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Introduction

Empirical studies suggest that financial markets are incomplete and hold
unhedgeable and undiversifiable risks. Once the completeness assumption is
removed, there typically exist several martingale measures consistent with the
no-arbitrage principle that can be chosen as pricing measures (see, e.g., [19, 29]).
In other words, the price of a derivative depends on the criteria followed to get
it.

In this thesis, three methods for the simulation of European call option
prices are introduced: pricing under the Esscher measure, calibration to real—
traded securities with an entropic penalty term and nonparametric estimation
of risk-neutral densities. Furthermore, the first two methods are implemented
using the programming language R and the simulated derivative prices are com-
pared to real data retrieved from NASDAQ option chains. Thus, their relative
performances are quantified, considering that the Esscher method could be the
only feasible approach in new markets with few liquid securities. The work is
structured as follows.

e The first chapter is devoted to the discussion of the theory that stands
behind the main concepts of these methods. More precisely, classical topics
regarding Lévy processes, such as the Lévy—Kintchine Representation and
the Lévy—Ito Decomposition theorem, are treated and a connection between
the generating triplet of a Lévy process and the more general concept of
characteristics of semimartingales is presented.

e The second chapter analyses the Esscher method and is divided in two
parts. The first presents the theory necessary to construct the Esscher
measure for both exponential and linear processes. In the second, the
dynamics of the stock prices are defined and sufficient conditions for the
existence of the Esscher measure are established. Moreover, in the geo-
metric case European call options prices are simulated using Esscher’s as
pricing measure and the results are compared to real data.

e The third chapter is intended to discuss the calibration method. The first
part of it sets up the theoretical background, which consists in relative
entropy of distributions and Lévy processes on the Skorokhod Space, while
the second is devoted to the practical analysis.

e In Appendix A the original codes used to run simulations can be found.

e In Appendix B, the nonparametric estimation method proposed by M.
Grith, W.K. Hérdle, M. Schienle in [14] is presented and the idea of its
application is briefly described.
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Chapter 1

Lévy Processes and
Characteristics Of
Semimartingales

In this chapter we introduce the theoretical results which are essential for
the entire work. In particular we focus on Lévy processes, that will next be used
to model stock prices, displaying the relation between their generating triplets
and the more general concept of characteristics of a semimartingale.

1.1 Lévy Processes and Infinitely Divisible Dis-
tribution

Definition 1.1. A R%-valued stochastic process X = {X,},., defined on a
probability space (2, F, P) is a Lévy process if the next conditions are satisfied:

i. for any choice of n € N and 0 < ty < ... < t,, the random variables
Xy Xty — Xty oo, Xo,, — Xt are independent. This is the independent
increments property;

ii. Xo=0a.s;

n—1

iii. the distribution of X;; s — X, does not depend on s for any s,¢ > 0. This
is the temporal homogeneity, or stationary increments, property;

iv. X is continuous in probability, that is, for every ¢ > 0 and € > 0 it results
limg,+ P (| X5 — X¢| >€) =0;
v. X is right—continuous with left limits, i.e., it is a cadlag process.

Dropping the condition (v.) we have a Lévy process in law; without the sta-
tionarity of increments the process is called additive process, and if it does not
satisfy even the cadlag property it will be an additive process in law.

Definition 1.2. The characteristic function ji of a probability measure (or dis-
tribution) p on R? is defined by

b(z) = / <= (dx), z € R4
R

1
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1.1. LEVY PROCESSES AND INFINITELY DIVISIBLE DISTRIBUTION 2

The characteristic function of a random variable X on R? is defined by
Py (z) = / ¢i<#E> Py (dx), ze€R%
R4

Given a distribution p on R? we have that 1 (0) = 1,| < 1 and 7 is
continuous in its domain. It is also well known that if two probability measures
11, o have the same characteristic function, i.e., j1; = 12, then py = po.

Definition 1.3. The convolution p of two distributions p; and o on RY is
denoted by p1 = ju1 * po and it is the distribution on R¢ defined by

p(B) = [ @ty new)dedy). BeB R,

where p1; ® p12 denotes the product measure on R% x R¢.

The convolution is a commutative and associative operation. It is possible
to show that if 4 = p; * pg, where p1 and s are two distributions on R?, then
7t = f1 j12. We denote by p™ the n—fold convolution of a distribution p with
itself, that is,

uh =k Lk
——

n

Definition 1.4. A probability measure 1 on R¢ is infinitely divisible if for any
n € N there exists a distribution p,, on R? such that p = p”.
A random variable X is infinitely divisible if Py is so.

Equivalently, a probability measure 1 on R? is infinitely divisible if for any
n € N there exists a distribution p,, on R? such that 1 = f,,".
From the definition, it immediately follows that the convolution of two infinitely
divisible distributions is infinitely divisible and that 7i(z) # 0 for any z € R?,
provided p infinitely divisible. In the next example we recall the main features
of the Normal Inverse Gaussian (NIG) distribution: it is important because a
Lévy process X = {X,}, with X; ~ NIG provides a good fit to the data we are
going to analyze.

Example 1.1. A probability measure p on R is said to be NIG with parameters
(a, B, 1,6), where 0 < |8] < o, p € R and § > 0, if it has the following density:

. K <a(5 1+ (””5“)2)
fNIG(ﬂC;OéwBaM,(S):;eXP (5M+ﬂ(az—u)) ( )2 )
1+ %

(1.1)
with K that denotes the modified Bessel function of the third kind with index
1 and € R. For a definition of K; we refer to [1].

A NIG distribution is infinitely divisible, since it is a particular Generalized
Hyperbolic distribution (see, e.g., [5] and [13]). We refer to Remark 1.1 below
for a thorough construction of such distribution. Given X ~ NIG (a, 3, p,9),
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3 1.1. LEVY PROCESSES AND INFINITELY DIVISIBLE DISTRIBUTION

we have

0B da?
Vo s G e
Skew [X] =3 b

a(é\/m>1/2.

Sometimes it is convenient to represent the four parameters of a NIG distribu-
tion in the so—called shape triangle, introducing the couple (&, x) defined by

e=(14ovar—g) . x=L

(07

ElX]=n+

It follows that 0 < |x| < &€ < 1, so these new quantities actually lie in a triangle.
Notice that x is a measure of the skewness of the distribution: indeed, it has
the same sign as 8, which in turn determines the sign of Skew [X].

In the case that X is standard, its density simplifies to

i.e., the numbers of parameters reduces to 2. ///

Remark 1.1. A probability measure p on (R*,B(RT)) is said a Generalized
Inverse Gaussian (GIG) distribution with parameters v € R, § > 0, v > 0 if its
density with respect to the Lebesgue measure is as follows:
faore (x;v,0,7) = (l)u ;x"_l exp {—1 (6233_1 + 7236)] , x> 0.
0/ 2K, (v9) 2

(1.2)
In order to show that fg;q is a density function, we need the next representation
([30], formula 8, page 182) for K, the modified Bessel function of the third kind
with index v:

K, (@) =3 /Ooo ¥~ exp [—;’ <y + ;)] dy, x> 0. (1.3)

In Figure 1.1 below there are the plots of the modified Bessel functions of the
first three, nonnegative, integer orders. We have obtained them from a sample
of randomly chosen points, in turn gotten with the software R. The computation
of the next integral allows us to find the normalization constant in (1.2):

o 1(s52, —1, .2 o0 1 5 —1,
/ ’JJV7167§(5 Ty x) dx :/ xufle—gvé(;z +§w) dx
0 0

= (6> / g le 100 gy = 2 <5> K, (v9),
v 0 v

where in the second equality we made the substitution y = 2. Besides, K, > 0
in R from (1.3). Therefor for¢ is actually a density function on R™.

Let us fix other two parameters «, 5 € R, with 0 < |8] < a.. For any p € R,
y € RT we denote by fn (-;,3,y) the density of the probability measure on
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1.1. LEVY PROCESSES AND INFINITELY DIVISIBLE DISTRIBUTION 4
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Figure 1.1: Modified Bessel functions of the first three, nonnegative, integer
orders.

(R, B (R)) generated by a random variable X ~ N (u + By, y). It is possible to
introduce a new distribution on (R, B (R)) considering the following function:

fGH(x;V,Oé,ﬁ,M,(S) ::/0 fN(x;IU/7B7y)fGIG (%%57 Va2_52) dy
1 (y/OzQ—BQ)V 1
Vo s 2K, (wm)

Tl 8?1 (P (02 -))

0o Vi e
_ 1 (wa2_52>y 1 eﬁ(mfﬂ)
J 2K, (5y/a7 = 72)

/ooo y' " exp {_; [11/ (# + e =w?) + C@] } “

_ ! ( 0‘252> L 1)
var 0 2K, (8\/a? = 57)

v—

Y

1
2

W [ e |5 o @

= (ver=7). . (am)
VEre i, (e R (Vo s am u>2>;_u
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5 1.1. LEVY PROCESSES AND INFINITELY DIVISIBLE DISTRIBUTION

i
and in the last we used (1.3). A straightforward application of Tonelli’s the-
orem shows that fom (;v,«, 8, u1,0) is a density function: the corresponding
probability measure on (R, B (R)) is called Generalized Hyperbolic distribution.

We restore the NIG density (1.1) taking v = —1 in (1.4). In fact, for every
v € R, it results K, = K, and the representation ([1], formula 9.6.23, page

376)

l v oo 1

K, (z) = M/ e (2 -1)""%dt, x>0,
I'(v+3) /i

which holds for every v > —%, enables us to conclude

[Tl [ 00 me *

Notation. We denote with fi* the ¢t-th power of the characteristic function 7,
that is, 7’ (2) = (7 (2))" for any z € R%.

where in the last but one equality we made the substitution z =

K

N

The following result is due to K.—I. Sato (Lemma 7.9 in [27]).

Proposition. If y is infinitely divisible, for any t € [0,00) the function [t is
the characteristic function of a probability measure on R? which is infinitely
divisible.

The distribution whose existence is ensured by this proposition is obviously
unique and it will be denoted by .

There is a strict relation between Lévy processes and infinitely divisible
distributions, which is shown in the next example.

Example 1.2. Given a Lévy process X = {X,},, for every ¢ > 0 the random
variable X, is infinitely divisible. Indeed, the case ¢ = 0 is trivial, because
by (ii.) in Definition 1.1 we have Px, = dp, which is infinitely divisible as

0o =9y for any n € N.

Fix t > 0 and n € N. Let t;, := % for k = 0,...,n and denote by
Fin = P(th_X‘k—1)7

which does not depend on the choice of k € {1,...,n} by temporal homogeneity.
We can now read

Xt = XO + (Xt1 - XO) +ot (Xt" o thfl) ’

so by independence of the increments we can conclude IS)Z = ,", that is,
Px, = py- /1]

Remark 1.2. The previous rational still holds for Lévy processes in law, since
we do not need the cadlag condition. It is also possible to show (see Theorem
9.1 in [27]) that X, is infinitely divisible for any ¢ > 0 when X = {X}, is just
an additive process in law, so the temporal homogeneity is not necessary.

We end this section by presenting a classical theorem which strengthens the
bond we have just introduced.
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1.2. LEVY-KINTCHINE REPRESENTATION 6

Theorem 1.1. For every infinitely divisible distribution pu on RY, there exists
a Lévy process X = {X}, such that Px, = p.
This process is unique up to identity in law and

Px, =pu', t>0.

We refer to Theorem 7.10 and Corollary 11.6 in [27] for a proof.

1.2 Lévy—Kintchine Representation

The following, renowned theorem provides a representation of the character-
istic function of any infinitely divisible distribution. We denote by D the unit
ball in R?, that is, D :== {z € R®: |z < 1}.

Theorem 1.2. a. If u is an infinitely divisible distribution on R?, then
~ 1 .
i(z) =exp f§<z,Az>+z<7,z>

—|—/ (e<**> —1—i<zz>1p (x))l/(dar:)}7 z€RY,
R4
(1.5)

where A is a symmetric, positive semidefinite d X d matriz, v is a measure
on R? satisfying

Lvop) =0 i /]R (1ef? A1) v (dr) < o0

and v € R?,
b. The representation (1.5) of i by (A, v,y) is unique.

Definition 1.5. The triplet (A,v,7) in Theorem 1.2 is called the generating
triplet of p. In particular, v is the Lévy measure of p.

We call generating triplet of a Lévy process X = {X;}, the generating triplet
of Px,. Considering an additive process Y = {Y;},, we call system of generating
triplets of Y the set {(A¢, v¢,74) }> ¢, Where (A, 14, v¢) is the generating triplet of
Px, for every ¢t > 0. The generating triplet of an infinitely divisible distribution
on R will be denoted by (02, v, fy).

Example 1.3. Let u be a NIG distribution with parameters («, 3, i1, ). Then
its generating triplet is given by:
o?2=0

v(dr) =

da

cd
1

v=pu+ 26—&/ sinh (Bz) K (ax) dx
T Jo

PRy (o)) de

For an explicit calculation, we refer to the paper [4].
Since 0% = 0, a Lévy process X = {X;}, corresponding to f, i.e., such that
Px, = u, will be a pure jump process. ///
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7 1.2. LEVY-KINTCHINE REPRESENTATION

We are going to prove part (b.) of Theorem 1.2, as it is useful to show the
correspondence between the generating triplet of a Lévy process and the more
general concept of characteristics of semimartingale. We start by the following

Lemma 1.1. A measure v on R? satisfying

({0 =0 i /Rd (|x|2 A 1) v (dz) < 0o
is o—finite.

Proof. For any n € N, let By, = {# € R?: |z| < 1} . Thanks to (ii.) it results
v (Bl/nc) < 00. Indeed,

1
/ v(dz) = n2/ — v (dz) < n2/ z|” v (dz) < oo,
Lojz<1 Lojzl<1 T Lojzl<1

n n n

therefore v (Bl/nc) = {/1<| - +/| |>1} v (dx) < oo. Hence, using also (i.),
=<|x x|>

we can read R? as a countable union of sets of finite measure:
R = {0} (U Bl/n0> :
neN

This completes the proof. |

In particular, the Lévy measure of any infinitely divisible distribution is
o—finite.

Proof of Theorem 1.2, (b.). It is known that for any n € N there exists some
0,, € C, with |0,,] <1, such that

n—1 ,. \k n
exp (i) = 3 (ZZ') N 0n%, ueR. (1.6)
2o g !

Assume that (1.5) holds. We note that for any z € R it holds
, _ 1
’el<z’z> —1l—i<z,xz>1p (x)’ < 5 12| 2> 1p (z) + 21 z51y (), z€ RY,

by (1.6) and |e'<*> — 1| < 2. Since [z, (|:13|2 A 1) v (dx) < oo, by Lebesgue’s
convergence theorem the characteristic exponent

1
w(z)::—§<z,Az>+i<7,z>
+/ (e<**>—1—i<za>1p(z))v(dr), zeR? (L7)
Rd

is continuous in z. This implies that ¢ is uniquely determined by fi. Now we
choose z € R? and consider

1
’(/J(SZ)Z—§82 <z, Az > +is<vy,z >

+/ (e<%*> —1—i<sz,x>1p(2))v(d), seR;
Rd
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1.2. LEVY-KINTCHINE REPRESENTATION 8

applying again the dominated convergence theorem we infer

1 1
gw(sz)%—§ <z, Az> as s— .

Hence A is uniquely determined by /.
Let n(z) = (2) + % <z,Az>,z€R? and C = [-1, l}d, a d-dimensional
cube of side 2. For any z € R? we have

d .
d 1<z,x> _ ST vidx) = z) — z w w. .
o e -5 ) v = [ -t s de s

Indeed, if we fix z € R?, then from the definition of 1 we get
n(z) =n(z+w)=—i<yw>

+/ (e"<27> —t<=twr> i <w x> 1p (z)) v (d)
R4

for any w € R?. We further note that, by (1.6), it results

’ei<z,ac> _ei<Erwe> L gy >‘ _ }ei<z,ac> (1 _ ei<w,x>) vi<wz >‘
< ‘ei<z’x> (1 T R T >)’ + }z <w,r > (1 - ei<z’x>)’
< 3wl el +hwllel o, weRY ja] < 1.
It then follows that
€SETT g EE <,z > 1p (x)] < (; lw|? |z + |w] || 1;|2> 1p (x)
+ 21513 (1), we R%, z € R.
Thus, by Tonelli’s theorem the function
eIET _isitwe> 4w,z > 1p (z) € LY (R x ),

where in R? x C' we consider the product measure v (dz) @ dw. As [, <~,w >
dw = 0, Fubini’s theorem applies and we get

/C (n(2) —n(z+w)) dw = /Rd [/C <6i<z7w> _ i<etwa>

ti<wa>1p (z))dw]y(dx)

:/ ei<z,z> (/ (1 _ ei<w,m>) dw) V(dx)
R4 C
d

where in the last equality we have used that |C] = 2¢ and

elwizit. fwara) — (coswizy + isinwixy) ... (COSwaxy + i sinwgzq) ,
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9 1.2. LEVY-KINTCHINE REPRESENTATION

hence

d
/ (1—e<v") dw =29 - H/ (coswjzj +isinw;z;) dw;
c W ESRY

d . d .
_HQSIDZL‘]‘ :2d 1_HSII1.’L'j
o1 T zj

It has been possible to use Fubini’s and Tonelli’s theorems thanks to the o—
finiteness of v, which is assured by Lemma 1.1. At this point we define

d blnl‘
p(dz) = H 2 v (d);

. d i : . .
since [Tj_, -7 =1— Ix\ +o (\J:| ) for z — 0, then p is a finite measure on
J

R? with Fourier transform given by
p(z) = / e <> p(dx) = / (n(2) =1 (z+w)) dw, zeR%
Rd c

As in the case of the characteristic functions for distributions, a finite Borel
measure is solely indicated by its Fourier transform. Therefore p (and p, as
well) is uniquely determined by 7, and so by fi. Recalling that v ({0}) = 0 and
the density of p is strictly positive in R? \ {0}, we can affirm that v depends
only on fi.

Since we can obtain v from the expression of ¢ as a function of A and v
by (1.7), the proof is complete. |

Remark 1.3. It is not necessary to take 1p (-) to have integrability in (1.5).
The next examples show two possible alternatives for such function.

Example 1.4. Let ¢ : R — R be a bounded function such that
c(e)=1+o0(zl,lal = 0),  c(@) =0 (lal = o).
In this way for every z € R? we restore
e <#"> —1—i<zz>c(z)| <|zlo <|x\2 sz — 0) + % |2|* |z]*, =z eR?
and

e <**> —1—i<zz>c(r)|<2+|<za >|O< || Hoo), z € RY.

