
Starkes modellbasiertes
Mutationstesten

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Andreas Fellner, M.Sc
Matrikelnummer 0825918

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assoc. Prof. Georg Weissenbacher, DPhil

Diese Dissertation haben begutachtet:

Keijo Tapio Heljanko Görschwin Fey

Wien, 11. Jänner 2021
Andreas Fellner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Strong model-based
mutation testing

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Andreas Fellner, M.Sc
Registration Number 0825918

to the Faculty of Informatics

at the TU Wien

Advisor: Assoc. Prof. Georg Weissenbacher, DPhil

The dissertation has been reviewed by:

Keijo Tapio Heljanko Görschwin Fey

Vienna, 11th January, 2021
Andreas Fellner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at





Erklärung zur Verfassung der Arbeit

Andreas Fellner, M.Sc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – ein-
schließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wort-
laut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

Wien, 11. Jänner 2021
Andreas Fellner

v





Acknowledgements

I thank Georg Weissenbacher for guiding me through this journey that was my PhD. Your in-
sights and continuous feedback steered me well through this project. I thank Rupert Schlick and
Willibald Krenn for providing me with the exciting opportunity of a project between science
and industry as well as the freedom to pursue my interests within the topic. I thank Thorsten
Tarrach for your endless help in small and large difficulties throughout my PhD. You made this
endeavor feasible not only technically, but also mentally by being a good friend to me. I thank
Mitra Tabaei Befrouei for the fruitful and efficient collaboration that significantly shaped parts
of this thesis. I thank the Dependable Systems Engineering group at the AIT Austrian Institute
of Technology as well as the LogiCS doctoral school and the Forsyte research group at the TU
Wien for providing an environment of scientific excellence and warm friendship. I had many
interesting on-topic as well as off-topic discussions with the members of these groups, gained
valuable feedback and insights from our joint seminars, and had lots of fun visiting conferences
and workshops together. A big group-hug goes to my EMCL people, you know who you are.
You are true friends, you were early co-conspirators in the pursuit of the PhD, and provide the
best opportunities for international get-aways. Shoutout to the Stahlburg folks! I am glad you
don’t need to understand what I am doing. Without being aware of it you contributed to this
thesis by providing much needed (in)sanity. I thank my parents Bernhard and Eva for always
standing by me. You, foremost of all people, made this possible. Finally, I thank my wife Mar-
lene and my children Florentina and Konstantin, who endured times of long working hours and
travel. You ground me, make me happy, and show me what really matters in life.

vii





Kurzfassung

Leistungsstarke Verifikations- und Validierungsmethoden sind nötig um mit der Komplxität mo-
derner Systeme, die immer häufiger aus einer Vielzahl an interagierenrden Sub-systemen be-
stehen, Schritt zu halten. Testen ist die weit verbreitetste V&V Methode, aber der Skalierung
dieses Ansatzes auf große und ineinandergreifende Systeme stellt eine enorme Herausforderung
im Bezug auf Rechenleistung, sowie (und womöglich schwerwiegender) im Bezug auf die Fä-
higkeit solche Systeme in ihrer Gesamtheit zu verstehen, dar. In dieser Arbeit adressieren wir
diese Herausforderung indem wir skalierende Methoden für modellbasierte- und mutationsge-
triebene Testfallgenerierung (MBMT) mit einem speziellen Fokus auf starke Mutationsanalyse,
sowie nichtdeterministische Systeme nebenläufiger, sowie reaktiver Systeme präsentieren.

MBMT hat das Ziel automatisch Testfälle aus einem Modell des zu testenden Systems zu erstel-
len, welche etwaige Unterschiede in den Ausgaben dieses Modells und Mutanten derens sichtbar
machen. Mutationen immitieren dabei Implementierunsfehler und da nachgewiesen wurde, dass
künstliche und reale Fehler häufig durch die selben Tests aufgedeckt werden, gilt starke Mu-
tationsanalyse weithin als eine Testabdeckungsmetrik mit hoher Qualität. Ihr Hauptnachteil ist
ihr hoher nötiger Rechenaufwand. Außerdem ist starke Mutationsanalyse auf nichtdeterministi-
schen System noch nicht hinreichend erforscht. Das ist unzufriedenstellend, weil Nichtdetermi-
nismus ein nützliches Werkzeug in der Modellierung ist, um zum Beispiel Nebenläufigkeit, ein
unbekanntes Umfeld, oder unterspezifizierte Aspekte des Systems, auszudrücken.

In dieser Arbeit widmen wir uns diesen Unzulänglichkeiten von starter Mutationsnalyse im Kon-
text der modellbasierten Testfallgenerierung. Wir beginnen mit einem rigorosen theoretischen
Unterbau und betten diesen in die Theorie der Hyperproperties, welche den Zusammenhang
mehrerer Ausführungspfade erforscht, ein. Diese Einbettung erlaubt es uns Hyperproperty mo-
del checking für MBMT zu nützen und dadurch rigorose Mutationsanalyse zu betreiben.

Des Weiteren präsentieren wir einen auf Skalierung getrimmten Algorithmus für MBMT und
große Modelle mit einer komplexen Struktur, welcher Mutanten resourchenschonende ausführt
und den Zustandsraum des Modells in einer verzweigenden Suche durchsucht. Final widmen wir
uns der Testfallgenerierung von in hohem Maße nebenläufigen Modellen indem wir Testfallgene-
rierung mit partial order reduction verbinden. Hierzu übersetzen wir starke Mutationsanalyse in
ein Inklusionsproblem über den Sprachen zweiter Ereignisstrukturen, beweisen die Komplexität
dieses Problems und entwickeln einen Algorithmus zum Lösen des Problems. Diese Methodik
erlaubt es uns eine neuartige Klasse an Testfällen zu erhalten, welche das nebenläufige Verhalten
des zu testenden Systems abbildet.

ix





Abstract

Powerful verification and validation methods are needed to keep up with the complexity of mod-
ern systems, which increasingly consist of a myriad of interacting sub-systems. While testing
remains the most prevalent verification and validation method, scaling testing to huge and in-
terdependent systems poses a big challenge in terms of computational complexity and (perhaps
even more severely) in terms of understanding such systems in their entirety. In this work, we
address this challenge by presenting scalable methods for model-based mutation testing with a
focus on strong mutation and non-deterministic models of concurrent reactive systems.

Model-based testing aims to automatically create test cases from a model of some system un-
der test. As has been done successfully before, we use mutations as the driving criterion in
model-based test generation. Strong mutation analysis aims to reveal differences in the output
of a model and mutations of it via test cases. Mutations mimic implementation errors and a key
assumption of mutation testing is that the ability of a test suite to reveal artificial errors carries
over to its ability to reveal actual faults in systems. Strong mutation is well accepted as a pow-
erful test suite quality metric. However, its main drawback is the computational cost associated
with it. Furthermore, strong mutation in presence of non-determinism is not well studied so far.
This is unfortunate, since non-determinism is a useful modeling tool, for example to represent
concurrency, to model an unknown environment, or to under-specify certain aspects of a system.

In this work, we tackle these shortcomings of strong mutation analysis in the context of model-
based testing. We start by establishing a rigorous theoretical framework for strong model-based
mutation testing in presence of non-determinism. We embedded this framework into the theory
of hyperproperties, which studies the relationship of multiple system traces. This embedding
yields a logic characterization of mutation killing. In addition, it enables model-based mutation
testing via hyperproperty model checking and thus rigorous mutation analysis.

Towards mutation-driven test generation for large models with complex structure, we propose an
explicit state and exploration-based test case generation algorithm that is tuned for scalability. It
executes mutants lazily and explores state spaces in a branching search manner, which is inspired
by the successful rapidly exploring random trees path planning algorithm. Finally, we enable test
case generation for highly concurrent models by connecting this algorithm with event structure-
based partial order reduction. To this end, we map strong killing onto a language inclusion
problem over event structures, prove the computational complexity of this problem, provide a
decision algorithm for it, and obtain a novel type of test cases that incorporates the concurrent
behavior of the model.

xi





Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Research 9
2.1 Model-based Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Model-based Mutation Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Model-based Testing 17
3.1 Modeling Reactive Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Testing Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Symbolic Transition System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Action Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Mutation Testing 33
4.1 Mutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Killing Mutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Mutation Testing with Hyperproperties 43
5.1 Logics for Hyperproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Killing with Hyperproperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Non-deterministic Models in Practice . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Mutation Testing with Hyperproperties Experiments . . . . . . . . . . . . . . . 62
5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xiii



6 Test Case Generation via Heuristic-guided Branching Search 73
6.1 Branching Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Branching Search Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.4 Branching Search Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Event Structure-Based Test Case Generation 95
7.1 Event Structures and Configurations . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2 Unfolding Based Partial Order Reduction . . . . . . . . . . . . . . . . . . . . . 98
7.3 Event Structure Based Test Case Generation . . . . . . . . . . . . . . . . . . . . 101
7.4 Language Inclusion Problem and Complexity Results . . . . . . . . . . . . . . 104
7.5 Deciding Language Inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8 Conclusions and Future Work 133

List of Figures 135

List of Tables 137

List of Algorithms 139

Bibliography 141



CHAPTER 1
Introduction

1.1 Motivation

From implementing complex software systems over medical research to constructing a bridge,
testing is an integral component of engineering and science, which makes up a significant per-
centage of overall development time and costs across many domains. However, inadequate test-
ing in an early project stage can incur even higher costs in a later project stage, when a complex
software system reveals a severe bug, a medical treatment proves harmful, or a bridge collapses.
Unfortunately, manually creating test cases is not trivial and often an unbeloved task. The com-
plexity of developed systems as well as tunnel vision can lead to untested corner cases. Further-
more, testing does not immediately produce value in terms of some tangible output. Therefore,
it can be skipped or done sloppily, especially in early stages of development. Formal methods,
such as static analysis, software model checking, or automated theorem proving, can fill certain
gaps in the verification process and augment it in very useful ways. However, we are far from
completely relying on such methods for quality and correctness assurance, for which testing re-
mains the de-facto standard. All of these factors call for automated test generation methods to
augment or replace the manual test generation process.

In this work, we study automated test generation for reactive systems, which we understand as
systems that might run indefinitely and continuously process inputs as well as produce outputs.
Automated test generation extracts test cases from some description of the reactive system under
test. What constitutes a suitable description heavily depends on the system itself. A suitable and
widely used description for software is its source code. However, for many systems there simply
is no source code at all (e.g. physical systems) or source code that describes its entirety (e.g. cars).
Furthermore, source code may contain too many implementation details that obscure test goals.
Therefore, more abstract descriptions, such as designs or specifications, can be used as basis for
automated test generation. Model-based testing subsumes methods to create test cases from an
abstract description, i.e. model, of some system under test. Test cases created via model-based
testing are templates that have to be concertized for the actual system under test. For example, a

1



1. INTRODUCTION

test case for a railway interlocking system could be a script consisting of a sequence of actions
that have to be performed on the components of the interlocking system, such as switches or
relays, that should trigger a sequence of observations, such as signals or lights. Executing such a
test means that some tester, which could either be a person or some automated system, executes
the test’s inputs, and compares the observed outputs to the ones prescribed by the test.

An orthogonal consideration in test case generation to the abstraction level of the model is the
purpose of a test. The purpose of a test could be to exhibit as much diverse behavior of a system
as possible. Alternatively, its purpose could be to detect errors of the system, if there are any.
Such different test purposes can be captured via the notion of test coverage metrics. The former
purpose can be captured by structural coverage metrics, such as branch or decision coverage.
The latter purpose can be captured by fault-based coverage metrics, such as mutation coverage,
which is the metric studied in this thesis.

A mutant is a copy of the model except for a small syntactic modification that mimics a potential
implementation fault, such as an off-by-one error or a blocked transition. The mutation coverage
metric measures how many differences between the model and its mutants can be revealed by
a test or a whole test suite. We say that a test kills a mutant if it reveals a difference of the
mutant and its underlying model. The fundamental assumptions of mutation testing are the com-
petent programmer hypothesis [DLS78, BLDS79], which states that implementations typically
are close to correct, and the coupling effect [DLS78, Off92], which states that a test suite’s ability
to detect many simple errors (and mutations) correlates with its ability to detect complex errors.
In other words, while the competent programmer hypothesis states that the respective correct im-
plementation is within a close neighborhood of most erroneous implementations, the coupling
effect states that this neighborhood does not need to be searched exhaustively. Thus, the cou-
pling effect reduces the search space of close-to-correct implementations from an astronomical
or even infinite amount of potential implementations to a manageable amount of implementa-
tions that are the result of applying carefully selected mutation operators. In summary, a test
suite that kills many mutants is desirable, because it is able to effectively differentiate between
correct and faulty implementations.

The sought differences between model and mutant can be in terms of internal state (weak killing
[How82]) or in terms of output (strong killing [DLS78]). The benefit of weak over strong killing
is the reduced computational cost during test case generation or evaluation, because in order to
demonstrate a weak kill, internal differences do not have to be propagated to outputs. However,
since a difference in internal state may never (or only via very specific tests) propagate to a dif-
ference in output, the coverage guarantees obtained via weak mutation analysis are inherently
weaker than those of strong mutation analysis. The trade-off between execution cost and cover-
age guarantees between weak and strong mutation was empirically evaluated in multiple studies
[Mar91, OL91, OL94, KPM10] and the general agreement is that the computational savings of
weak mutation are worthwhile, since the coverage reduction is small. However, in the realm of
model-based testing, the internal structure of the model and the system under test may be com-
pletely different. As a result, differences in internal state may not manifest on the system under
test. In contrast, reasonable models should include output that is closely related to the output
of the system under test. Furthermore, while weak mutation testing of non-reactive programs

2



1.2. Contributions

aborts mutant execution early, the resulting tests are assumed to be run on the system under test
until termination. Since reactive systems do not terminate by definition, it is not clear how and
how long to proceed with tests of such systems that were created via weak mutation, whereas
tests created via strong mutation drive the system to a point where either the error is visible or
it is not present. Therefore, strong mutation analysis is an appropriate and powerful coverage
metric for model-based testing of reactive systems.

Non-determinism is an important modeling tool, for example to describe uncertainty of the en-
vironment, to abstract implementation details via under-specification, or to model concurrency.
Therefore, there is a need for mutation analysis within the model-based setting to handle it
well. Unfortunately, non-determinism induces complexity to strong mutation analysis that is
not addressed thoroughly in the mutation testing literature. This complexity stems from the fact
that tests created from non-deterministic models may subsume multiple of its execution paths.
All these paths need to be taken into account when deciding whether the test kills a mutant.
Non-determinism is both a challenge for the theory of mutation analysis, where the definition
of mutation killing has to take into account multiple paths, as well as the practice of mutation
analysis, where an exploding number of execution paths needs to be tamed.

1.2 Contributions

We address the theoretical challenge of adequately formulating non-determinism-sensitive muta-
tion killing in a model-based setting, as well as the practical challenges of performing mutation-
driven test case generation both rigorously and on a large scale on top of this formulation.

Towards the theoretical challenge, we define mutation testing semantics on Mealy machines,
which are a universal and widely known theoretical formalism. Although Mealy machines do
not capture all types of systems for which mutation testing is conceivable, by expressing finite
state reactive systems, our semantics are nevertheless applicable to a large class of concrete sys-
tems. Furthermore, we map the powerful action systems modeling language as well as symbolic
transition systems to Mealy machines and thereby demonstrate the universality of the given mu-
tation testing semantics. In addition to incorporating the folklore notions of weak- and strong
killing, our mutation testing theory establishes a novel and orthogonal degree of fault detection
guarantee in presence of non-determinism. In particular, we introduce potential- and definite
killing, which differentiate whether some or every execution of a test can be expected to detect
the fault expressed by a killed mutant. Similar to weak- and strong killing, potential- and definite
killing allow to trade-off test generation costs and coverage guarantees, since potential killing is
cheaper to establish whereas definite killing induces stronger fault detection guarantees.

Model checking is a promising method for tackling the challenge of performing mutation-driven
test case generation rigorously. In fact, the method has been applied successfully for test case
generation. The basic idea is to encode test coverage into a model checking problem in such
a way that a test case with some coverage guarantee is a counter-example to that problem.
While this approach has been applied to mutation coverage before, e.g. [CDK85, ABM98, GH99,
BOY00, OBY03, SFBD08, XeAXW12], existing solutions often lack universality and thus the
approach is not widely adopted. In this thesis, we address one of the main barriers to a wider

3



1. INTRODUCTION

adoption of model checking for mutation-driven test case generation. Namely, we show that
strong killing is a hyperproperty [CDK85], i.e. a property that relates multiple execution paths.
In contrast, classic model checking solves trace-properties, i.e. properties that are either true or
false for individual execution paths. Thus, in order to leverage model checking for mutation-
driven test case generation, previous approaches needed to work around this fundamental dis-
parity in property type. This was typically achieved either by mutating properties of the model
instead of the model itself, e.g. [ABM98, BOY00], by constructing and model checking the
product of model and mutant, e.g. [OBY03], or by formulating model- and mutant- specific
properties capturing some custom notion of killing, e.g. [GH99, XeAXW12]. In contrast, we en-
able a generic model checking approach for mutation-driven test case generation by embedding
our mutation killing semantics into the theory of hyperproperties. Not only does this embedding
yield a novel test case generation methodology, it also provides a characterization of killing in
terms of logic, which in turn enables rigorous analysis of the concept. For example, a formal ar-
gument for the different computational costs of different killing concepts can be given in terms
of properties of their respective logic formulations. Finally, the embedding provides a novel
application to the emerging field of hyperproperties outside of its classic application domain,
which is the verification of security properties.

Models of complex systems are often quite non-trivial themselves, because not all aspects of the
system can and should be abstracted away. As a result, test case generation via model checking
is not always feasible, either due to model sizes for which formal approaches hit their scalability
ceiling, or due to complex syntactic constructs, which can not be handled well by logic solvers.
Therefore, in order to succeed in the practical challenge of performing mutation-driven test case
generation on a large scale, automated test case generation methods that can handle large and
complex models are needed. To this end, we propose an explicit state and exploration-based
test case generation algorithm for models given as action systems [BKS83, BKS98], which is a
rich and versatile modeling language, capable of expressing a large class of other modeling for-
malisms, such as UML state machines [KSA09] or Event-B models [BDH%19]. The algorithm
is parametrized by its exploration scope as well as by several heuristics. Thus, it can be well
adjusted to model requirements and computation budget. For example, exhaustive explorations
can be performed on small models, whereas bounded explorations might be more appropriate on
large models. We evaluate this parameter space on a series of industrial case studies. In addition
to efficient state space exploration, the algorithm performs lazy mutant execution. We discussed
above that weak mutation was found to be worthwhile, since it reduces the execution costs of
mutants by suppressing execution suffixes. However, we also discussed why weak mutation is
not an ideal criterion in our setting. To gain the best of both worlds, lazy mutation reduces the
execution costs by soundly suppressing prefixes of mutant executions in contrast to their suffixes.
This is enabled by the use of conditional mutants allowing us to switch on mutants at interme-
diate states that are guaranteed to be reachable in the mutant and that have outgoing transitions
affected by the respective mutation.

The complexity of systems can be due to their shear size. However, in the emerging era of
the internet of things, this complexity often does not stem from the complexity of individual
components, but from the large number of sub-systems that interact and co-operate, which of-

4



1.3. Research Questions

ten can act concurrently and independently of each other. In order to automatically create test
cases from models of such system, dedicated methods to cope with the exploding number of
execution interleavings represented by these models are necessary. To this end, in this work
we show how unfolding-based partial order reduction can be leveraged in three aspects during
test case generation. Firstly, unfolding-based partial order reduction can exponentially speed up
model exploration. Secondly, the results of this exploration induce a novel type of concurrent
test, representing a potentially exponential number of test cases that are equivalent up to con-
currency interleaving. Thirdly, strong kill analysis can directly be performed on the unfolding
structures obtained during unfolding-based partial order reduction without the need to construct
the potentially exponential number of interleavings explicitly. This is achieved by casting the
strong killcheck to a language inclusion problem over event structures. Since this problem was
not solved before, we prove the computational complexity of the language inclusion problem
over finite labeled prime event structures and provide a decision algorithm for it.

The main contributions of this work can be summarized as follows:

• Semantics for mutation analysis of reactive systems in the presence of non-determinism.

• A formal characterization of strong mutation analysis via hyperproperties.

• A model-based mutation testing algorithm that scales to models of industrial size.

• Partial order reduction enabled mutation-driven test case generation via event structures.

• Foundational results on the event structure language inclusion problem.

1.3 Research Questions

Accordingly, our work answers the following research questions:

• How does non-determinism influence mutation killability?

• Is strong killability a hyperproperty?

• Is there a logical characterization of strong killability?

• Can the logical characterization of strong killability be leveraged to automatically create
test suites with high mutation coverage?

• Can model-based mutation testing scale to models of industrial size?

• Can partial order reduction be integrated into mutation analysis?

• What is the computational complexity of the finite labeled prime event structure language
inclusion problem?

• How can the finite labeled prime event structure language inclusion problem be solved?

5



1. INTRODUCTION

1.4 Methodology

The research questions presented above are of mixed theoretical and practical nature. This mix is
reflected in our approach to answering these questions, ranging from purely theoretical compu-
tational complexity proofs to practical algorithms, whose value we demonstrate via experiments
on large real world problem instances.

The methodologies of the individual experiments are described in detail in the following chap-
ters. However, the general theme of all conducted experiments is to implement our method and
to study its properties using base-line comparisons as well as large sets of benchmark models
and parameter configurations. We implemented the methods presented in Chapter 5 as a tool-
chain of freely available off-the-shelf tools and the methods presented in Chapter 6 as well as
Chapter 7 on top of the model-based mutation testing tool MoMuT. The experiments presented
in Chapter 5 compare to MoMuT on a case-study and demonstrate computational as well as
coverage properties of the method on a range of models originating from two different modeling
languages. The experiments presented in Chapter 6 compare a range of parameter configurations
on a series of industrial benchmark models. Finally, the experiments in Chapter 7 compare the
proposed language inclusion algorithm to classical automaton-based language inclusion as well
as unfolding-based partial order reduction to sequential model exploration.

The theoretical results are presented in a classic definition, theorem, and proof style. In addition,
we discuss the meaning of our definitions and the implications of the proven theorems. This
work aims to be self-contained and all necessary concepts are defined within it. Furthermore, all
theoretical results are demonstrated on an simple examples.

1.5 Publications

This thesis is based on the following publications (joint work is presented with the permission
of all co-authors):

• Andreas Fellner, Willibald Krenn, Rupert Schlick, Thorsten Tarrach, and Georg Weis-
senbacher. Model-based, mutation-driven test case generation via heuristic-guided branch-
ing search. In Jean-Pierre Talpin, Patricia Derler, and Klaus Schneider, editors, Proceed-
ings of the 15th ACM-IEEE International Conference on Formal Methods and Models for
System Design, MEMOCODE 2017, Vienna, Austria, September 29 - October 02, 2017,
pages 56–66. ACM, 2017

• Andreas Fellner, Mitra Tabaei Befrouei, and Georg Weissenbacher. Mutation testing with
hyperproperties. In Peter Csaba Ölveczky and Gwen Salaün, editors, Software Engineer-
ing and Formal Methods - 17th International Conference, SEFM 2019, Oslo, Norway,
September 18-20, 2019, Proceedings, volume 11724 of Lecture Notes in Computer Sci-
ence, pages 203–221. Springer, 2019

6



1.5. Publications

• Andreas Fellner, Willibald Krenn, Rupert Schlick, Thorsten Tarrach, and Georg Weis-
senbacher. Model-based, mutation-driven test-case generation via heuristic-guided branch-
ing search. ACM Trans. Embed. Comput. Syst., 18(1):4:1–4:28, January 2019

• Andreas Fellner, Thorsten Tarrach, and Georg Weissenbacher. Language inclusion for
finite prime event structures. In Dirk Beyer and Damien Zufferey, editors, Verification,
Model Checking, and Abstract Interpretation - 21st International Conference, VMCAI
2020, New Orleans, LA, USA, January 16-21, 2020, Proceedings, volume 11990 of Lec-
ture Notes in Computer Science, pages 314–336. Springer, 2020

• Andreas Fellner, Mitra Tabaei Befrouei, and Georg Weissenbacher. Mutation testing with
hyperproperties. Software and Systems Modeling, Special Issue, 2020. Accepted. Publi-
cation pending

7





CHAPTER 2
Related Research

In this section, we present the state of the art of model-based mutation testing and related fields.
Additional topic specific related work is further discussed in the technical chapters of this work.

2.1 Model-based Testing

Model-based testing is a rich and diverse field of study. In fact [Bin00] argues that all testing
must be model-based and if the notion of a model is viewed broad enough to include mental
models of software engineers, in fact all testing is model-based [BJK%05]. Thus, in this assess-
ment of the state of the art of model-based testing we restrict ourselves to tracing the origins of
the field, pointing to comprehensive sources that provide an overview of the field, and discussing
selected pieces of work that are most relevant to this thesis.

2.1.1 Historical Context

The broad definition of the term model prohibits to exactly pin-point the origin of model-based
testing. However, the idea to automatically create test cases from an abstraction of the system
under test was originally coined specification based testing, requirements-based testing, or test-
ing for finite state machines. These related approaches were later subsumed under the term
model-based testing in the late 90’s.

The earliest model-based test case generation like approaches were conceived for sequential
circuits for which the boundary between model and implementation is blurry. For example,
[Hen64] considers the fault detection problem for sequential circuits and describes a procedure
to obtain so called checking experiments from the state-table description of the circuit. The same
problem is considered in [Gon70], which provides a more algorithmic solution and abstractly
defines the testing problem for sequential circuits as the search for a pair of input and output
sequence (X,Z), such that the circuit responds to X with Z if and only if the circuit is correct.

9



2. RELATED RESEARCH

Towards automated test case generation for more universal types of models, [Cho78] presents
an early approach to the problem for finite state machine representations of the control flow of
some system under test by exhaustively constructing transition-covering input sequences.

[Gou83] presents a formal framework to assess the correctness of programs with respect to
specifications as well as quantifying the power of test suites with respect to this measure. It can
therefore be seen as a precursor to conformance testing, which emerged as an influential early
model-based testing method in the field of testing communication protocols [CDK85, Tre92].

Interestingly, mutation testing is formally shown in [Gou83] to be a powerful test metric, al-
though it is viewed as a test metric that solely depends on the implementation and is thus spec-
ification independent. In contrast, model-based mutation-driven test case generation turns this
view around by generating tests solely based on specifications. This is by no means a novel idea,
as can be seen from another early specification-based test case generation method [BG85] that
studies mutants of specifications, as well as [PDMM94] that studies mutation-driven test case
generation for finite state machines.

DAISTS [GMH81] is an early specification-based testing tool, which combines concrete imple-
mentations with specifications given as algebraic axioms. The tool automatically compiles both
components together, providing a test driver that can verify the correctness of the specification
using tests. Another early tool in this domain is ATLAS [JKRS76], which derives test cases
automatically from an abstract directed graph representation of the sequential stimulus-response
behavior of the system under test.

2.1.2 Surveys

In [UPL12] a taxonomy of model-based testing methods is presented, which demonstrates the
diversity of the field well. The authors categorize model-based testing approaches according to
three main criteria: model specification, test generation, and test execution. Each of the cate-
gories are further partitioned to eventually arrive at 25 distinct attributes to distinguish model-
based testing methods. The approaches discussed in this work have the following attributes
with respect to this taxonomy. We analyze models that are input-output, non-deterministic, and
transition-based. The test case generation methods are fault-based and combine random gener-
ation, search-based algorithms, and model checking technology. Finally, we target offline test
execution.

A detailed study of model-based testing of reactive system is presented in [BJK%05]. The book
discusses conformance testing for finite state machines, given as Mealy machines. This problem
is very similar to the problem we tackle, when mutation killability is cast as a conformance
problem between the model (taking on the role of a specification) and the mutant (taking on
the role of an implementation). Furthermore, [BJK%05] discusses practical aspects of model-
based testing. For example, the process of test case concretization and aspects of model-driven
development are explored. Furthermore, tools for model-based testing are examined. All these
aspects are very relevant to our work and need to be considered in order to make full use of the
methods we present.

10



2.1. Model-based Testing

Further surveys on model-based testing include [DNSVT07] that, similar to [UPL12], classifies
approaches according to additional criteria like abstraction level, level of automation, and scope
of application, [SL10, SL15, LLGS17] that focus on model-based testing tools, and [Pel13] that
focuses on the application of model-based testing in an industrial context, which is also the aim
of the methods presented in this work.

2.1.3 Related Topics

Model-based testing is particularly relevant in the context of model-driven development, which
aims to develop systems via continuous refinement of ever more concrete models. The develop-
ment, challenges, and reasons model-driven development is not (yet) widely adapted in industry
are discussed in [MAB%14]. Furthermore, a survey of work on testing within model-driven
development is presented in [MOSH09].

An interesting approach to ease the use of models is to automatically learn them from the system
under test. Model-based testing can be used to guide this process by providing a teaching mecha-
nism via generated test cases. A survey of work in the space of model learning and model-based
testing is presented in [AMM%18]. In this work, we purely focus on the model-based testing as-
pect, but our methods could be leveraged within the model-based learning approach.

Conformance testing is the problem of verifying whether an implementation correctly imple-
ments or conforms to a specification. This is the problem we ultimately help solving in this
work by generating test cases from the specification that support or reject conformance of im-
plementations to this specification. This classic problem is tackled for Mealy machines in
[LY96, BJK%05], as well as via a bounded model checking approach over 1-safe Petri nets
in [PH03]. Conformance Testing is defined via relations between labeled transition systems
in [Tre92, Tre96]. This interpretation of conformance testing is applied to mutation testing in
[AJT14, Jöb14].

2.1.4 Relevant Modeling Formalisms

In this work, we build our theory of mutation testing on top of finite state Mealy machines
[Mea55], which serve as archetypical reactive systems. However, in practice, models are rarely
given in this abstract form. Thus, we demonstrate our test case generation methods on more
practical modeling formalisms. We consider action systems [BKS83], which can be seen as
an extension of the well known Dijkstra’s guarded command language [Dij75]. In fact, our
implementation considers an object oriented extension of action systems [BKS98]. Due to its
expressivity this formalism can serve as both a standalone modeling language as well as the
target of automated translations from other modeling formalisms. Currently, UML state machine
models [ABJ%15a] as well as Event-B [Abr10b] models can automatically be translated to action
systems via the MoMuT mutation testing framework. Additionally, we present a method for test
case generation on symbolic transition systems as well as experiments on concrete forms of such
transition systems given as SMV [McM92b] and Verilog [TM08] models.

11



2. RELATED RESEARCH

2.2 Mutation Testing

2.2.1 Historical Context

Mutation testing originates in the late 70’s [Ham77, DLS78]. [Ham77] studies the effects of
altered expressions on the verdicts of a given test suite and proposes an automated compiler-
based system to execute tests on programs with such altered expressions. [DLS78] proposes the
coupling effect, studies common errors made by programmers, and establishes mutations as a
systematic way to evaluate the error detection capability of a test suite.

Early mutation testing tool support was provided via PIMS [BLDS78, BLDS79], which is an
interactive tool to measure the mutation score of test suites for Fortran programs. Another note-
worthy early mutation testing tool is Mothra [DGM%88], which provides an interactive mutation
system for Fortran and C. In addition, Mothra is capable of mutation-driven test case generation,
which is the problem studied in this work. Later extensions to Mothra perform test case gen-
eration by solving constraints that express mutation killability [DO91], which can be seen as a
precursor to model checking based test case generation and our work presented in Chapter 5.

2.2.2 Surveys

There exist excellent, comprehensive surveys on mutation testing that cover everything from
fundamental assumptions over evaluating weak versus strong mutation to mutation testing tools.
Most notable and most up-to-date are [JH11] and [PKZ%19]. Furthermore, [OU01] provides a
good overview of the historic context of the topic. Finally, [Off11] presents a thorough overview
and discussion of mutation testing from one of the founding fathers of the field, 35 years after it
was established.

2.2.3 Fundamental Assumptions

As mentioned in the introduction, mutation analysis builds on two fundamental assumptions: the
competent programmer hypothesis, i.e. implementations are typically close-to-correct, and the
coupling effect, i.e. the ability to detect many minor errors correlates with the ability to detect
complex errors. The competent programmer hypothesis was proposed in [BLDS79] and made
formal in [BDLS80] by defining a program neighborhood for simple LISP programs. Implicitly,
this assumption is made in most debugging and testing efforts, since programs are most often not
fixed by completely rewriting them from scratch. Furthermore, the growing field of automated
program repair (see [GMM18] for a comprehensive survey) likewise assumes that for many
bugs, there exists a simple fix that can even be found automatically. The validity of the coupling
effect has been shown within the Mothra mutation framework [Off89, Off92], for functions in
the mathematical sense [Wah95, Wah00], for logical faults in Boolean constraints [Kap06], and
with respect to multiple active mutations in comparison to a single active mutant [Wah03].

Since the two fundamental assumptions of mutation testing are essentially empiric claims, their
validity can be argued and studied, but they can ultimately not be proven. Therefore, exper-
iments were conducted to empirically evaluate the effectiveness of mutation testing. [DM90,
DT96, ABL05, JJI%14] present experiments that measure the correlation of mutant and real

12



2.3. Model-based Mutation Testing

fault detection capability of test suites. All these experiments conclude that there is indeed a
strong correlation and that careful selection of mutation operators strengthens this correlation.
[MW94, FWH96, OPTZ96, MR01] present experiments that compare the effectiveness and ef-
ficiency of different test adequacy metrics, such as the data-flow all-use criterion in [MW94,
FWH96, OPTZ96] and boundary value as well as equivalence class testing in [MR01]. The
general conclusion of these studies is that mutation testing indeed is superior to the other test
adequacy metrics in terms of fault detection capability, but the metric comes with caveats, as for
example its high computational costs.

2.3 Model-based Mutation Testing

2.3.1 Historical Context

As hinted above, mutation testing was already applied in the realm of model-based testing in its
early days. Mutation testing was applied to predicate calculus in [BG85], to network protocols
in[SL88], to finite state machines in [PDMM94], to Petri nets in [FMM%95], and to UML dia-
grams modeling the interactions of objects in object oriented programs in [YCJ98]. These early
approaches mostly aim to establish the validity of mutation testing on a design level as well as
formulate adequate sets of mutation operators. We build on the shoulders of these giants, focus-
ing on the test case generation problem and studying killability in presence of non-determinism.

2.3.2 Surveys

Both mutation testing surveys [JH11] and [PKZ%19] have dedicated chapters on model-based
mutation testing. In addition, [BBH%16] provides a comprehensive study of the topic, includ-
ing a detailed discussion of related work. The authors of [BBH%16] differentiate between ap-
proaches that test the specification and those that test the implementation. Our work falls into the
latter category, as we assume the given model to be correct and aim to provide tests that should
increase confidence that the system under test correctly implements the specification given by
the model.

2.3.3 Mutation Operators

The vast majority of mutation testing research within model-based testing is concerned with
studying mutation operators for models. Indeed, careful design and choice of mutation oper-
ators is an important problem for mutation testing, but it is not the main focus of this work.
Nevertheless, we provide an overview of such research here, since mutation operators depend
heavily on the used modeling formalism and our test case generation methods are meant to be ap-
plicable on a wide array of them. In particular, large parts of our work are directly applicable to
modeling formalisms that express finite state machines. In [BBH%16] it is argued that mutation
operators insertion and omission as well as combinations of them subsume all other mutation op-
erators for such models. For example, a variable assignment replacement can be simulated with
an omission, followed by an insertion. This is an interesting theoretical insight. However, in
practice mutation operators manipulate higher language features than state machine transitions,

13



2. RELATED RESEARCH

and allowing multiple simultaneously active mutants (which is typically referred to as higher
order mutation) induces its own sets of problems like an exploding number of mutants and a
more vague mapping between mutants and faults. Mutation operators for finite state-like mod-
eling formalisms were defined for finite state machine directly in [PDMM94, FMMD99], for
extended finite state machines in [BPGQ02, BVCU07], for probabilistic and/or stochastic finite
state machines in [HM07, HM09, SMC%17], for SDL specifications in [KPLV%03, SMW04],
for statechart models in [FMSM99, Tra10], for Estelle specifications in [SdSFLdSM00], for
pushdown-automata in [BBTF11], for timed automata in [ALN13], and for UML state machines
in [ABJ%15a].

Besides finite state machine-like models, mutation operators were defined for feature models of
software product lines in [HPP%13b, HPP%13c, HPT14, AGV15], for algebraic specifications
in [Woo93], for Simulink models in [SAC14, PRWN16], for XML schemas in [LO01, LM05a,
XOL05], for Alloy models in [SWZK17], for aspect-oriented models in [XeAXW12, LAO%15],
for agent-based models in [AM10], for SMV models in [AGR15, AGR17], for temporal logics
in [Tra17], and for Object-Z specifications in [LM05c].

Besides syntax-based mutation, semantic mutation is proposed in [CDH13] and demonstrated on
C as well as on statecharts. Semantic mutation changes the interpretation of language constructs,
for example the interpretation of integer division, and thereby models wrong assumptions of
their effects.

2.3.4 Deployment of Mutants for Models

Mutants are applied in different scenarios in model-based testing. Roughly, these scenarios can
be categorized into approaches for testing of implementations and for testing of specifications.

The most widespread use of mutants in models is to test implementations of models. The
classic story within this cluster of approaches is to mutate a given model of some system un-
der test and to generate test cases that reveal the difference between the mutant and the model,
which can later be used to verify that a system under test implements the model rather than
the mutant. Approaches following this story can be further classified by the test case genera-
tion method applied. Tests can be extracted by exploring and comparing the state space of the
model and mutant [KPLV%03, BBTF11, BBTF12, ABJ%15a, ABJ%15b], by casting mutation
killing as an optimization problem [HPT14, MFV15, MFV16, SMC%17], by solving a formal
representation of mutation killing via symbolic tools, such as model checkers or SMT solvers,
[ABM98, GH99, BOY00, BOY01, OBY03, FW08, XeAXW12, ALN13, AJT14, AGV15], by
applying model specific algorithms, such as state identification [EFDYB12], state machine
equivalence checking [HM07, HM09] or a tree construction [ZSL%14], by representing mu-
tation killing as a refinement problem and using dedicated refinement checking algorithms
[ABJK11, AL15, AHL%17], by casting mutation killing as an optimal strategy in a suitable
game [LLNN17], or by a combination of these methods [AAJ%14]. This work also follows this
classic story and the presented test case generation methods fall under the exploration-based as
well as the symbolic category. Furthermore, this story is sometimes extended by automatically

14



2.3. Model-based Mutation Testing

extracting the model from the system under test and executing the generated tests right away
[ZDK07, BBTF11, SMC%17].

Besides this classic story, mutations have been used in combination with pre-existing test suites
by applying mutations to the test suite itself [LO01, XOL05, ZDK07], as a fuzzing method to
test network protocols [ZWT12], to improve the test suite of model transformers [AME%15], to
aid debugging timed automata models [AHL14a], to test the semantics of W3C XML Schemas
[LM05b], and to remove conformance faults from feature models [AGV16].

Besides testing implementations, mutants of models have been used to test specifications. In
contrast to deriving test cases from a model that ought to be applied to some implementation of
it, the derived test cases are used to validate or debug the model itself. These approaches can
be viewed as classic program-based mutation testing applied to models. The purpose can be fur-
ther classified into validating models, i.e. assuring that the model captures the intended behavior,
[FMMD99, SdSFLdSM00, SCSP03, SMW04, LM05c, SWZK17, Tra17], verifying models, i.e.
assuring that the model is error free, [Woo93, AGR15, PRWN16, SWZK17], assessing the qual-
ity of existing test suites, for example by calculating its mutation score directly on the model,
[BFP08, HPP%13a, HPLT14, BBH%16], and detecting model clones [RC09, SASC13].

2.3.5 Semantics of Strong Mutation Killing

In the classic sense, a mutant is strongly killed if for some inputs, the output of the mutant is dif-
ferent from the output of the non-mutated program (or model) [DLS78]. However, this definition
of killing is not directly applicable to model-based mutation testing of reactive systems, since
inputs and outputs come in sequences for such models, non-determinism can result in multiple
possible outputs, and the system under test is generally different to the model at hand. Thus, the
notion of killing has to be adapted for this setting. The approaches to defining strong mutation
killing for model-based testing can roughly be classified into three categories.

Firstly, the basic definition is that a mutant is strongly killed by a test if the response (typically
in terms of output) of the model to the test is different from the response of a mutant. The
majority of model-based mutation testing approaches use this definition and thus we do not cite
any specific instance. Often this simple definition is used for deterministic and non-reactive
settings.

Secondly, the property-based definition states that a mutant is strongly killed upon violating a
certain set of properties. These properties are commonly called trap properties [BOY01, FW08,
XeAXW12] and encode a potential, noticeable defect of the mutant. Similarly, killing of SMV
mutants is defined in [AGR15] via a set of 10 model properties, such as every assignment con-
dition being satisfiable, or no property being satisfied vacuously. A mutant is killed if it violates
more of these properties than the original model. The property-based definition is often used
in combination with symbolic methods, such as model checking-based test case generation, for
which property satisfaction is naturally verified.

Thirdly, the conformance-based definition states that a mutant is strongly killed if it does not
conform to the model. This definition borrows notions from conformance theory that studies

15



2. RELATED RESEARCH

how to test whether some implementation conforms to a specification. In the mutation test-
ing setting, the mutant takes the role of the implementation, whereas the model takes the role
of the specification. The resulting criteria are asymmetric, since conformant implementations
are not required to implement every specified behavior. Conformance relations are used as the
basis for strong mutation testing for the Unifying Theory of Programming [AH09], for timed
automata [ALN13, LLNN17], for action systems [AJT14, Jöb14, AL15], for input-output sym-
bolic transition systems [ZSL%14], and for UML State machines [ABJ%15a]. A slightly less
formal conformance-based approach is presented in [BPGQ02, BPG07], where mutation killing
is defined for communicating extended finite state machines respectively Kripke structures with
inputs and outputs by comparing some or all possible non-deterministic input-output sequences
following a sequence of inputs between a model and a mutant of it. In Chapter 4, we propose
notions of strong killing that can be viewed as a combination of these two types of conformance-
based approaches, importing the asymmetry from conformance relations as well as considering
different killing types due to variation in non-deterministic outcomes.

2.3.6 Preceding Line of Research

This work is largely a continuation of efforts around the model-based mutation tool MoMuT::UML.
The general approach of MoMuT::UML is described in [ABJ%15b] and applied on an industrial
use-case in [AAJ%14]. The tool leverages an automatic translation of UML state machine mod-
els to action systems [KSA09]. The methods described in [ABJ%15b] as well as in Chapter 6
and Chapter 7 are state space exploration-based methods. In contrast, the methods described
in [AJT14, Jöb14], which solves model-based mutation testing via a symbolic encoding of re-
finement relations for action systems, as well as in Chapter 5 complement these techniques with
symbolic methods. Both exploration-based and symbolic methods have their pros and cons,
where the general trade-off is between rigor and scalability. A systematic combination of both
techniques is a very promising line of future work. MoMuT::UML has two sister model-based
mutation testing tools MoMuT::REQS [AHL%14b, AHL%15, AHL%17] for assume-guarantee
contracts and MoMuT::TA [ALN13, AHL14a] for timed automata.

16



CHAPTER 3
Model-based Testing

The word "model" is heavily overloaded and its meaning ranges from a person advertising some
product, over a set of differential equations, to discrete transition systems. Even for the intended
meaning within this work, which is the latter, there are endless ways to express such systems.

Thus, in this chapter, we want to achieve two main objectives. Firstly, we fix the semantics
of models and model-based testing. We do this on a rather abstract type of system: Mealy
machines. This formalism is well suited to describe the type of systems we are interested in, is
widely known, and is very universal in the sense that many real life systems can be understood
as Mealy machines. However, the formalism is not well suited to reasonably express any system
of considerable size. In fact, at the end of this chapter, we introduce a simple example model
whose full Mealy machine representation is too large for reasonably displaying it in this work.

Thus, secondly, we present two formalisms that can express Mealy machines and that are situ-
ated one abstraction layer above Mealy machines. We show how to translate both formalisms
to Mealy machines and thereby supply them with model-based testing semantics. The first for-
malism are symbolic transition systems, which describe transition systems via formulas. This
formalism is well suited for formal processing via logic based methods, such as model checking.
While symbolic transition systems open the door for rigorous methods and precise results, they
classically suffer from their own set of limitations. The language features are limited in order
for the resulting model to still be processable by formal methods. For example, lists are widely
used modeling feature, but pose quite a challenge for any logic solver. Perhaps an even more
severe limitation is that writing logic formulas is not intuitive to many practitioners.

Therefore, we introduce action systems, which describe transition systems via variables and
guarded actions that transform the values of these variables. This paradigm can be understood as
a simplified programming language and is thus more intuitive than symbolic transition systems
to many engineers. Nevertheless, action systems are powerful enough so that other modeling
formalisms, such as UML state machines, can automatically be translated to them.

17



3. MODEL-BASED TESTING

3.1 Modeling Reactive Systems

We study model-based testing of finite state reactive systems, which we understand as systems
that continuously process inputs from the environment and emit outputs to the environment.
Such systems can be abstractly characterized by Mealy machines, which we introduce in the
following. Note that reactive systems can equivalently be characterized by other formalisms,
such as (input-output-) labeled graphs. In this work, we chose finite non-deterministic Mealy
machine as the basis of model-based testing semantics, since the formalism is well known and
it is free of semantic assumptions that are not necessary for the methods presented in this work.

Definition 3.1.1 (Mealy machine). A Mealy machine is a tuple& $ AS, Sι, Σ, Λ, δ;, where S is
a finite set of states, Sι ' S is a set of initial states, Σ is the set of input symbols, Λ is the set of
output symbols, and δ ' S /Σ /Λ / S is the transition relation.

We assume the existence of an input η - Σ and an output η - Λ that represent absence of input and
output respectively. We say that s* is a successor of v with output o after input i, if =s, i, o, s*0 - δ

and denote that fact by s
i#o
92 s*. A Mealy machine is deterministic if and only if there is a single

initial state and for each state s and input i, there is at most one pair of successor state s* and

output o, such that s
i#o
92 s*. Otherwise, it is non-deterministic. Note that the use of a set of

initial states is non-standard in Mealy machines, but improves readability throughout this work.
A Mealy machine with multiple initial states can always be transformed to a Mealy machine with
a single initial state that has transitions to the original initial states. The two machines behave
equivalently up to the initial transition, which, if needed, can be labeled with an empty letter in
order to preserve the language of the Mealy machine.

A Mealy machine is input-enabled if for every state s - S and input i - Σ, there is a pair of

output o and successor state s*, such that s
i#o
92 s*. Input-enabledness can easily be achieved by

introduction self-loops for missing inputs with η outputs, which we assume always to be given
implicitly throughout this work. This requirement simplifies the presentation of our methods,
but it is also a natural requirement to systems, since it is not clear what it should mean not to
accept an input. For example, on a keyboard, even if it is not connected to a computer, one can
always press buttons. From hereon, we will refer to input-enabled Mealy machines as models.

