
Dissertation

Inductive theorem proving
using tree grammars

Ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften unter der Leitung von

Assoc. Prof. Dr. techn. Stefan Hetzl
E104 – Institut für Diskrete Mathematik und Geometrie

eingereicht an der Technischen Universität Wien
Fakultät für Mathematik und Geoinformation

von

Gabriel Ebner
(Matrikelnummer 0726022)
Max Havelaarlaan 355A
1183LW Amstelveen

Wien, am

Gabriel Ebner

Deutsche Kurzfassung der Dissertation

Der Satz von Herbrand [45], ein grundlegendes Ergebnis der Logik und Be-
weistheorie, charakterisiert die Gültigkeit von quantifizierten Formeln der
klassischen Logik erster Ordnung durch die Existenz einer tautologischen
endlichen Menge von quantorenfreien Grundinstanzen. Im einfachsten Fall
entspricht einer gültigen, rein existenziellen Formel ∃2 K (2) eine tautologische
Disjunktion K (.1) ∨ · · · ∨ K (.(), eine sogenannte Herbrand-Disjunktion.
Schnittfreie Beweise enthalten die zur Bildung einer solchen Herbrand-

Disjunktion notwendigen Terme [16] unmittelbar in ihren Quantorenschlüssen.
Die fundamentalste Operation der Beweistheorie, die Gentzensche Schnitteli-
mination [43], enthält einen Algorithmus, der aus Beweisen die Schlussfigur
des Schnitts eliminiert, und somit aus einem Beweis einer rein existenziellen
Formel eine Herbrand-Disjunktion berechnet.
Ein moderner Ansatz, um diese Schnittelimination auf Ebene der Quantoren-

schlüsse mittels formalsprachlichen Methoden zu verstehen, wurde von Hetzl
vorgestellt [46]: jedem Beweis G in einer geeigneten Klasse wird eine Gram-
matik	 (G) auf solche Art zugeordnet, dass die Grammatik unter der Schnitte-
liminationsoperation erhalten bleibt. Die von der Grammatik erzeugte Spra-
che ((G)) ist dann isomorph zu einer Herbrand-Disjunktion; um die Schnit-
telimination zu verstehen, reicht es folglich, diese Grammatiken zu verstehen.
Die erste Instanz dieses Homomorphismus in [46] verbindet Beweise von

schwach quantifizierten Pränexsequenten, deren Schnittformeln aus Pränex-
formeln ohne Quantorenalternation bestehen, mit vektoriellen totalrigiden
Baumgrammatiken (VTRATGs). Darauffolgende Verallgeimeinerungen auf um-
fangreichere und kompliziertere Beweisklassen verlangen dementsprechend
ausdrucksstärkere Grammatikklassen [31, 55, 2].
Für Beweise mit Induktion ist es sogar erforderlich, den Begriff der Herbrand-

Disjunktion selbst zu verallgemeinern. Ein Beweis G von ∀2 K (2) in einer
geeigneten Klasse von Beweisen mit Induktion induziert auf natürliche Weise
für jeden Konstruktorterm . einen induktionsfreien Instanzbeweis G. von K (.).
Somit entsteht eine durch Konstruktorterme indizierte Familie von Herbrand-
Disjunktionen ((G.)). , die jeweils durch die von der Grammatik des Indukti-
onsbeweises instanzierten Grammatik � ((G), .) ⊇ (G.) überdeckt werden.

2

Die Umkehrung der Schnittelimination ist vielleicht die größte Herausforde-
rung der Beweistheorie überhaupt. Beweise mit Schnitt können im allgemeinen
nicht-elementar kleiner sein als schnittfreie Beweise; eine Umkehrung der
Schnittelimination, in anderen Worten eine Schnitteinführung, ermöglicht da-
her direkt eine enorme Beweiskompression. Weiters fasst die Schlussfigur
des Schnitts auf formale Weise den Begriff des mathematischen Satzes; die
Schnitteinführung führt somit auch Hilfssätze in Beweise ein, und entdeckt
folglich in einem gewissen Sinne sogar neue mathematischen Konzepte.
Auf Ebene der Gentzenschen Schnittreduktionsrelation ist die Umkehrung

der Schnittelimination jedoch völlig aussichtslos: allein um nur einen einzigen
Schritt umzukehren, gibt es schon unendliche viele Möglichkeiten (man denke
nur an den Fall der Verdünnungsreduktion). Unter dem Bild des grammatikali-
schen Homomorphismus hingegen betrachtet, entbart sich die Schnitteinfüh-
rung nicht nur als praktisch erfolgreich durchführbar [36], sondern sie zerfällt
sogar in zwei klar abgegrenzte Teilprobleme. Angenommen wir beginnen mit
einem schnittfreien Beweis G . Dann bildet ersteres Teilproblem das direkte
formalsprachliche Gegenstück zur Umkehrung der Schnittelimination, und
besteht aus der Lösung des Überdeckungsproblem, also eine Grammatik 	 zu
finden, sodass () ⊇ (G). Das zweite Teilproblem übersetzt die Grammatik
aus der formalsprachlichen Welt zurück zu einem Beweis G , sodass 	 (G) = 	 .
Derselbe grammatikalische Ansatz glückt auch für die Einführung von

Induktionsschlussfiguren, wobei im Unterschied zur Schnitteinführung die
Nichtanalytizität der Induktionsformeln—dass sie also nicht bereits wörtlich im
zu beweisenden Sequent vorkommen—von essenziellem und unerlässlichem
Charakter ist. Eberhard und Hetzl [31] schlagen diesen Ansatz als zukunftswei-
sendes Paradigma für das induktive Beweisen vor: schnittfreie Instanzbeweise
sind durch automatische Theorembeweiser mühelos zu erzeugen, und können
dann zu einem Beweis mit Induktion verallgemeinert werden.
Diese Dissertation nimmt sich das Ziel, eine praktisch einsetzbare Imple-

mentierung dieses neuen Paradigmas umzusetzen. Diesem Ziel vorangehend,
erkunden wir zunächst ein reichhaltiges Spektrum an theoretischen Fragestel-
lungen, die unser Verständnis für die zugrundelegenden Strukturen vertiefen.
Eine grundlegende Frage, die sich beim Finden von überdeckenden Gram-

matiken stellt, ist eine komplexitätstheoretische: wie schwierig ist es, eine

3

kleinstmögliche überdeckende Grammatik zu finden? Wie schwierig ist es
überhaupt, festzustellen, ob eine Grammatik eine gegebene Termmenge über-
deckt? Oder ob zwei Grammatiken dieselbe Sprache erzeugen? Fragen dieser
Art werden wir in Kapitel 3 für unterschiedliche Klassen von Grammatiken
untersuchen und auch mit anderen formalsprachlichen Modellen in Beziehung
setzen.
Darauffolgend ergibt sich natürlich die Frage, wie wir praktisch überdecken-

de Grammatiken finden können. Dazu stellen wir in Kapitel 4 drei unterschied-
liche Algorithmen vor.
Das Erzeugen einer überdeckenden Grammatik ist jedoch nur der erste Zwi-

schenschritt: danach gilt es, einen Beweis zu erzeugen, dem diese Grammatik
zugeordnet ist. Konkret sind die Matrizen der Schnitt- und Induktionsformeln
zu finden. Die Bedingungen, denen diese Matrizen zu genügen haben, bilden
eine sogenannte Formelgleichung, welche in engem Zusammenhang mit dem
Lemma von Ackermann [1] auf der theoretischen Seite, und mit bedingten
Hornklauseln [12] auf der praktischen Seite stehen. In Kapitel 5 beschreiben
wir diesen Zusammenhang, untersuchen Fragestellungen zur Lösbarkeit von
den relevanten Formelgleichungen, und stellen zwei Lösungsalgorithmen vor.
Um Herbrand-Disjunktionen von automatischen Theorembeweisern zu

erhalten, stellen wir in Kapitel 6 einen neuen Algorithmus vor. Dieser wan-
delt Resolutionsbeweise in Expansionsbäume—eine Verallgemeinerung von
Herbrand-Disjunktionen—um, ohne als Zwischenschritt einen schnittfreien
Beweis zu konstruieren.
Zum Schluss, in Kapitel 7, fügen wir die Puzzlesteine aus den vorange-

henden Kapiteln zu einer vollständigen Implementierung zusammen, und
evaluieren diese. Die Testergebnisse erschließen einen tiefliegenden Unter-
schied zwischen automatisch erzeugten Beweisen und Beweisen, die aus der
Induktionselimination gewonnen sind. Diese Andersartigkeit ist selbst auf
Ebene der Herbrand-Disjunktionen eindeutig erkennbar.

4

Acknowledgements

I would like to thank my advisor, Stefan Hetzl, without whom this thesis would
have found neither a beginning nor an end.

5

Contents

1 Introduction 11

2 Proofs with induction 15
2.1 Calculus . 15
2.2 Cut- and induction-reduction 20
2.3 Cut-free proofs and tree languages 27
2.4 Term encoding of formulas . 28
2.5 Vectorial totally rigid acyclic tree grammars 31
2.6 Derivations in VTRATGs . 33
2.7 Grammars for simple proofs 39
2.8 Grammars for simple induction proofs 44

2.8.1 Simple induction problems 44
2.8.2 Simple induction proofs 45
2.8.3 Induction grammars 46

2.9 Reversing cut- and induction-elimination 50
2.10 Regularity and reconstructability 51

3 Decision problems on grammars 57
3.1 Computational complexity and the polynomial hierarchy . . . 59
3.2 Membership . 62
3.3 Emptiness . 64
3.4 Containment . 67
3.5 Disjointness . 68
3.6 Equivalence . 69
3.7 Minimal cover . 70

3.7.1 Minimal cover for terms 70
3.7.2 Minimal cover for words 73

7

Contents

3.8 Minimization . 77
3.9 Decision problems on Herbrand disjunctions 78
3.10 The treewidth measure on graphs 81
3.11 The case of bounded treewidth 83

3.11.1 Membership . 86
3.11.2 Emptiness . 89
3.11.3 Containment . 89
3.11.4 Disjointness . 90
3.11.5 Equivalence . 91
3.11.6 Minimization . 92
3.11.7 Cover . 92

3.12 Decision problems on induction grammars 94
3.12.1 Membership . 94
3.12.2 Emptiness . 98
3.12.3 Containment . 103
3.12.4 Disjointness . 105
3.12.5 Equivalence . 106
3.12.6 Minimization . 107
3.12.7 Cover . 108

4 Practical algorithms to find small covering grammars 113
4.1 Least general generalization and matching 115
4.2 Delta-table . 119

4.2.1 The delta-vector . 120
4.2.2 The delta-table . 121
4.2.3 Incompleteness . 123
4.2.4 Row-merging . 123

4.3 Using MaxSAT . 125
4.3.1 Rewriting grammars 126
4.3.2 Stable terms . 129
4.3.3 Stable grammars . 133
4.3.4 Computing all stable terms 134
4.3.5 Minimization . 139

4.4 Induction grammars . 143

8

Contents

4.5 Reforest . 146
4.5.1 TreeRePair . 146
4.5.2 Adaptation to tree languages 148

4.6 Experimental evaluation . 151

5 Formula equations and decidability 161
5.1 Formula equations . 162
5.2 Solvability of VTRATGs . 163
5.3 Solvability of induction grammars 167
5.4 Decidability and existence of solutions 170
5.5 Examples of difficult formula equations 177
5.6 Solution algorithm using forgetful inference 181
5.7 Solution algorithm using interpolation 187

6 Algorithm for proof import 195
6.1 Resolution proofs . 197
6.2 Expansion proofs . 201
6.3 Extraction . 206
6.4 Definition elimination . 210
6.5 Complexity . 213
6.6 Empirical evaluation . 213
6.7 Direct elimination of Avatar-inferences 216

7 Implementation and evaluation 219
7.1 Refinement loop to find induction grammars 220
7.2 Implementation . 221
7.3 Evaluation as automated inductive theorem prover 224
7.4 Evaluation of reversal of induction-elimination 228
7.5 Case study: doubling . 231

8 Conclusion 235

Bibliography 241

9

1 Introduction

Herbrand’s theorem [45, 16] captures the fundamental insight in logic that
the validity of a quantified formula is characterized by the existence of a
tautological finite set of quantifier-free instances. In the simplest case, a
proof of a purely existential formula ∃2 K (2) gives rise to the existence of
a tautological disjunction of quantifier-free instances K (.1) ∨ · · · ∨ K (.(), a
Herbrand disjunction.
The fundamental importance of Herbrand’s theorem is underlined by the

variety of its applications. Herbrand disjunctions directly contain the answer
substitutions of logic programs. Luckhardt [66] used them to give a polynomial
bound for Roth’s theorem. Herbrand’s theorem also turns up in automated
reasoning. The leaves of a ground resolution refutation are the instances in a
Herbrand disjunction. Lifting the ground refutation to a first-order refutation
then shows the completeness of first-order resolution [9]. Even going beyond
classical logic, we can use the information contained in Herbrand disjunctions
to constructivize classical proofs into intuitionistic proofs in a practically highly
effective way [35]. Closer to the topic of this thesis, compressing Herbrand
disjunctions using tree grammars has been used to introduce non-analytic
quantified lemmas [51, 50, 48, 36], and prove theorems with induction in [31].
The information necessary to form Herbrand disjunctions is directly con-

tained in the quantifier inferences in cut-free proofs [45, 16]. Herbrand dis-
junctions generalize naturally to Herbrand sequents, where the validity of a
prenex sequent is characterized by the existence of a tautological sequent of in-
stances. Another generalization of Herbrand disjunctions are expansion trees,
where the validity of a (not necessarily prenex) sequent is characterized by
the existence of an expansion sequent whose deep sequent is tautological [71].
The last characterization reaches beyond first-order logic and even applies to
elementary type theory.

11

1 Introduction

Gentzen’s cut-elimination [43] is perhaps the most fundamental operation
in proof theory. It provides an algorithmic means to eliminate cut inferences
from proofs, and hence compute Herbrand disjunctions. By extending cut-
elimination to also unfold induction inferences into sequences of cuts, it is
possible to eliminate induction and cut inferences from proofs of existential
formulas, thus showing the consistency of Peano arithmetic [41].
Cut-elimination transforms complicated proofs with cuts into simple proofs

in a cut-free normal form. Concretely, cut inferences formalize the notion of
lemmas, which capture the deep mathematical insights contained in proofs.
Understanding cut-elimination is thus one of the most important endeavours
in mathematical logic, and allows us to gain insight in very nature of lem-
mas. If we understood cut-elimination well-enough to be able to reverse it
algorithmically, then we would have an algorithm to find interesting lemmas,
compress large proofs, and structure automatically-generated proofs.
One novel approach to understand cut-elimination based on formal lan-

guages was introduced by Hetzl [46], introducing a connection between a
class of proofs where cut formulas are restricted to purely universally or exis-
tentially quantified prenex formulas and totally rigid regular tree grammars.
In this approach there is a function that assigns to every proof G a grammar
	 (G) such that the language generated by the grammar ((G)) corresponds
to a Herbrand sequent. This grammar describes the quantifier inferences in
the proof G , and is also preserved under cut-elimination in a suitable way.
Cut-elimination hence corresponds to language generation of the grammar.
In order to understand cut-elimination on the level of quantifier inferences, it
suffices to understand the language generation operation of the grammars.
This correspondence has been extended to a class of proofs with induction

in [31]. Given proof G of ∀2 K (2) in that class (where 2 ranges over the
natural numbers), we get for every numeral (a proof G(of the instance K (().
The grammar	 (G) for the induction proof is then instantiated to a grammar
� ((G), .) for the proof G(, and (� ((G), .)) is a Herbrand sequent of the
instance for (. In this setting, language generation of the grammar corresponds
to induction- and cut-elimination.
Understanding induction- and cut-elimination on the level of grammars

allows us to reverse this process [51, 50, 48, 31, 36]. Starting from a Herbrand

12

sequent or cut-free proof, we can first find a grammar that covers the Herbrand
sequent (i.e., () ⊇ where corresponds to the Herbrand sequent). This
grammar determines the quantifier inferences in the proof with cut. In the
next step we need to find the quantifier-free matrices of the cut formulas,
these form the solution to a so-called formula equation that is induced by the
grammar.
An analogous approach allows us to reverse induction-elimination (in the

restricted class of proofs with induction that we consider). Starting from a
finite family of proofs of instances K ((1), . . . , K ((%), we first find a covering
grammar and then solve the induced formula equation. The case for proofs
with induction is more complicated than for cuts: the induced formula equa-
tion might not be solvable in general. The proofs of K ((1), . . . can also be
produced by automated theorem provers: then this approach yields an auto-
mated inductive theorem prover. On a theoretical level this was introduced
in [31].
This thesis builds a practical implementation of this approach to automated

inductive theorem proving. Each of the steps in the approach poses challenges.
The first step requires us to construct algorithms that find small covering
grammars. For this it is important to have a general understanding of the
complexity of decision problems on the classes of grammars that we consider.
For example, it is a priori not even clear how hard it is to decide whether a
grammar covers a set of terms. (It is NP-hard for all classes that we consider,
as we will see in Theorems 3.2.1 and 3.12.2.) We will explore these complexity
questions in Chapter 3. Equipped with this knowledge, we will then discuss
concrete algorithm to find covering grammars in Chapter 4.
The central concept of the second step is that of a formula equation. A

solution to the formula equation induced by a grammar will contain exactly
the information necessary to produce a proof with this grammar. These formula
equations and algorithms to solve them will be discussed in Chapter 5.
One way to obtain the Herbrand sequents (or cut-free proofs) consists of

using automated theorem provers. Chapter 6 presents an efficient algorithm
to convert resolution proofs produced by such automated theorem provers to
expansion proofs, a generalization of Herbrand sequents.
Finally, we will combine these puzzle pieces in Chapter 7, describing a prac-

13

1 Introduction

tical implementation of the approach. We will evaluate this implementation on
real-world benchmarks. The results of this evaluation will uncover an interest-
ing difference between automatically generated proofs and proofs generated
by induction elimination. A detailed case study will illustrate this difference
that even leaves traces on the level of Herbrand disjunctions.

14

2 Proofs with induction

In this chapter we will define the basic notation that we require. We will
begin with the sequent calculus that we use and the cut-reduction for this
system. Based on this calculus, we will define several classes of proofs and
corresponding classes of tree grammars that describe the cut-elimination of
the proofs, in such a way that the language of the grammar is isomorphic a
Herbrand sequent. One typical example of such a theorem that will describe
the relation between proofs and grammars will be Lemma 2.7.5, stating that (for
a class of proofs where all cut formulas are purely universally or existentially
quantified) the language generated by the grammar is preserved under cut-
reduction. This implies in particular that cut-elimination commutes with
language generation in the following sense:

G G∗

	 (G) ((G)) ⊇ (G∗)

cut

2.1 Calculus

We treat many-sorted terms as a subset of terms in a simply-typed lambda cal-
culus, i.e. those terms consisting only of constants, variables, and applications
that are of first-order type. The arity of a function symbol is the number of
the arguments it can be applied to. In this sense, constants are just nullary
functions. A vector of terms . = (.1, . . . , .() is a finite sequence of terms. If a
function symbol ! has type = → > → ? and ., - have types =, > , resp., then we
write the application as ! (., -).
Positions * are finite sequences of natural numbers; Pos(.) is the set of

positions in a term, . |* is the subterm of . at position * , and . [-]* is the term .

15

2 Proofs with induction

where the position * is replaced by another term - . The depth depth(.) of a
term . is the maximum length of a position * ∈ Pos(.). The set st(.) = {. |* |
* ∈ Pos(.)} is the set of subterms of . . We also define the relations . � - iff
. ∈ st(-), and . � - iff . ∈ st(-) \ {-}. The set of subterms st() of a set of terms
 ⊆ T (:) is given by st() = �

.∈ st(). A term . subsumes a term - , written
. / - , if there exists a substitution I such that .I = - .
For a term . , the set FV(.) is called the set of free variables in . , the term .

is called ground if FV(.) = ∅. Variables can be substituted by terms: let
21, . . . , 2% ∈ � be variables and -1, . . . , -% ∈ T (: ∪�) be terms, then a (parallel)
substitution I = [21\-1, 22\-2, . . . , 2%\-%] is a finite map from variables to terms
of the same type, and is extended to all terms recursively. The domain the
substitution I is the set of variables dom(I) = {21, . . . , 2%} being substituted.
Each of the terms -# may contain any variable, including any of the variables 2 $.
We write .I for the application of a substitution I to a term . . Substitutions are
extended to vectors as well by substituting in each element: .I = (.1I, . . . , .(I).
We will also define substitutions using vectors: [2\.] = [21\.1, . . . , 2(\.(].
We consider a many-sorted first-order logic where some sorts are struc-

turally inductive data types. A structurally inductive data type is a sort H with
distinguished functions �1, . . . , �(called constructors. Each constructor �# has
the type J#,1→· · ·→J#,(� →H , that is, the arguments have the types J#,1, . . . , J#,(�
and the return type of the constructor is H . It may be the case that J#, $ = H ,
then the index $ of such an argument is called a recursive occurrence in the
constructor �# . We do not consider mutually inductive types, etc. The intended
semantics is that H is the set of finite terms freely generated by the constructors
and values of the other argument types. Our proof system will only ensure
that H is inductively generated by the constructors, other properties of the free
term algebra will be explicit assumptions in the proofs.

Example 2.1.1. Natural numbers have the type N with constructors 0N and
-N→N . The first argument of - is a recursive occurrence.

Example 2.1.2. Let J be a type, then the lists with elements from J have the
type list with the constructors nillist and consJ→list→list. The constructor cons
has two arguments, one representing the first element of the list, the other
representing the rest of the list. Only the second argument is a recursive

16

2.1 Calculus

occurrence.

A sequent 5 8 6 consists of two multisets of formulas 5 and 6, and is
interpreted as the formula

�
5 →

6. The multiset 5 is called the antecedent
and 6 is the succedent of the sequent. Figure 2.1 shows the sequent calculus
LK(�) that we consider.
We assume a background theory � , and the inference rule T then allows us

to infer any atomic sequent that follows from the background theory. The main
background theory that we will use is the theory of equality; the inference
rule T can then infer sequents such as � = �, ! (�) = � 8 "(�) = "(! (! (! (�)))).
For an atomic sequent, it is decidable whether it follows from the theory
equality. This is the main motivation for the restriction to atomic sequents
here. Another way to incorporate equality would be to add inference rules for
rewriting and reflexivity:

refl8 . = .
5 8 6, . = - K (.), 9 8 7 rw→

&5, K (-), 9 8 6, 7
However this choice of inference complicates cut-elimination, as it would

require us to permute the rewriting inference with inferences in the two
subproofs. If we move equational reasoning into the leaves, then it does not
get in the way. In addition, the formalism becomes more general, for example
we could also use Presburger arithmetic as a background theory.
Given an inference rule such as the right-introduction rule ∧, for conjunc-

tion:
5 8 6,K 9 8 7,M ∧,
5, 9 8 6, 7, K ∧M

The sequents 5 8 6,K and 9 8 7,M on top are called the premises of the
inference, and the sequent 5, 9 8 6, 7, K ∧M below is called the conclusion.
The formulas K andM in the premises are called auxiliary formulas, the formula
K ∧M in the conclusion is called the main formula. The inferences ∀& and ∃,
are called weak quantifier inferences, and ∀, and ∃& are called strong quantifier
inferences.
For every inductive sort H there is a corresponding structural induction rule.

This rule has one premise for each constructor �# of the inductive type, and for
every recursive argument= $� of the constructor there is an inductive hypothesis.

17

2 Proofs with induction

ax (if K is an atomic formmula)K 8 K
5 8 6 1&

K, 5 8 6
5 8 6 1,
5 8 6,K

K, K, 5 8 6
�&

K, 5 8 6
5 8 6,K, K

�,
5 8 6,K

5 8 6,K K, 9 8 7
cut

5, 9 8 6, 7

T (if 5 8 6 is an atomic sequent entailed by �)
5 8 6

�,8 � ⊥&⊥ 8 5 8 6,K ¬&¬K, 5 8 6
K, 5 8 6 ¬,
5 8 6,¬K

5 8 6,K,M ∨,
5 8 6,K ∨M

K, 5 8 6 M, 9 8 7 ∨&
K ∨M, 5, 9 8 6, 7

K,M, 5 8 6 ∧&
K ∧M, 5 8 6

5 8 6,K 9 8 7,M ∧,
5, 9 8 6, 7, K ∧M

5, K 8 M →,
5 8 K →M

5 8 6,K M, 9 8 7 →&
K →M, 5, 9 8 6, 7

5 8 6,K (.) ∃,5 8 6, ∃2 K (2)
K (=), 5 8 6 ∃&∃2 K (2), 5 8 6

K (.), 5 8 6 ∀&∀2 K (2), 5 8 6
5 8 6,K (=) ∀,5 8 6,∀2 K (2)

5, K (= $1), . . . , K (= $
�
) 8 6,K (�# (=1, . . . , ='�)) (for each �#) indH

5 8 6,K (.)

Figure 2.1: The calculus LK(�) for classical many-sorted first-order logic with
background theory � . The variable = in the ∃& and ∀, inferences
is called an eigenvariable, and may not occur in 5, 6,∀2 K (2) as a
free variable.

18

2.2 Cut- and induction-reduction

The variables =1, . . . , ='� (for each constructor �#) are eigenvariables of the
inference, that is, they may not occur in 5 or 6. The term . is called the main
term of the induction inference.

Example 2.1.3. Consider the instance of the induction inference indlist for
lists. There are two premises, one for each constructor. The inference has
two eigenvariables, =1 and =2, both occurring in the premise for the cons
constructor. The eigenvariable =2 is a recursive occurrence (of type list) and
hence has a corresponding induction hypothesis in the antecedent of that
premise: K (=2). The other eigenvariable =1 is not a list, and is hence not a
recursive occurrence and therefore has no corresponding induction hypothesis.

5 8 6,K (nil) K (=2), 5 8 6,K (cons(=1, =2)) indlist5 8 6,K (.)

Given a proof G of a sequent 5 8 6, we can apply a substitution I to the
proof to obtain a proof GI of 5I 8 6I . This substitution can be computed
recursively: for all inferences except∀, and ∃& it is enough to apply the substitu-
tion recursively to the premises and to the sequents in the inference. However
for the strong quantifier inferences we might need to rename the eigenvariable
to satisfy the eigenvariable condition of the inference:

���
(G)

5 8 6,K (=) ∀,5 8 6,∀2 K (2)
���I =

(G [=\>]I)
5I 8 6I,K (>)I ∀,5I 8 6I, (∀2 K (2))I

Where the variable > does not occur in the domain or range of the substi-
tution I , nor as free variable in the sequent 5 8 6,∀2 K (2). This renaming
in proof substitution is analogous to the capture-avoiding substitution of
lambda calculus terms, where we have to rename the bound variable 2 in
(D2 23) [3\2] = (D4 42).

Definition 2.1.1. Let G be an LK(�)-proof. Then |G | is the number of in-
ferences in G (counted as a tree), and |G |+ is the number of weak quantifier
inferences (∀& , ∃,).

19

2 Proofs with induction

(G1)
5 8 6 1,
5 8 6,K

(G2)
K, 9 8 7

cut
5, 9 8 6, 7

cut→
(G1)
5 8 6 1∗

&
,1∗

,
5, 9 8 6, 7

(G1)
5 8 6,K

(G2)
9 8 7 1&

K, 9 8 7
cut

5, 9 8 6, 7

cut→
(G2)
9 8 7 1∗

&
,1∗

,
5, 9 8 6, 7

Figure 2.2: Erasing reduction rules for weakening (the double line indicates an
abbreviation of multiple inferences)

axK 8 K
(G)

K, 5 8 6
cut

K, 5 8 6
cut→ (G)

K, 5 8 6

(G)
5 8 6,K axK 8 K

cut
5 8 6,K

cut→ (G)
5 8 6,K

T
5 8 6,K T

K, 9 8 7
cut

5, 9 8 6, 7
cut→ T

5, 9 8 6, 7

Figure 2.3: Grade-reduction rules for axioms

2.2 Cut- and induction-reduction

The cut inference can be eliminated from proofs without induction. This result
goes back to Gentzen [43] and uses local rewriting rules to simplify the cuts by
pushing them upwards towards the leaves of the proof and thereby eliminate
them.
We will use three reduction relations: non-erasing cut-reduction ne→ (Fig-

ures 2.3 to 2.7), cut-reduction cut→ (in addition Figure 2.2), and combined cut-
and induction-reduction ind→ (in addition Figure 2.8). Each extends the previous
one: ne→ ⊂ cut→ ⊂ ind→. All of the three relations are closed under reflexivity,
transitivity, and congruences.
The rank-reduction rules in Figure 2.7 have subtle implications. First, let us

20

2.2 Cut- and induction-reduction

(G1)
5 8 6,K, K

�,
5 8 6,K

(G2)
K, 9 8 7

cut
5, 9 8 6, 7

cut→

(G1)
5 8 6,K, K

(G2)
K, 9 8 7

cut
5, 9 8 6, 7, K

(G2)
K, 9 8 7

cut
5, 9, 9 8 6, 7, 7

�∗
&
, �∗,

5, 9 8 6, 7

(G1)
5 8 6,K

(G2)
K, K, 9 8 7

�&
K, 9 8 7

cut
5, 9 8 6, 7

cut→

(G1)
5 8 6,K

(G1)
5 8 6,K

(G2)
K, K, 9 8 7

cut
K, 5, 9 8 6, 7

cut
5, 5, 9 8 6, 6, 7

�∗
&
, �∗,

5, 9 8 6, 7

Figure 2.4: Grade-reduction rules for contraction

note that they also apply for H = cut, i.e., we can permute cuts:

(G1)
5 8 6,K

(G2)
9 8 7,M

(G3)
K,M, : 8 8

cut
K, 9, : 8 7,8

cut
5, 9, : 8 6, 7,8

cut→

(G2)
9 8 7,M

(G1)
5 8 6,K

(G3)
K,M, : 8 8

cut
5,M, : 8 6,8

cut
5, 9, : 8 6, 7,8

Using the same reduction rule, we can also permute the cuts back. This
is one reason why ne→ is already non-terminating. Another subtlety is that
permuting a cut with a strong quantifier rule (i.e., ∀, or ∃&) may require us to

21

2 Proofs with induction

(G1)
K, 5 8 6 ¬,
5 8 6,¬K

(G2)
9 8 7,K ¬&¬K, 9 8 7

cut
5, 9 8 6, 7

cut→
(G2)

9 8 7,K
(G1)

K, 5 8 6
cut

5, 9 8 6, 7

(G1)
5 8 6,K (.) ∃,5 8 6, ∃2 K (2)

(G2)
K (=), 9 8 7 ∃&∃2 K (2), 9 8 7

cut
5, 9 8 6, 7

cut→

(G1)
5 8 6,K (.)

(G2 [=\.])
K (.), 9 8 7

cut
5, 9 8 6, 7

(G1)
5 8 6,K (=) ∀,5 8 6,∀2 K (2)

(G2)
K (.), 9 8 7 ∀&∀2 K (2), 9 8 7

cut
5, 9 8 6, 7

cut→

(G1 [=\.])
5 8 6,K (.)

(G2)
K (.), 9 8 7

cut
5, 9 8 6, 7

Figure 2.5: Grade-reduction rules for ¬, ∃,∀

22

2.2 Cut- and induction-reduction

(G1)
5 8 6,K,M ∨,
5 8 6,K ∨M

(G2)
K, 9 8 7

(G3)
M, : 8 8 ∨&

K ∨M, 9, : 8 7,8
cut

5, 9, : 8 6, 7,8

cut→

(G1)
5 8 6,K,M

(G2)
K, 9 8 7

cut
5, 9 8 6, 7,M

(G3)
M, : 8 8

cut
5, 9, : 8 6, 7, :

(G1)
5 8 6,K

(G2)
9 8 7,M ∧,

5, 9 8 6, 7, K ∧M

(G3)
K,M, : 8 8 ∧&
K ∧M, : 8 8

cut
5, 9, : 8 6, 7,8

cut→

(G2)
5 8 6,M

(G1)
9 8 7,K

(G3)
K,M, : 8 8

cut
M, 9, : 8 7,8

cut
5, 9, : 8 6, 7,8

(G1)
5, K 8 M →,

5 8 K →M

(G2)
9 8 7,K

(G3)
M, : 8 8 →&

K →M, 9, : 8 7,8
cut

5, 9, : 8 6, 7,8

cut→

(G2)
9 8 7,K

(G1)
5, K 8 M

cut
5, 9 8 6, 7,M

(G3)
M, : 8 8

cut
5, 9, : 8 6, 7,8

Figure 2.6: Grade-reduction rules for ∨,∧,→

23

2 Proofs with induction

(G1)
5 8 6,K

H
5 0 8 60, K

(G2)
K, 9 8 7

cut
5 0, 9 8 60, 7

cut→
(G1)

5 8 6,K
(G2)

K, 9 8 7
cut

5, 9 8 6, 7 H
5 0, 9 8 60, 7

(G1)
5 8 6,K

(G2)
K, 9 8 7

H
K, 9 0 8 70

cut
5, 9 0 8 6, 70

cut→
(G1)

5 8 6,K
(G2)

K, 9 8 7
cut

5, 9 8 6, 7 H
5, 9 0 8 6, 70

(G1)
5 8 6

(G2)
9 8 7,K

H
5 0, 9 0 8 6 0, 70, K

(G3)
K, : 8 8

cut
5 0, 9 0, : 8 6 0, 70, 8

cut→ (G1)
5 8 6

(G2)
9 8 7,K

(G3)
K, : 8 8

cut
9, : 8 7,8 H

5 0, 9 0, : 8 6 0, 70, 8

(G1)
5 8 6,K

(G2)
9 8 7

H
5 0, 9 0 8 6 0, 70, K

(G3)
K, : 8 8

cut
5 0, 9 0, : 8 6 0, 70, 8

cut→
(G1)

5 8 6,K
(G3)

K, : 8 8
cut

5, : 8 6,8
(G2)
9 8 7 H

5 0, 9 0, : 8 6 0, 70, 8

(G1)
5 8 6,K

(G2)
K, 9 8 7

(G3)
: 8 8

H
K, 9 0, : 0 8 70, 8 0

cut
5, 9 0, : 0 8 6, 70, 8 0

cut→
(G1)

5 8 6,K
(G2)

K, 9 8 7
cut

5, 9 8 6, 7
(G3)
: 8 8 H

5, 9 0, : 0 8 6, 70, 8 0

(G1)
5 8 6,K

(G2)
9 8 7

(G3)
K, : 8 8

H
K, 9 0, : 0 8 70, 8 0

cut
5, 9 0, : 0 8 6, 70, 8 0

cut→ (G2)
9 8 7

(G1)
5 8 6,K

(G3)
K, : 8 8

cut
5, : 8 6,8 H

5, 9 0, : 0 8 6, 70, 8 0

Figure 2.7: Rank-reduction rules for unary/binary inference rules H

24

2.2 Cut- and induction-reduction

rename the eigenvariable of the inference, if for example the eigenvariable =
occurs as a free variable in 5 or 6:

(G1)
5 8 6,K

(G2)
K, 9 8 7,M (=) ∀,K, 9 8 7,∀2 M (2)

cut
5, 9 8 6, 7

cut→
(G1)

5 8 6,K
(G2 [=\>])

K, 9 8 7,M (>)
cut

5, 9 8 6, 7,M (>) ∀,5, 9 8 6, 7,∀2 M (2)

Gentzen’s proof [43] shows a subtly different result, namely that this is true
in a different calculus where we replace the cut inference by a mix inference:

(G1)
5 8 6,K, . . . , K

(G2)
K, . . . , K, 9 8 7

mix
5, 9 8 6, 7

However it will be important that we have the result directly on the calculus
LK(�) (i.e., with cut instead of mix) and using the reduction rules shown in
Figures 2.2 to 2.7 because the grammars and Herbrand sequents of proofs will
be preserved under those reduction rules.

Lemma2.2.1 ([43]). Let G1 and G2 be cut- and induction-free LK(�)-proofs of the
sequents 5 8 6,K and K, 9 8 7, resp. Then there exists a cut- and induction-free
LK(�)-proof G∗ such that:

(G1)
5 8 6,K

(G2)
K, 9 8 7

cut
5, 9 8 6, 7

cut→ G∗

Proof. See [47, Corollary 2.2] or [26, Theorem 3 and Lemma 16] for versions
of this lemma in inessentially different versions of LK. The most significant
difference is that our calculus has a theory inference T, but this is an unprob-
lematic addition because we have a reduction for a cut on two T-inferences in
Figure 2.3. �

Theorem 2.2.1 ([43]). Let G be an induction-free LK(�)-proof, then there is an
induction-free LK(�)-proof G∗ such that G

cut→ G∗.

Proof. Iteratively eliminate each top-most cut using Lemma 2.2.1. �

25

2 Proofs with induction

We also extend the cut-reduction relation to proofs with induction using
an extended reduction relation ind→ ⊃ cut→ as described in Figure 2.8. Whenever
the main term of an induction inference is a constructor application, then we
can unfold that induction to several cuts and induction inferences whose main
terms are the recursive occurrences of the constructor term. This procedure
allows us to reduce (some) induction inferences to nested cuts, thereby elimi-
nating them. Clearly we cannot eliminate all induction inferences since the
addition of the induction rule is not conservative over first-order logic. For
example, the following LK(∅)-proof with a single induction inference proves a
first-order statement that is not valid in first-order logic:

ax
� (0) 8 � (0)

ax
� (F) 8 � (F) ax

� (- (F)) 8 � (- (F)) →&
� (F), � (F) → � (- (F)) 8 � (- (F)) ∀&� (F),∀2 (� (2) → � (- (2))) 8 � (- (F))

ind
� (0),∀2 (� (2) → � (- (2))) 8 � (=) ∀,� (0),∀2 (� (2) → � (- (2))) 8 ∀2 � (2)

It is nevertheless possible to use such a reduction to eliminate induction
from proofs of existential statements, as Gentzen has showed [41, 42].

Example 2.2.1. Let us consider induction-reduction on an example:

(G1)
8 � (nil)

(G2)
� (=2) 8 � (cons(=1, =2)) indlist8 � (cons(�, nil))

In the first step, this proof reduces to a cut on an induction inference with a
smaller main term:

· · · ind→
(G1)

8 � (nil)
(G2)

� (=2) 8 � (cons(=1, =2)) indlist8 � (nil)
(G2 [=1\�, =2\nil])

� (nil) 8 � (cons(�, nil)) cut8 � (cons(�, nil))
In the second step, we can eliminate the remaining induction inference:

· · · ind→
(G1)

8 � (nil)
(G2 [=1\�, =2\nil])

� (nil) 8 � (cons(�, nil)) cut8 � (cons(�, nil))

26

2.3 Cut-free proofs and tree languages

(G#)
5, K (= $1), . . . , K (= $
�

) 8 6,K (�# (=1, . . . , ='�)) . . .
indH

5 8 6,K (�# (.1, . . . , .'�))
ind→

(G#)
· · · 8 · · · · · ·

indH
5 8 6,K (. $
�)

(G#)
· · · 8 · · · · · ·

indH
5 8 6,K (. $1)

(G#)
· · · 8 · · ·

cut
K (. $2), . . . , K (. $
�), 5 , 5 8 6, 6, K (� $ (.1, . . . , .'))

�∗
&
, �∗,

K (. $2), . . . , K (. $
�), 5 8 6,K (� $ (.1, . . . , .'))

K (. $
�), 5 8 6,K (� $ (.1, . . . , .')) cut
5, 5 8 6, 6, K (� $ (.1, . . . , .'))

�∗
&
, �∗,

5 8 6,K (� $ (.1, . . . , .'))

Figure 2.8: Induction-reduction rule.

2.3 Cut-free proofs and tree languages

Cut-free proofs directly contain the quantifier-free instances that constitute
a Herbrand sequent. For technical reasons, we only consider proofs of :1-
sequents—these are sequents of prenex formulas that are universally quantified
in the antecedent and existentially quantified in the succedent. Without these
restrictions, we would need to handle eigenvariables or Skolem terms in the
instances as well as restrictions that ensure their correct use. This would
necessitate a more complicated formalism, such as for example expansion
trees [71]. However the restriction to :1-sequents is not a particularly signifi-
cant restriction: we can always prenexify and Skolemize formulas as well as
proofs in first-order logic, resulting in a proof of a :1-sequent.

Theorem 2.3.1. Let 5 8 6 be a :1-sequent, and G a cut- and induction-free
LK(�)-proof of 5 8 6. Then there exist quantifier-free instances 5 0 and 60 of 5
and 6, resp., such that 5 0 8 60 is a � -tautology.

27

2 Proofs with induction

Proof. For a detailed proof, see Buss [16]. We first permute the quantifier
inferences in the proof down as far as possible. Since the end-sequent is
prenex, the resulting proof can be divided into two parts: the lower part
which only consists of quantifier inferences (as well as the structural rules
of contraction and weakening), and the upper part which does not contain
any quantifier rules. The sequent in the middle is a quantifier-free sequent of
instances of the end-sequent. And furthermore it is a � -tautology since there
is a proof above it. �

Example 2.3.1. Consider the LK(∅)-proof shown in Figure 2.9 with the end-
sequent ∀3 � (0, 3),∀2∀3 (� (2, ! (3))→� (- (2), 3)) 8 � (-2(0), �). Following the
proof of Theorem 2.3.1 we can extract an Herbrand sequent from this proof.
The proof above is already of the form required after the rule permutations:
the part below the lowest→& -inference only consists of ∀& and �& -inferences
and there are no quantifier inferences above it. Hence the conclusion of the
lowest→& -inference is a Herbrand sequent:

� (0, ! 2(�)),
� (0, ! 2(�)) → � (- (0), ! (�)),
� (- (0), ! (�)) → � (-2(0), �)

8 � (-2(0), �)

2.4 Term encoding of formulas

To connect proofs and grammars, as well as Herbrand sequents and languages,
we need to convert between formulas and terms. This is because Herbrand
sequents contain formulas, and tree grammars generate a set of terms. For
instance, recall the Herbrand sequent from Example 2.3.1 (we write ! 2(�) as a
convenient abbreviation for ! (! (�))):

� (0, ! 2(�)),
� (0, ! 2(�)) → � (- (0), ! (�)),
� (- (0), ! (�)) → � (-2(0), �)

8 � (-2(0), �)

28

2.4 Term encoding of formulas

ax
�
(0,

!
2 (�

))
8�

(0,
!
2 (�

))
ax

�
(-(
0),

!
(�)

)8
�
(-(
0),

!
(�)

)
ax

�
(-2

(0)
,�
)8

�
(-2

(0)
,�
)
→

&
�
(-(
0),

!
(�)

),�
(-(
0),

!
(�)

)→
�
(-2

(0)
,�
)8

�
(-2

(0)
,�
)
→

&
�
(0,

!
2 (�

)),
�
(0,

!
2 (�

))
→

�
(-(
0),

!
(�)

),�
(-(
0),

!
(�)

)→
�
(-2

(0)
,�
)8

�
(-2

(0)
,�
)

∀ &
�
(0,

!
2 (�

)),
�
(0,

!
2 (�

))
→

�
(-(
0),

!
(�)

),∀
3
(�

(-(
0),

!
(3)

)→
�
(-2

(0)
,3
))

8�
(-2

(0)
,�
)
∀ &

�
(0,

!
2 (�

)),
�
(0,

!
2 (�

))
→

�
(-(
0),

!
(�)

),∀
2
∀3

(�
(2,

!
(3)

)→
�
(-(

2
),3

))
8�

(-2
(0)

,�
)

∀ &
�
(0,

!
2 (�

)),
∀3

(�
(0,

!
(3)

)→
�
(-(
0),

3
)),

∀2
∀3

(�
(2,

!
(3)

)→
�
(-(

2
),3

))
8�

(-2
(0)

,�
)

∀ &
�
(0,

!
2 (�

)),
∀2

∀3
(�

(2,
!
(3)

)→
�
(-(

2
),3

)),
∀2

∀3
(�

(2,
!
(3)

)→
�
(-(

2
),3

))
8�

(-2
(0)

,�
)
� &

�
(0,

!
2 (�

)),
∀2

∀3
(�

(2,
!
(3)

)→
�
(-(

2
),3

))
8�

(-2
(0)

,�
)
∀ &

∀3
�
(0,

3
),∀

2
∀3

(�
(2,

!
(3)

)→
�
(-(

2
),3

))
8�

(-2
(0)

,�
)

Fi
gu
re
2.9
:P
ro
of
us
ed
in
Ex
am
pl
e
2.3
.1.

29

2 Proofs with induction

Wewant to associate to this Herbrand sequent a set of terms . One potential
choice would be to treat the predicate symbols and logical connectives of
 as
function symbols, and negate the formulas in the succedent:

{� (0, ! 2(�)),
� (0, ! 2(�)) → � (- (0), ! (�)),
� (- (0), ! (�)) → � (-2(0), �),
¬� (-2(0), �)}

However this representation is large and computationally unwieldy, so we
encode formulas instances as term by introducing a new function symbol for
each formula:

Definition 2.4.1. Let ∀21 K1, . . . ,∀2' K' 8 ∃2'+1 K'+1, . . . , ∃2(K(be a :1-
sequent. Then we associate to each formula K# a fresh function symbol ,#
(whose type is such that ,# (2#) has type)).

• The formula instance K# [2#\.] encodes to the term ,# (.), which we write
as � (K# [2#\.]) = ,# (.).

• Terms of the form ,# (.) for some # where . does not contain , $ for any $

are called decodable

Example 2.4.1. The formula instance � (- (0), ! (�))→� (-2(0), �) encodes to the
term � (� (- (0), ! (�)) → � (-2(0), �)) = ,2(- (0), �). The term ,2(-9(�), ! (- (0)))
is decodable, but ,2(,1, 0) and ,27(0) are not.
We can now extend this term encoding to sequents as well.

Definition 2.4.2. Let 5 8 6 be a :1-sequent.

• If 5 0 8 60 is a sequent of formula instances of 5 8 6, then 5 0 8 60

encodes to the set of terms � (5 0 8 60) = {� (K) | K ∈ 5 0 ∪ 60}.

• A set of terms is called decodable if all . ∈ are decodable.

• Given a decodable set of terms , we define � () as the unique sequent
such that � (� ()) = .

30

2.5 Vectorial totally rigid acyclic tree grammars

Example 2.4.2. The Herbrand sequent of Example 2.3.1 encodes to the following
language: � (
) = {,1(! 2(�)), ,2(0, ! (�)), ,2(- (0), �), ,3}
We define the language of a cut-free proof to be the encoded Herbrand

sequent:

Definition 2.4.3. Let G be a cut- and induction-free LK(�)-proof of a :1-
sequent 5 8 6. Then we define the Herbrand language (G) = � (5 0 8 60)
where 5 0 8 60 is the Herbrand sequent as in Theorem 2.3.1.

Example 2.4.3. For the LK(∅)-proof G from Example 2.3.1, we have (G) =

{,1(! 2(�)), ,2(0, ! (�)), ,2(- (0), �), ,3}.

2.5 Vectorial totally rigid acyclic tree grammars

In this section we will define a special class of tree grammars called vectorial
totally rigid acyclic tree grammars, or VTRATGs for short. These are different
from regular tree grammars (as presented for example in [23]) in two ways:
nonterminals are vectors, and the derivation relation is highly restricted. The
terminology of rigidity goes back to a similar restriction on the derivation
relation which was introduced with rigid tree automata [60].
Non-terminals are special variables. We will write T (: ∪� ∪�) for the set

of terms containing constants (including function symbols) from a signature : ,
variables from � , and nonterminals from � ; the set of constants is always
disjoint from the set of variables. We write ! /(∈ : if the function symbol !
has arity (. Non-terminals are special variables, and variables are nullary
function symbols.

Definition 2.5.1. Let : be a set of function symbols with arity. A VTRATG	

is given by a tuple 	 = (�, :, �,�):

1. � ∈ � is the start symbol.

2. � is a finite set of nonterminal vectors. A nonterminal vector is a
finite sequence of nonterminals, and a nonterminal is a nullary function
symbol. The nonterminals need to be pairwise distinct.

31

2 Proofs with induction

3. : is a finite signature such that : ∩ � = ∅.

4. � is a finite set of vectorial productions. A vectorial production is a pair
� → . , where � ∈ � is a nonterminal vector and . = (.1, . . . , .%) is a
vector of terms of the same length as as �, and .# has the same type as
�# for all # ≤ % .

5. there exists a strict linear order ≺ on the nonterminal vectors such that
� ≺ � whenever � → . ∈ � for some . and $, % such that . $ contains the
nonterminal �% .

The last condition for the productions expresses the requirement that 	 is
acyclic.

Example 2.5.1. With �, :, � defined as follows, 	 = (�, :, �,�) is a VTRATG:

� = {(�), (�1, �2)},
: = {! /3, �/0, �/0, /0},
� = {(�) → (! (�1, �2, �2)), (*1)

(�) → (! (�2, �1, �1)), (*2)
(�1, �2) → (�, �) (*3)
(�1, �2) → (�,)}. (*4)

We will often omit the parentheses for nonterminal vectors that consist
of only a single nonterminal, i.e. we write � instead of (�). In addition, we
typically only specify the productions of a VTRATG, leaving �, :, � implicit.
We would then just define 	 to be the VTRATG with the productions:

�→ ! (�1, �2, �2) | ! (�2, �2, �1)
(�1, �2) → (�, �) | (�,)

We will compute the language generated by 	 in the next section, in Exam-
ple 2.6.7.

Sometimes we will consider VTRATGs where every nonterminal vector has
length one. These non-vectorial VTRATGs are called TRATGs (totally rigid
acyclic tree grammars):

32

2.6 Derivations in VTRATGs

Definition 2.5.2. A TRATG is a VTRATG	 = (�, :, �,�) such that all non-
terminals vectors � ∈ � are of length |� | = 1.

There are several reasonable ways to measure the size of a grammar, e.g. we
could count the number of symbols in a textual representation. However, for
our applications the most natural measurement that we will use by default is
the number of productions. The number of productions will correspond the
number of quantifier inferences in the simple proof described by the VTRATG
(as we will see in Lemma 2.7.4). Counting the numbers of productions is also
the size measure used by Bucher [15] in descriptional complexity.

Definition 2.5.3. Let 	 = (�, :, �,�) be a VTRATG. Its size |	 | = |� | is the
number of its productions.

2.6 Derivations in VTRATGs

So far we have only defined VTRATGs, but not their language, that is, the
set of terms generated by a VTRATG. A term is generated by a VTRATG if
there is a derivation of the term. There are several equivalent ways to define
derivations (and hence languages of VTRATGs):

(
1⇒) A derivation is a finite sequence of terms, such that in every step a

nonterminal is replaced by the right-hand side of a production, using at
most one production for every nonterminal vector.

(
2⇒) A derivation is a finite sequence of terms, such that in every step a

nonterminal is replaced by the right-hand side of a production, fulfilling
a certain rigidity condition. (This definition only works for TRATGs.)

(
3⇒) A derivation is a finite subset of the productions, containing at most one

production for every nonterminal vector. The derived term is then given
by an iterated substitution using the productions.

Let us begin with the definition using
1⇒: we first define a single-step deriva-

tion relation
1⇒* , which describes replacing a single nonterminal using the

33

2 Proofs with induction

production * . This single-step relation is then extended to the rigid deriva-
tion relation

1⇒
,

	 , which is a finite sequence of
1⇒* steps, using at most one

production per nonterminal vector.

Definition 2.6.1. Let	 = (�, :, �,�) be a VTRATG, * = �→ - a production,
and .1, .2 terms. Then .1

1⇒* .2 iff there exists a position + ∈ Pos(.1) such that
.1 |+ = �# and .2 = .1 |* [-#] for some # . We define .1 1⇒	 .2 iff there exists a
production * ∈ � such that .1

1⇒	 .2.

Example 2.6.1 (continuing Example 2.5.1).

�
1⇒*1 ! (�1, �2, �2)

1⇒*3 ! (�, �2, �2)
1⇒*3 ! (�, �2, �)

1⇒*3 ! (�, �, �)
A set of pairs � is called a partial function if � = �0 for all (�, �) ∈ � and

(�, �0) ∈ � . Since productions are by definition pairs, a set of productions is
a partial function if and only if it contains at most one production for every
nonterminal vector.
Example 2.6.2 (continuing Example 2.5.1). {*1, *3} is a partial function, but
{*3, *4} is not.
Definition 2.6.2. Let 	 = (�, :, �,�) be a VTRATG, and -, . ∈ T (: ∪ �).
Then -

1⇒
,

	 . iff there exists a sequence - = .1
1⇒*1 .2

1⇒*2 . . .
1⇒* .(= . such

that the set {*1, . . . , *(} ⊆ � is a partial function.

Such a sequence of terms is called a derivation.

Example 2.6.3 (continuing Example 2.5.1). �
1⇒
,

	 ! (�, �, �) since the set of
productions {*1, *3} used in the sequence in Example 2.6.1 is a partial function.
Using Definition 2.6.2, we will be able to compute () = {. ∈ T (:) | � 1⇒

,

	

.} = {! (�, �, �), ! (�, �, �), ! (�, ,), ! (, �, �)}. Note that � & 1⇒
,

	 ! (�, ,), since
we would need to use two different productions for �.

The size of a
1⇒-derivation is bounded by the size of the term and the number

of nonterminal vectors in the grammar:

Lemma 2.6.1. Let 	 = (�, :, �,�) be a VTRATG, and -, . ∈ T (: ∪ �). Then

(≤ |Pos(.) | |� | for any sequence - = .1
1⇒*1 .2

1⇒*2 . . .
1⇒* .(= . with *# ∈ �

for all # .

34

2.6 Derivations in VTRATGs

Proof. Each of the steps replaces a nonterminal with its right-hand side at a
single position. There are at most |Pos(.) | such positions. It is possible that
we have multiple steps that replace at the same position, for example with
productions of the form � →� . However due to the acyclicity of 	 , this can
only happen |� | times per position. �

For TRATGs, we can use a slightly more interesting side condition on the
sequence of terms .1, . . . , .(in Definition 2.6.2. Instead of characterizing the
set of used productions as a partial function, we can give a side condition on
the equality of subterms of . = .(: if a nonterminals occurs twice as .# |+ = .# 0 |+0 ,
then both occurrences expand to the same subterm . |+ = . |+0 in . :

Definition 2.6.3. Let	 = (�, :, �,�) be a TRATG, and -, . ∈ T (:∪�). Then
-

2⇒
,

	 . iff there exists a sequence - = .1
1⇒*1 .2

1⇒*2 . . .
1⇒* .(= . such that

*# ∈ � for all 1 ≤ # ≤ (, and: for any 1 ≤ #, #0 ≤ (and positions +, +0 where
.# |+ = .# 0 |+0 is a nonterminal, we have . |+ = . |+0 .

The side condition on the sequence in Definition 2.6.3 is called total rigidity
and is named after a corresponding notion for regular tree automata [61].

Example 2.6.4. Let	 be the TRATGwith the productions *1 = �→! (�, �), *2 =
�→� and *3 = �→� . In the sequence�

1⇒*1 ! (�, �)
1⇒*2 ! (�, �)

1⇒*2 ! (�, �),
the nonterminal � occurs three times as � = .2 |1 = .2 |2 = .3 |2. The subterms of
! (�, �) |1 = � and ! (�, �) |2 = � are equal, and hence�

2⇒
,

	 . As a counterexample,
consider the sequence �

1⇒*1 ! (�, �) 1⇒*2 ! (�, �) 1⇒*3 ! (�, �). It does not
fulfill the rigidity condition in Definition 2.6.3: we have � = .2 |1 = .3 |2 but
! (�, �) |1 = � ≠ ! (�, �) |2 = � .

Remark 2.6.1. We cannot use this rigidity condition for derivations in VTRATGs
as this would result in a different notion of language. Consider the VTRATG	

with the productions�→! (�,�) and (�,�)→(�,�) | (,). Then the sequence
� ⇒2

	 ! (�,�) ⇒2
	 ! (�,�) ⇒2

	 ! (�,) fulfills the rigidity condition, but it
uses two different productions for the nonterminal vector (�,�) and hence
derives a term ! (�,) ∉ ().
The third way to define derivations,

3⇒, directly characterizes the used
productions. We associate to every partial function � 0 ⊆ � of the produc-

35

2 Proofs with induction

tions a substitution I� 0. The derivable terms are then the images of the start
nonterminal � under these substitutions.

Definition 2.6.4. Let 	 = (�, :, �,�) be a VTRATG, and � 0 ⊆ � a partial
function. We can order the nonterminal vectors on the left-hand sides of � 0

as dom(� 0) = {�1 ≺ �2 ≺ · · · ≺ �(} (where ≺ is as in Definition 2.5.1). Then
we define I� 0 = [�1\.1] · · · [�(\.(] where .# is the unique vector of terms such
that �# → .# ∈ � 0 for 1 ≤ # ≤ (.

Example 2.6.5 (continuing Example 2.5.1). The nonterminal vectors are ordered
as � ≺ � and we have I{*1,*3} = [�\! (�1, �2, �2)] [�1\�, �2\�].
Remark 2.6.2. The reason we use partial functions and not just functions in
Definition 2.6.4 is because the VTRATG might contain a nonterminal vector
� such that there is no production of the form � → There are nontrivial
examples of such VTRATGs: consider for example the VTRATG 	 with the
productions � → � and (�,�) → (�,) (where � is a nonterminal vector,
which clearly does not have any associated productions). Then () = { }.
The term has the⇒3

	 -derivation {�→�, (�,�) → (�,)}. We cannot make
this partial function total since there is no production for � .

