
Aligning ontologies describing
computer science for patents and

scientific papers

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Data Science

eingereicht von

Hannes Marcher, BSc
Matrikelnummer 11776841

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Allan Hanbury

Wien, 26. Jänner 2023
Hannes Marcher Allan Hanbury

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Aligning ontologies describing
computer science for patents and

scientific papers

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Data Science

by

Hannes Marcher, BSc
Registration Number 11776841

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Allan Hanbury

Vienna, 26th January, 2023
Hannes Marcher Allan Hanbury

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Hannes Marcher, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26. Jänner 2023
Hannes Marcher

v

Danksagung

An dieser Stelle ist es nun an der Zeit, mich bei einigen Personen zu bedanken.

Besonders bedanke ich mich bei Univ. Prof. Dr. Allan Hanbury für die Unterstützung sowie
die Bereitstellung dieses spannenden Themas. Ich bedanke mich für das Feedback sowie
die Freiheiten, welche mir während der Ausarbeitung dieser Diplomarbeit eingeräumt
worden sind. Ohne ihn wäre diese Diplomarbeit niemals zustande gekommen.

Ich möchte hier auch ganz bewusst meiner Familie, insbesondere meinen Eltern, danken.
Danke für eure umfangreiche Unterstützung während der letzten Jahre. Ihr wart mir
immer eine große Stütze, wobei ohne euch mein Studium in dieser Form so nicht möglich
gewesen wäre.

vii

Acknowledgements

At this point it is time to thank some people.

I want to especially thank Allan Hanbury for the support and the provision of this
exciting topic. I am thankful for the constructive feedback as well as the freedoms that
were granted to me during the elaboration of this thesis. Without him, this work would
never have been accomplished.

I would also like to consciously thank my family here, especially my parents. Thank you
for your extensive support during the last years. You have been a great support to me.
Without you, my studies would not have been possible in this form.

ix

Kurzfassung

Ontologien stellen den Grundstein des Semantic Web dar und ermöglichen die explizite
Spezifikation von Konzeptualisierungen. An der Erstellung und Wartung von Ontologien
sind eine Vielzahl unterschiedlicher Organisationen beteiligt. Da jede Organisation einen
anderen Blickwinkel hat, sind selbst Ontologien über ähnliche Bereiche recht heterogen.
Dadurch entsteht eine semantische Lücke zwischen verschiedenen Ontologien, die durch die
Erstellung sogenannter Ontology Alignments geschlossen werden kann. In der Regel werden
solche Alignments zwischen Ontologien mithilfe automatisierter Ontology Alignment
Systeme generiert.

Das Hauptziel dieser Masterarbeit ist zweigeteilt. Zum einen werden in dieser Arbeit
Ontology Alignment Systeme aus der Literatur auf ihre Anwendbarkeit zur Erstellung
eines Alignments zwischen der Patentontologie CPC und den beiden Informatikontologien
CCS und CSO geprüft. Zum anderen wurden zwei Alignments erstellt, ein Alignment
zwischen CPC und CCS und ein weiteres Alignment zwischen CPC und CSO unter der
Verwendung zweier geeigneter Ontology Alignment Systeme.

In einem ersten Schritt führt diese Arbeit eine Literaturrecherche durch, um vielver-
sprechende Systeme zu ermitteln. Das Ergebnis besteht aus einer Reihe an Ontology
Alignment Systemen, welche alle Voraussetzungen erfüllen, um Alignments zwischen den
oben genannten Ontologien zu erstellen.

In einem weiteren Schritt wird die Leistung jedes Ansatzes auf einem manuell erstellten
Referenzdatensatz sowie auf dem Anatomie-Anwendungsfall der Ontology Alignment
Evaluation Initiative ermittelt. Die Leistung wird hierbei in Form von Precision, Recall
sowie F1-Score gemessen.

Final werden dann die endgültigen Alignments, welche mit den vielversprechendsten
Ansätzen erzeugt wurden, vorgestellt. Das Ergebnis dieses Schrittes besteht aus einer
Bewertung der beiden Alignments unter Verwendung von approximierten Precision, Recall
und F1-Score Maßen.

Die Hauptergebnisse dieser Arbeit sind: (a) Die State-of-the-Art Systeme LogMap und
AML sind am besten geeignet, um Alignments zwischen CPC und CCS bzw. CPC und
CSO zu erstellen. (b) Die generierten Alignments stellen einen nützlichen ersten Schritt
dar. Sie reichen jedoch nicht aus, um die semantische Lücke zwischen diesen Ontologien
zu schließen.

xi

Abstract

Ontologies are the core of the Semantic Web and enable the explicit specification of
conceptualizations. A large variety of different communities are involved in the generation
and maintenance of ontologies. Because each community has a different perspective, even
ontologies about similar domains are quite heterogeneous. This imposes a semantic gap
between different ontologies which can be addressed through the creation of ontology
alignments. Typically, alignments between ontologies are generated through ontology
alignment systems - automated tools to generate such alignments.

The major aim of this master thesis is two folded. First, this work compares ontology
alignment systems from the literature towards their applicability to align the patent
ontology CPC with the two computer science ontologies CCS and CSO. Second, two
alignments were created, one between CPC and CCS and one between CPC and CSO
using two suitable ontology alignment systems.

As the initial step, this thesis conducts a literature review to elicit promising ontology
alignment systems. The outcome is a set of ontology alignment systems that fit the
characteristics of the use case of this thesis.

Next, this thesis presents the performance of each approach on a manually created ground
truth as well as on the Anatomy test case of the Ontology Alignment Evaluation Initiative.
The outcome comprises a comparison using precision, recall, and f1-score.

Third, the characteristics of the final alignments that have been generated using the most
promising approaches, are presented. The result of this step consists of an evaluation
of the two alignments, i.e. one alignment between CPC and CCS and one alignment
between CPC and CSO, using estimated precision, recall, and f1-score measures.

The major results of this thesis are: (a) The State-of-the-Art matchers LogMap and
AML are most suited to align CPC with CCS and CPC with CSO, respectively. (b) The
alignments represent a useful first building block in aligning the patent ontology CPC
with the computer science ontologies CCS and CSO, but they are not sufficient to bridge
the semantic gap between these ontologies.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation & Problem Description . 2
1.2 Aim of the Work . 3
1.3 Research Issues . 3
1.4 Code Base . 6
1.5 Structure of the Work . 7

2 Preliminaries 9
2.1 Ontologies . 9
2.2 Ontology Alignments . 10
2.3 Ontology Alignment Systems . 11

3 Use Case 13
3.1 ACM Computing Classification System 13
3.2 Computer Science Ontology . 14
3.3 Cooperative Patent Classification System 15
3.4 Observations . 17

4 Ontology Alignment Approaches 21
4.1 Literature Survey . 21
4.2 Identified Ontology Alignment Systems 26
4.3 Summary . 41

5 Experiments on Ground Truth 43
5.1 Ground Truths / Reference Alignments 43
5.2 Parameter Space . 46
5.3 Alignment Evaluation Criteria . 47
5.4 Hardware . 48

xv

5.5 Results on CPC-CCS . 48
5.6 Results on CPC-CSO . 52
5.7 Results on Anatomy . 53
5.8 Approach Selection . 55
5.9 Summary . 57

6 Analysis of Final Alignments 59
6.1 Approximating Metrics . 59
6.2 Manual Assessment . 61
6.3 Results . 62
6.4 Summary . 65

7 Summary 67
7.1 Conclusion & Limitations . 67
7.2 Outlook . 68

List of Figures 71

List of Tables 73

Acronyms 75

Bibliography 77

CHAPTER 1
Introduction

The Semantic Web is an established infrastructure to share knowledge on the web [1].
Ontologies serve as the core for the Semantic Web [1] and enable the explicit specification
of conceptualizations [2]. Different communities design and maintain ontologies. Because
each community has a different perspective, it is common that even ontologies about
similar domains are represented quite differently [3]. It might, for instance, happen that
independent communities use the same words to describe different concepts, as well as
utilize different words to refer to the same concept [4]. This imposes a semantic gap
between different ontologies. This semantic gap might be tackled through discovering
mappings between ontologies that contain overlapping representations of the same domain
[3]. A set of these mappings is often referred to as an ontology alignment. Manually
finding such relations is tedious, error-prone, and not feasible when considering the scale
of modern ontologies [5]. Therefore, automated tools are crucial in finding alignments
between ontologies. These tools are often referred to as ontology alignment systems
or ontology matching systems. Typically, such systems map concepts from a source
ontology to concepts from a target ontology, thus bridging the semantic gap between two
ontologies.
This thesis investigates ontology alignment in the context of three taxonomies that are
all to some extent related to computer science. The first ontology represents a patent
classification scheme, the second and third ontologies represent taxonomies to categorize
computer science publications. The overall goal is to find suitable ontology alignment
systems to align the patent ontology with both computer science research ontologies.
This chapter introduces the reader to the problem domain and the research aim. Section
1.1 justifies this work through providing the concrete problem description. In the
subsequent section the major goals are outlined. Section 1.3 then defines the research
questions and proposes a research roadmap to reach the envisioned goals. The fourth
section gives a very brief overview of the open source repository that underlies this work.
The chapter then concludes in Section 1.5 by outlining the structure of this thesis.

1

1. Introduction

1.1 Motivation & Problem Description
Scientific papers are often labeled according to terms taken from ontology classes. In the
field of computer science, two prominent ontologies are the ACM Computing Classification
System (CCS) 1 and the Computer Science Ontology (CSO) 2. While the CCS ontology
consists of only roughly 2K research topics, the CSO is much larger, i.e. it contains about
26K research topics and 226K semantic relationships [6]. On the other hand, patents are
the practical application of technology [7] and also often labeled according to ontologies.
A very prominent ontology in this field is the Cooperative Patent Classification (CPC) 3.
The CPC consists of nine sections, that are further split into classes, subclasses, groups,
and subgroups. The whole CPC ontology consists of roughly 250K classes [8].

Knowing which ontology classes of CPC correspond to which classes from CCS and CSO,
i.e. between patent categories and computer science research areas, is very desired when
it comes to various analysis tasks. For example, Kotti et al. [7] investigated to what
extent scientific work in the field of software engineering impacts industry. Knowing
which ontology class in CPC corresponds to which ontology class(es) in CCS and CSO
would facilitate similar analysis approaches. However, these three ontologies have quite
different structures and deviate in various characteristics, such as in their granularity, their
categorization schemes, their number of classes, and so on. Due to this heterogeneity and
the huge sizes of these ontologies, it is a non-trivial task to find corresponding ontology
classes. This is where Challenge 1 of this thesis arises, i.e. it is not clear which ontological
concepts form CPC correspond to which ontological concepts in CCS and CSO.

One way to bridge this gap would be to search manually for correspondences. For example,
assume one would like to know which class(es) in CPC correspond(s) to the concept
model driven development of CSO, then one might conduct a tedious and time-consuming
manual search. While this approach is definitely doable for a few classes, it becomes
infeasible when the number of classes increases. Additionally, such a manual procedure
is tedious and error-prone [5].

Ontology Alignment (OA) (or equivalently, ontology matching) techniques aim at finding
semantically related entities from two ontologies [9] and are, therefore, a natural fit to
this problem domain. OA systems play an important role in knowledge engineering, and
represent a key technique for ontology integration and quality assurance [10, 11]. In the
literature one can find a large variety of OA approaches whereby, in general, there is no
single best approach. For example, during the Ontology Alignment Evaluation Initiative
(OAEI) 4 (a yearly held competition aiming at evaluating OA systems on various test
cases) campaign of 2021 no OA approach was the best in all instances [12]. Thus, it is
ad-hoc not clear which OA approach is appropriate to align CPC with CCS and CPC
with CSO - Challenge 2.

1https://dl.acm.org/ccs
2https://cso.kmi.open.ac.uk/home
3https://www.cooperativepatentclassification.org/home
4http://oaei.ontologymatching.org/

2

1.2. Aim of the Work

1.2 Aim of the Work
According to the identified challenges from the previous section, the major outcome of
this thesis is two-folded.

Comparison of Ontology Alignment Approaches. The first major outcome of
this thesis comprises a comparison between various OA approaches that expresses the
applicability of the related approaches to the problem domain of this thesis, thus address-
ing Challenge 2 identified in the previous section. To identify candidate OA systems,
a structured literature review has been conducted. As comparison metrics precision,
recall, and f1-score have been chosen. Further, to gauge problem-specific performance
figures, the comparison has been performed on two manually created ground truths to
test the applicability of the approaches on CPC-CCS resp. CPC-CSO. In addition, to
grasp scalability and to have another, problem-independent, performance measure, the
approaches were also evaluated on a publicly available dataset from the literature.

Alignment between CPC-CCS as well as between CPC-CSO. The second
major outcome consists of two full alignments, i.e. one alignment between CPC and
CCS, as well as one alignment between CPC and CSO - addressing Challenge 1 depicted
in Section 1.1. The respective alignments were generated using the best performing
approaches from the previous outcome. Due to the huge solution space and the large
size of the final alignments (i.e. number of correspondences that are contained within an
alignment), it is not possible to compute the exact precision, recall, and f1-score values.
Instead, the performance measures were approximated through procedures known from
literature.

1.3 Research Issues
To obtain the outlined contributions from the previous section, this section formulates
three research issues that were elaborated in this thesis. Figure 1.1 depicts the research
roadmap that is further detailed in the remainder of this section. The squares in the figure
represent steps, the solid arrows indicate the order in which the steps were elaborated,
and the dashed arrows indicate at which step the research questions were answered.

1.3.1 RI-1: Identification of Ontology Alignment Systems
As Section 1.1 already mentioned, there exists a large pool of different OA systems. The
performance of these systems is potentially very different depending on the use case (see
for example the performances of OAEI participants such as in the competition of 2021
[12]). Due to this consideration it is a-priori not clear which OA system is suited to align
the ontologies of this thesis. Additionally, many of the systems from the literature are not
openly available, therefore evaluating an approach might not be as straight-forward as it
initially may appear. This is why a structured approach is necessary to elicit promising

3

1. Introduction

Figure 1.1: Basic research roadmap for this thesis

OA systems from the literature that are applicable to a particular problem domain. To
address this issue, the question that needs to be asked is:

RQ1: What are candidate Ontology Alignment (OA) approaches from the literature that
are applicable to this problem domain?

To answer RQ1 two steps were defined: (a) Use Case Analysis and (b) Literature Survey.

Use Case Analysis. During the use case analysis the characteristics of each ontology
have been investigated. An example for such characteristics might be the structure
of the individual ontologies. For instance, if CPC would have a significantly different
structure than CSO, then certain types of OA systems might be excluded. Based on
these characteristics requirements for OA systems were formulated.

Literature Survey. To identify OA systems that fulfill the requirements elicited
during the use case analysis and are, therefore, feasible to align CPC-CCS and CPC-CSO,
a systematic review was conducted. Biolchini et al. [13] proposed a review protocol
template for the software engineering domain. This protocol is based on guidelines
proposed by Kitchenham [14] and on the protocol example found in [15]. In this work

4

1.3. Research Issues

an adapted/simplified version of [13] was used. The outcome of the literature survey
consists of a set of OA systems that are applicable to the problem domain of this thesis.

1.3.2 RI-2: Comparison of Ontology Alignment Systems
The outcome of RQ1 is a set of OA approaches. When initially identifying these
approaches, they had unknown power with regard to this problem domain. Therefore,
it is necessary to conduct an evaluation that is problem-specific, thus giving rise to the
next research question:

RQ2: What is the performance of the identified Ontology Alignment (OA) approaches on
this problem domain?

The elaboration of this research question was divided into three steps: (a) Ground Truths,
(b) Implementation, and (c) Evaluation.

Ground Truths. The first step in elaborating RQ2 consisted in creating two ground
truths that are specific to this problem domain - one for CPC-CCS and one for CPC-
CSO. To create a high quality ground truth, it was necessary to specify a particular
domain, such that the size of the ontologies becomes reasonable for manual inspection. As
domain Software Engineering has been chosen. Afterwards, a subset of each ontology was
constructed that represents that particular domain. Having obtained a subset for each
ontology, i.e. for CPC, CCS, and CSO, it was possible to check which ontological concept
of the CPC subset corresponds to which concept from the CCS/CSO subset. Thus,
arriving at two reference alignments, one for CPC-CCS subset and one for CPC-CSO
subset. These reference alignments in conjunction with the related subsets form the
ground truths.

Besides these manually created ground truths, the OA approaches were also compared
against each other on the Anatomy test case of the OAEI. As the underlying ontologies of
the Anatomy test case are much larger than the CPC/CCS/CSO subsets, the performance
and runtime on this dataset was used to measure the scalability and to have another,
problem-independent, performance indication for each approach.

Implementation. During the second step in elaborating RQ2, the approaches identified
during the literature survey have been implemented. Additionally to the implementation
tasks, several of these OA systems have been parameterized to be able to compare the
performance of different configurations of the same system.

Evaluation. The implementations from the previous step have then been used during
this step to compare the various OA approaches. For that sake, the approaches have
been evaluated based on precision, recall, and f1-score - similar to the OAEI [12]. As
underlying datasets for the evaluation, the manually created ground truths and the
Anatomy test case from the OAEI have been used. The outcome of this step consists of
performance and runtime indications for each OA approach. Based on these performance

5

1. Introduction

measures, it is then argued which OA systems were eventually employed to generate the
final two alignments, i.e. between CPC and CCS and between CPC and CSO.

1.3.3 RI-3: Aligning CCS with CPC and CSO with CPC

To the best of our knowledge, there has been no alignment generated between CPC and
CCS, nor between CPC and CSO in any previous work. This research question aims at
generating and assessing the quality for an auto-generated CPC-CCS alignment as well
as for an auto-generated CPC-CSO alignment. To this extent, the following research
question was formulated:

RQ3: What is the performance of the best performing approach on the ground truth when
applying it to generate a full alignment between CPC and CCS/CSO?

