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Abstract
In the design of pedestrian navigation systems, research has focused on what the route
instruction should be, how to presented it but not when to present it to the user. This
work aims to shed light on the potential of adapting timing to the wayfinder’s prefer-
ences. Variables on personal, behavioral and environmental level were derived from
data collected during an outdoor wayfinding study (N = 52). Participants followed
navigation instructions to reach a destination and could request the instructions at
any point in time and as often as they needed. Exploratory analysis was applied to
determine driving variables in the observed behavioral processes by using survival
analysis to predict when the user would like to listen to the instruction and general-
ized estimating equations to model population-average effects determining whether
a user would like to hear a navigation instruction more than once. The results of this
work suggest relevance of variables of all levels for the prediction of route instructions
timing. Sense of direction, familiarity with the environment, personal characteristics
such as neuroticism and openness, spatial strategies, age and landcover-related vari-
ables yield significance in our models and hint at the importance of personalization
and adaption to variability of the environment in pedestrian navigation systems.
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Preface
The starting point of my Diploma Thesis was the design of an experiment which
aimed to collect data to address two main research questions, namely the question of
whether it is possible to recognize a person’s familiarity with the environment based
on behavioral observations in a navigational setting and secondly, the prediction of
preferred timing of route instructions. The acquisition of participants started in
March 2020 and experiments were conducted between June and October 2020. After
the experiments, I preprocessed the data and prepared it for further analysis. Prof.
Ioannis Giannopoulos3, Dr. Georgios Sarlas4, Dr. Markus Kattenbeck3 and I then
worked on a paper about timing of navigation instruction and submitted it with the
same title as this thesis to a special issue of Spatial Cognition and Computation.
Our work encompassed the prediction of preferred timing of route instructions based
on personal and environment data using survival analysis. I am lead author of the
submitted paper and contributed by acquiring the data, preprocessing it, researching
related work and writing the text together with Dr. Kattenbeck, Dr. Georgios Sarlas
and Prof. Ioannis Giannopoulos. The present Diploma Thesis builds on the paper’s
content. I extended our work by adding a complementary analysis which focuses
on identifying variables that influence someone to prefer to hear a route instruction
more than once. The results of the analysis where similarly discussed as the ones
of the submitted paper. At the time of submitting this thesis, the paper has not
been published yet. Parts which were adopted from the original paper are flagged
as such in the thesis, while the attachment focuses on my contributions to the work
and details on participant acquisition, experiment procedure, data processing and
contains the original paper in its state of submission.

The following footnotes will be used throughout the work and mark paragraphs
that were directly adopted or adapted content from the original paper:

1Paragraph adopted from original article Golab, Kattenbeck, Sarlas, and Giannopou-
los (n.d.)

2Paragraph adopted from Golab et al. (n.d.) and changed

3Research Group of Geoinformation, Department of Geodesy and Geoinformation, TU Wien
4Institute for Transport Planning and Systems, ETH Zürich
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1. Introduction
Wayfinding has been a major topic of interest since the disciplines of geography and
psychology have joined during the 1970s to research the acquisition of geographic
knowledge, how it is structured within our minds and further, how it is used to find
a way through the environment (R. M. Kitchin, Blades, & Golledge, 1997). Since
then, researchers have been studying the concept of cognitive maps (R. M. Kitchin,
1994), developing methodology to measure a person’s spatial abilities and strategies
(e.g. Kozlowski & Bryant, 1977; Münzer & Hölscher, 2011) and exploring related deci-
sion making processes (Brunyé, Gardony, Holmes, & Taylor, 2018; Farr, Kleinschmidt,
Yarlagadda, & Mengersen, 2012; Stern & Portugali, 1999a).

In the design of navigation aids, these concepts are used to understand a person’s
needs during wayfinding and to optimize navigation systems to facilitate the wayfind-
ing activity as it is often referred to as a demanding task (e.g. Klippel, Richter, &
Hansen, 2009; Stern & Portugali, 1999b). The cognitive load and complexity of the
sequential decision making is attributed to user’s characteristics, form of navigation aid
and environmental factors (Giannopoulos, Kiefer, Raubal, Richter, & Thrash, 2014).

In the present thesis, we5 retrieved variables on personal, environmental, and route
level from data acquired during an outdoor experiment to assess their influence on the
preferred timing of verbal route instructions. By doing this, we aimed to gain better
understanding on the potential of reducing the cognitive load during wayfinding by
adapting the timing of verbal route instructions to personal preferences and in depen-
dence to environmental circumstances and route characteristics. This thesis was built
on the work of Giannopoulos, Jonietz, Raubal, Sarlas, and Stähli (2017) which presents
the first study focusing on the prediction of preferred timing of route instructions based
on data acquired during a wayfinding study in a urban-like virtual environment. We
applied a similar methodology in time-to-event modeling and further approach the
topic of repeated navigation instructions by identifying possible reasons which cause a
person to want to hear an instruction more than once.

In Section 2, approaches in the optimization of navigation systems in regards to
concepts of spatial cognition are reviewed. In Section 3, readers are introduced to the
setup and procedure of the study during which data was collected for the retrieval
of variables and analysis which is explained in Section 4. We will discuss the result-
ing models and state interpretations about influential variables in Section 6, before a
conclusion is drawn and an overview on identified research gaps is given (Section 7).

5Throughout the thesis, I will use the pronoun we for reasons of consistency as many parts of the
work were adopted from Golab et al. (n.d.) in which pronoun we was used.
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2. Related Work
1According to Montello (2005), navigation comprises two activities, wayfinding and
locomotion. While locomotion describes the movement of one’s body through the
environment and includes tasks like avoiding obstacles, wayfinding encompasses route
planning and all related decision-making processes to reach a given destination. During
navigation, we constantly receive information about our physical environment through
our senses and need to connect it with our knowledge to update our location and
determine future decisions along our route. Theoretical reasoning and empirical evi-
dence (see, e.g., Fang, Li, & Shaw, 2015; Giannopoulos et al., 2014; Schmidt, Beigl, &
Gellersen, 1999), therefore, suggests that a wayfinder’s cognitive load is impacted by
personal characteristics, the environment and the actual route through this environ-
ment. Reducing the users’ cognitive load is, hence, one of the major aims in designing
wayfinding assistance systems. Scholars have pursued this objective by means of work-
ing (1) on the content, structure and presentation of route instructions and (2) adapting
wayfinding systems to the user’s personal needs. In this section, we will review both
strands of prior work and, thereby, provide evidence for a lack of research on timing of
route instructions, in particular for pedestrian navigation systems.

2.1. Research on route instructions
1While distance-based, on-line turn-by-turn instructions have been predominant in
commercial applications, researchers have put emphasis on understanding the way
humans communicate route instructions in order to mimick this way in wayfinding as-
sistance systems for many years. Research on verbal human-to-human communication
of route instructions and it’s underlying cognitive processes (see, e.g., Hölscher, Ten-
brink, & Wiener, 2011) revealed that landmarks are used frequently (see, e.g., Lovelace,
Hegarty, & Montello, 1999; May, Ross, Bayer, & Tarkiainen, 2003; Michon & Denis,
2001) across different spatial environments (see, e.g., Sarjakoski et al., 2013, for hik-
ing instructions). Empirical evidence has been provided that the use of landmarks
has a positive impact on wayfinding performance (see, e.g., Ross, May, & Thompson,
2004; Tom & Denis, 2004) and that the absence of landmarks in an environment is
compensated by an increased granularity of verbal human-to-human route instructions
(see Hirtle, Richter, Srinivas, & Firth, 2010). Research on including landmarks (see
Richter & Winter, 2014, for a thorough overview of the concept) in route instructions for
wayfinding assistance systems has, consequently, become a predominant research topic,
including modeling (see, e.g., Caduff & Timpf, 2008; Nothegger, Winter, & Raubal,
2004; Nuhn & Timpf, 2017; Raubal & Winter, 2002; Winter, 2003), empirical assess-
ment (see, e.g., Götze & Boye, 2016; Kattenbeck, 2017; Kattenbeck, Nuhn, & Timpf,
2018; Quesnot & Roche, 2015) of salience and the automatic selection of landmarks
(see, e.g., Duckham, Winter, & Robinson, 2010; Lander, Herbig, Löchtefeld, Wiehr, &
Krüger, 2017; Lazem & Sheta, 2005; Rousell & Zipf, 2017; J. Wang & Ishikawa, 2018).

1Beyond the focus on important elements in human-to-human route instructions, re-
searchers have worked on the formulation of route instructions in wayfinding assistance
systems. The concept of spatial chunking (Klippel, Tappe, & Habel, 2002) has been of
particular importance in these endeavours, as it reduces the cognitive load in wayfind-
ers by reducing the level of granularity in route instructions. This idea was picked up
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algorithmically (see, e.g., Richter & Klippel, 2005) and resulted in guidelines for cogni-
tively ergonomic route directions (Klippel et al., 2009) which take, e.g., different levels
of hierarchical spatial knowledge. In line with these guidelines empirical evidence also
suggests that the granularity of route instructions increases in human-to-human route
instructions if wayfinding decision situations lack landmarks (Hirtle et al., 2010). As
the body of knowledge on adverse effects of wayfinding assistance systems on spatial
knowledge acquisition grows (see, e.g., Ishikawa, 2019), scholars have also studied ways
to overcome this issue. One very recent advancement in this domain are so-called ori-
entation instructions (Schwering, Krukar, Li, Anacta, & Fuest, 2017) which enhance
spatially chunked instructions by including additional environmental information to
support acquisition of route and survey knowledge (see Krukar, Anacta, & Schwering,
2020, for empirical evidence that these instructions are superior to turn-by-turn or
spatially chunked instructions without additional information).

1Neither the research efforts on landmarks nor on formulating route instructions re-
flect on how timing of a route instruction would have an impact on these. This lack
of consideration holds also true for research on modalities and presentation of route
instructions. Beyond the prevalent map-based approaches, reaserch on modalities and
presentation modes has primarily focused on their impact on wayfinding effectiveness
and efficiency by studying, for example augmented photographs (see, e.g., Walther-
Franks & Malaka, 2008; J. Wang & Ishikawa, 2018), audio (e.g. Holland, Morse, &
Gedenryd, 2002), augmented reality (see, e.g., Rehrl, Häusler, Leitinger, & Bell, 2014),
vibro-tactile signals (see, e.g., Giannopoulos, Kiefer, & Raubal, 2015), and even mu-
sic (see, e.g., Hazzard, Benford, & Burnett, 2014). Recently, however, studies on the
presentation of instructions have also considered the reduction of attentional load (see,
e.g., Stähli, Giannopoulos, & Raubal, 2020) and effect on spatial knowledge acquisi-
tion (see, e.g., Brügger, Richter, & Fabrikant, 2018).

2.2. Research on personalisation of wayfinding assistance
systems

1Optimal wording, choosing the most suitable landmark among a set of candidates
and the ideal presentation mode can, beyond general solutions, depend heavily on user
characteristics. Personalization of wayfinding assistance systems has, consequently,
seen increased interest. Researchers (see, e.g., Klippel et al., 2009; Zimmer, Münzer,
& Baus, 2010) developed frameworks for the design of navigation aids emphasizing
the adaption to user characteristics like spatial familiarity and spatial abilities. Em-
pirical evidence has been collected for the increase in wayfinding performance through
adaptation of, e.g., the presentation of route instructions to sense of direction (see,
e.g., Bienk, Kattenbeck, Ludwig, Müller, & Ohm, 2013). Personal interests have also
been incorporated into salience models, in order to be exploited for choosing person-
alized landmarks (see Nuhn & Timpf, 2020). Moreover, a large branch of research is
dedicated to adapting systems to users with special needs, such as mobility impaired
people (see, e.g., Barhorst-Cates, Rand, & Creem-Regehr, 2019; Cheraghi, Almadan,
& Namboodiri, 2019) or visually compromised (see, e.g., Ding et al., 2007; Völkel &
Weber, 2008) persons.
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2.3. Timing
1So far, we have seen considerable effort dedicated to optimizing pedestrian wayfind-
ing assistance systems with respect to the structure, granularity and presentation of
route instructions, as well as adapting it to user’s personal preferences and needs. All
of these research efforts, however, neglect — with exception of Giannopoulos et al.
(2017) — the key question of presenting a navigation instruction to a pedestrian at the
right point in time. This is, on the one hand, in contrast to the attention timing has
seen in research on car navigation systems (see below); on the other hand, it is also
in contrast to empirical evidence (see, e.g., Brügger, Richter, & Fabrikant, 2019, who
provide strong evidence for the way system behavior and wayfinder behavior interact)
and theoretical claims. In their theoretical account based on Maslow’s theory, Fang et
al. (2015) emphasize the importance of the inclusion of personal preferences to be able
to predict their behavior and to make pedestrians feel more comfortable by adjusting
navigational instructions and interaction load with the navigation system as a response
to the dynamic change of environment. This hints towards the importance of research
on which factors influence the preferred timing of navigational instructions based on
the user’s personal preferences. Despite the fact that timing of route instructions is
a desideratum with respect to pedestrian wayfinding, it has seen much interest in car
navigation systems. This fact has been also stated by Giannopoulos et al. (2017), who
present the first study on timing of pedestrian navigation instructions. As a starting
point, the authors thoroughly reviewed literature on timing in car navigation systems
and found several variables to be important: environmental factors (traffic, visibility of
road signs), driver’s characteristics (age, gender), driving speed and attributes of the
navigational instruction (length, upcoming turn/maneuvre). Subsequently, the empir-
ical part of their study, which was conducted in a virtual environment, found similar
factors which influence user preferences in timing of pedestrian navigational instruc-
tions (see Giannopoulos et al., 2017, p. 16:9): These include personal characteristics
like age and spatial abilities and route specific aspects such as the shape of the up-
coming intersection, its visibility or the length of the route segment. Their findings
are in line with empirical evidence that wayfinders make spatial decisions before the
arrive at an intersection (see Brunyé et al., 2018) and accounts for the impact personal
and spatial characteristics of the environment have on the complexity of wayfinding
decision situations (Giannopoulos et al., 2014). Based on these considerations, the goal
of the present study is to build on these results and study preferred timing of route
instructions in-situ based on personal, environmental and route-related characteristics.

Moreover, within the experiments of Giannopoulos et al. (2017), participants were
divided into two groups whereas participants in one group could request a navigation
instruction only once and in the other, as often as the wanted. Only in 14.4% of the
cases in the multiple-clicks condition, a route instruction was requested for a second
time and they concluded that receiving it only once would be sufficient. In the un-
derlying experiment to our work, all participants were allowed to request a navigation
instruction multiple times and in about one third of all cases an instruction was re-
quested for a second time or more. To work towards an understanding of why people
would want to hear a navigation instruction more than once, we decided to further
identify influential variables by means of solving a binary classification.
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3. Experimental Design and Procedure
1In this section, the underlying experiment of this work is described in detail. It is
important to note that the experiment was designed to collect data to address multiple
research question, not only the ones discussed in the present work. We will only discuss
the parts which are relevant to the present work.

Participation in the experiment involved two parts: the completion of an online
questionnaire and the in-situ study. Routes for the in-situ study were chosen based
on the information each participant provided in course of the questionnaire. We will,
therefore, first describe the structure of the online questionnaire, how the obtained
information from it was processed and then describe the procedure of the outdoor
experiment.

3.1. Materials
3.1.1. Online questionnaire

The online questionnaire was designed to allow an anonymous registration for the
experiment, collect personal variables by the means of questionnaires and spatial in-
formation to obtain routes for the outdoor experiment.

1The collected personal features of a participant encompassed demographic data,
data on spatial strategies (FRS, Münzer & Hölscher, 2011) and personal characteris-
tics based on the so-called Big Five Personality traits (Rammstedt, Kemper, Klein,
Beierlein, & Kovaleva, 2012). To collect routes, participants were asked to outline
areas in Vienna they are familiar with using polygons as well as highlight and name
places they know within these polygons. In order to ensure a reasonable experimental
time, two of these places were randomly selected on the condition that they are 900m
to 1.3km apart. One place of these served as a starting point, the other one was set
as the destination and these roles were randomly assigned. Subsequently, we asked
participants to sketch the route they would choose between these two points.

In this way, the participant’s familiarity of the route was insured. This workflow is
illustrated in Figure 1. Technical details on the online questionnaire and instructions for
marking familiar places are described further in detail in Section A in the attachment.

3.1.2. Generating auditory route instructions

2In the preparation of the in-situ study, landmark-based instructions were designed.
For this, the algorithm described by (Rousell & Zipf, 2017) was implemented in Python
3.8 using building footprints retrieved from the OSMNX -library (Boeing, 2017) and
Point of Interest (POI)-data downloaded from (Geofabrik Download Server , 2018). In
short, this algorithm takes points of interest and buildings in a 50m-radius around
a decision point into consideration of referencing it in the associated navigation in-
struction. Each object is assigned a suitability metric which is determined based on
its uniqueness, advanced visibility, relative position to decision point and direction of
travel and salience, and the object with highest suitability value is chosen. Before
constructing the final navigation instructions, each route was visited to ensure that the
landmarks selected by the algorithm were appropriate and would not induce ambiguity
in the direction of the route instructions.
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Figure 1: Illustration of process of obtaining routes. Step 1 : Participant marks familiar
area using a polygon (in blue), displayed in map A. Step 2 : Markers are set on
known places within these markers and add a description to each one(map B).
2 of these are randomly chosen on the conditions that they have to be within
a certain distance (900m-1.3km) and are set within the same polygon.Step 3 :
Participant draws route she/he would choose between the randomly selected
markers (map C). backgrounds: (OpenStreetMap contributors, 2017)

1Thereby, confounding effects stemming from inadequate object selection by the
algorithm or incomplete OSM data was avoided. In a few cases, the algorithm was not
able to determine a suitable landmark due to no possible POI near a decision point.
In these situations, an adequate object was chosen in regards to similar criteria as the
ones of the algorithm in-situ.

1After the revision process, navigation instructions were built in German language by
analogy to Rousell and Zipf (2017) as can be seen by the following example (translation:
Turn left at the pharmacy):

General structure Imperative to turn landmark direction of turn
Example in German Biegen Sie bei der Apotheke links ab.