Lemma 2.6.2. Let	 = (�, :, �,�) be a VTRATG, and � 0 ⊆ � a partial function.
Then � $I� 0 = - $I� 0 for any $ and � → - ∈ � 0.

Proof. With �1 ≺ · · · ≺ �(as in Definition 2.6.4, let # be such that � = �# and
- $ = .#, $. Then:

� $I� 0 = � $ [�1\.1] · · · [�(\.(]
= � $ [�2\.2] · · · [�(\.(]
...

= � $ [�#\.#] · · · [�(\.(]
= - $ [�#+1\.#+1] · · · [�(\.(]
= - $ [�#\.#] · · · [�(\.(]
...

= - $ [�1\.1] · · · [�(\.(]
= - $I� 0

36

2.6 Derivations in VTRATGs

The substitutions [�%\.%] are the identity on � $ for % < # , and the identity
on - $ for % ≤ # , since �% and FV(� $) (resp., FV(- $)) are disjoint. �

Definition 2.6.5. Let 	 = (�, :, �,�) be a VTRATG, and . ∈ T (:). Then
�

3⇒	 . iff there exists a partial function � 0 ⊆ � such that . = �I� 0 .

Example 2.6.6 (continuing Example 2.6.5). �
3⇒	 ! (�, �, �) since �I{*1,*3} =

! (�, �, �).

Lemma 2.6.3. Let � 0 be a set of productions that is a partial function, and .
1⇒* -

where * ∈ � 0. Then .I� 0 = -I� 0 .

Proof. Let � → , ∈ � 0 and $, + be such that . |+ = � $ and . |+ [, $] = - . It
suffices to show that . |+I� 0 = - |+I� 0 since that is the only common position at
which the two terms differ. This is the case iff � $I� 0 = - $I� 0 , which is true by
Lemma 2.6.2. �

Theorem 2.6.1. Let	 = (�, :, �,�) be a VTRATG, and . ∈ T (:) a term. Then
the following are equivalent:

1. �
1⇒
,

	 .

2. �
3⇒	 .

Proof. 1⇒ 2. By Definition 2.6.2, there exists a sequence � = .1
1⇒*1 .2

1⇒*2

. . .
1⇒* .(= . such that the set � 0 = {*1, . . . , *(} ⊆ � is a partial function. By

Lemma 2.6.3, .#I� 0 = .#+1I� 0 for any 1 ≤ # ≤ (and hence �I� 0 = .(I� 0 = . .
2⇒ 1. By Definition 2.6.5, there exists a partial function � 0 ⊆ � such that

. = �I� 0 = [�1\-1] · · · [�(\-(]. Define a sequence .1 · · · .(that performs this
substitution using

1⇒-steps with the productions in � 0. �

Theorem 2.6.2. Let 	 = (�, :, �,�) be a TRATG, and . ∈ T (:) a term. Then
the following are equivalent:

1. �
1⇒
,

	 .

2. �
2⇒
,

	 .

37

2 Proofs with induction

3. �
3⇒	 .

Proof. We have already shown 1⇔ 3 in Theorem 2.6.1.
1⇒ 2. A

1⇒-derivation already fulfills the total rigidity condition of Defini-
tion 2.6.5 since .# |+I� 0 = . |+ for any # and position + by Lemma 2.6.3.
2 ⇒ 3. By Definition 2.6.3, there exists a sequence � = .1

1⇒*1 .2
1⇒*2

. . .
1⇒* .(= . such that . |+ = . |+0 whenever .# |+ = .# 0 |+0 is a nonterminal.

Hence we can define a substitution H in such a way that .# |+H = . |+ for all
and positions + ∈ Pos(.#). Let � 0 ⊆ {*1, . . . , *(} be a partial function that
contains a production for every nonterminal occurring in .1, . . . , .(. Let � =

{�1 ≺ �2 ≺ · · · ≺ �%}. We now show that � $H = � $@� 0 for every $ by reverse
induction on $, that is, starting with $ = % . Let � $ → - $ ∈ � 0. Then there is
an # such that .#

1⇒� 	→- 	 .#+1 and hence � $H = - $H . We also have � $I� 0 = - $I� 0

since � $ → - $ ∈ � 0. Now - $H = - $I� 0 by the induction hypothesis since - $ only
contains nonterminals � such that � $ ≺ � . Thus � $H = � $I� 0 by transitivity.
Finally we have �I� 0 = �H = . and hence �

3⇒ . . �

Theorems 2.6.1 and 2.6.2 show that all the three ways to define derivations
are equivalent in the sense that they allows us to derive the same set of terms.
Formally, we pick

3⇒ as the official definition of derivation:

Definition 2.6.6. Let 	 = (�, :, �,�) a VTRATG. A derivation @ in 	 is a
subset @ ⊆ � of the productions such that @ is a partial function and �I� 0 ∈
T (:). The derivation @ derives the term �I� 0 .

We will often implicitly use the derivation @ as a substitution: that is, we
write �@ as an abbreviation for �I@ .

Definition 2.6.7. Let	 = (�, :, �,�) be a VTRATG. The language generated
by 	 is the set of derivable terms () = {. ∈ T (:) | � 3⇒	 .}.
Example 2.6.7 (continuing Example 2.5.1). We can compute the language of 	
as follows: () = {! (�, �, �), ! (�, ,), ! (�, �, �), ! (, �, �)}.
The languages of VTRATGs are finite. In fact the language of a VTRATG

contains at most exponentially more terms than the number of productions in
the VTRATG:

38

2.7 Grammars for simple proofs

Lemma 2.6.4. Let 	 = (�, :, �,�) be a VTRATG, and for every � ∈ � define
�� = {* ∈ � | ∃. * = � → .}. Then |() | ≤ �

�∈�,��≠∅ |�� |.

Proof. By counting the derivations: observe that if @ ⊆ @0 for two deriva-
tions @, @0 in 	 , then �@ = �@0. Hence we can assume that a derivation @ is
defined for all nonterminal vectors � such that �� ≠ ∅. Hence we need to count
the number of subsets @ ⊆ � that are functions with domain {� ∈ � | �� ≠ ∅}.
This number is exactly the stated bound. �

If a VTRATG contains a production for every nonterminal vector, then we
can also give another equivalent definition of ():

Lemma 2.6.5. Let 	 = (�, :, �,�0) be a VTRATG with the nonterminals � =

{�0 ≺ �1 ≺ · · · ≺ �(} such that for every # there is a production �# → . ∈ � for
some . . Then:

() = {�0 [�0\-0] [�1\-1] · · · [�(\-(] | ∀# �# → -# ∈ �}

Proof. The substitution is I� 0 where � 0 ⊆ � such that � 0 is a total function.
Thus the right-hand side is included in (). Since �@ = �@0 for derivations
@ ⊆ @0 and there is a production for every nonterminal vector, we can extend
any derivation to a total function. Therefore () is also included in the
right-hand side. �

2.7 Grammars for simple proofs

We will now look at the class of proofs described by VTRATGs. The main
restriction is that the cut formulas in the proofs may not contain quantifier
alternations. In addition, we require that the cut formulas are prenex. Formally,
we call this class of proofs the simple proofs:

Definition 2.7.1. A simple proof is an induction-free LK(�)-proof such that:

1. All cut formulas are of the form ∀2 K (2) or ∃2 K (2) where K (2) is
quantifier-free.

2. The end-sequent is a :1-sequent.

39

2 Proofs with induction

3. Whenever a formula with strong quantifiers occurs in the proof then it
is immediately preceded by an ∀, or ∃& inference.

4. Every strong quantifier inference (∀, , ∃&) has a different eigenvariable,
none of the eigenvariables occur in the end-sequent.

5. No weakening inferences are applied to quantified formulas, unless the
weakened formula is an ancestor of a cut-formula or a formula in the
end-sequent.

Only the first restriction is significant. Restricting the logical complexity of
the cut formulas has an effect on proof size. While we can of course always
reduce cuts of higher complexity to the cuts allowed in simple proofs, this
incurs a size increase.
The second restriction on the end-sequent simplifies the theory since we

do not have to deal with eigenvariables from the end-sequent. We can al-
ways Skolemize and prenexify the end-sequent, producing an equi-satisfiable
sequent.
The restriction on the strong quantifiers. It only has a local effect on the cut

inferences because the only strong quantifiers in the proof occur in the cuts. It
means that the cuts are of the following form:

5 8 6,K (=) ∀∗,5 8 6,∀2 K (2) ∀2 K (2), 9 8 7
cut

5, 9 8 6, 7
That is, the cut inference always occurs together with the ∀, -block (or ∃& -

block) as an inseparable package. This also simplifies the correspondence
between proofs and grammars, because now there is only one vector of eigen-
variables for each cut. The following cut is hence forbidden:

M 8 K (=) ∀,M 8 ∀2 K (2)
A 8 K (>) ∀,A 8 ∀2 K (2) ∧&

M ∧ A 8 ∀2 K (2) ∀2 K (2) 8 L
cut

M ∧ A 8 L

The restriction on the eigenvariables is a purely technical one, known as
“regularity” in the literature. (We will avoid this terminology here to avoid

40

2.7 Grammars for simple proofs

confusion with another interesting kind of regularity, namely that a family
of instance proofs comes from a proof with induction.) Requiring the eigen-
variables to be different means that we can reuse them as the nonterminals
in the VTRATG that corresponds to the proof. We can always rename the
eigenvariables to fulfill this condition.
The last restriction on weakening inferences on quantified formulas ensures

that the number of quantifier inferences in the proof corresponds to the number
of productions in the grammar (up to a constant factor). We can always ensure
this restriction by permuting the weakening inferences downwards, this only
decreases the size of the proof. Another way to satisfy this restriction is to
always instantiate all quantifiers of a formula at once (as if the quantifier block
was a single quantifier), with no other inferences in between. An example of a
forbidden weakening is the following:

5 8 6 1&∀3 K (�,3), 5 8 6 ∀&∀2∀3 K (2,3), 5 8 6

Lemma 2.7.1. Let G be a simple proof and G
cut→G 0, then G 0 is also a simple proof

(up to a potential renaming of eigenvariables).

Proof. Each of the restrictions is preserved under cut-reduction, except for
the condition on the eigenvariables. This may be violated in a reduction of a
contraction inference, which duplicates a subproof. �

In Section 2.4 we introduced the isomorphism between a subset of terms
and formula instances. We called the terms that encode formula instances
decodable (Definition 2.4.1). We now extend this notion to VTRATGs:

Definition 2.7.2. Let � be a :1-sequent, and 	 = (�, :,�, �) be a VTRATG.
Then 	 is called decodable iff all the following are true:

• � has type)

• For every production �→ . ∈ � , the right-hand side . is decodable.

• For every production �→ . ∈ � where � ≠ �, the right-hand side . does
not contain ,# for any # .

41

2 Proofs with induction

Example 2.7.1. The VTRATG with the productions {�→,1(�) | ,2(! (�)), �→
� | �} is decodable, the one with the productions {� → �, � → ,2(�)} is not
(even though its language {,2(�)} would be decodable).
One consequence of this definition is that the language of a decodable

VTRATG is decodable:

Lemma 2.7.2. Let 	 be a decodable VTRATG, then () is decodable as well.

We can now assign to every simple proof a VTRATG containing the data of
the quantifier inferences:

Definition 2.7.3. Let G be a simple proof. We define the VTRATG 	 (G) with
the start symbol � containing the following productions:

• For every quantified cut with the eigenvariables = and a weak quantifier
instance of the cut-formula with the terms . , we add the production
= → . : (and analogously for existential formulas)

· · · 8 · · · , K (=) ∀∗,· · · 8 · · · ,∀2 K (2)

K (.), · · · 8 · · · ∀∗
&
, . . .∀2 K (2), · · · 8 · · ·

∀2 K (2), · · · 8 · · ·
cut· · · 8 · · ·

• For every instance K (.) of a formula of the end-sequent, we add the
production �→ � (K (.)): (and analogously for existential formulas)

K (.), · · · 8 · · · ∀∗
&
, . . .∀2 K (2), · · · 8 · · ·

∀2 K (2), · · · 8 · · ·

42

2.7 Grammars for simple proofs

Example 2.7.2. Consider the following LK(∅)-proof of the sequent ∀2 � (2) 8
� (! (�)):

ax
� (! (=)) 8 � (! (=)) ∀&∀2 � (2) 8 � (! (=)) ∀,∀2 � (2) 8 ∀2 � (! (2))

ax
� (! (�)) 8 � (! (�)) ∀&∀2 � (! (2)) 8 � (! (�))

cut∀2 � (2) 8 � (! (�))
The VTRATG 	 (G) as defined by Definition 2.7.3 then has the following
productions:

�→ ,1(! (=)) | ,2
= → �

The language it generates is ((G)) = {,1(! (�)), ,2}. This language decodes
to the Herbrand sequent � (! (�)) 8 � (! (�)).
It is easy to see that	 (G) is decodable:

Lemma 2.7.3. Let G be a simple proof. Then	 (G) is decodable.

The size of 	 (G) is proportional to the number of quantifier inferences |G |+ ,
where the constant factor only depends on the end-sequent and the maximum
size of a non-terminal vector in 	 (G). The difference is due to non-terminal
vectors: one production like (�1, �2) → (., -) typically corresponds to two
quantifier inferences in the proof. The bound of the following theorem can be
made precise by using more sophisticated size measures [32].

Lemma 2.7.4. Let G be a simple proof, and	 (G) = (�, :, �,�). Then |	 (G) | −
� ≤ |G |+ ≤ |	 (G) | · � · max�∈� |� |, where � is the maximum number of
quantifiers in a formula of the end-sequent of G , and� is the number of quantifier-
free formulas in the end-sequent.

Let us conclude by stating the main theorem connecting simple proofs and
their corresponding VTRATGs, namely that cut-reduction is compatible with
language generation:

Lemma 2.7.5 ([46]). Let G, G 0 be simple proofs such that G
cut→G 0, then ((G)) ⊇

((G 0)). If G ne→ G 0, then ((G)) = ((G 0)).

43

2 Proofs with induction

Corollary 2.7.1. Let G be a simple proof, then ((G)) is a � -tautology.

This correspondence has since been extended to a larger class of proofs, with
no restrictions on the quantifier complexity of the cut formulas [2]. However
as the cuts become more complicated, the grammars used to describe the
quantifier inferences need to become more complicated as well. The class of
grammars used for the general case is a special form of higher-order recursion
schemes.

Theorem 2.7.1 ([2, Lemma 7.2]). For every induction-free proof G of a :1-
sequent such that all cut formulas in G are prenex there is a higher-order recursion
scheme 	 (G), where this function 	 has the property that ((G)) ⊇ ((G 0))
whenever G

cut→ G 0.

2.8 Grammars for simple induction proofs

2.8.1 Simple induction problems

We can also assign grammars to another class of proofs, namely some proofs
containing induction of the following kind of sequents:

Definition 2.8.1. A simple induction problem is a sequent 5 8 ∀2 K (2) where
5 is a list of universally quantified prenex formulas, K (2) quantifier-free, and
the quantifier ∀2 ranges over an inductive sort H .

Example 2.8.1. ∀3 � (0, 3),∀2∀3 (� (2, ! (3)) → � (- (2), 3)) 8 ∀2 � (2, �)
For technical reasons, we only consider the case of a single universal quan-

tifier in the conclusion. We can still treat problems that would naturally be
stated using multiple quantifiers by instantiating all but one quantifier with
fresh constants: e.g. for commutativity we get the simple induction problem
5 8 ∀2 2 + � = � + 2 .
Given such a simple induction problem 5 8 ∀2 K (2), we will consider in-

stance problems 5 8 K (.) for terms . . If these terms are built from constructors,
then we will be able to unfold a proof with induction of 5 8 ∀2 K (2) into a
proof with cuts. The following definition makes this notion concrete:

44

2.8 Grammars for simple induction proofs

Definition 2.8.2. Let H be an inductive type with constructors �1, . . . , �(. The
set of constructor terms of type H is the smallest set of terms containing for
each constructor �# all terms �# (,1, . . . , ,#) whenever it contains all , $ where $
is a recursive occurrence in �# . A free constructor term is a constructor term
where all subterms of a type other than H are pairwise distinct fresh constants.
We denote the set of free constructor terms by C.
Example 2.8.2. For natural numbers, the terms 0, - (0), - (- (0)) are free construc-
tor terms, but - (2) is not; all constructor terms are already free constructor
terms. If we consider lists of natural numbers with the constructors nil and
cons, then nil, cons(�1, nil), cons(�1, cons(�2, nil)) are free constructor terms,
but cons(2 + 2, cons(2, nil)) is a constructor term that is not a free constructor
term.

Definition 2.8.3. Let 5 8 ∀2 K (2) be a simple induction problem, and . a
free constructor term of type H . Then 5 8 K (.) is the instance problem for the
parameter . .

Example 2.8.3. The Example 2.3.1 that we considered earlier was an instance
problem for Example 2.8.1.

2.8.2 Simple induction proofs

We can now define the class of simple induction proofs, these consist of a
single induction followed by a cut. Note that the end-sequents of the proofs G#
and G� are � -tautologies.

Definition 2.8.4. Let H be an inductive type, 5 8 ∀2 K (2) a simple induction
problem,M (2,1,3) a quantifier-free formula, 51, . . . , 5(, 5� quantifier-free in-
stances of 5 , and .#, $,% , /% term vectors. Then a simple induction proof is a proof
G of the following form, where G1, . . . , G(, G� are cut-free proofs:

(G 0
1)
... · · ·

(G 0
()
...
indH

5 8 ∀3 M (=, =,3)

(G�)
5�,M (=, =,/%), · · · 8 K (=) ∀∗

&
,1∗

&5,∀3 M (=, =,3) 8 K (=) cut, �∗
&5 8 K (=) ∀,5 8 ∀2 K (2)

45

2 Proofs with induction

where G 0
=

(G#)
5#,M (=, F#,#� , .#,#� ,%), · · · 8 M (=, �# (F#), ?) ∀∗

&
,1∗

&
, �∗

&
,∀∗,

5,∀3 M (=, F#,#� , 3), · · · 8 ∀3 M (=, �# (F#), 3)
Example 2.8.4. We consider a simple induction proof of Example 2.8.1 with the
induction formula ∀3 M (=, F,3) whereM (=, F,3) = � (F,?). Formally the proof
contains the following instances and terms:

52 = {� (F, ! (?)) → � (- (F), ?)}
51 = {� (0, ?)}
5� = ∅

.2,1,1 = ! (?)
/1 = �

Lemma 2.8.1. Let 5 8 ∀2 K (2) be a simple induction problem. If there exists a
simple induction proof G for the simple induction problem, then for every . there
exists a first-order proof G. for the instance problem with parameter . .

Proof. Inspecting Definition 2.8.4, there is a subproof G 0 of G with the end-
sequent 5 8 K (=). By substitution we obtain a proof G 00 = G 0[=\.] of 5 8 K (.).
This proof G 00 contains a single induction inference with the main term . . Since
. is a free constructor term, we can unfold the induction inference in G 00 in at
most |. | steps using the ind→ reduction, yielding G 00 ind→ G. . �

2.8.3 Induction grammars

Just as sets of terms describe the quantifier inferences in proofs of the se-
quents of the instance problems (via their decoding to Herbrand sequents),
and VTRATG describe the quantifier inferences in the instance proofs with
cuts, we use induction grammars to describe the quantifier inferences in the
simple induction proof.

Definition 2.8.5. An induction grammar 	 = (J, =, (F�)�, ?, �) consists of:
1. the start nonterminal J of type) ,

2. a nonterminal = whose type H is an inductive sort,

46

2.8 Grammars for simple induction proofs

3. a family of nonterminal vectors (F�)� , such that for each constructor � of
the inductive sort H the term � (F�) is well-typed,

4. a nonterminal vector ? , and

5. a set of vectorial productions � , where each production is of the form
J → . [=, F#, ?] or ? → . [=, F#, ?] for some # .

Example 2.8.5. The induction grammar corresponding the simple induction
proof in Example 2.8.4 has the following productions:

J → ,1(?) | ,2(F,?) | ,3
? → ! (?) | �

An induction grammar generates a family of languages: each constructor
term induces a language.

Definition 2.8.6. A family (.).∈� of languages is a function from a set of free
constructor terms � to languages.

We will not directly define derivations and the generated language for
induction grammars. Instead we will define an instantiation operation that
results in a VTRATG, and define the language of the induction grammar as
the language of the VTRATG obtained via instantiation. The instantiation
operation depends on a constructor term , as parameter, in the same way as
the instance problem 5 8 K (,) uses a constructor term. Instantiation of an
induction grammar into a VTRATG closely mirrors how the induction rule is
unfolded into a series of nested cuts in Lemma 2.8.1.

Definition 2.8.7. Let 	 = (J, =, (F�)�, ?, �) be an induction grammar, and ,
a constructor term of the same type as = . The instance grammar � (, ,) =

(J, � , � 0) is a VTRATG with nonterminal vectors � = {J} ∪ {?- | - � , } and
productions � 0 = {*0 | ∃* ∈ � (* � *0)}. The instantiation relation * � *0 is
defined as follows:

• J → . [=, F#, ?] � J → . [,, -, ?�� (-)] for �# (-) � ,

• ? → . [=] � ?- → . [,] for - � ,

47

2 Proofs with induction

• ? → . [=, F#, ?] � ?- 	 → . [,, -, ?�� (-)] for �# (-) � , ,
where $ is a recursive occurrence in �#

Example 2.8.6. Let us instantiate the induction grammar in Example 2.8.5 with
the parameter - (- (0)). The instance grammar � (, - (- (0))) has the nontermi-
nals J , ?0, ?- (0) , and ?- (- (0)) , and contains all productions on the right-hand side
(we use the abbreviation * � *01 | *02 for * � *01 ∧ * � *02).

J → ,1(?) � J → ,1(?0) | J → ,1(?- (0)) | J → ,1(?- (- (0)))
J → ,2(F,?) � J → ,2(0, ?- (0)) | J → ,2(- (0), ?- (- (0)))
? → ! (?) � ?0 → ! (?- (0)) | ?- (0) → ! (?- (- (0)))

? → � � ?0 → � | ?- (0) → � | ?- (- (0)) → �

We can now define the language in terms of the instance grammar. There
is a different language for each constructor term. Alternatively, we can also
think of the induction grammar generating a family of languages.

Definition 2.8.8. Let 	 = (J, =, (F�)�, ?, �) be an induction grammar, and . a
constructor term of the same type as = . Then we define the language for the
parameter . as (, .) = (� (, .)).
Example 2.8.7. The induction grammar in Example 2.8.5 produces the following
language for the parameter - (- (0)), which decodes to a tautology:

(, - (- (0))) = {,1(�), ,1(! (�)), ,2(! (! (�)),
,2(0, �), ,2(0, ! (�)), ,2(- (0), �),
,3}

In Example 2.3.1 we have already seen an instance proof of the sequent of our
running example. Its Herbrand sequent uses only a subset of the instances
here. We have � (
) ⊆ (, - (- (0))) for the encoded set of terms we computed
in Example 2.4.2.

Recall that ((G), .) is a set of terms that encodes a Herbrand sequent for
the instance problem with parameter . . The computation of the Herbrand
sequent on the term-level using grammars closely mirrors the Herbrand se-
quents obtained via induction-unfolding and cut-elimination on the level of

48

2.8 Grammars for simple induction proofs

proofs (that is, (G∗
.)): the language generated by the grammar is a superset of

the language extracted from the proof. That ((G), .) is (in general) a strict
superset of (G∗

.) (and not exactly equal) is a subtlety introduced by weakening
inferences in G : quantifier inferences may be deleted when reducing weaken-
ing inferences during cut-elimination. But the grammar still generates these
deleted terms, since it intentionally abstracts away from the propositional
reasoning of the proof.

Theorem 2.8.1. Let G be a simple induction proof and . an instance term. Then
((G), .) ⊇ (G∗

.).

G G. G∗
.

	 (G) 	 (G.) ((G), .) ⊇ (G∗
.)

ind cut

Proof. Unfolding the induction in G yields a proof G. without induction as in
Lemma 2.8.1. The instantiation relation in Definition 2.8.7 is chosen so that
� ((G), .) ⊇ 	 (G.). Then ((G), .) = (� ((G), .)) ⊇ ((G.)) ⊇ (G∗

.) for
any G∗

. such that G.
cut→ G∗

. by Lemma 2.7.5. �

In particular, Theorem 2.8.1 tells us that induction grammars extracted from
proofs produce tautological languages for every instance:

Definition 2.8.9. A family of languages (.).∈� is called (� -)tautological if .
is � -tautological for every . . An induction grammar 	 is called tautological if
((, .)).∈C is tautological, i.e., the language (, .) is� -tautological for every
constructor term . .

Corollary 2.8.1 (of Theorem 2.8.1). Let G be a simple induction proof. Then
the induction grammar 	 (G) is tautological.

Similar to Lemma 2.7.4 for the VTRATG of a simple proof, the quantifier com-
plexity of the simple induction proof G is related to the number of productions
|	 (G) | in the induction grammar:
Lemma 2.8.2. Let G be a simple induction proof, and 	 (G) = (J, =, (F�)�, ?, �).
Then |	 (G) | −� ≤ |G |+ ≤ � · |	 (G) | · |? |, where� and � are constant that only
depends on the end-sequent of G .

49

2 Proofs with induction

2.9 Reversing cut- and induction-elimination

In the previous sections we have seen that we can use grammars to compute
Herbrand sequents for proofs. For a proof with 91-cuts we can extract a
VTRATG whose language then decodes to a Herbrand sequent. For a simple
induction proof we can extract an induction grammar that for every parameter
generates a language that decodes to a Herbrand sequent.
An interesting application is to reverse this process. On the level of the

reduction relations of cut- and induction-elimination it is virtually hopeless
to reverse the reduction, even going back one step there are infinitely many
proofs that reduce in one step to the current one. Undoing the reduction of a
weakening inference, we would even need to choose an arbitrary subproof.
The concept that connects grammars and proofs is the one of formula

equations, which will collect the conditions necessary to produce a proof for a
given grammar. That is, we will assign to a grammar	 a formula equation;	

such that;	 has a quantifier-free solution iff	 is the grammar of a proof. We
will discuss these induced formula equations in more detail in Chapter 5, as
well as practically effective algorithms to solve them.

Definition 2.9.1. A formula equation ∃�1 . . . ∃�(< is a formula where< is
a first-order formula and �1, . . . , �(are second-order predicate variables. A
solution modulo the theory � is a substitution I of the predicate variables
�1, . . . , �(to first-order formulas such that � entails<I .

A solution is called quantifier-free if �1I, . . . , �(I are all quantifier-free.

Example 2.9.1. The FE < = ∃� ((� (�) → � (�)) ∧ (� (�) → � (�))) has the
solution [�\D2 � (2)] modulo any theory � . The predicate variable � could
stand for the quantifier-free matrix of a cut formula, solving the formula
equations then amounts to finding a suitable matrix for the cut formula.

On the level of grammars, the reversal of cut- and induction-elimination
is feasible in practice. For simple proofs, this process of cut-introduction was
introduced in [51]. Starting from a Herbrand sequent of a cut-free proof G∗

encoded as a term language , we first find a VTRATG	 such that () ⊇ .
As the second step we need to find a simple proof G such that 	 (G) = 	 . This
is equivalent to solving the induced formula equation ;	 . (Remember that

50

2.10 Regularity and reconstructability

solution of the formula equation consists of the quantifier-free matrices of
the cut formulas in the simple proof). Given a VTRATG 	 whose language
is tautological (which it is because 	 ⊇ = (G∗)), we can always solve the
formula equation;	 , as we will see in Theorem 5.2.1. There are a number of
techniques to post-process these formulas to obtain short and human-readable
cut-formulas [48, 36]. In practice this algorithm can produce interesting cut
formulas, such as automatically synthesizing a lemma stating the transitiv-
ity of the order in a lattice, given a proof from only axioms for the meet
operation [36].
We can also use reverse the process of induction-elimination [31]. Here we

start with a family (#)#∈� of Herbrand sequents, one for the instance problem of
each parameter. First, we find a induction grammar	 such that ∀# (, #) ⊇ # .
Here we need to solve a more complicated formula equation in the second
step. The solution to this formula equation is the quantifier-free matrix of
the induction formula. This problem is much harder than the corresponding
problem in cut-introduction, and for some grammars there may not even exist
such a matrix (even though the language of the grammar is tautological for
each parameter, see Theorem 5.4.1 [31]).
We do not have to start with proofs obtained by induction-elimination either,

the languages # could also be produced by an automated theorem prover. This
combination produces an automated inductive theorem prover.

2.10 Regularity and reconstructability

On a theoretical level, we can also view the reversal of induction-elimination
of the preceding Section 2.9 as a way to recover the induction grammar of
a given simple induction proof from the Herbrand sequents of its induced
instance proofs, and finding a solution to the formula equation amounts to
recovering the induction formula. In this section we will study this problem
on a theoretical level, namely in how far it is decidable whether a family
of languages comes from induction-elimination, and whether we can the
induction-reversal on the level of grammars is computable. It turns out that this
reversal of induction-elimination is computable (in the limit). The interesting

51

2 Proofs with induction

question that we will hence address in the rest of this thesis is how to do
this in a feasible way in practice. We assume that � |= K is decidable for
quantifier-free formulas K .
We will consider two kinds of regularity of families of languages in this

section: one is whether the family can come from an induction grammar
(grammatical regularity), and the other is whether the family can come from
a simple induction proof. Let us first study the problem whether a family of
tautological languages can actually come from a simple induction proof, i.e., if
it is covered by the language of an induction grammar.

Definition 2.10.1. Let (.).∈� be a family of � -tautological languages. Then
(.).∈� is regular if and only if ∃G ∀. . ⊆ (G∗

.), and grammatically regular if
and only if ∃	 ∀. . ⊆ (, .).

Every regular family (.).∈� is also grammatically regular by Theorem 2.8.1.
Grammatical regularity is a statement purely on the level of formal languages,
it does not imply the existence of an induction formula. However, if there is
any simple induction proof for the problem at all, then grammatical regularity
and regularity are equivalent:

Theorem 2.10.1. Let (.).∈� be a grammatically regular family. Then (.).∈� is
regular if and only if there exists a simple induction proof for the problem.

Proof. If the family is regular then there exists a simple induction proof by
definition. For the other direction, assume that 	 is an induction grammar
covering the family and G is a simple induction proof with induction invariantK .
Consider the induction grammar 	0 = 	 ∪ 	 (G) (taking the union of the
productions). Since K is a solution for ;	 , it is easy to see that it is also a
solution for ;	 0. Hence we can construct a simple induction proof G 0 with
	 (G 0) = 	0 by Theorem 5.3.1, which witnesses the regularity of (.).∈� . �

For finite families, grammatical regularity is decidable but regularity is not
(which we will see in Theorem 2.10.4):

Theorem 2.10.2. The set of grammatically regular families (.).∈� with finite �
is decidable.

52

2.10 Regularity and reconstructability

Proof. First we show that grammatical regularity is decidable. Note that when-
ever there is a induction grammar 	 such that (, .) ⊇ . for all . ∈ � , there
is also one that contains only generalizations of subterms in (.).∈�—hence
there is a straightforward upper bound on the symbolic complexity of 	 (i.e.,
the number of bits required to represent) and we can simply iterate through
all induction grammars of smaller symbolic complexity to find it. If we can
find a covering induction grammar, then the family is grammatically regular,
otherwise not. �

To show that regularity is not decidable, we first note the unsurprising result
that proof by simple induction proof is undecidable:

Theorem 2.10.3 ([31]). The set of sequents that have a simple induction proof
is computably enumerable (but not decidable).

Theorem 2.10.4. The set of regular families (.).∈� with finite � is computably
enumerable (but not decidable).

Proof. To show computable enumerability, we just enumerate all possible
simple induction proofs and check whether (G∗

.) ⊇ . for all . ∈ � , all
of which are computable operations. For undecidability, set � = ∅ and use
Theorem 2.10.3. �

Let us now turn to algorithms on infinite families (.).∈C . Formally, we
assume that the family is given as an oracle that returns . when given . ∈ C.

Theorem 2.10.5. For families (.).∈C , grammatical regularity and regularity
are both undecidable.

Proof. Fix a regular family (.).∈C . Any algorithm that decides (grammatical)
regularity returns a result in finite time and hence only accesses a finite sub-
family (.).∈� for � ⊆ C finite. Hence it necessarily returns the same result for
any other family that extends (.).∈� .
An easy example for a family that is not regular is one that grows too

fast—by straightforward counting we see that |(, .) | ≤ |� | |. | where |� | is
the number of productions in 	 , thus any family that grows faster cannot
be (grammatically) regular. Hence we can extend (.).∈� to a family (0.).∈C

53

2 Proofs with induction

which is not grammatically regular, but which the algorithm claims to be
(grammatically) regular. �

While regularity is undecidable, we can approximate the decision problem
in a computable way. Namely it is computable in the limit. We can give
an algorithm whose output will converge to a covering grammar or simple
induction proof as we give it more languages from the infinite family.

Theorem 2.10.6 (learnability in the limit). There is an algorithm that takes a
family (.).∈C as input, and produces a sequence of induction grammars (()(≥0
with the following property: if (.).∈C is grammatically regular, then there exists
an � ≥ 0 such that 	(= 	� for all (≥ � , and (� , .) ⊇ . for all . .

(The sequence (()(≥0 is eventually constant if and only if (.).∈C is gram-
matically regular.)

Proof. Enumerate the free constructor terms as C = {.1, .2, . . . }. Now for # ≥ 0
compute an induction grammar
such that (
#, . $) ⊇ . 	 for $ ≤ # and
is
of minimal symbolic complexity. As in Theorem 2.10.4, we can iterate through
all induction grammars of a certain size to find
. The output of the algorithm
is then	# =

�
$≤#
where the union operation on grammars is defined as the

union of the sets of productions.
If (.).∈C is grammatically regular, i.e., there exists a covering induction

grammar 	 , then the symbolic complexity of
is bounded by the symbolic
complexity of	 for all # . Hence there are only finitely many possibilities for
,
and also for 	# . Since (#)# is monotonically increasing, it must be eventually
constant with value	� . We have (� , . $) = (�+ $, . $) ⊇ (
�+ $, . $) ⊇ . 	
by construction. �

Unfortunately the construction in Theorem 2.10.6 is only guaranteed to
result in a covering induction grammar. It is possible that this induction
grammar is not the grammar of any simple induction proof (because there is
no possible induction formula).

Theorem 2.10.7 ([31]). There exists a regular family (.).∈C and an induction
grammar	 such that (, .) ⊇ . for all . , but there is no simple induction proof
G with	 = 	 (G).

54

2.10 Regularity and reconstructability

Therefore we have to take a different approach to handle regularity, namely
we actually have to enumerate the simple induction proofs:

Theorem 2.10.8 (reconstructability in the limit). There is an algorithm that
takes a family (.).∈C as input, and produces a sequence (G()(≥0, where each G(
is either a simple induction proof or ∅. The output has the following property:
if (.).∈C is regular, then there exists an � ≥ 0 such that G(= G� ≠ ∅ for all
(≥ � , and ((G�)∗.) ⊇ . for all . .

(The sequence (G()(≥0 is eventually constant if and only if (.).∈C is regular.)
Proof. Enumerate all simple induction proofs as M0,M1, Define G̃(as the
firstM $ which proves the current simple induction problem with $ ≤ (, or ∅
if none exists. By Theorem 2.10.7 it is possible that ((G̃()∗.) � . , we will fix
this as in Theorem 2.10.1. Let	(be as in Theorem 2.10.6; define G(as a simple
induction proof with 	 (G() = 	(∪ 	 (G̃() if G̃ (() ≠ ∅, and ∅ otherwise. If
(.).∈C is regular, then (G̃()(≥0 and (()(≥0 are the desired eventually constant
sequences. �

The simple induction proof G obtained by reconstruction is not unique. It
can be different from the original proof in two important aspects: first, the
induction grammar 	 (G) can be different—e.g., it can contain extra produc-
tions. Second, the induction formula may be different—e.g., it could be any
propositionally equivalent formula.

55

3 Decision problems on
grammars

We have seen in Lemma 2.7.5 and Theorem 2.8.1 that cut- and induction-
elimination correspond to the language generation process of grammars. When
reversing cut- and induction-elimination on the level of grammars, the first step
is hence to reverse the language generation. Wewill investigate the algorithmic
side of this problem in Chapter 4, that is, how to effectively compute a grammar
that covers a given set of terms.
Finding such covering grammars raises interesting questions: if we have

a grammar, how difficult is it to decide whether it actually covers the set of
terms? Maybe we want to change the grammar a little, how difficult is it to
figure out whether it still generates the same language as the old grammar, or
to decide whether it generates a superset? In this chapter we will therefore
first investigate the computational complexity of these and related problems
on several classes of grammars.
Table 3.1 shows an overview of the obtained complexity results. Many of the

problems turn out to be surprisingly hard, e.g. even the problem of deciding
whether a VTRATG generates a given term is NP-complete. The main open
problem is the complexity of minimal cover, deciding whether there exists a
covering grammar whose size is less than a given bound. Except for VTRATGs
(where the problem is trivial due to the used size measure), we could only show
that the problem is in NP. It remains open whether any of these problems are
NP-hard as well (Open Problems 3.7.1, 3.11.1, 3.12.1 and 3.12.2).
The complexity results for TRATGs were previously published as [30]. For

other models these complexity questions have been studied as well by other
authors: e.g. regular tree automata in [23, Section 1.7], regular expressions,
finite automata, and context-free grammars in [90, 59].

57

3 Decision problems on grammars

VTRATG
TRATG

tw
≤
%

Ind
Ind

(|?|≤
%)

M
embership

N
P-com

plete
(Theorem

3.2.1)
N
P-com

plete
(Theorem

3.2.1)
P

(Theorem
3.11.2)

N
P-com

plete
(Theorem

3.12.2)
P

(Theorem
3.12.1)

Emptiness
coN

P-com
plete

(Theorem
3.3.1)

P

(Theorem
3.3.2)

P

(Theorem
3.11.3)

PSPA
C
E-com

plete
(Theorem

3.12.4)
P

(Theorem
3.12.5)

Containment
9

�2 -com
plete

(Theorem
3.4.1)

9
�2 -com

plete
(Theorem

3.4.1)
coN

P-com
plete

(Theorem
3.11.4)

undecidable
(Theorem

3.12.6)
undecidable

(Theorem
3.12.6)

D
isjointness

coN
P-com

plete
(Theorem

3.5.1)
coN

P-com
plete

(Theorem
3.5.1)

coN
P-com

plete
(Theorem

3.11.5)
undecidable

(Theorem
3.12.7)

undecidable
(Theorem

3.12.7)

Eq
ivalence

9
�2 -com

plete
(Theorem

3.6.1)
9

�2 -com
plete

(Theorem
3.6.1)

coN
P-com

plete
(Theorem

3.11.6)
undecidable

(Theorem
3.12.8)

undecidable
(Theorem

3.12.8)

M
inimization

N
P-com

plete
(Theorem

3.8.1)
N
P-com

plete
(Theorem

3.8.1)
N
P-com

plete
(Theorem

3.11.7)
N
P-com

plete
(Theorem

3.12.9)
N
P-com

plete
(Theorem

3.12.10)

Cover
P

(Corollary
3.7.1)

N
P-com

plete?
(O
pen

Problem
3.7.1)

N
P-com

plete?
(O
pen

Problem
3.11.1)

N
P-com

plete?
(O
pen

Problem
3.12.1)

N
P-com

plete?
(O
pen

Problem
3.12.2)

(-Cover
P

(Lem
m
a
3.7.1)

N
P-com

plete
(Theorem

3.7.2)
N
P-com

plete
(Theorem

3.11.9)
n/a

n/a

Table
3.1:Com

plexity
ofdecision

problem
s
on
VTRATG

s,TRATG
s,VTRATG

s
w
ith

dependency
graph

ofbounded
treew

idth,induction
gram

m
ars,and

induction
gram

m
arsw

here
?
hasa

bounded
length.

58

3.1 Computational complexity and the polynomial hierarchy

3.1 Computational complexity and the
polynomial hierarchy

Let us first review some basic and well-known notions of complexity theory;
the reader is referred to textbooks such as [77] for more details. Formally,
a computational (decision) problem is defined by the set of accepting input
values, encoded as binary words:

Definition 3.1.1. A computational problem is a set of words ⊆ {0, 1}∗.

We often call a set of words a language. There are famously many equivalent
ways to define computability, so let us use Turing machines to define when a
function (between binary words) computable.

Definition 3.1.2. A function ! : {0, 1}∗ →{0, 1}∗ is called computable if there
is a Turing machine such that for any given input � ∈ {0, 1}∗ it produces the
output ! (�). The function ! is called polynomial-time computable if there
additionally exists a polynomial * such that the number of steps of the Turing
machine on input � is bounded by * (|� |) where |� | is the length of �. The class
of polynomial-time computable languages is called P.

We can then extend the notion of computability to sets, by saying that a set
is computable if its characteristic function is computable:

Definition 3.1.3. A set ⊆ {0, 1}∗ is computable if its characteristic function
L : {0, 1}∗ → {0, 1} is computable, where L (�) = 1 iff � ∈ . The set is
polynomial-time computable if L is polynomial-time computable.

It seems plausible that some languages are easier to compute than others.
One way to make this intuition concrete is by studying certain kinds of reduc-
tions from one language to another. If 1 can be reduced to 2, then 1 is in
some sense simpler than 2. There are various kinds of reductions that we can
study, typically a reduction consists of a program that can use 2 in a restricted
way to compute 1. Notions of reduction can then vary along several axes:
first, in how they can use the other language. The program could use 2 like a
constant-time function call (a so-called oracle), this gives us Turing reductions.

59

3 Decision problems on grammars

Or it could translate an input � ∈ 1 to an input ! (�) ∈ 2, these are called
many-to-one reductions. On a second axis, they can also differ by resource
limitations imposed on the program. For example, we can require the program
to terminate in polynomial time.

Definition 3.1.4. Let�, � ⊆ {0, 1}∗. A polynomial-time many-to-one reduction
from � to � is a polynomial-time computable function ! : {0, 1}∗ → {0, 1}∗
such that � = ! −1(�). We then say the � is polynomial-time many-to-one
reducible to �, and write � ≤� �.

The condition � = ! −1(�) means that we can use ! to translate questions
about the set � to questions about �, because we have 2 ∈ � iff ! (2) ∈ �

for all 2 . The polynomial-time hierarchy was first introduced to show that
universality of regular expressions is hard for every level of the polynomial-
time hierarchy [70]. The lowest level of the hierarchy are the polynomial-time
computable sets, the further levels are built by iterating the NP(·) and coNP(·)
operations:

Definition 3.1.5. Let C ⊆ P({0, 1}∗) be a class of languages. The classNP(C)
is the class of languages accepted by non-deterministic polynomial-time Turing
machines with oracles from C. A non-deterministic Turing machine with
accepts a word1 ∈ {0, 1}∗ if there exists an execution with input1 where the
machine outputs 1. Such a Turing machine has polynomial-time runtime if
there exists a fixed polynomial which bounds the number of steps taken for
every execution and for every input.

The class coNP(C) consists of the sets for which the non-deterministic
Turing machine outputs 1 on every execution. Equivalently, we define it as the
complements of NP(C):

Definition 3.1.6. The class coNP(C) = {{0, 1}∗ \ | ∈ NP(C)} consists of
the complements of sets in NP(C).

Definition 3.1.7. The polynomial hierarchy is defined recursively by :�
0 =

9�
0 = P, and :�

(+1 = NP(9�
() as well as 9�

(+1 = coNP(:�
(). We define NP = :�

1
and coNP = 9�

1 .

60

3.1 Computational complexity and the polynomial hierarchy

Each of the levels of the polynomial hierarchy is contained in the every level
above it:

Lemma 3.1.1. :�
⊆ :�

$, :
�
⊆ 9�

$, 9
�
⊆ :�

$, and 9�
⊆ 9�

$ for all # < $.

:�
3 = NP(9�

2) 9�
3 = coNP(:�

2)

:�
2 = NP(9�

1) 9�
2 = coNP(:�

1)

:�
1 = NP = NP(P) 9�

1 = coNP = coNP(P)

P

It is an open problemwhether the inclusions in Lemma 3.1.1 are strict. Hence
if we want to show that a given ⊆ {0, 1}∗ is complicated, we cannot hope to
prove that e.g. ∈ NP \ P. Instead we can only show that it is as hard as any
other set in NP, as measured by the ≤� reduction:

Definition 3.1.8. Let C ⊆ P({0, 1}∗) be a class of languages. Then a set
 ∈ {0, 1}∗ is called C-hard if � ≤� for every � ∈ C. If additionally ∈ C,
then is called C-complete.
The classical NP-complete problem is propositional satisfiability:

Problem 3.1.1 (SAT).
Given a propositional formula � , is � satisfiable?

Theorem 3.1.1. SAT is NP-complete.

There are analogous :�
(- and 9�

(-complete problems, which determine the
truth of quantified Boolean formulas (QBFs). QBFs allow in addition to the
propositional connectives also the quantifiers ∀, ∃ over the Booleans. The
canonical 9�

(-complete problem consists of deciding the truth of QBFs in 9(,
that is, closed prenex QBFs whose quantifier prefix has (blocks alternating

61

3 Decision problems on grammars

between blocks of universal and existential quantifiers, starting with universal
quantifiers (and analogously for :�

(and :(-QBFs).
For illustration, we can express the satisfiability of the formula � ∧ � ∨ � as

the truth of the QBF ∃�∃�∃� (� ∧� ∨ �). Truth of closed QBFs is easily seen to
be decidable: we can recursively replace ∀2 K (2) by K (�) ∧K (⊥), and ∃2 K (2)
by K (�) ∨ K (⊥), resulting in a formula without quantifiers or variables that
can be immediately evaluated.

Problem 3.1.2 (9(-TQBF).
Given a closed QBF M = ∀21∃22∀23 . . . �2(K where K is quantifier-free, is M
true?

Problem 3.1.3 (:(-TQBF).
Given a closed QBFM = ∃21∀22∃23 . . . �2(K where K is quantifier-free, isM
true?

Lemma 3.1.2. 9(-TQBF is 9�
(-complete and :(-TQBF is :�

(-complete for all (.

We can hence intuitively see the complexity class9�
(as the class of problems

that have a description like ∀21∃22 . . . �2(K (21, . . . , 2() where 21, . . . , 2(∈
{0, 1}∗ and K (21, . . . , 2() is polynomially-time computable. For instance, the
typical problem in 9�

2 has the form ∀2∃3 K (2,3); for every 2 we can non-
deterministically pick a “certificate” 3 and then check it in polynomial time.

3.2 Membership

Let us first determine the complexity of the membership problem for VTRATGs,
that is, whether a grammar generates a given term. The term in this problem is
represented as a DAG instead of a tree since this is required for the reductions
in the following sections. The complexity of the problem would however be
unchanged if we represent the term as a tree instead.

Problem 3.2.1 (VTRATG-Membership).
Given a VTRATG 	 and a term . represented as a DAG, is . ∈ ()?
Problem 3.2.2 (TRATG-Membership).
Given a TRATG	 and a term . represented as a DAG, is . ∈ ()?

62

3.2 Membership

Clearly VTRATG-Membership is in NP, since we can guess a derivation
(which is a subset of the productions whose size is clearly bounded by the size
of) and check whether . ∈ () in polynomial time. In Definition 2.5.3, we
defined the size of a VTRATG as the number of its production. In order to avoid
confusion, we use the term symbolic size to refer to the size of a representation
in bits; polynomial-time hence means that the runtime is bounded by a polyno-
mial in the symbolic size of the input. Terms are always represented as DAGs,
unless noted otherwise. Given sets � and �, we write � ≤� � if there exists a
polynomial-time many-to-one reduction from � to �. For the NP-hardness of
VTRATG-Membership, we will show that 3SAT ≤� VTRATG-Membership:

Problem 3.2.3 (3SAT).
Given a propositional formula � in 3CNF, is � satisfiable?

For simplicity, we assume that the formula � is represented in the following
syntax: the propositional variables occurring in � are exactly x1, . . . , x' , and
there are exactly (clauses, each containing at most 3 literals. Literals are either
x $ or neg(x $) for some 1 ≤ $ ≤ '. Clauses are written or(&1, &2, &3) where &# is
true, false, or a literal for # ∈ {1, 2, 3}. The formula � is then and(�1, . . . , �()
where �# is a clause for each 1 ≤ # ≤ (. We can now define a TRATG Sat(,'
that will encode 3SAT for (clauses and' variables.

Definition 3.2.1. Let(,' > 0. We define the TRATG Sat(,' with the following
productions:

A→ and(Clause1, . . . ,Clause()
Clause# → or(True#,Any#,1,Any#,2)
Clause# → or(Any#,1,True#,Any#,2)
Clause# → or(Any#,1,Any#,2,True#)
Any#,% → x1 | neg(x1) | · · · | x' | neg(x') | false | true
True# → Value1 | · · · | Value' | true
Value $ → x $ | neg(x $)

In fact Sat(,' generates exactly the satisfiable CNFs. Rigidity provides the
main ingredient for this construction: since we can use at most one production

63

3 Decision problems on grammars

per nonterminal, we can “synchronize” across different clauses and make sure
that we assign consistent values to the propositional variables. Which value
we assign to the x $ variable is determined by the choice of the production for
the Value $ nonterminal. It is clear that Sat(,' can be computed in polynomial
time depending on' and (.

Lemma 3.2.1. Let (,' > 0, and � be a propositional formula in 3CNF with
exactly (clauses and at most' variables. Then � ∈ (Sat(,') iff � is satisfiable.

Proof. Let @ be a derivation of � in Sat(,' . We define an interpretation �@ such
that �@ (x $) = 1 iff Value $ → x $ ∈ @ , for all $ ≤ '. Now we need to show
that indeed �@ |= � . By case analysis on the chosen productions, we have
Valuej ∈ dom(I@) and �@ |= Value $I@ for all 1 ≤ $ ≤ ', then �@ |= True#I@ and
�@ |= Clause#I@ for all 1 ≤ # ≤ (, and hence �@ |= � since � = AI@ .
On the other hand, let � = and(�1, . . . , �() and � |= � be a satisfying interpre-

tation. We construct a derivation @ with A→ and(Clause1, . . . ,Clause() ∈ @ ,
Value $ → x $ ∈ @ if � |= x $, and Value $ → neg(x $) ∈ @ if � & |= x $.
For 1 ≤ # ≤ (, we define the productions for Clause# , Any#,1, Any#,2, and

True# depending on which literal is true in the #-th clause. Let or(&1, &2, &3) be
the #-th clause, and let $ be such that &1 = x $ or &1 = neg(x $). If � |= &1, we let
Clause#) → or(True#,Any#,1,Any#,2) ∈ @ , True# → Value $ ∈ @ , Any#,1 → &2 ∈ @

and Any#,2 → &3 ∈ @ . The cases where the second or third literal are true are
handled analogously. We can see that this set @ is then indeed a derivation of
� in Sat(,' . �

Theorem 3.2.1. The TRATG-Membership and VTRATG-Membership problems
are NP-complete.

Proof. By reduction from 3SAT using Lemma 3.2.1. �

3.3 Emptiness

In Theorem 3.2.1 we have seen that the membership problem for VTRATGs
is NP-complete. An even more basic property about VTRATGs is emptiness,
that is: does the grammar not generate any terms at all?

64

3.3 Emptiness

Problem 3.3.1 (VTRATG-Emptiness).
Given a VTRATG 	 , is () = ∅?
This property is not trivial: if there are no productions for some nonterminal,

then the language is not necessarily empty. And it is not sufficient to remove
the production-less nonterminal, as it might occur in an unused part of a
vector:

Example 3.3.1. In the following VTRATG, there is no production for the non-
terminal vector � . However the language () = {�} is non-empty since the
production �→ �1 only contains �1 and not �2.

�→ �1

(�1, �2) → (�,�)

Clearly VTRATG-Emptiness is in coNP, since we can guess a subset of the
productions (whose size is clearly bounded by the size of) and check whether
it is a derivation in polynomial time. For the coNP-hardness of VTRATG-
Emptiness, we will show a reduction from the complement of 3SAT.

Theorem 3.3.1. VTRATG-Emptiness is coNP-complete.

Proof. By reduction from the complement of 3SAT. Let K = and(�1, . . . , �()
with �# = or(&#,1, . . . , &#,3) and &#,% ∈ {x $�,
 , neg(x $�,
)}. We want decide whether
K is unsatisfiable. Define *#, $ = 1 if &#,% = x $�,
 and *#, $ = 2 if &#,% = neg(x $�,
);
this number *#, $ indicates whether the literal is negated and will be used as an
index in Value $,*�,
 . We define the VTRATG 	 with the following productions:

A→ and(Clause1, . . . ,Clause()
Clause# → or(Value $�,1,+1,Value $�,2,+2,Value $�,3,+3)

(for each # ≤ (and +1, +2, +3 ∈ {1, 2}
such that +1 = *#,1 ∨ +2 = *#,2 ∨ +3 = *#,3)

(Value $,1,Value $,2) → (True, False) | (False,True) (for each $ ≤ ')
True→ true

It remains to show that () ≠ ∅ iff there is a satisfying assignment for K . If @
is a derivation in	 , then for every $ ≤ ', either Value $,1 or Value $,2 (but not

65

3 Decision problems on grammars

both) can occur in @ , depending on which production was chosen for Value $.
If the first production was chosen, then Value $,2 can not occur in @ , since False
has no productions (and vice versa for the other production).
Define an assignment � such that � |= x $ if Value $,1 occurs in @ , and � & |= x $

if Value $,2 occurs in @ . We have chosen the *#, $ in such a way that � |= &#, $ if
Value $,*�, 	 occurs in @ . We will now show that � |= K : @ contains the production
Clause# → or(Value $�,1,+1,Value $�,2,+2,Value $�,3,+3) for some +1, +2, +3 ∈ {1, 2}. If
+ $ = *#, $, then Value#,*�, 	 occurs in @ and � |= &#, $ and hence � |= �# . Since this
holds for every clause �# , we have � |= K .
If on the other hand � is a satisfying assignment, then we get a derivation @ by

using the production Value $→(True, False) if � |= x $ andValue $→(True, False)
if � & |= x $. For each clause, we pick the production for Clause# depending on
which literal evaluates to true. �

For TRATGs, we can decide emptiness much easier—in polynomial time:

Problem 3.3.2 (TRATG-Emptiness).
Given a TRATG	 , is () = ∅?

Theorem 3.3.2. TRATG-Emptiness ∈ P.

Proof. Let 	 = (�, :, �,�). Define the set of “productive” nonterminals �̃
by � ∈ �̃ iff there exists a production � → . ∈ � such that � ∈ �̃ for every
nonterminal � that occurs in . . This set �̃ is computable in polynomial time.
We only need to show () ≠ ∅ iff � ∈ �̃ .
Assume � ∈ �̃ . Then we have for every nonterminal in �̃ a production

satisfying the conditions above. This set of productions is a derivation of some
term in (): it contains at most one production per nonterminal, and the
derived term contains no nonterminal: whenever a nonterminal � appears in
the derivation from a production � → . (i.e., where � occurs in .), then � will
be replaced later on (since � ∈ �̃).
If on the other hand @ is a derivation of some term in (), then �̃ con-

tains all nonterminals occurring in @ , including �. (This is the difference to
VTRATGs: if a nonterminal occurs in the derivation of a TRATG, then the
right-hand side of the production and all of its nonterminals occur as well. In

66

3.4 Containment

a derivation of a VTRATG, it is possible that only a part of the right-hand side
appears in the derivation.) �

3.4 Containment

We will now consider the problem of determining whether the generated
languages of two (V)TRATGs are contained in one another:

Problem 3.4.1 (VTRATG-Containment).
Given VTRATGs	1 and	2, is (1) ⊆ (2)?
Problem 3.4.2 (TRATG-Containment).
Given TRATGs 	1 and	2, is (1) ⊆ (2)?
We will show that VTRATG-Containment is complete for 9�

2 = coNP(NP)
by showing 92-TQBF =� 92-3TQBF ≤� VTRATG-Containment. We use a
syntactic variant of 9(-TQBF where the matrix is restricted to formulas in
3CNF, to apply our results from the earlier Section 3.2.

Problem 3.4.3 (92-3TQBF).
Given a closed QBF ∀y1 · · · ∀y%∃x1 · · · ∃x' � where � is in 3CNF, is � true?

A 92-QBF is true if and only if the propositional matrix � is satisfiable for
all instances of the universal quantifiers. Theorem 3.2.1 showed that we can
encode satisfiability as TRATG-Membership. It only remains to encode the
instantiation of the universal quantifiers as a TRATG. We will thus define a
TRATG that generates exactly the instances of the QBF where we substitute
the universal variables by either true or false:

Definition 3.4.1. Let � = and(�1, . . . , �() be a propositional formula in 3CNF.
We define the TRATG Inst�,y with the following productions:

A→ � [y1\Y1, . . . , y%\Y%]
Y $ → true | false for $ ≤ %

Lemma 3.4.1. Let � = ∀y1 · · · ∀y%∃x1 · · · ∃x' � be a closed QBF such that
� = and(�1, . . . , �() is in 3CNF. Then � is true iff (Inst�,y) ⊆ (Sat(,%+').

67

3 Decision problems on grammars

Proof. The QBF� is true if and only if every instance � [y1\01, . . . , y%\0%] is sat-
isfiable where 01, . . . , 0% ∈ {true, false}. The TRATG Inst�,y generates exactly
these instances. Hence � is true iff (Inst�,y) ⊆ (Sat(,') by Lemma 3.2.1. �

Theorem 3.4.1. TRATG-Containment and VTRATG-Containment are 9�
2 -

complete.