To address the above research question, two steps have been formulated: (a) Generation
of Alignments, and (b) Evaluation of Alignments.

Generation of Alignments. The initial step in elaborating RQ3 was to apply the
approach with the best performance on the CPC-CCS ground truth to align CPC with
CCS. Analogously, a full alignment between CPC and CSO was generated. The outcome
of this step comprises two alignments, one for CPC-CCS and one for CPC-CSO.

Evaluation of Alignments. Besides the ground truths, there are no gold standards
available on which the resulting alignments might have been evaluated. Therefore, in
order to evaluate the quality of the alignments, a similar approach was considered as in
[16]. The key idea of this evaluation approach is to approximate precision, recall, and
f1-score through manually assessing the correctness of randomly selected correspondences
of an alignment. The outcome of this step are quality indications for the two final
alignments.

1.4 Code Base
To make the descriptions within this thesis as transparent and reproducible as possible,
the major documents and all the code base can be found under at the related GitHub
repository5.

In a nutshell it contains the results of the literature review, the ground truths with
justifications, the implementation of each OA system, the result of the evaluation on the
ground truths, the full alignments between CPC and CCS as well as between CPC and
CSO, and the evaluation results of the full alignments. Moreover, a Dockerfile exists for
each approach that allows the execution of each approach in a convenient way.

5https://github.com/hannesmarcher/msc_thesis

6

1.5. Structure of the Work

1.5 Structure of the Work
While this chapter introduced the problem domain, the aim, as well as the research
approach for this thesis, the remainder of this thesis is structure as follows:

Chapter 2 clarifies the fundamental concepts that are necessary to fully comprehend
the subsequent chapters. It defines in a formal way what an ontology is, what ontology
alignments are, and what ontology alignment systems are.

Afterwards, Chapter 3 describes the use case (i.e. CPC, CCS, and CSO ontologies) in
conjunction with the conducted preprocessing steps as well as eliciting several observations
that were relevant for the literature survey.

Chapter 4 presents the procedure of the structured literature review as well as the
outcome, i.e. a set of OA systems that are capable of aligning CPC with CCS and CPC
with CSO. This set of OA systems is described in detail and represents the major outcome
of this chapter. Thus, it answers the first research question RQ1.

Chapter 5 delivers all the performances of the elicited OA systems on the ground truths
as well as on the third-party dataset Anatomy. The obtained results form the answer of
the second research question RQ2. Based on these results, the chapter concludes with the
identification of two suitable OA system, i.e. one for CPC-CCS and one for CPC-CSO.

Chapter 6 evaluates the final alignments and lists various characteristics of the respective
alignments. For that sake, the chapter approximates precision, recall, and f1-score for
the two final alignments. The results of that chapter address the third research question
RQ3.

Finally, Chapter 7 concludes the thesis and presents possible directions for future work.

7

CHAPTER 2
Preliminaries

Chapter 1 introduced the reader to the problem domain, the research issues, and how
the research issues are tackled in this work. Before continuing with Chapter 3, which
describes the underlying ontologies as well as the conducted use case analysis, we provide
a summary of foundational concepts as well as define the terminology that is used in the
remainder of this thesis.

Section 2.1 defines what an ontology is. Next, Section 2.2 defines formally what an
Ontology Alignment (OA) is, as well as justifying the need for having OAs. Section 2.3
provides the reader with a high level overview about OA systems in conjunction with a
classification scheme.

2.1 Ontologies
An ontology may be formally defined as [9, 17]:

O = (C, DP, OP, I) (2.1)

where:

• C represents a set of classes
• DP stands for data properties that are assigned to classes
• OP is a set of object properties that describe the relation between the classes
• I is a set of instances

All ontologies in this thesis are expressed through Web Ontology Language (OWL) that
in turn is built upon the Resource Description Framework (RDF). In a nutshell, RDF is
essentially a data model used to describe directed graphs through triples [18]. Each triple
consists of a subject (node), a predicate (edge), and an object (node) [18]. Subjects and

9

2. Preliminaries

Figure 2.1: The matching process [9]

predicates are typically represented through URIs, while an object may either consist
of an URI or a literal [18]. OWL is a superset of RDF that provides many additional
capabilities, such as cardinality constraints or disjointness relations [19]. Further, OWL
has been widely used in many domains [20, 21, 22].

2.2 Ontology Alignments
The semantic web is a heavily distributed and open system, therefore heterogeneity is
inevitably the case [9]. The aim of OA, i.e. matching of ontologies, is to reduce this
heterogeneity [9].

There exist many formalization for the OA process and its result [9]. In [9], the matching
process is seen as a function f that returns an alignment A′ from two input ontologies
O and O′ (defined in definition 2.1), an initial (possibly empty) alignment A, a set of
parameters P , and a set of oracles and resources R:

A′ = f(O, O′, A, P, R) (2.2)

Figure 2.1 illustrates definition 2.2.

The outcome of the matching process is an Ontology Alignment (OA) between the two
ontologies O and O′. An OA may formally be defined as a set of 4-tuples (correspondence)
[23]:

< e, e′, r, n > (2.3)

where

10

2.3. Ontology Alignment Systems

• e ∈ O and e′ ∈ O′ represent the two matched entities that may be classes, instances,
properties, etc.

• r is the relationship that holds between e and e′, typically either equivalence (=),
subsumption (⊂), or disjointness (⊥)

• n indicates the confidence for the mapping, i.e. a floating point number between 0
and 1

Such a 4-tuple is referred to in this thesis as a correspondence, a mapping, or a match. A
collection of such 4-tuples is referred to as an alignment. Further, this thesis is restricted
to alignments between classes and equivalence mappings, i.e. e representing always a
class, and r is always equal to =. Also, the term concept is here used interchangeably
with the term class.

Another important distinction that arises from definition 2.3, is the distinction between
one-to-one alignments and many-to-many alignments. As the name already suggests, in a
one-to-one alignment each ontological concept from O (source ontology) as well as from O′

(target ontology) appears in at most one correspondence. In a many-to-many alignment,
on the contrary, each entity e ∈ O ∪ O′ may appear in multiple correspondences. In a
similar way, one can also define one-to-many and many-to-one alignments.

2.3 Ontology Alignment Systems
To generate OAs as defined in definition 2.3, a branch of research has been formed that
is about the design of approaches that are capable of generating alignments between
ontologies. Note, this work uses the terms matcher, OA approach, OA technique, OA
solution, OA system interchangeably. The aim of this section is to provides a high level
overview about different types of OA systems.

Rahm and Bernstein [24] proposed a classification scheme for OA approaches that is
widely used [25]. OA systems are distinguished along the following dimensions: schema-
level matching vs. instance-level matching and element-level matching vs. structure-level
matching [24, 9, 26, 25].

Schema-level OA systems use exclusively schema information about an ontology [24, 25],
i.e. C, DP , and OP from definition 2.1. Instance-level OA systems, on the other hand,
employ information about the instances [24], i.e. I from definition 2.1. Note this thesis
is limited to the application of schema-level OA systems. Moreover, it is limited to the
application of schema-level matchers in the context of classes that generated equivalence
mappings. Thus, for any e, e′ and r (definition 2.3) it always holds that e, e′ ∈ C and r
is equal to =.

Schema-level OA systems as well as instance-level OA systems may further be divided
into element-level and structure-level matching approaches [24, 9, 27, 25]. Element-level
matching is about matching entities while not considering information about other
entities within the same ontology [24, 9, 25]. On the other hand, as the name suggests, in

11

2. Preliminaries

structure-level matching the OA systems map combinations of entities from one ontology
onto a combination of entities from a second ontology, thus using structural information
[24, 9, 25].

Element-level matchers can further be sub-divided into string-based and language-based
approaches. String-based approaches match entities based on the similarity of their
respective labels/descriptions, while language-based approaches typically employ natural
language processing techniques, such as the usage of word embeddings. [9]

Very often OA systems employ a combination of element-level matching and structure-
level matching. For example, the State-of-the-Art (SOTA) matcher LogMap matches
entities based on their lexical information, but also considers the ontologies’ structures
[28].

A further term that frequently appears in the literature about OAs is meta-matching
resp. meta-matcher. Martinez-Gil and Aldana-Montes [29] defined meta-matching as it is
the technique of selecting the appropriate algorithms, weights and thresholds in ontology
matching scenarios in order to obtain a satisfactory alignment between ontologies. Thus,
informally speaking: it describes the set of approaches that automatically configure
weights, thresholds and select appropriate matchers as well as aggregation procedures for
the respective use case.

12

CHAPTER 3
Use Case

The use case of this thesis consists of three ontologies, i.e. CPC, CCS, and CSO, whereby
the former one shall be aligned with the latter two. While these three ontologies were
already roughly outlined in Chapter 1, this chapter introduces the characteristics of the
three ontologies in more detail in conjunction with the conducted preprocessing steps.
The chapter concludes with observations originating from the characteristics of each
ontology. Identifying these challenges is the first building block in answering the first
research question:

RQ1: What are candidate Ontology Alignment (OA) approaches from the literature that
are applicable to this problem domain?

The structure of this chapter is as follows: The upcoming Sections 3.1, 3.2, and 3.3
describe the properties and conducted preprocessing steps for CCS, CSO, and CPC,
respectively. Section 3.4 describes then the observations that emerged from a closer look
at the ontologies.

3.1 ACM Computing Classification System
The 2012 ACM Computing Classification System (CCS) is a poly-hierarchical ontology
that serves as a classification system for the computing field [30]. The 2012 version of
CCS replaces the version from 1998 that represented the de-facto standard classification
system for the computing field [30, 31]. The 2012 version of CCS can be inspected through
a visual web tool 1 or it may also be downloaded as a Simple Knowledge Organization
System (SKOS) instance for local usage 2.

Before continuing with this section, here a brief introduction to SKOS: SKOS is an
application of RDF that enables the management and representation of many knowledge

1https://dl.acm.org/ccs
2https://dl.acm.org/pb-assets/dl_ccs/acm_ccs20121626988337597.xml

13

3. Use Case

organization systems, such as thesauri, classification systems, and taxonomies. The
SKOS data model is formally defined as an OWL ontology, whereby SKOS data can be
expressed as RDF triples. [32]

The SKOS instance of CCS utilizes the following subset of SKOS-specific semantic relation-
ships: skos:broader, skos:hasTopConcept, skos:narrower, skos:prefLabel, skos:topConceptOf.
Each of the CCS concepts is represented as an instance of the class skos:Concept. More-
over, the whole CCS scheme is an instance of skos:ConceptScheme. In total there are
2113 instances of type skos:Concept, thus 2113 classification entries.

Preprocessing. As mentioned in Chapter 2, this work is restricted to OA systems
that generate schema-level alignments. Therefore, it is necessary to transform this
instance-level representation of CCS into a schema-level representation without losing
information with respect to the capabilities of the OA systems. To achieve this goal the
following transformation rules have been employed:

• skos:broader results in rdfs:subClassOf
• skos:hasTopConcept can be ignored since it serves only to conveniently find the

entry points of the hierarchies
• skos:narrower can be ignored since it is the same as skos:broader, except in the

other direction
• skos:prefLabel results in rdfs:label
• skos:topConceptOf can be ignored as it is the same as skos:hasTopConceptOf, except

in the other direction
• skos:Concept results in owl:Class
• skos:ConceptScheme can be ignored

3.2 Computer Science Ontology
In contrast to CCS, the Computer Science Ontology (CSO) is an automatically generated
ontology using the Klink-2 algorithm [33] on the Rexplore dataset [34] [6]. Due to its
auto-generated nature it is feasible to construct a large-scale ontology covering a large
variety of research areas that are mainly about, but not restricted to, computer science
[6]. Further, when new data is available, updating the ontology is easy as the Klink-2
algorithm can simply be re-executed [6].

The data model of CSO is an extension of the BIBO ontology 3 that in turn builds
upon SKOS [6]. Note that during this thesis version 3.3 of CSO is used. As seman-
tic relationships in version 3.3 we have: cso:contributesTo, cso:preferentialEquivalent,
cso:relatedEquivalent, cso:superTopicOf, schema:relatedLink, rdf:type, and owl:sameAs.

3http://purl.org/ontology/bibo/

14

3.3. Cooperative Patent Classification System

[6, 35]. Further, in version 3.3 of CSO there exist 23790 individuals, i.e. research areas,
that, in turn, are of type cso:Topic which represents the only class in the ontology.

As it is the case with CCS, also the CSO ontology can be utilized from a web portal 4,
but it can also be downloaded for local usage 5.

Preprocessing. To transform the instance-level ontology to a schema-level representa-
tion, the following mapping procedures have been performed:

• cso:contributesTo indicates that the research outputs of one topic contributes to
another [35]. This relation can be ignored since OA systems typically cannot handle
such relationships.

• cso:relatedEquivalent is added as additional rdfs:label since it is referred to as
alternative label of on the web portal [35].

• cso:preferentialEquivalent is used to indicate the main label for a cluster of concepts
that are linked with each other through cso:relatedEquivalent [35]. This relation is
treated equivalently to cso:relatedEquivalent.

• cso:superTopicOf results in rdfs:subClassOf.
• schema:relatedLink points to external sources, namely either to a Wikipedia article

or to a Microsoft Academic article [35]. This relationship is ignored.
• owl:sameAs points to entries from other knowledge graphs that refer the same

concept [35]. If it points to a Dbpedia/Wikidata/Yago entry, then an additional
rdfs:label is generated through using the label provided by the respective ontological
entry. If it points to Freebase, it is ignored as the corresponding links are not valid
in the majority of the cases.

• Each subject that appears in a triple with rdfs:type as the predicate and cso:Topic
as the object, is represented as owl:Class.

Note that there exist loose subjects, i.e. subjects that are not of type cso:Topic and are
not integrated into the hierarchy, i.e. have neither children, nor parents. These loose
subjects have been ignored during preprocessing.

After conducting all the above listed preprocessing steps, there were 14290 research topics
left. This number is much smaller than the original 23790 research topics since all the
external sources, such as Dbpedia, Wikidata, etc., are not included as nodes anymore.

3.3 Cooperative Patent Classification System
Cooperative Patent Classification (CPC) is an ontology that is developed jointly by the
European Patent Office (EPO) and the United States Patent and Trademark Office

4https://cso.kmi.open.ac.uk/home
5https://cso.kmi.open.ac.uk/downloads

15

3. Use Case

(USPTO) with the aim to obtain a common and internationally compatible classification
system for patents [36]. CPC consists of nine sections:

• A: Human necessities,
• B: Performing operations; transporting
• C: Chemistry; metallurgy
• D: Textiles; paper
• E: Fixed constructions
• F: Mechanical engineering; lighting; heating; weapons; blasting engines or pumps
• G: Physics
• H: Electricity
• I: General tagging of new technological developments; general tagging of cross-

sectional technologies spanning over several sections of the International Patent
Classification (IPC); technical subjects covered by former USPC cross-reference art
collections and digests.

These nine sections are in turn divided into classes, subclasses, groups, and subgroups.
Overall there exist 250 thousand classification entries. [8]

The whole CPC ontology is provided in N-TRIPLES 6. N-TRIPLES is a line-based,
plain text format for encoding RDF graphs [37]. The N-TRIPLES CPC file contains 18
different relationship types and each concept represents either a CPC entry or an IPC
entry. Out of these 18 relationships, the next paragraph mentions only those relationships
that are relevant for the sake of this thesis.

Preprocessing. The following list outlines the steps taken to transform all the triples
into an OWL ontology that has the same structure as the preprocessed versions of CCS
and CSO:

• The first step is to remove all tuples containing predicates not equal to either:
cpc:title, cpc:guidanceHeading, or skos:broader.

• The second step is to remove all triples that point to IPC concepts. This op-
eration does not remove any CPC related information as all the remaining <
subject, predicate, object > triples that contain IPC concepts have IPC concepts,
both, as their subject as well as their object. Thus, after this operation the
remaining triples comprise only CPC items.

• Next, to create a schema-level ontology the following procedure is employed:
– Each subject where its URI indicates that the respective subject represents a

classification entry (e.g. http://data.epo.org/linked-data/def/cpc/G03G9-0815)
is mapped to owl:Class.

6https://data.epo.org/linked-data/download/

16

3.4. Observations

– cpc:title results in an rdfs:label annotation in the related class.
– cpc:guidanceHeading results in an additional rdfs:label annotation in the related

class since this relation indicates additional information.
– skos:broader results in owl:subClassOf in the related class.

• Further necessary preprocessing steps:
– Several labels contain reserved XML characters, thus escaping these characters

is necessary
– If a label contains simple brackets, then everything between these brackets

(including the bracket itself) is removed, since inside brackets we have only
information about other CPC concepts, e.g. entry G06F 8/314 has as label
Parallel programming languages (G06F 8/313 takes precedence)

– All labels of sub-groups and below are enclosed with curly braces. These curly
braces are removed

Due to the fact that the resulting ontology is still extremely large with many branches of
completely unrelated topics (when compared to the domain of computer science), the
following sections were removed: A, B, C, D, E, F, and H. It may be assumed that these
sections have the least in common with computer science. Thus, the only remaining
sections are G and I. The major benefit of this size reduction is two-folded: (a) without
size reduction aligning CPC with CCS and CSO would probably not be feasible on a
standard laptop (more on the hardware specifications follow in Chapter 5), (b) to evaluate
the final alignment (more information regarding the final evaluation follows in Chapter
6) between CPC-CCS and CPC-CSO a manual assessment is performed. However, such
a manual assessment would not be possible if the reviewer (in this case, the author of
this thesis) is unfamiliar with the domain.

After conducting all the above described preprocessing steps, there were 53849 classifica-
tion entries left in the ontology.

3.4 Observations
The previous sections describe the meta information for each ontology in conjunction with
the conducted preprocessing steps. After preprocessing, each ontology is represented in
the same format, i.e. as a schema-level ontology where each concept is of type owl:Class
and has one or more rdfs:label properties assigned to it, additionally as relationships
between the classes we have only owl:subClassOf.

