, and the bone fluid [336].
The lacunae porosity shelters the osteocytes, and is connected by a series of microscopic
channels called canaliculi [132]. Due to diameters of around 100 nm [11], the canaliculi
are also treated as part of ultra-structural porosity.

[214] called the fluid contained in the vascular porosity, “serum” and the fluid contained in
the “smaller” pores i.e. lacunae pores and ultra-structure porosity, “extra-cellular fluid”.
Both bone fluids have an equivalent composition, but are contained in different pressures.
The pressure of the fluid within the “smaller” pores is high, meanwhile the pressure in the
vascular canals is considered to be low [209], [336]. It is acknowledged that bone fluid
is crucial for the transport of nutrients to the bone-forming cells (osteoblasts), and waste
from the bone-resorbing cells (osteoclasts) [65, 238].

o The ultra-structural level includes the scale where several collagen type I fibrils form a
“bundle”. [110] claimed that most of the mineral is located within the collagen fibrils or
intrafibrillar spaces, while [129] claimed the majority of the mineral content is located
outside the fibrils or extrafibrillar spaces. Studies using TEM [125], as seen in Fig.1.9.g,
showed the clear division of organic and mineral components. This brought the thought
of an impure hydroxyapatite (Ca;g [PO4]¢ [OH],) material coating the collagen “bundle”
[241]. This way of calcification may be due to the extra-cellular matrix vesicles, although
this can be only one of the ways that mineral component are formed.

The spaces found within ultra-structure level, where bone fluid can be located, are part
of the ultra-structure porosity. The amount of bone fluid contained within ultra-structure
porosity varies depending on the degree of mineralization in the bone [165, 167, 329]. The
ultra-structure porosity is therefore considered the lowest characteristic lineal dimension
porosity [65]. Additional division of spaces can be found at the intrafibrillar space and
the extrafibrillar space. According to [129], most of the hydroxyapatite crystallites are
located at the extrafibrillar spaces. Bone fluid can be located in the intrafibrillar or in the
extrafibrillar spaces [329],

[105]

e The molecular level is the scale at tens of nanometers. This level consists of the con-
stituents or the so-called elementary components of mineralized tissue. These elementary
components can be classified into organic or inorganic constituents.
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The organic constituents are further divided into collagen type I proteins which account
for 90% of the organic components [46], and over two hundred non-collagenous proteins
(NPCs) which account for the remaining 10% of the total protein content [329]. The
NPCs include also proteoglycans, phospholipids, glycoproteins, and phosphoproteins
[318]. Proteoglycans have a regulatory effect, and phospholipids have a significant role in
calcification. The degree of calcification is influenced by the NPCs [51].

The collagen type I fibrils with diameters of approximately 50-500 nm are assembled
by tropocollagen macro-molecules [231]. Each tropocollagen is also composed of three
equivalent helical polypeptide chains [45, 223]. Due to a certain variety of amino acid
sequences, the tropocollagen may have some heterogeneity [190].

According to the two-dimensional model proposed by [231], the collagen type I is assem-
bled by macro-molecules consisting of two a; chains and one a» chain [190]. Each of
the two a7 chains consists of a repeating five identical sub-units o sequence, meanwhile
the a; chain consists of a repeating seven identical sub-units o, sequence. The shifting
of the tropocollagen macro-molecules create regions of gaps. The tropocollagen macro-
molecules are stabilized by enzymatic and non-enzymatic cross-links. These cross-links
are essential for the tensile strength of the collagen type I fibrils and the stiffening of the
tissue [17, 125].

Recent findings by [223] showed that the theoretical two-dimensional model is considered
too simplistic when describing the gap regions where the inorganic constituents are located
[31]. Furthermore, [223] introduced a model that uses an electron density map to describe
a more realistic three-dimensional structure as seen in Fig.1.9.h.

The inorganic constituents found within mineralized bone tissue are an impure form of
hydroxyapatite [130, 165, 329] and water [255].

Bones also have a complex network of canals and pores, and contains porosity at different
length scales. According to [46], the surface of the porosities together is 100 times larger than
the combined inner and outer surface of cortical bone. From a composition point of view, the
porosities are divided into:

e The vascular porosity has characteristic diameters of approximately 10-100 ym and hosts
the blood vessels, lymphatic vessels, and in some cases nerves. The canals that run
longitudinally through the bone cortex are called Harvesian canals, and the ones running
transversely are the Volkmann canals.

e The lacunae porosity has characteristic diameters of approximately 0.1-10 um and each
of them hosts an osteocyte cell. The osteocytes are connected with their neighboring
osteocytes through tiny channels called canaliculi. However, the canaliculi are considered
from a compositional point of view, a part of the ultra-structural porosity.

e The ultra-structural porosity includes the small canaliculi pores with diameters of approxi-
mately 100-500 nm and the smallest fluid-filled spaces which can not be detected via light
microscopy.

The macro- and micro-structure of bone have been investigated through computed tomography,
and this has lead to important micro finite element models. However, in order to understand
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the ultra-structure requires a deeper interpretation of its constituents and their physical interac-
tions. Pioneering and ground-breaking experimental campaigns performed by Sidney Lees and
coworkers [167-170, 172, 173, 175, 177, 179, 241] set the first stepping stone to determining
the chemical composition of bony tissues by means of dehydration-demineralization protocols.
Chapter 3 expands on this original idea, and combines it with light microscopy and scanning
electron microscopy to asses the “universal” patterns of the main building constituents of bone,
i.e. organic, mineral, and water, at the micro- and ultra-structural level of 7 different species,
including mammalian, struthionine, and ranine specimens.
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1.2 Man-made materials

The investigation of man-made materials intended for structures such as rail-way steel tracks
are discussed in Chapter 4. The micro-structure of rail-way steel was investigated by means
of nano-indentation and several microscopy techniques. Nano-indentation is a technique that
allows the characterization of hardness and stiffness. Nano-indentation, specifically statistical
nano-indentation protocols, have proven to be successful approaches to identify the mechanical
properties of the micro-structure in biological materials such as bone [107] or cementitious
materials such as Portland cement hydrates [59, 201, 317].

Steel for underground, tramway, and rail-way rails are commonly heat treated to improve
the micro-structural characteristics such as toughness and hardness. Nevertheless, this process
can create nanometer “imperfections”, which can be only observed through scanning electron
microscopy, and affect the macroscopical characteristics of the material.