The last instruction on a route always included the direction to go straight ahead to
the destination in the following scheme (translation: Go to your destination: grocery
store):

General structure Imperative destination
Example in German Gehen Sie bis zu Ihrem Ziel: Lebensmittelgeschäft
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The resulting route instructions were synthesized using Google Cloud Text-to-Speech
Engine (Google Inc., 2020).

1The navigation instructions were provided exclusively for turning points, a decision
which is in line with the idea of spatial chunking (Klippel et al., 2002) and increases
ecological validity as the majority of state-of-the-art wayfinding assistance systems
provides route instruction also follow this scheme.

Therefore, for a route with K turning points, K +1 route instructions were prepared.
Figure 2 displays an example of a route with highlighted turning points for which
route instructions were constructed and corresponding landmarks referenced in the
instructions.

Figure 2: Exemplary route. There are two turning points along the route for which
corresponding landmarks were evaluated. In total, three instructions were
prepared: Two for the turning points and one last which references the des-
tination. (background: OpenStreetMap contributors (2017))

3.2. Procedure
1The in-situ study was conducted as an experiment with within-subjects design during
which each participant walked two routes: One which the participant drew during
the online questionnaire and one that was labeled as unfamiliar to the person. This
unfamiliar route was randomly selected from the routes the other participants drew.
Figure 3 illustrates this route matching scheme. It was ensured that the participant
is unfamiliar with the randomly selected route by checking that it would not lay in or
cross areas that were marked as familiar by the participant.

In this work, we will refer to walking one route as a trial. During the in-situ study,
participants were equipped with a GNSS receiver (PPM 10-xx38, see figure 4), Blue-
tooth earphones and a custom-built clicker. In addition to that, head (xSens MTi-300
IMU) and eye movement data (PupilLabs Invisible) was collected but not used in the
current study as we wanted to study the impact of those variables which are inde-
pendent of specific equipment. A sample participant in full equipment is displayed in
Figure 4.

Before the start of each trial, the following important explanations and instructions
were given to participants:
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Figure 3: Route matching scheme. During the online questionnaire, Participant A
was asked to draw a route between two familiar places which is Route 1.
Participant A will walk two routes during the study: Route 1 (trial in fa-
miliar condition) and Route 2 which was drawn by Participant B (trial in
unfamiliar condition). Therefore, each route is walked by two participants.

• The landmark-based navigation instructions at turning points were explained by
the means of an example which was the same in all trials.

• This example further clarified that route instructions only address turning points.
It was emphasized to the participants that the requested navigation instruction
might not refer to the upcoming intersection, i.e. the participants would have
to continue walking straight ahead until they find the intersection where the
instruction can be matched with the environment.

• In the familiar condition, the participants were reminded of the destination of
the route they had drawn during the online questionnaire but were explicitly
asked to follow the route instructions they were given.

• The participants were instructed to request the navigation instructions as often
as needed using the custom-built clicking device.

• At the start of the trial, the experimenter pointed participants to the direction
in which they should start walking.

Whenever participants requested a route instruction with the custom-built clicking
device, a red light lit up in the back of the rucksack (see Figure 4) which was seen by the
experimenter who walked behind the participants and played the current instruction on
a phone that was connected to the Bluetooth earphones the participant was wearing.
This point in time was logged on the experimenter’s phone.
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Figure 4: A: A sample participant in full equipment. B: GNSS receiver (PPM 10-
xx38).
C: During the experiment, participants requested navigation instructions us-
ing a custom-built clicker-device (circled in red) which triggers a LED light
located in the backpack informing the experimenter about the request.
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4. Analysis

4.1. Problem statement
Before describing the procedure of our analysis, we want to briefly present the problem
statements of both models by the means of an example, in analogy to Giannopoulos
et al. (2017).

We considered the following scenario: Alice walks from her home to the dentist and
uses a navigation system which provides audio instructions. Alice starts walking and
approaches an intersection at which she does not know if she has to make a turn. Our
models are constructed with the goal of answering the following questions:

Model 1 When will she want to hear the navigation instruction?

Model 2 Will she want to hear the navigation instruction a second time before she
makes a turn?

Both models aim to predict two different aspects of a specific behavior. In Model 1,
the point in time is of interest and Model 2 yields a binary decision.

4.2. Data preprocessing
1Experiments were conducted between June and October 2020. Participants were
acquired through personal contact, posts on social media platforms and leaflets; they
were reimbursed through lottery. Overall, Nr = 71 people registered on our website
and, of these, Np = 52 persons (female: 25 , male: 27 , Mage = 26.2 , Medianage = 24)
completed both experiment parts. This results in an overall number of N = 104 trials.
Applying a case-wise deletion approach, we had to exclude 18 trials, e.g., due to data
loss by equipment malfunction. This leads to a final number of N = 86 trials to be
included in the further analysis.

Figure 5 illustrates an overview of the overall preprocessing procedure.
1The goal was to obtain features of five categories: route, participant, environmental,

trial and behavioral level. This decision is inline with prior work on wayfinding decision
situation by (Giannopoulos et al., 2014), which provides theoretical explanations and
empirical evidence that these variables have an impact on the perceived difficulty of a
decision situation. These aspects are, hence, likely to have an impact on timing.

4.2.1. Segmentation of Data

For each trial, obtained GPS data which consists of a position measurement at intervals
of one second and logged times of navigation requests was processed. By synchroniz-
ing the time of both data sets, it was possible to refer the request of a navigation
instruction to a position. Then, it was important to obtain meaningful segments of the
route. Therefore, a segmentation procedure was performed based on the GPS track
and information was obtained in the form of the illustration in Figure 6.

After obtaining a partitioned route, it was important to refer the position of the
request to a segment in a reasonable way.

1Figure 7 provides an overview of the further segmentation algorithm which was
based on OpenStreetMap (OSM) data. Black circles represent the location of inter-
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sections according to OSM; the smoothed GPS track of a trial is given in blue, the
yellow circles represent the projection of the intersections on this line and the locations
at which a participant requested a route instruction are given as green circles. It is
important to note that we found segments based on the actual user behavior instead
of using the mere distance between two intersections, i.e., subsequent yellow circles.
This decision is based on the fact that due to the structure of the environment not all
intersections may be perceived as decision points by pedestrians. Each segment starts
at a major route point, i.e., either at the starting point or at an intersection to which
the previous route instruction referred to. A segment ends at the first intersection
along the route after a participant has requested a route instruction for the first time.

Figure 5: Preprocessing procedure. During the outdoor study, GPS data was mea-
sured and the points in time logged at which instructions were requested.
A position was assigned to each request through time synchronization be-
tween the two measurements. A segmentation algorithm was applied based
on OSM data to yield behavioral and route variables. Using OSM data and
data retrieved from the Urban Atlas, environmental variables were computed.
Participant and trial variables were obtained from questionnaires during the
online questionnaire and information of outdoor study.

This procedure yielded Niseg = 314 segments. Segments on which the experimenter
had to play the instruction because of the participant missing the turning point were
excluded, which resulted in a final number of Nseg = 304 for further processing.

At this point, we want to introduce some terminology that we will use throughout the
work: The starting point of a route, the destination and turning points will be referred
to as major route points. Between major route points, due to multiple intersection,
multiple segments can exist. When we address the combination of all segments between
two major route points, we refer to it as a united segment (see Figure 8).

4.2.2. Retrieval of variables

Participant and trial variables were obtained during the online questionnaire (see
Figure 5). Participant variables encompass the information given on demographic data
(age, gender, etc.), preferences on spatial ability measures using FRS scale (Münzer
& Hölscher, 2011) and personality trait scores based on the results of from BFI-10
questionnaire (Rammstedt et al., 2012).
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Figure 6: Segmentation process 1. The aim of the segmentation is to partition the
route at intersections which are retrieved from OpenStreetMap contributors
(2017). The algorithm creates so-called slicing segmentation rays which "cut"
the route into segments (background: OpenStreetMap contributors (2017)).

1The reason to choose the FRS scale instead of the Santa Barbara Sense of Direction
Scale (Hegarty, Richardson, Montello, Lovelace, & Subbiah, 2002) is based on the
assumption that preferences/abilities for different spatial strategies (global/egocentric
or allocentric as well as the knowledge of cardinal direction) may provide a means to
further explain timing results: For example, participants with better egocentric abilities
may prefer, e.g., later points in time than people with good allocentric orientation do.

Trial variables included features about a trial such as total duration of the experi-
ment, weekday, time and similar, and most importantly, whether the participant was
walking a familiar or unfamiliar route.

We calculated route features based on the obtained segments and united segments.
1They comprise aspects relating to the route itself, e.g., the length of each route

segment, the type of each intersection, information on landmark visibility and so on.
From these route features, environmental variables were derived. Figure 9 exemplifies

the retrieval of environmental data for a route segment.
Two main types of environmental variables were considered: The first one was point

density of POIs based on OSM data. This was obtained by drawing a 30m buffer
around a segment, counting points that lied within this buffer and normalizing it by
the length of the segment. The value of the buffer size was set carefully by testing it
on segments laying in streets of varying road width with the aim to draw a buffer big
enough to contain all POIs that would be visible for the participant traveling on this
segment.

As POIs in OSM have tags describing properties of the POI (e.g. a fast food restau-
rant is typically tagged with tag amenity and corresponding value fast_food), we de-
cided to also calculate POI densities for POI with specific tags and values, following
the POI definition of POI display (2013).

The second type of environmental variables was related to landcover classes. There-
fore, landcover polygons retrieved from (European Comission, 2012) were used. For
this, buffers with the radius of 50m were drawn around a segment. We evaluated which
landcover polygons intersect the buffer and calculated the share of buffer area for each
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Figure 7: Segmentation process 2. Two possible situations: A (regular case): The seg-
ment starts at the last turning point denoted as 3. The first intersection after
the click position is denoted as 4 and the segment ends at this intersection.
B: A route segment covering the distance from the starting point to in-
tersection 2. Intersection 1 is ignored because the instruction is requested
after it was passed, i.e., the participant has not perceived it as a decision
point.(background: OpenStreetMap contributors (2017), graphic adopted
from Golab et al. (n.d.))

Figure 8: Explaining terminology. The starting point of a route (red triangle), turn-
ing points (orange circles) and destination (green triangle) are called major
route points. Within each pair of major route points, multiple segments
can lie. All these segments are merged together and referred to as united
segment.(background: OpenStreetMap contributors (2017))

landcover class as defined by European Comission (2012). The used buffer was big-
ger for this environmental variable because we were not only interest encompassing
what a participant might see but more about the kind of environment the person is
traveling in, e.g. whether it is a densely built environment (see Figure 9 for graphical
explanation).

1Finally, the behavioral class encompasses all features relating to the requests of
route instructions by participants (e.g., of course, the point in time of the click itself,
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Figure 9: Retrieval of environment variables. A: Retrieval of point density values: A
buffer with a radius of 30m is drawn around a route segment. In this example,
the overall POI density would be 0.29 and point density of POIs with tag shop
0.07. B: Retrieval of land cover shares: A 50m-buffer is drawn around a route
segment. In this example, the predominant class corresponds to continuous
fabric (designated as LC_11100 by European Comission (2012)). Therefore,
the calculated value landcover share of this class would be about 0.8 and 0.2
for the landcover class implying roads (LC_12220 ).

but also aspects such as the distances to the previous and upcoming intersections etc.).

4.3. Data analysis
The aim of this analysis was to identify significant variables in the observed behavioral
processes and further to draw conclusions about possible explanations based on their
magnitude, direction of impact and significance. This can be achieved by using a re-
gression model which allows stating causal relationships between independent variables
and a dependent variable.

The two research questions addressed in this work call for two different analysis ap-
proaches as one is directed towards the prediction of a point in time and the other
one can be expressed by the means of a binomial classification. While choosing anal-
ysis methods, the fact that our data holds multiple observations per subject had to
be regarded. A possible correlation within data points acquired from one subject was
assumed. For the prediction regarding when a person would want to hear a navigation
instruction, the survival analysis was chosen. Although, this model assumes indepen-
dence between all observations, the sandwich estimator can be applied to compensate
for possible correlation within the outcome (e.g. Liu, 2014; Shaffer & Hiriote, 2009).
For the second research question, the Generalized Estimating Equations model which
solves a marginal model and estimates within-subject correlation was used (Liu, 2015).

4.3.1. Survival Analysis Model

1Driven mainly by advances in the biomedicine domain, a family of models called
survival analysis models have been proposed (see Hosmer Jr, Lemeshow, & May, 2011;
Kalbfleisch & Prentice, 2011, for a detailed overview); these show methodological and
conceptual advantages over traditional regression approaches (see, e.g., Bhat & Pinjari,
2007). In brief, these models perceive duration as a survival process and center their
focus on the share of individuals that survive past a given (time) point. A focal element
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of those models revolves around the notion of hazard, i.e., the rate at which the duration
process changes over time.

1The application of survival analysis models in spatial settings was explored and
exemplified for the first time by Waldorf (2003). A number of applications have built
upon that work and utilized such models for tackling distance-related questions such as
trip length modeling (see, e.g., Anastasopoulos, Islam, Perperidou, & Karlaftis, 2012;
Sarlas & Axhausen, 2018).

1Among those models and for cases which focus primarily on prediction, choosing
fully parametric models is most appropriate as these fully describe the basic underlying
survival distribution and, at the same time, quantify how this distribution changes as
a function of the explanatory variables (Hosmer Jr et al., 2011). Two categories of such
models exist, namely the proportional hazard and the accelerated failure time (AFT)
models. These differ with respect to the assumptions of how the survival function is
affected by the explanatory variables. While the former assume that the explanatory
variables have a constant multiplicative effect on the underlying hazard function, this
relationship is assumed to be also multiplicative on the time scale by the latter.

1By analogy with Giannopoulos et al. (2017), we focus exclusively on estimating
an AFT model as it is reasonable to assume that the relationship of the explanatory
variables is multiplicative on time. T represents the timing or distance of instructions
for an individual with a cumulative distribution function F (t) = Pr(T ≤ t). The
survival function represents the probability of observing a survival distance higher
than t, denoted as S (t) = Pr (T > t) = 1 − F (t). Subsequently, the hazard function,
defined as the probability of a process ending at point t given that it has lasted up to
point t, is as follows:

h (t) = f (t)
S (t) (1)

1Essentially, the knowledge of either function (i.e., f (t), F (t), or h (t)) allows the
direct inference of the remaining two. In case of the AFT models with a Weibull
survival function, T is defined as T = eβ0+βix ∗ ε, with β’s representing the effect of
explanatory variables xi, and an error component ε.

1Applying a log transformation results in:

ln (T ) = β0 + βixi + σ ∗ ε∗ (2)

with ε∗ = ln(ε) following the extreme minimum value distribution, denoted as G(0, σ)
with σ being the scale parameter. The corresponding hazard and the survival function
are:

h (t, χi, βi, λ) = λtλ−1

(eβ0+βixi)λ = λtλ−1e−λ(β0+βixi) = λγ te−βixi
λ−1

e−βixi (3)

S (t, χi, βi, σ) = exp{−tλexp[(−1/σ)(β0 + βixi)] } (4)

withλ = 1/σ and γ = exp(−β0/σ ). With this formulation, the equation for the
median survival time can be derived by setting S = 0.50:

t50 (χi, βi, σ) = [−ln (0.5)]σeβ0+βixi (5)
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1Formula (2) shows that the β’s quantify the effect of the explanatory variables on
T , which can, for this case, be interpreted as semi-elasticity values, i.e., 100*βi is the
approximate percentage change on T for a unit change on xi. However, that change is
not constant along the corresponding survival function (see 4). Based on formula (5),
the impact of a change on xi on its median T is given by:

TR (xi, xi) = t50 (xi, βi, σ)
t50 (xi, βi, σ) = [−ln (0.5)]σeβ0+βixi

[−ln (0.5)]σeβ0+βixi
= eβ1Δxi (6)

4.3.2. Generalized Estimating Equations

The Generalized Estimating Equations (GEE) model was introduced by Liang and
Zeger (1986) and Zeger and Liang (1986) as an extension of Generalized Linear Models
(GLM) (Nelder & Wedderburn, 1992) to account for correlations in observations in the
estimation of GLM coefficients. GEE is designed to model population-average effects
of covariates and is therefore frequently used in the fields of medicine and sociology
(Pekár & Brabec, 2018).

Coefficient estimates are calculated using quasi-likelihood which requires the specifi-
cation of relations between the mean outcome and covariates, and between the variance
of the outcome and mean of the outcome. The mean model µi of a dependent variable
yi for subject i is expressed by

f(µi) = xiβ (7)

where xi is a vector of the independent-variable observations and β a vector of covari-
ates of length p + 1 for p independent features. f(.) denotes the so-called link function
which is analogous to link functions for GLM and allows fitting GEE for various dis-
tributions of outcome variable(Ballinger, 2004). The relation between variance of a
outcome υi and the mean outcome is given as υi = g(µi)/Φ, Φ being a scaling parame-
ter and g(.) a known variance function. For Ni observations of p independent variables
per subject, we define the quasi-likelihood relations by:

f(µij) = XT
ijβ (8)

and

Vi = A1/2
i Ri(α)A1/2

i

Φ (9)

Ai is a diagonal matrix of shape (Ni × Ni) with g(µij), j = 1, ...Ni, as its diago-
nal elements. Ri(α) is called the "working" correlation matrix and α is a vector of
its elements. The working correlation matrix represents the correlations of outcomes
within a subject, and its structure can be individually determined (Pekár & Brabec,
2018). Pekár and Brabec (2018) give a thorough overview on most common structures
of Ri(α) and the underlying assumptions that are made by choosing one.