After having an in-depth look at the content of each ontology, a few observations came
up that might affect the performance of a matcher (depending on the functionality of the
respective matcher):

• Obs1 : CPC has a deviating structure when compared to CCS or CSO. For exam-
ple, the CPC concept Object-oriented languages (G06F 8/315) has as hierarchy

17

3. Use Case

Arrangements for software engineering → Creation or generation of source code →
Programming languages or programming paradigms → Object-oriented languages,
while the corresponding CCS concept resides in the following hierarchy Software and
its engineering → Software notations and tools → General programming languages
→ Language types → Object oriented languages.

• Obs2 : CPC is especially large.
• Observations regarding CPC naming scheme:

– Obs3 : The classification entries have rather long labels that typically need
additional context to make sense of, e.g. the classification entry G16Z has as
its label information and communication technology [ict] specially adapted for
specific application fields, not otherwise provided for.

– Obs4 : CPC often has a rather unconventional naming scheme, especially
when inspected through the lenses of computer science. For example, Creation
or generation of source code (G06F 8/30) refers to all conceptual steps of
converting an abstract representation of a software system into program code,
while from a computer science perspective the part generation of source code
merely refers to automatically generating source code.

– Obs5 : Several classification entries in CPC have labels that would require
very complex reasoning to make sense of. For example, the CPC classification
entry G06F 1/00 has as its title details not covered by groups [cpc: g06f3/00]
- [cpc: g06f13/00] and [cpc: g06f21/00]

• Obs6 : It is quite common that there are concepts in CPC that have a very
similar/exact label to another concept in CCS or CSO, but with significantly
deviating hierarchies (being in completely different knowledge branches), thus
not representing the same underlying notion. For example, when comparing the
hierarchies of the CPC concept Type checking (G06F8-437) and typechecking of CSO,
then it immediately becomes clear that they can hardly be considered as equivalent.
For CPC we have: Arrangements for software engineering → Transformation
of program code → Compilation → Checking; Contextual analysis → Semantic
checking → Type checking. For CSO, on the other hand, we have: computer science
→ object oriented programming → type systems → typechecking. I.e.: The CPC
classification entry is about type checking in the context of compilers, while the CSO
concept only refers to type checking in the field of object oriented programming.

• Obs7 : When comparing concepts from CPC to concepts from CCS/CSO, it becomes
evident that if a concept from CPC has a correspondence in CCS/CSO, then it is
very often the case that there exist multiple candidate matching partners.

Based on these observations, there arise a few implications. Obs1 indicates that element-
level matchers should be preferred over structure-level matchers. Obs2 underlines the
importance of runtime efficiency on this use case. Obs3, Obs4, Obs5, and Obs6 indicate
that employing elements of structure-level matching might bring advantages. Obs3

18

3.4. Observations

indicates that language-based matchers might be very beneficial, due to their capabilities
of making sense out of sentences and their semantic reasoning capabilities. Based on
Obs7, it might be the case that many-to-many matchers outperform one-to-one matchers
on this particular use case. Of course, these implications partly conflict each other, i.e.
there exists no matcher that fulfills all of the above outlined features. However, we can
require the final set of OA systems to contain:

• Requirement 1 : At least one purely element-level matcher.
• Requirement 2 : At least one matcher that employs concepts of structure-level

matching.
• Requirement 3 : At least one language-based matcher.
• Requirement 4 : At least one matcher capable of generating many-to-many align-

ments.
• Requirement 5 : At least one matcher that is very time efficient, otherwise it may

turn out that no matcher is capable of aligning CPC-CCS and CPC-CSO due
limited computational resources.

In this way, it is possible to compare whether having one of those features brings
advantages when aligning CPC-CCS and CPC-CSO.

19

CHAPTER 4
Ontology Alignment Approaches

The previous chapter gave a detailed overview about the individual ontologies, the related
preprocessing steps, as well as identifying desired features regarding the OA systems.
This chapter describes the steps that have been taken to arrive at OA systems that
may be considered appropriate for the problem domain of this thesis, as well as the OA
systems itself. Thus, it answers the first research question:

RQ1: What are candidate Ontology Alignment (OA) approaches from the literature that
are applicable to this problem domain?

This chapter starts, in Section 4.1, by describing the structured literature review that
was performed to find appropriate OA systems. The outcome of the literature survey
is a set of OA systems that are then described in more detail in Section 4.2. It was
ensured that these OA systems fulfill the requirements identified in the previous chapter.
The chapter concludes with Section 4.3 which delivers a brief summary and discusses
limitations. The identified OA systems were then implemented and the results of the
experiments on the ground truths are then discussed in Chapter 5.

4.1 Literature Survey
As Section 1.3 states, the conducted literature survey follows a simplified version of
the review protocol template proposed in [13] that, in turn, is based on the guidelines
identified in [14].

4.1.1 Literature Review Overview
Biolchini et al. [13] described that from an operational point of view systematic reviews
comprise five stages. These five stages are outlined next (for more detailed insights, see
[13]):

21

4. Ontology Alignment Approaches

Figure 4.1: Overview of literature survey - steps based on descriptions in [13]

The first stage is related to the problem formulation and comprises the construction
of criteria by which relevant and irrelevant literature can be distinguished from each
other, i.e. criteria by which literature is selected or rejected. The second stage is about
data collection. Here, the major point is to define which sources shall be used, i.e. how
literature can be found that corresponds to the criteria found during the previous stage.
For example, it includes determining the search engines and search queries. The third
stage is related to data evaluation. During this stage quality criteria are applied to filter
the literature found during the proceeding stage. During the fourth stage, the found
literature is then inspected and inferences are drawn from the collected data. The fifth
and final stage is about conclusions and decisions on which literature shall be included in
the systematic review report (a report comprising all the found literature).

These five stages can further be summarized into three steps. The stages one, two
and three (partially) can be grouped into the Review Planning phase, the stages three
(partially) and four into the Review Execution phase, and the stage five into the Result
Analysis phase. Figure 4.1 illustrates the process. For convenience and simplicity there
are no indications for iterations in Figure 4.1, however, note that many stages indeed
involve iterations and a possible fallback to previous stages is also common.

The next subsections detail the individual steps that have been conducted during the
elaboration of this thesis with regard to the three phases illustrated in Figure 4.1.

22

4.1. Literature Survey

4.1.2 Review Planning
As explained previously, the purpose of the Review Planning phase is to determine the
aim, the data collection strategy, as well as the definition of selection criteria.

Aim & Selection Criteria The aim of this survey was to find literature about recently
developed OA approaches. To find a reasonable set of of publications, requirements were
formulated that are listed below. Note: The letters inside the simple brackets at the end
of each requirement indicate how difficult it is to determine the respective requirement.
(S) means that it can already be satisfied during the search process - essentially all search
engines allow to query for certain dates. (A) mean that the respective requirement can
typically be decided after having read the title + abstract. In some cases, to determine
(A), it is necessary to have an in-depth look at the related publication.

• The related publication is from 2018 or newer (S)
• The publication proposes a new OA system that is not tailored to a specific domain

(except if the domain is very similar to the domain of this thesis). Examples of
unrelated domains often tackled by domain-specific OA systems include biomedicine
or sensor ontologies. (A)

• The proposed OA system is an unsupervised approach - necessary since no training
data exists (A)

• The publication is not about the optimization of existing alignments. Instead,
it presents an OA system that is applicable independently from any pre-existing
alignment. (A)

• The proposed approach is fully automatic, e.g. no interactive approaches (ap-
proaches that require the involvement of a human) are allowed. (A)

• The related publication reports performance measures of the system on a publicly
available dataset, such as on an OAEI track. (A)

• The reported performance is compared against the performance of a SOTA matcher
to ensure comparability between the individual approaches. (A)

• The system is able to match ontologies at schema-level, e.g. no instance-level
matchers are allowed. (A)

• The approach must deliver equivalent correspondences, e.g. no subsumption corre-
spondences. (A)

Sources As search engine to find scientific literature Google Scholar 1 was used. Table
4.1 shows the search string that was used to query Google Scholar. Note that allintitle
was used to ensures that only publications are retrieved that contain the string ontology
alignment or ontology matching. This restriction was indispensable since, otherwise,
several tens of thousands of publications would have been found that are, in their majority,

1https://scholar.google.com

23

4. Ontology Alignment Approaches

Figure 4.2: Overview of literature filtering process

not suitable for this thesis. Naturally, this imposes a limitation on this literature survey
since some publications describing suitable OA approaches might have been missed.

Engine Search Query Publication
Years

#Results

Google Scholar allintitle:
ontology alignment

OR matching

2018 - 2022 332

Table 4.1: Search string

4.1.3 Review Execution & Results Analysis
Review Execution. Querying Google Scholar using the search string described in
Table 4.1 delivered 332 publications. The corresponding meta-data of each publication
was then downloaded as a bib file. The publications were then evaluated based on the
criteria defined in the previous subsection. Figure 4.2 depicts the process.

After reading the titles of all 332 publications found on Google Scholar, 252 publications

24

4.1. Literature Survey

were rejected because of the title. 139 publications were rejected because the title did
not suggest a new OA system (e.g. publications were about surveys, datasets for OA
evaluation, optimization approaches, repair strategies, ...). Further, 80 were rejected
because the related OA systems were tailored to specific domains. 16 publications were
about interactive matching techniques. 13 titles indicated supervised approaches. Three
publications were about instance-level alignment. One publication was not in English.

Next, the abstracts of the 80 remaining publications were skimmed. Doing so, seven
were rejected because the authors described a supervised approach, 26 publications were
rejected because they were not related (e.g. interactive matching approaches, etc.),
23 were rejected because of evaluation procedures/outcomes (e.g. the approach was
evaluated on a private dataset or the performance on a public dataset showed that the
approach is not competitive), further two publications were not available for download.
The remaining number of publications was then 21.

Out of the remaining 21 publications, there were multiple papers describing the same
approaches - leading to 17 distinct approaches.

After having a more detailed look at the publications, it became clear that six publications
relied in some way or the other on training data/a partial reference alignment - thus
were supervised. Another publication had to be rejected since the authors compared
their system against non-SOTA systems implying that the results were not considered
expressive enough.

Result Analysis. Table 4.2 shows the remaining 10 approaches with the related
publications. Note the names LXLHMeta, LJLEvolutionary, LPGrasshopper, and LSSJ-
Fireworks are not the official names since there are no names for the respective OA
systems in the corresponding publications. Instead, these names are composed of the
authors’ initial letters followed by a peculiarity of the respective approach. As it is not
feasible to implement all these approaches, the last column in the table indicates whether
the related approach has been further considered for implementation and, eventually, for
the experiments on the ground truths. Reasons for inclusion/exclusion are provided in
the upcoming paragraph.

One of the major outcomes of Chapter 3 was a list of requirements towards the final set
of OA systems. These requirements have been named as Requirement 1 - Requirement 5.
According to Requirement 1 at least one purely element-level matcher must be contained,
examples hereof are: LXLHMeta and AML. Requirement 2 imposes that at least one
matcher is contained that employs concepts from structure-level matching, examples
hereof are SANOM and LogMap-ML. Requirement 3 demands that at least one language-
based matcher is contained. Examples hereof would be BERTMap or OntoConnect.
Requirement 4 is about the containment of a many-to-many matcher. Hereof one can
name LogMap-ML. When considering the last column in Table 4.2, it becomes clear that
the first four requirements are satisfied by the set of approaches that were considered for
implementation (i.e. "Yes" in the last column). Requirement 5 (time efficiency), on the

25

4. Ontology Alignment Approaches

Publication Name Impl.
[16] LogMap-ML Yes
[38] BERTMap Yes
[39] OntoConnect Yes
[17] SANOM Yes
[40] PoMap++ No
[41] DeepAlignment No
[42] LXLHMeta Yes
[43] LJLEvolutionary Yes
[44] LPGrasshopper No
[45] LSSJFireworks No

Table 4.2: Outcome of literature review

other hand, is more difficult to determine at this stage since most of the publications
do not outline efficiency values. Requirement 5 can be seen as a requirement towards
approach selection after conducting the experiments in Chapter 5.

In particular, the approaches PoMap++, DeepAlignment, LPGrasshopper, and LSSJ-
Fireworks have been rejected. PoMap++ and DeepAlignment have been rejected because
there are already sufficient machine learning centered solutions present, e.g. LogMap-ML,
BERTMap, etc. LXLHMeta, LJLEvolutionary, LPGrasshopper and LSSJFireworks are
all about meta-matching. To not heavily overweight meta-matching in the final sample
of systems, two have been rejected.

The result of this literature review is summarized as a bib file and can be found in the
repository of this thesis. The field "group" of each bib entry indicates at which point
the related publication has been excluded or if the publication has been accepted. A
convenient way to inspect the bib file is through JabRef2.

The goal of this literature survey was to explore and select recent approaches to further
examine their applicability regarding the problem domain of this thesis. Besides these
novel approaches, the SOTA systems LogMap [28] and AML [11] were also used. In
addition a baseline matcher was implemented as well.

4.2 Identified Ontology Alignment Systems
The remainder of this chapter explains all the considered OA approaches in detail.

4.2.1 StringEquiv (Baseline)
Similar to the OAEI [12], the matcher StringEquiv is also used here as baseline matcher.
The functionality consists of simply comparing each concept’s lower-cased labels with the

2https://www.jabref.org/

26

4.2. Identified Ontology Alignment Systems

lower-cased labels of other concepts. If a label of a concept from the source ontology is
identical to a label of a concept in the target ontology, then the respective concepts form
a correspondence in the resulting alignment. Note this implies that, in case a concept
has multiple labels, only one of the labels must match.

4.2.2 LogMap

Jiménez-Ruiz and Cuenca Grau [28] proposed LogMap in 2011 that was, to the best of
the LogMap-authors’ knowledge, the first approach able to handle large instances (tens
or even hundreds of thousand classes) and to spot logical inconsistencies that may occur
after aligning two ontologies. When considering the results of the OAEI conference of
2021 [12], one can see that LogMap still shows SOTA performance on various tracks. Also
several recent OA approaches use concepts from LogMap, e.g. [38] and [16]. LogMap
is therefore an essential building block for recent OA research and, as a consequence,
very influential. The LogMap OA system can be roughly divided into 4 parts that are
sketched in Figure 4.3.

Figure 4.3: LogMap in a nutshell [28]

The first part can be seen as a preparation phase. During this phase an inverted lexical
index is created that will be used during the next step to efficiently compute a set of anchor
mappings. LogMap uses sets consisting of the tokens for each label and their variations,
that are obtained by external sources such as the UMLS lexicon [46] or Wordnet [47], as
the key for the inverted index. In addition to this lexical indexation, a structural index
is built as well. This structural index makes use of additional relationships within an
ontology, e.g. it exploits information about disjoint classes.

As next part a set of anchor mappings are created through simply intersecting the inverted
indexes of the input ontologies, i.e. the outcome of this step consists of an initial set of
high confidence mappings.

The core of LogMap is then an iterative process, i.e. it alternates between: mapping
repair and mapping discovery. During mapping repair logical inconsistencies are identified
and repaired using a greedy diagnostics algorithm. The process of mapping discovery is
about extending the alignment. For each anchor semantically related classes are identified.
This step follows the principle of locality, e.g. if the two classes C1 and C2 form a correct
correspondence, then the semantically related classes of C1 are likely to be related to the
semantically related classes of C2. The newly found classes form the new set of anchors.

27

4. Ontology Alignment Approaches

The algorithm continues with this iterative process until, during mapping discovery, no
new context is expanded.

As the final step, LogMap computes a fragment of each ontology that corresponds to the
overlapping between both ontologies. Note that this output is typically only relevant for
curators (experts that manually maintain ontologies) and can, therefore, be neglected for
the sake of this thesis.

Figure 4.3 illustrates and summarizes the individual steps, i.e. the approach starts with
the creation of lexical and structural indices, followed by the computation of initial
anchors, next there is an iterative process of mapping repair and mapping discovery,
additionally, as the last step, LogMap computes the overlapping between both ontologies.

4.2.3 AML

When considering the performance of the OAEI conference of 2021 [12], another tradi-
tional approach shows remarkable performance - namely AgreementMakerLight (AML)
(proposed by Faria et al. [11] in 2013). AML builds upon the pre-existing framework
AgreementMaker [48]. At the time when AML was published, AgreementMaker was one
of the leading OA systems [11]. The major drawback of AgreementMaker was that the
system was never designed to match ontologies with more than a few thousand concepts
[11]. Due to this limitation, AML embeds several novelties and improvements when
compared to the original AgreementMaker system.

Note that the term "framework" is here chosen consciously as the system is not about a
single OA system, instead it employs multiple OA systems. More precisely, Agreement-
Maker resp. AML are frameworks that combine multiple matchers to obtain a final high
quality alignment.

The core framework of AML includes two major components: the ontology loading
module and the ontology matching module. The ontology loading module is sketched in
Figure 4.4, it is concerned with loading the ontology files and parsing them into ontology
objects. Figure 4.5 shows the ontology matching module that uses the generated ontology
objects and generates the alignment by combining one or more matching algorithms and
one or more selection steps.

As is visible in Figures 4.4 and 4.5, there are three data structures, i.e. the Lexicon,
the RelationshipMap, and the Alignment. The former two data structures represent the
ontology objects and are employed during the matching process. The latter stores the
generated alignment produced by one or more matchers.

As described in a previous paragraph, AML essentially emerged from the application
of various improvements with respect to the original AgreementMaker system. The
improvements can be split into three categories: (a) improvements towards the data
structures, (b) improvements in the ontology loading module, and (c) improvements in
the ontology matching module.

28

4.2. Identified Ontology Alignment Systems

Figure 4.4: The AML ontology loading module [11]

The data structures have been improved through exclusively representing them as internal
structures, whereas, in the case of AgreementMaker, they were tied to the ontology loading
API Jena2. This makes AML more flexible. Additionally, all the data structures were all
optimized for a more economical memory usage.