Proof. VTRATG-Containment is in 9�
2 because we can guess a derivation

@ of a term . in 	1, and then check whether . ∈ (2). Each derivation can
be produced in polynomial time, and checking whether . ∈ (2) is in NP
per Theorem 3.2.1. For hardness, we reduce the 9�

2 -complete 92-TQBF to
TRATG-Containment via Lemma 3.4.1. �

3.5 Disjointness

The complexity of the disjointness problem follows straightforwardly from
(the complement of) VTRATG-Membership.

Problem 3.5.1 (VTRATG-Disjointness).
Given VTRATGs 	1 and	2, is (1) ∩ (2) = ∅?

Problem 3.5.2 (TRATG-Disjointness).
Given TRATGs 	1 and 	2, is (1) ∩ (2) = ∅?

Theorem 3.5.1. TRATG-Disjointness and VTRATG-Disjointness are coNP-
complete.

Proof. We first show that VTRATG-Disjointness is in coNP. For all deriva-
tions @1 of a term .1 in 	1 and @2 of a term .2 in 	2, we check that .1 ≠ .2: as
usual we can generate a derivation in polynomial time, and checking equality
of terms is polynomial as well. Hardness follows via a reduction from the
complement of TRATG-Membership: . ∉ () if and only if () ∩(.) = ∅,
where 	. is a TRATG such that (.) = {.} (such as 	. = ({�}, :, �, �) with
� = {A→ .}). �

68

3.6 Equivalence

3.6 Equivalence

The complexity of equivalence follows from VTRATG-Containment via a
union operation on VTRATGs.

Problem 3.6.1 (VTRATG-Eqivalence).
Given VTRATGs	1 and	2, is (1) = (2)?

Problem 3.6.2 (TRATG-Eqivalence).
Given TRATGs 	1 and	2, is (1) = (2)?

Definition 3.6.1. Let 	1 = (�1, :1, �1,A1),	2 = (�2, :2, �2,A2) be VTRATGs
such that �1 ∩ �2 = ∅. Then 	1 ∪ 	2 = (�1 ∪ �2, :1 ∪ :2, �

0,A1), where
� 0 = �1 ∪ �2 ∪ {A1 → A2}.

It is easy to see that (1 ∪ 	2) = (1) ∪ (2). We will also use the
notation 	1 ∪	2 for VTRATGs that share nonterminals: we then implicitly
rename the nonterminals in one TRATG so that they are disjoint.

Lemma 3.6.1. Let	1 and	2 be VTRATGs. Then (1 ∪	2) = (1) ∪ (2).

Proof. Let 	1 = (�1, :1, �1,A1) and 	2 = (�2, :2, �2,A2), and assume without
loss of generality that �1 ∩ �2 = ∅. Let @ be a derivation of . in 	1 ∪	2. If
A1 → A2 ∈ @ , then @ ∩ �2 is a derivation of . in 	2. Otherwise, A1 → A2 ∉ @

and @ ∩ �1 is a derivation of . in 	1. Hence (1 ∪	2) ⊆ (1) ∪ (2).
For the reverse inclusion, let first @ be a derivation of . in 	1. Then @ is a

derivation of . in	1∪	2. Now let @ be a derivation of . in	2, then @∪{A1→A2}
is a derivation of . in 	1 ∪	2. Hence (1) ∪ (2) ⊆ (1 ∪	2). �

Theorem 3.6.1. VTRATG-Equivalence and TRATG-Equivalence are 9�
2 -

complete.

Proof. We first show that it is in9�
2 via a reduction to VTRATG-Containment:

(1) = (2) if and only if (1) ⊆ (2) as well as (2) ⊆ (1)—and
9�
2 is closed under intersection. Hardness follows by a reduction from TRATG-
Containment: (1) ⊆ (2) iff (1) ∪ (2) = (2). This is equivalent
to (1 ∪	2) = (2), an instance of TRATG-Eqivalence. �

69

3 Decision problems on grammars

3.7 Minimal cover

3.7.1 Minimal cover for terms

We saw in Chapter 2 that cut-elimination of proofs with91-cuts corresponds to
the computation of the language of VTRATGs. To reverse cut-elimination we
need to find a grammar that covers a given language. There are trivial solutions
to find such a VTRATG. For example, given a finite set of terms we might
return a VTRATG with one nonterminal � and productions �→ . for every
. ∈ . However such trivial grammars correspond to trivial cuts. If we want to
introduce interesting structure into proofs, we need to impose extra conditions
on the grammar. A good condition is that the grammar should be small. Small
grammars correspond to small proofs (see Lemmas 2.7.4 and 2.8.2), and it is a
reasonable hypothesis that small proofs typically contain interesting structure.
In the case of induction there is an even more significant size difference: we
want to find a finite grammar that generates an infinite and unbounded family
of sets of terms. Thus we are looking for grammars of minimal size, that is,
with the least number of productions.
The finite set corresponds to a tautological set of instances. Since supersets

of tautological disjunctions are tautological as well, we require that the TRATG
covers the given finite set of terms, as opposed to () = . The covering
condition () ⊇ is similar to (but different from) the one imposed on cover
automata [17, 18]: there an automaton � is sought such that (�) ⊇ , but
in addition it is required that (�) \ consists only of words longer than
any word in . Another related notion is that of the grammatical complexity
of a finite language as defined in [15] and studied further in [13, 3, 14, 98]:
the grammatical complexity of a finite language is defined as the minimal
number of productions of a grammar 	 with () = . In this way, each class
of grammars gives rise to a measure of descriptional complexity.
As a first attempt, we might formalize the problem as a decision problem on

VTRATGs:

Problem 3.7.1 (VTRATG-Cover).
Given a finite set of terms and % ≥ 0, is there a VTRATG	 such that |	 | ≤ %

and () ⊇ ?

70

3.7 Minimal cover

However this formulation of the problem turns out to be easily solvable,
since VTRATGs always allow optimal compression:

Theorem 3.7.1 ([32]). Let be a finite set of terms, and &0, . . . , &(be natural
numbers such that | | ≤ �

# &# . Then there exists a VTRATG 	 of size |	 | = �
&#

such that () = .

For example, Theorem 3.7.1 shows that for every set of terms of size | | ≤
2(there exists a covering VTRATG of size 2(. Unfortunately, the VTRATG
constructed in Theorem 3.7.1, while small, does not correspond to a proof with
interesting lemmas.

Corollary 3.7.1. VTRATG-Cover ∈ P

Proof. Assume that 	 = (�, :, �,�) is a covering VTRATG. For � ∈ � , define
�� . Then | | ≤ |() | ≤ �

�∈� |�� |, and |	 | = |� | = �
�∈� |�� |. That is, the

minimal covering VTRATG is of the form given by Theorem 3.7.1. We only
need to find a minimal decomposition, that is, a tuple (&0, . . . , &() such that�

&# ≤ | |,�# &# ≥ | |, and �# &# ≤ | | is minimal. Furthermore we only need
to consider decompositions such that

�
&# < 2| |: if we have a decomposition

& with
�

&# ≥ 2| | then we decrement one of &# until the product is less than
2| |.
We can now recursively compute the set of sums and products of decom-

positions: � = {(�# &#,
�

&#) | � &#,
�

&# ≤ 2| |} with (',%) ∈ � iff ' = %

or ('1 +'2, %1%2) ∈ � for some '1,'2 < ' and %1, %2 < % . This set can
be computed in time bounded by a polynomial in | |. The minimal size of a
covering VTRATG is then min{' | ∃% ≥ | | : (',%) ∈ �}. �

Hencewe consider the decision version ofminimal cover for TRATGs instead
of VTRATGs:

Problem 3.7.2 (TRATG-Cover).
Given a finite set of terms and % ≥ 0, is there a TRATG 	 such that |	 | ≤ %

and () ⊇ ?

TRATG-Cover is in NP, since potential TRATGs	 have at most | | produc-
tions, hence at most | | nonterminals, and the symbolic size of each production
is bounded by the symbolic size of .

71

3 Decision problems on grammars

Open Problem 3.7.1. Is TRATG-Cover NP-complete?

So far a solution to Open Problem 3.7.1 remains elusive. However we will
show that the following version of TRATG-Cover with a fixed parameter is
NP-complete:

Problem 3.7.3 (TRATG-(-Cover).
Given a finite set of terms and % ≥ 0, is there a TRATG	 = (�, :, �,A) such
that |� | ≤ (, |� | ≤ % , and () ⊇ ?

Theorem 3.7.2. TRATG-(-Cover is NP-complete for (≥ 2.

The proof ofNP-hardness in the following Section 3.7.2 only requires regular
grammars for words. A similar approach to prove lower bounds for TRATGs us-
ing regular grammars for words was already successfully used in descriptional
complexity [32].
For grammars on words, the shortest grammar problem—given a string

and size, is there a context-free grammar of at most this size generating just
the singleton containing the string—is known to be NP-complete [92, 19] and
several approximation algorithms are known. The most important difference
between the classical setting and ours is that a TRATG does not compress a
single string or tree but a finite set of trees. We compress with regard to the
number of production rules as opposed to, e.g., the size of the grammar as a
binary string. Moreover, we cover the input language instead of reproducing
it exactly.
Just as Problem 3.7.1 turned out to be polynomial-time computable due

to trivial optimally compressing VTRATG of Theorem 3.7.1, the restricted
problem analogous to TRATG-(-Cover for VTRATGs is polynomial-time
computable as well:

Problem 3.7.4 (VTRATG-(-Cover).
Given a finite set of terms and % ≥ 0, is there a VTRATG 	 = (�, :, �,A)
such that |� | ≤ (, |� | ≤ % , and () ⊇ ?

Lemma 3.7.1. VTRATG-(-Cover ∈ P.

72

3.7 Minimal cover

Proof. Similar to Corollary 3.7.1. For every', the set�' = {(�#≤' &#,
�

#≤' &#) |�
#≤' &#,

�
#≤' &# ≤ 2| |} is polynomial-time computable. Observe that there

exists such a covering VTRATG iff there exists a tuple (&0, . . . , &') with' ≤ (,�
&# ≤ % , and

�
&# ≥ | |, this is the case iff ∃' ≤ (∃* ≥ | | ∃- ≤ % (*, -) ∈

�' . �

3.7.2 Minimal cover for words

It is well known that we can represent words as trees by using unary function
symbols instead of letters. We may hence represent the word hello as the tree
h(e(l(l(o(O))))), for example. Under this correspondence, TRATGs with only
unary functions and constants correspond exactly to acyclic regular grammars:

Definition 3.7.1. A regular grammar	 = (�, :, �,A) is a tuple consisting of
a start symbol A ∈ � , a finite set of nonterminals � , a finite set of letters :
such that � ∩ : = ∅, and a finite set of productions � ⊆ � × :∗(� ∪ {O}). We
call 	 acyclic if there exists a strict linear order ≺ on the nonterminals such
that B ≺ C whenever B→1C ∈ � for some1 ∈ :∗.

The one-step derivation relation⇒	 is defined by1B⇒	 10 for B→0 ∈ �

and 1 ∈ :∗. The language () = {1 ∈ :∗ | A ⇒∗
	 1} then consists of the

derivable words. We write |	 | = |� | for the number of productions. In the
case of acyclic regular grammars, the derivations and the generated language
correspond exactly to those for TRATGs. Note that there is no need to require
rigidity for derivations here: derivations in acyclic regular grammars can never
use more than one production per nonterminal. Rigidity only plays a role for
terms, where we can have multiple parallel occurrences of a nonterminal.

Problem 3.7.5 (Regular-Cover).
Given a finite set of words and % ≥ 0, is there an acyclic regular grammar 	
such that |	 | ≤ % and () ⊇ ?

Lemma 3.7.2. Regular-Cover ≤� TRATG-Cover.

Proof. Treat words as terms with unary function symbols and vice versa. �

73

3 Decision problems on grammars

Regular-Cover corresponds to TRATG-Cover, and is in NP. Furthermore,
if Regular-Cover is NP-hard then so is TRATG-Cover. However the pre-
cise complexity of Regular-Cover is open, similar to the case for terms we
conjecture it to be NP-complete.

Open Problem 3.7.2. Is Regular-Cover NP-complete?

Clearly, Open Problem 3.7.2 implies Open Problem 3.7.1. In the rest of this
section, we will show that the restriction of Regular-Cover to a bounded
number of nonterminals is NP-hard.

Problem 3.7.6 (Regular-(-Cover).
Given a finite set of words and % ≥ 0, is there an acyclic regular grammar
	 = (�, :, �,A) such that |� | ≤ (, |� | ≤ % , and () ⊇ ?

We will show the NP-hardness of Regular-(-Cover in several steps: first
we reduce 3SAT to Regular-2-Cover using an intermediate problem where
we can not only specify words that must be generated by the grammar, but
also productions that must be included:

Problem 3.7.7 (Regular-2-Cover-Extension).
Given a finite set of words , an acyclic regular grammar	 = (�, :, �,A) such
that � = {A,B}, 1 contains B whenever A→ 1 ∈ � , and % ≥ 0, is there a
superset � 0 ⊇ � of the productions such that |� 0| ≤ |� | + % , and (0) ⊇

where 	0 = (�, :, � 0,A)?

Lemma 3.7.3. 3SAT ≤� Regular-2-Cover-Extension.

Proof. Consider a propositional formula in CNF with ' clauses �1, . . . ,�'

and (variables (called 21, . . . , 2(). The number of variables (will be used
as the % parameter in Regular-2-Cover-Extension. Assume without loss
of generality that 2 $ ∨ ¬2 $ is a clause in this formula for all $ ≤ (. We will
encode the literals as unary natural numbers. First we define the natural
numbers � $ = 2 $ and � $ = 2 $ + 1 that correspond to 2 $ and ¬2 $, resp. The
number � = 2(+ 1 is their upper bound.
Let = {s�o&,# | # ≤ ', & ≤ 2(} and : = {o&,# | & ≤ 2(, # ≤ (} ∪ {s}.

Furthermore, define the acyclic regular grammar 	 = (�, :, �,A) where

74

3.7 Minimal cover

� = {A, B}, and the productions � are the following:
B→ s�−� 	o&,# for 2 $ ∈ �# and & ≤ 2(
B→ s�−� 	o&,# for ¬2 $ ∈ �# and & ≤ 2(

It remains to show that � is satisfiable iff there exists a set of productions
� 0 ⊇ � such that |� 0| ≤ |� | + (and (0) ⊇ where 	0 = (�, :, � 0,A).

Left-to-right direction. Let � |= � be a satisfying interpretation, then we
construct an acyclic regular grammar 	0 by adding the following productions
to 	 . We clearly have |	0| = |	 | + (, and also (0) ⊇ .

A→ s� 	B if � |= 2 $ A→ s� 	B if � & |= 2 $

Right-to-left direction. Let 	0 = (�, :, � 0,A) such that � 0 ⊇ � , (0) ⊇ ,
and |� 0| ≤ |� | + (. By symmetry, all productions from the nonterminal A are
of the form A→ s,B for some , ≥ 0. Otherwise there would be an # ≤ ' such
that all constants o&,# appear in productions from A, and we would have at
least 2(new productions.
Let @ be a derivation of s�o&,# ∈ in	0. Then @ uses the production A→ s,B

for some , , and we have that , = � $ and 2 $ ∈ �# or , = � $ and ¬2 $ ∈ �# . Since
2 $ ∨ ¬2 $ ∈ � for all $ ≤ (, we have A→ s� 	B ∈ � 0 or A→ s� 	B ∈ � 0 for all
$ ≤ (. Because there are at most (such productions, we cannot have both
s� 	B ∈ � 0 and s� 	B ∈ � 0.
Now define an interpretation � such that � |= 2 $ iff A→ s� 	B ∈ � 0. Note

that � & |= 2 $ iff A→ s� 	B ∈ � 0, and hence � is a model for � by the previous
paragraph. �

Lemma 3.7.4. Regular-2-Cover-Extension ≤� Regular-2-Cover.

Proof. Let , 	 = (�, :, �,A), � = {A,B}, and % be as in the definition of
Regular-2-Cover-Extension. We set' = | |+ |	 |. Without loss of generality,
assume that ≠ ∅. Take 4' fresh letters a1, . . . , a3', b1, . . . , b' . We extend the
language to 0:

0 = ∪ {a#1 | B→1 ∈ �, # ≤ 3'}
∪ {1b $ | A→1B ∈ �, $ ≤ '}
∪ {a#b $ | # ≤ 3', $ ≤ '}

75

3 Decision problems on grammars

We need to construct an acyclic regular grammar 	0 = (�, :0, � 0,A) with
:0 = : ∪ {a1, . . . , a3', b1, . . . , b'} such that (0) ⊇ 0 and |	0| ≤ |	 | +% + 4'
if and only if there exists an acyclic regular grammar 	00 = (�, :, � 00,A) such
that � ⊆ � 00, |	00 | ≤ |	 | + % , and (0) ⊇ .

Left-to-right direction. Let us first assume that such a grammar 	0 exists.
We can assume that |	0| ≤ | | + |	 | + 4' = 5' since there exists a covering
grammar of that size with the productions {A→1 | 1 ∈ } ∪ � ∪ {A→ a# |
≤ 3'} ∪ {B→ b $ | $ ≤ '}.
Without loss of generality, assume that the letters a# occur only as the first

letter of productions of the nonterminal A. We can drop any production that
contains a# in the middle since a# can only occur at the beginning of words
in 0. For the same reason we can then replace each production B→ a#1 by
A→ a#1 .
Furthermore, we can assume that 	0 is symmetric in the new symbols, that

is, A→ a#1 ∈ � 0 if and only if A→ a $1 ∈ � 0 for all #, $ ≤ 3' and words 1 .
Otherwise pick an # ≤ 3' such that� = {1 | A→ a#1 ∈ � 0} is of minimal
size. We then remove all productions containing an a $ for some $ ≤ 3', and
replace them by the productions A→ a $1 for1 ∈� . The resulting grammar
still covers 0 since 0 is symmetric under permutation of the letters a# .
Now for every # ≤ 3' there is at most one production of the form A→ a#1

for some1—if there were two, then by a#-symmetry we would have 2 ·3' = 6'
productions, exceeding the previously obtained upper bound of 5' productions.
This also implies that B→ b $ ∈ � 0 for all $ ≤ '. By a symmetry argument for
b $ there are no other productions that contain b $. We also have that B→1 ∈ � 0

whenever B→1 ∈ � .
We can now construct the acyclic regular grammar 	00 by removing all

productions from 	0 that contain one of the new symbols a# or b $. We have
(00) ⊇ since (0) ⊇ and because productions that contain the new
symbols cannot be used in derivations of words in . Furthermore, |	00| ≤
|	0|−4' = |	 | +% . It remains to show that A→1B ∈ � 0whenever A→1B ∈ �

for some1 ∈ :∗. Recall that 0 contains1b $ for all $ ≤ '. However the only
occurrence of b $ in � 0 is in the production B→ b $ ∈ � 0. Hence A→1B ∈ � 0.

Right-to-left direction. In the other case, we assume that such a grammar
	00 exists, and need to construct 	0. We obtain this grammar 	0 by adding the

76

3.8 Minimization

productions A→ a#B and B→ b $ for all # ≤ 3' and $ ≤ '. Then 	0 has 4'
more productions than 	00 and covers 0. �

Lemma 3.7.5. Regular-(-Cover ≤� Regular-((+ 1)-Cover.

Proof. Let be a finite set of words, % ≥ 0, and define' = 2% . Assume that
| | ≥ 1, % ≥ 2, and (≥ 1—otherwise we can directly compute the answer.
Take' + 1 fresh letters a1, . . . , a', b. We define 0 = {a1, . . . , a'} · (∪ {b}).
It remains to show that there exists an acyclic regular grammar 	 with (

nonterminals such that |	 | ≤ % and () ⊇ if and only if there exists an
acyclic regular grammar	0 with (+ 1 nonterminals such that |	0| ≤ % +' + 1
and (0) ⊇ 0.

Left-to-right direction. Let 	 = (�, :, �,B) be an acyclic regular grammar
such that |� | = (, |	 | ≤ % , and () ⊇ . We set 	0 = (� ∪ {A}, : ∪ :0, � ∪
� 0,A) where A is a fresh nonterminal, :0 = {a1, . . . , a', b}, and � 0 = {A→a#B |
# ≤ '} ∪ {B→ b}. Clearly |� ∪ {A}| = (+ 1, |	0| = |	 | +' + 1 ≤ % +' + 1,
and (0) ⊇ 0.

Right-to-left direction. Let 	0 = (�, :, � 0,A) be an acyclic regular grammar
such that |� | = (+ 1, |	 | ≤ % +' + 1, and (0) ⊇ 0. Via the same argument
as used in the proof of Lemma 3.7.4 and noting that 2' > % +', we can assume
that there exists a nonterminal B ≠ A such that all productions from A are of
the form A→ a#B for some # ≤ '. Let � ⊆ � 0 be the set of productions whose
left side is not A and whose right side is not b. The acyclic regular grammar
	 = (� \ {A}, :, �,B) then has the desired properties. �

Theorem 3.7.3. Regular-(-Cover is NP-complete for (≥ 2.

Proof. By reduction from 3SAT using Lemmas 3.7.3 to 3.7.5. �

Proof (of Theorem 3.7.2, the NP-completeness of TRATG-(-Cover). Follows di-
rectly from Theorem 3.7.3 by representing words as terms and vice versa. �

3.8 Minimization

Problem 3.8.1 (VTRATG-Minimization).
Given a VTRATG 	 = (�, :, �,A), a set of terms such that () ⊇ , and

77

3 Decision problems on grammars

% ≥ 0, is there a subset � 0 ⊆ � of the productions such that |� 0| ≤ % and
(0) ⊇ where 	0 = (�, :, � 0,A)?
This optimization problem will play a central role in the MaxSAT algorithm

to find minimal covering VTRATGs that we will see in Section 4.3. We will
now show that VTRATG-Minimization is NP-complete via reduction from
Set Cover.

Problem 3.8.2 (Set Cover).
Given a finite set � , a finite collection� ⊆ P(�) of subsets such that�� = � ,
and % ≥ 0, is there a sub-collection �0 ⊆ � such that

�
� = � and |�0| ≤ %?

Theorem 3.8.1. VTRATG-Minimization is NP-complete.

Proof. The problem is in NP because we can check |� 0| ≤ % in polynomial
time, and reduce (0) ⊇ to VTRATG-Membership. Hardness follows by
reduction from Set Cover: we pick a fresh nonterminal A, set � = {A} ∪�

(treating the subsets as nonterminals), = � , and � = {A→ � | � ∈ �} ∪
{� → 2 | 2 ∈ � ∈ �}. A subset � 0 ⊆ � of the productions of with % + |� |
elements then directly corresponds to a sub-collection�0 of such that |�0| ≤ % :
for every 2 ∈ � , there is at least one production� → 2 ∈ � 0 for some� ∈ � .
These are |� | productions, there are hence at most % productions of the form
A→� for some� , which yield the sub-collection�0 = {� | A→� ∈ � 0}. �

3.9 Decision problems on Herbrand
disjunctions

Each of these decision problems on VTRATGs corresponds to a decision prob-
lem on simple proofs: for instance, VTRATG-Membership decides whether a
formula is contained in the Herbrand disjunction of a non-erasing cut-normal
form.
As we have seen in Lemma 2.7.5, in general, cut-elimination can decrease the

language of the grammar of a proof. This is due to the reduction of weakening
inferences, which can delete parts of the proof and hence remove instances.
However, without reduction of weakenings, the language is preserved by
cut-elimination:

78

3.9 Decision problems on Herbrand disjunctions

Definition 3.9.1 (non-erasing cut reduction, [53]). ne→ is the cut-reduction
relation without reduction on weakening inferences.

Theorem 3.9.1 ([53]). Let G, G 0 be simple proofs. If G
ne→ G 0, then ((G)) =

((G 0)).
If G is a simple proof, and G∗ a non-erasing cut-normal form such that

G
ne→∗

G∗, then (G∗) = ((G)). Any simple proof has a ne→-normal form. If
in addition, G only contains weakening inferences introducing quantifier-free
formulas, then G∗ does not contain quantified cuts. Given a ne→-normal form G∗

of a proof G with only quantifier-free weakening, we can hence directly extract
a Herbrand disjunction
 (G∗) such that
 (G∗) = ((G∗)) = ((G)).
Problem 3.9.1 (H-Membership).
Given a simple proof G with only quantifier-free weakening and a formula K ,
is there a ne→-normal form G

ne→∗
G∗ such that K ∈
 (G∗)?

Problem 3.9.2 (H-Containment).
Given a simple proofs G1, G2 with only quantifier-free weakening, are there
ne→-normal forms G#

ne→ G∗
for # ∈ {1, 2} such that
 (G∗

1) ⊆
 (G∗
2)?

Problem 3.9.3 (H-Disjointness).
Given a simple proofs G1, G2 with only quantifier-free weakening, are there
ne→-normal forms G#

ne→ G∗
for # ∈ {1, 2} such that
 (G∗

1) ∩
 (G∗
2) = ∅?

Problem 3.9.4 (H-Eqivalence).
Given a simple proofs G1, G2 with only quantifier-free weakening, are there
ne→-normal forms G#

ne→ G∗
for # ∈ {1, 2} such that
 (G∗

1) =
 (G∗
2)?

The restriction of only allowing weakening on quantifier-free corresponds
to a restriction on the productions on the VTRATG: for every nonterminal
vector � there has to be at least one production � → . .

Lemma 3.9.1. There is a formula K (2) containing 2 such that: let 	 be a
VTRATG such that there is a production for every nonterminal vector and every
nonterminal vector is nonempty. Then there is a simple proof G	 of 8 ∃2K (2) such
that G	 does not contain quantified weakening and (G∗

) = {,1(.) | . ∈ ()}
for any

ne→-normal form G∗
	 . This proof G	 is polynomially-time computable

from 	 .

79

3 Decision problems on grammars

Proof. Choose K (2) := �(2) → �(2) for a relation symbol �. We could also
use � instead of K (2), but then the terms would not appear in the formulas.
Let � ≺ �1 ≺ · · · ≺ �(be the nonterminal vectors of 	 . The proof G	 then
has (cuts, each with the formula P# = ∀2# ¬

$ K (2#, $) where 2# is a variable
vector of the same size and types as the nonterminal vector �# . For the cut
with the cut formula P# we will use the eigenvariable vector =# . We define a
sequence of proofs G# for 1 ≤ # ≤ (+ 1. For # ≤ (, G# is defined as follows
where �# → .1, . . . , �# → .' are all the productions for the nonterminal vector
�# :

(G�+1)
8 ∃2 K (2)

1,8 ¬
$ K (=#, $), ∃2 K (2) ∀∗,8 P#, ∃2 K (2)

�(.1,1) 8 �(.1,1) →,8 K (.1,1) 1, ,∨,8 $ K (.1, $) ¬∗
&¬

$ K (.1, $) 8 1∗
&¬

$ K (.1, $), . . . ,¬

$ K (.1, $) 8 ∀∗
&
, �∗

&P# 8 cut
M1, . . . ,M#−1 8 ∃2 K (2)

We define G(+1 as follows where �→ .1 | · · · | .' are all the productions for
the nonterminal �:

�(.1) 8 �(.1) →,8 K (.1) 1∗
,8 K (.1), . . . , K (.') ∃∗
, , �

∗
,8 ∃2 K (2)

Finally we set G	 = G1. By looking at G	 , we have 	 (G) 5 	 , i.e., 	 has
the production �→ . iff 	 (G) has the production �→ ,1(.). We then have
(G∗

) = ((G)) = {,1(.) | . ∈ ()} by Theorem 3.9.1. �

A similar (and less artificial) construction is also present in [46, Theorem
25], however that construction gives a proof of a larger sequent K1, . . . , K(8
∃2 �1(2) where the formula K# depends on the productions for the nonter-
minal �# and the instances of K# encode the terms derivable from �# . The
Herbrand sequent of the proof hence contains more terms than the language
of the grammar, and for example (1) ⊆ (2) would in general not be
equivalent to
 (G∗

	1
) ⊆
 (G∗

	2
) where G	1, G	2 are defined as in [46].

Theorem 3.9.2. The following complexity results hold:

80

3.10 The treewidth measure on graphs

• H-Membership is NP-complete

• H-Containment is 9�
2 -complete

• H-Disjointness is coNP-complete

• H-Equivalence is 9�
2 -complete

Proof. Hardness follows from the corresponding Theorems 3.2.1, 3.4.1, 3.5.1
and 3.6.1 for VTRATGs via Lemma 3.9.1, since we have
 (G∗

) = � ((G∗
)) =

� (((G))) = {,1(.) | . ∈ ()} 5 () and all the VTRATGs used in the
hardness proofs have the property that every nonterminal vector has at least
one production. �

3.10 The treewidth measure on graphs

Many problems on graphs are easier to solve on trees. For example coloring a
graph using a given number of colors (such that no two adjacent vertices have
the same color) is a well-known NP-complete problem; however it is trivial to
color a tree using just two colors. We could expect that such problems can also
be easily solved on graphs that are in some sense “close” to being a tree. The
notion of treewidth makes this intuition concrete. The treewidth of a graph is
a natural number that indicates how close it is to a tree: non-empty trees (as
well as forests) have treewidth 1, and graphs with larger tree widths are less
like trees. The concept of treewidth was originally introduced under the name
“dimension” in [10] to study tractable subclasses of optimization problems, and
later called treewidth in [84].

Definition 3.10.1 (tree decomposition). Let 	 = (� , �) be an undirected
graph. Then a pair (�, (�.).∈��) of a tree� = (�� , ��) together with a function
� : �� → P(�), which assigns to every node of the tree a “bag” of vertices
of 	 , is called a tree decomposition of	 if:

1. For any vertex 0 ∈ � , there exists a vertex . ∈ �� such that 0 ∈ �. .

2. For any edge = {01, 02} ∈ �, there exists a vertex . ∈ �� such that
 ⊆ �. .

81

3 Decision problems on grammars

3. Let .1(be a path in � , and 0 ∈ �.1 ∩ �. . Then 0 ∈ �.� for any .# on
the path.

The width of a tree decomposition � is the maximum of |�. | − 1 for . ∈ �� .

Definition 3.10.2 (treewidth). Let 	 be an undirected graph. Then tw() is
the minimum width of a tree decomposition of 	 .

The treewidth of a graph is 1 if and only if it is a forest. The treewidth is 0
if and only if the graph has no edges. For every % ≥ 0, there is a polynomial-
time algorithm that computes a tree decomposition of width ≤ % , if such a
decomposition exists [6]. If % is not fixed, the problem of determining whether
a given graph has treewidth % is NP-complete [6]. Let us first prove some basic
facts about treewidth.

Lemma 3.10.1. Let (≥ 1 and let �(be the complete graph on (vertices.
Then tw(�() = (− 1.

Proof. It is easy to see that tw(�() ≤ (− 1 using a tree decomposition with
tree consisting of a single vertex. For tw(�() ≥ (− 1, let (�, (�.).∈��) be a tree
decomposition of �(. We need to show that this tree decomposition has at
least width (− 1. If� contains a leaf 0 connected to� via the edge {0, 00}, such
that �0 ≠ �� , then we can make a smaller tree decomposition by removing 0 :
let # ∈ �� \�0 . In order to show that (� \ {0}, �) is still a tree decomposition,
we need to show that for every edge {1,1 0} ∈ �� , we still have a node
0̃ ∈ �� \ {0} such that {1,1 0} ⊆ �0̃ . Since (�,�) is a tree decomposition there
exist 01, 02 ∈ �� such that {1, #} ⊆ �01 and {1 0, #} ⊆ �02 . If {1,1 0} ⊆ �0 of the
removed node, then {1,1 0} ⊆ �0 0 since the adjacent node lies on the paths
to 01, 02. �

Lemma 3.10.2. Let 	,
 be graphs such that 	 is a subgraph of
 . Then
tw() ≤ tw(
).

Proof. Every tree decomposition of
 induces a tree decomposition of 	 of
the same width or less, by restricting the �0 sets to the vertices of 	 . �

82

3.11 The case of bounded treewidth

3.11 The case of bounded treewidth

The NP-hardness result of VTRATG-Membership in Theorem 3.2.1 was based
on the observation that we can encode Boolean satisfiability as the TRATG
Sat(,' . This TRATGmakes use of the fact that derivations in VTRATGs can only
use a single production for each nonterminal, and we can hence “synchronize”
across many productions to choose a consistent interpretation. There is a very
relevant natural class of VTRATGs where this synchronization occurs in only
a very limited amount, namely instance grammars:
Example 3.11.1. Consider the following induction grammar 	 :

J → , (?)
? → � | ! (?)

Then the instance grammar � (, -((0)) has the following form:
J → , (?0) | · · · | , (?()
?0 → � | ! (?1)
?1 → � | ! (?2)
...

?(−1 → � | ! (?()
?(→ �

Note that the productions for each nonterminal ?# only contain the “next”
nonterminal ?#+1. The treewidth will hence be small. Concretely, the treewidth
will be at most 2 for each instance grammars � (, -((0)).
In this section we will show that the notion of treewidth captures how much

of this kind of synchronization can occur across nonterminals in a VTRATG:
if the treewidth is bounded, then the membership problem will be computable
in polynomial time.
For VTRATGs we consider the treewidth of a so-called dependency graph

of the grammar. (For TRATGs, the directed version of this dependency graph
is acyclic by Definition 2.5.1, since it embeds into the linear order ≺ of the
VTRATG.) Given a set of nonterminal vectors � 0 ⊆ � , we write

�
� 0 = {�# |

� ∈ � 0} for the set of all nonterminals contained in �� .

83

3 Decision problems on grammars

Definition 3.11.1 (dependency graph). Let	 = (�, :, �,�) be a TRATG. Then
the dependency graph � () = (��, �) has the nonterminals as vertices, and
two nonterminals �,� are adjacent if there exists a production �

0 → . ∈ �

and $ such that . contains� and � = �0
for some # , or if � = �# and� = � $ for

some nonterminal vector � and # ≠ $.

Example 3.11.2. Consider the TRATG 	 with the productions:

�→ ! (�,�)
� → �

� → �

� → � | �

This TRATG	 has the following dependency graph � ():

�

� �

�

The dependency graph � () has treewidth tw(� ()) = 2, witnessed by the
following tree decomposition of width 2 (labelling each vertex . in the tree
decomposition with its associated set �.):

{�, �, �}

{�,�, �}

Intuitively, the nonterminal � occurs in both the productions for � and for � .
Hence the two nonterminals � and � need to “synchronize” the result for � .
In the tree decomposition this causes � to be in every �. set.

Example 3.11.3. Let 	 be the VTRATG with the productions �→ ! (�,�) and
(�,�) → (�, �). Then	 has the following dependency graph:

�

� �

84

3.11 The case of bounded treewidth

The dependency graph has treewidth tw(� ()) = 2, as witnessed by the tree
decomposition {�, �,�} (consisting of a single vertex and no edges).
Example 3.11.4. Bounding tw(� ()) restricts the amount of synchronization,
but not the size of the generated language. The generated language () can
still be exponentially larger, even if tw(� ()) = 1 as in the following grammar
of size 2(+ 1 whose language has size |() | = 2(:

�→ ! (�1) | "(�1)
�1 → ! (�2) | "(�2)
...

�(−1 → ! (�() | "(�()
�(→ �

Lemma 3.11.1. Let 	 = (�, :, �,�) be a VTRATG. Then |� | ≤ tw(� ()) + 1
for all � ∈ � .

Proof. Let� = (�1, . . . , �(). Then�# and� $ are adjacent in� () for every # ≠ $,
so � () contains an isomorphic copy of �(as a subgraph. If (= 0, then
trivially (≤ tw(� ()) + 1. Otherwise, |� | = (= tw(�() + 1 ≤ tw(� ()) + 1
by Lemmas 3.10.1 and 3.10.2. �

There is a good reason why we define the dependency graph on nonter-
minals and not on the nonterminal vectors. Call the analogously defined
dependency graph on nonterminal vectors �0(), i.e., the vertices of �0()
are the nonterminal vectors, and two nonterminal vectors � and� are adjacent
iff there exists a production � → . such that . contains � $ for some $. Then
for every VTRATG 	 there is a (polynomial-time computable) VTRATG 	0

such that () = (0) and tw(�0(0)) = 1. That is, even for bounded tw ◦�0

the membership problem is already NP-complete by Theorem 3.2.1. The con-
struction of this VTRATG 	0 is straightforward: let 	 have the nonterminal
vectors�0 ≺ �1 ≺ · · · ≺ �((and without loss of generality, let there be at least
one production for every nonterminal vector). Then	0 has the nonterminal
vectors �0 ≺ �1 ≺ · · · ≺ �(, where �# = (�#,#, . . . , �#,() such that # ≥ 1 and
|�#, $ | = |� $ |. That is, �# consists of copies of the nonterminal vectors�#, . . . , �(,

85

3 Decision problems on grammars

stacked on each other. A production �# → . [�#+1, . . . , �(] in	 is translated to
a production �# → (. [�#+1,#+1, . . . �#+1,(], �#+1,#+1, . . . , �#+1,(). Clearly �0(0) is a
tree and hence tw(�0(0)) = 1. This construction even preserves the size of
the VTRATG |	0| = |	 |. Defining the dependency graph on nonterminals also
allows us to bound the length of a nonterminal vector by the treewidth.

3.11.1 Membership

Bounding the treewidth of the dependency graph restricts the amount of
synchronization that can occur between nonterminals in a VTRATG. This
restriction allows us to decide the membership problem in polynomial time if
the treewidth is bounded.

Problem 3.11.1 ((tw ≤ %)-Membership).
Given a term . and a VTRATG	 such that tw(� ()) ≤ % , is . ∈ ()?
For the rest of this subsection, fix a term . , a VTRATG	 = (�, :, �,�), and

a tree decomposition � = (�� , ��) of � () with bags �0 for 0 ∈ �� . We will
construct a polynomial-time decision procedure for (tw ≤ %)-Membership.
Choose a root 00 ∈ �� of the tree decomposition such that � ∈ �00 and orient
the edges in � away from the root. In this way, every vertex 0 ∈ �� induces a
subtree �0 containing all vertices reachable from 0 .
The decision procedure will be implemented by recursion on the tree de-

composition: starting with the root of the decomposition, we determine all
terms generated by the nonterminals �0 . The possible assignments from non-
terminals to terms are captured by the following definition. Given a set of
nonterminals� ⊆ �

� , we define the set �̃ ⊆ � of all nonterminal vectors
that contain some nonterminal in� , i.e., �̃ = {� ∈ � | ∃# �# ∈ �}.
Definition 3.11.2. Let 0 ∈ �� be a node in the tree decomposition. A partial
assignment for 0 is a pair (! , *) such that:
1. ! ⊆ �0 × st(.) is a partial function,

2. * ⊆ � is a partial function such that dom(*) ⊆ �̃0 ,

3. for every production � → - ∈ * and # such that �# ∈ dom(!):

86

3.11 The case of bounded treewidth

a) ! (�#) / -#

b) ! (�) = � (! (�#)/-#) for every nonterminal � such that � occurs
in -#

Example 3.11.5 (continuing Example 3.11.2). Let 0 be the vertex in the tree
decomposition with �0 = {�, �, �}, and let . = ! (�, �) be the term where we
want to decide . ∈ (). Then ({(�, ! (�, �)), (�, �), (�, �)}, {�→ ! (�,�), �→
�,� → �}) is a partial assignment for 0 .
In a partial assignment, the terms !� (�) are the terms that we want to parse

(where � ∈ �
� is a nonterminal), that is, where we want to find a derivation

@ such that �@ = !� (�). It is important that the assignment from nonterminals
to terms is partial: consider a term ! (�) and a VTRATG with the productions
�→ ! (�) | ! (�), � → �,� → � . Here, there is no subterm - � ! (�) such that
� expands to - .
Furthermore, the partial assignment fixes the productions used in the deriva-

tion. This is due to another reason: we might have a term ! (�, �), a VTRATG
with the productions �→ ! (�,�) | ! (�, �), � → �,� → � and a tree decom-
position {�, �} − {�} − {�,�}. If we did not include the production for �
in the partial assignment, then the partial assignments for {�, �} and {�,�}
could disagree about the production for �. If two partial assignments agree on
the productions and terms for the common nonterminals, then we call them
compatible:

Definition 3.11.3. Let (! , *) and (! 0, *0) be partial assignments for 0, 00 ∈ �� ,
resp. The partial assignments are compatible iff ! � (�0 ∩�0 0) = ! 0 � (�0 ∩�0 0)
and * � (�̃0 ∩ �̃0 0) = *0 � (�̃0 ∩ �̃0 0).
We now give a characterization of () in terms of partial assignments

on the tree decomposition. In a sense, we split up a derivation into small
overlapping parts, and each node 0 in the tree decomposition stores the part
about the nonterminals �0 :

Theorem 3.11.1. . ∈ () iff there exists a function � that assigns to every
vertex 0 ∈ �� of the tree decomposition a partial assignment �(0) for 0 in such a
way that �(0) and �(00) are compatible for all adjacent 0 and 00, and (�(0))1(�) =
. for some 0 .

87

3 Decision problems on grammars

Proof. First, assume that . ∈ () and @ is a derivation of . in 	 . Then we
define �(0) = (!0 , *0) as follows: !0 (�) = �@ if � ∈ �0 and �@ � . , and
undefined otherwise. For productions, we set � → - ∈ *0 iff � ∈ �̃0 and
� → - ∈ @ . Clearly �(0) is a partial assignment for every 0 , and all of these
partial assignments are compatible.
On the other hand, let � be a function as required by the theorem. Let ! and *

be partial functions such that (�(0))1 = ! ��0 and (�(0))2 = *��̃0 for all 0 ∈ �� .
The partial function ! exists, as the function values in the partial assignments
need to agree for adjacent vertices and all vertices where �0 contains a given
nonterminal are connected in � since � is a tree decomposition. We clearly
have ! (�) = . . Furthermore, given � ∈ � and #, $, all vertices 0 such that
�0 contains �# or � $ are connected (by definition of the dependency graph).
Hence the partial function * exists as well. From ! and * we can now define a
derivation @ using the set of productions * . We now have ! (�) = �@ for every
nonterminal � ∈ �

� and hence @ is a derivation of . in	 . �

Example 3.11.6 (continuing Example 3.11.2). Let . = ! (�, �). Then . ∈ () as
witnessed by the derivation using the productions �→ ! (�,�), � → �,� →
�, � → � . The corresponding function � is given as follows (where 00, 01 are
the vertices such that �00 = {�, �, �} and �01 = {�,�, �}):

�(00) = ({(�, ! (�, �)), (�, �), (�, �)}, {�→ ! (�,�), � → �,� → �})
�(01) = ({(�, ! (�, �)), (�, �), (�, �)}, {�→ ! (�,�),� → �, � → �})

We can now use the characterization of Theorem 3.11.1 to show that (tw ≤
%)-Membership is computable in polynomial time.
Theorem 3.11.2. (tw ≤ %)-Membership ∈ P for all % .

Proof. We compute for every 0 ∈ �� the set �0 of partial assignments for 0
such that � ∈ �0 iff there exists a function � that assigns to every 00 ∈ ��� a
partial assignment for 00 such that �(0) = � and �(00) and �(000) are compatible
whenever 00 and 000 are adjacent. This set can be computed recursively: given
a partial assignment � for 0 , � ∈ �0 iff for every child 00 of 0 there exists a
compatible partial assignment �0 ∈ �0 0. There are only polynomially many
partial assignments for every 0 , so the recursive algorithm runs in polynomial

88

3.11 The case of bounded treewidth

time. By Theorem 3.11.1, . ∈ () if and only if there exists a (! , *) ∈ �0 with
! (�) = . . �

3.11.2 Emptiness

We can also use Theorem 3.11.1 to effectively decide the emptiness problem
for VTRATGs with dependency graphs of bounded treewidth:

Problem 3.11.2 ((tw ≤ %)-Emptiness).
Given a VTRATG 	 such that tw(� ()) ≤ % , is () = ∅?

Theorem 3.11.3. (tw ≤ %)-Emptiness ∈ P for all % .

Proof. Compute the sets �0 of partial assignments as in the proof of Theo-
rem 3.11.2. We have . ∈ () iff there exists a (! , *) ∈ �0 with ! (�) = . .
Hence () ≠ ∅ iff there exists a (! , *) ∈ �0 such that ! (�) is defined. �

3.11.3 Containment

Having determined the complexity of membership, we can now turn towards
containment. In contrast to the unconstrained case where containment was
9�
2 -complete (Theorem 3.4.1), for bounded treewidth it will turn out to be only

coNP-complete:

Problem 3.11.3 ((tw ≤ %)-Containment).
Given VTRATGs 	1,	2 such that tw(� (1)) ≤ % and tw(� (2)) ≤ % , is
(1) ⊆ (2)?

Theorem 3.11.4. (tw ≤ %)-Containment is coNP-complete for % ≥ 1.

Proof. The problem is in coNP since for any . (whose symbolic size we can
bound by a polynomial in the symbolic size of	1), we can check in polynomial
time whether . ∉ (1) or . ∈ (2). Hardness follows via reduction from the
complement of 3SAT. Hence let K be a formula in 3CNF with the variables 2 .
We choose 	1 = InstK,2 , which generates exactly the substitution instances
of K where we replace the variables by either true or false. We clearly have
tw(� (1)) = 1.

89

3 Decision problems on grammars

For the reduction we want to find a TRATG	2 such that (1) ⊆ (2) iff
K is unsatisfiable. Ideally (2) would contain exactly the false substitution
instances of K , however this grammar would likely have a dependency graph
of unbounded treewidth since we need to choose the same substitution for
every clause. Therefore we use a slightly different grammar 	2 that generates
false formulas of the same “shape” as K , in particular it generates all false
instances of K :

�→ and(�1, . . . ,�#−1, � ,�#+1, . . . ,�() (for each # ≤ ()
�# → or(�#,1, �#,2, �#,3)

�#, $ → false | neg(true) | true | neg(false) (for each # ≤ (and $ ≤ 3)
� → or(1,	2,	3)
	 $ → false | neg(true) (for each $ ≤ 3)
Each nonterminal �# expands to a substitution instance of a clause. The

nonterminal � expands to such instances as well, but only to those which are
semantically false. We clearly have tw(� (2)) = 1. Since � expands to a false
clause, every formula in (2) is equivalent to false. So if (1) ⊆ (2), then
K is unsatisfiable. On the other hand, (2) contains every false substitution
instance of K : if the instance is false, then at least one conjunct of the top-level
and is false and we can construct a derivation in	2 using the corresponding
production for �. So we have a reduction from the complement of 3SAT; it is
polynomial-time since the grammars	1,	2 can be computed in polynomial
time from K . �

3.11.4 Disjointness

Interestingly, bounding the treewidth of the dependency graph does not change
the complexity of the disjointness problem. In both the unconstrained and the
treewidth-bounded case, the problem is coNP-complete. However we need to
use a different proof for coNP-hardness: in the unconstrained case, we could re-
duce the complement of the NP-complete membership problem to disjointness.
But this approach does not work here, since treewidth-bounded membership
is in P. Therefore we use a similar proof as for (tw ≤ %)-Containment in
Theorem 3.11.4.

90

3.11 The case of bounded treewidth

Problem 3.11.4 ((tw ≤ %)-Disjointness).
Given VTRATGs 	1,	2 such that tw(� (1)) ≤ % and tw(� (2)) ≤ % , is
(1) ∩ (2) = ∅?

Theorem 3.11.5. (tw ≤ %)-Disjointness is coNP-complete for % ≥ 1.

Proof. The problem is in coNP since for every derivation of a term . ∈ (1)
we can check whether . ∉ (2) in polynomial time by Theorem 3.11.2. For
coNP-hardness, we show a reduction from the complement of 3SAT as in the
proof of Theorem 3.11.4. So let K be a formula in 3CNF with the variables 2 .
We set	1 = InstK,2 . For	2 we pick a TRATG that generates only true formulas,
including all true substitution instances of K :

�→ and(�1, . . . , �()
�# → or(�#, �#,1, �#,2) | or(�#,1,�#, �#,2) | or(�#,1, �#,2,�#)
�# → true | neg(false)

�#, $ → true | false | neg(false) | neg(false)

The nonterminal �# expands to an instance of a clause where at least one literal
evaluates to true, �# expands to a true instance of a literal, and �#, $ expands to
an arbitrary instance of a literal. As usual, we have tw(� (2)) = 1 and 	2 is
also polynomial-time computable. As in Theorem 3.11.4, (1) ∩ (2) = ∅
iff K is unsatisfiable, i.e., there is a substitution instance of K that evaluates to
true. �

3.11.5 Equivalence

The complexity of the equivalence problem follows directly from containment
using the same reduction as for the unconstrained case in Theorem 3.6.1 using
the union operation on VTRATGs.

Problem 3.11.5 ((tw ≤ %)-Eqivalence).
Given VTRATGs 	1,	2 such that tw(� (1)) ≤ % and tw(� (2)) ≤ % , is
(1) = (2)?

Theorem 3.11.6. (tw ≤ %)-Equivalence is coNP-complete for % ≥ 1.

91

3 Decision problems on grammars

Proof. We first show that the problem is in coNP via a reduction to (tw ≤ %)-
Containment: (1) = (2) ↔ (1) ⊆ (2)∧(2) ⊆ (1)—and coNP
is closed under intersection. Hardness follows by a reduction from (tw ≤ %)-
Containment: (1) ⊆ (2) iff (1) ∪ (2) = (2). This is equivalent
to (1 ∪	2) = (2), an instance of (tw ≤ %)-Eqivalence. �

3.11.6 Minimization

The minimization problem has the same complexity as in the unconstrained
case: it is NP-complete.

Problem 3.11.6 ((tw ≤ %)-Minimization).
Given a VTRATG 	 = (�, :, �,A) with tw(�) ≤ % , a set of terms such that
() ⊇ , and (≥ 0, is there a subset � 0 ⊆ � of the productions such that
|� 0| ≤ (and (0) ⊇ where 	0 = (�, :, � 0,A)?

Note that such a grammar 	0 also has the property that tw(� (0)) ≤ % .

Theorem 3.11.7. (tw ≤ %)-Minimization is NP-complete for % ≥ 1.

Proof. The problem is in NP because it is a special case of the VTRATG-
Minimization problem. Hardness follows by reduction from Set Cover
as in Theorem 3.8.1: the grammar used in the proof of Theorem 3.8.1 has the
property that tw(� ()) = 1. �

3.11.7 Cover

The complexity of the Cover and (-Cover problems is also unchanged from
the unconstrained case.

Problem 3.11.7 ((tw ≤ %)-Cover).
Given a finite set of terms and (≥ 0, is there a VTRATG	 such that |	 | ≤ (,
tw(� ()) ≤ % , and () ⊇ ?

In contrast to Corollary 3.7.1 for VTRATG-Cover, there is no obvious trivial
solution to (tw ≤ %)-Cover. The optimally compressing grammar given by
Theorem 3.7.1 has a dependency graph of unbounded treewidth.

92

3.11 The case of bounded treewidth

Theorem 3.11.8. (tw ≤ %)-Cover ∈ NP.

Proof. By Lemma 3.11.1, the maximum length of a nonterminal vector is
bounded by % + 1. A covering VTRATG of size ≤ (then has at most (pro-
ductions of length % + 1, and we can guess such a VTRATG in polynomial
time and check whether tw(� ()) ≤ % . Checking () ⊇ is also in NP by
Theorem 3.2.1. �

Once again, it is open whether the cover problem is NP-complete:

Open Problem 3.11.1. Is (tw ≤ %)-Cover NP-complete?

And the variant wherewe bound the number of nonterminals isNP-complete
by reduction from Regular-(-Cover and verifying that the TRATGs have a
dependency graph of bounded treewidth:

Problem 3.11.8 ((tw ≤ %)-(-Cover).
Given a finite set of terms and & ≥ 0, is there a VTRATG 	 = (�, :, �,�)
such that |	 | ≤ & , tw(� ()) ≤ % , |� | ≤ (, and () ⊇ ?

Theorem 3.11.9. (tw ≤ %)-(-Cover is NP-complete for (≥ 2 and % ≥ 1.

Proof. The problem is inNP analogously to Theorem 3.11.8: checking the extra
condition |� | ≤ (can be done in polynomial time. For hardness we need to
analyze the TRATGs used in the proofs of Lemmas 3.7.3 to 3.7.5 and verify
that the treewidth of their dependency graph is at most one. In Lemmas 3.7.3
and 3.7.4 we use TRATGs	 with at most 2 nonterminals, hence tw(� ()) = 1.
In Lemma 3.7.5, we transform a TRATG by adding a new start symbol � at
the beginning; we add two kinds of productions: productions which do not
contain a nonterminal on the right-hand side, these do not contribute to the
dependency graph. And productions from the new start symbol �, which only
contain a single nonterminal on the right-hand side, namely �. Hence the
dependency graph is only extended by a single new vertex� and an edge�−�,
preserving the treewidth (which is one). �

93

3 Decision problems on grammars

3.12 Decision problems on induction grammars

3.12.1 Membership

We have motivated the class of treewidth-bounded VTRATGs in Section 3.11 by
instance grammars, which are a natural class of VTRATGs whose dependency
graph has bounded treewidth. There is however a small technical issue, which
we will now explain. Let us first recall Example 3.11.1:
Example 3.12.1. Consider the following induction grammar	 :

J → , (?)
? → � | ! (?)

Then the instance grammar � (, -((0)) has the following form:
J → , (?0) | · · · | , (?()
?0 → � | ! (?1)
?1 → � | ! (?2)
...

?(−1 → � | ! (?()
?(→ �

The treewidth of the dependency graph is tw(� (� (, -((0)))) ≤ 2, as witnessed
by the following tree decomposition. That is, the treewidth is uniformly
bounded for all instance terms.

{J,?0, ?1} − {J,?1, ?2} − · · · − {J,?(−1, ?(}
However, a small issue arises if the inductive datatype has a constructor

with two recursive occurrences since the instance grammars have nonterminal
vectors ?- for every subterm - , even if it occurs multiple times:
Example 3.12.2. Consider the inductive type of binary trees with the construc-
tors &J and (J→J→J and the following induction grammar:

J → , (?)
? → � | ! (?)

94

3.12 Decision problems on induction grammars

Define the (free constructor) terms .#+1, $+1 = ((.#, $+1, .#+1, $), .#+1,0 = .0,#+1 =

((.#,0, .#,0), .0,0 = & . Then the subterm structure of .#, $ contains a grid, where
two subterms are connected by an edge if they are direct subterms (there are
more edges than shown here, since .#, $ = . $,# is symmetric):

.#,0 .#,1#, $−1 .#, $

.#−1,0 .#−1,1#−1, $−1 .#−1, $

...
...

. . .
...

...

.1,0 .1,11, $−1 .1, $

.0,0 .0,10, $−1 .0, $

The treewidth of such a (# × $)-grid is exactly min(#, $), and this grid is a
subgraph of � (� (, .#, $)). Thus tw(� (� (, .#,#))) ≥ # is not uniformly bounded.

This minor technical issue is easily solved by using a slightly different
definition for the instance grammar, with nonterminals ?* for every position *
(instead of ?- for every subterm):

Definition 3.12.1. Let 	 = (J, =, (F�)�, ?, �) be an induction grammar, and
, a constructor term of the same type as = . The modified instance grammar
� 0(, ,) = (J, � , � 0) is a VTRATG with nonterminal vectors � = {J} ∪ {?* |
* ∈ Pos(,)} and productions � 0 = {*0 | ∃* ∈ � (* � *0)}. The instantiation
relation * �0 *0 is defined as follows:

• J → . [=, F#, ?] �0 J → . [,, -, ?*] for * ∈ Pos(,) with , |* = �# (-)

• ? → . [=] � ?* → . [,] for * ∈ Pos(,)

• ? → . [=, F#, ?] � ?* $ → . [,, -, ?*] for * ∈ Pos(,) such that , |* = �# (-),
where $ is a recursive occurrence in �#

95

3 Decision problems on grammars

How do the VTRATGs � (, ,) and � (, ,) differ? They only differ (ignoring
the names of the nonterminals) if , contains a subterm that occurs at two
different positions. In general, , regarded as a tree can be exponentially
larger than , regarded as a DAG. The VTRATG � 0(, ,) treats , as a tree
since it is defined in terms of the positions of , , while � (, ,) treats , as a
DAG since it is defined in terms of the subterms of , . For example, the term
.#,0 = ((.#−1,0, .#−1,0) = . . . in Example 3.12.2 contains # + 1 subterms, but 2#+1− 1
positions.
The VTRATG � 0(, ,) is polynomial-time computable from a tree representa-

tion of , , and � (, ,) is polynomial-time computable from aDAG representation
of , . There is a size difference between � (, ,) and � 0(, ,): the tree represen-
tation of , can be exponentially larger than the DAG representation. In this
case, � 0(, ,) will also be exponentially larger than � (, ,).

Lemma 3.12.1. (, #) = (� (, #)) = (� 0(, #)).

Proof. We can transform derivations between the two definitions of instance
grammars. If we have a derivation in � (, #) thenwe can pick the corresponding
productions in � 0(, #) to derive the same term (every nonterminal vector in
� (, #) corresponds to at most one nonterminal vector in � 0(, #), so it is clear
which production to pick.)
On the other hand if we have a

1⇒-derivation in � 0(, #), then it only contains
nonterminal vectors ?* for positions * along a single branch of the term # . (We
can see this by looking at the productions.) That is, there is a position *0 such
that * ⊆ *0 for every nonterminal vector ?* occurring in the derivation. Every
nonterminal vector in � (, #) corresponds to at most one such nonterminal
vector ?* (since we do not have parallel occurrences). And we get a derivation
of the same term in � (, #) by picking the corresponding productions. �

Lemma 3.12.2. Let 	 = (J, =, (F�)�, ?, �) be an induction grammar. Then
tw(� (� 0(, .))) ≤ 2|? |.