Interesting clay materials, such as bricks intended for construction, are discussed in Chapter 5.
Although fired clay ceramics have been among the oldest building materials used by humanity,
mechanical and thermal improvements of bricks or clay blocks are difficult due to the still
prevailing lack of understanding of their micro-structure, as seen in Fig. 1.10. The micro-
structure of bricks is influenced by chemical and mineral composition. However, the firing
temperature also influences the mineral transformations and the porosity. The present work
investigates the porosity depending on the chemical composition and firing temperature by means
of different imaging techniques.
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Fig. 1.10: Field emission gun scanning electron microscopy (FEGSEM) image of the polished
surface from the microstructure of a brick sample.

1.3 Outline of the thesis

The aim of this work is to distinguish “universal” patterns in several biological and man-
made materials. The investigation of these patterns could facilitate the understanding of their
material constituents and their physical interactions. The work is distributed in different Chapters
containing original work is presented in the form of scientific publications. The Chapters contents
are the followings:

Chapter 2 utilizes a nano-indentation protocol to obtain the stiffness and hardness of jaws
from the marine organism Platynereis dumerilii. The protocol was crucially dependent on
a new polishing protocol to obtain the lowest roughness possible and therefore, obtain the
lowest indentation depth possible. The results were later compared to other nano-indentation
protocols performed in genetically “related” Polychaeta. The extremely low roughness and
the nanoindentation results brought to light some interesting patterns concerning the size effect
whenever performing nanoindentation in Polychaeta specimens. Specifically, the hardness values
differ from the lower values reported in other studies performed in Nereis and Glycera. This could
be explained by the Nix-Gao type nanoindentation size effect normally observed in crystalline
metals. The differing hardness values for Platynereis, Nereis, and Glycera jaws actually reflect
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a “universal”, i.e. invariant, material property of the ion-spiked structural proteins used by all
types of bristle worms (Polychaeta). Additionally, novel chemical protocol and analysis were
performed by means of Laser Ablation Inductively Coupled Plasma Mass Spectrometry. The
chemical analysis made it possible to obtain elemental ion concentrations of the jaw.

In Chapter 3 a novel approach combining dehydration-rehydration-demineralization protocols
and microscopy techniques, such as light microscopy and scanning electron microscopy, results
in the quantification of the main building blocks of femora from bovine, equine, porcine, leporine,
ranine, and struthionine specimens, and establishes by means of statistical tools relationships and
“universal” patterns at the organ and species level. The demineralization protocol was possible
through the use of several ethylenediaminetetraacetic acid treatments, which create chelates
with the impure hydroxyapatite content. The acid contents, which were submitted to the bone
demineralization, were further examined by means of a state-of-the-art Inductively Coupled
Plasma Mass Spectrometry protocol.

Continuing with the application of nano-indentation protocols, Chapter 4 exploited well
established statistical indentation approaches to investigate and quantify patterns in the stiffness
and hardness through the fitting of Gaussian curve distributions over the data. Chapter 4
investigates rail-way steel by means of an extensive nano-indentation campaign and compares it to
the macroscopic stiffness results obtained by means of ultra-sound experiments. The differences
were surprising results, and through scanning electron microscopy and a micro-mechanical
model the contrast was explained by the observation of patterns found at the micrometer and
nanometer scale.

Chapter 5 identifies and quantifies the porosity of masonry obtained from five different clayey
material sources. This was done by employing techniques commonly utilized in biomedical
and material science fields, such as scanning electron microscopy, micro computed tomogra-
phy, mercury intrusion porosimetry, helium pycnometry, and traditional techniques such as
Archimedes’ principle. The results showed “universal” patterns in specific porosities dependent
on the manufacturing process.

1.4 Contribution of the author

The present thesis consists of four publications. Three of them are already published or accepted
in peer-reviewed journals, and one of them is a mature manuscript submitted for scientific
publication. The author’s contributions to the respective scientific publications are as follows:

e Chapter 2: Jaws of Platynereis Dumerilii: Biologically 3D printed miniature structures
with hardness properties similar to those of crystalline metals (submitted)

The author prepared and evaluated the jaws of Platynereis dumerilii examined during all the
experimental campaign. The author elaborated all the standards used to calibrate the results
obtained by means of Laser Ablation Inductively Coupled Plasma Mass Spectrometry.
The author also performed all the data analysis of the nano-indentation and chemical
campaign results, and finally, wrote the draft of the manuscript which was submitted in a
peer-reviewed journal.

o Chapter 3: “Variances” and “in-variances” in hierarchical porosity and composition,
across femoral tissues from cow, horse, ostrich, emu, pig, rabbit, and frog (Zelaya-Lainez
et al, 2020)
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The author harvested, prepared, and evaluated all the femur samples examined during all
of the experimental campaign. Furthermore, the author designed and manufactured all
specific tools used during the polishing protocols. The author also performed all the data
and chemical analysis of the results, and wrote the draft of the manuscript which was later
published in the peer-reviewed journal Materials Science and Engineering C.

Chapter 4: Multiscale and multitechnique investigation of the elasticity of grooved rail
steel (Jagsch et al, 2020)

The author contributed in the discussion of the experiments and interpretation of the
results. The author also performed the scanning electron microscopy, the scanning probe
microscopy, and several light microscopy protocols used during the experimental campaign.
The contribution was reflected in the manuscript published in the peer-reviewed journal
Construction and Building Materials.

Chapter 5: A multitechnique, quantitative characterization of the pore space of fired
bricks made of five clayey raw materials used in European brick industry (Buchner et al,

2020)

The author contributed by guiding and assisting during the sample preparation and the
microscopy experimental campaigns. The contribution was reflected in the manuscript
accepted in the peer-reviewed journal Applied Clay Sciences.
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Chapter

Metal-type hardness properties in jaws
of Platynereis dumerilli

Jaws of Platynereis dumerilii: Biologically 3D printed minia-
ture structures with hardness properties similar to those of
crystalline metals

Authored by: Luis Zelaya-Lainez!, Giuseppe Balduzzi', Olaf Lahayne!, Kyojiro N. Ikeda?,

Florian Raible3, Christopher Herzig3, Winfried Nischkauer, Andreas Limbeck®, and Christian
Hellmich!

Submitted: The Journal of The Minerals, Metals and Materials Society

Abstract

Platynereis dumerilii, a bristle worm living almost ubiquitously in coastal environments, has
become a model organism in the fields of genetics and marine biology. We complement the
ever-growing knowledge on this species by the first set of mechanical and chemical tests on the
material making up the animal’s jaws, minutely designed sub-millimetric structures produced
through a biological 3D printing process. Therefore, state-of-the-art nanoindentation protocols
are further miniaturized, eventually operating at 15 nm surface roughness, 100 mN maximum
indentation force, and 90 nm indentation depth. Laser ablation inductively coupled plasma
mass spectroscopy (LA-ICP-MS) in combination with weighing and mixing of known ionic
masses within an organic matrix standard reveal local concentration differences of metal and
halogen ions built into the jaw’s structural protein matrix. They imply slight, yet statistically
significant, variations in local hardness and elastic modulus of the jaw material, between the
tip and the central regions of the organ.