The ontology loading module is improved through restricting the loading to necessary
parts of ontologies resp. omitting all unnecessary parts.

Regarding the ontology matching module: As in AgreementMaker there are three com-
ponents, i.e. Matchers, Selectors, and Alignment - see Figure 4.5. In contrast to
AgreementMaker, AML divides the matchers into primary and secondary matchers. Pri-
mary matchers rely on HashMap cross-searches and are therefore very efficient. Secondary
matchers, on the other hand, are matchers that make non-literal comparisons between
the concepts and, thus, require that each concept of the first ontology is compared against
every concept of the second ontology. Due to the fact that secondary matchers cannot
match large ontologies efficiently, it is stipulated that secondary matchers only match
concepts in the vicinity of previously aligned classes. While AgreementMaker combines
the output (=alignment) of each matcher through a linear combination of the weights
associated with each correspondence in a given alignment, this is, due to the improved
data structures, not possible in AML. AML simply joins the individual alignments and
only keeps the correspondences with highest weight in case of duplicates. Selectors are
responsible to trim alignments. More precisely, selectors exclude correspondences below
a given threshold and constructs a one-to-one mapping from a many-to-many mapping.
In AgreementMaker this is conducted through finding the maximum weighted bipartite
mapping, however, in AML this step is done through a heuristic. The implemented
matchers of AML are derived from existing matchers in AgreementMaker.

4.2.4 SANOM
Mohammadi et al. [17] proposed the OA system SANOM that utilizes Simulated Annealing
(SA) as its core strategy. SANOM has participated in the OAEI conference of 2019 [49]
where it obtained decent results on the Anatomy test case.

29

4. Ontology Alignment Approaches

Figure 4.5: The AML ontology matching module [11]

In a nutshell, the idea behind SA is to approximate a global optimum of an objective
function f through a probabilistic procedure. The probability is computed through a
function that is dependent on an artificial temperature. The artificial temperature is
high at the beginning and decreases after each iteration. The probability determines the
likelihood for exploration, i.e. accepting worse solutions in the search space. Due to the
fact that the temperature is decreased after each iteration, early iterations tend to be
more exploratory, while later iterations tend to put more emphasis on intensification.
The method is based on the concepts introduced in [50].

Essentially, to be able to apply SA to the OA problem, an objective function as well as a
state representation need to be defined.

Mohammadi et al. [17] defined the objective function (fitness function) as f(c) =
fstring(c) + fstructural(c) whereby c represents a correspondence between two concepts,
fstring(c) is a lexical similarity of the correspondence c, fstructural(c) represents a struc-
tural similarity of the correspondence c. In this work weights and a second structural

30

4.2. Identified Ontology Alignment Systems

similarity measure are added. Thus, the objective function becomes:

f(c) = w1 fstring(c) + w2 fstructural(c) + w3 fstructural2(c)

In the publication, the authors propose to utilize Soft Term Frequency (TF)-Inverse
Document Frequency (IDF) as its string similarity function fstring(c). TF-IDF is a very
popular strategy in the field of information retrieval [51, 17]. It measures the similarity
between a word w and a document d within a corpus of documents D. The measure is
high for a particular document if the word has a high frequency within that document
and is, at the same time, contained only in a few d′ ∈ D for d′ ̸= d. Mohammadi
et al. [17] utilized a derived TF-IDF measure that is applicable to compute the similarity
between two documents. This TF-IDF measure is high if both documents share expressive
words (i.e. words with high TF-IDF values) and is low otherwise. Soft TF-IDF, on the
other hand, is derived from the concepts behind this TF-IDF measure. The difference
is that, instead of considering only string-equivalent words in both documents, words
are considered as equivalent if some similarity measure between both words is above a
given threshold. For that purpose, the authors employ two similarity measures, namely
Jaro-Winkler and the WordNet based measure Wu & Palmer [52]. Note: In this work,
instead of Jaro-Winkler, Levenshtein distance was used since that metric was found to
work better on the problem domain of this thesis.

The structural similarity function fstructural(c), on the other hand, is computed through
fstructural(c) = f(s) where c is again a correspondence, i.e. it comprises the concepts c1
and c2, for which the similarity shall be computed, and s comprises s1 and s2 whereby
s1 is the parent of c1 and s2 is the parent of c2. Thus, if the parents of c1 and c2 are
determined to be similar, then fstructural(c) of the child concepts is high as well. During
the re-implementation of this approach, another structural similarity measure has been
found to be beneficial, namely using the maximum similarity of direct descendants -
fstructural2 . It is defined analogously, except that it considers the direct descendants
instead of the ascendants.

Besides having an objective function, SA additionally requires the notion of neighborhood.
To apply the notion of neighborhood to the context of OAs, an alignment is modelled
as a state S and a function n(S) is defined to generate successor states. All successor
states S′ that may be delivered by a particular neighborhood function n(S) represent the
neighborhood of S with respect to the neighborhood function n. The authors represent
the current state S as [(e1, ej1), ..., (ei, eji), ..., (en, ejn)] whereby (ei, eji) represents a
correspondence. The neighborhood function n(S) for a current state S, on the other
hand, is defined through randomly swapping 5% of the entries in S and thus delivering
S′.

Having an intrinsic objective function f , a way to represent an alignment as a state,
and a function to generate new states within a neighborhood, SA can be employed to
generate alignments.

31

4. Ontology Alignment Approaches

A few implementation specific notes:
The initial state is initialized using a randomized greedy construction heuristic similar
as in [17]. To ensure one-to-one alignments, [17] demands that each entity appears at
most once in S. However, here this restriction was lifted during the re-implementation,
leading to an approach that is capable of generating many-to-many alignments.

4.2.5 LogMap-ML
Chen et al. [16] proposed a machine learning extension that is used in the respective
publication along with traditional OA approaches, e.g. LogMap or AML. The authors
evaluated their approach on two food ontologies and on an alignment task of the OAEI
and stated that, when compared to SOTA systems, the approach recalls many additional
mappings and avoids several false positive.

The approach is divided into three stages: (a) utilization of an external OA system that
is capable of generating high precision mappings, (b) training of a neural network on
the output of the high-precision matcher, and (c) using the trained neural network to
generate the final alignment. Figure 4.6 shows the entire procedure for LogMap as the
underlying matcher. The three major stages are outlined in the upcoming paragraphs
alongside with the steps from Figure 4.6.

Figure 4.6: LogMap-ML overview [16]

The first stage comprises the steps LogMap, Anchor Class Mappings, Seed Mappings,
and Over-estimation Class Mappings from Figure 4.6. As a starting point the anchor
mappings from LogMap (high precision mappings) are used. These mappings represent

32

4.2. Identified Ontology Alignment Systems

positives samples. Further, statistical methods are used to infer on class disjointness
constraints (Note: during the experiments in the publication the authors additionally
added disjointness constraints manually - this probably has boosted the performance). On
the basis of these disjointness constraints, the current positives samples are filtered. The
resulting positive samples form the set of seed mappings. Additionally to this sampling
procedure, the LogMap over-estimations (high recall mappings) are generated that are
used later during the prediction stage.

The second step (SiamNN Model step in Figure 4.6) is about the training of the neural
network. In the experiments, the authors concluded that a Siamese Neural Network
architecture shows decent performance. To train the model, it is initially necessary to
obtain training data, i.e. in addition to the positive samples also negative samples are
required. These negative samples are obtained through random sampling. Before the
neural network can eventually be trained, it is necessary to transform the mappings into a
representation that can be used by a neural network. The authors experimented with the
language model Word2Vec [53], as well as with the ontology tailored embedding model
Owl2Vec* [20]. The authors concluded that Owl2Vec* embeddings are more beneficial.
Hereby, the authors discussed two embedding strategies. Firstly, directly embedding
the classes using the embedding model. Secondly, traversing a random path in the class
hierarchy until owl:Thing (top-level class in each OWL ontology) is reached and to embed
the associated path. Both approaches have their advantages and disadvantages. Having
positive and negative samples as well as an embedding model, it is finally possible to
train the neural network.

During the third stage, the Mapping Scores step in Figure 4.6, the high recall mappings
that have been generated during stage one (LogMap over-estimations) are used to predict
the final output mappings. In theory one might also apply the trained model on the
whole ontology, however, this would be computationally very intense and, therefore, in
the most cases not feasible.

4.2.6 OntoConnect
Chakraborty et al. [39] presented a OA system that employs techniques from machine
learning and is unsupervised in its nature. More precisely, the approach uses unsupervised
learning techniques through the usage of a recursive neural network architecture. The
approach was evaluated against the Anatomy test case of the OAEI. The evaluation
yielded satisfactory results.

Figure 4.7 illustrates the workflow of the system. The approach is divided into a learning
phase (left side of the figure) and a prediction phase (right side of the figure). Note
how the initial three steps are the same in both phases, i.e. the source ontology and
target ontology are preprocessed the same way. Therefore, the approach might also be
summarized in three stages, i.e. preprocessing stage, training stage, and prediction stage.
The remainder of this section, there are three paragraphs, describe the preprocessing
steps, the training procedure, as well as the prediction approach.

33

4. Ontology Alignment Approaches

Figure 4.7: Overview of OntoConnect system [39]

As initial step, the source and target ontologies are parsed to extract meta information
such as labels, IRIs, and various relationships (e.g. sub-class relations). Afterwards on
both ontologies several preprocessing techniques are employed, e.g. stemming, stop word
removal, etc. Next, a vector for each concept is generated through the usage of the
pre-trained word embedding fastText [54].

In the second stage, the meta-information (encoded as fastText word embedding) for
each of the concepts within the source ontology is fed into a recursive neural network
architecture - a Long Short-Term Memory (LSTM) architecture. The major advantage
of recursive architectures, such as LSTM, is that they are able to process an arbitrary
number of input vectors. This is useful since a concept might have an arbitrary size of
meta-information. The output of the LSTM architecture is the source class itself. Note
that the intuition behind this kind of training is that it is very likely that a true positive
target class has similar meta-information when compared to a source class. In these cases,
the model will be able to predict the same or, at least, a similar vector when compared
to the source class vector.

Having a trained LSTM model, it is time for the third stage, i.e. the prediction stage. The
prediction stage starts by computing the cosine similarity between each concept vector of

34

4.2. Identified Ontology Alignment Systems

the source ontology to each concept vector of the target ontology (step Calculate Word
Similarity in Figure 4.7). Next, each concept vector of the target ontology is fed into the
trained model. The output is another vector that approximates the corresponding concept
vector of the source ontology. Afterwards, a second similarity score is obtained through
computing the cosine similarity between each concept vector of the source ontology and
this predicted vector. This step is illustrated as Calculate Meta Similarity in Figure 4.7.
The final similarity score is calculated through combining both similarity scores using a
weighted harmonic mean. Finally, the alignment is generated through rejecting mappings
that are below a well-defined threshold.

4.2.7 BERTMap

When describing LogMap-ML [16] and OntoConnect [39], it became clear that many of the
recently proposed machine learning based OA systems rely on non-contextualized word
embeddings, such as Word2Vec or fastText. The advantage of such embeddings is that
they are typically time efficient since no problem-specific fine-tuning is necessary - any
pre-trained word embedding can, in principle, be applied to any domain. The problem,
on the other hand, with non-contextual word embeddings, such as Word2Vec, is that
they do not solve the ambiguity problem, i.e words have different meanings depending on
the context. This is why these embeddings are not able to capture deviating word senses
in different contexts [25]. In contrast to non-contextual word embeddings, contextual
word embeddings provide different vectors for the same words depending on the context.
As an example for contextual word embeddings one might mention Bidirectional Encoder
Representation from Transformers (BERT) [55].

He et al. [38] explored the capabilities of BERT towards the OA problem. Doing so,
the authors proposed BERTMap, i.e. an OA system that uses BERT word embeddings
as its core alignment strategy. Figure 4.8 shows the 3-step approach of BERTMap: (a)
fine-tuning stage, (b) prediction stage, and (c) extension and repair stage.

The aim of the first stage is to extract the corpora and to fine-tune a pre-trained BERT
model. Figure 4.8 distinguishes between intra-ontology corpos, cross-ontology corpus,
and complementary corpus. The intra-ontology corpus consists of all synonyms and
non-synonyms that can be extracted from a single ontology. To this extent, synonyms
are derived from labels of the same class, i.e. if a class has multiple rdfs:label annotations,
then the resulting set of labels are considered as a synonym set. Non-synonyms, on the
other hand, are further distinguished in soft non-synonyms, i.e. labels from two random
classes, and hard non-synonyms, i.e. labels from logically disjoint classes. Further, if
there is a sample of annotated mappings (i.e. a partial reference alignment), then one is
able to construct a cross-ontology corpus and, thus, support a semi-supervised setting.
If external ontologies are available, then the construction of a complementary corpus is
feasible as well. The latter two, i.e. complementary corpus and cross-ontology corpus,
are neglected in the further descriptions since the problem domain of this thesis does not
support the construction of such corpora. Having extracted the corpora, i.e. having a set

35

4. Ontology Alignment Approaches

Figure 4.8: Overview of BERTMap system [38]

of synonyms and non-synonyms that are problem-specific, a pre-trained BERT model
can be fine-tuned.

The second stage performs the prediction/generation of an initial alignment. As initial
step, a sub-word inverted index is built (see Figure 4.8). Each entry of this index is a
sub-word and its value is a list of classes that have at least one label containing this
sub-word. This index is then employed to search for candidate target classes for each
source class. The number of candidate classes is controlled via a parameter. These
candidate classes are then ranked by the value of IDF and further fed into the string
matching module (see Figure 4.8). The string matching module, in turn, returns two
classes if they have one label in common. It is assumed that if two classes have a label in
common, then the resulting classes are equivalent. In this way computation time is saved
since the involved classes are not fed into the next step - the BERT classification (see
Figure 4.8). All the remaining classes are fed into the fine-tune BERT model and are
included as correspondences if the obtained similarity score is above a given threshold.

During the third stage, a similar approach is taken as in LogMap - an iterative extension
and repair procedure. The extension step utilizes the principle of locality that states
that if two classes match, then their respective parents and children are also likely to
be related. Note the this extension procedure is only performed for mappings above a
given threshold - for high confidence mappings. During the prediction and extension
stages, mappings might have been introduced that lead to logical inconsistencies. These
mappings are then removed during the mapping repair step. The mapping repair step is
outsourced to LogMap.

36

4.2. Identified Ontology Alignment Systems

4.2.8 LXLHMeta
Lu et al. [42] proposed a ontology meta matching technique that combines two broad
categories of similarity measures. The evaluation on a test case of the OAEI showed the
effectiveness of the approach.

This meta matching technique utilizes three similarity measures. Two of these three
similarity measures are applied to the IDs and labels of each concept (typically referred
to by rdfs:label annotations), while the last one is applied to the comments (typically
referred to by rdfs:comment annotations).

The first similarity measure is the Wu & Palmer measure [52] - a WordNet based measure.
The next similarity measure is the N-gram measure. And the last similarity measure
is the cosine similarity. Wu & Palmer and N-gram are applied to the IDs and labels,
while the cosine similarity is applied to the comments. The cosine similarity measure is a
similarity measure for vectors. Therefore when computing the cosine similarity between
two sentences s1 and s2, both sentences have to be converted into a vector representation.
This is achieved through representing the string si as an array of its words, thus creating
Di = (si1 , ..., sin), whereby sij for 1 ≤ j ≤ n is a word. Based on C = D1 ∪ D2 it is now
possible to derive Vi = (vi1 , ..., vin) with vij 1 ≤ j ≤ n being equal to 1 if Cj ∈ Di and 0
otherwise. In this way V1 and V2 can be constructed out of the strings s1 and s2. The
cosine distance is then defined as:

Cos(V1, V2) = V1 · V2
||V1|| × ||V2||

Having defined the underlying similarity measures, the first step is then to calculate the
similarity sets N and W . N and W represent sets of correspondences. The measures Wu
& Palmer as well as N-gram are computed between each concept of the source ontology
and each concept of the target ontology. Wu & Palmer as well as the N-gram similarity
scores are calculated on the ID of the concepts, as well as on the labels. If the Wu &
Palmer measure for two IDs is above a given threshold or the measure of the labels of
the same entities is above that threshold, then the related correspondence is assigned to
the set W . Analogously the set N is constructed, except with N-gram as its similarity
measure.

The next step is to combine W and N , i.e. U = W ∪ N . The authors now distinguish
between four cases regarding these three sets. Due to the fact that none of the ontological
concepts (in CPC, CCS, and CSO) have rdfs:comment annotations, the four cases boil
down to one simple check:

• For W \ N , N \ W , and U there is only one entity matching pair in the three. By
entity matching pair the authors refer to a correspondence. Here, it is assumed
that this means: for each entity there is only one correspondence c in the three
sets, i.e. the related entity matching pair is either in W \ N , N \ W , or U which
would imply that c ∈ N ∩ W .

37

4. Ontology Alignment Approaches

– If true for a correspondence: take that correspondence and put it into the set
S

– If false for a correspondence: for each correspondence in U that contains one
of the involved entities, calculate the average N-gram measure between the
IDs and the labels. Assign the resulting correspondence to the set S if the
value is above an adapted threshold (higher than during N generation).

The authors further propose to vary the entity matching order as they observe that the
set S changes if doing so. However, following the descriptions provided in the paper there
is no evidence as why this should be the case since N and W are the same regardless of
the order (the authors explicitly state that each concept is compared against every other
concept). Consequently, the outcome of the above described check is the same regardless
of the entity matching order, thus the set S remains stable as well.

4.2.9 LJLEvolutionary
Lv et al. [43] proposed an Evolutionary Algorithm (EA)-based OA system. In previous
works EA-based solutions required a reference alignment in order to evaluate the quality
of the genereted solutions. Here, the authors utilize an approximated f1-score metric
as its objective function, thus leading to an unsupervised approach. The second major
contribution regards the prevention of premature convergence through the employment
of an adaptive selection pressure. Evaluation on an OAEI test case proved that the
approach was competitive with other EA-based solutions.