Proof. We construct a tree decomposition with the vertices �� = {O} ∪ {* ∈
Pos(.) | * is a recursive occurrence}. Two vertices are adjacent if they are
positions of direct subterms, i.e. �� = {{*, *#} | *# ∈ �� }. For every *# ∈ ��

96

3.12 Decision problems on induction grammars

we define �*# = {J} ∪?* ∪?*# , and �O = {J} ∪?O . This tree decomposition has
the desired width. �

Lemma 3.12.2 allows us to reduce the membership problem for induction
grammars the one for VTRATGs with dependency graph of bounded treewidth.

Problem 3.12.1 ((|? | ≤ %)-Ind-Membership).
Given an induction grammar 	 = (J, =, (F�)�, ?, �) such that |? | ≤ % , a free
constructor term # , and a term . represented as a tree, is . ∈ (, #)?

Theorem 3.12.1. (|? | ≤ %)-Ind-Membership ∈ P for all % .

Proof. By Lemma 3.12.1, . ∈ (, #) iff . ∈ (� 0(, #)). This is an instance of
(tw ≤ 2|? |)-Membership by Lemma 3.12.2, which is in P by Theorem 3.11.2.

�

The restriction of |? | ≤ % is necessary in Theorem 3.12.1 (assuming P ≠ NP).
If the size of |? | is not bounded, then the membership problem becomes NP-
complete:

Problem 3.12.2 (Ind-Membership).
Given an induction grammar 	 = (J, =, (F�)�, ?, �), a free constructor term #

represented as a tree, and a term . , is . ∈ (, #)?

This is because we can encode any given VTRATG 	 as an induction gram-
mar by making ? as wide as necessary. The general idea is that we use the
instance grammar with (nonterminal vectors to simulate a VTRATG with (
nonterminal vectors. This induction grammar will generate () in the sense
that (Embed	 , () ∩ T (:) = () as we will see in Lemma 3.12.3. We need
to restrict the language of the induction grammar to the original signature
since the induction grammar also generates junk terms, which correspond to
“derivations” (in) that do not substitute all the nonterminals. The reason for
these junk terms is that we want every nonterminal vector in the instance
grammars to have at least one production, yielding a stronger result.
All of the induction grammars that we construct for the hardness and unde-

cidability proofs will be for the natural numbers. This is no significant restric-
tion, we could perform the same construction for any other datatype that has

97

3 Decision problems on grammars

free constructor terms of unbounded size (or equivalently, if it has infinitely
many up to renaming). In the case of the natural numbers, (Embed� , () pro-
duces the language of the VTRATG. In the general setting, we would get that
(Embed� , .) produces that language for any free constructor term . of term
depth (− 1.

Definition 3.12.2. Let 	 = (�, :, �,�) be a VTRATG with and � = {� ≺
�1 ≺ · · · ≺ �(}. Let ,> be a new constant for every type > , and for every �# ,
define ,# = (,>1, . . . , ,>
�) with the same types as �# . We define the induction
grammar Embed	 = (J, =, (F�)�, ?, � 0) with ? = (�1, . . . , �() and the following
productions:

J → - for every production �→ - ∈ �

? → (,1, . . . , ,#−1, -, �#+1, . . . , �() for every production �# → - ∈ �

Lemma 3.12.3. Let 	 = (�, :, �,�) be a VTRATG. Then (Embed	 , () ∩
T (:) = () for all (≥ |� | − 1.

Proof. If @ is a derivation in 	 , then the derivation @0 with the corresponding
productions in � (, .) derives the same term. On the other hand if @ is a
derivation of a term + ∈ T (:), then + does not contain ,> for any > and
the derivation @0 using the corresponding productions in	 derives the same
term +. �

Theorem 3.12.2. Ind-Membership is NP-complete.

Proof. By a reduction from VTRATG-Membership, which is NP-complete by
Theorem 3.2.1, using Lemma 3.12.3. �

3.12.2 Emptiness

The complexity of the emptiness problem on induction grammars is surprising:
in this section, we will show that it is PSPACE-complete. In a sense it stands
between the (relatively tractable) NP-complete membership problem and the
undecidable containment, equivalence, and disjointness problems that we will
consider in the following sections.

98

3.12 Decision problems on induction grammars

Problem 3.12.3 (Ind-Emptiness).
Given an induction grammar 	 , is (, #) = ∅ for all free constructor terms #?
Problem 3.12.4 ((|? | ≤ %)-Ind-Emptiness).
Given an induction grammar	 = (J, =, (F�)�, ?, �) such that |? | ≤ % , is (, #) =
∅ for all free constructor terms #?
These problems are deeply connected to another model in formal language

theory, namely non-deterministic finite automata. Intuitively, the hardness of
emptiness in induction grammars is due to a large size of ? = (?1, . . . , ?(). If
we only care about the set of occurring nonterminals, applying a production
? → . (to be precise, an instance of the production in the instance grammar)
then has the effect of replacing one set of nonterminals {?3, ?5, ?8} occurring
by an other set {?7, ?9}. The language of the induction grammar is empty iff
we can never reach the empty set. On the level of the automaton, ?1, . . . , ?(will
be the states, the sequence of productions in a derivation will be a word, and
reaching the empty set means that a word is not accepted by the automaton
(since the empty set obviously contains no final states).

Definition 3.12.3. A non-deterministic finite automaton (NFA) is a quintuple
� = (�, :, @, +0, �) where � is a finite set of states, : is an alphabet, @ ⊆
� × : ×� is a transition relation, +0 ∈ � is the initial state, and � ⊆ � is the
set of final states.
We extend the transition relation @ recursively to a relation @ ⊆ � × :∗ ×�

by setting (+, O, +0) ∈ @ iff + = +0, and (+, ��, +0) ∈ @ iff ∃+00 (+, �, +00) ∈ @ ∧
(+00, �, +0) ∈ @ . The language (�) accepted by � is defined as (�) = {1 ∈
:∗ | ∃+ ∈ � (+0,1, +) ∈ @}.
In our construction, the language of an induction grammar will be empty iff

the automation accepts all words. Interestingly, this universality problem for
NFAs is PSPACE-complete:

Problem 3.12.5 (NFA-Universality).
Given an NFA � = (�, :, @, +0, �), is (�) = :∗?

Meyer and Stockmeyer first considered the complexity of NFA-Universality
in [70], where they also introduce the polynomial-time hierarchy. While they

99

3 Decision problems on grammars

do not explicitly state that the problem is PSPACE-complete, they show that
it is 9�

%
-hard for every % , and exhibit a polynomial-time reduction from the

membership problem for context-sensitive grammars, which is PSPACE-hard.

Theorem 3.12.3 ([70], Lemma 2.3). NFA-Universality is PSPACE-complete.

Our strategy is now as follows: we will assign to every induction grammar
an NFA, such that the NFA is (almost) universal iff the language of the induction
grammar is empty. Given an induction grammar	 = (J, =, (F�)�, ?, �) we define
the sets of productions �J = {* ∈ � | ∃. * = J → .} and �? = {* ∈ � | ∃. * =

? → .}. To simplify the construction of the automaton, we do not aim for
universality but for (�) = �J�

∗
?
. This is not a significant problem, since the

complement of �J�∗
?
is recognized by a small DFA so it will be easy to reduce

(�) = �J�
∗
?
to (�0) = :∗ for some only polynomially larger automaton �0.

Definition 3.12.4. Let 	 = (J, =, (F�)�, ?, �) be an induction grammar such
that ? = (?1, . . . , ?(). We define the NFA �empty() = (�, :, @, +0, �) as follows:

• � = {J,?1, . . . , ?(}
• : = �

• +0 = J

• � = � \ {J}
• (+, *, +0) ∈ @ iff one of the following cases applies:

– + = J , * = J → . , and +0 occurs in .

– + = ?# , * = ? → . , and +0 occurs in .# .

Example 3.12.3. Consider the induction grammar 	 with the following pro-
ductions:

J → , (?1, ?2) (*1)
(?1, ?2, ?3) → (?2, ?3, ?1) (*2)
(?1, ?2, ?3) → (�,?3, ?2) (*3)

Then the corresponding NFA�empty() has the following states and transitions.
As we can clearly see, the word *1*3*2*3 is not accepted and the language of
the induction grammar is hence nonempty.

100

3.12 Decision problems on induction grammars

Jstart ?1

?2

?3
*1

*1
*2

*2

*2

*3

*3

Lemma 3.12.4. Let	 be an induction grammar. Then (�empty()) = �J�
∗
?

iff
∀# (, #) = ∅.
Proof. It is clear that (�empty()) ⊆ �J�

∗
?
by Definition 3.12.4. A word ac-

cepted by �empty() is a sequence of productions such that these productions
cannot be a derivation in any instance grammar: there always remains a non-
terminal at the end in the derivation in the instance grammar (namely the final
state).
On the other hand, if *0*1 . . . *(∈ �J�

∗
?
is a sequence of productions not

accepted by �empty(), then we can build a derivation in an instance grammar
using these productions for a free constructor term . with depth larger than (.
The instances of the productions *0, . . . , *(then form a derivation, since the re-
sulting term does not contain any nonterminals—if it contained a nonterminal,
then �empty() would have accepted. �

Lemma 3.12.5. Ind-Emptiness ≤� NFA-Universality

Proof. We already know that (�empty()) ⊆ �J�
∗
?
, hence (�empty()) =

�J�
∗
?
iff (�empty()) ∪ (:∗ \ �J�∗

?
) = :∗. By Lemma 3.12.4, it only remains

to show that (�empty()) ∪ (:∗ \ �J�∗
?
) can be recognized by a (polynomial-

time) computable NFA. Such an NFA can be easily constructed as a product
automaton of �empty() and an obvious DFA recognizing :∗ \ �J�∗

?
. �

Lemma 3.12.6. NFA-Universality ≤� Ind-Emptiness

Proof. We need to do a bit of work in this reduction as well. Note that the
map 	 ↦→ �empty() is not surjective: first, there are no transitions back to

101

3 Decision problems on grammars

the start symbol, and second (and more importantly), all states in �empty()
are final. At least implicitly, we will have to take care of these two issues.
So we are given an NFA � = (�, :, @, +0, �), and we will construct an

induction grammar 	 . If there is a non-accepting word 1 ∉ (�), then
we want a suitable instance language (, #) ≠ ∅ to be nonempty. Let
� = (+0, . . . , +(), we set ? = (?0, . . . , ?(, ?(+1). Define the transition func-
tion @ (+, �) = {+0 | (+, �, +0) ∈ @}. Assign to every set of states a term
� ({+#1, . . . , +# }) = ! (?#1, ! (?#2, . . . ! (?# , �) . . .)) containing exactly the ?-non-
terminals corresponding to the states. Then 	 contains the following produc-
tions:

J → , (?0)
? → (.�,0, . . . , .�,(, ?(+1) for each � ∈ : , where .�,# = � (@ (+#, �))
? → (-0, . . . , -#, ?(+1) where -# = � if +# ∉ � , and -# = ?(+1 otherwise

Call the productions *0, *� , and *� , respectively. Let1 = �1 . . . �(∉ (�) be a
non-accepting word, that is, @ (+0,1) ∉ � . Then *0*�1 . . . *�*� is a derivation
in � (, .) for some large enough . . On the other hand let (, #) ≠ ∅ witnessed
by a derivation @ with the productions *0*1 . . . *(. If *# = *� for # < (, then we
can drop the remaining productions. So @ uses the productions *0*�1 . . . *� or
0�1 . . . *�*� . Now �1 . . . �(is a non-accepting word. �

Theorem 3.12.4. Ind-Emptiness is PSPACE-complete.

Proof. By Lemmas 3.12.5 and 3.12.6, there is a polynomial reduction to and
from NFA-Universality, which is PSPACE-complete by Theorem 3.12.3. �

If |? | is bounded by a fixed constant, then �empty() has only a bounded
number of states, thus making the problem tractable:

Theorem 3.12.5. (|? | ≤ %)-Ind-Emptiness ∈ P

Proof. By Lemma 3.12.4, emptiness is equivalent to (�empty()) = �J�
∗
I
. Since

the number of states in �empty() is bounded by % + 1, we can compute an
equivalent DFA in constant time, and then verify (�empty()) = �J�

∗
I
in

constant time. �

102

3.12 Decision problems on induction grammars

3.12.3 Containment

We will show undecidability of containment, disjointness, and equivalence
of induction grammars by exhibiting a reduction from the undecidable Post
correspondence problem [81]:

Problem 3.12.6 (Post-Correspondence).
Given two finite lists of words11, . . . ,1(and 01, . . . , 0(, is there a sequence of
indices #1, . . . , #% for some % ≥ 1 such that1#1 . . .1#
 = 0#1 . . . 0#
?

Such a sequence #1, . . . , #% is called a solution.

Problem 3.12.7 (Ind-Containment).
Given induction grammars 	1,	2 for the same datatype, is (1, .) ⊆ (2, .)
for all free constructor terms .?

To show that containment is undecidable, we construct two induction gram-
mars: the first one generates all pairs (1#1 . . .1#
 , 0#1 . . . 0#
). The second one
generates all pairs (/, 0) where / ≠ 0 are different words. As usual, we encode
a word ��� as the term �(� (� (O))). Given a word �1�2 · · ·�((with � $ ∈ : for
all $) and a term . , we define (�1�2 · · ·�() · . = �1(�2(· · ·�((.) · · ·)).

Definition 3.12.5. Let � = ((11, . . . ,1(), (01, . . . , 0()) be an instance of Post-
Correspondence. The induction grammar Image� has the following produc-
tions:

J → , (?1, ?2)
(?1, ?2) → (11 · ?1, 01 · ?2) | · · · | (1(· ?1, 0(· ?2)
(?1, ?2) → (11, 01) | · · · | (1(, 0()

Lemma 3.12.7. (Image� , %) = {, (1#1 · · ·1#� , 0#1 · · · 0#�) | 1 ≤ & ≤ % + 1}

Proof. Obvious from the construction. �

The second induction grammar that we use to show the undecidability of
containment produces all different words. The idea is that (?3, ?4) expands to
(possibly equal) words 0,1 , while (?1, ?2) expands to different words.

103

3 Decision problems on grammars

Definition 3.12.6. Let : be a set of letters and & ≥ 1. Then the induction
grammar Diff:,& has the following productions (where .,/, 0,1 range over all
words in :∗, and ? = (?1, ?2, ?3, ?4)):

J → , (?1, ?2) (3.1)
? → (. · ?1, / · ?2, 0 · ?3,1 · ?4) (|. | = |/ | = & , and max(|0 |, |1 |) ≤ &) (3.2)
? → (. · ?3, / · ?4, 0 · ?3,1 · ?4) (|. | = |/ | ≤ & , . ≠ /, and max(|0 |, |1 |) ≤ &)

(3.3)

? → (.,/, 0,1) (max(|. |, |/ |, |0 |, |1 |) ≤ & and . ≠ /) (3.4)

Lemma 3.12.8. (Diff:,& , %) = {, (0,1) | 0,1 ∈ :∗ ∧ 0 ≠ 1 ∧max(|0 |, |1 |) ≤
& (% + 1)}

Proof. The instance grammar � (Diff:,& , %) has the following % + 1 nontermi-
nal vectors: J, (?1,1, ?1,2, ?1,3, ?1,4), . . . , (?%,1, ?%,2, ?%,3, ?%,3). The pair (?#,3, ?#,4) ex-
pands to exactly all pairs of words (0,1) such that max(|0 |, |1 |) ≤ (% − # + 1)& .
The production (3.4) starts with ≤ & letters at the end, and the other two pro-
ductions (3.2) and (3.3) prepend ≤ & many letters as well. Now we can see that
the pair (?#,1, ?#,2) expands to exactly all pairs of words (0,1) such that 0 ≠ 1

and max(|0 |, |1 |) ≤ (% − # + 1)& . The production (3.3) clearly generates all
different words of the desired size. For larger words, there are two possibilities:
either the words differ within the first & letters, then they are generated by
production (3.3). Or their first & letters are the same, then they are generated
by production (3.2). �

The induction grammar Diff:,& is not polynomial-time computable. Its size
is exponential in & (if |: | ≥ 2). However this poses no problem since we only
use it in a reduction to show undecidability, where there are no constraints on
the runtime.

Lemma 3.12.9. Let � = ((11, . . . ,1(), (01, . . . , 0()) be an instance of Post-
Correspondence, let : be a finite alphabet such that1#, 0# ∈ :∗ for all # , and
let & ≥ 1 be such that |1# |, |0# | ≤ & for all # . Then � has a solution iff there exists a
% such that (Image� , %) � (Diff:,& , %).

104

3.12 Decision problems on induction grammars

Proof. The words1#1 · · ·1#� and 0#1 · · · 0#� necessarily have both have length
|1#1 · · ·1#� |, |0#1 · · · 0#� | ≤ &' ≤ & (% + 1) due to the choice of & . So by Lem-
mas 3.12.7 and 3.12.8, (Image� , %) � (Diff:,& , %) if and only if there is a
tuple (#1, . . . , #') such that ' ≤ % + 1 and 1#1 . . .1#� = 0#1 . . . 0#� . Hence
(Image� , %) � (Diff:,& , %) iff � has a solution of length ≤ % + 1. �

Theorem 3.12.6. Ind-Containment is undecidable.

Proof. By Lemma 3.12.9, the undecidable Post-Correspondence problem can
be reduced to Ind-Containment. �

3.12.4 Disjointness

To show that the disjointness problem is undecidable on induction grammars,
we use a similar reduction from Post-Correspondence as in Lemma 3.12.9.

Problem 3.12.8 (Ind-Disjointness).
Given induction grammars	1,	2 for the same datatype, is (1, .)∩(2, .) ≠
∅ for all free constructor terms .?
However as the second grammar we now use Equal:,& instead of Diff:,& ,

which generates all equal words:

Definition 3.12.7. Let : be a set of letters and & ≥ 1. Then the induction
grammar Equal:,& has the following productions (where .,/, 0,1 range over
all words in :∗):

J → , (?,?)
? →1 · ? | 1 (1 ∈ :∗ and |1 | ≤ &)

Lemma 3.12.10. (Equal:,& , %) = {, (1,1) | 1 ∈ :∗, |1 | ≤ & (% + 1)}
Proof. Obvious by construction. �

Lemma 3.12.11. Let � = ((11, . . . ,1(), (01, . . . , 0()) be an instance of Post-
Correspondence, let : be a finite alphabet such that1#, 0# ∈ :∗ for all # , and
let & ≥ 1 be such that |1# |, |0# | ≤ & for all # . Then � has a solution iff there exists a
% such that (Image� , %) ∩ (Equal:,& , %) ≠ ∅.

105

3 Decision problems on grammars

Proof. Similar to Lemma 3.12.9. Again, we know that |1#1 · · ·1#� |, |0#1 · · · 0#� | ≤
&' ≤ & (% + 1) due to the choice of & . So by Lemmas 3.12.7 and 3.12.10,
(Image� , %) ∩ (Equal:,& , %) ≠ ∅ if and only if there is a tuple (#1, . . . , #')
such that' ≤ % + 1 and1#1 . . .1#� = 0#1 . . . 0#� , which by definition is the case
if and only if � has a solution of length ≤ % + 1. �

Theorem 3.12.7. Ind-Disjointness is undecidable.

Proof. We can reduce Post-Correspondence to Ind-Disjointness using
Lemma 3.12.11. �

3.12.5 Equivalence

Just as we did for VTRATGs, we can reduce equivalence to containment using
a union operation on grammars.

Problem 3.12.9 (Ind-Eqivalence).
Given induction grammars 	1,	2 for the same datatype, is (1, .) = (2, .)
for all free constructor terms .?

Definition 3.12.8. Let 	1 = (J, =, (F�)�, ?1, �1) and 	2 = (J, =, (F�)�, ?2, �2)
be induction grammars such that ?1 and ?2 are disjoint and �# contains a
production ? # → . for # ∈ {1, 2} such that . does not contain any nonterminals.
Then we define the induction grammar 	1 ∪	2 = (J, =, (F�)�, (?1, ?2), � 0) with
the following productions � 0:

J → . if J → . ∈ �1 ∪ �2

(?1, ?2) → (.1, .2) if ?1 → .1 ∈ �1, ?2 → .2 ∈ �2, and
(?1, ?2) → (.1, .2) is a possible production

Lemma 3.12.12. (1 ∪	2, .) = (1, .) ∪ (2, .).

Proof. Let @ be derivation in � (1 ∪ 	2, .). Then @ contains a production
J → . ∈ �1 ∪ �2. Without loss of generality, assume that J → . ∈ �1. We can
now construct a derivation of the same term in � (1, .) by replacing every
production (?1, ?2) → (.1, .2) in @ by ?1 → .1.

106

3.12 Decision problems on induction grammars

If on the other hand @ is a derivation in � (1, .) (the case for	2 is symmetric),
then we can construct a derivation in � (1 ∪	2, .) as follows: first, pick some
production ?2 → . 0 in 	2 such that . 0 does not contain any nonterminals. Now
replace every production ?1 → . by (?1, ?2) → (., . 0) �

Theorem 3.12.8. Ind-Equivalence is undecidable.

Proof. We can reduce Ind-Containment to Ind-Eqivalence by noting that
(1, .) ⊆ (2, .) ↔ (1 ∪	2, .) = (2, .). �

3.12.6 Minimization

The minimization problem for induction grammars is also NP-complete. For
the hardness proof we can use essentially the same reduction from Set Cover
as in Theorem 3.8.1.

Problem 3.12.10 (Ind-Minimization).
Given an induction grammar	 = (J, =, (F�)�, ?, �), a finite family of languages
(#)#∈� such that (, #) ⊇ # for all # , and (≥ 0, is there a subset � 0 ⊆ �

of the productions such that |� 0| ≤ (and (0, #) ⊇ # for all # where 	0 =
(J, =, (F�)�, ?, �))?

Theorem 3.12.9. Ind-Minimization is NP-complete.

Proof. The problem is in NP since we can guess the subset of productions in
polynomial time and checking (, #) ⊇ # is in NP. Hardness follows by a
reduction from Problem 3.8.1, which is NP-complete by Theorem 3.8.1. Let
	 = (�, :, �,�) be a VTRATG, (≥ 0, a set such that () ⊇ . Then	0 ⊆ 	

iff Embed	 0 ⊆ Embed	 , (0) ⊇ iff (Embed	 0, |� |) ⊇ by Lemma 3.12.3,
and |Embed	 0 | ≤ (iff |	0| ≤ (. �

We can also show NP-completeness for the minimization problem for induc-
tion grammars with bounded |? |. However this requires a different reduction
from Regular-2-Cover:

Problem 3.12.11 ((|? | ≤ %)-Ind-Minimization).
Given an induction grammar 	 = (J, =, (F�)�, ?, �) such that |? | ≤ % , a finite

107

3 Decision problems on grammars

family of languages (#)#∈� such that (, #) ⊇ # for all # , and (≥ 0, is there a
subset � 0 ⊆ � of the productions such that |� 0| ≤ (and (0, #) ⊇ # for all #
where 	0 = (J, =, (F�)�, ?, �))?
Theorem 3.12.10. (|? | ≤ %)-Ind-Minimization is NP-complete for % ≥ 1.
Proof. By reduction from Regular-2-Cover, which is NP-complete by The-
orem 3.7.3. We can reduce Regular-2-Cover to a grammar minimization
problem on acyclic regular grammars (for words): Regular-2-Cover requires
us to find (the size of) a minimal grammar	0 = (�, :, � 0, �) with � = {�, �}
and (0) ⊇ for some given . We can assume that the right-hand sides of
productions in	0 are all substrings of words in (otherwise they cannot in a
derivation of a word in). Since is a set of words, there are only quadrati-
cally many substrings of . Hence we can define an acyclic regular grammar
	 = (�, :, �,�) with � = {� → 1 | � ∈ �,1 substring of word in } such
that 	0 ⊆ 	 . Instead of finding a minimal grammar covering , we can now
search for a minimal subgrammar 	0 ⊆ 	 such that (0) ⊇ (an instance
of VTRATG-Minimization if we treat words as terms). As in Theorem 3.12.9,
we can reduce it to (|? | ≤ %)-Ind-Minimization using Lemma 3.12.3: we
now search for a minimal
 0 ⊆ Embed	 with (
 0, 1) ⊇ . Inspecting Defini-
tion 3.12.2, we see that |? | = 1. �

3.12.7 Cover

The complexity of the cover problem is hard to determine for induction gram-
mars as well. Even showing that the problem is in NP requires some effort.
And just as for the other types of tree grammars considered in this chapter, it
is open whether Ind-Cover is NP-complete:

Problem 3.12.12 (Ind-Cover).
Given a finite family of languages (#)#∈� and (≥ 0, is there an induction
grammar 	 such that |	 | ≤ (and (, #) ⊇ # for all #?

Open Problem 3.12.1. Is Ind-Cover NP-complete?

To show that Ind-Cover is in NP, we will need to bound the size of the
nonterminal vector ? . So as a first step, let us show that the cover problem is
in NP if we bound the size of ? :

108

3.12 Decision problems on induction grammars

Problem 3.12.13 ((|? | ≤ %)-Ind-Cover).
Given a finite family of languages (#)#∈� and (≥ 0, is there an induction
grammar 	 such that |	 | ≤ (, |? | ≤ % , and (, #) ⊇ # for all #?

In the following proof of Lemma 3.12.13, we do not just get an algorithm for
every % but a single polynomial-time algorithm that works for all % . In short,
the assumption |? | ≤ % is only necessary because we do not know yet that |? |
is polynomially bounded.

Lemma 3.12.13. (|? | ≤ %)-Ind-Cover ∈ NP.

Proof. Let us first compute an upper bound to the productions we might need
in a covering induction grammar: each term . ∈ # can use at most |st(#) | + 1
productions in � (, #) since � (, #) has only |st(#) |+1many nonterminal vectors.
Hence |� | ≤ �

|# | (|st(#) | + 1). We can also assume that each term in the
right-hand side of a production in � subsumes a subterm of some . ∈ # for
some # (otherwise we can replace the term in the right-hand side by a constant).
Therefore the symbolic size of each production is bounded by % times the
symbolic size of (#)#∈� . The symbolic size of a covering grammar is hence
polynomial-sized since both the symbolic size of each production as well as
the number of productions is bounded polynomially in the symbolic size of
the input and % . Hence we can guess the induction grammar in polynomial
time, and checking (, #) ⊇ # is also in NP by Theorem 3.2.1. �

Open Problem 3.12.2. Is (|? | ≤ %)-Ind-Cover NP-complete?

For VTRATGs we could use Theorem 3.7.1 to bound the size of the nontermi-
nal vectors by exhibiting a trivial covering VTRATG of optimal size. However
the same trick does not work for induction grammars. Here we will take a
given covering grammar and iteratively reduce the size of the nonterminal
vectors until they are bounded by a suitable polynomial. Let us first show this
approach on VTRATGs:

Lemma 3.12.14. Let be a set of terms and	 = (�, :, �,�) a VTRATG such
that () ⊇ . Then there exists a VTRATG 	0 = (� 0, :, � 0, �) such that
|	0| ≤ |	 |, |� 0| = |� |, (0) ⊇ and |� | ≤ |� |�.∈ |Pos(.) | for all � ∈ � .

109

3 Decision problems on grammars

Proof. Let @. be a
1⇒-derivation of . in 	 for every . ∈ . That is, � = @.,1

1⇒
@.,2

1⇒ · · · 1⇒ @.,(� = . for every . . Let �.,# be the nonterminal that is being
replaced in @.,# , and define the set of nonterminals used in the derivation of
. as �. = {�.,1, . . . , �.,(�−1} ⊆ �

� . We can now count the number of these
nonterminals and obtain |�. | ≤ (. ≤ |Pos(.) | |� | by Lemma 2.6.1.
Since the derivation @. only contains nonterminals from �. , we can change

the right-hand side of, or even drop, any other nonterminal in
�

� \ �. , and
. can still be derived in the changed grammar. In total, we used |�.∈ �. | ≤�

.∈ |�. | ≤ |� |�.∈ |Pos(.) | nonterminals. We then obtain	0 = (� 0, :, � 0, �)
by deleting all nonterminals in

�
� \ �. from 	 (and also deleting the corre-

sponding lines in the productions). The number of nonterminal vectors in	0 is
the same as in	 since we did not remove any of them, and the length of every
nonterminal vector � ∈ � 0 is bounded by |� | ≤ |�� | ≤ |� |�.∈ |Pos(.) |. �
Using Lemma 3.12.14 we can bound the size of a nonterminal vector in a

covering VTRATG of minimal size (in a different way than Theorem 3.7.1):
there are at most |� | ≤ | | productions, hence at most |� | ≤ |� | nonterminal
vectors, and thus |� | ≤ | |�.∈ |Pos(.) |, a polynomial bound in the symbolic
size of .

Lemma 3.12.15. Let (#)#∈� be a finite family of languages, and the induction
grammar	 = (J, =, (F�)�, ?, �) be such that (, #) ⊇ # for all # . Then there exists
an induction grammar	0 = (J, =, (F�)�, ? 0, � 0) such that |	0| ≤ |	 |, (0, #) ⊇ #
for all # , and |? 0| ≤ �

#∈� (1 + |st(#) |)�.∈� |Pos(.) |.
Proof. As in Lemma 3.12.14, we count the number of nonterminals used in
the derivations of . ∈ # . The instance grammar � (, #) has 1 + |st(#) | nonter-
minal vectors. So the derivations use at most

�
#∈� (1 + |st(#) |)�.∈� |Pos(.) |

nonterminals in the instance grammars. Hence we can only need to keep this
number of nonterminals in ? . �

Theorem 3.12.11. Ind-Cover ∈ NP.

Proof. By reduction to (|? | ≤ %)-Ind-Cover: if there is a covering induc-
tion grammar 	 = (J, =, (F�)�, ?, �) with |	 | ≤ (, then there is one with
|? | ≤ �

#∈� (1 + |st(#) |)�.∈� |Pos(.) | by Lemma 3.12.15. As in Lemma 3.12.13,

110

3.12 Decision problems on induction grammars

this gives a polynomial bound on the symbolic size of a covering induction
grammar. We can then guess an induction grammar of that size and check that
it covers (#)#∈� . �

111

4 Practical algorithms to find
small covering grammars

We saw in Chapter 2 that cut- and induction-elimination correspond to the
computation of the language of grammars. To reverse cut-elimination and
induction-elimination we need to find a grammar that covers a given language.
We are hence looking for algorithms that achieve the following:

1. Given a finite set of terms , return a VTRATG 	 such that () ⊇ .

2. Given a finite family of terms (#)#∈� (where � is a finite set of free
constructor terms), return an induction grammar	 such that (, #) ⊇ #
for all # ∈ � .

There are trivial solutions for these problems as formulated above. For
example, given a finite set of terms we might return a VTRATG with one
nonterminal � and productions � → . for every . ∈ . However such triv-
ial grammars correspond to trivial cuts. If we want to introduce interesting
structure into proofs, we need to impose extra conditions on the grammar.
One condition that we have already seen in TRATG-Cover was that the size
of the grammar should be minimal. We also want to avoid another kind of
triviality: there are trivial VTRATGs of minimal size if we do not bound the
nonterminal vectors (by Corollary 3.7.1 and Theorem 3.7.1). From a practical
point of view however, we also present algorithms which do not always pro-
duce grammars of minimal size. For example, the Reforest algorithm we will
describe in Section 4.5 will be fast but without any guarantees on the size of
the resulting grammar. Only one of the algorithms in this chapter will have
such a correctness guarantee to always return a grammar of minimal size,
solving the following problems:

113

4 Practical algorithms to find small covering grammars

Problem 4.0.1 (Parameterized Language Cover).
Given a finite set of terms and a sequence of nonterminal vectors � , find a
VTRATG 	 = (�, :, �,�) of minimal size such that () ⊇ .

Problem 4.0.2 (Parameterized Indexed Termset Cover).
Given a finite family of sets of terms (#)#∈� , a structurally inductive datatype H
with constructors (F�)� , and a nonterminal vector ? , find an induction grammar
	 = (J, =, (F�)�, ?, �) of minimal size such that (, #) ⊇ # for all # ∈ � .

Describing a large set of terms using a small grammar can be viewed as a
kind of compression. For strings, grammars are used in several popular com-
pressions algorithms [91, 75, 64, 63]. Tree grammars are a standard technique
for the compression of XML documents [86]. In the context of data compres-
sion, grammars have the practical advantage that many operations can be
directly performed on the compressed representation [65]. These compression
algorithms differ from our application in several aspects:

1. Such grammar-based algorithms for text or document compression typ-
ically compress a single string or tree. We compress a set of terms or
even a family of sets of terms.

2. For compression algorithms, we can choose any class of grammar. The
main objective is to produce a small description, with the potential
goal of supporting operations on the compression representation. By
contrast, we need to use classes of grammars that correspond to the
cut/induction-elimination operation, that is, VTRATGs and induction
grammars.

3. We are considering a form of lossy compression: when compressing a
finite set of terms , we are looking for a minimal grammar 	 such that
() ⊇ instead of reproducing perfectly.

In this chapterwewill describe three algorithms that find covering VTRATGs.
Section 4.2 describing the delta-table is based on [36, Section 3], and the algo-
rithm in Section 4.3 based on MaxSAT was previously published as the journal
article [29]. Both articles [36, 29] only treat the single-sorted case, in this
chapter we consider the general case for many-sorted terms and grammars.

114

4.1 Least general generalization and matching

4.1 Least general generalization and matching

Least general generalization (alternatively called anti-unification) is a useful
operation on terms that is central to several algorithms in this chapter. As the
name implies, it finds a common generalization of two (or more) terms. This
operation was first introduced by Plotkin [80, 79] and Reynolds [83].

Definition 4.1.1. Let ., - ∈ T (:∪�) be terms. The term . subsumes - (written
. / -) iff there exists a substitution I such that .I = - .

If . / - then . and - have the same type since - = .I for some I and
substitution preserves types. The subsumption relation / is a preorder on
T (: ∪ �). Every preorder induces an equivalence relation where . ≈ - iff
. / - and - / . . In the subsumption order, two terms are equivalent if they
differ only by variable renaming. If ., - are terms without common variables,
and I a most general unifier of . and - , then .I = -I is their least upper bound.
The least general generalization is then the greatest lower bound in this order,
and can be recursively computed as follows:

Definition 4.1.2. The least general generalization lgg(., -) of two terms ., - ∈
T (:∪�) of the same type can be computed recursively, where 2.,- is a different
variable for each pair (., -):

lgg(! (.1, . . . , .(), ! (-1, . . . , -()) = ! (lgg(.1, -1), . . . , lgg(.(, -())
lgg(., -) = 2.,- otherwise

Example 4.1.1. lgg(! (�, �,), ! (�,�,)) = ! (2, 2,).
Note that the least general generalization is only unique up to variable

renaming, and we will often choose the variables to be fresh. As a greatest
lower bound of terms in the subsumption preorder, the least general gener-
alization satisfies lgg(., -) ≈ lgg(-, .), lgg(lgg(., -), ,) ≈ lgg(., lgg(-, ,)), and
also lgg(., -) / . for all terms ., -, , . Since the least general generalization
is associative-commutative, we will also write lgg() for the least general
generalization of a non-empty set of terms of the same type; this is even
well-defined if is infinite: given a term . there are only finitely many terms -
such that - / . (up to variable renaming):

115

4 Practical algorithms to find small covering grammars

Lemma 4.1.1. Let . ∈ T (: ∪�). Then the set {- ∈ T (: ∪�) | - / .} of lower
bounds of . is finite (identifying terms up to renaming).

Proof. Each term - / . can be uniquely described by its set of positions
Pos(-) ⊆ Pos(.) and the equivalence relation ≡- on these subterms, where
* ≡- + ↔ - |* = - |+ . The set of positions determines at which positions in -
there are variables, and ≡- determines which of the variables are equal. There
are only finitely many such subsets and equivalence relations. �

Definition 4.1.3. Let ., - ∈ T (: ∪�) be terms such that . / - . We define -/.
as the unique substitution such that . (-/.) = - , and 2 (-/.) = 2 for all variables
2 ∉ FV(.).
The substitution -/. is called a matching from . to - . The set of matching

substitutions to the lgg are in a sense orthogonal: they can distinguish any
two terms.

Lemma 4.1.2. Let � ⊆ T (:) be a nonempty set of ground terms of the same
type, and ,, - ∈ T (: ∪ �). Let / = lgg(�), and for every . ∈ � , let B. := .//. If
,B. = -B. for all . ∈ � , then , = - .

Proof. By induction on , . The critical case is when , is a variable and , ∉ FV(-).
If , ∉ FV(/), then ,B. = , for all . and hence - is necessarily a variable as

well. When additionally - ∈ FV(/), we can choose two terms . and . 0 such that
-B. ≠ -B. 0 (otherwise / would not be the greatest lower bound), a contradiction
to -B. = -B. 0 = , . Otherwise - ∉ FV(/) and - = -B. = ,B. = , with any . .
Hence , ∈ FV(/). We have already handled the case that - is a variable and

- ∉ FV(/) by symmetry. If - ∈ FV(/), then we have , ≠ - because of , ∉ FV(-)
and there exists a . such that ,B. ≠ -B. .
So we have that - = ! (-1, . . . , -() is a function application. Choose terms .

and . 0 such that ,B. and ,B. 0 have a different root function symbol. One of the
root symbols is different from ! , a contradiction. �

We can obtain an interesting variant on the least general generalization by
considering a restriction to the terms with at most (variables T((: ∪ �) ⊂
T (: ∪ �). Let us call the greatest lower bound on this subset lgg((., -),
if it exists. Observe that if lgg((., -) exists, then clearly lgg((., -) / . and

116

4.1 Least general generalization and matching

lgg((., -) / - so necessarily lgg((., -) / lgg(., -). This generalization of the lgg
will be used as an alternative way to compute generalizations in the delta-table
algorithm in Section 4.2.

. -

lgg(., -)

lgg((., -)

Another way to view this situation is to consider the map lgg(., -) ↦→
lgg((., -): this is the partial function G(that assigns to every term . ∈ T (: ∪
�) the greatest lower bound in T((: ∪ �) if it exists. In that case we have
lgg((., -) = G((lgg(., -)).

Definition 4.1.4. Let(be a natural number, then G(: T (:∪�)→T((:∪�) is
the partial function such that G((.) is the greatest lower bound of . in T((:∪�)
if it exists, and undefined otherwise.

Lemma 4.1.3. lgg((., -) = G((lgg(., -)) if either side exists.

Proof. Both sides of the equation are defined as greatest lower bounds: the
left-hand side of the set {., -}, and the right-hand side of {lgg(., -)}. However
these two sets have the same lower bounds: , / {., -} ⇔ (, / . ∧ , / -) ⇔
, / lgg(., -). �

Example 4.1.2. G1(! (2,3)) = 2 , G2(! (2,3)) = ! (2,3), G0(! (2,3)) is not de-
fined.

We can now characterize the numbers (for which lgg(is a total function.
The results depends a bit on the signature: if the signature only contains
unary function symbols and constants, then every lgg could contain at most
one variable and lgg(would be total for all (≥ 1. Therefore we require that
there exists at least one constant and one binary function symbol (ternary,
quaternary, quinary, etc. function symbols would also suffice).

117

4 Practical algorithms to find small covering grammars

Theorem 4.1.1. Let (be a natural number, and : a signature containing a
constant �= and a binary function symbol ! =→=→= for some type = . Then the
following are equivalent:

1. lgg((., -) exists for all ., - ∈ T((: ∪ �) of the same type.

2. G((.) exists for all . ∈ T (: ∪ �).
3. (∈ {1, 2}.

Proof. 2⇒ 1. By Lemma 4.1.3.
1 ⇒ 2. We show that for every term . ∈ T (: ∪ �) there exist ground

terms .1, .2 ∈ T (:) ⊆ T((: ∪ �) such that . = lgg(., -) (up to renaming).
Once we have showed that, G((.) exists by Lemma 4.1.3. Define the sequence
of terms (�#)#∈N by �0 = � and �#+1 = ! (�, �#). These terms will be used
as a kind of additional constants: we have for example lgg(�0, �1) = 2 and
lgg(! (�0, �0), ! (�#, � $)) = ! (2,3) for # ≠ $. Let FV(.) = {21, . . . , 2'}. We can
now set .1 = . [21\�0, 22\�0, . . . , 2'\�0] and .2 = . [21\�1, 22\�2, . . . , 2'\�'] and
have . = lgg(.1, .2) (up to renaming).
3 ⇒ 2. We can construct G((.) explicitly as the supremum of all lower

bounds of . , i.e., G((.) = {- ∈ T((: ∪ �) | - / .}. There are only finitely
many such lower bounds by Lemma 4.1.1. We only need to show that {- ∈
T((:∪�) | - / .} is nonempty, and that T((:∪�) is closed under most general
unification (i.e., binary least upper bounds) of unifiable terms (in T (: ∪ �)).
The set is nonempty because it contains all variables of the same type as . . For
closure under most general unification, consider the standard algorithm to
compute the most general unifier of two terms -1 and -2 (in our case, -1 and
-2 have disjoint variables): we start with the equation -1 �=-2 and iteratively
decompose it to obtain a unifying substitution. In general, the number of
variables in the unified term is bounded by the number of variables in -1 and -2;
every variable that is assigned during unification reduces this number by one.
If -1 and -2 have one or two variables in total, then the unified term will have
at most 2 − 1 variables since one variable will be assigned. Hence T1(: ∪ �)
is closed under most general unification (of unifiable terms). If -1 has one
variable and -2 has two variables, the resulting unified term has at most two
variables by the same argument. If both -1 and -2 have two variables, then

118

4.2 Delta-table

pick one variable -# |* for some # with |* | minimal, and call it 2 . This variable
will be assigned during unification. Since -# contains two variables, there is
another variable 3 = -# |+ . Unless there exists a variable 4 = -3−# |+0 for a prefix
+0 of +, the variable 3 will be assigned during unification. Otherwise 4 ≠ 2 will
be assigned. In either case, the unified term will have at most 4 − 2 variables
and T2(: ∪ �) is closed under most general unification (of unifiable terms).
¬3 ⇒ ¬2. If (= 0, then G0(2) would need to be a variable and is hence

not defined. For (> 2, we simulate #-ary function symbols "# by defining
"0 = � and "#+1(.1, .2, . . . , .#+1) = ! (.1, "# (.2, . . . , .#+1)). Consider the term . =

"(−1(21, 22, 23, . . . , 2(−3, ! (2(−2, 2(−1), ! (2(, 2(+1)) ∈ T (: ∪�) \ T((: ∪�). It
suffices to exhibit two terms �, � ∈ T((: ∪ �) such that �, � / . and that their
least upper bound (in T (: ∪ �)) is given by � ∨ � = lgg(., -) ∉ T((: ∪ �):

� = "(−1(21, 22, 23, . . . , 2(−2, ! (2(, 2(+1))
� = "(−1(21, 22, 23, . . . , ! (2(−2, 2(−1), 2() �

Example 4.1.3. lgg1(! ("(�, �), "(�, �)), ! ("(�, �), "(�, �))) = ! (2, 2),
lgg2(! ("(�, �), "(�, �)), ! ("(�, �), "(�,�))) = ! ("(2,3), "(2,3)).

4.2 Delta-table

The delta-table algorithmwas first described in [49, 48] and produces VTRATGs
with two non-terminal vectors�, � where the length of the nonterminal vector
� is determined by the algorithm. The algorithm is based on the observation
that we can to some degree reverse language generation and recover the
original productions of a VTRATG by computing the lgg of subsets of the
language:

Example 4.2.1. Let 	 = (�, {�, �}, :, �) be a VTRATG with the set of produc-
tions � = {�→ ! (�,ℎ(�)) | "(�, �), � → � | �}. This grammar generates the
language () = {! (�, ℎ(�)), "(�, �), ! (�,ℎ(�)), "(�, �)}. We can recover the
productions of the nonterminal � by computing lgg{! (�, ℎ(�)), ! (�, ℎ(�))} =
! (2, ℎ(2)) as well as lgg{"(�, �), "(�, �)} = "(2, 2). The productions of the
nonterminal � can be obtained from the corresponding matching substitutions:
"(�, �)/"(2, 2) = [2\�] and "(�,�)/"(2, 2) = [2\�].

119

4 Practical algorithms to find small covering grammars

The algorithm is based on an operation called delta-vector, which computes
substitutions that correspond to VTRATGs with only one production from the
start symbol A covering subsets of the input language . They are stored in a
data structure called delta-table, which is later processed and combined into
the covering VTRATG. The delta-table algorithm is incomplete in the sense
that it does not always return a VTRATG of minimal size, as we will see in
Section 4.2.3.

4.2.1 The delta-vector

Given a non-empty set of ground terms � , the delta-vector for � is a pair of
the lgg and the matching substitutions. To have a canonical result term, we
use the names 21, . . . , 2(for the variables in lgg(., -), read left-to-right.

Definition 4.2.1. Let� be a finite non-empty set of ground terms of the same
type. Then we define its delta-vector as 6(�) = (lgg(�), {./lgg(�) | . ∈ � }).

We can also define the variant 6((�) = (lgg((�), {./lgg((�) | . #(� }). By
Theorem 4.1.1, 6((�) is defined for (∈ {1, 2}. The name delta-vector was
introduced in [49] for the operation 61; there it is defined on sequences of
terms. The order of the terms in the set � is not relevant; so for simplicity we
define the delta-vector on sets here. 6 was then called generalized delta-vector
in [48].

Example 4.2.2. Consider the set of terms � = {! (�,�), ! (�, �)}, then:

6 (�) = (! (21, 22), {[21\�, 22\�], [21\�, 22\�]})
61(�) = (! (2), {[2\! (�, �)], [2\! (�, �)]})

The delta-vectors correspond to VTRATGs covering a subset of the input
language , namely to VTRATGs where there is only a single production of
the start symbol �:

Example 4.2.3. Consider the set of terms � ⊆ :

� = {! (�, ℎ(�)), ! (�, ℎ(�))} ⊆ = {! (�, ℎ(�)), "(�, �), ! (�, ℎ(�)), "(�, �)}

120

4.2 Delta-table

Then the delta-vector is 6(�) = (! (21, ℎ(21)), {[21\�], [21\�]}) and corre-
sponds to the VTRATG with the following productions:

�→ ! (21, ℎ(21))
� → � | �

Observe that the right-hand side of the single production of the start symbol
� is the lgg in the delta-vector. In grammars that describe proofs, productions
of the start symbol � have the special property that the root symbol of the
right-hand side indicates the instantiated formula as in Definition 2.7.2. That
is, the right-hand side is not a nonterminal; we cannot have a production of
the form � → �. With this observation, we define non-trivial delta-vectors,
and will subsequently ignore trivial delta-vectors:

Definition 4.2.2. A delta-vector 6 (�) = (/, �) is called non-trivial if / is not
a variable.

4.2.2 The delta-table

The delta-table is a data-structure that stores all non-trivial delta-vectors of
subsets of , indexed by their sets of substitutions. Some of these are later
combined into a grammar covering .

Definition 4.2.3. A delta-row is a pair �→� where � is a set of substitutions,
and � is a set of pairs (/,�) such that /� = {/I | I ∈ �} = � . A delta-table is
a map where every key-value pair is a delta-row.

Algorithm 1 computes a delta-table containing the delta-vectors for all
subsets of� . As an optimization, we do not iterate over all subsets. Instead we
incrementally add terms to the subset, stopping as soon as the delta-vector is
trivial. This optimization is justified by the following lemma:

Theorem 4.2.1. Let � be a set of terms. If 6 (�) is trivial, then so is 6 (� 0) for
every � 0 ⊇ � .

Proof. Let 6 (�) = (/, �) and 6 (� 0) = (/0, �0). Since we have that / = lgg(�) /
lgg(lgg(�), lgg(� 0)) = lgg(� 0 ∪ �) = lgg(� 0), there is a substitution I such
that /0I = /. So if / is a variable, then /0 is necessarily a variable as well. �

121

4 Practical algorithms to find small covering grammars

Algorithm 1 Delta-table algorithm
function Populate(� : delta-table, : list of terms, � : set of terms)

if is non-empty then
� 0 ← � ∪ {Head()}
(/, �) ← 6-vector(� 0)
if / is not a variable then

� [�] ← � [�] + (/,� 0)
Populate(�,Tail(),� 0)

end if
Populate(�,Tail(),�)

end if
end function
function DeltaTableAlgorithm(: set of terms, row-merging: boolean)

� ← new delta-table
Populate(�, , ∅)
if row-merging then

MergeSubsumedRows(M)
end if
CompleteRows(�,)
return FindMinimalGrammar(M)

end function

After having computed the delta-table, we use it to compute a covering
VTRATG. Each row in the delta-table corresponds to a VTRATG in the follow-
ing way: given a row � →� , let 21, . . . , 2(be the variables in � . The resulting
VTRATG 	 (� →�) has the nonterminals �, (�1, . . . , �() and the productions
�→ / for (/,�) ∈ � and � → 2I for I ∈ � . However this VTRATG may not
generate the whole input set , we have ((�→�)) = �

(/,�)∈� � . Therefore,
we first “complete” each row of the delta-table by adding the pairs (., {.}) to
� for every . ∈ as a post-processing step.

Then we minimize each of the completed rows by removing pairs from�

under the side condition that
�

(/,�)∈� � = . The side condition ensures that
the resulting VTRATG covers . Each of the minimized rows then corresponds

122

4.2 Delta-table

to a covering VTRATG, we pick the VTRATG with the smallest size.

4.2.3 Incompleteness

The delta-table algorithm does not always find VTRATGs of minimal size.
Consider for example the following set of terms:

 = {, (�), , (! (�)), . . . , , (! 8(�)), - (�), - ("(�)), . . . , - ("8(�))}

There is a covering VTRATG of size 12:

�→ , (�) | , (! 3(�)) | , (! 6(�)) | - (�) | - ("3(�)) | - ("6(�))
� → � | ! (�) | ! (! (�)) | � | "(�) | "("(�))

However the set of substitutions corresponding to this small VTRATG does
not occur as the second component of the delta-vector for any subset � ⊆ :

{[21\�], [21\! (�)], [21\! (! (�))], [21\�], [21\"(�)], [21\"("(�))]}

Hence the delta-table algorithm only finds the following VTRATG of size 14
(or the symmetric version where ,, ! , � and -, ", � are swapped):

�→ , (�) | , (! 3(�)) | , (! 6(�)) | - (�) | - ("(�)) | · · · | - ("8(�))
� → � | ! (�) | ! (! (�))

4.2.4 Row-merging

One approach to ameliorate the issue of incompleteness is to merge rows in
the table. Consider as a different example the following set :

 = 1 ∪ 2 ∪ 3

1 = {+(�,�, �), +(�, �, �), +(�, �, �)}
2 = {, (�,�, �), , (�, �, �), , (�, �, �)}
3 = {- (�, �), - (�, �), - (�, �)}

The delta-table algorithm will not find the following VTRATG as the substi-
tutions in the delta-vector do not match—for - (�, �), - (�, �), - (�, �) we have a

123

4 Practical algorithms to find small covering grammars

substitution of two variables, and in the other cases three variables.

�→ +(�1, �2, �3) | , (�1, �2, �3) | - (�1, �2)
� → (�,�, �) | (�, �, �) | (�, �, �)

In particular the delta-table will contain the following two rows (for space
reasons, we abbreviate [21\�, 22\�, 23\�] as [�, �, �] and [21\�, 22\�] as [�, �]):

{[�, �, �], [�, �, �], [�, �, �]} → {(+(21, 22, 23), 1), (, (21, 22, 23), 2)}
{[�, �], [�, �]} → {(- (21, 22), 3)}

If we could just put the contents of the second row into the first one, then
we would find the desired VTRATG immediately. Intuitively, the reason we
can merge the rows without violating the invariant of the delta-table algorithm
is because the substitutions of the second row are in a sense contained in the
substitutions of the first row. The following definition makes this intuition
precise:

Definition 4.2.4 (substitution-set subsumption). Let �1, �2 be sets of substi-
tutions. Then �1 subsumes �2, written �1 / �2, if and only if there exists a
renaming substitution I with the following property:

∀J1 ∈ �1 ∃J2 ∈ �2 ∀2 ∈ dom(J1) 2J1 = 2IJ2

The reason why we only consider renaming substitutions here is to simplify
the implementation: we do not need to compute matching during subsumption.
Substitution-set subsumption is reflexive and transitive; it is also monotone: if
�01 ⊆ �1 and �02 ⊇ �2, then �1 / �2 implies �01 / �02.

Example 4.2.4. {[�, �], [�, �]} / {[�, �, �], [�, �, �]} with I = [21\22, 22\21].

Lemma4.2.1 (row-merging). Let �1→�1 and �2→�2 be delta-rows, and �1 / �2
with the substitution I witnessing this subsumption. Then �2 → (�2 ∪ �1I) is a
delta-row as well.

Proof. Let (/,� 0) ∈ �1. We need to show that /I�2 = � 0. But this follows from
/�1 = � 0 since �1 / �2 via I . �

124

4.3 Using MaxSAT

After the initial computation of the delta-table, we use this lemma to merge
all pairs of rows where one set of substitutions subsumes the other. Whenever
we have rows �1 → �1 and �2 → �2 such that �1 / �2, we replace �2 → �2 by
�2 → �2 ∪ �1I and keep the �1 row as it is. This increases the set of possible
VTRATGs that we can find, since we did not remove any elements of the
rows. This allows to find the desired VTRATGs in the example. We have
{[�, �], [�, �]} / {[�, �, �], [�, �, �], [�, �, �]} via the substitution [21\22, 22\21],
and generate the following new row:

{[�, �, �], [�, �, �], [�, �, �]} → {(+(21, 22, 23), 1),
(, (21, 22, 23), 2),
(- (22, 21), 3)}

While row-merging significantly improves the number of grammars the
delta-table algorithm can find as we will see in Section 4.6, there are still cases
where it will not find a minimal covering grammar. For example, the example
from Section 4.2.3 will still produce a non-minimal grammar of size 14.

4.3 Using MaxSAT

In this section we present a second algorithm to generate covering VTRATGs.
Compared to the delta-table algorithm this algorithm has several advantages:
it always generates grammars of minimal size, and with any desired (but fixed)
number of nonterminals. MaxSAT is an optimization variant of the Boolean
satisfaction problem (SAT); the algorithm uses a MaxSAT solver as a backend,
and proceeds in the following three steps:

1. Compute a large grammar that covers the term set and contains a cover-
ing subgrammar of minimal size, in polynomial time.

2. Produce a MaxSAT problem that encodes the minimization of this large
grammar.

3. Use an off-the-shelf solver to obtain a solution to the MaxSAT problem,
and return the minimal VTRATG corresponding to this solution.

125

4 Practical algorithms to find small covering grammars

The crucial and critical challenge here is to define this large grammar, show
that it contains a covering subgrammar of minimal size, and that it is efficiently
computable. To this end we will define a rewriting operation � on terms
describing the regularities of terms in the input term set in Section 4.3.2. Such
a rewriting operation defines a set of normal forms—and the large grammar
��, will contain exactly those productions whose right-hand side is in normal
form with regards to � .
In order to show that ��, contains a subgrammar of minimal size, we will

lift the rewriting operation to grammars and languages in Section 4.3.1 and
show that these two lifted rewriting operations commute in Theorem 4.3.1.
The main tool to show the polynomial-time computability of ��, will be
Theorem 4.3.5, which gives a strong characterization of the normal forms of �
in terms of the lgg. The encoding of the minimization problem in Section 4.3.5
is comparatively straightforward.

4.3.1 Rewriting grammars

The goal of this section is to show that term rewriting and language generation
commutes, i.e., instead of applying a rewriting relation to a grammar and then
generate the language, we can also generate the language from the original
grammar and apply the rewriting to the language. (Note that the rewrite
relation we will be using is non-confluent, and that the results of rewriting are
therefore not deterministic.)

	 	0

() (0)

�

�

Following [27], we will define a (single-step) rewrite relation as binary
relation that is closed under substitution (called fully invariant) and congruence
(called monotonic). Since we work with many-sorted terms, we also require
that both sides of the relation have the same type:

Definition 4.3.1. Let→� be a binary relation on T (:∪�). Then→� is called
type-preserving iff . and - such that . →� - the terms . and - have the same
type.

126

4.3 Using MaxSAT

Definition 4.3.2. Let→� be a type-preserving binary relation on T (: ∪ �).
Then→� is called monotonic if - →� . implies / [-]* →� / [.]* for all -, .,/ ∈
T (: ∪�) and * ∈ Pos(/). It is called fully invariant if -→� . implies -I→� .I

for all -, . ∈ T (: ∪ �) and substitutions I . It is called a rewrite relation if it is
both monotonic and fully invariant.

We will now show how to lift the rewriting from terms to productions,
to derivations, to grammars, and then describe the effect the rewriting has
on the generated language. For the rest of the section, let →� be a fixed
rewrite relation, and→∗

� its reflexive and transitive closure. (In the following
sections, the relation will always be→� = →∗

� = 7 , which we will define in
Definition 4.3.4.)

