
Container Scheduling on
Heterogeneous Clusters using

Machine Learning-based
Workload Characterization

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Philipp Alexander Raith, BSc
Matrikelnummer 01425076

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Ing. Dipl.-Ing. Thomas Rausch, BSc

Wien, 15. Februar 2021
Philipp Alexander Raith Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Container Scheduling on
Heterogeneous Clusters using

Machine Learning-based
Workload Characterization

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Philipp Alexander Raith, BSc
Registration Number 01425076

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Schahram Dustdar
Assistance: Ing. Dipl.-Ing. Thomas Rausch, BSc

Vienna, 15th February, 2021
Philipp Alexander Raith Schahram Dustdar

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Philipp Alexander Raith, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. Februar 2021
Philipp Alexander Raith

v

Danksagung

An dieser Stelle möchte ich mich herzlich bei meinen Betreuern Schahram Dustdar
und Mitbetreuer Thomas Rausch bedanken. Vor allem Thomas Rausch möchte ich
für die wichtigen Diskussionen und Anregungen danken. Aufgrund ihrer tatkräftigen
Unterstützung war ich imstande diese Arbeit zu verfassen.

Dank gilt auch meiner Familie und Freunden, die in schwierigen Zeiten immer zur Stelle
waren und aufgrund meiner ständigen Erzählungen und ihr aufmerksames Zuhören
sicherlich genauso viel gelernt haben wie ich.

Zu guter Letzt möchte ich bei netidee bedanken, die diese Arbeit mit einem Stipendium
gefördert haben.

vii

Kurzfassung

Edge Intelligence ist ein neues Paradigma, welches Nutzern ermöglicht KI-Applikationen
zu verwenden, die eine sehr geringe Latenz benötigen. Edge Computing ermöglicht solche
Szenarien. Rechenressourcen werden in der Nähe von Nutzern positioniert, um die nötige
Latenz zu garantieren. Diese heterogenen Cluster bestehen aus verschiedenen Geräten,
die unterschiedliche Fähigkeiten haben. Zu diesen Geräten gehören: CPU/GPU-basierte
Geräte bis hin zu anwendungsspezifischen Beschleunigern. Cloud Rechenzentren sind im
Vergleich dazu relativ homogen. Diese Heterogenität stellt ein Problem für Anwendungs-
entwickler da: sie müssen sich für Geräte entscheiden. Serverless Computing kann eine
Lösung für dieses Problem darstellen. Dieses Paradigma versteckt die Infrastruktur und
Anwendungsentwickler können Funktionen hochladen. Diese werden anschließend vom
System automatisch auf Geräten gestartet. Diese beiden Paradgima werden zu Serverless
Edge Computing verknüpft. Das Problem ist: Serverless Plattformen verwenden Schedu-
ler, die ursprünglich für homogene Cluster entwickelt wurden. Daher stellen heterogene
Cluster eine Herausforderung für diese Scheduler dar.

In dieser Arbeit, präsentieren wir eine Lösung, die mit Hilfe von Anforderungen, von
Applikationen, angemessene Geräte findet. Dieser Lösungsversuch wird mit Hilfe von
KI-basierter Applikationen-Charakterisierung handhabbar gemacht. Wir verwenden exis-
tierende Serverless Plattformen: Kubernetes und OpenFaaS. OpenFaaS ist eine Function-
as-a-Service Plattform und verwendet intern Kubernetes, um Anwendung auf Geräten
zu platzieren. Der Scheduler von Kubernetes verwendet simple Heuristiken, um Geräte
für Anwendungen zu finden. Wir machen den Scheduler aufmerksam auf Applikatio-
nen und und schafen das durch drei Erweiterungen. Diese Erweiterungen fokussieren
sich auf folgende Punkte: (1) Performance, (2) Ressourcen Staus und (3) das Finden
angemessener Geräte für Applikationen. Dies ermöglichen wir durch: (1) umfangreiche
Applikationstests auf Geräten bei denen wir Performance und Ressourcenverbrauch
messen, (2) eine anschließende Applikations-Charakterisierung und (3) durch Lösen des
Problems, Anforderungen für Applikationen zu ermitteln.

Wir evaluieren unsere Arbeit mit Hilfe von Simulationen und drei unterschiedlichen
Szenarien. Unsere Anwendungen fokussieren sich auf KI-Anwendungen. Unsere Resultate
zeigen, dass wir die Ausführungszeit in Edge Computing Szenarien im Durchschnitt um
33% bis 68% senken. Weiters, wir verringern die Verschlechterung von Ausführungszeit,
aufgrund von Ressourcen Staus, um 25% bis 57%.

ix

Abstract

Edge Intelligence is a paradigm that promises to bring highly-responsive AI applications
to the end users. Edge computing is the main enabler paradigm for this scenario, where
computational resources are pushed from the cloud to the edge of the network. These
heterogeneous clusters consist of devices that offer different capabilities, which range
from general purpose CPUs, to GPUs, to application specific hardware accelerators.
Cloud systems are comparatively homogeneous in terms of computing infrastructure.
This heterogeneity poses a problem for users, which have to decide the hardware for
their applications. To mitigate this issue, serverless computing may be a solution to
this problem. Serverless computing helps abstract the underlying infrastructure from
users away—allowing users to simply upload functions and offers the convenience of
automatic scaling and pay-per-use cost model. Research proposes the idea of merging
both paradigms, resulting in serverless edge computing. The problem is, that current
serverless computing platforms use schedulers that were developed for homogeneous
clusters. Therefore, heterogeneous clusters pose a challenge for serverless container
schedulers to find optimal placements for containers.

In this thesis, we propose a solution that matches application requirements with appro-
priate node capabilities made tractable with the help of machine-learning based workload
characterization. Our approach builds on existing serverless platforms such as Kubernetes
and OpenFaaS. OpenFaaS is a Function-as-a-Service platform that uses Kubernetes as
its deployment platform. The Kubernetes scheduler uses simple heuristics to schedule
containers to cluster nodes. We extend the scheduler to make it workload-aware by adding
three scheduling constraints that focus on: (1) performance, (2) preventing resource
contention and (3) matching applications with appropriate nodes. We enable these
constraints by (1) extensive profiling, (2) subsequent workload characterization and (3)
solving the problem of matching applications with appropriate nodes.

We evaluate our approach by running simulations with three different scenarios and
focus on AI-based applications. The results show that in edge computing scenarios the
Function Execution Time (a key performance indicator) can be reduced by 33% to 68%.
Moreover, performance degradation, caused by resource contention, can be reduced by
45% to 57%.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Questions . 3
1.4 Solution Approach . 3
1.5 Structure . 4

2 Background 5
2.1 Edge Intelligence . 5
2.2 Serverless Edge Computing . 8
2.3 Serverless Function Scheduling . 14

3 Related Work 17
3.1 Serverless Edge Computing . 17
3.2 Workload Characterization . 18
3.3 Performance Modeling . 19
3.4 Scheduling . 20

4 Approach 23
4.1 Overview . 23
4.2 Modeling heterogeneous clusters . 25
4.3 ML-based workload characterization 29
4.4 Container scheduling . 35

5 Evaluation methodology 43
5.1 Overview . 43
5.2 Scenario . 44
5.3 Experiment Setup . 46

xiii

6 Results 53
6.1 Baseline Profiling . 53
6.2 Workload Characterization . 55
6.3 Performance degradation model . 55
6.4 Workload Clustering . 58
6.5 Capability Matching Problem Optimization 59
6.6 Simulations . 64

7 Discussion 73
7.1 Baseline Profiling & Workload Characterization 73
7.2 Performance Degradation . 74
7.3 Workload Clustering . 75
7.4 Capability Matching Optimization . 76
7.5 Simulations . 78

8 Conclusion 83
8.1 Research Questions . 84
8.2 Future work . 87

A Baseline Performance 89

B Workload Characterization 93

C Performance Degradation Experiments 97

List of Figures 99

List of Tables 101

List of Algorithms 103

Bibliography 105

CHAPTER 1
Introduction

1.1 Motivation
Container orchestration services help Cloud Service Providers manage container deploy-
ments. Containers bundle applications as portable images, enabling Platform-as-a-Service
(PaaS) providers to remove the burden of managing hardware from users and let them
upload images for deployment. This service offers automatic scheduling, autoscaling
and self-healing capabilities [8]. Various domains, such as Big Data, scientific or edge
computing have adopted this deployment strategy [8]. While data-centers were designed
with homogeneity in mind, current application trends show a tendency to favor hardware
accelerators in various forms [7, 25, 45]. Domains like Artificial Intelligence provide
support for acceleration, speeding up training and inference times[2]. Therefore, large
cloud centers are adopting and build heterogeneous clusters [45].

Besides traditional cloud-centric PaaS offerings, new deployment strategies and paradigms
are emerging. Serverless computing abstracts the underlying hardware even further away,
making the code for a function the unit of deployment. In this thesis we use the definition
for Function-as-a-Service (FaaS) and serverless computing described by Jonas et al.[33]:
cloud offerings that let the user upload application code, require no administration, scale
automatically and bill per usage are serverless computing.

The edge computing paradigm shifts computation resources in near proximity to end-
users, fulfilling latency requirements for real-time applications, like Virtual or Augmented
Reality. Besides user-facing apps, the growing bandwidth needs posed by the Internet
of Things can be reduced to a considerably low amount when utilizing edge devices to
preprocess raw data [61].

Serverless computing emerges as promising model for managing and deploying Edge
applications [32]. Especially Edge AI, that consists of a highly dynamic environment with
focus on AI, is of interest for us and builds the foundation for our evaluation scenarios

1

1. Introduction

[55, 71]. Use-cases comprise different environments, such as smart city [53], cognitive
assistance [53, 67] and video analytics [2]. Though it should be noted, that our work is
not restricted in terms of applicability and can be used in any FaaS scenario.

Container orchestration platforms, like Google’s Kubernetes1, Apache Mesos2 or Docker
Swarm3 are used to manage clusters of nodes and provide the functionality necessary to
address issues mentioned before, automatic scaling and placement[5].

While data centers become more heterogeneous [7] and even instances with same specifi-
cations may run on different hardware [37], heterogeneity in edge computing scenarios is
much higher and current container orchestration services have been shown to produce
poor function placements in these environments [69].

We conducted experiments that show a substantial increase in execution time between
common edge and cloud devices. Our focus lies on AI applications, such as Resnet50 [26]
(object classification) and DeepSpeech [23] (speech-to-text).

1.2 Problem Statement
Current container orchestration platforms are not able to autonomously match application
requirements and node capabilities when placing services. Users can select CPU or RAM
thresholds to prevent resource contentions but performance degradation in multi-tenant
environments, where multiple applications run on the same host, are still possible[37].
Developers can tune the Kubernetes scheduling by labeling applications and nodes to
influence placements. Labels are used to describe deployed services and hosts, which
Kubernetes uses to rate possible hosts. There remain two caveats: first, users and
providers have to know which labels to use, which requires knowledge of application
requirements and node capabilities. Second, labeling has to be done manually and is not
feasible in scenarios of hundred containers.

We propose a solution that solves the problem of matching workloads to their appropriate
computing resources in a dynamic and scalable fashion. Further, we tackle resource
contention, decrease execution time and focus our work on edge scenarios using serverless
computing platforms for deployment.

To that end, we need to solve two specific problems. First, a systematic approach to
describe clusters is necessary. The descriptions need to be flexible, because in hetero-
geneous clusters new types of devices with new capabilities may appear. Second, to
prevent resource contention and perform capability matching it is necessary to introduce
a workload characterization, which contains multiple resources and should be scalable
regarding different types of architectures and hardware. This step builds the foundation
for improving the existing scheduler of Kubernetes by making it aware of workloads and
node capabilities.

1https://kubernetes.io/
2http://mesos.apache.org/
3https://docs.docker.com/engine/swarm/

2

https://kubernetes.io/
http://mesos.apache.org/
https://docs.docker.com/engine/swarm/

1.3. Research Questions

1.3 Research Questions
• RQ. 1: What are appropriate methods for workload characterization based on

black-box system metrics in serverless edge computing systems?
Edge computing is characterized by an unprecedented level of computing infrastruc-
ture heterogeneity. This heterogeneity leads to a much higher variance in resource
consumption and performance, compared to cloud computing, where data center
hardware is relatively homogeneous. The differences make it hard to reason about
the impact of applications on resource consumption, and potential performance
degradation. Platform providers generally have no way of analyzing user code
upfront, and cannot rely on users to instrument their code. For effective workload
characterization, we therefore require a method that works with black-box system
metrics the platform provider has access to.

• RQ. 2: How can we use workload characterization in scheduling of serverless edge
functions?
A main concern of serverless computing platform providers is the placement of
functions on computing infrastructure in a way that balances resource usage and
application performance. Many different factors can and should be considered
during the scheduling process. Providers may focus on lowering power consumption
or guaranteeing a certain level of performance. The environment of edge computing
makes scheduling even more challenging due to the high level of heterogeneity. By
obtaining information about resource requirements of applications on a per node
basis, we can aid the scheduler by implementing strategies to make it workload-
aware.

• RQ. 3: How can a workload-aware scheduler improve the quality of function
placement in serverless edge computing systems?
Heterogeneous clusters offer different kinds of specialized hardware, capable of
performing certain tasks very efficiently. Most devices at the edge are resource-
constrained and therefore can experience high performance degradation in multi-
tenancy situations. We add awareness regarding performance, resource contention
and capabilities to the scheduler. Enabling transparent deployment through server-
less platforms and preventing random placements.

1.4 Solution Approach
The aim of this work is to solve the problem of workload-aware scheduling. In other
words, to match application requirements and node capabilities, such that we can reduce
the function execution time (FET) and prevent performance degradation by making the
scheduler workload-aware. Our approach is based on workload characterization, which we
achieve through profiling real-world edge computing infrastructure and applying machine
learning. We use machine learning to cluster similar applications based on their resource

3

1. Introduction

usage. We define an optimization problem with the objective of creating requirements
for application clusters, which describe preferred node capabilities. By using clustering
we guarantee generalization regarding a growing number of new functions.

The goal of our work is to provide solutions for workload characterization, the subsequent
clustering, an optimization approach for the matching node capabilities with application
requirements, extensions to our serverless computing platform of choice, and a model to
predict performance degradation, which is used in simulations. In the spirit of serverless
computing, our resulting solutions work with an industry-proven container orchestration
system, acting as a Function-as-a-Service platform in a cloud-to-edge scenario.

To gather data for our workload characterization, we deploy an experiment framework4 ,
to profile applications, and a black-box monitoring5 agent to collect runtime data.

Our overall goal is to dynamically match workload characteristics to the appropriate
node capabilities. The matching builds on a systematic description of heterogeneous
clusters. Through monitoring data, workload characterization, and mapping capabilities
to applications, we influence and improve placement. This results in reduced function
execution time and prevention of performance degradation, caused by resource contention.
We focus on performance in terms of execution time, which is complementary to the
approach of Rausch et al. [58] that focuses on data-locality or proximity.

1.5 Structure
This thesis is structured as follows. Chapter 2 presents the fundamentals of context and
techniques used. We motivate our focus on scheduling functions by introducing newly
emerging application scenarios. Afterwards, we explain underlying technologies that can
realize these services and introduce the core problem of our work. Chapter 3 presents
related work. We focus particularly on function placement and container scheduling.
Afterwards, in Chapter 4 our approach is explained in detail and each component we
develop presented. Before presenting our results in Chapter 6, we explain our evaluation
scenario and the simulation settings we set. The results are discussed in Chapter 7. We
conclude our work and present future work in Chapter 8

4https://github.com/edgerun/galileo
5https://github.com/edgerun/telemd

4

https://github.com/edgerun/galileo
https://github.com/edgerun/telemd

CHAPTER 2
Background

This chapter presents the fundamentals necessary to understand our work. We start
by introducing the context of our applications and use cases, followed by a promising
architecture and our used framework. The section concludes with the problem matching
applications with node capabilities and our selected heuristic optimization technique.
Edge Intelligence and smart cities offer the possibility to implement visionary applications,
such as Cognitive AR and contextual AI [53]. To enable these scenarios, AI pipelines
focus on automating the life cycle of these new applications [53]. The current cloud-
centered lacks certain requirements to realize these concepts. Real time applications
require ultra low latency, which is not possible considering the distance between user and
cloud. Further, in the smart city concept sensors are deployed throughout the city. It is
expected that sending the raw data to the cloud is not feasible and therefore requires
preprocessing at the origin [61]. Edge computing is an emerging paradigm that promises
to have all prerequisites. Computing resources are moved into near proximity of users
to process data and offer low latencies [61]. These environment are heterogeneous in
nature, by using specialized types of devices. To support developers deploying their
applications, the serverless model seems promising by providing the right amount of
abstraction regarding deployment. Serverless edge computing is the combination and is
currently driven by frameworks like Kubernetes and OpenFaaS. Placement of functions
is very important and therefore we introduce the problem of matching applications with
appropriate computing resources and a heuristic optimization technique.

2.1 Edge Intelligence
The cyber-human evolution is the process of melting our lives with digital information,
starting with the internet providing space to store and retrieve data, which we access
through smartphones [53]. They are already thoroughly integrated in our day-to-day lives
and builds the first step in our cyber-human evolution. User focused technologies such as

5

2. Background

mixed reality smart glasses, combining Augmented Reality and AI are the next step to
connect humans, and the abundance of data from smart cities can make this possible
[53]. Further plausible use cases include automatic annotation of shops and restaurants
or intelligently giving contextual data about traffic conditions. By setting up compute
resources near the users, at the edge, sending data to cloud resources can be skipped and
processed locally. This leads to reduced bandwidth requirements, liberates from external
resource capacities, mitigates long latencies and enables real time processing.

To realize this, independent AI agents need to be distributed throughout the world, which
autonomously collect and process data, offering services in highest quality [53]. The
cloud cannot compete with this in terms of processing power and highly contextualized
models. To give a perspective to this claim, according to Cisco global data center traffic
will reach up to 20 ZB, while they estimate this number for the edge as high as 850 ZB
[71]. Gartner estimates that 80% of deployed IoT applications will use AI [71].

Models can be trained in near proximity to data making it high fidelity in their context.
For example an object detection model in a flower shop needs different knowledge than one
in a hardware store. Context is important, and while current object detection networks,
such as Resnet50, have proven to be reliable, it is not feasible to train a single model
that generalizes across domains [29].

This complex system requires a transparent connection between cloud and edge resources.
Rausch et al. [53] propose a system comprised of a computational fabric and sensing
substrate to realize this. The computational fabric, consisting of highly heterogeneous
devices for training, monitoring, preprocessing and inference interweaves all the afore-
mentioned components. A sensing substrate, realized by IoT devices, collects information
about its environment, which the computing fabric processes and scheduling depends on
intelligent resource orchestration. Research considers the serverless computing model as
viable approach to tie all resources in the edge/cloud continuum together to make the
most out of the hardware [3].

In summary, these infrastructures provide complex insights, exploit locality, deliver
yet unseen performance and can bring the power of AI to users. This vision is called
Edge intelligence: a closed loop system, in which data is generated by users or sensors,
processed in near proximity by edge devices, giving the advantage to exploit local and
contextual information, providing better results and sending preprocessed data to the
cloud, saving bandwidth and resources [51]. The cloud distributes the initial models,
whereas edge nodes fine tune them with contextual information.

Smart cities implement this vision and deployment has already started.

2.1.1 Smart City
The general idea behind smart cities is to distribute nodes throughout the city. One
specific concept is called Urban Sensing and revolves around dispersed sensors that emit
data upon services can act on [56]. In this setting we have a sensing substrate, which

6

2.1. Edge Intelligence

offers different types of data (i.e., air pollution) and a computing fabric, consisting of
nodes with different capabilities.

This sensing infrastructure got implemented in multiple cities [65, 11] spreading nodes
with cameras and sensors to generate data. A project that is important for our evaluation
is the Array of Things located in Chicago [9]. Their urban sensing infrastructure consists
of multiple nodes that contain an array of sensors and SBCs. These topologies produce
data that can help monitor air pollution, road traffic conditions and offer possibility for
video analytic at the edge. Besides hardware and data availability a driving factor of
these advances is adoption and development of Artificial Intelligence allowing developers
to solve problems years ago were not manageable [35].

The last component, in Rausch et al.’s [53] outline, is the intelligent application orches-
tration for these scenarios. The concept of AI pipelines is a step towards autonomously
managed AI applications, and therefore plausible in these scenarios [55].

2.1.2 AI Pipelines

AI Pipelines fully automate the lifecycle of AI applications. This lifecycle consists of:
preprocessing, training and deploying [54]. An analogy is the modern trend of Continuous
Integration, which describes a reactive approach to re-deploy applications upon code
changes with automatic testing, compiling and deploying [64]. Instead of code changes,
concept drifts of the model act as trigger for redeployment. That is the problem of a the
degradation of a model’s accuracy due to new data and making it necessary to update it
[54].

There are already systems available, such as IBM Watson OpenScale1 and ModelOps
[28]. Though they pose the restriction of a cloud centered view. Systems such as
Google Cloud IoT Edge 2 are integrating the edge as inference layer, but to accomplish
a full integration, resources at the edge must be considered for all operations. Besides
the general importance of these AI pipelines they are used in our evaluation and in
combination with the Urban Sensing environment act the foundation of our experiment
scenario.

These hybrid edge cloud systems would enable aforementioned examples: the cloud
is used for base model training, while edge resources learn the contextual information
[53]. Before presenting background about our serverless framework of choice we give a
brief introduction into neural network designs. Normally, they tend to be large in size
but research has shown ways of mitigating this issue. This is especially important in
environments with resource-constrained devices.

1https://www.ibm.com/cloud/watson-openscale
2https://blog.google/products/google-cloud/bringing-intelligence-to-the-edge-with-cloud-iot/

7

https://www.ibm.com/cloud/watson-openscale
https://blog.google/products/google-cloud/bringing-intelligence-to-the-edge-with-cloud-iot/

2. Background

Neural Network Designs

Deep Neural Networks have achieved tremendous success throughout different domains
and reaching accuracy never seen before [35]. One caveat of those designs are high
memory requirements. Determined by the size of the model itself, but also imposed by
working memory requirements for storing intermediate results, reaching sizes of hundred
MBs [51]. Ongoing effort is made to decrease these requirements to fit it on even small
Edge Devices while keeping the accuracy in mind [10, 52, 13]. A very popular method
to achieve memory efficiency, targeted at edge devices, is quantization and is used by
Tensorflow TFlite, which aims to combine lower computation requirements and high
accuracy [31].

In our evaluation we use both kinds of Tensorflow networks, normal and TFLite, to
create a realistic evaluation.

After presenting the context of our applications and the Edge Computing paradigm, we
introduce a promising approach to realize these concepts.

2.2 Serverless Edge Computing
The growing Internet of Things with its inherent large amounts of data are substantially
responsible for the emerging trend of edge computing. Besides these services of analytic
nature, user facing applications (i.e., Augmented Reality) require real time processing
and low latencies that the push of computing resources to the edge can offer [63]. Figure
2.1 illustrates key differences in invocation and data usage between cloud computing and
edge computing. While in the former scenario users talk directly with the cloud, much
more data has to be transmitted and latencies may be high due to long distance. On the
other hand edge computing solves both problems by pushing nodes in near proximity to
users.

This paradigm focuses on shifting computational resources in near proximity of the users
to process data at the origin and reduce bandwidth needs, solving problems concerning
privacy by anonymization of data before leaving the users and offer resources for low
latency applications [61]. The enabler and caveat of this approach are highly heterogeneous
clusters. Devices include simple Single Board Computers (SBC), specialized embedded
GPU hardware and cloudlets, small factor computers that can be placed anywhere [62].
Heterogeneous clusters offer various possibilities: low latency inference through special
hardware accelerators in the size of a coin3, accelerated training at the origin of data
[71]. One downside is the inherent complexity of such an heterogeneous environment,
making it hard to reason about optimal placements for applications.

Edge Computing is a symbiosis between applications situated in the cloud, offering a
strong backbone to withstand peak workloads, and deployments at the edge to guarantee
performance and reduce data flows. Current cloud-centric applications are hosted at

3https://cloud.google.com/edge-tpu

8

https://cloud.google.com/edge-tpu

2.2. Serverless Edge Computing

Cloud Cloud

Edge

Figure 2.1: Cloud vs Edge Computing

Function

Application

OS

Hardware

User

Provider

Responsibility

Host IaaS PaaS Serverless

Figure 2.2: Cloud models and responsibilities

Cloud Service Providers). They offer different models, each dictating the level of control
users have of the underlying hardware. Figure 2.2 shows the different services we explain
in the following and displays user responsibilities, which indicate parts that users have
to manually manage. Infrastructure-as-a-Service (IaaS) offerings let users rent bare
Virtual Machines with a specified amount of CPU cores, RAM, disk space and possible
accelerators like GPU or TPU. Users need to setup and manage everything besides
the hardware. Platform-as-a-Service (PaaS) relieves users of OS management and lets
them upload their application in a container, which contains all programs for hosting
capabilities. Both approaches are cumbersome in the face of edge computing as users
need to know which hardware is most suited, and with IaaS they have to manually
manage the devices.