!Institute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), Karlsplatz
13/E202, 1040 Vienna, Austria.

?Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria

3Max Perutz Labs, Vienna BioCenter, Vienna, Austria

“Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, Vienna
University of Technology (TU Wien), Getreidemarkt 9/164, 1060 Vienna, Austria.
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2 Metal-type hardness properties in jaws of Platynereis dumerilli 28

However, the mean of the herein measured hardness values, namely 0.8 GPa, differs pro-
nouncedly from the lower values reported for jaws of much larger bristle worm species, such as
Glycera or Nereis. This appears to be the result of a Nix-Gao-type nanoindentation size effect
which is well known for crystalline metals: Due to indentation depth-dependent dislocation
densities, the square of the hardness scales with the inverse of the indentation depth, tending
towards a limit hardness for the indentation depth going to infinity. Conclusively, herein
as well as earlier reported, mutually differing hardness values for Platynereis, Nereis, and
Glycera jaws actually reflect a “universal”, i.e. invariant, material property of the ion-spiked
structural proteins used by all types of bristle worms (Polychaeta). The corresponding limiting
hardness amounts to 0.53 GPa. These smart extra-skeletal biomaterials exhibiting beneficial
features normally found with highly energy consuming materials such as metals, are expected
to become a major source of bioinspiration for future technological processes.

2.1 Introduction

The bristle worm Platynereis dumerilii is an almost ubiquitous annelid species inhabiting coastal
environments. It is often considered as a model organism for evolutionary and neuro-biological
research [9, 149, 245], due to its regular and easily controllable reproduction at laboratory
conditions [97, 98]. In 1832, the worm was initially classified as a Nereis species [12], before
being assigned, in 1914, to the genus Platynereis [91]. However, its taxonomy has remained
somewhat controversial up to the 1970s [73], and it is still a matter of some debate [199, 260].

Platynereis dumerilii develops several extracellular structures, namely: (i) chaetae, external
well-tailored beam-like structures used for locomotion (crawling and swimming), for anchoring,
for stabilization during muscle activity such as peristalsis, and for sensing the environment [98,
199]; (i1) acicula, beam-like structures supporting the chaetae while being part of the protrusions
called parapodia; and (ii1) a pair of jaws, used for feeding and, in the case of danger, for biting
[97].

The chaetae have been investigated by different research communities. It is well established
that they are made up of S-chitin crosslinked with proteins [126, 261], and the study of their
morphology allowed for identification of different species and their mutual relations within
phylogenetic trees [199]. The chaetae formation model was first coined by [33] as chaetogenesis,
and describes how a chaetoblast, a specialized follicular cell, forms an assembly of micro-villi.
The latter allows, by basal apposition, for the growth of new chaetal material on its surface [219,
297]. In this context, it is noteworthy that new chaetae material may probably be formed by an
ectodermal sac called chaetal follicle, arising itself from the chaetoblast as well as from adjacent
follicle cells [126, 277, 305, 306].

This type of apposition is reminiscent of modern 3D printing technology — and in that sense, it
may be called “biological 3D printing process”. The latter leads to astonishingly complex and
precisely manufactured structures, outperforming the very latest technological developments
[262] in terms of minuteness of produced structural details. In addition, current 3D printing
technology is typically limited in terms of mechanical integrity, with material strength values
in the order of tens of Mega-pascals [315]. On the other hand, Platynereis dumerilii structures
have astonishingly adapted to the harsh environmental conditions under which they need to
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mechanically function, so that these biological structures may indeed present themselves as an
interesting source of bio-inspiration, potentially helping not only to overcome challenges in
nano-fabrication, but also in mechanical integrity.

However, the tiny dimensions of the chaetae pose presently insurmountable challenges with
respect to direct mechanical testing. Therefore, we turned our current interest to somewhat larger
structures in the same organism: the jaws. Jaw development has been described by [98]: Jaws
start forming during the the mid-nectochaetae development stage, lasting, at a temperature of
18°C, from 3 to 4 days post fertilization. At this point in time, the primary tooth of each jaw
becomes visible, it will later define the anterior end of the jaw. The jaws continue to grow in
the subsequent development stages, with additional teeth being continuously added; until the
final number of one primary and nine secondary teeth, see Fig. 2.1(a) and (b), is reached in the
tubicolous juvenile stage, where the worm finally possesses two completed jaws, with each of
them typically spanning some 800 ym in length, see Fig. 2.1(b). They are then used over the
lifespan ranging from 6 to 18 months, which is normally terminated by the nuptial dance lasting
for not more than a few hours.

The cell-driven jaw development process is somehow similar to that of the chaetae; hence,
also the jaws may be regarded as a biologically 3D printed structures. However, chemical
composition and mechanical properties of Platynereis dumerilii jaws have remained largely
unexplored. We here enter the corresponding undiscovered scientific territory, by exploring
the chemical and mechanical properties of Platynereis dumerilii jaws, seen as the product of a
biological 3D printing process.
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Fig. 2.1: Imaging of Platynereis dumerilii jaw: (a) axonometric sketch with indication of anatom-
ical axes, (b) light micrograph of upper side (dorsal view), (c) volume rendered uCT
image of upper side (dorsal view), (d) volume rednered uCT image of lower side
(ventral view)
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At the same time, the results of such an exploration can be beautifully set in context with the
extensive scientific literature on mouth structures in various invertebrates, including those of
other Polychaeta worms. It turns out that, in contrast to load-bearing mineralized structures in
vertebrates [249], mineral phases are virtually absent in the chewing instruments of invertebrates.
Instead, as a rule, it is a protein matrix which constitutes the backbone of such hard mouth
parts. This protein matrix may be reinforced by chitin fibers, as it was shown for beaks of the
jumbo squid Dosidicus gigas [202], and it may incorporate metal or halogen ions, such as zinc,
chloride, or magnesium, as it was shown for the mandibles of six species from four families of
Isoptera [66]. Intensive studies have been devoted to the deciphering of the relation between
hardness properties and the presence of metal and halogen ions in the jaws of several bristle
worm species. The scene was basically set by Lichtenegger and co-workers, and their studies of
jaws from the genera Glycera [180] and Nereis [181]. They showed that nanoindentation-derived
elastic and hardness properties are positively correlated with concentrations of metal ions, such
as zinc quantified through X-ray absorption and fluoresence imaging of Nereis jaws, or copper
quantified by means of electron microprobe experiments on Glycera jaws. Later on, partial
peptide mapping and molecular cloning of a partial cDNA from a jaw pulp library [43] allowed
for identification of Nvjp—1 as the key protein making up the organic matrix of Nereis jaws.
The latter matrix hosted not only zinc ions, but also halogen ions, such as chloride, bromide, and
iodine. Corresponding ionic concentrations were quantified through energy dispersive X-ray
spectroscopy (EDS) [27, 42, 44]. In the case of Glycera jaws [210, 239], EDS evidenced copper
and chloride as the key ions incorporated into the structural protein matrix.