Definition 3.1.2 (Trace). A trace of M is a (potentially infinite) sequences of state, input, and
output tuples A=s1, i1, o10, =s2, i2, o20, . . .;, such that s1 - Sι, for every j - N smaller than the

length of the sequence sj
ij #oj
992 sj%1 and for a finite trace of length l sl

il#ol
992 s* for some state s*.

Given a trace p $ A=s1, i1, o10, =s2, i2, o20, . . .;, we write p7j/ for the tuple =sj , ij , oj0, p7j, l/
for the sub-sequence A=sj , ij , oj0, . . . , =sl, il, ol0;, p7j,!/ for the suffix A=sj , ij , oj0, . . .;, and
p<I , p<O, p<S , p<I+O for the restricted sequences Ai0, i1, i2 . . .;, Ao0, o1, o2 . . .;, As0, s1, s2 . . .;, andA=i0, o00, =i1, o10, =i2, o20 . . .; respectively. We lift restriction to sets of traces T by defining T <Q
as ?p<Q < t - T4 for Q - ?I, O, S, I*O4.

We now present the running example we will use throughout this work.

18



3.2. Testing Semantics

s1 s2 s3

request < coffee

request < tea

request < coffee

request < tea

refill < full

refill < η refill < η request < η

Figure 3.1: A model of a beverage machine.

Example 3.1.1. Consider a model of a beverage machine depicted in Figure 3.1, which non-
deterministically serves coffee or tea upon a request, assuming that there is still enough water
in its water tank. An empty water tank can be refilled to its initial capacity, which is enough
for two beverages. The model has three states, corresponding to the beverage capacity of
the water tank 2, 1, 0 and one initial state s1. Transitions are labeled input < output. Self-
loops with absent input and absent output η < η are not depicted. The multi-edges for the in-
put request make the model non-deterministic. The following sequence is an example trace:A=s1, request, coffee0, =s2, request, tea0, =s3, refill, full0, =s1, request, tea0;.

3.2 Testing Semantics

The simplest definition of a test for a reactive system is a sequence of inputs and outputs, which
we call a linear test. The execution of a linear test on a system under test passes, if upon
supplying the system with the sequence of inputs of the test (where supplying input η means to
wait for output), the sequence of outputs of the test is observed. Otherwise, the execution of the
test fails. Note that in the literature, this mode of assigning test verdicts is sometimes referred to
as a positive test, in contrast to negative tests that pass if the witnessed outputs deviate from the
test’s outputs. In this work, we only consider positive tests. Formally, linear tests are defined as
follows:

Definition 3.2.1 (Linear test). A linear test t of model& with length n is a sequences of inputs
and outputs A=i1, o10, . . . , =in, on0;, such that there is a trace p - <rc=&0 with p<I+O71, n/ $ t.
We denote by <st=&0 the set of all tests of&.

Linear tests can be insufficient for testing non-deterministic systems. A conformant implemen-
tation of a non-deterministic model may resolve some non-deterministic choice of the model in
a different order to a given linear test. As a result, the implementation delivers an output that is
different from the output of the test and the test fails, even though the delivered output is allowed
by the model. To remedy this situation, tests can be extended with information on multiple non-
deterministic outcomes. This can either be done by extending a linear test to a fully adaptive
tree that branches out in every non-deterministic choice, or by adding sets of allowed outputs to
the test. We discuss here the latter variant.

19



3. MODEL-BASED TESTING

A partially adaptive test is a sequence of inputs, outputs, and set of allowed outputs. The sets of
allowed outputs enumerate all outputs that can follow after the test prefix up to the respective test
step. The execution of a partially adaptive test on a system under test passes if its sequence of
inputs triggers its exact sequence of outputs. The execution is inconclusive as soon as an allowed
output is given by the system under test that is different to the test’s output. The execution fails
as soon as an output that is not allowed is given by the system under test.

Definition 3.2.2 (Partially adaptive test). A partially adaptive test of & with length n is a
sequence of inputs, outputs, and sets of outputs A=i1, o1, O10, . . . , =in, on, On0;, such that its se-
quence of inputs and outputs A=i1, o10, . . . , =in, on0; is a linear test and for every j $ 1, . . . , n
and allowed output a - Oj if and only if there is a trace p - <rc=&0 that has equal in-
puts and outputs to p up to step j 7 1 and then produces output a after input ij , i.e. p $A=s1, i1, o10, . . . , =sj , ij , a0, . . .;.
In practice, producing partially adaptive tests is expensive, since being an allowed output is a
system global property due to non-deterministic transitions. That is, in order to produce cor-
rect partially adaptive tests, all paths of the model corresponding to the sequence of inputs and
outputs need to be taken into account. Therefore, we weaken the definition of allowed outputs.
A locally adaptive test is a partially adaptive test that only lists the allowed outputs after one
specific model state resulting from executing the prefix of inputs. The production of locally
adaptive tests only requires looking ahead for allowed outputs from a current state during test
production, which makes it much more feasible in practice. The price of the weaker form of
tests is that some test executions might fail which should actually be inconclusive.

Definition 3.2.3 (Locally adaptive test). A locally adaptive test of&with length n is a sequence
of inputs, outputs, and sets of outputs A=i1, o1, O10, . . . , =in, on, On0;, such that the sequence of
inputs and output A=i1, o10, . . . , =in, on0; is a linear test and there is a trace p - <rc=&0 with
p $ A=s1, i1, o10, =s2, i2, o20, . . .; such that for every j $ 1, . . . , n and allowed output a - Oj if
and only if there is a trace q - <rc=&0 that is equal to p up to step j71 and then produces output
a after input ij , i.e. q $ A=s1, i1, o10, =s2, i2, o20, . . . , =sj , ij , a0, . . .;.
Definition 3.2.4 (Test suite). A test suite is a set of tests.

Example 3.2.1. Consider again the model presented in Example 3.1.1. An example of a linear
test for the model is A=request, coffee0, =request, tea0, =refill, full0, =request, tea0;. The corre-
sponding partially adaptive test is A=request, coffee,?coffee, tea40,=request, tea,?coffee, tea40,=refill, full,?full40,=request, tea,?coffee, tea40;.
For the example, every locally adaptive test is also partially adaptive. However, consider the
version of the model presented in Figure 3.2. This version initially flips a coin (modeled by two
initial states). Depending on the outcome of the coin flip, the beverage machine works as the
original one by serving either coffee or tea, or it serves only tea. Both the linear- as well as the
partially adaptive test given above are linear respectively partially adaptive tests for this version.
However, the following sequence is a locally adaptive test for this version, but not the original
one: A=request, tea,?tea40,=request, tea,?tea40, =refill, full,?full40,=request, tea,?tea40;. The
locally adaptive tests corresponds to a trace following the part of the model only serving tea.

20



3.3. Symbolic Transition System

s1 s2 s3

request < coffee

request < tea

request < coffee

request < tea
refill < full

s4 s5 s6
request < tea request < tea

refill < full

refill < η refill < η request < η

refill < η refill < η request < η

Figure 3.2: A model of a beverage machine with initial non-determinism.

3.3 Symbolic Transition System

A symbolic representation of models is useful when model-based testing is embedded into logic,
as we will do later in this work. Therefore, we introduce symbolic transition systems as a
symbolic representation of Mealy machines.

A symbolic transition system (STS) is a tuple ? $ A1,$,5 , α, δ;, where 1,$,5 are finite sets
of input, output, and state variables, α is a formula over 5 (the initial state predicate), and δ is
a formula over 1 1$ 1 5 1 5 * (the transition relation predicate), where 5 * $ ?x* < x - 54 is
a set of primed variables representing the successor states. An input I , output O, state X , and
successor state X * of ? , respectively, is a mapping of 1,$, 5 , and 5 *, respectively, to values
in a range that includes the elements = and > (representing true and false, respectively). A tuple=X, I, O0 of input I , output O and state X is called a system state. The set of all system states of
? is denoted by 4( . Y <$ denotes the restriction of the domain of mapping Y to the variables 8 .
Given a valuation Y and a Boolean variable v - 8 , Y =v0 denotes the value of v in Y (if defined)
and Y 7v - a/ denotes Y with variable v set to value a.

We assume that the initial state- and transition relation predicate are defined in a logic that
includes standard Boolean operators not 8, and #, or ", implication2, and equivalence6. We
omit further details, as our results do not depend on a specific formalism. We write X > α
and X, I, O, X * > δ to denote that α and δ evaluate to true under an evaluation of inputs I ,
outputs O, states X , and successor states X *. We assume that > interprets the standard Boolean
operators using the standard semantics, i.e. X, I, O, X * > 8δ if and only if it is not the case
that X, I, O, X * > δ, X, I, O, X * > δ0 # δ1 if and only if X, I, O, X * > δ0 and X, I, O, X * > δ1,
X, I, O, X * > δ0 " δ1 if and only if X, I, O, X * > δ0 or X, I, O, X * > δ1, X, I, O, X * > δ0 2 δ1
if and only if X, I, O, X * > δ0 then X, I, O, X * > δ1, and X, I, O, X * > δ0 6 δ1 if and only if
X, I, O, X * > δ0 if and only if X, I, O, X * > δ1. We assume that every STS has a distinct input
Iη and a distinct output Oη representing absence of input and output respectively. A state X
such that X > α is an initial state. A state X has a transition with input I to its successor state

21



3. MODEL-BASED TESTING

X * with output O iff X, I, O, X * > δ. We write X
I #O
992X * if X * is the successor state of X with

input I and output O, or X does not have any successor for input I , O $ Oη, and X * equals X
when every variable x is replaced by x*. Thus, we assume that symbolic transition systems are
always implicitly input-enabled.

A symbolic trace of ? is a (potentially infinite) sequence of states, input, and outputs of ?

A=X1, I1, O10, =X2, I2, O20, . . .; such that X1 > α and for every j - N 3 Xj
Ij #Oj
9992 Xj%1.

We denote by ?< rc=?0 the set of all symbolic traces of ? . We extend domain restriction to
symbolic traces. To this end, given a symbolic trace p - ?< rc=?0 and set of variables 8 ,
we define the restriction of p to 8 , denoted via p<$ , as the sequence of restricted valuationsA=X1<$ , I1<$ , O1<$0, =X2<$ , I2<$ , O2<$0, . . .; and lift restriction to sets of symbolic traces T by
defining T <$ as ?p<$ < t - T4. Finally, we denote by ?< st=?0 def

$ ?< rc=?0<)/# the set of all
symbolic tests of ? .

Every symbolic transition system ? induces a Mealy machine &( def
$ AS( , S(ι , Σ( , Λ( , δ(;,

where for each state X , input I , and output O, there is distinct Mealy machine state sX , input
symbol iI , and output symbol oO and S( $ ?sX < X is a state of ?4, S(ι $ ?sX < X > α4,
Σ( $ ?iI < I is an input of ?4, Λ( $ ?oO < O is an output of ?4, and δ( $ ?=sX1 , iI , oO, sX20 <
X1, I, O, X *

2 > δ4.

Definition 3.3.1. Let p $ A=X1, I1, O10, =I2, O2, X20, . . .; be a symbolic trace and let t $A=I1, O10, =I2, O20, . . .; be a symbolic test. The Mealy machine correspondence of p and t are
defined as p%

def
$ A=sX1 , iI1 , oO10, =sX2 , iI2 , oO20, . . .; and t%

def
$ A=iI1 , oO10, =iI2 , oO20, . . .;.

Lemma 3.3.1 (Symbolic trace and test correspondence).

p - ?< rc=?0 if and only if p% - <rc=&(0
t - ?< st=?0 if and only if t% - <st=&(0

Proof. The lemma follows directly from the definition of symbolic traces, symbolic tests, and
&( .

Finally, we say that a symbolic transition system ? is deterministic if and only if its induced
Mealy machine&( is deterministic.

Example 3.3.1. In this example, we show how the running example presented in Figure 3.1 can
be represented as a symbolic transition system. The system has a single input variable in with
range ?η,request,refill4, a single output variable out with range ?η,tea,coff4, and
a single state variable water with range ?0, 1, 24. For ease of presentation, in the following we
express the initial state and transition predicate using equality and integer arithmetic, but note
that they could easily be expressed using simple propositional logic as well.

22



3.4. Action Systems

α
def
%water=2

δ
def
% !in=request $ water>0 $ out=coff $ water’=water-1& #

!in=request $ water>0 $ out=tea $ water’=water-1& #

!in=refill $ water=0 $ out=full $ water’=2& #

!in=request $ water=0 $ out=η $ water’=water&

3.4 Action Systems

In order to enable modeling of complex systems, powerful modeling languages are necessary.
While in theory many systems can be represented as Mealy machines or symbolic transition
systems, in practice these formalisms can be limiting. We now present a versatile modeling
language that is geared towards expressing a large variety of models of significant size.

3.4.1 Syntax

An action system is a tuple @ $ A8, sι, Act, Aι;, where 8 is a finite set of typed variables, sι

is an initial state, Act is a set of actions, and Aι is the main action. States of action system are
mappings of variables to values of their type.

Variable Types

Types of variables 8 can be Boolean, enumeration=?e1, . . . , en40, integer=n, m0, or list=T, m0.
An enumeration type is a finite set of unique values e1, . . . , en. An integer type represents the
interval 7n, m/ and a list type represents all lists of maximum length m, the elements of which
are of type T (lists can contain lists). Boolean is a specific enumeration type with the values?true, false4 and their usual semantics. All types are finite.

Actions

An action is either the composition of two other actions, a guarded command with a guard that
is a Boolean expression over 8 , an assignment of a variable to an expression over 8 of the same
types as the variable, skip, or abort. Composed actions are formed via sequential A1; A2, non-
deterministic A1 � A2, or A1 ** A2 prioritized composition. In the latter case, we say that every
action in A1 is prioritized over every action in A2.

Each guarded command and each assignment is labeled with a unique label ℓ. Every labeled
action is either observable, controllable, or internal. We call observable and controllable labels
visible and sometimes refer to observable/controllable action labels simply as observables and
controllables. We use the convention that observable labels start with the prefix obs, controllable
labels start with the prefix ctr, and all other labels are internal. The differentiation between these
kinds of labels is an additional modeling tool, indicating whether an action models an input to

23



3. MODEL-BASED TESTING

Expression Explanation

7
B Boolean expressions

v Boolean variable

false, true Constant

&7
B Boolean negation

7
B
1 8 7

B
2 8 4 )/,!,),,,%,!+

7
I
1 8 7

I
2 8 4 )/,!,$,#,",9+

7
E
1 8 7

E
2 8 4 )/,!+

7
L"X$
1 8 7

L"X$
2 8 4 )/,!+

- v * X. 7B Universal quantification

+ v * X. 7B Existential quantification

7
X
4 7

L"X$ Element of

7
X
5 7

L"X$ Not element of

7
E enumeration expressions

v Enumerate variable

e1 Constant

Expression Explanation

7
I integer expressions

v Integer variable

k Constant

7
I
1 8 7

I
2 8 4 )3,6,1, ,, mod+

len%7L"X$' Length of list

87
I

8 4 )6, abs+
7

L"X$ list expressions
v List variable

nil Empty list

!7X
1 ,7X

2 , . . . ,7X
n * Constant

tl%7L"X$' Tail

7
L"X$
1 % 7

L"X$
2 Concatenation

7
X Generic expressions

hd%7L"X$' Head

fold%7L"Y $
1 ,7X

2 , Fold
f * 7

Y
27

X
#7

X'

ite%7B ,7X ,7X' if-then-else

Table 3.1: The syntax of action system expressions.

a system, i.e. is controllable, models an output of the system, i.e. is observable, or models a
transition occurring inside the system that can not be observed, i.e. is internal. Since labels are
unique, we use the label and the action it labels interchangeably.

The distinct action Aι composes actions in Act and is the entry point of the control structure of
@. This action is supposed to be executed indefinitely as long as no abort action is executed.

Expressions

In the following, we summarize the syntax of expressions of action systems. We use 7B , 7I ,
7L"X%, and 7X to denote expressions resulting in a value of type Boolean, integer, list over X ,
and the type of X , respectively. Note that some operators can be applied to both integer and
enumeration types. The resulting type is always the type of the variable the result is assigned to.
The placeholders X and Y denote arbitrary types.

Fold takes as third argument a function f that itself takes as arguments an expression of type 7Y

as well as an expression of type 7X and returns an expression of type 7X . The semantics of fold
are to apply f to each element in 7L"Y %

1 (first argument) and pass as second argument the result
of the previous evaluation of f . The result of fold is the last evaluation of f .

Example 3.4.1. Figure 3.3 shows the action system representation of the beverage machine
presented in Figure 3.1. The system has a single variable water with values ?0, 1, 24. The
controllable action ctr request composes actions to serve coffee or tea sequentially with the

24



3.4. Action Systems

internal action decrement, which decrements the value of the water by one. The observable
actions obs coffee and obs tea are guarded by the value of water being greater than zero and
do not have an effect on the state, thus the bodies of the actions simply are skip. Moreover, the
controllable action ctr fill, which is guarded by a zero value of the water variable, sequentially
composes internal action reset, which resets the value of variable water to 2 with the guarded
command obs fill, which has a trivial guard and body and thus is only relevant due to its observ-
able label. Finally, both controllable actions ctr request and ctr fill compose their main actions
with an observable action obs η that is enabled if and only if no path through the main part of
the controllable is enabled. Thus, the action system is input-enabled.

The main action Aι composes ctr request and ctr fill non-deterministically. Since the examples
does not contain any abort actions, the modeled system runs indefinitely, reacting to beverage
requests and requests to fill the water tank.

8 $ ?water 3 integer=0, 204
sι $ 7water - 2/
Act $ ?

ctr request 3 ==coffee � tea0; decrement0 ** η,

ctr refill 3 =water $ 0 # reset; full0 ** η,

obs coffee 3 water , 0 # skip,

obs tea 3 water , 0 # skip,

obs full 3 true # skip,

obs η 3 true # skip,

decrement 3 water 0 water 7 1,

reset 3 water 0 2
4
Aι $ request � refill

Figure 3.3: An action system representation of the beverage machine running example.

Objects

We study models that are written in an object oriented extension of action systems. However, all
objects need to be created statically during initialization. Therefore, for the purpose of this work,
we can view objects simply as a partition of variables. For an object, the object value is a Carte-
sian product of the values of its variables, together with a unique identifier of its deriving class.
A more detailed discussion of object orientation in action systems can be found in [BKS98].

25



3. MODEL-BASED TESTING

3.4.2 Semantics

Small-step Semantics

The semantics of an action A are defined by the successor function su=A, l, s0. su accepts an
action A, a sequence of labels l representing a path that is initially empty, and a state s. It returns
a set of pairs, each pair =l*, s*0 consists of a sequence of labels l* and a state s*, such that l is
a prefix of l*. The labels describe the guards and assignments that lead from s to s*. Table 3.2
provides the successor functions su=A, l, s0 of the different action types, where given a Boolean
expression P and state s, we say that s satisfies P and write s > P , if P evaluates to true under
assignment s.

Action (A) Notation su=A, l, s0
skip skip ?=l, s04
abort abort 9

Assignment ℓ 3 v 0 e ?=l5Aℓ;, s7v - e/04
Guarded command ℓ 3 g # A1 =s > g0 ? su=A1, l5Aℓ;, s0 3 9

Sequential Composition A1; A2 ""l),s)%.su"A1,l,s%=su=A2, l*, s*00
Non-det Composition A1 � A2 su=A1, l, s0 1 su=A2, l, s0
Prioritized Composition A1 ** A2 su=A1, l, s0 & 9 ? su=A1, l, s0 3 su=A2, l, s0

Table 3.2: The action system successor state semantics.

We define succ'=s0 def
$ ?s* < 'l*. =l*, s*0 - su=@, nil, s04 as the set of successor states of s

and succ'=s, l0 def
$ ?s* < =l, s*0 - su=@, nil, s04 as the set of successor states of s following

the sequence of labels l. We use path'=s0 as an abbreviation for su=@, nil, s0. For a tuple
π - path'=s0 we use the notation π.l to refer to its path and π.s to refer to its state component.
We call a state s* reachable if it is sι or s* - succ'=s0 for some reachable state s and denote
by states' the set of reachable states. We call a labeled action with label ℓ reachable, if there
exists a reachable state s, such that ℓ is contained in the sequence π.l for some π - path'=s0.
We say that an assignment ℓ 3 v 0 e writes variable v. Furthermore, we say that an assignment
ℓ 3 v 0 e respectively a guarded command ℓ 3 g # A1 reads all variables occurring in expressions
e respectively g.

Example 3.4.2. Consider again the action system presented in Figure 3.3. Let us, for ease of
presentation, abbreviate a state 7water - x/ simply by 7x/ and use this notation throughout
examples in this work. The action system has three reachable states sι $ 72/, 71/, 70/ with the

26



3.4. Action Systems

following successor paths:

path'=72/0 $ ?=Actr request, obs coffee, decrement;, 71/0,
=Actr request, obs tea, decrement;, 71/0,
=Actr refill, obs η;, 72/04

path'=71/0 $ ?=Actr request, obs coffee, decrement;, 70/0,
=Actr request, obs tea, decrement;, 70/0,
=Actr refill, obs η;, 71/04

path'=70/0 $ ?=Actr refill, reset, obs full;, 72/0,
=Actr request, obs η;, 70/04

Finite Path Unrolling

The small state semantics provide the atomic unit of successor computation of action systems
by specifying the effect of all enabled paths through the action composition tree. However, this
granularity of successor paths is insufficient for our requirements during test case generation and
mutation analysis.

For example, consider the two actions ctr i 3 x $ 0 # x 0 1 and obs o 3 x $ 1 # x 0 0 as well
as an action system @!, that composes the actions non-deterministically, i.e. i7/o, and an action
system @; that composes the actions sequentially, i,e. i; o. Both action systems produce output
o in response to input i and can thus be considered equivalent from an input-output sequence
perspective. However, the successor path of state 70/ in @!, is path'!(

=70/0 $ ?=Actr i;, 71/04,
while in @; it is path';=70/0 $ ?=Actr i, obs o;, 70/04. Thus, if we used the successor paths
path'=.0 as a basis for comparing these two systems, we would spuriously conclude that the
systems have different input-output behavior.

To remedy this situation, we unroll successor paths until every path can only be extended by
a controllable action. In order not to unroll successor paths indefinitely, we require that action
systems do not encode infinite paths of non-controllable actions. An action system @ is finitely
responsive, if there is no infinite sequence of paths π1, π2, . . ., such that π1 - path'=sι0 and
for every i , 0 it is the case that πi%1 - path'=πi.s0 and πi.l contains only observable and
internal labels. From hereon, if not specified otherwise, we require that action systems are
finitely responsive. In practice, this requirement might be difficult to verify, but can be replaced
by requiring bounded responsiveness, i.e. that all sequence of paths have a controllable label at
least every n labels for some large n - N.

Next, we recursively define the set of extended successor paths that unroll successor paths until
every path can only be extended by a controllable action. Formally, we define extpath'=s0
as a set of sequence labels 8ℓ $ Aℓ1, . . . , ℓn; and state s pairs, such that =8ℓ, s*0 - extpath'=s0
if =8ℓ, s*0 - path'=s0 and every path in path'=s*0 contains a controllable action, or there is
an m / n such that =Aℓ1, . . . , ℓm;, s**0 - path'=s0, there is a path in path'=s**0 that does not

27



3. MODEL-BASED TESTING

contain a controllable action label, and =ℓm%1, . . . , ℓn;, s*0 - extpath'=s**0. Since we require
that action systems are finitely responsive, this definition is well given.

Note that it can be the case that some state has a successor path that contains controllable actions
as well as a successor path that does not contain controllable actions. We call such states mixed
states, which are generally undesirable, because from a testing perspective, correctly operating in
mixed states requires the ability of the tester to time inputs before some output occurs. However,
such an assumption is problematic, since outputs are supposed to be under the control of the
system under test. Therefore, with our definition of extended successor paths, we chose to let
the system provide all its outputs before a new input can be supplied to the model.

Finally, we define the visible successor paths by projecting the extended successor paths to
visible labels. Formally, we define vispath'=s0 as a set of sequence labels and state pairs,
such that =Aℓj1 , . . . , ℓjm;, s*0 - vispath'=s0 if =Aℓ1, . . . , ℓn;, s*0 - extpath'=s0, 1 * j1 / j2 /

. . . / jm * n and ℓj1 , . . . , ℓjm are all visible labels within ℓ1, . . . , ℓn. We call a state s* visibly
reachable if it is sι or s* $ π.s for some π - vispath'=s0 and some visibly reachable state s.
We denote by visStates' the set of visibly reachable states.

3.4.3 Action System as Mealy Machine

We transform action systems to Mealy machines and thereby connect action systems with the
testing semantics defined in this work. The essential idea of the transformation is to encode
visible successor paths. Controllable action labels correspond to inputs, whereas observable
action labels correspond to outputs.

Note that action system successor paths are mixed sequences of controllable and observable
action labels, whereas Mealy machines represent inputs and outputs as separate components of
transitions. In order to bridge this gap, let us define the interleaved input-output sequence of a
sequence of action system labels. To this end, let us define helper functions in=.0 and out=.0
that map action system labels to inputs and outputs respectively. For a label ℓ, in=ℓ0 def

$ ℓ if ℓ is
controllable and in=ℓ0 def

$ η otherwise. Likewise, out=ℓ0 def
$ ℓ if ℓ is observable and out=ℓ0 def

$ η
otherwise respectively. Given a sequence of tuples of inputs and outputs its immediate output
sequence is the same sequence, where recursively successive tuples =i, η0 and =η, o0 are replaced
by the tuple =i, o0. Finally, the interleaved input-output sequence io=8ℓ0 of a sequence of action
labels 8ℓ $ Aℓ1, . . . , ℓn; is defined as the immediate output sequence of input and output tuplesA=in=ℓ10, out=ℓ100, . . . , =in=ℓn0, out=ℓn00;.
Let@ $ A8, sι, Act, Aι; be a finitely responsive action system. Its corresponding Mealy machine
&' def

$ AS', S'ι , Σ', Λ', δ'; is defined as follows:

Every visibly reachable state of the action system induces a state in the Mealy machine. In
addition, we introduce states to the Mealy machine that correspond to intermediate steps of
visible successor paths. Formally, every visibly reachable state s - visStates' induces the
following set of Mealy machine states, where s%, sπ

1 , . . . , sπ
n(1 - S' are fresh states:

S's
def
$ ?s%4 1 ?sπ

1 , . . . , sπ
n(1 < π - vispath'=s0, <io=π.l0< $ n4

28



3.4. Action Systems

The set of Mealy machine states is the union over induced states of all reachable states:

S'
def
$ !

s.visStates*

S's

The initial state of the Mealy machine is the singleton of the state representing the initial state
of the action system, where s%ι - S' is a fresh state:

S'ι
def
$ ?s%ι 4

The sets Σ and Λ contain controllable and observable labels, respectively:

Σ' def
$ ?ℓ < ℓ is a controllable action label of @4

Λ' def
$ ?ℓ < ℓ is an observable action label of @4

The transition relation of &' corresponds to the interleaved input-output sequences of visible
successor paths as defined above. To this end, let s be a visibly reachable state of@. Its outgoing
transitions in&' are defined as follows:

δ's
def
$ >?=s%, i1, o1, sπ

10, . . . , =sπ
n(1, in, on, =π.s0%04 <

π - vispath'=s0 and io=π.l0 $ A=i1, o10, . . . , =in, on0;2
The final transition relation is the union of outgoing transitions for all reachable states:

δ'
def
$ !

s.visStates*

δ's , where

We define the set of tests respectively traces of @ as <st=@0 def
$ <st=&'0 and <rc=@0 def

$

<rc=&'0 respectively. As demonstrated in Example 3.4.1, every action system can easily be
made input-enabled by composing obs η prioritized below the effect of every controllable action.
The resulting Mealy machine of such an action system is technically not input-enabled, since in-
puts are refused at intermediate states within sequences of outputs. However, the meaning of
such intermediate states is that they can not be observed nor controlled from the outside. Thus,
input at such states is not foreseen and input-enabledness up to intermediate states is sufficient
for our purpose.

Example 3.4.3. In Figure 6.1, we present the Mealy machine corresponding to the action system
presented in Example 3.4.1. Besides labeling inputs with a ctr and outputs with a obs prefix,
the translated Mealy machine is equivalent to Figure 6.1, which is the intent of the translation.

In order to demonstrate the concepts used in the Mealy machine translation of action systems,
we introduce a variant of the example in Figure 3.4. In contrast to managing the water level in
the water tank, this model of a coffee machine describes the process of making the coffee, which
is assumed to consist of adding together water, beans, and sugar.

For a simpler presentation, we abbreviate states by their values. For example, as a shorthand for
the state 7r - false, b- false, s - false, w - false/, we write 7false, false, false, false/.

29



3. MODEL-BASED TESTING

8 $ ?r 3 Boolean, b 3 Boolean, s 3 Boolean, w 3 Boolean4
sι $ 7r - false, b- false, s - false, w - false/
Act $ ?

ctr request 3 =8r # flip_r0 ** η,

obs beans 3 r # 8b # flip_b,

obs sugar 3 r # 8s # flip_s,
obs water 3 r # 8w # flip_w,

obs coffee 3 r # b # s #w # flip_b; flip_s; flip_w; flip_r,
obs η 3 true # skip,

flip_r 3 true # r 0 8r,
flip_b 3 true # b0 8b,

flip_s 3 true # s 0 8s,
flip_w 3 true # w 0 8w

4
Aι $ request � beans � water � sugar � coffee

Figure 3.4: An action system representing a coffee brewing machine.

The initial state has one successor path, that is

path'=7false, false, false, false/0 $ ?=Actr request, flip_r;, 7true, false, false, false/04
The resulting state can be extended with non-controllable action labels all the way until the
observable action label coffee and its preceding internal action labels are included, that is

=Actr request, flip_r, obs beans, flip_b, obs sugar, flip_s,
obs water, flip_w, obs coffee, flip_r, flip_b, flip_s, flip_w;,
7false, false, false, false/0 - extpath'=7false, false, false, false/0

The corresponding visible successor path to this extended successor path is

=Actr request, obs beans, obs sugar, obs water, obs coffee;,
7false, false, false, false/0 - vispath'=7false, false, false, false/0

Besides this extended/visible successor path, paths corresponding to all 6 permutations of obs beans,
obs sugar, and obs water form extended/visible successor paths. All such paths lead back to the
initial state, making it to only visibly reachable state of this action system. Note that in the initial

30



3.4. Action Systems

s%ι sπ1
2 sπ1

3 sπ1
4

ctr request < obs beans η < obs sugar η < obs water

sπ2
2 sπ2

3 sπ1
4

ctr request < obs beans η < obs water η < obs sugar

sπ3
2

ctr request < obs sugar

+

,

(

η < obs coffee

Figure 3.5: The Mealy machine representation of a coffee brewing machine.

state, the main part of the controllable action ctr request is always enabled. Therefore, the re-
fusing action obs η is never enabled. Furthermore, note that for example the sequence of labelsActr request, ctr request, obs η; is not a visible successor path of the initial state, because the
action system state 7true, false, false, false/ after the instance of ctr request has successor paths
without controllable actions (for example Aobs beans, flip_b;). The Mealy machine translation
of this action system is partially depicted in Figure 3.5.

31





CHAPTER 4
Mutation Testing

Mutation testing analyzes the effect of small syntactic modifications - mutants - of a system
under test on the results of test cases. A test case that produces a different result on the system
under test and the mutant is said to kill that mutant. Historically, mutation testing was used as
a test suite coverage metric. To this end, the mutation score [JH11] is defined as the ratio of
mutants killed by the test suite to the number of mutants seeded into the system. The intuition
is that the mutation score positively correlates with the error detection capability of the test
suite. In addition to using mutants for an a-posteriori coverage metric, mutation-driven test case
generation already considers mutants as the basis for test suite generation, specifically aiming to
construct killing tests.

In this work, we present mutation-driven test case generation methods in combination with
model-based testing of reactive systems. This setting is different from the standard sequential
program setting in two main aspects. Firstly, the system that is the basis for test case generation
is different from the system under test. In model-based testing, an abstract model is the former
and an implementation of it is the latter. Secondly, tests for reactive systems are sequences of
inputs and outputs, in contrast to a single set of inputs followed by a single set of outputs. Both
aspects have to be taken into account in the definition of mutant killing, as we will do later in
this chapter, and during test case generation, which we will present in the following chapters.

In this chapter, we fix the semantics of mutation-driven test case generation in our model-based
setting. To this end, we define mutants first abstractly on Mealy machines, and then concretely
on symbolic transition- and action systems. We show how multiple mutants can be combined
into one model, which makes test case generation methods simpler and more efficient. Finally,
we discuss killing mutants in our setting and multiple degrees of killing strength.

33



4. MUTATION TESTING

4.1 Mutants

In this section, we discuss mutants of models. We start by defining the concept abstractly on
Mealy machines and thereafter concretize it on symbolic transition systems and action systems.

Definition 4.1.1 (Mutant). An abstract mutation operator for a model & $ AS, Sι, Σ, Λ, δ; is
a tuple µ $ ASµ, Sι

µ, δµ,
µ
=;, where Sµ is a finite set of mutated states, Sι

µ ' Sµ is a set of
mutated initial states, δµ ' Sµ / Σ / Λ / Sµ is a mutated transition relation using the original
input and output alphabet, and the state transformer

µ
= 3 S 2 Sµ is a partial, injective function.

The mutant induced by µ is the Mealy machine &µ def
$ ASµ, Sι

µ, Σ, Λ, δµ;. We define the state
projection function

µ
( 3 S 1 Sµ 2 S 1 Sµ as

µ
(=s0 def

$ s1 if s - Sµ and
µ
==s10 $ s, and

µ
(=s0 def

$ s
otherwise.

We again assume that mutants are input-enabled. Thus, in case a mutant disables an input tran-
sition, it is implicitly replaced by a self-loop with output η. The intuition of state transformers
is to map identical system states onto each other while states that are unique to either the model
or the mutant are not mapped. The notion of identical states is abstract for Mealy machines,
but easily concretized for variable-based modeling languages, where it can, for example, be de-
fined via variable value equality. Likewise, the notion of mutation operator is abstract for Mealy
machines, but as we will see later in this section, is defined syntactically in higher modeling
languages.

Example 4.1.1. Consider again the beverage machine presented in Figure 3.1 and its mutants
&µ1 and&µ2 , presented in Figure 4.1a nd Figure 4.1b, respectively. Mutant&µ1 serves only
coffee. Mutant &µ2 refills the water tank only half full. The respective state transformers and
state projections are given by

µj
==si0 $ si

µj and
µj
(=si

µj0 $ si for j - 1, 2 and i - ?1, 2, 34.

Typically, in mutation testing not only a single-, but a range of mutants are analyzed simultane-
ously. We capture the simultaneous treatment of multiple mutants in mutation settings:

Definition 4.1.2 (Mutation setting). A mutation setting for a model& $ AS, Sι, Σ, Λ, δ; is a set
of abstract mutation operators ?µ1, . . . , µn4 for &. For a mutation operator µi and its induced
mutant&µi , we refer to i as the mutant’s id.

4.1.1 Mutants of Symbolic Transition Systems

Mutants of symbolic transition systems are obtained by applying modifications to the syntactic
representation of an STS ? $ A1,$,5 , α, δ; that we fix throughout this section.

Definition 4.1.3 (Symbolic mutant). A symbolic mutation operator is a tuple of formulas µ $Aγ, γµ, pos;, such that γ is a sub-formula of α*δ. To disambiguate multiple occurrences of sub-
formulas, pos denotes the position of γ in α*δ. The result of applying the mutation operator
to ? is a symbolic mutant ?µ $ A1,$,5 , αµ, δµ;, where αµ*δµ is α*δ respectively, where γ at
position pos is replaced by γµ.

34



4.1. Mutants

s1
µ1 s2

µ1 s3
µ1

request < coffee request < coffee

refill < full

refill < η refill < η request < η

(a) A mutant of the beverage machine model serving only coffee.

s1
µ2 s2

µ2 s3
µ2

request < coffee

request < tea

request < coffee

request < tea

refill < full

refill < η refill < η request < η

(b) A mutant of the beverage machine model filling water only half full.

In order to interpret a symbolic mutation operator µ as an abstract mutation operator on Mealy
machines, the set of mutated states, the mutated initial states, and the mutated transition relation
are given implicitly via the respective Mealy machine of ?µ and the state transformer is given
as the function that maps a state of ? to a state of ?µ with equal variable values (if present).

Which mutation operators are applicable heavily depends on the logic used to specify the initial
state- and transition relation predicates. In the following, we present mutation operators for
modeling languages Verilog in Table 4.1 and SMV in Table 4.2. Models in these languages can
be seen as a high level description of symbolic transition systems. Furthermore, such models
can be automatically compiled to more literal representations of symbolic transition systems.

We now show how a whole mutation setting can be combined into a single symbolic transition
system by introducing an indicating variable and enabling the effect of the respective mutant
operator conditioned upon the value of this variable.

Definition 4.1.4 (Symbolic conditional mutant). Let ?µ1, . . . , µn4 be a mutation setting of
symbolic mutation operators. The symbolic conditional mutant for this mutation setting is
defined as ? µ̄ def

$ A1,$,5 1 ?mut4, αµ̄, δµ̄;, where mut is a fresh bounded integer vari-
able1 with the range 70, n/, used to distinguish transitions of the model (represented by value
0) and mutated STS (represented by values 1 to n). The result of conditionally applying a
mutation operator µj $ Aγ, γµj , pos; with id j to some formula β equals β if γ is not a sub-
formula of β at position pos, and otherwise equals β where γ at position pos is replaced with

1Instead of a single bounded integer variable (log2%n 3 1'. Boolean variables can be used to encode mutants.

35



4. MUTATION TESTING

Type Mutation
Arithmetic Exchange binary 2 and 7

Exchange unary 2 and 7
Relations Exchange $$ and ! $

Exchange /, *, ,, (
Boolean Exchange ! and 0#

Drop ! and 0#

Exchange &&,<<,&#,<#, xor and xnor
Assignments Exchange $ and /$

(Blocking & Non-Blocking Assignment)
Constants Replace Integer Constant c by 0, 1, c 2 1, and c 7 1

Replace Bit-Vector Constant by 80, and 81
Table 4.1: The Verilog mutation operators (# marks bit-wise operations).

Type Mutation
Structural Remove branch in case expression

Swap branches in case expression
Remove variable assignment
Remove variable initialization
Remove transition constraint

Expressions Expression negation (e is replaced by 8e)
Logical operator replacement =&, <,2,6, xor, xnor0
Mathematical operator replacement =2,7,:, *, mod0
Relational operator replacement =$,&,/,*,,,(0
Stuck at 0*1 (replace by false*true)
Associative shift ==a<b0&c is replaced with a<=b&c00

Values Enumeration replacement
Number replacement
Digit replacement

Table 4.2: The SMV mutation operators.

==mut $ j0 # γµj0 " ==mut & j0 # γ0. The conditionally mutated initial state- and transition
relation predicates αµ̄, δµ̄ are defined inductively. Let α0, δ0

def
$ α, δ # mut* $ mut (the initial

value of mut is unconstrained and fixed thereafter) and for j $ 1, . . . , n, let αj , δj be the result
of conditionally applying mutation operator µj to αj(1, δj(1. During this process, we update
the position pos of mutation operators µl for l , j such that it points to the potentially altered
position of the occurrence of γj within the non-mutated branch, i.e. =mut & j # γ0. Finally, we
define the conditionally mutated initial state- and transition relation predicate are defined as the
result of this iteration process, i.e. αµ̄*δµ̄ def

$ αn*δn.

Example 4.1.2. Consider again the STS presented in Example 3.3.1 and the mutants presented

36



4.1. Mutants

in Figure 4.1a and Figure 4.1b. The respective symbolic mutation operators are given by µ1 $Awater>0,false, δ 3 2 3 12; and µ2 $ Awater’=2,water’=1, δ 3 3 3 26;, where δ:line:col
denotes the line and column in the syntactic representation of δ. The transition relation δµ̄ of the
conditional mutant for the mutation setting ?µ1, µ24 is as follows:

:=in=request # water>0 # out=coffee # water’=water-10 "
=in=request # out=tea # water’=water-1 #

((mut=1 # false) " (mut&1 # water>0))0 "
=in=refill # water=0 # out=full #

((mut=2 # water’=10 " (mut&2 # water’=2))0 "
=in=request # water=0 # out=η # water’=water0. #
mut* $ mut

4.1.2 Mutants of Action Systems

Mutants of action systems are obtained by applying modification to their expressions. There-
fore, mutants of action systems either modify the guard of guarded commands or the assign-
ment of variables. Action system mutants that change the initial state or alter composition
of actions are not considered in this work. Throughout this section, we fix an action system
@ $ A8, sι, Act, Aι;.
Definition 4.1.5 (Action system mutant). An action system mutation operator is a tuple µ $Aζ, ζµ, pos;, where ζ and ζµ are expressions and pos is the position of ζ in the action system
that disambiguates multiple occurrences of ζ in actions. The result of applying the mutation
operator µ to an action system @ is a action system mutant @µ $ A8, sι, Actµ, Aι;, where Actµ

is Act in which ζ at position pos is replaced by ζµ.

Similarly to symbolic mutation operators, an action system mutation operator can be interpreted
via the states and transitions of the Mealy machine corresponding to@µ and the state transformer
is given as the function that maps states with equal variable values onto each other.

In Table 4.3, we present the mutation operators for action systems that we consider in this work.

Conditional mutants can be defined on action systems similarly to symbolic conditional mutants.

Definition 4.1.6 (Action system conditional mutant). Let ?µ1, . . . , µn4 be a mutation setting
of action system mutation operators. The action system conditional mutant for this mutation
setting is defined as @µ̄ def

$ A8 1 ?mut4, sι
µ̄, Actµ̄, Aι;, where mut is a fresh bounded integer

variable2 with the range 70, n/, used to distinguish transitions of the model (represented by value
0) and mutated action systems (represented by values 1 to n). The initial state sι

µ̄ is equal to
sι besides mapping the new variable mut to 0. The result of conditionally applying a mutation

2Similarly to symbolic conditional mutants, (log2%n 3 1'. Boolean variables can be used to encode mutants.

37



4. MUTATION TESTING

Name Replace Expression Replace by
Boolean
Replace by constant 7B false or true
Add negation 7B 87B

Remove negation 87B 7B

Replace binary operator 7B
1 ? 7B

2 7B
1 ?

µ7B
2

? - ?$,&,",#,),/4 ?µ - ?$,&,",#,),/4 4 ??4
Replace integer relation 7I

1 ? 7
I
2 7I

1?
µ7I

2
? - ?$,&,/,,,*,(4 ?µ - ?$,&,/,,,*,(4 4 ??4

Replace enum relation 7E
1 ? 7E

2 7E
1 ?

µ7E
2

? - ?$,&4 ?µ - ?$,&4 4 ??4
Replace quantification ?v 3 X. 7B ?µv 3 X. 7B

? - ?',)4 ?µ - ?',)4 4 ??4
Replace set inclusion 7X ? 7L"X% 7X?µ7L"X%

? - ?-, .4 ?µ - ?-, .4 4 ??4
Enumeration
Replace by constant 7E Enumeration constant e

Integer
Replace by constant 7I Integer constant k

Replace unary operator ?7I ?µ7I

? - ?7, abs4 ?µ - ?7, abs, nop4 4 ??4
Replace binary operator 7I

1 ? 7
I
2 7I

1?
µ7I

2
? - ?2,7,:, *, mod4 ?µ - ?2,7,:, *, mod4 4 ??4

Lists
Insert tail ?=7L"X%0,? - ?tl, hd4 ?=tl=7L"X%00
Replace tail by head tl=7L"X%0 7hd=7L"X%0/

Table 4.3: The action system mutation operators.

operator µj $ Aζ, ζµj , pos; with id j to the action that contains ζ at position pos is ζ in which
ζ is replaced by ite=mut $ j, ζµj , ζ0. Similarly to symbolic conditional mutants, the final set
of conditionally mutated actions is defined as an iterative application of mutation operators and
adjusting positions pos.

In contrast to symbolic transition systems, we assume that mut for action systems can be con-
trolled from outside the system by the test case generation algorithm. For a conditional mutant
@µ̄, mutation setting ?µ1, . . . , µn4, j - ?0, . . . , n4, and state s, we denote by path'µ̄=j, s0 and
succ'µ̄=j, s0 the successor paths and states of s in mutant µj or the original model for j $ 0,
which are obtained by setting mut to j before computing path'µ̄=s0 respectively succ'µ̄=s0
according to the successor state semantics presented in Table 3.2. Thus, the value of mut in sι

µ̄

is irrelevant and we fix it to 0.

38



4.2. Killing Mutants

Example 4.1.3. Consider again the action system presented in Example 3.4.1 and the mutants
presented in Figure 4.1a and Figure 4.1b. The respective action system mutation operators
are given by the Boolean constant replacement µ1 $ Awater , 0, false, 4 3 11; and the integer
constant replacement µ2 $ A2, 1, 8 3 17;, where line:col denotes the line and column in the
syntactic representation of Act. The resulting set of actions is:

Actµ̄ $ ?
ctr request 3 ==coffee � tea0; decrement0 ** η,

ctr refill 3 =water $ 0 # reset; full0 ** η,

obs coffee 3 true # skip,

obs tea 3 ite=mut $ 1, false, true0 # skip,

obs full 3 true # skip,

obs η 3 true # skip,

decrement 3 true # water 0 water 7 1,

reset 3 true # water 0 ite=mut $ 2, 1, 20
4

4.2 Killing Mutants

The purpose of introducing mutants is to construct tests that distinguish the model from its
mutants, which is generally referred to as killing a mutant. In this section, we formalize the
notion of killing mutants in our setting. We start by discussing the purpose of the tests and the
implications to the definitions of mutation killing. Thereafter, we discuss multiple degrees of
killing strength. In particular, weak and strong killing differentiate two degrees of fault visibility,
whereas potential and definite killing differentiate two degrees of fault reachability with respect
to non-determinism. Throughout this section, let us denote an arbitrary mutation operator for
model& $ AS, Sι, Σ, Λ, δ; by µ $ ASµ, Sι

µ, δµ,
µ
=;.

4.2.1 Test Purpose & Conformance

The purpose of the tests created via model-based testing within this work is to verify whether
an unknown implementation conforms to the given model, which is assumed to be correct by
design. In model-based mutation testing mutants serve as proxy implementations. To this end,
similarly to approaches described in [AAJ%14, AJT14, Jöb14, ABJ%15b], we borrow ideas from
the conformance testing theory [Tre96] for defining the semantics of mutation killing . Roughly
speaking, an implementation conforms to a specification, if no specified sequence of inputs re-
turns an unspecified output. In [Tre96] a set of input-output conformance relations are presented
that differ in dealing with input refusal and observability of quiescence (i.e. the inability to pro-
ceed further without external stimulus) that are used as the basis of defining mutation killing
in [AAJ%14, AJT14, Jöb14, ABJ%15b]. Furthermore, their semantic differences are discussed
and it is shown that the conformance relations can be translated into each other by considering
different notions of traces.