The last model removes any involvement of users from the process of deployment and
may offer the right amount of abstraction regarding deployment decisions and much
needed support for users. Serverless Computing has emerged from the adoption of
containerized deployments in cloud infrastructures using Container Orchestration Services
[4]. This paradigm removes the burden of renting and selecting instances by automatically
deploying, scaling and managing applications. We consider the Function-as-a-Service
model in this work as Serverless Computing platform [33]: users submit containers that
serve a single function, which is called via REST.

In heterogeneous clusters users are faced with many types of nodes, that all may differ
in performance and capabilities. The approach of Serverless Edge Computing tries to
mitigate this issue by employing automatic node selection through Serverless Computing
making it suitable for Edge Computing to its full potential [17, 46].

Rausch et al. [58] state three reasons why current state-of-the-art serverless platforms
lack substantial compatibility with the edge compute fabric vision, presented in 2.1.

1. Proximity and bandwidth between nodes are not considered, which leads to higher
latency times, as distances between compute & storage nodes can have a big effect
on the responsiveness.

9

2. Background

2. Data management has to be done by hand and leaves platforms in the dark with
regards to data locality and storage nodes.

3. Platforms provide limited support for hardware accelerators, important for the
vision of a true edge fabric.

Our work focuses on the last point and is therefore complimentary to [58]. We also
re-evaluate their work with our newly developed framework to compare advantages
and limitations of both approaches but to also take a combined look when fusing them
together.

2.2.1 Kubernetes
Kubernetes 4 is a container orchestration service and is de-facto the industry standard.
In the following we give a brief introduction into the inner workings of Kubernetes and
only highlight elements relevant to our work. It is therefore not complete and kept simple
on purpose. A detailed explanation of the scheduler follow in Section 2.3.1.

A container orchestration service manages a cluster of nodes and is responsible for
scheduling, autoscaling and self-healing of applications, which are packaged as self-
contained containers [8]. The smallest unit of deployment in Kubernetes is called a Pod
and groups one more containers. We assume in this work, that every pod contains a
single container. This assumption is plausible, as we are considering functions that only
serve a single purpose. Devices, used to run the pods, are called nodes. In Kubernetes
each pod and node can be described using labels, which are simple key-value pairs. One
component of great importance for us is the scheduler. It receives a single pod, for which
it finds a suitable node. Fortunately, the scheduling system is very flexible and can be
easily extended as we present in Section 2.3.1. As already mentioned, we skimp over
details of other components, because it is more important to understand how pods, nodes,
labels and the scheduler work together.

To put this system into perspective Figure 2.3 shows a conceptual diagram of the
previously described elements and their interactions. The scheduler receives a pod,
performs filtering and scoring of feasible nodes, and selects the highest ranked one. Before
turning to the scheduling of functions, we introduce serverless computing, including our
framework of choice.

2.2.2 Serverless Computing Platforms
Historically seen, was serverless computing made popular by Amazon in 2014 [39, 1].
Google [19], Microsoft [41] and IBM [30] followed Amazon’s platform with their own
offerings in 2016 [4]. In contrast to PaaS, developers are bound to a certain programming
model. The unit of deployment is code that represents a single stateless function,

4https://kubernetes.io/

10

https://kubernetes.io/

2.2. Serverless Edge Computing

Pod 1

Labels: {

 “location”: “edge”

}

Scheduler

Node A

Labels: {

 “location”: “cloud”

}

Cluster

select
Node

Node B

Labels: {

 “location”: “edge”

}

Figure 2.3: Conceptual view of Kubernetes deployments

commonly called via HTTP. Based on the aspect of statelessness and that the code serves
only one purpose, platform providers are able to quickly scale the applications. These
constraints also represent the main difference to the Platform-as-a-Service model, capable
of hosting arbitrary complex and stateful services. Additionally the Function-as-a-Service
(FaaS) naming has been established for specifying Serverless computing platforms that
focus on the aforementioned type of applications [33]. The change of programming model
also leads to a different pricing system. In PaaS it is normal to base this on the rented
VM instances for which users are responsible to turn on or off and which may run without
any requests. The FaaS system’s main selling point is that it scales rapidly and in times
of no requests users may pay nothing[3]. Our platform of choice is OpenFaaS, based
on the fact that our foundation is build on previous research efforts [58]. Therefore, we
focus in the following on explaining relevant internals of this platform.

OpenFaaS

OpenFaaS is an open source Function-as-a-Service framework5 and uses Kubernetes as
execution runtime and deployment platform. Users submit functions as containers to
the OpenFaaS gateway, which are translated into pods and submitted to the Kubernetes
scheduler. Initial, maximum and minimum numbers of pods are defined in the Function-
Definition. This entity contains all information about a function and additionally includes:
the docker image to pull, a scale factor, a boolean indicating whether scale to zero should
be deployed and the labels describing a function, Table 2.1 lists all attributes. While

5https://github.com/openfaas/faas

11

https://github.com/openfaas/faas

2. Background

Attribute Description
name function name
image docker image
labels key-value pairs describing function
scale min minimum numbers of replicas
scale max maximum numbers of replicas
scale zero whether zero replicas are allowed

Table 2.1: FunctionDefinition

at first glance this level of abstraction seems to be sufficient, we encounter limitations
during our work that we highlight in Section 4.4.1.

Figure 2.4 summarizes the important steps that a function has to go through when
getting deployed. At first, the user submits a FunctionDefinition to OpenFaaS, the
system creates from this definition the necessary number of pods, defined by scale min,
and submits them to the Kubernetes scheduler.

FunctionDefinition

name: resnet

image: faas-wl/res

labels: {

 “gpu”: “turing”

}

scale min: 1

scale max: 100

OpenFaaS

Pod 1

apiVersion: apps/v1

kind: Deployment

metadata:

 name: resnet

spec:

 template:

 spec:

 containers:

 - name: resnet

 image: faas-wl/res

Scheduler
Node A

submit create

Node B

Clusterselect

Figure 2.4: Function submission process

Users can choose from various languages, though our choice is Python for all evaluation
applications, as it is the predominantly used language in the context of AI applications.
Besides choosing a programming language, users need to make another important decision.

12

2.2. Serverless Edge Computing

OpenFaaS calls function by using runtime environments, called watchdogs.

Watchdogs

An important decision to make when designing functions with OpenFaaS is choosing the
watchdog. Watchdogs elevate the boilerplate code necessary for handling invocations.
Users can choose from multiple templates, targeted at programming languages, or design
their own ones. These templates provide basic networking code, and users only have to
implement a handler function, taking the request body as argument and returning the
response. In essence, a watchdog implements the actual behavior of handling a request.

The watchdogs are designed to allow different modes of operation. The most important
ones for our thesis are the HTTP and Forking types.

At the beginning all modes start a parent process, responsible for receiving and forwarding
any HTTP calls. In case of the forking mode, a new child process is spawned for each
invocation. This removes any concurrency issues from the developer but causes overhead
by starting a new process. Additionally any initialization steps have to be run repeatedly
which can incur major latencies.

The HTTP mode mitigates the issue of setting up a new process for each call, by starting
an internal HTTP server, which calls the actual user code. In case of Python, our
language of choice for all functions, a fixed worker pool is used. While this approach
allows users to benefit of caching, they must handle concurrent access and face limitations
from Python’s thread management. Due to the GIL (Global Interpreter Lock) only one
worker executes code at a time and queuing is introduced, halting requests in case no
worker is available.

Parent Child

Child

Child

forks

Parent

forks

Child

HTTP

HTTP

invocation forward

Figure 2.5: Forking and HTTP Watchdogs, based on [49]

Figure 2.5 shows the watchdog modes we use. The left presents the forking mode which
spawns for each call a new child, while the HTTP mode spawns a single child and
communicates internally via HTTP with it. We discuss in Section 5.3.3 the different

13

2. Background

modes in the context of our reference applications and highlight our experiences with
regard to the FaaS paradigm in general.
This concludes the background with regards to our context and we now focus on scheduling
functions.

2.3 Serverless Function Scheduling
The section starts by explaining the Kubernetes scheduler in detail. Afterwards, we
introduce an optimization problem that aims to map application requirements to node
capabilities. The solution to this problem should support the scheduler to be able to
reason in a highly heterogeneous cluster, such as edge computing infrastructures represent.
Our chosen heuristic optimization technique is described at the end.

2.3.1 Kubernetes scheduler
The scheduler is built in a highly extensible way, allowing us to easily extend and help it
make informed placement decisions. Scheduling is done in an online manner. This means
that the scheduler receives a single pod, schedules it and handles the next one —it has
no knowledge of future deployments.
The scheduling process consists of two phases: filtering and scoring (hard and soft
constraints). The first one removes not feasible nodes, the latter scores them individually
and picks the highest scored one. Developers can implement predicates to filter nodes
and priorities to score them. This allows users of Kubernetes to influence the placement
process. We present our own predicates and priorities in Section 4.4.3. In the scoring
phase a weighted sum over all priorities is created and developers can manually choose
the weight of each soft constraint.
While the preceding description has explained the process in an intuitive way, we now
introduce a formal definition based on [58].
S is a set of priority functions s ∈ S : P × N → R. P represents the pods and N contains
all nodes. The scheduler invokes a function schedule : P → N , to retrieve the node a
pod should be scheduled on. schedule calls for a given pod p and all feasible nodes n
every priority function, combining the outputs into a weighted sum. This process can be
formally expressed as:

schedule(p) = argmaxn∈N score(p, n) :
|S|

i=0
wi ∗ Si(p, n)

As already indicated, our approach to improve placements is deeply connected to the
scheduling process. In essence, we develop three priority functions which influence pod
placements to meet our performance and resource oriented goals.
We now introduce an optimization problem to realize a scoring function, which is able to
judge the fitness of nodes for an application.

14

2.3. Serverless Function Scheduling

2.3.2 Capability matching
Edge computing infrastructure are characterized by a highly diverse set of devices. Not
only are there different types of accelerators, but there is also a big difference in terms of
hardware and performance. Kubernetes has a very developer friendly technique to filter
and score nodes, which we utilize to integrate the capability matching problem into the
decision making. We argue that in our scenario it is necessary to match requirements of
functions with the capabilities of nodes. We formulate this as an optimization problem,
but first give more details behind the reasoning on why we think it is necessary to consider
this problem.

Capability matching is rather abstract and demands a clear specification before solving
it. Our interpretation is presented in Section 4.4.2, but the intuition behind it is to
match applications with nodes based on their descriptions. In our case, these consist
of hardware specifications (i.e., number of CPU cores), but are left open for extensions.
Afterwards, we need to find requirements for applications. These are determined through
an optimization step and are used in a priority function. In our solution a requirement
consists of capabilities, each having a score assigned. A node’s favourability increases, in
case a capability matches with one of the requirements.

In Chapter 3 we present previous works that solve this problem by manual assignments.
In our opinion this may be feasible in cases the following statements hold true:

1. Developers know their application’s needs the capabilities of deployed nodes.

2. Services have hard constraints (i.e, software that require certain static resources:
accelerators)

3. A homogeneous cluster configuration. In this case all nodes have the same capabili-
ties and therefore placement is irrelevant.

4. Discarding performance interference through co-located applications.

The possible scenarios we consider in this thesis do not fulfill any of these criteria.
Transparency is important. By using FaaS, users can submit functions and do not care
about the place of execution. While we can assume that developers are aware of possible
hard constraints, delicate differences in hardware, that may not be obvious at first, hinder
the approach of manual input. Obviously, we can not assume a homogeneous cluster and
as we show in Section 4.3.5, performance interference can not be left out. Therefore, we
deem it intractable to manually assign labels.

2.3.3 Heuristic Optimization Techniques
Our approach formulates a combinatorial optimization (CO) problem which is NP-hard
by a trivial reduction from the Knapsack Problem. We employ a heuristic technique
to overcome this issue. Formally, a CO problem P = (S,f) is defined by a finite set of

15

2. Background

solutions S and an objective function f : S → R+, whereas f assigns every solution s ∈ S
a non-negative value and the goal is to find a solution s∗ with minimal costs [6].

2.3.4 Genetic Algorithms
To solve the Capability matching problem, we sue a genetic algorithm to search for
optimal solutions.

Genetic algorithms are placed in the category of Evolutionary Algorithms (EA), which
are based on the idea of natural evolution. These types of optimization techniques
consist of three main steps. First, an initial population is created, a set of individuals.
Each individual represents a solution for which a fitness score is evaluated by using the
objective function f [6].

A termination criteria has to be defined and could be a number of iterations. Further, four
operators have to be defined, that will be executed subsequently: selection, recombination,
mutation and replacement. All act on the population of the previous result and are
intended to imitate natural evolution.

First, parents are selected from the population based on their fitness, afterwards new
individuals are derived by most often randomized crossovers and recombinations. The
offsprings may mutate afterwards, creating a higher diversity with a random or heuristic
character. The last step is to create the population that will be used in the next iteration
or serves as the final solution set [6].

16

CHAPTER 3
Related Work

This chapter presents work related to the main topics of our approach. First, we motivate
the context of our problem - function placement in serverless edge computing. Workload
characterization builds the foundation of our work and is presented in the next section.
Afterwards, we present related work to performance modeling. The next section is
dedicated to scheduling approaches in general heterogeneous clusters and focus in the
last section on AI pipelines.

3.1 Serverless Edge Computing
Serverless edge computing is an emerging paradigm to deal with the operational challenges
of edge computing systems. Aslanpour et al. [3] present the vision and open challenges in
this domain. They attribute the missing adaption to the cloud-centric design of current
serverless platforms and the heterogeneous edge environment. Because of the unlimited
available resources in the cloud, serverless frameworks have not been designed for resource-
constrained devices. One open issue addresses the resource inefficiency and need for new
lightweight systems as Docker images tend to be heavy. Further, serverless platforms
have yet to support different computing platforms [3]. We introduce and implement a
concept to mitigate this issue and support multiple computing platforms. The research
highlights how many problems have to be solved before fully taking advantage of this
paradigm in edge computing scenarios.

There are some frameworks that specifically target a seamless integration of edge and
cloud. Approaches range from replacing parts of Kubernetes, to completely new systems.
As mentioned, runtime overhead is still high for resource-constrained devices at the edge.
An edge-focused all-in-one solution is faasd1, which works with OpenFaaS and acts as

1https://github.com/openfaas/faasd

17

https://github.com/openfaas/faasd

3. Related Work

an extension to it. Containerd [14] is used as container runtime to offer a low footprint
platform and effectively replaces Kubernetes2.

Another approach, called FLEDGE, integrates with Kubernetes by placing virtual agents
on edge devices and managing proxy pods in the cloud[18]. They claim to significantly
lower memory footprint and test their application on a Raspberry Pi 3.

Another approach that aims to create new platform including container orchestration
is tinyfaas presented by Pfandzelter et al.[50]. It is targeted at edge devices and uses
the Docker runtime. While they do present the architecture, including their approach to
function handler and the integration of CoAP —a low-resource friendly alternative to
HTTP. Details about scheduling or placement is missing.

3.2 Workload Characterization
Dargie et al. [16] aim to characterize workloads based on resource usages in the context
of cloud infrastructures. Their goal is to cluster workloads and consolidate them onto
servers. Their categorization should allow placing applications that use different resources
such that available host capacities are utilized without causing contention. They measure
CPU, network, memory usages, read and writes to disks, storage or datastores. Important
to them is the consideration of temporal and hidden dependencies between different
resources. Tensor decomposition is applied to the recorded data and split into different
views, which are analysed. The work focuses on analysis of the views and clustering
remains future work. While our approach discards temporal aspects, we believe that our
atomic unit of work, a single function, mitigates this.

Nemati et al. [47] present an agent-less monitoring technique, subsequent feature
extraction and unsupervised clustering of VMs based on resources. It is similar to our
approach as they also use KMeans, but differ substantially in the observed metrics.
While we consider basic telemetry, like CPU usage or I/O written and read, they observe
features concerning the average and frequencies of waiting times for resources, injection
rates and frequency of VM preemption. Their applications cover CPU, network and disk
and consist of standard benchmarking tools.

We build our workload characterization and apply machine learning on data gathered
from workload profiling.

3.2.1 Workload profiling

Profiling of AI applications on Edge devices has been done by Zhou et al.[70]. They
describe an accelerator recommendation approach for edge applications, such as video
surveillance. They investigate the performance and power consumption of different
devices and estimate the cost and effectiveness for each task per device. We investigate

2https://blog.alexellis.io/faasd-for-lightweight-serverless/

18

https://blog.alexellis.io/faasd-for-lightweight-serverless/

3.3. Performance Modeling

this issue further by adding co-located workload on the devices during execution and
investigate the performance of training on these devices.

3.3 Performance Modeling
Grohmann et al. [20] investigate the issue of container interference and present a method
to predict the inherent degradation to co-location of applications. Their evaluation
focuses on key performance indicators, based on quality of service metrics. Services are
considered to be structured following the microservice architecture and their resulting
model works for heterogeneous applications. Metrics include CPU, memory and I/O
throughput.

Han et al. [22] perform benchmarks on Amazon Web Services to investigate the issue
of performance degradation on a public cloud service and try to predict the number of
co-resident VMs based on performance measurements. This work is in stark contrast
to our approach as we predict the factor of performance degradation to strengthen our
simulation results. Relevant to our work is their approach of producing and quantifying
performance degradation. Their benchmark applications are dedicated to create CPU,
disk and network contentions and use ContainerProfiler 3 to profile and characterize
resource utilization.

Perseus is a measurement framework to model performance and costs in multi-tenant
situations specific to AI model serving. LeMay et al. [36] focus on hosting Neural Networks
and sharing GPUs to reduce costs. Their solution provides users with approximations
of performance between running the model in different settings, i.e.: multi-tenant GPU
sharing or single-tenant CPU accelerated inference.

Moradi et al. [43] are situated in cloud scenarios and present user-level profiling bench-
marks to measure contention and learn a function to predict target application perfor-
mance degradation. In contrast to previously presented works and ours they do not collect
resource metrics and build their prediction on that but for each application standardized
micro-benchmarks are executed and afterwards the target service. Their benchmarks
utilize CPU, memory and disk measuring the number of increments or count the accesses
to memory and disk. Applications are called with the same input and they do not
investigate the impact of differently sized requests.

3.3.1 Workload profiling
Profiling of AI applications on Edge devices has been done by Zhou et al.[70]. They
describe an accelerator recommendation approach for edge applications, such as video
surveillance. They investigate the performance and power consumption of different
devices and estimate the cost and effectiveness for each task per device. We investigate
this issue further by adding co-located workload on the devices during execution and
investigate the performance of training on these devices.

3texthttps://github.com/wlloyduw/ContainerProfiler

19

texthttps://github.com/wlloyduw/ContainerProfiler

3. Related Work

3.4 Scheduling
Mao et al.[38] extend Docker Swarmkit to take cluster heterogeneity into account by
dynamically labeling the main resource of their applications through constant monitoring
and finding placements considering already possible co-located services. Further, they
implement a migration strategy which detects hardware contention and migrates the
most costly container. While they take heterogeneity into account their resources do not
consider GPU as resource and focus on cloud deployments. Joseph et al.[34] consider
the Microservice Allocation Problem which maps microservices packaged as containers
onto appropriate hosts. They use Reinforcement Learning to learn the mapping, but
only take CPU utilization and power consumption into account. Wöbker et al.[68]
consider a distributed and heterogeneous environment, as can be observed in edge and
fog computing.

There have been efforts to explore the advantages of a sophisticated labeling strategy
for resource scheduling. Wöbker et al.[68] assign labels to their nodes and applications
per hand and evaluate the resulting scheduling decisions. This approach lacks automatic
mapping between application requirements and node capabilities. In contrast to their
work, we focus on providing a solution that is capable of inferring requirement-capability
mappings.

They recognize the need for matching requirements and capabilities for supporting such
environments but do solve this problem only by creating the labels for applications and
hosts manually. They do intend to develop this further for dynamic label recognition but
to the best of our knowledge no future publication has investigated this issue. Mytilinis
et al.[44] have proposed a scheduler which takes different hardware capabilities of each
node into account, but is made with Big Data frameworks (i.e., Apache Spark) in mind
and therefore expects a task graph as input. A recent survey investigates the problem of
smart scheduling in cloud and fog environments, stating that the community is in dire
need of smart scheduling approaches that integrate with state-of-the-art orchestration
services. Havet et al.[24] combines runtime monitoring of containers to learn their
requirements and properties and a scheduler that manages different generations of servers.
They are inspired by Garbage Collection, where each generation of server has its own
purpose and VMs are migrated continuously to older ones. They integrated their work in
Docker Swarm. Santos et al.[60] extend the Kubernetes scheduler with a network-aware
scheduling mechanism to support container-based applications in Edge deployments.

3.4.1 Scheduling AI Pipelines
Crankshaw et al. present InferLine, a system for scheduling individual stages of prediction
serving pipelines in the cloud [15]. It consists of a low frequency planner responsible for
selecting the right hardware for a stage and a high frequency planner that scales the
stages. They focus on tight tail latency and balance between performance and costs.
Cost is an important factor as they not only consider CPU but also GPU and TPU,
which both may drastically more expensive. In contrast to our work InferLine plans

20

3.4. Scheduling

the deployment of a pipeline end-to-end, whereas we schedule single functions without
knowing their context or associated applications.

The most important related work for is about the Skippy scheduler we use as the
Kubernetes scheduler replacement[58]. Rausch et al. present the Skippy, a Python-based
re-implementation of the Kubernetes scheduler. Further they provide a trace-driven
event-based simulator, faas-sim, and priority functions to improve placements of data-
driven applications. Skippy can either act as scheduler drop-in replacement in a real
cluster or in the context of simulations. Latter is important for us as we evaluate our
approach using faas-sim. In contrast to Crankshaw et al. [15] focus on Serverless Edge
Computing and their test applications represent the stages of a typical AI pipeline:
preprocessing, training and inference. Though their approach focuses on data locality
and discard performance characteristics of devices. Our work extends this paper in terms
of implement priority functions which builds on a different approach to calculate resource
contention and adds performance into the process.

21

CHAPTER 4
Approach

This section describes our approach to improve scheduling decisions in the context of
serverless edge applications. First, we present a methodology to model heterogeneous
clusters including a quantification of heterogeneity. Second, we introduce our performance
model that provides our simulation with realistic data, enables workload characterization
and helps us train a performance degradation model. We conclude the chapter with
presenting our main contribution that improves container scheduling. We build on
existing serverless platforms such as OpenFaaS and Kubernetes. Our approach addresses
in particular two shortcomings of these platforms. We introduce first-class-citizen support
for functions to use different computing platforms. Second, we enable the scheduler to
reason about workload characteristics, allowing it to map workloads to their appropriate
computing resources, as well as considering the impact of resource contention on runtime
performance.

4.1 Overview
Before explaining our approach, we take a step back to view the problem from a high
level perspective. Figure 4.1 shows the general context: users submit their functions to
OpenFaaSExt, responsible for scaling and deploying of pods. These are submitted to
Kubernetes, which is responsible to select a suitable node. All three components are
important for us. First, we present an extended version of OpenFaaS - OpenFaasExt -
that enables developers to ship a function targeting multiple computing platforms. In our
use case this allows functions to support multiple accelerators. The second component,
Kubernetes, gets extended by adding custom scoring functions. These rely on our
workload characterization and capability matching optimization and should improve
latencies and prevent resource contention. Finally we introduce a heterogeneity score for
clusters and a strategy to describe a node’s capabilities.

23

4. Approach

OpenFaaSExt Kubernetes Cluster

submit

Pod Z deploy

FD – Resnet50-Inf.

CPU:

 max replicas: 100

GPU:

 max replicas: 10

Node A

Arch: x86

Accelerator: GPU

Cores: Medium

Location: Cloud

Scheduling

(Pod Z, Node B) (Pod Z, Node A)

filter filter

score score

(Pod Z, Node B)

Node B

Arch: aarch64

Accelerator: TPU

Cores: Low

Location: Edge

max score

Figure 4.1: Look at the general context

Figure 4.2 gives a detailed look into evaluation pipeline and on which knowledge our
proposed priority functions are based on. The first step is to obtain real performance
and telemetry data from our testbed nodes. We spawn one or multiple clients that
invoke our functions to obtain traces and telemetry. Generating load is done by galileo,
an open-source experimentation framework [57]. In the first step we record baseline
performance and resource usage for each node and function. The performance-oriented
priority function is implemented using this data, favoring faster nodes.