Definition 4.3.3. Let � = {�0, �1, . . . , �(}, ⊆ T (: ∪ � ∪ �) be a set of
terms, 	 = (�, :, �,�0) and 	0 = (�, :, � 0, �0) VTRATGs, * = (� → -) ∈ � ,
*0 = (� → -0) ∈ � 0 be productions, and @ = [�0\-0] [�1\-1] · · · [�(\-(], @0 =
[�0\-00] [�1\-01] · · · [�(\-0(] be derivations. We extend rewriting on terms to
sets, derivations, productions, and grammars in the natural way as follows:

• →∗
�

0 iff for all . 0 ∈ 0 there exists a . ∈ such that . →∗
� .

0 and for all
. ∈ there exists a . 0 ∈ 0 such that . →∗

� .
0.

• @ →∗
� @

0 iff -#, $ →∗
� -

0
#, $ for all # and $.

• (� → -) →∗
� (� → -0) iff - $ →∗

� -
0
$ for all $.

• 	 →∗
� 	

0 iff for all *0 ∈ � 0 there exists a * ∈ � such that * →∗
� *

0 and for
all * ∈ � there exists a *0 ∈ � 0 such that * →∗

� *
0.

The extension of→∗
� from terms to sets of terms is a very natural defini-

tion that coincides with the image P(→∗
�) under the usual powerset func-

tor P : Rel → Rel on the category of sets with relations as morphisms [85,
11]. There, the powerset functor maps a relation � ⊆ � × � to a relation
P(�) ⊆ P(�) × P(�) on the powersets such that � P(�) � ↔ (∀2 ∈ �∃3 ∈
� 2�3) ∧ (∀3 ∈ �∃2 ∈ � 2�3).
The following two easy lemmas allow us to move rewriting out of the

right-hand side of a production, and to the end of a derivation, respectively:

127

4 Practical algorithms to find small covering grammars

Lemma 4.3.1. Let . be a term, and [2\-] a substitution. If -# →∗
� -

0
for all # , then

. [2\-] →∗
� . [2\-0].

Proof. This follows from the fact that→∗
� is monotonic and reflexive-transitive.

�

Lemma 4.3.2. Let I be a substitution, and ., . 0 terms. If . →∗
� .

0, then .I→∗
� .

0I .

Proof. The result is clear for single step rewritings, and then extends to the
transitive closure. �

Using these two lemmas, we can now lift rewriting to derivations:

Lemma 4.3.3. Let @, @0 be derivations such that @ →∗
� @

0. Then .@ →∗
� .@

0 for
any term . .

Proof. Let @ = [�0\-0] [�1\-1] · · · [�(\-(], and @0 = [�0\-00] [�1\-01] · · · [�(\-0(],
We will now iteratively change the derivation @ to the rewritten derivation
@# = [�0\-00] · · · [�#−1\-0#−1] [�#\-#] · · · [�(\-(] while maintaining the invariant
that @ →∗

� @# . At step # we rewrite the substitution [�#\-#]. First we apply
Lemma 4.3.1:

. [�0\-00] · · · [�#−1\-0#−1] [�#\-#]
→∗

� . [�0\-00] · · · [�#−1\-0#−1] [�#\-0#]

And then we apply Lemma 4.3.2:

. [�0\-00] · · · [�#−1\-0#−1] [�#\-#] [�#+1\-#+1] · · · [�(\-(]
→∗

� . [�0\-00] · · · [�#−1\-0#−1] [�#\-0#] [�#+1\-#+1] · · · [�(\-(]

At the end @(= @0 and we have @ →∗
� @

0. �

We can now prove that rewriting a grammar changes the generated language
by rewriting as well:

Theorem 4.3.1. Let 	 = (�, :, �,�) and 	0 = (�, :, � 0, �) be VTRATGs. If
	 →∗

� 	
0, then () →∗

� (0).

128

4.3 Using MaxSAT

Proof. Let �@ ∈ (). Since 	 →∗
� 	

0, there exists a derivation @0 in 	0 such
that @→∗

� @
0. By Lemma 4.3.3, hence�@→∗

��@
0 ∈ (). On the other hand, let

�@0 ∈ (0). By a symmetric argument, there exists a @ such that �@ ∈ ()
and �@ →∗

� �@
0. Thus () →∗

� (0). �

In contrast to this result on rewriting VTRATGs, there is no correspond-
ing result for regular tree grammars. Consider for example the regular tree
grammar 	 with the productions �→ ! (�,�) | � | � and the rewrite relation
→� given by � = {! (2, 2) → �}. Then	 →∗

� 	
0 where	0 has the productions

�→ � | � , and (0) = {�, �}. However, ! (�, �) ∈ () but ! (�, �) & →∗
�� and

! (�, �) & →∗
�� .

There are important differences: VTRATGs only produce finite languages
and we are concerned with the preservation of size, while for regular tree gram-
mars the question is whether the resulting infinite language can be generated
at all. However, the results of [40] suggest a correspondence: they show that
the language obtained by rewriting a regular tree language can be recognized
by a tree automaton with equality and disequality constraints. A VTRATG
where every nonterminal vector has length 1 can also be recognized by a tree
automaton with equality constraints of similar size.

4.3.2 Stable terms

The set of terms that we would like to cover often has some regularity. We
will make use of this regularity to simplify grammars using a rewrite relation
7 derived from . This rewrite relation consists of all the transformations
that keep every subterm of intact. We then obtain a characterization of the
fully simplified grammars—those are called stable grammars.

Example 4.3.1. The following set of terms has some obvious regularities: the
first and second arguments of ! are always the same, and in addition the third
argument is always :

 = {! (�, �,), ! (�, �,)}

The VTRATG	 given by the following productions covers without making

129

4 Practical algorithms to find small covering grammars

use of these regularities:

�→ ! (�,�, �)
� → � | �
� → � | �
� →

Clearly the right hand side of the production�→ ! (�,�, �) is unnecessarily
general, we could have simplified it to ! (�, �,) (thus saving 2 nonterminals
and 3 productions).

Definition 4.3.4. Let be a set of terms, and ., . 0 be any terms of the same
type. Then . 7 . 0 iff .I ∈ st() implies .I = . 0I for all substitutions I . We
also define the strict relation � by: . � . 0 iff . 7 .

0 and . 0 &7 . .

Example 4.3.2. For = {! (�, �,), ! (�, �,)}, we have ! (2,3,) 7 ! (2, 2,)—
this expresses the fact that the first two arguments to ! are always equal
in . But also less meaningful statements such as � 7 � are true, or even
! (! (2,3,), 4,) 7 � . It is not the case that ! (2,3,) 7 ! (�, �,), as I =

[2\�,3\�] is a counterexample: we have ! (2,3,)I = ! (�,�,) ∈ st(), but
! (2,3,)I = ! (�,�,) ≠ ! (�, �,) = ! (�, �,)I .
It follows via routine arguments that 7 is a preorder and � a strict partial

order.

Lemma 4.3.4. Let be a set of terms, then the relation 7 is a rewrite relation.

Proof. Let - and . be such that - 7 . . For monotonicity, we need to show
that / [-]* 7 / [.]* for all / and * . So let I be such that / [-]*I ∈ st(). Then
clearly -I ∈ st() as well, we have -I = .I , and thus / [-]*I = / [.]*I .
To show that 7 is fully invariant, we need to show that -I 7 .I for all I .

So let J be such that (-I)J ∈ st(), then clearly - (IJ) ∈ st() and -IJ = .IJ

by assumption. �

Let → ∈ � × � be a binary relation on a set �. An element . is called a
normal form with respect to the relation→ if there is no - such that . → - , i.e.,
if it cannot be reduced using→. The relation→ is called weakly normalizing

130

4.3 Using MaxSAT

if for every � ∈ � there is a normal form �0 ∈ � such that � →∗ �0, where
→∗ denotes the reflexive-transitive closure of→. Simplifying a production
corresponds to taking normal forms under � .

Definition 4.3.5. A term . is said to be stable if . is in normal form with
respect to � . The set � () consists of all stable terms (with respect to).

For a stable term . there exists no term - such that . � - .

Example 4.3.3. Let = {! (�, �,), ! (�,�,)}, then the terms ! (4, 4,) and � are
stable, but ! (2,3,) is not.
Example 4.3.4. We can now simplify the grammar from Example 4.3.1: there
we had the production �→ ! (�,�, �). If we apply ! (2,3,) 7 ! (2, 2,) to
the right hand side of this production, we obtain the production�→ ! (�, �,),
as promised.

Lemma 4.3.5. Let be a set of terms and . ∈ � (). Then . subsumes a subterm
of .

Proof. Let J be the type of . . If contains no subterm of type J , then - 7 ,

for any terms - and , of type J (since -I ∉ st() for any substitution I). Hence
. ∉ - (), a contradiction. So let .0 ∈ st() be of type J . Assume towards a
contradiction that . subsumes no subterm of . In particular . � .0 and hence
. ≠ .0. Since .I ∉ st() for any substitution I , we have . 7 4, where 4 is a
fresh variable of type J . We also have 4 &7 . , since .0 = 4 [4\.0] ≠ . [4\.0] = .

even though 4 [4\.0] = .0 ∈ st(). Hence . � 4 and . ∉ � (). �

Example 4.3.5. Let = {ℎ(! (�, �,)), ℎ(! (�, �,))}. Then ! (4, 4,) ∈ � ()
subsumes ! (�, �,) � ℎ(! (�, �,)) ∈ , and "(�) ∉ � () does not subsume any
subterm of .

We will use the relation 7 to simplify VTRATGs that cover . Recall that
when rewriting a grammar, the generated language is rewritten using the same
relation by Theorem 4.3.1. But if we rewrite using 7 , then any term in

remains unchanged:

Lemma 4.3.6. Let be a set of terms, then ⊆ � ().

131

4 Practical algorithms to find small covering grammars

Proof. Let . ∈ , we need to show that . ∈ � () as well. Assume towards a
contradiction that . � - for some - , and let I be the identity substitution.
Then .I = . ∈ ⊆ st() and hence . = .I = -I = - , a contradiction. �

We will now show that � is weakly normalizing, from which we can then
conclude that we can rewrite every term into a stable term.

Lemma 4.3.7. Let be a set of terms and . 7 - . If . subsumes a subterm of ,
then - subsumes that subterm as well, and FV(.) ⊇ FV(-).

Proof. Let I be a substitution such that .I = , ∈ st(). By definition of
. 7 - , we then have .I = -I = , . For the second property, assume towards a
contradiction that 2 ∈ FV(-) \ FV(.). Let 41 ≠ 42 be two distinct variables of
the same type as 2 . Consider the substitutions I# = [2\4#]I for # ∈ {1, 2}. We
have .I1 = .I2 = , ∈ st() but -I1 ≠ -I2, and hence .I1 ≠ -I1 or .I2 ≠ -I2, in
contradiction to . 7 - . �

Theorem 4.3.2. Let ≠ ∅ be a set of terms, then � is weakly normalizing.

Proof. Let . be a term. We need to show that there exists a term - such that
. 7 - and - &� , for any term , . If . does not subsume a subterm of , then
we have . 7 . 0 for any . 0 ∈ ⊆ � () ≠ ∅. Hence assume without loss of
generality that . subsumes a subterm , ∈ st(). If . is a normal form of �,
then we are done. Otherwise by Lemma 4.3.7, for any term - such that . � - ,
it is the case that - subsumes , as well, and FV(-) ⊆ FV(.). Since there are only
finitely many such terms by Lemma 4.1.1, and � is transitive and irreflexive,
at least one such term - is a normal form of . . �

The following crucial result guarantees that we can rewrite grammars into
a form that we can effectively search for—namely those grammars where all
productions are stable. Hence we need to show that we can rewrite every term
into a stable term:

Corollary 4.3.1. Let ≠ ∅ be a set of terms, and . a term. Then there exists a
term . 0 ∈ � () such that . 7 .

0.

Proof. Take any �-normal form of . . �

132

4.3 Using MaxSAT

4.3.3 Stable grammars

Being able to rewrite grammars allows us to transform any grammar until all
right-hand sides of productions are stable or, seen differently, to transform
any grammar into a subgrammar of the grammar consisting of all stable
productions—without increasing its size. The resulting subgrammar still covers
the input term set: by Theorem 4.3.1, the language is rewritten with 7 , but
by Lemma 4.3.6, 7 keeps every . ∈ unchanged!

Definition 4.3.6. Let be a set of ground terms, and � = (�0, . . . , �() a
sequence of nonterminal vectors. Then the stable grammar ��, = (�, :, �,�0)
contains all productions with stable right hand sides:

� = {�# → - | - $ ∈ � () for all $ ∧ FV(-) ⊆ {�#+1, . . . , �(}}

If is finite, then ��, has only finitely many productions: by Lemma 4.3.5,
all right-hand sides of productions in ��, subsume subterms of , and there
are only finitely many such terms in T (: ∪ �) by Lemma 4.1.1. Hence ��, is
a well-defined and finite grammar. In Corollary 4.3.3, we will even see that
��, is only polynomially larger than for fixed � .

Definition 4.3.7. Let	1 = (�, :, �,�) and	2 = (� 0, :0, � 0, �0) be VTRATGs.
	1 is a subgrammar of 	2, written 	1 ⊆ 	2, if � ⊆ � 0, � = �0, � = � 0, and
: = :0.

We can now prove the main result about the stable grammar ��,:

Theorem 4.3.3. Let 	 = (�, :, �,�) be a VTRATG, and a set of terms such
that ⊆ (). Then there exists a VTRATG	0 = (�, :, � 0, �) such that:

1. 	 7 	
0

2. 	0 ⊆ ��,

3. |	0| ≤ |	 |

4. ⊆ (0)

133

4 Practical algorithms to find small covering grammars

Proof. Let � 0 be the set of productions that is obtained by 7-rewriting the
right hand side of each production in � to a stable term, this is possible by
Corollary 4.3.1. We have 	 7 	

0 and 	0 ⊆ ��, . Since this rewriting does not
increase the number of productions, we also have |	0| ≤ |	 |. Let . ∈ ⊆ ().
By Theorem 4.3.1, there is a . 0 ∈ (0) such that . 7 .

0. But . is in ⊆ � (),
so . 0 = . . Hence . ∈ (0), and therefore ⊆ (0). �

Corollary 4.3.2. Let be a finite set of terms, and � a sequence of nonterminal
vectors. Then the VTRATG ��, contains a subgrammar
 ⊆ ��, of minimal
size covering .

4.3.4 Computing all stable terms

In Section 4.3.5, we will minimize the grammar ��, in order to produce a so-
lution for Parameterized Language Cover. Hence we need to compute ��, .
Let � = (�0, �1, . . . , �() be a sequence of nonterminal vectors, and %0, . . . , %(
be the lengths of these vectors; then the right-hand side of a production in ��,

may contain up to %1 + · · · + %(different nonterminals.
The right hand sides of the productions in ��, are therefore included in the

subset of � () of termswith at most%1+· · ·+%(variables (treating nonterminals
as variables). In this section, we will show how to compute this subset from .
To this end, we will characterize stable terms as generalizations of least general
generalizations with injective matching. Substitutions are injective iff we
cannot express one variable in terms of the others:

Lemma 4.3.8. Let I be a substitution. Then I is injective on T (: ∪ �) iff
/I ≠ 2I for all variables 2 ∈ � and terms / such that FV(/) ⊆ � \ {2}.
Proof. If there are / and 2 such that /I = 2I , then clearly I is not injective.
For the converse, we prove that .I = -I implies . = - by induction on . : If . is a
variable, we distinguish three cases: the first case is . ∉ FV(-), here we have a
contradiction to the assumption. The second (trivial) case is . = - . In the third
case both . ≠ - and . ∈ FV(-), then . is a strict subterm of - , a contradiction to
.I = -I . If - is a variable, a symmetric argument applies.
If now . and - are both functions, we have two cases: first, if . and - share

the same root symbol, then . |#I = - |#I for all arguments, hence . |# = - |# by

134

4.3 Using MaxSAT

the inductive hypothesis, and . = - by congruence. Second, if . and - have
different root symbols, then already .I = -I is a contradiction. �

With this definitions, we can now proceed to characterize the stable terms:
in Theorem 4.3.4, we will show that . ∈ � () if and only if the matching to
lgg(.) is injective on T (: ∪ FV(.)), where . is the set of subterms of
subsumed by . . We will then prove an even stronger result: it suffices to only
consider bounded subsets of . , where the bound only depends on the number
of variables in . . Since there are only polynomially many such bounded subsets,
we will be able to effectively use this characterization to compute the stable
terms with a bounded number of variables in Theorem 4.3.6.

Theorem 4.3.4. Let be a set of ground terms, . a term that subsumes a subterm
of . Define . := {- ∈ | - / .}. If FV(.) ∩ FV(lgg(.)) = ∅, then . ∈ � () if
and only if I = lgg(.)/. is injective on T (: ∪ FV(.)).
Proof. First, we show that . ∈ � (), assuming that I is injective. Let - be
any term such that . 7 - . For every , ∈ . let B, := ,/lgg(). We have
.IB, = , ∈ st(), and .IB, = -IB, by . 7 - . By Lemma 4.1.2 we obtain .I = -I ,
hence . = - by injectivity of I , and thus . &� - and . ∈ � ().
In order to show that I is injective, we apply Lemma 4.3.8, and have 2,/ such

that 2I = /I and 2 ∈ FV(.) \ FV(/). First, we have . [2\/] &7 . because of
Lemma 4.3.7. We will now show that . 7 . [2\/], which contradicts . ∈ � ()
since . [2\/] &7 . . Let J be a substitution such that .J ∈ st(), then .J ∈ . as
well and there exists a substitution H such that J = IH . We can now compute
. [2\/]J = . [2\/]IH = .IH = .J , where [2\/]I = I because the variables in /
and the domain of I are disjoint. �

Theorem 4.3.5. Let be a set of ground terms, and . ∈ � (). Then there exists
a subset 0 ⊆ . such that I0 = lgg(0)/. is injective on T (: ∪ FV(.)) and
|0| ≤ |FV(.) | + 1.
Proof. We construct 0 in stages: we will define a sequence of 0 ⊆ 1 ⊆ · · · ⊆
(= 0 such that |# | ≤ #+1. In each step we have a substitution I% = lgg(%)/. ,
in the end I0 = I(. First, pick a term -0 ∈ . and set 0 = {-0}, then we have
.I0 = -0. We can now order the variables 21, . . . , 2(in . in such a way that
2#I0 � 2 $I0 implies # < $.

135

4 Practical algorithms to find small covering grammars

By Lemma 4.3.8, it will suffice to show that 2#I0 ≠ ,I0 for any 2# and , such
that 2# ∉ FV(,). Note that due to symmetry, we can assume without loss of
generality that if , = 2 $ is a variable as well, then $ < # . Furthermore, if the
disequality 2#I% ≠ ,I% already holds for some I% , then it also holds for I0 since
I% = I0(lgg(%)/lgg(0)).
In step # we now ensure that that there are is no , such that 2#I# = ,I# and

2# ∉ FV(,), and $ < # in the case that , = 2 $ is a variable. Assume that there
is such an , with 2#I#−1 = ,I#−1 (otherwise we can set # = #−1). With these
restrictions, we can show that this , is unique: let , 0 ≠ , be another such
term, then we have ,I#−1 = , 0I#−1. Similar to Lemma 4.3.8, we can assume that
at least one of , or , 0 is a variable. If , = 2 $ and , 0 = 2% are both variables,
then without loss of generality $ < % < # and hence 2%I#−1 = 2 $I#−1 is a
contradiction to the inductive hypothesis. If , is a function and , 0 = 2 $ is a
variable (or vice versa), then 2 $I#−1 = ,I#−1 is also a contradiction.
Now there is a unique , such that 2#I#−1 = ,I# with the restrictions above.

We have . &7 . [2#\,] because of . ∈ � () and Lemma 4.3.7. Hence there
exists a substitution J such that .J ∈ st() and .J ≠ . [2#\,]J . Furthermore
.J ∈ . and 2#J ≠ ,J . Set # = #−1 ∪ {.J}. Now J = I# (.J/lgg(#)) and hence
2#I# ≠ ,I# . �

Example 4.3.6. Consider = {! ("(�), "(�),), ! ("(�), "(�),), ! ("(�), "(�),)}.
The term . = ! (2, 2,) is in � (), and hence the substitution I = [2\"(3)]
is injective, where .I = lgg(.) = ! ("(3), "(3),). But since . has only 1
free variable, there is a subset 0 ⊆ . with the same property and at most
1+1 elements: for example 0 = {! ("(�), "(�),), ! ("(�), "(�),)}. The ground
term .2 = ! ("(�), "(�),) has 0 variables, hence there is a subset 02 ⊆ with
at most 0 + 1 elements such .2I

0
2 = lgg(02). This set 02 is necessarily the

singleton 02 = {.2}.
Our strategy for computing stable terms will be to compute all terms . such

that I is injective, where .I = 0 for some subset 0 ⊆ st(). We enumerate all
subsets of st(0) of the bounded size given by Theorem 4.3.5, and then infer the
stable term . from 0 by generalization. However, in general there exists more
than one term . that has an injective substitution I satisfying .I = lgg(0): for
example, with 0 = {! (! (�)), ! (! (�))}, all of the terms 2 , ! (2), and ! (! (2))

136

4.3 Using MaxSAT

have an injective substitution to lgg(0).
Let' : T (� ∪ :) → � be a type-preserving partial function from terms

to variables. Then �' : T (� ∪ :) → T (� ∪ :) denotes the replacement
function that replaces all occurrences of the terms in the domain of' by the
corresponding variables.

Example 4.3.7. Recall that the terms 2 , ! (2), and ! (! (2)) are all in � () where
 = {! (! (�)), ! (! (�))}. Let'1 = {! (! (3))) ↦→ 2}, '2 = {! (3) ↦→ 2}, and
'3 = {3 ↦→ 2}. If we consider the least general generalization lgg() =

lgg{! (! (�)), ! (! (�))} = ! (! (3)), then we can obtain the three stable terms
from it using �'� : �'1 (lgg()) = 2 , �'2 (lgg()) = ! (2), and �'3 (lgg()) =

! (! (2)).
If a partial function' is injective, its inverse'−1 = {(- ↦→ .) | (. ↦→ -) ∈'}

is a partial function as well. If' : � → � is a partial function, and � ⊆ � is
a subset of its domain, then' � � = {(- ↦→ .) | (- ↦→ .) ∈ ' ∧ - ∈ � } is the
restriction of' to � .
Since terms are equivalent modulo variable renaming in the subsumption or-

der, in the following lemmas we will assume without loss of generality that the
variables in the least general generalization lgg() are distinct from the vari-
ables in � . The following lemma now shows how least general generalizations
and stable terms relate:

Lemma 4.3.9. Let % ∈ T (: ∪ �), and %I = lgg(), where I is injective on
T (: ∪ �). Then % = �(I��)−1 (lgg()).

Proof. Follows homomorphically from �(I�st(%))−1 (,I) = , for all , ∈ st(%) ∩
� . �

Example 4.3.8. Let = {! ("(�)), ! ("(�))}, lgg() = ! ("(3)), and % = ! (2).
Then %I = lgg() for I = [2\"(3)] and indeed �{"(3) ↦→2} (! ("(3))) = ! (2).
We now have enough constraints on stable terms to enumerate all of them

(with a given bound on the number of variables) in polynomial time by sim-
ply applying all possible replacements to all least general generalizations.
However, this would also produce many terms that are not stable if we use
replacements that correspond to non-injective substitutions. For example,

137

4 Practical algorithms to find small covering grammars

take = {! (�,), ! (�,)}, % = ! (2,) = lgg() / , and � = {3, 4}. Using
the replacement ' = (I � �)−1 = {2 ↦→ 3, ↦→ 4} we can obtain the term
�' (! (2,)) = ! (3, 4), which is not in � (). Hence it is important to check that
the substitutions are injective:

Lemma 4.3.10. Let I be a substitution and � a set of variables. Then we can
decide in polynomial time whether I is injective on T (: ∪ �).
Proof. We define a binary predicate - on variables and terms:

- (2, .) :↔ ∃/ ∈ T (: ∪ � \ {2}), /I = .

This predicate can be computed recursively:

- (2, .) ↔
��������
� if 3I = . for some 3 ≠ 2

- (2, .1) ∧ · · · ∧ - (2, .() if . = ! (.1, . . . , .()
⊥ otherwise

By Lemma 4.3.8, I is injective iff ∀2 ∈ � ¬- (2, 2I). The runtime of - is
quadratic in the size of . and � , and we iterate it for every 2 ∈ � , hence it has
polynomial runtime in � and I . �

We can now give the algorithm that computes the stable terms, and prove its
correctness. The runtime of the algorithm depends on the symbolic complexity
| |- of the set of terms : the symbolic complexity is the sum of the number of
positions of each term in .

Theorem 4.3.6. Let be a set of ground terms and � a set of variables, then the
set of all terms % ∈ � () such that FV(%) ⊆ � can be computed as follows:

1. For each subset 0 ⊆ st() such that |0| ≤ |� | + 1:

2. Compute lgg(0).

3. For each injective partial function' : st(lgg(0)) → � :

4. Check that'−1 is injective on T (: ∪ �).

5. Then output % = �' (lgg(0)).

138

4.3 Using MaxSAT

The runtime of this procedure is bounded by a polynomial in | |- for fixed |� |.

Proof. Let us first show the correctness of the algorithm, i.e., that it does indeed
generate exactly the terms % ∈ � () such that FV(%) ⊆ � . Assume that % is
such a term. Then by Theorem 4.3.4, there exists an injective substitution I
such that %I = lgg(%). By Theorem 4.3.5, we then have an 0 ⊆ % such that
|0| ≤ |% |+1 ≤ |� |+1 and the substitutionI0 such that%I0 = lgg(0) is injective
as well. By Lemma 4.3.9, the injective partial function ' := (I � st(%))−1
satisfies % = �' (lgg(0)). Hence the algorithm outputs % . On the other hand,
every term in the output is in � () by Theorem 4.3.4.
In step (1), there are at most

� st()
|� |+1

�
= � (| | |� |+1

-) possible subsets; in step (3),
there are at most | |- positions in lgg(0) and hence at most� (| | |� |+1

-) partial
functions I . Computing least general generalizations and replacements is
linear in the input, checking injectivity is also polynomial due to Lemma 4.3.10,
therefore the total runtime is polynomial in | |- . �

Corollary 4.3.3. Let a sequence of nonterminals � be fixed. Then the grammar
��, is polynomial-time computable from a finite set of ground terms .

Proof. Apply Theorem 4.3.6 to � = � . �

4.3.5 Minimization

In Corollary 4.3.3, we have produced a polynomial-time computable VTRATG
��, that is guaranteed to contain a subgrammar
 covering of minimal
size. In particular, this subgrammar
 solves the Parameterized Language
Cover for and � . Since we can efficiently compute ��, , we have reduced
Parameterized Language Cover to VTRATG-Minimization.
We will reduce this problem to MaxSAT by giving a propositional formula

expressing the property that the subgrammar
 covers . MaxSAT is an opti-
mization variant of the Boolean satisfaction problem (SAT), for which a number
of efficient off-the-shelf solvers exist, see the yearly MaxSAT competition [5]
for a list of solvers. We only consider the partial and unweighted variant of
MaxSAT, and simply call it MaxSAT:

139

4 Practical algorithms to find small covering grammars

Problem 4.3.1 (MaxSAT).
Given two sets of propositional clauses
 and � (so-called “hard” and “soft”
clauses), find an interpretation � such that � |=
 and � maximizes the number
of satisfied clauses in � .

We will encode “
 covers ” by stating for each . ∈ that “there exists
a derivation @. of . in
”. The concrete encoding of “@. is a derivation of .
in
” is based on a so-called sparse encoding of the function � ↦→ �@. (for
nonterminals �), i.e., encoding the function as a binary relation. One important
observation about this function is that it usually returns only subterms of . .
For example consider the following derivation:

@ = [�\! (�, �)] [�\�]
In this case, . = �@ = ! (�,�), and �@ = � is indeed a subterm of . . However
this subterm property can fail in the presence of “unused” nonterminals, for
example:

@2 = [�\! (�, �)] [(�,�)\(�, �)]
Again . = �@2 = ! (�, �) and �@2 = � are subterms, but now �@2 = � is not a
subterm of ! (�,�). If �@ is not a subterm of . , it will turn out to be irrelevant
to the derivation, hence we will ignore it and assign the dummy term ⊥ to all
such terms which are not subterms of . . This allows us to consider the smaller
range st(.) ∪ {⊥} for the function @ .
Definition 4.3.8 (Propositional encoding for . ∈ (
)). Let	 = (�, :, �,�)
be a VTRATG, and . a ground term. We use the following atoms:

• �@. = , where � is a nonterminal and , ∈ st(.) ∪ {⊥} a ground term.
• * ∈ � 0 where * ∈ � is a production.

We define the following abbreviations for formulas:

�@. = , ≡

$

� $@. = , $

Match	,. (/, -) ≡
��������
� if / = ⊥�

(�,,)∈//- �@. = , if - / /

⊥ otherwise

140

4.3 Using MaxSAT

Case	,. (�,/) ≡ �@. = / →
�

�→-∈�

�
� → - ∈ � 0 ∧

$

Match	,. (/ $, - $)
�

Func	,. ≡
�

� nonterminal

�
-∈st(.)∪{⊥}

�@. = -

∧

� nonterminal

-1≠-2∈st(.)∪{⊥}

¬(�@. = -1 ∧ �@. = -2)
�

GenTerm	,. ≡ �@. = . ∧ Func	,. ∧

�∈�

-∈(st()∪⊥) |� |

Case	,. (#, -)

The formulaMatch	,. (/, -) encodes -@. = /, extending the �@. = / atom to
arbitrary terms - . In order to ensure the correctness of the whole encoding,
we have to add implied constraints for each possible function value of @.
and for each nonterminal vector �: the Case	,. (�,/) formula encodes these
constraints. Then Func	,. states that @ : � → st(.) ∪ {⊥} is a function, and
GenTerm	,. combines the other formulas to encode that @ is a derivation of .
using only the productions from the subset � 0 ⊆ � , i.e., those which are present
in
 .

Example 4.3.9. Consider . = ! (�, �,), � = {�, �}, and 	 = (�, :, �,�) with
the following productions � = {*1, *2, *3, *4}:

*1 = �→ ! (�, �, �) *3 = � → �

*2 = �→ ! (�, �,) *4 = � → �

Then we encode . ∈ (
) using the following formula GenTerm	,. (slightly
simplified propositionally):

Case	,. (�, ! (�, �,)) ≡ �@. = ! (�, �,) → (*2 ∈ � 0 ∧ �@. = �)
Case	,. (�, �) ≡ �@. = � →⊥
Case	,. (�,) ≡ �@. = →⊥
Case	,. (�,⊥) ≡ �@. = ⊥→�

Case	,. (�, ! (�, �,)) ≡ �@. = ! (�, �,) → ⊥
Case	,. (�, �) ≡ �@. = � → (*3 ∈ � 0)
Case	,. (�,) ≡ �@. = →⊥

141

4 Practical algorithms to find small covering grammars

Case	,. (�,⊥) ≡ �@. = ⊥→�
GenTerm	,. ≡ �@. = ! (�, �,) ∧ Func	,. ∧

�,-

Case	,. (�, -)

Many of the formulas Case	,. (�, -) are of the form (· · ·→⊥); these correspond
to derivations that are impossible: for example we have �@. = � →⊥ because
there is no production of � that has � as the root symbol. In this example,
GenTerm	,. entails *2 ∈ � 0 ∧ *3 ∈ � 0, hence any covering subgrammar
 ⊆ 	

necessarily includes these two productions; the minimal covering subgrammar
consists precisely of these two productions.

Lemma 4.3.11. Let 	 = (�, :, �,�) be a VTRATG,
 = (�, :, � 0, �) ⊆ 	 a
subgrammar of	 , and . a term. Then for every derivation @ of . in
 , there exists
a satisfying interpretation � |= GenTerm	,. such that for all * ∈ � , � |= * ∈ � 0

iff * ∈ � 0.
Conversely, if � |= GenTerm	,. is a satisfying interpretation such that for all

* ∈ � , � |= * ∈ � 0 iff * ∈ � 0, then there exists a derivation of . in
 .

Proof. We need to construct a satisfying interpretation � for every derivation
@ in
 . So we would like to set � |= �@. = , if and only if �@ = , ; but this could
fail if , is not a subterm of . . But the following assignment only results in ⊥ or
subterms of . , as required:

� |= �@. = , ⇔
����
, = �@ if � is a subterm of .
, = ⊥ otherwise

It remains to verify that � |= Case	,. (�, -) for all # and - , that is, � |=
Match	,. (� $@. , - $) for all $, where � → - is the chosen production in @ . This
is trivial if � $@ is not a subterm of .—thenMatch	,. (� $@. , - $) expands to �—in
the other case, it is clear from the definition of a derivation.
Conversely, let � be a satisfying interpretation for GenTerm	,. such that

� |= * ∈ � 0 iff * ∈ � 0. We will now construct an actual derivation @ in

 such that �@ = . . By Func	,. there is a unique value for each �@. in
� , let ! (�) ∈ st(.) ∪ {⊥} be the term such that � |= �@. = ! (�). Hence
� |= Case	,. (�, (! (�1), . . . , ! (� |� |))), and we can choose the production � →

142

4.4 Induction grammars

(-�1, . . . , -� |� |) for @ such that � |= �→(-�1, . . . , -� |� |) ∧
�

$ Match	,. (! (� $), -�).
This immediately ensures that @ really is a derivation in the subgrammar.
We will now verify that ! (�) ≠ ⊥ implies �@ = ! (�) for all �, by backwards

induction on the index of � in the nonterminal vector � : if ! (�) ≠ ⊥, then
Match	,. (! (�), -�) ≡ �

& �&@ = ,& . Because the nonterminals in -� can only be
of the form � where � occurs after � in � , computing �@ first substitutes �
with -� , and then each�& with ,& , since�&@ = ,& per induction hypothesis. Now
since ! (�) = . ≠ ⊥, we conclude that @ is a derivation of �@ = . . �

So far we have only considered the encoding for the derivability of a single
term . , we will now turn to derive multiple terms.

Theorem 4.3.7. VTRATG-Minimization ≤� MaxSAT.

Proof. Let 	 = (�, :, �,�) be the VTRATG, and ⊆ () the set of terms.
We need to find a subset � 0 ⊆ � of minimal size such that the grammar

 = (�, :, � 0, �) still satisfies ⊆ (
). By Lemma 4.3.11, any interpretation
� satisfying

�
.∈ GenTerm	,. corresponds to a covering VTRATG. Set the hard

clauses of the MaxSAT problem to a CNF of this formula. (Such a CNF can be
obtained in polynomial time by a Tseitin transformation [97].)
For each production * ∈ � , we add the soft clause ¬(* ∈ � 0). The number

of satisfied soft clauses is then exactly |� | − |� 0|, the number of productions
not included in the minimized VTRATG. Maximizing the number of soft
clauses then minimizes the number of productions in the VTRATG given by
the interpretation. From a solution � to this MaxSAT problem, we obtain the
minimal covering VTRATG by setting � 0 = {* | � |= * ∈ � 0}, which is the
corresponding subgrammar according to Lemma 4.3.11. �

4.4 Induction grammars

In Section 4.3, we developed the theory for stable grammars underlying the
MaxSAT algorithm in a very general way. We can now apply this theory
to induction grammars as well, and thereby extend the MaxSAT algorithm
to solve Parameterized Indexed Termset Cover. First, we will show that
language generation and rewriting commutes:

143

4 Practical algorithms to find small covering grammars

Algorithm 2 Solution of the Parameterized Language Cover Problem via
MaxSAT

Input: set of ground terms , and a sequence of nonterminals � .
Output: minimal VTRATG
 with nonterminals � such that ⊆ (
).
	 = stableGrammar(� ,)
K = minimizationFormula(,)
� = maxSatSolver(K , softClauses())

 = grammarFromAssignment(�)

Definition 4.4.1. Let 	 = (J, =, (F�)�, ?, �) and 	0 = (J, =, (F�)�, ?, � 0) be in-
duction grammars, and→� a rewrite relation. Then	 →∗

� 	
0 iff for all *0 ∈ � 0

there exists a * ∈ � such that * →∗
� *

0 and for all * ∈ � there exists a *0 ∈ � 0

such that * →∗
� *

0.

Lemma 4.4.1. Let →� be a rewrite relation, and 	,	0 be induction grammars
such that 	 →∗

� 	
0. Then � (, .) →∗

� � (0, .) and (, .) →∗
� (0, .) for all . .

Proof. Wehave � (, .)→∗
�� (0, .) since all productions in the instance grammar

are substitution instances of productions in	 and	0, and→� is a rewrite rela-
tion. Commutation of language generation and rewriting (, .) →∗

� (0, .)
directly lifts from the result for VTRATGs in Theorem 4.3.1. �

Similar to Theorem 4.3.3, we can now show that we can transform grammars
into subgrammars of the stable grammar without increase in size.

Definition 4.4.2. Let (#)#∈� be a family of languages, and =, (F�)�, ? as in
Definition 2.8.5. Then the stable grammar � ((#)#∈�) = (J, =, (F�)�, ?, �) contains
all possible productions where the right-hand side is a stable term of the
appropriate type, that is:

� = {C → . [=, F#, ?] | C ∈ {J,?} ∧ . [=, F#, ?] ∈ �
��

#

#
�}

Definition 4.4.3. Let 	 = (J, =, (F�)�, ?, �) and 	0 = (J, =, (F�)�, ?, � 0) be in-
duction grammars. We say that	0 is a subgrammar of 	 , written 	0 ⊆ 	 , iff
� 0 ⊆ � .

144

4.4 Induction grammars

Theorem4.4.1. Let (#)#∈� be a finite family of languages, and	 = (J, =, (F�)�, ?, �)
an induction grammar that covers (#)#∈� . Then there exists an induction grammar
	0 = (J, =, (F�)�, ?, � 0) such that:

• 	0 covers (#)#∈�

• |	0| ≤ |	 |

• 	0 ⊆ � ((#)#∈�)

Proof. We obtain the induction grammar 	0 by replacing the right-hand side
of every production in	 by one of its �-normal forms, which are in � ((#)#∈�).
The resulting induction grammar	0 still covers (#)#∈� by applying Lemma 4.4.1
to 7 since we have 	 7∗

 	
0. �

We can now turn to the problem of induction grammar minimization, anal-
ogous to VTRATG-Minimization. For this part we can reuse the MaxSAT
encoding of Definition 4.3.8, defining the minimization of induction grammar
in terms of the instance grammars:

Definition 4.4.4. Let (#)#∈� be a finite family of languages, and	 = (J, =, (F�)�, ?, �)
an induction grammar. We define the propositional formula Gen(, (#)#∈�) as
the following formula:

#∈�

.∈�

GenTerm0(� (, #), .) ∧

#∈�

* 0

�
*0 ∈ � 0� (,#) →

�
�� 0

* ∈ �

�
The formula GenTerm0 is a syntactical variant of GenTerm, which differs only
in the names of the propositional variables:

• *0 ∈ � 0
� (,#) instead of *

0 ∈ � 0

• @.,� (,#) instead of @.

Theorem 4.4.2. Let (#)#∈� be a finite family of languages, 	 an induction
grammar, and 	0 ⊆ 	 a subgrammar. Then the formula Gen(, (#)#∈�) ∧�{¬* ∈ � 0 | * ∈ 	 \	0} is satisfiable if and only if 	0 covers (#)#∈� .

145

4 Practical algorithms to find small covering grammars

Proof. By Lemma 4.3.11, the formula is satisfiable iff for all # ∈ � , the instance
grammar � (0, #) covers# . The second conjunct of Definition 4.4.4 then ensures
that whenever an instantiated production is used to cover a term in the instance
grammar, it is already included in the induction grammar. �

Algorithm 3 Cover a family of languages by an induction grammar
procedure FindGrammar(I, J, (#)#)

S ← � ((#)#)
hard ← Gen(S, (#)#)
soft ← {¬* ∈ � 0 | * ∈ S}
if Sat(I) ← MaxSAT(hard, soft) then

return {* | I |= * ∈ � 0}
else

fail
end if

end procedure

Lemma 4.4.2. Let (#)#∈� be a finite family of languages, then Algorithm 3
produces an induction grammar covering (#)#∈� of minimal size, or fails if there
is no covering grammar.

Proof. First, assume that there exists a covering induction grammar; by The-
orem 4.4.1 there is a grammar 	 covering (#)#∈� of minimal size such that
	 ⊆ � ((#)#∈�). By Theorem 4.4.2, the formula hard ∧ �

∈S\G ¬(∈ � 0)) is
satisfiable. Hence the interpretation � returned by the MaxSAT solver sets at
most |	 | many * ∈ � 0 atoms to true, corresponding to a grammar with at most
|	 | productions. If there is no covering grammar, then MaxSAT will return
unsatisfiable as return status, and Algorithm 3 will fail. �

4.5 Reforest

4.5.1 TreeRePair

Given the close relation of the problem of finding small covering VTRATGs
and grammar-based text- and document compression, we can also try to adapt

146

4.5 Reforest

algorithms from grammar-based compression. In this section we will describe
such an adaptation of the TreeRePair [65] algorithm to produce covering
VTRATGs. TreeRePair compresses XML documents (formally, ranked and
unranked trees, i.e. single-sorted first-order terms with function symbols of
variable arity) using context-free tree grammars.

Definition 4.5.1. A context-free tree grammar 	 = (�, :, �,�) is a tuple
consisting of a start symbol � ∈ � of arity 0, a set of function symbols � as
nonterminals (whose arity is not necessarily 0), and a set of productions � .
A production is a pair �(2) → . of two terms of the same type such that 2
is a vector of pairwise distinct variables and FV(.) ⊆ 2 . The grammar 	 is
acyclic iff the relation ≺ on nonterminals, defined by � ≺ � iff there exists a
production �(2) → . ∈ � such that . contains � , is acyclic. The grammar 	 is
straight-line iff for every nonterminal � ∈ � , there is exactly one production
of the form �(. . .) → . . . in � .

Definition 4.5.2. Let 	 = (�, :, �,�) be a context-free tree grammar. The
single-step derivation relation ⇒	 is a binary relation on terms defined by
. ⇒	 .* [, [2\-]] iff .* = �(-) and �(2) → , ∈ � for some position * . A term
. ∈ T (:) is derivable in 	 iff � ⇒∗

	 . . The language () = {. ∈ T (:) |
� ⇒∗

	 .} consists of all derivable terms.

The context-free tree grammars produced by TreeRePair are acyclic and
straight-line. Such grammars produce exactly a single term (the original
XML document). The central concept behind the algorithm are digrams: a
digram is a triple (! , #, ") consisting of two function symbols ! , " and a natural
number # . This digram describes the pattern ! (21, . . . , 2#−1, "(3), 4#+1, . . . , 4(),
i.e., an occurrence of ! where the #-th argument has " as root symbol. A
digram can be compressed by first introducing a new nonterminal � with
the production �(2,3, 4) → ! (2,"(3), 4), and then replacing all occurrences
! (., "(-), ,) by �(., -, ,). Given a term . to compress, TreeRePair starts with
the trivial grammar with the single production � → . and then repeatedly
compresses the most frequent digram by adding a new production as described
before. (There is also an additional post-processing step called “pruning” that
we do not show here, and which does not apply in the example below.)

147

4 Practical algorithms to find small covering grammars

Example 4.5.1. TreeRePair compresses the term ! 8(�) in the following steps:

�0 = {�→ ! 8(�)} (the most frequent digram is (! , 0, !))
�1 = {�→ �4(�), �(2) → ! (! (�))} (the most frequent digram is (�, 0, �))
�2 = {�→�2(�), �(2) → ! (! (�)),� (2) → �(�(2))}

The resulting context-free tree grammar 	 then has the productions �2 and
satisfies () = {! 8(�)}.
Looking at the digram compression step again, the generated production

has a noteworthy property: it is linear, that is, each variable occurs at most
once on the right hand side. In our adaption, we will also generate productions
that are non-linear to better capture the rigid behavior of VTRATGs.

4.5.2 Adaptation to tree languages

There are two general big differences from our setting to that of TreeRePair:
first, we do not want to compress just a single term but a set of terms. And
second, we expect a lossy compression that does not reproduce the input term
set exactly, but can produce a superset. Similar to the delta-table algorithm,
we consider only the introduction of a single nonterminal in the resulting
covering VTRATG. That is, given a finite set of terms we produce a covering
VTRATG with the nonterminals �, � where the length of � is chosen by the
algorithm. This adaptation, called Reforest, proceeds in three steps:

1. Produce a trivial context-free tree grammar	0.

2. Iteratively compress	0 by introducing abbreviating productions.

3. Use the compressed context-free tree grammar to directly read off the
productions for the covering VTRATG.

We then iterate this process to produce a VTRATG with more nonterminals.
The first two steps are already present in TreeRePair, albeit in a simpler way.
The third step is specific to our adaptation. In the first step we produce the
context-free tree grammar 	0 = {�→ . | . ∈ }. This grammar is no longer
straight-line, since it produces multiple terms: namely (0) = . However the

148

4.5 Reforest

�0 = {�→ , (�, �) | · · · | , (! 7(�), ! 7(�))}
�1 = {�→ , (�, �) | , (! (�), ! (�)) | , (�(�), �(�)),

�→ , (! (�(�)), ! (�(�))) | , (�2(�), �2(�)) | , (! (�2(�)), ! (�2(�))),
�→ , (�3(�), �3(�)) | , (! (�3(�)), ! (�3(�))),
�(2) → ! (! (2))}

�2 = {�→ , (�, �), | , (! (�), ! (�)) | , (�(�), �(�)),
�→ , (! (�(�)), ! (�(�))) | , (� (�),� (�)) | , (! (� (�)), ! (� (�))),
�→ , (�(� (�)), �(� (�))) | , (! (�(� (�))), ! (�(� (�)))),
�(2) → ! (! (2)),� (2) → �(�(2))}

�3 = {�→ � (�) | � (! (�)) | � (�(�)) | � (! (�(�)))
�→ � (� (�)) | � (! (� (�))) | � (�(� (�))) | � (! (�(� (�)))),
�(2) → ! (! (2)),� (2) → �(�(2)), � (2) → , (2, 2)}

�4 = {�→ � (�) | � (�) | � (�(�)) | � (�(�)),
�→ � (� (�)) | � (� (�)) | � (�(� (�))) | � (�(� (�)))
�(2) → ! (! (2)),� (2) → �(�(2)), � (2) → , (2, 2), � (2) → � (! (2))}

�5 = {�→ � (�) | � (�) | � (�(�)) | � (�(�)),
�→ � (�) | � (�) | � (�(�)) | � (�(�)),
�(2) → ! (! (2)),� (2) → �(�(2)), � (2) → , (2, 2), � (2) → � (! (2)),
� →� (�)}

�6 = {�→ � (�) | � (�) | 	 (�) | � (�(�)),
�→ � (�) | � (�) | 	 (�) | � (�(�)),
�(2) → ! (! (2)),� (2) → �(�(2)), � (2) → , (2, 2), � (2) → � (! (2)),
� →� (�),	 (2) → � (�(2))}

�7 = {�→ � (�) | � (�) | 	 (�) |
 (�),
�→ � (�) | � (�) | 	 (�) |
 (�),
�(2) → ! (! (2)),� (2) → �(�(2)), � (2) → , (2, 2), � (2) → � (! (2)),
� →� (�),	 (2) → � (�(2)),
 (2) → � (�(2))}

Figure 4.1: Run of the first compression step in the Reforest algorithm on
 = {, (�, �), , (! (�), ! (�)), . . . , , (! 7(�), ! 7(�))}.

149

4 Practical algorithms to find small covering grammars

context-free tree grammars that we will produce will be almost straight-line:
for any nonterminal � ≠ �, there will be at most one production �(. . .) →
In the second step, we introduce two kinds of abbreviating productions:

digrams (as in TreeRePair), and rigid trigrams. A rigid trigram is a triple
(! , #, $) of a function symbol ! and two natural numbers # and $. It describes
the pattern ! (21, . . . , 2#−1, 2#, 2#+1, . . . , 2 $−1, 2#, 2 $+1, . . . , 2(), i.e., an occurrence
of ! where the #-th and $-th argument are the same term. This rigid trigram can
be abbreviated by introducing a production �(2,3, 4,1) → ! (2,3, 4,3,1). We
then iteratively compress the most frequent feature, which is either a digram
or a rigid trigram.

Example 4.5.2. Let = {, (�, �), , (! (�), ! (�)), . . . , , (! 7(�), ! 7(�))}. Reforest
first produces the context-free tree grammar �7 by abbreviating digrams and
rigid trigrams as shown in Section 4.5.2. This compression has introduced new
structure into the term set: instead of the “homogeneous” terms , (! ((�), ! ((�)),
the productions of the start symbol� are now all combinations of the 6 different
symbols � (·), � (·),	 (·),
 (·) and �, � .

In the third step, we now inspect the compressed context-free tree gram-
mar	(and use it to construct a covering VTRATG. Since all nonterminals in	(

except� have at most one production, we can define . ⇓	 to be the unique term
derivable from . in	(provided that . does not contain�. We now look at all the
productions�→ ! (.) in	(. If all the function symbols ! such that there exists
a production �→ ! (.) have the same arity, then we produce a VTRATG with
the productions {�→ (! (2) ⇓) [2\�] | �→ ! (.)} ∪ {�→ . ⇓	 | �→ ! (.)}.
If the function symbols do not have the same arity, we pad them with dummy
constants.

Example 4.5.3 (continuing Example 4.5.2). From the �-productions in �7 we
get the function symbols �, �,	,
 and the arguments �, � and we produce the
VTRATG with the following 6 productions:

�→ � (�) ⇓ | � (�) ⇓ | 	 (�) ⇓ |
 (�) ⇓
� → � ⇓ | � ⇓

150

4.6 Experimental evaluation

After expanding ⇓:

�→ , (�, �) | , (! (�), ! (�)) | , (! 2(�), ! 2(�)) | , (! 3(�), ! 3(�))
� → � | ! 4(�)

4.6 Experimental evaluation

In this chapter we have presented three different algorithms to find small
covering grammar. All of these algorithms are implemented in the GAPT
framework. We benchmarked their implementation in GAPT 2.2 on two data
sets:

1. Synthetic examples bundled with GAPT1. These are sequences of proofs
parameterized by a natural number and produce sets of terms simi-
lar to Example 4.5.2. For example one of these synthetic examples,
LinearExampleProof((), constructs a proof of the following sequent:

� (0),∀2 (� (2) → � (- (2))) 8 � (-((2))

2. Proofs from the TSTP collection produced by automated theorem provers
(Thousands of Solutions from Theorem Provers [93]; all proofs from the
FOF and CNF categories as of November 2015). From the total 137989
proofs in the TSTP, we could import term sets from 68185 proofs (49.41%).

Both data sets consist of single-sorted languages. We have extracted term
sets from the TSTP collection of proofs produced by automated theorem
provers (Thousands of Solutions from Theorem Provers [93]; all proofs from
the FOF and CNF categories as of November 2015). Unfortunately many of
these proofs are in custom formats that we have been unable to import. How-
ever from the total 137989 proofs in the TSTP, we could import term sets from
68185 proofs (49.41%). Of these 68185 term sets, 35467 (52.02%) can not be
compressed using VTRATGs (with regard to our size measure) as each term
has a different root symbol.
1These can be found in the gapt.examples package.

151

4 Practical algorithms to find small covering grammars

For each of the data sets, we show two plots: one comparing the runtime
of the algorithms when they produce a VTRATG (for Reforest we only count
grammars with fewer productions than the size of the term set). The second
one compares the runtime in the cases where the cut-introduction algorithm
in GAPT could use the grammar to generate a non-trivial lemma [36]. We also
show the results for a “virtual best” method which has the minimum runtime
of the others, i.e., it behaves as if we ran all the algorithms in parallel in a
portfolio mode and terminated as soon as one of them finishes.
We compared the implementation of these three algorithms in a prerelease

version2 of GAPT 2.3 [37] and used GNU parallel [96] for scheduling. The
MaxSAT solver we used is OpenWBO version 2.0 [67]. The comparison was
conducted on a Debian Linux systemwith an Intel i5-4570 CPU and 8 GiB RAM,
with a time limit of 60 seconds. In the Figures 4.2 and 4.3 we use the following
names for the grammar generation algorithms:'_maxsat is the MaxSAT algo-
rithm with the parameter � = {�, (�1, . . . , �')},'_(_maxsat is the MaxSAT
algorithm with parameter � = {�, (�1, . . . , �'), (�1, . . . ,�()}, many_dtable is
the delta-table algorithm without row-merging, many_dtable_ss is the delta-
table algorithm with row-merging, 1_dtable is the delta-table algorithm using
lgg1 instead of lgg.
In an earlier evaluation we compared the delta-table algorithm and the

MaxSAT algorithm [29] in GAPT 2.0 on the same proofs from the TSTP. There
are surprising differences in the results: the most striking difference concerns
the proof import. The GAPT 2.3 release introduced an algorithm that directly
converts resolution proofs (as imported from the TSTP) to expansion proofs,
without constructing LK proofs as an intermediate step. (We will discuss this
algorithm in more detail in Chapter 6.) Using this new and improved algorithm
we can import almost twice as many proofs as term sets, increasing the number
from 36494 term sets in GAPT 2.0 to 68185 term sets in GAPT 2.3.
Another noteworthy change in GAPT 2.3 is the rewrite of the delta-table

implementation that was necessary to fix several bugs. As a side effect, the
performance of the delta-table algorithm was significantly improved. While
the MaxSAT algorithm was significantly more successful in the previous eval-

2git revision 9b9909820744046ff57af9b399965824bf3a4919

152

4.6 Experimental evaluation

uation [29], in the present evaluation the delta-table algorithm is more com-
petitive now.
Figure 4.2 compares the runtime for the synthetic examples. Here Reforest

finds the largest number of grammars by a significant margin. It finds more
than 600 compressing VTRATGs, three times as many as the next algorithm,
1_maxsat, which finds about 200. The line for Reforest also almost coincides
with the virtual best: only very few term sets can be compressed by another
algorithm but not by Reforest. The next most successful algorithm is the
MaxSAT algorithm with the parameter � = {(�), (�)}. Many of the synthetic
problems have short natural proofs with cuts that only have a single universal
quantifier, this is most likely why that parameter is the most successful choice.
If we only consider the grammars that could actually be successfully used

by cut-introduction to produce a nontrivial lemma, then the gap shortens a
bit: Reforest is still ahead by a significant margin, but the margin is smaller.
Reforest finds more than 200 useful grammars, and 1_maxsat finds about 150.
There are two explanations for this result: one is that for our proof-theoretic
applications in the form of cut-introduction it is not just important to find
a compressing VTRATG, but that there are additional qualitative features
necessary for a VTRATG to correspond to an interesting proof with cut. The
other explanation is that the algorithm used to find the actual formula for
the lemma is exponential in the number of nonterminal vectors; and Reforest
produces a larger number of nonterminal vectors than the other algorithms.
Within a timeout of 60 seconds per term set, the delta-table algorithm finds

grammars for 6873 term sets. Algorithm 2 improves on this and finds grammars
for 7503 term sets. This is a significant improvement, since the additional 630
term sets are the most difficult instances solved, even though they only account
for a 9% increase in solutions.
The results for the TSTP data set in Figure 4.3 are completely different: here,

the delta-table algorithm is the most successful one, tied with the MaxSAT
algorithm with parameter � = {�, (�1, �2)}. Reforest is the (second) least
successful algorithm both by the number of compressing grammars, and the
number of grammars that were useful for cut-introduction. This is probably
caused by the different nature of the proofs in the TSTP: only very few of these
proofs contain purely repetitive structures such as {�, . . . , ! ((�)}, variants of

153

4 Practical algorithms to find small covering grammars

0 100 200 300 400 500 600 700

produced covering grammars (synthetic examples)

0

2

4

6

8

10

C
P
U

 r
u
n
ti

m
e
 (

s
e
c
o
n
d
s
)

reforest

1_maxsat

2_maxsat

1_1_maxsat

2_2_maxsat

1_dtable

many_dtable

many_dtable_ss

virtual best

0 50 100 150 200 250 300

grammars that lead to a non-trivial lemma (synthetic examples)

0

2

4

6

8

10

C
P
U

 r
u
n
ti

m
e
 (

s
e
c
o
n
d
s
)

reforest

1_maxsat

2_maxsat

1_1_maxsat

2_2_maxsat

1_dtable

many_dtable

many_dtable_ss

virtual best

Figure 4.2: Cactus plot of grammar generation runtime on synthetic examples.

154

4.6 Experimental evaluation

0 5000 10000 15000 20000

produced covering grammars (TSTP)

0

2

4

6

8

10

C
P
U

 r
u
n
ti

m
e
 (

s
e
c
o
n
d
s
)

reforest

1_maxsat

2_maxsat

1_1_maxsat

2_2_maxsat

1_dtable

many_dtable

many_dtable_ss

virtual best

0 2000 4000 6000 8000 10000 12000

grammars that lead to a non-trivial lemma (TSTP)

0

2

4

6

8

10

C
P
U

 r
u
n
ti

m
e
 (

s
e
c
o
n
d
s
)

reforest

1_maxsat

2_maxsat

1_1_maxsat

2_2_maxsat

1_dtable

many_dtable

many_dtable_ss

virtual best

Figure 4.3: Cactus plot of grammar generation runtime on proofs from the
TSTP.

155

4 Practical algorithms to find small covering grammars

Figure 4.4: Runtime performance comparison on the TSTP proofs. Each point
represents an input term set, and its size is proportional to the
runtime of each algorithm.