The basic idea behind EAs comes from mechanism in the context of biological evolution,
e.g. mutation, selection, mating. EAs typically involves (a) the generation of a set
of solutions (population) and (b) iterative altering the set of solutions through a set
of variation operators. The aim of (b) is to improve the fitness of the population,
i.e. optimizing the solutions towards an objective function. The type of EA employed
in LJLEvolutionary is a Genetic Algorithm (GA). In GA an individual/solution is
represented through chromosomes that are typically implemented as an array of values.
Using an array representation the three standard altering operators are easy to implement,
namely selection, recombination (mating), and mutation. More information on GA can
be found in [56].

As it is common for meta-matching techniques, several similarity measures are employed,
namely two syntax-based similarity measures (N-gram and SMOA), one linguistic-based
measure (Wu & Palmer), and one structure-based similarity measure (SimRank). Ac-
cording to the evaluation on the OAEI benchmark dataset, SimRank did not prove to be
beneficial, therefore it was omitted during the re-implementation.

To measure the similarity of two entities/concepts the IDs, labels, and comments of the
respective entities/concepts are considered. Thus, for each of the above outlined similarity
measures three different similarity matrics originate. One of the major contributions
of this work was the introduction of a novel framework for the aggregation of different

38

4.2. Identified Ontology Alignment Systems

similarity matrices stemming from different textual contents. Previous studies typically
aggregated the similarity matrices through MAX, MIN, or Averaging. Such integration
mechanisms, however, suffer from various shortcomings, e.g. MIN puts too much emphasis
on precision, MAX on recall, etc. Figure 4.9 illustrates the framework. For any pair of
entities < E1, E2 > it is checked if the similarity measure of the respective IDs is above
the threshold V1, if so: retain the value at that position, if not: apply a second filtering
method. In the second filtering method, the similarity measures for label and comment
are aggregated through the MAX operator. If the resulting value is larger than a second
threshold V2, that particular value is written at the corresponding position in the matrix,
if smaller 0 is returned.

Figure 4.9: Framework to aggregate similarity matrices from different textual contents
[43]

After having obtained a way how similarity matrices stemming from different textual
contents can be aggregated, a way is required to merge similarity matrices originating
from different similarity functions. For that purpose a simple weighted average is used:

Mfinal =
n�

k=1
(wk Mk)

whereby 0 ≤ wk ≤ 1 is the weight of the k’th similarity function with �n
k=1 wk = 1 and

Mk is the matrix originating from the k’th similarity function.

The fitness of each individual is then given by a function f(Mfinal, O1, O2). f is defined
in way such that it approximates the f1-score metric, i.e. f(Mfinal, O1, O2) = f −
measurepseudo. To compute f − measurepseudo it is necessary to approximate recall and
precision. Precision and recall are approximated with the assumption of one-to-one
mappings. Recall is approximated through:

recallpseudo = num(Mfinal)
min(|O1|, |O2|)

39

4. Ontology Alignment Approaches

where num(Mfinal) represents the number of rows that contain a cell mij that is the
maximum value in row i and column j. Next, precision is approximated through:

precisionpseudo = conf(Mfinal)
num(Mfinal)

where conf(Mfinal) is the sum over all mij that are the maximum value in their respec-
tive row and column. Thus, precisionpseudo indicates the level of confidence. Having
recallpseudo as well as precisionpseudo f − measurepseudo can also be computed through
the standard f1-score formula, i.e.:

f − measurepseudo = 2 × recallpseudo × precisionpseudo

recallpseudo + precisionpseudo

As indicated by the previous paragraph, V1, V2, w1, ...wn represent the search space that
is explored to find high values of f(Mfinal, O1, O2). Therefore, the chromosomes of an
individual are defined through an array that encodes these values, i.e. [V1, V2, w1, ..., wn].

A crucial concept in the field of GA is the notion of selection. To prevent early convergence,
the generation crossing individuals are selected at random using probabilities that are
derived from f(Mfinal, O1, O2)K whereby K is the so-called attenuation factor. The
attenuation factor ensures to have more exploration in early iterations and in situations
where the fitness of two subsequent generation deviates heavily. More precisely, the
attenuation factor is defined as:

K = exp(−E(Gnew) − E(Gold)
iter
T

+ θ)

whereby Gnew represents the new population, Gold the old one, E(X) is the total fitness
of population X, iter represents the current iteration number, and θ and T are constants.

As crossover the very simple one-point crossover operator is employed. For exam-
ple, assume the two individuals I1 and I2 with chromosomes (V11 , V12 , w11 , w12) and
(V21 , V22 , w21 , w22) are selected for crossover, then the chromosome of the child comprises
(V11 , V12 , w21 , w22).

As mutation operator, the authors chose to flip a random bit of a chromosome with low
probability. However, this operator is only applicable when chromosomes are encoded as
bit-strings (in this approach the chromosomes are encoded through a vector of floating
point numbers - [V1, V2, w1, ..., wn]). Therefore, the corresponding part of the paper
seems to be incomplete and an assumption was necessary during re-implementation. In
the re-implementation a chromosome is mutated with probability 0.01 (same as during
the experiments of the respective paper). If the case of mutation, each value in the
chromosome array is altered by a random value −1 < r < 1.

40

4.3. Summary

4.2.10 Notes on Third-Party Libraries
During the implementations of the previously described OA approaches, several external
libraries have been used. Among the libraries we have: Pandas [57], Numpy [58], Gensim
[59], Torch [60], Scikit-learn [61], Tensorflow [62], Owlready2 [63], MELT [64], and
Alignment API 4.0 [65].

4.3 Summary
This chapter identified suitable ontology alignment approaches from the literature that are
capable of aligning CPC-CCS and CPC-CSO. While Section 4.1 described the conducted
literature review, the consecutive Section 4.2 detailed all the resulting OA systems in
conjunction with the adaptations. We saw that the approaches are quite heterogeneous,
i.e. there are machine learning centered solutions as well as traditional approaches. Due
to this multifaceted set of OA systems, the first four requirements elicited in Chapter 3
are fulfilled.

41

CHAPTER 5
Experiments on Ground Truth

Chapter 4 described the conducted literature survey and detailed the resulting OA
systems.

This chapter describes the setup for the conducted experiments, the related results, also
provides reasons for the selected OA systems to align CPC-CCS and CPC-CSO. Thus,
this chapter answers the second research question:

RQ2: What is the performance of the identified Ontology Alignment (OA) approaches on
this problem domain?

The chapter starts with Section 5.1 that describes everything related to the reference
alignments, i.e. the alignments against which the output of the OA systems is compared.
Afterwards, Section 5.2 describes for each OA system its respective configurations, i.e.
which parameters have been used on which OA system. The evaluation criteria are then
defined in in Section 5.3. To put the measured runtimes of the individual OA systems in
the correct context, Section 5.4 provides the core properties of the laptop on which the
experiments have been conducted. Then, the subsequent sections describe the obtained
results. Section 5.5 provides the outcomes of the CPC-CCS experiments. Analogously,
Section 5.6 is about CPC-CCS and Section 5.7 is about the third-party dataset Anatomy.
The penultimate section argues which approach has been eventually used to align CPC
and CCS as well as CPC and CSO. The chapter concludes with a summary.

5.1 Ground Truths / Reference Alignments
As there is no problem specific gold standard to evaluate the OA systems, it is necessary
to manually create ground truths.

The first step in generating the ground truths was to select a subset of CPC, CCS, and
CSO, respectively. These subsets (sub-ontologies) are referred to as CPCsubset, CCSsubset,

43

5. Experiments on Ground Truth

and CSOsubset. Afterwards, rules were defined that allow determining correspondences be-
tween the different concepts. The resulting correspondences form the reference alignments
GTCP C−CCS and GTCP C−CSO, for CPCsubset-CCSsubset and CPCsubset-CSOsubset, re-
spectively. A tsv-file containing both reference alignments in conjunction with justifica-
tions can be found in the repository of this thesis - see Section 1.4.

Limitation. Although best effort was invested in creating ground truths that are as
objective as possible through, for example, the definition of clear rules, it would be
unrealistic to assume that another person would end with the same reference alignments.
This is a very common limitation when evaluating OA systems as the experiments in
[66] show. Tordai et al. [66] conducted three experiments in which experts evaluated
alignments and talked through their decisions using the think aloud method. As result
the researchers recognized that the agreement between the experts was very low, i.e. two
different experts might create and evaluate an alignment significantly differently.

5.1.1 Sub-Ontologies
Te generate the sub-ontologies CPCsubset, CCSsubset, and CSOsubset, the knowledge
branches of CPC, CCS, and CSO, respectively, have been restricted to the domain Software
Engineering. All branches that do not cover Software Engineering were eliminated, thus
creating three subsets.

CPCsubset. Kotti et al. [7] identified 117 CPC classes that are related to Software
Engineering. These classes were used in this work to define the sub-ontology of CPC,
namely CPCsubset. Note that not all of the identified software engineering classes belong to
the same hierarchy. For example, G06F8/451 Code distribution references G06F9/5083
load rebalancing that, in turn, references G06F9/5088 involving task migration. As
a consequence, in the generated sub-ontology Code distribution is a sibling of load
rebalancing and an uncle of involving task migration, while in the original CPC ontology
Code distribution is in a completely different branch than load rebalancing. This imposes
a limitation on the ground truth, however, as there are only a few cases where the original
hierarchy is disturbed, it can be assumed that this limitation is not severe.

CCSsubset. To retrieve a sub-ontology for CCS simply everything below the concept
Software and its engineering was used.

CSOsubset. For CSO a similar simple approach is chosen since everything below computer
programming, software, and software engineering forms the sub-ontology for CSO.

5.1.2 Ground Truth Construction Rules
In order to obtain ground truth that is as objective as possible, the following rules have
been considered during the generating of the ground truth:

44

5.1. Ground Truths / Reference Alignments

• R1: If the descriptions of two concepts match (in case a description for a concept
exists in the first place - note each CPC concept has a description, but only a
few CSO concepts and none of the CCS concepts possess a description) - assign
similarity score of 1.

– Example: The description of the CPC concept G06F8/75 Structural analysis
for program understanding matches with the description of the CSO concept
static analysis.

• R2: If the name is the same/is a synonym and also both ascendants are similar -
assign similarity score of 1.

– Example: G06F8/36 Software reuse of CPC and software re-use of CSO.
• R3: If the names deviate and one cannot determine if the concepts are different,

then consider them as a match if ascendants & descendants are similar. In such a
case assign a value of 1.

– Example: G06F8/70 Software maintenance or management of CPC and
Software post-development issues of CCS.

• R4: If R2 can be applied after transforming to noun/verb/adjective, then reduce
the similarity score by 0.1.

– Example: G06F8/313 Logic programming of CPC and logic programs of CSO.
• R5: If ascendants are similar and one concept is ’slightly’ broader than the other,

then reduce the similarity score by 0.2.
– Example: G06F8/24 object-oriented of CPC and Object oriented development

of CCS.
• R6: If ascendants are similar and both concepts deviate, but the intersection is

still considered ’large enough’, then reduce the similarity score by 0.3.
– Example: G06F8/33 Intelligent editors of CPC and Integrated and visual

development environments of CCS.
• Else: reject.

While R1-R4 can be determined relatively objectively, the rules R5-R6 are subject to
the eye of the beholder. To address this limitation, two variations of the ground truth
were created. One ground truth that contains all the resulting correspondences and one
ground truth that comprises only correspondences with similarity scores above 0.9. Thus,
we arrive at 4 ground truths in total, i.e. GTCP C−CCS , GTCP C−CSO, GTCP C−CCS;≥0.9,
and GTCP C−CSO;≥0.9.

Despite best effort in developing the above outlined criteria, there are still several cases
in which another person would have chosen differently. For example, Aspect-oriented
programming techniques of CPC and aspect-oriented software of CSO was not included
in the respective ground truth, however, another person might have included that
correspondence.

45

5. Experiments on Ground Truth

5.1.3 Anatomy
To also gauge performance metrics for each OA system on an independent use case,
the test case Anatomy from the OAEI has been considered as well. The advantage of
using another use case is to see how well each OA system scales as the number of classes
increases and to observe the generalization capabilities for each OA system.

The Anatomy test case comprises two fragments of biomedical ontologies [12]. While one
fragment describes the human anatomy, the other fragment describes the mouse anatomy
[12]. The former consists of 3304 classes, and the latter consists of 2744 classes [12]. The
manually curated reference alignment between both ontologies varies between the years.
The version that has been used during the experiments comprises 1516 correspondences.

An important property that may impose performance restrictions onto several approaches,
especially BERTMap, is that each class has only one rdfs:label annotation. On such
ontologies the unsupervised BERTMap setting won’t be able to work properly since
the intra-ontology corpus (see Section 4.2) is essentially empty, meaning that it is not
possible to derive synonyms (with the exception of identity synonyms). As a consequence,
the pre-trained BERT embedding cannot be fine-tuned effectively.

5.2 Parameter Space
This section outlines the configurations that have been used during the experiments. In
a nutshell, three different LogMap settings, one AML setting, two SANOM settings, one
OntoConnect setting, four LogMap-ML settings, two BERTMap settings, one LXLHMeta
setting, and one LJLEvolutionary setting were compared against each other.

More precisely, the various settings comprise:

• LogMap:
– LogMap with default parameters - see the corresponding paramters.txt file in

LogMap’s GitHub repository 1.
– LogMapLt, i.e. the lightweight variant of LogMap, which skips all reasoning,

repair, and semantic indexation steps [67].
– LogMapExp (Exp = experimental), i.e. LogMap with modified default pa-

rameters. The aim was to make LogMap more ’aggressive’, i.e. increasing
recall through stemming, as well as reducing the weights good_isub_anchors,
good_isub_candidates, and good_confidence, respectively.

• AML was used in its default variant.
• SANOM:

– SANOM without WordNet.
– SANOM with WordNet.

1https://github.com/ernestojimenezruiz/logmap-matcher/blob/master/parameters.txt

46

5.3. Alignment Evaluation Criteria

• OntoConnect was used as it is shipped through its respective Docker image 2.
• LogMap-ML:

– Owl2Vec* as embedding model (with Word2Vec as pre-trained model) + Label
embedding.

– Owl2Vec* as embedding model (with Word2Vec as pre-trained model) + Path
embedding.

– Word2Vec (same pre-trained model as in [16]) + Label embedding.
– Word2Vec (same pre-trained model as in [16]) + Path embedding.

• BERTMap:
– 25 as candidate number.
– 200 as candidate number.

• LXLHMeta was used with the configurations described in its respective publication
[42] (exceptions were discussed in Section 4.2).

• LJLEvolutionary also only used in one configuration (see its publication [43] and
Section 4.2).

5.3 Alignment Evaluation Criteria
To evaluate the performance of the individual OA systems, precision, recall, and f1-score
were measured. In addition to these performance metrics, also the runtime (in seconds)
was measured. However, it is important to note that the reported runtimes are by no
means representative and, thus, shall not be treated as a benchmark. The runtime for
each approach simply stems from one independent run that might have been distributed
by various background processes on the execution machine. Therefore, the runtimes
simply provide a rough indication about the time efficiency and scalability of the related
approaches. The following paragraphs provide the definition for each performance metric.

Precision represents the percentage of true positives to the overall predictions. Thus, in
the context of OA precision is defined as:

precision = |R ∩ A|
|A| (5.1)

where R is the reference alignment and A is the predicted alignment.

Recall, on the other hand, indicates the percentage of true positives to the overall number
of positives in a dataset. In the context of OA it is:

recall = |R ∩ A|
|R| (5.2)

2https://hub.docker.com/r/jchakra1/ontosim_imgbatch

47

5. Experiments on Ground Truth

The third performance measure, namely the f1-score, is a combination of precision and
recall, i.e. it is the harmonic mean between both measures:

f1 − score = 2 × precision × recall

precision + recall
(5.3)

5.4 Hardware
All the experiments were carried out on a laptop with 16 GB of RAM and 4 CPU
cores with a base clock of 2.3 GHz. These specs are comparatively low, especially when
compared to the machines employed in the OAEI (see for instance [12]). Further, as
visible when inspecting the GitHub repository of this thesis, all the approaches have
been executed as Docker containers, which, in turn, might have led to an additional
performance overhead.

5.5 Results on CPC-CCS
As already explained in Section 5.1, there exist two versions of the ground truth
for CPC-CCS, namely GTCP C−CCS and GTCP C−CCS;≥0.9 whereby GTCP C−CCS;≥0.9 ⊆
GTCP C−CCS .

Performance on Full Ground Truth. Table 5.1 shows the performance of all the
OA systems on GTCP C−CCS . All the figures are rounded to two decimals. The naming
convention of the approaches follows the pattern name_of_approachconfiguration. The
results are sorted by f1-score. The last three columns indicate the number of true positives
(#TP), number of false positives (#FP), and the size of the respective ground truth
(#GT).

LogMapExp is the approach with highest f1-score and a moderate precision metric of
0.68. SANOM achieves the same performance metrics with and without WordNet. Thus,
WordNet is probably not beneficial for this task. Despite SANOM having the second
best f1-score, its precision metric ranks with only 0.34 very low. Next, LogMap achieved
a reasonable f1-score and promising precision metric of 0.75. The remaining approaches
were all either too aggressive (i.e. predicting too many correspondences at the cost of
precision such as OntoConnect) or were too cautious (i.e. predicting too few mappings
at the cost of recall such as LXLHMeta).

Further, as it was expected, BERTMap performed very poorly on this dataset since
there is no training data available (remember: the fine-tuning procedure in BERTMap in
an unsupervised setting requires that the concepts have multiple labels, however, the
CCS ontology has only one label per concept). Also interesting to see that LogMap-ML
became more effective when OWL2Vec* embeddings were used instead of Word2Vec
embeddings. This is congruent with the observations in [16]. Regarding the application
of WordNet, it becomes clear that applying WordNet is not beneficial within this problem

48

5.5. Results on CPC-CCS

domain. In general, it is safe to assume that the machine learning centered approaches
suffer from the small sizes of the sub-ontologies. For example, LogMap-ML relies on
distant supervision for its training process, however, the underlying data stems from a
high precision matcher (i.e., the LogMap anchor mappings) that can, on this use case,
only conclude on a few mappings and, therefore, the trained neural network performed
relatively poorly when generating the alignment. The performance of LJLEvolutionary
is disappointing since it is the only matcher that performed worse than the Baseline.