The data is also used to characterize workloads, which produces a vector for each node and
app. Using this characterization, we can implement a resource-oriented priority function
and apply machine learning to cluster functions. The result of this is an assignment for
each function to a cluster that is needed to make our capability matching optimization
tractable in the face of a high number of functions, as we would otherwise need to solve the
capability matching problem for each function. The optimization outputs requirements
imposed by each workload group and is used for our capability priority function. These
requirements contain a list of node capabilities, each having a value assigned indicating
the favourability of this particular capability.

Besides that, we introduce an entropy-based approach to calculate the heterogeneity of a
cluster. We use this function in two ways: to determine suitable heterogeneous clusters
for our simulations, and is integrated into the capability problem optimization.

Not displayed in Figure 4.2, but important for our approach is performance degradation.
To this end, we execute multiple functions at the same time to cause interference and
performance degradation. Due to the highly different devices we encounter at the edge

24

4.2. Modeling heterogeneous clusters

Profiling Pipeline (galileo)

Workload Characterization

Capability Mapping

Priority Functions

Simulation (faas-sim)

Heterogeneous Clusters

Cluster Modeling

Heterogeneity Score

Figure 4.2: Component Overview

we train a model that predicts degradation based on resource usage. The model is used
in our simulation to simulate performance loss due to co-located containers.

Using the baseline benchmarks, different compute clusters and our performance degrada-
tion model, we implement multiple scenarios in faas-sim. We compare different sets of
priority functions regarding application placement. In the following we introduce each
component in more detail, starting with the modeling of heterogeneous clusters.

4.2 Modeling heterogeneous clusters
Edge computing clusters contain many kinds of nodes, leading to a high diversity of
capabilities. We believe that the simple standard strategy to spread applications evenly
based on user defined CPU and memory requirements may lead to unexpected and
undesirable placements. That’s why we consider it important to evaluate our strategy
on multiple clusters that differ in the distribution of node types and introduce a score
to formally define the heterogeneity. Our approach for this problem is to define a
representation of nodes, a subsequent extension to describe a cluster of nodes and our
entropy based heterogeneity score function.

As a first step, we introduce a systematic representation of a node, which reflects the

25

4. Approach

equipped hardware, basic information and other characteristics that seem relevant in
a diverse scenario like edge computing. Each node n in the cluster has a description
d. Descriptions consist of multiple attributes, and each describes a single capability, i.e.
the number of CPU cores. We restrict the attributes to nominal ones and therefore
have to set bounds for some attributes. The chosen characteristics can be automatically
obtained, i.e. with the common Linux tool lshw1. Subsequent components in our work
do not make any assumptions of attribute availability, leading to a very flexible design
allowing extensions and modifications. This makes it possible to use different and more
sophisticated tools to obtain characteristics from nodes.

Our attributes and their values are shown in Table 4.1. We think that these are sufficient
and offer enough flexibility to create diverse descriptions, aiding our heterogeneity score.
The bounds for originally continuously attributes are based on our testbed. While most
of these attributes are trivial, we want to describe one in more detail. Location is the
place in which a node is deployed. Due to the geo-distributed nature of edge computing
clusters, we enumerate popular ones:

1. Cloud: nodes of this type are located in public or private clouds and managed by
cloud providers. VM instances may have different capabilities, but are in general
homogeneous.

2. MEC : an approach to provide services at the edge is undertaken by TELCOM
providers through placing nodes at cellphone tower. Developers can use these nodes
to deploy their services in near proximity to users.

3. Mobile: we believe that smartphones provide enough performance to host certain
services on the user devices. Notable efforts are Tensorflow TFLite, which aims
to bring inference onto every device and is supported by Apple’s iPhone, Android
phones and additionally provides a Javascript engine, capable of running in the
browser. This leads us to believe that every device can provide host capabilities.

4. Edge: this category describes all nodes that are neither assigned to MEC nor
Mobile.We introduce such nodes in our evaluation scenario. In general edge
computing nodes can be deployed anywhere and therefore we are not able to
enumerate every possibility.

After defining the representation for a single node, we introduce a notion for the same
concept extended to a cluster of nodes. We call this description Cluster Configuration
and shows the occurrence for each attribute and value in percentage across all devices.
We illustrate this approach with an example. Table 4.2 displays three different types
of nodes. A cloud VM equipped with a Xeon processor, high RAM and no accelerator
and typical edge devices, such as a GPU-accelerated embedded AI board and a Single
Board Computer. We provide in Table 4.3 three configurations with varying node type

1https://linux.die.net/man/1/lshw

26

https://linux.die.net/man/1/lshw

4.2. Modeling heterogeneous clusters

Attribute
Architecture x86 arm32 aarch64
Accelerator None GPU TPU
Disk HDD SSD NVME EMMC SD Card
Location Cloud MEC Edge Mobile
Connection Ethernet Wifi Mobile
CPU i7 Xeon ARM
GPU Turing Pascal Maxwell Volta
Bins Low Medium High Very High
Cores <= 2 <= 8 <= 32 > 32
Network <= 150 Mbps <= 500 Mbps <= 1 Gbits >= 10 Gbits
CPU MHz <= 1000 MHz <= 1200 MHz <= 1500 MHz >= 1700 MHz
GPU MHz <= 1000 MHz <= 1200 MHz <= 1500 MHz >= 1700 MHz
Network <= 150 Mbps <= 500 Mbps <= 1 Gbits >= 10 Gbits
RAM <= 2 GB <= 8 GB <= 32 GB > 32 GB
VRAM <= 2 GB <= 8 GB <= 32 GB > 32 GB

Table 4.1: All attributes and associated values, numerical ones are discretized in bins.

Device VM Embedded AI SBC
Arch x86 aarch64 arm32
CPU Xeon ARM ARM
RAM High Medium Low
Location Cloud Edge Edge
Accelerator None GPU None

Table 4.2: Three different types of nodes and their attributes

distribution. The resulting clusters are presented in Table 4.3. The percentage of all
attributes is relative to the total number of devices.

4.2.1 Entropy Score
Based on our cluster representation, we can introduce a quantification method for
heterogeneity. We use entropy to define a function that obtains a score, which allows us
to compare different configurations.

Let h : C → R be a function that maps a cluster configuration to a real value - the
heterogeneity score, with C being the set of possible configurations. Due to entropy being
a function that compares two items, the second cluster is a completely homogeneous one.
It describes a one node type, with each attribute having a single associated value that
has the probability of one. Which leads our function to yield zero for every homogeneous
cluster.

27

4. Approach

Cluster Configs A B Base
Attribute
Arch.x86 0.2 0.8 1
Arch.arm32 0.5 0.1 0
Arch.aarch64 0.3 0.1 0
CPU.Xeon 0.2 0.8 1
CPU.ARM 0.8 0.2 0
RAM.Low 0.5 0.1 0
RAM.Medium 0.3 0.1 0
RAM.High 0.2 0.8 1
Location.Cloud 0.2 0.8 1
Location.Edge 0.8 0.2 0
Accelerator.None 0.7 0.9 1
Accelerator.GPU 0.3 0.1 0

Table 4.3: Examples of descriptions for cluster configurations, refer to Table 4.4 for
details about node distribution.

Cluster Config Nodes % of device type
VM Embedded AI SBC

A 100 20 30 50
B 100 80 10 10
Base 100 100 0 0

Table 4.4: Example cluster configurations

Algorithm 4.1: Algorithm for calculating the heterogeneity for a topology
configuration.

Input : topology
Result: heterogeneity score

1 entropy_c ← 0
2 entropy_b ← 0
3 base ← getHomogenousConfig();
4 for attribute in attributes do
5 c ← topology[attribute] or 1e−22
6 b ← base[attribute] or 1e−22
7 entropy_c ← entropy_c + c * log(c)
8 entropy_b ← entropy_b + b * log(b)
9 end

10 return entropy_b - entropy_c

28

4.3. ML-based workload characterization

Algorithm 4.1 shows the implementation of h in pseudo code. Because log is not defined
on 0, we use a default value of 1e−22, which we deem small enough to not influence the
result. In essence, the function iterates over all attribute values and continuously updates
the entropy for each configuration and returns the difference at the end. Note, that the
highest obtainable score is 15.99, a cluster configuration in which all available values are
present and uniformly distributed.

To give an example of what these scores might look like, we calculate them for the cluster
configurations presented in Table 4.3, which return 3.67 for configuration A and 2.60 for
B.

After describing the modeling of clusters, we start do describe the ML-based work-
load characterization approach. We start by introducing our performance modeling,
which is integrated into the profiling step in Figure 4.2. And afterwards explain the
characterization.

4.3 ML-based workload characterization
In this section we describe our model of performance and resources, followed by an
approach to convert time series data into a format, which we can use as an input for
our clustering technique of choice. At the end we present a model that can predict
performance degradation.

4.3.1 Performance modeling
Our workload characterization is based on real data and therefore we use a benchmarking
pipeline to collect information about performance and resource usage. We set up galileo,
an experimentation framework [57]. It offers workload generation and stores function
invocations and telemetry data. Through this streamlined process we can query data
for our components from a single place. We explain two important types of data in the
following: traces and telemetry.

User

sends

request

Function

receives

request

Watchdog
Forwards
request

Function

starts

Client

receives

response

Function

returns

Function Execution Time

FET

Figure 4.3: A detailed look into a function invocation

29

4. Approach

Metric Values Frequency
CPU Usage cpu usage in nanoseconds per container 1s
GPU Usage time spent executing GPU code/usage relative to frequency 1s
Network I/O total network i/o usage in bytes per container 1s
Block I/O total block i/o usage in bytes per container 1s
RAM currently used RAM in kilobytes 1s

Table 4.5: Overview of recorded system metrics

The former is related to function invocations and stores timestamps and durations. Figure
4.3 shows different parts of an invocation and should clarify our definition of Function
Execution Time (FET) - the duration in which the actual user submitted code is executed.
Each call starts with a client sending the request, representing an invocation’s start.
The next timestamps indicate the server’s reception and subsequent forward. Then the
function is called, sends the result back, and after the user receives the request, the
invocation is finished.

Besides measuring the FET, we also observe various resources, using a lightweight open-
source monitor telemd 2. It provides system-wide telemetry and additionally reports
cgroup metrics —allowing monitoring on container level. Control groups (cgroups3) let
users monitor and restrict resources of processes. This includes block I/O, network I/O,
CPU and memory. telemd gives us the opportunity to track three resources for each
container: CPU usage time, total block i/o and total network i/o processed. Relevant
system-wide metrics contain memory usage and GPU load. Note that due to the different
approaches of common x86 Nvidia devices and the Jetson series, the usage differs in
definition: former returns results the time spent executing on the GPU relative to a
time frame. While the latter is defined as GPU usage relative to the current frequency
4. While they are not the same measure, our evaluation and results show that this is
irrelevant to our work.

Table 4.5 shows a summary of all recorded telemetry. Every metric is measured once per
second.

4.3.2 Baseline Benchmarks
The trace-driven nature of our simulation requires us to collect performance measurements
from our devices. We invoke each function on each node multiple times with an interarrival
time of one second without any interfering applications. These benchmarks are meant
to establish a performance and resource usage baseline. The recorded data is fit onto

2https://github.com/edgerun/telemd
3https://man7.org/linux/man-pages/man7/cgroups.7.html
4https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.

html#page/Tegra%2520Linux%2520Driver%2520Package%2520Development%2520Guide%
2FAppendixTegraStats.html%23

30

https://github.com/edgerun/telemd
https://man7.org/linux/man-pages/man7/cgroups.7.html
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra%2520Linux%2520Driver%2520Package%2520Development%2520Guide%2FAppendixTegraStats.html%23
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra%2520Linux%2520Driver%2520Package%2520Development%2520Guide%2FAppendixTegraStats.html%23
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra%2520Linux%2520Driver%2520Package%2520Development%2520Guide%2FAppendixTegraStats.html%23

4.3. ML-based workload characterization

Timestamp cgrp_blkio cgrp_cpu cgrp_net gpu_util ram
2020-12-07 12:22:24 0.0 0.024970 34763.0 0.0 3462012.0
2020-12-07 12:22:25 0.0 0.876353 11105269.0 99.6 3491612.0
2020-12-07 12:22:26 0.0 0.024215 34730.0 0.0 3462784.0
2020-12-07 12:22:27 0.0 0.857045 11102174.0 99.7 3493292.0
2020-12-07 12:22:28 0.0 0.067538 35484.0 0.0 3463268.0

Table 4.6: Sample of telemetry time-series data

a log function from which the simulator samples to simulate the invocation. We use
the results for our simulation, performance oriented priority function and the workload
characterization, which we explain in the following section.

4.3.3 Workload Characterization
This section describes our approach to convert telemetry data into a row vector and the
clustering to group similar applications.

Our solution uses telemetry from the baseline benchmarks and uses k-means to cluster
the implemented applications. k-means is part of the unsupervised machine learning
techniques. They focus on finding patterns in data. The input is not labeled and output
interpretation may require domain knowledge and is most often of exploratory nature[21].
Our goal is to find groups of applications that need similar resources. We perform this
step to make our optimization problem tractable regarding a growing number of services.
The classification can further be used to identify unknown applications with a single
trace, such that existing knowledge about other services can be applied to new ones.

Due to the k-means clustering algorithm with Euclidean distance we have to preprocess
our data into a vector of fixed length. Further, the distance function is highly sensitive to
the value ranges and therefore all attributes should be in the same range to avoid a bias
towards larger values. Because we use the resulting vector throughout our work, we have
decided to use the k-means and not a clustering technique that is suitable for time-series
data. Another positive side effect of our preprocessing is the much more interpretable
representation of a function’s resource usage.

Table 4.6 shows an excerpt of the recorded data from one benchmark. Columns prefixed
with cgrp refer to the target service’s usage, that is the service we want to record the
baseline resource usage and performance. Data with regards to bytes, cgrp_blkio and
cgrp_net, show the total bytes written or read since the last timestamp. cgrp_cpu shows
the CPU usage time in seconds since the last measurement was taken, the same holds for
gpu_util. On the other hand ram refers to the system’s total memory used.

Based on the presented data we calculate different measures that all represent a single
trace and therefore mitigates the issue of time series data. We calculate the average
resource consumption for one request. This is done by using the invocation’s FET. Data

31

4. Approach

Metric Value Scaled
CPU 0.184 0.184
RAM 0.34 0.34
GPU 0.36 0.36
Block I/O Total 1310.72 0.0
Net I/O Total 599 308.6 0.0005
Block I/O 286.01
Net I/O 131 431.4

Table 4.7: Example for workload characterization vector

related values are processed as data rates, which represent the amount of bytes that were
written or read per second.

The final workload characterization for a single application and device consists of: Mean
CPU & GPU usage, block and net I/O data rates and total amount of bytes written or
read and mean memory consumption scaled to the device’s maximum capacity.

Table 4.7 shows the resulting characterization from the telemetry presented in Table 4.6.

The result of our workload characterization component is a vector containing resource
usage of a single function invocation on one particular node. These vectors are used by
two different components: the resource contention-aware priority function and as input
for our clustering which we introduce in the next section.

4.3.4 Clustering

The output of our workload characterization per function consists of one vector for each
node, which is not suitable for our clustering algorithm. Therefore, we aggregate the
vectors by using the mean for each value resulting in a vector of fixed length. Due to
the fact that data rates highly depend on the executed device we omit them for the
characterization step.

As the results are highly influenced by the size of each attribute, it is necessary to scale
Block and Net I/O values. Our approach is to scale them between 0 and 1 using a
min-max approach, keeping the original distribution intact. We take the minimum and
maximum for both separately and over all applications. The results of scaling for our
telemetry data from Table 4.6 can be seen in Table 4.7.

After preprocessing the telemetry data of each function into a single vector it is possible
to cluster them using k-means. These groups of applications allow users to recognize
possible hidden similarities between functions. In our case, we mainly use the groups to
support our optimization problem. Before turning to container scheduling, we describe
our implementation of predicting performance degradation.

32

4.3. ML-based workload characterization

Service CPU usage per call
S1 50%
S2 25%
S3 10%
S4 75%

Table 4.8: CPU usages for example services

4.3.5 Performance Degradation

Our approach to performance degradation is realized by employing a Machine Learning
model. The model is based on regression, a technique to predict real values from
observations [42].

Performance degradation happens in situations where multiple programs compete for
the same resources and cause unexpected delays. With the current strategy of using
containers for deployment, co-location and multi-tenancy happens all the time. Previous
works have investigated the impact of resource contention in public clouds [37]. As
our proposed deployment method is container based and multi-tenancy can happen
even on the smallest devices, we cannot discard the impact on performance. Therefore,
we propose a method to predict the performance degradation based on our workload
characterization and extend faas-sim to take resources into account when estimating the
FET. One caveat of this approach is the need to benchmark every device. Though we
are unsure if this could be mitigated in a high fidelity simulator as results show that
performance and resource contention varies between devices. It should be noted further
that for this problem we omit the total amount of bytes written or read and use the data
rates instead.

The problem is formulated as regression task, in which the input corresponds to the
current resource utilization over all running containers and our target is the expected
service degradation as factor relative to the baseline performance.

This means that a prediction of 1 estimates no degradation, while 2 would increase the
FET by 100 per cent.

Input

Our workload characterization offers information about basic resources and GPU usage.
Input modeling is built on intuition for the data. While it is plausible to sum up the
consumption of each resource, we believe that this hides intricate details about the
underlying distribution. In example if two programs are running and needs on a four
core machine 2.5 cores and the other 1.5, they will at least have to share one core leading
to a reduction of CPU usage time. But for of a single program that uses up all cores it
will experience no delay. The sum of CPU usage is in both cases the same.

33

4. Approach

S1

S2

S3

S4

Time

A B

C

D

5 7 9 11

Figure 4.4: Example for calculation of input for the performance degradation model

Therefore, we decide to not only use the sum of each resource but to add various
statistical description measures. The final length of the input vector is 34 and includes
following measures for each resource (CPU, GPU, network and block I/O): mean, standard
deviation, minimum, maximum, 25th, 50th and 75th percentiles, the number of running
containers, sum of each resource and the mean memory usage.

To help us illustrate the input calculation we introduce an example. This calculation is
used in our simulation and to build our training datasets.

Figure 4.4 shows a timeline on which multiple functions are invoked. To simplify the
example we only consider the CPU usage, though this approach applies in the same way
to other resources. In our example four functions are deployed: S1, S2, S3 and S4. The
CPU usage for each service is shown in Table 4.8. As already explained, we measure
CPU and GPU usages on a per request basis, this allows us to make estimations for
calls of different length. For our example we want to calculate the degradation that can
happen during the call of C. This one is interfered by A, B and D. For each interfering
call we calculate the overlap time and multiply it by the CPU usage for each invocation
to estimate the CPU time. A and B overlap for 2, while D does for 7 seconds. According
to Table 4.8 this leads us to 1 second of CPU time for each call of A and 5.25 seconds for
function D. We also consider the call C, which results in 0.7 seconds. The next step is to
sum up the CPU usage time for each service. These sums are used to calculate mean,
standard deviation and percentiles. We can apply the same procedure for GPU usage
and the network/block I/O data rates.

34

4.4. Container scheduling

Training

Our train and test datasets consist, besides the profiling data of our baselines, of
benchmarks specifically designed to cause performance degradation. Because we use the
same model for each service, we have chosen three characteristic workloads that focus on
a single resource: CPU, GPU and block I/O. Further, we use a reference implementation
of Resnet50 (object classification) in these experiments. Because every node is capable of
hosting only certain amount of services, we have to decide in advance for each node the
experiments. In essence, a typical VM instance with several gigabyte of RAM and an
off-the shelf x86 CPU will be able to host multiple services and experience no degradation,
while a SBC will either fail to host the same services or suffer from severe degradation.

Choosing the right model is hard and we employ TPOT [48] to choose our final model.
It uses genetic programming to automatically optimize machine learning pipelines. Basic
configuration of this tool consists of providing train and test datasets as well as the
number of generations.

This approach proves to be sufficient for our use: predicting performance degradation
for known hardware and applications. While the validation scores for all nodes are
satisfactory, it has certain limitations. The most obvious one is the lack of differentiation
between the services and performance degradation output. This boils down to training
with the same input for two different targets. One approach to overcome this issue would
be to include the original workload characterization of the desired service, another one
could insert the clusters obtained from 4.3.4. Further, it is questionable on how the
model performs on unseen services and different inputs. Though the focus of this work is
to provide our simulation a model that predicts the scenario applications and therefore
investigation is out of scope.

This concludes our performance modeling. We present in the next section our approach
to improve container scheduling in heterogeneous clusters using the aforementioned
solutions.

4.4 Container scheduling
This section is structured as follows: we explain our extended version of OpenFaaS, the
optimization problem we solve and finally our priority functions.

4.4.1 OpenFaaSExt
As already mentioned to realize our vision of dynamically deciding between different
accelerator versions of a function, we need to adjust the OpenFaaS architecture to our
needs. Per default it is only possible for users to submit a single container image. In our
opinion users should provide one or multiple images to accommodate different versions
of a function. OpenFaaS lets users submit functions via uploading a FunctionDefinition
containing the image and other details (see Table 2.1). Our approach is to introduce the

35

4. Approach

concept of a FunctionDeployment, which contains all attributes of a FunctionDefinition
but allows developers to add multiple FunctionDefinitions. In essence, we strip the
original FunctionDefinition from all properties concerning scaling and lift them up into a
new type, which basically acts as a container. This introduction enables developers to
freely upload many FunctionDefinitions for one function and lets the system decide which
computing platform to use. The caveat of this approach revolves around the decision
of which FunctionDefinition the system should deploy. We think that a static ranking
is sufficient for our first implementation, though it is plausible to let users dynamically
change this ranking - paving the way for a new optimization problem. That means
users specify an order of computing platforms. After using all nodes that offer a specific
platform, the next one is used. Users can configure on how many nodes per computing
platform the function gets deployed. This is done to enable fine-tuning of function
deployments and gives users more control over their applications and deployments. The
main reason behind this functionality is based on the fact that some computing platforms
may be very expensive and users can save money by reducing the number of instances of
a certain platform. It should be noted here that we implement this proposed system only
in the context of faas-sim and do not provide a production-ready application.

This concept introduces first-class-citizen support for different computing platforms and
is in our opinion a key requirement to realize the vision of serverless edge computing.
Another problem that arises in this context is the high degree of hardware heterogeneity.
The next chapter is dedicated to propose a problem formulation that aims to help
schedulers find suitable nodes in these kinds of clusters.

4.4.2 Capability Matching Problem
We start with a brief review of the capability matching problem, introduce it formally
and show an optimization approach.

Edge computing is characterized by an abundance of different device types, each having
their own capabilities. Especially hardware accelerators that speed up AI applications by
a significant factor are of interest. Due to the limitation of static ranking, to support
multiple computing platforms, we do not influence the choice of accelerator. Choosing
a computing platform is therefore out of scope and our focus lies on considering other
attributes, such as CPU cores, available memory, network, location and hard drives. The
list of capabilities is represented by attributes introduced in Section 4.2. In combination
with the serverless deployment model, where placements happen fully automated, a
suitable strategy, making informed decisions when placing nodes, is required. The goal is
to develop a technique that can match node capabilities with application requirements.

We propose a solution by formulating an optimization problem, which outputs for each
application group a requirement setting. These settings are used by our priority function
that scores each node-application pair based on their compatibility.

Given a set of functions F , function groups G (determined in Section 4.3.4), a mapping
m that assigns each function f to a group g and nodes N , which have a description D.

36

4.4. Container scheduling

The input consists of a group g, its associated functions fn and a selection of nodes
n. We look for the optimal solution, represented by requirements R, that contains for
each possible attribute and value the likelihood of a node having this pair. A possible
solution for this problem can be seen later on in Listing 4.1, but was previously shown
in a different form, the cluster configuration. Before solving the problem we need to
introduce a definition of optimal. In our case we focus on keeping a balance between
heterogeneity and performance. Further, to integrate this approach into OpenFaaS and
make our priority function aware of this, each deployed application its group’s solution
assigned.

The problem is similar to 0/1 Knapsack, which tries to put as many weighted objects
without exceeding the maximum capacity. In our case items are represented by nodes
and their weight is implicitly described their capabilities and performance. Further, our
approach does not have a maximum capacity —it is valid to have a solution containing
all nodes, and we define it as a minimization problem. This approach allows extensions
to include node specific information. For example an objective function can consider the
resource contention of specific device types, which may lower the score. It should be
noted here that we do not implement such heuristics. To evaluate a solution we define
the following heuristic function, which takes a list of selected devices:

performance = mean FET ∗ performance weight
device ratio = number of devices in solution/total devices

variety = ((heterogeneity of selected devices/16) + device_ratio) ∗ variety_weight
score = −(performance + variety)

The mean FET is for all functions between one and zero, one being fastest. The value is
calculated by taking the average over all devices and their mean FET. To prevent any
issues that would prefer functions with generally higher response times, we scale each
FET to the function’s minimum and maximum. This leads to a more abstract mean FET,
but weights each function equally. We divide the entropy by 16, the highest possible
heterogeneity score, to normalize it. The resulting requirement r is calculated based on
the selected devices, i.e., the probability for each attribute and value.