Estimates of β are yielded by solving the following formula for M subjects:

U(β) =
M

i=1

δµi

δβ

T

V−1
i (yi − µi) = 0 (10)

This estimating equation depends on the unknown α and β.
Zeger and Liang (1986) suggested an iterative approach to obtain estimates for β, α

and Φ. By introducing a sandwich estimator, the covariance matrix of β is expressed
by:
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Vβ = lim
M→∞

M

 M

i=1

δµi

δβ

T

V−1
i

δµi

δβ

−1

Eβ

 M

i=1

δµi

δβ

T

V−1
i

δµi

δβ

−1

(11)

with

Eβ =
 δµi

δβ

T

V−1
i Cov(yi)V−1

i

δµi

δβ

 (12)

The definition of Vβ was obtained by assuming that GEE yields asymptotically
consistent β̂ for a zero mean of the true β values under mild regularity conditions
(Liang & Zeger, 1986). With an initial guess for unknown parameters in Formula 9, α̂

and Φ̂, the first estimate β̂ is yielded using formula 10 which is again used to estimate
a new set of (α̂, Φ̂) until convergence (Hilbe & Hardin, 2008).

α and Φ are consistently estimated through the standardized residuals rij = (yij −
µ̂ij)/

√
υij, where µ̂ij based on the current β̂. Cov(yi) is obtained by multiplying the

residual vectors for observations of a subject, riri
T (Liang & Zeger, 1986; M. Wang,

n.d.).
For solving the binary-classification task at hand, the logit link function was chosen

in analogy to a classic logistic regression (Liu, 2015). Therefore, we define our binary
response as follows:

logit(µij) = log
Pr(yij = 1)
Pr(yij = 0) = XT

ijβ (13)

We further chose the "exchangeable" working correlation structure which specifies
constant correlation among observations stemming from the same subject with the
assumption that the preference to hear a route instruction would be subject-specific
(Pekár & Brabec, 2018). This defines for subject i by:

Ri(α) =





1 α α · · · α

α 1 α · · · α

α α 1 · · · α
... ... ... . . . ...
α α α · · · 1




(14)
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5. Results
In the model building process, state-of-the-art methodology was applied: Initial model
fitting of all available variables was conducted to identify influential ones (suggested by
e.g. Hosmer Jr, Lemeshow, & Sturdivant, 2013, in the context of logistic regression). To
ensure absence of distortion due to multi-collinearity, it was tested whether the variance
inflation factors (VIF) of all variables in the model had values < 5 (Akinwande, Dikko,
Samson, et al., 2015). The number of variables in the model was further reduced by
observing their p-values, their impact on p-values and changes in coefficients of the
other independent variables in the model and their effect on the information criterion
which was the Akaike Information Criterion (AIC) in case of the survival analysis
(Akaike, 1973) and Quasi-likelihood Information Criterion (QIC) in the model building
process of the GEE (Pan, 2001). AIC and QIC are based on information theory and
assist in the model selection by summarizing goodness of fit and complexity by one
measure. In addition to that, the model’s robustness was ensured by sequential removal
of influential data points and simultaneous observation on the change of estimated
coefficients. Moreover, during the AFT analysis, a robust sandwich estimator was
applied in the calculation of model parameters to make up for possible correlation
within the outcome.

2Tables 3 and 6 display parameters of the final models, their standard errors, cor-
responding p-values based on Wald statistic and goodness of fit measures. Though
the coefficient values satisfy different models, we can make similar assumptions on its
effect on the corresponding dependent variable based on their magnitude and sign. It is
important to note that the size of the coefficients depends on the range of values of the
features and they have to be interpreted ceteric paribus, i.e. the estimated parameter
values how an impact of the variable as if the other are kept constant. A variable is
classified as significant when its p-value is below 5%.

5.1. Model 1: Asking for an instruction for the first time
after a turn

2Figure 10 illustrates the observation that we want to predict: The person has made
a turn or just started walking and does not know whether a turn has to be made at
the upcoming intersection. Along this route segment, the person has to, therefore,
request the instruction at some point before passing the upcoming intersection. The
participants were allowed to trigger a request multiple times. In this model, though, we
are explicitly interested in the first request. Before applying AFT model, further data
cleaning procedures were conducted: Observations of participants in familiar condition
that were able to see the destination from the position of the instruction request (25
cases) were excluded as we could assume that as soon as participants would see the
familiar destination, they would not need the instruction for assistance in wayfinding
anymore. Furthermore, cases in which the first request was made before entering the
segment (35 cases) had to be removed from the data because this could not be processed
in survival analysis. These were always first segments of 245 unitied segments (see
Figure 10). Environmental variables where retrieved based on the geometry segments
of interest illustrated in Figure 10 using methodology described in Section 4.2.2.

1The request on a segment has a temporal and spatial dimension. We are naturally
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Figure 10: Model 1: A person has just turned, approaches the upcoming intersection
and requests the instructions for the first time at the position marked by
the green cross. Our analysis aimed to predict the distance between the
position of the green cross and the upcoming intersection (red circle) which
is normalized by the length of the route segment (marked as black line).
Model 2: The navigation instructions are exclusively for turning points
and the announcement of the destination and are played as many times
as a person wants to. In model 2, the focus was on classifying whether
someone would want to hear a navigation instruction more than once, based
on personal, environmental, route, trial and behavioral variables of the first
request. We are further not only interested in the segment on which the first
request is made but the features of the united segment (black line) between
the past and the upcoming turning point. In the displayed example, the
route instruction is requested a second time at the position of the grey
cross.
Backgrounds: OpenStreetMap contributors (2017)

bound to the length of the segment and therefore chose to focus sorely on the spatial
dimension. The positions of first requests were normalized to a range [0, 1] by dividing
by segment length, in order to have a uniform duration period for all observations
which is a prerequisite for the model estimation as follows.

1Subsequently, an AFT model is estimated with a Weibull duration distribution in
place, similarly to the one presented in formula (4). The calculations were conducted
using the open-source statistical software R (Core Team et al., 2013), exploiting version
3.2-7 of the Survival package (Therneau, 2014). The results of the AFT model param-
eter estimation along with the accompanied goodness of fit measures, are presented in
Table 3 , while descriptive statistics of the employed sample are given in Table 2 .

1Obtaining estimates for β allows us to estimate the survival and hazard functions
(see formulas 3 and 4) for different sets of explanatory variables, and, hence, individuals
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and spatial environments. Parameter interpretation can take place both in terms of
sign and magnitude: An estimate with a positive sign implies a longer survival (i.e.,
instructions will be required at a later point in time), while a negative sign means
the opposite. Concerning the magnitude, a quantitative interpretation can be made
based on formulas (2) and (6). Based on the estimated parameters, we can obtain
point estimates of quantiles of the distribution (e.g., the median) which are of potential
interest for predicting the point in time at which a system should automatically present
a route instruction.

1The obtained estimates indicate that participants requested a route instruction later
as a function of their age (variable age_gt_40 ) and on segments longer than 120m if
they belong to the group of people whose factor score for preference for egocentric
orientation is below 3 (variable EGO_lt_three*lngSegm). All remaining variables de-
scribe an earlier request for an instruction: This holds for the two different classes
of landcover (variables LC_1 and LC_2 ) which are rendered significant at the 5%
level, as well as for people scoring below average on the personality factor openness
(variable BFI_o_low). In addition to that, if participants walk on long segments in
an area they are unfamiliar with (variable unfamiliar*lngSegm), they request a route
instruction earlier. Finally, sense of direction and familiarity interact with each other,
i.e., depending on their sense of direction, wayfinders want route instructions earlier on
familiar (variable SOD*familiar) and even more earlier on unfamiliar settings (variable
SOD*unfamiliar). Figures 11, 12 and 13 provide further elaboration and interpretation
of the model results:

1In Figure 11, the median predictions (calculated based on Formula 5) for the obser-
vations used for the model estimation are plotted against the actual ones. A strongly
positive relationship between the two seems to be in place while their correlation is
found to be equal to ρ = 0.45.

1In Figure 12, empirical survival results are compared against predicted ones for two
common cases identified in our sample having the following characteristics: BFI_o_low =
1, lngSegm = 1, and age_gt_40 = 0, i.e., people who are below 40 years of age, having
a below average degree of openness and walk on long segments. The empirical survival
function of those observations that correspond to a familiar setting are presented on the
left, whereas the unfamiliar setting is shown on the right. The predicted mean survival
functions have been obtained by making use of the estimated parameters and inserting
the mean of the remaining explanatory variables into formula (4), with the exception
of dichotomous variable EGO_lt_three which is set to 1. The figure illustrates that in
both cases, the predicted mean survival rates are very close to the empirical ones while
their 95% confidence interval values are always overlapping.

1Finally, the impact of the different explanatory variables on the predicted survival
rates is demonstrated by modifying those variables accordingly, and plotting the re-
sulting survival rates per case (Fig. 13). For that reason an artificial observation
resembling a wayfinder with the following characteristics is defined as a base case,
while for the remaining continuous variables the mean values of the sample are used
(Table 2): BFI_o_low = 0, lngSegm = 0, age_gt_40 = 0, EGO_lt_three = 0,
unfamiliar = 1, i.e. a person of less than 40 years of age, with a below average
openness and very high preference for egocentric orientation, who walks on unfamiliar
segments which are no longer than 120m. The modification on the dummy variables
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consists of setting them to 1 (i.e. considering above average openness, long segments,
older people, high preference for egocentric orientation or familiar segments); the con-
tinuous variables are modified by adding/subtracting a value equal to the respective
standard deviation. On the left-hand side of the figure, the environmental and route
characteristics of the base case are modified while on the right-hand side, the trial
and personal ones are changed (see Table 1 for an explanation which variables these
are). For instance, the black dotted line on the left side of the figure resembles the
baseline artificial observation with an increase only in LC_1. Similarly, the red line
resembles the baseline artificial observation with an increase only in LC_2. The blue
line resembles the baseline artificial observation with a change from lngSegm = 0 to
lngSegm = 1, indicating that the wayfinder is walking on a long segment. In all of
these three cases, the time that the wayfinder would ask for instructions decreases.
As it can be seen, the most influential explanatory variables appear to be length of
segment (lngSegm) along with the below average degree of openness (BFI_o_low).

Table 1: Influential variables in Model 1. levels: P: participant, R: route, T : trial,
E : environment
sources: OQ: online questionnaire that was completed by participants, UA:
Open Street Map,OSM : OSM. (adopted from Golab et al. (n.d.))

level variable description type unit source
P age_gt_40 age greater than 40 dichotomous N/A OQ

BFI_o_low result of subscale openness of BFI-10 scale;
threshold <3.41 according to norm data (Rammstedt et al., 2012)

5-point likert scale N/A OQ

SOD sense of direction derived from FRS questionnaire 7-point likert scale N/A OQ
EGO_lt_three factor EGO derived from FRS questionnaire 7-point likert scale N/A OQ

R lngSegm segment length >120m
This threshold was found empirically, i.e. evaluated based
on lower and upper quartile of the segment length and different
thresholds were tested to classify short and long segments,
respectively. However, only long segments yielded a significant effect.

metric meter

T familiar/unfamiliar participant is familiar/unfamiliar with route and environment dichotomous N/A OQ
E LC_* land cover share of 50m buffer around route segment

1 = 12100; 2 = 1110 + 11210
12100, 1110, 11210 ... landcover codes of Urban Atlas
(European Comission, 2012)

metric N/A UA

DV distance norm. of navigation request to upcoming intersection
normalized by segment length

metric N/A
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Table 2: Summary statistics of the observations used for AFT model estimation. (d) de-
notes a dichotomous variable; for these variables column mean represents the
proportion in the sample. Variable names are explained in Table 1.(adopted
from Golab et al. (n.d.))

Statistic Mean St. Dev. Min Max
distance norm. 0.494 0.333 0.004 1.000
segment length 80.794 58.600 4.516 426.500
length_long (d) 0.143 - - -
age 26.596 9.001 18 59
age_gt_40 (d) 0.073 - - -
LC_1 0.129 0.179 0 1
LC_2 0.427 0.287 0.000 0.900
LC_3 0.090 0.214 0 1
familiar (d) 0.420 - - -
unfamiliar (d) 0.580 - - -
SOD 4.822 1.468 1.920 6.911
EGO 3.595 1.099 0.478 6.216
EGO_lt_three (d) 0.314 - - -
BFI_o 3.520 1.074 2 5
BFI_o_low (d) 0.424 - - -

Table 3: Parameters and goodness of fit measures of AFT model for normalized timing
of instructions based on the AFT model. Coefficients β and scale parameter
σ correspond to definitions by formulas in chapter 4.3.1.(adopted from Golab
et al. (n.d.))

Variable β Robust std. error

age_gt_40 0.709*** 0.173
LC_1 -0.541* 0.224
LC_2 -0.524*** 0.138
LC_3 -0.352+ 0.184
BFI_o_low -0.293* 0.121
unfamiliar*lngSegm -0.712* 0.298
SOD*familiar -0.046* 0.020
SOD*unfamiliar -0.058** 0.018
EGO_lt_three*lngSegm 0.593** 0.205
Log(scale) -0.314*** 0.078

Scale σ 0.73

Observations 245
LogLikelihood -43.5
LogLikelihood (intercept only) -62
AIC 106.97

p value: + p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001
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Figure 11: Predicted median survival values based on the estimated AFT model, com-
pared against the observed ones. (adopted from Golab et al. (n.d.))
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Figure 12: Empirical survival rates for two given subsets of observations (left: familiar,
right: unfamiliar segments), compared against the mean predicted ones.
Dotted lines represent the 95% confidence interval values. (adopted from
Golab et al. (n.d.))
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Figure 13: Variation of survival rate predictions due to explanatory variables modifi-
cations. The corresponding modifications are applied to a base case sce-
nario in the following manner: continuous variables=± 1 standard devia-
tion, dummy variables=1. (adopted from Golab et al. (n.d.))
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5.2. Model 2: Asking for an instruction multiple times
In the experiment setup, participants were allowed to request a navigation instruction
as often as they wanted. In 29.9% of the total cases (91 out of 304), participants
requested an instruction for at least a second time. The aim of the second model was
to predict whether a person would want to hear a navigation instruction a second time.
Besides personal, trial and route variables, an observation comprises behavioral data
describing the position of the first request and environmental data calculated based
on a united segment (for explanation of this term see Section 4.2.1 and Figure 10 for
an example). To formulate a binary classification, an observation was labeled 0 if a
navigation instruction was requested only once and 1 if it was requested for at least a
second time.

Within our data, observations also include last united segments of routes. The dif-
ference to other united segments is that along the last ones the navigation instructions
announce the destination. These are not navigation instructions in the traditional
sense (see Section 3 for syntax) as they do not included an imperative to turn. To
observe whether this effects the behavior of the wayfinder differently, a dichotomous
variable that labeled these observations was introduced.

During the model building process, it became evident that POI density variables
would be significant in the model. After suspecting overfitting, the variables were
further inspected and it was recognized that many of the point density variables had
value 0 for most of the observations. Furthermore, we realized that the point density
variables cannot be all treated as independent between each other as multiple tags
can be assigned to an object in OSM and therefore, the presence of one tag might
depend on the presence of another. For example, there are some coffee places in
Austria that are tagged with amenity:cafe and shop:coffee. Therefore, POI density
variables of only one tag were chosen to be used in the analysis. Based on criteria
such as frequency of occurrence and significance in the model, we decided to use only
POI variables of tag amenity. To tackle the issue of overfitting and to keep classifica-
tion among objects with this tag, the different possible values of tag amenity in our
data were collected and a grouping of them was carefully conducted based on their
appearance and what the objects are used for. This led to six deduced variables
describing point density: amenity_gastronomy, street_furniture, amenity_mobility,
amenity_education, amenity_health, amenity_culture. The precise definition of them
can be found in Section E.

The GEE model with logit link function was applied using R version 4.0.3 and func-
tionalities of the geepack (Halekoh, Højsgaard, Yan, et al., 2006). Its application models
population-average effects as we aimed to solve for the logit of marginal probability
which is defined in Formula 13.

Table 6 displays the results of the obtained GEE model. The variable names are
explained in Table 4 and corresponding statistics are found in Table 5. Along with
the coefficients β which satisfy Formula 13, we obtain parameter α which expresses
the correlation between observations within a subject and the scaling parameter which
relates the correlation matrix of the mean outcome to the one of the outcomes of
observations (see Formula 9).

The estimated GEE model implies that the later a landmark is visible, the higher the
chances of an occurrence of a second request increase (dist_of_landmark_visibility).
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The chances of a second request also increase, when a health facility is present
(amenity_health_present). The chances decrease with increased density of mobility in-
frastructure including bike rentals, parking, fuel and charging station and more (see Ta-
ble 4 for more details). rel_click_pos_united_segment is a behavioral variable describ-
ing the position of the first request of a route instruction on a united segment. It is the
ratio between the distance to the last major route point and the united segment length.
An increase of the ratio causes a decrease of the chances that a second request will be
made. The chances of occurrence of a second request further increase when a person
is on the last united segment and approaching the destination (last_instr_on_route).
In this model, one interaction term is included: It is an interaction between a behav-
ioral and a dichotomous personal variable (time_passed_since_start * BFI_n_high).
BFI_n_high equals 1 for people with high scores on subscale neuroticism of BFI-scale
and 0 for lower (threshold 3.3, derived from Rammstedt et al., 2012). Let t0 be the start
of the experiment and tN the point in time at which a route instruction is requested
for the first time, then time_passed_since_start is defined as tN − t0 in seconds. This
term is, therefore, only active for people who score high on the neuroticism subscale
of BFI and lower the chances of a second request the more time has passed, since the
experiment start t0 at the moment of the first request tN .