Approach Precision Recall F1-Score #TP #FP #GT
LogMapExp 0.68 0.36 0.47 15 7 42

SANOM 0.34 0.48 0.40 20 39 42
SANOMW ordNet 0.34 0.48 0.40 20 39 42

LogMap 0.75 0.21 0.33 9 3 42
LogMap-MLOwl2V ec∗_path 0.35 0.21 0.26 9 17 42

AML 0.75 0.14 0.24 6 2 42
OntoConnect 0.16 0.45 0.24 19 98 42

LogMap-MLOwl2V ec∗_label 0.50 0.12 0.19 5 5 42
LXLHMeta 1.00 0.10 0.17 4 0 42

LogMap-MLW ord2V ec_label 0.44 0.10 0.16 4 5 42
LogMap-MLW ord2V ec_path 0.31 0.10 0.15 4 9 42

LogMapLt 1.00 0.07 0.13 3 0 42
BERTMap-US200 1.00 0.05 0.09 2 0 42
BERTMap-US25 1.00 0.05 0.09 2 0 42

Baseline 1.00 0.05 0.09 2 0 42
LJLEvolutionary 0.67 0.05 0.09 2 1 42

Table 5.1: Results on GTCP C−CCS of all models sorted by F1-Score

Performance on High Confidence Ground Truth. The performance on GTCP C−CCS;≥0.9,
described in Table 5.2, is very similar to the performance on GTCP C−CCS . The only
additional insight, that is revealed in Table 5.2, is that LogMap ranks higher than on the
full ground truth. This shows that LogMap is a very effective high-precision matcher.

Alignment Analysis. Figure 5.1 illustrates which systems are similar to each other in
terms of prediction output regarding GTCP C−CCS . The graphic is essentially a heatmap.
On the y-axis of the heatmap we see one entry per model/configuration. The x-axis,
on the other hand, has one entry for each c ∈ C whereby C = P ∪ GTCP C−CCS

with P being the union over all correspondences that at least one model has predicted.
Everything at the left side of the dotted vertical black line belongs to the ground truth.
This implies that red values at the left side represent false negatives, while the green
ones represent true positives. The right side of the dotted line contains all the wrong
correspondences that at least one model/configuration has generated. Red values at that

49

5. Experiments on Ground Truth

Approach Precision Recall F1-Score #TP #FP #GT
LogMapExp 0.55 0.48 0.51 12 10 25

LogMap 0.67 0.32 0.43 8 4 25
SANOM 0.24 0.56 0.33 14 45 25

SANOMW ordNet 0.24 0.56 0.33 14 45 25
LogMap-MLOwl2V ec∗_path 0.31 0.32 0.31 8 18 25
LogMap-MLOwl2V ec∗_label 0.50 0.20 0.29 5 5 25

LXLHMeta 1.00 0.16 0.28 4 0 25
AML 0.50 0.16 0.24 4 4 25

LogMap-MLW ord2V ec_label 0.44 0.16 0.24 4 5 25
LogMapLt 1.00 0.12 0.21 3 0 25

LogMap-MLW ord2V ec_path 0.31 0.16 0.21 4 9 25
OntoConnect 0.12 0.56 0.20 14 103 25

BERTMap-US200 1.00 0.08 0.15 2 0 25
BERTMap-US25 1.00 0.08 0.15 2 0 25

Baseline 1.00 0.08 0.15 2 0 25
LJLEvolutionary 0.67 0.08 0.14 2 1 25

Table 5.2: Results on GTCP C−CCS;≥0.9 of all models sorted by F1-Score

side indicates false positives, while the green ones indicate true negatives. We see that the
systems SANOM and OntoConnect were way too aggressive, i.e. they predicted too many
correspondences and have, as a consequence, too many false positives. Further, we see
that there exist multiple correspondences within the ground truth that no matcher was
able to predict. Such correspondences often rely on on structural understanding of the
ontologies, such as compiler construction; parser generation (CPC) and Translator writing
systems and compiler generators (CCS). Vice versa, we also see several correspondences
within the ground truth that each matcher got correct. Such correspondences often
have identical labels in both concepts as well as congruent knowledge branches, such as
incremental compilation (CPC) and Incremental compilers (CCS).

Runtimes. Table 5.3 shows that there exist large discrepancies between the individual
approaches in terms of their runtimes. Note that the Owl2Vec* embedding generation is
listed here separately as it has to be generated only once per alignment task and can
then be re-used by subsequent LogMap-ML runs. Further note: BERTMap-US200 and
BERTMap-US25 are summarized here as BERTMap-US that includes both runtimes. The
major insight from the runtimes is that it is very probably only feasible to execute either
LogMapLt, SANOM, LogMapExp, AML, LogMap, LXLHMeta, or LJLEvolutionary to
generate a full alignment between CPC and CCS. This, however, is not a big limitation
as the performance metrics of the other approaches were not as good (see Tables 5.1 and
5.2).

50

5.5. Results on CPC-CCS

Figure 5.1: Heatmap for each correspondence-model tuple (CPC-CCS); green indicates
correctly predicted/rejected; red indicates the opposite

Approach Sec
Baseline 2

LogMapLt 3
SANOM 3

LogMapExp 5
AML 5

LogMap 6
LXLHMeta 10

LJLEvoluationary 14
LogMap-MLW ord2V ec_label 44

SANOMW ordNet 50
LogMap-MLW ord2V ec_path 62
LogMap-MLOwl2V ec∗_label 77
LogMap-MLOwl2V ec∗_path 94

OntoConnect 203
Owl2Vec* 264

BERTMap-US 2967

Table 5.3: Runtime in seconds to align CPC and CCS (subontologies)

51

5. Experiments on Ground Truth

5.6 Results on CPC-CSO

Equivalent to the previous section, also this section compares the generated align-
ments against the two ground truths - GTCP C−CSO and GTCP C−CSO;≥0.9 whereby
GTCP C−CSO;≥0.9 ⊆ GTCP C−CSO.

Performance on Full Ground Truth. Table 5.4 shows the performance of all the
OA systems on GTCP C−CSO. We see that AML is the best performing approach for
this alignment task with a precision score of 0.88 and an f1-score of 0.33. Besides
AML, LogMapExp is the only approach that performed better than the Baseline in
terms of f1-score. The relatively good performance of the baseline is caused by many
correspondences in GTCP C−CSO where the two involved concepts have identical labels.
BERTMap performed much better than during the CPC-CCS ground truth alignment
task. This was expected since many CSO concepts have multiple rdfs:label annotations
and, therefore, a meaningful corpus and, consequently, fruitful fine-tuning of BERT is
enabled. Interestingly, as it was also the case on GTCP C−CCS and GTCP C−CCS;≥0.9, the
candidate number of BERTMap did not impact the performance at all.

Approach Precision Recall F1-Score #TP #FP #GT
AML 0.88 0.20 0.33 21 3 103

LogMapExp 0.70 0.18 0.29 19 8 103
LogMapLt 0.94 0.16 0.27 16 1 103

BERTMap-US200 0.94 0.16 0.27 16 1 103
BERTMap-US25 0.94 0.16 0.27 16 1 103

LXLHMeta 0.94 0.16 0.27 16 1 103
Baseline 0.94 0.16 0.27 16 1 103
SANOM 0.33 0.22 0.27 23 47 103

SANOMW ordNet 0.33 0.22 0.27 23 47 103
OntoConnect 0.18 0.20 0.19 21 96 103

LogMap 0.90 0.09 0.16 9 1 103
LogMap-MLOwl2V ec∗_label 0.89 0.08 0.14 8 1 103
LogMap-MLW ord2V ec_label 0.80 0.08 0.14 8 2 103
LogMap-MLOwl2V ec∗_path 0.16 0.12 0.13 12 64 103

LJLEvolutionary 0.70 0.07 0.12 7 3 103
LogMap-MLW ord2V ec_path 0.22 0.04 0.07 4 14 103

Table 5.4: Results on GTCP C−CSO of all models sorted by F1-Score

Performance on High Confidence Ground Truth. The performance on GTCP C−CSO;≥0.9
is very similar - see Table 5.5. The only difference is that LogMapExp performs now
below the Baseline. Thus, AML is the only approach that outperforms the Baseline.

52

5.7. Results on Anatomy

Approach Precision Recall F1-Score #TP #FP #GT
AML 0.83 0.34 0.48 20 4 59

LogMapLt 0.94 0.27 0.42 16 1 59
BERTMap-US200 0.94 0.27 0.42 16 1 59
BERTMap-US25 0.94 0.27 0.42 16 1 59

LXLHMeta 0.94 0.27 0.42 16 1 59
Baseline 0.94 0.27 0.42 16 1 59

LogMapExp 0.56 0.25 0.35 15 12 59
LogMap 0.90 0.15 0.26 9 1 59
SANOM 0.23 0.27 0.25 16 54 59

SANOMW ordNet 0.23 0.27 0.25 16 54 59
LogMap-MLOwl2V ec∗_label 0.89 0.14 0.24 8 1 59
LogMap-MLW ord2V ec_label 0.80 0.14 0.23 8 2 59

LJLEvolutionary 0.70 0.12 0.20 7 3 59
OntoConnect 0.13 0.25 0.17 15 102 59

LogMap-MLOwl2V ec∗_path 0.14 0.19 0.16 11 65 59
LogMap-MLW ord2V ec_path 0.22 0.07 0.1 4 14 59

Table 5.5: Results on GTCP C−CSO;≥0.9 of all models sorted by F1-Score

Alignment Analysis. Analogously to the previous section, Figure 5.2 illustrates which
systems are similar to each other in terms of prediction output. The insights are closely
related to the insights obtained when analyzing the output of the systems on CPCsubset-
CCSsubset - see Section 5.5. SANOM, OntoConnect, and LogMap-MLOwl2V ec∗_path

were again too aggressive. Further, the approaches BERTMap-US200, BERTMap-US25,
LXLHMeta, and Baseline predicted this time the exact same output.

Runtimes. Regarding the runtime, we see again large discrepancies between the
approaches. As before, the only feasible approaches to generate the final alignment
between CPC and CSO are LogMapLt, Baseline, LogMap, LogMapExp, AML, SANOM,
LXLHMeta, and LJLEvolutionary. Especially, BERTMap was too slow (~6.5 hours).

5.7 Results on Anatomy
This section outlines the performance of the implemented OA systems on the third-party
dataset - the Anatomy test case of the OAEI. The aim was to obtain a third, problem-
independent, performance indication for all the OA systems as well as to test how they
perform on a larger alignment task.

Performance Figures. Table 5.7 lists the performance of all systems. Note that
this time there are nan values for the systems LogMap-MLOwl2V ec∗_path, LogMap-
MLW ord2V ec_path, BERTMap-US200, and BERTMap-US25. Executing

53

5. Experiments on Ground Truth

Figure 5.2: Heatmap for each correspondence-model tuple (CPC-CSO); green indicates
correctly predicted/rejected; red indicates the opposite

Approach Sec
Baseline 2

LogMapLt 3
LogMap 8

LogMapExp 8
AML 14

SANOM 17
LXLHMeta 20

LJLEvluationary 24
LogMap-MLW ord2V ec_label 48
LogMap-MLOwl2V ec∗_label 83
LogMap-MLW ord2V ec_path 133

SANOMW ordNet 135
LogMap-MLOwl2V ec∗_path 188

OntoConnect 207
Owl2Vec* 561

BERTMap-US 23191

Table 5.6: Runtime in seconds to align CPC and CSO (subontologies)

LogMap-MLOwl2V ec∗_path and LogMap-MLW ord2V ec_path led to memory issues as, appar-
ently, the hardware used to align the ontologies was not sufficient. BERTMap-US200 and

54

5.8. Approach Selection

BERTMap-US25, on the other hand, were killed after ~5 hours since the approaches were
only half way through.

It is worth noting that the performances of AML, LogMap, and LogMapLt that have
been achieved during the OAEI conference of 2021 [12] deviate from those reported here.
Considering the fact that those three approaches have not been altered, the differences
might originate from slight differences in implementations when compared to the OAEI
submissions and the implementations of the publicly available versions. Another reason
for worse performance might be in the hardware limitations.

Further, also the approaches SANOM, SANOMW ordNet, and OntoConnect have deviating
performances when compared to the numbers reported in their publications - see [17] [39],
respectively. The implementation of SANOM, employed to generate the results reported
here, indeed deviates from the description in the related publication [17], therefore it is
no surprise that the performance numbers are different. OntoConnect, on the contrary,
has not been altered at all. In fact, the provided OntoConnect Docker image 3 has
been used. It is therefore unclear why the performance deviates so heavily. Note, in the
respective publication [39] the authors reported f-scores around 80% depending on the
configuration.

However, overall a very similar picture is delivered as in the previous sections, i.e. LogMap
and AML show very promising results, while the rest of the approaches are rather limited
in their performance.

Runtimes. The runtimes in table 5.8 reveal which approaches are scalable and, therefore,
candidates to generate the final alignments. While LogMap and AML were still quite
fast, the runtimes of other approaches, such as LXLHMeta or OntoConnect, increased
significantly, and yet others, such as BERTMap or LJLEvolutionaray, showed very poor
scalability.

5.8 Approach Selection
The previous sections listed the performances and runtimes of the various OA systems.

Based on the performance metrics and runtimes outlined in Section 5.5, it becomes clear
that either LogMapExp or LogMap are the most suited to align CPC with CCS. Note that
while SANOM also achieves a good f1-score, it predicts far too many false positives and,
thus, has a relatively low precision value. When comparing LogMapExp and LogMap, it
becomes evident that LogMap is better suited to align CPC with CCS since LogMap has
higher precision. Additionally, the performance on Anatomy in Section 5.7 shows that
LogMap is scalable, performs very well in other problem domains, and therefore is well
suited to generate the full alignment between CPC and CCS.

3https://hub.docker.com/r/jchakra1/ontosim_imgbatch

55

5. Experiments on Ground Truth

Approach Precision Recall F1-Score #TP #FP #GT
AML 0.96 0.88 0.92 1336 60 1516

LogMap 0.91 0.85 0.88 1286 126 1516
LogMapExp 0.81 0.86 0.83 1301 314 1516
LogMapLt 0.99 0.64 0.78 971 12 1516

LogMap-MLW ord2V ec_label 0.65 0.68 0.67 1038 547 1516
LogMap-MLOwl2V ec∗_label 0.63 0.69 0.66 1041 603 1516

SANOM 0.64 0.59 0.62 898 500 1516
SANOMW ordNet 0.64 0.59 0.62 898 500 1516

OntoConnect 0.46 0.83 0.59 1256 1491 1516
LXLHMeta 0.99 0.15 0.26 225 2 1516

Baseline 1.00 0.13 0.23 200 1 1516
LJLEvolutionary 0.33 0.14 0.19 207 422 1516

LogMap-MLOwl2V ec∗_path nan nan nan nan nan nan
LogMap-MLW ord2V ec_path nan nan nan nan nan nan

BERTMap-US200 nan nan nan nan nan nan
BERTMap-US25 nan nan nan nan nan nan

Table 5.7: Results on Anatomy of all models sorted by F1-Score

Approach Sec
LogMapLt 6
Baseline 9
LogMap 21

AML 22
LogMapExp 26
LXLHMeta 206

OntoConnect 255
LogMap-MLW ord2V ec_label 661
LogMap-MLOwl2V ec∗_label 865

SANOM 978
SANOMW ordNet 1112
LJLEvolutionary 1272
BERTMap-US > 17509

Table 5.8: Runtime in seconds on Anatomy

Considering the performances and runtimes on the CPC-CSO ground truth, that are
described in Section 5.6, it is immediately obvious that AML is the best suited approach.
AML is very efficient in terms of runtime, performs best in terms of f1-score (while
having at the same time a high precision value), and is the best performing system on
the Anatomy test case. Following these considerations, AML was used to generate the

56

5.9. Summary

full alignment between CPC and CSO.

5.9 Summary
This section has shown the performances and runtimes of various OA systems when
aligning CPCsubset with CCSsubset, CPCsubset with CSOsubset and the mouse ontology
with the human ontology from the Anatomy test case. Although still limited, it became
clear that the SOTA matchers LogMap and AML are best suited to align CPC-CCS and
CPC-CSO, respectively. Compared to the other systems, LogMap and AML showed also
superior runtimes. Especially the machine learning centered approaches were either too
slow or/and suffered from the relatively small ground truth and the absence of supervised
data.

The next chapter describes the alignment between CPC and CCS that has been retrieved
through the application of LogMap, as well as the alignment between CPC and CSO
that has been generated using AML.

57

CHAPTER 6
Analysis of Final Alignments

The previous chapter evaluated all the OA systems regarding their applicability/performance
for aligning CPC-CCS and CPC-CSO. For this purpose, all the OA systems have been
executed on a subset of CPC, CCS, and CSO, respectively. The evaluation was then
conducted on a manually generated reference alignment for each ontology pair, i.e.
CPCsubset-CCSsubset and CPCsubset-CSOsubset. LogMap turned out to be the best
suited OA system to align CPC with CCS. Further, to align CPC with CSO, AML proved
to be appropriate. Also, when evaluating the systems on the Anatomy test case from the
OAEI, LogMap and AML showed their effectiveness.

This chapter describes and evaluates the final alignment for CPC-CCS and CPC-CSO
obtained by LogMap resp. AML. The evaluation of these alignments answers the third
and last research question, namely:

RQ3: What is the performance of the best performing approach on the ground truth when
applying it to generate a full alignment between CPC and CCS/CSO?