The present paper extends these studies towards the significantly smaller species Platynereis
dumerilii, introducing unprecedented miniaturization steps to the nano-indentation protocol,
including a refined polishing procedure; in this context, we do not only invest into the identifica-
tion of metal and halogen ions as drivers of the mechanical properties, but we complement the
current state of the art in bristle worm mechanics by the key topic of size effects — elucidating
astonishing similarities between the nanoindenter-probed hardness of crystalline metals [216],
and that of ion-enriched protein complexes making up Polychaeta jaws.

2.2 Materials and methods

2.2.1 Sample selection and preparation

Jaws were harvested from adult Platynereis dumerilii worms. The worms were first treated with
perchloric acid, before being put into a centrifuge of type Heraeus Biofuge primo (Heraeus,
Germany). Centrifuging with 10 000 rpm for ten minutes resulted in physical separation of
the jaws from the rest of the bodies. In order to check the integrity and the intactness of the
jaws, they were then observed by light microscopy; being mounted into a Zeiss Axio Imager
Z1m (Carl Zeiss, Germany), with images taken by a Zeiss AxioCam MRc5 camera, as seen in
Fig. 2.1(b). Afterwards, ninety jaws were embedded in a two component EpoFix resin (Struers,
Denmark), ten each in 5 mL Eppendorf microtubes (Eppendorg, Germany). Air pockets within
the resin were removed by means of a desiccator and a pump. Next, a micro-tomography device
(uCT 100, Scanco, Switzerland) was employed at a resolution of 1.2 um, in order to identify
the orientation of the jaw planes orthogonal to the dorsal-ventral axis, with the respect to the
tube axis. The jaw with its dorsal-ventral axis lying perfectly parallel to the tube axis (within the
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precision provided by the micro-tomography device) was further analyzed: Therefore, the jaw,
together with a surrounding 3 mm thick slice with faces orthogonal to the tube axis, was cut out
of the tube, by means of an Isomet low speed saw (Buehler, USA), see Fig. 2.2(a). This slice was
attached, by means of resin, to a glass microscope slide. The latter was mounted into the circular
polishing system Logitech PMS5 (Logitech, Scotland), see Fig. 2.2(b). There, it was polished
by means of a Microtex 300 mm polishing disc in a suspension of agglomerated polycrystals
made of alpha aluminum oxide (Struers, Denmark). The individual polycrystalline agglomerates
exhibited a particle size of initially 1 gm, diminishing during the polishing process. The latter
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Fig. 2.2: Sample preparation steps and outcome: (a) cutting resin-embedded jaws out of micro-
tube, (b) circular polishing of the indentation surface, (c) sample preparation completed,
with (d) indentation areas “middle” and “tip” indicated in a light micrograph taken by
nanoindenter-inbuilt microscope, and with (e) scanning probe-microscopic topography
quantification of polished surface portion within the middle region, measuring 400um?;
the pixel-wise heights are given in nanometers.

process was terminated once a surface roughness of 15 nm, as measured in a Triboindenter
TI 900 device in scanning probe microscopy (SPM) mode, was reached, see Figure 2.2(c). In
more detail, raster scanning the polished surface by means of the Berkovich diamond tip yields
topographical images as the one seen in Fig. 2.2(e), and made up of pixels with a size of 6 nm.
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Such images also allow for computing the root-mean-squared average (RMS) of the topography
of the surface, Ry, according to [201]:

2.1

where P is the number of scanned pixels from the image obtained by scanning probe microscopy,
and z,,, is the height difference between the pixels and the mean scanned plane [141, 201].

2.2.2 Nanoindentation of Platynereis dumerilii jaw

The polished surface, with its outward normal pointing in the ventral direction, was indented by
a Berkovich tip attached to a Hysitron Triboindenter TI900, according the following protocol for
load control: At a rate of 0.01 mN/s, the load was increased up to 100 uN maximum load; the
latter was held for 5 s, before unloading took place, again at a rate of 0.01 mN/s. This indentation
process was repeated 156 times, in order to realize two grids of 6 X 6 and one grid of 6 X 5
indents in the middle region of the jaw, depicted as red area in Fig. 2.2(d), and one grid of 6 X 9
indents in the tip region of the jaw, depicted as green area in Fig. 2.2(d). Thereby, the spacing
between the indents always amounted to 5 um. The corresponding maximum indentation depths
ranged from 80 nm to 120 nm, hence, they were at least 2.5 to 5 times larger than the roughness
of 15 nm, as is required for the experimental realization of an elasto-plastic half-space [82, 201].
For such an half-space, the recorded load-displacement curves were evaluated according to the
method of [222]: The reduced modulus E and the hardness H were computed from the unloading
stiffness S and the contact area A, according to:

\rS

E = 2.2
VA (2.2)
Fmax

H = A (2.3)

2.2.3 Chemical analysis of Platynereis dumerilii jaw

In order to quantify the spatial concentration distributions of halogen and metal ions in the
Platynereis dumerilii jaw, the polished jaw surface was scanned, in line-mode, by a laser ab-
lation inductively coupled plasma mass spectrometer (LA-ICP-MS). This device analyzed the
uppermost twelve micrometers below the surface, while keeping the rest of the jaw sample
virtually unaltered. The LA-ICP-MS set-up consisted of a New Wave 213 laser ablation system
(Electro Scientific Industries Inc., USA) with a frequency quintupled neodymium-doped yttrium
aluminum garnet laser operating at a wavelength of 213 nm, coupled, through a Polytetrafluo-
roethylene tubing, to a quadropole iCAPQ induced coupled plasma mass spectrometer (ICP-MS;
ThermoFisher Scientific, USA). The laser spot size was set to 10 um, and the scan speed was
chosen as 10 um/s. Helium was used as the ablation gas and argon was admixed as make-up gas
before entering the ICP-MS. The measurements of the LA-ICP-MS provided intensities / of the
isotopes of bromide, copper, iodine, iron, and zinc in counts per second. These counts needed
to be related to the ionic “concentrations”, which were approached here via weight fractions in
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matrix-matched standards [30]. In more detail, a Mettler Toledo precision balance PGH403-S
(Mettler-Toledo International Inc., Switzerland) was employed to define amounts of selected
salts in terms of well defined weight, namely: ammonium bromide, copper(Il) chloride, iron(II)
chloride, potassium iodide, and zinc chloride. Then a certain weight-defined amount of the
fluid organic compound N-Methyl-2-pyrrolidon (Merck KGaA, Germany) was put into 15 mL
polycarbonate test tubes, together with the aforementioned salt portions. These components
were then well mixed, in the sense that crystal formations could not been discerned any more
by the pure eye. Thereafter, we added, again at a well-defined weight, the same two-compound
acid which we had already used for the embedding of the worm jaws. The resulting fluid was
then stirred by a vibrating mixer for 10 minutes and by a centrifuge for another 10 minutes. The
weight fractions of the metal ions with respect to the weight of the overall mixture are given
in the upper part of Table 2.1. Thereafter, our mixing products were cured, for two days, in
the Duran Borosilicate Glass 3.3 Complete Vacuum Desiccator. Subsequently, all standards,