39



4. MUTATION TESTING

In this work, in contrast to defining killing via conformance relations, we define killing directly
via traces of models and mutants due to the following reasons: Mutants do not correspond to
arbitrary implementations, but to small variations in the syntax. In particular, the notion of
unspecified inputs does not apply to mutants, since all possible inputs are given by the model.
Furthermore, this definition can immediately be applied without the need to study or introduce
conformance theory. In particular, the following definition does not depend on determinization
that is required to apply some conformance relations, which can be prohibitively expensive in
practice. Finally, we do not impose the choice how to deal with input refusal and whether
to consider quiescence in the definition of killing, but shift it to the interpretation of higher
modeling languages as Mealy machines.

Nevertheless, we maintain the idea that a mutant is only killed if it provides output that can
not be witnessed in the model in contrast to the converse situation where a model provides
output that can not be witnessed in the mutant. The main reason for this choice is that it is hard
or impossible to verify whether the system under test is unable to provide some unwitnessed
output, which might be witnessed for example by some unexplored non-deterministic outcome
or scheduling, whereas witnessing a spurious output is an unambiguous signal for an error.

The following definition of potential killing corresponds to the input-output testing relation /iot

given in [Tre96]. The differences of this relation to potential killing include, as discussed above,
the implicit modeling of quiescence and input refusal in /iot, which is not imposed by poten-
tial killing. Furthermore, in addition to /iot only assuming the model to be input-enabled, our
framework around potential killing also assume it of the mutant. Finally, /iot filters stuttering
states by considering sequences of observable labels, whereas potential killing does not filter
such transitions.

We define killability concepts abstractly on Mealy machines. The respective concepts over sym-
bolic transition system as well as action systems are directly given by their respective Mealy
machine translations.

4.2.2 Weak and Strong Killing

Weak and strong killing refer to a folklore notion of fault visibility. Originally, strong killing
was considered and weak killing emerged to reduce computational costs of mutation analysis. A
mutant is weakly killable if it can produce a sequence of states that does not correspond to any
sequence of states of the model. In contrast, strong killing seeks for differences in observable
output. We subsume both modes of killing by projections of traces. For weak killing, this
projection maps traces to sequences of inputs and states, whereas for strong killing this function
maps traces to sequences of inputs and outputs. Formally, we define:

Definition 4.2.1 (Weak kill mode). The weak kill mode wκ is the function wκ 3 δµ 2 Σ /

=S 1 Sµ0, defined via wκ=s, i, o, s*0 def
$ =i, µ

(=s00, where
µ
(=.0 is the state projection function

of mutant µ. We extend wκ to traces p $ A=s1, i1, o10, =s2, i2, o20, . . .; and sets of traces T by
defining wκ=p0 def

$ @=i1,
µ
(=s100, =i2,

µ
(=s200, . . .9 and wκ=T 0 def

$ ?wκ=p0 < p - T4.

40



4.2. Killing Mutants

Definition 4.2.2 (Strong kill mode). The strong kill mode sκ is the function sκ 3 δµ 2 Σ / Λ,
defined via sκ=s, i, o, s*0 def

$ =i, o0. We extend sκ to traces p $ A=s1, i1, o10, =s2, i2, o20, . . .; and
sets of traces T by defining sκ=p0 def

$ A=i1, o10, =i2, o20, . . .; and sκ=T 0 def
$ ?sκ=p0 < p - T4.

4.2.3 Potential and Definite Killing

Potential and definite killing refer to a novel notion of fault reachability guarantee with respect to
non-determinism. In non-deterministic models some spurious result might or might not happen.
Thus, a potentially killed mutant might or might not be detected by a test. In contrast, a definitely
killed mutant is guaranteed to be detected irrespective of non-deterministic outcomes. Formally,
we define:

Definition 4.2.3 (Potential killing). &µ is potentially killable for kill mode κ if:

κ=<rc=&µ00 ! κ=<rc=&00
A test t - <st=&0 potentially kills&µ for kill mode κ if:

κ=?p - <rc=&µ0 < t<I $ p<I40 ! κ=<rc=&00
Definition 4.2.4 (Definite killing). &µ is definitely killable for kill mode κ if there is a sequence
of inputs 8i - Σ#, such that:

κ=?q - <rc=&µ0 < q<I $ 8i40 . κ=?p - <rc=&0 < p<I $ 8i40 $ 9
A test t - <st=&0 definitely kills&µ for kill mode κ if:

κ=?q - <rc=&µ0 < q<I $ t<I40 . κ=?p - <rc=&0 < p<I $ t<I40 $ 9
Following the tradition in mutation testing, equivalent mutants are defined as mutants that can
not be killed. In particular, we define equivalent mutants as mutants not being potentially killable,
because it is the weaker form of killing, as we will prove in the following.

Definition 4.2.5 (Equivalent Mutant). &µ is equivalent if&µ is not potentially killable for any
kill mode κ.

We now show that definite killing implies potential killing and that the notions coincide for
deterministic models. Since the result is independent of the killing mode, we express it for kill
mode κ that can either be instantiated with the weak kill mode wκ or strong kill mode sκ.

Proposition 4.2.1. If &µ is definitely killable for kill mode κ then &µ is potentially killable
for kill mode κ.
If &µ is deterministic then: &µ is potentially killable for kill mode κ if and only if &µ is
definitely killable for kill mode κ.

41



4. MUTATION TESTING

Proof. Let &µ be definitely killable for kill mode κ. That is, there is a sequence of inputs 8i,
such that κ=?q - <rc=&µ0 < q<I $ 8i40 . κ=?p - <rc=&0 < p<I $ 8i40 $ 9. Thus clearly, for every
trace q - <rc=&µ0 with q<I $ 8i it is the case that κ=q0 . κ=<rc=&00. Since&µ is input-enabled,
such a trace exists and&µ is potentially killable.

Let & be deterministic and &µ be potentially killable for kill mode κ. From the definition of
determinism it follows that for traces q, q* - <rc=&µ0 with q<I $ q*<I it is the case that q $ q*.
Together with the input-enabledness of &, for every sequence of inputs 8i it is the case that<?q - <rc=&µ0 < q<I $ 8i4< $ 1. From potential killability it follows that there exists q - <rc=&µ0,
such that κ=q0 . κ=?p - <rc=&0 < p<I $ q<I40. Since the set of traces in the mutant sharing
inputs with q is a singleton, it is the case that κ=?q* - <rc=&µ0 < q*<I $ q<I40.κ=?p - <rc=&0 <
p<I $ q<I40 $ 9. Therefore, q is a witness to&µ being definitely killable for kill mode κ.

In summary, potential killability implies definite killability, though for deterministic systems,
the two notions coincide. Therefore, for deterministic systems, we simply speak of killing and
tests that kill.

Example 4.2.1. Consider again the mutants presented in Example 4.1.1. Mutant&µ1 is equiv-
alent, since there are only sequences of corresponding states, and the mutant can not produce a
spurious output.

Mutant &µ2 is definitely killable, both strongly and weakly. The sequence of inputs 8iw $Arequest, request, refill; is a witness to weak definite killing of&µ2 . For any trace tµ - <rc=&µ20
with tµ<I71, 3/ $ 8iw it is the case that tµ<S71, 4/ $ Asµ2

1 , sµ2
2 , sµ2

3 , sµ2
2 ;, for any trace t - <rc=&0

with t<I71, 3/ $ 8iw it is the case that t<S71, 4/ $ As1, s2, s3, s1; and
µ2
(=s2

µ20 & s1.

In order to witness a strong kill, the sequence has to be extended in order to force a spurious
output of the mutant. The sequence of inputs 8is $ Arequest, request, refill, request, request; is a
witness to strong definite killing of&µ2 . For any trace tµ - <rc=&µ20 with tµ<I71, 5/ $ 8is it is
the case that tµ75/<O $ η, since the water tank must be empty at this point, whereas for any trace
t - <rc=&0 with t<I71, 5/ $ 8is it is the case that tµ75/<O $ coffee or tµ75/<O $ tea.

Finally, consider a variant of &µ2 that non-deterministically fills the water tank to 1 or 2 units
of water upon receiving input refill. The mutant is potentially killable, both strongly and weakly,
since the traces of mutant&µ2 leading to a spurious state respectively output also exists in this
mutant. However, on top of the spurious trace, all traces of the model are present in this variant.
Which trace is witnessed only depends on the outcome of non-deterministic choices. Thus, this
mutant is not definitely killable.

42



CHAPTER 5
Mutation Testing with Hyperproperties

In the previous section we provided the definitions of various degrees of mutation killability.
These range from potentially weak- to definite strong killability. In this chapter, we provide
a logical characterization of potential and definite strong killability in the presence as well as
absence of non-determinism. The characterization is in terms of hyperproperties, which reason
over the relationship between multiple execution paths.

The hyperproperties expressing strong killability are furthermore encoded into a logic formula,
which enables rigorous mutation-driven test generation via model checking. A test case killing
some mutant is obtained as a witness to a positive result of model checking the strong killing
formula over the conditional mutant, or equivalently as a counter-example to a negative result of
model checking the negated formula. However, beyond providing a novel test case generation
methodology and potentially even more importantly, our logic characterization allows us to order
different degrees of killability in terms of computational complexity. It is intuitively clear that
weak killing is easier to achieve than strong killing. Likewise, it is intuitively clear that killing in
presence of non-determinism is harder than killing in deterministic systems. Although our logic
characterizations only provide upper bounds on the computational complexity to solving the
respective problems (i.e. we can not rule out the existence of more efficient characterizations),
they nevertheless formalize these intuitions.

We do not consider an explicit logic characterization of weak killing, but it is clear that it can be
encoded as a classical a trace property. For example, this can be achieved via suitable assertions
stating model and mutant state equality after executing some transition and its mutated counter-
part. In contrast, in general strong killing requires differences in internal state to be propagate
along paths until they bubble up in the output. That is, strong killability is characterized by two
traces that are coordinated via a common sequence of inputs. In other words, strong killabil-
ity is a hyperproperty and is therefore more complex to verify than weak killability, which is a
trace-property.

43



5. MUTATION TESTING WITH HYPERPROPERTIES

Similarly, strong killability in deterministic systems is simpler than in non-deterministic systems.
While in the former system paths are uniquely given by the coordinating input sequence, in the
latter case all paths that correspond to the input sequence need to be taken into account. The
consequence is that strong killing for deterministic systems can be characterized by a HyperLTL
formula without quantifier alternation, whereas the HyperLTL formalization of the concept in
non-deterministic systems requires quantifier alternation. It was shown that moving from no
quantifier alternation to formulas with quantifier alternation corresponds to a jump in the com-
putational complexity of the HyperLTL satisfiability problem [FH16] as well as the HyperCTL#

model checking problem [FRS15].

Moreover, the situation is similar with potential- and definite killability. Our formalization of
the former concept requires two quantifiers, whereas the latter concept requires three quantifiers.
While this does not correspond to a jump in computational complexity, it nevertheless shows
that in general definite killing corresponds to harder instances in the same complexity class than
potential killing.

Since strong killability for non-deterministic models poses a difficult challenge for rigorous
methods, we also provide solutions to deal with non-determinism in practice. We present a
technique to transform a non-deterministic model into a model where non-determinism is con-
trollable via an additional input variable and we show how killability of the transformed model
translates to killability of the non-deterministic model. In addition, we provide SMT characteri-
zations of killability up to a bounded horizon that enables deployment of SMT solver infrastruc-
ture to the problem.

We conclude the chapter with an experimental evaluation of mutation-driven test case genera-
tion via hyperproperty model checking. To this end, we present a toolchain using off-the-shelf
tools and apply it to a series of benchmark models written in two different modeling languages.
Finally, we evaluate and validate our methodology by comparing our results on a case study to
MoMuT, which is the tool that implements the methods presented in the later chapters of this
work.

Example 5.0.1. We illustrate the main concepts of this chapter in Figure 5.1. Figure 5.1a shows
a representation of our running example in the SMV modeling language [McM92b] that can be
understood as a higher level representation language of symbolic transition systems.

Figure 5.1b contains a hyperproperty over the inputs and outputs of the model formalizing def-
inite killability of the mutant. The test presented in Figure 5.1c is a witness for the strong
killability of the mutant: the test requests two drinks after filling the tank. For the mutant, the
second request will necessarily fail to produce a beverage, because the water tank is empty. This
fact is manifested in Figure 5.1d, which shows all possible output sequences of the mutant to the
given test. In particular, the only possible output of the mutant after the last request is η, which
is different from the test’s output tea.

44



5.1. Logics for Hyperproperties

1 i n i t ( i n ) :=η
2 i n i t ( o u t ) : = η
3 i n i t ( w a t e r ) : = 2
4 i n i t ( mut ) : = )0, 1+
5 next ( i n ) :={ r e q u e s t , f i l l }
6 next ( o u t ) : =
7 i f ( i n = r e q u e s t&water > 0 ) : { c o f f e e , t e a }
8 e l i f ( i n = r e f i l l &w a t e r = 0 ) : f u l l
9 e l s e : η

10 next ( w a t e r ) : =
11 i f ( i n = r e f i l l &w a t e r = 0 ) : ( mut=1 ? 1 : 2 )
12 e l i f ( i n = r e q u e s t&water > 0 ) : water −1
13 e l s e : w a t e r
14 next ( mut ) : = mut

(a) The SMV representation of a conditional
mutant of the beverage machine running ex-
ample.

+π-π)
-π))

�%mutπ / 0' ,
�"mutπ! / 1 , mutπ!! / 0 ,

%#in=request-π $ #in=request-π!

$ #in=request-π!!' ,

%#in=refill-π $ #in=refill-π!

$ #in=refill-π!!'$ #

'"&%#o=η-π! $ #o=η-π!!' )

&%#o=coffee-π! $ #o=coffee-π!!' )

&%#o=tea-π! $ #o=tea-π!!'$

(b) The hyperproperty expressing definite killability.

in
out

request
coffee

request
tea

refill
full

request
tea

request
tea

(c) A definitely killing test.

Possible
out

?coff,
tea4 ?coff,

tea4 ?full4 ?coff,
tea4 ?η4

(d) A spurious test response of the mutant.

Figure 5.1: An example demonstrating definite killabiltiy expressed as a hyperproperty.

5.1 Logics for Hyperproperties

In this section, we present HyperLTL and HyperCTL#, two logics expressing hyperproperties.
The logics build on atomic propositions, which are basic local statements about properties of
system states. To this end, in the following, we show how atomic propositions are introduced
to symbolic transition systems. For the remainder of this section, let ? $ A1,$,5 , α, δ; be a
symbolic transition system.

5.1.1 Atomic Propositions

We presume the existence of sets of atomic propositions AP $ AP) 1AP# 1AP! (intentionally
kept abstract)1 and sets AP=I0 ' AP) , AP=O0 ' AP#, AP=X0 ' AP! that uniquely character-
ize input I , output O, and state X . In particular, in case mut - 5 with range 70, n/, then we

1Finite domains can be characterized using binary encodings; infinite domains require an extension of our for-
malism in Section 5.1.2 with equality and is omitted for the sake of simplicity.

45



5. MUTATION TESTING WITH HYPERPROPERTIES

presume the existence of n 2 1 atomic propositions 7mut $ j/ for j - 70, n/ that fix the value of
mut to j respectively.

For a symbolic trace p $ A=X1, I1, O10, =X2, I2, O20, . . .; - ?< rc=?0 its atomic proposition
trace is defined as AP=p0 def

$ AAP=X10 1AP=I10 1AP=O10, AP=X20 1AP=I20 1AP=O20, . . .;.
We lift this definition to sets of traces by defining APTr=?0 def

$ ?AP=p0 < p - ?< rc=?04.

5.1.2 HyperLTL

In the following, we provide an overview of HyperLTL, a logic for hyperproperties, in sufficient
detail for our formalization of strong killing presented in Section 5.2. For further details on the
logic, we refer the reader to [CFK%14]. HyperLTL is defined over atomic proposition traces as
defined above.

Syntax. Let AP be a set of atomic propositions and let π be a trace variable from a set 8tr of
trace variables. Formulas of HyperLTL are defined by the following grammar:

ψ 33$ 'π.ψ < )π.ψ < ϕ
ϕ 33$ aπ < 8ϕ < ϕ " ϕ < Xϕ < ϕ Uϕ

Connectives ' and ) are universal and existential trace quantifiers, read ’along some traces’ and
’along all traces’. In our setting, atomic propositions a - AP express facts about states or the
presence of inputs and outputs. Each atomic proposition is sub-scripted with a trace variable
to indicate the trace it is associated with. The Boolean connectives #, 2, and 6 are defined
in terms of 8 and " as usual. Temporal operators X and U read ’next’ and ’until’, respectively.
Furthermore, we use the standard temporal operators ’eventually’ -ϕ

def
$ true Uϕ, and ’always’

�ϕ
def
$ 8-8ϕ.

Semantics. Π >( ψ states that ψ is valid for a given mapping Π 3 8tr 2 APTr=?0 of trace
variables to atomic proposition traces. Let Π 7π - p/ be as Π except that π is mapped to p. We
use Π 7i,!/ to denote the trace assignment Π*=π0 $ Π=π0 7i,!/ for all π. The validity of a
formula is defined as follows:

Π >( aπ iff a - Π=π070/
Π >( 'π.ψ iff there exists p - APTr=?0 3 Π 7π - p/ >( ψ
Π >( )π.ψ iff for all p - APTr=?0 3 Π 7π - p/ >( ψ
Π >( 8ϕ iff Π *>( ϕ
Π >( ψ1 " ψ2 iff Π >( ψ1 or Π >( ψ2
Π >( Xϕ iff Π 71,!/ >( ϕ
Π >( ϕ1 Uϕ2 iff there exists i ( 0 3 Π 7i,!/ >( ϕ2

and for all 0 * j / i we have Π 7j,!/ >( ϕ1

We write ? > ψ if Π >( ψ holds and Π is empty. We call q - ?< rc=?0 a π-witness of a formula
'π.ψ or )π.ψ, if Π 7π - p/ >( ψ and AP=q0 $ p.

46



5.1. Logics for Hyperproperties

5.1.3 HyperCTL#

HyperCTL# is an extension of HyperLTL described in [CFK%14]. We recite the necessary con-
cepts of the logic here and refer the reader to [CFK%14] for further details.

Syntax. HyperCTL# syntactically is a strict superset of HyperLTL. It allows free mixing tem-
poral operators and path quantifiers. HyperCTL# formulas are defined by the following gram-
mar:

ϕ 33$ aπ < 8ϕ < ϕ " ϕ < Xϕ < ϕ Uϕ < 'πϕ

Further temporal operators, such as � and 0, are defined as usual. Universal quantification in
HyperCTL# is defined via negation and existential quantification: )πϕ

def
$ 8'π8ϕ.

Semantics. Quantification in HyperCTL# is over paths, which are sequences of system states
and atomic proposition pairs, in contrast to HyperLTL where quantification is over sequences
of atomic propositions only. In particular, paths assigned to path quantifiers within temporal
operators, start in the respective system state currently reasoned over by the temporal operator.

In order to disambiguate the notions, we write Π# 3 8tr 2 =4( /AP0ω for path assignments, >#

for the HyperCTL# modeling relation and π#-witness for witness paths of HyperCTL# formulas.
Finally, for ease of presentation, when working with HyperCTL# formulas, we assume that STS
have a single initial state. An arbitrary STS can easily be transformed into this form by introduc-
ing a unique initial state and transitions that lead to all initial states. The formal semantics of
HyperCTL# are given as follows:

Π# >#
(

aπ iff a - AP=Π#=π070/0
Π# >#

(
'π.ψ iff there exists y - =4( /AP0ω such that

y70/ $ Π#=π070/ and Π# 7π - y/ >#
(

ψ
Π# >#

(
8ϕ iff Π# *>#( ϕ

Π# >#
(

Xϕ iff Π# 71,!/ >#
(

ϕ
Π# >#

(
ϕ1 Uϕ2 iff there exists i ( 0 3 Π# 7i,!/ >#

(
ϕ2

and for all 0 * j / i we have Π# 7j,!/ >#
(

ϕ1

To illustrate nested path assignments, consider the HyperCTL# formula with nested path quan-
tifiers 'π�==x* $ x 2 10π # 'π*=π)0 evaluated over some symbolic transition system. Paths
assigned to π, corresponding to the outer path quantifier, start in the initial state of the symbolic
transition system. Furthermore, due to �=x* $ x210π, along these paths, the value of x increases
by one in each state. In contrast, paths assigned to π*, corresponding to the path quantifier 'π*

nested inside 'π�, start in the current state of the path assigned to the outer quantifier 'π. For
example, if the initial state of the symbolic transition system maps x to 0 then the paths assigned
to π* start in states that map x to 0, 1, 2, etc.

47



5. MUTATION TESTING WITH HYPERPROPERTIES

5.1.4 Model Checking Complexity

The complexity of model checking HyperLTL as well as HyperCTL# formulas was studied
in [CFK%14, FRS15, BF18]. The general problem of deciding K > ϕ, i.e. model checking
some HyperLTL, or HyperCTL# formula ϕ over some Kripke structure K is decidable, but non-
elementary [CFK%14]. Both results use the fact that HyperLTL is subsumed by HyperCTL#. The
decidability result is shown via a reduction of HyperCTL# model checking to deciding satisfi-
ability of quantified propositional temporal logic QPTL. The non-elementary complexity result
is shown via a reduction of model checking epistemic logic ETL to model checking HyperLTL.

While the general complexity of model checking HyperLTL and HyperCTL# formulas is very
high, subsets of the general logic with lower model checking complexities have been identified.
Foremost, the complexity of the problem heavily depends on the quantifier alternation depth of
the checked formula (for example, )π)π*aπ # aπ) has quantifier alternation depth 0, whereas
)π'π*)π**aπ # aπ) # aπ)) has quantifier alternation depth 2). In particular, the complexity of
model checking a HyperCTL# formula with quantifier alternation depth 0 is PSPACE-complete
in the size of the formula as well as NLOGSPACE-complete in the size of the model [FRS15].
From there, the complexity grows exponentially in the quantifier alternation depth. In particular,
the complexity of model checking a HyperCTL# formula ϕ with quantifier alternation depth
k over a kripke structure K is in NSPACE=g=k, <ϕ<00 and in NSPACE=g=k 7 1, <K <00, where
g=k, n0 is a tower of exponentiations of height k [FRS15]. The reason for these complexity
jumps is the need for expensive model complementation of ω-automata.

It is interesting future work to identify under which conditions complementation of ω-automata
is required to model check the properties capturing mutation killability introduced in the fol-
lowing section. Potentially, a tailored model checking method for these properties could be
developed that does not suffer from this exponential blow-up due to complementation. A hint
towards such an algorithm is given by [FHT19], presenting canonical automata expressing all
prefixes of counter-examples of regular k-safety hyperproperties [CS10].

Finally, the complexity can be further reduced by considering acyclic or tree-shaped models
[BF18]. In this work, we make no such assumptions, but they offer another path to scale the
presented approach further in future work.

5.2 Killing with Hyperproperties

In this section, we provide a formalization of potential and definite killability in terms of Hy-
perLTL, prove the correctness of our formalizations with respect to definitions given in Sec-
tion 4.2, and explain how tests can be extracted by model checking these HyperLTL formulas.
Furthermore, we present an encoding of locally adaptive tests in HyperCTL#. To this end, let
us fix a symbolic conditional mutant ? µ̄ def

$ A1,$,5 1 ?mut4, αµ̄, δµ̄; for a mutation setting?µ1, . . . , µn4.

All HyperLTL and HyperCTL# formulas presented in this section depend on a mutant id as
well as on inputs and outputs of the model, but are model-agnostic otherwise. The idea of all
presented formulas is to discriminate between traces of the model (�7mut $ 0/π) and traces of

48



5.2. Killing with Hyperproperties

the mutant (�7mut $ j/π). Furthermore, we quantify over pairs =π, π*0 of traces with globally
equal inputs =�=Iπ 6 Iπ)00 and express that such pairs will eventually have different outputs=0=Oπ *6 Oπ)00, where for ease of presentation, we abbreviate .i.AP&

=iπ 6 iπ)0 by Iπ 6 Iπ)

and +o.AP%
8=oπ 6 oπ)0 by Oπ *6 Oπ) . We start by showing some general properties used

throughout the following HyperLTL formalizations of killability.

Lemma 5.2.1. Let Π be a trace assignment, let p, q be sequences of system states of ? µ̄ with
AP=p0 $ Π=π0, AP=q0 $ Π=π*0, and let j - ?1, . . . , n4. All of the following statements are true:

1. Π >(µ̄ �7mut $ 0/π then p<)/#/! - ?< rc=?0
2. Π >(µ̄ �7mut $ j/π then p<)/#/! - ?< rc=?µj0
3. Π >(µ̄ �:.i.AP&

=iπ 6 iπ)0. then p<) $ q<)
4. Π >(µ̄ 0:+o.AP%

8=oπ 6 oπ)0. then p<# & q<#
Proof. The first two statements follow directly from the definition of symbolic conditional mu-
tants. In particular, recall that conditionally mutated sub-formulas of αµ̄ and δµ̄ have the form=mut $ j # γµj0 " =mut & j # γ0 . A trace that satisfies �7mut $ 0/π can never satisfy sub-
formula =mut $ j#γµj0, while it satisfies =mut & j#γ0 if and only if the respective trace of the
model satisfies γ. Since this is true for every mutated sub-formula, clearly �7mut $ 0/π implies
p<)/#/! - ?< rc=?0. The argument for �7mut $ j/π is symmetric. The latter two statements
follow directly from the fact that AP) , AP# uniquely characterize inputs and outputs.

5.2.1 Deterministic Model and Mutant

To show killability (potential and definite) of a deterministic mutant for a deterministic model,
one needs to find a trace of the model ('π) such that the trace of the mutant with the same inputs
('π*) eventually diverges in outputs, which is formalized via the hyperproperty φ1 as follows:

φ1=1,$, j0 def
$ 'π'π*�:7mut $ 0/π # 7mut $ j/π) # =Iπ 6 Iπ)0. # 0:Oπ *6 Oπ).

Proposition 5.2.1. For a deterministic model ? and mutant ?µj it holds that

? µ̄ > φ1=1,$, j0 iff ?µj is killable.

For every π-witness p of ? µ̄ > φ1=1,$, j0 there is some n - N such that the test t
def
$ =p71, n/<)/#0%

kills ?µj .

Proof. We show that ?µj is potentially killable iff ? µ̄ > φ1=1,$, j0. This suffices, since
?µj is deterministic and by the correspondence of symbolic traces to Mealy machine traces
(Lemma 3.3.1), ?µj is definitely killable iff ?µj is potentially killable.

49



5. MUTATION TESTING WITH HYPERPROPERTIES

Assume that ?µj is potentially killable. That is, there is a trace q1 - <rc=?µj0, such that q%<I+O .

<rc=?0<I+O. Since ?µj is input-enabled, there exists a trace p - ?< rc=?0, such that p<) $

q<) . Together the correspondence of traces and symbolic traces (Lemma 3.3.1) it follows that
p<# & q<#. Furthermore, from Lemma 5.2.1 follows that p and q are π- and π*-witnesses for
�7mut $ 0/π and �7mut $ j/π) respectively. Therefore, p and q are satisfying assignments for
φ1=1,$, j0 and π, π* respectively.

Conversely, assume ? µ̄ > φ1=1,$, j0. Let p, q be a π, π*-witnesses of φ1=1,$, j0. From
Lemma 5.2.1, we immediately get p<) $ q<) , and p<# & q<#, p<)/#/! - ?< rc=?0, and q<)/#/! -

?< rc=?µj0, which shows ?< rc=?µj0<)/# ! ?< rc=?0<)/#. Thus, together with Lemma 3.3.1
we showed that ?µj is potentially killable.

Furthermore, since p<# & q<#, there exists an n - N such that p71, n 7 1/<# $ q71, n 7 1/<# and
p7n/<# & q7n/<#. Thus, the test t

def
$ =p71, n/<)/#0% kills ?µj .

5.2.2 Non-deterministic Model and Mutant

For potential killability of non-deterministic models and mutants, we need to find a trace of the
mutant ('π) such that all traces of the model with the same inputs ()π*) eventually diverge in
outputs, which is formalized via the hyperproperty φ2 as follows:

φ2=1,$, j0 def
$'π)π*�7mut $ j/π # 6�:7mut $ 0/π) # =Iπ 6 Iπ)0.2 0:Oπ *6 Oπ).,

Proposition 5.2.2. For non-deterministic model ? and mutant ?µj , it holds that

? µ̄ > φ2=1,$, j0 iff ?µj is potentially killable.

If q is a π-witness for ? µ̄ > φ2=1,$, j0, then for any trace p - ?< rc=?0 with q<) $ p<) there is
n - N such that the test t

def
$ =p71, n/<)/#0% potentially kills ?µj .

Proof. Assume that ?µj is potentially killable. From the correspondence of traces and symbolic
traces (Lemma 3.3.1) it follows that there is a symbolic trace q - ?< rc=?µj0, such that there
is no symbolic trace p - ?< rc=?0 with q<)/# $ p<)/#. Any trace assignment that maps π to q
satisfies φ2=1,$, j0, since that assignment either violates the antecedent of the implication by
mapping a trace p - ?< rc=?0 with different inputs than q to π*, or it violates the consequent by
mapping a trace p - ?< rc=?0 to π* with inputs q<) and outputs that can only be different to q<#.

Conversely, assume ? µ̄ > φ2=1,$, j0. Let p be a π-witness and q be a π*-witness for which
the antecedent of the implication is satisfied, which is in fact satisfiable, since ?µj is input-
enabled. Clearly, p is a π-witness for �7mut $ j/π and since q is chosen such that it satisfies
the antecedent, q is a π*-witness for �7mut $ 0/π) . Thus, from Lemma 5.2.1, we get p<)/#/! -

?< rc=?0, q<)/#/! - ?< rc=?µj0, and q<) $ p<) . Since Π7π - p, π* - q/ satisfies the antecedent
of the implication and the whole formula, the trace assignment also satisfies the consequent of

50



5.2. Killing with Hyperproperties

the implication , i.e. q<# & p<# (Lemma 5.2.1). Since q was chosen arbitrary (besides satisfying
the antecedent), we can conclude p<)/# . ?< rc=?µj0<)/#, which together with Lemma 3.3.1
shows that ?µj is potentially killable.

Let q - ?< rc=?µj0 be a π-witness to ? µ̄ > φ2=1,$, j0 and let p - ?< rc=?0 be any trace with
p<) $ q<) , which exists since ?µj is input-enabled. Clearly, there exists an n - N such that
q71, n 7 1/<# $ p71, n 7 1/<# and q7n/<# & p7n/<#. Therefore, the test t

def
$ =p71, n/<)/#0%

potentially kills ?µj .

For definite killability one needs to find a sequence of inputs of the model ('π) and compare all
non-deterministic outcomes of the model ()π**) to all non-deterministic outcomes of the mutant
()π*) for these inputs, which is formalized via the hyperproperty φ3 as follows:

φ3=1,$, j0 def
$

'π)π*)π**�7mut $ 0/π # 6�:7mut $ j/π) # 7mut $ 0/π)) # =Iπ 6 Iπ)0 # =Iπ 6 Iπ))0.2
0:Oπ) *6 Oπ)).,

In Figure 5.1b, we present an instance of φ3 for our running example.

Proposition 5.2.3. For non-deterministic ? and ?µj , it holds that

? µ̄ > φ3=1,$, j0 iff ?µj is definitely killable.

If p is a π-witness for ? µ̄ > φ3=1,$, j0, then there exists n - N, such that the test t
def
$=p71, n/<)/#0% definitely kills ?µj .

Proof. Let ?µj be definitely killable, which, together the correspondence of traces and symbolic
traces (Lemma 3.3.1), implies that there is a sequence of inputs 8i - =Σ(0#, such that for P$i

def
$

?p - ?< rc=?0 < p<) $ 8i4 and Q$i
def
$ ?q - ?< rc=?µj0 < q<) $ 8i4 it is the case that P$i<# .Q$i<# $ 9.

Since ? and ?µj are input-enabled, it is the case that P$i & 9 and Q$i & 9. We show that any
p - P$i is a π-witness to ? µ̄ > φ3=1,$, j0. Let q* - ?< rc=?µj0 and p** - ?< rc=?0 be arbitrary
traces. Furthermore, consider a trace assignment that maps π to p, π* to q* and π** to p** and
assume that it satisfies the antecedent (which is satisfiable, due to P$i & 9 and Q$i & 9). That
is, q* - Q$i and p** - P$i. Since P$i<# . Q$i<# $ 9, it must be the case that q*<# & p**<#. Thus, in
case q* and p** are π*- and π**- witnesses that also satisfy the antecedent, any trace assignment
that maps p to π satisfies the formula. Likewise, in case q* and p** are π*- and π**-witnesses
that do not satisfy the antecedent, then the whole formula is satisfied. Therefore, together with
Lemma 3.3.1, we showed that ? µ̄ > φ3=1,$, j0.

Conversely, assume ? µ̄ > φ3=1,$, j0. Let p be a π-witness, and let q* and p** be π* and π**-
witnesses for which the antecedent is satisfied, which is in fact satisfiable, since ?µj is input-
enabled. Clearly, p is a π-witness for �7mut $ 0/π and since q* and p** were chosen such

51



5. MUTATION TESTING WITH HYPERPROPERTIES

that they satisfy the antecedent, q* is a π*-witness for �7mut $ j/π) and p is a π**-witness for
�7mut $ 0/π)) . Thus, from Lemma 5.2.1, we get p<)/#/! , p**<)/#/! - ?< rc=?0, q*<)/#/! -

?< rc=?µj0, and p<) $ q*<) $ p**<) .

Since the Π7π - p, π* - q*, π** - p**/ satisfies the whole formula and the antecedent, the
trace assignment must also satisfy the consequent. That is, it must be the case that q*<# & p**<#
(Lemma 5.2.1). Since q* and p** were chosen arbitrarily besides satisfying the antecedent and
since symbolic traces that do not satisfy the antecedent are either not symbolic traces of the
model or mutant, or have different input to p, we have shown ?q - ?< rc=?µj0 < q<) $ p<)4<# .

?p** - ?< rc=?0 < p**<) $ p<)4<# $ 9, i.e. 8i def
$ p<) is the input sequence which together with

Lemma 3.3.1 shows that ?µj is definitely killable.

Let p - ?< rc=?0 be a π-witness to ? µ̄ > φ3=1,$, j0. First, we show that traces of ?µj with
inputs p<) can not repeat before having a different output to p. Assume the contrary, i.e. there
are q - ?< rc=?µj0 and l / j * k, such that q<) $ p<) , q71, k/<# $ p71, k/<#, and q7l/ $ q7j/.
Trace q can be modified to a trace that loops between q7l/ and q7j/ indefinitely. This trace is
a counter-example to ?µj being definitely killable. Therefore, let n 7 1 be the finite length of
the longest prefix of traces of ?µj with equal output to p. Clearly, the test t

def
$ =p71, n/<)/#0%

definitely kills ?µj .

5.2.3 Mixed Determinism Model and Mutant

We now examine cases where the model is non-deterministic and the mutant is deterministic and
vice versa. It should be noted that in practice it might not be known a-priori whether a model
or mutant is really deterministic. In such cases, the hyperproperties φ2=1,$, j0 and φ3=1,$, j0
for non-deterministic mutants can be used to define and construct killing test cases, as their
guarantees hold for deterministic mutants as well. Nevertheless, in this section, we present
the weakest hyperproperties expressing potential and definite killability for mixed determinism
cases.

To show potential killability of a non-deterministic mutant for a deterministic model, one needs
to find a trace of the model ('π) such that there is a trace of the mutant with the same inputs
('π*) that eventually diverges in outputs, which is exactly formalized by the hyperproperty φ1
above.

Proposition 5.2.4. Let the model ? with inputs 1 and outputs$ be deterministic and the mutant
?µj be non-deterministic.

? µ̄ > φ1=1,$, j0 iff ?µj is potentially killable.

Let p be a π-witness for ? µ̄ > φ1=1,$, j0, then there exists n - N such that the test t
def
$=p71, n/<)/#0% potentially kills ?µj .

Proof. The proof can be conducted similar to the proof of Proposition 5.2.1.

52



5.2. Killing with Hyperproperties

To show definite killing of a non-deterministic mutant of a deterministic model, one needs to find
a trace of the model ('π) such that all traces of the mutant with the same inputs ()π*) eventually
diverge in outputs, which is formalized via the hyperproperty φ4 as follows:

φ4=1,$, j0 def
$'π)π*�7mut $ 0/π # 6�:7mut $ j/π) # =Iπ 6 Iπ)0.2 0:Oπ *6 Oπ).,

Proposition 5.2.5. Let the model ? with inputs 1 and outputs$ be deterministic and the mutant
?µj be non-deterministic.

? µ̄ > φ4=1,$, j0 iff ?µj is definitely killable.

If p is a π-witness for ? µ̄ > φ4=1,$, j0, then there exists n - N such that the test t
def
$=p71, n/<)/#0% definitely kills ?µj .

Proof. Assume that ?µj is definitely killable. Since ? is deterministic, for every input se-
quence, there is at most one trace with in ?< rc=?0 with this input sequence. Therefore, from
Lemma 3.3.1 it follows that there is an input sequence 8i and a unique trace p - ?< rc=?0 with
p<) $ 8i and p<)/# . ?< rc=?µj0<)/#. Any trace assignment that maps π to p satisfies φ4=1,$, j0,
since either the antecedent is violated by a trace q - ?< rc=?µj0 assigned to π* with different
inputs, or the consequent is violated by a trace q - ?< rc=?µj0 assigned to π* with inputs 8i and
outputs that can only be different to p<#.

Conversely, assume ? µ̄ > φ4=1,$, j0. Let Π be a satisfying trace assignment that maps π to
q and π* to p that also satisfies the antecedent, which is in fact satisfiable, since ?µj is input-
enabled. Clearly, p is a π-witness for �7mut $ 0/π and since q was chosen such that it satisfies
the antecedent, q is a π*-witness for �7mut $ j/π) . Thus, from Lemma 5.2.1, we get p<)/#/! -

?< rc=?0, q<)/#/! - ?< rc=?µj0, and q<) $ p<) . Since Π satisfies the whole formula, it must
be the case that Π also satisfies the consequent, i.e. q<# & p<# (Lemma 5.2.1). Therefore, we
can conclude p<)/# . ?< rc=?µj0<)/#, which, as argued above, together with Lemma 3.3.1 is
equivalent to definite killing in the deterministic model case.

The existence of a definitely killing test in case of finite ?µj can be shown analogously to the
proof of Proposition 5.2.3.

Finally, to show killability of a deterministic mutant for a non-deterministic model, one needs
to find a trace of the mutant ('π) such that all traces of the model with the same inputs ()π*)
eventually diverge in outputs, which is already expressed via the hyperproperty φ2 above.

Proposition 5.2.6. Let the model ? with inputs 1 and outputs $ be non-deterministic and the
mutant ?µj be deterministic

? µ̄ > φ2=1,$, j0 iff ?µj is killable.

Let q be a π-witness for ? µ̄ > φ2=1,$, j0, then there is n - N, such for the single trace p -

?< rc=?0 with p<) $ q<) the test t
def
$ =p71, n/<)/#0% kills ?µj .

53



5. MUTATION TESTING WITH HYPERPROPERTIES

Proof. Potential killing directly follows from the more restricted case in Proposition 5.2.2. Since
?µj is deterministic, by Proposition 4.2.1 it is also definitely killable. The existence of a killing
test can be shown analogously to the proof of Proposition 5.2.2.

5.2.4 Locally Adaptive Tests

We can extend the hyperproperties presented above to force π-witnesses to have prefixes that
are locally adaptive tests. Recall the definition of locally adaptive tests (Definition 3.2.3) that
reasons over allowed outputs. Given a trace A=s1, i1, o10, . . . , =sn, in, on0; - <rc=&0 of some
model&, an output a is allowed at step j if there is a trace p - <rc=&0 that follows the test up
to step j and then produces output a, i.e. p $ A=s1, i1, o10, . . . , =sj , ij , a0, . . .;.
In order to reason over allowed outputs, we introduce auxiliary indicator variables and restrict
their values in π-witnesses of hyperproperties. Let Out be the set of all outputs. Remember that
an output O of an STS is a mapping of output variables$ to a range of output values. Therefore,
Out is a set of mappings. We define locally allowed output indicators as the set of fresh Boolean
variables @ def

$ ?a7O/ < O - Out4 as a subset of state variables 5 that are not used in the initial
state or transition predicate.

We now strengthen the hyperproperties expressing killability, such that only assignments to these
variables are allowed that reflect the semantics of allowed outputs. Unfortunately, these seman-
tics are not expressible in HyperLTL, since they require to reason over all outgoing traces from
intermediate states of an arbitrary trace. However, the property is expressible in HyperCTL#.

For an STS with a finite set of outputs Out and a HyperLTL formula φ of the form 'πψ, we
define its locally adaptive test extension φ' as:

φ'
def
$ 'π3ψ # ,

O.Out

�X6a7O/π 6 :'π*7mut $ 0/π) # =Iπ 6 Iπ)0#
,

o.AP"O%

oπ) # ,
o.AP"#%&AP"O%

8oπ).,&

For example, for φ3=1,$, j0 the full extended formula is given as follows:

54



5.2. Killing with Hyperproperties

φ3=1,$, j0' def
$

'π3)π*)π**�7mut $ 0/π # 6�:7mut $ j/π) # 7mut $ 0/π)) # =Iπ 6 Iπ)0 # =Iπ 6 Iπ))0.2
0:Oπ) *6 Oπ)).,#

,
O.Out

�X6a7O/π 6 :'π*7mut $ 0/π) # =Iπ 6 Iπ)0#
,

o.AP"O%

oπ) # ,
o.AP"#%&AP"O%

8oπ).,&

Likewise, this extension can be performed for φ1=1,$, j0 and φ4=1,$, j0. Note that the π
path variable in φ2=1,$, j0 is constrained to evaluate to paths of the mutant. Thus, in order
to leverage this transformation for φ2=1,$, j0, an additional existential quantifier picking one
suitable trace of the original STS needs to be added to the formula.

We now show that models of these extensions contain locally adaptive tests.

Proposition 5.2.7. Let ? µ̄ be a conditional mutant and let φ be a HyperLTL formula of the form
'πψ such that ? µ̄ > φ and some finite prefix of a π-witness to ? µ̄ > φ is a linear test, then
? µ̄ ># φ' and some finite prefix of the trace component of a π#-witness for ? µ̄ ># φ' is a
locally adaptive test.

Proof. Let p - ?< rc=?0 be a π-witness to ? µ̄ > φ and let t
def
$ p71, n/ be the finite prefix that is a

linear test. Since variables a7O/ are unconstrained by the STS, we can assume that the valuations
of these variables in p are chosen such that p (together with its states) constitutes a π#-witness
for ? µ̄ ># φ'. To show that t is a locally adaptive test, up to symbolic trace correspondence
shown in Lemma 3.3.1, it needs to be the case that for every j - 71, n/ and every O - Out it
is the case that t7j/ at a7O/ evaluates to = if and only if there exists a trace p* - ?< rc=?0 with
p*71, i 7 1/ $ t71, i 7 1/, p*7j/<) $ t7j/<) , and p*7j/<# $ O. Path p is chosen such that in
every step j 7 1 and output O, p evaluates a7O/ to = in its successor state if and only if from the
current state there a path of the original system pO

j whose next state exactly has input p7j/<) and
output O. Therefore, paths pO

j for every O - Out, prepended with the prefix of p up to j, are
witnesses to this property.

Unfortunately, to the best of the knowledge of the authors, there currently does not exists a
model checker for HyperCTL#. However, the problem was shown to be decidable in [FRS15],
although its complexity grows exponentially in the number of quantifier alternations. Therefore,
on top of providing formal semantics for locally adaptive tests, the encoding can be leveraged in
practice soon as a HyperCTL# model checker emerges.

55



5. MUTATION TESTING WITH HYPERPROPERTIES

5.3 Non-deterministic Models in Practice

Checking the validity of the hyperproperties in Section 5.2 for a given model and mutant enables
test-case generation. Unfortunately, the model checkers for HyperLTL or HyperCTL# are still in
their infancy. To the best of our knowledge, MCHYPER [FRS15] is the only currently available
HyperLTL model checker and there is no HyperCTL# model checker. The latter is hindered
by the prohibitively expensive step of complementing ω-automata [FRS15]. Furthermore, Hy-
perLTL formulas with quantifier alternation, such as killability defining formulas φ2=1,$, j0
and φ3=1,$, j0 for non-deterministic models, can currently not be handled with the available
version of the tool. In a web-based version of MCHYPER such formulas can be handled via a
combination with a reactive synthesis tool, as described in [CFST19]. To remedy this issue and
to obtain test cases for non-deterministic systems, in this section, we propose two solutions.

Firstly, we present a transformation that makes non-determinism controllable by means of addi-
tional inputs and yields a deterministic STS. The quantifier alternation free formula φ1=1,$, j0
can be model checked over the transformed model. The result is an over-approximation of
killability in the sense that the resulting test cases only kill some non-deterministic mutant if
non-determinism can also be controlled in the system under test. However, if equivalence can
be established for the transformed model, then the non-deterministic mutant is also equivalent.
In Section 5.3.1 we define the transformation formally and prove its properties. In Section 5.3.2
we show how the transformation can be done syntactically in practice.

Secondly, we propose a bounded model checking approach for φ2=1,$, j0 and φ3=1,$, j0 via
an encoding into a SMT satisfiability problem. This problem can be solved with off-the-shelf
solvers such as the SMT solver Z3 [DMB08] or the first-order logic solver Vampire [KV13].

5.3.1 Controlling Non-determinism in Symbolic Transition Systems

The essential idea of our transformation is to introduce an additional input (represented by an
auxiliary variable nd) that enables the control of non-deterministic choices in a conditional mu-
tant ? µ̄ with finite non-deterministic branching. The new input is used carefully to ensure that
choices are consistent for the model and the mutant encoded in ? µ̄. Without loss of generality,
we assume that variable nd has a finite range sufficiently large to encode the non-deterministic
choices in αµ̄ and δµ̄. In particular, for every output O and successor state X *, we assume that
there exists a unique value nO,X) in the range of nd. Moreover, we add a fresh Boolean vari-
able xτ to 5 that we use to encode a fresh initial state. Furthermore, let ψ=X0, ψ=X, I0, and
ψ=O, X *0 be formulas that are uniquely satisfied by any state X , any state/input pair =X, I0, and
any output/successor state pair =O, X *0 respectively.