In this setting, recalling that c¢ is bounded we can define
Ve =1y +/ x(c(x) —1p (z)) v(dx) componentwise,
Rd

so that the Lévy—Kintchine formula (1.5) becomes

~ 1 .

i(z) =exp { 3 <z, Az >+ <.,z >

+/ (e<**> —1—i<z,a>c(z))v(de)|, zeRL (L9)
Rd

Note that only v. depends on the choice of ¢: neither A nor v does. ///
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1.2. LEVY-KINTCHINE REPRESENTATION 10

Example 1.5. Let h : R — R? be bounded, with h(x) = x in a neighbor-
hood of 0. Later on, we will call such applications truncation functions (see
Definition 1.12). It is immediate to show, for any z € R?, the following:

4 1
’€1<z,x> —1-i<zh(x) >‘ < 5 |Z|2 |$|2

in a neighborhood of 0 and
e <®™> —1—i<zh(z)>|<2+C|lz|, z€RY,

for some positive constant C such that h < C in R?. If we put
Th = —|—/ (h(z) —xlp (z)) v(dzr) componentwise,
Rd

then the Lévy-Kintchine formula (1.5) becomes
~ 1 .
L(z) =exp [— 3 <z, Az > +i <Y,z >
—|—/ (e<#™> —1—i<zh(z) >)v(de)|, zeR% (1.10)
R4

Once again, only 7y, depends on the choice of the truncation function. ///

We now want to extend, in some sense, the characteristic function (and
exponent) of an infinitely divisible distribution to a subset of C.

Definition 1.6. Let g be a measurable, nonnegative function on A € B (Rd).
The g-moment of a measure v on Ais [, g () v (dx).
The g-moment of a random variable X on R% is E [g(X)] (= [za g () Px (dz)).

Definition 1.7. A function g on R? is said submaultiplicative if it is nonnegative
and there exists a constant a > 0 such that

glz+y) <ag®)gy), =yeR™

We largely use these submultiplcative functions:
|z] V1, exp (|x|’6) forany 0 < 8 <1, exp (< ¢,z >) for some ¢ € R%.

Obviously, the product of two submultiplicative functions is submultiplicative,
as well.

A property P related to a distribution on R? is said a time independent
distributional property in the class of Lévy processes if, given a Lévy process
X = {X;},, the following equivalence holds:

Px, has P for some ¢t >0 <= Px, has P for every ¢t > 0.

The next result is the Theorem 25.3 in [27].

Theorem 1.3. Let g be a measurable, submultiplicative and locally bounded
function on R%. Then the finiteness of the g-moment is a time independent
distributional property in the class of Lévy processes. Moreover, if X = {X;},
is a Lévy process on R? with generating triplet (A,v,~), then X, has finite g—
moment for every t > 0 if and only if V|‘z|>1 has finite g—moment.
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11 1.2. LEVY-KINTCHINE REPRESENTATION

Thus, E [g (X;)] < oo for every ¢ > 0 if and only if flw\>1 g (z) v(dz) < oo.

Let us take into account a Lévy process X = {X;}, on R? with gener-
ating triplet (A,v,7) and define for ¢ € R? the submultiplicative function
ge (z) == exp (< ¢,x >), z € R?% which is continuous, hence locally bounded
and measurable. Given u,w € C?, we consider

d

<U,w >= g U; Wy,
J=1

80 it is not the hermitian inner product. We introduce the following set:

C = {ceRd:/ <" v (dx) <oo}.
jal>1

Of course 0 € C, moreover C' is convex. Indeed, letting ¢1,co € C and t € (0, 1),
we compute

/ e<c1t+(1—t)02,ac> v (dx) — / et<cl,x>e(1—t)<02,x> v (dl‘)
|z|>1

|z|>1

t 1-t
< / e<c1,$> v (dil?) / e<c2,m> v (dm) < 00,
|z|>1 |z|>1

where in the last passage we have used Holder’s inequality. Theorem 1.3 states
that ¢ € C & E [e<“**>] < oo for some ¢ > 0 (equivalently, for any ¢ > 0). At

this point we set the function ¥ : D — C as follows:

1
U (w) == 3 <w, Aw > + <vy,w>

+/ (e=v®> —1— <w,z>1p (z)) v (de), weD, (L11)
R

where D = {w € ¢%: %e (w) € C}. We immediately note that iz € D for any

z € R%. In order to show that the integral in (1.11) is well posed, we fix w € D
and start off by considering x € D; by (1.6) we get

|e<w,w> —1-<w,z>1p (x)| — ‘e<9ﬁte(w),w>ei<3m(w),w>_ l—-<w,z >‘
1
= ‘ <1—|— < Re (w),x > +§ < NRe (w),r >? +0 (|m|2,\x| —>O))

)

1
(1+i<3m(w),x>+29<3m(w),x >2> —1-<w,z>

where 0 € Cis provided. So [e<¥*> —1— < w,z > 1p (z)| =0 (|a:|2 Sz — O).

As far as the case |z| > 1is concerned, recalling that Re (w) € C we immediately
have

/ - e | v (da) = /| - e<TeW)T> 0, (dr) < oo,
x| > x|>

Therefore the function V¥ is actually well defined in D and we also have

E [|e<w’Xt>H =F [e<m(w)7Xﬁ>} < oo forany w € D, t>0.
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1.2. LEVY-KINTCHINE REPRESENTATION 12

Theorem 25.17 in [27] affirms that
E[eswXe>] = ) for any w e D, t > 0. (1.12)

Henceforth, we call ¥ the cumulant function of the Lévy process X. In partic-
ular, from the definition (1.11) of ¥ we notice that

T (iz) = (z), zeRL
In this sense ¥ extends v to a subset of C¢.

Remark 1.4. With a similar reasoning to that of Remark 1.3, we can substitute
the function 1p (-) in (1.11). For example, if we take a truncation function h
(see Definition 1.12), then ¥ = ¥y in D, where

1
Uy, (w) = 3 <w, Aw > + <p,w>

+/ (e<v*> —1— <w,h(x)>)v(dz), weD
Rd

and 7, is defined as in Example 1.5.
The following example will be crucial in developing the Esscher measure.

Example 1.6. Let X = {X,;}, be a R-—valued Lévy process defined on a prob-
ability space (2, F,P), ¥ be its cumulant function and § € R be such that
Elexp (0X:)] < oo for some ¢ > 0 (equivalently, for any ¢ > 0). Then we
consider the process M = {M,},, where

M, = fXe=tvO) 4 >,

We note that M is integrable, by assumption and the fact that t¥ () is constant
in Q for every ¢ > 0. Let us now construct the minimal augmented filtration
F = (F)ysq of X, ie., Fy = o (NUF?) for any ¢ > 0, where (}"to)t is the
natural filtration of the process and N is the collection of F-negligible sets;
obviously, M is F-adapted. If we fix t > s > 0, then using (1.12) and the
properties of the increments we readily obtain

]__s] a5 X, —sU(0) {ee(xtxs)

E [Mt|fs] — E |:69Xtt\ll(6’) -Fs:| 67(tfs)\1/(9)

M, B [0Xe] e (OO = )y

Thus, M is a martingale with mean 1.

The extension of this property to the d—dimensional case is straightforward.
Indeed, if we consider 6§ € C' (= E [e<?*+>] < oo for every t > 0), then the
process M = {M,}, defined by

My = e=0Xe>=100) 4 >
is a martingale with expectation 1:

E[M,|F) = E {e<evxf>—ww>

3

a5 <0,Xs>=sT(0) p |:e<07Xt_XS>

E} (- )u(6)

LS. MS E [e<9,ths>:| 6—(t—8)\1’(9) = MS'

3
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13 1.3. LEVY-ITO DECOMPOSITION

Definition 1.8. Fix 7 > 0 and let # € C. The probability measure P? on Fr,
with P? ~ P on Fr, defined by % := M is called the Esscher transform of
P with respect to 6.
ar?|
The density process is given by —t = M, t € [0,T. ///

dP‘
Ft

1.3 Lévy-Itéo Decomposition

In this section we introduce and discuss one of the most important theorem
in the theory of Lévy processes: the Lévy—Ité decomposition of sample paths, in
the formulation suggested by K.-I. Sato in [27]. We start off by presenting the
next

Definition 1.9. Let (O, B, p) be a o—finite measure space. A family of N-valued
random variables {N (B), B € B} defined on a probability space (Q,F,P) is
said a Poisson random measure with intensity p if the following properties hold:

i. for every B € B, N (B) is a Poisson random variable with mean p (B);
ii. if By, ..., B, € B are disjoint, then N (By),..., N (B,,) are independent;
iii. for any w € Q, N (-,w) is a measure on O.

Moreover, we denote by Dy == {z € R?:a < |z| < b} and H = (0,00) x
Dy o0 = (0,00) x (R%\ {0}), which we endow with the product o—algebra H =
B (07 OO) ® B (DO,OO)'

Theorem 1.4 (|27|, Theorem 19.2). Let X = {X,}, be an additive process on
R? defined on a probability space (2, F, P) with system of generating triplets
{(A¢,v,v)},. Define the measure v on (H,H) by

v ((O,t] X E) = (B) , forany B € B (Do), t > 0.
For every B € 'H we set
J(B,w) =#{seR": (s, X, (w) — Xs— (w)) € B}, we
Then:

a. {J(B),B € H} is a Poisson random measure on H with intensity v;

b. there exists Q1 € F, with P (1) = 1, such that for any w €

X} (w) = lim (xJ(d(s,z),w)—zv(d(s,x)))

=07 J(0,{]x D 1

—l—/ xJ(d(s,x),w)
(O,t]XDlyoo

is defined for all t € [0,00) and the convergence is uniform in t on any
bounded interval. The process X' = {th}t is additive on R? with system
of generating triplets {(0,14,0)},;
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1.3. LEVY-ITO DECOMPOSITION 14

c. define X? = X — X' in Q. There exists Qs € F, with P (Q) = 1, such
that X} (w) is continuous in t for any w € Qa. The process X2 = {Xf}t
is additive on R? with system of generating triplets {(A;, 0,7%)};

d. the processes X' and X? are independent.

We call lim, g+ f(O,t]xDe,l (xJ(d(s,z),w) —zv(d(s,x))) the compensated
sum of jumps of the process X.

We now discuss the previous theorem as far as a Lévy process X = {X;},
with generating triplet (A, v, ) is concerned. By Theorem 1.1 its system of gen-
erating triplets is {(tA,tv,ty)}, and the measure v simplifies to v = dt|(0)oo) ®

V] g oy This implies that X* = {X/},, for i = 1,2, are Lévy processes, as
well. In fact, considering a generic additive process Y = {Y;}, with system of
generating triplets {(A¢,v4,v:)}, = {(tA,tv,tv)},, for any choice 0 < s < t we

have that Y; — Y} is independent from Yy , hence

—

—_— —_— —_—
Py, = Py,—v,+v, = Py,—y, Py,.

Since }/3; (2) # 0 for every z € R%, by (1.5) we can easily get

— Py, 1
Py,_y, () = ,E(Z) :exp[—Q(t—s) <z, Az>H4i(t—s) <7,z >
Py, (2)

+(t—s)/ (e<*"> —1—i<ua,z>1p(z))v(dx)
Rd
:fy:(Z), ZeRd'

Thus, X can be seen as the sum of two independent Lévy processes, at least
in Q. In particular, X7 has the same distribution as the homologous random
variable of the sum between a constant drift and a Wiener process, that is,

X2 Lyt 4 VAW, t>0,

where W = {W,}, is a Brownian motion and v/4 is the unique, positive semidef-
inite square root of the matrix A. Indeed, it is certainly true that W; 4 VtZ
for every t > 0, where Z ~ N (0, Id). Hence defining Y; := vt 4+ AW, for t > 0
we get

Y Lyt + VIVAZ ~ N (ty,tA), t>0

S0 its characteristic function is well known and given by the following;:

. 1
E [ez<z,Yt>] = exp (it <7v,z> _it < z,Az >> , t>0,z€eR%

This implies Y; 4 X? for every t > 0, as requested. Actually we can state
something more: since Y = {Y;}, is a Lévy process with generating triplet
(A,0,7), the same as X2, according to Theorem 1.1 the processes X2 and Y
are identical in law.

It is slightly more complicated to analyze the process X!, specifically the
term N; := f(o,t]xDl,oo xJ(d(s,z),w),t > 0. Our final goal is to prove that
N = {N;}, is a compound Poisson process. We need the next result.
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15 1.3. LEVY-ITO DECOMPOSITION

Proposition 1.1 (|27], Proposition 19.5). Let (©, 5, p) be a measure space with
p(0) < oo and {N (B),B € B} be a Poisson random measure with intensity p.
Let ¢ : © — R? be a measurable function, and define

Y = / @ (0) N (d) componentwise.
©

Then
E[e"<*Y>] = exp {/ (ei<z’¢(9)> - 1) p(d@)] , z€RL (1.13)
e
In the same notation as the proposition, we define on © the probability
measure a0
P (dg) = 2190
p(©)

obviously assuming that p(©) > 0. Denoting by P¢~!(dz) the pushforward
distribution on R? (i.e., Pp~! (B) := P (¢~ (B)) for any B € B (R?)), we can
rewrite (1.13) as

E[e"<*Y>] = exp {p (©) </@ e<=*0)> p (dh) — 1)}
~ exp |:p ©) </R ¢i<27> Py (dg) 1)] , zeRre

So if we suppose that P¢~! ({0}) = 0, we see that Y has a compound Poisson
distribution with constant p (6) and distribution P¢~! (dz).

Let us consider again the process N and fix ¢t > 0. Taking the space H;; =
(0,t] x D1 0 with measure ;|Ht . it results

g’Ht,,l (Ht,l) =1v (DLOQ) < 00.

So, by the argument after the proposition above, if v (D1 ) > 0 we arrive at

E[ei<Ne>] = exp [tu (D1.00) (Adei<27”><1®>¢—l(dx)— )] , zeR

with (m) ¢~ (dz) which can be expressed as

v B 0, ifBCD ;
v B) = . BeB(RY,
(tl/ (Dy oo)> o= (B) {"(ffg?;j"), otherwise ( )

_ T N4 _ v(BNDic) d
(tv(Dl,OO))d’ (B)=— 5 BeB®). (1

Thus, we can say that N is a compound Poisson process with constant v (D1 o)
and distribution (m) ¢t (dx).
Finally, we give a classical interpretation of the Lévy measure. For every ¢t >

0, B € B(R%\ {0}), it results that .J ((0,t] x B) is a Poisson random variable
with mean tv (B) and counts the number of jumps before time ¢ which lies in the
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1.4. CHARACTERISTICS OF SEMIMARTINGALES 16

set B. Taking ¢t = 1, it follows v (B) = E [J ((0, 1] x B)], so the Lévy measure of
a set B can be thought of as the expected number of jumps of the Lévy process
in B in the unitary time interval.

We conclude this section with a remark which paves the way for the gener-
alizations of the next section.

Remark 1.5. So far, we have developed the theory of Lévy processes in a
simple probability space (2, F, P), without a filtration. However, we can endow
such © with a "nice" filtration in a natural way. Let us consider X = {X,}, a
Lévy process on €; we denote by F = (F;), the augmented filtration generated
by X, that is, 7y = o (FUN) for every t > 0, where (]-'to)t is the natural
filtration of the process and N the collection of F-negligible sets. According
to [24], Theorem 31, F is right—continuous, so it satisfies the usual hypothesis,
as well. Thinking of the Lévy process X on the stochastic basis (2, F, P;F), it
obviously results to be adapted and the condition (i.) in Definition 1.1 can be
substituted by the following one:

i’. Xy — X, is independent from Fy for every 0 < s < t.

1.4 Characteristics Of Semimartingales

The aim of this section is to generalize the concept of generating triplet of a
Lévy process to semimartingales. Here we mainly follow [28], Chapter II.

We start off by fixing a stochastic basis (2, F, P;F), with F which satisfies
the usual hypothesis (in this case it is not a big assumption, since we are going to
work with the augmented filtration of a Lévy process, which fulfills this request
according to Remark 1.5). Given two stopping times S, T, we denote by [.S, T
the stochastic interval, i.e., the random set

[S, 7] = {(t,w) eR{ x Q: S (w) <t < T (w)}.

Similarly, we can define the other three types of stochastic interval. In order
to keep notation simple, we denote by [T] := [T, T]. Recall that the optional
o—algebra O is the o—algebra on Rar x ) generated by all the cadlag, adapted
processes, while the predictable o—algebra P is the one generated by all cag,
adapted processes.

Definition 1.10. A random set A is called thin if it is of the form

A= U [[Tn]]v

where (T7,),, is a sequence of stopping times.

It is important to observe that the sections {t € R(J{ D (tw) € A}, for w € Q,
are at most countable when A is a thin set. We have the following, preliminary
result.

Proposition 1.2. If X = {X,}, is a cadlag, adapted process, then the random
set {AX # 0} is thin.
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17 1.4. CHARACTERISTICS OF SEMIMARTINGALES

Proof. Let n € N, put T := 0 and define iteratively

T ::1nf{t>Tp X — X | > 2,1}7 peN.

In order to prove that these objects are F*—stopping times (and then F-stopping
times to, as F is assumed to be right—continuous), we present an inductive
argument. Of course, T is a FT—stopping time; then we suppose that also Ty
is so for p € N as inductive hypothesis. For every ¢ € ]Ra' we denote by Y; the
random variable

Yi(w) = (Xi = X1p0) @) lrz(o).o0) (1), wEQ,
s0 Yy = (Xy — Xgpas) Lirr<iy- Since X is progressive, by adaptedness and
right—continuity, and {T} <t} € F;, = F;, t > 0, by assumption, Y = {V;},
is an adapted process which inherits from X the cadlag property. Now we can

express

1
T§+1_inf{t>0:|}ﬁ|>2n},

hence by the right—continuity of Y and the fact that {x cR?: |z| > %} is open

we have )
{T7, <t} = U {|YS|>2n}e}}, t>0.
s€Q,s<t

Therefore T4y isa F+—stopping time, so a F-stopping time, too.
Since X is adapted and has the cadlag property, the process AX is optional.
It follows that

A= {AXry 0.1} < oo} € Fry, (mp) ENXN,

so we can introduce other F-stopping times

o " in A"
Ty =q" P, (n,p) e NxN.
oo,  otherwise

We complete the proof showing the random sets equality

(ax 2oy =J 111
np
The inclusion "D" is the easiest one. Indeed, let (t,w) € U, , [7;]. Then there
exists a couple (n,p) € N x N such that (t,w) € [T}'], so t = T}" (w) < oo
implies w € A and ¢t = T}’ (w), whence AX; (w) # 0.
In order to prove also the other inclusion "C", let (t,w) € {AX # 0}. Since

X is cadlag, then T oo as p — oo pointwise, for any n € N; moreover
T > 0. As AX,; (w) # 0, then there exists n € N such that

X, (W) — X ()] > —.