Tab. 2.1: Blank (ion-free) and ion-spiked calibration standards: weight fractions W F per weight
of entire compound, LA-ICP-MS protocol-generated ionic intensities /°, and weight-
fraction-to-intensity conversion factors ; for the ions of interest: bromide, copper,
iron, iodine, and zinc

standard WFp,- WFc,- WFE,- WF;- WFy,-
[107°] [107°] [107°] [10-°] [10-°]

blank 0 0 0 0 0

1 142 64 51 165 59

2 290 129 105 336 120

3 1322 590 477 1531 545

4 2721 1213 982 3151 1122

standard I L 5, I L _

[cps] [cps] [cps] [cps] [cps]

blank 0 0 0 0 0

1 123 225 950 1890 99

2 208 385 1628 3193 156

3 1148 1752 7539 16564 722

4 2292 3088 13550 31581 1231

slope ﬁBr‘ IBCu‘ ﬁFe‘ ﬁl‘ ﬁZn‘

[107% cps™'] [10Ccps™'] [10™Ccps™!] [107C cps™!] [1076 cps~!]
Eq. (3.15) 1.1774 0.3887 0.0718 0.0989 0.8981

the four spiked ones as well as the blank one, were cut by means of an Isomet low speed saw
(Buehler, USA) into 3 mm thick circular slices, and then attached, by means of resin, to a glass
slide. The free surfaces of these slices underwent a polishing protocol as described in [335]:
They were machined by means of a Leica SM2500 heavy duty sectioning system and the Leica
SP2600 ultramiller (Leica Biosystems GmbH, Germany), equipped with a diamond cutting edge
rotating at 1000 rpm, at a feeding speed (i.e. a speed orthogonal to the surface) of 2 nm/polishing
cycle, and an advancing speed (i.e. a speed within the plane of the surface) of 1.5 mmy/s, until
a roughness measure R, according to Eq.(2.1), of around 15 nm was reached. Precautions
were made to avoid cross contamination during the polishing process. Therefore, whenever a
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sufficiently fine surface had been realized, the diamond blade was cleaned twice, 15 minutes in
an ultrasonic bath containing 99% ethanol, followed by a rinse with distilled water.

The polished surfaces of the four spiked and the one blank standard then underwent the same
LA-ICP-MS protocol as the Platynereis dumerilii jaw, yielding the intensities /I° given in the
medium part of Table 2.1. The ionic intensities and ionic weight fractions turned out to be almost
perfectly proportional to each other, so that the weight fractions could be expressed as a linear
function, through the origin, of the intensities. Mathematically, this reads as

WF; =g} for i=Br ,Cu”,Fe ,I",Zn" 2.4)

with ion-specific slope values 5; assembled in the lower portion of Table 2.1, representing the
slopes seen in Fig. 2.3. These slope factors S were then used to convert the ionic intensity
distributions measured on the jaws into corresponding weight fraction distributions, employed
here as “concentration quantities”.
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Fig. 2.3: Intensity-to-weight fraction conversion for the ions in the matrix-matched standards:
(a) bromide, (b) copper, (c) iron, (d) iodine, and (e) zinc
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2.2.4 Size effect-related re-evaluation of nanoindentation tests on
jaws of Nereis and Glycera

Nanoindentation-tested hardness may not only depend on the chemical composition and the
microstructure of the investigated material, but also on the indentation depths and the correspond-
ingly tested three-dimensional domain below the indenting tip. Considering that the strength of
the tested material is governed, according to Taylor [304], by the amount of dislocations in the
aforementioned three-dimensional domain, Nix and Gao [216] derived the following relation
between tested hardness and indentation depth

H? = H} (1 + %) (2.5)
with a size-independent hardness value Hy associated with infinitely large indentation depths,
and a characteristic length #* depending on indenter shape and material properties. Relation (2.5)
was experimentally validated through tests on polycrystalline copper [197] and silver [187].
Herein, we check whether relation (2.5) may also hold for the material making up Polychaeta
jaws. In this context, hardness values have been reported for Glycera and Nereis genera, by [42,
182, 210, 239]. These authors do not directly provide the indentation depths, however, they still
give sufficient information from which the latter can be assessed. Namely, in case of a Berkovich
indenter considered by Oliver and Pharr [222], the indentation depth is related to the maximum

indentation force F,,,, via
Fmax
h= w/ 2.6
24.5H 2.6)

and the maximum indentation forces applied to jaws of Glycera and Nereis have been reported
in [42, 210, 239], see Table 2.7a. [182] do not provide explicit information on the maximum
indentation force; however, the indenter contact area A, can be assessed from the Fig.6(a) given
in [182], and also this area gives access to the indentation depth, via [222],

Ac
24.5

2.7)

2.3 Results

2.3.1 Mechanical and chemical property distributions in Platynereis
dumerilii jaw

The nanoindentation-probed hardness values according to Eq.(2.3) are only weakly correlated

with the corresponding indentation depths, see Figure 4(a); and this holds true for the total set of

all measurements, as it does for the subsets “middle” and “tip” according to Figure 2.2(d). This

is even more the case for the reduced elastic modulus values according to Eq.(2.2), where hardly

any correlation can be observed in Figure 4(a). Moreover, no significant correlation between
reduced modulus and hardness values can be found, see Figure 4(c).
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Fig. 2.4: Compilation of 156 nanoindentation-derived data sets: (a) Hardness versus indentation
depth, (b) reduced elastic modulus versus indentation depth, and (c) reduced elastic
modulus versus hardness values.

It is instructive to evaluate these nanoindentation-derived values in a statistical way, first by
means of computing mean values and standard deviations, and of plotting histograms according
to Scott’s rule [280]: It turns out that the the mean value over all 156 reduced elastic modulus
values, 11.7 GPa, see Table 5(a), is slightly higher than the characteristic value of the most
frequently inhabited histogram bin, amounting to 10.5 GPa, see Figure 5(b). The situation for
the hardness values is different, where the mean value of 0.9 GPa does lie within the interval of
the most inhabited histogram bin, see Figure 5(c).