156

4.6 Experimental evaluation

Figure 4.5: Comparison of the performance difference to the compression ra-
tio and overall runtime. Each point represents an input term set
from the TSTP data set. The size of a point is proportional to the
combined runtime of both algorithms.

which occur in many of the synthetic examples.
For easy term sets—those which take a short time to compress—the delta-

table algorithm is much faster than the MaxSAT algorithm; there the curve for
the delta-table algorithm is below the one for the MaxSAT algorithm. As far
as we can tell, the performance difference on the easy examples is due to the
overhead of constructing the stable grammar and the minimization formula.
On average, this reduction makes up for 72% of the runtime for term sets where
the total runtime is less than 1 second, whereas the situation is almost reversed
for term sets where the total runtime is more than 10 seconds: there about 69%
of the runtime is spent inside the MaxSAT solver.
This dichotomy between easy and hard problems is not only apparent on

the aggregate data set, but also for individual term sets: Figure 4.5 shows the
CPU runtime ratio (x-axis) in comparison to the compression ratio (y-axis) and
total runtime (size of the points). On the top right there is a cluster of small
points: these are the easy problems, and while the delta-table algorithm is

157

4 Practical algorithms to find small covering grammars

faster by a factor of 10, both algorithms can solve the problems in a reasonable
time. Then there is a large cluster on the left: these are the hard problems,
which generally admit a better compression, and here the MaxSAT algorithm
is faster by a factor of 10.
Figure 4.4 shows a scatter plot of term set size against achieved compression

ratio (ratio of grammar size to term set size, i.e., number of productions to
number of terms). The size of each point in Figure 4.4 is proportional to the
runtime of the algorithm: we see that Reforest is typically much faster than the
other algorithms. The reason for the difference between Figures 4.3 and 4.4 is
mainly that the TSTP contains many small proofs, for which it is important to
find even very small opportunities for compression. Hence for the small term
sets it is more advantageous to use algorithmically more complex methods
as they can exploit these subtle features in a more effective way and find
compressing grammars at all.
Only the MaxSAT algorithm and Reforest can find grammars whose size

is less than 25% of the input term set; however Reforest only achieves these
compression ratios for larger term sets. For the MaxSAT algorithm, the choice
of parameter is crucial: while a larger parameter � would theoretically allow
us to find more grammars (and hence lower compression ratios), in practice
these larger parameters just increase the runtime and we hence find fewer
grammars in the given time limit.
With Reforest we have an interesting algorithm to find covering VTRATGs

that uses very different techniques to the delta-table and MaxSAT algorithm.
Due to its roots in grammar-based compressed, it is better from an algorithmic
perspective: the introduction of a single nonterminal could potentially be done
in linear time using the implementation tricks used in TreeRePair [65]. (The
Reforest implementation takes quadratic time.) Even iterating this process
to introduce multiple nonterminals only has cubic cost. In comparison, both
the MaxSAT and delta-table algorithms rely on algorithms for NP-complete
optimization problems (MaxSAT and set cover, respectively). The crucial
trick that allows Reforest to find covering VTRATGs without relying on back-
tracking search is the heuristic of most frequent digrams, which allows us to
deterministically choose a compression.
However it is not obvious how to generalize Reforest to produce induction

158

4.6 Experimental evaluation

grammars. Digram compression exponentially compresses sequences of the
form {, (�), . . . , , (! 2−1(�))} using the VTRATG�→, (�2) | , (! (�2)), �2→�3 |
! 2

2 (�3), . . . , �(−2→�(−1 | ! 2−2 (�(−1), �(−1→� | ! 2−1 (�). While for induction
grammars, we would hope to obtain a production J → , (F). Since digram
compression is central to the algorithm, this behavior seems to be hard to
avoid.

159

5 Formula equations and
decidability

In the previous chapters we have studied the grammars of simple proofs and
simple induction proofs. The grammars contain only the quantifier infer-
ence terms in these proofs. Generating their language corresponds to cut-
elimination. However not every grammar is the grammar of a proof. For
example, a grammar generating the empty language will not correspond to a
proof (since the empty sequent is not derivable). In this chapter we will study
the conditions under which grammars can be extended to proofs, and what
properties the proposed cut formula and induction formulas need to satisfy.
These conditions will be collected in a so-called formula equation.

The algorithms devised in Chapter 4 allow us to find grammars that cover a
given set of terms. If we start from a cut-free proof G and find a VTRATG 	

that covers (G), then we know the quantifier inference terms for a small proof
with cuts (i.e., a proof with a small quantifier complexity). It only remains
to algorithmically find suitable cut formulas, i.e., a solution to the formula
equation. This approach of introducing cuts into an existing cut-free proof is
called cut-introduction [51, 48, 50, 49, 36].

A procedurally similar approach can also be used for automated inductive
theorem proving [31]. There we start from cut-free proofs of instances of
the sequent and find a covering induction grammar. In both applications it is
crucial to automatically solve the induced formula equations. Hence we will
study two algorithms that solve formula equations in this chapter. The first
one in Section 5.6 will be based on forgetful inference, while the second one in
Section 5.7 will be based on interpolation.

161

5 Formula equations and decidability

5.1 Formula equations

We have already seen the definition of a formula equation in Section 2.9. An
easy observation is that if the formula equation is solvable, then it is valid in
higher-order logic, both in Henkin semantics as well as full semantics.

Example 5.1.1. The formula equation ∃� < with< = ∀2 ((� (2) →�) ∧ (� →
� (2)) has no solution (modulo � = ∅) since < implies ∀2 (� (2) → �) and
∀3 (�→� (3)) and therefore ∀2∀3 (� (2)→� (3)), which is not a valid formula.
If the quantifier ∀2 was not present in the formula equation, it would have the
solution � (2). One way to view this situation is that the quantifier ∀2 in the
formula equation has the effect that 2 may not occur in the solution.

The concept of formula equations can be traced back to the 19th century,
see [102] for an overview. Formula equations are connected to second-order
quantifier elimination. In this context, Ackermann proved the following lemma
which allows us to eliminate a single second-order quantifier.

Lemma 5.1.1 (Ackermann’s lemma [1]). Let ; be a formula equation such
that; = ∃� ∃� (∀2 (A (2) → � (2)) ∧M) where � does not occur in A and only
occurs negatively inM . Then:

1. ; is � -solvable iff;0 = ∃� M [�\A] is solvable

2. If; has the � -solution I , then;0 has the � -solution I � � .

3. If;0 has the � -solution I then; has the � -solution [�\A]I .

Proof. Let us first show � 8 ∀2 (A (2) → � (2)) ∧M →M [�\D2 A (2)]. This is
true because � only occurs negatively inM . Whenever we can prove L0 → L

for some formulas L, L0 then we can replace all negative occurrences of L by
L0 inM while preserving provability (this is an easy induction onM). From this
observation we conclude 2.
For 3, assume � 8 M [�\A]I . We need to show � 8 (∀2 (A (2) → � (2)) ∧

M) [�\A]I . By moving [�\A]I , this is equivalent to� 8 ∀2 (AI (2) →AI (2)) ∧
M [�\A]I , which directly follows from the assumption. Finally, 1 follows from
2 and 3. �

162

5.2 Solvability of VTRATGs

We can relax the syntactic restriction in Lemma 5.1.1 a bit to formula equa-
tions of the form ; = ∃� ∃� ∀2 (A (2) → � (.)) ∧ M where � does not oc-
cur in A and only negatively in M . This formula equation is equivalent to
;̃ = ∃� ∀3 (∃2 (A (2) ∧ 3 = .) → � (3)) ∧ M . Therefore ; is solvable iff
∃� M [�\D3 ∃2 (A (2) ∧ 3 = .)] is solvable.
Example 5.1.2. Let; = ∃� (∀2 (� (2) → � (2)) ∧ (� (�) → � (�))). Then; is
solvable iff � (�) → � (�) is solvable. And � (�) → � (�) is not ∅-solvable.
Example 5.1.3. Let ; = ∃� (∀2 (� (2) → � (- (2))) ∧ (� (�) → � (�))). Then
Lemma 5.1.1 does not apply since A (2) = � (2) contains � .

5.2 Solvability of VTRATGs

Let us first study the case of VTRATGs and simple proofs. That is: given a
decodable VTRATG 	 such that every nonempty nonterminal vector has a
production, is there a simple proof G such that 	 (G) = 	?

Remark 5.2.1. Requiring a production of every nonterminal vector is a subtle
condition, but does not pose a large restriction in practice: given a VTRATG	

such that there is no production for the nonterminal vector �, we can add a
production �→(�, . . . , �) with dummy constants � . This only slightly increases
the size of the grammar. Furthermore the language of the extended grammar	0

is a superset of (), so if () is tautological, then (0) is tautological as
well.
This situation is of course a small mismatch: we can have a simple proof G

such that 	 (G) has a nonterminal vector without productions, and then the
formula equation for	 (G) is not defined—even though we could reasonably ex-
pect it to exist, and furthermore have a solution consisting of the cut-formulas
in G . The fundamental reason for this mismatch stems from the different
treatment of weakening inferences in proofs and VTRATGs. As we have
seen in Lemma 2.7.5 and Theorem 3.9.1, all steps in cut-elimination except
for the ones for weakening preserve the language of the grammar exactly.
Only the steps for weakening can make the language smaller. The case that
a nonterminal vector has no productions corresponds to a cut where the cut
formula is completely introduced by a weakening on the weak side. During

163

5 Formula equations and decidability

cut-elimination, all quantifier instances on the strong side are hence discarded.
However on the level of the grammar we essentially only discard those terms
which contain nonterminals. The language of a grammar explicitly excludes
terms with nonterminals—recall Definition 2.6.6.
There are other approaches as well. For example, we could make the func-

tion 	 (·) partial, and only define 	 (G) if G does not introduce cut formulas
using weakening. This would break the correspondence between instance
grammars and grammars of instance proofs in Theorem 2.8.1: the instance
grammar of an induction grammar can introduce (some or all) cut formulas
using weakening, so 	 (� (G, .)) we be undefined. Another choice would be to
preprocess the simple proofs by permuting weakening inferences downward,
assigning to every simple proof G a proof G 0 where no cut-formula is intro-
duced using weakening. This breaks Theorem 2.8.1 in a different way: now
	 (� (G, .)) 5 	 (� (G, .)0) may have fewer nonterminal vectors than � ((G), .).
Eliminating these weakening inferences from the proof with induction directly
is in general not possible. Yet another option is to change how the language
of a grammar is defined, by iteratively pruning nonterminal vectors without
productions and productions that reference these nonterminals. This compli-
cated definition would be highly unnatural from the point of view of formal
languages.

Let the nonterminals of such a VTRATG 	 be � ≺ �1 ≺ . . . �(. Then a
proof G with 	 (G) = 	 has (cuts; in the general case these cuts are nested in
a linear way as shown in Figure 5.1.
The sequent 5# 8 6# consists of the instances of 5 8 6 (corresponding to the

productions from the nonterminal �) that only contain eigenvariables from
=#+1, . . . , =(. That is, if � → - is a production in 	 and - only contains non-
terminals from �#+1, . . . , �(, then 5# 8 6# contains the corresponding formula
instance. Similarly, the terms .#, $ range over all right-hand sides of productions
of �# .
The formula equation;	 in the following Definition 5.2.1 is just the con-

junction of all the leaves in Figure 5.1. If this formula equation is solvable,
then there is a simple proof G with 	 (G) = 	 (namely the one in Figure 5.1).
And also the other way around, as we will see in Theorem 5.2.1: if () is

164

5.2 Solvability of VTRATGs

50 8 60, K (=), . . . , K2(=2), K1(=1)
5 8 6,K (=), . . . , K2(=2), K1(=1)

5 8 6,K (=), . . . , K2(=2),∀21 K1(21)
51, K1(.1,1), · · · 8 61, K (=), . . . , K2(=2)
5,∀21 K1(21) 8 6,K (=), . . . , K2(=2)

5 8 6,K (=), . . . , K2(=2)

5 8 6,K (=)
5 8 6,∀2 K (2)

5, K (.,1), · · · 8 6

5,∀2 K (2) 8 6
5 8 6

Figure 5.1: General case of a simple proof with (cuts corresponding to a
VTRATG with (+ 1 nonterminal vectors.

tautological, then the formula equation is solvable.

Definition 5.2.1. Let 	 = (�, :,�, �) be a decodable VTRATG with � =

{� ≺ �1 ≺ . . . �(}. We define the formula equation;	 = ∃� <	 , where<	 is
the conjunction of the following formulas:

• ∀=1 . . .∀=(
� �

50 →
60 ∨ �((=() ∨ · · · ∨ �1(=(, . . . , =1)

�
• ∀=#+1 . . .∀=(

� �
5# ∧ �

.∈���
�# (=(, . . . , =#+1, .) →

6# ∨ �((=() ∨ · · · ∨
�#+1(=(, . . . , =#+1)

�
for 1 ≤ # ≤ (

where:

• �� = {. | � → . ∈ �} for every nonterminal vector � ∈ � .

• �# = {. ∈ �� | FV(.) ⊆ �
�#+1 ∪ · · · ∪�

�(} for 0 ≤ # ≤ (.

• 5# 8 6# is the sequent consisting of all formula instances corresponding
to terms in �# .

The formula equation for a VTRATG is directly of the form required by an
iterated application of Lemma 5.1.1: if we eliminate �1, . . . , �(in this order,
then there is always exactly one positive occurrence of �# in the #-th iteration,
and the other negative occurrences are in other implications. What we obtain in
this way is the so-called “canonical solution”. Whenever the formula equation

165

5 Formula equations and decidability

is solvable or even just valid, this canonical solution will solve the formula
equation:

Definition 5.2.2. Let 	 = (�, :,�, �) be a decodable VTRATG with � =

{� ≺ �1 ≺ . . . �(}. Then the canonical solution �	 = [�1\�	
1 , . . . , �(\�	

(] is
defined as follows:

�	
1 (=(, . . . , =1) =

50 ∧ ¬

�
60

�	
#+1(=(, . . . , =#+1) =

�

5# ∧ ¬

�
6#

�
∧

.∈���

�# (=(, . . . , =#+1, .)

Lemma 5.2.1. Let 	 be a decodable VTRATG such that there is a production of
every nonempty nonterminal vector. Then

�
() ↔<	 [�\�].

Proof. By iterated application of Lemma 5.1.1. �

In a sense, the canonical solution �	
is the conjunction of all instances of

the end-sequent that are available in the proof at the #-th cut. We could hope
that this means that the canonical solution is maximal, that it implies every
other solution. However this is not the case:
Example 5.2.1. For a VTRATG 	 , the canonical solution is not necessarily
maximal in the sense that it implies any other solution to the FE;	 . Consider
for example the sequent:

∀2 � (2),∀2 (� (2) →� (- (2))) 8 � (0) →� (- (- (0)))
And the following VTRATG 	 :

�→ ,1(�) | ,2(�) | ,3
� →�

� → 0 | - (0)
This VTRATG induces the formula equation;	 :

∃�∃� �∀> ∀? (� (>) ∧ (� (?) →� (- (?)))→
(� (0) →� (- (- (0)))) ∨ � (?) ∨ � (?, >))

∧ ∀? ((� (?) →� (- (?))) ∧ � (?,?) → (� (0) →� (- (- (0)))) ∨ � (?))
∧ (� (0) ∧ � (- (0)) → (� (0) →� (- (- (0)))))�

166

5.3 Solvability of induction grammars

Then [�\D?D> ⊥, �\D? (� (?) →� (- (?)))] is a solution for;	 . But ⊥ is not
implied by �	

1 (?, >) = (� (>) ∧ (� (?) →� (- (?))) ∧ ¬(� (0) →� (- (- (0))))).
For VTRATGs, all reasonable ways to define the solvability of the associated

formula equation are equivalent:

Theorem 5.2.1. Let 	 be a decodable VTRATG such that there is a production
of every nonempty nonterminal vector, then the following are equivalent:

1. There exists a simple proof G such that	 (G) = 	

2. () is � -tautological

3. �	 is a � -solution for;	

4. ;	 has a quantifier-free � -solution

5. ;	 is � -solvable

6. � |= ;	 in Henkin semantics

7. � |= ;	 in full higher-order semantics

Proof. We have 1 ⇒ 2 by Corollary 2.7.1, and 2 ⇒ 3 by Lemma 5.2.1. Since
�	 is quantifier-free we also have 3⇒ 4⇒ 5. As we have a concrete formula
for the solution, the solution also exists in all Henkin models (and a fortiori
also in all full higher-order models), hence 5⇒ 6⇒ 7. Since the equivalence
() ↔<	 [�\�] of Lemma 5.2.1 is also valid in Henkin semantics, we get
7 ⇒ 2. Furthermore ;	 consists of the initial sequents of a proof G with
	 (G) = 	 , so 3⇒ 1. �

Corollary 5.2.1. Let 	 be a decodable VTRATG such that every nonempty
nonterminal vector has a production. Then it is decidable whether	 is ∅-solvable
or not.

5.3 Solvability of induction grammars

Similar to Definition 5.2.1 for VTRATGs, we can also collect the conditions nec-
essary to construct a simple induction proof with a given induction grammar
into a formula equation:

167

5 Formula equations and decidability

Definition 5.3.1. Let 	 = (J, =, (F�)�, ?, �) be an induction grammar. We
define the following sets where C ∈ {J,?}, # is the index of a constructor, and
$ is � or an index of a constructor:

• � #
C
= {. | C → . ∈ � ∧ FV(.) ⊆ {=} ∪ F�� ∪ ?}

• ��
C
= {. | C → . ∈ � ∧ FV(.) ⊆ {=}}

• 5$ = � $
J

• �$ = � $
?
if � $

?
≠ ∅, otherwise �$ = {?}

Definition 5.3.2. Let	 be a decodable induction grammar for a simple induc-
tion problem 5 8 ∀2 K (2), then the corresponding FE is defined as;	 = ∃�<	

where<	 is the conjunction of the following formulas:

1. ∀F��∀?
��

5# ∧�
&
�

.∈�� � (=, F�� ,& , .) → � (=, �# (F��), ?)
�

where # is the index of a constructor

2. ¬(� 5� ∧�
.∈�� � (=, =, .))

Unlike VTRATGs, the solvability of the FE is not equivalent to the languages
being tautological. For induction grammars, we have two distinct notions
instead: solvability and validity (referring to the associated formula equation).
Solvability clearly always implies validity:

Lemma 5.3.1. Let 	 be a decodable induction grammar. If ;	 is � -solvable,
then;	 is � -valid.

Constructing a counterexample for the converse is a bit involved, and we
will postpone it until Section 5.4. Solvability, however, is equivalent to the
existence of a simple induction proof:

Theorem 5.3.1. Let 	 be a decodable induction grammar. Then the following
are equivalent:

1. ;	 has a quantifier-free solution modulo �

2. There exists a simple induction proof G such that 	 (G) = 	

168

5.3 Solvability of induction grammars

Proof. The formulas in Definition 5.3.2 are equivalent to the initial sequents in
the simple induction proof in Definition 2.8.4. Hence whenever the FE;	 has
a quantifier-free solution modulo the background theory � , we can construct
a simple induction proof G with the solution as induction formula such that
	 (G) = 	 . Vice versa, if we have a simple induction proof G then its induction
formula is a solution for;	 . �

Example 5.3.1. The induction grammar 	 in Example 2.8.5 induces the follow-
ing FE:

∃�
�
� (=, 0, ?) ∧ (� (=, =, 0) → � (=) = = + =) ∧
∀F∀? �

� (=, F,?) ∧ � (=, F, F) ∧ � (=, F, 0) ∧ - (?) + - (F) = - (- (?) + F) ∧
? + - (F) = - (? + F) ∧ - (F) + - (F) = - (- (F) + F) → � (=, - (F), ?)� �

This FE has the solution K (=, F,?) := (- (?) + F = - (? + F) ∧ � (F) = F + F).
Let us now show that the language is tautological iff the formula equation is

valid. In the following Section 5.4, we will then discuss that validity in general
does not imply solvability for the formula equations induced by induction
grammars. The following technical condition just ensures that � (, .) has a
production for every nonempty nonterminal vector:

Definition 5.3.3. An induction grammar 	 is called suitable iff ��
?
≠ ∅ or

? = ().

Unlike VTRATGs, we cannot give a uniform solution to the formula equa-
tions induced by induction grammars. (Since the problem of finding a solution
is undecidable, as we will see in Theorem 5.4.2.) However the analogous defi-
nition is still useful, as we can use it characterize the validity of the formula
equation.

Definition 5.3.4. Let 	 be a decodable induction grammar. Then for every
free constructor term . , we define the canonical solution�. (=,?) recursively as
follows:

��� (-) (=,?) =

5# [F#\-] ∧

&

.∈��

�-� (=, .)

169

5 Formula equations and decidability

Theorem 5.3.2. Let 	 be a suitable decodable induction grammar. Then the
following are equivalent:

1. 	 is � -tautological.

2. (, .) is � -tautological for all free constructor terms . .

3. ;� (,.) is � -solvable for all free constructor terms . .

4.
�

-∈��
�
�. (., -) → K (.) is � -tautological for all free constructor terms . .

5. � |= ;	 in full semantics.

Proof. 1 ⇔ 2 by Definition 2.8.9; and 2 ⇔ 3 by Theorem 5.2.1. For 5 ⇒ 3
note that |= ;	 →;� (,.) even in Henkin semantics. For 2⇔ 4 note that the
formula

�
-∈��

�
�. (., -) → K (.) is equivalent to �(, .). It remains to show

3⇒ 5. So assume � |= ;� (,.) for all free construct terms . and letM be a full
higher-order model of � . In a full higher-order model, we can clearly evaluate
infinite conjunctions and disjunctions, and define predicates that contain these
infinite connectives. A direct way to define the witness for the existential
quantifier in;	 is by case distinction over all free constructor terms . : we set
� = D=DFD?

�
. (F = . →�. (=,?)). (This definition does not require or imply

that the constructors are injective.) Every formula listed in Definition 5.3.2 is
satisfied: 1. due to the definition of canonical solution, and 2. since (, .) is
� -tautological for all . . �

Remark 5.3.1. Theorem 5.3.2 constructs the set � in the model using a least
fixed-point construction.

5.4 Decidability and existence of solutions

On a practical level, we want to algorithmically solve the formula equations
induced by VTRATGs and induction grammars. For VTRATGs, we have seen
in Theorem 5.2.1 that this is possible (as long as the language is tautological),
and we can even give a nice (albeit exponentially large) canonical solution.
For induction grammars, the situation is more complicated:

170

5.4 Decidability and existence of solutions

1. The formula equation may not have a solution, even if the language is
tautological:

Theorem 5.4.1 ([31]). There exists a suitable decodable induction gram-
mar	 with |? | = 1 such that;	 is valid but;	 does not have a quantifier-
free solution modulo ∅.

2. It is undecidable whether the formula equation induced by a given
induction grammar is solvable:

Theorem 5.4.2 ([33]). There exists a computable sequence of suitable
decodable induction grammars (()(≥0 with |? | = 1 such that;	 is valid
for all (, but the set {(| ;	 has a quantifier-free solution modulo ∅} is
undecidable.

In short, there is no algorithm to solve formula equations, even if we assume
as a precondition that the FE is valid. The proofs of Theorems 5.4.1 and 5.4.2
are both based on a similar construction: the following induction grammar	
for the sequent ∀2 (� (2) → � (- (2))) 8 ∀2 (� (0) → � (2)):

J → ,1(?)
? → - (?) | 0

A more straightforward induction grammar would use the single production
J → ,1(F). The trick of replacing F by ? prevents the straightforward solution
� (0) → � (F) to the formula equation. The proofs of Theorems 5.4.1 and 5.4.2
then analyse a potential solution and deduce that such a solution needs to
contain arbitrarily large numerals -� (. . .), a contradiction. This approach
crucially depends on the fact that the solution is quantifier-free modulo an
empty theory.
It turns out to be practically hard to algorithmically (or even manually)

find solutions to formula equations such as the ones induced by induction
grammars. We could hope that this problem becomes easier by restricting the
induction grammars, for example only considering induction grammars with
|? | = 0—precluding the grammar used by Theorems 5.4.1 and 5.4.2. Another

171

5 Formula equations and decidability

option is to consider more solutions, for example quantified solutions: for some
applications it is not absolutely important that we find a simple induction proof
with the specified induction grammar (a quantified solution to the FE would
in general result in a proof that is not a simple induction proof).
In the rest of this section we will hence work towards a generalization

of Theorems 5.4.1 and 5.4.2, showing that solving the formula equations in-
duced by induction grammars is hard even if we restrict the class of induction
grammars and relax the notion of solution. Concretely, we generalize the un-
solvability result of Theorem 5.4.1 in both of these directions: we will construct
an induction grammar with |? | = 0 such that the induced formula equation is
valid modulo the empty theory, but is not � -solvable for a fixed theory � . It is
unfortunately not yet clear how to extend the approach of this section to an
undecidability result like Theorem 5.4.2.

Theorem 5.4.3. Let � be a computably enumerable consistent extension of PA.
Then there exists an induction grammar 	 = (J, =, (F�)�, ?, �) with ? = () such
that;	 is ∅-valid but;	 is not � -solvable.

The rest of this section is devoted to a proof of Theorem 5.4.3. We will work
in an arithmetical theory with function symbols such as � (which in our case
doubles the input). In the sequent 5 8 ∀2 K (2) that we will construct, the
antecedent 5 will only consist of formulas that are provable in IOpen ⊆ PA (a
weak fragment of Peano arithmetic where induction is restricted to quantifier-
free formulas). We will choose the formula ∀2 K (2) such that it expresses the
consistency of a fixed computable enumerable theory � . On a very abstracted
level, the general plan could be described as follows: we consider the sequent
PA 8 Con(�), and use Gödel’s second incompleteness theorem to show that
there can be no simple induction proof with the constructed induction grammar
(and hence no solution to the formula equation) if � ⊇ PA.

Remark 5.4.1. Most of this argument also works if we replace PA by IOpen.
In fact, the condition � ⊇ IOpen would suffice to show that there are no
quantifier-free � -solutions to the constructed formula equation. The use of
PA is only necessary to show the stronger statement that there no quantified
solutions as well.

172

5.4 Decidability and existence of solutions

One requirement for this approach is that the constructed induction gram-
mar is tautological. As a small example, consider the sequent ∀2 � (- (2)) =
- (- (� (2))),∀2 - (2) > 0 8 ∀2 (2 ≠ 0→ � (2) > 0) with the following induction
grammar 	 :

J → ,1(F) | ,2(F)
Then ;� (,() is equivalent to the following formula, saying that the first

(instances of the antecedent imply the conclusion. By Theorem 5.3.2, 	 is
tautological iff this formula is tautological for all (:

0≤#<(

�
� (-#+1(0)) = - (- (� (-# (0)))) ∧ -#+1(0) > 0

�
��

� (=)

→(-((0) ≠ 0→� (-((0)) > 0)

This formula happens to be not tautological for (> 0, since the instances
for - (2) > 0 are not enumerated “fast enough”—we would need the instance
for 2(, but we only get the instances until (. And this brings us to the main
technical challenges of choosing the 5 in 5 8 Con(�): 1) we need to produce
the instances “fast enough” so that;� (,() is tautological, and 2) each formula
in 5 can only have a single universal quantifier. (Syntactically we can of course
have multiple quantifiers, but the instances can only vary in one “direction”:
namely F . Hence we might as well assume that there is a single universal
quantifier instantiated with F .) That is, we cannot directly use all instances of
a formula such as ∀2∀3 (2 + 3 = 3 + 2).
Particularly the restriction of a single universal quantifier makes the choice

of 5 interesting. Definition 5.4.1 defines part of the formula that we pick. As
usual, 0 is zero and - is the successor. The function � (2) = 22 doubles its
argument, and ℎ(2) = �2/2� halves its argument. The predicate (2) is true iff
2 is even. The function � codes pairs, and G1, G2 project to the first and second
component, resp. The coding of pairs is defined by interleaving the digits in a
base 2 representation, i.e. G1((�(. . . �1)2) = (. . . �3�1)2 and G2((�(. . . �1)2) =
(. . . �4�2)2. Note that as a binary function, � (2,3) is only defined for 2 < �

where � is a fixed bound since we only have a single universal quantifier.
We will use � to encode a word11 . . . 1(as � (11, � (12, . . . , � (1(, 0))) (i.e., as a
linked list with � as the “cons” operation).

173

5 Formula equations and decidability

Definition 5.4.1. Let� > 0. The formula A� (2) is defined as:

0 ≠ - (0)
∧ � (0) = 0 ∧ � (- (2)) = - (- (� (2)))
∧ ℎ(0) = 0 ∧ ℎ(- (0)) = 0 ∧ ℎ(- (- (2))) = - (ℎ(2))
∧ (0) ∧ ¬ (- (0)) ∧ ((- (2)) ↔ ¬ (2))
∧ ((2) → G1(2) = � (G1(ℎ(ℎ(2)))))
∧ (¬ (2) → G1(2) = - (� (G1(ℎ(ℎ(2))))))
∧ G2(2) = G1(ℎ(2))
∧ � (0, 0) = 0
∧

2#<�

((2) → � (-2# (0), 2) = � (� (� (-# (0), ℎ(2)))))

∧

2#<�

(¬ (2) → � (-2# (0), 2) = � (- (� (� (#, ℎ(2))))))

∧

2#+1<�
� (-2#+1(0), 2) = - (� (-2# (0), 2))

The instances
�

#<(A� (#) in Definition 5.4.1 suffice to compute =, �, ℎ, , G1,
and G2 for input values up to (:

Lemma 5.4.1. Let us make conversion of numbers to numerals explicit by writing
(= -((0), and extend this notation to truth values via ⊥ = ⊥ and � = � as well.
Then for any �,(> 0:

#<(

A� (#) 8 � = � ↔ � = � for all �,� < (

#<(

A� (#) 8 � (�) = � (�) for all � < (

#<(

A� (#) 8 ℎ(�) = ℎ(�) for all � < (

#<(

A� (#) 8 (�) ↔ (�) for all � < (

#<(

A� (#) 8 G1(�) = G1(�) for all � < (

#<(

A� (#) 8 G2(�) = G2(�) for all � < (

174

5.4 Decidability and existence of solutions

#<(

A� (#) 8 � (�, �) = � (�,�) for all � < � and �2 + 2�2 < (

We call the functions �, ℎ, G1, G2 and the predicates =, quickly representable
since they can be computed for all arguments less than (.

Proof. All of the claims are proven by recursion on � and �; the arguments
always strictly decrease in the recursive definition of the functions and pred-
icates. For example for ℎ, we can prove ℎ(0) = 0 and ℎ(- (0)) = 0 since this
already occurs literally in A� (0). And we can prove ℎ(� + 2) = - (ℎ(�)) for
any � < (; by the induction hypothesis we can already prove ℎ(�) = ℎ(�).
The case for = is interesting since it is the only binary predicate where we

can show quick representation. Clearly if � = �, then we can prove � = � by
reflexivity. Otherwise (ℎ# (�)) � (ℎ# (�)) for some suitably chosen # . �

Note that some combinations may not be quickly representable: for example
we cannot prove ℎ(� (�)) = � for 0 < � ≤ (since the intermediate result � (�)
is too large.
We can now turn towards defining the formula that will express the consis-

tency of the theory � . We will formalize the assertion that a given program �

does not terminate. (Later on in the proof of Theorem 5.4.3, wewill instantiate �
by a program that searches for a proof of a contradiction from � .) Concretely,
the program � will be represented as an instance of Post-Correspondence,
i.e., � = ((11

1, . . . ,1
1
(), (12

1, . . . ,1
2
()). Recall that a solution is a non-empty fi-

nite sequence (#1, . . . , #%) such that11
#1
. . .11

#

= 12

#1
. . . ‘12

#

. The predicate � (2)

is true iff 2 is a non-empty sequence of the form (#1, . . . , #%). The sequence is
represented as a list using the � function. The function ! 1(� (#1, . . . � (#(, 0) . . .))
(and analogously ! 2) maps the input sequence to the resulting concatenation
11
#1
. . . 11

#

(also represented as a list).

Definition 5.4.2. Let � = ((11
1, . . . ,1

1
(), (12

1, . . . ,1
2
()) be an instance of Post-

Correspondence. Define 1ℎ
#, $ as the $-th letter of 1ℎ

for 1 ≤ $ ≤ |1ℎ
|, and

assume that letters are natural numbers such that 0 < 1ℎ
#, $ < � for some � .

175

5 Formula equations and decidability

Define the following sequent:

∀2 A� (2),
∀2

ℎ∈{1,2}

#≤(

�
G1(2) = # → ! ℎ (2) = � (1ℎ

#,1, . . . � (1ℎ
#,|1ℎ

� |
, ! ℎ (G2(2))))

�
,

∀2

ℎ∈{1,2}

#≤(

�
G1(2) = # → G1(! ℎ (2)) = 1ℎ

#,1 ∧ · · · ∧

G1(G |1ℎ
� |−1

2 (! ℎ (2))) = 1ℎ
#,|1ℎ

� |
∧ G

|1ℎ
� |

2 (! ℎ (2)) = ! ℎ (G2(2))
�
,

¬� (0),∀2 (� (2) ↔ (G2(2) = 0 ∨ � (G2(2))) ∧
�
#≤(

G1(2) = #)

8∀2 (� (2) → ! 1(2) ≠ ! 2(2))

And define the induction grammar Solve� :

J → ,1(0) | · · · | ,1(�) | ,1(F) | ,2(F) | ,3 | ,4(F)

Lemma 5.4.2. Let � be an instance of Post-Correspondence. Then;Solve� is
∅-valid iff � has no solution.

Proof. We need to show that �((=) → � (() → ! 1(() ≠ ! 2(() is provable. In a
similar way as in Lemma 5.4.1, we can easily see that � is quickly representable.
To see that ! 1(() = ! 2(() is quickly representable as well, we make a case
distinction. If the two sides of the equality are different, then the strings
they represent are different at position $ and we can prove G1(G $

2 (! 1(())) ≠
G1(G $

2 (! 1(())) for this position $. (This is the reason we added the instances
up to � in the induction grammar: so that we can prove all inequalities
between letters.) If ! 1(() = ! 2(() are equal, then we can unfold both sides to
identical terms of the form � (- ... (0), . . . � (- ... (0), 0)). Hence;� (Solve� ,() is ∅-valid
iff � (() → ! 1(() ≠ ! 2(() is true in the standard model, and this is the case iff
(does not code a solution to � . �

Proof of Theorem 5.4.3. There exists a program that terminates if and only if
� is inconsistent—e.g. by searching for a proof of false. That such a program
exists is provable in PA. Since Post-Correspondence is Turing-complete,
there is an instance � of Post-Correspondence such that � is solvable iff �

176

5.5 Examples of difficult formula equations

is inconsistent; and this is provable in PA as well. Set 	 = Solve� . Since � is
consistent by assumption,;	 is ∅-valid by Lemma 5.4.2. If;	 were� -solvable,
then � proves that � has no solution and hence � 8 Con(�), a contradiction
to Gödel’s second incompleteness theorem. �

5.5 Examples of difficult formula equations

Before we come to algorithms that solve formula equations, let us first look
at some concrete practical examples. Recall that our motivation for formula
equations was to, ultimately, find the matrix of the induction formula for a
simple induction proof. We have already figured out the quantifier inferences
by finding an induction grammar that covers some finite family of instance
languages. Solving the formula equation induced by this induction grammar
is hence the only step missing to the construction of a proof with induction.
Many of these induced formula equations are surprisingly hard to solve in

practice. It appears to be even harder to show for a concrete formula equation
that it has no solutions (unless it is not valid). In this section we will show
several such formula equations that are induced by induction grammars for
real-world problems from the TIP library ([21]) and a formalization of the
fundamental theorem of arithmetic in GAPT (we will come back to these in
Section 7.4). All formula equations have � = ∅. For none of these formula
equations could we find a solution or conversely, show that there is no solution.

subpl

Here we consider a property of the predecessor function * on natural numbers,
namely that it commutes with the truncating subtraction (−). (The constant �
comes from Skolemization.)

∀2 (2 − 0 = 2),
∀2 ∀3 (2 − - (3) = * (2) − 3),

8 ∀2 (* (�) − 2 = * (� − 2))

TheMaxSAT algorithm produces the following induction grammar (covering

177

5 Formula equations and decidability

the languages of proofs generated by an automatic theorem prover):

J → ,1(?) | ,2(?, F) | ,3
? → *2(?) | * (�) | �

It is easy to see that this induction grammar is tautological, and that the
induced formula equation is hence valid. Fix the parameter (. First observe
that for # > 0, the instance grammar generates the instances *#+1(�) −-(−# (0) =
*#+2(�) − -(−#−1(0). However this happens in a refreshingly different way: first
the instance production corresponding to ? → *2(?) is applied �#/2� times,
and then ? → � or ? → * (�) depending on the parity of # . (A more natural
and human way would be to use a production ? → * (?). We would need to
use that production # − 1 times, followed by ? → * (�).) Hence we can derive
* (�) − -((0) = *(+1(�) − 0 from the instance language.

In a similar way, the instances *# (�) − -(−# (0) = *#+1(�) − -(−#−1(0) are
generated. This allows us to derive �−-((0) = *((�)−0. Since also *((�)−0 = 0
is generated (again by a similar argument), we get * (�) − -((0) = * (� − -((0))
and the instance language is tautological.

However because of the unconventional way the instances are generated,
there is no obvious choice for a solution to the induced formula equation:

∃� �∀? (? − 0 = ? → � (=, 0, ?)) ∧
∀F ∀? (� (=, F, *2(?)) ∧ � (=, F, �) ∧ � (=, F, * (�)) ∧ ? − 0 = ? ∧

? − - (F) = * (?) − F → � (=, - (F), ?)) ∧
(� (=, =, �) ∧ � (=, =, * (�)) → * (�) − = = * (� − =))�

subps

This formula equation is induced by an induction grammar for similar lemma
as subpl, also produced by the MaxSAT algorithm as a covering induction

178

5.5 Examples of difficult formula equations

grammar for proofs produced by an ATP.

∀2 (2 − 0 = 2),
∀2 ∀3 (2 − - (3) = * (2) − 3),
∀2 (* (- (2)) = 2),

8 ∀2 (* (- (�) − 2) = � − 2)

It is easy to see that every solution for the FE in subpl also solves the
following FE, and it is just as unclear whether the FE has a solution or not:

∃� �∀? (? − 0 = ? ∧ * (- (�)) = � → � (=, 0, ?)) ∧
∀F ∀? (� (=, F, *2(?)) ∧ � (=, F, - (�)) ∧ � (=, F, * (- (�))) ∧ ? − 0 = ? ∧

* (- (�)) = � ∧ ? − - (F) = * (?) − F → � (=, - (F), ?)) ∧
(� (=, =, - (�)) ∧ � (=, =, * (- (�))) ∧ * (- (�)) = �→

* (- (�) − =) = � − =)�
prod/prop_13

This problem from the TIP library (hence the different names for zero and
successor) states a property of the halving function ℎ(2) = � 22 �:

∀2 (� + 2 = 2),
∀2 ∀3 (� (2) + 3 = � (2 + 3)),
ℎ(�) = � ∧ ℎ(� (�)) = �,

∀2 (ℎ(� (� (2))) = � (ℎ(2))),
8 ∀2 (ℎ(2 + 2) = 2)

The MaxSAT algorithm produces the following tautological induction gram-
mar:

J → ,1(?) | ,2(F,?) | ,3 | ,4(�2(F + F))
? → = | ? | F

As a first guess, we might think that ℎ(F + F) = F could be a solution to
the induced formula equation. Alas, this does not work because we do not

179

5 Formula equations and decidability

have the instance F + � (F) = � (F + F). Another potential “solution” that comes
to mind is F + ? = �F (?) ∧ ℎ(�2F (0)) = �F (0), this would work if not for the
fact that is not a first-order formula. So it is still open whether the following
formula equation has a solution or not:

∃� �∀? (� + ? = ? ∧ ℎ(�) = � → � (=, �,?)) ∧
∀F ∀? (� (=, F, =) ∧ � (=, F,?) ∧ � (=, F, F) ∧ � + ? = ? ∧ ℎ(�) = � ∧

ℎ(�2(F + F)) = � (ℎ(F + F)) ∧ � (F) + ? = � (F + ?) →
� (=, � (F), ?)) ∧

(� (=, =, =) ∧ ℎ(�) = � → ℎ(= + =) = =)�
isaplanner/prop_03

Here we show that the number of occurrences of an element in a list increases
if we append something to the list. Lists are an inductive data type with the
constructors (#& and �)(-; e.g. �)(- (�, �)(- (�, (#&)) is a two-element list. The
function � ((, &) counts how often (occurs in the list & ; concatenation of lists is
denoted by �(&1, &2), (',() is a predicate expressing the equality of elements
' and (. The constants (and 3- are obtained from Skolemization.

∀2 & (�, 2),
∀2 ∀3 (& (� (2), � (3)) ↔ & (2,3)),
∀1 (� (1,(#&) = �)
∀1 ∀2 ∀& (¬ (1, 2) → � (1, �)(- (2, &)) = � (1, &))
∀1 ∀2 ∀& ((1, 2) → � (1, �)(- (2, &)) = � (� (1, &)))
∀2 (�((#&, 2) = 2)
∀2 ∀3 ∀4 (�(�)(- (2,3), 4) = �)(- (2, �(3, 4)))

8 ∀2 (& (� ((, 2), � ((, �(2,3-))))

The following formula equation is induced by an induction grammar found

180

5.6 Solution algorithm using forgetful inference

by the MaxSAT algorithm. It is unknown whether it has a solution or not:

∃� �∀?0 ∀?1 (& (�, � ((,3-)) ∧ � ((, (#&) = � ∧
(¬ ((,?1) → � ((, �)(- (?1, ?0)) = � ((,?0)) ∧
(((,?1) → � ((, �)(- (?1, ?0)) = � (� ((,?0))) ∧
�((#&,3-) = 3- → � (=, (#&, ?0, ?1)) ∧

∀F ∀F0 ∀?0 ∀?1 (� (=, F0, �(F0, 3-), F) ∧ � (=, F0, F0, F) ∧
& (�, � ((,3-)) ∧ � ((, (#&) = � ∧
(¬ ((,?1) → � ((, �)(- (?1, ?0)) = � ((,?0)) ∧
(((,?1) → � ((, �)(- (?1, ?0)) = � (� ((,?0))) ∧
(& (� (� ((, F0)), � (� ((, �(F0, 3-)))) ↔
& (� ((, F0), � ((, �(F0, 3-)))) ∧

�((#&,3-) = 3- ∧ �(�)(- (F, F0), 3-) = �)(- (F, �(F0, 3-)) →
� (=, �)(- (F, F0), ?0, ?1)) ∧

∀?0 ∀?1 (� (=, =,?0, ?1) ∧ & (�, � ((,3-)) ∧ � ((, (#&) = � ∧
�((#&,3-) = 3- → & (� ((, =), � ((, �(=,3-))))�

5.6 Solution algorithm using forgetful
inference

On a practical level, given a tautological grammar we want to algorithmically
generate a proof with that grammar. If we recall Theorems 5.2.1 and 5.3.1, this
means that we need to find a solution to the associated formula equation for
the grammar. For VTRATGs, this problem is decidable as we can always use the
(in general exponentially large) canonical solution as given by Definition 5.2.2.
For induction grammars, this problem is undecidable by Theorem 5.4.2. An
impractical algorithm to solve the formula equations induced by induction
grammars would be to enumerate all formulas, and for every formula check
whether it is a solution and return it if it is indeed a solution.
A practically more effective (however incomplete in the sense that it will not

find a solution for every solvable formula equation) algorithm was introduced

181

5 Formula equations and decidability

in [31] and is based on an algorithm that improves the solutions for formula
equations induced by VTRATGs which was introduced in [51]. (See also [36]
for a newer presentation that is closer to the formalism of this section.)
The central idea behind this improvement algorithm is forgetful inference:

we regard the solution to the formula equation as a formula in conjunctive
normal form, and then apply inferences such as resolution to these clauses.
It is called forgetful because whenever we do an inference we remove the
premises from the CNF.

Definition 5.6.1 (simplification of CNFs). We define the binary relations
�*,�, ,�! on the set of clauses (where a clause is a set of literals) as the smallest
relations containing the following:

C ∪ {� ∪ {& = , }, � [&]} �* C ∪ {� ∪ � [,]}
C ∪ {� ∪ {& = , }, � [,]} �* C ∪ {� ∪ � [&]}
C ∪ {� ∪ {&}, {¬&} ∪ �} �, C ∪ {� ∪ �}

C ∪ {�} �! C
The relations �*,�, ,�! are called simplification by forgetful resolution, for-
getful paramodulation, and forgetting, respectively. We define the relation
� = �, ∪ �* ∪ �! as their union.
We also lift the simplification relation � to solutions of formula equations,

by rewriting a single formula at a time:

Definition 5.6.2 (simplification of solutions of formula equations). Let K =

(K1, . . . , K() and M = (M1, . . . ,M() be a sequences of formulas. Then K �M iff
there exists a $ such that K $ �M $ and K# = M# for all # ≠ $.

Example 5.6.1. Consider the sequent ∀2 (� (2) → � (- (2))) 8 � (0) → � (-4(0))
and the following tautological VTRATG 	 :

�→ ,1(�) | ,1(- (�)) | ,2
� → 0 | -2(0)

Then the canonical solution �	 is given by:

(� (=) → � (- (=))) ∧ (� (- (=)) → � (-2(=))) ∧ ¬(� (0) → � (-4(=)))

182

5.6 Solution algorithm using forgetful inference

Via simplification we get a much nicer solution:

�	 �! (� (=) → � (- (=))) ∧ (� (- (=)) → � (-2(=)))
�, � (=) → � (-2(=))

Of course the relation� can also lead to formulas that are no longer solutions
of the formula equation. In the actual algorithm that simplifies the solution
we hence need to check that the formula is still a solution. The function
FindConseqences(;,M) in Algorithm 4 computes the �-simplified solutions
for a formula equation; , skipping the branches where the simplified formula is
not a solution. The way we use this function to compute a “nice” solution to the
formula equations induced by a VTRATG 	 is as follows: we compute the �-
consequences using FindConseqences(;	 ,�) and then return the smallest
solution we have found (e.g. counting the number of logical connectives).

Algorithm 4 Compute �-consequences for solution improvement
function FindConseqences(; : formula equation, K : solution for;)

yield K

for eachM such that K �M do
if M is a solution for; and we did not processM before then

FindConseqences(; ,M)
end if

end for
end function

The FindConseqences algorithm is practically effective; starting from
the analytic content of the canonical solution, which essentially is just a
conjunction of instances of the end-sequent, it generates short and interesting
non-analytic solutions. In an evaluation on the TPTP [36], we got meaningful
solutions such as complement(complement(2)) = 2 (this solution was found
for the formula equation induced by a small covering VTRATG for the SET190-6
problem).
An obvious and practical optimization in Algorithm 4 is to perform the

simplification steps �*,�, ,�! in a particular order: we can always move the �!
steps to the end, without decreasing the set of found consequences. Practically,

183

5 Formula equations and decidability

we first compute all (�* ∪�,)-consequences, and then forget clauses. Another
step-permutation concerns formula equations for VTRATGs with more than
two non-terminals (and hence more than one predicate variable). Clearly,
performing simplification on the different predicate variables is independent.
However it may be the case that one permutation of the steps may produce
a sequence of formulas that is not a solution as an intermediate step. Let us
consider the case for two predicate variables as an example:

∃�1∃�2
�∀> ∀? (50 → �2(?) ∨ �1(?, >))
∧ ∀? (51 ∧ �1(?, .1) ∧ · · · ∧ �1(?, .') → �2(?))
∧ (52 ∧ �2(-1) ∧ · · · ∧ �2(-() → ⊥)�

Observe that �# for # ∈ {1, 2} only occurs negatively in one conjunct, the
only other occurrences are positive and before that conjunct. For this reason,
we can always permute the simplification steps in such a way that we first
perform all simplifications for �2 and then the ones for �1.
A possible extension is to include consequences modulo an equational

background theory � . We add an additional simplification step � such that
C ∪ {� [&I]} � C ∪ {� [,I]} for & = , ∈ � , and only search for consequences
where we use an equation & = , ∈ � at most once. That is, FindConseqences
accepts the list of equations� as an additional argument and removes the used
equation in the recursive call.
The solution algorithm for formula equations induced by induction gram-

mars is now based on the improvement algorithm described above. In a certain
sense, we run FindConseqences on an instance of the formula equation for
a particular free constructor term:

Definition 5.6.3. Let 	 be an induction grammar and . a free constructor
term. Then define the formula equation ;̃	,. as follows:

;̃	,. = ∃� <̃	,. = ∃�
�
∀? (�. (=,?) → � (=, ., ?)) ∧
(

5� ∧

-∈��

� (=, =, -) → K (=))
�

Let us collect some easy observations about this instantiated formula equa-
tion ;̃	,. :

184

5.6 Solution algorithm using forgetful inference

Lemma 5.6.1. Let 	 be an induction grammar and . a free constructor term.
Then:

1. 8<	 → <̃	,.

2. If;	 has K as a solution, then ;̃	,. also has the solution K .

3. If K (=, F,?) is a solution for ;̃	,. , then so is K (=, ., ?).

4. If	 is tautological, then ;̃	,. has the solution �. (=,?).

So to sum up Lemma 5.6.1, the solutions of ;̃	,. and;	 differ in two ways:
;̃	,. has more solutions, and the solutions of ;̃	,. do not distinguish between F
and . . We will need to take both of these issues into account.

Algorithm 5 Heuristic solution for formula equations induced by induction
grammars

function SolveIndFE(: induction grammar, . : free constructor term)
for each K yielded by FindConseqences(;̃	,. , �. (=,?)) do

for every K0 such that K0[F\.] = K do
if K0 is a solution of;	 then

return K0

end if
end for

end for
return none

end function

Algorithm 5 is obviously incomplete since it always terminates: there exist
induction grammars whose induced formula equation is solvable, yet the
algorithm will not return a solution. Let us consider an easy example where it
fails to find a solution:

Example 5.6.2. Consider the following sequent stating that a number is even if

185

5 Formula equations and decidability

and only it is not odd:

 (0) ∧ ¬) (0),
∀2 ((- (2)) ↔ ¬ (2)),
∀2 () (- (2)) ↔ ¬) (2))

8 ∀2 ((2) ↔ ¬) (2))

The following induction grammar for this sequent is tautological:

J → ,1 | ,2(F) | ,3(F)

We can also solve the induced formula equation using the solution (F) ↔
¬) (F). However if try to solve it using Algorithm 5, then we first compute the
following canonical solution �. (=) for example for . = - (0), consisting of the
following clauses in CNF:

 (0)
¬) (0)

 (- (0)) ∨ (0)
¬ (- (0)) ∨ ¬ (0)

) (- (0)) ∨) (0)
¬) (- (0)) ∨ ¬) (0)

Resolution of these clauses (no matter the choice of .) can only produce
clauses of the form±) (-((0)),± (-((0)),±) (-((0))∨±) (-' (0)), or± (-((0))∨
± (-' (0)). There are no clauses that mix and) as in the natural solution.
An important observation is that any solution to the formula equation will
be true in the standard model (the natural numbers with interpreted as
even, and) as odd). If we build a solution as a conjunction of these clauses,
then every clause will be valid. For example, (- (0)), (F) ∨ (- (- (F))) can-
not be clauses in a solution. So assume that we have such a CNF � (F)
where � (=) ∧ (0) ∧ ¬) (0) → ((=) ↔ ¬) (=)) is provable. Without loss
of generality � (F) contains no clause of the form ± (-' (F)) ∨ ± (-((0)) or
±) (-' (F)) ∨ ±) (-((0)): if such a clause is true in the standard model, then
one of its literal is valid as well and we can replace the clause by the literal.

186

5.7 Solution algorithm using interpolation

Now every clause in � (F) has the property that either all literals contain
F , or else none contain F . We can now construct a counter-model � for
� (=) ∧ (0) ∧¬) (0) → ((=) ↔ ¬) (=)): we use the standard model, but inter-
pret) differently. Interpret = as the smallest number larger than all numerals
occurring in the formula. This has the effect that the subterms containing =
and the subterms not containing = are interpreted as disjoint subsets. The
predicate is interpreted as the even numbers, however the predicate) is
interpreted differently for large numbers: interpret) (() as (is odd if (< =�

and as (is even if (≥ =� .

5.7 Solution algorithm using interpolation

Formula equations are closely related to the concept of constrained Horn
clauses studied in program verification [12]. Similarly to how the formula
equations of this chapter capture the conditions for formulas to be cut formulas
and induction formulas, sets of constrained Horn clauses capture the necessary
conditions for formulas to be program invariants (such as loop invariants or
pre-/postconditions). Solving a set of constrained Horn clauses hence amounts
to finding the correct invariants, and thus proving a given correctness property
of the program.
A constrained Horn clause is a formula of the form� (21, . . . , 2(, 3)∧�1(21)∧

· · · ∧ �((2() → � (3) or � (21, . . . , 2() ∧ �1(21) ∧ · · · ∧ �((2() → ⊥ where
�1, . . . , �(, � are predicate variables and the constraint� is a formula that does
not contain any predicate variables. The term “Horn” refers to the structure
of the predicate variables, the formula � can be arbitrarily complex and also
contain additional negations, etc. Just as with formula equations, a solution
is a substitution for the predicate variables that validates all clauses. Given a
set of constrained Horn clauses C, we will regard it as the formula equation
∃� �

�∈C ∀2

� . We will also call formula equations of this form constrained

Horn clause problems.
There is a considerable amount research on the automatic solution of con-

strained Horn clause problems, using a plethora of techniques ranging from
predicate abstraction [44, 57], randomized enumeration [38], machine learn-

187

5 Formula equations and decidability

ing [103], abstract interpretation [56], to even tree automata [62]. Most of
these approaches rely on SMT solvers in their implementations.
The typical setting for these solvers is to consider constrained Horn clauses

in an expressive background theory that is well supported by SMT solvers (such
as e.g. Presburger arithmetic), and to disallow uninterpreted function symbols.
A typical constrained Horn clause might be 3 < 2 ∧� (2,3) →� (2 + 1, 2 + 3)
where 2 and 3 range over the integers. For this setting, there is a large number
of state-of-the-art provers that can solve even large industrial problems, cf. the
results of the yearly CHC competition [20].
When solving the formula equations induced by induction grammars or

VTRATGs, we typically work with a weaker background theory (usually just
equality) but with uninterpreted function symbols. In this section we will
use an approach for constrained Horn clauses to solve formula equations as
induced by VTRATGs and induction grammars. The Duality solver [69] uses
interpolation at its core to find the solutions.
From a practical point of view, the Duality implementation in Z3 was unfor-

tunately removed in version 4.8.01 as the underlying interpolation code was
unmaintained. Even before the removal, the solver often failed for our formula
equations due to unsupported inferences in the proofs generated by Z3. Since
we use the solver in a very different setting compared to what it was intended
to solve (many uninterpreted function symbols modulo equality as opposed
to none modulo Presburger arithmetic), it is not unexpected to encounter
edge cases in the implementation. Hence we opted for a reimplementation of
the algorithm in GAPT, specialized to the class of formula equations that we
consider.
Each constrained Horn clause problem induces a directed graph with the

occurrences of the predicate variables (including ⊥ if there is no predicate
variable on the right side) as vertices. There is an edge from an occurrence
� 1(.) to � 2(-) (using superscripts to disambiguate occurrences) iff either:
a) Both occurrences are in the same clause such that � 1(.) is on the left and

� 2(-) on the right side, or
b) � = � , � 1(.) occurs on the right side, and � 2(-) occurs on the left side.
1https://github.com/Z3Prover/z3/pull/1646

188

https://github.com/Z3Prover/z3/pull/1646

5.7 Solution algorithm using interpolation

Constrained Horn clause problems are called recursive if the graph is cyclic,
daglike if the graph is acyclic, and treelike if the graph is a tree. Treelike
problems can be easily solved using interpolation, daglike problems will re-
quire a potentially exponential unrolling step; the real difficulty lies in the
recursive case. (Cf. the difficulty in solving formula equations for VTRATGs
and induction grammars, resp.)

Example 5.7.1. The following constrained Horn clause problem is treelike since
its graph � (2) → � (�) → ⊥ is a tree (even a path in this case):

∃�
�
∀2 (� (2) → � (2)) ∧ (� (�) ∧ ¬� (�) → ⊥)

�
Example 5.7.2. The following constrained Horn clause problem is daglike but
not treelike:

∃�
�
∀2 (� (2) → � (2)) ∧ (� (�) ∧ � (�) ∧ ¬(� (�) ∧ � (�)) → ⊥)

�
It has the following graph, which is acyclic:

� (2)

� (�) � (�)

⊥

Example 5.7.3. The formula equations induced by induction grammars are
constrained Horn clause problems (after applying some propositional equiva-
lences to bring them into the correct syntactic form—mainly adding the ⊥).
For example consider the following (not particularly meaningful but small)
one:

∃�
�
(� (�) → � (0)) ∧ ∀F (� (�) ∧ � (F) → � (- (F))) ∧ (� (=) ∧ ¬� (�) → ⊥)

�
It has the following graph, which contains a cycle at � (F):

189

5 Formula equations and decidability

� (0)

� (F) � (- (F))

� (=)

⊥

Conceptually, on a very abstracted level, Duality solves formula equations
using two unrolling operations. The first unrolling turns a recursive formula
equation into a daglike one, the second unrolling step turns a daglike one
into a treelike one. There is a straightforward way to solve treelike formula
equations using interpolation. The solutions to the unrolled treelike formula
equations can then always be turned into a solution for the daglike formula
equation. Only the last step is hard, where we need to convert a solution to the
unrolled daglike formula equation to a solution to the original recursive one.