21’L
This implies that Tl("H) (w) < t. Indeed, assuming by contradiction that
Tl(n+1) (w) > t, then

[ X (w) = Xim (w)] < X (w) = Xo (w)] 4 [ Xi— (w) — Xo (w)] < Qin,
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1.4. CHARACTERISTICS OF SEMIMARTINGALES 18

which is evidently an absurdity. At this point, if Tl(nH) (w) = t, then (t,w) €
!/
[T and we are done; if instead T\ (w) < ¢, using that 73" ™" oo as
p — oo with an analogous argument we can state again the existence of a p € N
!
such that T\" ™™ (w) = ¢, hence (t,w) € [T" V. [ ]

Definition 1.11. Let X = {X,}, be an adapted, cadlag, R%—valued process.
The measure i on R x R? defined by

p (w;dt, dz) = Z Lizz0y (AX s (W) 0s,ax, () (dE,dx), weQ, (1.15)

where §(g) denotes the Dirac measure at a point @, is called measure associated
to its jumps.

Note that this definition makes sense thanks to the previous proposition: the
set {AX # 0} is thin, so its sections are at most countable and we know how to
interpret the sum in (1.15). The measure owes its name to the following fact: if
we fix t € R™ and B € B (R?), then

pX (w3 (0,4] x B) =3 lpazopnn (AX (), weQ,

s<t

S0 it counts the number of jumps of X which lie in B before time t.

For a thorough, and yet rather linear, introduction to general random mea-
sure we refer to [28], in particular Chapter II, §1a, 1b and we try to stick to the
notation therein. It is possible to prove that p~ is an integer—valued random
measure on R} x R? (28], Proposition II, 1.16).

We now consider a process X = {X;}, which is a d-dimensional, F-adapted
semimartingale, highlighting that in this work every semimartingale is cadlag.

Definition 1.12. A bounded function h : R? — R such that h(z) = z in a
neighborhood of 0 is called truncation function.
We denote by Cf the set of all truncation functions.

Notation. The set of the R-valued, cadlag, adapted, nondecreasing (resp. fi-
nite variation) processes starting at 0 is denoted by V* (resp. V). For a process
A € V7T, it is well-defined A, := lim;_, o A;: the set of A € VT such that A is
integrable is denoted by A™. The space of the cadlag, local martingales starting
at 0 is indicated by £. The symbol - denotes the integration, in a sense which
is clear from the contest time by time.

Let h € C{, then AX —h (AX) # 0 only if [AX| > b for some b > 0. Define

{X (h)y = 2s<t LAXS — h(AX,)] t>0. (1.16)

X (h), = X, — X (h),
We notice X (h) = {)~( (h)t} is a d-dimensional process in V¢ (its components
¢
are in V), while X (h) = {X (h),}, is a semimartingale with AX (h) = h (AX),
which is bounded. Therefore X (h) is a special semimartingale and its canonical
decomposition will be
X (h) =Xo+ M (h)+ B (h), (1.17)

where B (h) is a predictable process in V¢ and M (h) € £¢ (its components are
in ).
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19 1.4. CHARACTERISTICS OF SEMIMARTINGALES

Definition 1.13. Fix h € C{. The characteristics of X with respect to h are
the triplet (B, C, VX), where:

i. B=(B"),_, is a predictable process in V¥, namely B = B (h) in (1.17);

ﬁ.(?:(CﬂJLJSd '
where X "¢ is the continuous martingale part of X*;

is a continuous process in V¥*?, namely C* =< X%¢ X7:°>,

iii. v is a predictable random measure on R x R, namely the compensator
of uX.

It is clear that C' and v* do not depend on the choice of h while B does.
Furthermore, from the definition it follows that the characteristics are unique
up to a P—null set. This allows for a "good version" of them, according to the
next result.

Proposition 1.3 ([28], Proposition II, 2.9). There ezists a version of the char-
acteristics (B,C, I/X) of X of the form

Bi=1bi. A, i=1,..d
Ci = ¢ . A, ij=1,..d,
vX (w;dt, dr) = dA; (w) Fw (dx) P-a.s.

where v ({t} x R?) <1 identically and

+ .

a. A is a predictable process in A}’ _;

b. b= (bi)Kd 1s a d—dimensional predictable process;

c. c= (cij) s a predictable process with values in the set of all symmetric,
positive semidefinite, d X d matrices;

d. F ) (dx) is a transition kernel from (Rar X Q,P) into (R‘ﬂl’)’ (Rd)) sat-
isfying, among others, the following:

i Fuoy ({01) =0 i [, (|x|2/\1) Flp (dz) < 1

for every t e R, w € Q.

We are now ready to show the relation between characteristics of semimartin-
gale and generating triplet of a Lévy process.

Definition 1.14. A process X = {X,}, isa PII process if it is cadlag, adapted,
starts at 0 and has independent increments, that is, X; — X, is independent
from the o-algebra F; for every 0 < s < t. Further, if it also has stationary
increments, then it is a PIIS process.

Of course, a Lévy process is a PI1S process (see Remark 1.5). Given X =
{X:}, a PII process, for every z € R? we introduce the function

g(2), =E[e<=*>], t>0.

It is possible to prove ([28], Theorem II, 4.14) that X is a semimartingale if and
only if the functions ¢ — g (2), have finite variation over finite intervals for any
z € R,
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1.4. CHARACTERISTICS OF SEMIMARTINGALES 20

Lemma 1.2. Every PIIS process is a semimartingale.

Proof. Let X = {X,}, be a PIIS process and fix z € R%. Then

g(z)t+s - E [€i<z,Xt+s>] — B [€i<z,Xt+stS>] E [€i<z,Xs>]

—E I:ei<Z7Xt>] E [ei<Z,Xs>} — Q(Z)Sg (Z)tv S,t c RJ?

where in the second equality we have used the independence of increments and
in the third their temporal homogeneity. Since g(z), = 1 and ¢t — g(z), is
right—continuous, then there exists A\, € C such that g (z). = exp (A,-), which
has locally finite variation. This completes the proof. |

In particular, every Lévy process is a semimartingale, so it makes sense to
study its characteristics and their relation with the generating triplet. The next
theorem provides us with the link we are searching for.

Theorem 1.5 ([28], Corollary II, 4.19). A d-dimensional process X = {X;},
is a PILS if and only if it is a semimartingale admitting a version (B, C, Z/X)
of its characteristics of the form

Bt(w = bt
Ci (w) =ct , t>0,weq,
vX (w;dt,dx) = dt F (dx)

—~
_

where b € R?, ¢ is a symmetric, positive semidefinite d x d matriz, and F (dx)
is a measure on R? such that

i F({0})=0; i [, <|x|2/\1> F (dw) < oo .

Moreover, for any t € Rg and z € RY, the Lévy-Kintchine formula holds:
i<z,Xe> 1 .
E[e "]:expt —§<z,cz>—|—z<b,z>

+ /Rd (e"<**> —1—i < 2,h(z)>)F (dz) )] (1.18)

We note that a PIIS process has a version of its characteristic which is
deterministic, with v~ (dt, dz) = dt ® F (dx).

Finally, we take into account a Lévy process L = {L,}, with generating
triplet (A,v,vp) with respect to a truncation function h (see Example 1.5).
Considering ¢t = 1 in (1.18), by uniqueness of the Lévy—Kintchine representation
we get:

a. b=y b.c=A c. F(dx) =v(dx) .
Hence, the characteristics of L relative to h are given by

(vnt, At, dt @ v (dz)) .
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Chapter 2

Esscher Measure

In this chapter we first present the theory necessary to construct the Ess-
cher measure for both exponential and linear processes. Later, we specify the
dynamics of the stock prices and discuss sufficient conditions for the existence of
the Esscher measure, which will be considered as a locally equivalent martingale
measure. Moreover, in the geometric case we use it to simulate the prices of
European call options, comparing the results to real data.

2.1 Laplace Cumulant Processes

Fix a stochastic basis (2, F, P;F), with F which satisfies the usual hypothesis
throughout this chapter.

Definition 2.1. A random set A C RS‘ x 1 is called evanescent if
P ({w € Q: 3t € R§ such that (t,w) € A}) = 0.

Two stochastic processes X = {X;}, and Y = {Y;}, are equal up to evanes-
cence, or equivalently, up to indistinguishability, if the random set {X # Y} is
evanescent, i.e.,

P ({w e Q:3t € Rf such that X; (w) #Y; (w)}) =0.

Definition 2.2. The real-valued semimartingale X is said to be ezponentially
special if exp (X — X)) is a special semimartingale.

Notation. The symbol M denotes the space of cadlag martingales.

If X is a special semimartingale with canonical decomposition X = Xy +
A 4+ M, then the process A can be called additive compensator, or drift, of X
and it is the unique (up to evanescence) predictable process in V such that
X — Xy — A € L. By analogy, we set:

Definition 2.3. Let X be a real-valued semimartingale. A predictable process
V €V is called an ezponential compensator of X if exp (X — Xo — V) € M.

We have the following, simple result.

21
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2.1. LAPLACE CUMULANT PROCESSES 22

Proposition 2.1. A real-valued semimartingale X has an exponential compen-
sator if and only if it is exponentially special.
The exponential compensator is unique up to evanescence.

In order to prove this proposition, we need some information on the multi-
plicative decomposition of a semimartingale.

Lemma 2.1 ([28], Theorem II, 8.21). Let X be a semimartingale with X =1
such that X and X_ take their values in (0,00). Then X = LD, where L is
a positive local martingale, D is a positive predictable process with locally finite
variation and Lo = Doy = 1, if and only if X is a special semimartingale.

In this case, the multiplicative decomposition is unique up to evanescence.

Proof of Proposition 2.1. We first assume that X has an exponential compen-
sator V € V. We can define

D=exp(V) and L:=exp(X —Xo—-V)€E Me.

As the function exp (+) is Lip—continuous in any compact interval and V' € V), the
process D has finite variation and V, = 0 implies Dy = 1. From the continuity
of exp (x) and the fact that V is predictable it is obvious that D is predictable,
as well. Therefore

exp (X — Xo)=LD

is a special semimartingale, by Lemma 2.1.
If instead we take X to be an exponentially special semimartingale, then
exp (X — Xp) is a special semimartingale and Lemma 2.1 states that

exp (X — Xo) = LD,

where D is a positive predictable process of locally finite variation and L € M.,
with Dy = Ly = 1. Defining

V =log(D) €V,

we readily get that V' is an exponential compensator of X.
In each case, the multiplicative decomposition of a special semimartingale is
unique up to evanescence, and so is the exponential compensator. |

We now turn our attention to the Laplace cumulant process. Let us consider
a d-dimensional semimartingale X = (Xl, ...,Xd). We denote by £ and Log
the stochastic exponential and the stochastic logarithm, respectively.

Definition 2.4. Let § € L (X) be such that 6 - X is exponentially special. The
Laplace cumulant KX (0) of X at 6 is defined as the additive compensator of
the real-valued, special semimartingale

Log(exp (0 - X)).

The modified Laplace cumulant KX () of X at 6 is the process

KX (0) = log (5 (f(X (9))) . (2.1)
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23 2.2. GEOMETRIC ESSCHER MEASURE

We note that this definition is well posed.
Indeed, the process Log (exp (6 - X)) is a special semimartingale, since it satisfies

1

Logexp (0 X)) =

~exp (0 X),

hence the additive compensator is predictable considering that exp (6 - X) is
special and (5 7y— is predictable. This shows that K (6) is well defined.

As far as KX () is concerned, Theorem III, 7.4 in [28] shows that
ARX (0), = / (e<0> 1) X ({1} x dz) > 1, >0,
Rd

since we are working with a version of the characteristics of X such that
v ({t} xRY) <1

identically. Thus, the stochastic exponential in (2.1) is strictly positive.

Theorem III, 7.14 in [28] shows that if 6 - X is exponentially special, then
KX () is its exponential compensator. This implies that the process Z¢ =
{Zf},, defined by

ZG = exp (9 - X - KX(6>) € Mloca

with Zg = 1. We try to find conditions under which it is possible to define a
probability measure PY in F which is locally absolutely continuous with respect

1
to P (in symbols, P? 2<C P) such that Z? is the density process of P? relative
to P. The following theorem provides us with one possible solution.

Theorem. If X = {X;}: is an uniformly integrable (UI) martingale, then
X; = Xoo a.s. and in L'. Moreover

E[Xoo|Fi] = X; a.s. for any t € R},
Hence if we assume that Z% is a UI martingale, then we can define
P?(dw) = Z°% P(dw).

It is trivial to show that Z? is the density of P? relative to P. Indeed, for any
t € Ry it results:

P’ (F)=E"[Z51p] = EY [EY [Z|F) 1¢] = E [Z!1F], FeF,.

Remark 2.1. Noting that Z? > 0 for every ¢ € ]Rg, we can state that PY and
P are actually locally equivalent.

2.2 Geometric Esscher Measure

We now want to impose some hypothesis such that for any i = 1,...,d the
process ' _ '
St = Sjexp (XZ) ,
with S§ € RT,isa PY-local martingale. In order to do so, we need the following,
widely used result.
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2.2. GEOMETRIC ESSCHER MEASURE 24

loc
Lemma 2.2. Let P, P’ be two probability measures on (Q, F;F) such that P’ <
P and denote by Z = {Z;}, the Radon-Nikodym density process. Let X = {X;},
be a R—valued, cadlag, adapted process. Then:

a. X is a P'-martingale if and only if XZ is a P-martingale;
b. X is a P'-local martingale if and only if X Z is a P-local martingale.

Proof.  a. For any t € RJ, obviously X; € L*(P') & X;Z; € L' (P). Let
us suppose that the process X is P’-integrable (i.e., X; € L' (P’) for any
t € R{). We fix t € R and note that

EY [ X,14] = EY [X,Z,14], A€ F.
It follows that, for any 0 < s < ¢, we have EF [X; — X,|F,] = 0 if and
only if
EP (X, — X,)14] = EV [ X, Z,14) — EV [X,Z,14] =0, A€ F,.
This is equivalent to

EP (X2, — X, Z,|F,] = 0.

b. Without loss of generality we may assume that Xg = 0. Fix 7 a F—
stopping time and ¢t > 0. Since Z is a cadlag P-martingale, Doob’s
optional sampling theorem applies and we get E¥ [Z;|F,] = Z;,, almost
surely. Therefore

EP(|X]Z|] = EY | X, Ze]) = EV [|(X 2)] )] -

Indeed, the process X is progressive (as cadlag and adapted), hence for
any F—stopping time o the variable X, is F,—measurable. In our case, this
implies that X;A, is Fiar—measurable, and in particular F,—measurable.
Thus,

EP | Xontl Zi) = EY [EY [|Xopt] Ze|F-]] = EP (| Xonel Zrne] -

So we conclude that (X Z)" is P-integrable < X7 Z is P—integrable < X7
is P'~integrable.
Let us assume that X7 Z is P—-integrable and read

X" Z=[X"2-(XZ)]+(X2).

We call M := X7Z—(XZ)" and show that M = {M,}, is a P-martingale.
For any 0 < s < t it results

EY M| F) = BV [X{ 2y = (X2); |Fs] = B [(Z4 = Zrna) Xl F]
@ P [EP [(Zt — Znt) XT/\t|‘F(TVS)/\t:| “7:9]
= B [EY [Z = Zonel Frvsynt) Xonel Fs]
O [(Zrvsynt = Zene) Xone Fs]
= EF [(Zs — ZT) XTl{TSS}LFS] =E" [(Zs - ZT/\S) XTASl{TSS}|FS]
as (Zs — Zrns) X'r/\sl{TSS} = M.
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25 2.2. GEOMETRIC ESSCHER MEASURE

It follows that (XZ)" is a P-martingale < X7 Z is a P-martingale. By
part (a.), this amounts to saying that X7 is P’~martingale, and the proof
is complete.

|

At this point the next theorem is immediate.

Theorem 2.1. Let 6 € L (X) be such that 0 - X is exponentially special and Z°
is a UI martingale. Set

0\ = %5 i
T4, =i

Then the processes S° = Sjexp (X’) are P’—local martingales if and only if
0 . X is exponentially special and KX (H(i)) = KX (0) up to evanescence for
any i =1,...,d.

In this case, we call P? geometric Esscher measure, or Esscher martingale
transform for exponential processes.

Proof. Fixi=1,...,d. By Lemma 2.2, exp (X”‘) is a P?-local martingale if and
only if

exp (X%) Z% = exp (X") exp (0 - X — K¥ (0)) = exp (G(i) X - KX (9))

is a P-local martingale. Thanks to the uniqueness of the exponential compen-
sator, this amounts to requiring not only that 8(9 is exponentially special, but
also that KX (§®)) = KX (6) up to evanescence. [ |

Theorem 4.2 in [20] states that if d = 1, then the geometric Esscher measure
is unique, provided its existence.

Example 2.1. Let X = {X;}, be a R?-valued Lévy process with generating
triplet (A, v,v,) with respect to the truncation function h. Suppose that there
exists § € R? such that

Elexp (< 6,X; >)] <oo for some t > 0.

By Remark 1.4 and Example 1.6 we know that M = {M,}, is a martingale with
expectation 1, where

M; =exp(<0,X; > —t¥y(0)), t>0.
It follows that {< 6, X; >}, is exponentially special with KX (0), = t¥,, () ,t >
0, up to evanescence, and in particular the modified Laplace cumulant is a

deterministic process. In order to define the Esscher transform P? in F we
consider M to be uniformly integrable, so P? (dw) = M4, P (dw). Thus, if also

E [exp (< 09 X, >)} <oo, i=1,...dt>0,
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2.3. LINEAR ESSCHER MEASURE 26

then Theorem 2.1 applies and states that S? = S} exp (XZ) are P%local mar-
tingales if and only if KX (0()) = KX (6) up to indistinguishability, i = 1, ..., d,
equality that in this setting reduces to

1 _ . .
v+ §A“ + A%6 —|—/ [exp << 09 >> —exp(< b,z >)—h' (x)} v(dx)
R

:ryi‘L_F%Aii_‘_Ai-e_'_/ [6<0,z> (ez" _1) _pi (1:)] v(dz) =0, i=1,..,.4d,

R

recalling that A is a symmetric matrix. In this case, the geometric Esscher
measure is the Esscher transform. ///

2.3 Linear Esscher Measure

It is common to model the price process S of a security in a financial market
with a stochastic exponential, instead of a classical exponential. However, these
two concepts are strictly related by the next result.