Once we distinguish between the middle and the tip indentation regions, a slightly different
picture emerges: As for the tip region, the mean value of the reduced modulus data, 12.7 GPa,
see Table 5(a), lies within the most populated histogram bin, see Figure 5(d); while the mean
value of the hardness data, 1.08 GPa, is slightly larger than the characteristic value of the most
frequently inhabited histogram bin, amounting to 0.9 GPa, see Figure 5(e). As for the middle
region, the mean values of both hardness and modulus data, 0.81 and 11.2 GPa, see Table 5(a),
are slightly larger than the characteristic values of the most frequently populated histogram bins,
which are 0.7 GPa and 10.5 GPa, see Figure 5(e) and Figure 5(d).
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region # of indents E (GPa) H (GPa) h (nm)
Eq. (2.2) Eq. (2.3) Eq. (2.6)

X a X g X (oa
all 156 11.68 1.80 0.90 0.27 93 9
tip 54 12.66 1.63 1.08 0.30 87 8
middle 102 11.17 1.68 0.81 020 95 9
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Fig. 2.5: Statistical evaluation of 156 nanoindentation experiments, 54 in the tip region and
102 in the middle region: (a) Mean values and standard deviations of reduced elastic
modulus data and hardness data, (b) histogram over 156 reduced modulus values, (c)
histogram over 156 hardness data values, (d) tip- and middle-related histograms of
reduced modulus values, and (e) tip- and middle-related histograms of hardness values.
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Deeper statistical analysis realized through software package IBM SPSS Statistics [140]
concerns the question whether the data collected from the tip region may be significantly different
from those collected in the middle region: Parametric tests, i.e. analysis of variance (ANOVA),
cannot be applied due to the non-normal distribution nature of the data. Graphical interpretations
of the data such as histograms are extremely helpful when judging normality. However, [203]
recommends the combination of graphical interpretations with more rigorous numerical statistical
test to conclude on the normal distribution of data. Thus, the Kolmogorov—Smirnov and the
Shapiro-Wilk statistical tests were chosen to test further the normality of £ and H, including
the indentation data recollected from both the tip and the middle regions [286, 296]. Although
[287] have found that the Shapiro-Wilk is the most powerful normality test, both performed
test showed similar outcomes. The data sets turn out to be not normally distributed. Hence,
non-parametric approaches are needed for finding out whether or not the data arising from the
tip and middle indentation regions are similar. Accordingly, we resorted to the Mann-Whitney U
and the Kruskal-Wallis H tests, which are non-parametric equivalents of parametric tests such as
Student’s t-test and ANOVA [64, 92, 162, 194, 291]. Our correspondingly tested null hypothesis
was that there is no statistically significant difference between the indentation results obtained
at the tip region and the middle region. However, after examining E and H results from both
regions with the Mann-Whitney U and Kruskal-Wallis H tests showed that they both rejected
our null hypothesis.

With this local differences in mind, it is instructive to study the ion distributions across the
polished surface layer determined according to Section 2.2.3: Among all tested ions, zinc and
iodine are much more concentrated in the jaw tip region than they are in the middle region, with
maximum local weight fractions of up to almost 5% in the case of zinc, and up to more than 10%
in the case of iodine, see Figures 6(d) and 6(e). Hence, the higher modulus and hardness values
in the tip region when compared to the middle region, may well stem from the correspondingly
higher concentrations of iodine and zinc. The situation is different when it comes to bromide,
iron, and copper ions: Bromide ions are fairly uniformly distributed across the jaw and locally
reach very high weight fractions of more than 20%, see Figure 6(a); copper ions are hardly
present at all in the investigated Platynereis dumerilii jaw, see Figure 6(b); and iron ions, at
weight fractions reaching almost 9%, are more frequently present in the middle region than they
are in the tip region, see Figure 6(c).

2.3.2 Trans-species size effect law for hardness of jaws across
different Polychaeta

The species-specifically averaged hardness values reported by [182] for Nereis limbata, by [42]
for Nereis virens, by [239] and by [210] for Glycera dibranchiata, as well as by us, in Fig. 5(a),
for Platynereis dumerilii, virtually perfectly follow Nix-Gao’s size effect law Eq. (2.5), see
Figure 7(b). This is underlined by an impressively large coefficient of determination amounting to
R? = 99.7%. The size-independent hardness and indentation quantities amount to Hyp=0.53 GPa
and 72*=0.13 pym.
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Fig. 2.6: Ion concentration distribution in Platynereis dumerilii jaw, in terms of ion weight
fractions in %, resolved down to s pixel size of 10 microns: (a) bromide, (b) copper, (¢)
iron, (d) iodine, (e) zinc
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species source  indent # H Frax A h
direct indents Eq.(2.6),(2.7)
[GPa] [mN] [um?] [um]
P. dumerilii this study D-V 156 0.90 0.1 0.1 0.07
N. limbiata [182] D-V ~ 50 0.54 - 389.7 4.00
N. virens [42] A-P ~ 80 0.71 0.5 - 0.17
G. dibranchiata 1 [239] A-P ~ 40 0.70 0.5 - 0.17
G. dibranchiata 2 [210] A-P ~200 0.60 2.0 - 0.37
(a)
0.8 P
._’/'/#
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4
0.6 //
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Fig. 2.7: Nix-Gao size effect law across different species of Polychaeta:(a) tabular representation
of experimental sources used for the determination of hardness and indentation depth;
(b) graphical representation
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2.4 Discussion

To the best knowledge of the authors, this is the first systematic experimental study on the chemi-
cal and mechanical properties, namely nanoindentation-probed hardness and reduced modulus as
well as LA-ICP-MS- and calibration standard-derived ionic concentration distributions, across a
jaw harvested from a bristle worm of species Platynereis dumerilii, a key model organism in
marine biology.

The novel experimental results may be evaluated and discussed in terms of three major
traditions found in the nanoindentation and applied material mechanics literature:

1. histogram representations
2. chemo-mechanical couplings
3. size effect laws for metals

With respect to histogram representations, distributions with only one peak were observed, see
Figure 2.5, indicating that only one material phase was present at the observation scale tested by
the nanoindentation device, which is about one half to one third of the indentation depth [141],
1.e. around 33 to 50 nm.

With respect to chemo-mechanical couplings, larger zinc and iodine concentrations found
in the tip region of the jaw are correlated with slightly, but still statistically significantly larger
hardness and elasticity properties in the tip region; an effect which has been extensively in the
literature on other bristle worm jaws [27, 42, 44, 180, 182, 210, 239].