We introduce an example to explain our approach. The cluster is represented by the
configuration B, presented in Table 4.3. We keep the distribution but assume only ten
devices in total. Our application group consists of two functions A and B. The FET for
each device is displayed in Table 4.9. The problem’s input, an array of length ten, is
displayed as solution in Figure 4.5 (1:1 representation). To calculate the score we need
to scale the FETs for each device, which is also shown in the table. For simplicity all
weights are 1 and the resulting performance is 0.675. Because all devices were selected
the device ratio is 1 and heterogeneity has previously been calculated at 2.60. The final
score is -1.84 and its solution, the requirements, are the same as shown in 4.3. Extensions
or modifications are plausible. It is possible to remove the 1:1 representation and just

37

4. Approach

VM 1

1:1 representation

VM 2 VM 3 VM 4 VM 5 VM 6 VM 7 VM 8
Emb. AI

1
SBC 1

Device type representation

VM Emb.AI SBC

SBC 1

Figure 4.5: Example input of our capability matching problem, inspired by Knapsack 0/1

Device Function FET scaled FET
VM A 1 1
Emb. AI A 2 0.5
SBC A 3 0
VM B 2 0.5
Emb. AI B 1 1
SBC B 3 0

Table 4.9: FET for example application

Setting Value
Max num. iterations 3000
Population sizes 100
Mutation probability 0.01
Elit ratio 0.01
Crossover probability 0.5
Parents portion 0.3
Crossover type uniform
Mutation type uniform by center
Selection type roulette

Table 4.10: geneticalgorithm2 settings

take the different types of devices as input, depicted in Figure 4.5. An extension of the
fitness function could consider mutable node states, i.e., resource consumption. This
would entail a repeated execution of the optimization strategy.

We implement two approaches for our evaluation, which differ in input representation.
The first one considers all individual devices, while the second one only uses the device
types. In our case the input is in the latter case very small and we therefore solve it by
enumeration. Further, using the device type representation, we omit the device ratio and
only use the heterogeneity score.

As it is trivial to see that this problem is NP-hard, we have decided to use a Genetic
Algorithm approach to tackle it. Our implementation uses the open source library
geneticalgorithm2 5 and apply its default parameters regarding mutations, selections
and crossovers. The detailed configuration is displayed in Table 4.10. Further, we only
take a look at the parameters of our fitness function and leave the genetic algorithm ones
untouched.

After explaining the components relevant to the scheduling optimization steps we have
taken, we turn to the scheduler extensions which use: baseline profiling, workload

5https://github.com/PasaOpasen/geneticalgorithm2

38

https://github.com/PasaOpasen/geneticalgorithm2

4.4. Container scheduling

characterization and capability matching solutions (requirements).

4.4.3 Scheduler extensions
As described in Section 2.2.2, the Kubernetes scheduler allows developers to inject
custom predicate and priority functions. We develop several of these to add new
accelerator/resource-based hard constraints and priority functions that concern them-
selves with capability matching, resource contention and execution time. In this section
we present Kubernetes related concepts and therefore use the pod terminology analogous
to previous mentions of a function.

4.4.4 Predicates
Predicates, we deem necessary, filter nodes that: do not have enough memory, do not have
the required accelerator, already host a TPU-accelerated pod in case a TPU is required.
In case of GPU-based applications we offer two modes: the first one, representing the
standard Kubernetes setting, only allows one GPU image per node, the second one
retrieves the pods VRAM request and checks if enough is still available. We test in our
evaluation only the default Kubernetes setting.

4.4.5 Priorities
We develop three priorities that should improve different aspects of placement decisions.

CapabilityPriority

The first one takes a pod’s assigned requirements into consideration and is called Capa-
bilityPriority. The calculation, accompanying optimization problem and solution were
introduced in Section 4.4.2. Though it is sufficient to view the requirements as labels
that give each attribute and each instance (i.e.: attribute: Architecture, instance: X86) a
value representing the probability of a node having this pair assigned based on the final
solution set of selected to nodes that balances the FET and variety of nodes.

Therefore, the priority function compares the current nodes capabilities with the pods
requirements and sums up all probabilities. Algorithm 4.2 shows the soft constraint
in pseudo code. This strategy utilizes the mapping of requirements to capabilities and
favors nodes with similar characteristics. For easier understanding Listing 4.1 shows
a requirement object as JSON. The example shows a strong tendency towards devices
equipped with a Turing GPU. Additionally arm32 devices are not represented in the
architecture attribute, though they will receive an increase in case other characteristics
match.

39

4. Approach

Algorithm 4.2: CapabilityPriorityFunction
Result: Estimation how well suited node and pod are for each other based on

the pods requirements
1 Function score:

Input : pod
Input : node

2 priority ← 0;
3 for attribute, instance in node’s capabilities do
4 if pod.requirements[attribute] is available then
5 priority += pod.requirements[attribute][instance] or 0
6 end
7 end
8 return priority;

1 {
2 "architecture": {
3 "x86": 0.5,
4 "aarch64": 0.5
5 },
6 "cores": {
7 "MEDIUM": 1
8 },
9 "accelerator": {

10 "None": 0.1,
11 "GPU": 0.9
12 },
13 "gpu_model": {
14 "TURING": 0.8,
15 "VOLTA": 0.1,
16 "MAXWELL": 0.1
17 }
18 }

Listing 4.1: Resulting requirements for example

ContentionPriority

Our last priority revolves around the imminent problem of resource contention. Algorithm
4.3 shows the implementation. This function’s intention is to score nodes according to
their current resource usage and the additional usage from the new pod. For this we use
our workload characterizations from Section 4.3.3. In contrast to the clustering step we

40

4.4. Container scheduling

do not have to aggregate a single vector for each device but can use the original raw
data. Another difference is that we use in this step the data rates and discard the total
related block and net I/O attributes. Because we know the type of storage and network
connection, we can make crude estimates towards the impact of I/O work.

In essence, we sum up the utilization (CPU, GPU, net & block I/O) for each running
container and subtract it from the pods resource usages. The function favors nodes with
lower resource utilization.

Algorithm 4.3: ContentionPriorityFunction
Result: Score nodes according to their current resource usage

1 Function score:
Input : pod
Input : node

2 pod_blkio ← pod.get_resource_usages("blkio")
3 pod_net ← pod.get_resource_usages("net")
4 pod_cpu ← pod.get_resource_usages("cpu")
5 pod_gpu ← pod.get_resource_usages("gpu")
6 running_blkio ← 0
7 running_net ← 0
8 running_cpu ← 0
9 running_gpu ← 0

10 for running_pod in node.pods do
11 running_blkio += running_pod.get_resource_usages("blkio")
12 running_net += running_pod.get_resource_usages("net")
13 running_cpu += running_pod.get_resource_usages("cpu")
14 running_gpu += running_pod.get_resource_usages("gpu")
15 end
16 if running_net > 0 then
17 running_net /= node.net_speed
18 running_blkio /= node.disk_speed
19 end
20 pod_net /= node.net_speed
21 pod_disk /= node.disk_speed
22 pod_usage ← pod_blkio + pod_net + pod_cpu + pod_gpu
23 running_usage ← running_blkio + running_net + running_cpu +

running_gpu
24 return pod_usage − running_usage

As previously mentioned the data rates represent the bytes a function call needs per
second. This allows us to calculate how much time it takes in the best case. Network
speed is set in the simulation and disk speed estimates are listed in Table 4.11.

41

4. Approach

Disk Speed
NVME 2.5 GB/s
SSD 500 MB/s
HDD 250 MB/s
eMMC 150 MB/s
SD 50 MB/s

Table 4.11: Disk type speed estimations

ExecutionTimePriority

The last priority uses baseline performance of each application and node. In essence, this
constraint favors faster nodes and the implementation is fairly simple, see Algorithm 4.4.
One thing to note is that, due to favoring nodes with higher scores we negate the FETs.
This trick assigns nodes with lower FETs a higher score.

Algorithm 4.4: ExecutionTimePriorityFunction
Result: Score nodes according to their FET of the given pod

1 Function score:
Input : pod
Input : node

2 fet ← pod.get_mean_fet[node]
3 return −fet;

42

CHAPTER 5
Evaluation methodology

This chapter presents our systematic approach to evaluate our findings and artifacts. In
Section 5.1 we recap our approach shortly, highlighting important aspects and give an
overview of our evaluation. Afterwards, Section ?? describes the simulation settings in
detail. The overview includes only for our simulation a detailed description. The other
parts: baseline profiling, workload characterization model & clustering, performance
degradation and the Capability problem optimization are described in their respective
section in Chapter 6.

5.1 Overview
The main goal of this thesis is to evaluate our improvements regarding scheduling of
containers in heterogeneous clusters. These are a collection of priority functions, based
on workload characterization and Capability matching problem, introduced in 4.4.2. The
foundation of our soft constraints and optimization strategy is an approach to characterize
and cluster workloads based on resources. Besides that, we introduce and implement an
approach for predicting performance degradation into our simulator of choice, faas-sim.
Detailed settings of our baseline and performance degradation benchmarks are presented
in Section 6.1 & 6.3 respectively.

Therefore, the evaluation is split up into multiple parts, starting with the base for all
subsequent solutions - the workload characterization and clustering of workloads. The
former presents the final resource vectors. The evaluation of our approach to cluster
functions, based on resource usage, consists of selecting two clustering configurations.
We choose a clustering configuration based on intuition and additionally use silhouette, a
common cluster validation strategy [59], and select the highest scoring one.

Next, we optimize our optimization strategy parameters on one of our three topologies. We
examine runtime characteristics and the objective function’s output. Further, we examine

43

5. Evaluation methodology

the resulting heterogeneity and the impact of our objective function’s hyperparameters.
As mentioned before, we take two cluster configurations into consideration. For this we
optimize and analyze them both separately with regards to the parameters and conduct
later on a pre-defined subset of experiments to decide which one is more suitable for our
applications and devices.

Due to the large impact on simulation results we validate our approach to predict
performance degradation. Because we use TPOT [48], we limit this section to test scores
for all our devices.

After validating all of our approaches that build the foundation for our scheduling
improvements, we prepare one use case scenario and generate three different heterogeneous
clusters. We introduce our experiment setup, which includes scenario, functions, devices
and infrastructures. Besides the comparison with default scheduler settings, we include
simulations that use the priority functions presented by Rausch et al. [58]. As mentioned
in Chapter 3, the foundation of our work is build on [58]. While our priority functions
concentrate on performance and resource contention, theirs are mainly concerned with
data locality and proximity. In addition, we combine all mentioned priority functions.

For now, we focus on the actual metrics, how we measure success or failure, and highlight
key characteristics that build the center of our attention.

Metrics we consider to be of importance are: FET, processed invocations and performance
degradation. We show aggregated results over all functions for our scenarios and select
two experiments, for which we present more detailed results. As we emphasize the need
for considering all devices and to make intelligent decisions when scheduling on Edge
nodes, we take a close look into placements. Based on the workload characterization
we can estimate the resource usage on each node and present an aggregated look at the
general resource usage but also the experienced performance degradation.

This concludes our overview of the evaluation - we continue by explaining our simulation
settings in detail, starting with our scenario.

5.2 Scenario
Before explaining our scenario in detail, we motivate our choice by explaining the general
context of the applications, what differentiates them to the typical cloud-centered services
and new challenges edge computing introduces.

The focus lies on data-intensive serverless edge computing applications [58], specifically
on AI Pipelines that utilize all devices connected to an edge network. Further, our
pipelines use different deep learning models that also show different resource consumption
characteristics. The applications range from object detection models, such as Resnet50
[26], and MobileNets [27], to Speech inference (Deepspeech [23]). For each app, it is
plausible that they fit into the context of Edge Intelligence: generating data is done by
sensors, i.e. traffic cameras or personal assistants. Preprocessing can be done at the edge,

44

5.2. Scenario

i.e. resizing of images. Their use cases may be highly contextual. For speech inference
and object detection the place of use can dictate the importance of words and objects.
Taking the example from section 2.1 with the flower and hardware store. In each of both
spoken language and objects will stem from different contexts.

In summary we can identify characteristics that differentiates them from typical cloud-
centered applications:

1. Heterogeneous landscape: Edge computing in general is considered to be very
heterogeneous in hardware, as many small compute units are deployed. The devices
can range from IoT sensors, Single Board Computers (SBC), AI hardware for edge
systems, cloudlets to cloud servers.

2. Resource contention: shared cloud servers can experience resource contention
through co-located containers and virtual machines [37, 22, 40]. Our experiments
have shown that performance degradation caused by resource contention is much
higher on resource-constrained devices.

3. Accelerators at the edge: AI can benefit by using the right hardware [15]. Cloud
operators like Google offer different services, exposing GPUs or TPUs for specific
workloads. These types of hardware are also represented at the Edge - the Coral
Dev Board provides users a TPU, as USB connected accelerator. Nvidia’s offering
comprises different devices equipped with AI-focused hardware. Due to their small
scale factor they lack performance in comparison to cloud GPUs, but research has
shown that locality of compute nodes are critical in data-intensive edge applications
[58] and therefore it is important to not neglect them.

4. Tight latency requirements: Virtual Reality and Cognitive Assistance are on the
verge of becoming reality, posing strict latency requirements to guarantee flawless
execution, which can be only fulfilled by real time processing.

Edge AI applications combine the aforementioned characteristics. Ranging from use of
audio and video data, like video analytics [12, 66] or personal assistant services (Amazon
Alexa). To large scale operations as seen in Smart City development [53]. In Urban
sensing scenarios, nodes consisting of multiple IoT devices are deployed throughout the
city, capable of capturing and disseminating various information of their environment.

We use the Urban sensing environment as our motivating scenario and base the resulting
cluster from a real world deployment: the Array of Things (AoT), based in Chicago
[9]. Catlett et al. deploy Array of Things nodes (AoT), that measure with the help of
multiple sensors and host computing capability to run services in-suit. Before explaining
the distribution of nodes in our scenario, we present a short overview of our devices. A
more detailed description of the devices follows in Section 5.3.1.

The nodes we simulate in our experiments stem from our testbed, containing nine
different devices. Table 5.1 shows the specification of each device type. There are four

45

5. Evaluation methodology

different types that all serve a purpose. Single Board Computers (SBC) are the weakest
with regard to computing power have no accelerator. We have two different types of
hardware accelerators: GPU and TPU, latter can only be used for inference and GPUs
can additionally train a model. The Nvidia Jetson series and the Coral Devboard belong
to this type. Cloudlets [62] offer more powerful nodes that can help withstanding peak
workloads. VM instances are located in the cloud and have the highest performance.

The aforementioned AoT nodes are distributed over neighborhood areas and have one to
three Single Board Computers (SBC) equipped. To support these devices, we assume
various cloudlets deployed throughout the city, comprised of Intel NUCs and embedded
GPU devices and Edge TPU accelerators. The cells have a shared bandwidth of 10
Gbit/s and are connected to the cloud via a mobile connection that has an up- and
download-bandwidth of 250 Mbit/s. Each cell consists of one or up to three SBCs,
multiple embedded AI devices and one cloudlet. Because our approach to generate the
devices, based on a specification in advance, it is possible that some cells differ in diversity,
it may be possible that some do not contain any SBC, AI device or cloudlet. Though
this is not of concern for this thesis as we focus on placement decisions and the resulting
consequences on performance and resource contention. Besides edge deployments, we
make two types of VM instances available which are located in the cloud and differ only
in the availability of a GPU. These should help withstand peak workloads and are most
appropriate for handling the training of large models.

For our evaluation, it is important to generate multiples settings with a varying number of
nodes. Rausch et al. made a tool publicly available that synthesizes distributed systems
with a focus on Edge scenarios [56]. Their tool, Ether, is capable of generating topologies,
including the possibility to describe different kind of nodes, give them labels, but also
has concepts of data stores and has an integrated network simulation. This allows us to
generate realistic networks, which in turn can be used to simulate plausible scenarios.
This approach lets us evaluate our solution in a meaningful way by considering different
capabilities of the network and each device.

By taking the general structure of the Urban sensing scenario as the basis and using
Ether, we can create various topologies which range in their node type distribution.

5.3 Experiment Setup
After explaining the general context for applications and device topologies we present
detailed explanations. We start by showing the specifications of our testbed, synthesized
evaluation scenarios and finish by describing our functions and their associated workload
patterns.

46

5.3. Experiment Setup

Table 5.1: Device type specifications

Device Arch CPU RAM Accelerator Storage
XeonGpu x86 4 x Core Xeon E-2224 @ 3.44 GHz 8 GB Turing GPU - 6 GB HDD
XeonCpu x86 4 x Core Xeon E-2224 @ 3.44 GHz 8 GB N/A HDD
Intel Nuc x86 4 x Intel i5 @ 2.2 GHz 16 GB N/A NVME
RPI 3 arm32 4 x Cortex-A53 @ 1.4 GHz 1 GB N/A SD Card
RPI 4 arm32 4 x Cortex-A72 @ 1.5 GHz 1 GB N/A SD Card
RockPi aarch64 2 x Cortex-A72, 4 x Cortex-A53 2 GB N/A SD Card
Coral DevBoard aarch64 4 x Cortex-A53 1 GB Google Edge TPU eMMC
Nvidia TX2 aarch64 4 x Cortex-A57 @ 2 Ghz 8 GB 256-core Pascal GPU eMMC
Nvidia Nano aarch64 4 x Cortex-A57 @ 1.43 GHz 4 GB 128-core Maxwell GPU SD Card

Nvidia Xavier NX aarch64 6 x Nvidia Carmel @ 1.9 GHz 8 GB 384-core Volta GPU
48 tensor cores SD Card

5.3.1 Devices
We have setup a testbed that consists of nodes that offer different capabilities. A detailed
description is listed in Table 5.1

The VM instances in our scenarios will be represented by XeonCpu and XeonGpu. The
cloudlets will consist of Intel NUC instances, offering high-performance block I/O due
to the NVME. There are three different types of Single Board Computers: Raspberry
Pi 3/4 and the RockPi Model 4. To represent the modern TPU technology, we use a
Coral DevBoard which is equipped with a Edge TPU - note that this TPU architecture
differs significantly from those that are deployed in Cloud settings, i.e. models have to
prepared in advance for Edge TPU and Cloud TPU models can not run on this device.
Neither is it possible to train on this node, Edge TPUs are specifically made for high
speed inference. GPU embedded devices are represented in three different forms and are
all build by Nvidia and belong to their embedded AI product line Jetson: Nano, TX2
and Xavier NX.

5.3.2 Synthesized Infrastructure
To evaluate our approach we synthesize plausible infrastructures that resemble the Urban
sensing setting. Our scenario resembles a Smart City with cells distributed through the
town, bandwidth and structure of those have been explained in Section 5.2. The following
shows device proportions that are then connected according to our description for purposes
of our simulation. We generate different topologies that differ in the distribution of each
node type and proportions, including the heterogeneity score, are shown in Table 5.2.

The first scenario, cloud, is characterized by having a high number fo XeonCpu instances.
This scenario presents the beginning of adopting Edge Computing. Few nodes are
dispersed at the edge and only 8.2% of the VM instances come equipped with a GPU.
The intuition and intention behind this scenario is to offer an evaluation that builds a
clear contrast to the targeted environment. Our other two scenarios represent the vision
of edge-centric computing. edge cloudlet has a high proportion of cloudlets, that do not

47

5. Evaluation methodology

Coral Nano Intel NUC Xavier NX RockPi RPI 3 RPI 4 TX2 XeonCpu XeonGpu Het.
Scenario
cloud 1.0 4.4 2.8 0.8 2.0 5.4 4.6 1.8 69.0 8.2 5.95
edge cloudlet 1.8 9.8 38.8 3.8 3.2 16.0 14.0 1.4 9.6 1.6 6.92
hybrid 8.0 8.4 14.8 1.4 10.6 21.4 18.6 1.6 9.2 6.0 7.38

Table 5.2: Device proportions in percent of evaluation clusters and the resulting hetero-
geneity score.

Function Functionality Language Watchdog Processing Mode
resnet50-preprocessing Scale & resize images Python 3 HTTP CPU
resnet50-training Fine-tuning of Resnet50 Python 3 HTTP CPU, GPU
resnet50-inference Object classification Python 3 HTTP CPU, GPU
mobilenet-inference Object classification Python 3 HTTP CPU, TPU
speech-inference Speech-to-text transcription Python 3 HTTP CPU, GPU
tf-gpu Matrix multiplication Python 3 Forking GPU
python-pi Pi calculation Python 3 Forking CPU
fio Random block I/O read/write Bash Forking CPU

Table 5.3: Functions used for benchmarking experiments and simulations

offer any accelerators, while hybrid aims to offer all node types with equal chances. To
recap, we consider four node types: SBC, embedded AI, cloudlet and VM instances.
Further we believe that the proportions of SBC are justified as they tend to be very
cheap in contrast to other hardware and therefore should be represented that way. While
embedded AI hardware at the moment is much more expensive, though offers substantial
performance improvement over SBC nodes.

5.3.3 Functions

The platform of choice for deployments is OpenFaaS and therefore our functions are
build accordingly. The basic steps to build a function in this framework consist of
choosing a programming language, the Watchdog and providing user written code -
the function. We have two sets of functions, the first one contains all and is used for
workload characterization and performance degradation. The second one represents AI
pipeline functions and is used in our simulations faas-sim. We present at first our AI
functions and then turn to those that are exclusively used for workload characterization
and performance degradation. Besides a description of functionality, we add further
information about programming language, container image size, additional network traffic
and the selected Watchdog, shown in Table 5.3.

AI pipelines consist in general of different steps, from retrieving and preprocessing
the data, to training and finally inference. In the context of Serverless Computing
the approach to share data between different functions is to use storage accessible via
network. The problem of possible bandwidth congestion and high latencies, caused by

48

5.3. Experiment Setup

slow networks, is posed by the foundation of serverless: stateless functions with automatic
provision. Additionally it is possible for users to submit payload via HTTP but this use
case may be limited by the fact that binary streaming is not available in OpenFaaS. All
AI functions are implemented in Python using Tensorflow. We implement for this thesis
one complete pipeline and add two additional inference applications. The Resnet50 model
[26] is used to implement a complete pipeline. This model is designed to classify images,
i.e.: it may detect the name of a flower. Therefore, the preprocessing step consists of
scaling and resizing images to the dimensions 224x224. The basic steps of this function
include: downloading, preprocessing and uploading images. Network traffic consists of
down- and uploading 28MB total. As can be seen in Table 5.1, some nodes use SD
Cards which drastically reduce block I/O performance and therefore execution times are
very high. The training step downloads a model and data to train it and finishes with
uploading the fine-tuned model, causing a total of 150MB in network traffic. The last
step, inference, downloads upon the first request a 100MB large pre-trained model and
caches it. User requests include a picture and the result is returned as HTTP response.
Training and inference can use CPU or GPU. All functions are implemented with the
HTTP mode watchdog. While training and preprocessing can be implemented using the
process-per-request approach, it is infeasible for inference as caching is necessary to avoid
high latencies. The container image sizes depend on the architecture but range from 700
MB (arm32) to 2 GB (x86, arm64).

MobileNets [27] enables further mobile vision applications and uses Tensorflow TFLite,
the runtime for resource-constrained devices, and additionally is optimized for Edge
TPU accelerators. Therefore devices need to download in total 4MB, making it very
lightweight in contrast to Resnet50. This function’s implementation is the same as before:
downloading model upon first request, caching it for further requests, retrieving the
picture from the request’s body and returning results as response. The TFlite runtime
reduces the container sizes to 180MB.

The last inference application differs substantially in terms of use cases as it offers
speech-to-text inference. Users send audio files as request and receive the transcription.
We use a reference implementation, DeepSpeech [23], which is either run in TFLite or
GPU-accelerated mode. The difference in runtime impacts the container sizes: while
TFLite images need up to 400MB, the GPU-accelerated version takes up to 1.6 GB of
space.

Besides AI-based applications we implement three functions that each focus on a single
resource: CPU, block I/O and GPU. These functions are solely used for workload
characterization and performance degradation benchmarks. The latter focuses on causing
interference when running a task, and is used to create training data for our model. The
CPU workload calculates pi up to a user specified precision, block I/O performs random
read in write requests, while our GPU-focused function calculates a matrix multiplication.

Table 5.3 shows a comprehensive overview of our functions.

49

5. Evaluation methodology

resnet50-preprocessing resnet50-training resnet50-inference mobilenet-inference speech-inference
Constant max rps 1 0.1 50 50 50

Sine max rps 10 10 100 100 100
period 75 150 37.5 25 50

Table 5.4: Workload setting parameters

(a) Constant request pattern (b) Sine request pattern

Figure 5.1: Workload patterns for Resnet50-Inference

5.3.4 Workloads

To simulate user requests we synthesize two different workloads that continually produce
load for a fixed duration. Further, we specify vastly different number of invocations
for training and preprocessing than for our inference functions. The former tend to be
called once every while and inference requests may arrive with a very high frequency.
As our functions can be used for image classification, it is safe to assume that they
are called frequently with respect to applications such as Virtual Reality or Cognitive
Assistance. Our speech inference function is called less often, but fits in the same context
of contextual AI.