It is important to note here that the GEE model is a marginal model aimed to
observe population-level effects (Pekár and Brabec (2018)). It can therefore not be di-
rectly used to make subject-specific predictions as it ignores subject-specific scale and
the chosen working correlation structure neglects the possibility of individual correla-
tion parameters within observation clusters. Furthermore, direct population-average
predictions are not possible if a non-linear link function is used. For this, a specific
retransformation algorithm is needed (Liu, 2015). The model still yields correct es-
timates on population-level which is often sufficient in behavioral science (Pekár &
Brabec, 2018).
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Table 4: Influential variables in Model 2. levels: P: participant, R: route, T : trial, E :
environment, DV : dependent variable
sources: OQ: online questionnaire that was completed by participants,OSM :
OSM. Readers may want to refer to the supplementary material for further
details on these.

level variable description type unit source

P BFI_n_high result from subscale neuroticism of BFI-10 scale
threshold >3.3, calculated based reference values by Rammstedt et al. (2012)
of BFI_n scores of all participants

5-point likert scale N/A OQ

B rel_click_pos_united_segment distance between past major route point and
position of first request of route instruction
devided by the distance of the united segment

metric N/A

time_passed_since_start time passed since the start of the navigation at
the point in time of the first request

metric seconds

R last_instr_on_route This variable implies whether the route instruction
is the last one on the given route.
If it is, the structure of the route instruction is
different to the others (see Section 3).

dichotomous N/A

dist_of_landmark_visibility distance between last major route point and point
at which the landmark referenced in the route
instruction can be seen for the first time

metric meter OSM

T familiar/unfamiliar participant is familiar/unfamiliar with the route
and the environment

dichotomous N/A OQ

E amenity_mobility point density of POIs with amenity
values bicycle_parking, bicycle_rental,
bicycle_repair_station, car_sharing, charging_station,
fuel, taxi, parking, parking_entrance, compressed_air

metric 1/meter OSM

amenity_health_present This variable implies whether one of following amenity
values is present: dentist, doctors, veterinary, healthcare,
pharmacy

dichotomous N/A OSM

DV mutliple_requests This variable indicates whether multiple requests were made. dichotomous N/A

Table 5: Summary statistics of the observations used for GEE model estimation. (d)
denotes a dichotomous variable; for these variables column mean represents
the proportion in the sample. Variables are described in Table 4.

Statistic Mean Std. Dev. Min Max

multiple_requests 0.299 - - -
distance_of_landmark_visibility 102.213 192.696 0.000 866.533
amenity_mobility 0.015 0.0224 0.000 0.231
rel_click_pos_united_seg 0.237 0.294 0 1
unfamiliar (d) 0.520 - - -
last_instr_on_route (d) 0.280 - - -
amenity_health 0.002 0.005 0.000 0.055
amenity_health_present (d) 0.329 - - -
time_passed_since_start 361.778 39.811 1.392 1077.325
BFI_n 3.090 0.995 1.000 5.000
BFI_n_high (d) 0.141 - - -
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Table 6: Parameters and goodness of fit measures of final GEE model for binary clas-
sification (0 - route instruction is requested once, 1 - route instruciton is
requested multiple times). Coefficients β and scale parameter σ correspond
to definitions by formulas in chapter 4.3.2. Number of clusters is the number
of subjects and Max. cluster size is the maximum number of observations of
a subject.

Variable β Std. error
dist_of_landmark_visibility 0.002* 9.12E-04
amenity_mobility -20.1* 8.78
rel_click_pos_united_seg -2.45*** 0.583
unfamiliar 4.54+ 0.279
last_instr_on_route -1.35*** 0.334
amenity_health_present 0.966*** 0.270
time_passed_since_start * BFI_n_high -0.001* 5.81E-04
Scale paramter Φ 0.93
R parameter α 0.00384; Std.error = 0.168
Observations 304
Number of clusters 48
Max. cluster size 13
Quasi-Likelihood -142.74
Quasi-Likelihood (intercept only) -186
QIC 299.98

p-value: + p <0.1; * p<0.05; ** p <0.01; *** p <0.001
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6. Discussion
Our modeling approach is mostly data-driven as we obtain our models by taking all
available variables of different levels (personal, environmental and route level) into
consideration and using information criteria and Wald statistic to obtain final models
which illustrate the influence of different variables but do not indicate a reason for it.
We can, therefore, only make assumptions with caution about why a variable has the
given effect. The discussion of variables is divided by their groups for each model.

6.1. Model 1
6.1.1. Environmental variables

1According to our model, people request route instructions the earlier for route seg-
ments the higher the proportion of land cover classes LC_1 or LC_2 is along them.
LC_1 represents the Urban Atlas (European Comission, 2012) class 12100 (Industrial,
commercial, public, military and private units), whereas, LC_2 subsumes Urban Atlas
classes 11100 and 11210, (European Comission, 2012, p. 9), i.e., it comprises areas of
predominantly residential use with a soil sealing of >50%. Both variables show a con-
siderable difference in average area of building footprints (LC_1: 1816.73m2, LC_2:
661.55m2). In urban areas, LC_1 covers mostly public buildings (e.g., universities,
museums) and associated features. LC_2 shows a medium-sized positive correlation
(Spearman’s ρ = 0.56) with the presence of OSM features tagged as shop. However, the
density of built-up areas, which we calculated based on OSM building footprints and
the extent of landcover class polygons along the route segments is very similar (LC_1 :
46%; LC_2 : 50%). This result and the fact that both variables show a negative impact
on timing (i.e., the higher the value for LC_1 and LC_2 the earlier people would ask
for instructions) suggests that the impact of LC_1 and LC_2 may stem from similar
source. One possible source is a limited line of sight in these environments. For exam-
ple, crowds in public places are likely to occur in areas with many public buildings or
shops. In addition to that, the high density of built-up areas may cause a limited line
of sight on upcoming intersections in general. This interpretation is in line with, e.g.,
research indicating the importance of visibility in advance for landmark salience (see,
e.g., Kattenbeck, 2017; Winter, 2003). The interpretation also resembles the idea of an
visibility index, which was, according to (Farr et al., 2012), introduced by Braaksma
and Cook (1980). This index is based on the number of direct sight lines when moving
towards a target (e.g., an intersection) and can be used as a direct measure of ease of
wayfinding. Therefore, a wayfinder might need an instruction earlier in an occluded
environment to make the wayfinding task easier as this allows the person to recognize
the landmark of the upcoming turn earlier. Another explanation for the negative im-
pact of the variables LC_1 and LC_2 could be that due to the perceived complexity of
the environment which may be caused by the building density, wayfinders plan ahead
in order to gain enough time to make the spatial decision and identify the object of
interest among the possible plethora of landmarks.
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6.1.2. Personal variables

1With respect to personal variables, our results suggest that participants older than
40 years of age tend to request route instructions later, a finding based on approx.
10% of all route segments. All of these participants have not only spent the largest
fraction of their adulthood in Vienna but also considered their ability to find their way
around in Vienna nearly all above average (M = 71.1, minage>40 = 71, maxage>40 =
100). Therefore, it is reasonable to assume that the cognitive map(Tolman, 1948) or
cognitive graphs (see Warren, 2019) of this group of people is well developed and, hence,
had an impact on requesting a route instruction later as these mental representations
develop over time based on experience (see, e.g., R. Kitchin, 1994): These persons are
experienced wayfinders in this particular urban environment and, hence, they feel less
pressure to reduce their uncertainty by requesting a route instruction early on. At the
same time, our participants do not belong to an age group (maxage = 59) for which
empirical evidence suggest that spatial abilities deteriorate (see, e.g., Head & Isom,
2010, who tested people with a mean age of 71 years). Our findings on age, however,
are different to those reported in Giannopoulos et al. (2017), who found a main effect
for both, age and the age group of people who are older than 27 years of age. Hence,
further investigation of potential reasons for the difference found is one of the research
questions opened up by the findings of the current study.

1A second finding with respect to personal variables relates to the participants’
personality traits: People having a below average degree of openness (measured by the
BFI-10 scale and according to norm data given in Rammstedt et al., 2012) request
a route instruction earlier. Scholars tend to agree that human personality can be
described along five dimensions (see John & Srivastava, 1999, for an overview on the
history of these concepts), which are often referred to as Big Five (Goldberg, 1990):
extraversion, openness to experience (also known as open-mindedness), agreeableness,
conscientiousness and emotional stability/neuroticism. According to (Costa & McCrae,
2010), people who score high on trait openness “[. . . ] enjoy novelty and variety [. . . and]
have a high appreciation of beauty in art and nature” (Costa & McCrae, 2010, p. 243).
The city of Vienna is, generally speaking, a city with a lot of historic buildings, with
highly decorated facades. People having a low level of openness may, therefore, pay
less attention to the beauty of this environment and ask for an instruction early on in
order to have more time to focus on the wayfinding task itself.

6.1.3. Interactions between variables

1Drawing on common sense, a main effect of familiarity on timing seems plausible,
i.e., we would have expected that people ask later for instructions when traveling on
familiar routes (and vice versa). However, familiarity is only rendered significant as
an interaction term: When walking through unfamiliar areas, persons request route
instructions earlier on those segments which are longer than 120m. One potential
explanation would be that the upcoming decision point is visible later on longer seg-
ments, for example due to a higher number of occluding objects on these segments. As
a consequence, unfamiliar persons experience a higher degree of difficulty of wayfinding
(Farr et al., 2012) and, hence, uncertainty due to their lack of a cognitive map/graph.

1When interpreting the meaning/influence of the interactions relating to spatial ori-
entation, one needs to keep in mind how these values are calculated. We used the Ger-
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man language self-report scale on spatial strategies developed by Münzer and Hölscher
(2011). In analyzing this data, we follow the advice given in Kattenbeck and Kreuz-
pointner (n.d.): They provide evidence for the fact that a bifactor model for the scale
fits a representative sample (N = 4037) of the German population better than the
three-factor correlational model (involving the subfactors egocentric/global orientation
(EGO), allocentric orientation and cardinal direction strategies) suggested by Münzer,
Fehringer, and Kühl (2016). Kattenbeck and Kreuzpointner extract Sense of Direc-
tion (SOD) as a general factor from the data and provide evidence that the three
subfactors remain significant. In their bifactor model, EGO can be interpreted as a
person’s preference for egocentric orientation. The obtained factor scores are standard-
ized, i.e., zero represents an average self-report value. It is important to note, that in
our sample all participants score above average (positive sign) on all four (sub-)factors.

1Our results suggest that there is a subgroup of people among the group of people
who prefer egocentric orientation more than average: People scoring below three on the
egocentric factor request route instructions on long segments (>120m) later. As the
direction of this effect is counter-intuitive, further investigations in controlled settings
are required to assess whether this effect holds across samples and what it actually
means.

1Finally, the interaction terms suggest that the level of familiarity affects the timing
of route instruction requests even for wayfinders with a high sense of direction: The
higher the SOD of participants, the earlier they request the route instruction across
conditions. However, for the unfamiliar condition, the route instruction is requested
20% earlier than in the familiar condition. This change aligns with the common sense
expectation although it is dependent on a person’s SOD. This effect, however, is
contradicting the finding by Giannopoulos et al. (2017), who report a delaying effect
by SOD on route instruction requests.

They argue the following: "A possible interpretation of this result could be that the
higher the spatial abilities, the higher the confidence of the wayfinder concerning the
interpretation and mapping of instructions just before the decision point. Another
interpretation could be that wayfinders with high spatial abilities wait longer in order to
minimize the possible space where the given instructions can be mapped."[Giannopoulos
et al. (2017): Page 16:9]

The discrepancy of our results could be attributed to the difference in experimental
setup. During our study, participants could request navigation instruction as often as
they wanted. It could have been part of a display of higher spatial ability to strategically
play the instruction sooner to already be aware of what the next action would be as in
case of forgetting its content, the instruction could be requested later again.

1Aside from this possible explanation, this contradiction in modeling results raises,
on the one hand, questions about ecological validity of controlled lab study results. On
the other hand, it imposes questions about differences in self-report measurement of
SOD, as Giannopoulos et al. (2017) base their results on the Santa Barbara Sense of
Direction scale (Hegarty et al., 2002).
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6.2. Model 2
6.2.1. Route variables

The GEE model in Table 6 contains two route variables.
The first one (distance_of_landmark_visibility) describes the distance between last

visited major point and the position at which the landmark that is referenced in the
present navigation instruction can be seen for the first time (see Figure 14 for graphical
illustration). The calculation of this variable is based on two-dimensional OSM building
footprint data and considers occlusion stemming only from buildings. Consequently,
we can deduce that the advanced visibility of the landmark is shorter with increasing
value of distance_of_landmark_visibility. The higher this distance is, the later the
landmark is visible and the model suggests that an increase of this value increases the
probability that people would want to hear a navigation instruction a second time.

Figure 14: Explanation of variable distance_of_landmark_visibility. A viewshed (blue
polygon) is calculated for the given landmark (indicated in red). The po-
sition at which the route (blue line) intersects the viewshed is the posi-
tion at which the landmark is visible for the first time along the route.
distance_of_landmark_visibility equals the distance between the previous
major route point and this position (green line).

Based on empirical evidence, Kattenbeck (2017) suggests that the advanced visibility
of a landmark is of significant importance for its salience and choosing salient objects
has been an integral part of choosing suitable landmarks for reference in a route in-
struction (e.g. in ). Winter (2003) suggests that seeing a landmark from the a further
distance would decrease stress during wayfinding and be assuring to people that they
are on the right track.

It is reasonable to assume that when people request a route instruction and cannot
match the landmark immediately to an object, they would want to hear the instruction
later again to either make sure that they did not miss a turn or because they later see
the landmark and want to be certain that it corresponds to the object referenced in
the instruction.

The dichotomous variable last_instr_on_route was introduced to the analysis to
label the last united segments on all routes — in other words: the united segment
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between the last turning point and destination (see Figure 8 for graphical explanation of
terminology). On these segments, the route instruction does not contain a description
of a turn and refers only to the destination. The resulting model suggests that when
people travel on the last united segment on a route, they tend to request the instruction
only once. This can stem from two different sources: Either it is the fact that they
are approaching the destination or the fact that the instruction does not contain an
imperative to turn. One plausible explanation is that through the simplification of the
instruction, it is easier to process and remember.

6.2.2. Environmental variables

The GEE model suggests that the presence of a health facility increases the probability
of second request of for the route instruction (amenity_health_present). The variable
summarizes the presence of medical practices, pharmacies, dentists and more. Due
to the lack of reasonable explanation, the variable was further inspected and it was
concluded that its significance to model stems for the most part from the occurrences
of medical practices (p < 0.001) but maximum significance is yielded in the connection
with the presence of pharmacies (p < 0.0001). The fact that, in Vienna, doctor’s offices
are usually not significantly salient arises the possibility that people themselves did not
perceive it in the wayfinding situation.

It is plausible that this variable implies an effect that we have not measured. We
checked for possible correlations with other environmental variables to inspect whether
different environmental occurrences could hint at a possible explanation for this effect
but no significant relation to other variables on the environmental level and other
levels was found. Furthermore, the location of the routes for which this dichotomous
variable equals 1, was inspected to look at possible explanations concerning the location
of the routes in certain districts or areas of Vienna. At last, we observed whether the
significance of this variable could be dependent on a mediating variable in the model
by testing a uni-variable fit.

The lack of possible explanations arose the question whether including this variable in
the first place was expedient and could be confounding for the model. To be sure to omit
a possible confounding effect, we excluded the variable from the model and observed
whether major changes would occur the parameters. While coefficient estimates all
adjusted to the missing effect of the excluded variable, their signs and p-values stayed
the same. Therefore, we conclude that the variable represents an environmental effect
that we have not measured directly.

The model further suggests a decrease in probability of the occurrence of a second
request in dependence of an increase of the point density of mobility infrastructure
(see Table 4 for details on definition). The effect of this variable stems for the most
part from POIs which are tagged to be for bicycle parking. They make up for about
77% of the total sum of the variable. Bicycle parking spots are most times located
in open spaces such as parks and wide sidewalks. Therefore, the presence of multiple
bicycle parking opportunities might imply fewer restriction of vision and therefore good
visibility of the referenced landmark and the overview of the decision situation.
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6.2.3. Behavioral data

In the GEE model, behavioral data describing the first request of a route instruc-
tion were used to predict whether the instruction would be requested a second time
and the relative position of the first request on a united segment yielded significance
(rel_click_pos_united_seg). This is calculated as the ratio between:

rel_click_pos_united_seg = distance to previous major route point

length of united segment
(15)

When this ratio increases, it is less likely that a second request will occur. Figure
15 illustrates this relation for better understanding. The effect of this ratio is an
interaction between the increase of the counter and the decrease of the denominator.
These variables have separately not yielded any significance in the classification model.
We describe possible reasons for the effect of the variable by the means of examples:

Example 1 Alice makes a turn and approaches the upcoming intersection. She re-
ceives an instruction which references a landmark that is not located at the approached
intersection. Therefore, she will have to continue straight ahead. The distance to the
referenced turning point in the instruction is still about far ahead of her. She will want
hear the instruction again to make sure that she is still on the right course and to
remember where to turn.

Example 2 Alice makes a turn and listens to the route instruction right away. When
she gets closer to the matching turning point, she wants to be sure that she is making
the correct turn and wants to hear the instruction again.

Example 1 displays the effect of the increase of the denominator and Example 2 the
decrease of the counter. Based on this, it is very likely that the ratio in Formula 15
catches both of these effects.

Figure 15: Explanation of effect of relative position of first request
(rel_click_pos_united_seg). The distance to the last major route
point is divided by the length of the united segment which is the distance
between previous major route point and upcoming main route point. The
values of rel_click_pos_united_seg are therefore all in the range of [0,1].
In example A, the request is made earlier than in B and therefore, the
probability that a second request will be made is lower in example B than
in B.

6.2.4. Interaction terms

Our final GEE model yields significance for one interaction term. We first want to
repeat the definition the variables involved for clarification: Let the time of the start
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of the experiment be t0 and tN the time at which the observed first request of the
instruction is made, then time_passed_since_start = tN − t0(sec). BFI_n_high
is a dichotomous variable and indicates whether a subject has a high score on the
neuroticism subscale (greater than 4) of BFI-10 scale. Therefore, this term only effects
the outcome variable for highly neurotic subjects otherwise it equals 0. It indicates
that the probability of a second request of a navigation instruction decreases during a
trial.

People with high BFI_n score are more prone to suffer from anxiety and stress
(Costa & McCrae, 2010). It is therefore reasonable to suggest that these people feel
stressed during the experiment. The stress might decrease in time for anxious people
as they would get more comfortable and familiar with the experiment situation.