Solving treelike formula equations. Given a treelike formula equation
we can always bring it in a form where all occurrences of a predicate variables
are applied to the same variables. This is accomplished by adding additional
equalities:

∃�1∃�2
�
∀2 ((� (2) → � (- (2))) → �1(2)) ∧
∀2 ((� (2) → � (- (2))) → �2(2)) ∧
(�1(0) ∧ �2(- (0)) ∧ � (0) → � (-2(0)))

�
For the occurrence �1(0), we abstract the term 0 into the variable 21 and

190

5.7 Solution algorithm using interpolation

then replace �1(0) by � (21) and add the equality 21 = 0:

∃�1∃�2
�
∀21 ((� (21) → � (- (21))) → �1(21)) ∧
∀22 ((� (22) → � (- (22))) → �2(22)) ∧
∀21 ∀22 (�1(21) ∧ 21 = 0 ∧ �2(22) ∧ 22 = - (0) ∧ � (0) → � (-2(0)))

�
Such a formula equation directly corresponds to a tree. This tree contains

one node for every clause in the formula equation, which is labelled with the
quantifier-free part of the clause. The conjunction of the formulas in this tree
is then unsatisfiable if and only if the formula equation was valid.

21 = 0 ∧ 22 = - (0) ∧ ¬(� (0) → � (-2(0)))

� (21) → � (- (21)) � (22) → � (- (22))�1 �2

By Craig interpolation [24], if we have a proof of 5, 9 8 6, 7 then we can
compute a formula � and proofs of 5 8 6, � and � , 9 8 7 in polynomial time
where � only contains function and predicate symbols that occur in both 5 ∪6

and 9 ∪ 7. For quantifier-free formulas with equality as a background theory,
this interpolant is quantifier-free as well [68].
In order to compute the solution for the predicate variable �1 we divide

the tree into two parts: the part below the �1 node, and the rest. The only
common symbols are the variables of the predicate variable (i.e., 21), and hence
the solution is directly given by the interpolant. The collection of all of these
interpolants—one for every subtree—is also known as a tree interpolant (a term
introduced by the Duality paper [69]).

Solving daglike formula equations. We can now extend the approach
to the daglike case by unrolling the formula equation into a treelike one by

191

5 Formula equations and decidability

duplicating clauses as needed.

∃�
�
∀2 ((� (2) → � (- (2))) → � (2)) ∧
(� (0) ∧ � (- (0)) ∧ � (0) → � (-2(0)))

�
The predicate variable has two occurrences on the left side of the last clause,

� (0) and � (- (0)). Hence we need to make two copies of it:

∃�1∃�2
�
∀2 ((� (2) → � (- (2))) → �1(2)) ∧
∀2 ((� (2) → � (- (2))) → �2(2)) ∧
(�1(0) ∧ �2(- (0)) ∧ � (0) → � (-2(0)))

�
The important part about this unrolling is that we can easily translate

solutions of the unrolled problem to solutions of the original daglike problem:
if we have a solution K1, K2 for �1, �2, resp., then we get a solution for the
original� by taking the conjunction of the solution for the duplicated predicate
variables. That is, K1 ∧ K2 is a solution for the daglike formula equation.

Solving recursive formula equations. Finally, recursive formula equa-
tions are handled by unrolling them into non-recursive ones. As before, this is
achieved by duplicating predicate variables and clauses. In the Duality solver,
this is actually handled in an incremental way so that new clauses are gener-
ated on demand and the decision which clauses to generate is driven by the
counter-model computed by the SMT solver. This is important to scale to large
problems with many predicate variables. For the formula equations induced
by induction grammars however there is little to decide, since we only have a
single predicate variable and a very small number of clauses.

∃�
�
(� (0) → � (0))∧
∀2 ((� (2) → � (- (2))) ∧ � (2) → � (- (2))) ∧
(� (�) → � (�))

�

192

5.7 Solution algorithm using interpolation

Here we duplicate the predicate variable � into the variables �1, . . . �(:

∃�
�
(� (0) → �1(0)) ∧
∀2 ((� (2) → � (- (2))) ∧ �1(2) → �2(- (2))) ∧
...

∀2 ((� (2) → � (- (2))) ∧ �(−1(2) → �((- (2))) ∧
(�1(�) → � (�)) ∧ · · · ∧ (�((�) → � (�))

�
The solution for the unrolled formula equation is then translated back to

the original formula equation by combining it in a disjunction. In the example,
a possible solution would be � (0) ∧ 2 = 0, � (2), . . . , � (2). We would then get
a candidate solution (� (0) ∧ 2 = 0) ∨ � (2) for the original formula equation.
In this case, it actually solves the formula equation. But this is of course not
true in general.

Constrained Horn clauses for VTRATGs. The attentive reader will have
noticed that while the formula equations induced by induction grammars are
directly constrained Horn clause problems, the formula equations induced by
VTRATGs are not of this form, in general. If there are more than two nonter-
minal vectors, then the induced formula equation will not be a constrained
Horn clause problem (because there will be more than one predicate variable
on the right side of a clause). However we can define a different version of the
formula equation;	 which is Horn:

Definition 5.7.1. Let 	 = (�, :,�, �) be a decodable VTRATG with � =

{� ≺ �1 ≺ . . . �(}. We define the formula equation;0
	 = ∃� <0

	 , where<
0
	 is

the conjunction of the following formulas:

• ∀=1 . . .∀=(
� �

50 →
60 ∨ �1(=(, . . . , =1)

�
• ∀=#+1 . . .∀=(

� �
5#∧�.∈���

�# (=(, . . . , =#+1, .)→
6#∨�#+1(=(, . . . , =#+1)

�
for 1 ≤ # ≤ (

where ��,�# , and 5# are as in Definition 5.2.1.

193

5 Formula equations and decidability

This definition differs from Definition 5.2.1 only in that there is just a single
predicate variable on the right-hand side of the implication.

Lemma 5.7.1. Let 	 be a decodable VTRATG. Then<0
	 →<	 is provable, and

every � -solution of;0
	 is a � -solution of;	 as well.

Proof. Observe that<0
	 is obtained from<	 by replacing positive subformulas

by � and propositional equivalences. �

Lemma 5.7.2. Let 	 be a decodable VTRATG such that there is a production of
every nonterminal vector. If () is � -tautological, then �	 is a � -solution for
;0
	 .

Proof. Analogously to the proof of Lemma 5.2.1. �

Theorem 5.7.1. Let	 be a decodable VTRATG such that there is a production of
every nonterminal vector. Then;	 is � -solvable if and only if;0

	 is � -solvable.

Proof. If;	 is solvable, then	 is tautological by Theorem 5.2.1 and the canon-
ical solution solves;0

	 by Lemma 5.7.2. On the other hand, if;
0
	 is solvable,

then the same solution works for;	 by Lemma 5.7.1. �

The formula equation;0
	 is then a daglike constrained Horn clause problem

that can be solved using the interpolation-based approach.

194

6 Algorithm for proof import

Cut-free proofs have a variety of applications. In the preceding chapters, we
have seen one of them: given a cut-free proof in the form of a Herbrand sequent,
we can algorithmically introduce structure in the form of cuts or induction
inferences. Starting from proofs obtained from automated theorem provers,
we can introduce these inferences to structure these automatically generated
proofs. In this chapter we will investigate a practical way to get expansion
proofs from theorem provers. These expansion trees were introduced in [71] to
generalize Herbrand’s theorem to higher-order logic in the form of elementary
type theory (simple type theory without choice or extensionality). In first-order
logic, they provide a technically convenient formalism to store the tautological
instances of non-prenex formulas.
There is a generic way to solve the problem of importing proofs by automated

theorem provers: since every inference generated by the theorem prover is
valid in first-order logic we could translate the proof into the calculus LK
(with say, one cut per inference). We could then apply a general-purpose
cut-elimination algorithm to this proof and extract an expansion proof from
the resulting cut-free proof.
However for our applications we are only interested in the quantifier in-

stance terms as contained in an Herbrand disjunction, or expansion tree. Given
that we are only interested in this specific aspect of the proofs, we can hope
to devise more efficient proof import procedures that do not produce a full
proof including propositional reasoning, but only the expansion proof. In this
chapter we will present such an algorithm and evaluate its implementation in
GAPT.
Some of the most effective theorem provers in classical first-order logic are

based on the resolution and superposition calculi; therefore we aim to import
proofs generated by these provers. Algorithms to translate automatically

195

6 Algorithm for proof import

generated resolution proofs to expansion proofs have already been proposed
in the context of the TPS [78] and GAPT [52] systems.
The approach in [52] transforms a resolution refutation first into a sequent

calculus proof with atomic cuts, and then extracts an expansion proof in a
second step; Skolemization is not handled in the algorithm and is instead
treated as a preprocessing step of the formula.
More closely related to the approach in this chapter is the algorithm in [78]:

it directly transforms a resolution refutation into an expansion proof. Skolem-
ization is handled explicitly during the translation, and Skolem terms are
automatically converted to variables. However this treatment has two un-
fortunate consequences: first, only outer Skolemization can be used in this
way—and this conflicts with the goal to reduce the number of Skolem functions
and the number of the arguments, which is necessary for efficient proof search.
Additionally, the deskolemization is incompatible with built-in equational
inferences which implicitly make use of congruences for Skolem functions.
Both of the approaches require a naive distributivity-based transformation

of the input formula into clause normal form (CNF), which can increase the
size of the problem exponentially. Moreover, neither approach can handle
splitting inferences as used by SPASS [100] or Vampire [99].
The solution we present in this chapter includes clausification and splitting

steps as inferences of the resolution proof in a similar way as higher-order
resolution calculi [4], conveniently keeping track of introduced subformula
definitions for structural clausification and Skolem functions in the same data
structure as the resolution refutation.
The algorithm as shown in Algorithm 6 proceeds in three main steps: first

we extract an expansion proof of an extended sequent, possible containing
cuts. If the resolution proof did not contain subformula definitions or Avatar
splitting, then this is already the final expansion proof. To eliminate the
cuts corresponding to Avatar splitting, the next step is a cut-elimination on
expansion proof. The subformula definitions are then removed in the third and
final step. Skolemization remains in the output proof (and could be eliminated
afterwards as well, if desired).
In Sections 6.1 and 6.2 we describe the resolution and expansion proof

calculi used, respectively. Basic operations on expansion proofs, merge- and

196

6.1 Resolution proofs

Algorithm 6 Transforming expansion proofs to resolution proofs
function Transform(G)
�1 ← Extract(G) (see Section 6.3)
�2 ← EliminateCuts(�1) (see Lemma 6.2.2)
�3 ← EliminateDefinitions(�2) (see Lemmas 6.4.1 and 6.4.2)
return �3

cut-reduction, are introduced in Section 6.2 as well. Section 6.3 then explains
the extraction of expansion proofs from resolution proofs. The subformula
definitions are eliminated in Section 6.4. In Section 6.6 we then evaluate the
performance and clausification quality of an implementation of this algorithm.
At the end in Section 6.7, we revisit the splitting inferences and show how to
eliminate them directly from resolution proofs.

6.1 Resolution proofs

As a calculus for resolution proofs we consider a first-order variant of Andrew’s
system R [4], extended with inferences to support subformula definitions and
Avatar splitting. This system R is a system for reasoning in higher-order
logic, we use it in first-order logic for practical reasons: inference rules for
clausification are included as part of the calculus. If we were to consider a
first-order calculus where every inference step ended in a clause, then we
would need to keep track of an additional data structure that describes how
the clauses are derived from the input formula given to the prover. With the
calculus considered in this section, this information is part of the proof.
The inferences in this calculus as shown in Figure 6.1 operate on sequents,

which are pairs of multisets of formulas. Let K be the closed formula that is to
be proven, a resolution proof then starts with the sequent K 8 (using the Input
inference) and ends with the empty sequent 8.
Resolution proofs of first-order formulas can typically be roughly divided

into an upper part starting with K 8 that performs clausification inferences ap-
plied during preprocessing, and a lower part that ends with 8 and corresponds
to the relevant steps taken during the actual proof search with resolution,

197

6 Algorithm for proof import

Clausification inferences:

InputK 8 �, 5 8 6 TopL
5 8 6

5 8 6,⊥ BotR
5 8 6

¬K, 5 8 6 NegL
5 8 6,K

5 8 6,¬K NegR
K, 5 8 6

K ∧M, 5 8 6
AndL

K,M, 5 8 6
5 8 6,K ∧M

AndR15 8 6,K
5 8 6,K ∧M

AndR2
5 8 6,M

5 8 6,K ∨M
OrR

5 8 6,K,M
K ∨M, 5 8 6

OrL1
K, 5 8 6

K ∨M, 5 8 6
OrL2

M, 5 8 6
5 8 6,K →M ImpR
K, 5 8 6,M

K →M, 5 8 6 ImpL1
5 8 6,K

K →M, 5 8 6 ImpL2
M, 5 8 6

5 8 6,∀2 K
AllR5 8 6,K

∀2 K, 5 8 6
AllL (where . sk↦→ ∀2 K)K [2\.], 5 8 6

∃2 K, 5 8 6
ExL

K, 5 8 6
5 8 6, ∃2 K

ExR (where . sk↦→ ∃2 K)5 8 6,K [2\.]
Subformula definition inferences:

K, 5 8 6
AbbrL

� (.), 5 8 6
5 8 6,K

AbbrR
5 8 6, � (.) (where � (.) def↦→ K)

DefL
K 8 � (.) DefR

� (.) 8 K (where � (.) def↦→ K)

Logical inferences:

5 8 6,� �, 9 8 7 Res
5, 9 8 6, 7

5 8 6,�,� Factor
5 8 6,�

�,�, 5 8 6 Factor
�, 5 8 6

Taut
� 8 � 5 8 6 Subst5I 8 6I Refl8 . = .

5 8 6, . = - �[.], 9 8 7
Rw

�[-], 5 , 9 8 6, 7
5 8 6, . = - �[-], 9 8 7

Rw
�[.], 5 , 9 8 6, 7

5 8 6, . = - 9 8 7,�[.]
Rw

5, 9 8 6, 7,�[-]
5 8 6, . = - 9 8 7,�[-]

Rw
5, 9 8 6, 7,�[.]

Avatar splitting inference:

S1 ++ S2 AvSplitS1 :+ �
AvIntro

� +: S2

(where � def↦→ ∀2 S2 and FV(S1) ∩ FV(S2) = ∅)

Figure 6.1: Calculus for resolution proofs.198

6.1 Resolution proofs

rewriting, factoring, and other inferences. There is no implicit unification in
the inferences, substitution is handled explicitly using an extra inference.
Both Skolemization and subformula definition inferences make use of global

dictionaries that store the interpretation of the defined atoms and Skolem
functions, respectively. Defined atoms and Skolem functions are fresh symbols
that do not occur in the problem. For definitions, the entry � (2) def↦→ M means
that the atom � (2) is defined to beM , that is, ∀2 (� (2) ↔ M) is assumed. For
Skolem functions, the entry - (2) sk↦→ ∀3 K [3] means that - (2) is the Skolem
term used to instantiate ∀3 K [3], that is, ∀2 (K [- (2)] → ∀3 K [3]) is assumed.
We use both relations also for substitution instances of the definitions, i.e.
we write � (.) def↦→ M [2\.] as well as - (.) sk↦→ (∀3 K [3]) [2\.]. Furthermore, we
require these definitions to be acyclic.
TheAvSplit andAvIntro inferences here are theminimal version necessary to

represent Avatar splitting [99] in the resulting proofs. This calculus augments
the clauses derived in the theorem prover with a finite set of so-called assertions.
Splitting in general is based on the observation that if the literals of a clause
can be partitioned into two parts with disjoint variables, then the clause is
equivalent to a disjunction of two clauses. For example:

∀2 ∀3 (� (2) ∨� (3)) ↔ (∀2 � (2)) ∨ (∀3 � (3))

A minimal nonempty subset of the literals whose variables are disjoint from
the rest of the clause is called a component. It is typically beneficial to keep
the number of literals in a clause small. So if we derive such a splittable clause,
then we could consider two cases: first ∀2 � (2), and then ∀3 � (3). In this way,
we would subdivide the proof search like a tree if we had multiple clauses to
split. (This is essentially the approach taken by the SPASS prover [101].) The
Avatar approach in contrast lets a SAT solver determine which of these cases
to consider at any moment. The assertions that are added to the clauses hence
indicate to which case they belong. Let us consider what happens when the
A-clause � (2) ∨� (3) ← �1,�2 (which already has two assertions) is split1:

� (2) ∨� (3) ← �1,�2
� (2) ← �3 � (3) ← �4 ¬[�1] ∨ ¬[�2] ∨ [�3] ∨ [�4]

1The precise details may be subtly different in different implementations.

199

6 Algorithm for proof import

Two new assertions are introduced: �3 and �4. The prover derives two first-
order clauses that it keeps in the saturation loop. The first one is � (2) ← �3.
We can read this as: if�3, then∀2� (2). It is useful to think of the assertion�3 as
an abbreviation for ∀2 � (2). The third derived clause is not used for saturation
but is passed to the SAT solver. The syntax [�1] refers to the propositional
atom associated with the component �1. The clause for the SAT solver is
equivalent to the original clause if we replace�3 by ∀2 � (2) and�4 by ∀3� (3).
The distinction between the clause and its assertions is only relevant for

proof search. Inferences (such as resolution or superposition) are only per-
formed on the clause, but not on the assertions. However for proof transfor-
mations, such as the one in this chapter, this distinction is irrelevant: here
we represent A-clauses by combining the assertion and the clause part into a
single clause [�1], . . . , [�%], �1, . . . , �' 8 �1, . . . �(.
We define prepending an element to the antecedent as K +: (5 8 6) =

(5 ∪ {K} 8 6), appending an element to the succedent as (5 8 6) :+ K = (5 8
6∪{K}), and concatenating sequents as (5 8 6)++(9 8 7) = (5∪9) 8 (6∪7).
During proof search, splitting takes a clause S1 ++S2 that can be partitioned

into two (or more) clauses S1 and S2 with pairwise disjoint free variables,
and splits it into three clauses: �1 +: S1 and �2 +: S2 plus an additional clause
8 �1, �2. (This third clause is ground. During proof search it is directly passed
to the SAT solver, and is not considered by the first-order reasoning part of
the prover.) In our calculus we represent this step as follows:

S1 ++ S2 AvSplitS1 :+ �2 AvSplit8 �1, �2
AvIntro

�# +: S#

Other splitting schemes such as the one implemented in SPASS [100] can be
simulated using these inferences as well. The splitting dependencies a clause
implicitly depends on are simply translated to explicit splitting atoms. For
each split we then take the resulting proofs of the two branches and resolve
on the opposing splitting atoms.
We assume a few minor technical restrictions on resolution proofs: there are

no AbbrL inferences below Rw, Refl, and Taut, and DefR with the same defined
atom. These are not particularly large restrictions, as they simply reflect the

200

6.2 Expansion proofs

fact that clausification typically happens as a preprocessing step before proof
search. It is also important to note that we only allow subformula definitions
in a single polarity here—if we want to abbreviate a formula K that occurs on
both sequent sides, then we need to introduce a different �# atom for each side.
This is a larger restriction since it precludes certain kinds of preprocessing: for
example such definitions would occur if we wanted to abbreviate a subformula
of the input formula that occurs multiple times (and in both polarities) by the
same atom.
Example 6.1.1. The following is natural proof of a variant of the Drinker’s
formula. We label the subproofs on the left-hand side for later reference.

(G0) ∃2∀3 (� (2) → � (3)) 8 (Input)

(G1) ∀3 (� (2) → � (3)) 8 (ExL(G0))

(G2) � (2) → � (- (2)) 8 (AllL(G1))

(G3) 8 � (2) (ImpL(G2))

(G4) � (- (2)) 8 (ImpR(G2))

(G5) 8 � (- (2)) (Subst(G3))

(G6) 8 (Res(G4, G5))

6.2 Expansion proofs

The proof formalism of expansion trees was introduced in [71] to describe
Herbrand disjunctions in higher-order logic. We use them in first-order logic
as well, since they are an elegant and convenient data structure. The central
idea is that each expansion tree � comes with a shallow formula sh(�) and
a quantifier-free deep formula dp(�). The deep formula corresponds to the
Herbrand disjunction, the shallow formula is the quantified formula. If the
deep formula is a quasi-tautology (a tautology modulo equality), then the
shallow formula is valid.
Expansion trees have two polarities, − and +. We write −* for the inverse

polarity of * , i.e. −− = + and −+ = −. Polarity only changes on the left

201

6 Algorithm for proof import

side of the connective → and inside the connective ¬. This distinction is
important since we must instantiate positive occurrences of ∀ (resp. negative
occurrences of ∃, called “strong quantifiers”) with an eigenvariable or Skolem
term, while we can instantiate the negative ones with whatever terms we want
(“weak quantifiers”). An atom is a predicate such as � (2,3) or an equality; the
formulas �,⊥ are not atoms. For example, consider the case that we want to
prove the formula (∀2 K) ∧ ¬(∀2 K). Here, the first universal quantifier has
positive polarity, and the second one negative polarity.
We base the development on [54] and include several extensions here: first,

there are subformula definition nodes to represent the AbbrL inferences in the
resolution calculus. We also add cut nodes as in [54], these cuts are similar
to cuts in a sequent calculus and will be used to represent Avatar splitting
inferences. Finally we also add Skolem nodes to represent the Skolemization
steps.

Definition 6.2.1. We inductively define the set ET* (K) of expansion trees with
polarity * ∈ {+,−} and shallow formula K :

K formula
wk* (K) ∈ ET* (K)

�1 ∈ ET* (K) �2 ∈ ET* (K)
�1 ; �2 ∈ ET* (K)

� atom/�/⊥
�* ∈ ET* (�)

� ∈ ET* (K)
¬� ∈ ET−* (¬K)

�1 ∈ ET* (K) �2 ∈ ET* (M)
�1 ∧ �2 ∈ ET* (K ∧M)

�1 ∈ ET* (K) �2 ∈ ET* (M)
�1 ∧ �2 ∈ ET* (K ∨M)

�1 ∈ ET−* (K) �2 ∈ ET* (M)
�1 ∧ �2 ∈ ET* (K →M)

� (.) def↦→ K

K +def �* (.) ∈ ET* (K)
�1 ∈ ET+(K) �2 ∈ ET−(K)

Cut(�1, �2) ∈ ET−(�)
� ∈ ET+(K [2\3])

∀2 K +3ev � ∈ ET+(∀2 K)
� ∈ ET+(K [2\.]) .

sk↦→ ∀2 K

∀2 K +.sk � ∈ ET+(∀2 K)
�1 ∈ ET−(K [2\.1]) · · · �(∈ ET−(K [2\.(])

∀2 K +.1 �1 · · · +. �(∈ ET−(∀2 K)
� ∈ ET−(K [2\3])

∃2 K +3ev � ∈ ET−(∃2 K)
� ∈ ET−(K [2\.]) .

sk↦→ ∃2 K

∃2 K +.sk � ∈ ET−(∃2 K)
�1 ∈ ET+(K [2\.1]) · · · �(∈ ET+(K [2\.(])

∃2 K +.1 �1 · · · +. �(∈ ET+(∃2 K)

202

6.2 Expansion proofs

The tree wk* (K) is called “weakening”, �1 ;�2 is called merge, ∀2 K +3ev � ∈
ET+(∀2K) or ∃2K+3ev� is an eigenvariable node, and∀2K+.sk� ∈ ET+(∀2K) or
∃2K +3sk � is a Skolem node. Each expansion tree � has a uniquely determined
shallow formula and polarity, we write sh(�) for its shallow formula, and
pol(�) for its polarity. The size |� | of an expansion tree is the number of
its leaves counted as in a tree. Given an expansion tree � = ∀2K +3ev �0 or
� = ∃2K +3ev �0, we say that 3 is the eigenvariable of �. The set EV(�) contains
all eigenvariables of subtrees in �, including �. We also use the notation for
blocks of quantifiers with expansion trees, that is, we write ∀2 K +2ev � as an
abbreviation for ∀2 K +21ev · · · +2ev �.
Example 6.2.1. The following expansion tree � ∈ ET+(∃2∀3 (� (2) → � (3)))
has our variant of the Drinker’s formula as shallow formula:

∃2∀3 (� (2) → � (3))
+2 ∀3 (� (2) → � (3)) +- (2)sk (wk−(� (2)) → � (- (2))+)
+- (2) ∀3 (� (- (2)) → � (3)) +- (- (2))sk (� (- (2))− →wk+(� (- (- (2)))))

While the shallow formula describes the quantified formula to be proven,
the deep formula is a quantifier-free formula corresponding to the Herbrand
disjunction:

Definition 6.2.2. Let � be an expansion tree, we define the deep formula dp(�)
recursively as follows:

dp(wk+(K)) = ⊥, dp(wk−(K)) = �

dp(�1 ; �2) = dp(�1) ∨ dp(�2) if pol(�1 ; �2) = +
dp(�1 ; �2) = dp(�1) ∧ dp(�2) if pol(�1 ; �2) = −

dp(�*) = �, dp(¬�) = ¬dp(�), dp(�1 ∧ �2) = dp(�1) ∧ dp(�2)
dp(�1 ∨ �2) = dp(�1) ∨ dp(�2), dp(�1 → �2) = dp(�1) → dp(�2)

dp(K +def �* (.)) = �* (.)
dp(∀2 K +3ev �) = dp(�), dp(∀2 K +.sk �) = dp(�)
dp(∀2 K +.1 �1 · · · +. �() = dp(�1) ∧ · · · ∧ dp(�()

203

6 Algorithm for proof import

dp(∃2 K +3ev �) = dp(�), dp(∃2 K +.sk �) = dp(�)
dp(∃2 K +.1 �1 · · · +. �() = dp(�1) ∧ · · · ∧ dp(�()

Example 6.2.2. The expansion tree � in Example 6.2.1 has the following tauto-
logical deep formula: dp(�) = (�→ � (- (2))) ∨ (� (- (2)) → ⊥)
Eigenvariable nodes add a small technical complication to the definition of

an expansion proof. (But we need them since they arise during the extraction
of splitting inferences.) Not only is it necessary that the deep formula is quasi-
tautological, but the eigenvariables also need to be acyclic in a certain sense
(this is a similar restriction to the eigenvariable condition in sequent calculi).
We formalize this acyclicity using a dependency relation, which we will require
to be acyclic:

Definition 6.2.3. Let � be an expansion tree. The dependency relation <� is
a binary relation on variables where 2 <� 3 iff � contains a subtree �0 such
that 2 ∈ FV(sh(�0)) and 3 ∈ EV(�0).
Definition 6.2.4. An expansion sequent E is a sequent of expansion trees. Its
dependency relation <E =

�
�∈E <� is the union of the dependency relations

of its trees. Its shallow sequent and deep sequent consists of the shallow and
deep formulas of its expansion trees, respectively.
An expansion sequent is positive(negative) iff the trees in the succedent

have positive(negative) polarity and the trees in the antecedent have nega-
tive(positive) polarity. The size |E | of an expansion sequent is the sum of the
sizes of its expansion trees.

Definition 6.2.5. An expansion proof E is a positive expansion sequent such
that:

1. <E is acyclic (i.e., can be extended to a linear order) and there are no
duplicate eigenvariables,

2. dp(E) is a quasi-tautology
Example 6.2.3. Let � be as in Example 6.2.1. The sequent dp(8 �) is a tautology,
and the dependency relation of 8 � is empty and hence acyclic. So 8 � is an
expansion proof.

204

6.2 Expansion proofs

Expansion proofs are sound and complete for first-order logic. That is, if
S is a sequent, then there exists an expansion proof E with S as the shallow
sequent if and only if S is valid. Completeness follows easily from cut-free
completeness of the sequent calculus LK: we can recursively assign to every
proof G in LK with end-sequent S an expansion proof E such that sh(E) = S
(as done for example in [71]).
Given a substitution I that maps eigenvariables to variables, we can apply

it to expansion trees and expansion sequents, written �I and EI , respectively.
The calculus for expansion proofs we presented is redundant: it is still com-
plete even without the ;, +def , and Cut nodes. We also only need either the
eigenvariable or Skolem nodes.
Two important reductions were introduced in [54] that will eliminate the ;

and Cut nodes. The elimination of +def will be discussed in Section 6.4.
The relation ;

� pushes merge nodes to the leaves of an expansion tree until
they disappear, for example (�1 ∧ �2) ; (�3 ∧ �4) ;

� (�1 ; �3) ∧ (�2 ; �4)
reduces merges on conjunctions.

Lemma 6.2.1. The relation
;
� on expansion sequents has the following proper-

ties:

1.
;
� is terminating.

2. Whenever E ;
� E0, then dp(E) → dp(E0) is a tautology.

3.
;
� preserves acyclicity of the dependency relation.

4.
;
� preserves polarity and the shallow formula.

5. If E does not contain Skolem or definition nodes, then its
;
�-normal forms

do not contain merge nodes.

In particular the
;
�-normal forms of expansion proofs without Skolem or defini-

tion nodes are merge-free expansion proofs.

Proof. Analogous to Lemmas 12 and 13 in [54]. Note that merge reduction can
get stuck on merges of two Skolem nodes with different Skolem terms, or two
definition nodes with different definitions, hence the condition in point 5. �

205

6 Algorithm for proof import

Cuts can be reduced and eventually eliminated as well. The cut-reduction
relation cut

� (written as ↦→ in [54]) extends merge-reduction and reduces quan-
tified cuts via substitution.

Lemma 6.2.2. cut� preserves quasi-tautology of the deep formula, and is weakly

normalizing. If no definition or Skolem nodes appear in cuts, then the
cut
�-normal

forms are cut-free.

Proof. See Lemma 16 and Theorem 33 in [54]. Just as in Lemma 6.2.1, cut-
reduction can get stuck on cuts with Skolem nodes such as Cut(∀2 K +2sk
. . . ,∀2 K +. . . .). �

The following lemma will bound the complexity introduced by Avatar split-
ting inferences, since they will be translated to cuts on formulas of the form
∀2 � (2) where � (2) is a clause.
Lemma 6.2.3. Let |E | be an expansion proof with (cuts such that all cut

formulas are universally quantified closed prenex formulas, and let E cut
�

∗
E∗

such that E∗ is cut-free. Then |E∗ | ≤ |E |2 .
Proof. Merge reduction and propositional reduction steps reduce the size of
the expansion proof and keep the number of cuts constants. Each quantifier
reduction step decreases the number of cuts by one and increases the size of
the proof at most quadratically: essentially we duplicate the proof' times,
where' is the number of weak quantifier term blocks in the cut—and' is
less than the size of the expansion proof. �

6.3 Extraction

In this section we convert a resolution proof of a formula K into an expansion
proof with a shallow sequent of the following form:

∀2 (K1(2) → �1(2)), · · · ,∀2 (K((2) → �((2)),
∀2 (�(+1(2) → K(+1(2)), · · · ,∀2 (�' (2) → K' (2)) 8 K

That is, the expansions in the antecedent describe subformula definitions
and have definition axioms ∀2 (K (2)→� (2)) or ∀2 (� (2)→K (2)) as shallow

206

6.3 Extraction

formulas where � (2) def↦→ K (2). Furthermore the resulting expansion proof will
not have any eigenvariable nodes. We will eliminate the additional expansion
trees for definitions in Section 6.4.
The extraction proceeds bottom-up, starting from the proof ending in the

empty clause, propagating expansions trees upward until they are at the Input-
rules. At every point, each subproof is assigned a finite set of expansion
sequents. Formally, we describe the extraction as a binary relation on these
assignments of expansion sequents, called extraction states:

Definition 6.3.1. An extraction state P;S is a pair consisting of a set P and
an expansion sequent S. Each element of P is a pair (G, E), where G is a
subproof ending in T and E is a negative expansion sequent such that there
exists a substitution I with TI = sh(E). The deep formula of the extraction
state is defined as:

dp(P;S) =
�

(G,E)∈P

dp(E)
�
→ dp(S)

Note that the trees of the negative expansion sequents here have the opposite
polarity as in the expansion sequents in Section 6.2. This is due to the fact that
resolution proofs are proofs by refutation. The resolution proof starts with
K 8 while the expansion proof has 8 K as the shallow sequent—observe that K
occurs in opposite polarities here.
Given a resolution proof G , the initial extraction state is CG = ({(G, 8)}; 8).

We can now define a relation� on extraction states, that transforms the initial
extraction state into extraction state of the form ∅;E, where E is the desired
expansion proof. This relation preserves the quasi-tautologyhood of the deep
formula—we will prove this crucial property in Lemma 6.3.2. The relation�
is the smallest relation containing the following cases:

P, (G, E1), (G, E2);S � P, (G, E1 ; E2);S if sh(E1) = sh(E2)
P;�1 +: �2 +: S � P;�1 ; �2 +: S if sh(�1) = sh(�2)
P;S :+ �1 :+ �2 � P;S :+ �1 ; �2 if sh(�1) = sh(�2)

207

6 Algorithm for proof import

Logical connectives:

P, (Input, � 8);S � P;S :+ �

P, (TopL(G), E);S � P, (G,�+ +: E);S
P, (BotR(G), E);S � P, (G, E :+ ⊥−);S

P, (NegL(G), E :+ �1);S � P, (G,¬�1 +: E);S
P, (NegR(G), �1 +: E);S � P, (G, E :+ ¬�1);S

P, (AndL(G), �1 +: �2 +: E);S � P, (G, (�1 ∧ �2) :+ E);S
P, (AndR1(G), E :+ �1);S � P, (G, E :+ (�1 ∧wk−(. . .)));S
P, (AndR2(G), E :+ �2);S � P, (G, E :+ (wk−(. . .) ∧ �2));S

P, (OrR(G), E :+ �1 :+ �2);S � P, (G, E :+ (�1 ∨ �2));S
P, (OrL1(G), �1 +: E);S � P, (G, (�1 ∨wk+(. . .)) +: E);S
P, (OrL2(G), �2 +: E);S � P, (G, (wk+(. . .) ∨ �2) +: E);S

P, (ImpR(G), �1 +: E :+ �2);S � P, (G, E :+ (�1 → �2));S
P, (ImpL1(G), E :+ �1);S � P, (G, (�1 →wk+(. . .)) +: E);S
P, (ImpL2(G), �2 +: E);S � P, (G, (wk−(. . .) → �2) +: E);S
P, (AllR(G), E :+ �1);S � P, (G, E :+ (∀2 K +2I �1));S
P, (AllL(G), �1 +: E);S � P, (G, (∀2 K +.sk �1) +: E);S
P, (ExL(G), �1 +: E);S � P, (G, (∃2 K +2I �1) +: E);S
P, (ExR(G), E :+ �1);S � P, (G, E :+ (∃2 K +.sk �1));S

(where KI = sh(�1))

Subformula definitions:

P, (AbbrL(G), �+(.) +: E);S � P, (G, (K +def �+(.)) +: E));S
P, (AbbrR(G), E :+ �−(.));S � P, (G, E :+ (K +def �−(.)));S
P, (DefR(� (.)), �� 8 �K);S � P;∀2 (� (2) → K) +. (�� → �K) +: S
P, (DefL(� (.)), �K 8 ��);S � P;∀2 (K → � (2)) +. (�K → ��) +: S

208

6.3 Extraction

Avatar splitting:

P, (AvSplit(G), E1 :+ �−);S �
P, (G, E1 ++ S−

2 [2\3]); (∀2 S2 +3 S+
2 [2\3] → �−) +: S

(where S2 is as in the inference rule, and 3 are fresh variables)

∅;�1 → �−, �+ → �2,S � ∅; Cut(�1, �2) +: S if � does not occur in S

P, (AvIntro(�), �� +: E);S � P;�+ → (∀2 S2 +. E) +: S

Logical inferences:

P, (Res(G1, G2), E1 E2);S � P, (G1, E1 :+ K−), (G2, K+ +: E2);S
P, (Factor(G), E :+ �1);S � P, (G, E :+ �1 :+ �1);S

P, (Subst(G), E);S � P, (G, E);S
P, (Taut(K), �1 8 �2);S � P;S

P, (Refl, 8 (. = .)−) � P;S

And the following transition for Rw:

P, (Rw(G1, G2), E1 ++ E2 :+ �3 [-]);�
P, (G1, E1 :+ (. = -)−), (G2, E2 :+ �3 [.]);S

Example 6.3.1. Let G6 be the resolution proof in Example 6.1.1. Then the relation
� extracts the expansion proof as follows, where K2 = ∀3(� (2) → � (3)):

(G6, 8); 8 � (G4, � (- (2))��������
=�1

8), (G5, 8 �1); 8 � (G4, �1 8), (G3, 8 �1); 8

�2 (G2,wk−(� (2)) → �1������������������������������������
=�2

8), (G2, �1 →wk+(� (- (- (2))))��
=�3

8); 8

�2 (G1, K2 +- (2)sk �2 8), (G1, K- (2) +- (- (2))sk �3 8); 8
�2 (G1,∀2K2 +2 K2 +2sk �2������������������������������������

=�4

8), (G1,∀2K2 +- (2) K- (2) +- (2)sk �3��
=�5

8); 8

� (G1, �4 ; �5 8); 8 � ∅; 8 �4 ; �5

209

6 Algorithm for proof import

Definition 6.3.2. Let G be a resolution proof. Then |G |. and |G |� denote the
number of its inferences when counted as a tree or a DAG, respectively.

Lemma 6.3.1. � is terminating.

Proof. Let P;S be a extraction state, we define a function | · |(as its termina-
tion measure by |P;S|(= |S|� + 2�(G,E)∈P |G |. where |S|� is the number of
expansion trees in S. Each case of the relation� decreases this termination
measure. �

Lemma 6.3.2. Let C1 � C2, then dp(C1) → dp(C2) is a quasi-tautology. If �1
is acyclic, then so is C2.

Proof. Straightforward induction on�. �

Lemma 6.3.3. Let G be a resolution proof where all Input inferences have the
formula K , and let CG �∗ (P,S1 8 S2). Then P = ∅, and:

1. for every � ∈ S1, sh(�) is either � or ∀2 (� (2) → K) where � (.) def↦→ K ,
and

2. for every � ∈ S2, sh(�) = K .

Proof. If P ≠ ∅, then we can apply one of the cases of�. Properties 1. and 2.
are preserved in every case. �

Using the relation� we obtain an expansion proof with cuts. Since there
are no Skolem or definition nodes in these cuts, we can eliminate them (see
Lemma 6.2.2) to obtain a cut-free expansion proof E∗ with definitions: CG �∗

(∅, E) cut�
∗
(∅, E∗)

6.4 Definition elimination

Consider now a cut-free expansion proof E without eigenvariable nodes where
the shallow sequent contains only definition axioms in the antecedent (this is
the form of expansion proofs that are produced by the extraction in Section 6.3).

210

6.4 Definition elimination

Assume that all definitions axioms are in the same polarity, that is, the in-
troduced atom is on the left side. (The other polarity is treated analogously.)

E = (��1 , · · · , ��(8 �K), sh(��#) = ∀2 (K# (2) → �# (2)), sh(�K) = K (6.1)

The expansions of K# (.) may contain definition nodes as well. Due to the
acyclicity of the AbbrL-inferences, we can assume that each expansion of
K# (.) only contains definition nodes +def � $ (. . .) where $ < # . We will now
successively eliminate each of the definition axioms, starting with the one for
(. The expansion tree for ∀2 (K((2) → �((2)) has the following form:

∀2 (K((2) → �((2)) +.1
�
�1 → �((.1)−

� · · · +.
 �
�% → �((.%)−

�
For performance reasons, we consider two cases here: in the first case the

deep sequent is tautological, in the second case the deep sequent is only quasi-
tautological. In both cases, we replace definition nodes +def �((. . .) in the
expansion proof by subtrees of ��(. However in the second case we perform
many duplications, and we want to avoid this if possible.

Tautological deep sequent. If dp(E) is not just quasi-tautological but tau-
tological (this is the case if the resolution proof did not use the built-in equa-
tional inference Rw and Refl), then we merely need to replace each occurrence
of a definition node +def �((.#)+ with the corresponding expansion tree �# . We
define a function � [·] that performs this replacement on definition nodes for
�(, and recursively maps over the other possible nodes:

� [K((.) +def �((.)+] =
�
�# if there exists # such that . = .#

wk+(K((.#)) otherwise
Lemma 6.4.1. Let E be an expansion sequent as in Equation (6.1). If dp(E) is
tautological, then dp

�
��1 , · · · , ��(−1 8 � [K]

�
is tautological as well.

Proof. Let � be a counter-model for dp
�
��1 , · · · , ��(−1 8 � [K]

�
. Assume without

loss of generality that � is not defined for any of the atoms �((.); we extend
� by setting � (�((.#)) = � (dp(�#)) for all # , and � (�((.)) = 0 otherwise. We
now have � (dp(��()) = 1 as well as � (dp(� [K((.) +def �((.)+])) = � (�((.))
and thus � (dp(� [�K])) = � (dp(�K)) since �(only occurs in �K in definition
nodes. Hence � is a counter-model for dp(E) as well. �

211

6 Algorithm for proof import

Quasi-tautological deep sequent. In general, the sequent dp(E) may be
just quasi-tautological. In particular the following congruence scheme is quasi-
tautological and not tautological:

.1 = -1 ∧ · · · ∧ .' = -' → (� (.1, · · · , .') ↔ � (-1, · · · , -'))

Hence it is no longer sufficient to replace a definition node +def �((.#)+
by just the expansion tree where the arguments are syntactically equal. We
replace it by all the expansion trees �1, · · · , �(, suitably replacing the term
vectors .# so that the shallow formulas match. To perform this replacement, we
define a generalization operation	 . We first define the generalized tree �, and
then define the replacement operation �eq uniformly for all definition atoms:

� = 	K (2) (�1) ; · · · ;	K (2) (�()

�eq [K((.) +def �((.)+] = � [2\.]

Definition 6.4.1. Let K,M be first-order formulas such thatMI = K for some
substitution I , and � ∈ ET* (K) an expansion tree without definition nodes.
Then we recursively define its generalization	M (�) ∈ ET* (M):

	M (�*) = M* 	¬M (¬�) = ¬	M (�) 	M (wk* (K)) = wk* (M)
	M (�1 ; �2) = 	M (�1) ;	M (�2)

	M1∧M2 (�1 ∧ �2) = 	M1 (�1) ∧	M2 (�2)
	∀2M (∀2K +3ev �) = ∀2K +3ev 	M [2\3] (�)
	∀2M (∀2K +.sk �) = ∀2K +.sk 	M [2\.] (�)

	∀2M (∀2K +.1 �1 · · · +. �() = ∀2K +.1 	M [2\.1] (�1) · · · +. 	M [2\.] (�()

Lemma 6.4.2. Let E be an expansion sequent as in Equation (6.1). If dp(E) is
quasi-tautological, then dp

�
��1 , · · · , ��(−1 8 �eq [K]

�
is quasi-tautological as well.

Proof. Similar to Lemma 6.4.1, except we now set � (�((�)) = � (dp(�) [2\�])
for all � in the domain of the counter-model. �

212

6.5 Complexity

6.5 Complexity

We will now give a double-exponential upper bound on the complexity of the
whole algorithm as summarized in Algorithm 6. Without Avatar inferences
and definition inferences, this bound would be just single-exponential. We do
not know whether this double-exponential bound is actually attained in the
worst case, the best known lower bound is single-exponential (as is necessary
in any conversion from resolution proofs to expansion proofs).

Lemma 6.5.1. Whenever CG �∗ (∅;E), then |E | ≤ 4|G |�+1.
Proof. Let P;S be a extraction state, we define its size as |P;S| = |S| +�

(G,E)∈P 2|G |. |G |' + |E|, where |G |' is the maximum length of a sequent oc-
curring in G . No case of the relation � increases this size. Observe that
|G |' ≤ 2|G |� , and hence |E | ≤ |CG | ≤ 2|G |. |G |' ≤ 2|G |�+2 |G |� ≤ 4|G |�+1. �

Lemma 6.5.2. Let G be a resolution proof, then |Transform(G) | ≤ 24 |� |� .

Proof. Let �1, �2, �3 be as in Algorithm 6. From Lemma 6.5.1 we know that
|�1 | ≤ 4|G |�+1. Note that there are fewer than |G |� splitting and definition
inferences in G , and hence fewer than |G |� cuts and definitions in �1 and
�2. The cost of cut-elimination is shown in Lemma 6.2.3, we have |�2 | ≤
|�1 |2� where � < |G |� is the number of cuts. We have a similar bound for
definition elimination: each step increases the size at most quadratically and
we have |�3 | ≤ |�2 |2� where � < |G |� is the number of definitions. Hence
|Transform(G) | ≤ 4(|G |�+1)2�+� ≤ 24 |� |� . �

6.6 Empirical evaluation

We evaluated the implementation in three experiments using GAPT 2.9, which
contains Algorithm 6 as the ResolutionToExpansionProof function.
First, we compared it against the LK-based method for expansion proof

extraction from resolution proofs described in [52], which is also implemented
in GAPT. The TSTP library (Thousands of Solutions from Theorem Provers,
see [94]) contains proofs from a variety of automated theorem provers. We
loaded all 6341 Prover9 proofs into GAPT, and measured the runtime of each

213

6 Algorithm for proof import

0 2000 4000 6000 8000 10000

dag-like size of resolution proof

100

101

102

103

104

n
u
m

b
e
r

o
f

im
p
o
rt

e
d
 p

ro
o
fs

All Prover9 proofs in the TSTP

Algorithm from this chapter

LK-based method

Figure 6.2: Comparison of the number of successfully imported Prover9 proofs
in the TSTP using Algorithm 6 and the LK-based algorithm in [52].

of the algorithms with a timeout of 120 seconds. GAPT is unable to read 40 of
the proofs at all since Prover9’s prooftrans executable fails. Of the remaining
proofs, the LK-based method in [52] imports 5479 proofs (87.0%). Algorithm 6
imports 6125 proofs (97.2%), it only fails on 176 proofs due to the timeout.
There is no proof where the LK-based method is successful, but Algorithm 6
fails.
Figure 6.2 plots the number of successfully imported proofs using each of the

algorithms against the DAG-like size of the resolution proof. The algorithm
in this chapter manages to import almost all Prover9 proofs in the TSTP
including very large proofs; proofs between 1000 and 10000 inferences can not
be imported by the LK-based method at all.
As the second experiment, we evaluated the quality of the clausification

allowed by the resolution calculus used in this chapter. We took the 662
problems in the first-order FEQ, FNE, FNN, and FNQ divisions of the CASC-
26 competition whose size was less than one megabyte after including the
separate axiom files. On these 662 problems, we compared the performance of
the E theorem prover [87] version 2.1 (as submitted to CASC) when directly

214

6.6 Empirical evaluation

running on the problems, and when running on the clausification produced by
GAPT.

GAPT fails to clausify 19 of the problems due to excessive runtime. These
problems (e.g. HWV053+1) have blocks of more than a thousand quantifiers.
On the remaining ones we ran E in both the default configuration, and the
auto-scheduling mode (as used in the CASC), both with a timeout of 60 seconds.
In the default mode the E clausification results in 81 found proofs, the GAPT
clausification in 89. With auto-scheduling enabled the result is reversed but
still close, and E’s own clausification produces more proofs (308) than GAPT’s
clausification (285). These results show that the clausification allowed by the
calculus presented in this chapter is competitive with the ones implemented
in state-of-the-art automated theorem provers. We believe that the reversed
results for the auto-scheduling mode are indicative of a larger trend in first-
order theorem provers: many provers train their strategy selection algorithms
on the exact problems from the TPTP and thus rely very closely on the syntactic
features of these problems.

Finally, we wanted to compare the runtime of Algorithm 6 with the runtime
of the first-order prover. To this end, we again used the same 662 first-order
problems from CASC-26 and used GAPT’s external prover interface to obtain
expansion proofs from E. This prover interface uses the clausification of the
resolution calculus described in this chapter to create a CNF, sends this CNF
to E, then parses and reconstructs a resolution proof using proof replay, and
finally constructs an expansion proof using Algorithm 6. We measured the
mean runtime of each phase on the successfully imported proofs (only 7 proofs
could not be imported in the time limit of 2 minutes). The E prover itself takes
up 62%, the largest part of the runtime. Algorithm 6 only takes 7.2% of the
total runtime. The rest of the runtime is spent mainly in proof replay (15.6%)
and clausification (4.6%).

Since the expansion proof extraction is only a fraction of the prover runtime,
we believe that it is practically feasible to generate expansion proofs instead of
resolution proofs. Even though expansion proofs can be exponentially larger
in the worst case, this situation seems to occur only rarely in practice.

215

6 Algorithm for proof import

6.7 Direct elimination of Avatar-inferences

When importing resolution proofs with Avatar splitting using the procedure
described in this chapter, each cut in the expansion proof corresponds to an
atom introduced using Avatar splitting. The cut-elimination of the expansion
proof then corresponds to the elimination of the splitting inferences.
This naturally leads to the question whether and how we can eliminate

Avatar inferences directly on the resolution proof itself. There are application
for resolution proofs which require that the proofs do not contain splitting
inferences: for example we can extract interpolants from resolution proofs [58],
or use them in the cut-elimination method CERES [8]. In this section we will
present a method to eliminate splitting inferences from resolution proofs at
exponential cost.
The basic idea is that we eliminate all resolution inferences on splitting

atoms. That is, resolution inferences where the resolved atom �
def↦→ ∀2 S� is a

defined atom as used in the inferences AvSplit and AvIntro:

(G1)
S1 :+ �

(G2)
� +: S2 ResS1 ++ S2

Once we have eliminated all such resolution steps, the resulting proof will
no longer contain splitting inferences as the introduced splitting atoms can
only be removed using the resolution inference. We eliminate each resolution
step separately. As a first step, we show how to transform the left sub-proof
(G1) into a proof of S1 ++ S� :

Lemma 6.7.1. Let �
def↦→ ∀2 S� be a splitting atom, and G a resolution proof

ending in S :+ � · · · :+ � . We implicitly assume that S and S� have disjoint sets
of free variables. Then there exists a resolution proof � (G, �) of S ++ S� such
that |� (G, �) |� ≤ |G |� |S� |.
Proof. The interesting case is when G is an AvSplit-inference, so let G end in
an AvSplit inference:

(G 0)
S ++ S� AvSplitS :+ �

216

6.7 Direct elimination of Avatar-inferences

In this case we can just leave out the AvSplit-inference and set � (G, �) = G 0.
If � is not the main formula of the inference, then we can proceed recursively.
Consider representatively the case where G is a Res-inference:

(G1)
S1 :+ � · · · :+ � :+ K

(G2)
K +: S2 :+ � · · · :+ �

ResS1 ++ S2 :+ � · · · :+ �
Then we construct � (G, �) as follows:

(� (G1, �))
S1 ++ S� :+ K

(� (G2, �))
K +: S2 ++ S� ResS1 ++ S2 ++ S� ++ S� Factor+S1 ++ S2 ++ S�

We can permute � (·, �) and Subst inferences. We can also permute Fac-
tor/Rw inferences where � is the main formula, by repeating the Factor/Rw
inference for every atom in S� . If G is an AbbrR-inference, we replace it by
AllR and OrR inferences. Note that� is not the main formula of a clausification
inference, since splitting atoms do not occur in the input formula or in defined
subformulas. Furthermore � cannot be the main formula of a Refl-inference
since it is not an equation. �

We can now plug the left subproof into all the AvIntro inferences in the
right subproof:

Lemma 6.7.2. Let �
def↦→ ∀2 S� be a splitting atom, G� a resolution proof ending

inS0++S� , and G a resolution proof ending in�+:. . . �+:S. We implicitly assume
that S, S� , andS0 have pairwise disjoint sets of free variables. Then there exists a
resolution proof�(G, G� , �) ofS++S0 such that |�(G, G� , �) |� ≤ |G |� |S� |+|G� |� .
Proof. The interesting case is when G is a AvIntro-inference with � as a main
formula:

AvIntro
� +: ��

In this case we can set �(G, G� , �) to G� . The other cases are as in Lemma 6.7.1.
�

Combining the two previous Lemmas 6.7.1 and 6.7.2, we can now eliminate
a single resolution inference on a splitting atom:

217

6 Algorithm for proof import

Lemma 6.7.3. Let G be a top-most resolution inference on a splitting atom

�
def↦→ ∀2 S� (that is, G1 and G2 do not contain any resolution inferences on

splitting atoms):

(G1)
S1 :+ �

(G2)
� :+ S2 ResS1 ++ S2

Then G 0 = �(G2, � (G1, �), �) is a resolution proof of S1 ++ S2 without resolution
inferences on splitting atoms such that |G 0|� ≤ 2|G |� |S� |.

Proof. Neither � (·, ·) nor�(·, ·, ·) introduce resolution inferences on new atoms,
hence G 0 does not contain resolution inferences on splitting atoms. The size
bound is the combination of the results from Lemmas 6.7.1 and 6.7.2. �

Finally, we eliminate all resolution inferences one after another:

Theorem 6.7.1. Let G be a resolution proof ending in the empty sequent, then
there is a resolution proof without splitting G 0 also ending in the empty sequent
such that |G 0|� ≤ � |G |� for some constant � that only depends on the maximum
size of a splitting component.

Proof. If there is an AvSplit or AvIntro inference in G then then there is a
resolution inference on a splitting atom below it. This is because the proof
ends in the empty sequent and there is no other way for the splitting atom to
go away.
Hence it suffices to eliminate all resolution inferences on splitting atoms.

By Lemma 6.7.3 we know how to eliminate a single such resolution inference.
We now iteratively eliminate these inferences going from top to bottom, in
each iteration the size of the proof is at most increased by a factor of � =

2max
�
def↦→∀2 S�

|S� |. �

Theorem 6.7.1 gives a exponential bound on the size of a resolution proof
without splitting in terms of a resolution proof with splitting.

Open Problem 6.7.1. Is the bound in Theorem 6.7.1 optimal? Can Avatar
splitting inferences be removed at subexponential cost?

218

7 Implementation and
evaluation

We set out in Section 2.9 to reverse induction-elimination. In the previous
chapters we have evaluated individual algorithms that are parts of this reversal:
Chapter 6 shows how to obtain instance proofs, Chapter 4 and Section 4.4
describe an algorithm to find an induction grammar covering the proofs, and
Chapter 5 explains how to solve the induced formula equation. In this chapter
we will evaluate the main algorithm, and its implementation in the GAPT
system.
The implementation and empirical evaluation of proof-theoretic algorithms

such as this one provides valuable practical insight. Proof-theoretic algorithms
often have large worst-case runtime. For example, cut-elimination in first-
order logic necessarily has non-elementary runtime complexity. This result
would lead one to believe at first that cut-elimination is utterly infeasible. Yet
cut-elimination is perfectly practical for many proofs that occur in practice, at
least if implemented efficiently [34].
A similar performance question also arises for the algorithms that we have

seen so far. All the major individual algorithms we have seen so far have at
least exponential worst-case runtime. From a purely theoretical point of view,
we can only say that they work. But it is possible that the worst-case is actually
common in practice. Thus we need to conduct experiments to evaluate the
performance on actual examples.
There is an even more fundamental model assumption that we have briefly

touched upon in Section 2.10: that the instance proofs have a certain form
of regularity. The whole approach depends crucially on this feature: that
instance proofs are similar to proofs obtained by induction-elimination. If the
instance proofs were completely different, then there would be little hope of

219

7 Implementation and evaluation

Obtain proofs (G#)#∈�

Find grammar	

Random testing: is (, .)
always � -tautological?

Find solution

Output proof

Obtain additional proof G.

counterexample found

1.

2.

Figure 7.1: Refinement loop to find induction grammars

generalizing them to a proof with induction. A priori, we might even expect
instance proofs to have this regularity. Whether this is actually the case for
automatically generated proofs is a question that can only be answered by
practical experiments. We will answer this question in Sections 7.4 and 7.5.

7.1 Refinement loop to find induction
grammars

The algorithmwe saw in Section 4.4 produces an induction grammar ofminimal
size that covers a given (finite) family of languages (.).∈� . However there is
no obvious choice for this set � . We could e.g. take � to be the set of all free
constructor terms of size less than 2. However in practice, this choice often
results in induction grammars 	 such that (, .) is not � -tautological for
some . of size larger than 2. In this case,;	 cannot be � -solvable (remember
Lemma 5.3.1 and Theorem 5.3.2).
Therefore, we use a refinement loop to find induction grammars. In each

iteration we check the generated induction grammar 	 and verify that (, .)

220

7.2 Implementation

is � -tautological for a large number of free constructor terms . . If the check
succeeds, then we work under the assumption that 	 is � -tautological. This
check is only a necessary requirement. Unfortunately it could still be possible
that	 might not be solvable, as there are some tautological induction grammars
whose formula equation is not solvable (Theorems 5.4.1 and 5.4.3). We also
cannot check for solvability of formula equations (even the ones induced by
induction grammars) in general, as this is undecidable by Theorem 5.4.2.
On the other hand, if we find a . such that (, .) is not � -tautological,

then we obtain a new proof G of the instance problem for the parameter . ,
extend the family (.).∈� to (.).∈�∪{.} by setting . = (G.). Note that since .
is� -tautological, any induction grammar	0 covering the extended family will
satisfy that (0, .) is � -tautological. Hence we will not encounter the same
counterexample . in the following iterations of the loop. The overall structure
of the method, combining the refinement loop as well as the algorithms to
solve formula equations from Sections 5.6 and 5.7, is shown schematically
in Figure 7.1.