We synthesize a constant and sinusoidal profile for our evaluation. Therefore simulation
parameters are the maximum number of requests per second (rps) and in the case of
latter the period. To diversify the simulations further, we use different maximum rps and
periods for our functions. Table 5.4 shows the exact settings we execute the simulations.
Preprocessing and training have a low number of invocations as they are not called
that often in real life and can take a while to complete. Inference requests per second
were chosen due to their use cases and it is plausible that in crowded areas requests are
higher. We run each experiment five times to ensure consistency in our results and each
simulation simulates 33 minutes. The reasoning behind running simulations for a fixed
amount of time is to guarantee a consistent workload for all evaluated approaches. Figure
5.1 displays two generated workloads, constant and sine based for Resnet50-Inference.
The orange line is based on the average number of requests per minute.

50

5.3. Experiment Setup

workload resnet50-training resnet50-preprocessing resnet50-inference mobilenet-inference speech-inference

constant minimum 3 3 3 3 3
maximum 250 125 350 125 125

sine minimum 1 1 3 3 3
maximum 250 125 500 500 500

Table 5.5: Scaling settings

5.3.5 Simulation
Further parameters that need to be set are concerned with auto-scaling. The aim of this
thesis is not to develop a sophisticated scaling strategy but needs to behave realistic.
Therefore we make use of the fact, that our functions use an internal queuing system
and can serve up to four concurrent requests. This is the default setting for OpenFaaS
Functions that use the HTTP watchdog, but it can be fine-tuned in our simulation.
We periodically check, in a fixed time, the median queue length over all applications
and calculate how many replicas are needed to get a target queue length across the
functions. To prevent over-provision, as applications may need some time to setup, we
take starting ones into consideration. The idea of this method is lend from Kubernetes’
default auto-scaler 1 that uses resource consumption as metric. All experiments run with
the same setting and we target a length of 75 calls and check in an interval of 50 seconds.
Further settings are concerned with the minimum and maximum amount of applications
running. We set both numbers for each function and differ between the constant and
sinusoidal simulations. Table 5.5 shows theses settings for each function and simulation.
Parameters were set on a series of benchmarks to avoid bandwidth congestion, that leads
the simulation to come to a grinding halt. faas-sim internally simulates the network, and
deployments, such as resnet50-inference, have to download a considerable amount of data.
Our reasoning behind the maximum number of functions for training and preprocessing
stem from the fact that training may take longer and therefore queues are bound to fill
up much faster, which could occupy all GPU-equipped nodes. Minimum scaling decisions
are based on the fact that the system may react too slow in the beginning and many
requests would get stuck on one node, to prevent this we set the minimum to 3, which
has proven effective.

Capability Matching simulations

After evaluating different weights and choosing the best settings, based on the final mean
FET and heterogeneity, we run pre-defined simulations. These simulations should help
us decide which settings we use for our final simulations. We use our hybrid scenario
and run our sinusoidal workload profile. To this end, we keep the evaluation simple,
concentrating on the average FET and number of finished invocations.

1https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

51

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

CHAPTER 6
Results

This chapter presents the results of our evaluation and is split in multiple steps. First,
we execute baseline benchmarks, which provide faas-sim with Function Execution Times
to sample from. During these experiments we also monitor resource usage. This data
is used to (1) simulate resource consumption on each node, (2) predict performance
degradation, (3) build the basis for our ML-based workload characterization (4) and
help the scheduler make informed decisions. Further, we perform various performance
degradation experiments, showing how contention differs across nodes, and gather data
for our model training. The trained regressor is used by the simulation to estimate
performance degradation, caused by interference through co-located functions. We solve
the capability matching problem using heuristic optimization techniques to determine
a mapping between workloads and appropriate capabilities. To avoid running the
optimization step for each function, we cluster applications based on our telemetry data.
This is necessary to make our approach tractable regarding a growing number of deployed
unknown functions. The previous steps help us to implement three priority functions,
which make the scheduler workload-aware. We compare our solution with priorities
from related research [58] and the default scheduler. Our evaluation consists of three
heterogeneous clusters, which vary in terms on device types, and two workload patterns.

6.1 Baseline Profiling
Gathering real data from our function and devices is a fundamental step in our approach.
This includes the FET and telemetry data. We call each function one hundred times,
except for resnet50-training which is invoked fifty times. Some functions call initialization
code upon the first request, which may result in unexpected long response times. Therefore,
each function is called once before the experiment starts, to omit this setup time.
Afterwards, we repeatedly call the function with an inter arrival time of one second. The
FET represents time needed to execute user submitted code.

53

6. Results

Figure 6.1 reports the aggregated mean FET over all devices. Figures 6.2a and 6.2b
present an overview on performance per device. In both cases the mean FET for each
device is scaled according to the minimum and maximum value for each function and
summed up. The sum is divided by the number of functions in the benchmark. We
include detailed results in Appendix A.

0

5

10

15

20

M
e
a
n
 F

E
T
 i
n
 s

e
c
o
n
d
s

Fio

0.0

0.2

0.4

0.6

0.8

1.0

Mobilenet Inference Tflite

0.0

0.1

0.2

0.3

0.4

0.5

Mobilenet Inference Tpu

0

10

20

30

M
e
a
n
 F

E
T
 i
n
 s

e
c
o
n
d
s

Python Pi

0.0

0.5

1.0

1.5

2.0

2.5

Resnet Inference Cpu

0.0

0.2

0.4

0.6
Resnet Inference Gpu

0

5

10

15

M
e
a
n
 F

E
T
 i
n
 s

e
c
o
n
d
s

Resnet Preprocessing

0

50

100

150

200

Resnet Training Cpu

0

200

400

600

Resnet Training Gpu

0

1

2

3

4

M
e
a
n
 F

E
T
 i
n
 s

e
c
o
n
d
s

Speech Inference Gpu

0

2

4

6

8

Speech Inference Tflite

0.0

0.5

1.0

1.5

Tf Gpu

Figure 6.1: Baseline profiling results

54

6.2. Workload Characterization

RPI 3 RPI 4 Coral RockPi Nano TX2 NX XeonGpuNUC

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
e
rf

o
rm

a
n
c
e

(a) CPU Mode functions ranking

Nvidia Nano Nvidia TX2 Nvidia Xavier NX XeonGpu

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
e
rf

o
rm

a
n
c
e

(b) GPU Mode functions ranking

Figure 6.2: Performance ranking for CPU & GPU functions

6.2 Workload Characterization

Our ML-based workload characterization uses the telemetry data from our baseline
profiling step. The recorded data is a time series and therefore not suitable for our
clustering technique, k-means. We reduce this data to a row vector, which represents the
resource usage of a single invocation. This allows us to (1) add resource consumption to
our simulations, (2) predict performance degradation, (3) cluster functions with k-means
and (4) implement priority functions.

A short excerpt of the collected telemetry can be seen in Section 4.3.2 and we show in
the following the final resource vectors.

Resources, related to data, i.e. BLKIO and NET, show the data rates (MB/s) while
BLKIO_TOTAL and NET_TOTAL are the total amount of MB read or written during
one call.

Figure 6.3 presents the resource vectors as boxplots including all devices. Mobilenet
Inference TPU & Resnet Training CPU show only a single value, because they were
executed on one device, Coral DevBoard and Intel NUC respectively. Further I/O related
columns have been normalized to the range of [0,1], whereas 1 represents largest value
encountered and 0 for the smallest one.

We include all of our results in the Appendix B.

6.3 Performance degradation model

This section presents results of our performance degradation experiments and shows test
scores of our prediction model.

55

6. Results

0.0

0.2

0.4

V
a
lu

e

Fio

0.0

0.2

0.4

V
a
lu

e

Mobilenet Inference Tflite

0.0

0.1

0.2

0.3

V
a
lu

e

Mobilenet Inference Tpu

0.0

0.1

0.2

0.3

V
a
lu

e

Python Pi

0.0

0.2

0.4

0.6

V
a
lu

e

Resnet Inference Cpu

0.00

0.25

0.50

0.75

V
a
lu

e

Resnet Inference Gpu

0.0

0.1

0.2

V
a
lu

e

Resnet Preprocessing

0.00

0.25

0.50

0.75

V
a
lu

e

Resnet Training Cpu

0.0

0.5

1.0

V
a
lu

e

Resnet Training Gpu

CPU

BLK
IO

N
ET

G
PU

RAM

BLK
IO

_T
O
TA

L

N
ET

_T
O
TA

L

0.0

0.1

0.2

0.3

V
a
lu

e

Speech Inference Gpu

CPU

BLK
IO

N
ET

G
PU

RAM

BLK
IO

_T
O
TA

L

N
ET

_T
O
TA

L

0.0

0.1

0.2

V
a
lu

e

Speech Inference Tflite

CPU

BLK
IO

N
ET

G
PU

RAM

BLK
IO

_T
O
TA

L

N
ET

_T
O
TA

L

0.0

0.2

0.4

V
a
lu

e

Tf Gpu

Figure 6.3: Workload characterization aggregated over devices

6.3.1 Performance degradation experiment results

Besides baseline experiments, we execute different workloads to record performance
degradation. These experiments produce data which we use to train our model. We
execute them on each device with individualized sets of functions. The reason for this
is that resource-constrained devices are not capable of hosting the same set of parallel
functions as a full-fledged server. During our experiments, devices with very low RAM
capacity have proven to be very unstable in multi-tenant situations. This resulted in
unexpected function terminations, leading us to determine a suitable set of functions for
each device. Most notable was the Coral DevBoard, which was not able to reliable host
multiple services. Therefore, we decided to omit this device from our experiments and
use in our simulations the trained model of the Raspberry Pi 4 instead.

All benchmarks start one resnet50-inference server and receives requests from one or more
clients. One or multiple instances of interfering functions are started, which are invoked
by possible multiple clients. We start in each experiment only one type of interfering
function. These range from I/O (Fio), CPU (Python-Pi) to GPU-oriented (TF-Gpu)
functions.

After conducting experiments we calculate the actual performance degradation for each
deployed function. This is done by comparing the measured execution time with the
baseline performance and calculating the increase of time as factor. Figure 6.4 shows

56

6.3. Performance degradation model

boxplots which display the performance degradation for each device over all experiments.
Further, because we additionally calculate the performance degradation of interfering
functions (i.e., Fio), the boxplots contain the degradation of all functions.

Detailed data on resource contention and performance interference experiments can be
found in Appendix C

0 5 10

Nvidia Nano

2 4 6

Intel NUC

2 4 6 8

Nvidia TX2

0 2 4

Nvidia Xavier NX

1 2 3

RPI 3

2 4 6

RPI 4

2 4

RockPi

1 2 3

XeonGpu

Figure 6.4: Distribution of performance degradation for all devices. Experiment configu-
rations are shown in Tables C.1 and C.2

6.3.2 Training results

The model predicts the performance degradation based on resource usage. The input
consists of various description measures calculated for each resource. We use our pre-
determined resource vectors (see Section 6.2) to prepare our datasets. We resort in
preparing the training data to our baseline profiling data and do not use the measured
resources during our performance degradation experiments. We justify this approach by
highlighting the fact, that our simulation is not able to simulate real resource consumption,
and uses our resource vectors to estimate it. Therefore, approach and data used to
calculate the input for our prediction model is the same during training and actual usage
(in the simulation).

To aid us in finding the right model we use TPOT [48]. As described in Section 4.3.5,
TPOT is a library that intelligently finds the best prediction pipeline which is set to
evaluate one hundred generations with each having a population size of one thousand,
which resulted in 101.000 pipelines and ran for 340 hours. The scoring function has been
set to use the negative root mean squared error (RMSE).

57

6. Results

Device RMSE MAE
Nvidia TX2 0.283963 0.091257
XeonGpu 0.080036 0.035147
RPI 4 0.100866 0.046196
Intel NUC 0.192262 0.059633
Nvidia Nano 0.276058 0.099172
RockPi 0.164287 0.042085
Nvidia Xavier NX 0.173696 0.054399
RPI 3 0.085547 0.025420

Table 6.1: Validation scores for each device

The final pipeline is:

1 ExtraTreesRegressor(CombineDFs(DecisionTreeRegressor(Binarizer(AdaBoostRegressor(
2 input_matrix, learning_rate=0.001, loss=square, n_estimators=100), threshold=1.0),

max_depth=10, min_samples_leaf=17, min_samples_split=9), PCA(input_matrix,
iterated_power=4, svd_solver=randomized)), bootstrap=False,
max_features=0.8500000000000001, min_samples_leaf=1, min_samples_split=4,
n_estimators=100)

The train and test datasets contained experiments conducted on the XeonGpu dataset
from our degradation experiments. Besides the performance degradation experiment
results, we include all other baseline profiling data too.

The train-test split is 0.75-0.25 and Table 6.1 shows the test score for each device. We
include the mean absolute error (MAE) to interpret the results more easily. The score
represents the average error over all predictions and therefore can easily interpreted by
looking at the range of values from our dataset (see Figure 6.4). For completeness we
include the RMSE scores.

6.4 Workload Clustering
We now present the results of our workload clustering. The goal is to find clusters of
similar workloads based on resource consumption. To this end, we use k-means to find a
fixed number of clusters.

As described in Section 4.3.3, we use for each function our calculated resource vector.
We discard data rates and the average RAM consumption. Further, it is necessary to
scale BLKIO_TOTAL and NET_TOTAL between 0 and 1, as k-means is biased towards
larger values. This stems from the euclidean distance function, which is used to calculate
the distance between two instances.

We determine two different cluster sizes. The first solution is evaluated manually and

58

6.5. Capability Matching Problem Optimization

0 1 2 3 4 5 6

Cluster

speech-inference-gpu

tf-gpu

resnet-training-cpu

mobilenet-inference-tflite

mobilenet-inference-tpu

resnet-inference-gpu

resnet-training-gpu

python-pi

resnet-preprocessing

speech-inference-tflite

fio

resnet-inference-cpu

S
e
rv

ic
e

(a) Best subjective configuration

0 1 2 3 4

Cluster

mobilenet-inference-tflite

mobilenet-inference-tpu

python-pi

resnet-inference-cpu

resnet-inference-gpu

resnet-training-gpu

resnet-training-cpu

speech-inference-gpu

tf-gpu

fio

resnet-preprocessing

speech-inference-tflite

S
e
rv

ic
e

(b) Silhouette score selection

Figure 6.5: Selected cluster configurations

of Clusters Silhouette Average
4 0.354243
5 0.386039
6 0.371803
7 0.332041
8 0.262011
9 0.230591

10 0.264676

Table 6.2: Silhouette averages for different number of clusters

based on intuition, i.e. the clustering seems promising. To offer an objective evaluation we
use the silhouette score, for which we show various results and choose the highest scoring
k. The silhouette score is calculated for each instance and is a measure of similarity to
its assigned cluster. It ranges from -1 to 1, whereas higher values indicate a better fitting
clustering configuration. By scoring each instance of one cluster, we can take the average
to judge the quality of the cluster configuration [59].

In all cases our k ranges between 4 and 10. The cluster configuration, based on subjective
intuition, is visible in Figure 6.5a. The silhouette averages are presented in Table 6.2 and
the best cluster configuration, according to the silhouette score, is shown in Figure 6.5b.

6.5 Capability Matching Problem Optimization
In this section we show results of solving the capability matching problem, introduced
in Section 4.4.2. The goal is to map functions to favorable device capabilities. Our
optimization problem formulation has two parameters: a group of functions and a list
of devices. Th fitness function of our optimization is based on performance and the

59

6. Results

set’s heterogeneity. Performance is calculated by using results of our baseline profiling
experiments. We retrieve each function’s mean FET for each device in the selected set. We
calculate the average FET across all devices and functions. Before calculating the average,
we normalize the FET per function between 0 and 1. This prevents functions with larger
values (i,.e. inference vs. training) to dominate the solutions. Solutions (requirements)
contain a list of device capabilities, each having the frequency of occurrence assigned.
This leads to higher values for capabilities that appear more often in the selected set of
devices. The solutions aid our CapabilityMatchingPriority, and enables the scheduler to
favor nodes with favorable capabilities. The priority function matches the requirements of
the function with a node’s capabilities. Which scores nodes higher, that have capabilities
that occurred frequently in the final solution set of our optimization.

Our fitness function has two internal weights: performance and variety. While the former
should promote solutions that favor the inclusion of nodes with fast FET, the latter
increases favourability of having more and different devices regardless of performance.

Further, we evaluate two approaches of input modeling: ga and enum. While in ga, we
can select each individual device, enum only considers the unique types of devices (i.e,
Raspberry Pi 4). We optimize the former by using a genetic algorithm, and can solve the
latter by enumeration.

Additionally, we evaluate both cluster configurations (k5 and k7) for workload characteri-
zation from the previous Section 6.4.

To this end, we (1) perform parameter tuning and (2) execute a small set of simulations.
(1) shows the influence of parameters on the performance and heterogeneity, and (2)
select approach, weight settings and cluster configuration to use for our priority function
in our final simulations.

6.5.1 Parameter Tuning
We show an excerpt of our parameter search in Table 6.3 and 6.4, ga and enum
respectively. Each table contains the results for both clustering approaches, k5 and k7. In
each table the three best and worst results are presented. Our implementation performs
an optimization step for each identified workload group and tables show average values
over all groups. We use the hybrid set of devices for this evaluation.

Figures 6.6 and 6.7 delve deeper into the relationship between parameters. As before,
values represent the average over all workload groups.

The plots use the variety weights as x-axis and display the resulting mean FET or
heterogeneity score. The marker’s color represents the associated performance weight.

6.5.2 Simulations
In this section we want to determine approach (ga, enum), weight setting (performance
and variety) and cluster configuration (k5 and k7), to use as support for our Capability-

60

6.5. Capability Matching Problem Optimization

Sum scores Mean FET Het. score Function Duration
clustering p v

k5 0.25 0.75 1.03 0.55 7.62 -1.24 850.67
1.00 1.03 0.55 7.62 -1.61 928.38

0.50 0.75 1.03 0.55 7.63 -1.38 825.04
0.25 1.29 0.82 7.42 -0.69 603.52

1.00 0.50 1.29 0.82 7.42 -1.37 587.45
0.75 0.25 1.31 0.91 6.42 -0.90 511.37

k7 0.25 1.00 1.03 0.55 7.57 -1.6 857.18
0.75 1.03 0.56 7.57 -1.24 950.29
0.50 1.03 0.56 7.60 -0.87 852.65

0.50 0.25 1.33 0.85 7.60 -0.69 644.92
1.00 0.25 1.34 0.95 6.31 -1.15 638.55
0.75 0.25 1.36 0.92 6.92 -0.92 553.58

p = performance, v = variety weight

Table 6.3: Best (bottom rows) and worst (top rows) results for the GA approach.

Sum scores Mean FET Het. score Function Duration
clustering p v

k5 0.25 1.00 1.17 0.66 8.25 -0.68 0.65
1.00 0.25 1.18 0.99 3.16 -1.04 0.66
0.25 0.50 1.30 0.83 7.45 -0.44 0.64
0.75 0.75 1.32 0.91 6.52 -0.99 0.64
1.00 0.75 1.32 0.91 6.51 -1.22 0.66
1.00 1.00 1.32 0.91 6.52 -1.32 0.64

k7 0.25 1.00 1.25 0.72 8.50 -0.71 1.04
1.00 0.25 1.26 0.98 4.49 -1.05 1.00
0.25 0.75 1.34 0.85 7.92 -0.58 1.01
0.50 0.50 1.36 0.93 6.89 -0.68 0.97
0.75 0.75 1.36 0.93 6.89 -1.02 0.98
1.00 1.00 1.36 0.93 6.89 -1.36 0.99

p = performance, v = variety weight

Table 6.4: Best (bottom rows) and worst (top rows) results for enum approach.

61

6. Results

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Variety

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n
 F

E
T

K5 GA

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Variety

0

2

4

6

8

10

H
e
t

S
c
o
re

K5 GA

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Variety

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n
 F

E
T

K5 Enum

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Variety

0

2

4

6

8

10

H
e
t

S
c
o
re

K 5 Enum

Performance

0.25

0.5

0.75

1.0

Figure 6.6: Influence of performance on variety tuning for k5 clustering

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Variety

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n
 F

E
T

K7 GA

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Variety

0

2

4

6

8

10

H
e
t

S
c
o
re

K7 GA

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Variety

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n
 F

E
T

K7 Enum

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Variety

0

2

4

6

8

10

H
e
t

S
c
o
re

K7 Enum

Performance

0.25

0.5

0.75

1.0

Figure 6.7: Influence of performance on variety tuning for k7 clustering

62

6.5. Capability Matching Problem Optimization

Preference Approach p v kn

Preference 1 enum 1 1 k5
Preference 2 enum 1 1 k7
Preference 3 ga 0.75 0.25 k5
Preference 4 ga 0.75 0.25 k7

Table 6.5: Preference definitions

Performance Deg. x̄ Performane Deg. σ Invocations (scaled)
Approach p v kn

enum 1 1 k5 1.55 0.72 4.91
enum 1 1 k7 1.48 0.66 4.86
ga 0.75 0.25 k5 1.46 0.63 4.79
ga 0.75 0.25 k7 1.46 0.64 4.96
p = performance, v = variety weight, kn = clustering configuration

Table 6.6: Preference evaluation simulation results.

MatchingPriority.
Our formulation of the capability matching problem results in a list of weighted capa-
bilities to favor during scheduling, called requirements. We solve the problem for each
workload group and each function gets its group’s solution assigned. The Capability-
MatchingPriority reads requirements and compares it with the capabilities of the node
to score. Therefore, nodes similar to the requirements receive a higher score.

We introduce the term preference, which consists of: an approach, weight setting and
clustering configuration. There are four preferences, which were best in their category
during parameter tuning, they are shown in Table 6.5.

We do not present detailed results of our simulations, but focus on deciding the preference
to use in our simulations. These simulations compare our priority functions, to the
scheduler with others. Therefore, we base our decision only on two aggregated values
that represent the number of processed invocations and experienced degradation. In each
run we simulate 15 minutes. Table 6.6 shows normalized and aggregated values, which
represent the mean and standard deviation of performance degradation and the finished
number of invocations. The latter is normalized to equally weigh all five functions,
resulting in a maximum possible score of 5. We set the devices to hybrid and executed
the sine workload.

63

6. Results

6.6 Simulations
In the following we compare four different approaches to support scheduling decisions in
Kubernetes. The approaches differ in the set of priority functions. First, we introduce
notations that concern approaches, scenarios and workload patterns. Afterwards, we
present the results.

6.6.1 Notation
We introduce a notation and naming scheme for each approach and use this in the
following section for references.

• vanilla: refers to the scheduler with default settings. Tries to spread functions
across the nodes, based on the associated CPU and memory consumption.

• ga: refers to the scheduler modified with our approach and uses the three priority
functions presented in Section 4.4.5. They take capability matching, resource
contention and performance into account - aiming to utilize edge resources with a
focus on more powerful devices but takes resource contention into consideration.

• skippy: refers to the scheduler modified with priority functions introduced in [58].
They focus on placing applications in near proximity to data employ a rudimentary
resource contention function. The difference to ours lies in only considering CPU
and memory - neglecting GPU, network and disk. Further, CPU and memory
requirements are estimated and assigned by users. We use the resource vectors
from our workload characterization.

• all: refers to the scheduler using all previous priority functions.

Besides different approaches, there are two types of workload patterns. The settings for
each pattern are shown in Table 5.4.

• sine: produces workloads based on a sine wave. Each application has different
settings regarding maximum requests per second and period. In this case, all
functions have different settings.

• constant: produces constant workload. The only parameter is the maximum
requests per second (RPS). Training and Preprocessing receive much less invocations
then the inference functions.

64

6.6. Simulations

Further, there are three scenarios characterized by different device distributions, which
are shown in Table 5.2.

• cloud: characterized by a high number of cloud VM instances.

• edge cloudlet: characterized by a high number of cloudlets (Intel NUC), has the
least amount of GPU-equipped cloud VM instances.

• hybrid: characterized by a rather balanced distribution over the four node types
(SBC, embedded AI, cloudlet, cloud VMs).

This concludes the notation and we continue by presenting our results. The results focus
on three aspects: processed invocations, FET and performance degradation. For each
category, we present the aggregated results over five experiments to evaluate consistency
of each approach. Further, we show the performance degradation and resource utilization
for one specific experiment run and select another experiment, of which we investigate
the placement of containers.