Proposition 2.2. Let X and X be two real-valued semimartingales. The fol-
lowing holds:

a. ifexp(X) =¢& (Y), then X — Xo = Log (exp (X)) up to indistinguisha-
bility. Furthermore Xo =0 and AX > —1;

b. if X = Log (exp (X)), then exp (X — Xo) = € (X).
Proof. Let Y = exp (X), so we can state Y > 0 and Y_ > 0.

a. Yy =¢& (Y) =& (Y—YO), then Yy = 1, which in turn implies Xy = 0.
Moreover £ (Y) > 0, so by the expression of the stochastic exponential
(see, for example, Proposition 2.41 in [25]) we get AX > —1. Since
Log(Y) is the unique (up to evanescence) semimartingale starting at 0
such that

Y = Yo€ (Log (V) = € (Log (V).

we have X — X = Log (exp (X)) up to indistinguishability.

b. On the other hand, if X = Log(Y), then it suffices to use the property of
the stochastic logarithm we have just cited to obtain

E(X)=E(Log(Y)) = ;0 =exp (X — Xo).

The proof is now complete. |

For every i = 1,...,d we set S := Si&(X"), where S§ € RT and X =
(X', ..., X%) is a d-dimensional semimartingale with characteristics (B, C,v)
with respect to a truncation function h. We also assume that AX®* > —1, so
that S > 0 and can represent the price of a security in the market. Since
dS? = 8*.dX", then S? is a local martingale if X* is so. Vice versa, it results
that X' — X = g - 5% (= Log(S)) up to evanescence, hence X' is a local

martingale when S is so, as well. Similarly to the case of geometric Esscher
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27 2.3. LINEAR ESSCHER MEASURE

measure, we search for a process § such that X° (hence S?, as well) is a P?-
local martingale for every i = 1, ..., d. In order to reach the main theorem of the
section, we need several technical results taken from [20, 28].

Let § € L(X) be such that 6 - X is exponentially special. Theorem III, 7.4

in [28] states that K~ (§) = & (6) - A, where

~ 1
K (e)t =< etabt > +§ < 9t70t0t >

+/ (e<0"> —1— < 0, h(z) >) Fy(dz), t>0. (2.2)
Rd

The following lemma ([20], Lemma 2.11) is crucial, because it allows us to
express the drift process as a function of the semimartingale characteristics.

Lemma 2.3. Let 6 € L(X) be such that 0-X is a special semimartingale. Then
its drift process DX (0) = § (0) - A, where

5(9)t =< Gt,bt > +/ < Qt,x - h({IJ) > Ft(dil'), t>0.
Rd

As a consequence of Girsanov’s theorem for semimartingales (see, for ex-
ample, Theorem III, 3.24 in [28]), we can explicitly express the characteristics

(BG7 Y, l/X9> —always with respect to the same h— of X under P?:

i . . . 6<9t’z>

B =B+ 0-A+hi(z) | ———— — 1] xv¥, 1=1,...,d
1+ W (0),

00 - O 9

0 €<0t,z>
vX7 (dt, dr) = ————v (dt,dx)

1+ W (0),
(2.3)
where

W (9), = / (c<9%> _ 1) X ({t} x dz), ¢ 0.
R4

Note that for every ¢ € R it results W (0), = AKX (§), > —1.

Remark 2.2. Let usfixwe Q,t>0and G € B (Rd). We have:

X (wi {t} x Q) = /+ dA; (w) /Rd Liyxa (8,2) Fsw) (dz)

Ry

= [, 44 [ 166) Ry @) = Foy (@) [ a4, )

Since
[ da @ = - A @),
{t}
if the function A. (w) is continuous in ¢ then vX (w; {t} x dr) is the null measure
on B (R?), implying that W (6), (w) = 0.

Finally, we introduce the derivatives of cumulant processes, also mentioning
Proposition 2.25 in [20].
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2.3. LINEAR ESSCHER MEASURE 28

Definition 2.5. Let 6 € L (X) be such that 6 - X is an exponentially special
semimartingale and

|2le<0um> — B (2)|* X €V, i=1,..,d.
i. The derivative of KX in 6 is the R%valued process
DEX (9) = (DJN{X (0),.... DaK~X (9)) ,
where D; KX (0) :== D;% () - A, with
Dife (8), = bi + ci-0; + / (e "> _ hi(x)) Fy(dx), >0, (2.4)
Rd
for every i =1, ..., d.
ii. The derivative of K% in 6 is the R%valued process
DKX (0) = (D1K*X (0),...,D4K™ (0)),

where 1
DiKX (0) = ————— D;KX(0), i=1,..,d.
1+ W (9)
Let us just note that (2.4) can be gotten by formally differentiating in 0 (2.2),
using that ¢ is symmetric.

Proposition 2.3. Under the hypothesis of Definition 2.5, the derivatives of
KX and KX in 0 are predictable processes in V¢ and it results D;K* (0) =
D;k (0) - A, where

D;k (0), = b +ci 0, + /Rd

xie<9t,z> i
(HW(G)t —h (m)) Fi(dx), t>0, (2.5)

for everyi=1,....d.

At this point we are ready to present the analogue of Theorem 2.1 for stochas-
tic exponential.

Theorem 2.2. Let 6§ € L (X) be such that §- X is exponentially special and Z°
is a UI martingale. Then the processes S* = SiE (Xz) are P?local martingales
if and only if ‘xie<9"x> - hi(x)’*uX €Vand D;KX (0) =0 for anyi=1,...,d.

In this case, we call P? linear Esscher measure, or Esscher martingale trans-
form for linear processes.

Proof. Assume that S°, and so also X?, is a P?-local martingale for any i =
1,...,d. By (2.3), we can get the characteristics (Be, Y, I/Xo> of X under P?.

In particular,

e<0,93>
B :b+00—|—/ W) |- 1) F(dz), i=1,..d
Re 1+ W (0)
Ce =cC )
e<9,m>
1+ W (6)
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29 2.3. LINEAR ESSCHER MEASURE

where the integral in the expression of b’ must be read componentwise. Fix

i = 1,...,d; since X' is a P%local martingale, we choose the deterministic
processes
S0 . )0 TF
J 1, j=i
and express X = e¢() . X. By Lemma 2.3 we deduce
i C 0 i C e<fvr>
0=0" A+ (z' =" (2)) %™ =" A+ (2" = ' (2)) ——=— 1~
14+ W (9),
. . . 6<9"’z> )
:BZ—FCZ.G'A—'— xlf—hz(x) *Z/X, ’L:177d
1+ W (0),

As |zte<> — hi(z)| x v € V for every i = 1,...;d (see [20], Theorem 4.4
for the detailed proof of this technical result), a straightforward application of
Proposition 2.3 gives DK (6) = 0.

Vice versa, assuming DK (§) = 0, the same proposition yields

:L'i6<9t’m>

0=b-A+c0 A+ | o —hi(z) | xv~
14+ W (9),

i rie<bi,r> . e<0i,z>
:be A+ f_hl(x)f *VX
1+ W (), 1+ W (),

=0 A+ (2" — h'(2)) w0,

Hence Lemma 2.3 shows that X* is a P?~local martingale for every i = 1, ..., d,
and so is S°. |

Theorem 4.5 in [20] states that the linear Esscher measure is unique, pro-
vided its existence.

Example 2.2. Let X = {X;}, be a R?-valued Lévy process with generat-
ing triplet (A,v,v,) with respect to the truncation function h. Suppose that
there exists § € R? such that E [exp (< 6, X; >)] < oo for some ¢ > 0. Then
{<0,X; >}, is exponentially special with KX(0); = t¥,(0),t > 0, up to
evanescence, as argued in Example 2.1. We further consider M = {M,},,
with M; = exp (< 0, X; > —t¥ (0)),t > 0, to be uniformly integrable, so it
is possible to define the Esscher transform P? in F as P? (dw) = My, P (dw).
Take the submultiplicative function

g(x) = (Jz| V1) exp(< 0,2 >), z¢€ R,

and assume that X; has finite g-moment for some ¢ > 0. By Theorem 1.3 this

implies that f‘w|>1 |z exp (< 0,2 >) v(dz) < co. Hence we also have

/ ’xl exp (< 0,z >) —h' (x)’ v(dr) < oo, i=1,..,d,
R4
so for every t > 0 and i = 1, ..., d it results

(|2' exp (< 0,2 >) — b’ (z)] *VX)t = t/ |2’ exp (< 0,2 >) — h' (z)| v(da).
Rd
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Thus, the process |xie<9f"”> — hi(x)| xvX eV foranyi=1,..,d.

Now Theorem 2.2 applies and states that Si& (Xl) is a P’~local martingale
if and only if D; KX (§) = 0 for every i. By Proposition 2.3, this equality holds
if and only if

v+ AY9 —l—/ (z'e=?*> — hi(z)) v(dx) =0, i=1,...d, (2.6)
Rd

because here W (0) = 0 (see Remark 2.2). Recalling that

1
Uy, (0) =< yp,0 > t5 < 6, A0 > +/ (<> —1— < 0, h(z) >) v(dx)
R4

and that A is a symmetric matrix, we note that (2.6) can be obtained by formally
differentiating ¥j, (0) in 6° for any i. In this case, the linear Esscher measure is
the Esscher transform.

Furthermore, by (2.3) the characteristics of X relative to P? are given by

BY =7t + AP0t + [ hi(z) (<" — 1) v(da)t,
Rd
CY = At 120

VXe(dt, dz) = e<0=>yX (dt,dz) = dt e<%*> v (dx)

so Theorem 1.5 states that it is a PIIS process even under P? (cf. Proposition

9.6 in [25]). /1]

2.4 Applications

2.4.1 Geometric Esscher Measure

In this section we apply the theory developed so far to a specific price process.
Let (Q, F, P) be a probability space, L = {L},~, be a driving, R-valued Lévy
process with generating triplet (02,1/, 'yh) with respect to a fixed truncation
function h. Denote by F the augmented filtration of L, so it fulfills the usual
hypothesis. The dynamics of the spot prices are given by the process S = {S;},,
defined by

S = Spexp(G), Spe€RT,

where the log—prices G = {G}, follow
dGy = (p” = A\9Gy_) dt + or—dLy, Go =0, (1)

with p&, A4 € R. The volatility process o2 = {crf}t is defined as in [22] by

t
o? = (k:/ eXe ds + 08) e Xt >0, (2)
0
where 03 € RT and X = {X,}, is the cadlag, adapted process given by

X; =nlogd — Z log {l—l-(I)(ALS)Q}, t>0,

0<s<t
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with & > 0, 7 > 0, ® > 0. Proposition 3.2 in [22] shows

¢
Jf:kt—n/ o2ds+ ® Z o2 (AL) 402, t>0.
0

0<s<t

It is evident from (2) that o2 is a left—continuous and adapted process. In any
case, we prefer writing o_ instead of just o to highlight the fact that we are
working with a cag and adapted, hence predictable, process.

Given an adapted process r = {r;}, representing the interest rate, the dis-
count factor is {r; — d;},, with §; := A¢Gy_,t > 0. In this setting, the dis-

counted spot prices S = {g’t} become
t

t
S == exp <—/ (rs —0s) ds) Sty t>0.
0

We can interpret 0 = {d;}, as the convenience yield (i.e., the difference between
storage expenses and consumption value per unit of time) in the case of com-
modities or the dividend yield for stocks (see [7]).

Thus, we define the process G' = {G}},, where G} = — f(f (rs —0s) ds + Gy
for every ¢ > 0, whose dynamics are dG} = — (ry — 6;) dt + dG;. We can now
express S = S, exp (G’). Therefore, we want to find a process 6 € L (G’) such
that S is a P?~local martingale (provided the existence of P?, obviously).

Remark 2.3. From the dynamics of G in (1), it follows that G jumps at the
same times as L does, and AG;y = 04_ AL, t > 0. Fixed t € RT and w € Q, the
measure associated to its jumps is

p (w; (0,1] x A) = Z Lizzo0yna (AGs(w))

= Z Loy (ALs (W) 15, (wy)-1a (ALs (w))

s<t

=k (w; (0,4] x (o— (W)™ A) , AeB(R).

Moreover it is clear that u& = u¢, therefore F(C;/w) (dy) = v (04— (w)-) " (dy),
meaning that

FS. (4) = / 14 (0r (@)y) v(dy), A€BR).

Theorem 2.3. Let § € L(G') be such that 0 -G’ is exponentially special and Z°
is a UI martingale. If also (6 + 1) - G’ is exponentially special and 0 satisfies

1
<0t + 2) of a?—ri+p“+ o, +/ (6(0#1)‘”4’7 7Y — gy _h (y)) v (dy)=0
R
N (2.7)
for every t > 0, then S is a P%-local martingale.

Note that G’ is 1-dimensional, therefore the geometric Esscher measure is
unique (if it exists).
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Proof. We first determine the characteristics of G’ under P with respect to h
as function of the generating triplet of the Lévy process L. We define

G (h), =D [AG, —h(AG)] = ((z — h(x)) *p),, t=0

s<t
and G’ (h), == G el (h);,t > 0. Thanks to the previous remark, we can write
dG' (h), = dG; — G’ (h), = — (14 — &) dt + dGy — (z — h (x)) pC (dt,dx)
=—(r - pG) dt + o dL; — (or—y — h(or_y)) p* (dt,dy) .
As (o_- L) =0_-L°and < o_ - L°,0_ - L¢ >= [ 02 0?dt, considering that

Lemma 2.3 gives

(0 ) = o+ [ o (y=h(w) v(dy), 20
R

we get
th, =—ri+p% + o+ fR (h(o—y) — or—h (y)) v(dy)
& =02 o2 . t>0. (2.8)
FE(dy) = v(oy—) 7" (dy)

At this point, if 6 satisfies kK (f# + 1) — K (6) = 0, Theorem 2.1 applies and we

can affirm that S is a P?~local martingale. In fact, using the expression of & (9)
provided by (2.2) it results

R(O+1), =K (),

! 1 !
=b¥ + 50’?_02 + 002 0% + / (e(eiﬂ)z —ehr _p (:z:)) EY (dx)
R
1
= <9t + 2>Ufaz—rt +0% + o —i—/(e(etﬂ)”‘*y —ehY g, h (y))l/ (dy)
R
=0, t=0,
by (2.7). This completes the proof. [ |

If L follows a NIG distribution, then the solutions to Equation (2.7) can be
explicitly expressed, as shown in the next result. We just need to recall that, if
a random variable X ~ NIG (o, 3, ,0), then its moment generating function
is provided by

E [er]:exp[uera(\/W— \a2— (ﬂ+z)2>} ., —a—pB<z<a-§.
(2.9)

Lemma 2.4. Let L = {L;}, be a Lévy process following a NIG distribution
with parameters («, 8, 1, 0) and set the truncation function

h(z)=2alp(z), z€R.
If a process § = {0,}, such that

(01-0;) (W), o (O +1)(w) € [~a—B,a—F], teRS, weQ (2.10)
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fulfills Equation (2.7), then for every t > 0 we have

1

oL2 _
" 2(R? + 0207

Vo <— 6207 —2B6%02 — R? (04— +28)
t—

RG
+ \/4a252R?0t2+4R§a2— R}6%0} — 6—; —20?1?,?)7
(2.11)
with Ry == —ry + p& + poy_.

Proof. Since Ly ~ NIG («, 8, 11,0), (1.12) applies and along with Example 1.3
states that for every z € [—a — 8, — (] it results

Ble] =ow fus b+ [ @ -1 satp @)v (@]

where L
26
v o= 229 [ sinh (Bz) K7 (ax) dx
T Jo

and
da

™ ||

Now (2.9) yields, for the same z € [—-a — 8,a — ], the next equality:

o <\/a2 — B2 —y\a?2—(B+ z)2) =mz+ /R(e”—l —zxlp (x))v(dz). (2.12)

Following the foregoing proof we have

0=%(0+1), — 7 (0),

v(dz) = PRy (o)) d.

=Ry +orm +/ [6(9’*1)"‘*’” —1— (7" —1) —0y_zlp (:C)] v (dx)
R

=Ri+o,m+ / [6(9“’_1)0”&0 —1—o0i (6:+1)2lp (ac)} v (dx)
R

- / (eo-" -1 — oy Ouzlp () v(dz), t=>0. (2.13)
R

Considering that o_v; = o_[(6 +1) — 0] trivially holds, we can continue
expanding on the chain of equalities in (2.13) arriving at:

0= R+ {at_ 0+ 1)m +/R <e(0t+1)‘”*w —1—0, (6 4+ 1)zlp (x)) v (dx)}

— [at_om + /R (e7=* —1 — oy _Oulp (2)) v (dm)]

=R +9 (\/042 - (5+0t—9t)2 - \/042 — (B4 o (9t+1))2) , t=0,

where in the last passage we used (2.12) together with the technical assump-
tion (2.10). In order to complete the proof we therefore need to find, for any
t > 0, the possible solutions of the following equation:

Ri+6 (\/a2 (B0 0 —\Ja2— (Bron (0 + 1))2) —0. (214)
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We write (2.14) as

\/0‘2 — (B+oi- (0 +1))° = % + \/a2 —(B+0oi_0)°

and then we square both sides, getting

R, 5 2 2 R} 2

27 « —(ﬂ—‘r(jtfgt) = — |0 +250’t7+672 —20't70t.
Repeating once again the same operation of squaring we end up with an equation
of second degree in 6, namely

2 AP 3 o | B R}
dof_ (o7 + 2 0; +4oy_ | 0y + 2Bo;_ + 52 0t- + 255—2 0: +c =0,
(2.15)

2
where the coefficient ¢; == (af_ + 280, + ?—5) —4?—2 (a2 — 3%) . The solutions
to (2.15) can be algebraically computed (admittedly, the calculation is quite
tricky) and are provided by (2.11). This completes the proof. |

Lemma 2.4 does not add anything to the theory developed so far, but it is
crucial in applications. In fact, having an explicit expression for € enables us
to simulate the spot prices under the martingale measure, given in this case by
the geometric Esscher measure. Both branches of the solutions (2.11) have been
tested empirically, but only

1

9 =
T2 (R? + 6207 ) 04

(— 8208 —2B6%07 — R? (0, +2)

RO
— \/4@2521:{?0?—1— 4R}a?—R2620} — 6—; — 202 Rf)

(2.16)

prevents the risk—neutral dynamics from exploding.