7.2 Implementation

The open source GAPT framework [37] (short for General Architecture for
Proof Theory) contains implementations of a large variety of algorithms re-
lated to expansion proofs (as a generalization of Herbrand sequents) and proof
theory in general. Since version 2.9 (released in August 2018), it also contains al-
gorithms for the computation of covering induction grammars as in Section 4.4
and solving formula equations using forgetful inference as in Section 5.6 (a
version restricted to natural numbers following the formalism of [31] was
already released in version 2.0 in January 2016).
To give a short overview of the implementation, let us look at how the

concepts in each chapter are implemented in GAPT. The grammars intro-
duced in Chapter 2 are in the gapt.grammars package; the classes VTRATG
and InductionGrammar model the respective concepts. The term encoding of
formulas of Section 2.4 is implemented as InstanceTermEncoding(sequent),
i.e., we have a different term encoding for each sequent. Interestingly enough,

221

7 Implementation and evaluation

0 1 2

size of equational theory

0

10

20

30

40

50 proof found

grammar found

Figure 7.2: Results for the experiment where we pick an equational theory
from equations in the antecedent. We tried all combinations of
up to two equations. Only the solution algorithm using forgetful
inference is used. The benchmark set is an earlier version of the
TIP, containing only 319 problems.

there has been little practical need to implement the map that assigns to each
proof a corresponding grammar; this map is only implemented for simple
induction proofs. The function extractInductionGrammar actually operates
on a slightly more general level, namely on expansion proofs (recall Section 6.2;
technically, the induction inference is encoded as a higher-order assumption).
The algorithms to find covering grammars from Chapter 4 are contained in

the package gapt.grammars, in deltaTableAlgorithm, findMinimalVTRATG,
Reforest, and findMinimalInductionGrammar. For the algorithms based on
MaxSAT, GAPT contains interfaces to several MaxSAT solvers. The solver
we used for the evaluations is the external program OpenWBO [67]. Often it
is useful to have a solver that does not require any extra dependencies, for
example when running tests. For this reason, GAPT also bundles the Sat4j
library, which includes a MaxSAT solver that is available via the MaxSat4j
class.

222

7.2 Implementation

Given an induction grammar, we can compute the induced formula equa-
tion using InductionBUP.formula1. The solution algorithm using forgetful
inference (Section 5.6) is implemented as hSolveQBUP, and the the function
solveBupViaInterpolationConcreteTerms implements the algorithm using
interpolation (Section 5.7).
The refinement loop is implemented in the class TreeGrammarProver. There

is a parser for problems in the TIP format [21] in TipSmtParser.
Instance proofs are obtained using standard first-order theorem provers

based on superposition. GAPT contains interfaces to several external first-
order provers such as Vampire, E, etc. However for the evaluation in this
chapter we use the built-in Escargot prover of GAPT. Instance problems are
typically easy to prove, therefore there is little need to use stronger provers
like Vampire.
There is a second point in the algorithm where we make use of automated

theorem provers: when we check whether (, .) is � -tautological. The for-
mula corresponding to (, .) is quantifier-free. If � is empty, this formula is
hence in the QF_UF fragment efficiently decidable by SMT solvers. If � ≠ ∅,
then we use the SMT solver as a semi-decision procedure: we also pass it the
quantified formulas in � . The SMT solver will then apply heuristic instantia-
tion to the formulas in � . We also use a time limit to prevent non-termination.
For the evaluation, we use CVC4 as the SMT solver.
For problems imported from external benchmark sets, there is typically

no clear choice of equational theory. To evaluate how much of an effect
an equational theory could have, we performed an initial experiment on an
earlier version of the TIP benchmark suite. For every problem, we picked an
equational theory consisting of equations in the antecedent of the sequent.
We tried all combinations of up to two equations. Only the solution algorithm
based on forgetful inference was used. The results are shown in Figure 7.2.
Using an equational theory has a small negative effect on the number of proofs
found. With one equation taken from the antecedent one extra proof is found,
but with two equations the number of found proofs is significantly lower. One

1In GAPT, formula equations are often referred to as Boolean unification problems, since
they can be seen as instances of Boolean unification with predicates [33].

223

7 Implementation and evaluation

0 10 20 30 40

number of solved problems

0

2

4

6

8

10

to
ta

l
ru

n
ti

m
e
 (

s
e
c
o
n
d
s
)

Figure 7.3: Cactus plot of the runtime on TIP benchmarks. For each successfully
solved problem we plot the shortest runtime on the y-axis.

explanation is that the solution algorithm constructs the solution formula
out of the instances; using an equational theory reduces the number of these
instances and hence reduces the amount of “raw material” that can be used.
The number of candidate grammars found increases significantly with a single
equation. This is not surprising, because it is easier to cover smaller term
sets. Eliminating the instances of one axiom (the equation) also reduces the
amount of irregularity that could prevent us from finding a grammar. For the
evaluation we hence use the empty theory � = ∅.

7.3 Evaluation as automated inductive theorem
prover

First we evaluate the algorithm as an automated inductive theorem prover.
Given just a sequent, we want to find a simple induction proof. As a bench-
mark set we use problems from the TIP benchmark suite (tons of inductive

224

7.3 Evaluation as automated inductive theorem prover

problems [21]). This TIP benchmark suite aggregates benchmarks used to
evaluate the IsaPlanner [28], Zeno [89], and HipSpec [22] provers. The bench-
marks mostly concern the verification of functional programs; so far no public
competitions have been held.
Some of the problems are not syntactically of the form required by simple

induction proofs: their conclusion contains more than one universal quantifier,
the formulas are not prenex or contain strong quantifiers. There is a small
preprocessing step that Skolemizes and prenexifies the sequents. If there are
multiple universal quantifiers in the conclusion, we Skolemize all but one of
them (and try all choices). We use a time limit of 10 minutes.
There are 543 problems in the TIP benchmark suite, 529 of which are quan-

tified. For 62 of these problems, the algorithm finds a candidate grammar
that is tautological for the random instances that were checked. There are
38 problems where no grammar can cover the term sets produced by the
first-order prover. (This can be detected by the algorithm from Section 4.4
because it is guaranteed to find such a grammar, if it exists.) This indicates
very irregular instance proofs that cannot be generalized to an inductive proof.
In the remaining 429 problems, the refinement loop times out.
Figure 7.3 shows a cactus plot of the runtime of the prover on the successfully

solved TIP problems. We picked the minimum runtime for each problem (as
we tried multiple configurations, such as for example multiple algorithms to
solve the induced formula equation).
The mean number of iterations of the refinement loop is 2.4. We observe

a relatively small difference in the mean number of iterations depending
on whether we can find a grammar and/or a proof. In the cases where the
algorithm finds a proof, the mean number of iterations is 2.15. In the cases
where it finds a grammar but no proof, the mean is 2.83. We can also visually
observe this difference in Figure 7.4: this figure reinforces the picture that there
is exists a dichotomy between regular instance proofs, where the refinement
loop converges quickly and the induced formula equation is solvable, versus
irregular instance proofs, where the refinement loop converges slowly and the
formula equation is not solvable.
In the cases where it cannot even find a candidate grammar, the mean

number of iterations in the refinement loop is 2.39. However in this case there

225

7 Implementation and evaluation

0 10 20 30 40

number of problems

0

1

2

3

4

5

n
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

FE not solved

FE solved

Figure 7.4: Cactus plot of the number of iterations of the refinement loop on
TIP benchmarks where a candidate grammar was found.

is a larger variance. The maximal number of iterations is 17 when no grammar
could be found. All grammars that have been found were found after at most
5 iterations.
We also tried different weighing schemes for the grammars, preferring

grammars with 1) fewer productions or 2) smaller number of symbols. The
choice of weighing scheme has almost no effect on the number of iterations or
the success of the algorithm (on the TIP benchmark set).
Of the 62 problems where a grammar has been successfully found, 48 can

be completed to a simple induction proof by solving the induced formula
equation. We used both the method based on forgetful inference as well as
the one based on interpolation described in Sections 5.6 and 5.7. The forgetful
inference method solves 30 formula equations, the interpolation method solves
36 formula equations. There are hence 18 problems that both methods could
solve. Figure 7.5 plots the runtime of the two algorithms. We see a very clear
performance difference: the interpolation-based algorithm never takes more
than a second, while the runtime of the algorithm based on forgetful inference

226

7.3 Evaluation as automated inductive theorem prover

0 5 10 15 20 25 30 35

number of solved problems

10 1

100

101

102
ru

n
ti

m
e
 o

f
F
E
 s

o
lv

e
r

(s
e
c
o
n
d
s
)

forgetful inference

interpolation

Figure 7.5: Cactus plot of the runtime of the algorithms solving the induced
formula equation on TIP benchmarks. The y-axis is scaled logarith-
mically to make the results easier to compare given the significant
difference in magnitude.

quickly grows exponentially. This comes to no surprise: it needs to compute
the canonical solution, whose size is exponential in the instance term. The
following step of applying forgetful inferences also has exponential runtime
in the worst case.
GAPT also contains two other automated inductive theorem provers: one

is an analytic induction prover which heuristically instantiates the induction
scheme with variants of the goal and then runs a first-order prover. Spin
integrates an induction inference in the superposition loop of the Escargot
prover in GAPT [39] similar to Zipperposition [25]. On the TIP, the analytic
induction prover solves 78 problems with the independent induction scheme,
and 115 with the sequential scheme; Spin solves 142 problems in the default
mode, 133 if generalization is disabled, and 94 if counterexample testing is
disabled [39].
There is one TIP problem that the algorithm presented here can solve, but

none of the other methods in GAPT: isaplanner/prop_59. The problem is

227

7 Implementation and evaluation

∀2∀3 (3 = nil→ last(2 ++ 3) = last(2)). The natural induction formula,
∀2 (2 ++ nil = 2), is not analytic and is not found by Spin either.
In this evaluation on the TIP benchmark set, the algorithm often fails to find

a candidate grammar that covers the automatically generated instance proofs.
This situation could arise from an algorithmic issue, where the algorithm that
we use to compute covering grammars is too slow or finds “inappropriate”
grammars that do not describe a proof with induction. It could also arise from
an intrinsic quality of the generated instance proof: that the automatically
found proofs do not possess the regularity necessary to generalize them to a
proof with induction. To determine the cause of this issue, we will conduct an
additional experiment in Section 7.4, where we start with induction proofs and
run the algorithm on families of induction-eliminated instance proofs (which
are hence regular and should be generalizable into a proof with induction). This
experiment will allow us to tell whether the failure is due to the irregularity of
the automatically generated instance proofs or not.
In a smaller number of cases, the algorithm also fails to find a solution to the

formula equation induced by the grammar. We will provide an explanation in
Section 7.5 by closely examining one of the problems as a detailed case study.

7.4 Evaluation of reversal of
induction-elimination

For the second evaluation, we start out with 73 simple induction proofs manu-
ally formalized in GAPT concerning basic properties of operations on natural
numbers and lists. Of these, 25 are proofs of problems in the TIP benchmark
suite. GAPT contains 92 formal proofs of TIP problems as example data to test
induction-elimination, and 25 of these happen to be simple induction proofs.
The other 48 proofs in this evaluation are lemmas from a formalization of
the fundamental theorem of arithmetic in GAPT that happen to be simple
induction proofs.
For each proof, we performed essentially two experiments. First, we used

induction-elimination to compute the instance proofs and perform the recon-
struction. As the second experiment, we generated the instance proofs using

228

7.4 Evaluation of reversal of induction-elimination

0 10 20 30 40 50 60

number of constructed induction proofs

0

2

4

6

8

10
to

ta
l
ru

n
ti

m
e
 (

s
e
c
o
n
d
s
)

induction-elimination

ind-elim. (minimized)

ATP

Figure 7.6: Cactus plot of the runtime on induction proofs in GAPT, depend-
ing on whether the instance proofs are generated via induction
elimination or by an automatic theorem prover.

an automated theorem prover (Escargot, just as in Section 7.3). As we see
in the following summary, the proofs obtained by induction-elimination are
clearly different from the proofs produced by the automated theorem prover:
the algorithm always finds a grammar for induction-elimination, but only
for about two thirds of the ATP proofs. There is a smaller difference in the
second solution-finding phase. Interestingly for every problem where the al-
gorithm failed to solve the induced formula equation from the ATP proofs, the
algorithm also failed to solve the FE for the proofs from induction-elimination.

#problems #grammars #solutions
ind.-elim. 73 73 63

ATP 73 39 32

The difference is also visible from the cactus plot in Figure 7.6: the runtime
for the instance proofs generated with the automated theorem prover is always
larger (to little surprise), but it diverges quickly, indicating that the proofs
become more irregular. Figure 7.6 also shows data for another experiment:

229

7 Implementation and evaluation

we computed expansion proofs for the induction-eliminated instance proofs
and minimized them before giving them to the algorithm. Minimization here
consists of taking a minimal subset of tautological instances. The line for
the minimized instance proofs is very similar but slightly worse than the
line for the non-minimized instance proofs. This shows that the regularity
necessary for induction-reversal to succeed does not require instance proofs
whose language is exactly the language of an induction grammar, but that
their languages may also be a subset.
In many cases the computed grammar does not match the grammar of the

original simple induction proof exactly. One relatively common situation oc-
curring in 10 reconstructed proofs is that we can replace a quantified induction
formula by a quantifier-free one.
This happens for example in isaplanner.prop_06, which proves ∀2∀3 2 −

(2 +3) = 0 using ∀3 (2 − (2 +3) = 0) as the induction formula2. The induction
grammar of the proof with the quantified induction formula is as follows,
where 4 is a free variable in the proof:

J → ,1(0 + ?) | ,2(F, F + ?) | ,3(F,?) | ,4
? → ? | 4

The induction proof found by the algorithm replaces the induction formula
by a quantifier-free formula 2 − (2 + 3) = 0 where 3 is an eigenvariable of the
end-sequent. On the level of the induction grammar, this corresponds to the
elimination of the productions ? → ? | 3 (which are not very useful since the
nonterminal ? will always expand to 3):

J → ,1(0 + 3) | ,2(F, F + 3) | ,3(F,3) | ,4
This experiment shows two things: on the one hand, we see that the algo-

rithm can effective generate proofs with induction, as long as the input proofs
are sufficiently regular. There are hence no obvious algorithmic deficiencies
or implementation bugs. On the other hand, we also observe that there are
qualitative differences in the proofs produced by induction-elimination and
the proofs produced by automated theorem provers. Namely, that the proofs
2The binary operation − denotes truncating subtraction, i.e. 2 − 3 = max{2 − 3, 0}.

230

7.5 Case study: doubling

produced by the ATP often do not possess the regularity that we are interested
in.

7.5 Case study: doubling

Let us now examine one of the examples in more detail, where the algorithm
finds a candidate grammar but cannot solve the induced formula equation. The
example is prod/prop_01 from the TIP library, which shows that ∀2 � (2) =
2 + 2 where � is a recursively defined doubling function:

∀2 2 + 0 = 2, (,1)
∀2∀3 2 + - (3) = - (2 + 3), (,2)
� (0) = 0, (,3)
∀2 � (- (2)) = - (- (� (2))) (,4)
8 ∀2 � (2) = 2 + 2 (,5)

To keep the size of the grammar and formula equation manageable, we put
some of the formulas from the antecedent of the sequent into the background
theory � = {� (0) = 0, � (- (2)) = - (- (� (2))), 2 + 0 = 2}. This choice effectively
ignores the instances of all formulas except (,3), which contains interesting
information about the induction.
Let us first consider how a “natural” simple induction proof of this sequent

would look like. We might be inclined to prove ∀2 ∀3 - (2) + 3 = - (2 + 3)
as a lemma first, but a simple induction proof only contains one induction
inference. Combining the goal with the lemma, an induction formula that
works is ∀? (- (?) + F = - (? + F) ∧ � (F) = F + F). The quantifier instances in a
simple induction proof with this induction formula can be described by the
induction grammar with the following productions:

J → ,2(- (?), F) | ,2(?, F) | ,2(- (F), F) | ,5
? → ? | F | 0

231

7 Implementation and evaluation

This grammar induces the following formula equation:

∀? � (=, 0, ?) ∧ (� (=, =, =) → � (=) = = + =) ∧
∀F∀? (� (=, F,?) ∧ � (=, F, F) ∧ � (=, F, 0) ∧
- (?) + - (F) = - (- (?) + F) ∧ ? + - (F) = - (? + F) ∧
- (F) + - (F) = - (- (F) + F) → � (=, - (F), ?))

The grammars produced by the algorithm are smaller and different in an
interesting way. First, let us look at the grammar computed for induction-
eliminated instance proofs. Like in Section 7.4, algorithm finds a grammar
with fewer productions:

J → ,2(?, F) | ,5
? → ? | F | =

We do not know if the induced formula equation has a solution (modulo �)
or not:

∃� �∀? � (=, 0, ?) ∧ (� (=, =, =) → � (=) = = + =) ∧
∀F∀? (� (=, F,?) ∧ � (=, F, F) ∧ � (=, F, =) ∧
? + - (F) = - (? + F) → � (=, - (F), ?))�

Looking at the grammar computed for the instance proofs generated by the
automated theorem prover, it is even simpler. It is so simple, it only consists of
two productions:

J → ,2(=, F) | ,5
It is also qualitatively different: there is no occurrence of ? , so there would

even be a simple induction proof with a quantifier-free induction formula,
assuming that the induced formula equation is solvable. Alas, we do not know
whether this FE is solvable either:

∃� �
� (=, 0) ∧ (� (=, =) → � (=) = = + =) ∧
∀F (� (=, F) ∧ = + - (F) = - (= + F) → � (=, - (F)))�

It is instructive to compare the instance proofs from induction-elimination
of Example 2.8.4 with the proofs produced by the automated theorem prover.

232

7.5 Case study: doubling

100 101

101

102

ind-elim. expansion proof

ATP superposition proof

ATP expansion proof

101

102

103

linear

quadratic

Figure 7.7: Proof size of the instance proofs from Section 7.5. The y-axis scale
on the left-hand side is the expansion proof size, the scale on right-
hand side is the superposition proof size. The two scales are differ-
ent to make the comparison easier.

The straightforward way for a prover to prove the instance problems is to
treat the assumptions (,1)–(,4) as a term rewriting system and to rewrite the
conjectured equation � (-((0)) = -2((0) into normal form:

� (-((0)) (,4)
� -2((� (0)) (,3)

� -2((0)
-((0) + -((0) (,2)

� -((-((0) + 0) (,1)
� -2((0)

Looking closely, this proof uses the instances ,2(-((0), -# (0)) for 0 ≤ # <

(. This set of instances corresponds to the formula = + - (F) = - (= + F) in
the formula equation. Note also that there are no “repeating” equations in
this sequence that could give rise to an induction formula. By contrast, the
proof obtained via induction-elimination contains instances for a much more

233

7 Implementation and evaluation

roundabout rewriting of the right-hand side, iterating the following part:

-#+1(0) + -#+1(0) (,2)
� -#+1(-#+1(0) + 0) (,1)

� -2#+2(0)
(,1)
� -#+2(-# (0) + 0) (,2)

� -2(-# (0) + -# (0))

Empirically, this difference is also reflected in the proof sizes. Figure 7.7
shows a double-logarithmic plot of the proof sizes of the instance proofs for
0 ≤ (≤ 30. The sequence of instance proofs obtained via induction- and
cut-elimination from a simple induction proofs grows quadratically. The plot
shows the size of the corresponding expansion proof: this size corresponds
to the size of the instance language. The proof size is quadratic because the
grammar contains the productions J→,2(?, F) and?→? | F . The?-production
hence expands to all numerals greater than F and ,2(?, F) expands to all ,2(%, &)
where & < % ≤ (.
By contrast, the proofs that are found by the automated theorem prover are

of linear size. (The built-in Escargot prover is used in this experiment.) Both
the superposition proof directly produced by Escargot as well as the expansion
proofs are of linear size. This is precisely because the superposition proof
contains a rewriting sequence of the form described in this section.

234

8 Conclusion

We have presented a practical implementation of the approach to automated
inductive theorem proving proposed in [31]. This required the development or
extension of the algorithms presented in Chapters 4 to 6. On a theoretical side,
this endeavour has lead to interesting questions. The study of the complexity
of decision problems on grammars in Chapter 3 was motivated by the desire
to find better algorithms producing covering grammars. The questions about
formula equations leading to Theorem 5.4.3 were sparked by the necessity
of algorithmically solving these formula equations. The practical evaluation
of the approach lead to even more empirical questions about the nature of
automatically generated proofs which we illuminated in Sections 5.5 and 7.5.
For various classes of grammars we have determined the computational

complexity of the membership, containment, disjointness, equivalence, non-
emptiness, and minimization problems in Chapter 3. The main open problem
is the complexity of minimal cover as a decision problem, where we only know
that is in NP. We were only able to show NP-completeness for the variant
where the number of nonterminals is bounded. Surprisingly, the general case
with an unbounded number of nonterminals is even open for the corresponding
problem on regular grammars for words (Open Problem 3.7.2), even though
that model has been studied much more extensively.
The reductions used for the hardness proofs generally use an unbounded

number of symbols. However this is undesirable from a complexity point of
view. In particular, the reductions for minimal cover require this unbound-
edness in an essential way to constrain the covering grammar. It remains as
future work to study reductions which do not increase the number of symbols.
We have presented three algorithms in Chapter 4 that produce VTRATGs

covering a given set of terms. Just as it is surprisingly hard to show that the
TRATG-Cover problem is NP-complete, it is also hard to construct algorithms

235

8 Conclusion

that find minimal covering VTRATGs. Of the three algorithms, only the
MaxSAT algorithm finds grammars that are guaranteed to be of minimal size.
The mathematical key insight behind the MaxSAT algorithm is that there is

a polynomial time computable VTRATG which contains a minimal grammar
as a subgrammar. This allows the polynomial reduction of the grammar
compression problem to a MaxSAT problem for which highly efficient solvers
are available.
Also from an application point of view, the MaxSAT algorithm is the most

versatile and easy to extend. The only currently available algorithm to produce
covering induction grammars is the one described in Section 4.4. The general
theory of stable grammars behind underlying the MaxSAT algorithms makes
such an extension straightforward and transparent.
In principle the MaxSAT algorithm could be adapted to any class of gram-

mars that are closed under rewriting. It could also be extended to other notions
of grammar size: [32] introduces the tree complexity measure, which precisely
corresponds to the number of weak quantifier inferences in a proof (as opposed
to the constant factor that we have had to introduce in Lemmas 2.7.4 and 2.8.2).
The MaxSAT-reduction of the minimization problem itself in Section 4.3.5
could be extended to other classes of grammars or automata as well, for exam-
ple to find tree automata with a fixed number of states and minimal number
of transitions that accept a given finite set of terms.
We have discussed two algorithms to solve formula equations in Chapter 5.

Both of them are heuristic: they are not complete, in the sense that they are not
guaranteed to find a solution if one exists. As we have seen in Section 7.3, the
two algorithms seem to be complementary in practice with the interpolation-
based one having a small lead. Half of the formula equations solved by one are
not solved by the other and vice versa. The success of the interpolation-based
method modeled after the Duality algorithm for constrained Horn clauses
suggests that the extension of CHC solvers to the theory of equality with
uninterpreted function symbols is an interesting application.
On a theoretical level we could improve on a result of [31] on the existence

of tautological induction grammars whose induced formula equation is not
solvable. Theorem 5.4.3 both reduces the nonterminals in the grammar as well
as extends it to strong background theories. It remains as future work to see

236

in how far this technique allows us to extend the result on the undecidability
of the solvability of induction grammars (Theorem 5.4.2) in a similar way.
The transformation from resolution proofs to expansion proofs described in

Chapter 6 has been used as the default method to generate expansion proofs
from resolution proofs in GAPT since version 2.2. Using it, GAPT can effec-
tively interface with six different external resolution-based provers, including
SPASS and Vampire with their splitting rules. The modular integration of
structural clausification makes it possible to reuse it for non-resolution provers
as well: the interface to the connection-based prover LeanCoP [76, 82] in GAPT
uses the same code for clausification and definition elimination.
A noteworthy limitation of the clausification in Chapter 6 is that it can

expand each definition only in a single polarity. Lifting this restriction would
produce cuts in the definition elimination phase. However, these cuts would
contain Skolem nodes and cannot be eliminated directly. In the equality-free
case, there is a reliable deskolemization procedure [7] which can be used as a
preprocessing step to enable cut-elimination. Such a procedure is yet missing
for proofs with equational reasoning. Reliable deskolemization would also
enable a straightforward adaptation of the clausification produced by external
provers using proof replay.
Many of the techniques used come from higher-order logic, both Andrew’s

calculus R and expansion trees originate in that setting. It seems only natural
to extend this transformation to higher-order logic, and there seem to be no
immediate obstacles except for the built-in equational inferences. But these
could be straightforwardly translated to explicit Leibniz equality.
Many clausification procedures perform propositional simplification rules as

a pre-processing step, for example rewriting K ∧� ↦→ K or converting to nega-
tion normal form. These simplifications could be helpful in the clausification
here as well, since they potentially enable sharing of subformula definitions
and Skolem functions. These could be supported by adding new inference
rules to the resolution calculus and adapting the expansion tree extraction in
the natural way.
For simplicity the SMT refutations in proofs using Avatar are converted

to resolution proofs first. However there is no fundamental reason why we
need to perform this costly conversion, since the SMT refutation is purely

237

8 Conclusion

ground and is essentially discarded in this translation. Adding a new rule to
represent this part of the proof in a single inference would deliver even greater
performance.
Finally, we have evaluated the implementation of the whole approach in

Chapter 7. The empirical results show that there is a clear difference in the suc-
cess of the approach if we compare proofs obtained from induction-elimination
and the proofs found by an automated theorem prover. In order to successfully
find a proof with induction, the instance proofs must have a certain form of
regularity.
One potential way to obtain more regular families of proofs is to modify

the search procedure of the automated theorem prover, for example to use an
outermost-first strategy for rewriting, which sometimes seems beneficial in our
experience. Another option would be to perform a heuristic post-processing
to regularize the instance proofs.
Instead of finding more regular families of instance proofs, we could also

extend the grammars so that they can cover more irregular families. The
induction grammars in this paper need to cover the term sets for the instance
proofs exactly, without taking the background theory into account. We could
extend the grammar generation algorithm so that it generates grammars that
cover the input term sets modulo the background theory—that is, where every
term in the input term set is � -equivalent to a term in the generated language.
There are several configuration options that are currently set manually or

where we simply try all possibilities, such as the number of quantifiers in the
induction formula (i.e., how long is ? and what types do the nonterminals
have) or the equational theory. For quantitative options such as the number
of quantifiers, heuristics and portfolio modes could be used in a production
implementation.
These empirical results also shed light on the nature of cut- and induction-

elimination. A priori we might expect that it actually eliminates all traces of
the cuts and inductions in the original proof. But what we have seen in the
empirical results is that there is observable and significant evidence left behind
by induction-elimination. And these are not just faint traces: we can even get
back a proof that is closely related to the original one on the level of quantifier
inferences. This phenomenon—that there is interesting structure in cut-free

238

proofs—is typically not studied in proof theory. Usually the focus lies on the
size increase of induction- or cut-elimination.
The related concept of analyticity is usually formulated as the subformula

property [88]: in first-order logic this means that every formula occurring in
the proof is a substitution instance of the formula to be proven. Proofs with
cut or induction are in general non-analytic, as they contain new induction
invariants or cut formulas.
However this view of analyticity as being the subformula property ignores

all structure contained on the term level. What we have seen is that induction-
elimination shifts the structure from the non-analytic induction invariant
in the formulas to a certain kind of regularity in the terms in the quantifier
inferences. And there remains enough structure on the term level to get back
a proof with induction.
In infinitary proofs cut-elimination also leaves behind regularity, albeit in a

different form. Applying cut-elimination to infinitary derivations correspond-
ing to proofs in PA results in proofs with rank bounded by O0 [95].
We can observe a related phenomenon in mathematical logic with a more

direct reflection of formulas as term-level structures: for example the set theory
ZFC is not finitely axiomatizable due to the axiom scheme of replacement,
which is parameterized by a formula. By encoding this formula parameter as a
term we get the finitely axiomatized conservative extension NBG [74]. The
theories PA and ACA0 are related in a similar way. These phenomena differ
from our observations as the induction formula is explicitly encoded as a term,
whereas we investigate the incidental regularity in the quantifier instance
terms, which implicitly indicates the provenance of induction-elimination.
It would also be interesting to find more direct characterizations of regu-

larity on the level of formal languages that give insight into the features of
languages which cause irregularity, along the lines of Myhill-Nerode [72, 73]
for regular word languages and regular tree languages [23]. Developing similar
characterizations for regularity in TRATGs and induction grammars could
help illuminate the phenomenon of regularity in inductive proofs.

239

Bibliography

[1] Wilhelm Ackermann. “Untersuchungen über das Eliminationsproblem
der mathematischen Logik”. In: Mathematische Annalen 110.1 (1935),
pp. 390–413.

[2] Bahareh Afshari, Stefan Hetzl, and Graham E. Leigh. “Herbrand’s theo-
rem as higher order recursion”. In: Annals of Pure and Applied Logic
171.6 (2020), p. 102792.

[3] Brian Alspach, Peter Eades, and Gordon Rose. “A lower-bound for the
number of productions required for a certain class of languages”. In:
Discrete Applied Mathematics 6.2 (1983), pp. 109–115.

[4] Peter B. Andrews. “Resolution in Type Theory”. In: Journal of Symbolic
Logic 36.3 (1971), pp. 414–432.

[5] Josep Argelich, Chu Min Li, Felip Manya, and Jordi Planes. “The First
and Second Max-SAT Evaluations.” In: Journal on Satisfiability, Boolean
Modeling and Computation 4.2-4 (2008), pp. 251–278.

[6] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. “Com-
plexity of finding embeddings in a%-tree”. In: SIAM Journal on Algebraic
Discrete Methods 8.2 (1987), pp. 277–284.

[7] Matthias Baaz, Stefan Hetzl, and Daniel Weller. “On the complexity
of proof deskolemization”. In: Journal of Symbolic Logic 77.2 (2012),
pp. 669–686.

[8] Matthias Baaz andAlexander Leitsch. “Cut-elimination and Redundancy-
elimination by Resolution”. In: Journal of Symbolic Computation 29.2
(2000), pp. 149–176.

241

Bibliography

[9] Leo Bachmair and Harald Ganzinger. “Resolution Theorem Proving”.
In: Handbook of Automated Reasoning (Volume 1). Ed. by John Alan
Robinson and Andrei Voronkov. Elsevier and MIT Press, 2001, pp. 19–
99.

[10] Umberto Bertelé and Francesco Brioschi. Nonserial Dynamic Program-
ming. 1972.

[11] Richard Bird and Oege de Moor. Algebra of Programming. 1997.

[12] Nikolaj Bjørner, Arie Gurfinkel, KenMcMillan, andAndrey Rybalchenko.
“Horn clause solvers for program verification”. In: Fields of Logic and
Computation II. Springer, 2015, pp. 24–51.

[13] Walter Bucher. “A Note on a Problem in the Theory of Grammatical
Complexity”. In: Theoretical Computer Science 14 (1981), pp. 337–344.

[14] Walter Bucher, Hermann A. Maurer, and Karel Culik II. “Context-Free
Complexity of Finite Languages”. In: Theoretical Computer Science 28
(1984), pp. 277–285.

[15] Walter Bucher, HermannA.Maurer, Karel Culik II, andDetlefWotschke.
“Concise Description of Finite Languages”. In: Theoretical Computer
Science 14 (1981), pp. 227–246.

[16] Samuel R. Buss. “On Herbrand’s Theorem”. In: Logic and Computational
Complexity. Vol. 960. Lecture Notes in Computer Science. Springer,
1995, pp. 195–209.

[17] Cezar Câmpeanu, Nicolae Santean, and Sheng Yu. “Minimal Cover-
Automata for Finite Languages”. In: Third International Workshop on
Implementing Automata (WIA’98). Ed. by Jean-Marc Champarnaud,
Denis Maurel, and Djelloul Ziadi. Vol. 1660. Lecture Notes in Computer
Science. Springer, 1999, pp. 43–56.

[18] Cezar Câmpeanu, Nicolae Santean, and Sheng Yu. “Minimal cover-
automata for finite languages”. In: Theoretical Computer Science 267.1-2
(2001), pp. 3–16.

242

[19] Katrin Casel, Henning Fernau, Serge Gaspers, Benjamin Gras, and
Markus L. Schmid. “On the Complexity of Grammar-Based Compres-
sion over Fixed Alphabets”. In: 43rd International Colloquium on Au-
tomata, Languages, and Programming (ICALP 2016). Ed. by Ioannis
Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide
Sangiorgi. Vol. 55. Leibniz International Proceedings in Informatics
(LIPIcs). 2016, 122:1–122:14.

[20] CHC-COMP: Constrained Horn Clause competition. 2018–2019. url:
https://chc-comp.github.io/.

[21] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone.
“TIP: Tons of Inductive Problems”. In: Conferences on Intelligent Com-
puter Mathematics. Ed. by Manfred Kerber, Jacques Carette, Cezary
Kaliszyk, Florian Rabe, and Volker Sorge. 2015, pp. 333–337.

[22] Koen Claessen, Dan Rosén, Moa Johansson, and Nicholas Smallbone.
“Automating Inductive Proofs using Theory Exploration”. In: 24th In-
ternational Conference on Automated Deduction. 15. 2013, pp. 392–406.

[23] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez,
S. Tison, and M. Tommasi. Tree Automata Techniques and Applications.
2007.

[24] William Craig. “Three uses of the Herbrand-Gentzen theorem in relat-
ing model theory and proof theory”. In: The Journal of Symbolic Logic
22.3 (1957), pp. 269–285.

[25] Simon Cruanes. “Superposition with Structural Induction”. In: Frontiers
of Combining Systems - 11th International Symposium, FroCoS 2017,
Brasília, Brazil, September 27-29, 2017, Proceedings. Ed. by Clare Dixon
and Marcelo Finger. Vol. 10483. Lecture Notes in Computer Science.
Springer, 2017, pp. 172–188.

[26] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. “A New
Deconstructive Logic: Linear Logic”. In: Journal of Symbolic Logic 62.3
(1997), pp. 755–807.

[27] Nachum Dershowitz and David A. Plaisted. “Rewriting”. In: Handbook
of Automated Reasoning. Vol. 1. 2001, pp. 535–610.

243

https://chc-comp.github.io/

Bibliography

[28] Lucas Dixon. “A Proof Planning Framework for Isabelle”. PhD thesis.
University of Edinburgh, 2005.

[29] Sebastian Eberhard, Gabriel Ebner, and Stefan Hetzl. “Algorithmic
Compression of Finite Tree Languages by Rigid Acyclic Grammars”.
In: ACM Transactions on Computational Logic 18.4 (2017), 26:1–26:20.

[30] Sebastian Eberhard, Gabriel Ebner, and Stefan Hetzl. “Complexity of
Decision Problems on Totally Rigid Acyclic Tree Grammars”. In: De-
velopments in Language Theory - 22nd International Conference, DLT.
Ed. by Mizuho Hoshi and Shinnosuke Seki. Vol. 11088. Lecture Notes
in Computer Science. Springer, 2018, pp. 291–303.

[31] Sebastian Eberhard and Stefan Hetzl. “Inductive theorem proving based
on tree grammars”. In: Annals of Pure and Applied Logic 166.6 (2015),
pp. 665–700.

[32] Sebastian Eberhard and Stefan Hetzl. “On the compressibility of finite
languages and formal proofs”. In: Information and Computation 259
(2018), pp. 191–213.

[33] Sebastian Eberhard, Stefan Hetzl, and Daniel Weller. “Boolean unifica-
tion with predicates”. In: Journal of Logic and Computation 27.1 (2017),
pp. 109–128.

[34] Gabriel Ebner. “Fast Cut-Elimination using Proof Terms: An Empirical
Study”. In: Proceedings Seventh International Workshop on Classical
Logic and Computation, CL&C 2018, Oxford (UK), 7th of July 2018. Ed.
by Stefano Berardi and AlexandreMiquel. Vol. 281. EPTCS. 2018, pp. 24–
38.

[35] Gabriel Ebner. “Herbrand Constructivization for Automated Intuitionis-
tic Theorem Proving”. In: Automated Reasoning with Analytic Tableaux
and Related Methods - 28th International Conference, TABLEAUX 2019,
London, UK, September 3-5, 2019, Proceedings. Ed. by Serenella Cerrito
and Andrei Popescu. Vol. 11714. Lecture Notes in Computer Science.
Springer, 2019, pp. 355–373.

244

[36] Gabriel Ebner, Stefan Hetzl, Alexander Leitsch, Giselle Reis, and Daniel
Weller. “On the generation of quantified lemmas”. In: Journal of Auto-
mated Reasoning (2018), pp. 1–32.

[37] Gabriel Ebner, Stefan Hetzl, Giselle Reis, Martin Riener, Simon Wolf-
steiner, and Sebastian Zivota. “System Description: GAPT 2.0”. In: In-
ternational Joint Conference on Automated Reasoning (IJCAR). Ed. by
Nicola Olivetti and Ashish Tiwari. Vol. 9706. Lecture Notes in Computer
Science. Springer, 2016, pp. 293–301.

[38] Grigory Fedyukovich, Samuel J Kaufman, and Rastislav Bodík. “Sam-
pling invariants from frequency distributions”. In: 2017 Formal Methods
in Computer Aided Design (FMCAD). IEEE. 2017, pp. 100–107.

[39] Andreas Halkjær From. “Spin – Superposition with Structural Induc-
tion”. Internship report. Technische Universität Wien, 2019.

[40] Adrià Gascón, Guillem Godoy, and Florent Jacquemard. “Closure of
Tree Automata Languages under Innermost Rewriting”. In: Electronic
Notes in Theoretical Computer Science 237 (2009). Proceedings of the
8th International Workshop on Reduction Strategies in Rewriting and
Programming (WRS 2008), pp. 23–38.

[41] Gerhard Gentzen. “DieWiderspruchsfreiheit der reinen Zahlentheorie”.
In: Mathematische Annalen 112 (1936), pp. 493–565.

[42] Gerhard Gentzen. “Neue Fassung des Widerspruchsfreiheitsbeweises
für die reine Zahlentheorie”. In: Forschungen zur Logik und zur Grundle-
gung der exakten Wissenschaften 4 (1938), pp. 19–44.

[43] Gerhard Gentzen. “Untersuchungen über das logische Schließen I”. In:
Mathematische Zeitschrift 39.1 (1935), pp. 176–210.

[44] Sergey Grebenshchikov, Nuno P Lopes, Corneliu Popeea, and Andrey
Rybalchenko. “Synthesizing software verifiers from proof rules”. In:
ACM SIGPLAN Notices. Vol. 47. 6. ACM. 2012, pp. 405–416.

[45] Jacques Herbrand. “Recherches sur la théorie de la démonstration”.
PhD thesis. Université de Paris, 1930.

245

Bibliography

[46] Stefan Hetzl. “Applying Tree Languages in Proof Theory”. In: Language
and Automata Theory and Applications. Ed. by Adrian-Horia Dediu and
Carlos Martín-Vide. Vol. 7183. Lecture Notes in Computer Science.
Springer, 2012, pp. 301–312.

[47] Stefan Hetzl. “Characteristic Clause Sets and Proof Transformations”.
PhD thesis. Technische Universität Wien, 2007.

[48] Stefan Hetzl, Alexander Leitsch, Giselle Reis, Janos Tapolczai, and
Daniel Weller. “Introducing Quantified Cuts in Logic with Equality”. In:
International Joint Conference on Automated Reasonin (IJCAR). Ed. by
Stéphane Demri, Deepak Kapur, and Christoph Weidenbach. Vol. 8562.
Lecture Notes in Computer Science. Springer, 2014, pp. 240–254.

[49] Stefan Hetzl, Alexander Leitsch, Giselle Reis, and Daniel Weller. Algo-
rithmic introduction of quantified cuts. (This preprint contains additional
material on the delta-table algorithm not present in the conference
version from IJCAR.) 2014. url: https://arxiv.org/abs/1401.4330.

[50] Stefan Hetzl, Alexander Leitsch, Giselle Reis, and Daniel Weller. “Al-
gorithmic introduction of quantified cuts”. In: Theoretical Computer
Science 549 (2014), pp. 1–16.

[51] Stefan Hetzl, Alexander Leitsch, and Daniel Weller. “Towards Algorith-
mic Cut-Introduction”. In: Logic for Programming, Artificial Intelligence
and Reasoning (LPAR-18). Vol. 7180. Lecture Notes in Computer Science.
Springer, 2012, pp. 228–242.

[52] Stefan Hetzl, Tomer Libal, Martin Riener, and Mikheil Rukhaia. “Under-
standing Resolution Proofs through Herbrand’s Theorem”. In: 22nd In-
ternational Conference on Automated Reasoning with Analytic Tableaux
and Related Methods, TABLEAUX. 2013, pp. 157–171.

[53] Stefan Hetzl and Lutz Straßburger. “Herbrand-Confluence”. In: Logical
Methods in Computer Science 9.4 (2013).

[54] Stefan Hetzl and Daniel Weller. Expansion Trees with Cut. 2013. url:
https://arxiv.org/abs/1308.0428.

246

https://arxiv.org/abs/1401.4330
https://arxiv.org/abs/1308.0428

[55] Stefan Hetzl and Sebastian Zivota. “Tree Grammars for the Elimination
of Non-prenex Cuts”. In: 24th EACSL Annual Conference on Computer
Science Logic, CSL 2015, September 7-10, 2015, Berlin, Germany. Ed. by
Stephan Kreutzer. Vol. 41. LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2015, pp. 110–127.

[56] Kryštof Hoder, Nikolaj Bjørner, and Leonardo de Moura. “EZ–an effi-
cient engine for fixed points with constraints”. In: International Confer-
ence on Computer Aided Verification. Springer. 2011, pp. 457–462.

[57] Hossein Hojjat and Philipp Rümmer. “The ELDARICA Horn Solver”. In:
2018 Formal Methods in Computer Aided Design (FMCAD). IEEE. 2018,
pp. 1–7.

[58] Guoxiang Huang. “Constructing Craig Interpolation Formulas”. In:
Computing and Combinatorics, First Annual International Conference,
COCOON ’95, Xi’an, China, August 24-26, 1995, Proceedings. Ed. by Ding-
Zhu Du and Ming Li. Vol. 959. Lecture Notes in Computer Science.
Springer, 1995, pp. 181–190.

[59] Harry B. Hunt III, Daniel J. Rosenkrantz, and Thomas G. Szymanski.
“On the Equivalence, Containment, and Covering Problems for the
Regular and Context-Free Languages”. In: Journal of Computer and
System Sciences 12.2 (1976), pp. 222–268.

[60] Florent Jacquemard, Francis Klay, and Camille Vacher. “Rigid tree
automata”. In: Language and Automata Theory and Applications (LATA)
2009. Ed. by Adrian Horia Dediu, Armand-Mihai Ionescu, and Carlos
Martín-Vide. Vol. 5457. Lecture Notes in Computer Science. Springer,
2009, pp. 446–457.

[61] Florent Jacquemard, Francis Klay, and Camille Vacher. “Rigid Tree
Automata and Applications”. In: Information and Computation 209.3
(2011), pp. 486–512.

[62] Bishoksan Kafle, John P Gallagher, and José F Morales. “RAHFT: A tool
for verifying Horn clauses using abstract interpretation and finite tree
automata”. In: International Conference on Computer Aided Verification.
Springer. 2016, pp. 261–268.

247

Bibliography

[63] John C. Kieffer and En-hui Yang. “Grammar Based Codes: A New
Class of Universal Lossless Source Codes”. In: IEEE Transactions on
Information Theory 46.3 (2000), pp. 737–754.

[64] N. Jesper Larsson and Alistair Moffat. “Offline Dictionary-Based Com-
pression”. In: Data Compression Conference (DCC 1999). IEEE Computer
Society, 1999, pp. 296–305.

[65] Markus Lohrey, Sebastian Maneth, and Roy Mennicke. “XML tree struc-
ture compression using RePair”. In: Information Systems 38.8 (2013),
pp. 1150–1167.

[66] Horst Luckhardt. “Herbrand-Analysen zweier Beweise des Satzes von
Roth: Polynomiale Anzahlschranken”. In: The Journal of Symbolic Logic
54.1 (1989), pp. 234–263.

[67] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. “Open-WBO: A
Modular MaxSAT Solver,” in: Theory and Applications of Satisfiability
Testing - SAT 2014. 2014, pp. 438–445.

[68] Kenneth L.McMillan. “An interpolating theoremprover”. In: Theoretical
Computer Science 345.1 (2005), pp. 101–121.

[69] Kenneth L. McMillan and Andrey Rybalchenko. Solving Constrained
Horn Clauses using Interpolation. Tech. rep. MSR-TR-2013-6. Microsoft
Research, 2013.

[70] Albert R. Meyer and Larry J. Stockmeyer. “The Equivalence Problem
for Regular Expressions with Squaring Requires Exponential Space”.
In: 13th Annual Symposium on Switching and Automata Theory, College
Park, Maryland, USA, October 25-27, 1972. IEEE Computer Society, 1972,
pp. 125–129.

[71] Dale A. Miller. “A Compact Representation of Proofs”. In: Studia Logica
46.4 (1987), pp. 347–370.

[72] John Myhill. Finite automata and the representation of events. Tech. rep.
WADD TR-57-624. Wright Patterson AFB, Ohio, 1957.

[73] Anil Nerode. “Linear Automaton Transformations”. In: Proceedings of
the American Mathematical Society 9.4 (1958), pp. 541–544.

248

[74] John von Neumann. “Eine Axiomatisierung der Mengenlehre”. In: Jour-
nal für die reine und angewandte Mathematik 154 (1925), pp. 219–240.

[75] Craig G. Nevill-Manning and Ian H. Witten. “Identifying Hierarchi-
cal Structure in Sequences: A Linear-Time Algorithm”. In: Journal of
Artificial Intelligence Research 7 (1997), pp. 67–82.

[76] Jens Otten. “leanCoP 2.0 and ileanCoP 1.2: High Performance Lean The-
orem Proving in Classical and Intuitionistic Logic”. In: 4th International
Joint Conference on Automated Reasoning, IJCAR. 2008, pp. 283–291.

[77] Christos H Papadimitriou. Computational complexity. John Wiley and
Sons Ltd., 2003.

[78] Frank Pfenning. “Analytic and Non-analytic Proofs”. In: 7th Interna-
tional Conference on Automated Deduction, CADE. Ed. by Robert E.
Shostak. Vol. 170. Lecture Notes in Computer Science. Springer, 1984,
pp. 394–413.

[79] Gordon D. Plotkin. “A further note on inductive generalization”. In:
Machine Intelligence 6 (1971), pp. 101–124.

[80] Gordon D. Plotkin. “A note on inductive generalization”. In: Machine
Intelligence 5.1 (1970), pp. 153–163.

[81] Emil L Post. “A variant of a recursively unsolvable problem”. In: Bulletin
of the American Mathematical Society 52.4 (1946), pp. 264–268.

[82] Giselle Reis. “Importing SMT and Connection proofs as expansion
trees”. In: Fourth Workshop on Proof eXchange for Theorem Proving,
PxTP. 2015, pp. 3–10.

[83] John C. Reynolds. “Transformational systems and the algebraic struc-
ture of atomic formulas”. In: Machine Intelligence 5.1 (1970), pp. 135–
151.

[84] Neil Robertson and Paul D. Seymour. “Graph Minors. II. Algorithmic
Aspects of Tree-Width”. In: Journal of Algorithms 7.3 (1986), pp. 309–
322.

[85] Jan J. M. M. Rutten. “Relators and Metric Bisimulations”. In: Electronic
Notes in Theoretical Computer Science 11 (1998), pp. 252–258.

249

Bibliography

[86] Sherif Sakr. “XML compression techniques: A survey and comparison”.
In: Journal of Computer and System Sciences 75.5 (2009), pp. 303–322.

[87] Stephan Schulz. “System Description: E 1.8”. In: 19th International Con-
ference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR). Ed. by Ken McMillan, Aart Middeldorp, and Andrei Voronkov.
Vol. 8312. LNCS. Springer, 2013.

[88] Raymond M. Smullyan. First-order logic. 1968.

[89] William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. “Zeno:
An Automated Prover for Properties of Recursive Data Structures”. In:
Tools and Algorithms for the Construction and Analysis of Systems - 18th
International Conference, TACAS 2012. Ed. by Cormac Flanagan and
Barbara König. Vol. 7214. Lecture Notes in Computer Science. Springer,
2012, pp. 407–421.

[90] Larry J. Stockmeyer and Albert R. Meyer. “Word Problems Requiring
Exponential Time: Preliminary Report”. In: Symposium on Theory of
Computing. Ed. by Alfred V. Aho, Allan Borodin, Robert L. Constable,
Robert W. Floyd, Michael A. Harrison, Richard M. Karp, and H. Ray-
mond Strong. ACM, 1973, pp. 1–9.

[91] James A. Storer and Thomas G. Szymanski. “Data Compression via
Textual Substitution”. In: Journal of the ACM 29.4 (1982), pp. 928–951.

[92] James A. Storer and Thomas G. Szymanski. “The Macro Model for Data
Compression (Extended Abstract)”. In: Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing (STOC ’78). New York, NY,
USA: ACM, 1978, pp. 30–39.

[93] G. Sutcliffe. “The TPTP World - Infrastructure for Automated Reason-
ing”. In: Proceedings of the 16th International Conference on Logic for
Programming Artificial Intelligence and Reasoning. Ed. by E. Clarke and
A. Voronkov. Lecture Notes in Artificial Intelligence 6355. Springer-
Verlag, 2010, pp. 1–12.

[94] Geoff Sutcliffe. “The TPTP Problem Library and Associated Infras-
tructure: The FOF and CNF Parts, v3.5.0”. In: Journal of Automated
Reasoning 43.4 (2009), pp. 337–362.

250

[95] William Walker Tait. “Normal derivability in classical logic”. In: The
syntax and semantics of infinitary languages. Vol. 72. Springer, 1968,
pp. 204–236.

[96] O. Tange. “GNU Parallel - The Command-Line Power Tool”. In: ;login:
The USENIX Magazine 36.1 (Feb. 2011), pp. 42–47.

[97] Grigori S. Tseitin. “On the complexity of derivation in propositional cal-
culus”. In: Automation of Reasoning: Classical Papers in Computational
Logic. Vol. 2. Springer, 1983, pp. 466–483.

[98] Zsolt Tuza. “On the context-free production complexity of finite lan-
guages”. In: Discrete Applied Mathematics 18.3 (1987), pp. 293–304.

[99] Andrei Voronkov. “AVATAR: The Architecture for First-Order Theorem
Provers”. In: 26th International Conference on Computer Aided Verifi-
cation, CAV 2014. Ed. by Armin Biere and Roderick Bloem. Vol. 8559.
Lecture Notes in Computer Science. Springer, 2014, pp. 696–710.

[100] ChristophWeidenbach. “Combining Superposition, Sorts and Splitting”.
In:Handbook of Automated Reasoning. Ed. by Alan Robinson and Andrei
Voronkov. Vol. 2. 2001. Chap. 27, pp. 1965–2013.

[101] ChristophWeidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar,
Martin Suda, and Patrick Wischnewski. “SPASS Version 3.5”. In: 22nd
International Conference on Automated Deduction (CADE). Ed. by Renate
A. Schmidt. Vol. 5663. Lecture Notes in Computer Science. Springer,
2009, pp. 140–145.

[102] Christoph Wernhard. “The Boolean Solution Problem from the Per-
spective of Predicate Logic”. In: Frontiers of Combining Systems - 11th
International Symposium, FroCoS 2017, Brasília, Brazil, September 27-29,
2017, Proceedings. Ed. by Clare Dixon and Marcelo Finger. Vol. 10483.
Lecture Notes in Computer Science. Springer, 2017, pp. 333–350.

[103] He Zhu, Stephen Magill, and Suresh Jagannathan. “A data-driven CHC
solver”. In: ACM SIGPLAN Notices. Vol. 53. 4. ACM. 2018, pp. 707–721.

251

Curriculum vitae

Gabriel Ebner
gebner@gebner.org

https://gebner.org

Academic background

MSc in mathematics 2015
Technische Universität Wien, Austria
Topic: Finding loop invariants using tree grammars
Advisor: Stefan Hetzl

BSc in mathematics 2013
Technische Universität Wien, Austria
Topic: The Solovay model
Advisor: Martin Goldstern

Professional experience

Vrije Universiteit Amsterdam, The Netherlands 2019–2021
Faculty of Science, Theoretical Computer Science
Researcher

Technische Universität Wien, Austria 2014–2019
Institute for Discrete Mathematics and Geometry
Project assistant

Catalysts GmbH, Austria 2011, 2013–2015
Software engineer

253

mailto:gebner@gebner.org
https://gebner.org/

Curriculum vitae

Short research stays

Carnegie Mellon University 2016
Host: Jeremy Avigad

Journal articles

On the generation of quantified lemmas 2019
(with S. Hetzl, A. Leitsch, G. Reis, and D. Weller)
Journal of Automated Reasoning 63(1), 2019

Algorithmic compression of finite tree languages by 2017
rigid acyclic grammars
(with S. Eberhard and S. Hetzl)
ACM Transactions on Computational Logic 18(4), 2017

Conference papers

Maintaining a library of formal mathematics 2020
(with F. van Doorn and R. Y. Lewis)
13th Conference on Intelligent Computer Mathematics (CICM 2020),
Benzmüller C. and Miller B. (eds.)

Herbrand constructivization for 2019
automated intuitionistic theorem proving
28th International Conference onAutomated ReasoningwithAnalytic Tableaux
and Related Methods (TABLEAUX 2019),
S. Cerrito and A. Popescu (eds.)

Complexity of decision problems on totally rigid acyclic tree grammars 2018
22nd International Conference on Developments in Language Theory
(DLT 2018),
Hoshi M. and Seki S. (eds.)

254

A metaprogramming framework for formal verification 2017
(with S. Ullrich, J. Roesch, J. Avigad, and L. de Moura)
22nd ACM SIGPLAN International Conference on Functional Programming
(ICFP 2017)

System description: GAPT 2.0 2016
(with S. Hetzl, G. Reis, M. Riener, S. Wolfsteiner, and S. Zivota)
8th International Joint Conference on Automated Reasoning (IJCAR 2016),
N. Olivetti and A. Tiwari (eds.)

Peer-reviewed workshop papers

Fast cut-elimination using proof terms: an empirical study 2018
7th International Workshop on Classical Logic and Computation (CL&C 2018),
S. Berardi and A. Miquel (eds.)

Efficient translation of sequent calculus proofs
into natural deduction proofs 2018
(with M. Schlaipfer)
6th Workshop on Practical Aspects of Automated Reasoning (PAAR 2018),
B. Konev, J. Urban, and P. Rümmer (eds.)

Membership in program committees

13th NASA Formal Methods Symposium (NFM) 2021

7th Workshop on Practical Aspects of Automated Reasoning (PAAR) 2020

22nd Symposium on Practical Aspects of Declarative Languages (PADL) 2020

255

Curriculum vitae

Funding

Cloud computing for Lean’s mathlib 2020
Microsoft Research Azure grant
Joint PI with R. Y. Lewis

Teaching

Logical Verification 2020
MSc course, Vrije Universiteit Amsterdam
Lecture together with J. C. Blanchette and R. Y. Lewis

Algebra and Discrete Mathematics 2015
Analysis 2012
Analysis 2 2012
Algebra and Discrete Mathematics 2011
Exercise part of BSc courses for computer science students,
Technische Universität Wien

256

	Introduction
	Proofs with induction
	Calculus
	Cut- and induction-reduction
	Cut-free proofs and tree languages
	Term encoding of formulas
	Vectorial totally rigid acyclic tree grammars
	Derivations in VTRATGs
	Grammars for simple proofs
	Grammars for simple induction proofs
	Simple induction problems
	Simple induction proofs
	Induction grammars

	Reversing cut- and induction-elimination
	Regularity and reconstructability

	Decision problems on grammars
	Computational complexity and the polynomial hierarchy
	Membership
	Emptiness
	Containment
	Disjointness
	Equivalence
	Minimal cover
	Minimal cover for terms
	Minimal cover for words

	Minimization
	Decision problems on Herbrand disjunctions
	The treewidth measure on graphs
	The case of bounded treewidth
	Membership
	Emptiness
	Containment
	Disjointness
	Equivalence
	Minimization
	Cover

	Decision problems on induction grammars
	Membership
	Emptiness
	Containment
	Disjointness
	Equivalence
	Minimization
	Cover

	Practical algorithms to find small covering grammars
	Least general generalization and matching
	Delta-table
	The delta-vector
	The delta-table
	Incompleteness
	Row-merging

	Using MaxSAT
	Rewriting grammars
	Stable terms
	Stable grammars
	Computing all stable terms
	Minimization

	Induction grammars
	Reforest
	TreeRePair
	Adaptation to tree languages

	Experimental evaluation

	Formula equations and decidability
	Formula equations
	Solvability of VTRATGs
	Solvability of induction grammars
	Decidability and existence of solutions
	Examples of difficult formula equations
	Solution algorithm using forgetful inference
	Solution algorithm using interpolation

	Algorithm for proof import
	Resolution proofs
	Expansion proofs
	Extraction
	Definition elimination
	Complexity
	Empirical evaluation
	Direct elimination of Avatar-inferences

	Implementation and evaluation
	Refinement loop to find induction grammars
	Implementation
	Evaluation as automated inductive theorem prover
	Evaluation of reversal of induction-elimination
	Case study: doubling

	Conclusion
	Bibliography