A caveat of using all functions, that appear in an AI pipeline, are the different ranges
of total invocations and FET. For example, preprocessing and training are called less
often than inference functions (5.000 vs. 80.000). Further, FETs of both functions are
much higher than for the inference ones (100 seconds vs 1 second). Therefore, we have
to aggregate and normalize FET and invocations to compare them in a compact fashion.
Normalization is based on min-max scaling, the minimum in all cases is 0 and maximum
depends on the metric. For FET, we use the largest FET that occurred during all
simulations. Invocations are scaled by taking the maximum number of invocations over
all approaches.

We scale each function individually. In case of invocations, this implies that functions
with low RPS are not under-represented. As the scaling happens per function, all are
weighted equally and inference services, with high RPS, do not overshadow training
requests. We normalize invocations for each workload separately. Because FETs are
rather similar across all experiments, we choose to scale them equally, making comparison
across workloads possible.

65

6. Results

6.6.2 Invocations
This section presents the average total number of finished invocations processed during
our experiments. Figure 6.8 presents the scaled and aggregated invocations for constant
and sine workloads. It is important that the throughput is in all cases relatively similar,
this guarantees comparability between approaches. To this end, we pre-compute the inter
arrival times for each function and replay them in each simulation.

all ga skippy vanilla
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

c
e
s
s
e
d
 i
n
v
o
c
a
ti

o
n
s
 o

v
e
r

a
ll
 f

u
n
c
ti

o
n
s

Cloud

all ga skippy vanilla
0.0

0.2

0.4

0.6

0.8

1.0

Hybrid

all ga skippy vanilla
0.0

0.2

0.4

0.6

0.8

1.0

Edge Cloudlet

(a) Constant workload pattern

all ga skippy vanilla
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

c
e
s
s
e
d
 i
n
v
o
c
a
ti

o
n
s
 o

v
e
r

a
ll
 f

u
n
c
ti

o
n
s

Cloud

all ga skippy vanilla
0.0

0.2

0.4

0.6

0.8

1.0

Hybrid

all ga skippy vanilla
0.0

0.2

0.4

0.6

0.8

1.0

Edge Cloudlet

(b) Sine workload pattern

Figure 6.8: Aggregated and normalized processed invocations

66

6.6. Simulations

6.6.3 FET
This section presents the average FET over all experiment runs in Figure 6.9. Figure
6.9a shows the results for constant workload, and Figure 6.9b for the sine workload. As
described before, we apply min-max scaling for each function individually and then take
the average over all functions combined. The results are normalized over each scenario
and workload to guarantee comparability.

all ga skippy vanilla
0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
o
rm

a
li
z
e
d
 F

E
T
 o

v
e
r

a
ll
 f

u
n
c
ti

o
n
s

Cloud

all ga skippy vanilla
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Hybrid

all ga skippy vanilla
0.00

0.05

0.10

0.15

0.20

0.25

0.30
Edge Cloudlet

(a) Constant workload pattern

all ga skippy vanilla
0.00

0.05

0.10

0.15

0.20

0.25

N
o
rm

a
li
z
e
d
 F

E
T
 o

v
e
r

a
ll
 f

u
n
c
ti

o
n
s

Cloud

all ga skippy vanilla
0.00

0.05

0.10

0.15

0.20

0.25

Hybrid

all ga skippy vanilla
0.00

0.05

0.10

0.15

0.20

0.25

Edge Cloudlet

(b) Sinusoidal workload pattern

Figure 6.9: Aggregated and normalized FET results over all experiment runs

67

6. Results

6.6.4 Performance Degradation
An important goal of our work is to identify, quantify and prevent performance degradation.
Figure 6.10 shows the average performance degradation over all experiment runs, for
each workload and scenario. Our trained machine learning model predicts this factor,
based on the node’s concurrent requests.

all ga skippy vanilla
0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti

o
n

Cloud

all ga skippy vanilla
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Hybrid

all ga skippy vanilla
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Edge Cloudlet

(a) Constant workload pattern

all ga skippy vanilla
0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
e
rf

o
rm

a
n
c
e
 d

e
g
ra

d
a
ti

o
n

Cloud

all ga skippy vanilla
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Hybrid

all ga skippy vanilla
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Edge Cloudlet

(b) Sinusoidal workload pattern

Figure 6.10: Aggregated degradation over all experiment runs

68

6.6. Simulations

Individual run

Figure 6.11 shows the results of an individual run. The figures illustrate how the resource
utilization and the performance degradation behave during runtime depending on which
scheduler is used. In contrast to other results, the figure represents exactly one experiment
run. We show the average performance degradation over all devices and additionally
include the standard deviation. The total resource utilization is the sum of all resources
(CPU, GPU, block/network I/O and memory). The calculation is based on our resource
vectors, while this represents a single invocation, we think it is useful as an estimation.
Each resource is scaled using min-max technique, where minimum and maximum are
based on the smallest and largest value logged during our simulations. For each container
we take the usage of a single invocation and add the values for each resource together.
Further, we sum up all resources and normalize it.

0 250 500 750 1000 1250 1500 1750 2000

Time passed in seconds

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

P
e
rf

o
rm

a
n
c
e
 D

e
g
ra

d
a
ti

o
n

Approach

all

ga

skippy

vanilla

0 250 500 750 1000 1250 1500 1750 2000

Time passed in seconds

0.00

0.05

0.10

0.15

0.20

T
o
ta

l
R

e
s
o
u
rc

e
 U

ti
li
z
a
ti

o
n

Approach

all

ga

skippy

vanilla

Figure 6.11: Performance degradation and resource utilization over all nodes. Taken
from the cloud scenario during constant workload.

We include for this run also the number of nodes that had on average multiple containers
running, the results are shown in Figure 6.12.

all ga skippy vanilla
0

2

4

6

8

10

12

14

16

N
u
m

b
e
r

o
f

n
o
d
e
s

Parallel containers

2

3

4

Figure 6.12: Number of nodes that had on average multiple containers running. Taken
from the cloud scenario during constant workload.

69

6. Results

Scenario Workload FET Performance Degradation

cloud constant 56% 33%
sine 44% 26%

edge cloudlet constant 68% 57%
sine 59% 52%

hybrid constant 47% 46%
sine 33% 45%

Table 6.7: Decrease of FET and performance degradation by using ga instead of vanilla

Function ga vanilla
mobilenet-inference 88 307.2 87 820.4
resnet50-inference 95 701.4 92 548.4
resnet50-preprocessing 3179.2 2241.6
resnet50-training 52.0 71.0
speech-inference 98 063.4 71 868.6

Table 6.8: Average number of invocations

6.6.5 ga vs. vanilla

This section compares ga and vanilla and presents in Table 6.7 the decrease of FET and
performance degradation that occurs when applying ga instead of vanilla.

6.6.6 Edge Cloudlet

In this section we present a detail report about actual placements in the edge cloudlet
scenario. We focus on the ga and vanilla approach, and the sine workload pattern. The
reason for this is, that we want to show: why vanilla has processed fewer preprocessing
invocations, and investigate the low number of processed training invocations in our
approach (ga). In all cases, we present the average over all experiment runs.

To put things into perspective, we present the average number of invocations per functions
in Table 6.8.

While vanilla processed less speech-inference invocations, we focus on the the preprocess-
ing and training functions. The reason for this is that the phenomena are related to each
other. Before presenting the results, we want to highlight that the deployment ranking
dictates for both functions to schedule first the GPU version and afterwards the CPU
one. In case of speech-inference, we schedule first the TFlite version (CPU).

Next, we determine on which nodes the functions were scheduled. Figure 6.14 shows the
number of finished deployments per node.

70

6.6. Simulations

ga vanilla
0

500

1000

1500

2000

2500

3000

3500

4000

In
v
o
c
a
ti

o
n
s

(a) Resnet50-preprocessing

ga vanilla
0

20

40

60

80

100

In
v
o
c
a
ti

o
n
s

(b) Resnet50-training

Figure 6.13: Number of of invocations

NUC Xavier NX RockPi RPI 4
0

10

20

30

40

50

60

N
u
m

b
e
r

o
f

s
c
h
e
d
u
le

d
 c

o
n
ta

in
e
rs Approach

ga

vanilla

(a) Resnet50-preprocessing

Nano Xavier NX TX2 NUC XeonGpu
0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f

s
c
h
e
d
u
le

d
 c

o
n
ta

in
e
rs Approach

ga

vanilla

(b) Resnet50-training

Figure 6.14: Resnet50-preprocessing and training containers per node type

Scheduling results lead us to believe that the GPU computing platform is exhausted in the
vanilla approach and therefore has to use Intel NUC units. Therefore, we investigate the
average number of scheduled containers per node and focus on GPU-accelerated functions.
While the speech-inference function supports GPUs, the scheduler was able place the
TFlite function in all cases, and therefore deployment ranking did not dictate to schedule
the GPU version. Table 6.9 shows the average number of scheduled GPU-accelerated
functions per node, over all experiments.

71

6. Results

Table 6.9: Average number of scheduled containers per node and function

Function Node type Count
resnet50-inference Nano 23.4
resnet50-inference Xavier NX 10.0
resnet50-inference TX2 4.6
resnet50-inference XeonGpu 8.0
resnet50-training Nano 25.8
resnet50-training Intel NUC 50.4
resnet50-training Xavier NX 9.0
resnet50-training TX2 3.0

Table 6.10: vanilla approach

Function Node type Count
resnet50-inference XeongGpu 3.0
resnet50-training Nano 48.8
resnet50-training Intel NUC 5.0
resnet50-training Xavier NX 19.0
resnet50-training TX2 6.4
resnet50-training XeonGpu 5.0

Table 6.11: ga approach

72

CHAPTER 7
Discussion

In the following we discuss the results presented in Chapter 6. We start with results
of our Baseline Profiling experiments and the Workload Characterization. Afterwards,
we highlight our experience doing performance degradation benchmarks and using the
data to create the prediction model. Before showing Capability Matching Problem
optimization results, we discuss our k-means clusters. Both are important for the last
part, the simulation. In which we discuss performance, degradation and discuss two
experiments in detail.

7.1 Baseline Profiling & Workload Characterization
Baseline benchmarks were executed to obtain the FET and resource consumption per
request, without any workload interference or concurrent requests. Figure 6.1 shows
the performance aggregated over all devices. The baseline profiling results show a high
variance regarding FET. A ranking including all devices is included in Figure 6.2. In
general, the devices behave as expected with regards to performance. The Raspberry Pi
3 has a performance score of zero, because in all cases it took the longest to complete a
request. The ranking for GPU-focused workloads shows a much higher difference between
nodes. The high variance during the Fio workload is explainable by the different disks
used in our testbed. Block I/O devices range from relatively slow SD Cards to NVME
SSDs. Our results show further the decreased CPU usage time when utilizing GPUs. We
perform CPU-based resnet50-training on the Intel NUC and use the GPUs of our other
devices to run the same training procedure. In case of former the CPU usage is over
75% per request, while in the other case the CPU time decreases to under 20%. Due to
the small size of our audio file (90kB) network metrics are lower than for Mobilenet and
Resnet services. The reason for high RAM usage during TF-Gpu workloads is owed to
the fact that VRAM and RAM are shared on Jetson devices.

73

7. Discussion

We think that the resource vectors seem promising to base our workload characterization
on them. We argue that the vectors describe each function accurately. For example, Fio
utilizes the most block I/O data rate, while Python-Pi is CPU-only. Further, model
training is a task which uses all resources and depicts this accurately. Inference functions
utilize CPU, GPU and network, which intuitively is correct.

A limitation to this approach is that we only considered one input for each function.
Different inputs could potentially lead to different resource usage of the same function.
For example, no block I/O was registered during preprocessing. We attribute this to
the small batch size of images, which nodes can store in-memory. In case of larger
images this behavior may change, leading the resource vector to display block I/O. The
same observation can be made for the resnet50-training function, where block I/O varies
between devices. Further, resnet50-inference-gpu scales the image, and calls the inference
engine always with the same image size. Larger images may increase network traffic, but
because the image is always of same size, the GPU usage does not increase. This would
lead to different resource vectors.

Another thing to note is that resource usage heavily depends on the device. For example,
Speech-Inference-GPU resource vectors are very different between devices. This proves
that the impact of workload on resources heavily depends on the device.

In the same way as resource usage differs, the FET also depends on the node. Which
strengthens our argument, that schedulers need to be workload-aware to make placement
decisions, that focus on providing the best performance.

7.2 Performance Degradation
Training and test datasets for learning a performance degradation prediction model are
created by executing benchmarks targeted at causing performance. Due to the highly
heterogeneous computing infrastructure, we need to adapt experiments based on each
device. Most problematic is the Coral DevBoard, for which we use the Raspberry Pi
4 model, as we did not succeed in running any meaningful tests. Besides that, our
results show a clear trend that devices have vastly different degradation characteristics.
Low-performances, such as the Raspberry Pi 3, have experienced degradation of up to
2000%.

We use an AutoML library [48] to aid us in the search for a model as our focus lies on
optimizing scheduling, but it is still important to include degradation in our simulation.
The chosen pipeline has proven to be efficient in generalizing over different nodes as the
test scores show in Table 6.1.

Results indicate that our input provides sufficient information to learn a predict degrada-
tion. A limitation to our approach is that we do not differ between functions. Because
performance degradation may differ between functions on the same resource usage, our
model’s output may be not intuitive or possibly random.

74

7.3. Workload Clustering

Another caveat of our evaluation is that we do not test unknown functions. Training and
test set may share similar data, leading to overfitting.

Further, as described in Section 6.3.2, we use the pre-calculated resource vectors when
preparing our training data and not the actual resource usage during degradation
experiments.

7.3 Workload Clustering
Clustering of functions is our approach to make the Capability Matching feasible for
scenarios in which hundreds of different functions are deployed. This would result in
executing the optimization step for each application. Instead, we apply clustering to
create a fixed number of sets to which each function is assigned to. The assignment is
done by k-means and its input is the workload characterization vector. Because we use
different devices we aggregate the characterizations using mean values. Figure 6.5 shows
our final assignments. We use the popular silhouette score and intuition to choose two
configurations. The former creates five clusters in total. Comparing cluster formations
with the individual resource usages reveal that there is a cluster for I/O heavy functions
(4), CPU oriented tasks (0) and GPU applications (3). The remaining two clusters
contain the two versions of resnet50-training. We think that this is a suitable clustering
and accurately depicts reality. The subjective choice is made up of seven clusters. The
main reason for choosing this clustering is mostly to put the Fio service into its own
cluster, as we saw highly variant FET results and believe that it’s best to separate it
from other functions. Training versions are as before in their own cluster, as well as GPU
oriented applications. A caveat of this approach is the fact that we need to introduce for
each computing platform new clusters. We need to this, as we perform our capability
matching problem based on the workload groups. Because our OpenFaaSExt system
deploys static ranking, the scheduler can not actively recommend a computing platform.
Therefore, it makes no sense to use the clusters as represented here, but split them further
apart. Though the number of groups is still constant, which was the main reason to
perform this step.

As the maximum silhouette score is 1, we think that there is room for improvement in
this regard. First, we believe that there are too few functions of each type of workload
(preprocessing, inference, training). It would make sense to implement multiple functions
of each type. This would give us more confidence regarding generalization, though there
are already distinct groups of workload recognizable.

Second, a sophisticated analysis of the relationship between execution times and clusters
is in order. This analysis would validate if the relative performance across functions and
devices is the same. In other words, if we rank devices, based on execution time, over each
function in one cluster, is the ranking for each function the same? Perform nodes equally
well across functions that we put in group? If not, is there a trend visible? Answering
these questions, can aid our scheduling strategy by enabling estimating performance on
a node, solely based on resource consumption.

75

7. Discussion

7.4 Capability Matching Optimization

Parameter Tuning

The problem we face and solve is to map functions to appropriate nodes. Functions have
requirements and nodes offer capabilities. Our problem formulation produces a list of
requirements, which represent the probability of a node having a specific capability. We
use two different input representations for the Capability Matching Problem. ga includes
each device, and enum includes only device types. ga has the advantage, that its objective
function could include runtime information into the optimization (i.e., current resource
usage). In clusters with many nodes this may be infeasible. Our fitness function does
not consider any runtime information and only balances the score between performance
and heterogeneity. The influence both factors have on the solution can be seen in Table
6.3 and 6.4. In the former, results of ga are shown. Both approaches reach the same
levels of performance and variety. Though, enum achieves a better score in case of high
variety and low performance weights. The other difference lies in the duration that is
used per cluster. Regarding ga it is interesting that the weights have an impact on the
duration. Results indicate higher performance and lower variety weights result in shorter
optimization steps. Further, both approaches favor higher performance weights but differ
in the selected variety. enum scores highest with both parameters set to 1, while ga
selects a performance weight of 0.75 and 0.25 as variety.

Further, function scores were re-calculated for each final solution set weights set to 1. This
approach seems counterintuitive and not practical for two reasons. First, the re-calculated
function score does not represent the final sum of mean FET and Heterogeneity Score
reflect, which in some cases even invalidates the ranking. Second, we think that comparing
scores is only useful in tuning the hyperparameters of the GA. Our approach to compare
solutions based on resulting mean FET and heterogeneity seems more suitable in our
situation.

Figures 6.6 and 6.7 present the influence weight and variety parameters have on FET and
heterogeneity for k5 and k7 respectively. At first we are going to examine each individual
clustering, starting with k5, and conclude with an overall comparison. For each cluster
setting we compare the resulting mean FET over all application clusters with regards
to variety and performance weight. The goal is to see which approach (enum and ga)
is affected the most by different parameters. This knowledge helps tuning weights as
changes are of deterministic nature.

Using k5 and comparing performance, the ga approach is much more susceptible to
changes of parameters and performance drastically reduces with higher variety settings.
In contrast to that, with enum the FET only reduces in case of high variety and lower
performance settings, but is stable otherwise. The same behavior is visible regarding
heterogeneity score. Parameters influence ga much more. In our opinion the outcome of
our ga approach changes in expected fashion which aides further parameter optimization
and makes tuning deterministic. Parameters did not influence enum in the same way. We

76

7.4. Capability Matching Optimization

think testing other weight parameters (i.e., variety = 10) is in order and would deepen
the understanding of this approach.

k7 results are similar in terms of effect the parameters have. ga’s mean FET changes
drastically depending on variety and weight settings, while enum’ mean FET changes only
slightly and parameters do influence the result as much. The same is visible when looking
at the heterogeneity score. One interesting observation can be made when comparing
k5 and k7, mean FET and heterogeneity score differ not much. That means, that the
optimization approach performs equally well over both clustering configurations. Further,
the results of each optimization step, should in turn aid the scheduler in the same way.
We see if this statement holds in the next section.

We extract the four best performing settings for each approach and clustering configuration.
This selection competes against each other in Section 7.4 by running actual simulations.

Optimization Simulations

To determine which approach (ga, enum), weight setting (performance, variety) and
cluster configuration (k5 and k7) to use for our final evaluation, we executed four
simulations. We introduced the term preference to refer to the four sets of parameters,
we determined in the previous section. Table 6.5 shows the settings for each preference.

The simulations were executed with the hybrid computing cluster and sine workload
pattern.

Table 6.6 shows the average and standard deviation of performance degradation and
additionally the scaled number of processed invocations.

With regards to the number of processed invocations, we can see that our ga-k7 approach
leads by a margin of 0.04 in comparison to our enum-k5 approach. As mentioned before,
we already suspected that all preferences may perform equally well. While there is a
small difference, we think this is a positive outcome, as it shows that we can assume from
our optimization results it will perform during the simulation. The same holds true for
performance degradation as preferences differ only slightly compared to each other.

While the results seem to indicate that we can already conclude from heterogeneity score
and mean FET of each preference, to validate this hypothesis, further experiments have
to be conducted.

We conclude the optimizations by selecting Preference 4. This preference will be used
in the next section to aid the CapabilityMatchingProblem. Before discussing the final
simulation results, we want to highlight the fact, that we need to run the capability
matching optimization for each of our three device sets. We do no pre-compute the
requirements once for each function group, but calculate them for each set of devices
(hybrid, edge cloudlet, cloud).

77

7. Discussion

7.5 Simulations

This section is dedicated to discuss the results of our final simulations. We compare the
four scheduling approaches described in Section 6.6: ga, vanilla, all, skippy.

First, we discuss performance (invocations, FET) and afterwards performance degradation.
In case of degradation, we highlight one specific run, in which we show performance
degradation and resource consumption as time-series. Afterwards we are going to show
some detailed results of one scenario, which helps us explain some unexpected behavior.

7.5.1 Performance

This section is dedicated to performance, in our case the average FET. Figures 6.8 shows
the total invocations averaged over all experiment runs, while 6.9 displays the FET.

To guarantee comparability, we pre-recorded five randomly generated workloads. This
makes sure all simulations receive the same load. Figure 6.8 shows the total processed
number of functions.. In the case of cloud and hybrid, our approach was able to process
the most invocations, skippy finished more in the edge cloudlet scenario. Especially the
vanilla approach had a lower number of processed invocations. We take a closer look
at the differences between ga and vanilla in the edge cloudlet scenario. One thing to
highlight is that the combination of our priority function and skippy’s did succeed in
providing good placements according to the FET and number of processed invocations.

Figure 6.9 shows the average FETs, and how succeeded in providing the lowest FET
across all workloads and scenarios.

In comparison to vanilla, ga was able to decrease the FET between 33% to 68%, depending
on the scenario and workload, as presented in Table 6.7.

Results have shown that ga scheduled function onto the best performing nodes. For
example, resnet50-inference was always placed on XeonGpus, and Intel NUCs processed
resnet50-preprocessing invocations. Further, scheduling on the node with lowest FET can
negatively impact the number of invocations, because of our static deployment ranking.

In summary, while in some cases (hybrid) the FET may vary, in general we observe
performance increase when our approach is used. The combination of skippy and ga
performed in most cases equally well as skippy. Further, vanilla results indicate that
only balancing resources has a negative effect on FET and processed invocations. We
attribute this to the highly heterogeneous environment and that user assigned CPU and
memory requirements may not contain enough knowledge. Because the performance gap
between devices is in general very wide (compare our baseline profiling results in Section
6.1), it seems to us that more information is required to guarantee optimal placements
regarding performance (FET & processed invocations).

78

7.5. Simulations

7.5.2 Performance degradation
A goal of our scheduler is to avoid performance degradation caused by resource contention.
To measure this, we use the predicted performance degradation factor.

Figures 6.10 shows the average degradation over all experiment runs for both workloads.
The results demonstrate that our approach observed the least amount of performance
degradation during our simulations. The reason behind this is that our approach simply
does not multiple containers onto one node. To explain this behavior we have to consider
two things: our scaling policy and placements. Results indicate that by placing resnet50-
inference on the best performing node, the system did not need to scale this function up.
We attribute this to making informed decisions, based on profiling data. Further, results
show that our approach never placed more than one container on the same node. Our
resource contention preventing priority function may be reason for this. But as we see in
the next section, it is hard to reason about scheduling decisions and detailed analysis is
required.

In conclusion, the decrease of degradation, in comparison to vanilla, ranges on average
from 25% to 57%, as presented in Table 6.7. Further, it appears that our priority functions
have a positive impact on the scheduling decisions in the all approach.

Individual run

Besides looking at the aggregated performance degradation, we examine resource usage
and performance degradation over time in detail. Figure 6.11 shows the results of a
single run over all approaches. On the left side, the performance degradation can be
seen, on the right side the total resource utilization. We show the mean degradation over
all devices, including standard deviation. The total resource utilization is calculated by
using our resource vectors and is the normalized sum over all resources. Section 6.6.4
includes a detailed explanation.

The scenario is cloud and the workload pattern constant. We want to highlight a few
key insights. First, both metrics visualize the constant workload that all approaches
experienced. The Figures prove that this workload can be accurately depicted.

Second, the resource utilization implicitly shows when the system needs to scale up and
deploys more containers. From the Figure, we can deduct that the all approach more
frequently scaled up in the first 250 seconds. Because our workload characterization
has shown, that devices differ in resource usage, we can not tell if the all approach had
more running containers than the others. Further noticeable is that the ga approach
made a better initial placements, as it was the last one to scale up. This means, that the
nodes were able to process requests fast enough, such that scaling was not triggered. To
determine which functions were not able to process requests fast enough, further analysis
is required.

Third, results of the performance degradation display, that the ga approach had ex-
perienced less performance degradation than the others. On the other hand, skippy

79

7. Discussion

experienced the most. Figure 6.12 shows the number of nodes, which had on average
multiple containers running. Results show that ga had no parallel containers running.
And, skippy was very prone to put multiple containers on one node. We attribute the
high performance degradation to this circumstance. Further, it seems plausible that in
the all approach, our priority functions were able to positively influence placement by
reducing the number of nodes with multiple containers. The same positive effect is visible
in the performance degradation.

This examination shows how complex the system is and that scheduling in heterogeneous
clusters requires significant amount analysis to reason about behavior.

7.5.3 ga vs vanilla
In the following we discuss the results presented in Table 6.7.