Simulation of the P’—dynamics

Since we are going to consider options on stocks and not on commodities,
the convenience yield § is redundant, so we remove it by setting A = 0. For the
sake of simplicity we consider a constant annual interest rate » € R™ and put
p% = 0: in this way, under the historical probability measure P, the log-—prices
G follow a COGARCH process, as introduced in [22], and (1) reduces to

th = O't_st, GO =0.

Such types of processes are generalized by the so—called COGARCH (p,q),
which have been introduced in [6]: Theorem 2.2 therein displays the connection
with the model we are adopting. In our approach the driving Lévy process L is
assumed to have a NI distribution and we further suppose that the hypothesis
of Theorem 2.3 are satisfied (with truncation function h (z) = x1p (z), z € R),
so that the geometric Esscher measure P? for S is uniquely determined. We
estimate all the parameters of the model from the time series of the underlying
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asset log—prices using the R-package yuima (see, e.g., [16]), which computes
them according to the procedure explained in [17]. At this point, we use the
found coefficients to simulate a sufficiently large number of paths of the variance
process o2: thanks to (2.16), from each of them we can recover a trajectory of 6,
as well. The problem therefore reduces to generating the paths of G from those
we have just obtained. After the change of measure, L is not a Lévy process
anymore: indeed, by (2.3) and Remark 2.2 we have

Ff (dz) = v (dz), t>0

and Theorem 1.5 ensures that L is not even a PIIS process under P?. As a
consequence of this fact, G is not a COGARCH process under the martingale
measure and the simulation of its trajectories gets complicated. The idea we
follow to overcome this setback is to use the canonical representation for semi-
martingales ([28], Theorem II, 2.34): given a d-dimensional semimartingale
X = {X;}, with characteristics (B, C,v~) relative to the truncation function
h, then the next representation holds:

X =Xo+ X+ B+h(z)x (s —v)+ (- h(z)*p¥. (2.17)

Fix the truncation function h (z) := 2 1{|.|<¢ (x), where € < 1is arbitrarily cho-
sen. Considering Examples 1.3 and 1.5, straightforward computations provide
the generating triplet of L under P with respect to h:

02=0
oo
d =
v (dx) p

Yh =7 — fe<\z|<l rv (dx)

Ky (a|z)) de

)

250 [
where v = pu + —a/ sinh (Sz) K (o) dx. From the proof of Theorem 2.3,
71'

0
specifically from (2.8), we readily get the characteristics of G under P:
by = op_yp + fR (h(oi_z) — oy_h(x)) v(dx)
Ct = 0 3 t > 0.
Fi(dz) = v(oy—-) "' (dzx)

We invoke once again (2.3) together with Remark 2.2 to find them under P?:

b =by + [ h(z) (e — 1) Fy(dx)
=0 , t>0. (2.18)
Fl(dz) = e’ v(oy_ )71 (dx)

We now focus on the representation of G given by (2.17). By construction

Gy = 0, and obviously G° = 0, as well, since cf =0, t > 0. As regards the term
B = {B.},, it can be easily obtained by

Bt:/ vods, t>0,
(0.t)
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hence we expand on the computations in (2.18):

b =b, + / oy lfz1<e) (01-Yy) (69‘”‘*3/ -1)v(dy), t=>0.
R

Substituting the expression of b; we conclude

da
R I A
|z|<e/oy— 7 [yl
)
- / Ut,y—aeﬁylﬁ (aly))dy, t>0.
(—e,e€) ™ |y|

We next replace the term h (z) « (u“ — v¥) with another one representing the
variation of the small jumps of G, as suggested in [3] in the case of Lévy pro-

cesses. In particular, we introduce the process o2 (¢) = {0 (€), },, defined by

o?(€), = / 22 FY (dz), t>0.
|z|<e
With the usual calculations we get

o’ (€), = /ngem Ljz1<ey () Fy (dx) = /Rfff_y%e“’*‘y Liz<ey (oi—y) v (dy)

= / Jt{y267ae(9tot7+ﬁ)y[(l (aly)dy, t>0.
|z|<e/ot— 7T|y|

Taking a Brownian motion W = {W,},, we approximate a trajectory of h (z)

(n¥ —v%) with one of o2 () W.

Finally we turn our attention to the term (x —h(x)) * u©. In order to
simulate its paths, we proceed in analogy to the Lévy—It6 decomposition theorem
presented in Section 1.3 (Theorem 1.4). In that instance, we proved that, if L
is a Lévy process, then

/ x J (ds,dx) = / (x —z1p (z)) p* (ds,dx)
(0,t]X D (1, 00) [0,¢] xR
=((&—=z1p (@) xp"),, t>0

is a compound Poisson process with distribution (#) ¢~ (dx) (see (1.14))

and constant v (D1,»). In this case, we consider a nonhomogeneous Poisson
process with time—varying intensity

foYe
Moo= FY ({z] > ) = / oV () 2L VK (alyl) dy
R ™ |y|
= / 67ae(910t—+5)yK1 (aly)dy, t>0.
|z|>e/or. T ‘y|

The jumps time of such process have been simulated with a thinning algorithm,
as proposed in [23]. Instead, the time—varying jumps sizes are assumed to be

cp = / zlp, . () Fte (dx)
R

1
:/ ot_y—a eOrr=FWE (aly|)dy, t>0.
|z|>€¢/0o1— ™ ‘y|
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Figure 2.1: AAPL call option, Strike 1658.
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Maturity

Following these steps we can get as many trajectories of G (and so of S) under
PY as we want. Let N be the number of iterations we run and S?, fori =1, ..., N,
be the corresponding, simulated trajectories of the spot price. Recalling that
PY is a martingale measure for S which is locally equivalent to P, we use it
as pricing measure. This means that we obtain the price of an European call
option with strike K and maturity 7' by computing the sample mean of the
vector of components

e T(SUT) - K), i=1,.,N.

Empirical Results

We have empirically tested the Esscher method with the prices of call options
on Apple Inc. stock (ticker symbol: AAPL) with fixed strike at 165$. Figure 2.1
above shows the simulated option prices as a function of their maturities. We
refer to Appendix A, Section A.1, for the used code. The average of the absolute
values of percentage difference is 6.6525%.

We also tried to apply the geometric Esscher measure to the prices of call
options on Microsoft Corporation stock (ticker symbol: MSFT) with strike 1108$:
Figure 2.2 below displays the outcomes. In this case, the mean of absolute values
of percentage difference settles down at 5.2701%.

Remark 2.4. In both the simulations the real data was obtained from the
website https://www.nasdaq.com, where American options are traded. Our
argument generates the option prices assuming they are European, instead. In
any case, this approximation can be accepted as meaningful for two reasons:

e the analyzed derivatives have short-term maturities, so we are allowed to
ignore the dividend yield;
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Figure 2.2: MSFT call option, Strike 1108.
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e the time values of the options were always positive, implying that it is
convenient to sell the option rather than exercising its call right.

2.4.2 Linear Esscher Measure

As we have already argued at the beginning of Section 2.3, sometimes it is
convenient to use the stochastic exponential £ instead of the standard expo-
nential exp to model prices. In the previous subsection, we had the processes
S = {5:},, with S; = Spexp (G¢), t > 0, which described the spot prices and

S = {St}t, with S, = S, exp (G}), t > 0, for the discounted spot prices. Con-
sidering that Go = G{; = 0, thanks to Proposition 2.2 we can express these
processes by stochastic exponential as follows:

Se = Sof (G),, Sy = So€ (G7),, t=>0,

where G := Log(exp (G)) and G" := Log(exp (G')). The next theorem ([28],
Theorem II, 8.10) shows how to derive the characteristics of G’ from those of
G'.
Theorem 2.4. Let X and X be two real-valued semimartingales such that
X = Log(exp(X)). Denote by (B,C’, I/X) the characteristics of X with re-
spect to a truncation function h. Then there exists a version (E, C, VY> of the
characteristics of X, always relative to h, satisfying

§:B+%+(h(ew71) —h(z))xvX

c=C . (2.19)

lg () *xv¥ =1g (e —1)xvX, G e B(R)
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In particular, recalling that
B=b-A
C = C- A )
vX (widt, dz) = dA; (w) Fy.0) (dz)  P-a.s.
from (2.19) we get

by=b+ % + Jg (h(e” —1) — h(x)) F, (dx)

Ct = ¢4 5 t> O7 (220)

Fy(dz) = F, (e —1)"" (da)

where the last expression can be explicitly written in this way:

Ft(G):/RlG(etnFt(dx), GeB(R),t>0.

With the new expression of the process §, the idea is to apply Theorem 2.2 in
order to find another sufficient condition to make P’ a martingale measure for
S. We obtain the following result:

Theorem 2.5. Let § € L(G’) be such that §-G' is ezponentially special and 79
is a UI martingale. If the process ‘CL‘ el —p (m)‘ *x 9" €V and 0 satisfies

1 coy
(@ +2) o2 o —ri+pS o +/ [(e"t‘y— el "= _g,_h (y)} v(dy)=0
R
(2.21)
for every t > 0, then S is a P?-local martingale.

Note that in this case P? is the Esscher martingale transform for linear
processes, so it is unique.

Proof. We first determine the characteristics of G’ under P with respect to the
truncation function h. From the proof of Theorem 2.3 (see, in particular, (2.8))
we already know those of G’; since G’ = Log (exp (G")), the previous theorem
applies and (2.20) states

by =0 + S + [ (h(e” — 1) — h(x)) FE (dx)
G = . t>0. (222
Fy(dz) = FC (e —1)"" (da)

At this point, if DK% (9) = 0, then Theorem 2.2 enables us to conclude that

P is a martingale measure for S, as desired. Since DK (6) = | Dk (0) dt, we
focus on the term

— x et —
_ (et +;)0302— re + PO+ Grn + / (h(or-y) — or-h (y)) v (dy)

+ /(h (e* —1)— h (z))FE (dz) +/ (ze —h(2))FE (e —1)"'(dz), t>0
: - (2.23)
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noting that W (0) =0 (see Remark 2.2). Now for every t > 0 it results

[ e =) = @) FE (dn) = [ (e = 1)~ h(ory) v (dy):
R

R
furthermore
Jiaet = n@)EEe -1 o) = [l -1 e -he - ] E e
R R

R
Plugging these two terms into (2.23) we end up with

[(e7=v = 1) 7D — g, h ()] w(dy)

1
<9t +2)Ut202— re+p%+ o +/
R

=Dk (0),=0, t>0,
by (2.21). This completes the proof. |

Remark 2.5. Even if the theory developed for the linear Esscher measure
allowed us to get Theorem 2.5, which is the natural analogon of Theorem 2.3,
unfortunately we could not simulate option prices modeling the stock dynamics
with a stochastic exponential. In fact, we were not able to find an appropriate
driving Lévy process for the explicit computation of the solutions to (2.21).
This drawback prevented us from obtaining an analogous of Lemma 2.4, and
consequently from simulating a trajectory for the process 6, which was essential
to start the procedure described in subsection 2.4.1.
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Chapter 3

Calibration To Derivative
Prices

Reasoning on the construction of the Esscher measure, one might note that
the density process is defined solely by the spot prices. This fact can represent an
intuitive setback especially in liquid markets, where the time series of derivative
prices is available. In order to solve this problem, we can approach it by the so—
called Calibration Method: in few words, it consists in modeling the dynamics of
the spot prices directly under a martingale measure, which is customarily said
to be "chosen" by the market.

In the next sections we introduce some theoretical topics aiming to explain in
which sense the market determines ("chooses") the measure.

3.1 Lévy Processes On Skorokhod Space

Let us consider a R%valued, additive process {X:}, with system of gen-
erating triplets {(A¢,¢,7)}, on a probability space (2, F,P). We introduce
the Skorokhod Space © as the space of the R%valued, cadlag functions defined
on R{. Specifically, we have ® := D ([0,00),R). For any t > 0 denote by
x; 0 ® — R? the following function:

2 (§) =¢(), €.

We can now endow the space © with the o—algebra Fgo = o ({z,t > 0}). It is
also natural to consider a filtration F on the measurable space (D, Fp), namely

F:=(F);>0. where Fy =0 ({z;,0<s<1t}), t>0. (3.1)
Since {X.}, is a cadlag process, we can define the map ¢ : Q — © given by
P(w) =X (w), weQ,

where X (w) : [0,00) — R4, with X (w)(¢) = X;(w) for any ¢t > 0. The
function ¢ is F/Fop measurable: to see this, it suffices to read

Fo =0 ({z,t>0}) =0 ({z;'(B),B € B(R?),t>0}).

41
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3.1. LEVY PROCESSES ON SKOROKHOD SPACE 42

Hence for every B € B (Rd) and t > 0 we have

qb_l(x;l(B)):{wEQ:¢(w)Gxgl(B)}:{WEQ:X.(w)Ex;l(B)}
={we: X, (w)eB}=X;"(B) € F,

and the desired measurability of ¢ follows immediately. This allows us to con-
struct the pushforward measure P® on (D, Fp), that is,

P2 (A)=P¢ ' (A)=P (¢ ' (4), A€ Fs. (3.2)

We now focus on the stochastic process {z;}, defined on the probability
space (@,}'@, PD). Fix a cylinder set C' € Fp, i.e.,

C={€D:£(t)) €By,....,E(t,) € By},

for some t; <ty < ... <tp, B1,....,B, € B (Rd) and n € N. By (3.2), we get

P® (x4, € By,...,m, € B,) =P (C)=P (¢ " (C))
= P(th S Bh ...7th S Bn) .

Thus, {z;}, and {X;}, are identical in law, whence {x.}, is an additive process
with the same system of generating triplets as {X;},. Furthermore, if {X;},
were a Lévy process, then the temporal homogeneity would be inherited by
{z+},, which would be a Lévy process, as well.

Let us now take into account two Lévy processes ({x:},, P) and ({z:},, P’),
both defined on the Skorokhod space (9, Fp) endowed with the filtration F
in (3.1). We can think of P and P’ as two probability measures on (D, Fp)
determined by two Lévy processes defined on a pair of probability spaces (not
necessarily the same space), as shown by the previous argument. We want to
find out what conditions must be assumed in order to have

P|}_t ~ P’|}_t for every t > 0.

This problem was first solved by Skorokhod, Kunita, Watanabe and Neumann,
among others. We summarize their results in the next theorem.

Theorem 3.1. Let ({x:},,P), ({x+},,P’) be Lévy processes on R? with gener-
ating triplets (A, v,v) and (A’ V', "), respectively. Then the following properties
are equivalent:

a. P|}.t ~ Pl|]:t for every t > 0;

b. the generating triplets satisfy
A=A, v~

Besides, considering the function ¢ : R* — R defined by ¢ = log (%), it
results:

/]Rd (€¢(z)/2 — 1)2 v (dz) < oo (3.3)

and
7’—7—/<1x(u'—y) (dz) € {Ay, y e R} (3.4)
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43 3.2. RELATIVE ENTROPY OF PROBABILITY MEASURES

In this case, chosen n € R such that o/ —~ — flw\<1 x (V' —v)(dx) = An, there
exists a process U = {U;}, defined on ® which fulfills:

1. U is a P-Lévy process on R with generating triplet (0%], VU,'yU) given by

of =<mn,An >
vo =6 g (o) ;
Ww=—3<nAn> - [z (e’ —1-ylp(y) ve~" (dy)

i. ET [eU‘] = EF [e_Ut] =1 for every t > 0;

P’
iii. eVt = — 2t P —a.s. for every t > 0.
i,
t

We refer to [27], Theorems 33.1 and 33.2 for a proof as well as an explicit
expression of the process U. We just note that, according to Theorem 1.1, by (i.)
the process U is unique up to identity in law and that the components of the
integral in (3.4) are finite by (3.3):

/a;|§1 z' (v —v) (dx) ./a;|§1 ! (e¢(w) - 1) v (dz)

< / || ‘e‘z’(m) — 1‘ v(de) <oo, i=1,..,4d.
lz|<1

3.2 Relative Entropy Of Probability Measures

We present the definition of relative entropy as proposed in [18§].

Definition 3.1. Given two probability measures P, P’ on a measurable space
(Q2, F), the relative entropy H (P, P’) of P with respect to P’ is defined by

Jolog (45 (w)) P (dw), if P < P’
0, otherwise

H(P,P) = {

First of all, we have to discuss whether or not this definition is well posed.

To this aim, we have to prove that the function log ((‘ZIS) is defined P—a.s. in
Q when P < P'.
This is obvious when P ~ P’, because in this case % > 0 P’'-a.s., and therefore
P-a.s., as well. If instead P < P/, but P ~ P’ then j}j, = 0 is a subset of 0
with positive P'—probability (so, for example, it would not be possible to define
Jolog (45 (w)) P’ (dw)). We put

dpP
Q’:—{wGQ:Cm(w)>O}€.7:;

it results P’ (€) < 1. Considering the measurable space (€, F
Py, =P|y_ and P/l =P'|
certainly not a probability measure), because
dpP
dp’

Q,), then
are equivalent measures (note that P’

o 18

o _ dP

= > 0.
5 P

Q
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3.2. RELATIVE ENTROPY OF PROBABILITY MEASURES 44

It follows that

dP
P@) = /Q P

However, it is still not clear if we can write [, log (% (w)) P (dw), since the
integrand has not constant sign so the integral could not make sense. For this
reason, we consider

<log (cclzzjj/ (“’))) ~ —log <5£/ (“’)> o<y (jﬁ, (w)) . we.
Then, recalling that log (z) 1(.>1 (z) < z for any @ > 0, we get
/(log (jljj' M))P(d“) :/,<_ log (jﬁ, (w))>1{z§1}<£(W)>P(dw)

dP'|,, dP'oy dP'
=/ 1 & g, —_— P (dw) <
/, o8 <dP}Q, (“)> ¢ >1}(dP|Q, W) ()< ), ap

=P () <1< 0,

Q/(o.)) P (dw) = /Q I (W) P’ (dw) = P (2) =1, as desired.

% (w) P (dw)
o

/
P Q! (dP
- \dpP’

where in the second equality we have used

o) ~'. Therefore

Qf

H (P, P’) is actually a quantity we can handle.
From now on we fix a measurable space (§2, F). The following property of
the relative entropy is as simple as important.