Given conditional mutant ? µ̄ def
$ A1,$,51?mut4, αµ̄, δµ̄;, we define its controllable counterpart

D=? µ̄0 def
$ A1 1 ?nd4,$,5 1 ?mut4 1 ?xτ4, D=αµ̄0, D=δµ̄0;. We initialize D=δµ̄0 def

$ δµ̄ and
incrementally add constraints as described below.

Non-deterministic initial state predicate: Let X be an arbitrary, fixed state. The unique fresh
initial state is Xτ def

$ X7xτ - =/, which, together with an empty output, we enforce by the new

56



5.3. Non-deterministic Models in Practice

initial conditions predicate:
D=αµ̄0 def

$ ψ=Xτ0
We add the conjunct 8ψ=Xτ0 2 8xτ * to D=δµ̄0, in order to force xτ evaluating to > in all
states other than Xτ . In addition, we add transitions from Xτ to all pairs of initial states in
αµ̄. For each state X such that X > αµ̄, we add the following formula conjunctively to D=δµ̄0,
introducing transitions from the new initial state for every input with empty output to every
original initial state:

=ψ=Xτ0 # nd $ ndOη ,X)02 ψ=Oη, X *0

Non-deterministic transitions: For each transition X
I,O
992 X *, we fix non-determinism by

adding the following formula conjunctively to δµ̄:

=ψ=X, I0 # nd $ ndO,X)02 ψ=O, X *0
The proposed transformation has the following properties:

Proposition 5.3.1. Let ? µ̄ $ A1,$,5 1 ?mut4, αµ̄, δµ̄; be a conditional mutant for mutation
setting ?µ1, . . . , µn4.

1. D=? µ̄0 is deterministic (up to mut).

2. ?< rc=? µ̄0<!/)mut*/)/# ' ?< rc=D=? µ̄0071,!/<!/)mut*/)/#.

3. D=? µ̄0 *> φ1=1,$, j0 then ?µj is equivalent.

Proof. Statement 1: We show D=? µ̄0 is deterministic (up to mut). D=? µ̄0 has a unique (up to
mut) initial state Xτ , since we fix D=αµ̄0 to be satisfiable by exactly this state.

Let X
I,O1
992 X *

1 and X
I,O2
992 X *

2 be a non-deterministic transition of ? µ̄, such that X *
1=mut*0 $

X *
2=mut*0. First, note that the value of xτ * is fixed to >, both in X *

1 and X *
2. Furthermore,

we have that X, I7nd - ndO1,X)
1
/, O1, X *

1 > D=δµ̄0, because X, I, O1, X *
1 > δµ̄ and both the

antecedent as well as the consequent of the additional constraint =ψ=X, I0 # nd $ ndO1,X)
1
0 2

ψ=O1, X *
10 in D=δµ̄0 are satisfied. Furthermore, we have that X, I7nd - ndO1,X)

1
/, O2, X *

2 *>
D=δµ̄0, since the antecedent of the above constraint is satisfied, whereas the consequent is not.

The argument for transition X
I,O2
992X *

2 is symmetric. In summary, in the transformed symbolic

transition system D=? µ̄0, it is the case that X
I!nd'ndO1,X)

1
,,O1

99999999992 X *
1 and X

I!nd'ndO2,X)
2
,,O2

99999999992

X *
2 and neither X

I!nd'ndO1,X)
1
,,O2

99999999992 X *
2 nor X

I!nd'ndO2,X)
2
,,O1

99999999992 X *
1. Thus, we showed that

non-determinism due to tuples =X, I, O1, X10 and =X, I, O2, X20 is resolved in the transformed
system. This argument can be applied to any such pair, showing that D=? µ̄0 is deterministic (up
to mut).

57



5. MUTATION TESTING WITH HYPERPROPERTIES

Statement 2: To show this statement, we show that every initial state X0 of ? µ̄ is the target

of a transition of the unique initial state Xτ of D=? µ̄0 and that every transition X
I,O
992 X * is

preserved in D=? µ̄0.

The former point is true, due to constraint =ψ=Xτ0 # nd $ ndOη ,X)
0
0 2 ψ=Oη, X *

00 that is
included in D=δµ̄0. For the latter point, consider a tuple AX, I7nd - ndO,X)/, O, X *; (with
respect to D=? µ̄0). This tuple satisfies both the antecedent and consequent of the newly added
constraint =ψ=X, I0 # nd $ ndO,X )0 2 ψ=O, X *0. Furthermore, every other newly added con-
straint of the form =ψ=X1, I10 # nd $ ndO1,X)

1
0 2 ψ=O1, X *

10 is satisfied by the tuple, either
because X $ X1, I $ I1, O $ O1, and X * $ X *

1 (thus in particular ndO1,X)
1
$ ndO,X)) such that

both the antecedent or the consequent are satisfied, or any of the equalities does not hold and the
antecedent is not satisfied.

Statement 3: *> φ1=1,$, j0 then ?µj is equivalent is a direct consequence of the statements
about symbolic traces, since *> φ1=1,$, j0 shows no trace in ?< rc=D=? µ̄00 is a witness to
killing the mutant. Since traces of ? µ̄ are included in (the projection of) this set, there can not
be a trace in ?< rc=? µ̄0 that is a witness to killing the mutant.

In summary, the transformed model is deterministic, since we enforce unique initial valuations
and make non-deterministic transitions controllable through input nd. Since we only add tran-

sitions or augment existing transitions with input nd, every transition X
I,O
992 X * of ? µ̄ is still

present in D=? µ̄0 (when input nd is disregarded). The potential additional traces of Statement 2
originate from transitions added due to implicit input-enabling.

Statement 3 shows what can be achieved by model checking the quantifier alternation free for-
mula φ1 over the transformed controllable determinism STS D=? µ̄0. Equivalent mutants of this
system are also equivalent in the non-deterministic version. Killability purported by φ1, however,
could be an artifact of the transformation: determinization potentially deprives the model of its
ability to match the output of the mutant by deliberately choosing a certain non-deterministic
transition. Test cases can therefore only be considered killing under the assumption that non-
determinism can be controlled by the tester. In Example 3.2.1, we present an equivalent mutant
that serves only tea. This mutant is killable after transforming the mutant as well as the cor-
responding model, since upon fixing the non-deterministic outcome after the request to serve
coffee, the model will respond with output coffee, whereas the mutant will reject the input
corresponding this non-deterministic choice, i.e. respond with η. Therefore, our transformation
only allows us to provide a lower bound for the number of equivalent non-deterministic mutants.

5.3.2 Controlling Non-determinism in Modeling Languages

The transformation outlined in Section 5.3.1 is purely theoretical and often infeasible in prac-
tice, since all states and inputs have to be enumerated. However, an analogous result can often
be achieved by modifying the syntactic constructs of the underlying modeling language that
introduce non-determinism, namely:

58



5.3. Non-deterministic Models in Practice

• Non-deterministic assignments. Non-deterministic choice over a finite set of elements?x*1, . . . x*n4, as provided by SMV [McM92b], can readily be converted into a case-switch
construct over nd. More generally, explicit non-deterministic assignments x := ; to
state variables x [Nel89] can be controlled by assigning the value of nd to x.

• Non-deterministic schedulers. Non-determinism introduced by concurrency can be con-
trolled by introducing input variables that control the scheduler (as proposed in [LR09]
for bounded context switches).

In case non-determinism arises through variables under-specified in transition relations, these
variable values can be made inputs as suggested by Section 5.3.1. In general, however, identify-
ing under-specified variables automatically is non-trivial.

Example 5.3.1. Consider again the SMV code in Figure 5.1a, for which non-determinism can
be made controllable by replacing 1. with 2. and adding init(nd):={0,1}, where

1. if(in=request&water>0):{coffee,tea}

2. if (nd=0&in=request&water>0):coffee
elif(nd=1&in=request&water>0):tea

Similarly, the STS representation of the beverage machine, given in Example 3.3.1, can be trans-
formed by replacing the first two rules by the following two rules:

!nd=0 $ water>0 $ in=request $ out=coffee $ water’=water-1& #

!nd=1 $ water>0 $ in=request $ out=tea $ water’=water-1& #

Finally, the results of the transformation is presented in Figure 5.5 on a case study.

5.3.3 Encoding Bounded Killability into SMT

Another way of solving killability properties with quantifier alternation is to leverage the first
order expressibility of HyperLTL (proven in [FZ17]) and to encode the strong potential and
definite killability problems into a suitable fragment of first order logic. Let ? µ̄ def

$ A1,$,5 1?mut4, αµ̄, δµ̄; be a conditional mutant for mutation setting ?µ1, . . . , µn4, where for ease of
presentation, we abbreviate αµ̄ with α and δµ̄ with δ throughout this section. We describe
an SMT encoding of potential and definite killability into a bounded (up to fixed bound k)
satisfiability problem in a logic that contains the logic of the symbolic transition system, as
well as quantification over the ranges of state and output variables. The idea is to create copies
of each variable and each step and each mutant as well as the model. Furthermore, the transition
relation is replicated for each step, using the respective step variables. Reachable states and
outputs are expressed by universally quantifying over variable values and checking whether
the respective variable assignment satisfies the initial state-, as well as, the step-wise transition
relation- predicate.

59



5. MUTATION TESTING WITH HYPERPROPERTIES

Let 1 $ ?i0, . . . , imi4, $ $ ?o0, . . . , omo4, and 5 $ ?x0, . . . , xmx4. For each variable i - 1
and l $ 0, . . . , k we create new variables i7l/ with the same range as i. For each j $ 0, . . . , n,
each variable v - $, and each l $ 0, . . . , k as well as each v - 5 , and each l $ 0, . . . , k 2 1, we
create new variables v7l, j/ with the same ranges as v. For a formula ψ and each j $ 0, . . . , n,
let ψ7l, j/ be the formula that results from replacing each variable v - 1 1 $ 1 5 4 ?mut4
with v7l, j/, each variable v* - 5 * with v7l 2 1, j/, and mut as well as mut* with j. In particular,
conditionally mutated sub-formulas of the form =mut $ j0#γµj0 0"=mut & j#γ0 are transformed
to =j $ j0 # =γµj0 07l, j/0 " =j & j0 # γ7l, 0/0 for which clearly the mutated branch is satisfiable
if and only if j $ j0.

We can encode trace prefixes up to k steps of the model respectively mutant j as satisfying
assignments of the following formulas with free input-, output-, and state- variables (original
respectively mutated versions):

φ(
µ̄

0
def
$ α70, 0/ # ,

0-l-k

δ7l, 0/ φ(
µ̄

j
def
$ α70, j/ # ,

0-l-k

δ7l, j/

We encode potential killing linear tests for mutant j of length k as models of the following for-
mula with free inputs, original output- and state variables, quantifying over all mutated outputs
o0, . . . , omo and state variables x0, . . . , xmx as well as steps 0, . . . , k 2 1:

φ(
µ̄

pk1j
def
$ )o070, j/, . . . , os7t, j/, . . . , omo7k, j/, x070, j/, . . . , xs7t, j/, . . . , xmx7k 2 1, j/.

α70, 0/ # ,
0-l-k

δ7l, 0/ # :=α70, j/ # ,
0-l-k

δ7l, j/02 *
0-m-mo

om7k, j/ & om7k, 0/.

Likewise, we encode definitely killing linear tests for mutant j of length k as models of the
following formula with free inputs, quantifying over all model and mutated outputs o0, . . . , omo

and state variables x0, . . . , xmx as well as steps 0, . . . , k:

φ(
µ̄

dk1j
def
$ )o070, 0/, . . . , os7t, 0/, . . . , omo7k, 0/, x070, j/, . . . , xs7t, j/, . . . , xmx7k 2 1, j/,

o070, j/, . . . , os7t, j/, . . . , omo7k, j/, x070, j/, . . . , xs7t, j/, . . . , xmx7k 2 1, j/.
=α70, j/ # ,

0-l-k

δ7l, j/ # α70, 0/ # ,
0-l-k

δ7l, 0/02 *
0-m-mo

om7k, j/ & om7k, 0/

In the following proposition, we prove the correctness of the encoding.

Proposition 5.3.2. Let ? µ̄ be a conditional mutant for mutation setting ?µ1, . . . , µn4 and let
j - 71, n/, then

1. φ(
µ̄

0 is satisfiable iff there is trace p - ?< rc=?0 of length at least k.

2. φ(
µ̄

j is satisfiable iff there is trace p - ?< rc=?µj0 of length at least k.

3. φ(
µ̄

pk1j is satisfiable iff there is a linear test t for ? of length k potentially killing ?µj .

60



5.3. Non-deterministic Models in Practice

4. φ(
µ̄

dk1j is satisfiable iff there is a linear test t for ? of length k definitely killing ?µj .

Proof. Statement 1: A satisfying assignment for φ0=? µ̄0 is an assignment of stepwise copies of
input, the model’s output and the model’s state variables up to step k that satisfies the initial state
predicate and the transition predicate in each step. Clearly, such an assignment corresponds to
the prefix of trace p - ?< rc=?0 of length k.

Statement 2 can be shown analogously to Statement 1.

Statement 3: Since φ0=? µ̄0 is a conjunct of φpk1j=? µ̄0 it needs to be satisfied by any satisfying
assignment of φpk1j=? µ̄0. Thus, due to Statement 1, every satisfying assignment of φpk1j=? µ̄0
encodes a prefix t of some trace p - ?< rc=?0 of length k and every such prefix is encoded
in a satisfying assignment. Furthermore, every extension of such a satisfying assignment via
assignments of the universally quantified mutant output- and mutant state variables that encodes
a prefix of some trace of q - ?< rc=?µj0 with the same input values as p in the first k steps
satisfies the antecedent of the implication and thus needs to satisfy the consequent. Due to
Statement 2 every trace of ?µj is captured via such an assignment. Therefore, there exists a
satisfying assignment corresponding to trace prefix t of the formula if and only if every trace q -
?< rc=?µj0 with q<)70, k/ $ t<) is such that q<#7k/ & t<#7k/, which together with Lemma 3.3.1
is equivalent to t potentially killing ?µj .

Statement 4 can be shown analogously to Statement 3 with the exception that a satisfying assign-
ment only encodes a sequence of inputs. Extensions of that satisfying assignment of universally
quantified variables that satisfy the antecedent encode a trace in the model and a trace in the
mutant with equal input. Since also the consequent needs to be satisfied by such extensions,
their outputs must differ in step k, showing that every trace of the model with the sequence of
inputs given by the satisfying assignment corresponds to a definitely killing linear test of length
k (up to trace and symbolic trace correspondence shown in Lemma 3.3.1).

Example 5.3.2. Consider again the transition relation δµ̄ of the conditional mutant presented in
Example 4.1.2, recited here:

:=in=request # water>0 # out=coffee # water’=water-10 "
=in=request # out=tea # water’=water-1 #

((mut=1 # false) " (mut&1 # water>0))0 "
=in=refill # water=0 # out=full #

((mut=2 # water’=10 " (mut&2 # water’=2))0 "
=in=request # water=0 # out=η # water’=water0. #
mut* $ mut

61



5. MUTATION TESTING WITH HYPERPROPERTIES

We present δ7l, 2/, i.e. the encoding of the l*th step of the transition predicate for mutant ?µ2 :

:in[l]=request # water[l,2]>0 # out=coffee #
water[l+1,2]=water[l,2]-10 "

=in[l]=request # out=tea # water[l+1,2]=water[l,2]-1#
((2=1 # false) " (2&1 # water[l,2]>0)) 0 "

=in[l]=refill # water[l,2]=0 # out=full #
((2=2 # water[l+1,2]=1) " (2&2 # water[l+1,2]=2))0 "

=in[l]=request # water[l,2]=0 # out=η # water[l+1,2]=water[l,2]. #
2=2

In order to evaluate the scalability of this method, we encoded a parametrized version of the
beverage machine, together with φ(

µ̄

dk1j in the SMTlib format and gave it to the Z3 SMT solver
(version 4.8.7). The benchmark encoding is parametrized with the bound k for which a defi-
nitely killing test can be found (k = 5 in the running example instance, corresponding to input
sequence Arequest, request, refill, request, request;), which can be con-
trolled via the capacity of the water tank (2 in the running example instance). The encoding and
a script to create parametrized versions of it can be found in [ben]. We ran this proof of concept
demonstration on a virtual machine with one Intel i7 core at 2.8 GHz and 10GB of RAM.

The instance with bound 12 is solved within 20 seconds. After that, there seems to be a steep
increase in complexity. For the instance with bound 13, Z3 returns unknown after 7 minutes with
an error indicating model-based quantifier instantiation did not find a model after 1000 attempts.
Unsurprisingly, the large amount of universal quantification poses a challenging problem to Z3.

5.4 Mutation Testing with Hyperproperties Experiments

In this section, we present an experimental evaluation of the test generation via HyperLTL model
checking method. We start by discussing the deployed tool-chain. Thereafter, we show a val-
idation of the method on one case study via an action system formulation and the test case
generation methods described in the later chapters of this thesis. Finally, we present quantitative
results on a broad range of generic models.

5.4.1 Toolchain

Figure 5.2 shows the toolchain that we use to produce test suites for models encoded in the
modeling languages Verilog and SMV. Verilog models are deterministic, whereas SMV models
can be non-deterministic.

Variable Annotation

As a first step, we annotate variables as inputs and outputs. These annotations were added
manually for Verilog, and heuristically for SMV (partitioning variables into outputs and inputs).

62



5.4. Mutation Testing with Hyperproperties Experiments

Figure 5.2: The tool pipeline of our experiments.

Mutation and Transformation

We produce conditional mutants via a mutation engine. For Verilog, we implemented our own
mutation engine into the open source Verilog compiler VL2MV [CYB93]. We use standard
mutation operators, such as replacing arithmetic operators, Boolean relations. The list of mu-
tation operators used for Verilog can be found in the Table 4.1. For SMV models, we use the
NuSeen SMV framework [AGR15, AGR17], which includes a mutation engine for SMV mod-
els. The mutation operators used for SMV are summarized in Table 4.2 and explained in detail
in [AGR15]. We implemented the non-determinism controlling transformation presented in Sec-
tion 6.1.4 into NuSeen and applied it to conditional mutants.

Translation

The resulting conditional mutants from both modeling formalisms are translated into AIGER
circuits [BHW11]. AIGER circuits are essentially a compact representation for finite models.
The formalism is widely used by model checkers. For the translation of Verilog models, VL2MV
and the ABC model checker are used. For the translation of SMV models, NuSMV is used.

Test Suite Creation

We obtain a test suite via HyperLTL model checking 8φ1=1,$0 on conditional mutants using
the MCHYPER model checker. Tests are obtained as counter-examples, which are finite prefixes
of π-witnesses to φ1=1,$0. In case we can not find a counter-example, and use a complete
model checking method, the mutant is provably equivalent.

5.4.2 Car Alarm System (CAS) Case Study

Figure 5.3 depicts a model of a car alarm system. Variants of the model were studied in the
model-based test case generation literature [AJT14, ABJ%15b, FKS%17] as well as in Section 6.3.
For ease of presentation, we only depict the relevant inputs and omit loops for rejected inputs.
The model includes timing sensitive transitions, which are modeled via an input wait and non-
deterministic and discrete time ticks. The passed time of the respective transitions is written
below the transition, which is an extra annotation that is there for readability, but does not have
semantic meaning. Ranges of time sensitive transitions that lead to equivalent successor states
(in terms of outgoing transitions) are subsumed for ease of presentation. For example, one state
near the bottom right of the figure has 269 successor states and non-deterministic transitions for
input wait that have empty output as well as one successor state for input wait that has output
flash_off.

63



5. MUTATION TESTING WITH HYPERPROPERTIES

close < ηloc
k < η

open < ηunl
ock

< η

close < η loc
k < η

open < η unl
ock

< η

op
en

<η

unlock < η
wait

< η

t $
1, .

. .
,19

wait < armedt $ 20

unlock < armed_off

open < flash

η < sound
wait < η

t $ 1, . . . , 29

wait < sound_off
t $ 30wait < η

t $ 1, . . . , 269

wait < flash_off
t $ 270

unlock < sound_offη < flash_off

unlock < flash_off

unlock < η
Figure 5.3: The non-deterministic timed car alarm system model.

The modeled car can be opened, closed, locked, and unlocked. Initially the car is open and
unlocked. Once the car is closed and locked, after some time (20 clock ticks in the depicted
instantiation) the car enters an armed state. In that armed state, if it is opened before it is
unlocked, a visual (flash) and an acoustic (sound) alarm are triggered. After some specified time
(30 clock ticks in the depicted instantiation) the visual alarm stops. Then after some more time
(270 clock ticks in the depicted instantiation) the acoustic alarm also stops. At any time, the
alarms can be turned off by unlocking the car.

We can tune the degree of non-determinism of the model by adjusting the timers of time triggered
events. In the following, we discuss mutants for deterministic and non-deterministic cases.

64



5.4. Mutation Testing with Hyperproperties Experiments

close < η loc
k < η

open < η unl
ock

< η

wait < armed
t $ 1

(a) A deterministic model.

close < η loc
k < η

open < η unl
ock

< η

wait < η
t $ 1

(b) A deterministic mutant.

in
out

close
η

lock
η

wait
armed

(c) A killing linear test.

Mutant’s output η η η

(d) The spurious test response of the mutant.

Figure 5.4: A killing example for the deterministic case.

Deterministic Case

In case all timers of time triggered events are 1, the model is deterministic. In this case, we can
study mutations on non time-triggered transitions. For example, we can introduce a mutation
that disables some output. In the Mealy machine representation of the model, this amounts to
replacing the output with η. In a syntactic representation of the model, this amounts to replacing
the condition of a branch by false.

We depict the relevant parts of a deterministic version of the car alarm system model in Figure
5.4a and a mutant with a faulty arming mechanism Figure 5.4b. The mutant does not enter the
armed state after the car is locked and closed. The test depicted in Figure 5.4c kills this mutant,
as can be seen in the response of the mutant to the test in Figure 5.4d.

Non-deterministic Case

In case some timer of time triggered events is non-zero, the model is non-deterministic. As dis-
cussed in Section 6.1.4, in order to deal with non-deterministic models in practice, we need to
make non-determinism controllable. We depict the relevant parts the transformed non-deterministic
version of the car alarm system model in Figure 5.5a and a mutant that doubles the time trig-
ger for entering the armed state in Figure 5.5b. Note that due to transformation making non-
determinism controllable, in contrast to time manifesting in hidden non-determinism in Fig-
ure 5.3, time is explicitly controllable via inputs wait1, . . . , wait40. The test depicted in Fig-
ure 5.5c kills that mutant, as can be seen in the response of the mutant to the test in Fig-
ure 5.5d, which controls timing. However, note that the original mutant with uncontrollable
non-determinism is only potentially killable, since after inputs open and close, there is a non-
deterministic transition in the mutant that produces the prescribed output armed. That is, the test
only kills the mutant reliably when timing can be controlled. Although in practice it might be

65



5. MUTATION TESTING WITH HYPERPROPERTIES

close < η loc
k < η

open < η unl
ock

< η
wa

it 1
< η wait19 <η

wait20 < armed

. . . . . .

(a) A model with controllable non-determinism.

close < η loc
k < η

open < η unl
ock

< η

wa
it 1

< η wait39 <η
wait40 < armed

. . . . . .

(b) A mutant with controllable non-determinism.

in
out

close
η

lock
η

wait20
armed

(c) A killing linear test.

Mutant’s output η η η

(d) Spurious test response of mutant

Figure 5.5: A killing example for the non-deterministic case.

difficult to execute a test that requires to wait an exact amount of time, it should be noticeable
whether the time to enter the armed state is twice as much as the expected time.

The car alarm system model can easily be modified to illustrate the mixed determinism case. To
this end, a model with all timers being 0 can be compared to one with some timer greater than 0.

Test Suite Evaluation.

We evaluated the strength and correctness of the test suite created using the methods and toolchain
presented in this chapter via the model-based mutation testing tool MoMuT [ABJ%15a, FKS%17]
on a non-deterministic version of the car alarm system. To this end, we manually formulated the
model both in SMV and compared it to its action system formulation, which is the native model-
ing language for MoMuT. MoMuT can evaluate a test suite by computing its mutation score —
the ratio of killed to the total number of mutants — with respect to action system mutations (see
Table 4.3) on a given action system model.

This procedure evaluates our test suite in two ways. Firstly, it shows that the tests are well
formed, since MoMuT does not reject them. Secondly, it shows that the test suite is able to kill
mutants other than those it was created from, which is important, because it suggests that the
test suite is also able to detect faults in implementations.

We created a test suite consisting of 61 tests, using the toolchain presented in Section 5.4.1,
automatically mapping it to the test format accepted by MoMuT and removing redundant tests,
where a test is redundant if its string representation is a prefix of another test. For the test suite,

66



5.4. Mutation Testing with Hyperproperties Experiments

MoMuT measures a mutation score of 91% on 439 action system mutants. In comparison, the
test suite achieves a mutation score of 61% on 3057 SMV mutants for which it was created.
These results highlight that the mutation score is relative to the mutation operators used. On
this model, the SMV mutation operators produce a lot more equivalent mutants than the action
system mutation operators. Further characteristics of the resulting test suite are presented in the
following Section 5.4.1.

Finally, we created a separate test suite using MoMuT with its default settings on the action
system model. The resulting test suite consisted of 6 tests that kill 90% of the action system
mutants, which were 8 mutants less than the test suite created via hyperproperties. The test
suite created by MoMuT is more compact, because it was created directly for action system
mutants instead of the larger number of SMV mutants. This result shows that hyperproperty
model checking based test generation is well suited to kill a large array of mutants, while mature
mutation testing tools are able to create more compact test suites that kill a large proportion of
the mutants. A combined use of both techniques is one interesting future direction of this work.

5.4.3 Quantitative Experiments.

We present experiments on a series of benchmark that demonstrate the versatility and scalability
properties of generating test suites via hyperproperty model checking. The experiments were
run in parallel on a machine with an Intel(R) Xeon(R) CPU at 2.00GHz, 60 cores, and 252GB
RAM. We used 16 Verilog models which are presented in [FRS15], as well as models from
opencores.org. Furthermore, we used 76 SMV models that were also used in [AGR15]. Finally,
we used the SMV formalism of CAS. All models are available in [ben]. Verilog and SMV
experiments were run using property driven reachability based model checking with a time limit
of 1 hour. Property driven reachability based model checking did not perform well for CAS, for
which we therefore switched to bounded model checking with a depth limit of 100. All reported
values are rounded to the first significant digit.

Characteristics of Models. Table 5.1 presents characteristics of the models. For Verilog and
SMV, we present average (µ), standard deviation =σ0, minimum (Min), and maximum (Max)
measures per model over the set of models. For CAS we report the values for that single model.
We report the size of the circuits in terms of the number of Input-, Output-, State variables as
well as the number of And Gates, which corresponds to the size of the transition relation of the
model. Furthermore, in row Δ Gates (%), we report the average absolute size difference (in %
of number of Gates) of the conditional mutant and the original model, where the average is over
all mutants. Finally, Mutants shows the number of the mutants that are generated and analyzed
for the models.

We can observe that our method is able to handle models of respectable size, reaching thousands
of gates. Furthermore, Δ Gates of the conditional mutants is relatively low. Thus, conditional
mutants allow us to compactly encode the original and mutated model in one model. Hyperprop-
erties enable us to refer to and juxtapose traces from the original and mutated model, respectively.
Classical temporal logic does not enable the comparison of different traces. Therefore, muta-
tion analysis by model checking classical temporal logic necessitates to represent all combined

67



5. MUTATION TESTING WITH HYPERPROPERTIES

Parameters Verilog SMV CAS
µ σ Min Max µ σ Min Max

Models 16 76 1

Input 186 310 4 949 9 13 0 88 58
Output 177 299 7 912 4 4 1 28 7
State 16 16 2 40 - - - - -

Gates 4207 8309 98 25193 189 210 7 1015 1409
Δ Gates (%) 3 3 0.1 10 8 8 0.3 35 0.9

Mutants 260 236 43 774 535 1042 1 6304 3057

Table 5.1: The characteristics of event structure experiments benchmarks.

original- and mutated model traces explicitly, which can be achieved by building the product of
the two models, but which results in a quadratic blowup in the size of the input to the classical
model checker in comparison to the size of the input to the hyperproperty model checker.

Model Checking Results. Table 7.2 summarizes the quantitative results of our experiments.
Similarly to above, for Verilog and SMV, we present average (µ), standard deviation =σ0, min-
imum (Min), and maximum (Max) measures per model over the set of models as well as the
respective values for the single CAS model. The quantitative metrics we use for evaluating our
test generation approach are Killed (%) the percentage of killed mutants, Equivalent (%) the
percentage of equivalent mutants, Avg. test length, Max test length, the average respectively
maximal test case length for tests produced for each killed mutant, as well as Avg. Runtime (s)
the amount of model checking time per killed respectively equivalent mutant. Furthermore, we
report Timeout (%) the percentage of mutants exceeding the time limit or BMC depth bound.
For Verilog and SMV the time limit was 1 hour. For CAS the depth limit was 100 transitions.

Finally, we report Total time (h/s)- the total time for test suite creation per model, including
timeouts, in hours or seconds for very small models. The total time is the sum of the per mutant
model checking times, i.e. assumes sequential test suite creation. However, since mutants are
model checked independently, the process can easily be parallelized, which drastically reduces
the total time needed to create a test suite for a model, typically from hours to a few minutes.
The times of the Verilog benchmark suite are dominated by two instances of the secure hashing
algorithm (SHA), which are inherently hard cases for model checking.

We can see that the test suite creation times are in the realm of a few hours, which collapses to
minutes when model checking instances in parallel. However, the timing measures really say
more about the underlying model checking methods than our proposed technique of mutation
testing via hyperproperties. Furthermore, we want to stress that our method is agnostic to which
variant of model checking (e.g. property driven reachability, or bounded model checking) is used.
As discussed above, for CAS switching from one method to the other made a big difference.

The mutation score average is around 60% for all models. It is interesting to notice that the scores
of the Verilog and SMV models are similar on average, although we use a different mutation

68



5.5. Related Work

Metrics Verilog SMV CAS
µ σ Min Max µ σ Min Max

Killed (%) 57 33 5 99 65 31 0 100 62
Avg. test length 4 2 2 8 15 58 4 462 6
Max test length 22 50 3 207 187 1279 4 10006 9
Avg. Runtime (s) 83 268 0.01 1068 1 5 - 47 8

Equivalent (%) 33 32 0 95 35 31 0 100 0
Avg. Runtime (s) 45 120 - 352 1 2 - 15 -

Timeout (%) 10 27 0 86 0 0 0 0 38

Total time (h/s) 69 169 3s 620 0.4 1 0.1s 7 1

Table 5.2: The event structure based language inclusion experiments results.

scheme for the types of models. Again, the mutation score says more about the mutation scheme
than our proposed technique. Notice that we can only claim to report the mutation score, because,
besides CAS, we used a complete model checking method (property driven reachability). That
is, in case, for example, 60% of the mutants were killed and no timeouts occurred, then 40% of
the mutants are provably equivalent. One very large Verilog model of a SHA encoding caused
86% of model checking runs to time out. In contrast, incomplete methods for mutation analysis
can only ever report lower bounds of the mutation score. Furthermore, as discussed above, the
61% of CAS translate to 91% mutation score on a different set of mutants. This indicates that
the failure detection capability of the produced test suites is well, which ultimately can only be
measured by deploying the test cases on real systems.

5.5 Related Work

5.5.1 Hyperproperties

Hyperproperties were originally introduced to formally express security properties, such as non-
interference, in [CS10]. The paper works out the theoretical foundations of hyperproperties and
contrasts them to classical trace properties. Traditionally, hyperproperties were formulated and
used in a case by case fashion, see for example [McL92, vdMZ07, KIN15].

In order to generalize these approaches and to enable rigorous study of hyperproperties, log-
ics for hyperproperties were developed [CFK%14, CFHH19]. In particular, HyperLTL and
HyperCTL#, which are hyperproperty sensitive extensions of classic temporal logics, are used in
this work. The expressive power of HyperLTL was characterized to be equivalent to first order
logic over disjoint copies of the natural numbers and a restricted type of quantification [FZ17].

Furthermore, the satisfiability-[FH16, FHS17], monitoring-[BSB17, FHST19], and model check-
ing [FRS15] problems for HyperLTL were tackled. The initial lack of model checking tech-
niques for HyperLTL formulas with quantifier alternation was recently addressed in [CFST19]
via a combination of reactive synthesis and model checking of quantifier alternation free Hyper-
LTL formulas. Unfortunately, the respective version of the HyperLTL model checker MCHY-

69



5. MUTATION TESTING WITH HYPERPROPERTIES

PER is currently only available in a web-based version. In addition, [HSB20] presents a bounded
model checking algorithm for HyperLTL formulas with quantifier alternation, which can be un-
derstood as a generalization of the method presented in Section 5.3.3 and which, due to its
boundedness, unfortunately suffers from the same problem of generally not being able to iden-
tify equivalent mutants.

5.5.2 Model Checking-based Test Case Generation

A number of test case generation techniques are based on model checking; a survey is provided
in [FWA09a]. The approach has been demonstrated to scale to the industrial setting in [ECO%16].
In [FWA09b] a thorough evaluation and comparison of different model checkers applied to the
test generation problem over multiple modeling formalisms is presented.

Most model checking based test generation target, in comparison to our work, different coverage
metrics and/or abstraction levels, such as structural coverage criteria for Java programs [VPK04]
and RSML models [RH01] or information/data flow criteria for extended finite state machines
[HLSU02].

However, mutation testing via model checking has been explored as well. Perhaps the first ap-
proach is presented in [ABM98] for SMV models that contain a syntactical description of a tran-
sition system, such as the one presented in Figure 5.1a, as well as temporal logic specifications
that are true over this transition system. The specification is mutated and inconsistencies are
detected via model checking. A similar approach is followed in [BOY00], where the temporal
logic specification reflects the transition system. In contrast to this approach, our approach does
not require two separate artifacts, but instead works directly on the transition system representa-
tion of the model. In fact, in our experiments on SMV models, we never touch the specification
parts, but simply use the formalism as a way to represent non-deterministic transition systems.

[GH99] presents an approach to formulate mutation killing via trap properties. Trap properties
are conditions that, if satisfied, indicate a killed mutant. [FW08] leverages model checking based
mutation testing for creating property relevant test suites via trap properties. A similar idea is
presented in [XeAXW12], where model mutants are model checked against a set of pre-defined
trap properties. In contrast, our approach directly targets the input-output behavior of the model
and does not require formulation of model specific trap properties.

[OBY03] proposes model checking based mutation testing via explicit model duplication and
mutation of one duplicate. Furthermore, the equality of output variables is asserted and model
checked. This approach is similar to ours. However, in contrast to explicit syntax-based model
duplication, the only syntactic change to the model applied in our method is the addition of
the mutant flag as well as an encoding of the immediate effect of the respective mutant operator.
Which parts of the mutated state space differ from the model and therefore need to be constructed
is decided automatically by the model checker. Thus, our approach is more versatile and can be
applied without much extra encoding effort.

Mutation based test case generation via module checking is proposed in [BPG07]. The the-
oretical framework of this work is similar to ours, but builds on module checking instead of

70



5.5. Related Work

hyperproperties. Moreover, no implementation or experimental evaluation is provided, leaving
the practical applicability of the approach open.

In [ALN13] an approach for mutation based test case generation of timed automata is presented.
The test case generation problem is reduced to a language inclusion problem, which is solved
via bounded SMT model checking. Similarly, [ESC%16] presents an approach to mutation-based
test generation via model checking for embedded software. The authors combine the original
model, mutants, as well as mutation detection monitors into one timed automaton model. A
reachability property is then model checked over this combined model to generate killing test
cases. Likewise, [RBF11] present bounded model checking-based mutation testing for programs
given in the LLVM intermediate representation [LA04], which is an assembler-like low level
language. A killing condition that is similar to potential killing is formulated and is handed to
the solver together with bounded loop unrolling encodings of program and mutant. In contrast
to our work, in presence of non-determinism, all these encodings of mutation killing can not
differentiate between potential and definite killing.

In [FG09] model checking based test generation is used to check requirements property-focused
coverage criteria, such as mutation of properties. Similarly, [BOY00] presents an approach to
create mutated requirements and use model checking of SMV models to identify models that
fulfill the faulty requirements. Our work is orthogonal to such approaches, since we consider
test generation over mutations of the system instead of the property.

5.5.3 Symbolic Test Case Generation

The authors of [AJT14] present an approach to mutation-based test generation for action sys-
tem models via a symbolic refinement condition. The refinement condition as well as sets of
reachable states are iteratively computed by solving SMT problems. While this work offers an
interesting practical solution for action systems, our approach targets a larger class of systems
that can be encoded as symbolic transition systems. In a similar fashion, the MuAlloy [WSK18]
framework enables model-based mutation testing for Alloy models using SAT solving. In this
work, the model as well as killing conditions, are encoded into a SAT formula and solved using
the Alloy framework. Likewise, in [AGV15] configurations of feature models that distinguish
the correct model from mutants of it are automatically created via SMT solving. The resulting
encoding contains a logical representation of the model, the mutant, and a distinguishing condi-
tion. In contrast to these approaches, we encode only the killing conditions into a formula and
leave encoding of the transition system to the model checker. Therefore, our approach is more
flexible and more likely to be applicable in other domains. We demonstrate this by producing
test cases for models encoded in two different modeling languages.

Symbolic methods for weak mutation coverage are proposed in [BKC14] and [BDD%15]. The
former work describes the use of dynamic symbolic execution for weakly killing mutants. The
latter work describes a sound and incomplete method for detecting equivalent weak mutants. The
considered coverage criterion in both works is weak mutation, which, unlike the strong mutation
coverage criterion considered in this work, can be encoded as a safety trace-property. However,
both methods could be used in conjunction with our method. Dynamic symbolic execution could

71



5. MUTATION TESTING WITH HYPERPROPERTIES

be used to first weakly kill mutants and thereafter strongly kill them via hyperproperty model
checking. Equivalent weak mutants can be detected with the methods of [BDD%15] to prune the
candidate space of potentially strongly killable mutants for hyperproperty model checking.

72



CHAPTER 6
Test Case Generation via

Heuristic-guided Branching Search

Clearly, formal, logic-based approaches to solving some problem have their limitation, as we
have seen in the previous chapter. In our case, the practical limitation was the absence of solver
infrastructure. In addition, the high computational complexity of rigorously deciding strong
killability is a theoretical limitation. In order to overcome these limitations practical and scalable
methods are necessary that can handle large, real world problem instances.

In this chapter, we present such a model-based mutation-driven test generation method that is
based on an explicit state branching search algorithm. The search algorithm is inspired by the
rapidly exploring random trees [LaV98] path planning algorithm which organizes the explo-
ration of the search space in many small sub-searches that all have their individual goals. We
call this type of search "branching search". The method is parametrized not only by the depth of
the search and the individual sub-searches, but also by various heuristics that direct sub-searches.
The rich parameter space allows us to customize coverage goals to the computational and syntac-
tic demands of models as well as the available computational resources. In addition to efficiently
exploring the model’s state space, mutants are analyzed lazily and on the fly, in order to explore
their state spaces only in regions where a divergence from the model can be expected.

We start the chapter by introducing the algorithmic framework, its parameters, and how to do
mutation based test case generation within this framework. We then present a range of heuristics
that can be plugged into the algorithmic framework to adjust for different model characteristics
or simply to perform a diverse kind of search. Towards our experimental evaluation, we present
a series of models that are industry use cases and that range from small to large models. In
our experiments, we evaluate our parameter space, show that different heuristics work well on
different models, and that branching out the search is indeed beneficial.

73



6. TEST CASE GENERATION VIA HEURISTIC-GUIDED BRANCHING SEARCH

6.1 Branching Search Algorithm

In this section, we present the branching search-based test case generation algorithm. The pre-
sented method explores the state space of a model in a heuristic-guided branching search and
performs mutant killing analysis lazily on the fly. In a final step, search results are transformed
into a test suite. Throughout this section, we present the main search algorithm, discuss how
to process mutants within branching search, show how to maintain search results and finally
show how to use these search results to create test cases. To this end, let us fix an action system
conditional mutant @µ̄ $ A8 1 ?mut4, sι

µ̄, Actµ̄, Aι; for mutation setting ?µ1, . . . , µn4.

The main source of inspiration for the exploration algorithm procedure was the rapidly exploring
random trees (RRT) path planning algorithm [LaV98]. An interesting property of RRT for our
problem is that it is able to reach different areas of large state spaces quickly [KL00]. We assume
that in different areas of the state space different actions are enabled and as a consequence
different mutations can be found. RRT splits the search into small, independent sub-searches,
which we call branching search. The (almost) independence of sub-searches allows branching
search to be implemented in a parallel fashion. In our algorithm description, we refer to sub-
searches as tasks and denote them by τ . Each task starts in some previously discovered state and
explores the state space for a fixed number of steps, where one step corresponds to computing
vispath'µ̄=j, s0 for some mutant j and state s. Over the course of the search, we repeatedly
create new tasks. In which state a task starts and which transition it takes is determined by
heuristics that are presented in Section 6.2.

6.1.1 State Space Exploration

Algorithm 1 shows the pseudo code of our state space exploration algorithm. The algorithm has
the following parameters that need to be instantiated: BRANCHLENGTH is the number of steps
performed by each single task. MAXSTEPS is the total number of states explored by all tasks
combined. To explore a state s, we calculate the predicate vispath'µ̄=0, s0, i.e. compute all
outgoing transitions and successor states of state s for the original model. CREATETASK is the
heuristic to create new tasks, which essentially chooses the starting state of tasks, and possibly
creates a goal for the task. SELECTSUCCESSOR is the heuristic to select which successor state
should be explored next by the task. A task is a tuple τ $ Aτ.state, τ.goal, τ.steps, τ.propagate;,
where τ.state - visStates' is its current state, τ.goal is its goal state, τ.steps is its integer step
counter, and τ.propagate is a set of mutants that should be propagated while exploring τ .

The algorithm executes two main blocks of instructions in a loop until the maximum number
of steps has been performed. The first block (lines 6–8) starts new tasks. We want to start a
new task initially (stepCount $ 0) and whenever the number of steps between the current and
the last time a task was created exceeds the branch length for each task divided by 4. We delay
the creation of new tasks as opposed to eagerly starting as many tasks as possible, because start
states of tasks are chosen among the previously discovered states. Therefore, starting many tasks
at once would result in all of them starting in the same state, which is not the branching behavior
we typically want. We found BRANCHLENGTH divided by 4 to be a good compromise between
starting enough tasks to leverage branching search and its feature to parallelize the search and

74



6.1. Branching Search Algorithm

Algorithm 1: The state space exploration algorithm.
Global: Exploration model G

1 stepCount 0 0
2 lastTaskCount 0 0
3 activeTasks 0 9

4 reached 0 9

5 while stepCount / MAXSTEPS do
6 if stepCount 7 lastTaskCount ( BRANCHLENGTH

4 " stepCount $ 0 then
7 lastTaskCount 0 stepCount
8 activeTasks 0 activeTasks 1 CREATETASK

9 for τ - activeTasks do in parallel
10 if τ.steps / BRANCHLENGTH then
11 reached0 reached 1 ?π.s < π - vispath'µ̄=0, τ.state04;
12 EXTENDMODEL=τ.state, vispath'µ̄=0, τ.state00;
13 π* 0 SELECTSUCCESSOR=vispath'µ̄=0, τ.s00;
14 PROCESSMUTANTS=τ, π*0;
15 τ.state 0 π*.s;
16 τ.steps 22;
17 stepCount 22;
18 else
19 activeTasks 0 activeTasks 4 ?τ4
20 GENERATETESTS

delayed starting to benefit from prior exploration. Note that as we start more tasks, the global
step counter increases faster. Thus, the number of active tasks grows exponentially with the
number of global steps performed. Different start delaying mechanisms are conceivable, such
as a strategy based on Luby sequences, which are popular within SAT-based restarting strategies
[HH14]. When creating a new task, we heuristically choose a start state among all states in the
reached set as well as a goal state. Note that when a task reaches its goal state, the task does not
stop, but explores successor states close to its goal state. An alternative approach would be to
terminate the task and start a new one instead.

The second block (lines 9–19) performs the main work of the search by computing visible succes-
sor paths, extending an exploration model, choosing a successor path, and processing mutants.
The latter three concepts are explained in detail in the following. Visible successor path compu-
tation is implicitly done in the algorithm by evaluating vispath'µ̄=0, s0, which we assume to
be computed the first time it occurs. In order to compute vispath'µ̄=0, s0 the underlying do-od
loop of the model is unrolled, guards are evaluated, and assignments are applied to the state.
Across the whole test case generation method these steps are by far the computationally most
expensive part. Therefore, it is beneficial to calculate successor paths in parallel. All visible
successor states are added to the reached set of states for possible further exploration. Finally,
the task’s state and step counter as well as the global step counter are updated.

75



6. TEST CASE GENERATION VIA HEURISTIC-GUIDED BRANCHING SEARCH

6.1.2 Exploration Model

We record search results in a labeled Mealy machine that we call exploration model, from
which test cases are extracted in the final step of our test generation method. The exploration
model is a Mealy machine G $ AS,?s04, Σ, Λ, δ, lsk, lwk, Vert; together with strong- respec-
tively weak- kill annotations lsk 3 δ 2 2)1,...,n* respectively lwk 3 δ 2 2)1,...,n* and a function
Vert 3 visStates' 2 S that translates visibly reachable action system states to states of the
exploration model that we initialize with Vert=sι0 def

$ s0. The exploration model is a subset of
the Mealy machine representation of the analyzed action system (as presented in Section 3.4)
in the sense that if &' def

$ AS', S'ι , Σ', Λ', δ'; is the full Mealy machine representation of
the analyzed action system model, then at every state of the exploration, we have S ' S' and
δ ' δ' (up to isomorphism). Function EXTENDMODEL adds the visible successor paths Π of ac-
tion system state s to the exploration model starting at Vert=s0, as given by the Mealy machine
translation of action systems in Section 3.4, and updates Vert=.0 accordingly for newly visited
successor states. Furthermore, functions ANNOTATESTRONGKILL and ANNOTATEWEAKKILL

(used during mutant processing) annotate transitions corresponding to visible successor paths
with the strongly and weakly killed mutant respectively.

6.1.3 Lazy Mutant Processing

Mutants are processed lazily via the functions PROCESSMUTANTS and STRONGKILLCHECK

presented in Algorithm 2. Every task τ has a set τ.propagate of mutants and their current states.
The attached mutants traverse the same paths through the action system as its propagating task
and visible successor paths are compared to the model in each step.

Function PROCESSMUTANTS first gathers the mutants in successor paths of the model that were
not previously weakly or strongly killed in Line 3. Thereafter, the set of mutants that should be
propagated along the task is updated to all currently propagating mutants that are not strongly
killed yet. Because we check that new mutants were not killed before, it is guaranteed that the
sequence of states and paths in the model that leads to τ.state is also present in the mutant.