The Table shows the decrease of FET and performance degradation by using ga instead
of vanilla. Performance Degradation results indicate vanilla is closer to ga than during
the others scenarios. This validates the assumption that resource contention may happen
less often than in edge scenarios. In the edge cloudlet scenario, our approach had the
largest decrease of FET and performance degradation. We think that this may be related
to the node distributions, because in this scenario has the lowest number of cloud VM
instances. Therefore, the lack of workload-awareness resulted in not optimal placements.
Surprising is that in the hybrid scenario, during sine workload, the difference regarding
FET is lowest. Our assumption is, that in this scenario more VM instances and Coral
DevBoards are available. Because the deployment ranking of mobilenet-inference dictates
to use the TPU computing platform first, all approaches put this function automatically
on nodes with very low FET.

7.5.4 Edge Cloudlet
In the following, we take a close look at the results of our edge cloudlet scenario and
concentrate on the ga and vanilla approach.

To determine functions to examine in detail, we show the number of invocations, presented
in 6.8. The functions, which had the largest difference in processed invocations between
vanilla and ga were: speech-inference, resnet50-preprocessing and resnet50-training. We
focus on resnet50-preprocessing and resnet50-training. In the former, ga was able to
process more invocations than in the latter case. This gives us the ability to showcase
positive and negative sides.

Figure 6.13 shows the invocations as barplots to display the variance of function calls.
The ga approach has a larger variance in case of resnet50-preprocessing than vanilla. The
same behavior is recognizable for the resnet50-training function in the vanilla approach.
We can reason about these observations by examining the actual placements. Figure
6.14 depicts the number of containers for training and preprocessing per node type.
Figure 6.14a shows the nodes, which executed resnet50-preprocessing. In each case our

80

7.5. Simulations

approached scheduled the resnet50-preprocessing function onto Intel NUC units. The
reason is that our ExecutionTimePriority favors this node. vanilla scheduled it onto four
different types of nodes across all runs, especially RockPi and RPI 4 are not suited. This
explains why, vanilla experiments processed less preprocessing functions.

The other question to be answered is: why did ga process less resnet50-training requests?
Figure 6.14a shows the number of scheduled containers per node for the resnet50-training
function. In contrast to ga, vanilla has scheduled this function much more often onto
Intel NUC instances. While ga has used almost exclusively only GPU-equipped nodes.
To explain these placements, we have to highlight the fact that there are two computing
platforms available for resnet50-training. One supporting GPU, one operating on CPU.
Our deployment ranking for this function dictates that first, GPU platforms are used and
afterwards, CPU ones. Results show there was a considerably high amount of resnet50-
training functions scheduled onto the Intel NUC node, an explanation is that GPU
nodes were occupied. To back this claim, we look at the average scheduled containers
per node and per function. Tables 6.10 and 6.11 shows functions that have support for
GPU computing platforms. The tables show that ga used almost all GPU devices for
resnet50-training, vanilla spread them between resnet50-inference and resnet50-training.

Therefore, we conclude that the higher number of resnet50-training invocations, stems
from the reason that GPU nodes were used in the ga approach. Which may perform
worse than the Intel NUC. And due to the fact, that the vanilla approach has used the
GPU nodes for inference, it had to use the CPU version.

This showcases that the deployment ranking, paired with ga, can produce in some cases
worse results regarding processed number of invocations.

81

CHAPTER 8
Conclusion

Emerging concepts accelerate the adaption of heterogeneous computing infrastructure.
The edge computing paradigm pushes resources towards users, enabling processing at
the origin of data and making it possible to implement applications, such as Cognitive
AR. These edge computing infrastructures contain various devices, ranging from Single
Board Computers, over specialized embedded hardware to cloudlets and VM instances,
located in the cloud. The devices offer different capabilities and range in performance. To
help developers deploy their application on edge computing infrastructures, research has
proposed to merge the paradigm of edge and serverless computing, resulting in serverless
edge computing. Serverless computing allows users to upload containers that contain
a single function. This approach has the advantage of rapid automatic scaling, which
emphasis the importance of schedulers to make optimal placements regarding execution
time and preventing resource contention. Current platforms are incapable of making
well-founded scheduling decisions in these scenarios, which results in potentially inefficient
placements.

To this end, we propose a strategy, based around workload characterization, to make
the scheduler workload-aware. We perform extensive profiling of multiple applications
and introduce a systematic representation of heterogeneous clusters to describe node
capabilities. We are able to apply machine learning to group applications based on
resource consumption. Further, we define a problem that maps applications to appropriate
node capabilities. The workload clustering makes our optimization approach tractable
regarding a growing number of applications.

We make the scheduler workload-aware by adding priority functions that focus on:
execution time, resource contention and capability mapping. Simulation results show
that our improvements lead to a reduced Function Execution Time and prevention
of resource contention in comparison to previously released location and data-focused
priority functions [58] and the default scheduler.

83

8. Conclusion

8.1 Research Questions

• RQ. 1: What are appropriate methods for workload characterization based on
black-box system metrics in serverless edge computing systems?
Devices in serverless edge computing systems are highly heterogeneous by offering
different capabilities, resulting in a wide range of response times. This poses a
problem for function scheduling, as current schedulers lack the ability to reason
about workloads.
To this end, we use two kinds of black-box system metrics: static and runtime.
First, we define a systematic approach to describe heterogeneous clusters based on
automatically retrieved node capabilities. This enables us to formulate a problem
which maps workloads to their appropriate nodes based on their capabilities.
Second, we profile multiple applications extensively on nodes in our testbed and
monitor in total five resources during runtime. Based on traces and telemetry
data, we create resource vectors for each application and node. The results show
an intuitively accurate depiction of resource usage, including each application’s
impact on different devices. We apply a clustering technique on these vectors to
find groups of similar applications. These groups are used to make our capability
matching problem feasible regarding new and large amounts of functions.
A caveat is the discrepancy between computing platforms and workload groups. In
our approach it is possible that applications get the same group assigned, but do
not share the computing platform. Therefore, we have to split these clusters and
group them according to the computing platform in order to perform our capability
matching optimization. This limitation is deeply rooted in the approach of unifying
multiple computing platforms to provide users the convenience of not caring about
their deployment.
During our evaluation we encountered limitations regarding our system modeling
approach. First, some type of devices are equipped with more than one CPU core
type. Second, in edge topologies it is common that nodes may be interconnected
with each other and therefore have a different bandwidth than they have to the
cloud. This is not exclusive to edge deployments but also common in cloud hosted
services, where VM instances share a higher bandwidth between each other than
they expose to the world. In both cases our approach of describing clusters is not
able to depict these characteristics.
We have shown that our monitoring approach in combination with function-based
applications allows to transparently monitor and characterize functions. The
capabilities help us match applications with appropriate nodes. Further, we evaluate
nine different device types, including only one cloud node and are therefore confident
that our solution is feasible in serverless edge computing systems.

• RQ. 2: How can we use workload characterization in scheduling of serverless edge
functions?

84

8.1. Research Questions

Scheduling functions in a diverse scenario, such as edge computing, can result in
unexpected FETs. Our baseline experiments show that nodes can substantially differ
in performance. This is not restricted to performance differences between devices,
but can be observed on a single device. The reason for this is, that devices may
offer different computing platforms (i.e., GPU, TPU, CPU). Another problem we
measured is the performance degradation caused by co-located containers. Further,
we showed that the degradation highly depends on the node. While cloud VM
instances are more robust, resource-constrained nodes at the edge may experience
much higher degradation. Therefore, we use our workload characterization to
implement three priority functions that make the scheduler workload-aware.

The first priority function matches node capabilities with application requirements.
The goal is to favor nodes similar to the preferences of an application. This is
possible by using the result of our capability matching problem, which is a list
of favorable capabilities. The parameters, used in the optimization step, give
control over the focus between performance and variety. To prevent executing the
optimization for every function, we use our groups of similar applications.

The second priority function prevents resource contention by using previously
obtained workload characteristics, for each node and application. It sums up the
current utilization of the node and subtracts it from the new applications total
utilization. This favors nodes that have a lower resource usage. While Rausch et
al. [58] have implemented a priority function that behaves similar, but only takes
CPU and memory into consideration, ours includes other resources (GPU, I/O).
Further, their priority function uses CPU and memory requirements assigned by
users. We use our workload characterization, which we have available for each node.
Our results have shown that each workload has a different impact on resources
depending on the node. In their case, they assign only an estimate for CPU and
memory, which lacks awareness of heterogeneous environment.

The third priority function uses the baseline profiling data, which consists of the
mean FET for each application and node in the cluster. It scores the nodes according
to the measured FET and favors faster ones.

During our evaluation we discovered some limitations. Allowing users to upload
multiple functions, supporting different computing platforms, introduces the chal-
lenge of deciding which one to deploy during runtime. We discovered the same
limitation when using Docker. Users can not group multiple computing platforms
under one image. Further, this would introduce the same problem, as the Docker
runtime would need to autonomously decide which runtime to use. To this end, we
use a static deployment ranking, defined by users, to mitigate this issue. As our
workload clusters are already separated according to platforms, our optimization
strategy does not suggest or change the deployment ranking. Therefore, the system
uses in all cases the static deployment ranking. As our results show, this can
negatively impact a system’s performance regarding processed invocations.

85

8. Conclusion

Our resource contention priority disregards differences in resources by using the
total over all resources. This may hinder optimal resource usage by discounting the
fact that some applications only use certain resources.

Another limitation to our work lies in the evaluation. We have not tested the
priority functions individually or examined the importance of each function during
the scheduling process. Rausch et al. [58] have shown that it is not a trivial task
and heavily depends on the system’s structure. For example, the scheduling process
is not going to benefit from our capability priority function in a cluster consisting
of only a one device type.

• RQ. 3: How can a workload-aware scheduler improve the quality of function
placement in serverless edge computing systems?

Our evaluation compares four scheduling pipelines and three compute clusters.
We use the default scheduler settings, locality and data-aware priorities [58], our
approach, and a combination of all custom priorities. The clusters have different
levels of heterogeneity and represent a cloud-centered, hybrid and edge-cloudlet
system.

The results focus on FET and performance degradation, caused by resource con-
tention. In comparison to the default scheduler, we are able to decrease FET on
average between 33% and 68%. Degradation reduces on average by 25% to 57%.
Further, our approach was able to significantly process more requests on average in
three out of six scenarios. While in the most other cases all approaches performed
equally. Detailed analysis of experiments has revealed the negative side of our
static deployment ranking and that dynamic decisions may lead to more preferable
placements.

Further, due to our performance oriented settings, it is not surprising that our
approach chooses the best performing nodes. This was most visible in case of
resnet50-inference, which our approach scheduled on the fastest node and did not
trigger any further scaling.

This brings us to another caveat: the chosen workload patterns may not spawn
enough requests to fully utilize clusters, as we saw in our results.

The simulations we have performed demonstrated that the current default sched-
uler is not appropriate and a workload-aware scheduler dramatically improves
performance and prevents contention.

In conclusion, the heterogeneous landscape offers different kinds of specialized
hardware, capable of performing certain tasks very efficient. Many devices deployed
at the edge suffer from high performance degradation in multi-tenancy situations.
We add awareness regarding performance, resource contention and capabilities to the
scheduler. Therefore, a workload-aware scheduler can improve the quality of function
placement regarding Function Execution Time and performance degradation.

86

8.2. Future work

8.2 Future work
This section highlights limitations of our work and proposes goals for future work.

• Extensions to the system modeling has to be done in order to allow more complex
device descriptions (i.e., two CPUs equipped).

• We simulate only a single type of OpenFaaS watchdog (HTTP). Other watchdogs
have advantages. For example, the process-per-request approach is suitable for
long-running tasks.

• Regarding the capability matching, new solution representations can be developed.
Of particular interest are ones that represent resource usages of nodes. This leads
to periodically running the optimization, resulting in a deepened evaluation of the
heuristic optimization technique.

• The performance degradation model can be extended by adding awareness of the
service to predict. We propose two approaches to overcome this issue. First, append
the specific service to the function, probably leading to very precise estimates. We
think the other approach is going generalize better by predicting unknown or new
functions and reduced datasets. Instead of the specific function, one could use the
workload cluster as discriminating factor.

• Priority weights remained untouched in our scenario and can be subject to further
optimizations. Especially a combined look at skippy’s and ours appears promising.

• A more detailed analysis of our results can reveal more unexpected behavior. This
task is not straightforward in such diverse scenarios. Functions, devices, cluster
configurations have to be carefully considered. And all components are complex:
multiple computing platforms, different device characteristics and varying node
distributions.

87

APPENDIX A
Baseline Performance

The following table shows the results of all baseline benchmarks we execute. Table
contains statistical descriptions of our measured Function Execution Time in seconds.
Abbrevations used:

• Resnet Pre.: Resnet50-preprocessing

• Resnet Inf.: Resnet50-inference

• Resnet Tra.: Resnet50-training

• Speech Inf.: Speech-inference

• Coral: Coral Devboard

• TX2: Nvidia TX2

• Xavier NX: Nvidia Xavier NX

• Nano: Nvidia Nano

• Mobilenet Tflite: Mobilenet-inference Tflite

• Mobilenet TPU: Mobilenet-inference TPU

89

A. Baseline Performance

Service Device x̄ σ min. max. 25th 75th 99th
Fio Intel NUC 1.12 0.07 1.09 1.37 1.09 1.09 1.09
Fio Nano 19.64 0.73 17.63 21.38 17.69 17.81 17.87
Fio TX2 4.31 0.12 4.20 4.51 4.20 4.20 4.20
Fio Xavier NX 13.77 0.34 13.39 14.50 13.39 13.39 13.39
Fio RPI 3 28.66 5.15 23.95 41.16 23.96 23.98 24.00
Fio RPI 4 27.81 1.72 23.44 33.21 23.44 23.45 23.46
Fio RockPi 21.99 0.39 21.46 23.43 21.46 21.46 21.47
Fio XeonGpu 1.14 0.02 1.12 1.20 1.12 1.12 1.12
Mobilenet Tflite Coral 0.66 0.01 0.65 0.70 0.65 0.66 0.66
Mobilenet Tflite Intel NUC 0.28 0.01 0.26 0.31 0.27 0.27 0.27
Mobilenet Tflite Nano 0.45 0.00 0.44 0.46 0.44 0.44 0.44
Mobilenet Tflite TX2 0.33 0.00 0.32 0.34 0.32 0.32 0.32
Mobilenet Tflite Xavier NX 0.33 0.01 0.32 0.35 0.32 0.32 0.32
Mobilenet Tflite RPI 3 2.07 0.07 1.97 2.31 1.97 1.97 1.97
Mobilenet Tflite RPI 4 1.28 0.02 1.26 1.34 1.26 1.26 1.26
Mobilenet Tflite RockPi 0.52 0.07 0.37 0.69 0.38 0.39 0.39
Mobilenet Tflite XeonGpu 0.28 0.01 0.27 0.32 0.27 0.27 0.27
Mobilenet Tpu Coral 0.55 0.01 0.53 0.58 0.53 0.53 0.53
Python Pi Coral 1.82 0.61 1.44 3.03 1.44 1.44 1.44
Python Pi Intel NUC 0.25 0.00 0.24 0.26 0.24 0.24 0.24
Python Pi Nano 0.75 0.00 0.74 0.76 0.74 0.74 0.74
Python Pi TX2 0.55 0.00 0.54 0.56 0.54 0.54 0.54
Python Pi Xavier NX 0.83 0.01 0.79 0.85 0.79 0.80 0.80
Python Pi RPI 3 25.67 0.22 25.35 26.30 25.35 25.36 25.37
Python Pi RPI 4 23.59 0.20 23.26 23.97 23.26 23.26 23.26
Python Pi RockPi 0.92 0.01 0.90 0.96 0.90 0.90 0.90
Python Pi XeonGpu 71.59 0.24 71.26 72.22 71.26 71.27 71.27
Resnet Inf. Cpu Coral 2.18 0.52 1.41 3.64 1.42 1.43 1.44
Resnet Inf. Cpu Intel NUC 0.16 0.02 0.14 0.31 0.14 0.14 0.14
Resnet Inf. Cpu Nano 0.93 0.05 0.88 1.32 0.88 0.89 0.89
Resnet Inf. Cpu TX2 0.74 0.06 0.69 1.14 0.70 0.70 0.70
Resnet Inf. Cpu Xavier NX 0.51 0.03 0.45 0.60 0.45 0.46 0.46
Resnet Inf. Cpu RPI 3 5.10 0.44 4.43 5.86 4.43 4.43 4.43
Resnet Inf. Cpu RPI 4 2.91 0.09 2.77 3.45 2.77 2.77 2.78
Resnet Inf. Cpu RockPi 1.38 0.12 1.13 1.92 1.13 1.14 1.14
Resnet Inf. Cpu XeonGpu 0.17 0.03 0.15 0.31 0.15 0.15 0.15
Resnet Inf. Gpu Nano 0.73 0.12 0.67 1.84 0.67 0.67 0.67
Resnet Inf. Gpu TX2 0.39 0.04 0.38 0.81 0.38 0.38 0.38
Resnet Inf. Gpu Xavier NX 0.39 0.04 0.37 0.71 0.37 0.37 0.37
Resnet Inf. Gpu XeonGpu 0.13 0.02 0.11 0.32 0.11 0.11 0.11

Table A.1: Workload characterization results

90

Service Device x̄ σ min. max. 25th 75th 99th
Resnet Pre. Coral 10.51 0.05 10.41 10.66 10.41 10.41 10.42
Resnet Pre. Intel NUC 2.53 0.03 2.47 2.59 2.47 2.48 2.48
Resnet Pre. Nano 7.95 0.18 7.85 9.17 7.85 7.85 7.85
Resnet Pre. TX2 6.39 0.08 6.22 6.59 6.23 6.25 6.25
Resnet Pre. Xavier NX 6.08 0.13 5.81 6.87 5.82 5.84 5.85
Resnet Pre. RPI 3 30.48 1.03 29.42 37.48 29.42 29.42 29.42
Resnet Pre. RPI 4 19.50 0.26 18.99 20.01 19.00 19.02 19.02
Resnet Pre. RockPi 7.65 0.13 7.35 8.14 7.36 7.38 7.39
Resnet Pre. XeonGpu 2.66 0.03 2.58 2.74 2.58 2.59 2.59
Resnet Tra. Cpu Intel NUC 197.45 0.82 196.38 202.84 196.42 196.52 196.56
Resnet Tra. Gpu Nano 847.17 764.41 475.31 3758.72 475.67 476.38 476.72
Resnet Tra. Gpu TX2 228.12 2.16 225.43 234.05 225.44 225.45 225.45
Resnet Tra. Gpu Xavier NX 142.00 1.13 139.36 144.52 139.38 139.41 139.43
Resnet Tra. Gpu XeonGpu 32.13 0.42 31.53 33.14 31.54 31.54 31.55
Speech Inf. Gpu Nano 4.54 0.08 4.37 4.69 4.37 4.39 4.39
Speech Inf. Gpu TX2 3.31 0.03 3.18 3.38 3.19 3.22 3.23
Speech Inf. Gpu Xavier NX 1.65 0.03 1.59 1.84 1.59 1.59 1.59
Speech Inf. Gpu XeonGpu 0.75 0.02 0.71 0.79 0.71 0.72 0.72
Speech TFlite Coral 7.21 0.04 7.14 7.32 7.14 7.14 7.14
Speech TFlite Intel NUC 1.06 0.01 1.05 1.09 1.05 1.05 1.05
Speech TFlite Nano 3.89 0.04 3.81 4.03 3.81 3.81 3.82
Speech TFlite TX2 3.44 0.04 3.36 3.55 3.36 3.37 3.37
Speech TFlite Xavier NX 2.68 0.05 2.51 2.81 2.51 2.52 2.52
Speech TFlite RPI 3 16.56 0.31 15.98 17.31 16.00 16.05 16.07
Speech TFlite RPI 4 6.75 0.05 6.63 6.85 6.63 6.63 6.63
Speech TFlite RockPi 3.82 0.05 3.66 3.97 3.66 3.66 3.66
Speech TFlite XeonGpu 1.08 0.01 1.05 1.12 1.06 1.06 1.06
Tf Gpu Nano 0.21 0.05 0.18 0.37 0.18 0.18 0.18
Tf Gpu TX2 1.89 0.03 1.87 2.14 1.88 1.88 1.88
Tf Gpu Xavier NX 1.17 0.01 1.16 1.21 1.16 1.16 1.16
Tf Gpu XeonGpu 0.37 0.00 0.36 0.38 0.36 0.36 0.36

Table A.2: Workload characterization results

91

APPENDIX B
Workload Characterization

Besides all performance results, we include additionally the accompanying processed
telemetry data. This data is used to simulate resource usage and acts as input for our
clustering pipeline. Columns related to data, i.e. BLKIO are in megabytes, whereas
BLKIO and NET show the data rates (MB/s) while BLKIO_TOTAL and NET_TOTAL
are the total amount of MB read or written for one call.

Abbrevations used:

• Resnet Pre.: Resnet50-preprocessing

• Resnet Inf.: Resnet50-inference

• Resnet Tra.: Resnet50-training

• Speech Inf.: Speech-inference

93

B. Workload Characterization

Device Service CPU BLKIO NET GPU RAM i/o tot. net tot.

Intel Nuc Fio 0.09 443.47 0.00 0.00 0.03 498.08 0.00
Nvidia Nano Fio 0.06 6.68 0.00 0.00 0.28 131.07 0.00
Nvidia TX2 Fio 0.12 30.37 0.00 0.00 0.10 131.07 0.00
Nvidia Xavier NX Fio 0.03 9.51 0.00 0.00 0.13 131.07 0.00
RPI 3 Fio 0.06 2.23 0.00 0.00 0.65 64.02 0.00
RPI 4 Fio 0.06 2.21 0.00 0.00 0.52 61.32 0.00
RockPi Fio 0.03 4.77 0.00 0.00 0.28 104.86 0.00
XeonGpu Fio 0.17 105.92 0.00 0.00 0.03 123.27 0.00
Coral DevBoard Mobilenet TFlite 0.27 0.00 15.98 0.00 0.12 0.00 10.62
Intel Nuc Mobilenet TFlite 0.21 0.02 38.89 0.00 0.03 0.00 11.03
Nvidia Nano Mobilenet TFlite 0.46 0.00 22.16 0.00 0.07 0.00 11.04
Nvidia TX2 Mobilenet TFlite 0.49 0.00 32.55 0.00 0.03 0.00 11.01
Nvidia Xavier NX Mobilenet TFlite 0.27 0.00 26.98 0.00 0.02 0.00 11.04
RPI 3 Mobilenet TFlite 0.30 0.00 5.18 0.00 0.14 0.00 10.72
RPI 4 Mobilenet TFlite 0.39 0.00 8.32 0.00 0.09 0.00 10.75
RockPi Mobilenet TFlite 0.34 0.00 21.19 0.00 0.04 0.00 10.77
XeonGpu Mobilenet TFlite 0.42 0.00 33.40 0.00 0.02 0.00 10.85
Coral DevBoard Mobilenet Tpu 0.35 0.00 19.73 0.00 0.20 0.00 10.81
Coral DevBoard Python Pi 0.36 0.74 0.00 0.00 0.57 3.48 0.00
Intel Nuc Python Pi 0.16 0.01 0.00 0.00 0.01 0.00 0.00
Nvidia Nano Python Pi 0.42 0.00 0.00 0.00 0.03 0.00 0.00
Nvidia TX2 Python Pi 0.37 0.00 0.00 0.00 0.03 0.00 0.00
Nvidia Xavier NX Python Pi 0.27 0.00 0.00 0.00 0.01 0.00 0.00
RPI 3 Python Pi 0.26 0.00 0.00 0.00 0.07 0.00 0.00
RPI 4 Python Pi 0.26 0.00 0.00 0.00 0.08 0.00 0.00
RockPi Python Pi 0.26 0.00 0.00 0.00 0.03 0.00 0.00
XeonGpu Python Pi 0.25 0.00 0.00 0.00 0.00 0.00 0.00
Coral DevBoard Resnet Inf. Cpu 0.38 22.64 5.10 0.00 0.56 68.92 10.62
Intel Nuc Resnet Inf. Cpu 0.44 0.04 55.70 0.00 0.05 0.01 11.06
Nvidia Nano Resnet Inf. Cpu 0.62 0.00 11.93 0.00 0.17 0.00 11.05
Nvidia TX2 Resnet Inf. Cpu 0.64 0.00 14.92 0.00 0.09 0.00 11.06
Nvidia Xavier NX Resnet Inf. Cpu 0.32 0.00 16.69 0.00 0.08 0.00 10.95
RPI 3 Resnet Inf. Cpu 0.54 0.00 2.06 0.00 0.37 0.01 10.61
RPI 4 Resnet Inf. Cpu 0.62 0.00 2.79 0.00 0.31 0.01 10.75
RockPi Resnet Inf. Cpu 0.47 0.00 6.60 0.00 0.16 0.00 10.77
XeonGpu Resnet Inf. Cpu 0.72 0.00 63.57 0.00 0.04 0.00 13.64
Nvidia Nano Resnet Inf. Gpu 0.31 0.30 14.10 0.18 0.74 32.75 11.34
Nvidia TX2 Resnet Inf. Gpu 0.51 0.00 26.96 0.04 0.43 0.00 10.98
Nvidia Xavier NX Resnet Inf. Gpu 0.33 0.00 26.65 0.04 0.41 0.00 11.06
XeonGpu Resnet Inf. Gpu 0.37 0.00 57.66 0.00 0.13 0.00 11.04

Table B.1: Workload characterization results

94

Device Service CPU BLKIO NET GPU RAM i/o tot. net tot.