Proposition 3.1. For any pair P, P’ of probability measures on (Q, F) it results
H(P,P')>0.
Equality holds if and only if P = P'.

Proof. We just study the nontrivial case, i.e., we assume P < P’. Recalling
that logxz < z — 1 for any x > 0, we have

dpP’
H(P,P) = /,log (j; (w)) P (dw) = —/llog <dP
14 (w)) P(dw)=P((Y)-P (Q2)=1-P (Q)>0.

dP’
> 1— —
—/, dP

Q/

Q/

- (w)> P (dw)

If P o P, then P’ (Q) < 1, as already discussed above, so H (P, P’) > 0. If
instead we assume P ~ P’ (hence P’ (') = 1), bearing in mind that logz =
r — 1< x =1, we can state that the equality

- [ e (G5 @) P = [ (1- G5 @) P

holds if and only if %’; =1 P-a.s. in €, and therefore in Q, too. In turn, this
is equivalent to say P = P’ in F, completing the proof. |
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45 3.2. RELATIVE ENTROPY OF PROBABILITY MEASURES

The fact that H is nonnegative enables us to understand it as an expression of
the similarity of two probability measures. For this reason, the relative entropy
is also called distance (or divergence), namely the Kullback—Leibler distance.

The following inequality is well known:

Zai log % > alog% for any a;,b; > 0, m € N, (3.5)
i=1 i

where a = Y_I" a; and analogously b := > " b;. More precisely, equality
in (3.5) holds if and only if

al_ag_ (€29

This elementary tool suffices to prove a crucial property of relative entropy: the
strict convexity.

Proposition 3.2. Given three probability measures P,Q and P’ on (Q, F) sat-
isfying P~ P',Q ~ P’ and P # Q, then for every a € (0,1) it results

H@P+(1-a)Q,P)<aH(P,P)+(1—-a)H(Q,P).
Proof. Let us fix a generic « € (0,1) and define the new probability measure
pw=aP+(1-a)Q;

we have p ~ P’ obviously. We define

dP dQ
f:: dP,a g = dP,a hZ:Olf+(1_Ol)g,
so it is immediate to note that jllj, = h. We claim the existence of a subset

Mof{weQ: f(w)>0,9(w)>0,f(w)#g(w)} such that P’ (M) > 0. If that
were true, then in the set {f > 0,9 > 0} the following would be satisfied:

(d-a)g

1—a)
by (3.5). In particular, this inequality would be strict in a set with positive
P’—probability, hence

/ OtflngdPl+/ (lfa)gloggdP’>/ hloghdP'.
{f>0,g>0} {f>0,g>0} {f>0,g>0}

Since

aflog%er(lfa)glog > hlogh,

{h>0}={f>0,g=0}J{f>0,9>0}{J{f=09>0}

and furthermore {f > 0,9 = 0},{f = 0,9 > 0} are two P'—null sets given P ~
P’ ~ @, we could conclude

H(u,P) :/ h1ogth’</

{h>0} {f>0}
—aH (P,P)+(1—a)H(Q,P).

aflogfdP’+/ (1—a)gloggdP’
{g>0}
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3.2. RELATIVE ENTROPY OF PROBABILITY MEASURES 46

In order to show our claim, assume by contradiction that f = g P’-a.s. in
{f > 0,9 > 0}. Therefore, for every A € F we have

P(4) = E” [f14] = E” [[ Langrs0g50)] + B [ Lan(s>04-0)]
= E” [g1an(s>00503]

as P' ({f > 0,9 =0}) = 0. In the same way we get

Q(A)=E" [91an{s>0,9>0}] -

This implies that P = @, which is an absurdity since we started off with two
different probability measures. The proof is now complete. |

We finally show a result which computes explicitly the relative entropy of
two equivalent Lévy processes in the Skorokhod space as a function of their
generating triplets.

Theorem 3.2. Let ({z:},,P), ({x:},,P’) be Lévy processes on R? defined on
(D, Fo) with generating triplets (A,v,v) and (A',V',~"), respectively. Suppose
that P‘}} ~ Pl|}-, for every t > 0 and choose n € R? such that

7/,7,/ x (V' —v)(dr) = An.
2] <1
Assume also that E¥ (g (U,)] < oo for some t > 0, where g (z) = (|z| vV 1)el*l

for any x € R. Then for every T > 0 it results

dv’ dv’ dv’

T
H(P’ P ):7 A T/ P 0s 41— ) . (3.6
|fT |J'-T 3 <7 n=+ rd \ dv Ogdy+ av ) (36)

Proof. Let us fix a finite time horizon T' > 0. For any z € (0,1), by assumption
we have

EF [e*Ur] = / e* Py, (dx) < / g (z) Py, (dx) < .
R R
We introduce the moment generating function
MGFy, (2) = EF [e?Ur] =TV 2 €(0,1),

where W is the cumulant function of the Lévy process U, i.e.,

U (z) = %J%ZQ +uz +/ (e —1—zzlp () vy (dz), =z2€(0,1), (8.7)
R
and the last equality is ensured by (1.12). Actually M GFy,. is well defined also
in z =1, with MGFy, (1) = E¥ [eV7] = ¢ =1, by (ii.) in Theorem 3.1.
We can see that MGFy, is differentiable in (0,1) with MGFy,' (1) =
EP [UreU]. Indeed, for every z € (0,1), MGFy, (z) = [, ¢ Py, (dz) and
we can derive under integral sign since

lz|e** < g(x) € L' (Py,), z€(0,1),z€R.
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47 3.2. RELATIVE ENTROPY OF PROBABILITY MEASURES

At this point the dominated convergence theorem readily shows that
lim MGFy,' (2) = / ze® Py, (dz) = EP [UreVr] .
z— 1" R

On the other hand, we introduce the function
f(z)=e® 2e(0,1).

Even in this case we can affirm that f is differentiable in its domain, with
derivative provided by

f(z) =Te™ODW (2), 2€(0,1).
In particular the following equality is true:
U (2) =0fz 4+ +/ (ze®™ —x1p(x)) vy (dz), =z€(0,1).
R

In fact, we can derive under the integral sign in (3.7) as, for every z € (0,1), it
results that |ze*® —z| < 1+e, z € D, with ze** — 2 < Cz? in a neighborhood
of 0 for some constant C' > 0 not depending on z. Moreover, |z|e** < g (x) for
|z| > 1, with flw|>1 |z| el*l vy (dr) < oo by Theorem 1.3. Applying another time
the Lebesgue’s convergence theorem we arrive at
lim MGFy,' () = TeT?W (02(] +u + / (xze® —xlp (z)) vy (dx)) .

R

z—1—

Therefore

EF [Uper] = Tl (U% + U —|—/ (xe® —z1p (z)) v (dx))
R

T dv’ dv’ dv’
= — A T —log—+1——]d
g <A /Rd<du 8 T du) .

dpP’
Tt — oUs

using the expression of (a?], I/U,’YU) in (i.) of Theorem 3.1. Since ‘
Tt
for every ¢t > 0 (see (iii.) in Theorem 3.1) and

I% (P/| P| ) :/ dP/‘]‘-T log dPl|]-'T dP = EP [UT@UT]
Fr’" |\ Fr dP| dP} ’
D Fr Fr

we get (3.6) and we are done. |

Remark 3.1. In the case of two R-valued Lévy processes ({x:}, , P), ({z+},, P’)
with generating triplets (02, v, 'y) and ((72/, V’,'y’), respectively, under the hy-

pothesis of the previous theorem (3.6) reduces to

T dv’ dv’ dv’
/ _ - 2.2 - - _
H<P‘-7:T’P|7'—T)_20n +T/]R<d1/10gd1/+1 dV>dV.

If we are dealing with pure jump processes (e.g., NIG processes), the first term
in the sum of the right-hand side is 0; if instead o2 > 0, then we can express

2
T 2.2 T / /
50 n = 252 (7 0 /|a:|§1x(y v)(dz) |

restoring Proposition 9.10 in [11].
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3.3. APPLICATION TO EUROPEAN CALL OPTIONS 48

3.3 Application To European Call Options

Let (©, F,Q) be a probability space and L = {L;}, be a driving, R-valued
Lévy process with generating triplet (02, v, 'y). We endow this space with G,
the augmented filtration of L, so it satisfies the usual hypothesis. Denote by
u" the measure associated to the jumps of L and v” its compensator, namely
vl (dz) = dt ® v (dz). We now describe the dynamics of the stock prices S =
{S:}, with an exponential Lévy-model, meaning that

Sy = Spexp (rt+ Ly), t>0, (3)

with Sy € RT and r € R representing the constant annual interest rate. In this
way, the discounting process R = {R;}, reduces to the deterministic function

Ry =exp(—rt), t>0.

As already said at the beginning of this chapter, we want @ to be a martingale
measure for S, therefore we add two hypothesis:

i. there exists t > 0 such that E%[exp (L;)] < oo;
i, (1) =30%+7+ [z (e —1—zlp () v(dz) = 0.

With these assumptions, Example 1.6 ensures that {exp (L)}, is a martingale
with E? [exp (L;)] = 1 for every ¢t > 0. Taking into account the discounted spot

prices process S = {gt} , defined by
t

S, = RS, = Spexp (L), t>0,

we can state that it is a () martingale with constant expectation equal to Sp.
Thus, we have actually modeled the spot prices directly under a martingale
measure.

We are going to consider the driving Lévy process L to be a pure jump
process, so its generating triplet simplifies considering that 02 = 0. In particular,
due to assumption (ii.) we get the next relation:

N / (" — 1—alp () v (da). (38)

Let us suppose that in the market there are NV European call options with fixed
maturity 7', and denote by K; and C the strike price and observed price of the
j—th derivative for each j =1, ..., N, respectively. In our model it is convenient
to consider the quantities

kj =log(K;), j=1,..,N.

In this setting, S is the price process of the underlying asset. Since @ is a
martingale measure for S, we can use it to price options as follows:

CJ = exp (—rT) E? [(ST — exp (kj)ﬁ] . j=1,..,N.

Denoting by Qr, the pushforward distribution on R generated by Ly we have

CY = exp (—TT)/ (SoerTﬂ’ — ekj)+ Qry (dy), j=1,..,N.
R
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49 3.3. APPLICATION TO EUROPEAN CALL OPTIONS

Hence knowing the Lévy measure v, we can retrieve the whole generating triplet
and compute the option prices.

The very reasonable and intuitive idea behind the calibration is to choose v
such that C7 is "close" to C7 for any j =1, ..., N. For example, we can choose
as Lévy measure of the model the following:

al 2
U= argmyin ij ) — 7

Jj=1

: (3.9)

where the w;—s are factors which represent the relative weights of the contracts,
so they reflect the confidence in single data point. In this case, they can be
assessed from the bid—ask spread:

1

’lU] =

s, j=1,...,N.

j j
‘CBID - CASK

Although a solution to (3.9) was found, it could not be unique and the functional
Z;v:l w; |C’g - C’j|2 could present flat regions, i.e., it is not sensitive to varia-
tions in model parameters. Hence the problem expressed in (3.9) is ill posed.
We refer to [11], Chapter 13, for an empirical analysis of this situation.

For this reason we want to introduce a regularization term. Suppose that
a historical (or prior), pure jump, driving Lévy process with generating triplet
(0, v0,70) has been statistically estimated from the time series of the underlying
asset price. Let then L° = {L?}t be this prior process: it makes sense to require
QLO and QF, the distributions on the Skorokhod space (D, Fp;F) generated
by L° and L, respectively, to be equivalent on F; for every ¢t > 0. It appears
clear that the regularization term should penalize those models whose generated
probability measure on (D, Fy) is far —in some sense— from Q% This reasoning
leads us to use the relative entropy as a measure of the diversity from QLO. In
conclusion, since by Remark 3.1 the equality

dv dv dv
- W og g1 - ) g0
J:t> t/R (duo 8 g0 T duo> dv

holds, the problem to be solved becomes:

o
@
Fi

H <QL

N
_ . ; 12 dv dv dv 0
V:arggélg jgile |C’f,ij| Jroz/lR (dyolongOJrldyo> dv® 3,

0
,t>0}
Fi

and « is called regularization parameter: the higher « is, the more we trust the
initial distribution and the less importance we give to calibration. The existence
of a solution to (3.10) has been studied, among others, in [12] and [21] . For the
sake of simplicity we are going to relax the assumptions in (3.10), considering

the minimization in the set of the Lévy measures v ~ 1/°.

where

Q:={V:QL ~Q"

Fi
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3.3. APPLICATION TO EUROPEAN CALL OPTIONS 50

Numerical Approximation

In order to tackle the optimization problem (3.10), we start by fixing a
maturity 7" and the points z; € RT, for j = 1,..., N, with z; < 22 < ... < zn:
they represent the grid of the log—strike prices of the options available on the
market. We then estimate the parameters of the historical, driving Lévy process
LY = {L?}t, assumed to have a NIG distribution, from the time series of
the underlying asset with the generalized method of moments (see [15]). At
this point, we introduce a discretization grid consisting in the points ¥, for
h =1,..,Ng, with —co = yo < y1 < y2 < ... < yn,, which constitutes a
partition of the interval [—M, M| for some M > 0, and we approximate the
Lévy measure of L° with the discrete version

Ng
) =Y vy, (dy),
h=1

where d(q) is, as usual, the Dirac measure at a point @ and

1/2 = / A, h=1,..,N;—1; Z/JO\,d = / dv®.
(Yn—1,yn] (yNd,l,oo)

Now we take another measure with the same mass points as the previous one,

namely
Ng
dy) = > vnd(y,) (dy),
h=1

with v, € Rt for every h =1,..., Ng. We remark that the calibrated measure vy
is equivalent to v, but not to the prior . We interpret these measures vy as
the discretized Lévy measures of driving, pure jump Lévy processes L = {L,},.
Aiming to explicitly compute the discrete version of the entropy term in (3.10)

dVd dVd dl/d 0
log 1——= ) dyy 11
/ (d 0108 G0+ dud) (3-11)

we need to find the Radon—-Nikodym derivative dZ 4. So we fix a generic A €
d

B (R) and note that the next equalities trivially hold:

Ng Ng Ng v
A) = il (A) =D vlalun) =Y ok la(m).  (3.12)
h=1 h=1 h=1 h

On the other hand, define the function

,/7}5 ifyh—l <Y < Yn, h’:la"'aNd
h .
0, otherwise

fly) =

It results
Ny
/flAdyd_ZV—h/ 1a(y Z ((Yn—1,yn] N A)
h=1 V (yh 1 yh] h=1
Ny

Z VhlA Yn) (3.13)
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51 3.3. APPLICATION TO EUROPEAN CALL OPTIONS

using that v ((yn—1,yn] N A) = 214 (y). Comparing the last terms in (3.12)
and (3.13) we can state that d"d = f. Moving back to the integral (3.11) we get

dl/d 0 / dl/d dl/d dl/d 0
W g W i g0 Wy Wi g i)
(d dVS) Ya (—coyn,] dvg %8 g0 T dvg Ya

0
d
dl/d d dud> 0
log +1—-— ) dyy
/ 0,y1] /(yNdhyNd]} (d g d’/g dvg

)

—N—

h 0
log &40 _
Lg og 2+ Vh] Vg ((Yn—1,yn))

I
z EM5

[Vh (log vy, — log 1/2) + 1/2 — Vh] .
1

>
Il

Now we need to express also the quantity Zévzl w; |Ch - CI ‘2 as a function of
V1, ..., vN,. In order to do so, as suggested in [11], we follow the Carr and Madan
approach (see the paper [8], Section 3.2, for further details). This means that we
do not approximate directly the option prices C,, (k), since a swift application of
Lebesgue’s convergence theorem shows that C, tends to Sy as k — —oo, hence
it is not integrable in k. Instead, we take into account the so—called modified
time value zr, which is defined by

2 (k) = C, (k) — (So — )", keR.

We are going to assume that zp and its inverse Fourier transform (r are inte-
grable, so that by inversion (see, e.g., Theorem 9.11 in [26]) we get

zp (k) = \/%/Re_“wCT (u) du a.e. (3.14)

Fix k € R; we first analyze the term
_ + _
(So =€) " = (So — ") Lz ciog srry ()

= e_’“T/R (e85t T — %) 11, crog sotr7y () QL (dy) 5
considering that we similarly get the equality
Cy (k) = e_TT/R (ev o8t —eR) 10 <y prog so+rry (K) QL (dy)
we can express zp (k) as follows:
zr (k) = e_”T/R [(Soerﬂ'y — €") 1 a>k—tog So—rT} (¥)
— (Soe™ = ") 11 <10g 504rT} (k)} QL (dy).
Again, recalling the assumption (ii.), according to which

/ & Quy (dy) = 1,
R
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we finally obtain

zr (k) = e_TT/]R [(SOeTTer - ek)

(1{22k—10g So—rT} (y) - 1{z§10g So+rT} (k)) :|QLT (dy) , keR.

The idea is to get an estimation of the values zr (z;), j = 1,..., N, using the
Fourier transform and its inverse. Therefore we fix a point v € R and define the
inverse Fourier transform

_L eiukz
Gr ()= —= /R (k) dk.