Thereafter, visible successor paths for attached mutants are computed implicitly by evaluating
vispath'µ̄=j, sµj0 in Line 5. Similarly to computing the successor paths of the model, this is
a computationally expensive step and it is beneficial to perform these computations in parallel.
The successor paths of the model and mutant are analyzed for a potential strong kill, using
function STRONGKILLCHECK that checks whether some visible successor path of the mutant is
not present in the model. Mutants that are strongly killed are added to the global set of strongly
killed mutants and are removed from the task’s propagating set of mutants.

In case no strong kill was found, Line 10 checks whether the mutant is weakly killed by the
current successor states. If the mutant is weakly killed, we add it to the set of weakly killed
mutants and propagate it further along the paths chosen by the task, since the weak kill can
induce a strong kill in further steps. To this end, we store the successor state of the mutant s*µj

corresponding to the chosen successor path labels π*.l. This state can but does not need to be
different from the task’s next state. However, since mutants follow paths explored by tasks, it is
not guaranteed that the state is different.

76



6.1. Branching Search Algorithm

Algorithm 2: The Lazy Mutant processing functions.
Global: Exploration model G
Global: Weakly killed mutants wk
Global: Strongly killed mutants sk

1 Function PROCESSMUTANTS (Task τ , Successor path π*)
2 newMutants0 ="π.vispath*µ̄"0,τ.state%"ℓ.π.l m=ℓ00 4 =wk 1 sk0;
3 τ.propagate 0 =τ.propagate 1 ?=µj , τ.state0 < µj - newMutants40 4 sk;
4 for =µj , sµj0 - τ.propagate do in parallel
5 πsk 0 STRONGKILLCHECK=vispath'µ̄=0, τ.state0, vispath'µ̄=j, sµj00;
6 if πsk & A; then
7 e0 ANNOTATESTRONGKILL=τ.s, πsk.l, j0;
8 sk 0 sk 1 ?=µj , e04;
9 τ.propagate 0 τ.propagate 4 ?=µj , sµj04;

10 else if π*.s . succ'µ̄=j, sµj0 then
11 ANNOTATEWEAKKILL=τ.state, π*.l, j0;
12 wk 0 wk 1 ?µj4;
13 s*µj

0 πµj .s where πµj - vispath'µ̄=j, sµj0 such that πµj .l $ π*.l;
14 else
15 τ.propagate 0 τ.propagate 4 ?=µj , sµj04;
16 Function STRONGKILLCHECK(Model paths Π, Mutant paths Πµ)
17 if Πµ ! Π then
18 return πµ - Πµ 4Π;
19 return A;;

Finally, mutants that are neither weakly nor strongly killed in the current step are dropped from
the task’s propagating mutants in Line 15.

Mutant processing is structured such that the mutant’s state space is not explored in common
regions of model and mutant before its weak kill as well as after its strong kill. Therefore,
mutation processing is lazy in the sense that the state space of mutants is only partially explored
in regions where they potentially diverge from the model.

We analyze potential killing as opposed to definite killing in this test case generation algorithm,
since definite killing requires to explore and compare multiple traces through the model and
mutant. Such a trace comparison is orthogonal to the main focus of our search algorithm which
is to explore large parts of the state space of large model. Definite killing is indeed better
achieved via symbolic methods, such as those presented in Chapter 5.

Example 6.1.1. Consider again our running example and its mutants present in Example 3.4.1
and Example 4.1.3 respectively. Our exploration starts with a task τ $ A72/, τ.goal, 0,9;, where
we leave τ.goal abstract for this example. We have vispath'µ̄=0, 72/0 $ ?=Actr request <
obs coffee;, 71/0, =Actr request < obs tea;, 71/0, =Actr refill < obs η;, 72/0. The first path does
not have any mutants attached, whereas for the second path, we have µ1 - m=tea0. Thus,
mutant µ1 is weakly and strongly kill checked. However, since it is an equivalent mutant

77



6. TEST CASE GENERATION VIA HEURISTIC-GUIDED BRANCHING SEARCH

sι s!1, s!0,

ctr request < obs coffee
wk $ ?µ24

ctr request < obs tea

ctr request < obs coffee

ctr request < obs tea

ctr refill < obs full
wk $ ?µ24

ctr refill < η
ctr refill < η
sk $ ?µ24 ctr refill < η

Figure 6.1: The exploration model of running example and mutants.

both checks fail and the mutant is not propagated further. After the next state 71/, the same
mutant is found and analyzed. For the following state 70/, we have vispath'µ̄=0, 70/0 $?=Actr refill < obs full;, 72/0, =request < obs η, 70/04 and µ2 - m=refill0. For this mutant, we
have vispath'µ̄=2, 70/0 $ ?=Actr refill < obs full;, 71/0. The path labels are the same as in the
model, but the state is different. Therefore, we annotate the exploration model with a weak
kill for mutant µ2 and propagate it further. In the following exploration step, we reach state71/ in the model and state 70/ in mutant µ2, while the labels are still the same. Therefore, we
again annotate the exploration model with a weak kill. Finally, in the step thereafter, we haveActr refill, obs fill; - vispath'µ̄=2, 70/0 and Actr refill, obs fill; . vispath'µ̄=0, 71/0. Therefore,
we found a strong kill and annotate the transition corresponding to input ctr refill with a strong
kill for µ2. The resulting exploration model is depicted in Figure 6.1.

6.1.4 Test Case Generation

We now show how extract locally adaptive strongly and potentially killing test cases from an
exploration model G $ AS, Sι, Σ, Λ, δ, lsk, lwk;. Linear tests can be constructed the same way
by leaving out allowed outputs. Partially adaptive tests potentially require full knowledge of the
model, i.e. transitions outside of the exploration model, which is outside of the scope of our test
case generation algorithm.

In the exploration phase, the set sk is constructed, which contains tuples of mutants and transi-
tions that indicate where strong kills end in the exploration model. In the test case generation
phase, depicted in Algorithm 3 and triggered by calling CREATETESTS=sk0, sequences of input,
output and sets of allowed outputs tuples are constructed and attached together to form a test. A
test case that kills some mutant µ corresponds to a path in the exploration model that starts in the
initial vertex, followed by a (potentially empty) sequence of transitions without a killing annota-
tion for µ, constructed via function PREFIX, a (potentially empty) sequence of transitions with
µ- weak killing annotations, constructed via function WEAKKILLSEQUENCE, and ending in a
transition with a µ- strong killing annotation, constructed via function STRONGKILLSEQUENCE.

78



6.1. Branching Search Algorithm

Algorithm 3: The test case generation algorithm.
Global: Exploration model G

1 Function CREATETESTS (Strongly killed mutants sk)
2 tests 0 9;
3 for =µ, e0 - sk do
4 =A=i, o, O0ns , . . . , =i, o, O0n;, es00 STRONGKILLSEQUENCE=e, µ0;
5 =A=i, o, O0nw , . . . , =i, o, O0ns;, ew00 WEAKKILLSEQUENCE=es, µ0;
6 A=i, o, O00, . . . , =i, o, O0nw;0 PREFIX=ew0;
7 tests 0 tests 1 ?A=i, o, O00, . . . , =i, o, O0nw , . . . , =i, o, O0ns , . . . , =i, o, O0n;4;
8 REMOVEREDUNDANTTESTS=tests0;
9 return tests;

10 Function STRONGKILLSEQUENCE (Transition e $ =v, i, o, v*0, Mutant µ)
11 O 0 ?opost < 'v*post 3 =v, i, opost, v*post0 - δ4;
12 if ' epre $ =vpre, ipre, opre, v0 with =µ - lsk=epre00 then
13 =seq, estart00 STRONGKILLSEQUENCE=epre, µ0;
14 return ==seq 6 =i, o, O00, estart0;
15 else
16 return =A=i, o, O0;, e0;
17 Function WEAKKILLSEQUENCE (Transition e $ =v, i, o, v*0, Mutant µ)
18 O 0 ?opost < 'v*post 3 =v, i, opost, v*post0 - δ4;
19 if 'epre $ =vpre, ipre, opre, v0 with =µ - lwk=epre00 then
20 =seq, estart00 WEAKKILLSEQUENCE=epre, µ0;
21 return ==seq 6 =i, o, O00, estart0;
22 else
23 return =A=i, o, O0;, e0;
24 Function PREFIX (Transition e $ =v, i, o, v*0)
25 O 0 ?opost < 'v*post 3 =v, i, opost, v*post0 - δ4;
26 if v $ vι then
27 return A=i, o, O0;;
28 else
29 e $ arg min"vpre,ipre,opre,v%.δ=depth=vpre00;
30 return PREFIX=e0 6 =i, o, O0;

The respective functions transform transitions of the exploration model into tuples of inputs, out-
puts, and allowed outputs. Function CREATETESTS constructs and assembles these sequences
in reverse order. Functions STRONGKILLSEQUENCE and WEAKKILLSEQUENCE return, in
addition to the respective sequence, its first transition in the exploration model, which is the be-
ginning of the construction of the next part of the sequence. For prefix construction, we assume
the existence of a function depth 3 S 2 N that gives the depth of vertices, i.e. the length of the
shortest paths to vι. Finally, the function REMOVEREDUNDANTTESTS removes tests that are
the prefix of another test.

79



6. TEST CASE GENERATION VIA HEURISTIC-GUIDED BRANCHING SEARCH

6.2 Branching Search Heuristics

In this section, we present heuristics we developed for the branching search-based test case
generation algorithm presented in the previous section. As noted above, the algorithm is inspired
by the rapidly exploring random trees (RRT) path planning algorithm, which heavily relies on
distance metrics.

Therefore, we start our presentation of heuristics with a discussion of distance metrics for action
systems. We then present heuristics for two parameters of our search procedure: CREATETASK

and SELECTSUCCESSOR. While some of the presented heuristics are distance-based and thus
resemble the classic RRT framework, we also developed non-distance based heuristics that work
well on some models. Finally, in this section we show how the heuristics can be adjusted in order
to perform an exhaustive and distributed breath first search over the model.

6.2.1 Distance Metric

Many of our heuristics use a distance metric between states, abstractly denoted by d=s1, s20, to
guide the search. The notion of distance is also a key concept of rapidly exploring random trees.
RRTs are usually applied to path planning in the plane, where the notion of distance is naturally
given by the Euclidean distance.

Since action systems have many non-linear data types, such as objects or enumerate values,
Euclidean distance is not an appropriate choice. Instead, we opted to use the Hamming Distance,
a distance metric that defines distance 0 for equal values and distance 1 for unequal values.
We calculate the distance between two lists as the average number of elements differing. We
calculate the distance between two states as the average Hamming Distance between all its
variables. Note that two states always have the same variables as their number is fixed by the
action system. The intuition is that most actions manipulate only a small subset of the variables
and executing the action that sets most of the variables to the desired value is beneficial to
reaching our goal.

6.2.2 CREATETASK Heuristics

CREATETASK heuristics create fresh tasks by picking a start state from the previously reached
states reached , and a goal state from the set of all possible states. The fresh task is the tupleAstart, goal, 0,9;.
Table 6.1 provides an overview of the CREATETASK heuristics described in more detail below.
We assume a function rand=.0 that returns a uniformly random element of its input set. ? denotes
the set of all possible states. That is, if we have a system with two integers with values between
0 and 10, ? is the set 70, 10/ / 70, 10/. It is not guaranteed that all of these states are reachable.
To generate random values for list variables, we first create a random list length and then create
random values recursively.

Init The Init heuristic always chooses the initial state as the start state. Therefore, it is more
likely to make different choices on early branches in the action system. Its downside is that is

80



6.2. Branching Search Heuristics

Name Description

Init goal " rand%.'
start " sι

RandCT goal " rand%.'
start " rand%reached'

RGoal goal " rand%.'
start " arg mins+reached%d%s, goal''

CGoal goal " combine%reached'
start " arg mins+reached%d%s, goal''

PGoal start " rand%(,0'
((,0) goal " perturb start

RoRoCT Round robin of other heuristics

Table 6.1: The CREATETASK heuristics.

Name Description

RandSS s) / rand%states'

Dist Λ / )%t, λ' & t 4 states,
λ / d%t, τ.goal'+

s) / select%Λ'

Part Λ / )%t, λ' & t 4 states, λ / α%t'+
s) / select%Λ'

LocalBFS if max depth not reached
add all unexplored new states to queue
s) / queue.pop

RoRoSS Round robin of other heuristics

Table 6.2: The SELECTSUCCESSOR=states0
heuristics.

might not penetrate the model as deeply as other heuristics and might repeat work previously
performed when there are no unexplored options close to the initial state. The goal state is
chosen randomly among all possible states.

RandCT The RandCT heuristic simply chooses one random state in reached . The goal state
is chosen randomly among all possible states.

RGoal The RGoal heuristic resembles classic RRT search. A goal state is chosen randomly
among all possible states. The start state is then chosen as the closest state in reached according
to distance d.

CGoal The CGoal heuristic works similar to RGoal. However, a goal state is not chosen at
random, but is created as a random combination of previously reached states, abbreviated via
the function combine=.0. For every variable in the model, a value is picked from a randomly
selected state of reached . The idea of this heuristic is to create goal states that are more likely to
be reachable than purely random states.

PGoal The PGoal heuristic exists in two flavors called PGoal(:) and PGoal(A). Both
have in common that they turn around the selection process used by RRT by first picking a start
state and afterwards producing the goal from that state. The state to start from is randomly
chosen from the set of unique states : or rare value statesA. These sets are defined as follows:
: $ ?s - reached < s was inserted into reached at most once4, A $ ?s - reached < 'v - 8 such
that <?t - reached < variable v has the same value in s and t4< / <reached <*104. After picking
a start state, a goal state is created by perturbing a fraction of the variable values of the chosen
start state. By perturbing, we mean modifying a value, either by selecting a different value at
random, or choosing integer values close to original integer values. The idea of these heuristics
is to explore regions of the state space that have yet been sparsely explored.

81



6. TEST CASE GENERATION VIA HEURISTIC-GUIDED BRANCHING SEARCH

RoRoCT The RoRoCT heuristic is a meta-heuristic that creates tasks according to multiple
CREATETASK heuristics in a round robin fashion. For the experiments presented in this paper,
RoRoCT chooses among all other heuristics. The idea of round robin is to combine the strengths
of multiple heuristics. If one task gets stuck due to a bad heuristic decision, the next one is not
likely to get stuck in the same way.

6.2.3 SELECTSUCCESSOR Heuristics

SELECTSUCCESSOR heuristics choose one successor state out of a given set successor states of
states to explore next. Table 6.2 shows the different heuristics and gives a short overview.

We assume the existence of a helper selection function select=.0 which picks one element out of
a set of successor states according to provided state evaluations. As instantiations of this func-
tion, we experimented with greedy, simply taking the best evaluation; weighted, picking
probabilistically according to the distribution given by the evaluations; and bucket, which first
groups paths into buckets of equal evaluation, then picks a bucket probabilistically according to
the distribution given by the evaluations, and finally picks a state randomly within the bucket.

RandSS The Rand heuristic randomly picks a state in states.

Dist The Dist heuristic assigns to each successor state in states its distance to the task’s goal
state and picks a successor state via one of the above select=.0 functions. This heuristic emulates
classic RRT search.

Part The Part heuristic assigns to each successor state s in states the new object states
evaluation α=s0 and picks a successor path via one of the above select=.0 functions. The function
α=.0 returns the number of object values of a state, but not in the global set of previously reached
states reached . An object value is the projection of the state to the values of one particular
object instance. When checking whether we have encountered an object value before, we check
whether that particular object value has been encountered in any instance of the object’s class
before.

The idea of this heuristic is to have a fine grained characterization of new information in states.
For large models, the search algorithm constantly finds new states, since the number of combina-
tions of variable valuations is high. Objects of the same type typically have a symmetric role, in
the sense that it does not matter which particular instance is part of a state that might trigger new
behavior. The Part heuristic exactly tries to capture and quantify the novelty of information a
state supplies.

LocalBFS The LocalBFS heuristic works a bit different than the other heuristics. The idea
of this heuristic is to combine heuristic-driven exploration with complete local search via depth
bounded breadth-first search. Heuristic-driven exploration is supposed to quickly expand the
search space into diverse areas, while bounded breadth-first search is supposed to uncover rare,
bottleneck transitions that open up new regions of the state space. Since many of our target

82



6.3. Models

models are too large for full breadth-first search, we limit the depth bound of local BFS searches
to a fixed bound. Furthermore, in order to balance between heuristic-driven exploration and
complete local search, we perform local BFS searches with a given frequency, e.g. every fourth
task performs bounded BFS, while the others perform distance-based exploration.

RoRoSS The RoRoSS heuristic is a meta-heuristic that selects successors according to mul-
tiple SELECTSUCCESSOR heuristics in a round robin fashion. The heuristic is fixed for one
task for its whole lifetime. Similarly to RoRoCT for task creation, we want to benefit from the
advantages of all other heuristics and avoid to get stuck during the search.

6.2.4 Full Breadth-first Search

Using our search framework, we can also instantiate the heuristics to perform full breadth-first
search, exploring all reachable states in the process. This strategy is only viable for small models.
However, on models that are small enough to be explored fully, it produces interesting insights.
For example, we are able to determine the state space and the number of reachable mutants.
These measurements serve as a baseline for comparison of heuristics.

In order to perform full breadth-first search in our framework, in addition to the data kept in
Algorithm 1, we maintain a queue of states. Tasks add successor states to this queue. The
condition to create new tasks is replaced by a check whether there are still unexplored states
in the queue. The CREATETASK heuristic simply picks the first unexplored state of the queue.
Finally, branch length is set to 1, therefore the SELECTSUCCESSOR does not have an effect. The
difference to LocalBFS is that full breadth-first search operates not on the task heuristic level,
but on a global search level. That is, multiple tasks correspond to one full breadth-first search,
whereas only one single task corresponds to one LocalBFS search. Furthermore, with full BFS
we do not mix the exploration with other heuristics. Instantiating our algorithmic framework this
way allows us to use the parallelization framework for breadth-first search.

6.3 Models

In this section, we present a series of models that we use for our experimental evaluation in the
following section. The models were collected from several industrial use cases. We start by
presenting characteristics of the models and describe their use-cases thereafter.

Table 6.3 provides a comparison of some of the key properties of the models. The use cases
for AlarmSystem, PartCountUML and Loader are described in [ABJ%15a, AAJ%14, ABJ%15b].
The models were automatically translated to action systems by MoMuT from three different
modeling languages: UML, Event-B and a textual domain specific language (DSL). This source
modeling language is given in the Source column. In this work we consider only the resulting
action systems. Therefore all properties of the models described here relate to the action system
representation. The Obj column shows the number of objects in the action system. Each object
has its own independent do-od loop and can act concurrently to all other objects. Although not
every object is always allowed to make a transition in every iteration, this property gives an

83



6. TEST CASE GENERATION VIA HEURISTIC-GUIDED BRANCHING SEARCH

Model Source Obj Ins ℓ- Act Vars States S Size LoC

ChassisDyno DSL 1 9 5 6 14 0.02 124
PartCountDSL DSL 1 19 7 11 222 0.03 391
DemoTopology Event-B 1 120 9 25 TO 4.9 451
AlarmSystem UML 3 4 53 42 76 0.3 967
Debounce UML 3 30 34 29 560 0.1 655
PartCountUML UML 3 18 103 55 12138 0.5 1834
Defibrillator UML 4 17 140 67 TO 0.4 2949
Loader UML 4 1692 105 98 MO 0.8 2009
MMS UML 125 86 1023 1490 MO 8.2 8281
LBT UML 2373 826 1763 27959 MO 182.4 33289

Table 6.3: The properties of the test models.

indication of the amount of concurrent actors in the respective model. The Ins column lists the
number of inputs the action system can accept. For controllable actions with parameters, the
Cartesian product of the parameter ranges has been used, over-estimating in some cases. The ℓ-
Act column shows the number of labeled actions in the action system. The Vars column shows
the total number of variables of the action system. The States column shows the result of full
BFS in terms of number of states found, if successful, timeout (TO) after 24 hours, or memory
out (MO) when having 378 GB RAM available. The S Size column shows the size of a single
state given in kilobytes, i.e. the maximally required memory to represent one state of the action
system, assuming all lists are of maximal length (except for LBT where we chose to report the
minimal length lists as the maximum would have been too much of an overestimation). Finally,
the LoC column shows the number of lines of code of the action system model.

We provide a brief introduction of the models and references with more information about them
when available.

AlarmSystem AlarmSystem is a simple model of a car alarm system. Previous results with
earlier generations of MoMuT and the model have been described in, [ABJ%15a, ABJ%15b],
where coverage numbers are not directly comparable to this work, because the set of mutations
has been extended since then.

Debounce – Signal Debouncing Algorithm Debounce models a debouncing algorithm used
in the domain of safety critical industrial control. It is counting time ticks depending on changes
of an input value in order to decide if the changes shall be considered transient, either caused by
bounces of a switch contact or by electro magnetic interference.

PartCountUML – Particle Counter (UML) PartCountUML is a model of a remote control
protocol of an exhaust measurement device. In terms of complexities posed, the model is slightly
more complex than AlarmSystem. Our initial findings of test case generation for PartCountUML

84



6.3. Models

in an industrial context have been published previously [AAJ%14]. Here, we use the same model
with our new test case generation engine.

PartCountDSL – Particle Counter (DSL) PartCountDSL is derived from a domain specific
language (DSL) model reproducing the functionality of PartCountUML. The model translated
from the DSL is leaner than the one coming from UML, the resulting action system models are
differently structured. Due to this, despite expressing the same functionality, it contributes to the
diversity of the models used in the experiments.

ChassisDyno – Chassis Dyno Controller (DSL) ChassisDyno is a very simple second mea-
surement device, written in the same DSL as the model above.

Defibrillator – Automated External Defibrillator Defibrillator models the diagnostic logic
of an automated external defibrillator device.

Loader – Loader Bucket Implement Loader models the control loop (including user feed-
back and error handling) of a bucket loader implement controller. The controller receives joy-
stick deflection values as inputs and computes output values that will drive valves controlling
the movements of the bucket. Although Loader is a rather small model, it is highly complex, as
can be seen in Table 6.3: due to heavily parametrized actions, it requires the highest number of
traces for one iteration of the do-od block. Initial findings with previous versions of MoMuT
and the use case can be found in [ABJ%15b], which reports findings on a partial model of the
system.

MMS, LBT – Railway Interlocking Systems MMS and LBT are instantiations of a railway
interlocking system. The original UML models consist of two parts each: one shared general
model that defines all classes and data structures, and one that instantiates the objects needed
for the station. While MMS represents a minimal station that allows trains to pass one another,
LBT is a model of a mid sized, real-life railway station. Its layout comprises 37 track sections,
56 track relays, 34 switches, 22 main signals, and 145 train routes the operator can select from.
MMS, in contrast, only comprises 10 track sections, 4 track relays, 2 switches, 6 main signals,
and 10 train routes. Both models are highly non-deterministic due to 2373 (LBT), and 125
(MMS) concurrently running objects. The objects are used to model both physical and logical
entities, such as train routes. Both models make extensive use of lists and forall/exists quantifiers.
For example, LBT includes more than 9000 lists in the state, has more than 50 exists quantifiers,
and over 100 forall quantifiers that have a maximum nesting depth of five.

DemoTopology – Interlocking Logic DemoTopology models generic rules for safe operation
of a railway interlocking system. As such, its functionality is a subset of MMS and LBT . The
used station layout is slightly more complex than that of MMS . In contrast to the UML based
interlocking system models, this model uses only a single instance and no concurrent objects.
The original model is expressed in Event-B [Abr10a]. Event-B models make heavy use of sets
and maps, which are not supported natively in action systems and have to be emulated using

85



6. TEST CASE GENERATION VIA HEURISTIC-GUIDED BRANCHING SEARCH

lists. This emulation identifies two lists whose elements are permutations of the other as being
unequal, i.e. adding two elements in different order would yield the same state in the Event-
B semantics, but in our semantics the resulting states are different. That causes our full BFS
exploration to time out. DemoTopology is a variant of the model described in [RFT16].

The UML models have been built by researchers in close cooperation with industry partners for
their real use cases. The DSL and Event-B models have been built by industry partners. As can
also be seen in Table 6.3, the models vary substantially in their characteristics, not only in size
itself. The selected models provide different challenges for our test case generator. In terms of
complexity, LBT is the biggest example because of its high number of concurrent objects, with
MMS following at some distance. Debounce is the simplest, but still uses an integer to model
discrete time. The latter is used in all models except the railway interlocking ones. Loader’s
challenging complexity stems from both its use of many concurrent timers and the large allowed
value ranges for its input parameters, increasing the state space.

6.4 Branching Search Experiments

In this section, we present an experimental evaluation of the branching search-based test case
generation algorithm presented in Section 6.1, its heuristics, and its parameters presented in
Section 6.2 on the models presented in Section 6.3. We start by discussing some relevant im-
plementation aspects and present our experimental setup. Finally, we present and discuss the
obtained results, evaluating various aspects of our algorithm.

6.4.1 Implementation

The algorithms and heuristics presented in this work are implemented in the MoMuT tool
[ABJ%15a]. In order to cope with the larger models, the tool is tailored towards scalability.
To this end, the tool is written in C++ and the original and mutated action systems are just-in-
time-compiled [LA04, Ayc03] to machine code, which allows us to execute transitions fast and
leverage compiler optimizations.

We implemented the search procedure in an asynchronous parallelized way. There is a central
scheduler, which accumulates and distributes data and performs the CREATETASK as well as
SELECTSUCCESSOR computations. Additionally, there is a set of workers that perform the labor
intensive vispath'µ̄=., .0 computations as well as kill-checking. Workers store gathered data in
buffers, which are repeatedly harvested by the central scheduler. Workers request new tasks from
the scheduler actively. Therefore, our parallel computation scheme has two synchronization
points between scheduler and workers: the harvesting of buffers and obtaining new tasks. In
between these synchronization points, all threads run asynchronously.

The implementation currently does not support propagation of weakly killed mutants. That
is, we implemented a variant of PROCESSMUTANTS in Algorithm 2 that also removes weakly
killed mutants from τ.propagate in the same way that strongly killed- and non killed- mutants
are removed from this set. Interestingly, as can be seen below, a considerable amount of mutants
can be strongly killed without propagation.

86



6.4. Branching Search Experiments

6.4.2 Experimental Setup

We used three different machines for our experiments. Machine 1 has an Intel(R) Xeon(R) CPU
at 3.47GHz, 24 cores, and 189GB RAM. Machine 2 has an Intel(R) Xeon(R) CPU at 2.80GHz,
40 cores, and 378GB RAM. Machine 3 has an Intel(R) Xeon(R) CPU at 2.00GHz, 60 cores, and
252GB RAM.

We have four parameters in Algorithm 1 that can be instantiated: CREATETASK, SELECTSUC-
CESSOR, MAXSTEPS, and BRANCHLENGTH. There is a hidden fifth parameter: the random
seed. Since a lot of our CREATETASK and SELECTSUCCESSOR heuristics involve randomness
a pseudo-random number generator is used to ensure reproducibility of the results. Furthermore,
we can control the maximum amount of cores used for parallel processing. We use all available
cores if not otherwise specified.

6.4.3 Results Summary

We start the presentation of our results by showing measurements averaged over all runs per
model, shown in Table 6.4. This should provide an overview of the results achievable with our
techniques and display model characteristics. In total, we performed 6483 runs across all models
in 564 hours of wallclock time. A run means that we started test case generation on a model with
a specific set of parameters.

We report the number mutations introduced per model (Mutants). Further we present the num-
ber of mutants reached (Reach), the number of mutants strongly (SKill) killed, the number of
mutants weakly, but not strongly killed (WKill), the number of tests (# Tests), and average test
length (TestL), as well as the wallclock runtimes (Time) in seconds, averaged over the all runs
performed per model. Finally, the last column (Runs) shows the overall number of runs we
performed for the model.

Model Mutants Reach SKill WKill # Tests TestL Time Runs
ChassisDyno 184 178.9 117.8 49.1 9.6 1.2 0.6 722
PartCountDSL 589 451.4 320.4 118.0 47.7 2.9 1.9 1089
DemoTopology 171 154.4 67.7 40.9 7.4 4.5 1303.3 158
AlarmSystem 818 646.6 210.0 215.8 16.8 3.8 5.1 1122
Debounce 1015 922.5 122.9 185.6 18.8 4.8 30.5 1262
PartCountUML 2257 2144.0 711.6 437.3 74.9 225.8 201.9 1262
Defibrillator 3186 1907.9 613.7 959.8 35.0 899.2 258.2 440
Loader 3291 1995.5 1143.0 300.3 34.7 64.2 4801.8 154
MMS 6391 2686.2 885.5 994.8 39.1 88.7 1032.1 258
LBT 1884 214.1 48.5 65.6 10.9 41.9 25189.2 16

Table 6.4: A summary of experimental results.

87



6. TEST CASE GENERATION VIA HEURISTIC-GUIDED BRANCHING SEARCH

6.4.4 Breadth-First Search

We started full breadth-first search on all models. Small models work fine and provide useful
bounds on the number of mutants that can be reached, as well as how many steps are maximally
necessary to do so. For larger models, full breadth-first search did not terminate. Either we
reached more and more new states and aborted search after 24 hours (TO) or we ran out of
memory (MO). These experiments were performed on Machine 2.

We present the relevant measurements for breadth-first searches in Table 6.5. We report times
for runs that finished and TO or MO for unfinished runs. The measurements of unfinished runs
represent the results before termination. The column States shows the number of states reached
and the column Depth shows the maximal shortest path from the initial state to some state in
terms of number of exploration steps. Columns Reach and Time report the number of mutants
reached and runtime in seconds, as in the previous Table 6.4. For unfinished runs we report the
results of the maximal depth fully explored and denote the results with ( symbols.

Model States Depth Reach Time
ChassisDyno 14 3 184 0.6
PartCountDSL 222 10 588 1.7
DemoTopology ( 13 129 ( 3 ( 160 TO
AlarmSystem 76 12 810 78
Debounce 560 9 978 215
PartCountUML 12 138 12 2230 1 719
Defibrillator ( 18 580 118 ( 299 ( 1 428 TO
Loader ( 1702 ( 2 ( 676 MO
MMS ( 266 112 ( 4 ( 1 275 MO
LBT ( 118 413 ( 2 ( 365 MO

Table 6.5: The results of the full breadth-first search experiments.

We use the results of full breadth-first search to classify our models into small, large, and LBT.
Small models are those where BFS finished, i.e. models ChassisDyno, PartCountDSL, Alarm-
System, Debounce, and PartCountUML. Large models are all the others, except LBT. For such
models, runs with realistic values for MAXSTEPS terminate within a few hours. LBT is special
in its computational demands. We needed to set MAXSTEPS value to 500 and limit the mutants
to 500 in order to get runs that terminate within reasonable time. We did not extensively evaluate
heuristics on LBT, but demonstrate that our algorithm is able to process this huge model within
reasonable time (7 hours per run on Machine 3). Note that we used partial order reduction,
which is described in Chapter 7, to cope with the high concurrency of LBT.

6.4.5 Heuristic Evaluation on Small Models

For small models, we tested the whole cross product of all choices for CREATETASK and SE-
LECTSUCCESSOR, 4 different random seeds, three values for MAXSTEPS, as well as nine values
for BRANCHLENGTH. We chose the bucket select=.0 function for all experiments, since it

88



6.4. Branching Search Experiments

outperformed the other two options in preliminary experiments. For the MAXSTEPS parame-
ter we chose the number of states <S<, <S<*2, and <S<*10, where <S< was determined with full
BFS. For the BRANCHLENGTH parameter for each MAXSTEPS value, we tested MAXSTEPS,
MAXSTEPS*5, and MAXSTEPS*20, resulting in a total of nine parameter combinations. These
experiments were performed on Machine 2.

Model MAXSTEPS $ <S< MAXSTEPS $ <S<*2 MAXSTEPS $ <S<*10
ChassisDyno 99.4% 97% -
PartCountDSL 86.6% 81.6% 61.9%
AlarmSystem 93.0% 86.5% 47.1%
Debounce 100.0% 100% 82.4%
PartCountUML 98.9% 97.3% 92.3%

Table 6.6: The mutants reached on small models in relation to MAXSTEPS and relative to full
breadth first search.

In Table 6.6 we show the mean results in terms of number of mutants reached achieved by the
heuristics with the different parameter values for MAXSTEPS in relation to the results of full
BFS. We can see that the heuristics often manage to come close to the BFS results, even for
smaller MAXSTEPS values. The last column for ChassisDyno is empty, because the model is
too small for sensible experiments with MAXSTEPS $ <S<*10. Similarly, the last column in
AlarmSystem corresponds to runs with just 7 steps, explaining the relatively poor performance.
If we take the maximum, instead of average results, all table entries but three are 100% for
MAXSTEPS $ <S<*10, where AlarmSystem, PartCountDSL, and PartCountUML have values
79.4%, 74.7%, and 99.8% respectively. This shows that the heuristics can achieve good results
with low effort.

CREATETASK SELECTSUCCESSOR

Mean # Best # Bad Mean # Best # Bad
CGoal 96.9 % 1 0 Dist 93.1 % 1 1
RGoal 94.9 % 2 1 RoRoSS 92.7 % 2 1
P(Rare) 94.4 % 2 1 RandSS 92.6 % 2 1
RandCT 94.3 % 1 0 Part 92.5 % 3 2
P(Uniq) 94.2 % 2 1 LocalBFS 92.4 % 2 3
RoRoCT 90.6 % 1 3
Init 86.3 % 2 3

Table 6.7: The performance of heuristics on small models with MAXSTEPS $ <S<*2.

In Table 6.7 we report the performance of individual heuristics for MAXSTEPS $ <S<*2. We
chose MAXSTEPS $ <S<*2, because we want to evaluate how well heuristics perform on a limited
budget. The relative results for MAXSTEPS $ <S<*10 are similar, but the variability increases.
Column Mean shows the average percentage of mutants reached in comparison to the number of
mutants reached by BFS. The other two columns are the result of a statistical analysis, iteratively
filtering the data set. We evaluate performance using a one-sided Mann-Whitney U test [MW47]

89



6. TEST CASE GENERATION VIA HEURISTIC-GUIDED BRANCHING SEARCH

with a p-value p $ 0.05. The test compares two sets of data and estimates how likely it is that
the two sets are equally distributed, in our case with respect to the number of mutants reached.
Starting from the full set of runs, we iteratively filter out runs corresponding to significantly
under-performing heuristics. In every iteration and for every heuristic that remains in the data
set, we split it into runs using that heuristic and all other runs. We record which heuristic was
least likely to be as good as its complement-set and proceed with the respective complement-set.
Columns # Best show for how many models the respective heuristic was among the remaining
heuristics when filtering out until all heuristics are equally likely to perform as well as the others.
Columns # Bad show for how many models the respective heuristic was thrown out during
filtering by the statistical test.

We can see that the impact of CREATETASK heuristics is larger than the impact of SELECTSUC-
CESSOR heuristics, as the mean results of the best and worst heuristics are further apart. CGoal
seems to be the best choice in the CREATETASK category. RGoal, P(Uniq), P(Rare), and
RandCT perform roughly equally well. On the other hand Init and RoRoCT are significantly
worse than the other heuristics on the small models. All heuristics are among the best ones
in at least one model, showing that all heuristics can be useful on different models. The fact
that CGoal performs better than RGoal shows that careful goal selection is important for good
search results.

For the SELECTSUCCESSOR category, all the heuristics perform more or less equally well over-
all. However, Part and LocalBFS are significantly worse than other heuristics on more mod-
els. The fact that Dist cannot beat random based strategies more decisively, as would be pre-
dicted by the results of RRT in the path planning domain, indicates that a more accurate distance
metric is necessary to better reflect mutation reaching capability.

6.4.6 Heuristic Evaluation on Large Models

As mentioned above, testing all combinations of heuristics is infeasible for large models. There-
fore, we made a selection of heuristic combinations, based on the data of the small models.
To this end, we ranked each combination of CREATETASK and SELECTSUCCESSOR with their
mean result and selected combinations that were performing particularly badly (Init / Part,
Init / RandSS, and RGoal / LocalBFS), averagely (RandCT / RandSS, RandCT /

Part, and RoRoCT / Dist), and well (RGoal / Dist and CGoal / Dist). We fixed the
MAXSTEPS parameter to 100000, 3500, 2000 and 400 for Defibrillator, MMS, Loader, and
DemoTopology respectively. BRANCHLENGTH was set to MAXSTEPS*5 and MAXSTEPS*20.
These values were determined from the incomplete full BFS runs over these models as a trade-
off between runtime and number of mutants reached. These experiments were performed on
Machine 2.

Figure 6.2 shows the result of large models as a box-plot of the number of mutants reached in
relation to the combination of heuristics. Note that the plot scales from minimum number of
mutants reached to the maximum number of mutants reached. The DemoTopology model was
excluded from this figure, because we found that every heuristic is able to reach all mutants

90



6.4. Branching Search Experiments

within 400 exploration steps. In that sense, it classifies as a small model. However, as we see in
the full BFS results, it has many states, making it a large model.

Figure 6.2: An evaluation of SELECTSUCCESSOR and CREATETASK heuristics on large models.

Like on small models, CGoal performs well on MMS and Defibrillator, not only producing the
best mean result, but also showing much less variability than the other heuristics. Interestingly,
the heuristic performs worst on Loader in terms of mean result. This underlines again, that
multiple heuristics have merit, and there is no perfect heuristic for every model. Init and
Part seem to perform better than predicted on small models. For Part this makes sense, since
the number of objects increases in larger models, which naturally increases the power of the
heuristic. Init performs reasonably on larger models. It seems that when branches are long
enough, it can make sense to restart the search at the initial state. For LocalBFS, we had to
reduce the depth from 4 to 2 of each local BFS search, in order not to blow up the search space.
We had to exclude LocalBFS for Loader altogether, because even a breadth-first search with
depth 2 is not feasible within reasonable time on this model.

6.4.7 Branching

We evaluated the influence of the BRANCHLENGTH parameter on search results, by an experi-
ment with different values on two large models, MMS and Defibrillator. We chose these models,
because they are big enough so there is a lot of variation in the number of mutants reached, but
the runs are fast enough so we are able to obtain many data points.

To test the parameter, we set up the following experiment. We set MAXSTEPS to 3500 and
100000 for MMS and Defibrillator respectively. We used RandCT and RandSS, as well as 4
different random seeds for each value for BRANCHLENGTH. The experiment was performed on
Machine 1. Figure 6.3 shows the result of the experiments. For MMS medium branch lengths
work best. For Defibrillator short branch lengths work best. Both results suggest that branching
search is indeed justified.

6.4.8 Test Case Generation

We evaluate the test case generation algorithm and the produced tests with increasing graph
size. To this end, we ran an experiment using the Defibrillator model on Machine 1. We
iteratively increase MAXSTEPS to produce exploration models of increasing size and record test
suite characteristics. The results of this experiment are shown in Table 6.8. Column Graph

91



6. TEST CASE GENERATION VIA HEURISTIC-GUIDED BRANCHING SEARCH

Figure 6.3: The mutants reached with multiple BRANCHLENGTH values.

Trans shows the size of the final exploration model in number of transitions. Unsurprisingly,
the size of the exploration model increases as we increase the MAXSTEPS parameter. Column
Test Trans shows the number of transitions of the final test suite. The number of test transitions
does not grow as much as the size of the exploration model. This can be explained by the fact
that after some point, no more mutants can be killed. However, it also shows that doing more
exploration beforehand does not harm the final test suite by introducing unnecessary transitions.
Column Duplicate Trans shows the number of transitions in the test suite that are taken at least
twice. Initially, the ratio between duplicate transitions and test transitions is quite high. This
ratio goes down with higher MAXSTEPS values, showing again that exploring more is better.
Column Time shows the time in seconds needed for test case generation, once the exploration
model is finalized. We can see that test case generation on large graphs takes a non-negligible
time. For example for MAXSTEPS $ 100 000 the search took 13 minutes and the test case
generation took almost 4 minutes. However, for smaller graphs the amount of time spent is low.

MAXSTEPS Graph Trans Test Trans Duplicate Trans Time
100 683 334 107 0.002
200 1290 467 143 0.006

1 000 4342 659 138 0.042
10 000 21013 1581 260 0.524
20 000 28772 1918 271 2.420
50 000 49252 2117 320 17.217

100 000 63001 1904 291 231.032

Table 6.8: The test characteristics on Defibrillatorin relation to MAXSTEPS.

6.4.9 Parallelization

We evaluated how much speedup we could achieve by performing exploration steps in parallel.
We define speedup as the fraction of average wall-clock time of parallel runs and the average
wall-clock time of sequential runs. More specifically, we compare total runtimes of executions
with 1 thread (sequential) to threads with 20 threads (parallel). We evaluated the speedup on all
models but LBT, as running LBT on a single core is infeasible within a reasonable amount of
time. For each model we fix MAXSTEPS and set BRANCHLENGTH to MAXSTEPS*20. Further-
more, we repeat the runs on each model using 4 different random seeds. The experiments were

92



6.5. Related Work

performed on Machine 1.

Unsurprisingly, the larger models benefit more from parallelization. More precisely, models
where one exploration step is computationally expensive benefit more. The model where a
single exploration step takes the longest is Loader with 415 seconds per step on average. For
Loader we get a speedup of 11.3x. On the other extreme, the average exploration step on
PartCountDSL takes only 0.06 seconds. This model in fact suffers from the synchronization
overhead of the parallel implementation and has a speedup of 0.9x. For large models we have
an average speedup of 5.98x. Small models do not benefit much from parallelization, having an
average speedup of 1.82x.

6.4.10 Finding Best Parameters

Based on our experiments, we describe an approach to finding the best parameters for our algo-
rithm on a new model. First, the time budget that is acceptable for test case generation has to be
set. Whether seconds, hours or days are acceptable makes a significant difference in what can
be expected from the algorithm. Second, full BFS should be performed on the model to estimate
the size of the model. If full BFS terminates, no other search option has to be tried. Otherwise,
third, the amount of successful steps of the full BFS within the desired time budget should be
recorded, which serves as a baseline for the MAXSTEPS parameter of further runs. Fourth, a
few runs should be performed using the CGoal / Dist heuristic pair with different BRANCH-
LENGTH parameters to see whether more mutants can be found with small, medium, or long
branch parameters. Fifth, different heuristic pairs should be evaluated. RandCT / RandSS can
work well when not much structure of the model can be used. CGoal / Part can work well
when the model uses much object orientation.

6.5 Related Work

6.5.1 Search- and Exploration-Based Testing

In this chapter we presented test case generation via branching search, which algorithmically
is between search- and exploration-based testing. Classical search-based testing is defined as a
search over the input space, whereas we define search over the state space. A comprehensive
overview of search-based testing is provided in [McM04], both for the white-box and for black-
box setting. A popular approach within search-based testing is casting test case generation as an
optimization problem [Kor90, GN97, TCMM98, VMGF13, ZC05]. Another popular technique
within search-based testing is genetic programming for gradually improving test suite quality,
starting from a random test suite [WBP02, FA11, MF11]. Both techniques require executing
and evaluating test cases multiple times, which is prohibitively expensive on our models.

An exploration-based mutation testing approach for pushdown automata has been presented
in [BBTF11, BBTF12]. In the approach, tests are created from mutants via an exploration
algorithm aiming to cover as many faulty transitions as possible. Killing analysis is performed a-
posteriori by executing the resulting tests on the original model. Similarly, [KPLV%03] proposes
exploration-based mutation testing for SDL specifications based on complete executions of test

93



6. TEST CASE GENERATION VIA HEURISTIC-GUIDED BRANCHING SEARCH

suites on model and mutant. In contrast, our exploration algorithm performs lazy and on-the-fly
mutation analysis to reduce mutation exploration costs. Our work extends previous work on
exploration-based test case generation [ABJ%15a, ABJ%15b] with a richer search framework.

6.5.2 Guided Random Testing

In addition to search-based testing, our test case generation algorithm is similar to guided random
testing. Guided random testing is performed in [MAZ%15] by introducing multiple techniques
to enhance random testing with static and dynamic analysis information. A classic automated
white-box test case generation tool is DART [GKS05], which combines random testing with
symbolic execution-based guidance. Furthermore, Randoop [PE07, PLEB07] uses feedback
from test executions to guide random automatic generation of Java unit tests. Whereas the above
ideas are applied to code, we perform test case generation on models. REDIRECT [SYR08]
is a model-based testing approach that applies guided random techniques to Simulink/Stateflow
models. Apart from using a different class of models, the authors of [SYR08] target state and
transition coverage, in contrast to the mutation coverage considered in this work.

Adaptive random testing [CLOM08, CKMT10] aims to distribute test inputs uniformly across
the input data space. This is a similar idea to RRT, which tries to uniformly cover state spaces.
However, the inherent difference to our work is that in contrast to simple input values, inputs of
reactive models are sequences of actions. Therefore, we work with an infinite input space that is
not easily classified via some simple metric.

6.5.3 Rapidly Exploring Random Trees

In terms of structuring our search, the main inspiration was the rapidly exploring random trees
(RRT) algorithm [LaV98], which is a well established planning algorithm. RRT is mostly used
in continuous domains [FKS06, JCS08, AS11], since it heavily depends on distance metrics,
which naturally arise in such domains. However, RRT was used in testing of hybrid systems
[DDD%15] and to solve well defined discrete planning tasks in [BCLM03]. We propose an RRT
inspired search algorithm for a general purpose discrete setting and a novel set of heuristics,
some of which are not distance-based.

94



CHAPTER 7
Event Structure-Based Test Case

Generation

The complexity of modern systems often stems from the amount of independent actors con-
tributing to it. Each individual actor can be simple, but by interacting there is a combinatorial
explosion of possible global system behaviors. Envisioned applications using the internet of
things are basically the embodiment of this explosion in complexity, where simple sensors and
devices are supposed to form complex systems through collaboration and interaction. Manag-
ing this complexity is an important future challenge that is tackled in a large body of research
on concurrent and distributed systems. Unfortunately, abstraction through modeling is only of
limited use in this respect. While the functionality of individual actors can be simplified through
abstraction, emerging behavior achieved through interaction of a large number of actors does
not lend itself to this approach.

Fortunately, the interactions are seldom global in the sense that an action of one actor influences
all other actors. In contrast, the actions of actors are largely and purposefully independent of
each other. There is a long tradition in concurrency theory to exploit this independence by sub-
suming execution paths that correspond to different orderings of independent transitions of con-
current actors. Such subsuming traces are typically called Mazurkiewicz traces [Maz86]. Trace
theory [Maz86] is a rich theoretical body of research on the topic. Furthermore, algorithms like
partial order reduction [God96, CGMP99] and Lipton reduction [Lip75] offer practical solutions
to the problem.