We do not know whether this is an effect that can be reduced to the experiment situ-
ation or whether people with a strong trait of neuroticism generally feel stressed when
navigating. There is a questionnaire measuring spatial anxiety (Lawton, 1994) and it
was reported that it correlates positively with making more errors during wayfinding
(Hund & Minarik, 2006). It is unknown how and if neuroticism is related to spatial
anxiety but it can be assumed that listening to a route instruction more often reduces
uncertainty in wayfinding and therefore also the error rate in navigation.

6.3. Limitations
It is important to point out the limitations of our work. The first one concerns the
generalizability of our study. The acquisition of participants might have led to a
population sample that is not well representative.

1Our sample of participants includes only people who rate their sense of direction and
spatial strategies above average (e.g., minSOD = 1.9, MSOD = 4.8). Hence, it remains
unknown whether persons who are less well-oriented would have acted differently.

Secondly, the age distribution is far right-skewed; the lower quantile is age0.25 = 23
and upper age0.75 = 26. We had mostly participants within this range and very few
older people.

Within the survival analysis, N = 35 segments on which people wanted to hear a
navigation instruction before entering the segment or directly at the beginning had to
be excluded as they could not be processed by AFT. This portion of segments needs
to be analyzed separately in the future.
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7. Conclusion
In this work, we analyzed data acquired in outdoor experiments to model preferred
timing of instructions for pedestrians. We used similar experiment setup and method-
ology to predict when a person would want to hear a route instruction as Giannopoulos
et al. (2017). Furthermore, we analyzed the preference of hearing a navigation instruc-
tion more than once. Rooted in previous findings on what variables might influence
wayfinding behavior, we retrieved a range of personal, environmental and route-related
features and yielded two models based on them: One predicting when a person would
want to hear a route instruction and the other differentiating situations in which a
person would want to hear a navigation instruction only once or more.

Based on our findings, we can conclude that variables of all considered groups have
contributed the observed wayfinding behavior. Our results indicate familiarity with
the environment and spatial abilities to be very important features. An interesting
finding was that personality traits, namely openness and neuroticism, have also shown
to be driving predictors of wayfinding behavior. Although their direct relation to
wayfinding behavior and preferences is not known and further efforts have to be made
to understand their effects, our results indicate the relevance of personalization of
navigation systems.

Multiple environmental variables yielded to be significant and we interpreted them
for the most part by tracing their effect back to advanced visibility of a landmark
(LC_1, LC_2, distance_of_landmark_visibility, amenity_mobility). It is important
to note that they are all derived from different data, none of them are true measures of
advanced visibility and they also do not correlate significantly but can be interpreted
as indicators for the importance of regarding advanced visibility in the prediction of
preferred route instruction timing.

As the topic of timing of pedestrian route instruction was given little attention in
the past, a range of questions were raised during the discussion of the results. A key
question which remains unanswered concerns the motivation of requesting a navigation
instruction at a certain point in time and how external information is influencing this
decision. This still is in need to be studied. We propose two approaches to research
this: The first one is to study the motivations by conducting experiments with think-
aloud design. This could give insight to the cognitive processes which lead to requesting
an instruction and support studying the role of spatial strategies in this context. The
second one is to study the influence of environmental features in a highly controllable
environment which would allow to alter landcovers, temporary objects on the street
(e.g. cars, crowds) and vision occlusion to observe their direct impact on preferred
timing.

The discussion has further raised questions concerning the comparison of results from
different questionnaires measuring self-reported spatial abilities and strategies as we
recognized differences in obtained models to the results of Giannopoulos et al. (2017)
which could be further tracked back to the fact that our data was acquired during an
outdoor study.

Besides the indication of importance of various factors, we can state, also based on
the work of Giannopoulos et al. (2017), that the timing of navigation instructions is
preferred differently depending on the user and environmental circumstances. This
implies that there is a great potential in the adjustment of timing of instructions by
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pedestrian navigation systems to provide a comfortable wayfinding experience.
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A. Online Questionnaire
Participants were acquired through announcements during lectures, over postings on
social media, with the help of the student body of the Department of Geodesy and
Geoinformation at TU Wien and by spreading the word through colleagues and the
social connections. A flyer with important facts about the experiment was used to
convey what the experiment is for and encourage participation (see Figure 16).

Figure 16: Flyer which was spread electronically and physically to acquire participants.

The duration of the experiment was estimated to be 1,5h (30 min online question-
naire, 1h for 2 outdoor trials). To make participation even more appealing, it was
advertised that two out of all participants would win a voucher worth €100,-.

The first step of participation encompassed the registration to the experiment and
answering multiple questionnaires. This was done using the service LimeSurvey (2020).
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A.1. Registration and questionnaires
The LimeSurvey survey was structures in the following way:

• Information on Experiment

• Consent to data acquisition during outdoor experiment using eye-tracking device,
IMU motion sensor, GPS-antenna and sensors in smartphone and data processing

• Consent to processing of demographic data

• Data protection declaration and informed consent by Research Division Geoin-
formation, TU Wien (Datenschutzerklärung und Informed Consent zu Studien
der Geoinformation, 2021)

• Specification of e-mail address and consent to it being used to contact participant
for experiment-related matters

• Consent to participation in lottery

• Questionnaire Fragebogen zum Orientierungssinn (FRS) by Münzer and Hölscher
(2011)

• Questions about demographic data

– Gender (possible anwers, single choice: female/male)

– Age

– What navigational aid do you use while navigating as a pedestrian? possible
answers (multiple choice):

∗ (street) signs

∗ navigation system on mobile phone

∗ ask other pedestrians

∗ map

∗ other (free input)

– How well do you find your way around in Vienna? (numerical answer be-
tween 0 and 100, 0 = I do not find my way around Vienna at all and 100
= I find my way anyway in Vienna)

• Big-Five-Inventory 10 (Rammstedt et al., 2012)

A.2. Disclosure of familiarity-related information
The collection of information about familiar places in Vienna was important to design
routes on which people would be truly familiar with the environment. For this, two
websites were programmed using Java Script for programming the user-interface,
PostgreSQL 12 as a database and PHP server. Further, the following services were
utilized:

• Leaflet by (Agafonkin & contributors, n.d.) for map display and drawing tools

• Openrouteservice by (Heidelberg Institute for Geoinformation Technology (HeiGIT),
2020) was used to retrieve distances of shortest path between markers
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Optimization of UI The design of these websites was carefully conducted. On the
one hand-side, it was important to provide a simple and understandable user interface
and, on the other hand-side, to obtain the desired results for determining familiar and
unfamiliar routes. Additionally, it was crucial that the entire online registration would
only take 30min and therefore, the disclosure of information on familiar places should
only take 15min in total.

With these goals in mind, pretesting was conducted as an iterative process:

1. Step 1: Multiple people (~5) were presented with a printed map and a pen and
were asked Can you please tell me where you know your way around Vienna by
the means of this map?. The goal of this was to observe how people would react
to this instruction and how they would prefer to indicate areas or places they
know. Only one person pointed at streets and routes he/she knows in Vienna.
The others were circling districts and large and small areas. Based on this, I
concluded that the webpage will have to allow to highlight familiar areas using a
polygons.

2. Step 2: After a first draft was implemented, the interface was tested by asking
people (~4) to follow singular instructions. They key issue in this step was to
phrase the instruction to highlight a familiar area using a polygon from the tool
bar in the interface. The key findings were that the word polygon is not under-
stood by most and that the functionalities of the tool bar are best understood
when using the originally provided icons by Leaflet.

3. Step 3: Finally, both websites were fully implemented and presented to five more
people. In this step, I asked people to think aloud to observe how instructions
were understood and what features of the user-interface still were difficult to use
while also keeping an eye on much time the tasks take. This helped in further
simplification and making the user-interface more understandable. During this
process, instructions were vastly shortened to save time and made understandable
in fewer sentences. It became evident that people would need to see examples of
how such a highlighted areas and placed markers within them should looked like.
This was a very crucial point because before, I did not want to include an example
due to fearing to induce a bias in how areas would be circled and what places
would be marked. Though, it was necessary to convey certain key attributes
about the polygon and the placement of the markers (the polygon should highlight
big areas and markers should be placed geographically evenly spread within it).
I chose to display an unrealistic example in the city of Salzburg with a marker
placed in the city center with the place description IKEA. Introducing examples
helped further in the simplification and shortening of instructions. They were
important to yield desired outcomes. Moreover, I recognized that people need to
know how many polygons to draw and markers to place as during pretesting, I
was asked this frequently and no knowing this made them feel insecure on how
long to continue.

It is important to note here that people who were part of this pretesting were not
further allowed to participate in the experiment.

Additionally to the findings due to pretesting, we added in the instructions that
we would prefer if people would avoid outlining the city center. This choice was made
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because we later assigned each familiar route as unfamiliar to others. In the pretesting
phase, we observed that many would focus on outlining the city center which would
complicate the route matching.

Graphical UI During the registration process, participants were assigned a participant-
ID and after filling out the questionnaires, they were forwarded to
https://www.geo.tuwien.ac.at/familiarity/index.html (Golab, 2020a) where they were
automatically logged-in with the same participant-ID.

The graphical UI looked the following way:

Figure 17: UI. The displayed map was centered on the city of Vienna. Drawing tools
were located on the top left and the user could any time take a look at the
instructions again by clicking the button Instruktionen.

They were then presented these instructions1:

1All instructions are here displayed in German language. If a translation to English is needed, I
will gladly help.

52

https://www.geo.tuwien.ac.at/familiarity/index.html


Figure 18: These instructions explain how to highlight familiar areas and how to use
the tools in the UI to do this.

After clicking button Verstanden which is translated to understood in English, an
example of what the drawn area should look like is displayed:

Figure 19: Example highlighted area in instructions.

After highlighting all familiar areas, participants proceeded to place markers on
familiar places and naming them, following these instructions:
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Figure 20: The placement of markers is explained by the means of an example.

An illustration of how the markers should be geographically evenly spread in a
polygon was displayed to the user:

Figure 21: Example placement of markers.

After participants were finished, the geographic data was forwarded to be saved to
the database.

Route generation The second website was designed to randomly decide a starting
and end point for the route, and to draw a route between them
(https://www.geo.tuwien.ac.at/routeplanner/index.html, Golab, 2020b). The random
assignment was done by considering marker pairings which were within the distance of
the threshold [900,1300]m and choosing one of them randomly. Then, the algorithm
decided which one of these would be the starting point and the end point of the route,
again at random. A URL to the website was send to participants, so they could draw
a route they would choose between the familiar places.

They followed these instructions:
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Figure 22: These instructions direct how to draw a route that between the marker
highlighted as starting point and end point.
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Database structure For each participant, all polygons, markers and travel distances
between markers within the polygons were saved. The distances between the mark-
ers were retrieved using Openrouteservice by Heidelberg Institute for Geoinformation
Technology (HeiGIT) (2020).

Figure 23: Database scheme in which all information on familiar areas, places and
routes is saved. (illustration created using Visual Paradigm (2021))

B. Landmark algorithm
The landmark algorithm was designed after Rousell and Zipf (2017). A step-wise
procedure was implemented to yield landmarks for the routes which were drawn by
participants:

• Projecting the route to the street network

• Determination of turning points

• Obtaining a suitable landmark

Projecting the route to the street network Starting point: The participant has
drawn a route which is saved in the database (users_routes, Figure 23). This route
was drawn precise enough to convey the information how the route would run but we
have no information about turning points. In this step, we aim to obtain a linestring
that consists only of major route points. We specifically want to obtain turning points
have the same coordinates as an OSM junction node to conduct our calculations with
high accuracy.
The projection is here rather a simple one but is sufficient enough to obtain the turning
points: For each participant, we take the route from the database, we retrieve the drawn
points from the linestring and project each point to the street network. We do not do
this by simply finding the nearest node but by finding the nearest street segment first
and then projecting the point to the nearest end point of this street segment. These
projected points are then connected by calculating the shortest path between them.
This procedure yields our projected route.

Determination of turning points The algorithm explained above has further created
a csv-file and visualizations of the projected route. We make a copy of the csv-file and
add a row called turn. Now we inspect the visualizations and classify by hand which
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points along the route are turning points. Another algorithm will visualize our manual
work to make sure we did not miss a turning point during this procedure.

Figure 24: The blue line is drawn by the participant, red line is connecting major route
points (red dots) and the line is the projected route. (background: Leaflet)

Obtaining a suitable landmark Finally, the information of major route points with
coordinates and turn information is saved to a csv-file which is used to determine a
landmark for each turning point. During the landmark algorithm, we take a turning
point and its previous major route points to determine a suitable landmark using the
algorithm by (Rousell & Zipf, 2017). The final product is a csv-file containing all
potential landmarks sorted after suitability value for each turning points. It further
holds all calculated values which allows us to check whether f.e. the value for visibility
was wrongly determined due to wrong projection of a point to building edge. This
csv-file was very helpful for the visits of the route in-situ.
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Figure 25: Result of landmark algorithm. The red star indicates the position of the
decision point. Green stars are potential landmarks, while the green circle
is the chosen landmark. The black circle is the position 50m before arriving
at the decision point (background: Leaflet)

.

C. Details on experimental setup
Pre-experiments The design of the outdoor experiment was pre-tested using two par-
ticipants. This was important to test how long a trial would take and if instructions for
the experiment would be understood by the participants. During the first experiment,
the fact that navigation instructions were design exclusively for turning points was
not explained. It was observed that this resulted in confusion and miss-understanding
during the experiment. After introducing this to the experiment protocol, the second
pre-test was successful.

Procedures before setup Before the participant arrived at the location of the exper-
iment, devices were prepared for its usage:

• xSens MTi-300 IMU device was calibrated.

• An internet connection was set up on the laptop.

• GPS-antenna (PPM 10-xx38) was connected to the laptop.

• As soon as the GPS-antenna received a signal, the laptop time was synchronized
with GPS time.

• The time of the IMU was synchronized to laptop time. By doing this, GPS-
Antenna, IMU and laptop would all use the same time.

58



Setup Participants were wearing an eye-tracking device (PupilLabs Invisible). It was
calibrated for each participant using an object in 15m distance. This choice was made
based on previously tested depths of calibrations and the assumption that this would be
the medium distance of where the participants would be looking during the experiment.
The eye-tracking device was connected to a mobile phone. On the head, participants
had a cap with the xSens MTi-300 IMU device that was attached to the cap using duck
tape. It was important that the cap would fit properly and not slide on the head as I
wanted to measure head movements. The IMU device was connected to the laptop, so
was the GPS receiver (PPM 10-xx38). The laptop was located in the transparent ruck-
sack which participants were wearing on their back. The phone which was connected to
the eye-tracking device was also located there. Moreover, I attempted to log measure-
ments of phone sensors (gyroscope, magnetometer, etc.). Therefore, participants put
a phone in their pocket which was saving all measurements of phone internal sensors
during the experiment. To hear navigation instructions, participants wore Bluetooth
earpods which were connected to the phone of the experiment conductor. This phone
not only played navigation instructions and logged the time of request but further was
used to save the exact time of experiment start and end. Lastly, participants were
equipped with a clicking device that lit up a red light which was located in the back
of the rucksack. Participants initiated a request for a navigation instruction by using
the clicking device.

Synchronization For each of the devices used during the experiment, the time was
different. I had to therefore determine the time differences before processing steps
could be applied.

Before the start of the experiment, a procedure was conducted which allowed to
synchronize the times. It was essential to synchronize the times of the laptop to which
IMU device and GPS-antenna were connected, the eye-tracking measurements and
both phones. This procedure was the following:

1. Eye-Tracking measurement was started.

2. On the experiment conductor’s phone an application was opened which allowed
to display the current time of the system.

3. The participant was asked to hold the phone, look at it and press the button GET
TIMESTAMP which displayed a time stamp of the system time at the moment
the button was clicked.

4. The similar was done with the phone recording internal sensor measurements.

5. On the laptop, a Java program was opened and the person had to look at the
screen while the a timestamp of the current system time was printed.

The time stamps of different system times were recorded by the eye-tracking device
and through referencing each time to a frame in the eye-tracking video the time syn-
chronization was possible.
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D. Data Preprocessing

D.1. Segmentation
The segmentation process had two key challenges:

• Choosing appropriate OSM junctions points

• Partitioning the route in a correct way

The problem statement is the following: A GPS track is obtained during a trial and
we want to be able to reference behavioral data to a segment. As a segment, we define
a part of a route between two intersections or between the start point or destination
and an intersection.

Choosing appropriate junction points The challenge here was twofold: On the one
hand-side, it is unknown which junctions are perceived by a participant as possible
turning-points. On the other hand-side, it is not expedient to use all available junctions
for segmentation, for example, in the following case:

Figure 26: The blue circles indicate positions of junction points in OSM (background:
OpenStreetMap contributors (2017))

If a route would be passing this intersection, using all the junctions for segmentation
here would yield many small segments which would not be useful for further processing.
Another possibility would be to use only intersections for cars but this approach would
assume that participants do not perceive a junction with a pathway that leads, f.e.,
into a park as a possibility to turn.

I faced this issue by designing the following procedure:

1. A buffer of 30m radius is drawn around the route.

2. Road2 intersections are retrieved within this buffer.

3. Further, path3 intersections are retrieved separately.

4. Buffers with the radius of 50m are drawn around all road intersections.

2intersections for both cars and pedestrians
3intersections for pedestrians
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5. All path intersections that lie within these buffers are deleted.

6. The remaining path intersections and road intersections are taken into further
consideration.

This a-priori selection of intersections was displayed on a map with the route and
examined. Manually, intersections that were falsely excluded and falsely included were
noted. Such decisions were made following this criteria:

• A path intersection is because it is located near a road intersection. However, this
intersection has been falsely excluded if it is connected to a pathway which is not
parallel to a road and is therefore a seperate possibility to turn for pedestrians.

• The route is parallel to a double lane. At an intersection, two road intersec-
tions are located at the same level. The further one is excluded because keeping
both for the segmentation procedure would yield again very small unnecessary
segments.

Figure 27: The route (blue line) here is parallel to the double lane. At the intersection,
two road intersection exist. We only choose one of these (black circle) and
exclude the grey circle (background: OpenStreetMap contributors (2017)).