However, the probably most remarkable original insight comes from setting our novel data in
context with existing data on much larger bristle worm species tested at much larger indentation
depths. The differences between the hardness tested herein, and the hardness values reported
earlier, exceeding the variations having been reported as results from local ionic concentration
variations, can be beautifully explained through the size effect law of [216], see Figure 7(b).
This proposes that all species within the large Polychaeta class may share one basic architectural
building block: ion-spiked structural proteins, with “universal”, i.e. species-invariant, hardness
properties always following the Nix-Gao size effect law, hence sharing a mechanics-related
hallmark with crystalline metals, i.e. with highly resistant and load-bearing material with high
ductility. However, metals are produced at high temperatures with high energy consumption,
while the ion-spiked high performance structural proteins are laid down in a biologically set,
highly intricate 3D printing process. We regard this as very fascinating and inspiring for reaching
out towards novel, unprecedented opportunities in the wide field of bioengineering. This is very
remarkable also insofar as the aforementioned architectural building block is fundamentally
different from those found in vertebrates. There, two main types of building blocks, structural
proteins (such as collagen) and metal ions forming minerals (such as calcium being part of
hydroxyapatite) are combined into nano-composites governing the mechanical properties of
tissues such as bone [105]. The minerals, thereby, are much more brittle than the herein discussed
ions-spiked proteins, with size effect properties far off the Nix-Gao law [150].
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“Variances” and ‘“in-variances’ in hierarchical porosity and
composition, across femoral tissues from cow, horse, ostrich,
emu, pig, rabbit, and frog
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Abstract

It is very well known that bone is a hierarchically organized material produced by bone cells
residing in the fluid environments filling (larger) vascular pores and (smaller) lacunar pores.
The extracellular space consists of hydroxyapatite crystals, collagen type I molecules, and
water with non-collageneous organics. It is less known to which extent the associated quantities
(mineral, organic, and water concentrations; vascular, lacunar, and extracellular porosities)
vary across species, organs, and ages. We here investigate the aforementioned quantities across
femoral shaft tissues from cow, horse, emu, frog, ostrich, pig, and rabbit; by means of light
microscopy and dehydration-demineralization tests; thereby revealing interesting invariances:
The extracellular volume fractions of organic matter turn out to be similar across all tested
non-amphibian tissues; as do the extracellular volume fractions of hydroxyapatite across all
tested mammals.

!nstitute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), Karlsplatz
13/E202, 1040 Vienna, Austria.

’Institute of Chemical Technologies and Analytics, Division of Instrumental Analytical Chemistry, Vienna
University of Technology (TU Wien), Getreidemarkt 9/164, 1060 Vienna, Austria.
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Hence, the chemical composition of the femoral extracellular bone matrix is remarkably “in-
variant” across differently aged mammals; while the water content shows significant variations,
as does the partitions of water between the different pore spaces. The latter exhibit strikingly
varying morphologies as well. This finding adds to the ample “universal patterns” in the sense
of evolutionary developmental biology; and it provides interesting design requirements for the
development of novel biomimetic tissue engineering solutions.
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Chapter

Multiscale elasticity of grooved rail steel

Multiscale and multitechnique investigation of the elasticity of
grooved rail steel

Authored by:Valentin Jagsch!, Patricia Kuttke!, Olaf Lahayne', Luis Zelaya-Lainez',
Stefan Scheiner!, Christian Hellmich!

Published in: Construction and Building Materials
DOI: 10.1016/j.conbuildmat.2019.117768

Abstract

Tramway rail steel is exposed to extreme temperature conditions both during production (e.g.
in terms of heat treatment) and over its decades-to-century-long service life (e.g. in terms of
welding operations in the course of maintenance). The question arises whether this induces
local stiffness reductions and hence stiffness inhomogeneities at the half-millimeter level; i.e.
the characteristic size governing the structural behavior of the rail. In order to address this
question, a series of 16800 nanoindentation tests, with indentation depths ranging from 200 to
250 nm (characterizing 66- to 125 nm-sized material volumes), were performed on samples
with less than 10 nm surface roughness, extracted from different locations of typical tramway
rail cross sections at different time points during their service lives, and including both heat-
affected and non-heat-affected zones. Thereby, each of these locations was probed through a
grid of 20x20 nanoindentations, with a grid spacing of 500 microns. In very few cases, the
indentation tip was probably moved into cracks of several microns width and tens-to-hundreds
of microns length; as seen on light and electron micrographs. Zero-stiffness was assigned
to the corresponding grid points. The probability distributions of the remaining, non-zero
elastic moduli were fitted by one to four weighted Gaussians, representing all (non-zero)
nanoindentation data as well as particular data subsets (namely data from each testing grid,
data from each testing location across all rails, data from each rail, all data from heat-affected
zones, and all data from non-heat-affected zones).

!nstitute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), Karlsplatz
13/E202, 1040 Vienna, Austria.
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4 Multiscale elasticity of grooved rail steel 87

The aforementioned Gaussians refer to different solid elastic material phases, with expected
Young’s moduli ranging approximately from 100 to around 300 GPa, potentially reflecting
different dislocation densities. On the other hand, at a larger material scale (i.e., that of 220 to
440 microns, tested through 2.25 MHz ultrasonics), the stiffness is reduced to approximately
213 GPa (from a mean nanoindentation-derived value of approximately 246 GPa). This
reduction can be explained by a micromechanical model, with the intact steel stiffness as well
as with crack sizes and crack numbers as input quantities.
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Published in: Applied Clay Science
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Abstract

The development and improvement of brick materials is still based on empirical knowledge
and large testing series. To enable a physically based optimization in terms of thermal and
mechanical properties of clay bricks, detailed knowledge of their microstructure is required.
We here present comprehensive investigations on the pore space of bricks made of five different
clayey raw materials used in European brick production. Application and combination of
micro-computed tomography and scanning electron microscopy delivered precise pore size
distributions based on the real pore diameter and unaffected by the pore throat. The former
also enabled to resolve the 3D pore structure down to a pore diameter of approximately 5.5
micrometers and gave access to porosity distributions over the sample’s thickness. Furthermore,
the brick’s true densities were determined applying the Archimedes’ principle and verified
by helium pycnometry measurements. The extensive database generated in this work and the
linking of results from different methods allow for new insights and a better understanding of
these often used brick materials.

nstitute for Mechanics of Materials and Structures, Vienna University of Technology (TU Wien), Karlsplatz
13/E202, 1040 Vienna, Austria.