In order to cope with models of highly concurrent systems, we want to apply such techniques to
our model-based mutation testing scenario. However, existing solutions typically lack an explicit
representation of independent traces. Mazurkiewicz traces are typically represented as one rep-
resentative trace, together with an independence relation. During exploration of Mazurkiewicz
traces, only one representative trace is explored, while all others are ignored, since they provably
lead to the same state or they provably satisfy the same logical formulas. Of course this is the

95



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

whole point of these techniques, but representations via representatives plus independence rela-
tion are impractical for mutation-driven test case generation. In particular, the strong killcheck
requires to compare Mazurkiewicz traces of the model and the mutant. It is not obvious how to
do this comparison while taking into account potentially differing independence relations. Fur-
thermore, it is desirable also to retain independence information in the produced tests, i.e. to
understand tests as Mazurkiewicz traces. To this end, an explicit and easy to interpret represen-
tation of such traces is desirable.

Event structures [Win88] are a representation of Mazurkiewicz traces as an explicit graph struc-
ture that lend themselves well both to comparing two systems as well as an explicit represen-
tation of tests as Mazurkiewicz traces. These structures stem from the Petri nets community,
which is deeply involved in the study of concurrent systems. Event structures were used as a
basis for testing concurrent systems before, see for example [KSH12, KSH15, KH18]. However,
whereas classic event structure-based test case generation approaches construct the partial order
semantics of the analyzed system on demand (e.g. via a SAT encoding provided in [EH08]),
leveraging event structures for mutation testing requires to compare the complete partial order
semantics of the model and mutant. Recently, [RSSK15] published a paper that describes how
to obtain event structures from simple labeled transition systems and provides an algorithm that
computes the complete partial order semantics of the transition system by constructing the set
of all maximal configurations, which enabled us to integrate partial order semantics into our test
case generation framework.

In this chapter, we recite parts of [RSSK15] and show how to apply it to action systems. We
present a novel type of tests that we call concurrent tests, which essentially is the Mazurkiewicz
trace for which a classic linear test is one representative. By representing sets of linear tests that
are equivalent under a given independence relation, concurrent tests are strictly more powerful
than classic linear tests. Concurrent tests induce less inconclusive test executions that occur
when a test execution corresponds to a member of- instead of the representative of- the respec-
tive Mazurkiewicz trace. Furthermore, we show how to perform the strong killcheck using these
structures. It turns out that this problem can be formulated as a language inclusion problem
over event structures. The main contribution of this chapter is our proof of the computational
complexity of this problem as well as a decision algorithm for it. Finally, we conduct an ex-
perimental evaluation of our language inclusion algorithm, comparing it to an explicit trace,
automaton based language inclusion approach.

7.1 Event Structures and Configurations

In this section we introduce labeled prime event structures. Throughout this chapter, we assume
that every set of labels 5 contains a distinct label ε, which denotes the empty symbol. Concate-
nation of ε to a word does not change the word.

Definition 7.1.1 (FLES). Given a set of labels 5 , a finite, 5 -labeled prime event structure
(FLES) is a tuple 7 def

$ AE,/, #, h; where E is a finite set of events, /' E /E is a strict partial
order on E, called causality relation, h 3 E 2 5 labels every event with an element of 5 , and

96



7.1. Event Structures and Configurations

# ' E / E is the symmetric, irreflexive conflict relation that is closed under /, i.e. for all
e, e*, e** - E, if e#e* and e* / e**, then e#e**.

For an event e, we use 5e+ to denote the history of e as the set of events that must happen before
e according to /, formally 5e+ def

$ ?e* - E < e* / e4. We require that there is a special event
> - E, such that 5>+ $ 9, for all events e - E 3 > / e, and h=>0 $ ε. We define the direct
successors dsucc of event e as the set of events that depend on e without there being another
event in-between, formally dsucc=e0 $ ?e* - E < e / e* # %e** 3 e / e** / e*4. We say that two
events e, e* - E are concurrent if e & e*, not =e / e*0, not =e , e*0, and not =e#e*0. Two events
e, e* are in immediate conflict denoted by e#ie* if e#e* and both 5e+ 1 7e*/ and 7e/ 1 5e*+ are
configurations, as defined in the following. An event e - E is maximal respectively minimal in
7 , if there is no event e* - E such that e / e* respectively e* / e.

A central concept in assigning event structures a semantic is the notion of configurations:

Definition 7.1.2 (Configuration). For a FLES 7 def
$ AE,/, #, h;, a configuration of 7 is a set of

events C $ ?e1, . . . , en4 ' E that is both

• Left closed: )e - C 3 )e* - E such that e* / e 3) e* - C, and

• Conflict free: )e, e* - C 3 8=e#e*0
A configuration C is maximal, if there is no configuration C * such that C ' C * and C & C *.
We denote by conf=70 the set of configurations of 7 and by mconf=70 the set of all maximal
configurations of an event structure 7 . A trace tr of C is a sequence of events Ae1, . . . , en;, where
every event e - C occurs exactly once in the sequence and for all ei, ej - tr 3 ei / ej 3) i / j.
We denote the set of all traces of a configuration C with T =C0. Let f 3 C 2X be a mapping on
C to some set X . For a trace tr of C, we denote by f=tr0 the sequence resulting from point-wise
application of f on the elements of tr. Finally, we extend T to event structures by defining it as
the union of traces over all maximal configurations. That is, T =70 def

$ "C.mconf""% T =C0.

A finite, labeled prime event structure 7 represents a finite set of bounded words over an al-
phabet 5 , where the bound for the length of words is given by the size of the largest maximal
configuration. We call this set the language '=70.

Definition 7.1.3 (Language of C and 7). The language of configuration C of 7 is '=C0 def
$

?h=tr0 < tr - T =C04. The language of 7 is '=70 def
$ ?h=tr0 < tr - T =704.

To illustrate this definition we give a small example.

Example 7.1.1 (Event structure and configurations). We show two event structures in Fig-
ures 7.1a and 7.1b. Boxes depict events. Inside every box is its event’s identifier, above or
below the box is its event’s label. If there is no label we implicitly assume the label to be ε.
Solid arrows depict direct successors of an event. Dashed lines depict immediate conflicts. Two

97



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

>

e1
A

e2
B

(a) An event structure with one maximal configuration.

>

e1
A

e2
B

e3
B

e4
A

(b) An event structure with conflicts.

Figure 7.1: Event structures examples.

events e, e* are in immediate conflict if e#e* and there are no e1, e2 - E such that e1 / e#e1#e*

or e2 / e* # e#e2. For better readability, we omit all other causalities and conflicts.

Figures 7.1a and 7.1b both represent the language ?AB, BA4. The event structure in Figure 7.1a
has a single maximal configuration consisting of events ?>, e1, e24. The event structure in Fig-
ure 7.1b has two maximal configurations: ?>, e1, e24 and ?>, e3, e44 (due to the conflict between
e1 and e3 these two events cannot appear in the same configuration).

Configuration as an event structure

Given an event structure 7 $ AE,/, #, h; and a configuration C, we denote its corresponding
event structure as 7C def

$ AC,/&C"C ,9, h&C;, where X&Y denotes the restriction of X to Y . For
ease of presentation, throughout this chapter, we abuse notation and do not differentiate between
a configuration and its corresponding event structure.

A note on cut-offs

Cut-offs are a popular method for unfoldings (such as event structures) to represent cyclic do-
mains [McM92a]. Roughly speaking, one event is a cut-off of another event, if the former
represents the same state as the latter with a smaller sub-structure. The latter event is then omit-
ted from the structure. Cut-offs preserve reachability properties, but significantly increase the
(computational) complexity of problems defined over unfoldings. For example, [Hel00] shows
that the complexity of multiple model checking problems (including the language membership
problem studied below) over unfoldings increase from NP-complete to PSPACE-complete when
cut-offs are considered. An alternative approach to model checking over unfoldings with cut-offs
is to expand them into exponentially larger structures and performing model checking over this
structure [EH00, EH08]. Our application of event structures does not require cut-offs. Therefore,
we do not consider them in this work. In particular, we do not use the results of [RSSK15] on
cut-offs. However, the extension of our results to include cut-offs is interesting future work.

7.2 Unfolding Based Partial Order Reduction

In this section we show how to transform action systems to event structures on the fly and
thereby perform unfolding based partial order reduction. The main concepts presented in this

98



7.2. Unfolding Based Partial Order Reduction

section were developed in [RSSK15]. For the sake of self-containedness, we recite the relevant
concepts of [RSSK15] in the following Section 7.2.1, where we only modify some notation
in order to remove conflicts with the rest of this work. Thereafter, we show how to apply the
procedure to our setting by concretizing aspects that are left abstract in [RSSK15].

7.2.1 Execution Model and Partial Order Reduction

An abstract transition system is a tuple @< ? def
$ AS, T, s̃;, where S is a set of global states, T is

a set of transitions, and s̃ - S is the initial global state. A transition is enabled at a state s if t=s0
is defined and enabl=s0 denotes the set of transitions enabled at s. Given two states s, s* - S and
sequence of transitions σ

def
$ At1, t2, . . . , tn; - T #, we denote by s

σ
92 s* the fact that there exists

states s0, . . . , sn - S such that s0 $ s, sn $ s* and for i - 71, n/ 3 si $ t=si(10. Note that since
transitions of abstract transition systems are deterministic, the successor state after a sequence
of transitions is uniquely given. We denoted by state=σ0 the successor state of the initial state
s̃ after σ and by reach=@< ?0 the set of successor states of the initial state s̃ after any sequence
of transitions.

Given two transitions t, t* - T and state s - S, we say that t, t* commute at s iff

• if t - enabl=s0 and s* $ t=s0, then t* - enabl=s0 iff t* - enabl=s*0; and

• if t, t* - enabl=s0, then there is a state s* such that s
.t,t)(
992 s* and s

.t),t(
992 s*.

An unconditional independence relation on @< ? is a symmetric and irreflexive relation &'

T / T such that t & t*, then t and t* commute at every state s - reach=@< ?0. If t, t* are not
independent according to &, then they are dependent, denoted by t * t*.

In [RSSK15], partial order reduction semantics of an abstract transition system @< ? together
with an independence relation & are given by a canonical event structure :'& (,$. This event
structure is termed an unfolding of @< ? and represents all valid transition sequences as well
as reachable states. Furthermore, [RSSK15] provide an algorithm for computing the set of all
maximal configurations from an event structure, which can also include cut-offs. This algorithm
is optimal in the sense that it visits every maximal configuration exactly once, which is akin to
classical partial order reduction algorithms being optimal when exploring each Mazurkiewicz
trace exactly once.

7.2.2 Unfolding Action Systems

We now show how to apply the partial order semantics of [RSSK15] to action systems. To this
end, we show how action systems can be interpreted as abstract transition systems and we pro-
vide an independence relation for action systems. We use these semantics and the configuration
exploration algorithm given in [RSSK15] to construct canonical event structures :'& (,$ on the
fly, by replacing queries for given extensions of a configuration (denoted by ex=C0 in [RSSK15])
with extended successor path computation extpath'=., .0 and insertion of new events from the
results of this computation.

99



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

Action System as Abstract Transition System

Clearly, action systems can be interpreted as abstract transition systems, where transitions are
given by the small step semantics presented in Section 3.4. Formally, let @ $ A8 , sι, Act, Aι; be
an action system. Its corresponding abstract transition system is @< ?' def

$ AS', T', s'ι ;. Note
that the translation (unsurprisingly) proceeds analog to the Mealy machine translation presented
in Section 3.4.3. However, in contrast to the Mealy machine translation, which is defined over
visible successor paths and visible labels, the abstract transition system corresponding to an
action system is defined over extended successor paths and the full set of action labels. We
include internal labels to the abstract transition system, because they are necessary to correctly
reconstruct effects on states and to resolve non-determinism.

Every visibly reachable state of the action system induces a state in the abstract transition system.
In addition, we introduce states to the abstract transition system that correspond to intermediate
steps of extended successor paths. Formally, every visibly reachable state s - visStates' in-
duces the following set of abstract transition system states:

S's
def
$ ?s'4 1 ?sπ

1 , . . . , sπ
n(1 < π - extpath'=s0, <π.l< $ n4

The set of Mealy machine states is the union over induced states of all visibly reachable states:

S'
def
$ !

s.visStates*

S's

The initial state of the abstract transition system simply is the translation of the action system
initial state s'ι . For every action label ℓ, there is a transition function tℓ - T' that correspond to
executing the respective action. That is, tℓ=s0 $ s* if and only if there is a visibly reachable state
s0 - visStates' and an extended successor path π - extpath'=s00 such that s* corresponds to
the successor of s after label ℓ, i.e. formally such that for some i - 71, <π.l<71/ 3 s $ sπ

i(1, π.l7i/ $
ℓ, and s* $ sπ

i , or s $ sπ
n(1, π.l7n/ $ ℓ, and s* $ π.s'.

An Independence Relation for Action Systems

In order to perform unfolding based partial order reduction on action systems, we define an
independence relation & based on variable reads and writes (defined in Section 3.4). To this
end, we define the variables written and read by a transition tℓ as w=tℓ0 def

$ ?v < ℓ writes v4
respectively r=tℓ0 def

$ ?v < ℓ reads v4. We say that transitions t and t* are in a read/write conflict
if and only if =w=t0 .w=t*00 1 =w=t0 . r=t*00 1 =r=t0 .w=t*00 & 9.

Due to the sequential and prioritized composition in action systems, the absence of read/write
conflicts does not fully capture independence of action system induced transitions. We say that
two transitions tℓ1 and tℓ2 are sequentially dependent, if the respective actions ℓ1 and ℓ2 are
composed sequentially in the action system. To see how prioritized composition influences
transition dependence, suppose some transition t writes a variable and thereby enables another
transition t*, i.e. some guard inside t* is now satisfied. Transition t therefore disables all tran-
sitions over which transition t* is prioritized. Therefore, we define the set of prio reads as

100



7.3. Event Structure Based Test Case Generation

pr=tℓ0 def
$ "ℓ) is prioritized over ℓ r=ℓ*0. We say that transitions t and t* are in a prio sensitive read-

/write conflict if and only if

=w=t0 .w=t*00 1 =w=t0 . =r=t*0 1 pr=t*000 1 ==r=t0 1 pr=t00 .w=t*00 & 9.

Finally, we define the independence relation t & t* if and only if t and t* are not sequentially
dependent and not in a prio sensitive read/write conflict.

Lemma 7.2.1. &' T'/T' is an unconditional independence relation. That is, & is symmetric
and irreflexive, and if t & t* then t and t* commute at every state s - S'.

Proof. The definition of t & t* is symmetric in t and t*. Therefore,& is symmetric. Furthermore,
if t $ t*, then =w=t0 . w=t*00 1 =w=t0 . =r=t*0 1 pr=t*000 1 ==r=t0 1 pr=t00 . w=t*00 $ 9, i.e.
t * t*. Therefore, & is irreflexive.

The fact that independent transitions commute follows from the definition of the small step
semantics of action systems (Table 3.2). In particular, whether and at which positions action
system labels appear in extended successor paths solely depends the evaluation of guards in the
current state (i.e. the values of variables in that state), the position in a sequential composition,
and whether the respective action is blocked by an enabled action that is prioritized over it. Tran-
sitions that are not in a prio sensitive read/write conflict do not change any variable appearing in
the guards of the other transition, are not sequentially composed, and do not enable or disable
actions that are prioritized over the action underlying the other transition. Therefore, transitions
that are not in a prio sensitive read/write conflict must commute.

7.3 Event Structure Based Test Case Generation

In the previous section, we discussed how to perform unfolding based partial order reduction to
explore action systems. In this section, we show how to embed this procedure into the branching
search based test case generation method presented in Chapter 6.

Partial Unfolding

The key idea of branching search is to break the search apart into small steps in order to handle
very large models and to parallelize the exploration. We want to retain this property in event
structure based test case generation by unfolding action systems stepwise. In Section 3.4, we
noted that unrolling paths until they can only be extended by controllable actions is the right gran-
ularity to explore action systems in a mutation-driven test case generation context. Therefore,
instead of unfolding @< ?'

µj fully at once, we instead unfold abstract transition systems that
correspond to the extended paths for a single state s. Formally, let us define for a visible reach-
able state s, its abstract transition system@< ?'

µj

s
def
$ AS'µj

s 1?s* - S'
µj < 'π - extpath'µj =s0 3

π.s $ s*4, T'
µj

s , s'
µj ;, where S'

µj

s is defined above in the general translation of action systems

101



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

to abstract transition systems and where T'
µj

s is defined as T'
µj restricted to S'

µj

s . We denote
the event structure constructed resulting from unfolding @< ?'

µj

s by unfold=j, s0.

We embed stepwise unfolding into the branching search algorithm by replacing vispath'=j, s0
with unfold=j, s0. In contrast to vispath'=j, s0 that contains tuples of paths and successor
states, unfold=j, s0 is an event structure that can be interpreted as a set of configurations. Since
every configuration corresponds to a set of paths that are equivalent with respect to commutativ-
ity according to the independence relation as well as a unique state, unfold=j, s0 is strictly more
general than vispath'=j, s0. However, since paths are represented in a bundled form as config-
urations in the result of unfold=j, s0, kill checking and test case generation have to be adapted
to handle event structures. The naive approach is to simply unpack the paths, i.e. calculate all
interleavings represented by the event structure, and apply the path-wise methods. However, this
approach (partially) defeats the purpose of performing partial order reduction, as the number of
paths represented by an event structure in general is exponential in its size. Therefore, in the fol-
lowing we show how test case generation and kill checking can be done explicitly on the event
structure.

Internal Action Labels

Event structures serve two main functions during test case generation. Firstly, they are used
to drive unfolding based partial order model exploration. This requires to calculate states from
the event labels. In particular, internal labels are important to determine the effect on states
and to resolve non-determinism. Secondly, as we will discuss next, event structures express
the input-output sequences of the model. This requires to skip over internal labels. In order to
serve both functions, during event structure based test case generation, we maintain two types
of labels for each constructed event structure. One version includes internal labels and is used
to construct states, the other version replaces internal labels with ε and is used to represent
input-output sequences via the language of the event structure. In the rest of this work, if not
specified otherwise, we understand the language of an event structure as being defined over
labels with ε representation of internal labels. The following proposition states the correctness
of the approach:

Proposition 7.3.1. For every state s and mutant j, we have '=unfold=j, s00 $ vispath'=j, s0.

Proof. The proposition follows from the completeness and correctness of the unfolding seman-
tics, (Theorem 5 as well as Lemma 16 of [RSSK15]) the completeness of the unfolding algorithm
(Theorem 11 of [RSSK15]), the fact that the unfolded transition system is defined exactly over
the extended successor paths, and the reduction of internal actions to ε event structure labels.

Language Inclusion Based Strong Killcheck

The classic strong killchecking with explicit paths boils down to a simple subset check of the
form Πµ ! Π. However, by using unfolding based partial order reduction during exploration,

102



7.3. Event Structure Based Test Case Generation

instead of explicit paths, for killchecking during event structure based model exploration, we
need to compare an event structure 7 that is a partial unfolding of the model and an event
structure 7µ that is a partial unfolding of some mutant. The key insight to performing this task
on the event structures directly is that input-output sequences can be represented as words in the
language of an event structure. Therefore, the killcheck can be done via a language inclusion
check '=7µ0 ' '=70.

7.3.1 Concurrent Exploration Model

In order to record search results that are produced via unfolding based partial order reduction in
the test case generation framework presented in Chapter 6, we replace the exploration model with
a concurrent exploration model. In contrast to representing the exploration model as an extended
Mealy machine, a concurrent exploration model is a tuple G $ AV, v0, E, lconf , lsk, lwk, Vert;,
where =V, E0 is a directed labeled graph with set of vertices V and set of edges E ' =V / V 0,
v0 is the initial vertex, lconf labels vertices with maximal configurations of partial unfold-
ings of the model, lsk, lwk label vertices with strong and weak kills respectively, and a func-
tion Vert 3 visStates' 2 V that translates visibly reachable action system states to ver-
tices in the concurrent exploration model. The concurrent exploration model is initialized asA?v04, v0,9, 7v0 - 9/, 7v0 - 9/, 7v0 - 9/, 7sι - v0/;.
Let ; be the set of maximal configurations of unfold=0, s0. For each C - ;, we add a fresh vertex
vC to V , set its configuration label lconf =vC0 def

$ C, add an edge =Vert=s0, vC0, initialize the
killing labels lsk=vC0 def

$ 9, lwk=vC0 def
$ 9. Furthermore, in case state=C0 (the state obtained by

executing any transition interleaving represented by C) is not in the domain of Vert, we update
the state to vertex map Vert=state=C00 def

$ vC .

7.3.2 Concurrent Tests

Event structure-based model exploration enables a novel type of test cases that captures multiple
interleavings of paths reaching some test goal. In contrast, classic linear tests represent only a
single execution interleaving. Linear tests are not ideal for concurrent systems, because the exact
interleaving of concurrent actions can not always be controlled. This may lead to unnecessary
inconclusive or even failing test executions. A concurrent test essentially is a conflict free slice
of the complete event structure of a model.

Definition 7.3.1 (Concurrent test). A concurrent test for some action system@ is a conflict free
finite labeled prime event structure 7 $ AE,/, h;, such that its input-output interleaved words
are tests, i.e. io='=700 ' <st=@0. Every test execution io=ω0 for ω - '=70 passes and every test
execution io=ω0 for ω . '=70 fails.

In essence, a concurrent test is a configuration such that all its words represent passing tests.
Similar to linear tests, we can represent inconclusive output information in concurrent tests to
make them partially adaptive. Inconclusive output information for concurrent tests correspond to
events that are in conflict with the configuration that represent passing tests and are thus failing.

103



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

Definition 7.3.2 (Partially adaptive concurrent test). A partially adaptive concurrent test for
some action system@ is a finite labeled primed event structure 7 $ AE,/, #, h;, together with a
maximal configuration C of 7 that represents passing tests executions, such that its input-output
interleaved words are tests, i.e. io='=700 ' <st=@0. Every test execution io=ω0 for ω - '=C0
passes, every test execution io=ω0 for ω - '=704'=C0 is inconclusive, and every test execution
io=ω0 for ω . '=70 fails.

Concurrent tests can be extracted from the concurrent exploration model. To this end, let us
define the concatenation C1 6 C2 of two configurations C1 and C2 as the conflict free event
structure 7 $ AE,/, h;, where E $ C1 1 C2, / is the union of causalities in C1, C2 as well as?=e1, e20 < e1 is maximal in C1, e2 is minimal in C24, and h is the union of labels of C1 and C2.

Let G $ AV, v0, E, lconf , lsk, lwk, Vert; be a concurrent exploration model and let Av0, v1, . . . , vn;
be a path in the graph, i.e. =vi, vi%10 - E for every i - 70, n7 1/. The concurrent test correspond-
ing to this sequence is defined as C1 6C2 6 . . . 6Cn. If µ - lsk=vi0 respectively µ - lwk=vi0 for
some i - 70, n/, the test potentially strongly- respectively weakly- kills mutant µ.

Partially adaptive concurrent test are extracted from the concurrent exploration model similarly,
where, in addition to the concurrent test, immediate conflicts are extracted from the neighboring
vertices of the test defining sequence Av0, v1, . . . , vn;.
Example 7.3.1. Consider again the coffee brewing machine model presented in Example 3.4.3.
The event structure representation of this example is depicted in Figure 7.2. In the figure, for
internal actions labels, the respective two types of event structure labels are separated with a dash.
Transitions tobs beans, tobs sugar, and tobs water are pairwise independent, because they are not in
a prio sensitive read/write conflict, nor sequentially dependent. Since there are no conflicts in the
event structure, it directly represents a concurrent test. In contrast to linear tests, the interleaving
of obs beans, obs sugar, and obs water is not fixed in the concurrent test.

In order to demonstrate conflicts, we extend the example in Figure 7.3 with a non-deterministic
choice to add coffee beans or tea leafs to the beverage. The respective events e4 and e3 are in
conflict, depicted with a dashed line. We assume that the underlying action system is given in
such a way that these options are mutually exclusive (for example by checking and writing some
variable indicating whether beans or leafs were already added to the beverage). As a result, the
event structure represents two concurrent tests, corresponding to 7e19/ and 7e20/. The respective
test can be extended to partially adaptive concurrent tests by including the event e4 respectively
e3 as well as its conflict.

7.4 Language Inclusion Problem and Complexity Results

In the previous section, we discussed how to leverage unfolding based partial order reduction for
test case generation and cast the strong mutant killcheck as a language inclusion problem over
event structures. In the remainder of this chapter, we discuss the theory behind this problem. In
particular, we define it formally, prove its complexity, and provide a decision algorithm for it.

104



7.4. Language Inclusion Problem and Complexity Results

>
ε

e1

ctr request
e2

flip_r*ε
e3

obs beans
e6

flip_b*ε

e4

obs sugar
e7

flip_s*ε
e9

obs coffee
e10

flip_r*ε
e11

flip_b*ε
e12

flip_s*ε
e13

flip_w*ε

e5
obs water

e8

flip_w*ε

Figure 7.2: The event structure representation of a coffee brewing machine.

>
ε

e1

ctr request
e2

flip_r*ε

e3
obs leafs

e7

flip_l*ε
e11

obs tea
e13

flip_r*ε
e15

flip_l*ε
e17

flip_s*ε
e19

flip_w*ε

e4
obs beans

e8

flip_b*ε

e5

obs sugar
e9

flip_s*ε
e12

obs coffee
e14

flip_r*ε
e16

flip_b*ε
e18

flip_s*ε
e20

flip_w*ε

e6
obs water

e10

flip_w*ε

Figure 7.3: The event structure representation of a coffee and tea brewing machine with conflict-
ing events.

In this section, we prove the computational complexity for the language inclusion problem. As
an intermediate step we look at the membership problem.

7.4.1 Language Membership is NP-complete

The finite prime event structure language membership problem for word w and FLES 7 is the
problem of deciding whether w - '=70. Surprisingly, deciding membership is NP-complete. In
contrast, trace membership tr - T =70 can be decided in polynomial time. Trace membership
can be decided simply by verifying that the set of events of tr forms a maximal configuration of
7 , which requires to verify left-closure, conflict-freedom, and maximality. All of those can be
checked in polynomial time (linear time, assuming linear conflict lookup).

Intuitively, the hardness of language membership comes from the fact that the labeling function
does not need to be injective and the role of conflicts, which together rule out a greedy algorithm
that consumes the word in question symbol by symbol in a unique way.

Theorem 7.4.1. Finite prime event structure language membership is in NP.

Proof. Let 7 $ AE,/, #, h; be an 5 -labeled FLES and w $ Aσ1, . . . , σn; - 5 # be a word. A
trace tr is a polynomially sized certificate for w - '=70. Checking that tr - T =70 can be done
in polynomial time, and checking whether h=tr0 $ w can be done in linear time.

To prove NP-hardness we reduce the Hamiltonian cycle (HC) problem to the membership prob-
lem. HC is known to be NP-hard [Kar72]. It is the problem of deciding whether for a directed

105



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

>

ef1,1 ef2,1 efk,1

ef1,2 ef2,2 efk,2 ef2,fk,1
x

ef1,n ef2,n efk,n ef2,fk,n(1
x

ef2,fk,n

x

. . .

. . .

. . .

...

...

...

...

if t"f2% ! s"fk%:

Connected edges

if t"fp% ! t"fq%:

)i, j

Conditional Conflicts

efp,i efq ,j

All ef1,1, . . . , efk,1, ef1,n, . . . , efk,n are causally related to >

Figure 7.4: 7G for Theorem 7.4.2.

graph there exists a path that visits all vertices once and that ends in the vertex it started. We use
s=f0 and t=f0 to denote the source and target of a directed edge f .

Theorem 7.4.2. Finite prime event structure language membership is NP-hard.

Proof. We proof by reduction of HC to FLES language membership.

Let G $ =V, F 0 be a directed graph and define n
def
$ <V <. We assume that G does not contain

any self loops, i.e. edges f such that s=f0 $ t=f0, and that n , 1. Apart from a graph with
only one vertex, a graph contains a Hamiltonian cycle if and only if the same graph without
self-loops contains a Hamiltonian cycle. The case n $ 1 can be trivially decided and is therefore
not considered in our reduction. A graph with self-loops can be converted into one without
self-loops in linear time by removing self-loops from F .

Given an integer j - 71, n/, we abbreviate =j mod n0 2 1 by su=j0. We say that f is connected
to f * if t=f0 $ s=f *0. We say that a sequence of edges Af1, . . . , fn; is a cycle if for every
j - 71, n/ 3 fj is connected to fsu"j%. A Hamiltonian cycle of G is a cycle Af1, . . . , fn; of F ,
such that ?t=fj0 < j - 71, n/4 $ V . The decision problem HC: "Does there exist a Hamiltonian
cycle of G" is NP-hard [Kar72].

We provide a polynomially sized (in <V <2 <F <) ?ε, x4-labeled event structure 7G def
$ AE,/, #, h;,

such that xn - '=7G0 (n times the letter x concatenated) if and only if there exists a Hamiltonian
cycle of G. The main idea is that configurations of the event structure translate to connected
sequences of edges via events that each represent the assignment of an edge to a position in the
sequence and events that express connectedness of two successive edges in the sequence. 7G is
presented in Figure 7.4 as a visual aid for this proof.

The set of events E contains exactly the following events:

• The initial event >

106



7.4. Language Inclusion Problem and Complexity Results

• For every edge f - F and j - 71, n/, there is an event ef,j - E representing that f is the
j’th element of a sequence of edges.

• For every pair of edges f, f * - F with t=f0 $ s=f *0 and j - 71, n/ there is an event
ef,f ),j - E representing that f and f * are successive elements of a sequence of edges.

Formally, we define E as follows:

E
def
$ ?>4 1 n

!
j!1

:?ef,j < f - F4 1 ?ef,f ),j < f, f * - F # t=f0 $ s=f *04.

Clearly, <7G< $ <E< is polynomial in <F < * <G<. Note that causality, conflict relation, and labeling
are always of at most quadratic size in <E<.
The causality relation / is the smallest partial order relation containing the following causalities:

• For every edge f - F and j - 71, n/: > / ef,j representing that every assignment of a
single edge to a position in a sequence of edges is allowed.

• For every pair of edges f, f * - F with t=f0 $ s=f *0, and every j - 71, n/: ef,j / ef,f ),j and
ef ),su"j% / ef,f ),j representing that successive edges assigned in the represented sequence
are connected.

Formally, we define / as follows, where X% denotes the transitive closure of relation X:

/
def
$
%
#

n

!
j!1

:?=>, ef,j0 < f - F4 1 ?=ef,j , ef,f ),j0, =ef ),su"j%, ef,f ),j0 < ef,f ),j - E4.$!
%

The conflict relation # is the smallest conflict relation closed under / (i.e. e#e* # e* / e** )
e#e**) containing the following immediate conflicts:

C.1 For every edge f - F and j, k - 71, n/, j & k: ef,j#ef,k representing that every edge can
only be assigned to one position in a sequence.

C.2 For every pair of edges f, f * - F, f & f * and every j - 71, n/: ef,j#ef ),j representing that
every position in the sequence can only be assigned once.

C.3 For every pair of edges f, f * - F, f & f *, such that t=f0 $ t=f *0 and every j, k - 71, n/:
ef,j#ef,k representing that edges assigned to a sequence must have non-overlapping target
vertices.

107



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

Formally, # has the following set of immediate conflicts:

#i def
$

n

!
j!1

3 n

!
i!1,i)j

6?=ef,j , ef,i0 < f - F4 1 ?=ef,j , ef ),i0 < f, f * - F # f & f * # t=f0 $ t=f *04,
1 ?=ef,j , ef ),j0 < f, f * - F # f & f *4&

The labeling function h is given as follows:

• Every event of the form ef,f ),j has label h=ef,f ),j0 def
$ x.

• Every other event in E has label ε.

Formally, h is defined as follows:

h=e0 def
$

1(()((-
x for e $ ef,f ),j - E

ε otherwise

We say that a configuration of 7G represents a sequence of edge Af1, . . . , fm; if it includes events
ef1,i1 , . . . , efm,im , where ?i1, . . . , im4 ' 71, n/, for every j - 71, m 7 1/ 3 ij / ij%1.

Configurations represent sequences of edges: We claim that every configuration (besides ?>4)
of 7G represents a sequence of m * n edges with pairwise different targets.

The claim follows from the structure of the immediate conflicts: Due to conflicts C.1, a config-
uration cannot contain events ef,j and ef,k for j & k. Therefore, for every edge, a configuration
includes one such event or none. Furthermore, the indices j of events ef,j give rise to a sequence
of represented edges. Due to conflicts C.2, every index can only be assigned to one position in
the sequence. There are at most n possible positions. Therefore, every configuration (besides?>4) represents a sequence of m * n edges. Furthermore, the edges must pairwise different
targets due to conflicts C.3.

Configurations with events ef,f ),j represent sequences of (partially) connected edges:

Due to the causes of events ef,f ),j , we have that a configuration contains ef,f ),j if and only if it
represents a sequence of edges f1, . . . , fj $ f, fsu"j% $ f *, . . . , fm.

Hamiltonian cycle) xn - '=7G0:

Assume G has a Hamiltonian cycle Af1, . . . , fn;. We claim that >1?efj ,j , efj ,fsu"j$,j
< j - 71, n/4

is a maximal configuration. The set is causally closed, since the edges are connected. The set
is conflict free, because every position is assigned exactly once (no conflicts among C.1 and
C.2) and since the sequence is a Hamiltonian cycle, the targets are not overlapping (no conflict
among C.3). The configuration is maximal, since clearly no further event of the form ef,i can be

108



7.4. Language Inclusion Problem and Complexity Results

added, since the assignment of edges to positions is fixed, and no event of the form ef,f ),i can
be added, since these events are directly induced by the assignment of edges to positions in the
sequence. Furthermore, this maximal configuration contains exactly n events labeled by x and
all other events are labeled by ε, showing xn - '=7G0.

xn - '=7G0) Hamiltonian cycle:

If xn - '=7G0, then 7G has a maximal configuration C that includes n events of the form ef,f ),j .

Assume that C does not represent a Hamiltonian cycle. That is, two successive edges in the rep-
resented sequence of edges that are not connected, or not all vertices are visited by the sequence.

The former case cannot be true, due to presence of events ef,f ),j in C, showing that f is con-
nected to f * and the causalities of such events (ef,j and ef ),su"j%), implying that f and f * are
successive edges in the sequence of edges represented by C.

To see why the latter case cannot be true, consider that in order for a connected sequence of n
edges not to visit one of the n vertices of the graph, it needs to visit some vertex twice. That
is, it needs to include edges that have the same target vertex. C can not represent two different
edges with the same target due to conflicts C.3. Furthermore, C can not represent the same edge
twice, due to conflicts C.1. Therefore, the sequence of edges represented by C can not contain
two edges with the same target.

Therefore, the maximal configuration C represents a Hamiltonian cycle in G.

7.4.2 Language Inclusion is Πp
2-complete

The finite prime event structure language inclusion problem for FLES 71 and 72 is the problem
of deciding whether '=710 ' '=720.

Πp
2 is a complexity class from the polynomial hierarchy. It intuitively represents a )' quantifier

alternation. To show inclusion, we use the definition of Πp
2 given by Wrathall [Wra76], providing

semantics for the complexity class in terms of formal languages. These languages should not
be confused with the particular type of languages we discuss in this work. In contrast, such
languages encode problem instances and candidate witnesses.

Formally, a language L is in Πp
2 iff there exists a polynomially decidable language L*, such that

x - L / )y1'y27Ax, y1, y2; - L*/. A language L* is polynomially decidable if w - L* can be
decided in polynomial time. The x represents an encoding of the problem instance as a string.
The y1 and y2 represent string encodings of witnesses to some sub-problems.

We fix two 5 -labeled FLES 71 $ AE1,/1, #1, h1; and 72 $ AE2,/2, #2, h2;.
Theorem 7.4.3. Finite prime event structure language inclusion is in Πp

2.

Proof. Language inclusion '=710 ' '=720 amounts to checking whether )w - '=710 ) w -

'=720. In terms of traces this can be expressed as )tr1 - T =710. 'tr2 - T =720. h1=tr10 $

h2=tr20, meaning that for every trace in 71 there has to be a trace in 72 corresponding to the
same word in the common alphabet 5 .

109



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

>

ev1
x

evn

x

ein1

lb1

eD1

y

eout1

einm

lbm

eDm

y

eoutm

. . .

...

(a) "G,B
1 .

>

ein1

lb1

eout1

einm

lbm

eoutm

. . .. .
.

es

ev1
x

evn

x

eD1
y

eD2
y

eDbh
y

eDbh%1
y

eDm
y

efix0 efix1 efixbh(1
. . .

efixbh efixm

. . . . . .
. . .

. . .

if fj ! bi, k . !1, n,:

Conditional Conflicts

eini

e $fj ,ke $fj ,k

es is followed by the event structure
from Figure 7.4, where es replaces >

(b) "G,B
2 .

Figure 7.5: The event structures for the language inclusion hardness proof.
We use . . . to indicate omitted events.

We define L
def
$ ?A71,72; < '=710 ' '=7204 and L* def

$ ?AA71,72;, tr1, tr2; < tr1 - T =710 ):h1=tr10 $ h2=tr20#tr2 - T =720.4. By the argument above, we obtain the desired form x - L iff
)y1'y27Ax, y1, y2; - L*/ to show Πp

2 inclusion. Furthermore, L* can be decided deterministically
in polynomial time, because trace membership, as well as label equality, can be decided in
polynomial time.

To show Πp
2 hardness, we present a reduction from the Dynamic Hamiltonian Cycle (DHC)

problem to the finite prime event structure language inclusion problem. Given an undirected
graph G $ =V, F 0 and a set B ' F , graph G and B form a DHC if for every set D ' B with
<D< * <B<*2, the graph GD $ =V, F 4D0 has a Hamiltonian cycle. We define n

def
$ <V <, k

def
$ <F <,

m
def
$ <B<, and bh

def
$ '<B<*2". Essentially DHC, in comparison to HC, has an additional universal

quantifier over subsets of B. DHC is known to be Πp
2-complete [KL95].

Theorem 7.4.4. Finite prime event structure language inclusion is Πp
2-hard.

Proof. We prove the claim by reduction of DHC to FLES language inclusion. Let G $ =V, F 0
be a finite, undirected graph and let B ' F . Let V $ ?v1, . . . , vn4, F $ ?f1, . . . , fk4, and
B $ ?b1, . . . , bm4. Let bh def

$ floor= #B#
2 0. Using the same arguments of generality as in the proof

of Theorem 7.4.2, we assume that G does not contain any self loops, i.e. edges f such that
s=f0 $ t=f0, and that n , 1.

110



7.4. Language Inclusion Problem and Complexity Results

For this proof, we will use the same method to encode Hamiltonian cycles of directed graphs
into event structures as in the proof of Theorem 7.4.2. Therefore, the first step of our reduction
is to encode G as a directed graph 8G $ =V, 8F 0 with 8F def

$ ? 8f, 8f < f $ =u, v0 - F # 8f $ Au, v;# 8f $Av, u;4, where =u, v0 and Au, v; denote undirected, respectively directed, edges between vertices
u and v. A self loop-free graph G has an undirected Hamiltonian cycle if and only if 8G has a
directed Hamiltonian cycle. Intuitively this is true, because we introduce for each undirected
edge an edge in each direction that connect the vertices in either direction, just as the undirected
edge does.

We provide ?ε, x, y, lb1, . . . , lbm4-labeled event structures 7G,B
1 $ AE1,/1, #1, h1; and 7G,B

2
def
$

AE2,/2, #2, h2; such that <5 <, <7G,B
1 < def

$ <E1<, and <7G,B
2 < def

$ <E2< are polynomial in <G< def
$ <V <2<F <

and G, B has a DHC if and only if '=7G,B
1 0 ' '=7G,B

2 0. X% denotes the transitive closure of
relation X .

We define the components of 7G,B
1 as follows, where #i

1 denotes immediate conflicts:

E1
def
$ ?>4 1 n

!
i!1

?evi4 1 m

!
i!1

?eini, eDi, eouti4
/1

def
$ 6?=>, ev104 1 n

!
i!2

?=evi(1, evi04 1 m

!
i!1

?=>, eini0, =>, eouti0, =eini, eDi04,%

#i
1

def
$

m

!
i!1

?=eini, eouti04

h1=e0 def
$

1((((((()(((((((-

x for e - ?ev1, . . . , evn4
lbi for e $ eini

y for e - ?eD1, . . . , eDm4
ε otherwise

For the definition of 7G,B
2 , we make use of the event structure 7G encoding all Hamiltonian

cycles in 8G defined in the proof of Theorem 7.4.2 and embed it into 7G,B
2 using a new root event

es - E2:

EHC def
$

n

!
j!1

:?ef,j < f - 8F4 1 ?ef,f ),j < f, f * - 8F # t=f0 $ s=f *04.
/HC def

$
n

!
j!1

:?=es, ef,j0 < f - 8F4 1 ?=ef,j , ef,f ),j0, =ef ),su"j%, ef,f ),j0 < ef,f ),j - EHC4.
#HC def

$
n

!
j!1

3 n

!
i!1,i)j

6?=ef,j , ef,i0 < f - 8F4 1 ?=ef,j , ef ),i0 < f, f * - 8F # f & f * # t=f0 $ t=f *04,
1 ?=ef,j , ef ),j0 < f, f * - 8F # f & f *4&

111



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

Finally, we define the components of 7G,B
2 as follows, where #i

2 denotes immediate conflicts:

E2
def
$?>, es4 1 n

!
i!1

?evi4 1 m

!
i!1

?eini, eouti, eDi, efix i(14 1EHC

/2
def
$6?=>, es0, =>, ev10, =>, efix00, =>, eD104 1 n

!
i!2

?=evi(1, evi04 1 m

!
i!1

?=>, eini0, =>, eouti04
1

m(1
!
i!1

?=eDi, efix i0, =eDi, eDi%1041 /HC ,%

#i
2

def
$?=es, ev104 1 m

!
i!1

?=eini, eouti0, =eDi, efix i(104 1 bh
!
i!1

?=efix i, ev10 1#HC41
m

!
i!1

n

!
j!1

?=eini, e $fi,j
0, =eini, e $fi,j

04

h2=e0 def
$

1(((((((((()((((((((((-

x for e $ ef,f ),j - E2 for some f, f * - F and j - 71, n/
x for e - ?ev1, . . . , evn4
y for e - ?eD1, . . . , eDm4
lbi for e $ eini

ε otherwise

7G,B
1 and 7G,B

2 are presented in Figure 7.5 as a visual aid for this proof. From the definition
of 7G,B

1 and 7G,B
2 , we can immediately see that the reduction is polynomial. Notice that the

causality and the conflict relation, as well as the number of edges of the graph is always at most
quadratic in the number of events and vertices in G.

Both event structures 7G,B
1 and 7G,B

2 encode subsets D of B. In particular, every word w -

'=7G,B
1 0 1'=7G,B

2 0 encodes a subset D=w0 def
$ ?bi < lbi - w4 of B.

Consider an arbitrary word w - '=7G,B
1 0. We first gather some properties of its symbols and

then proceed to show under which condition w - '=7G,B
2 0 holds. Firstly, w must contain the

symbol x exactly <V < times due to events evi. Secondly, every event eini of 71 causes an event
eDi with label y. Therefore, w - '=7G,B

1 0 encodes the cardinality of D=w0 by the number of y
symbols in w. Finally, since all events evi are concurrent to all events einj and all events einj

are pairwise concurrent, symbols lbi and x can appear in any permutation.

To show under which conditions w - '=7G,B
2 0 holds, we distinguish whether y occurs in w more

often or less or equal than bh times.

Firstly, consider the case that w contains the symbol y more often than bh. That is, w encodes
D=w0 with <D=w0< , bh. Since DHC does not require the existence of a Hamiltonian cycle in
GD"w%, the word should be contained in '=7G,B

2 0 for any graph G. Consider the set of events

CD"w%
def
$ ?>4 1 ?einj < bj - D=w04 1 ?eoutj < bj . D=w04 1 5efix #D"w%#+ 1 ?ev1, . . . , evn4.

The set is a maximal configuration, since efix #D"w%# is not in conflict with ev1, due to <D=w0< ,
112



7.5. Deciding Language Inclusion

bh. Furthermore, w - '=CD"w%0 because the y-labeled events eDi are pairwise concurrent
with the x-labeled events ?ev1, . . . , evn4 which are in turn pairwise concurrent with the lbi-
labeled ?einj < bj - D=w04 events. Furthermore, the lbi-labeled events ?einj < bj - D=w04
are pairwise concurrent to each other. Therefore, '=CD"w%0 includes exactly all permutations
of these symbols, in particular w - '=CD"w%0. In summary, for words w which encode D=w0,
such that <D=w0< , bh, we have w - '=7G,B

2 0.

Secondly, consider the converse case that w encodes a set D=w0 with <D=w0< * bh. Any max-
imal configuration CD"w% such that w - '=CD"w%0 must include events ?>4 1 ?einj < bj -

D=w04 1 ?eoutj < bj . D=w04 1 5efix #D"w%#+.
In contrast to the first case, the event ev1 is in conflict with efix #D"w%#, because <D=w0< * bh.
However, the event es is not in conflict with efix #D"w%#. Hamiltonian cycles are encoded in the
sub-event structure following es, which can be seen by the arguments presented in the proof of
Theorem 7.4.2. However, due to conflicts of events eini with e $fi,j

and e $f i,j
, only events e $f,j and

e $f,j can be included in CD"w% with f . D=w0, i.e. edges of the graph GD"w%. Thus, analogous
to the proof of Theorem 7.4.2, CD"w% include <V < x-labeled events if and only if GD"w% has a
Hamiltonian cycle.

In summary, for a word w - '=710, we have w - '=720 if and only if <D=w0< , bh or <D=w0< *
bh and GD"w% contains a Hamiltonian cycle. Furthermore, for every D ' B, there is a word
w - '=710, such that D $ D=w0.

Therefore, we get '=7G,B
1 0 ' '=7G,B

2 0 if and only if G and B satisfy DHC.

Example 7.4.1. Consider the graph shown in Figure 7.6a. The graph and the set of edges?b1, b24 form a dynamic Hamiltonian cycle.

Figures 7.7 and 7.8 show the event structures 71 and 72 constructed according to the reduction
in the proof of Theorem 7.4.4 on this example graph.

The bold events in Figures 7.7 and 7.8 show the configurations that correspond to the Hamilto-
nian cycle that can be obtained when b2 is removed. The configuration where b1 is removed is
similar.

The remaining cases are removing none or both of b1 and b2. In the case that both are removed,
the number of y labels is 2 and therefore eD2 has to be part of the configuration, enabling
ev1, . . . , ev4 to generate 4 times x. In case no bi is removed, the same configuration as in Fig-
ure 7.8 can be used to show existence of a Hamiltonian cycle with small changes to accommodate
for the different number of y and the non-existence of lb2.

7.5 Deciding Language Inclusion

In this section, we introduce a decision algorithm for the FLES language inclusion problem. Fur-
thermore, we provide a language preserving translation of event structures into non-deterministic

113



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

(a) A graph with a dynamic Hamil-
tonian cycle.