• Because OSM data is two-dimensional, junctions of underground paths appear
as they would be on the surface. Such junctions have to identified and excluded.

Figure 28: An underground metro station is located here and all intersections of path
ways are displayed as if there were on the surface (background: Open-
StreetMap contributors (2017)).
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Partitioning the route After appropriate intersections were determined, it had to
be decided how the route would be "sliced". The ideal situation is illustrated in the
following Figure:

Figure 29: The route (blue line) passes two intersections (black circles) here (back-
ground: Leaflet).

A person walks past an intersection and the route needs to be separated at the same
"level" as the intersection. I aimed to create a slicing ray which lies parallel to the
street that is crossed. To obtain this, all ways that are connected to the junction point
are retrieved, the adjacent nodes determined and vectors between the junction point
and the adjacent nodes calculated. From these vectors, the one with minimum angle
θ is chosen:

Figure 30: The junction point is projected onto the route (red circle). We want to
minimize the angle between the normal vector and the slicing ray (red line)
(background: OpenStreetMap contributors (2017)).

This procedure was unfortunately not sufficient for all cases. There were two situ-
ations which had to be handled differently: The first one occurred often at a turning
point.
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Figure 31: (background: OpenStreetMap contributors (2017)).

In the example above the "slicing" ray intersects the route further away from the
intersection. In such situations, the intersection was simply projected onto the route.
Secondly, sometimes the GPS track had low quality and despite minimizing θ (Figure
31), the slicing ray was oriented differently.

I implemented the algorithm in such a way that it would allow this step-wise pro-
cedure and therefore, defining junctions which should be excluded, included and allow
to decide how a route is partitioned (projection, reorientation of slicing ray) at each
junction.

E. Data Analysis
In this work, a binary classification was conducted using Generalized Estimating Equa-
tions (GEE). For this, the model building procedure followed guidelines by Hosmer Jr
et al. (2013) and additionally, the application of the variance inflation factor was in-
troduced to avoid multi-collinearity within the model (Akinwande et al., 2015).

During the model building, it has been observed that variables related to the POI
densities would be significant. There are a lot of POI density variables due to the
variety of possible POI tags and values these tags can have. Due to this, most POI
density variables have value 0 for most observations. It was suspected that this might
induce overfitting in the model. Further, I realized that the POI density variables
are not entirely independent between each other as a POI object has usually more
than one tag and one tag with a specific value might determine that another tag
is present (e.g. a coffee shop which has tag amenity with value cafe and therefore
also tag shop with value coffee). These observation led to the following the decision:
Only POI density variables of one tag could be included because of the independence
assumption between "independet" variables. The tag amenity was chosen because it
is frequently used in tagging of OSM POI data and during modeling, POI densities
related to amenity showed significance. To avoid overfitting, a grouping within this
class was conducted carefully based on the associated appearance of the objects and
their usage. This procedure yielded the following POI density variables summarizing
point density of multiple values for tag amenity:

• Gastronomy :amenity_gastronomy summarizes density values of tag-value pair-
ings
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’amenity’ :’restaurant’, ’amenity’ :’bar’, ’amenity’ :’brothel’, ’amenity’ :’cafe’,
’amenity’ :’fast_food’, ’amenity’ :’ice_cream’, ’amenity’ :’nightclub’, ’amenity’ :’pub’,
’amenity’ :’swingerclub’

• Street furniture: amenity_street_furniture summarizes density values of tag-
value pairings ’amenity’ :’bench’, ’amenity’ :’public_bookcase’ ’, ’amenity’ :’post_box,
’amenity’ :’drinking_water’, ’amenity’ :’lost_property_box’,
’amenity’ :’clock’, ’amenity’ :’fountain’, ’amenity’ :’scale’, ’amenity’ :’waste_basket’,
’amenity’ :’toilets’, ’amenity’ :’vending_machine’, ’amenity’ :’telephone’

• Mobility infrastructure: amenity_mobility summarizes density values of tag-
value pairings ’’amenity’ :’bicycle_parking’, ’amenity’ :’bicycle_rental’,
’’amenity’ :’bicycle_repair_station’, ’’amenity’ :’car_sharing’,
’amenity’ :’charging_station’, ’amenity’ :’fuel’ ’amenity’ :’taxi’, ’amenity’ :’parking’,
’amenity’ :’parking_entrance’, ’amenity’ :’compressed_air’

• Educational institutions: amenity_edu summarizes density values of tag-value
pairings ’amenity’ :’childcare’, ’amenity’ :’driving_school’, ’amenity’ :’kindergarten’,
’amenity’ :’lecture_hall’, ’amenity’ :’music_school’, ’amenity’ :’university’,
’amenity’ :’auditorium’, ’amenity’ :’school’

• Health facilities: amenity_health summarizes density values of tag-value pairings
’amenity’ :’dentist’, ’amenity’ :doctors, ’amenity’ :’veterinary’, ’amenity’ :’healthcare’,
’amenity’ :’pharmacy’

• Cultural facilities: amenity_culture summarizes density values of tag-value pair-
ings ’amenity’ :’community_centre’, ’amenity’ :’arts_centre’,
’amenity’ :’cinema’, ’amenity’ :’social_facility’, ’amenity’ :’theatre’

After this, these were the main steps that led to the final model:

• Variable selection

• Elimination of mutli-collinearity

• High-dimensionality reduction

• Testing of previously omitted variables

• Obtaining main effects model

• Introduction of interaction terms

• Testing of model stability

Variable selection The variable selection followed the suggestions of Hosmer Jr et al.
(2013)4: variables where selected first based on the Pearson chi-square test and con-
tinuous variables further through applying uni-variable model fitting. The significance
level of 0.25 was set for the screening process. These resulted in seven categorical and
27 continuous features for further modeling. Moreover, to prevent overfitting, vari-
ables who where representative for < 5% of the observations were excluded. Further,

4Being well aware that this work is aimed for logistic regression, I chose to use this procedure as
I was not able to find model building procedures suggested explicitly for GEE in a similar manner.
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"duplicate" variables which hold same information had to be excluded, e.g. either
condition_unfamiliar or condition_familiar could remain.

Elimination of multi-collinearity I followed here an iterative approach of elimination
of variables inducing multi-collinearity which means that a model was calculated, then
VIF values were obtained and the variable with maximum VIF was excluded. Then,
a new model and new VIF values were computed and again the maximum value of
observed. This procedure was repeated until VIF values of all variables were < 5.

High-dimensionality reduction In this step, variables were one-by-one removed from
the model while the effect of the removal on coefficient values, p-values and, most
importantly, the change of Quasi-Likelihood Criterion (QIC) was observed. Hosmer Jr
et al. (2013) suggested that changes in magnitude of coefficients of at least 20% would
be crucial. Throughout this procedure, I reduced the model to seven variables. During
this reduction process, I kept an eye on the variables with a highly fluctuating coefficient
magnitude. within the process omitting these improved the model fit.

Obtaining main effects model Hosmer Jr et al. (2013) suggested to test the assump-
tion of the linear relationship between the logit of population mean and the covariate.
This was done graphically as described by Hosmer Jr et al. (2013). In this process, the
influence of only one variable was changed (amenity_health was changed to a dichoto-
mous one).

Introduction of interaction terms Hosmer Jr et al. (2013) suggests to first think of
possible and reasonable interaction terms and then test them. According to the author,
an interaction term should only be included if it is significant by itself and only if the
interaction is clinically reasonable. Before testing interaction terms, I decided to limit
the testing to interactions between personal variables and route-related or behavioral
variables. Throughout the testing, multiple interaction terms improved the QIC but
most of them were either not significant by themselves within the model or introduced
high VIF values. Therefore, only one was included in the final model.

Testing of model stability Lastly, I had to ensure that the significance of the covari-
ates would be not caused by singular observations. For this, I calculated the Cook’s
distance for all observations, identified top ten influential observations and observed the
model parameters while removing one-by-one. The model parameters stayed consistent
with only minor changes throughout this procedure.
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F. Availability of Data and Processing Scripts
All experiment data is available here: G://geo/geoinfo/Data/all_experiment_Data
in path G://geo/geoinfo/Data/GOLAB_Diplomarbeit, the following processing scripts
are available (last edit 01/02/2020):

/Android application/ ...

/Experiment_app/ ... Java Android application used to logg
times of requests during experiment

/Sensorlogger/ ... Java Android application which records or
internal phone sensors

/OQ/ ...

/data/raw/database ... csv-files and sql-dumps of database
with familiarity data collected during the online questionnaire

/data/raw/limesurvey ... file to recreate Survey and all
answers

/Participant data/ ... processing scripts for
questionnaires and final table with final participant variables

/Preparation of Experiment/ ...

/route_matching/ ... script for matching routes to trials
in unfamiliar condition

/landmark_algorithm/ ... scripts for obtaining landmarks;
instruction written down in readme.txt; + example outputs

/Experiment data processing/ ...

/DB/ ... holds data which is needed for segmentation

/synchronization/ ... script used to synchronize all
devices to GPS time and final file with synchronization for all
trials

/navigation_instructions/ ... information on navigation
instruction for all trials

/segmentation/ ... all scripts to yield

/data/ ... folder data resulting from the segmentation
process

/htmls/ ... visualizations of click location and
segmentation for all trials

/shape_file/ ... routes which were drawn to compensate
for bad quality of GPS track

segmentation_stats.csv ... key file for conduction of
segmentation, holds all information of turning points,
intersections, etc for all trials
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presentation_terminology_explanation.pdf ... presentation
with illustrations for explanation of most
important terminology and variables

extract_segment.py ... holds function which assists
in choosing appropriate intersections for segmentation

extract_segment_info.py ... partitions the route and
relates times of requests to positions

unify_linestrings.py, unify_all_info.py ...
create united segments

model_1_join_segments_step_1.py,
model_1_segments_del_visible_dest.py ... create data
describing position of first request

save_gps_data_to_db.py, viewshed.py ... hold functions for
visibility analysis and GPS track data processing

/environmental feature extraction/...

/database/ ... all data which is needed to retrieve
environmental data

pois_density.py ... for retrieval of all POI density
variables for a linestring

segments_landcover.py ... used to retrieve land
cover shares for a linestring

/GEE analysis/ ...

variable_transfo.py ... prepares all features

GEE.R ... GEE model building

/data/ ... all needed data for GEE analysis
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G. Submitted paper of version

On the following pages, the original paper on which this work is build can be found.
It was submitted on November 30th, 2020 to a special issue of the journal Spatial
Cognition and Computation.
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Abstract

Wayfinding assistance systems have seen increased interest over the last two decades. However,

research on the appropriate point in time to automatically present a route instruction has been

very rarely conducted. We address this research gap by reporting on the results of an in-situ, within-

subject-design wayfinding study (N = 52). Participants walked two different routes for which they

requested auditory, landmark-based route instructions. By means of a survival analysis we model

the points in time at which participants issue such requests, considering personal, environmental,

route and trial related variables and reveal different landcover classes and personal variables to be

important. Based on our model-driven results, we discuss potential reasons for the impact of these

variables and derive open research question.
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1 Introduction

Navigation is an intrinsically complex task, during which “[t]he navigator is continuously busy in a

sequential process of decision making whose essence is to match internal with external information

as it comes”(Stern & Portugali, 1999, p. 99). Given this complexity, research on decreasing the

cognitive load of wayfinders by means of mobile assistance systems has seen much interest for more

than 20 years (see, e.g., Coors, Elting, Kray, & Laakso, 2005; Geldof & Dale, n.d.; Millonig &

Schechtner, 2007, for early attempts). However, almost all of these studies neglect the problem of

providing the route instruction at the right point in time: Users of wayfinding assistance systems are

supposed to either choose the suitable point in time themselves or route instructions are given based

on distance-based algorithmic approaches ignoring personal variables as is the case for commercial

systems. This system behavior, however, is likely to result in increased cognitive load which has

been pointed out, for example, by Winter (2003). The present paper reports on the first within-

subject design, in-situ study designed to understand the points in time/locations at which users

would actually need auditory landmark-based route instructions. In doing so, we use Giannopoulos,

Jonietz, Raubal, Sarlas, and Stähli (2017) as a starting point of our study, as they present the first

in-depth study of timing for pedestrian navigation systems in a virtual environment, as a starting

point. While the empirical setup had to be slightly adapted due to the in-situ nature, we have

taken the opportunity to consider an increased number of variables, relating to personal, route-

related and environmental factors. We have, however, chosen to apply the same data analysis

method as Giannopoulos et al. did: The model they utilised is a time-to-event model, which is

suitable to address the problem of predicting when a system should automatically present navigation

instructions. At the same time, it is not a so-called black-box as, e.g., machine learning approaches

would have been.

2 Related Work

According to Montello (2005), navigation comprises two activities, wayfinding and locomotion.

While locomotion describes the movement of one’s body through the environment and includes

tasks like avoiding obstacles, wayfinding encompasses route planning and all related decision-making

processes to reach a given destination. During navigation, we constantly receive information about

our physical environment through our senses and need to connect it with our knowledge to update

our location and determine future decisions along our route. Theoretical reasoning and empirical

evidence (see, e.g., Fang, Li, & Shaw, 2015; Giannopoulos, Kiefer, Raubal, Richter, & Thrash, 2014;

Schmidt, Beigl, & Gellersen, 1999), therefore, suggests that a wayfinder’s cognitive load is impacted

by personal characteristics, the environment and the actual route through this environment. Re-

ducing the users’ cognitive load is, hence, one of the major aims in designing wayfinding assistance

systems. Scholars have pursued this objective by means of working (1) on the content, structure

and presentation of route instructions and (2) adapting wayfinding systems to the user’s personal

needs. In this section, we will review both strands of prior work and, thereby, provide evidence for
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a lack of research on timing of route instructions, in particular for pedestrian navigation systems.

2.1 Research on Route Instructions

While distance-based, on-line turn-by-turn instructions have been predominant in commercial ap-

plications, researchers have put emphasis on understanding the way humans communicate route

instructions in order to mimick this way in wayfinding assistance systems for many years. Research

on verbal human-to-human communication of route instructions and it’s underlying cognitive pro-

cesses (see, e.g., Hölscher, Tenbrink, & Wiener, 2011) revealed that landmarks are used frequently

(see, e.g., Lovelace, Hegarty, & Montello, 1999; May, Ross, Bayer, & Tarkiainen, 2003; Michon &

Denis, 2001) across different spatial environments (see, e.g., Sarjakoski et al., 2013, for hiking in-

structions). Empirical evidence has been provided that the use of landmarks has a positive impact

on wayfinding performance (see, e.g., Ross, May, & Thompson, 2004; Tom & Denis, 2004) and that

the absence of landmarks in an environment is compensated by an increased granularity of verbal

human-to-human route instructions (see Hirtle, Richter, Srinivas, & Firth, 2010). Research on

including landmarks (see Richter & Winter, 2014, for a thorough overview of the concept) in route

instructions for wayfinding assistance systems has, consequently, become a predominant research

topic, including modeling (see, e.g., Caduff & Timpf, 2008; Nothegger, Winter, & Raubal, 2004;

Nuhn & Timpf, 2017; Raubal & Winter, 2002; Winter, 2003), empirical assessment (see, e.g., Götze

& Boye, 2016; Kattenbeck, 2017; Kattenbeck, Nuhn, & Timpf, 2018; Quesnot & Roche, 2015) of

salience and the automatic selection of landmarks (see, e.g., Duckham, Winter, & Robinson, 2010;

Lander, Herbig, Löchtefeld, Wiehr, & Krüger, 2017; Lazem & Sheta, 2005; Rousell & Zipf, 2017;

Wang & Ishikawa, 2018).

Beyond the focus on important elements in human-to-human route instructions, researchers have

worked on the formulation of route instructions in wayfinding assistance systems. The concept

of spatial chunking (Klippel, Tappe, & Habel, 2002) has been of particular importance in these

endeavours, as it reduces the cognitive load in wayfinders by reducing the level of granularity in

route instructions. This idea was picked up algorithmically (see, e.g., Richter & Klippel, 2005) and

resulted in guidelines for cognitively ergonomic route directions (Klippel, Richter, & Hansen, 2009)

which take, e.g., different levels of hierarchical spatial knowledge. In line with these guidelines

empirical evidence also suggests that the granularity of route instructions increases in human-to-

human route instructions if wayfinding decision situations lack landmarks (Hirtle et al., 2010). As

the body of knowledge on adverse effects of wayfinding assistance systems on spatial knowledge

acquisition grows (see, e.g., Ishikawa, 2019), scholars have also studied ways to overcome this issue.

One very recent advancement in this domain are so-called orientation instructions (Schwering,

Krukar, Li, Anacta, & Fuest, 2017) which enhance spatially chunked instructions by including

additional environmental information to support acquisition of route and survey knowledge (see

Krukar, Anacta, & Schwering, 2020, for empirical evidence that these instructions are superior to

turn-by-turn or spatially chunked instructions without additional information).

Neither the research efforts on landmarks nor on formulating route instructions reflect on how
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timing of a route instruction would have an impact on these. This lack of consideration holds also

true for research on modalities and presentation of route instructions. Beyond the prevalent map-

based approaches, reaserch on modalities and presentation modes has primarily focused on their

impact on wayfinding effectiveness and efficiency by studying, for example augmented photographs

(see, e.g., Walther-Franks & Malaka, 2008; Wang & Ishikawa, 2018), audio (e.g. Holland, Morse,

& Gedenryd, 2002), augmented reality (see, e.g., Rehrl, Häusler, Leitinger, & Bell, 2014), vibro-

tactile signals (see, e.g., Giannopoulos, Kiefer, & Raubal, 2015), and even music (see, e.g., Hazzard,

Benford, & Burnett, 2014). Recently, however, studies on the presentation of instructions have also

considered the reduction of attentional load (see, e.g., Stähli, Giannopoulos, & Raubal, 2020) and

effect on spatial knowledge acquisition (see, e.g., Brügger, Richter, & Fabrikant, 2018).