Allowing ourselves to switch the order of integration we have

—rT

CT (u) _ eﬁ i |:/Reiuk (SoerT+y _ ek)

(L{z<ytog So+r7y () = Liz<iog so+rry (K)) dk] Qrr (dy)

e—rT

tuk rT+ k
. e’ (Spe™ TV —e dk} QL. (dy)
V2m (—00,0] |:-/(y+10g So+rT,log So+rT) ( ) .

e—rT |:/ .
+— et (Sper Ty — ek dk} Qr, (dy).
V2T (0,00) LY (log So+7T,y+log So+rT) ( ) B
(3.15)

We focus on the computation of the first addend of (3.15). A quick explicit
calculation of the inner integral (respect to the Lebesgue measure) of such term,
which we indicate by I, gives

erT+y+iu(log So+rT)

I (y) = So falin 1) [iu (1 — eV +1—¢™)]
erT+iu(log So+rT) . rTiu(log So+rT) ,
= Sy (¥ = 1) + Sp—f——
0 iu+ 1 (e )+ So PGS e

eiu log Soe(iu—i-l)rT )
eVt y € (—00,0].

iu (iu+ 1)

An identical procedure enables us to compute the inner integral I of the second
addend in (3.15), as well. In particular we arrive at

erT+iu(log So+rT) erTJriu(log So+rT)
Ly)=—-Sy— (1) -G~
2 (v) T A 7Y oS
eiulogSDe(iu+1)rT i
S gy € (0,00).
T T ) ¢ u € (0.00)

Hence it is possible to express the inverse Fourier transform as

B So eiu(logSngrT) 1
) = S [ e Qu ) - [ e Qu an)

1 .
+ — ey+1uy QLT (dy) :| .
mu Jr
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Thanks to assumption (i.) and (1.12) we conclude that

SO e'L'u(log So+7rT) [ TU (it 1)
u) = — et T\ 71}, u € R. 3.16
¢r (u) Vor du(iu+1) (3.16)
Recalling the definition of ¥ in (1.11), we substitute the discrete version v, for
the Lévy measure v associated to L. As a consequence of (3.8) we obtain

\Il(iqul)z/

R

= [ = vt +iu [ @ -evatan)

R

(e(iu+1)y —jueY —e¥ + zu) va (dy)

Ng Ng
= Z e’ (e — 1)y, Jriuz (1—e)v, ueR.
h=1 h=1

Plugging this term into (3.16) we eventually end up with the next approxima-
tion:

SO eiu(log So+rT)

Ng
~ T Yn (etuyn _ 1
Cr (u) Jor wwGutl) exp( hz::le (e )l/h
Na
+iul y  (1—e) 1/h> — 1] , ueR. (3.17)
h=1

Let us estimate the modified time value 27 at the points x;, for j = 1,..., V.
In order to compute the integral in (3.14), we decide to construct another grid,
this time uniform with mesh d > 0, which contains the points of the previous
one of the log—strike prices. Specifically, chosen N € N, we introduce

- 2 ~ ~
Fpom o = N,..,—1,0,1,...,N,
NA
where A := 27 is the size of the discretization interval while A = 4. The

d N
construction is carried out so that for every j =1,..., N and h =1, ..., N4 there

exists a np; € {—]\7 +1,..., N — 1} such that z; —y, = Enh].. Finally we define
the points of the discretization grid as

A -
Up = —5—&—1{:A, k=0,..,N.

We then compute

1 _ 1oAY _
21 (T) =~ —/ eI G (u) du ~ —— = g e Ty Cp (up,
( V21 J(-a/2,4/2) ) V2t N (= )
N-1
1 A a; ( 27n )N ~
= ——=e'2"" exp | —t—k | w up), n=0,..N—1,
TN kE=o p ~ kCr (k)

where wy, are coefficients chosen according to the trapezoidal rule as

_ L ifk=0,N-1
W = . ~ .
1, ifk=1,..,N—2

)
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Hence it is possible to get the values zp (Z,), for n = 0, ..., N — 1, with a fast
Fourier transform (FFT) once known (g (uy) for k = 0,..,N — 1. Due to
the symmetry of the grid, an analogous reasoning leads to retrieve zp (z,,) for
n=-N+ 1,...,—1, recalling to use an inverse discrete Fourier transform. In
conclusion, Problem (3.10) translates into the minimization in (R*)d of the next
objective functional:

2

N
F(vi,.,vn,) = ij 2z () + (So — ewj—rT)+ B Cj‘
j=1
Na

+ Z [Vh (log vy — log 1/2) + 1/2 — z/h] .
h=1
In order to speed up the optimization (we used the L-BFGS-B algorithm), we
compute the derivatives of F. The entropy term is easy to derive, hence we
focus on the other one. To facilitate the notation, denote by
S eiu(log So+rT)
C, = o — , u€eR
Vor du(iu+1)

and by g (v1, ..., vn,) the argument of the exponential in (3.17). Under suitable
integrability conditions, for every v € R and h =1, ..., Ng we get

ICr (u)
8Vh

(V1,0 UN,) = C’uTeg(”l"“’”Nd) [ev (e™¥r — 1) +iu (1 — )]

= j‘;ibleiu(log So+rT) (1 eyh) eg(lq ..... VNd)
T+
+ Te¥" (1 (u) (eiuyh 1) + TevrC, (eiuyh 1) -

From (3.14), by explicit calculation for every k € R and h =1, ..., Ny we obtain

0z (k) L0 ()
A (v1,..yVN,) = —%/]Re k(’“)il/h (V1 .y vny,) du
SO oYn / e—iuk iu(log So+rT) g(lll,...,l/Nd)
B e ¢ du
+ Teyh[zT (k—yn) —|—(SO — ek_TT_yh)Jr— zr (k) — (SO — ek_TT)Jr] .
(3.18)

As already done with 27, we can approximate the first addend in (3.18) when
k=2Z,,forn=0,..,N — 1, with a FFT:

ﬂeiu(rT-ﬁ-logSo)eg(vlwwl’l\’d) ~ é e_iukgnﬁ;kf (Uk)
w—+1 N
. k=0
N-1
A
= Zeitln Z exp (—z~/€> Wi f (uk) ,
N =0
where Nor u(log So+rT)
o etu(log o+
_ ) e e R.
flu)s= “griutr () + =g v
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Putting together all the terms we have laboriously gotten we can numerically
calculate the derivatives of the objective functional F, which are provided by

oOF

N
— (V1,0 vNy) :22 wj[ZT(mj)‘i_(SO — eIJ_TT)+— Cj]LZT (25)
=

6I/h

oo (v1,..,VUNy)

+ (1og vy, — log 1/2)

forany h =1, ..., Ny.

In our simulation we want to give the same importance to all option prices
available in the market, meaning that we decide not to mirror the customers’
preferences. This translates into assigning the same weight at each data point,
explicitly
1
N )
Finally the regularization parameter o must be picked. In order to do so, we
interpret it as a proxy of the market error. Therefore, in a first moment we
minimize the quadratic pricing error (3.9) without entropy term. Denoting by
€o the value of the functional at the found minimum, such value can be thought
to as a measure of the distance between the market and the selected model class.
It is then satisfactory to take

wj; = _]:1,,N

= €.

Besides, we remark that, using the calibration procedure, a single simulation
provides the whole option chain corresponding to the desired strike—prices at a
fixed maturity 7.

Empirical Results

We have empirically tested this method with the prices of call options on
Alphabet Inc. class C stock (ticker symbol: GOOG, no voting rights) expiring in
Jan, 2020: 11 months from the time of simulation. Figure 3.1 shows the results
of such implementation. We refer to Appendix A, Section A.2, for the used
code. The average of the absolute values of percentage difference is 1.7360%.

We also tried to calibrate our method to the prices of call options on Ama-
zon.com, Inc. stock (ticker symbol: AMZN): Figure 3.2 below displays the
outcomes. In this case, the mean of absolute values of percentage difference
settles down at 2.2827%.

Remark 3.2. We retrieved the real prices from the website https://www.
nasdaq.com, where American options are traded. We have instead simulated
the prices assuming that they were European. It is well known that an American
option should be worth slightly more than its European analogon, since it gives
the buyer more privilege. In our case, however, considering that Alphabet Inc.
and Amazon.com, Inc. do not pay dividends and that the time values of the
options were always positive, it makes sense to get an approximation of the
prices of such derivatives under an European model. In fact, if it is convenient
to sell an option rather than exercising the call before the maturity, why would
someone be willing to pay more for a right they are never going to use?
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Figure 3.1: GOOG call option, Jan 2020.
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Figure 3.2: AMZN call option, Jan 2020.
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Conclusion

This research focuses on two option pricing methods: one based on the
Esscher measure and one on the calibration to real-traded call option prices. Its
main purpose is to quantify their performances in a liquid market like NASDAQ.

The empirical results for the Esscher method suggest that it is particularly
reliable while dealing with options on stocks whose prices are in the order of
hundreds of dollars. From a computational point of view, it is faster then the
calibration method, especially when we need to simulate the prices of options
with different maturities and same strike.

On the other hand, the calibration method allows to generate the entire
option chain for a fixed maturity and it is more stable than the previous one, in
the sense that it generates results close to real data for a larger range of stock
prices.

Comparing the averages of absolute values of percentage difference between
real and simulated prices, the calibration procedure offers better outcomes than
Esscher’s. Nevertheless, the Esscher method only needs the historical time series
of the underlying asset price to be applied, so it is feasible also in markets with
few derivatives. This study shows that the Esscher measure is a good solution
to price call options in illiquid —or low liquid— financial markets.

o7
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Appendix A

Simulation Codes

In this appendix we just present the codes we wrote to run the simulations
of Chapters 2 and 3. We used the language R.

A.1 Esscher Measure Code

The succeeding code refers to the simulation of AAPL option prices.

library(yuima)
require (yuima)
setwd("/home/alessandrobondi/Downloads/R warmup")
AAPL= read.csv("AAPLHistorical.csv'", header = TRUE)
logdayprice <- AAPL$log.Prices
logdayprice=logdayprice[length(logdayprice):1]
datal <- setData(as.matrix(logdayprice))
##initial data
NIGparam <- list(al = 0.038, bl =0.0558, a0 = 2.1662e-06/0.0558, alpha =
1.7182171, beta = -0.3124525, delta=1.6336979, mu = 0.3021202, y01 =
0)
NIGmodel<- setCogarch(p = 1, q = 1,measure = list(df = "rNIG(z,alpha,beta
,delta,mu)"), measure.type = "code", XinExpr = TRUE)
##define the thinning algorithm
NHPP.sim <- function(lambda,t_max){
s<-0
t<-0
interarrival<-numeric()
lambda_star <- max(lambdal[l:t_max+1])
while (s<= t_max){
u <- runif(1)
s <- s - log(u)/lambda_star
if (s<=t_max){
if (runif (1) < lambdal[s+1]/lambda_star) {
t<-s
interarrival<- c(interarrival,t)

}
if (t<=t_max) {

65
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A.1. ESSCHER MEASURE CODE 66

return(interarrival)

}

else {
lungo=length(interarrival)
return(interarrival[1:1lungo-1])

}

NIGYuima <- setYuima(data = datal, model = NIGmodel)

resNIG<- gmm(yuima = NIGYuima, start = NIGparam, Est.Incr = "IncrPar")

fin=data.frame (resNIGQcoef)

r<-0.005/length(logdayprice)

epsilon=.01

##the vector "tempi" contains the maturities of the considered call
options

tempi=c(23,40,88,106,231)

alpha<- fin[4,1]

beta <- fin[5,1]

delta<-fin[6,1]

mu <- fin[7,1]

estparam.NIG=list(al=fin[2,1],b1=fin[1,1],a0=£fin[3,1])

n_iter<-100

x<-list ()

ord_def=1ist ()

Term <- (length(logdayprice)-1)

num <- length(logdayprice)

set.seed(123)

gamma_NIG=mu+(2*alpha*delta/pi)*integrate(function(x) {sinh(beta*x)x*
besselK (alpha*x,1l,expon.scaled = FALSE)},lower = O,upper=1)3$value

gamma_NIG_h=gamma_NIG-integrate(function(x) {x*delta*alpha/(pi*abs(x))*
exp(beta*x)*besselK (alpha*abs(x),1,expon.scaled = FALSE)},lower =
epsilon,upper=1)$value-integrate (function(x) {x*delta*alpha/(pi*abs(
x) ) *exp(beta*x)*besselK (alpha*abs (x),1,expon.scaled = FALSE)},lower
= -1,upper=-epsilon)$value

##start the iteration

for (j in 1:n_iter)

{

##simulate the COGARCH process with the estimated parameters

cog.NIG <- setCogarch(p = 1, q = 1, work = FALSE, measure = list(df="rNIG
(z,0.924838508244,-0.03978538525997,0.961693831661,0.117699889207) ")
, measure.type = "code", Cogarch.var = "G", V.var = "V", Latent.var
= "y")

samp.NIG <- setSampling(Terminal = Term, n = num)

sim.NIG <- simulate(cog.NIG, true.parameter = estparam.NIG, sampling =
samp.NIG,method = "euler")

sigma2 <- vector(mode="numeric", length=length(logdayprice))

##generate a path of the variance process

for (i in 1:length(logdayprice)) {

sigma2[i]<-sim.NIG@data®original.datal[i,2]

}

R=vector(mode="numeric", length=length(logdayprice))

for (t in 1:length(logdayprice)) {

R[t]=-r+mu*sqrt(sigma2[t])
}
theta <- vector(mode="numeric", length=length(logdayprice))



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

67 A.1. ESSCHER MEASURE CODE

##generate a path of the process theta
for (t in 1:length(logdayprice)) {
thetal[t]<-1/((2%(R[t]~2+sigma2[t]*delta~2))*sqrt(sigma2[t])*delta
)*(-delta~3#*sqrt(sigma2[t])~3-2*«delta~3*beta*sigma2[t]-delta*
sqrt(sigma2[t])*R[t]~2-2+delta*beta*R[t]~2-sqrt(-delta~4*
sigma2[t]~2*R[t]~2-2*delta~2*sigma2[t]*R[t]~4+4*R[t]~4*delta
~2*alpha~2-R[t] ~6+4*sigma2[t]*delta~4*R[t]~2*alpha~2))
}
##introduce the term for the variation of the small jumps
variationsmall jumps=vector (mode="numeric", length=length(logdayprice))
for (t in 1:length(logdayprice)) {
variationsmall jumps[t]<- integrate(function(x) {sigma2[t]#*x~2#
delta*alpha/(pi*abs(x))*exp((betatthetalt]*sqrt(sigma2[t]))*x
) #*besselK(alpha*abs(x),1,expon.scaled = FALSE)},lower = -
epsilon/sqrt(sigma2[t]) ,upper=-0.00001) $valuet+integrate(
function(x) {sigma2[t]*x~2*delta*alpha/(pi*abs(x))*exp((betat
thetal[t]*sqrt (sigma2[t]))*x) *besselK(alpha*abs(x),1,expon.
scaled = FALSE)},lower = 0.00001,upper=epsilon/sqrt(sigma2[t
1)) $value
}
require (sde)
bm=BM (x=0,t0=0,T=(length(logdayprice)-1) ,N=length(logdayprice)-1)
addendol=vector (mode="numeric", length=length(logdayprice))
for (t in 1:length(logdayprice)) {
addendol[t]= sqrt(variationsmalljumps[t])*(bm[t])
}
##simulate a trajectory of the "Poisson" component
##compute the intensity of the nonhomogeneous Poisson process
lambda=numeric ()
for (t in 1:length(logdayprice)) {
lambda[t]<-integrate(function(x) {delta*alpha/(pi*abs(x))*exp((
betatthetal[t]*sqrt(sigma2[t]))*x)*besselK (alpha*abs (x),1,
expon.scaled = FALSE)},lower = -Inf,upper=-epsilon*1/sqrt(
sigma2[t]))$valuetintegrate(function(x) {delta*alpha/(pi*abs(
x))*exp((beta+ttheta[t]*sqrt(sigma2[t]))*x) *besselK (alpha*abs(
x),1,expon.scaled = FALSE)},lower = 1/sqrt(sigma2[t])*epsilon
,upper=Inf)$value
}
##apply the thinning algorithm to get the jumps time
runl=NHPP.sim(lambda, (length(logdayprice)-1))
##compute the time-varying jumps sizes
jumps=numeric ()
for (t in 1:length(runl)) {
jumps<-c(jumps, (integrate (function(x) {sqrt(sigma2[runl[t]+1])*x*
delta*alpha/(pi*abs(x))*exp((betattheta[runl[t]+1]*sqrt(
sigma2[runl[t]+1])) *x)*besselK(alpha*abs(x),1,expon.scaled =
FALSE)},lower = -Inf,upper=-epsilon/sqrt(sigma2[runi[t]+11))$
valuetintegrate(function(x) {sqrt(sigma2[runi[t]+1])*x*delta*
alpha/ (pi*abs (x))*exp ((betatthetal[runl[t]+1]*sqrt (sigma2[runi
[t1+1]1))*x) *besselK (alpha*abs(x),1,expon.scaled = FALSE)},
lower =epsilon/sqrt(sigma2[runl[t]+1]) ,upper=Inf)$value))
}
##put together, preserving the order, the jump times with the analyzed
days
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unite<-c(0: (length(logdayprice)-1) ,runl)
united=unite[!duplicated(unite)]
ord=sort(united,decreasing = FALSE)
c=c(which(ord==tempi[1]) ,which(ord==tempi[2]) ,which(ord==tempi[3]) ,which(
ord==tempi[4]) ,which(ord==tempil[5]))
ord_def[[j]1]=c
##Build B
b_theta=vector (mode="numeric", length=length(theta))
for (t in 1:length(theta)) {
b_thetal[t]=sqrt(sigma2[t])*gamma_NIG_h-integrate (function(y) {
sqrt (sigma2[t]) *y*delta*alpha/(pi*abs (y))*exp(betaxy)*
besselK(alpha*abs(y),1,expon.scaled = FALSE)},lower=-epsilon,
upper=-0.00001) $value-integrate (function(y) {sqrt(sigma2[t])=*
y*delta*alpha/ (pi*abs(y))*exp(beta*y)*besselK (alpha*abs(y),1,
expon.scaled = FALSE)},lower=0.00001,upper=epsilon)$value +
integrate (function(y) {sqrt(sigma2[t])*y*exp(thetalt]*sqrt(
sigma2[t])*y) *delta*alpha/(pi*abs(y))*exp(beta*y)*besselK(
alpha*abs(y),1,expon.scaled = FALSE)},lower=0.00001,upper=
epsilon/sqrt(sigma2[t]))$valuetintegrate (function(y) {sqrt(
sigma2[t])*y*exp(thetal[t]l*sqrt (sigma2[t]) *y)*delta*alpha/(pi*
abs (y))*exp(beta*y)*besselK(alpha*abs(y),1,expon.scaled =
FALSE)}, lower=-epsilon/sqrt(sigma2[t]) ,upper=-0.00001) $value
}
##generate the risk-neutral path
B=cumsum(b_theta)
incr_brown=c(0,diff (addendol,1))
g=vector(mode="numeric", length=length(ord))
gl1]=0
for (i in 2:length(ord)) {
if (is.element(ord[i],0: (length(logdayprice)-1))) {
glil=gli-1]+incr_brown[ord[i]+1]
}
else {
glil=gli-1]+jumps [which(runl==ord[i])]
}
}
for (i in 2:length(ord)) {
glil=glil+Blord[i]+1]
}
x[[j1]1<-g
}
##simulate the call option prices
strike=165
predicted_prices=list()
for (i in 1:n_iter) {
c=numeric ()
for (t in 1:5) {
c=c(c,170.5%exp(x[[1]] [ord_def [[i1][t]1]1))
}
predicted_prices[[ill=c
}
TTM. call=list ()
for (i in 1:n_iter) {
c=numeric ()
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for (t in 1:5) {
c=c(c,exp(-r*tempi[t])*pmax (0,predicted_prices[[i]][t]-
strike))
}
TTM.call[[il]l=c
}
aux=1list ()
for (t in 1:5) {
c=numeric ()
for (i in 1:n_iter) {
c=c(c,TTM.call[[i]1][t])
}
aux[[t]]=c
}
predicted_pricesOPTIONS=numeric ()
for (¢ in 1:5) {
predicted_pricesOPTIONS[t]=mean(aux[[t]1])
}
predicted_pricesOPTIONS
€=c(9.20,11.00,14.40,15.70,21.20)
mean ( (abs (predicted_prices0PTIONS-C))/C)

A.2 Calibration Code

The following code refers to the simulation of GOOG option prices.