(b) A cycle without in2. (c) A cycle without in1.

Figure 7.6: An example demonstrating the dynamic Hamiltonian cycle problem.

>

ev1
x

ev2
x

ev3
x

ev4
x

ein1

lb1

eD1

y

eout1

ein2

lbm

eD2

y

eout2

Figure 7.7: An example event structure 71.

finite automata (NFAs), which allows us to compare our algorithm to NFA language inclusion.
In the following presentation of the algorithms, we assume that the causality relations and la-
beling functions of configurations Ci for i - ?1, 24 are implicitly given by its event structure
interpretation over 7i. We start by introducing necessary concepts for our decision algorithm.

ε-free configurations

For every configuration C, there is a configuration with the same language whose only ε-labeled
event is >. This ε-free configuration can be obtained simply by removing all ε-labeled events
besides > from its corresponding event structure, in particular from C and /&C"C . The resulting
ε-free configuration has the same language as the initial configuration, because the causality re-
lation is transitive. Furthermore, ε-labeled events do not modify the words and thus removing
them does not influence the language of the configuration. Therefore, in order to improve read-
ability, from hereon we assume without loss of generality that configurations are ε-free. We keep
the > event to improve readability, even though for our purpose this event is not required nei-
ther. Note that ε-labeled events are needed during the construction phase of the event structure
representing to represent internal transitions.

114



7.5. Deciding Language Inclusion

>

ein1

lb1
eout1

ε

ein2

lb2
eout2

es

ev1v2,1 ev2v4,2 ev3v4,3 ev4v3,3 ev3v1,4 ev2v3,1 ev3v2,1 . . .

ev1v2,v2v4,1
x

ev2v4,v4v3,2
x

ev4v3,v3v1,3
x

ev3v1,v1v2,4
x

ev1
x

ev2
x

ev3
x

ev4
x

eD1
y

eD2
y

efix0 efix1

For space reasons only selected events of the form ef,i and ef,f ),i are drawn. For clarity we name
the edges 8f and 8f by the vertices they connect, e.g. v1v2 and v2v1.

Figure 7.8: An example event structure 72.

>
ε

e1
A

e2
B

e3
A

(a) Structure 1

>
ε

e4
A

e5
B

e6
A

(b) Structure 2

>
ε

e7
A

e8
B

e9
A

(c) Structure 3
Figure 7.9: Necessary and sufficient embeddings.
ϕ 3 >- >; e1 - e4; e2 - e5; e3 - e6 is a necessary embedding (dotted arrows).
ϕ 3 >- >; e7 - e4; e8 - e5; e9 - e6 is a sufficient embedding (dash-dotted arrows).

Embeddings

An embedding is a structure-preserving one-to-one mapping between events of two configura-
tions from different event structures. We consider two different types of embeddings that vary
in their strictness in terms of structure preservation. Since embeddings are defined between con-
figurations, conflicts do not play a role in these considerations. In order to use these embeddings

115



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

for deciding language inclusion between two FLES, we assume that in a step prior to searching
for embeddings, the maximal configurations of both 71 and 72 are computed. During the con-
struction of event structures from action systems, described in Section 7.2.2, we immediately
obtain a maximal configuration once it can not be extended anymore. For given event structures,
the maximal configurations can be computed with the unfolding-based partial order reduction
algorithm given in [RSSK15].

In the following we consider two configurations C1 and C2 of two 5 -labeled FLES 71 $ AE1,/1
, #1, h1; respectively 72 $ AE2,/2, #2, h2;.
Definition 7.5.1 (Necessary Embedding). A mapping ϕ 3 C1 2 C2 is a necessary embedding if
A) ϕ is bijective, B) )e - C1 3 h1=e0 $ h2=ϕ=e00, and C) )e - C1 3 8:e=/1 1 /

ϕ
2 0%e., where .%

denotes transitive closure and /
ϕ
2 denotes the relation /2 mapped to the events of C1. Formally

/
ϕ
2

def
$ ?=ϕ(1=e10, ϕ(1=e200 < 'e1, e2 - C2. e1 /2 e24. For a necessary embedding ϕ from C1 to

C2, we write C1 0
ϕ
N C2. We write C1 0N C2 if there exists a necessary embedding ϕ such

that C1 0
ϕ
N C2.

A necessary embedding implies that the two configurations have a common word, by requiring
they have the same number of events with the same labels and that their partial orders are not con-
tradicting each other. Note that the relation 0N is symmetric, since for a necessary embedding
ϕ 3 C1 2 C2, ϕ(1 is a necessary embedding from C2 onto C1

Example 7.5.1. Consider the configurations in Figures 7.9a and 7.9b. There are only two label-
preserving bijections between the configurations: ϕ1 3 > - >; e1 - e6; e2 - e5; e3 - e4 and
ϕ2 3 >- >; e1 - e4; e2 - e5; e3 - e6.

The mapping ϕ1 is not a necessary embedding, since e2=/1 1 /
ϕ
2 0e2, which violates C). To

see this, consider the chain of events e2 /1 e3 /
ϕ
2 e2, where e3 $ ϕ(1=e40, e2 $ ϕ(1=e50, and

e4 /2 e5. In contrast, ϕ2 is a necessary embedding and a witness to the common word ABA of
both configurations.

Lemma 7.5.1. Let C1 and C2 be maximal configuration of FLES 71 respectively 72.
C1 0N C2 if and only if '=C10 .'=C20 & 9.

Proof. )3 There is a label preserving bijection ϕ, such that /1 1 /
ϕ
2 is a partial order. Thus,

via a depth first search over the events of C1 with the order /1 1 /
ϕ
2 , we can find a sequence of

events Ae1, . . . , en;, such that ej=/1 1 /
ϕ
2 0ei implies j / i. It follows that ej /1 ei implies j / i,

i.e. Ae1, . . . , en; - T =C10. Likewise it is the case that ej=/ϕ
2 0ei implies j / i and by the definition

of /ϕ, we get ϕ=ej0 /2 ϕ=ei0, i.e. ϕ=Ae1, . . . , en;0 - T =C20. Since ϕ is label-preserving, w
def
$

h=Ae1, . . . , en;0 $ h=ϕ=Ae1, . . . , en;00, which implies w - '=C10 and w - '=C20.

#3 Let t1 $ Ae1, . . . , en; and t2 $ Ae*1, . . . , e*n; be traces of C1 and C2 respectively, such that
h=t10 $ h=t20 - '=C10.'=C20. We show that the mapping ϕ 3 ei - e*i is a necessary embedding.
Clearly ϕ is bijective and label-preserving. We need to show )e - C1 3 8e=/1 1 /

ϕ
2 0e. Assume

the contrary, i.e. 'e - C1 3 e=/1 1 /
ϕ
2 0e. In order to close the cycle and since /1 and /2 are order

116



7.5. Deciding Language Inclusion

relations, there must exist an event e* - C1, such that e* /1 e and e /
ϕ
2 e*, i.e. ϕ=e0 /2 ϕ=e*0.

This implies, that for all t - T =C10 we have that e* appears earlier than e and all traces t - T =C20
are such that ϕ=e0 appears earlier than ϕ=e*0. This is a contradiction to t1 - T =C10, t2 - T =C20
and t2 $ ϕ=t10.

The following corollary gives rise to a termination criterion of the decision algorithm. If we find
a configuration C in 71, such that there exists no configuration in 72 that shares a word with C,
we can abort the search and report non-inclusion.

Corollary 7.5.1. Let C, C1, . . . , Cn be configurations such that C & 9. If =)i $ 1, . . . , n 3

Ci "N C0 then '=C0 ! "n
i!1'=Ci0.

The second type of embedding has a stronger requirement on structure preservation. Intuitively,
it requires that the source of such an embedding is at least as strict in terms of causality as the
target.

Definition 7.5.2 (Sufficient Embedding). A mapping ϕ 3 C1 2 C2 is a sufficient embedding if
A) ϕ is bijective, B) )e - C1 3 h1=e0 $ h2=ϕ=e00, and C) )e1, e2 - C1 3 ϕ=e10 /2 ϕ=e20 3)
e1 /1 e2. If there exists a sufficient embedding ϕ from C1 to C2, we write C1 �ϕ

S C2. We write
C1 �S C2 if there exists sufficient embedding ϕ, such that C1 �ϕ

S C2.

A sufficient embedding is a witness to language inclusion between configurations. The reason
to work with two kinds of embeddings is that we can construct necessary embeddings using a
backtracking algorithm. It is easy to check whether a necessary embedding is also sufficient,
whereas it is not straight forward to construct a sufficient embedding from scratch.

Example 7.5.2. Consider the configurations in Figures 7.9b and 7.9c. The mapping ϕ1 3 > -
>; e7 - e4; e8 - e5; e9 - e6 is a sufficient embedding. The only non-trivial causality to check
is e4 /2 e5, for which we have ϕ(1

1 =e40 $ e7 /3 e8 $ ϕ(1
1 =e50. In contrast, ϕ2 3 > - >; e7 -

e6; e8 - e5; e9 - e4 is not a sufficient embedding, since in this case e4 /2 e5 and ϕ(1
1 =e40 $

e9 )3 e8 $ ϕ(1
1 =e50. This shows that the language of the event structure in Figure 7.9c is included

in language of the event structure in Figure 7.9b.

The following Lemma provides a connection between sufficient embeddings and language inclu-
sion. In case there exists a sufficient embedding, the respective languages are included.

Lemma 7.5.2. Let C1 and C2 be maximal configurations of FLES 71 and 72 respectively. If
C1 �S C2 then '=C10 ' '=C20.

Proof. We show the claim by induction on <C1< $ <C2< $ n.

In the base case we have C1 $ ?>4 and C2 $ ?>4. For these configurations the claim is trivially
fulfilled.

Let the induction hypothesis be that the claim holds for all configurations of size n.

117



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

Assume that C1 and C2 are configurations of size n21, such that C1 �ϕ
S C2. We show T =C10 '

ϕ=T =C200. Since ϕ is bijective and label-preserving, T =C10 ' ϕ=T =C200 is equivalent to
'=C10 ' '=C20.

Let t $ Ae1, . . . , en%1; - T =C10. We need to show that ϕ=t0 - T =C20.

Since en%1 is the last event of a trace and we consider only traces that include all events of the
configuration, clearly en%1 is maximal in C1. According to Lemmas 7.5.6 and 7.5.7, we have
that C1 4 ?en%14 and C2 4 ?ϕ=en%104 are configurations of size n. Furthermore, ϕ restricted to
C14?en%14 is a witness for C14?en%14 �S C24?ϕ=en%104. From the induction hypothesis we
get ϕ=Ae1, . . . , en;0 - T =C2 4 ?ϕ=en%1040. Since ϕ=en%10 is maximal in C2, from Lemma 7.5.7
follows ϕ=Ae1, . . . , en, en%1;0 - T =C20.

The converse statement is not always true. To see this, consider a configuration C1 $ ?>, e1, e*14
such that e1 and e*1 are concurrent and h=e10 $ h=e*10 $ A. Furthermore, consider a configura-
tion C2 $ ?>, e2, e*24 such that e2 and e*2 are sequential and h=e20 $ h=e*20 $ A. Clearly, the
configurations have the same language ?AA4. However, there is no sufficient embedding from
C1 to C2.

Our decision algorithm performs an additional refinement step in such a case and concludes
language inclusion only after checking the refined configurations. In Lemma 7.5.3, we show
that in the case of unique labels, the converse statement also holds.

Splits

Our language inclusion decision algorithm continuously performs configuration refinement steps
that we call splits. To be precise, we refine the causality relation of its corresponding event
structure.

Definition 7.5.3 (Split). Let C be a configuration of event structure AE,/, #, h; and let e1, e2 -

C be two concurrent events. The split of C on e1 before e2 is the configuration Ce10e2
def
$ AC, =/

1?=e1, e2040%&C"C ,9, h&C; where .% denotes transitive closure.

A split on two concurrent events e1 and e2 simply adds an additional ordering constraint between
the two events. In our algorithm, we always split both ways, creating two new configurations that
order concurrent events e1 and e2 one way and the other. Note that in order to avoid duplication
of events, in practice splits can be implemented via additional, optional causalities on the event
structure. The following lemma states that splitting a configuration in both ways produces two
new configurations with languages whose union is the original language.

Lemma 7.5.3. Let C be a configuration and e1, e2 - C be concurrent events, then the languages
of the split configurations are such that '=C0 $ '=Ce10e20 1 '=Ce20e10. If h is injective
(labels are unique), then '=Ce10e20 . '=Ce20e10 $ 9.

Proof. '=C0 $ '=Ce10e20 1 '=Ce20e10 is a direct consequence of Lemma 7.5.10 and the def-
inition of the language of prime event structures. If h is injective, i.e. labels are unique, then

118



7.5. Deciding Language Inclusion

each word in '=Ce10e20 contains the sub sequence . . . h=e10 . . . h=e20 . . . whereas each word in
'=Ce20e10 contains the different sub sequence . . . h=e20 . . . h=e10 . . ., which shows that no word
can be part of both languages.

The following lemma guarantees progress of our algorithm. It states that if we find a necessary,
but not sufficient embedding, there are events that can be used to split C1. The goal is that after
a finite number of splits a sufficient embedding can be established.

Lemma 7.5.4. Let C1, C2 be maximal configurations of FLES 71 respectively 72. Furthermore,
let C1 0

ϕ
N C2 and C1 %

ϕ
S C2. Then there are concurrent events e, e* - C1 such that ϕ=e0 /2 ϕ=e*0.

Proof. Since ϕ is a label-preserving bijection, from C1 %
ϕ
S C2 it follows that there are events

e, e* - C, such that ϕ=e0 /2 ϕ=e*0 and e )1 e*. Towards contradiction assume e* /1 e. Then we
have e*=/1 1 /

ϕ
2 0e*, which is a contradiction to ϕ being a necessary embedding. Since C1 and

C2 are conflict-free it follows that e, e* are concurrent and a witness to the claim.

In the following, we prove properties of labeled event structures and embeddings that we use to
show the correctness of our approach.

Lemma 7.5.5. Let C be a configuration. <T =C0< $ 1 if and only if <C < $ 1 or for all events
e, e* - C either =e / e*0 or =e* / e0.

Proof. The claim is trivial for <C < $ 1.

)3 Let T =C0 $ ?Ae1, . . . , en;4. Since Ae2, e1, . . . , en; . T =C0, we have that e1 / e2. Likewise,
we can show that ei / ei%1 for all i - 71, n 7 1/. Therefore, ei / ej for i / j. Since C $?e1, . . . , en4 have shown the claim.

#3 Since / is irreflexive, we immediately get that <T =C0< , 0. From the definition of T =C0
follows that e / e* then e appears earlier in any trace in T =C0 than e*. Since we assume that
every pair of events is ordered by /, we have that the order in any trace is fully fixed. In other
words, there can only be a single trace.

Corollary 7.5.2. <T =C0< , 1 if and only if there are concurrent events e, e* - C.

Lemma 7.5.6. Let C1 and C2 be configurations such that C1 �ϕ
S C2. If e is maximal in C1

then ϕ=e0 is maximal in C2.

Proof. Assume there exists e*, such that ϕ=e0 /2 ϕ=e*0. Since ϕ is a sufficient embedding, we
have that e /1 e*, which is a contradiction to e being maximal in C1. Therefore, no such e* exists.
Since ϕ is bijective, ϕ=e0 is maximal in C2.

Lemma 7.5.7. Let e be maximal in configuration C, then C 4 ?e4 is a configuration and for
every Ae1, . . . , en; - T =C 4 ?e40 it is the case that Ae1, . . . , en, e; - T =C0.

119



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

Proof. C 4 ?e4 is conflict free, because C is conflict free. C 4 ?e4 is left closed, because e is
maximal, therefore there is no event e* such that e / e*. Note that traces in T =.0 contain all events
of the configuration. Therefore, from Ae1, . . . , en; - T =C 4 ?e40 follows ?e1, . . . , en, e4 $ C.
Furthermore, for every e* - C, such that e* / e, we have that e* - ?e1, . . . , en4, which impliesAe1, . . . , en, e; - T =C0.

Lemma 7.5.8. Let C be a configuration. Ae1, . . . , en; - T =C0 implies that en is maximal in C.

Proof. Assume en is not maximal, i.e. there exists j - 71, n 7 1/ such that en / ej , which is a
contradiction to Ae1, . . . , en; - T =C0.

Lemma 7.5.9. Let C1 and C2 be maximal configuration of FLES 71 and 72 and for every e1 - C1
and e2 - C2 it is the case that <?e - C1 < h=e10 $ h=e04< $ 1 and <?e - C2 < h=e20 $ h=e04< $ 1
If '=C10 ' '=C20 then C1 �S C2.

Proof. We show the claim by induction on <C1< $ <C2< $ n.

In the base case we have C1 $ ?>4 and C2 $ ?>4. For these configurations the claim is trivially
fulfilled.

Let the induction hypothesis be that the claim holds for all configurations of size n.

Let en%1 be a maximal event of C1. Let Men'1
def
$ ?e - C2 < e is maximal and h=en%10 $ h=e04.

We start by showing 'e - Men'1 , such that '=C1 4 ?en%140 ' '=C2 4 ?e40.

Assume the contrary. That is, for every maximal event e - Men'1 it is the case that '=C1 4?en%140 ! '=C24?e40. Then '=C14?en%140 ! "e.Men'1
'=C24?e40. That is, there is a word

w - '=C1 4 ?en%140 such that w . "e.Men'1
'=C2 4 ?e40. Since en%1 is maximal w 6h=en%10 -

'=C10 (6 denotes concatenation). Let us define language ', def
$ "e.Men'1

'=C24?e406h=en%10
(6 is applied element-wise). Clearly, w 6 h=en%10 . ',.
We claim that no word in '=C20 4 ', ends with h=en%10. Assume there is such a word w*.
This word corresponds to a trace ending with some event e* with label h=en%10. Since e* is
the last event in a trace, and we only consider maximal configurations, it needs to be maximal.
Therefore, e* - Men'1 , which is a contradiction to w* - '=C20 4 ',. Since w 6 h=en%10 ends
with h=en%10, we have w 6 h=en%10 . '=C20 4',.
However, clearly '=C20 $ ', $ ='=C20 4 ',0. In summary, we found w 6 h=en%10 - '=C10
such that w 6 h=en%10 . '=C20, which is a contradiction to '=C10 ' '=C20.

Therefore, we can apply the induction hypothesis to C1 4 ?en%14 and C2 4 ?e4 for the existing
e - Men'1 . That is, C1 4 ?en%14 �ϕ

S C2 4 ?e4. We extend ϕ to C1 by setting ϕ=en%10 def
$ e.

Clearly, ϕ is bijective and label-preserving. Furthermore, causality preservation for events other
than en%1 carries over from C1 4 ?en%14 to C1. What remains to show is that for all e - C
with ϕ=e0 / ϕ=en%10 we have e / en%1. Since en%1 is maximal, clearly it is not the case that

120



7.5. Deciding Language Inclusion

en%1 / e. Assume that e and en%1 are concurrent. Then there is a word, in which h=en%10
appears earlier than h=e0. Since events are uniquely labeled and ϕ=e0 / ϕ=en%10, this word
is not in '=720, which is a contradiction to '=710 ' '=720. Therefore, e / en%1 and ϕ is a
sufficient embedding.

Lemma 7.5.10. Let C be a configuration and e1, e2 - C be concurrent events, then T =C0 $

T =7C
e10e20 1 T =7C

e20e10 and T =7C
e10e20 . T =7C

e20e10 $ 9.

Proof. From t - T =Ce10e20 directly follows t - T =C0, since there is simply one less constraint
to fulfill. Thus, we have T =Ce10e20 ' T =C0. Symmetrically we can show T =Ce20e10 ' T =C0,
thus showing T =Ce10e20 1 T =Ce20e10 ' T =C0.

Let t $ Ae*1, . . . , e*n; - T =C0. There are i & j, such that e*i $ e1 and e*j $ e2. In the case
i / j, t fulfills all constraints to be a trace of Ce10e2 , thus t - T =Ce10e20. Likewise j / i implies
t - T =Ce20e10. In any case t - T =Ce10e201T =Ce20e10, showing T =C0 ' T =Ce10e201T =Ce20e10.

Further, the T =7C
e10e20 and T =7C

e20e10 are disjoint because no trace can fulfill both constraints
e1 / e2 and e2 / e1.

7.5.1 Language Inclusion Decision Algorithm

Algorithm 4: The language inclusion decision algorithm.
Input: Finite, labeled Prime Event Structures 71 and 72
Result: '=710 ' '=720

1 ?C1
1 , . . . , Cn

1 4,?C1
2 , . . . , Cm

2 40 all maximal configurations of 71 respectively 72
2 return .C1.)C1

1 ,...,Cn
1 * Check(C1,?C1

2 , . . . , Cm
2 4)

3 Function Check(C1, ?Ci1
2 , . . . , Cil

2 4):
Result: '=C10 ' "l

j!1'=Cij

2 0
4 Candidates 0 ?Ci1

2 , . . . , Cil
2 4

5 foreach C2 - ?Ci1
2 , . . . , Cil

2 4 do
6 if 'ϕ 3 C1 2 C2. C1 0

ϕ
N C2 then

7 return SufficientOrSplit(C1, C2, ϕ, Candidates)
8 else
9 Candidates0 Candidates 4 ?C24

10 return false < counter-example C1
11 Function SufficientOrSplit(C1, C2, ϕ, Candidates):
12 if C1 �ϕ

S C2 then
13 return true
14 Let e, e* - C1 be concurrent and ϕ=e0 /2 ϕ=e*0 < exists (Lemma 7.5.4)
15 return SufficientOrSplit(Ce0e) , C2, ϕ, Candidates) #

Check(Ce)0e, Candidates)

We present our decision algorithm in Algorithm 4. Inputs to the algorithm are finite, labeled
prime event structures 71 and 72.

121



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

The first step of the algorithm is to calculate the maximal configurations of the event structure,
which can be done with the algorithm described in [RSSK15]. For every maximal configuration
C1 of 71, the function Check attempts to show that '=C10 + '=720 by searching for sufficient
embeddings from (refined versions of) C1 to maximal configurations of 72.

In order to construct candidate sufficient embeddings, in Line 6 the algorithm attempts to con-
struct necessary embeddings, using Algorithm 5. Thereafter, function SufficientOrSplit
checks whether a necessary embedding ϕ is also sufficient. This can be done by checking
)e - C2 3 )e* - dsucc=e0 3 ϕ(1=e0 is not concurrent with ϕ(1=e*0. In case ϕ is not a sufficient
embedding, such a pair of events is guaranteed to exist by Lemma 7.5.4. For efficiency, this
check can already be done during construction of the necessary embedding.

In case ϕ is not sufficient, Lemma 7.5.4 guarantees the existence of a pair of concurrent events
that can be split. The resulting split configurations are recursively checked for language inclu-
sion in Line 15. Lemma 7.5.4 guarantees us that ϕ is a necessary embedding for one of the splits
(say Ce0e)). Therefore, for Ce0e) we do not need to construct a new necessary embedding again,
but can immediately check whether ϕ is a sufficient embedding for Ce0e) .

In case no necessary embedding can be found for some configuration C1 and its candidates,
according to Lemma 7.5.1, we can conclude '=C10.'=70 $ 9, i.e. all words in C1 are counter-
examples to language inclusion. Once Line 10 is reached, we know that C1 does not share any
word with any ?C1

2 , . . . , Cm
2 4. Therefore, C1 is a counter-example to language inclusion.

The algorithm terminates, because the notions of necessary and sufficient embedding collapse in
case the configuration contains only a single trace, which is the case when the causality relation
is a total order on the events of the configuration (see Lemma 7.5.5).

As the algorithm recursively searches for sufficient embeddings, for efficiency, we can reduce
the set of candidate configurations, because in case there is no necessary embedding between
two configurations, there is clearly also no necessary embedding between any of their split con-
figurations.

We present the algorithm to construct necessary embeddings in Algorithm 5. Intuitively, the
algorithm is a combined depth first search over the causality relation, as well as the space of
possible bijective, label-preserving mappings.

The algorithm starts by dismissing configurations that can never have a necessary embedding
because the number of events with the same label differs (Line 1). The actual embedding is
established with the recursive function NecessaryEmbedding. The recursion maintains a
frontier of events that are yet to be explored and a partial mapping of already explored events.
It ends if the frontier becomes empty (Line 5). The exploration is done on C1 by adding the
successors of the current event e to the frontier (Line 8). Then for every event e** in C2 with
the same label as e a mapping ϕ* is created and a cycle check is performed. If this mapping
does not introduce a cycle we recurs on it (Line 13). The first valid (not None) mapping that
is constructed during the recursion is returned. If no such mapping is found, then None is
returned. The cycle check in Line 12 basically checks if the two causality relations /1 and /2
are compatible for the mapped events, in the sense that the events can be brought in an order

122



7.5. Deciding Language Inclusion

Algorithm 5: The 0N decision algorithm.
Input: Configurations C1, C2
Result: ϕ 3 C1 2 C2 if C1 0

ϕ
N C2, None otherwise

1 if 'x - 5 . <?e - C1 < h1=e0 $ x4< & <?e - C2 < h2=e0 $ x4< then
2 return false
3 return NecessaryEmbedding(?>14,?>1 - >24)
4 NecessaryEmbedding(frontier , ϕ):

Input: frontier stack of events C1
Input: ϕ 3 C1 2 C2 (partial mapping)
Result: ϕ 3 E1 2 E2 if C1 0

ϕ
N C2, None otherwise

5 if frontier $ 9 then
6 return ϕ
7 e0 frontier .pop=0
8 foreach e* - dsucc"C1 =e0 do < direct successors of e in C1
9 frontier .push=e*0

10 foreach e** - C2 such that h1=e0 $ h2=e**0 # e** . range=ϕ0 do
11 ϕ* 0 ϕ 1 ?e- e**4
12 if %e1, e2 - E1. e1 /1 e2 # ϕ*=e20 /2 ϕ*=e10 then < check for cycle
13 ϕ** 0 NecessaryEmbedding(frontier , ϕ*)
14 if ϕ** & None then
15 return ϕ**

16 return None

that respects both causality relations. The procedure can be implemented using any of the well
known cycle detection algorithms over the graph with nodes being events of C1 and edges being
causalities /1 1 /

ϕ
2 .

The worst-case runtime of the decision algorithm is exponential in O=22n0, where n $ <E1<2<E2<,
which is not surprising for an algorithm solving a Πp

2 hard problem. There are two dominant
factors of the exponential complexity.

First, the number of maximal configurations can be exponential in n and Algorithm 4 potentially
has to compare all pairs of maximal configurations. The CCNFS benchmark in Section 7.6 is an
example for an event structure with an exponential number of maximal configurations in n.

Second, the number of mappings between configurations that need to be considered as candi-
dates for necessary embeddings can be exponential in n. That is, Algorithm 5 has worst case
runtime exponential in n. Note that for a fixed mapping, the algorithm performs a linear search
over the configuration and the combined causality relation. Furthermore, note that the number
of possible embeddings decreases with the number of calls to Check and the size of maximal
configurations decreases relative to n with the number of maximal configurations. Therefore,
the amortized runtime should be much better than the worst case complexity.

123



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

7.5.2 Automaton Based Language Inclusion

We provide a language preserving encoding of event structures into non-deterministic finite au-
tomata (NFA). The encoding allows us to compare our algorithm to well researched language
inclusion algorithms in our evaluation (Section 7.6).

The encoding has a state for every configuration of the event structure. There is a transition
between two states, if the difference between the corresponding configurations is just one event.
The transition is labeled with the label of that event. In essence, the encoding is an automa-
ton representation of what is known as the configuration structure of a prime event structure
[vGP09].

Definition 7.5.4 (Automaton Encoding). Let 7 $ AE,/, #, h; be a finite prime event structure
with labels 5 . We define the non-deterministic finite automaton % " $ AQ" , Ω" , δ" , q"0 , F "; as
Q" $ ?q"C < C is a configuration of 74, Ω" $ 5 , =q"C1

, σ, q"C2
0 - δ" iff there is e - E, such that

C1 1 ?e4 $ C2 and h=e0 $ σ, q"0
def
$ q")+*, and F " $ ?q"C < C is maximal4.

Lemma 7.5.11. Let 7 be a labeled, finite prime event structure, then '=70 $ '=% "0.

Proof. Given a trace 8e $ Ae1, . . . , en; we define C$e
l

def
$ 1l

i!1?ei4.

Let w - '=% "0, then by the definition of % " , there is a trace 8e $ Ae1, . . . , en; such that w $Ah=e10, . . . , h=en0;, such that for every l * n 3 C$e
l is a configuration and C$e

n is a maximal
configuration. Since all C$e

l are configurations, we have Ae1, . . . , en; - T =C$e
n0. Since C$e

n is
maximal, we have w - '=70.

Conversely, for every w - '=70, there is a trace 8e $ Ae1, . . . , en; such that w $ Ah=e10, . . . , h=en0;
and Ae1, . . . , en; - T =70. From 8e - T =70 follows that for every l * n 3 C$e

l is a configura-
tion and that C$e

n is maximal. By the definition of δ" , we have for every i $ 1, . . . , n 7 1 3=q"
C#e

i
, h=ei0, q"

C#e
i'1

0 - δ" . Since C$e
n is maximal, q"

C#e
n

is accepting. Therefore, w - '=Q"0.

The provided encoding is not optimal in general due to conflicts and the fact that events of prime
event structures are caused in a unique way, which is a well known caveat of prime event struc-
tures [Win88]. However, for the family of event structures that consists of the > event and n
concurrent events (c.f. the proof of Theorem 7.5.1), our encoding contains exactly 2n 2 1 states,
which is one state more than the provably optimal NFA accepting the language of the event struc-
ture. Furthermore, in our experiments, we apply optimized NFA reduction techniques [MC13]
before checking language inclusion on automata.

Theorem 7.5.1. There is a family of event structures 7n with events En, such that <En< $ n 2 1,<'=7n0< $ n!, and <Q" < $ 2n 2 1. Every NFA % with '=% 0 $ '=7n0 has at least 2n states.

Proof. The family is given by the5 -labeled prime event structures 7n
def
$ AEn,/n,9, hn;, where

5
def
$ ?ε4 1 ?1, . . . , n4, En

def
$ ?>4 1 ?e1, . . . , en4, /n

def
$ ?=>, ei0 < i $ 1, . . . , n4, and hn=ei0 def

$ i.
7n encodes exactly all permutations of ?1, . . . , n4. As shown in [EKSW05], no NFA with less

124



7.6. Experiments

than 2n states can accept the language of permutations of n symbols, showing that every% with
'=% 0 $ '=7n0 has at least 2n states.

Furthermore, the number of all permutations of n symbols is n!, showing that <'=7n0< $ n!.

Finally, every non-empty subset of En is a configuration. There are 2n 2 1 such sets, which
are all subsets of ?e1, . . . , en4 together with > plus the set ?>4. Since states of our encoding
correspond one-to-one with configurations, we have <Q" < $ 2n 2 1.

7.6 Experiments

We run two different experiments to evaluate event structure-based test case generation. Firstly,
we evaluate model exploration with unfolding-based partial order reduction by comparing it to
sequential successor computation. Secondly, we evaluate the language inclusion algorithm by
comparing it to automaton based language inclusion. Both experiments were performed on a
server that has an Intel(R) Xeon(R) CPU at 3.47GHz, 24 cores, and 189GB RAM. We start the
discussion of the experiments with a presentation of the used benchmarks.

7.6.1 Benchmarks

We use the following benchmarks for our experimental evaluation. The benchmark set demon-
strates the strong as well as the weak points of unfolding-based partial order reduction as well as
event structure-based language inclusion. Among the benchmark models used in the branching
search experiments, presented in Section 6.3, only MMS and LBT have significant concurrency
and are thus also used within this evaluation. All other benchmark models, scripts to instantiate
the models for any parameter value, and the version of MoMuT used in the experiments can be
found in [FTW19], which can be run with the virtual machine provided in [DJ19].

• The Paxosn,m,k benchmark models the Paxos distributed consensus protocol [L%01] with
n proposers, m acceptors, and k learners. The protocol specifies how the different actors
can exchange certain messages to achieve consensus on some proposed value. The actions
of the actors are largely independent of each other, which introduces lots of concurrency
to the model. Furthermore, test cases extracted from our method should be interesting to
concertize and run against implementations of the Paxos algorithm.

• The Semaphoren benchmark models n threads that are synchronized by a semaphore.
Exactly n 7 1 threads are allowed to enter and compute in a critical section at the same
time. The amount of parallelism of this model is proportional to n. Furthermore, the
model exhibits lots of conflicts, as all operations on the semaphore are in conflict with
each other.

• The ParSumn benchmark models a parallel summation algorithm. The sequence of inte-
gers 0, . . . , n271 is split into n equally sized chunks, which are summed up concurrently.
Then the partial results are summed up centrally when all parallel threads are finished.

125



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

• The CCNFSn benchmark models a system with n events and unique labels, such that
the 2i*th event is in conflict exactly with the 2i21*th event. Every set of independent
events induces an event resetting the state. This benchmark is interesting, because its
number of maximal configurations 2-n

2 ' (each configuration contains either 2i or 2i21 for
each i $ 1 . . . 'n

2 ") is exponential in the number of events n. Due to the high number of
maximal configurations, this benchmark is challenging for our algorithm.

• The AllParn benchmark models a system with n independent events and unique labels.
The benchmark is the ideal case for our algorithm, because its event structure consists of
only one maximal configuration with all events in parallel. In contrast, the benchmark is a
very bad case for NFA language inclusion, as the smallest NFA to encode all permutations
of n symbols is exponential in n (Theorem 7.5.1).

• The Sharingn,m benchmark models a system that has n different prefixes that all share the
same suffix of length m. The benchmark particularly exhibits the well known shortcoming
of prime event structures not being able to encode shared causes. The NFA is able to
express the common suffix more succinct in comparison to the event structure.

• MMS and LBT are industrial benchmarks, described in Section 6.3.

7.6.2 Event Structure Construction Experiment

In this experiment, we evaluate the unfolding-based partial order reduction algorithm for action
systems, as described in Section 7.2. To this end, we measure the time for construction- and
characteristics of- event structures created during test case generation via queries unfold=0, s0.
Furthermore, we compare the time for construction against the time for sequential successor
computation via queries vispath=0, s0.

Test case generation was performed with the test generation framework presented in Chapter 6
for 150 steps with a branch length of 15. We limit the time for vispath=0, s0 computations by
10 times the time to compute unfold=0, s0 or a minimum of 10 seconds. We report the results
of the experiment in Table 7.1, where <7 < denotes the size of the constructed event structure in
terms of number of events, PC denotes a measurement of the degree of concurrency (explained
in the following), unfold time (ms) denotes the time for constructing unfold=0, s0 for some
state s as described in Section 7.2 in milliseconds, and vispathΔ time denotes the ratio of time
for vispath=0, s0 and vispath=0, s0 computations (i.e. t"vispath"0,s%%

t"unfold"0,s%% ) on computations that did
not time out. For every column, we report the average (µ) and maximum (Max) measurement
over successor computations for states s reached by the test case generation run. In addition, in
the last column, we report the percentage of timed out vispath=0, s0 computations.

The concurrency measure PC for a single configuration C is defined as <C <*maxe.Cdepth=e0,
where depth=e0 denotes the longest paths of causalities between e and the initial event >. Highly
concurrent configurations have a broad structure in terms of causality and therefore a high PC co-
efficient, whereas for configurations that order events sequentially (i.e. <C < $ maxe.Cdepth=e0)
the PC coefficient is one. In Table 7.1 PC denotes the average coefficient of maximal configu-

126



7.6. Experiments

Name <7 < PC unfold time (ms) vispathΔ time
µ Max µ Max µ Max µ Max TO %

Paxos2,3,1 18.6 49 1.8 2.5 5.0 45.0 25.7 81.0 32.7
Paxos3,6,1 71.4 145 4.8 7.7 258.6 18752.0 0.3 1.0 95.3
Semaphore3 3.0 41 1.0 1.5 0.2 4.5 0.0 1.0 0.0
Semaphore11 13.4 16 1.1 1.2 2.3 5.1 0.1 1.0 0.0
ParSum3 19.0 21 2.3 2.3 2.3 3.0 1.4 2.0 0.0
ParSum5 38.0 38 3.8 3.8 21.6 25.0 49.6 61.0 0.0
ParSum10 322.3 550 8.3 8.3 915745.3 1189478.0 - - 100.0
CCNFS3 15.0 15 1.7 1.7 1.9 2.1 0.2 1.0 0.0
CCNFS6 77.0 77 2.7 2.7 28.7 33.0 0.3 1.0 0.0
CCNFS10 270.0 270 4.0 4.0 344.3 535.0 3.6 5.0 0.0
AllPar10 12.0 12 4.0 4.0 0.7 1.0 12.6 16.0 0.0
AllPar50 52.0 52 17.3 17.3 6.3 10.0 - - 100.0
AllPar500 502.0 502 167.3 167.3 581.6 632.0 - - 100.0
Sharing5,20 111.0 111 1.0 1.0 13.2 21.0 0.1 1.0 0.0
Sharing50,50 1014.0 1014 1.0 1.0 565.4 677.0 0.2 1.0 0.0
MMS 44.6 90 1.3 7.0 352.1 738.0 0.2 9.0 4.0
LBT 375.2 631 1.8 40.8 399550.9 467067.0 - - 100.0

Table 7.1: The experimental results for event structure construction.

rations of unfold=0, s0. Thus µ / Max PC denote an average over maximal configurations and
then an average / maximum over states.

Two key columns of this table are vispathΔ time and PC, which allow us to draw conclusions
on the strength of unfolding-based partial order reduction in relation to the degree of concur-
rency. A high value in either column in the vispathΔ time section indicates that unfolding-
based partial order reduction pays off on the example, since sequential successor state construc-
tion was slower or even timed out. Indeed many rows have a high value in either one of these
columns, which indicates that the method works well. Furthermore, for many rows there is a
100% timeout, which indicates that sequential successor state computation simply is not feasible
on these models due to an exponential explosion in the number of paths. However, benchmarks
Semaphore, CCNFS, and Sharing are partial outliers and show that visible successor state com-
putation can be faster, for which there are three explanations. Firstly, as discussed above, these
benchmarks were deliberately chosen as hard cases for unfolding-based partial order reduction.
Secondly, they are not highly concurrent, as can be seen on their low PC numbers. Thirdly,
they are not particularly large, as can be seen on their low <7 < and unfold time (ms) numbers.
Thus, the overhead of analyzing conflicts and structuring the successor state computation using
the unfolding-based partial order reduction algorithm given in [RSSK15] outweighs the benefit
of leveraging independence on these examples. However, as can be seen on the CCNFS10 row,
as soon as the model gets larger, this trend reverses and unfolding-based partial order reduction
starts paying off again.

LBT and ParSum10 are clearly the most computationally demanding benchmarks. Indeed the

127



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

Name Inclusion Non-Inclusion Inclusion Non-Inclusion
Time Num Time Num Time Num Time Num

Paxos2,3,1 - 0 45103 65 TO TO TO TO
Paxos3,6,1 - 0 45103 94 TO TO TO TO
Semaphore3 - 0 23.8 78 - 0 324.0 78
Semaphore11 3.5 2 48.9 84 - 0 564.2 80
ParSum3 1.1 80 170.5 92 35103 80 95103 84
ParSum5 342.0 84 67.6 94 TO TO TO TO
ParSum10 - 0 12.6 23 TO TO TO TO
CCNFS3 3.9 88 1.2 88 262.7 88 610.9 88
CCNFS6 501.8 108 84.0 65 379.7 108 15103 92
CCNFS10 3035103 98 175103 59050 TO TO TO TO
AllPar10 1.4 56 8.6 1025 105103 56 825103 144
AllPar50 3.2 44 93.3 144 TO TO TO TO
AllPar500 361.9 40 85103 156 TO TO TO TO
Sharing5,20 7.2 26 4 174 338.1 26 15103 174
Sharing50,50 25103 38 527.2 162 255.4 38 25103 162
MMS 21.5 286 3.3 129 TO TO TO TO
LBT 397.6 241 136.9 64 TO TO TO TO

Table 7.2: The experimental results for language inclusion checks
'=7A0 ' '=7B0 respectively '=% "A0 ' '=% "B0.

enormous LBT model was a key motivator for using partial order reduction during state space
exploration, since without such a technique it is hopeless to compute successor paths for this
model. While unfolding construction on these benchmarks takes significant time, these experi-
ments nevertheless demonstrate that unfolding-based partial order reduction scales to large prob-
lem instances. In conclusion, unfolding-based partial order reduction enables exploration of
complex and highly concurrent models. However, for small and sequential models, the method
introduces computational overhead.

7.6.3 Language Inclusion Experiment

In this experiment, we evaluate the language inclusion checking algorithm presented in Sec-
tion 7.5 by using it as the basis of the strong killcheck during mutation-driven test generation.
To this end, as described in Section 7.3, we check language inclusion between event structures
unfold=0, s0 and unfold=j, s0 for some mutant id j and state s. We compare our language
inclusion algorithm to automata based language inclusion by encoding event structures as non-
deterministic finite automata, as described in Section 7.5.2, and minimize the resulting automata
as well as check language inclusion for them using the tool RABIT [MC13].

We present the results of our experimental evaluation in Table 7.2. For every benchmark, we re-
port measurements of language inclusion checks for the largest event structure corresponding to
unfold=0, s0 for some action system state s of the respective model that is constructed during test

128



7.7. Related Work

case generation on the respective model. We report measurements of event structure based lan-
guage inclusion '=7A0 ' '=7B0 and automaton based language inclusion '=% "A0 ' '=% "B0.
We separate the results into the cases where language inclusion holds (Inclusion) respectively
does not hold (Non-Inclusion). Columns Num show the number of inclusion checks performed
on the respective event structure and with the respective language inclusion result. Columns
Time show the average time for the respective inclusion checks in milliseconds.

The reported time for language inclusion of event structures is the time for calculation of the
maximal configurations plus the time for the actual language inclusion check. The reported time
for language inclusion of automata is the time for the language inclusion check on a pre-reduced
automaton. The construction and minimization of the NFAs is not included.

The results show that our language inclusion algorithm performs well on models with a lot of
concurrency, i.e. those with high PC, as reported in Table 7.1. Furthermore, the automaton trans-
lation clearly fails in cases with lots of concurrency that are easy for our method (c.f. the AllPar
benchmark). For these examples our algorithm is very useful. This result is not surprising, since
our method exploits concurrency, whereas the NFA encoding does not include any notion of
concurrency. Nevertheless, the result demonstrates that the benefits of exploiting concurrency
with our method outweigh optimizations and fine-tuning of a well established language inclusion
algorithm that has no notion of concurrency.

However, as the Sharing benchmark shows, the inability of prime event structures to encode
shared causes of events is a limitation of the approach. In contrast, for such examples the au-
tomaton representation can be significantly more compact than the event structure representation,
rendering the automaton-based language inclusion superior.

Finally, our algorithm tends to be faster when there is no inclusion. This is not surprising, since
our algorithm can exit early as soon as we find a counter-example. Interestingly, for NFA-based
language inclusion it is exactly the opposite, where showing non-inclusion consistently takes
more time than showing inclusion.

7.7 Related Work

7.7.1 Partial Order Reduction-Based Testing

Partial order reduction (POR) is a method to efficiently explore concurrent systems, by circum-
venting exploration of paths that correspond to the same Mazurkiewicz traces as previously
explored paths. Traditionally, POR is used in model checking [God96, CGP99, CGMP99]. Dy-
namic partial order reduction (DPOR) [FG05] combines the basic POR idea with dynamic ex-
ecution and is thus sometimes referred to as a testing approach [TKL%12]. Typically DPOR is
performed over fixed input, thus we view this notion of testing as somewhat of a stretch of the
concept.

However, DPOR was combined with dynamic symbolic execution [GKS05], which continuously
executes a program and constructs new inputs that reach uncovered branches. This approach was
demonstrated on concurrent Java programs [SA06, KSH12, SKH12, KSH13, KSH15, KH18]

129



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

and concurrent C programs [SBR%20]. In particular, [SBR%20] leverage the event structure
unfolding semantics presented in [RSSK15, NRS%18], which we also used as basis to construct
event structure unfoldings from action systems. In contrast, unfoldings are directly used to do
testing of concurrent systems in [KSH12, KSH15, KH18].

In a similar fashion, [FHRV13] presents dynamic symbolic execution for multi-threaded C pro-
grams, where in contrast to partial order semantics, interference scenarios are automatically
identified that subsume behaviorally equivalent interleavings of multi-threaded programs.

A transfer of the idea to combine dynamic symbolic execution with partial order semantics to our
domain is interesting future work. However, there are significant challenges, such as establishing
dynamic symbolic execution for reactive systems and combining these techniques with mutation
killing.

7.7.2 Event Structures

Prime event structures are a widely used formalism to express concurrency of discrete systems
[Win88] that can be obtained from transition systems via the method presented in [RSSK15], or
its extended version in [NRS%18]. There are multiple other variants of event structures, such as
stable event structures [Win88] and flow event structures [Bou90]. Studying language inclusion
for these event structure variants is interesting future work.

Event structure containment based on causality and conflict refinement is considered in [Win88,
Win16]. However, as we demonstrate in our work, causality preservation is not necessary for
language inclusion. In [vGG89, VGG01] equivalence of event structures under action refinement
is investigated. This line of research is orthogonal to our approach, as it considers refinement
of event structures, while we compare event structures that can be obtained in multiple different
ways. Moreover, there is almost never language inclusion between an event structure and the
event structure with refined actions by design.

Model checking over particular types of event structures has been studied in [Pen97] for event
structures labeled with atomic propositions and in [Mad03] for event structures labeled with
trace languages. However, the proposed model checking methods are not based on language
inclusion, which is one of the interesting future directions for our research. Instead, formulas are
directly interpreted over the event structure. In [EH08] model checking of Petri net unfoldings
is discussed in detail. In particular, several SAT encodings of interesting problems, such as
reachability and deadlock freedom, over event structures are presented. These encodings could
not only provide an alternative proof of the NP-completeness of language membership to the
one presented in this paper, but also a potential solution for language inclusion via an encoding
of event structure semantics into quantified Boolean formulas.

7.7.3 Trace Theory

Several formalisms to express concurrency of discrete systems have been proposed and their
relationships have been worked out in [WN95]. In particular, trace languages and Petri nets

130



7.7. Related Work

are formalisms closely related to event structures, for which languages and language related
problems have been studied.

The theory of trace languages [Maz86, Maz95] studies closure of string languages under inde-
pendence relations. [ČCH%17] presents an efficient method to show trace language inclusion
over languages defined by non-deterministic finite automata.