2.2 Research on personalisation of wayfinding assistance systems

Optimal wording, choosing the most suitable landmark among a set of candidates and the ideal

presentation mode can, beyond general solutions, depend heavily on user characteristics. Personali-

sation of wayfinding assistance systems has, consequently, seen increased interest. Researchers (see,

e.g., Klippel et al., 2009; Zimmer, Münzer, & Baus, 2010) developed frameworks for the design of

navigation aids emphasising the adaption to user characteristics like spatial familiarity and spatial

abilities. Empirical evidence has been collected for the increase in wayfinding performance through

adaptation of, e.g., the presentation of route instructions to sense of direction (see, e.g., Bienk,

Kattenbeck, Ludwig, Müller, & Ohm, 2013). Personal interests have also been incorporated into

salience models, in order to be exploited for choosing personalized landmarks (see Nuhn & Timpf,

2020). Moreover, a large branch of research is dedicated to adapting systems to users with special

needs, such as mobility impaired people (see, e.g., Barhorst-Cates, Rand, & Creem-Regehr, 2019;

Cheraghi, Almadan, & Namboodiri, 2019) or visually compromised (see, e.g., Ding et al., 2007;

Völkel & Weber, 2008) persons.

2.3 Timing

So far, we have seen considerable effort dedicated to optimizing pedestrian wayfinding assistance

systems with respect to the structure, granularity and presentation of route instructions, as well as

adapting it to user’s personal preferences and needs. All of these research efforts, however, neglect

— with exception of Giannopoulos et al. (2017) — the key question of presenting a navigation

instruction to a pedestrian at the right point in time. This is, on the one hand, in contrast to the

attention timing has seen in research on car navigation systems (see below); on the other hand, it

is also in contrast to empirical evidence (see, e.g., Brügger, Richter, & Fabrikant, 2019, who pro-

vide strong evidence for the way system behavior and wayfinder behavior interact) and theoretical

claims. In their theoretical account based on Maslow’s theory, Fang et al. (2015) emphasise the

importance of the inclusion of personal preferences to be able to predict their behavior and to make

pedestrians feel more comfortable by adjusting navigational instructions and interaction load with

the navigation system as a response to the dynamic change of environment. This hints towards the
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importance of research on which factors influence the preferred timing of navigational instructions

based on the user’s personal preferences. Despite the fact that timing of route instructions is a

desideratum with respect to pedestrian wayfinding, it has seen much interest in car navigation

systems. This fact has been also stated by Giannopoulos et al. (2017), who present the first study

on timing of pedestrian navigation instructions. As a starting point, the authors thoroughly re-

viewed literature on timing in car navigation systems and found several variables to be important:

environmental factors (traffic, visibility of road signs), driver’s characteristics (age, gender), driving

speed and attributes of the navigational instruction (length, upcoming turn/manoeuvre). Subse-

quently, the empirical part of their study, which was conducted in a virtual environment, found

similar factors which influence user preferences in timing of pedestrian navigational instructions

(see Giannopoulos et al., 2017, p. 16:9): These include personal characteristics like age and spatial

abilities and route specific aspects such as the shape of the upcoming intersection, its visibility or

the length of the route segment. Their findings are in line with empirical evidence that wayfinders

make spatial decisions before the arrive at an intersection (see Brunyé, Gardony, Holmes, & Taylor,

2018) and accounts for the impact personal and spatial characteristics of the environment have on

the complexity of wayfinding decision situations (Giannopoulos et al., 2014).

Based on these considerations, the goal of the present study is to build on these results and study

preferred timing of route instructions in-situ based on personal, environmental and route-related

characteristics. These results will shed light on how the appropriate points in time to present a

route instruction automatically can be determined considering these variables.

3 Experimental Design and Procedure

This section provides a detailed account of the experimental design and procedure of the in-situ

study on which our work is based. It is important to note, that the experiments were part of a

larger data collection effort. We will, therefore, only explain those parts of the design and procedure

that are needed to reproduce the results of this paper.

3.1 Materials

The entire experiment consisted of two parts. The first part contributed to the design of route

instructions for the in-situ study, the second part was the in-situ study itself which took place

between June and October 2020.

3.1.1 Acquisition of routes

We collected routes for our study by means of an online questionnaire during which we also col-

lected demographic data, data on spatial strategies (FRS, Münzer & Hölscher, 2011) and personal

characteristics based on the so-called Big Five Personality traits (Rammstedt, Kemper, & Céline,

2013). To collect routes, participants were asked to outline areas in Vienna they are familiar with

using polygons as well as highlight and name places they know within these polygons. In order to

ensure a reasonable experimental time, two of these places were randomly selected on the condition
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that they are 900m to 1.3km apart. One place of these served as a starting point, the other one was

set as the destination and these roles were randomly assigned. Subsequently, we asked participants

to sketch the route they would choose between these two points. Although there has been research

concerning the selection of representative routes for wayfinding experiments (Mazurkiewicz, Kat-

tenbeck, Kiefer, & Giannopoulos, 2020) we, subsequently, asked our participants to sketch the route

between these two places in order to ensure familiar routes.

3.1.2 Generating auditory route instructions

In order to design landmark-based route instructions, we used the algorithm described by (Rousell

& Zipf, 2017) to identify a ranked-list of landmarks at each turning point (see section 3.2 for the

reason of this decision). We implemented this algorithm using Python 3.8 and the OSMNX -

library (Boeing, 2017) to retrieve building footprints and the street network. Subsequently, the

experimenter visited each of the routes in person and checked the selected landmark for potential

ambiguities due to, e.g., cases of inconsistent and incomplete Point of Interest (POI)-data in Open-

StreetMap (OSM). This in-situ check ensured the suitability of the suggested landmarks thereby

avoiding confounding effects stemming from confusion due to the use of unsuitable objects in route

instructions. Based on the revised set of POIs we have built the German language route instruc-

tions by analogy with Rousell and Zipf (2017) as can be seen by the following example (translation:

Turn left at the pharmacy):

General structure Imperative to turn landmark direction of turn

Example in German Biegen Sie bei der Apotheke links ab.

The resulting route instructions were synthesized using Google Cloud Text-to-Speech Engine

(Google Inc., 2020).

3.2 Procedure

The in-situ study was designed as a within-subjects design study during which each participant

walked two different routes: One of these was provided by the person during the online data

collection phase, whereas the other route was provided by another participant. We will refer to

walking one of the routes as trial throughout this text.

During each of the trials, trajectories were collected using a high precision GNSS receiver (PPM

10-xx38, see figure 1), participants wore bluetooth earphones to receive auditory route instructions

and requested route instructions through a custom-built clicker device. In addition to that, head

(xSens MTi-300 IMU) and eye movement data (PupilLabs Invisible) was collected but not used in

the current study as we wanted to study the impact of those variables which are independent of

specific equipment.

Before the start of each trial, participants were carefully instructed to press the button of the

clicker to request a route instruction whenever and as often as they wanted to. They were, moreover,

made explicitly aware of the fact that they will be given landmark-based route instructions by

6



Figure 1: A: A sample participant in full equipment. B: GNSS receiver (PPM 10-xx38).
C: During the experiment, participants requested navigation instructions using a custom-
built clicker-device (circled in red) which triggers a LED light located in the backpack
informing the experimenter about the request.

means of an example which was not part of the actual route. As mentioned above, we provided

route instructions exclusively at turning points, a decision which is in line with the idea of spatial

chunking (Klippel et al., 2002) and increases ecological validity as the majority of state-of-the-art

wayfinding assistance systems provides route instructions only for turning points. As a consequence

of this decision, participants were instructed, that once they requested an instruction, the received

instruction might not be relevant for the upcoming intersection, i.e., the participants would have to

continue walking straight ahead until they find the intersection were the instruction can be matched

with the environment. In order to avoid memory biases about the routes participants had provided

during the online data collection phase, they were explicitly asked to request and strictly follow

the route instructions. On start of the trial, the experimenter pointed participants to the direction

in which they should start walking. Whenever participants requested a route instruction, the

experimenter played the spoken landmark-based route instruction for the upcoming turning point

to them via the Bluetooth-connected earphones. This point in time was logged by a smartphone

application running on a mobile phone carried by the experimenter.

4 Analysis

4.1 Data availability

The (pre-)processing scripts as well as the raw data used in this paper will be made available through

the zenodo.org platform via the DOI 10.5281/zenodo.4298703 in order to facilitate reproducibility

of the results.
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4.2 Data preprocessing

Experiments were conducted between June and October 20201. Participants were acquired through

personal contact, posts on social media platforms and leaflets; they were reimbursed through a

lottery. Overall, Nr = 71 people registered on our website and, of these, Np = 52 persons (female:

25 , male: 27 , Mage = 26.2 , Medianage = 24) completed both experiment parts. This results in

an overall number of N = 104 trials. Applying a case-wise deletion approach, we had to exclude 18

trials, e.g., due to data loss by equipment malfunction. This leads to a final number of N = 86 trials

to be included in the further analysis.

4.2.1 Segmentation of Data

Finding meaningful route segments was the essential preprocessing part for our data analysis.

Figure 2 provides an overview of the algorithm which was based on OSM data. Black circles

represent the location of intersections according to OSM; the smoothed GPS track of a trial is

given in blue, the yellow circles represent the projection of the intersections on this line and the

locations at which a participant requested a route instruction are given as green circles. It is

important to note that we found segments based on the actual user behavior instead of using the

mere distance between two intersections, i.e., subsequent yellow circles. This decision is based on

the fact that due to the structure of the environment not all intersections may be perceived as

decision points by pedestrians. Each segment starts at a major route point, i.e., either at the

starting point or at an intersection to which the previous route instruction referred to. A segment

ends at the first intersection along the route after a participant has requested a route instruction

for the first time.

Figure 2: Segmentation process. Two possible situations: A (regular case): The segment starts
at the last turning point denoted as 3. The first intersection after the click position is
denoted as 4 and the segment ends at the segment ends at this intersection.
B: A route segment covering the distance from the starting point to intersection 2. In-
tersection 1 is ignored because the instruction is requested after it was passed, i.e., the
participant has not perceived it as a decision point.(background: Story (2013))

This procedure yielded Niseg = 314 segments. Further data cleaning procedures were required

1Due to the COVID-19 pandemic, participants were harder to find than usual.
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to exclude segments on which the person was able to see the destination from the position of the

request (25 cases), the experimenter played the instruction to the participants because they missed

the turning point (10 cases) and those segments on which requests were made before entering the

new route segment (35 cases) as this is situation not covered by survival analysis models. Finally,

we had to remove one outlier during the modeling stage, resulting in Ncseg = 245 segments available

for analysis.

4.2.2 Overview of data available for analysis

The table provided as supplementary material to this article contains a description of all variables

which were derived from the data, including their type, unit and whether it is a derived attribute

(and, if applicable, the source it is derived of). Based on the data collected, we have calculated N =

50 which can be grouped into five categories: route, participant, environmental, trial and behavioral

level. This decision is in-line with prior work on wayfinding decision situations (Giannopoulos et al.,

2014), which provides theoretical explanations and empirical evidence that these variables have an

impact on the perceived difficulty of a decision situation. These aspects are, hence, likely to have an

impact on timing. Route features comprise aspects relating to the route itself, e.g., the length of each

route segment, the type of each intersection and so on. Features relating to the participant include

demographics such as age and gender but also measures of their preference in spatial strategies by

means of the FRS scale (Münzer & Hölscher, 2011) and a short version of the Big-Five-Inventory

(Rammstedt et al., 2013), giving an insight into their personality traits. The reason to choose the

FRS scale instead of the Santa Barbara Sense of Direction Scale (Hegarty, Richardson, Montello,

Lovelace, & Subbiah, 2002) is based on the assumption that preferences/abilities for different spatial

strategies (global/egocentric or allocentric as well as the knowledge of cardinal direction) may

provide a means to further explain timing results: For example, participants with better egocentric

abilities may prefer, e.g., later points in time than people with good allocentric orientation do.

Group environmental covers all variables which are suitable to describe the environment the routes

were embedded into, e.g. the density of POIs at an intersection or the land cover classification for

segments. Finally, the behavioral class encompasses all features relating to the requests of route

instructions by participants (e.g., of course, the point in time of the click itself, but also aspects

such as the distances to the previous and upcoming intersections etc.).

4.3 Survival Analysis Model

Generally speaking, the modeling of duration data aims at identifying what affects the underlying

processes in order to be able to draw conclusions about the type and magnitude of impact that

different variables exert on it, and, hence, provide the ability of making predictions when needed.

In this regard, regression models constitute a way of assessing and evaluating those impacts. Driven

mainly by advances in the biomedicine domain, a family of models called survival analysis models

have been proposed (see Hosmer Jr, Lemeshow, & May, 2011; Kalbfleisch & Prentice, 2011, for a

detailed overview); these show methodological and conceptual advantages over traditional regression
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approaches (see, e.g., Bhat & Pinjari, 2007). In brief, these models perceive duration as a survival

process and center their focus on the share of individuals that survive past a given (time) point.

A focal element of those models revolves around the notion of hazard, i.e., the rate at which the

duration process changes over time.

The application of survival analysis models in spatial settings was explored and exemplified

for the first time by Waldorf (2003). A number of applications have built upon that work and

utilized such models for tackling distance-related questions such as trip length modeling (see, e.g.,

Anastasopoulos, Islam, Perperidou, & Karlaftis, 2012; Sarlas & Axhausen, 2018).

Among those models and for cases which focus primarily on prediction, choosing fully parametric

models is most appropriate as these fully describe the basic underlying survival distribution and,

at the same time, quantify how this distribution changes as a function of the explanatory variables

(Hosmer Jr et al., 2011). Two categories of such models exist, namely the proportional hazard and

the accelerated failure time (AFT) models. These differ with respect to the assumptions of how

the survival function is affected by the explanatory variables. While the former assume that the

explanatory variables have a constant multiplicative effect on the underlying hazard function, this

relationship is assumed to be also multiplicative on the time scale by the latter.

By analogy with Giannopoulos et al. (2017), we focus exclusively on estimating an AFT model as

it is reasonable to assume that the relationship of the explanatory variables is multiplicative on time.

T represents the timing or distance of instructions for an individual with a cumulative distribution

function F (t) = Pr(T ≤ t). The survival function represents the probability of observing a

survival distance higher than t, denoted as S (t) = Pr (T > t) = 1 − F (t). Subsequently, the

hazard function, defined as the probability of a process ending at point t given that it has lasted

up to point t, is as follows:

h (t) = f (t)
S (t) (1)

Essentially, the knowledge of either function (i.e., f (t), F (t), or h (t)) allows the direct inference

of the remaining two. In case of the AFT models with a Weibull survival function, T is defined as

T = eβ0+βix ∗ε, with β’s representing the effect of explanatory variables xi, and an error component

ε.

Applying a log transformation results in:

ln (T ) = β0 + βixi + σ ∗ ε∗ (2)

with ε∗ = ln(ε) following the extreme minimum value distribution, denoted as G(0, σ) with σ being

the scale parameter. The corresponding hazard and the survival function are:

h (t, χi, βi, λ) = λtλ−1

(eβ0+βixi)λ
= λtλ−1e−λ(β0+βixi) = λγ te−βixi

λ−1
e−βixi (3)

S (t, χi, βi, σ) = exp{−tλexp[(−1/σ)(β0 + βixi)] } (4)
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withλ = 1/σ and γ = exp(−β0/σ ). With this formulation, the equation for the median survival

time can be derived by setting S = 0.50:

t50 (χi, βi, σ) = [−ln (0.5)]σeβ0+βixi (5)

Formula (2) shows that the β’s quantify the effect of the explanatory variables on T , which can,

for this case, be interpreted as semi-elasticity values, i.e., 100*βi is the approximate percentage

change on T for a unit change on xi. However, that change is not constant along the corresponding

survival function (see 4). Based on formula (5), the impact of a change on xi on its median T is

given by:

TR xi, xi = t50 (xi, βi, σ)
t50 (xi, βi, σ) = [−ln (0.5)]σeβ0+βixi

[−ln (0.5)]σeβ0+βixi
= eβ1Δxi (6)

5 Asking for an instruction for the first time after a turn — Results

As mentioned above, the auditory route instructions were landmark-based, exclusively referred to

turning points and could be requested as often as participants wished to do so. Given this setup we

proceed with the estimation of an AFT model describing the distance at which participants ask for

a route instruction for the first time after they have passed the last turning point. The modeling

results will be suitable to predict when a system should automatically present a route instructions

to users.

Table 1: Influential variables in model. levels: P: participant, R: route, T : trial, E : environment
sources: OQ: online questionnaire that was completed by participants, UA: Open Street
Map,OSM : OSM. Readers may want to refer to the supplementary material for further
details on these.

level variable description type unit source
P age_gt_40 age greater than 40 dichotomous N/A OQ

BFI_o_low result of subscale openness of BFI-10 scale;
threshold <3.41 according to norm data(see Rammstedt, Kemper, Klein, Beierlein, & Kovaleva, 2012, p. 28) 5-point likert scale N/A OQ

SOD sense of direction derived from FRS questionnaire 7-point likert scale N/A OQ
EGO_lt_three factor EGO derived from FRS questionnaire 7-point likert scale N/A OQ

R lngSegm

segment length >120m
This threshold was found empirically, i.e. evaluated based
on lower and upper quartile of the segment length and different
thresholds were tested to classify short and long segments,
respectively. However, only long segments yielded a significant effect.

metric meter

T familiar/unfamiliar participant is familiar/unfamiliar with route and environment dichotomous N/A OQ

E LC_*

land cover share of 50m buffer around route segment
1 = 12100; 2 = 1110 + 11210
12100, 1110, 11210 ... landcover codes of Urban Atlas
(European Comission, 2012)

metric % UA

The model focuses on when the first request for instructions was triggered by the participant.

Those requests, though, have two conjoint dimensions, a temporal and a spatial one while they

are naturally bound by the length of the segment per case. For this reason, we choose to focus

exclusively on the spatial dimension of the matter. Therefore, the dependent variable of interest

is the distance between the start of a route segment and the position at which a request for a

navigation instruction is made. We apply a normalization to the range of [0,1] by division by the

segment length per case, in order to have a uniform duration period for all observations which is a

prerequisite for the model estimation that follows.