The remainder of this chapter is structured as follows: Section 6.1 describes the approach
for evaluating the alignments. The subsequent section describes major observations that
have arisen during the evaluation. The actual results are then presented in Section 6.3.
The chapter concludes with key take-aways and a brief summary in Section 6.4.

6.1 Approximating Metrics
To the best of our knowledge no alignment between CPC and CCS/CSO has been
generated and evaluated in previous works. As a consequence, there is no alignment
against which a new alignment could be compared. Obviously, a gold standard isn’t
available either. Therefore, some way is required to evaluate the alignments that does
not rely on reference alignments.

59

6. Analysis of Final Alignments

Typically, the correspondences of an alignment have to be manually looked into by the
user in order to assess their quality [68]. Based on a manual assessments and a partial
(possibly empty) gold standard, Chen et al. [16] described how precision and recall can
be approximated for alignments where no gold standard exists. In a nutshell, the authors
proposed to approximate precision through randomly drawing correspondences from
an alignment and evaluating these correspondences for their correctness. Regarding
recall an estimation of the actual correspondences is necessary, therefore Chen et al. [16]
proposed to construct the union over the output of multiple OA systems. Afterwards,
correspondences can be drawn at random and their correctness can be assessed. In this
way it is possible to approximate the proportion of true correspondences in a larger
sample of correspondences. Next, the approximation procedures are explained in more
detail.
To approximate precision Chen et al. [16] use the following:

Precision≈ = TPG,M

|M | =
|M ∩ G| + |Sv |

|S| × |M \ G|
|M | (6.1)

G is a partial (possibly empty) gold standard. Here, the ground truth that was generated
to evaluate the OA systems in Chapter 5 was used as G. M corresponds to the mappings
generated by a system (either LogMap or AML depending on the task). S is a randomly
chosen subset of M \ G, and Sv ⊆ S constitutes the true positives of S. In this work
|S| = 100 is chosen.
Regarding recall, Chen et al. [16] stated the following:

Recall≈ = TPG,M

|G| + |S′
v |

|S′| × |M ′ \ G|
(6.2)

TPG,M and G are already known from Precision≈. M ′, on the other hand, comprises
the union of mappings of multiple OA systems. S′ and S′

v are then analogously defined
to S and Sv, i.e. a random subset of M ′ and true mappings, respectively. This time
a smaller S′ was chosen, namely |S′| = 50. To obtain M ′ it was necessary to have a
variety of different matchers that have, in the ideal case, high recall. However, if we
consider the runtimes of Chapter 5 (Tables 5.3, 5.6, and 5.8), then it becomes clear that
the only systems that are feasible to execute on the whole ontologies are LogMapLt,
Baseline, LogMap, LogMapExp, AML, and probably LXLHMeta. All these systems have
achieved only a low recall on the ground truth - see Chapter 5 (Tables 5.1 and 5.4).
Further, when inspecting the heatmaps (Figures 5.1 and 5.2) of output mappings we can
see that they all generate similar mappings, implying that the union over all systems
would not increase the recall significantly. Due to these considerations, the reported
recall approximations in this chapter shall be treated with caution.
Having approximated precision and recall, f1 − score≈ can be computed as well using
the standard formula:

f1 − score≈ = 2 × precision≈ × recall≈

precision≈ + recall≈
(6.3)

60

6.2. Manual Assessment

6.2 Manual Assessment
To calculate the performance approximations outlined in the previous section, it is
necessary to manually assess the correctness of each correspondence in S and S′, thus
arriving at Sv and S′

v. Note that this process has to be performed twice, one time for CPC-
CCS and one time for CPC-CSO. The process of determining Sv/S′

v is described next.
Subsequently observations are listed that appeared during the manual assessment of S.
Regardless of CPC-CCS or CPC-CSO, the process and the observations were essentially
the same. Therefore, there is no distinction between both cases in the remainder of this
section.

Construction of Sv and S′
v. When creating Sv and S′

v the rules employed during
ground truth construction (see Section 5.1) have been considered here again, however,
for the vast majority of correspondences it was enough to compare the two hierarchies,
in which the two involved concepts reside, to determine whether they represent a valid
mapping or not.

Still, often it was quite difficult to determine whether two concepts represent the same
notion as this, obviously, lies within the eye of the beholder to some degree. For example,
the concept with label bluetooth in CPC is a sub-concept of protocol or standard connector
for transmission of analog or digital data to or from an electrophonic musical instrument,
while in CSO the concept with label bluetooth is about mobile devices. Of course, both
concepts refer to the same underlying technology, still, its fields of application deviate
heavily. Typically in such scenarios, such correspondences have not been considered
as equivalent. This might be one of the reasons why precision≈ generally tends to be
lower and recall≈ tends to be larger (in both alignment tasks, namely CPC-CCS and
CPC-CSO).

A further fact that might have additionally deteriorated precision≈ and increased recall≈

is the fact that several times it was not within the expertise of the author to determine
whether a correspondence is accurate or not. This was mostly the case if there the two
concepts involved in a particular correspondence were about non-cs domains such as
chemicals. In such a case, typically 0 was assigned - i.e. not considered as a true match.

To obtain an evaluation outcome that is as transparent as possible, for each correspondence
a justification was given why the underlying correspondence was rejected/approved. The
results of this manual assessment in conjunction with justifications can be found as tsv
files in the GitHub repository of this thesis. Note that the last column of the respective
tsv files indicates uncertainty. For example, uncertainty might originate from mappings
in other domains than computer science where the author’s knowledge is limited.

Characteristics of correspondences in S. When inspecting the sample of corre-
spondences, regardless of LogMap (CPC-CCS) or AML (CPC-CSO), there were a few
observations regarding characteristics of the correspondences that are outlined in the
following.

61

6. Analysis of Final Alignments

LogMap and AML put too much focus on lexical correlation and seem to neglect structural
information. This becomes evident when considering the top reason for rejection, namely
that two concepts have been aligned that have the same name, but a completely different
semantic meaning because they reside in two disjoint hierarchies. An appropriate example
for this behaviour is represented by the following correspondence that was found by
AML: the CPC concept G16Y10-75 with label information technology; communication
was mapped to the CSO concept information technology. While, at the first glance,
this correspondence might seem like a equivalent relationship, when inspecting the two
hierarchies it becomes clear that the CPC concept is about the economic sector, while
the CSO concept represents a field of computer science research. LogMap and AML have
generated a large variety of similar correspondences that have then been rejected during
the manual assessment. The limitation originating from such examples was not very
serious during the alignment of the sub-ontologies (Chapter 5) as all the sub-ontologies
represented a similar domain to begin with. However, especially the full CPC ontology
comprises a large variety different fields, despite the fact that the sections A,B,C,D,E,F,
and H have been identified as unrelated already during the pre-processing stage (see
Section 3.3).

Similar to the latter observation, LogMap and AML essentially only predicted correspon-
dences involving concepts with very similar or even identical labels.

There also were quite a few correspondences that point at the lack of semantic under-
standing of LogMap and AML, such as single input, plural outputs (CPC) was mapped to
multiple input single outputs (CSO). This points to a limitation of the employed matchers,
namely LogMap and AML, that they are not able to grasp the semantics of a label
instead they purely rely on lexical information (at least when dealing with labels).

6.3 Results

As stated in Chapter 3, CCS, CSO, and CPC comprise 2113, 14290, and 53849 clas-
sification entries, respectively. Table 6.1 shows the runtimes of each approach that
has been executed to generate the alignments for CPC-CCS and CPC-CSO. Note that
LXLHMeta was killed after > 5 hours on CPC-CSO, therefore the resulting alignment is
not available for recall estimation of the CPC-CSO alignment. Further, the alignment
generated by LXLHMeta on CPC-CCS has also been excluded for CPC-CCS recall
estimation since it predicted too many (mostly wrong) correspondences. Therefore a
sample of 50 correspondences (S′) would have had overwhelmingly many correspondences
from LXLHMeta and would, hence, be very biased towards that specific matcher (with
LXLHMeta the union (M ′) would comprise 8549 correspondences, while without it would
only comprise 376 correspondences). Note in bold we see the approaches for which
precision is approximated, i.e. the approaches that have been found most suited to align
CPC with CCS and CPC with CSO.

62

6.3. Results

Appraoch Runtime in sec
CPC-CCS CPC-CSO

LogMap 146 435
LogMapLt 12 13

LogMapExp 99 440
AML 67 83

Baseline 551 755
LXLHMeta 4990 >19736

Table 6.1: Runtimes to generate the final alignments - in bold the runtime of the most
suited matcher for the respective alignment task

6.3.1 CPC-CCS

This section approximates precision, recall, as well as f1-score for the CPC-CCS alignment.

Precision. LogMap found 94 correspondences when aligning CPC with CCS. These
correspondences represent M . Four of these correspondences were already part of the
related ground truth, therefore of |M \ G| was equal to 87 and |M ∩ G| was found to be
equal to 7. Because there are less than 100 correspondences, all of them were added to
S. Out of these 87 mappings 42 were found to be valid. These 42 correspondences form
Sv. Using all these values, it is possible to approximate precision using the formula 6.1.
Thus:

Precision≈ = TPG,M

|M | =
|M ∩ G| + |Sv |

|S| × |M \ G|
|M | =

7 + 42
87 × 87
94 ≈ 0.52

Recall. To approximate recall the union over the alignments generated by LogMap,
LogMapLt, LogMapExp, AML, and Baseline has been built. This union forms M ′. The
size of M ′ equals to 376. M ′ contained 13 correspondences from the ground truth,
thus |M ′ \ G| = 363. Remember that |G| = 42. Out of M ′ \ G a random sample of
50 correspondences has been drawn. 21 of these random correspondences were correct
mappings, therefore |S′| = 50 and |S′

v| = 21. Hence:

Recall≈ = TPG,M

|G| + |S′
v |

|S′| × |M ′ \ G|
= 49

42 + 21
50 × 363

≈ 0.25

Based on Precision≈ and Recall≈, f1 − score≈ is:

f1 − score≈ = 2 × precision≈ × recall≈

precision≈ + recall≈
≈ 0.34

63

6. Analysis of Final Alignments

Interpretation. When comparing the metrics obtained in Chapter 5 one can observe
that the precision metrics deviate significantly, i.e. 0.52 (in this chapter) vs. 0.75 (during
the experiments). Reasons for this discrepancy were already outlined in Section 6.2, e.g.
it is far more likely that two identical words in the ground truth represent actual true
correspondences than when aligning the whole ontologies.

Regarding recall estimation the values are very similar, i.e. 0.25 (in this chapter) vs. 0.21
(during the experiments). It is, however, very likely that the actual recall on the full
alignment is significantly lower since all the correspondences, that have been used for
recall estimation, are biased towards mappings found by lexical matchers (LogMapLt,
LogMapExp, AML, and Baseline).

Due to the fact that the recall estimations were very similar to those computed on the
ground truth, the estimated f1-score is also very similar, i.e. 0.34 vs. 0.33.

6.3.2 CPC-CSO
This section approximates precision, recall, as well as f1-score for the CPC-CSO alignment.

Precision. Regarding CPC-CSO, AML found 1334 correspondences. Out of the sample
S (|S| = 100), 45 were classified as correct correspondences (|Sv| = 45). |M ∩ G| was
equal to 21, while |M \ G| corresponded to 1313. Therefore, Precision≈ for CPC-CSO
is:

Precision≈ = TPG,M

|M | =
|M ∩ G| + |Sv |

|S| × |M \ G|
|M | =

21 + 45
100 × 1313
1334 ≈ 0.46

Recall. The union of all alignments on CPC-CSO was equal to 2608 (corresponds to
M ′). Out of M ′ \ G (size 2582), a sample of size 50 was randomly chosen (denoted by
S′). When inspecting the correspondences in S′, 19 were found to be correct (denoted by
S′

v). The ground truth for CPC-CSO comprises 103 correspondences. Therefore, recall is
approximated through:

Recall≈ = TPG,M

|G| + |S′
v |

|S′| × |M ′ \ G|
=

21 + 45
100 × 1334

103 + 19
50 × 2582

≈ 0.56

Based on Precision≈ and Recall≈, f1 − score≈ is:

f1 − score≈ = 2 × precision≈ × recall≈

precision≈ + recall≈
≈ 0.51

Interpretation. Similar as with CPC-CCS, also here the precision metric deviates
significantly from its counterpart in Chapter 5, i.e. 0.46 vs. 0.83. Essentially the same
reasons as in CPC-CCS apply here as well.

64

6.4. Summary

The estimated recall measure, on the other hand, is larger than its counterpart on the
ground truth, i.e. 0.56 vs. 0.34. The most probable reasons are the bias towards lexical
matchers in the recall estimation sample, and the reasons outlined in Section 6.2.

The estimated precision value is smaller than its equivalent on the ground truth, while
the estimated recall sample is larger, therefore the estimated f1-score is very similar, i.e.
0.51 vs. 0.48.

6.4 Summary
To conclude the analysis of the alignments for CPC-CCS and CPC-CSO, this section
lists the key results.

Firstly, it became clear that LogMap and AML failed to take structural information of
the ontologies into consideration. This became evident when observing the number of
correspondences between concepts with similar labels in different knowledge branches.
This behaviour of the OA systems was the main reason for the unexpected low precision
values. These values were unexpected since the performance on the ground truths, that
was described in Chapter 5, gave reason to hope for decent precision figures.

Secondly, as it was already expected by observing the predicted correspondences on the
ground truth, LogMap and AML predicted for the most part only correspondences that
involved concepts with very similar/identical labels.

The approximated recall measures, calculated in this chapter, were higher than the
achieved recall values on the ground truth - as described in Chapter 5. However, it
is important to note that the reported recall measures need to be considered with
caution since the underlying estimation process is connected with various limitations and
assumptions.

Even though there are limitations in the precision & recall estimation processes, the
quality indications calculated for the two final alignments provide a reasonable metric
to assess the goodness of the two alignments. Both alignments represent a useful, but
limited, starting point in aligning the patent ontology CPC with the two computer science
ontologies CCS and CSO.

65

CHAPTER 7
Summary

This chapter is the last of this work, therefore it is the appropriate place to draw
conclusions, as well as to provide an outlook towards possible future work. The first section
summarizes the most important steps of the work, describes the major outcomes/results
for each step, and derives the limitations that are associated with the individual steps.
The next and final section of this thesis points at several open issues and, thus, provides
directions for future work.

7.1 Conclusion & Limitations
Ontologies about similar domains are very often heavily heterogeneous. Ontologies may
deviate in their granularity, structure, relationships among concepts, and in many other
aspects. These discrepancies foster the need for automated OA solutions. This work
investigated various OA approaches regarding the alignment of the patent ontology CPC
with the computer science ontologies CCS and CSO. The eventual goal was to deliver an
alignment between these ontologies.

The first major step was to conduct a literature review. The literature review was oriented
at the literature review template proposed in [13]. As search engine Google Scholar was
employed. To filter the literature, only literature that was published after 2018 was
considered and the string ontology alignment or ontology matching had to be contained
within each publication’s title. The outcome of this initial step was a set of publications
proposing new OA solutions. The resulting publications were then re-implemented and
passed to the next step of this thesis. The search process imposed two limitations: (a)
the resulting set of publications are biased towards publications that are findable through
Google Scholar, (b) due to the fact that only literature after 2018 and literature whose
titles contain either the string ontology alignment or ontology matching were considered,
it might have happened that promising literature was missed.

67

7. Summary

Based on the results of the literature survey, the second step was about the evaluation of
the found approaches. To gauge the performance of each approach, the manual creation of
two ground truths was necessary, i.e. one ground truth for the CPC-CCS pair and one for
CPC-CSO. Executing each of the identified approaches on the ground truths resulted in
the realization that the SOTA matchers LogMap and AML are the most suited matchers
to align CPC with CCS and CPC with CSO. More precisely, LogMap was found to be
best suited for CPC-CCS, resp. AML for CPC-CSO. The major limitation of this step
stems from the manual creation of the ground truths. Finding correspondences between
concepts is to some degree subjective to the person that creates these correspondences.
Although best effort was made to ensure that this step is as objective and reproducible
as possible, e.g. through the definition of assignment rules, the outcome might still
deviate when compared to the outcome of another person. When evaluating OA systems
for a specific use case this is, however, a very common limitation as the results of the
experiments conducted in [66] show.

To deliver the final contribution of this work, the full preprocessed ontologies were aligned
using the best suited matcher for the respective ontology pair, i.e. LogMap for CPC-CCS
and AML for CPC-CSO. To evaluate the resulting alignments, the precision and recall
estimation procedures described in [16] were considered. The results show that both
alignments are a useful starting point for a sophisticated alignment between the ontologies,
but are still of limited quality. Note that the estimation procedures involved a manual
assessment of randomly selected alignments and impose, as a consequence, the same
limitation as the ground truths.

Although, the achieved results of this thesis provide a first decent building block in
aligning patent classifications with computer science terms, the results are connected
with various limitations as explained in the previous paragraphs. These limitations lead
to several possible future research directions as well as ideas to enhance the quality of
the alignments.

7.2 Outlook
This section provides an outlook towards possible future work.

7.2.1 Embedding of Additional Knowledge
All the three ontologies were preprocessed to schema-level ontologies whereby, as a result,
each ontological concept has only rdfs:label annotations and is related to other concepts
exclusively through owl:subClassOf relations. Many of the considered OA systems might
deliver enhanced performances if more information was included. Especially, adding
disjointness constraints, such as owl:disjointWith, and adding descriptions to concepts,
e.g. through rdfs:comment annotations, might prove to be very beneficial in regards to the
predictive power of each matcher. To add additional constraints to all three ontologies,
additional manual work would be necessary since the three ontologies are not shipped

68

7.2. Outlook

with such relations. For example, one might add owl:disjointWith relations between
concepts that represent disjoint knowledge branches. To add descriptions additional
preprocessing strategies would be necessary. For example, to embed the descriptions of
the CPC classification entries the related descriptions would have to be retrieved from
their respective sources and be embedded into the related concepts.