## construction of the objective functional to be minimized
d=0.001
A=2%pi/d
N_tilde=7451
N=6
Strikes=numeric (N)
for (j in 1:N) {
Strikes[j1=1080+j*10
}
N_discretization_measure=8
r=0.008
T=11/12
C=c(120.45,116.6,112.5,112.6,106.68,101.5)
W=c(1,1,1,1,1,1)
W=1/N*W
S$_0=1113.8
Delta<-A/N_tilde
## build the points of the bigger grid x
x=vector (mode="numeric",length = N_tilde+1)
for (n in 1:(N_tilde+1)) {
x[n]=d*(n-1)
}
## build the discretization points of the Levy Measure
dis=vector (mode="numeric")
dis[1]=0.01
for (n in 2:(N_discretization_measure/2)) {
dis[n]=x[min(which(x>0.03+dis[n-1]))]
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}
dis=sort(c(-dis,dis))
dis
## define the discretization grid of points u_k
u=vector (mode="numeric",length = N_tilde+1)
for (k in 1:(N_tilde+1)) {

ulk]=-4/2+(k-1)*Delta
}
##build the weights w according to the trapezoidal rule
w_tilde=vector (mode="numeric",length = N_tilde)
w_tilde[1]=1/2
w_tilde[N_tilde]=1/2
for (k in 2:(N_tilde-1)) {

w_tilde[k]=1
}
## compute Zeta(u_k) for k=0,...,N_tilde.
## specify the smaller grid of log-strikes
X_restricted= vector(mode="numeric”,length = N)
for (j in 1:N) {

c=numeric(N_tilde+1)

for (n in 1:(N_tilde+1)) {

c[n]=abs(x[n]-log(Strikes) [j])

}

x_restricted[j]l=x[which(c==min(c))]
}
exp(x_restricted)
i=sqrt(-1+0i)
## set the functions Zeta & zeta
Zeta=list ()
for (k in 1:N_tilde) {

Zetal[[k]] <- function(nu,k) {

1/ (sqrt (2*pi) ) *S_O*exp (i*ul[k]*r*T+i*ulk]*1log(S_0))/ (i*ulk]
*(1+i*ulk]) ) * (exp (T* (i*u[k]*sum((1-exp(dis))*nu)+sum(
exp(dis) *(exp(i*ulk]*dis)-1)*nu)))-1)

}
z_aux=list ()
z_aux<-function(nu) {
c=vector ()
for (k in 1:N_tilde) {
c=c(c,w_tilde[k]*Zetal[[k]] (nu,k))

}
g_pos<-function(nu) {fft(z_aux(nu))}
z=list ()
for (n in 1:N_tilde) {
z[[n]]<-function(nu,n){
Re(1/(sqrt (2+pi))*A/N_tilde*exp(i*A/2*x[n])*g_pos(nu) [n])
}
}
g_neg<-function(nu) {fft(z_aux(nu),inverse=TRUE)}
z_neg=list ()
for (n in 1:N_tilde ) {
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z_neg[[n]]<-function(nu,n){
Re(1/(sqrt(2+pi))*A/N_tilde*exp(-i*A/2*x[n])*g_neg(nu) [n])
}
}
## evaluation of z in the grid of log(strikes)
z_restricted=1list ()
for (j in 1:N) {
z_restricted[[jl]1<-function(nu,j){
z[[which(x==x_restricted[j])]] (nu,which(x==x_restricted[]
D))

}

##Entropy term

alpha=1.39824945059989

Beta=-0.265735585367672

delta=1.46729435279966

mu=0.295853383567856

##determine the discretized values of the prior nuO[j]

nuO=numeric (length=N_discretization_measure)

nuO[1]=integrate (function(x){delta*alpha/ (pi*abs(x))*exp(Betax)*xbesselK(
alpha*abs(x),1,expon.scaled = FALSE)},lower = -Inf,upper=dis[1])$

value
for (h in 2:(N_discretization_measure-1)) {
if (h==5) {
nuO[h]=integrate (function(x) {delta*alpha/(pi*abs(x))*exp(
Beta*x) *besselK(alpha*abs(x),1,expon.scaled = FALSE)},
lower = dis[h-1],upper=-.005)$valuetintegrate(function
(x) {deltaxalpha/(pi*abs(x))*exp(Beta*x)*besselK(alpha
*abs (x),1,expon.scaled = FALSE)},lower = 0.005,upper=
dis[h]) $value
}
else {
nu0 [h]l=integrate (function(x) {delta*alpha/(pi*abs(x))*exp(
Beta*x)*besselK(alpha*abs(x),1,expon.scaled = FALSE)},
lower = dis[h-1],upper=dis[h])$value
}

}
nuO[N_discretization_measure]l=integrate(function(x){delta*alpha/(pi*abs(x
)) *exp(Beta*x)*besselK (alpha*abs(x) ,1,expon.scaled = FALSE)},lower =
dis[N_discretization_measure-1],upper=Inf)$value
nu0
##determine the entropy term (expressed by a discretized integral)
entropy_term<-function(nu) {
c=vector ()
for (h in 1:N_discretization_measure){
c=c(c,nulh]*(log(nulh] /nul [h]))+nul[h]-nulh]l)
}
sum(c)
}
## this is the searched objective functional
addendol_objective=list ()
addendol_objective<-function(nu) {
c=vector ()
for (j in 1:N) {



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

A.2. CALIBRATION CODE 72

c=c(c,W[jl*(abs(z_restricted[[j]] (nu, j)+pmax(0,S_0-exp(x_
restricted[j]1-r*T))-C[j1))~2)
}
sum(c)
}

objective_functional<-function(nu) {addendol_objective(nu)}

##computation of the gradient for gradient descent method
##entropy term
grad_entropy_term<-function(nu) {
c=vector ()
for (h in 1:N_discretization_measure){
c=c(c,log(nulhl/nu0[h]l))
}
c
}
## focus on the difficult gradient
addendol_aux=list ()
addendol_aux<-function(nu,h) {
c=vector ()
for (j in 1:N) {
if (x_restricted[jl>=dis[h]) {
if (dis[h]1>0) {
c=c(c,W[jl*(z_restricted[[j]] (nu, j)+max(0,S_O-exp(x
_restricted[j]-r*T))-C[j])*(z[[which(x==x_
restricted[j])-which(x==dis[h])+1]] (nu,which(x
==x_restricted[j])-which(x==dis[h])+1)-z_
restricted[[j]1] (nu,j)))
}
else {
c=c(c,W[jl*(z_restricted[[j]] (nu, j)+max(0,S_O-exp(x
_restricted[j]-r*T))-C[j1)*(z[[which(x==x_
restricted[j])+which(x==abs(dis[h]))-1]](nu,
which(z==x_restricted[j])+which(x==abs{dis[h]))
-1)-z_restricted[[j1] (nu,j)))

}
}
else {
c=c(c,W[jl*(z_restricted[[j]] (nu, j)+max(0,S_O-exp(x
_restricted[j]-r*T))-C[j])*(z_negl[which(x==dis
[h])-which(x==x_restricted[j]1)+1]1] (nu,which(x==
dis[h])-which(x==x_restricted[j])+1)-z_
restricted[[j]1] (nu,j)))
}
}
sum(c)

}

addendol=1ist ()

for (h in 1:N_discretization_measure) {
addendol[[h]]<-function(nu,h) {

2*T+exp(dis[h]) *addendol_aux(nu,h)

}

}

addendo2_aux=1list ()
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addendo2_aux<-function(nu,h) {
c=vector()
for (j in 1:N) {
c=c(c,W[jl*(z_restricted[[j]] (nu, j)+max(0,S_O-exp(x_
restricted[jl-r*T))-C[j1)*(max(0,S_0O-exp(x_restricted[
j1-r*T-dis[h]))-max(0,S_0-exp(x_restricted[jI1-r*T))))
}
sum(c)
}
addendo2=1ist ()
for (h in 1:N_discretization_measure) {
addendo2[[h]]<-function(nu,h) {
2*Txexp(dis [h])*addendo2_aux(nu,h)
}
}
f_notes=list()
for (k in 1:N_tilde) {
f_notes[[k]] <- function(nu,k) {
sqrt (2xpi) /S_O*i*ulk]*Zetal[[k]] (nu,k)+exp (i*ul[k]*(log(S_0)
+r*T)) / (i*ul[k]+1)
}
}
aux<-function(nu) {
c=vector()
for (k in 1:N_tilde) {
c=c(c,w_tilde[k]*f_notes[[k]] (nu,k))
}
c
}
g_again<-function(nu) {fft(aux(nu))}
addendo3_aux=list ()
addendo3_aux<-function(nu) {
c=vector()
for (j in 1:N) {
c=c(c,W[jl*(z_restricted[[j1] (nu, j)+max(0,S_0-exp(x_
restricted[j]-r*T))-C[j])*exp(i*x_restricted[j]*A/2)*g
_again(nu) [which(x==x_restricted[j])])
}
sum(Re (c))
}
addendo3=1ist ()
for (h in 1:N_discretization_measure) {
addendo3[[h]]<-function(nu,h) {
S_0*T/pi*A/N_tilde* (1-exp(dis[h]))*addendo3_aux (nu)
}
}
## this is the gross gradient
grad<-function(nu) {
c=vector()
for (h in 1:N_discretization_measure) {
c=c(c,addendol1[[h]] (nu,h)+addendo2[[h]] (nu,h)+
addendo3[[h]] (nu,h))
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}
tizia_revenge=optim(nu0, objective_functional, grad, method = "L-BFGS-B",
lower=1e-17)
tizia_revenge
alpha_regularization=tizia_revenge$value
objective_functionall<-function(nu) {
addendol_objective(nu)+alpha_regularization*entropy_term(nu)
}
gradl<-function(nu) {
c=vector ()
for (h in 1:N_discretization_measure) {
c=c(c,addendol1[[h]] (nu,h)+addendo2[[h]] (nu,h)+addendo3[[h
]1(nu,h)+alpha_regularization*grad_entropy_term(nu) [h

»

}
tizial_revenge=optim(nu0, objective_functionall, gradl, method = "L-BFGS-
B",lower=1e-17)
tizial_revenge\label{key}
predicted_optionprices=numeric (N)
for (j in 1:N) {
predicted_optionprices[jl=z_restricted[[j]] (tizial_revenge$par, j)
+pmax (0,5_0-exp(x_restricted[jl-r*T))
}
predicted_optionprices
mean ((abs (predicted_optionprices-C))/C)
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Appendix B

Nonparametric Estimation Of
Risk—Neutral Densities

In this appendix we are going to present an option pricing method which
is nonparametric. The remarkable advantage in this approach is that we can
reduce the misspecification risk. In other terms, this model dispenses with the
constraints given by the assumptions on the underlying asset price dynamics or
the statistical family of distributions that the risk—neutral density is assumed
to belong to. This will turn into the absence of dynamics for the price process
S. Of course, nonparametric estimation techniques require larger sample sizes
for the same accuracy as parametric estimation procedures, therefore the in-
creasing availability of large data sets (e.g., intraday traded option prices) made
them doable and feasible. In particular, we underscore the key passages of the
paper [14]. We instead refer to [9, 10] for an adaptation of the same model to
commodity futures markets.

Let us introduce a generic security whose price process is described by the
R*—valued stochastic process S = {S;}, defined on a reference probability space
(Q, F, P). Besides, we assume that the market is dynamically complete and that
it admits an equivalent martingale measure @ for S. This means that the process

5= {Et}t, defined by

§t = Jor(s) dSSt, t>0,

with » = r(t), ¢t > 0, which is a deterministic function representing the risk—
free interest rate, is a (Q—local martingale. To ease the notation, we set r,_; ==
ftu 7 (s) ds. Under these assumptions, if we consider an European call option
on S with maturity T and strike K, then its price at time ¢ > 0 is determined
by the risk—neutral pricing formula:

C (K.T) = e "7 /( ) (Sr— K)" q(SrIT.rp, 050, Si) dSr. (B.1)
0,00

In (B.1), the quantity 07_, represents the dividend yield of the asset in the
period (¢,T) and g (S7|T,r7_,, 07_,,S¢) is the conditional risk-neutral density.
Implicitly we are assuming that these state variables contain all the needed
information to estimate the option prices and ¢, while other market factors,

75
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such as the volatility, are considered to be negligible. Introducing the time to

maturity 7 := T — t, then (B.1) reduces to

Cy (K,T) :e_”/ (ST —K)+q(ST|T,’I"-,—,(ST7St) dST.
(0,00)

In order to keep the notation simple, we just write ¢ (St) instead of ¢ (St|-). If

we now assume that all the variables other than K are fixed, then the price of

an European call option expiring in 7 units of time can be expressed under the

historical probability density p in the following way:

— e T gt 4 (St)
Ct (K) = /(O’oo) (ST K) p (ST)p(ST) dST
— e /( CS K m (Sz)p (Sr) dSt, (B.2)
where m (-) is defined by
q (ST) =m (ST)p (ST) N ST S R+ (B3)

and is called pricing kernel, or stochastic discount factor. In financial mathemat-
ics this quantity is particularly important, since it summarizes the relationship
between the physical measure p and the risk—neutral density (RND) ¢, hence
information on the asset price.

B.1 Estimation Of RND Via Empirical Pricing
Kernel

From an economic point of view, the pricing kernel m describes the risk
preferences of an agent in an exchange economy and in a lot of applications it is
the object of interest. Our goal is to estimate m directly, i.e., from observable
option prices, as well as to evaluate p from historical data. In this way, we would
be enabled to asses an appraisal of ¢ using (B.3). As already happened for the
RND, we cannot incorporate all the factors driving the form of the pricing
kernel, so we consider its projection into the set of available payoff functions
and denote it as m*. In this way, m* is a function of only Sr. We have to
require two technical assumptions:

i. the applications m and m* need to be close in some sense. We therefore
fix e > 0 sufficiently small and assume that

m — m*|? = / Im (z) —m* (2)] d < e

ii. there exists a sequence (cy), C R such that the projection m* has the
series expansion

m* (Sr) =Y g (Sr), SreR, (B.4)
1=

where {g;}, is a fixed collection of basis functions. For example, paper [14]
adopts the Laguerre polynomials to conduct empirical analysis.
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Figure B.1: First five terms of Laguerre polynomial sequence.

Remark B.1. The Laguerre polynomials are a polynomial sequence defined by
recurrence. In particular, putting the first two terms

go(2):=1, gqi(z)=1-2
for z € R, then

20+1— —lg—
91+1($)5=( * a:)lg:_(ai) g 1(x)7 reR 1=2,3,...

Hence, for example, we can easily get:

1
gg(x):§(3:2—4x—|—2);
g3 (x):é(f:c3+9x2718x+6);
g4(x):i( 4 —162® + 722° — 96z + 24) .

24

According to [1], formula 22.6.15, the functions g; are solutions to the Laguerre’s
differential equation

2y’ +(1—2)y +ly=0, €N
and they can be directly computed by (formula 13.60 in [2])

l

g(x) =Y <Il€> (kl!)kxk, T €R,

k=0

which shows that g, (0) = () =1 for any I € N. Considering the inner product
<+ - > Rfz] x R[z] — R defined by

<f,g>:=/0 f@)g(@)erdr, figeRld,
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then we can use the Rodrigues’s formula ([1], 22.11.6)

e d,
gl(m):ﬂw(ue ) L zelR

to conclude that the Laguerre’s polynomials constitute an orthonormal system.

In practice, very intuitively, we can only expand m™* up to a finite number
L. So, having fixed such L, if we were able to estimate the coefficients «;
(for I =1, ..., L) directly from the market, for example using the least-squares
procedure, then we would obtain the approximation

L
m* (St) =Y &g (Sr), SreR*.
=1

By the assumption (i.), such estimate would provide us with an approximation
of m, as well. It is obvious that the choice of L, which is the point at which we
truncate the series in (B.4), has deep aftermath in the quality of the estimation:
the larger L, the better the fit, but the higher the computational cost and less
robust the result. However, the pricing kernel is only indirectly determined by
the price of an European call option through (B.2). Thus, the problem is now
to find a feasible estimator of the vector a == (v, ..., orr)" .

Let us suppose that there are N options in the market at time ¢, with
maturity 7T;, strike K; and price C}, for i = 1,..., N. Denote the vector of prices
by

C = (C},..,cM)"

and define, for every [ = 1, ..., L, the quantities
it = e / (St — Ki)* 9 (S0) p(Sp.) dSp, i=1,..., N.
(0,00)

Now by (B.2) we should obtain

L
Ci=e'" / (St, — Ki)* (Z o (STi)> p(St,) dSr, + €
(0,00) I—1

for some ¢; > 0 small enough. Then, for p known, the vector & = (a7, ..., o’ﬁ;)T
could be obtained by a least—squares technique:

L
Ci = a
=1

However even in this case p is not known and can only be estimated. In order
to do so, we replace it by a kernel density estimator p, arriving at

N 2

Q = arg min E
«
i=1

(B.5)

i = e /( : (St, — Ki)" 91 (S1,) P (ST,) dSr,, i=1,...,N,
0,00
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where [ = 1, ..., L. Following this method we end up with an estimator a of «
which is a feasible version of (B.5), namely

&= (@T@)‘l WTe,

1/:111 7%12 e '(/:)lL
~ L ~ a1 a2 ... tar
where ¥ is the V x L matrix given by ¥ := ] . ) ]
ZZJNl 1/A)N2 e Z/AJNL
At this point, we retrace our steps getting an estimate of the pricing kernel

provided by
m(s)=g(s)a(s), s=0,

where g = (g1,...,91). In conclusion, the risk-neutral density is estimated
by (B.3) as
q(s)=m(s)p(s), s=0.