Coral DevBoard Resnet Preprocessing 0.24 0.00 2.12 0.00 0.15 0.02 26.20
Intel Nuc Resnet Preprocessing 0.11 0.00 10.64 0.00 0.02 0.00 27.39
Nvidia Nano Resnet Preprocessing 0.24 0.00 3.13 0.00 0.08 0.00 26.19
Nvidia TX2 Resnet Preprocessing 0.25 0.00 3.88 0.00 0.03 0.00 26.22
Nvidia Xavier NX Resnet Preprocessing 0.16 0.00 4.18 0.00 0.02 0.00 26.24
RPI 3 Resnet Preprocessing 0.24 0.00 0.61 0.00 0.13 0.00 20.87
RPI 4 Resnet Preprocessing 0.25 0.00 1.35 0.00 0.09 0.00 26.32
RockPi Resnet Preprocessing 0.16 0.00 3.21 0.00 0.04 0.00 26.25
XeonGpu Resnet Preprocessing 0.21 0.00 10.23 0.00 0.08 0.00 27.33
Intel Nuc Resnet Training Cpu 0.88 0.23 1.42 0.00 0.58 74.20 281.97
Nvidia Nano Resnet Training Gpu 0.09 16.69 0.45 0.61 0.83 31035.99 1042.25
Nvidia TX2 Resnet Training Gpu 0.18 0.21 1.14 0.56 0.60 55.44 574.59
Nvidia Xavier NX Resnet Training Gpu 0.14 0.03 5.72 0.51 0.56 32.02 1083.56
XeonGpu Resnet Training Gpu 0.24 0.01 15.75 0.60 0.28 0.49 829.94
Nvidia Nano Speech Inf. Gpu 0.18 0.00 0.13 0.36 0.35 0.00 0.60
Nvidia TX2 Speech Inf. Gpu 0.25 0.00 0.15 0.21 0.20 0.00 0.51
Nvidia Xavier NX Speech Inf. Gpu 0.15 0.00 0.28 0.21 0.12 0.00 0.46
XeonGpu Speech Inf. Gpu 0.28 0.00 0.51 0.08 0.04 0.00 0.40
Coral DevBoard Speech Inf. Tflite 0.25 0.00 0.05 0.00 0.09 0.00 0.36
Intel Nuc Speech Inf. Tflite 0.12 0.00 0.38 0.00 0.01 0.00 0.40
Nvidia Nano Speech Inf. Tflite 0.25 0.00 0.09 0.00 0.06 0.00 0.37
Nvidia TX2 Speech Inf. Tflite 0.27 0.00 0.11 0.00 0.02 0.00 0.37
Nvidia Xavier NX Speech Inf. Tflite 0.17 0.00 0.14 0.00 -0.02 0.00 0.37
RPI 3 Speech Inf. Tflite 0.25 0.00 0.02 0.00 0.18 0.00 0.37
RPI 4 Speech Inf. Tflite 0.25 0.00 0.06 0.00 0.14 0.00 0.37
RockPi Speech Inf. Tflite 0.17 0.00 0.10 0.00 0.03 0.00 0.37
XeonGpu Speech Inf. Tflite 0.25 0.00 0.35 0.00 0.00 0.00 0.37
Nvidia Nano Tf Gpu 0.07 0.00 0.02 0.08 0.46 0.00 0.00
Nvidia TX2 Tf Gpu 0.06 0.00 0.00 0.57 0.27 0.00 0.00
Nvidia Xavier NX Tf Gpu 0.02 0.00 0.00 0.50 0.29 0.00 0.00
XeonGpu Tf Gpu 0.24 0.00 0.01 0.06 0.07 0.00 0.00

Table B.2: Workload characterization results

95

APPENDIX C
Performance Degradation

Experiments

This chapter and its tables show all experiments we can run successful on our devices,
which serve as training datasets for our performance degradation model training.

The interfering function’s number of instances and workers is displayed in the first two
rows. For example in Table C.1 the first column represents an experiment in which we
started one Resnet50-Inference function which got requests from a single client and an
inter arrival time of one second. The Python Pi function interfered with one container
client, whereas in this case the inter arrival time is zero.

Tables C.1 and C.2 show the executed benchmarks.

Python Pi Fio
Containers 1 3 1 3 1 3 1 3 1 3 1 3 1 2 1 2
Workers 1 1 2 2 3 3 1 1 2 2 3 3 1 1 2 2
Clients 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1
Coral DevBoard
Intel Nuc X X X X X X X X X X X X X X X X
Nvidia Nano X X X X X X X X X X X X X X
Nvidia TX2 X X X X X X X X X X
Nvidia Xavier NX X X X X X X X X X X X X X X X X
RPI 3 X X X X X X X
RPI 4 X X X X X X X X X X X X X
RockPi X X X X X X X X X X X X X X X X
XeonGpu X X X X X X X X X X X X X

Table C.1: Performance degradation experiment configurations

97

C. Performance Degradation Experiments

Resnet50-Inference TF-GPU
Containers 1 1 1 2 2 2 1 1 1 1
Workers 1 2 3 1 2 3 1 2 3 1
Clients 1 1 1 1 1 1 2 2 2 1
Coral DevBoard
Intel Nuc X X X X X X X X X X
Nvidia Nano X X X X X X X X X X
Nvidia TX2 X X X X X X X X X
Nvidia Xavier NX X X X X X X X X X X
RPI 3 X X X X X X
RPI 4 X X X X
RockPi X X X X
XeonGpu X X X X X X X

Table C.2: Performance degradation experiment configurations

98

List of Figures

2.1 Cloud vs Edge Computing . 9
2.2 Cloud models and responsibilities . 9
2.3 Conceptual view of Kubernetes deployments 11
2.4 Function submission process . 12
2.5 Forking and HTTP Watchdogs, based on [49] 13

4.1 Look at the general context . 24
4.2 Component Overview . 25
4.3 A detailed look into a function invocation 29
4.4 Example for calculation of input for the performance degradation model . 34
4.5 Example input of our capability matching problem, inspired by Knapsack 0/1 38

5.1 Workload patterns for Resnet50-Inference 50

6.1 Baseline profiling results . 54
6.2 Performance ranking for CPU & GPU functions 55
6.3 Workload characterization aggregated over devices 56
6.4 Distribution of performance degradation for all devices. Experiment configu-

rations are shown in Tables C.1 and C.2 57
6.5 Selected cluster configurations . 59
6.6 Influence of performance on variety tuning for k5 clustering 62
6.7 Influence of performance on variety tuning for k7 clustering 62
6.8 Aggregated and normalized processed invocations 66
6.9 Aggregated and normalized FET results over all experiment runs 67
6.10 Aggregated degradation over all experiment runs 68
6.11 Performance degradation and resource utilization over all nodes. Taken from

the cloud scenario during constant workload. 69
6.12 Number of nodes that had on average multiple containers running. Taken

from the cloud scenario during constant workload. 69
6.13 Number of of invocations . 71
6.14 Resnet50-preprocessing and training containers per node type 71

99

List of Tables

2.1 FunctionDefinition . 12

4.1 All attributes and associated values, numerical ones are discretized in bins. 27
4.2 Three different types of nodes and their attributes 27
4.3 Examples of descriptions for cluster configurations, refer to Table 4.4 for

details about node distribution. 28
4.4 Example cluster configurations . 28
4.5 Overview of recorded system metrics . 30
4.6 Sample of telemetry time-series data . 31
4.7 Example for workload characterization vector 32
4.8 CPU usages for example services . 33
4.9 FET for example application . 38
4.10 geneticalgorithm2 settings . 38
4.11 Disk type speed estimations . 42

5.1 Device type specifications . 47
5.2 Device proportions in percent of evaluation clusters and the resulting hetero-

geneity score. 48
5.3 Functions used for benchmarking experiments and simulations 48
5.4 Workload setting parameters . 50
5.5 Scaling settings . 51

6.1 Validation scores for each device . 58
6.2 Silhouette averages for different number of clusters 59
6.3 Best (bottom rows) and worst (top rows) results for the GA approach. . . . 61
6.4 Best (bottom rows) and worst (top rows) results for enum approach. 61
6.5 Preference definitions . 63
6.6 Preference evaluation simulation results. 63
6.7 Decrease of FET and performance degradation by using ga instead of vanilla 70
6.8 Average number of invocations . 70
6.9 Average number of scheduled containers per node and function 72
6.10 vanilla approach . 72
6.11 ga approach . 72

A.1 Workload characterization results . 90

101

A.2 Workload characterization results . 91

B.1 Workload characterization results . 94
B.2 Workload characterization results . 95

C.1 Performance degradation experiment configurations 97
C.2 Performance degradation experiment configurations 98

102

List of Algorithms

103

Bibliography

[1] Amazon. Aws re:invent 2014 | (mbl202) new launch: Getting started with aws
lambda. Online. Accessed 2021-02-12. "https://youtu.be/UFj27laTWQA".

[2] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Krishna Chintalapudi,
Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. Real-time video analyt-
ics: The killer app for edge computing. computer, 50(10):58–67, 2017.

[3] Mohammad S Aslanpour, Adel N Toosi, Claudio Cicconetti, Bahman Javadi, Pe-
ter Sbarski, Davide Taibi, Marcos Assuncao, Sukhpal Singh Gill, Raj Gaire, and
Schahram Dustdar. Serverless edge computing: vision and challenges. In 2021
Australasian Computer Science Week Multiconference, pages 1–10, 2021.

[4] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slominski,
et al. Serverless computing: Current trends and open problems. In Research Advances
in Cloud Computing, pages 1–20. Springer, 2017.

[5] D. Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud
Computing, 1(3):81–84, 2014.

[6] Christian Blum and Günther R Raidl. Hybrid Metaheuristics: Powerful Tools for
Optimization. Springer, 2016.

[7] Rajkumar Buyya, Satish Narayana Srirama, Giuliano Casale, Rodrigo Calheiros,
Yogesh Simmhan, Blesson Varghese, Erol Gelenbe, Bahman Javadi, Luis Miguel
Vaquero, Marco AS Netto, et al. A manifesto for future generation cloud computing:
Research directions for the next decade. ACM computing surveys (CSUR), 51(5):1–38,
2018.

[8] Emiliano Casalicchio. Container Orchestration: A Survey, pages 221–235. Springer
International Publishing, Cham, 2019.

[9] Charles E Catlett, Peter H Beckman, Rajesh Sankaran, and Kate Kusiak Galvin.
Array of things: a scientific research instrument in the public way: platform design
and early lessons learned. In Proceedings of the 2nd international workshop on
science of smart city operations and platforms engineering, pages 26–33, 2017.

105

"https://youtu.be/UFj27laTWQA"

[10] Lukas Cavigelli, Philippe Degen, and Luca Benini. Cbinfer: Change-based infer-
ence for convolutional neural networks on video data. In Proceedings of the 11th
International Conference on Distributed Smart Cameras, pages 1–8, 2017.

[11] Angelo Cenedese, Andrea Zanella, Lorenzo Vangelista, and Michele Zorzi. Padova
smart city: An urban internet of things experimentation. In Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and Multimedia Networks
2014, pages 1–6. IEEE, 2014.

[12] Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos, Guanhang Wu,
Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta Klatzky, et al. An
empirical study of latency in an emerging class of edge computing applications for
wearable cognitive assistance. In Proceedings of the Second ACM/IEEE Symposium
on Edge Computing, pages 1–14, 2017.

[13] François Chollet. Xception: Deep learning with depthwise separable convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1251–1258, 2017.

[14] containerd. containerd. Online. Accessed 2021-02-12., https://containerd.
io/.

[15] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion Stoica, Joseph
Gonzalez, and Alexey Tumanov. Inferline: latency-aware provisioning and scaling
for prediction serving pipelines. In Proceedings of the 11th ACM Symposium on
Cloud Computing, pages 477–491, 2020.

[16] Waltenegus Dargie. Identification of resource utilisation patterns in data centers
using tensor decomposition. In 2019 28th International Conference on Computer
Communication and Networks (ICCCN), pages 1–6. IEEE, 2019.

[17] Alex Glikson, Stefan Nastic, and Schahram Dustdar. Deviceless edge computing:
extending serverless computing to the edge of the network. In Proceedings of the
10th ACM International Systems and Storage Conference, pages 1–1, 2017.

[18] Tom Goethals, Filip DeTurck, and Bruno Volckaert. Extending kubernetes clusters
to low-resource edge devices using virtual kubelets. IEEE Transactions on Cloud
Computing, 2020.

[19] Google. Google cloud functions. Online. Accessed 2021-02-12. "https://cloud.
google.com/functions".

[20] Johannes Grohmann, Patrick K Nicholson, Jesus Omana Iglesias, Samuel Kounev,
and Diego Lugones. Monitorless: Predicting performance degradation in cloud appli-
cations with machine learning. In Proceedings of the 20th international middleware
conference, pages 149–162, 2019.

106

https://containerd.io/
https://containerd.io/
"https://cloud.google.com/functions"
"https://cloud.google.com/functions"

[21] Gopal K Gupta. Introduction to data mining with case studies. PHI Learning Pvt.
Ltd., 2014.

[22] X. Han, R. Schooley, D. Mackenzie, O. David, and W. J. Lloyd. Characterizing public
cloud resource contention to support virtual machine co-residency prediction. In
2020 IEEE International Conference on Cloud Engineering (IC2E), pages 162–172,
2020.

[23] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich
Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, and
Andrew Y. Ng. Deep speech: Scaling up end-to-end speech recognition. CoRR,
abs/1412.5567, 2014.

[24] Aurelien Havet, Valerio Schiavoni, Pascal Felber, Maxime Colmant, Romain Rouvoy,
and Christof Fetzer. Genpack: A generational scheduler for cloud data centers. In
2017 IEEE International Conference on Cloud Engineering (IC2E), pages 95–104.
IEEE, 2017.

[25] Jiong He, Yao Chen, Tom ZJ Fu, Xin Long, Marianne Winslett, Liang You, and
Zhenjie Zhang. Haas: Cloud-based real-time data analytics with heterogeneity-aware
scheduling. In 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), pages 1017–1028. IEEE, 2018.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[27] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Ef-
ficient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[28] Waldemar Hummer, Vinod Muthusamy, Thomas Rausch, Parijat Dube, Kaoutar
El Maghraoui, Anupama Murthi, and Punleuk Oum. Modelops: Cloud-based lifecycle
management for reliable and trusted ai. In 2019 IEEE International Conference on
Cloud Engineering (IC2E), pages 113–120. IEEE, 2019.

[29] Ali R Hurson, Evens Jean, Machigar Ongtang, Xing Gao, Yu Jiao, and Thomas E
Potok. Recent advances in mobile agent-oriented applications. Mobile Intelligence,
pages 106–139, 2010.

[30] IBM. Ibm openwhisk. Online. Accessed 2021-02-12. "https://www.ibm.com/
cloud/functions".

[31] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of
neural networks for efficient integer-arithmetic-only inference. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

107

"https://www.ibm.com/cloud/functions"
"https://www.ibm.com/cloud/functions"

[32] Runyu Jin, Qirui Yang, and Ming Zhao. Is faas suitable for edge computing?
USENIX Association, June 2020.

[33] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. Cloud programming simplified: A berkeley view on serverless
computing. arXiv preprint arXiv:1902.03383, 2019.

[34] C. T. Joseph, J. P. Martin, K. Chandrasekaran, and A. Kandasamy. Fuzzy reinforce-
ment learning based microservice allocation in cloud computing environments. In
TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON), pages 1559–1563,
2019.

[35] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Kathryn Tunyasuvunakool, Olaf Ronneberger, Russ Bates, Augustin Žídek, Alex
Bridgland, Clemens Meyer, Simon A A Kohl, Anna Potapenko, Andrew J Ballard,
Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas
Adler, Trevor Back, Stig Petersen, David Reiman, Martin Steinegger, Michalina
Pacholska, David Silver, Oriol Vinyals, Andrew W Senior, Koray Kavukcuoglu,
Pushmeet Kohli, and Demis Hassabis. Fourteenth Critical Assessment of Techniques
for Protein Structure Prediction (Abstract Book). 2020.

[36] Matthew LeMay, Shijian Li, and Tian Guo. Perseus: Characterizing performance and
cost of multi-tenant serving for cnn models. In 2020 IEEE International Conference
on Cloud Engineering (IC2E), pages 66–72. IEEE, 2020.

[37] Wes Lloyd, Shrideep Pallickara, Olaf David, Mazdak Arabi, and Ken Rojas. Miti-
gating resource contention and heterogeneity in public clouds for scientific modeling
services. In 2017 IEEE International Conference on Cloud Engineering (IC2E),
pages 159–166. IEEE, 2017.

[38] Y. Mao, J. Oak, A. Pompili, D. Beer, T. Han, and P. Hu. Draps: Dynamic and
resource-aware placement scheme for docker containers in a heterogeneous cluster.
In 2017 IEEE 36th International Performance Computing and Communications
Conference (IPCCC), pages 1–8, 2017.

[39] Sajee Mathew and J Varia. Overview of amazon web services. Amazon Whitepapers,
2014.

[40] Víctor Medel, Carlos Tolón, Unai Arronategui, Rafael Tolosana-Calasanz, José Ángel
Bañares, and Omer F. Rana. Client-side scheduling based on application characteri-
zation on kubernetes. In Congduc Pham, Jörn Altmann, and José Ángel Bañares,
editors, Economics of Grids, Clouds, Systems, and Services, pages 162–176, Cham,
2017. Springer International Publishing.

[41] Microsoft. Microsoft azure functions. Online. Accessed 2021-02-12. "https://
azure.microsoft.com/en-us/services/functions/".

108

"https://azure.microsoft.com/en-us/services/functions/"
"https://azure.microsoft.com/en-us/services/functions/"

[42] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of
machine learning. 2018.

[43] Hamidreza Moradi, Wei Wang, Amanda Fernandez, and Dakai Zhu. upredict: A
user-level profiler-based predictive framework in multi-tenant clouds. In 2020 IEEE
International Conference on Cloud Engineering (IC2E), pages 73–82. IEEE, 2020.

[44] I. Mytilinis, C. Bitsakos, K. Doka, I. Konstantinou, and N. Koziris. The vision
of a heterogenerous scheduler. In 2018 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pages 302–307, 2018.

[45] M. Najafi, K. Zhang, M. Sadoghi, and H. Jacobsen. Hardware acceleration landscape
for distributed real-time analytics: Virtues and limitations. In 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS), pages 1938–
1948, 2017.

[46] Stefan Nastic, Thomas Rausch, Ognjen Scekic, Schahram Dustdar, Marjan Gusev,
Bojana Koteska, Magdalena Kostoska, Boro Jakimovski, Sasko Ristov, and Radu
Prodan. A serverless real-time data analytics platform for edge computing. IEEE
Internet Computing, 21(4):64–71, 2017.

[47] Hani Nemati, Seyed Vahid Azhari, and Michel R Dagenais. Host hypervisor trace
mining for virtual machine workload characterization. In 2019 IEEE International
Conference on Cloud Engineering (IC2E), pages 102–112. IEEE, 2019.

[48] Randal S. Olson, Nathan Bartley, Ryan J. Urbanowicz, and Jason H. Moore. Eval-
uation of a tree-based pipeline optimization tool for automating data science. In
Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO
’16, pages 485–492, New York, NY, USA, 2016. ACM.

[49] openfaas. Openfaas watchdogs. Online. Accessed 2021-02-12. https://github.
com/openfaas/of-watchdog.

[50] Tobias Pfandzelter and David Bermbach. tinyfaas: A lightweight faas platform
for edge environments. In 2020 IEEE International Conference on Fog Computing
(ICFC), pages 17–24. IEEE, 2020.

[51] George Plastiras, Maria Terzi, Christos Kyrkou, and Theocharis Theocharidcs.
Edge intelligence: Challenges and opportunities of near-sensor machine learning
applications. In 2018 IEEE 29th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pages 1–7. IEEE, 2018.

[52] Thomas B Preußer, Giulio Gambardella, Nicholas Fraser, and Michaela Blott.
Inference of quantized neural networks on heterogeneous all-programmable devices.
In 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 833–838. IEEE, 2018.

109

https://github.com/openfaas/of-watchdog
https://github.com/openfaas/of-watchdog

[53] Thomas Rausch and Schahram Dustdar. Edge intelligence: The convergence of
humans, things, and ai. In 2019 IEEE International Conference on Cloud Engineering
(IC2E), pages 86–96. IEEE, 2019.

[54] Thomas Rausch, Waldemar Hummer, and Vinod Muthusamy. Pipesim: Trace-driven
simulation of large-scale ai operations platforms. arXiv preprint arXiv:2006.12587,
2020.

[55] Thomas Rausch, Waldemar Hummer, Vinod Muthusamy, Alexander Rashed, and
Schahram Dustdar. Towards a serverless platform for edge {AI}. In 2nd {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 19), 2019.

[56] Thomas Rausch, Clemens Lachner, Pantelis A. Frangoudis, Philipp Raith, and
Schahram Dustdar. Synthesizing plausible infrastructure configurations for evalu-
ating edge computing systems. In 3rd USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 20). USENIX Association, June 2020.

[57] Thomas Rausch, Philipp Raith, Padmanabhan Pillai, and Schahram Dustdar. A
system for operating energy-aware cloudlets. In Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, pages 307–309, 2019.

[58] Thomas Rausch, Alexander Rashed, and Schahram Dustdar. Optimized container
scheduling for data-intensive serverless edge computing. Future Generation Computer
Systems, 114:259 – 271, 2021.

[59] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20:53–65,
1987.

[60] José Santos, Tim Wauters, Bruno Volckaert, and Filip De Turck. Towards network-
aware resource provisioning in kubernetes for fog computing applications. In 2019
IEEE Conference on Network Softwarization (NetSoft), pages 351–359. IEEE, 2019.

[61] Mahadev Satyanarayanan. The emergence of edge computing. Computer, 50(1):30–39,
2017.

[62] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. The
case for vm-based cloudlets in mobile computing. IEEE pervasive Computing,
8(4):14–23, 2009.

[63] Mahadev Satyanarayanan and Nigel Davies. Augmenting cognition through edge
computing. Computer, 52(7):37–46, 2019.

[64] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. Continuous integration,
delivery and deployment: a systematic review on approaches, tools, challenges and
practices. IEEE Access, 5:3909–3943, 2017.

110

[65] Pablo Sotres, Juan Ramón Santana, Luis Sánchez, Jorge Lanza, and Luis Muñoz.
Practical lessons from the deployment and management of a smart city internet-of-
things infrastructure: The smartsantander testbed case. IEEE Access, 5:14309–14322,
2017.

[66] Srikumar Venugopal, Michele Gazzetti, Yiannis Gkoufas, and Kostas Katrinis.
Shadow puppets: Cloud-level accurate {AI} inference at the speed and economy of
edge. In {USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18),
2018.

[67] Junjue Wang, Ziqiang Feng, Shilpa George, Roger Iyengar, Padmanabhan Pillai, and
Mahadev Satyanarayanan. Towards scalable edge-native applications. In Proceedings
of the 4th ACM/IEEE Symposium on Edge Computing, pages 152–165, 2019.

[68] C. Wöbker, A. Seitz, H. Mueller, and B. Bruegge. Fogernetes: Deployment and
management of fog computing applications. In NOMS 2018 - 2018 IEEE/IFIP
Network Operations and Management Symposium, pages 1–7, 2018.

[69] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali,
Amirreza Niakanlahiji, Jian Kong, and Jason P. Jue. All one needs to know about
fog computing and related edge computing paradigms: A complete survey. Journal
of Systems Architecture, 98:289 – 330, 2019.

[70] Xingyu Zhou, Robert Canady, Shunxing Bao, and Aniruddha Gokhale. Cost-effective
hardware accelerator recommendation for edge computing. In 3rd USENIX Workshop
on Hot Topics in Edge Computing (HotEdge 20). USENIX Association, June 2020.

[71] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. Edge
intelligence: Paving the last mile of artificial intelligence with edge computing.
Proceedings of the IEEE, 107(8):1738–1762, 2019.

111

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Related Work
	Approach
	Evaluation methodology
	Results
	Discussion
	Conclusion
	Baseline Performance
	Workload Characterization
	Performance Degradation Experiments
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