2Wienerberger AG, Wienerbergstrafe 11, 1100 Vienna, Austria
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Chapter

Conclusions and outlook

The optimization of the mechanical properties of materials depend undoubtedly in the systematic
study of their micro-structure and composition. The present work expanded the morphological,
chemical, and mechanical understanding of biological and man-made materials. The present
work aims to fill the void in the literature and enables future research on the microstructure of
Polychaeta, bone, steel, and bricks. Nevertheless, the newly developed protocols and methods
are not limited to the materials targeted in Chapters 2, 3, 4, or 5. Detailed conclusions of the
main findings are described in each of the Chapters. Nevertheless, summarized conclusions and
a research outlook for each Chapter is presented in the following paragraphs.

In Chapter 2 we investigated an organ of a animal which mechanically and chemically was
unknown until the present work. The jaws of the Polychaeta Platynereis dumerilii were polished
by means of a novel polishing protocol resulting in low roughness in such a small scale. This made
it possible to achieve low indentation depths and therefore, study the jaw at a level never achieved
before. When compared to genetically “similar” Polychaeta at different indentation depths, the
results show that studies performed on jaws from Nereis and Glycera specimens display a lower
hardness than the jaws of Platynereis dumerilii. This surprising result can be attributed to the
Nix-Gao-type indentation size effect [216]. This effect has been normally observed in crystalline
metals. This outstanding mechanical behavior came as a surprise. Platynereis dumerilii, as
well as other Polychaeta, 3D print or extrude jaws which demonstrate high performance, as
well as intricate and complex designs by biological processes. Meanwhile, crystalline metals
normally require high amounts of energy to achieve the same. This study was complemented by
the chemical investigation of the jaw through a novel Laser Ablation Inductively Coupled Plasma
Mass Spectrometry protocol. The chemical analysis showed the existence of halogen ions which
can create macro-molecules. The macro-molecules are assumed to be proteins similar to the ones
reported in other Polychaeta [27, 42, 44, 180, 182, 210, 239]. Although this assumption is based
on published scientific data, our recent discoveries have preliminary showed that the halogen
ions could also bind together into a “super” macromolecule, tentatively named Platynereis
dumerilii JP1 (PladuJP1). Meaning the jaws of Platynereis dumerilii could further proof to be
an important exception to biological “building blueprints” seen normally in organs from more
studied animals as discussed in Chapter 3. Thus, the jaws of Platynereis dumerilii could be built
by an organic mixture of the macro-molecule PladuJP1 and possibly chitin. The challenging
polishing and indentation protocol together with the chemical analysis are a first stepping stone
in describing the mechanical properties of such a “peculiar’” animal. This opens a new frontier in
the investigation of Polychaeta, and sets a new standard in testing biological materials which
exhibit crystalline-metals-like behaviors.
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6 Conclusions and outlook 138

In Chapter 3 we discussed the existence of “universal” patterns at the ultra-structural level of
femoral bone. The cortical parts of femurs from bovine, equine, porcine, leporine, ranine, and
struthionine specimens were studied by means of dehydration-demineralization protocols, and
complemented by microscopy techniques. The results show that there is a quantitative similarity
among the mammalian specimens at the ultra-structural level. Meaning the main building
blocks of bone, i.e. organic, mineral, and water parts, were quantified as statistically similar at
ultra-structural level. The similarities of the organic and mineral parts were only possible by
the implementation of a demineralization protocol using ethylenediaminetetraacetic acid. The
assurance of the level of demineralization was achieved by a novel Inductively Coupled Plasma
Mass Spectrometry protocol. This protocol is quiet sensitive to contaminants and thus, special
care is required whenever handling the samples. The main differences among the species appear
at the larger micro-structural level, and to be more specific the vascular and the lacunar porosities.
The quantification of porosities was only possible by the implementation of novel polishing
protocols using a circular polishing system and an ultra-miller with an attached diamond blade.
The polishing results were satisfactory when submitting the captured light microscope images to
a threshold protocol and analysis. Now that we know through this experimental campaign the
similarities and differences of one single organ, the femur, among several different species, we
can expand the protocols to a different organ. At the macroscopic organ level, other bony organs
such as vertebrae appear to be less mineralized than femoral tissues [115, 244, 325]. Meaning,
the intra-species differences within an organism are greater than a inter-species comparison
in-between species when comparing one individual organ. The implementation of the well
defined protocol define in Chapter 3 can make further correlations of how bone is build at the
ultra-structural level for different organs, and more importantly, translate it to understanding in
more detail the human ultra structural bone. This could facilitate mathematical models and finite
elements simulations, which can results in a better estimation of fracture risk determination,
conveying possibly into a better patient specific assessment [244].

In Chapter 4, rail-way steel was investigated by means of nano-indentation and several
microscopy techniques such as light microscopy and scanning electron microscopy. Steel used
for rail-way applications is normally submitted to heat treatments to increase certain micro-
mechanical properties of the material, such as wear resistance. Nevertheless, this process creates
nano- and micro-structural “imperfections”, or cracks that can were observed by means of a
scanning electron microscopy protocol. This explains the decrease in stiffness obtained by
ultra-sound techniques (213 GPa) when compared to the results obtained by means of statistical
nano-indentation on the intact areas of the structure (246 GPa). The belief that heat treated steel
seems perfectly plastic is compromised by these surprising results, and in the future, railway
engineering can be greatly improved by the discovery and consideration of these nanoscopical
manufacturing imperfections.

Chapter 5 expands with bricks from five different clayey raw materials on the original work
of [146]. This Chapter considered different microscopy techniques such as mercury intrusion
porosimetry, Archimedes’ principle, microcomputed tomography, and scanning electron mi-
croscopy to characterize porosity at different scales, and therefore, expand the database on clayey
raw materials for brick production in Central Europe. These pores and their morphology are
introduced by different forming agents such as expanded polystyrene, paper sludge or sawdust.
Mercury intrusion porosimetry and Archimedes’ principle provided true density of the different
materials. This was additionally confirmed by findings through helium pycnometry. Furthermore,
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6 Conclusions and outlook 139

the before-mentioned methods revealed a low degree of closed pores in all the investigated
samples, confirming past finding of [146]. To obtain pore gradients across the volume of the
microstructure of brick, samples of the bricks were investigated by means of microcomputed
tomography. The latter also provided information about the influences of preparation and firing
of the bricks on the porosity. However, the resolution limited the size of pores we could detect.
Therefore, the samples had to carefully polished until achieving RMS roughness of around 20
nm or less, and later investigated by means of scanning electron microscopy to observe the
structure of the smallest pores. Employing microcomputed tomography and scanning electron
microscopy, we could characterize pores at different scales. Interestingly, we found out “univer-
sal” occurrences in the pore formation such as the low degree of collapsed or closed pores, and a
higher porosity in the center of the samples in comparison to the edges. This information can
be definitely useful for the optimization of brick production, due to the correlation between the
brick’s preparation and firing with its porosity.
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