Subsequently, an AFT model is estimated with a Weibull duration distribution in place, simi-

larly to the one presented in formula (4). The calculations were conducted using the open-source

statistical software R (Core Team et al., 2013), exploiting version 3.2-7 of the Survival package
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Table 2: Summary statistics of the observations used for model estimation. (d) denotes a dichoto-
mous variable; for these variables column mean represents the proportion in the sample.

Statistic Mean St. Dev. Min Max
distance norm. 0.494 0.333 0.004 1.000
segment length 80.794 58.600 4.516 426.500
length_long (d) 0.143 - - -
age 26.596 9.001 18 59
age_gt_40 (d) 0.073 - - -
LC_1 0.129 0.179 0 1
LC_2 0.427 0.287 0.000 0.900
LC_3 0.090 0.214 0 1
familiar (d) 0.420 - - -
unfamiliar (d) 0.580 - - -
SOD 4.822 1.468 1.920 6.911
EGO 3.595 1.099 0.478 6.216
EGO_lt_three (d) 0.314 - - -
BFI_o 3.520 1.074 2 5
BFI_o_low (d) 0.424 - - -

(Therneau, 2014). The choice of the form of the parametric survival function is made based on the

Akaike Information Criterion (AIC). More specifically, the resulting model is estimated in terms

of maximum likelihood. Furthermore, standard errors are clustered accordingly to account for

the dependence among observations stemming from the same individuals using a robust sandwich

estimator.

The model specification involves the identification of which explanatory variables have a statisti-

cally significant impact on the outcome of interest. To a large extent, this process is driven by our

assumptions about which characteristics of the person, route, trial and environment might influ-

ence the decision to request instructions. In particular, the explanatory variables are selected based

on their ability to improve the fit of the model in terms of AIC (a metric that penalizes overfit-

ting), along with the statistical significance of the corresponding parameters (p values). In addition

to that, the absence of multicollinearity is ensured based on the calculation of the corresponding

variance inflation factors which is required as multicollinearity would potentially invalidate the em-

ployed statistical tests and parameter estimation. The results of the parameter estimation along

with the accompanied goodness of fit measures, are presented in Table 3, while the descriptive

statistics of the employed sample are given in Table 2 and variables are explained in Table 1.

Table 3: Normalized timing of instructions based on the AFT model.
Variable β Robust std. error
age_gt_40 0.709*** 0.173
LC_1 -0.541* 0.224
LC_2 -0.524*** 0.138
LC_3 -0.352+ 0.184
BFI_o_low -0.293* 0.121
unfamiliar:lngSegm -0.712* 0.298
SOD:familiar -0.046* 0.020
SOD:unfamiliar -0.058** 0.018
EGO_lt_three:lngSegm 0.593** 0.205
Log(scale) -0.314*** 0.078
Scale σ 0.73
Observations 245
LogLikelihood -43.5
LogLikelihood (intercept only) -62
AIC 106.97
p value: + p < 0.1; * p < 0.05; ** p < 0.01; *** p < 0.001
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Basically, obtaining the betas allows us to estimate the survival and hazard functions (see for-

mulas 3 and 4) for different sets of explanatory variables, and, hence, individuals and spatial

environments. Parameter interpretation can take place both in terms of sign and magnitude: An

estimate with a positive sign implies a longer survival (i.e., instructions will be required at a later

point in time), while a negative sign means the opposite. Concerning the magnitude, a quantitative

interpretation can be made based on formulas (2) and (6). Based on the estimated parameters, we

can obtain point estimates of quantiles of the distribution (e.g., the median) which are of potential

interest for predicting the point in time at which a system should automatically present a route

instruction.

When interpreting Table 3, one needs to keep in mind that the size of the parameters has to be

taken into account in conjunction with the different value ranges of the variables. The coefficients in

general have to interpreted ceteris paribus, i.e., the beta values show the impact of a variable on the

condition that all other variables remain unchanged. In summary, the model comprises personal,

environmental and route related variables, some of which are only rendered significant based on

interactions with other variables. The obtained estimates indicate that participants requested a

route instruction later as a function of their age (variable age_gt_40 ) and on segments longer

than 120m if they belong to the group of people whose factor score for preference for egocentric

orientation is below 3 (variable EGO_lt_three:lngSegm). All remaining variables describe an earlier

request for an instruction: This holds for the two different classes of landcover (variables LC_1 and

LC_2 ) which are rendered significant at the 5% level, as well as for people scoring below average

on the personality factor openness (variable BFI_o_low). In addition to that, if participants walk

on long segments in an area they are unfamiliar with (variable unfamiliar:lngSegm), they request

a route instruction earlier. Finally, sense of direction and familiarity interact with each other,

i.e., depending on their sense of direction, wayfinders want route instructions earlier on familiar

(variable SOD:familiar) and even more earlier on unfamiliar settings (variable SOD:unfamiliar).

Figures 3, 4 and 5 provide further elaboration and interpretation of the model results:

In Figure 3, the median predictions (calculated based on formula 5) for the observations used for

the model estimation are plotted against the actual ones. A strongly positive relationship between

the two seems to be in place while their correlation is found to be equal to ρ = 0.45.

In Figure 4, empirical survival results are compared against predicted ones for two common cases

identified in our sample having the following characteristics: BFI_o_low = 1, lngSegm = 1,

and age_gt_40 = 0, i.e., people who are below 40 years of age, having a below average degree

of openness and walk on long segments. The empirical survival function of those observations

that correspond to a familiar setting are presented on the left, whereas the unfamiliar setting is

shown on the right. The predicted mean survival functions have been obtained by making use

of the estimated parameters and inserting the mean of the remaining explanatory variables into

formula (4), with the exception of dichotomous variable EGO_lt_three which is set to 1. The figure

illustrates that in both cases, the predicted mean survival rates are very close to the empirical ones

while their 95% confidence interval values are always overlapping.
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Figure 3: Predicted median survival values based on the estimated AFT model, compared against
the observed ones.
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Figure 4: Empirical survival rates for two given subsets of observations (left: familiar, right: unfa-
miliar segments), compared against the mean predicted ones. Dotted lines represent the
95% confidence interval values.
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Finally, the impact of the different explanatory variables on the predicted survival rates is demon-

strated by modifying those variables accordingly, and plotting the resulting survival rates per case

(Fig. 5). For that reason an artificial observation resembling a wayfinder with the following charac-

teristics is defined as a base case, while for the remaining continuous variables the mean values of the

sample are used (Table 2): BFI_o_low = 0, lngSegm = 0, age_gt_40 = 0, EGO_lt_three = 0,

unfamiliar = 1, i.e. a person of less than 40 years of age, with a below average openness and very

high preference for egocentric orientation, who walks on unfamiliar segments which are no longer

than 120m. The modification on the dummy variables consists of setting them to 1 (i.e. considering

above average openness, long segments, older people, high preference for egocentric orientation or

familiar segments); the continuous variables are modified by adding/subtracting a value equal to

the respective standard deviation. On the left-hand side of the figure, the environmental and route

characteristics of the base case are modified while on the right-hand side, the trial and personal

ones are changed (see Table 1 for an explanation which variables these are). For instance, the

black dotted line on the left side of the figure resembles the baseline artificial observation with an

increase only in LC_1. Similarly, the red line resembles the baseline artificial observation with an

increase only in LC_2. The blue line resembles the baseline artificial observation with a change

from lngSegm = 0 to lngSegm = 1, indicating that the wayfinder is walking on a long segment.

In all of these three cases, the time that the wayfinder would ask for instructions decreases. As it

can be seen, the most influential explanatory variables appear to be length of segment (lngSegm)

along with the below average degree of openness (BFI_o_low).
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Figure 5: Variation of survival rate predictions due to explanatory variables modifications. The
corresponding modifications are applied to a base case scenario in the following manner:
continuous variables=± 1 standard deviation, dummy variables=1.

6 Discussion

Given the data-specific nature of survival analysis, we are only able to make assumptions about

why the given variables are influential. We will, therefore, present possible reasons and state

complementary open research questions which can be derived from our results. We will discuss
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these results by group of variables, i.e., we will start with the group of environmental variables

(LC_*), continue with personal variables (age_gt_40 and BFI_o_low) and, finally, discuss the

interactions among orientation and person/route related variables (SOD:familiar, SOD:unfamiliar,

EGO_lt_three:lngSegm) as well as the interaction between familiarity and segment length (unfa-

miliar:lngSegm).

6.1 Environmental variables

According to our model, people request route instructions the earlier for route segments the higher

the proportion of land cover classes LC_1 or LC_2 is along them. LC_1 represents the Urban

Atlas (European Comission, 2012) class 12100 (Industrial, commercial, public, military and private

units), whereas, LC_2 subsumes Urban Atlas classes 11100 and 11210, (European Comission, 2012,

p. 9), i.e., it comprises areas of predominantly residential use with a soil sealing of >50%. Both

variables show a considerable difference in average area of building footprints (LC_1: 1816.73m2,

LC_2: 661.55m2). In urban areas, LC_1 covers mostly public buildings (e.g., universities, mu-

seums) and associated features. LC_2 shows a medium-sized positive correlation (Spearman’s

ρ = 0.56) with the presence of OSM features tagged as shop. However, the density of built-up

areas, which we calculated based on OSM building footprints and the extent of landcover class

polygons along the route segments is very similar (LC_1 : 46%; LC_2 : 50%). This result and the

fact that both variables show a negative impact on timing (i.e., the higher the value for LC_1 and

LC_2 the earlier people would ask for instructions) suggests that the impact of LC_1 and LC_2

may stem from similar source. One possible source is a limited line of sight in these environments.

For example, crowds in public places are likely to occur in areas with many public buildings or

shops. In addition to that, the high density of built-up areas may cause a limited line of sight

on upcoming intersections in general. This interpretation is in line with, e.g., research indicating

the importance of visibility in advance for landmark salience (see, e.g., Kattenbeck, 2017; Winter,

2003). The interpretation also resembles the idea of on visibility index, which was, according to

(Farr, Kleinschmidt, Yarlagadda, & Mengersen, 2012), introduced by Braaksma and Cook (1980).

This index is based on the number of direct sight lines when moving towards a target (e.g., an

intersection) and can be used as a direct measure of ease of wayfinding. Therefore, a wayfinder

might need an instruction earlier in an occluded environment to make the wayfinding task easier as

this allows the person to recognize the landmark of the upcoming turn earlier. Another explana-

tion for the negative impact of the variables LC_1 and LC_2 could be that due to the perceived

complexity of the environment which may be caused by the building density, wayfinders plan ahead

in order to gain enough time to make the spatial decision and identify the object of interest among

the possible plethora of landmarks.

6.2 Personal variables

With respect to personal variables, our results suggest that participants older than 40 years of age

tend to request route instructions later, a finding based on approx. 10% of all route segments. All
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of these participants have not only spent the largest fraction of their adulthood in Vienna but also

considered their ability to find their way around in Vienna nearly all above average (M = 71.1,

minage>40 = 71, maxage>40 = 100). Therefore, it is reasonable to assume that the cognitive

map(Tolman, 1948) or cognitive graphs (see Warren, 2019) of this group of people is well developed

and, hence, had an impact on requesting a route instruction later as these mental representations

develop over time based on experience (see, e.g., Kitchin, 1994): These persons are experienced

wayfinders in this particular urban environment and, hence, they feel less pressure to reduce their

uncertainty by requesting a route instruction early on. At the same time, our participants do not

belong to an age group (maxage = 59) for which empirical evidence suggest that spatial abilities

deteriorate (see, e.g., Head & Isom, 2010, who tested people with a mean age of 71 years). Our

findings on age, however, are different to those reported in Giannopoulos et al. (2017), who found

a main effect for both, age and the age group of people who are older than 27 years of age. Hence,

further investigation of potential reasons for the difference found is one of the research questions

opened up by the findings of the current study. A second finding with respect to personal variables

relates to the participants’ personality traits: People having a below average degree of openness

(measured by the BFI-10 scale and according to norm data given in Rammstedt et al., 2013) request

a route instruction earlier. Scholars tend to agree that human personality can be described along

five dimensions (see John & Srivastava, 1999, for an overview on the history of these concepts),

which are often referred to as Big Five (Goldberg, 1990): extraversion, openness to experience (also

known as open-mindedness), agreeableness, conscientiousness and emotional stability/neuroticism.

According to (Costa & McCrae, 2010), people who score high on trait openness “[. . . ] enjoy novelty

and variety [. . . and] have a high appreciation of beauty in art and nature” (Costa & McCrae, 2010,

p. 243). The city of Vienna is, generally speaking, a city with a lot of historic buildings, with highly

decorated facades. People having a low level of openness may, therefore, pay less attention to the

beauty of this environment and ask for an instruction early on in order to have more time to focus

on the wayfinding task itself.

6.3 Interactions between variables

Drawing on common sense, a main effect of familiarity on timing seems plausible, i.e., we would have

expected that people ask later for instructions when traveling on familiar routes (and vice versa).

However, familiarity is only rendered significant as an interaction term: When walking through

unfamiliar areas, persons request route instructions earlier on those segments which are longer

than 120m. One potential explanation would be that the upcoming decision point is visible later

on longer segments, for example due to a higher number of occluding objects on these segments.

As a consequence, unfamiliar persons experience a higher degree of difficulty of wayfinding (Farr

et al., 2012) and, hence, uncertainty due to their lack of a cognitive map/graph.

When interpreting the meaning/influence of the interactions relating to spatial orientation, one

needs to keep in mind how these values are calculated. We used the German language self-report

scale on spatial strategies developed by Münzer and Hölscher (2011). In analyzing this data, we
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follow the advice given in Kattenbeck and Kreuzpointner (n.d.): They provide evidence for the fact

that a bifactor model for the scale fits a representative sample (N = 4037) of the German popu-

lation better than the three-factor correlational model (involving the subfactors egocentric/global

orientation (EGO), allocentric orientation and cardinal direction strategies) suggested by Münzer,

Fehringer, and Kühl (2016). Kattenbeck and Kreuzpointner extract Sense of Direction (SOD) as a

general factor from the data and provide evidence that the three subfactors remain significant. In

their bifactor model, EGO can be interpreted as a person’s preference for egocentric orientation.

The obtained factor scores are standardized, i.e., zero represents an average self-report value. It

is important to note, that in our sample all participants score above average (positive sign) on all

four (sub-)factors.

Our results suggest that there is a subgroup of people among the group of people who prefer

egocentric orientation more than average: People scoring below three on the egocentric factor

request route instructions on long segments (>120m) later. As the direction of this effect is counter-

intuitive, further investigations in controlled settings are required to assess whether this effect holds

across samples and what it actually means (see section 7).

Finally, the interaction terms suggest that the level of familiarity affects the timing of route

instruction requests even for wayfinders with a high sense of direction: The higher the SOD of

participants, the earlier they request the route instruction across conditions. However, for the

unfamiliar condition, the route instruction is requested 20% earlier than in the familiar condition.

This change aligns with the common sense expectation although it is dependent on a persons

SOD. This effect, however, is contradicting the finding by Giannopoulos et al. (2017), who report a

delaying effect by SOD on route instruction requests. This raises, on the one hand, questions about

ecological validity of controlled lab study results. On the other hand, it imposes questions about

differences in self-report measurement of SOD, as Giannopoulos et al. (2017) base their results on

the Santa Barbara Sense of Direction scale (Hegarty et al., 2002).

6.4 Limitations

Three limitations apply to our study, two of which relate to generalizability. First, our sample

of participants includes only people who rate their sense of direction and spatial strategies above

average (e.g., minSOD = 1.9, MSOD = 4.8). Hence, it remains unknown whether persons who are

less well-oriented would have acted differently. Second, and similarly, the age distribution of our

participants is heavily right-skewed. A final limitation deals with human behavior: Due to the

nature of the survival analysis, we had to exclude participants who have chosen to request a route

instruction right at the beginning of a segment. In order to understand this behavior we would

have needed to collect the reasons for clicks, which we decided not to do in the current study in

order to avoid confounding effects.
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7 Conclusion and Future Work

While many research efforts on reducing cognitive load in wayfinders by means of wayfinding

assistance systems exist, timing of route instructions has been almost neglected so far. Using

Giannopoulos et al. (2017) as a starting point, we conducted a within-subject, in-situ wayfinding

study suitable to model preferred timing of pedestrian navigation instructions by means of survival

analysis. In doing so, we were able to gain an insight into when a wayfinding assistance system

should automatically present a route instruction. We applied an AFT model based on a Weibull

distribution to identify which environmental, personal, trial or route related variables have an

impact on timing requests and find that variables of each of these levels are influential. Given the

model-driven approach we discussed possible reasons for their influence and highlight inconsistencies

between our model and the timing model obtained by Giannopoulos et al. (2017). Based on the

results and the discussion thereof, at least three main areas of research questions arise:

Spatial orientation At least, three strands of open questions can be identified based on our results

on the impact of SOD. The first strand relates to disentangling the impact of SOD stratified

by familiarity, in particular for below average wayfinders. Second, potential impacts of using

different self-report surveys to measure SOD on timing should be investigated. Thirdly, it

remains an open research question whether different levels of egocentric preference yield an

impact on timing across samples.

Motivation While we have focused on collecting behavioral correlates, one of the core questions

which arise is on the motivations of a person to request a navigation instruction at a specific

point in time, its relation to spatial strategies and the degree of uncertainty in wayfinding

as perceived by participants. Based on our results, the experimental protocol used to study

this problem should include a variety of land covers along routes, spatial layouts, occluding

objects (e.g., cars) along a route and different levels of decision point visibility. Devising a

protocol which is suitable for both, in-situ and virtual environment settings may be particular

important in this case in order to gain also ecological validity insights.

Age The influence of age_gt_40 in the present model could have a different source than the effect

found in Giannopoulos et al. (2017), as participants who belong to the age group age_gt_40

in the current study have spent a majority of their life time in Vienna, whereas all participants

in their study were unfamiliar with the artificial city. It would be worthwhile to investigate

how persons who have lived most of their life in Vienna and persons of similar age who have

not or have even spent most of their life in non-urban environments differ in terms of timing

preferences. This would also allow to investigate differences in spatial strategies employed

between these two groups.
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