In this work, no external sources were utilized with the exception of WordNet and pre-
trained language models, such as Word2Vec. To further include more knowledge, it might
make sense to utilize auxiliary ontologies and/or additional external data sources. As an
example for a possibly useful auxiliary ontology, one might name the IPC ontology that
is already referenced from various CPC classification entries. Using such an additional
ontology might enable to embody further descriptions and labels for each concept.

7.2.2 Increasing of Variety of Approaches
During the literature survey several restrictions have been made towards the properties
of each matcher. Lifting one or more of those restrictions would enable the employment
of additional OA systems. As a possible relaxation one might lift the requirement that
each matcher must represent an unsupervised OA system. Due to the fact that a ground
truth is now available, future work might try supervised matchers that are trained on the
data from the ground truth. Another way to increase the variety of approaches might be
to consider also publications from other search engines than Google Scholar.

Although the implementations were already in-part adapted to the characteristics of this
use case, the adaptations were committed rather cautiously and for the most part the
implementations are heavily oriented at the related publications. A possible point for
future work might be to adapt the approaches to be better suited to the characteristics
of each ontology, such as through refinement of parameters.

69

List of Figures

1.1 Basic research roadmap for this thesis . 4

2.1 The matching process [9] . 10

4.1 Overview of literature survey - steps based on descriptions in [13] 22
4.2 Overview of literature filtering process . 24
4.3 LogMap in a nutshell [28] . 27
4.4 The AML ontology loading module [11] 29
4.5 The AML ontology matching module [11] 30
4.6 LogMap-ML overview [16] . 32
4.7 Overview of OntoConnect system [39] . 34
4.8 Overview of BERTMap system [38] . 36
4.9 Framework to aggregate similarity matrices from different textual contents

[43] . 39

5.1 Heatmap for each correspondence-model tuple (CPC-CCS); green indicates
correctly predicted/rejected; red indicates the opposite 51

5.2 Heatmap for each correspondence-model tuple (CPC-CSO); green indicates
correctly predicted/rejected; red indicates the opposite 54

71

List of Tables

4.1 Search string . 24
4.2 Outcome of literature review . 26

5.1 Results on GTCP C−CCS of all models sorted by F1-Score 49
5.2 Results on GTCP C−CCS;≥0.9 of all models sorted by F1-Score 50
5.3 Runtime in seconds to align CPC and CCS (subontologies) 51
5.4 Results on GTCP C−CSO of all models sorted by F1-Score 52
5.5 Results on GTCP C−CSO;≥0.9 of all models sorted by F1-Score 53
5.6 Runtime in seconds to align CPC and CSO (subontologies) 54
5.7 Results on Anatomy of all models sorted by F1-Score 56
5.8 Runtime in seconds on Anatomy . 56

6.1 Runtimes to generate the final alignments - in bold the runtime of the most
suited matcher for the respective alignment task 63

73

Acronyms

AML AgreementMakerLight. 28–30, 71

BERT Bidirectional Encoder Representation from Transformers. 35, 36, 46, 52

CCS ACM Computing Classification System. 2–7, 13–19, 37, 41, 43–45, 48, 50, 52, 55,
57, 59, 61–65, 67, 68

CPC Cooperative Patent Classification. 2–7, 13, 15–19, 37, 41, 43–45, 48, 50, 52, 53,
55–57, 59, 61–65, 67–69

CSO Computer Science Ontology. 2–7, 13–19, 37, 41, 43–45, 52, 53, 56, 57, 59, 61, 62,
64, 65, 67, 68

EA Evolutionary Algorithm. 38

GA Genetic Algorithm. 38, 40

IDF Inverse Document Frequency. 31, 36

IPC International Patent Classification. 16, 69

LSTM Long Short-Term Memory. 34

OA Ontology Alignment. 2–7, 9–15, 19, 21, 23–33, 35, 38, 41, 43, 44, 46–48, 52, 53, 55,
57, 59, 60, 65, 67–69

OAEI Ontology Alignment Evaluation Initiative. 2, 3, 5, 23, 26–29, 32, 33, 37, 38, 46,
48, 53, 55, 59

OWL Web Ontology Language. 9, 10, 14, 16, 33

RDF Resource Description Framework. 9, 10, 13, 14, 16

SA Simulated Annealing. 29–31

75

SKOS Simple Knowledge Organization System. 13, 14

SOTA State-of-the-Art. 12, 23, 25–27, 32, 57, 68

TF Term Frequency. 31

76

Bibliography

[1] Li Ding, Pranam Kolari, Zhongli Ding, and Sasikanth Avancha. Using ontologies in
the semantic web: A survey. In Ontologies, pages 79–113. Springer, 2007.

[2] Thomas R Gruber. A translation approach to portable ontology specifications.
Knowledge acquisition, 5(2):199–220, 1993.

[3] Lorena Otero-Cerdeira, Francisco J Rodríguez-Martínez, and Alma Gómez-Rodríguez.
Ontology matching: A literature review. Expert Systems with Applications, 42(2):
949–971, 2015.

[4] Xingsi Xue and Jiawei Lu. A compact brain storm algorithm for matching ontologies.
Ieee Access, 8:43898–43907, 2020.

[5] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Learning to map
between ontologies on the semantic web. In Proceedings of the 11th international
conference on World Wide Web, pages 662–673, 2002.

[6] Angelo A Salatino, Thiviyan Thanapalasingam, Andrea Mannocci, Francesco Os-
borne, and Enrico Motta. The computer science ontology: a large-scale taxonomy of
research areas. In International Semantic Web Conference, pages 187–205. Springer,
2018.

[7] Zoe Kotti, Georgios Gousios, and Diomidis Spinellis. Impact of software engineering
research in practice. arXiv preprint arXiv:2204.03366, 2022.

[8] CPC cooperative patent classification - ontology meta information. Retrieved from
https://www.epo.org/searching-for-patents/helpful-resources/
first-time-here/classification/cpc.html, 2022. Accessed: 2022-08-04.

[9] Jérôme Euzenat, Pavel Shvaiko, et al. Ontology matching, volume 18. Springer,
2007.

[10] Ian Horrocks, Jiaoyan Chen, and L Jaehun. Tool support for ontology design and
quality assurance. In ICBO 2020 integrated food ontology workshop (IFOW), 2020.

77

https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/classification/cpc.html
https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/classification/cpc.html

[11] Daniel Faria, Catia Pesquita, Emanuel Santos, Matteo Palmonari, Isabel F Cruz,
and Francisco M Couto. The agreementmakerlight ontology matching system. In
OTM Confederated International Conferences" On the Move to Meaningful Internet
Systems", pages 527–541. Springer, 2013.

[12] M Pour, Alsayed Algergawy, Florence Amardeilh, Reihaneh Amini, Omaima Fallatah,
Daniel Faria, Irini Fundulaki, Ian Harrow, Sven Hertling, Pascal Hitzler, et al. Results
of the ontology alignment evaluation initiative 2021. In CEUR Workshop Proceedings
2021, volume 3063, pages 62–108. CEUR, 2021.

[13] Jorge Biolchini, Paula Gomes Mian, Ana Candida Cruz Natali, and Guilherme Horta
Travassos. Systematic review in software engineering. System engineering and
computer science department COPPE/UFRJ, Technical Report ES, 679(05):45, 2005.

[14] Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK,
Keele University, 33(2004):1–26, 2004.

[15] Barbara A Kitchenham, Tore Dyba, and Magne Jorgensen. Evidence-based software
engineering. In Proceedings. 26th International Conference on Software Engineering,
pages 273–281. IEEE, 2004.

[16] Jiaoyan Chen, Ernesto Jiménez-Ruiz, Ian Horrocks, Denvar Antonyrajah, Ali Hadian,
and Jaehun Lee. Augmenting ontology alignment by semantic embedding and distant
supervision. In European Semantic Web Conference, pages 392–408. Springer, 2021.

[17] Majid Mohammadi, Wout Hofman, and Yao-Hua Tan. Simulated annealing-based
ontology matching. ACM Transactions on Management Information Systems (TMIS),
10(1):1–24, 2019.

[18] Jeff Z Pan. Resource description framework. In Handbook on ontologies, pages 71–90.
Springer, 2009.

[19] Sean Bechhofer, Frank Van Harmelen, Jim Hendler, Ian Horrocks, Deborah L
McGuinness, Peter F Patel-Schneider, Lynn Andrea Stein, et al. Owl web ontology
language reference. W3C recommendation, 10(2):1–53, 2004.

[20] Jiaoyan Chen, Pan Hu, Ernesto Jimenez-Ruiz, Ole Magnus Holter, Denvar Antonyra-
jah, and Ian Horrocks. Owl2vec*: Embedding of owl ontologies. Machine Learning,
110(7):1813–1845, 2021.

[21] Erik B Myklebust, Ernesto Jimenez-Ruiz, Jiaoyan Chen, Raoul Wolf, and Knut Erik
Tollefsen. Knowledge graph embedding for ecotoxicological effect prediction. In
International Semantic Web Conference, pages 490–506. Springer, 2019.

[22] Ian Horrocks. Ontologies and the semantic web. Communications of the ACM, 51
(12):58–67, 2008.

78

[23] Jérôme Euzenat et al. Semantic precision and recall for ontology alignment evaluation.
In Ijcai, volume 7, pages 348–353, 2007.

[24] Erhard Rahm and Philip A Bernstein. A survey of approaches to automatic schema
matching. the VLDB Journal, 10(4):334–350, 2001.

[25] Sophie Neutel and Maaike HT de Boer. Towards automatic ontology alignment using
bert. In AAAI Spring Symposium: Combining Machine Learning with Knowledge
Engineering, 2021.

[26] Elodie Thiéblin, Ollivier Haemmerlé, Nathalie Hernandez, and Cassia Trojahn.
Survey on complex ontology matching. Semantic Web, 11(4):689–727, 2020.

[27] Jaewoo Kang and Jeffrey F Naughton. On schema matching with opaque column
names and data values. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pages 205–216, 2003.

[28] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap: Logic-based and
scalable ontology matching. In International Semantic Web Conference, pages
273–288. Springer, 2011.

[29] Jorge Martinez-Gil and José F Aldana-Montes. Evaluation of two heuristic ap-
proaches to solve the ontology meta-matching problem. Knowledge and Information
Systems, 26(2):225–247, 2011.

[30] ACM computing classification system. Retrieved from https://dl.acm.org/
ccs, 2012. Accessed: 2022-11-04.

[31] Bernard Rous. Major update to acm’s computing classification system. Communi-
cations of the ACM, 55(11):12–12, 2012.

[32] Alistair Miles and Sean Bechhofer. Skos simple knowledge organization system
reference. W3C recommendation, 2009.

[33] Francesco Osborne and Enrico Motta. Klink-2: integrating multiple web sources to
generate semantic topic networks. In International Semantic Web Conference, pages
408–424. Springer, 2015.

[34] Francesco Osborne, Enrico Motta, and Paul Mulholland. Exploring scholarly data
with rexplore. In International semantic web conference, pages 460–477. Springer,
2013.

[35] CSO computer science ontology - about. Retrieved from https://cso.kmi.open.
ac.uk/about, 2022. Accessed: 2022-11-28.

[36] CPC cooperative patent classification - home. Retrieved from https://www.
cooperativepatentclassification.org/home, 2022. Accessed: 2022-11-
28.

79

https://dl.acm.org/ccs
https://dl.acm.org/ccs
https://cso.kmi.open.ac.uk/about
https://cso.kmi.open.ac.uk/about
https://www.cooperativepatentclassification.org/home
https://www.cooperativepatentclassification.org/home

[37] David Beckett. Rdf 1.1 n-triples. URL: https://www. w3. org/TR/n-triples, 2014.

[38] Yuan He, Jiaoyan Chen, Denvar Antonyrajah, and Ian Horrocks. Bertmap: A
bert-based ontology alignment system. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 5684–5691, 2022.

[39] Jaydeep Chakraborty, Srividya K Bansal, Luca Virgili, Krishanu Konar, and Beyza
Yaman. Ontoconnect: Unsupervised ontology alignment with recursive neural
network. In Proceedings of the 36th Annual ACM Symposium on Applied Computing,
pages 1874–1882, 2021.

[40] Amir Laadhar, Faiza Ghozzi, Imen Megdiche, Franck Ravat, Olivier Teste, and
Faiez Gargouri. Pomap++ results for oaei 2019: fully automated machine learning
approach for ontology matching. In 14th International Workshop on Ontology
Matching co-located with the International Semantic Web Conference (OM@ ISWC
2019), pages 169–174, 2019.

[41] Prodromos Kolyvakis, Alexandros Kalousis, and Dimitris Kiritsis. Deepalignment:
Unsupervised ontology matching with refined word vectors. In Proceedings of the
2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 787–798,
2018.

[42] Jiawei Lu, Xingsi Xue, Guoxiang Lin, and Yikun Huang. A new ontology meta-
matching technique with a hybrid semantic similarity measure. In Advances in
Intelligent Information Hiding and Multimedia Signal Processing, pages 37–45.
Springer, 2020.

[43] Qing Lv, Chengcai Jiang, and He Li. Solving ontology meta-matching problem
through an evolutionary algorithm with approximate evaluation indicators and
adaptive selection pressure. IEEE Access, 9:3046–3064, 2020.

[44] Zhaoming Lv and Rong Peng. A novel meta-matching approach for ontology
alignment using grasshopper optimization. Knowledge-Based Systems, 201:106050,
2020.

[45] Qing Lv, Jinyuan Shi, Huanting Shi, and Chengcai Jiang. A novel compact fireworks
algorithm for solving ontology meta-matching. Applied Intelligence, pages 1–24,
2022.

[46] Olivier Bodenreider. The unified medical language system (umls): integrating
biomedical terminology. Nucleic acids research, 32(suppl_1):D267–D270, 2004.

[47] George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

80

[48] Isabel F Cruz, Flavio Palandri Antonelli, and Cosmin Stroe. Agreementmaker:
efficient matching for large real-world schemas and ontologies. Proceedings of the
VLDB Endowment, 2(2):1586–1589, 2009.

[49] Alsayed Algergawy, Daniel Faria, Alfio Ferrara, Irini Fundulaki, Ian Harrow, Sven
Hertling, Ernesto Jiménez-Ruiz, Naouel Karam, Abderrahmane Khiat, Patrick
Lambrix, et al. Results of the ontology alignment evaluation initiative 2019. In
CEUR Workshop Proceedings, volume 2536, pages 46–85, 2019.

[50] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H
Teller, and Edward Teller. Equation of state calculations by fast computing machines.
The journal of chemical physics, 21(6):1087–1092, 1953.

[51] William Cohen, Pradeep Ravikumar, and Stephen Fienberg. A comparison of string
metrics for matching names and records. In Kdd workshop on data cleaning and
object consolidation, volume 3, pages 73–78, 2003.

[52] Zhibiao Wu and Martha Palmer. Verb semantics and lexical selection. arXiv preprint
cmp-lg/9406033, 1994.

[53] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[54] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enrich-
ing word vectors with subword information. Transactions of the association for
computational linguistics, 5:135–146, 2017.

[55] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[56] Melanie Mitchell. An introduction to genetic algorithms. MIT press, 1998.

[57] Wes McKinney et al. Data structures for statistical computing in python. In
Proceedings of the 9th Python in Science Conference, volume 445, pages 51–56.
Austin, TX, 2010.

[58] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J
Smith, et al. Array programming with numpy. Nature, 585(7825):357–362, 2020.

[59] Radim Rehurek and Petr Sojka. Gensim–python framework for vector space mod-
elling. NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech
Republic, 3(2):2, 2011.

[60] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-like
environment for machine learning. In BigLearn, NIPS workshop, number CONF,
2011.

81

[61] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine
Learning research, 12:2825–2830, 2011.

[62] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
{TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX
symposium on operating systems design and implementation (OSDI 16), pages
265–283, 2016.

[63] Jean-Baptiste Lamy. Owlready: Ontology-oriented programming in python with
automatic classification and high level constructs for biomedical ontologies. Artificial
intelligence in medicine, 80:11–28, 2017.

[64] Sven Hertling, Jan Portisch, and Heiko Paulheim. Melt-matching evaluation toolkit.
In International conference on semantic systems, pages 231–245. Springer, Cham,
2019.

[65] Jérôme David, Jérôme Euzenat, François Scharffe, and Cássia Trojahn dos Santos.
The alignment api 4.0. Semantic web, 2(1):3–10, 2011.

[66] Anna Tordai, Jacco Van Ossenbruggen, Guus Schreiber, and Bob Wielinga. Let’s
agree to disagree: on the evaluation of vocabulary alignment. In Proceedings of the
sixth international conference on knowledge capture, pages 65–72, 2011.

[67] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, and Ian Horrocks. Logmap and
logmaplt results for oaei 2012. Ontology Matching, 152, 2013.

[68] Jérôme Euzenat and Chan Le Duc. Methodological guidelines for matching ontologies.
In Ontology engineering in a networked world, pages 257–278. Springer, 2012.

82

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation & Problem Description
	Aim of the Work
	Research Issues
	Code Base
	Structure of the Work

	Preliminaries
	Ontologies
	Ontology Alignments
	Ontology Alignment Systems

	Use Case
	ACM Computing Classification System
	Computer Science Ontology
	Cooperative Patent Classification System
	Observations

	Ontology Alignment Approaches
	Literature Survey
	Identified Ontology Alignment Systems
	Summary

	Experiments on Ground Truth
	Ground Truths / Reference Alignments
	Parameter Space
	Alignment Evaluation Criteria
	Hardware
	Results on CPC-CCS
	Results on CPC-CSO
	Results on Anatomy
	Approach Selection
	Summary

	Analysis of Final Alignments
	Approximating Metrics
	Manual Assessment
	Results
	Summary

	Summary
	Conclusion & Limitations
	Outlook

	List of Figures
	List of Tables
	Acronyms
	Bibliography