In [DM97] decidability results of rational trace languages are studied. In particular, it is shown
that language inclusion of rational (closed under union, concatenation, and Kleene-star) trace
languages is decidable if and only if the common independence relation is transitive. Lan-
guage membership for context free and regular trace languages was shown to be NP-complete
in [BMS89]. In [BEL17], comparison of concurrent programs via trace languages is studied.
The suggested trace languages abstract the program executions by considering statement order-
ing, as well as read and write accesses on a subset of relevant variables and synchronization
primitives. Trace language refinement is then reduced to assertion checking. Interestingly, for
Boolean programs this refinement check has complexity ΔP

2 for bounded abstraction precision
and ΣP

2 for unbounded abstraction precision. In contrast to arbitrary event labels considered in
our work, the authors of [BEL17] consider refinement on languages of a more concrete program
and dependency model.

Our problem is orthogonal to trace language inclusion in three aspects. Firstly, we do not assume
the independence relations of the compared systems to be equal. Secondly, we do not require
the independence relation to be defined over labels. That is, we can study systems where two
labels occur concurrently in one place, while the labels occur sequentially in another. This can
occur because different events can have the same label. Finally, in contrast to automata, which
are often used to define trace languages, event structures are acyclic. Therefore, event structures
are less expressive than automata. However, the price of the additional expressivity is that trace
language inclusion over automata is undecidable in general [BMS82], whereas our problem is
decidable.

7.7.4 Petri Nets

Petri nets are a formalism for concurrent systems that is closely related to event structures
[NPW81]. The correspondence of trace theory to unfoldings of Petri nets is worked out in
[EH08]. A manifold of complexity questions have been studied for Petri nets, see [JLL77,
Esp96, EN94] for surveys. In particular, language related problems of labeled Petri nets have
been studied, see [Pet19, GG99] for an overview over the types of considered languages and
complexity results. Since Petri nets typically describe languages on infinite words and many
Petri net related problems are undecidable, complexity results on language related Petri nets
problems focus on establishing the boundary between decidability and undecidability. Language
inclusion and equivalence were shown to be undecidable for a wide range of types of Petri nets
[Gra79, Jan01, EN94]. Language inclusion is decidable for languages of firing of regular Petri
nets [VV81] and certain types of deterministic Petri nets [GG99]. In contrast, language member-
ship is decidable for a large class of Petri nets and language types [Pet19, Hac76]. Similarly to
trace languages, the additional expressivity of Petri nets over finite prime event structures mani-

131



7. EVENT STRUCTURE-BASED TEST CASE GENERATION

fests in increased complexity of solving language inclusion. However, as we demonstrated with
our application, finite prime event structures are sufficient for interesting practical problems.

7.7.5 Language and Automaton Theory

Finite asynchronous automata [Fat13] express concurrent systems succinctly in the same spirit
as prime event structures. Furthermore, asynchronous automata accept trace languages [Zie87].
However, to the best of our knowledge, there is neither an algorithm, nor a tool to check language
inclusion for (loop free) finite asynchronous automata.

Language inclusion of regular languages is a classic problem of computer science [HMU13,
MS72, Fri76, SHI85]. Algorithms for the problem are well studied and highly optimized [MC13,
ACH%10, ČCH%17]. However, as we demonstrate in Section 7.6, our procedure can outperform
these algorithms in the realm of highly concurrent systems. Nevertheless, adapting methods used
in classic automaton based language inclusions to event structures is interesting future work.

132



CHAPTER 8
Conclusions and Future Work

Conclusion

In validation and verification activities, one is typically confronted with trade-offs between rigor
and scalability. The extreme on the rigor side are formal proofs of correctness, while the extreme
on the scaling side are unit tests or simply observing a deployed system. Whereas the former
approach does not scale to many problems, not only due to computational complexity, but also
due to the inability to capture every detail of systems formally - relying on the latter approach for
verifying one’s system can become very costly when errors are found late in the development
cycle. Model-based testing in general can be seen as a trade-off between the scaling of code-
based testing and the rigor of model checking. Both model checking-based testing as well as
mutation testing shift this trade-off towards the rigor side. In this thesis, we are concerned with
enabling the combination of these two techniques and regaining their scaling properties.

The combination of model checking-based testing and mutation testing is enabled via the charac-
terization of mutation killing as a hyperproperty and the encodings of these properties in logics
for hyperproperties. By abstracting the test case generation engine from the encoding, future
improvements in scaling properties of the emerging field of hyperproperty model checking will
directly benefit our approach. Furthermore, since the encoding does not require knowledge of
the structure of models, but only of the sets of inputs and outputs, it immediately scales better in
terms of necessary engineering effort in comparison to previous model checking-based mutation
testing approaches, built on top of trap properties or model duplication.

With our branching search-based test case generation algorithm we emphasize scaling even fur-
ther. Its parameter- and heuristic space allow for a fine-grained positioning on the rigor versus
scaling axis. Small models can be explored exhaustively, whereas a more limited search can be
applied to large models in order to obtain test cases on models of sizes for which rigid methods
would typically not yield any results. In addition, the algorithm mitigates a well known scalabil-
ity problem of mutation testing, which is the large number of repeated executions for evaluating
mutants, via lazy mutation execution. Finally, we enable scaling to highly concurrent systems by

133



8. CONCLUSIONS AND FUTURE WORK

applying partial order semantics to the model exploration and by formulating mutation killing as
a language inclusion problem over the graph structure reflecting these semantics. Since neither
the theoretical nor the practical side of the language inclusion problem over event structures was
developed before, we filled this gap and thereby contribute to the event structure community.

Future Work

Clearly, the quest for even better validation and verification methods is never finished and
this work can be extended in multiple directions. One particularly promising direction is the
combination of exploration-based mutation testing, yielding a high base mutation coverage,
with symbolic methods, yielding rigorous corner case detection. Towards such an approach,
hyperproperty-sensitive concolic execution is an interesting research direction that could be both
highly useful for test case generation and interesting to the broader verification community.

Highly distributed systems in the emerging internet of things offer a promising application do-
main for the methods presented in this work. Firstly, a holistic view on systems that are com-
prised of a myriad of actors is necessary when trying to reason about their correctness or safety.
Secondly, such a holistic view is bound to use some form of model-based approach, since an
explicit representation of all of the heterogeneous actors is not feasible. Thirdly, the interac-
tions between the actors is likely to be highly concurrent and largely independent of each other.
Finally, since more and more aspects of our lives will depend on such systems, it will be increas-
ingly important to assure their correct functioning and the methods presented in Chapter 7 offer
an ideal basis to testing such systems.

134



List of Figures

3.1 A model of a beverage machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 A model of a beverage machine with initial non-determinism. . . . . . . . . . . . . 21
3.3 An action system representation of the beverage machine running example. . . . . 25
3.4 An action system representing a coffee brewing machine. . . . . . . . . . . . . . . 30
3.5 The Mealy machine representation of a coffee brewing machine. . . . . . . . . . . 31

5.1 An example demonstrating definite killabiltiy expressed as a hyperproperty. . . . . 45
5.2 The tool pipeline of our experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 The non-deterministic timed car alarm system model. . . . . . . . . . . . . . . . . 64
5.4 A killing example for the deterministic case. . . . . . . . . . . . . . . . . . . . . . . 65
5.5 A killing example for the non-deterministic case. . . . . . . . . . . . . . . . . . . . 66

6.1 The exploration model of running example and mutants. . . . . . . . . . . . . . . . 78
6.2 An evaluation of SELECTSUCCESSOR and CREATETASK heuristics on large mod-

els. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 The mutants reached with multiple BRANCHLENGTH values. . . . . . . . . . . . . 92

7.1 Event structures examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.2 The event structure representation of a coffee brewing machine. . . . . . . . . . . 105
7.3 The event structure representation of a coffee and tea brewing machine with conflict-

ing events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.4 7G for Theorem 7.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.5 The event structures for the language inclusion hardness proof. We use . . . to indi-

cate omitted events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.6 An example demonstrating the dynamic Hamiltonian cycle problem. . . . . . . . . 114
7.7 An example event structure 71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.8 An example event structure 72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.9 Necessary and sufficient embeddings. ϕ 3 > - >; e1 - e4; e2 - e5; e3 - e6 is a

necessary embedding (dotted arrows). ϕ 3 > - >; e7 - e4; e8 - e5; e9 - e6 is a
sufficient embedding (dash-dotted arrows). . . . . . . . . . . . . . . . . . . . . . . 115

135





List of Tables

3.1 The syntax of action system expressions. . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The action system successor state semantics. . . . . . . . . . . . . . . . . . . . . . 26

4.1 The Verilog mutation operators (# marks bit-wise operations). . . . . . . . . . . . . 36
4.2 The SMV mutation operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 The action system mutation operators. . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 The characteristics of event structure experiments benchmarks. . . . . . . . . . . . 68
5.2 The event structure based language inclusion experiments results. . . . . . . . . . 69

6.1 The CREATETASK heuristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 The SELECTSUCCESSOR=states0 heuristics. . . . . . . . . . . . . . . . . . . . . . 81
6.3 The properties of the test models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 A summary of experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5 The results of the full breadth-first search experiments. . . . . . . . . . . . . . . . . 88
6.6 The mutants reached on small models in relation to MAXSTEPS and relative to full

breadth first search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.7 The performance of heuristics on small models with MAXSTEPS $ <S<*2. . . . . . 89
6.8 The test characteristics on Defibrillatorin relation to MAXSTEPS. . . . . . . . . . . 92

7.1 The experimental results for event structure construction. . . . . . . . . . . . . . . 127
7.2 The experimental results for language inclusion checks '=7A0 ' '=7B0 respec-

tively '=% "A0 ' '=% "B0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

137





List of Algorithms

1 The state space exploration algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 75

2 The Lazy Mutant processing functions. . . . . . . . . . . . . . . . . . . . . . . . 77

3 The test case generation algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 The language inclusion decision algorithm. . . . . . . . . . . . . . . . . . . . . . 121

5 The 0N decision algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

139





Bibliography

[AAJ%14] Bernhard K. Aichernig, Jakob Auer, Elisabeth Jöbstl, Robert Korosec,
Willibald Krenn, Rupert Schlick, and Birgit Vera Schmidt. Model-based muta-
tion testing of an industrial measurement device. TAP, pages 1–19, 2014.

[ABJ%15a] B. Aichernig, H. Brandl, E. Jöbstl, W. Krenn, R. Schlick, and S. Tiran. Mo-
MuT::UML model-based mutation testing for UML. In Software Testing, Ver-
ification and Validation (ICST), 2015 IEEE 8th International Conference on,
ICST, pages 1–8, April 2015.

[ABJ%15b] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, Willibald Krenn, Ru-
pert Schlick, and Stefan Tiran. Killing strategies for model-based mutation
testing. Softw. Test., Verif. Reliab., 25(8):716–748, 2015.

[ABJK11] Bernhard K Aichernig, Harald Brandl, Elisabeth Jöbstl, and Willibald Krenn.
Efficient mutation killers in action. In 2011 Fourth IEEE International Confer-
ence on Software Testing, Verification and Validation, pages 120–129. IEEE,
2011.

[ABL05] James H. Andrews, Lionel C. Briand, and Yvan Labiche. Is mutation an appro-
priate tool for testing experiments? In Gruia-Catalin Roman, William G. Gris-
wold, and Bashar Nuseibeh, editors, 27th International Conference on Soft-
ware Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA,
ICSE, pages 402–411. ACM, 2005.

[ABM98] Paul E Ammann, Paul E Black, and William Majurski. Using model checking
to generate tests from specifications. In Formal Engineering Methods, 1998.
Proceedings. Second International Conference on, pages 46–54. IEEE, 1998.

[Abr10a] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineer-
ing. Cambridge University Press, 2010.

[Abr10b] Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

[ACH%10] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, Richard Mayr, and Tomáš
Vojnar. When simulation meets antichains. In International Conference on

141



Tools and Algorithms for the Construction and Analysis of Systems, pages 158–
174. Springer, 2010.

[AGR15] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Using mutation to
assess fault detection capability of model review. Softw. Test., Verif. Reliab.,
25(5-7):629–652, 2015.

[AGR17] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Nuseen: A tool
framework for the nusmv model checker. In 2017 IEEE International Confer-
ence on Software Testing, Verification and Validation, ICST 2017, Tokyo, Japan,
March 13-17, 2017, pages 476–483. IEEE Computer Society, 2017.

[AGV15] Paolo Arcaini, Angelo Gargantini, and Paolo Vavassori. Generating tests for de-
tecting faults in feature models. In 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), pages 1–10. IEEE, 2015.

[AGV16] Paolo Arcaini, Angelo Gargantini, and Paolo Vavassori. Automatic detection
and removal of conformance faults in feature models. In 2016 IEEE Inter-
national Conference on Software Testing, Verification and Validation (ICST),
pages 102–112. IEEE, 2016.

[AH09] Bernhard K. Aichernig and Jifeng He. Mutation testing in UTP. Formal Asp.
Comput., 21(1-2):33–64, 2009.

[AHL14a] Bernhard K. Aichernig, Klaus Hörmaier, and Florian Lorber. Debugging
with timed automata mutations. In Andrea Bondavalli and Felicita Di Gian-
domenico, editors, Computer Safety, Reliability, and Security - 33rd Interna-
tional Conference, SAFECOMP 2014, Florence, Italy, September 10-12, 2014.
Proceedings, volume 8666 of Lecture Notes in Computer Science, pages 49–64.
Springer, 2014.

[AHL%14b] Bernhard K. Aichernig, Klaus Hörmaier, Florian Lorber, Dejan Nickovic, Ru-
pert Schlick, Didier Simoneau, and Stefan Tiran. Integration of requirements
engineering and test-case generation via OSLC. In 2014 14th International
Conference on Quality Software, Allen, TX, USA, October 2-3, 2014, pages
117–126. IEEE, 2014.

[AHL%15] Bernhard K. Aichernig, Klaus Hörmaier, Florian Lorber, Dejan Nickovic, and
Stefan Tiran. Require, test and trace IT. In Manuel Núñez and Matthias Güde-
mann, editors, Formal Methods for Industrial Critical Systems - 20th Interna-
tional Workshop, FMICS 2015, Oslo, Norway, June 22-23, 2015 Proceedings,
volume 9128 of Lecture Notes in Computer Science, pages 113–127. Springer,
2015.

[AHL%17] Bernhard K. Aichernig, Klaus Hörmaier, Florian Lorber, Dejan Nickovic, and
Stefan Tiran. Require, test, and trace IT. Int. J. Softw. Tools Technol. Transf.,
19(4):409–426, 2017.

142



[AJT14] Bernhard K. Aichernig, Elisabeth Jöbstl, and Stefan Tiran. Model-based muta-
tion testing via symbolic refinement checking. 2014.

[AL15] Bernhard K. Aichernig and Florian Lorber. Towards generation of adaptive test
cases from partial models of determinized timed automata. In Eighth IEEE In-
ternational Conference on Software Testing, Verification and Validation, ICST
2015 Workshops, Graz, Austria, April 13-17, 2015, pages 1–6. IEEE Computer
Society, 2015.

[ALN13] Bernhard K. Aichernig, Florian Lorber, and Dejan Nickovic. Time for mu-
tants - model-based mutation testing with timed automata. In Margus Veanes
and Luca Viganò, editors, Tests and Proofs - 7th International Conference,
TAP@STAF 2013, Budapest, Hungary, June 16-20, 2013. Proceedings, vol-
ume 7942 of Lecture Notes in Computer Science, pages 20–38. Springer, 2013.

[AM10] Salem Fawaz Adra and Phil McMinn. Mutation operators for agent-based mod-
els. In Third International Conference on Software Testing, Verification and
Validation, ICST 2010, Paris, France, April 7-9, 2010, Workshops Proceedings,
pages 151–156. IEEE Computer Society, 2010.

[AME%15] Vincent Aranega, Jean-Marie Mottu, Anne Etien, Thomas Degueule, Benoit
Baudry, and Jean-Luc Dekeyser. Towards an automation of the mutation anal-
ysis dedicated to model transformation. Software Testing, Verification and Re-
liability, 25(5-7):653–683, 2015.

[AMM%18] Bernhard K. Aichernig, Wojciech Mostowski, Mohammad Reza Mousavi, Mar-
tin Tappler, and Masoumeh Taromirad. Model learning and model-based test-
ing. In Amel Bennaceur, Reiner Hähnle, and Karl Meinke, editors, Machine
Learning for Dynamic Software Analysis: Potentials and Limits - International
Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27, 2016, Re-
vised Papers, volume 11026 of Lecture Notes in Computer Science, pages 74–
100. Springer, 2018.

[AS11] Baris Akgün and Mike Stilman. Sampling heuristics for optimal motion plan-
ning in high dimensions. In 2011 IEEE/RSJ International Conference on In-
telligent Robots and Systems, IROS 2011, San Francisco, CA, USA, September
25-30, 2011, pages 2640–2645. IEEE, 2011.

[Ayc03] John Aycock. A brief history of just-in-time. ACM Computing Surveys (CSUR),
35(2):97–113, 2003.

[BBH%16] Fevzi Belli, Christof J Budnik, Axel Hollmann, Tugkan Tuglular, and W Eric
Wong. Model-based mutation testingapproach and case studies. Science of
Computer Programming, 120:25–48, 2016.

[BBTF11] Fevzi Belli, Mutlu Beyazit, Tomohiko Takagi, and Zengo Furukawa. Muta-
tion testing of "go-back" functions based on pushdown automata. In Fourth

143



IEEE International Conference on Software Testing, Verification and Valida-
tion, ICST 2011, Berlin, Germany, March 21-25, 2011, pages 249–258. IEEE
Computer Society, 2011.

[BBTF12] Fevzi Belli, Mutlu Beyazit, Tomohiko Takagi, and Zengo Furukawa. Model-
based mutation testing using pushdown automata. IEICE TRANSACTIONS on
Information and Systems, 95(9):2211–2218, 2012.

[BCLM03] Michael S Branicky, Michael M Curtiss, Joshua A Levine, and Stuart B Mor-
gan. Rrts for nonlinear, discrete, and hybrid planning and control. In Decision
and Control, 2003. Proceedings. 42nd IEEE Conference on, volume 1, pages
657–663. IEEE, 2003.

[BDD%15] Sébastien Bardin, Mickaël Delahaye, Robin David, Nikolai Kosmatov, Mike
Papadakis, Yves Le Traon, and Jean-Yves Marion. Sound and quasi-complete
detection of infeasible test requirements. In 8th IEEE International Conference
on Software Testing, Verification and Validation, ICST 2015, Graz, Austria,
April 13-17, 2015, pages 1–10, 2015.

[BDH%19] Michael J. Butler, Dana Dghaym, Thai Son Hoang, Tope Omitola, Colin F.
Snook, Andreas Fellner, Rupert Schlick, Thorsten Tarrach, Tomas Fischer, and
Peter Tummeltshammer. Behaviour-driven formal model development of the
ETCS hybrid level 3. In Jun Pang and Jing Sun, editors, 24th International
Conference on Engineering of Complex Computer Systems, ICECCS 2019,
Guangzhou, China, November 10-13, 2019, pages 97–106. IEEE, 2019.

[BDLS80] Timothy A Budd, Richard A DeMillo, Richard J Lipton, and Frederick G Say-
ward. Theoretical and empirical studies on using program mutation to test the
functional correctness of programs. In Proceedings of the 7th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 220–233,
1980.

[BEL17] Ahmed Bouajjani, Constantin Enea, and Shuvendu K. Lahiri. Abstract se-
mantic diffing of evolving concurrent programs. In Francesco Ranzato, editor,
Static Analysis - 24th International Symposium, SAS 2017, New York, NY, USA,
August 30 - September 1, 2017, Proceedings, volume 10422 of Lecture Notes
in Computer Science, pages 46–65. Springer, 2017.

[ben] Fles language inclusion benchmarks. https://git-service.ait.ac.
at/sct-dse-public/les-language-inclusion. Uploaded: 2019-
04-22.

[BF18] Borzoo Bonakdarpour and Bernd Finkbeiner. The complexity of monitoring
hyperproperties. In 2018 IEEE 31st Computer Security Foundations Sympo-
sium (CSF), pages 162–174. IEEE, 2018.

144

https://git-service.ait.ac.at/sct-dse-public/les-language-inclusion
https://git-service.ait.ac.at/sct-dse-public/les-language-inclusion


[BFP08] Nicola Bombieri, Franco Fummi, and Graziano Pravadelli. A mutation model
for the systemc TLM 2.0 communication interfaces. In Donatella Sciuto, editor,
Design, Automation and Test in Europe, DATE 2008, Munich, Germany, March
10-14, 2008, pages 396–401. ACM, 2008.

[BG85] Timothy A. Budd and Ajei S. Gopal. Program testing by specification mutation.
Comput. Lang., 10(1):63–73, 1985.

[BHW11] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 and beyond,
2011. Available at fmv.jku.at/hwmcc11/beyond1.pdf.

[Bin00] Robert Binder. Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional, 2000.

[BJK%05] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner. Model-based testing of reactive systems: advanced lec-
tures, volume 3472. Springer, 2005.

[BKC14] Sébastien Bardin, Nikolai Kosmatov, and François Cheynier. Efficient leverag-
ing of symbolic execution to advanced coverage criteria. In Seventh IEEE In-
ternational Conference on Software Testing, Verification and Validation, ICST
2014, March 31 2014-April 4, 2014, Cleveland, Ohio, USA, pages 173–182,
2014.

[BKS83] Ralph-Johan Back and Reino Kurki-Suonio. Decentralization of process nets
with centralized control. In Proceedings of the 2nd Annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (PODC 1983),
PODC, pages 131–142. ACM, 1983.

[BKS98] Marcello M. Bonsangue, Joost N. Kok, and Kaisa Sere. An approach to object-
orientation in action systems. In Johan Jeuring, editor, Mathematics of Pro-
gram Construction, MPC’98, Marstrand, Sweden, June 15-17, 1998, Proceed-
ings, volume 1422 of MPC, pages 68–95. Springer, 1998.

[BLDS78] Timothy A. Budd, Richard J. Lipton, Richard A. DeMillo, and Frederick G.
Sayward. The design of a prototype mutation system for program testing.
In Sakti P. Ghosh and Leonard Y. Liu, editors, American Federation of Infor-
mation Processing Societies: 1978 National Computer Conference, June 5-8,
1978, Anaheim, CA, USA, volume 47 of AFIPS Conference Proceedings, pages
623–629. AFIPS Press, 1978.

[BLDS79] Timothy A Budd, Richard J Lipton, Richard A DeMillo, and Frederick G Say-
ward. Mutation analysis. Technical report, DTIC Document, 1979.

[BMS82] Alberto Bertoni, Giancarlo Mauri, and Nicoletta Sabadini. Equivalence and
membership problems for regular trace languages. In International Colloquium
on Automata, Languages, and Programming, pages 61–71. Springer, 1982.

145

fmv.jku.at/hwmcc11/beyond1.pdf


[BMS89] Alberto Bertoni, Giancarlo Mauri, and Nicoletta Sabadini. Membership prob-
lems for regular and context-free trace languages. Information and Computa-
tion, 82(2):135–150, 1989.

[Bou90] Gérard Boudol. Flow event structures and flow nets. In LITP Spring School on
Theoretical Computer Science, pages 62–95. Springer, 1990.

[BOY00] Paul E Black, Vadim Okun, and Yaacov Yesha. Mutation operators for spec-
ifications. In Automated Software Engineering, 2000. Proceedings ASE 2000.
The Fifteenth IEEE International Conference on, pages 81–88. IEEE, 2000.

[BOY01] Paul E Black, Vadim Okun, and Yaacov Yesha. Mutation of model checker
specifications for test generation and evaluation. In Mutation testing for the
new century, pages 14–20. Springer, 2001.

[BPG07] Sergiy Boroday, Alexandre Petrenko, and Roland Groz. Can a model checker
generate tests for non-deterministic systems? Electronic Notes in Theoretical
Computer Science, 190(2):3–19, 2007.

[BPGQ02] Sergiy Boroday, Alexandre Petrenko, Roland Groz, and Yves-Marie Quemener.
Test generation for CEFSM combining specification and fault coverage. In Ina
Schieferdecker, Hartmut König, and Adam Wolisz, editors, Testing of Com-
municating Systems XIV, Applications to Internet Technologies and Services,
Proceedings of the IFIP 14th International Conference on Testing Communi-
cating Systems - TestCom 2002, Berlin, Germany, March 19-22, 2002, volume
210 of IFIP Conference Proceedings, pages 355–372. Kluwer, 2002.

[BSB17] Noel Brett, Umair Siddique, and Borzoo Bonakdarpour. Rewriting-based run-
time verification for alternation-free hyperltl. In Axel Legay and Tiziana Mar-
garia, editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems - 23rd International Conference, TACAS 2017, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II, volume 10206 of
Lecture Notes in Computer Science, pages 77–93, 2017.

[BVCU07] Samrat S. Batth, Elisangela Rodrigues Vieira, Ana R. Cavalli, and M. Ümit
Uyar. Specification of timed EFSM fault models in SDL. In John Derrick and
Jüri Vain, editors, Formal Techniques for Networked and Distributed Systems
- FORTE 2007, 27th IFIP WG 6.1 International Conference, Tallinn, Estonia,
June 27-29, 2007, Proceedings, volume 4574 of Lecture Notes in Computer
Science, pages 50–65. Springer, 2007.

[ČCH%17] Pavol Černý, Edmund M. Clarke, Thomas A. Henzinger, Arjun Radhakr-
ishna, Leonid Ryzhyk, Roopsha Samanta, and Thorsten Tarrach. From non-
preemptive to preemptive scheduling using synchronization synthesis. Formal
Methods in System Design, 50(2):97–139, Jun 2017.

146



[CDH13] John A. Clark, Haitao Dan, and Robert M. Hierons. Semantic mutation testing.
Sci. Comput. Program., 78(4):345–363, 2013.

[CDK85] M Chandrasekharan, B Dasarathy, and Zen Kishimoto. Requirements-based
testing of real-time systems. modeling for testability. Computer, (4):71–80,
1985.

[CFHH19] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The
hierarchy of hyperlogics. In 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019,
pages 1–13. IEEE, 2019.

[CFK%14] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micin-
ski, Markus N. Rabe, and César Sánchez. Temporal Logics for Hyperproper-
ties, pages 265–284. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[CFST19] Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup. Veri-
fying hyperliveness. In Isil Dillig and Serdar Tasiran, editors, Computer Aided
Verification - 31st International Conference, CAV 2019, New York City, NY,
USA, July 15-18, 2019, Proceedings, Part I, volume 11561 of Lecture Notes in
Computer Science, pages 121–139. Springer, 2019.

[CGMP99] Edmund M Clarke, Orna Grumberg, Marius Minea, and Doron Peled. State
space reduction using partial order techniques. International Journal on Soft-
ware Tools for Technology Transfer, 2(3):279–287, 1999.

[CGP99] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, December 1999.

[Cho78] Tsun S. Chow. Testing software design modeled by finite-state machines. IEEE
Trans. Software Eng., 4(3):178–187, 1978.

[CKMT10] Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and TH Tse. Adaptive
random testing: The art of test case diversity. Journal of Systems and Software,
83(1):60–66, 2010.

[CLOM08] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. Artoo: adap-
tive random testing for object-oriented software. In Proceedings of the 30th
international conference on Software engineering, pages 71–80. ACM, 2008.

[CS10] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Com-
puter Security, 18(6):1157–1210, 2010.

[CYB93] Szu-Tsung Cheng, Gary York, and Robert K Brayton. Vl2mv: A compiler
from verilog to blif-mv. HSIS Distribution, 1993.

147



[DDD%15] Tommaso Dreossi, Thao Dang, Alexandre Donzé, James Kapinski, Xiaoqing
Jin, and Jyotirmoy V Deshmukh. Efficient guiding strategies for testing of
temporal properties of hybrid systems. In NASA Formal Methods Symposium,
NFM, pages 127–142. Springer, 2015.

[DGM%88] Richard A DeMillo, Dany S Guindi, WM McCracken, A Jefferson Offutt, and
Kim N King. An extended overview of the mothra software testing environ-
ment. In Workshop on Software Testing, Verification, and Analysis, pages 142–
143. IEEE Computer Society, 1988.

[Dij75] Edsger W Dijkstra. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM, 18(8):453–457, 1975.

[DJ19] Daniel Dietsch and Marie-Christine Jakobs. Vmcai 2020 virtual machine,
November 2019.

[DLS78] R.A. Demillo, R.J. Lipton, and F.G. Sayward. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer, 11(4):34–41, April 1978.

[DM90] Richard Demillo and Aditya Mathur. On the use of software artifacts to eval-
uate the effectiveness of mutation analysis for detecting errors in production
software. 01 1990.

[DM97] Volker Diekert and Yves Métivier. Partial commutation and traces. In Hand-
book of formal languages, pages 457–533. Springer, 1997.

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. volume
4963, pages 337–340, 2008.

[DNSVT07] Arilo C Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H
Travassos. A survey on model-based testing approaches: a systematic review.
pages 31–36. ACM, 2007.

[DO91] Richard A. DeMillo and A. Jefferson Offutt. Constraint-based automatic test
data generation. IEEE Trans. Software Eng., 17(9):900–910, 1991.

[DT96] Muriel Daran and Pascale Thévenod-Fosse. Software error analysis: A real
case study involving real faults and mutations. In Steve J. Zeil and Will Tracz,
editors, Proceedings of the 1996 International Symposium on Software Testing
and Analysis, ISSTA 1996, San Diego, CA, USA, January 8-10, 1996, pages
158–171. ACM, 1996.

[ECO%16] Eduard Paul Enoiu, Adnan Causevic, Thomas J. Ostrand, Elaine J. Weyuker,
Daniel Sundmark, and Paul Pettersson. Automated test generation using model
checking: an industrial evaluation. STTT, 18(3):335–353, 2016.

148



[EFDYB12] KA El-Fakih, Rita Dorofeeva, NV Yevtushenko, and GV Bochmann. Fsm-
based testing from user defined faults adapted to incremental and mutation
testing. Programming and Computer Software, 38(4):201–209, 2012.

[EH00] Javier Esparza and Keijo Heljanko. A new unfolding approach to ltl model
checking. In International Colloquium on Automata, Languages, and Program-
ming, pages 475–486. Springer, 2000.

[EH08] Javier Esparza and Keijo Heljanko. Unfoldings: a partial-order approach to
model checking. Springer Science & Business Media, 2008.

[EKSW05] Keith Ellul, Bryan Krawetz, Jeffrey Shallit, and Ming-wei Wang. Regular ex-
pressions: New results and open problems. Journal of Automata, Languages
and Combinatorics, 10(4):407–437, 2005.

[EN94] Javier Esparza and Mogens Nielsen. Decidability issues for Petri nets - a survey.
Bulletin of the EATCS, 52:244–262, 1994.

[ESC%16] Eduard Paul Enoiu, Daniel Sundmark, Adnan Causevic, Robert Feldt, and Paul
Pettersson. Mutation-based test generation for PLC embedded software using
model checking. In Franz Wotawa, Mihai Nica, and Natalia Kushik, editors,
Testing Software and Systems - 28th IFIP WG 6.1 International Conference,
ICTSS 2016, Graz, Austria, October 17-19, 2016, Proceedings, volume 9976
of Lecture Notes in Computer Science, pages 155–171, 2016.

[Esp96] Javier Esparza. Decidability and complexity of Petri net problems - an intro-
duction. In Wolfgang Reisig and Grzegorz Rozenberg, editors, Lectures on
Petri Nets I: Basic Models, Advances in Petri Nets, the volumes are based on
the Advanced Course on Petri Nets, held in Dagstuhl, September 1996, volume
1491 of Lecture Notes in Computer Science, pages 374–428. Springer, 1996.

[FA11] Gordon Fraser and Andrea Arcuri. Evolutionary generation of whole test suites.
In Manuel Núñez, Robert M. Hierons, and Mercedes G. Merayo, editors, Pro-
ceedings of the 11th International Conference on Quality Software, QSIC 2011,
Madrid, Spain, July 13-14, 2011., QSIC, pages 31–40. IEEE Computer Society,
2011.

[Fat13] Nazim Fates. A guided tour of asynchronous cellular automata. In Interna-
tional Workshop on Cellular Automata and Discrete Complex Systems, pages
15–30. Springer, 2013.

[FBW19] Andreas Fellner, Mitra Tabaei Befrouei, and Georg Weissenbacher. Mutation
testing with hyperproperties. In Peter Csaba Ölveczky and Gwen Salaün, ed-
itors, Software Engineering and Formal Methods - 17th International Confer-
ence, SEFM 2019, Oslo, Norway, September 18-20, 2019, Proceedings, vol-
ume 11724 of Lecture Notes in Computer Science, pages 203–221. Springer,
2019.

149



[FBW20] Andreas Fellner, Mitra Tabaei Befrouei, and Georg Weissenbacher. Mutation
testing with hyperproperties. Software and Systems Modeling, Special Issue,
2020. Accepted. Publication pending.

[FG05] Cormac Flanagan and Patrice Godefroid. Dynamic partial-order reduction for
model checking software. In ACM Sigplan Notices, volume 40, pages 110–121.
ACM, 2005.

[FG09] Gordon Fraser and Angelo Gargantini. An evaluation of model checkers for
specification based test case generation. In Second International Conference
on Software Testing Verification and Validation, ICST 2009, Denver, Colorado,
USA, April 1-4, 2009, pages 41–50. IEEE Computer Society, 2009.

[FH16] Bernd Finkbeiner and Christopher Hahn. Deciding hyperproperties. In Josée
Desharnais and Radha Jagadeesan, editors, 27th International Conference
on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City,
Canada, volume 59 of LIPIcs, pages 13:1–13:14. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

[FHRV13] Azadeh Farzan, Andreas Holzer, Niloofar Razavi, and Helmut Veith.
Con2colic testing. pages 37–47, 2013.

[FHS17] Bernd Finkbeiner, Christopher Hahn, and Marvin Stenger. Eahyper: Satisfia-
bility, implication, and equivalence checking of hyperproperties. In CAV (2),
volume 10427 of Lecture Notes in Computer Science, pages 564–570. Springer,
2017.

[FHST19] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup.
Monitoring hyperproperties. Formal Methods in System Design, 54(3):336–
363, 2019.

[FHT19] Bernd Finkbeiner, Lennart Haas, and Hazem Torfah. Canonical representations
of k-safety hyperproperties. In 2019 IEEE 32nd Computer Security Founda-
tions Symposium (CSF), pages 17–1714. IEEE, 2019.

[FKS06] Dave Ferguson, Nidhi Kalra, and Anthony Stentz. Replanning with rrts. In Pro-
ceedings of the 2006 IEEE International Conference on Robotics and Automa-
tion, ICRA 2006, May 15-19, 2006, Orlando, Florida, USA, pages 1243–1248.
IEEE, 2006.

[FKS%17] Andreas Fellner, Willibald Krenn, Rupert Schlick, Thorsten Tarrach, and
Georg Weissenbacher. Model-based, mutation-driven test case generation via
heuristic-guided branching search. In Jean-Pierre Talpin, Patricia Derler, and
Klaus Schneider, editors, Proceedings of the 15th ACM-IEEE International
Conference on Formal Methods and Models for System Design, MEMOCODE
2017, Vienna, Austria, September 29 - October 02, 2017, pages 56–66. ACM,
2017.

150



[FKS%19] Andreas Fellner, Willibald Krenn, Rupert Schlick, Thorsten Tarrach, and
Georg Weissenbacher. Model-based, mutation-driven test-case generation
via heuristic-guided branching search. ACM Trans. Embed. Comput. Syst.,
18(1):4:1–4:28, January 2019.

[FMM%95] Sandra Camargo Pinto Ferraz Fabbri, José Carlos Maldonado, Paulo Cesar
Masiero, Márcio Eduardo Delamaro, and E Wong. Mutation testing applied
to validate specifications based on petri nets. In International Conference on
Formal Techniques for Distributed Objects, Components, and Systems, pages
329–337. Springer, 1995.

[FMMD99] Sandra Camargo Pinto Ferraz Fabbri, José Carlos Maldonado, Paulo Cesar
Masiero, and Márcio Eduardo Delamaro. Proteum/fsm: A tool to support finite
state machine validation based on mutation testing. In 19th International Con-
ference of the Chilean Computer Science Society (SCCC ’99), 11-13 November
1999, Talca, Chile, pages 96–104. IEEE Computer Society, 1999.

[FMSM99] Sandra Camargo Pinto Ferraz Fabbri, José Carlos Maldonado, Tatiana Sugeta,
and Paulo Cesar Masiero. Mutation testing applied to validate specifications
based on statecharts. In Proceedings 10th International Symposium on Soft-
ware Reliability Engineering (Cat. No. PR00443), pages 210–219. IEEE, 1999.

[Fri76] Emily P Friedman. The inclusion problem for simple languages. Theoretical
Computer Science, 1(4):297–316, 1976.

[FRS15] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for model
checking HyperLTL and HyperCTL#. pages 30–48, 2015.

[FTW19] Andreas Fellner, Thorsten Tarrach, and Georg Weissenbacher. Language Inclu-
sion for Finite Prime Event Structures Artifact, October 2019.

[FTW20] Andreas Fellner, Thorsten Tarrach, and Georg Weissenbacher. Language in-
clusion for finite prime event structures. In Dirk Beyer and Damien Zufferey,
editors, Verification, Model Checking, and Abstract Interpretation - 21st In-
ternational Conference, VMCAI 2020, New Orleans, LA, USA, January 16-
21, 2020, Proceedings, volume 11990 of Lecture Notes in Computer Science,
pages 314–336. Springer, 2020.

[FW08] Gordon Fraser and Franz Wotawa. Using model-checkers to generate and ana-
lyze property relevant test-cases. Softw. Qual. J., 16(2):161–183, 2008.

[FWA09a] Gordon Fraser, Franz Wotawa, and Paul Ammann. Issues in using model check-
ers for test case generation. Journal of Systems and Software, 82(9):1403 –
1418, 2009.

[FWA09b] Gordon Fraser, Franz Wotawa, and Paul E Ammann. Testing with model check-
ers: a survey. Software Testing, Verification and Reliability, 19(3):215–261,
2009.

151



[FWH96] Phyllis G Frankl, Stewart N Weiss, and Cang Hu. All-uses versus mutation
testing: An experimental comparison of e ectiveness. 1996.

[FZ17] Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperprop-
erties. In STACS, volume 66 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

[GG99] Stephane Gaubert and Alessandro Giua. Petri net languages and infinite subsets
of m. J. Comput. Syst. Sci., 59(3):373–391, 1999.

[GH99] Angelo Gargantini and Constance Heitmeyer. Using model checking to gener-
ate tests from requirements specifications. In ACM SIGSOFT Software Engi-
neering Notes, volume 24, pages 146–162. Springer-Verlag, 1999.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated
random testing. In ACM Sigplan Notices, volume 40, pages 213–223. ACM,
2005.

[GMH81] John Gannon, Paul McMullin, and Richard Hamlet. Data abstraction, imple-
mentation, specification, and testing. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 3(3):211–223, 1981.

[GMM18] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. Automatic software
repair: a survey. In Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and
Mark Harman, editors, Proceedings of the 40th International Conference on
Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03,
2018, page 1219. ACM, 2018.

[GN97] Matthew J. Gallagher and V Lakshmi Narasimhan. Adtest: A test data genera-
tion suite for ada software systems. IEEE Transactions on Software Engineer-
ing, 23(8):473–484, 1997.

[God96] Patrice Godefroid. Partial-order methods for the verification of concurrent sys-
tems, 1996.

[Gon70] Guney Gonenc. A method for the design of fault detection experiments. IEEE
Trans. Computers, 19(6):551–558, 1970.

[Gou83] J. S. Gourlay. A mathematical framework for the investigation of testing. IEEE
Transactions on Software Engineering, SE-9(6):686–709, 1983.

[Gra79] Jan Grabowski. The unsolvability of some Petri net language problems. Inf.
Process. Lett., 9(2):60–63, 1979.

[Hac76] Michel Hack. Decidability questions for Petri Nets. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1976.

152



[Ham77] Richard G. Hamlet. Testing programs with the aid of a compiler. IEEE Trans.
Software Eng., 3(4):279–290, 1977.

[Hel00] Keijo Heljanko. Model checking with finite complete prefixes is pspace-
complete. In International Conference on Concurrency Theory, pages 108–122.
Springer, 2000.

[Hen64] F. C. Hennie. Fault detecting experiments for sequential circuits. In 5th Annual
Symposium on Switching Circuit Theory and Logical Design, Princeton, New
Jersey, USA, November 11-13, 1964, pages 95–110. IEEE Computer Society,
1964.

[HH14] Shai Haim and Marijn Heule. Towards ultra rapid restarts. CoRR,
abs/1402.4413, 2014.

[HLSU02] Hyoung Seok Hong, Insup Lee, Oleg Sokolsky, and Hasan Ural. A temporal
logic based theory of test coverage and generation. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages
327–341. Springer, 2002.

[HM07] Robert M Hierons and Mercedes G Merayo. Mutation testing from proba-
bilistic finite state machines. In Testing: Academic and Industrial Confer-
ence Practice and Research Techniques-MUTATION (TAICPART-MUTATION
2007), pages 141–150. IEEE, 2007.

[HM09] Robert M. Hierons and Mercedes G. Merayo. Mutation testing from proba-
bilistic and stochastic finite state machines. J. Syst. Softw., 82(11):1804–1818,
2009.

[HMU13] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation. Pearson, 3 edition, 2013.

[How82] William E. Howden. Weak mutation testing and completeness of test sets.
IEEE Trans. Software Eng., 8(4):371–379, 1982.

[HPLT14] Christopher Henard, Mike Papadakis, and Yves Le Traon. Mutalog: A tool
for mutating logic formulas. In 2014 IEEE Seventh International Conference
on Software Testing, Verification and Validation Workshops, pages 399–404.
IEEE, 2014.

[HPP%13a] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves
Le Traon. Assessing software product line testing via model-based mutation:
An application to similarity testing. In 2013 IEEE Sixth international confer-
ence on software testing, verification and validation workshops, pages 188–
197. IEEE, 2013.

153



[HPP%13b] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and Yves
Le Traon. Towards automated testing and fixing of re-engineered feature mod-
els. In 2013 35th International Conference on Software Engineering (ICSE),
pages 1245–1248. IEEE, 2013.

[HPP%13c] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, and
Yves Le Traon. Assessing software product line testing via model-based muta-
tion: An application to similarity testing. In Sixth IEEE International Confer-
ence on Software Testing, Verification and Validation, ICST 2013 Workshops
Proceedings, Luxembourg, Luxembourg, March 18-22, 2013, pages 188–197.
IEEE Computer Society, 2013.

[HPT14] Christopher Henard, Mike Papadakis, and Yves Le Traon. Mutation-based
generation of software product line test configurations. In Claire Le Goues
and Shin Yoo, editors, Search-Based Software Engineering - 6th International
Symposium, SSBSE 2014, Fortaleza, Brazil, August 26-29, 2014. Proceedings,
volume 8636 of Lecture Notes in Computer Science, pages 92–106. Springer,
2014.

[HSB20] Tzu-Han Hsu, Cesar Sanchez, and Borzoo Bonakdarpour. Bounded model
checking for hyperproperties. arXiv preprint arXiv:2009.08907, 2020.

[Jan01] Petr Jancar. Nonprimitive recursive complexity and undecidability for Petri net
equivalences. Theor. Comput. Sci., 256(1-2):23–30, 2001.

[JCS08] Leonard Jaillet, Juan Cortés, and Thierry Siméon. Transition-based RRT for
path planning in continuous cost spaces. In 2008 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, September 22-26, 2008, Acropolis
Convention Center, Nice, France, pages 2145–2150. IEEE, 2008.

[JH11] Yue Jia and Mark Harman. An analysis and survey of the development of
mutation testing. Software Engineering, IEEE Transactions on, 37(5):649–678,
2011.

[JJI%14] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes,
and Gordon Fraser. Are mutants a valid substitute for real faults in software
testing? In Shing-Chi Cheung, Alessandro Orso, and Margaret-Anne D. Storey,
editors, Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (FSE-22), Hong Kong, China, November
16 - 22, 2014, FSE, pages 654–665. ACM, 2014.

[JKRS76] W. H. Jessop, J. Richard Kane, S. Roy, and J. M. Scanlon. ATLAS - an auto-
mated software testing system. In Raymond T. Yeh and C. V. Ramamoorthy,
editors, Proceedings of the 2nd International Conference on Software Engi-
neering, San Francisco, California, USA, October 13-15, 1976, pages 629–635.
IEEE Computer Society, 1976.

154



[JLL77] Neil D. Jones, Lawrence H. Landweber, and Y. Edmund Lien. Complexity of
some problems in Petri nets. Theor. Comput. Sci., 4(3):277–299, 1977.

[Jöb14] E Jöbstl. Model-based mutation testing with constraint and SMT solvers. PhD
thesis, Ph. D. thesis, Graz University of Technology, Institute for Software
Technology, 2014.

[Kap06] Kalpesh Kapoor. Formal analysis of coupling hypothesis for logical faults.
ISSE, 2(2):80–87, 2006.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. In Complexity
of computer computations, pages 85–103. Springer, 1972.

[KH18] Kari Kähkönen and Keijo Heljanko. Testing programs with contextual unfold-
ings. ACM Trans. Embedded Comput. Syst., 17(1):23:1–23:25, 2018.

[KIN15] Jaber Karimpour, Ayaz Isazadeh, and Ali A. Noroozi. Verifying observational
determinism. In Hannes Federrath and Dieter Gollmann, editors, ICT Systems
Security and Privacy Protection - 30th IFIP TC 11 International Conference,
SEC 2015, Hamburg, Germany, May 26-28, 2015, Proceedings, volume 455 of
IFIP Advances in Information and Communication Technology, pages 82–93.
Springer, 2015.

[KL95] Ker-I Ko and Chih-Long Lin. On the complexity of min-max optimization
problems and their approximation. In Minimax and Applications, pages 219–
239. Springer, 1995.

[KL00] James J Kuffner and Steven M LaValle. RRT-connect: An efficient approach to
single-query path planning. In Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on, volume 2 of ICRA, pages 995–
1001. IEEE, 2000.

[Kor90] Bogdan Korel. Automated software test data generation. IEEE Transactions
on software engineering, 16(8):870–879, 1990.

[KPLV%03] Gábor Kovács, Zoltán Pap, Dung Le Viet, Antal Wu-Hen-Chang, and Gyula
Csopaki. Applying mutation analysis to sdl specifications. In International
SDL Forum, pages 269–284. Springer, 2003.

[KPM10] Marinos Kintis, Mike Papadakis, and Nicos Malevris. Evaluating mutation
testing alternatives: A collateral experiment. In 2010 Asia Pacific Software
Engineering Conference, pages 300–309. IEEE, 2010.

[KSA09] Willibald Krenn, Rupert Schlick, and Bernhard K. Aichernig. Mapping UML
to labeled transition systems for test-case generation: A translation via object-
oriented action systems. In Proceedings of the 8th International Conference on
Formal Methods for Components and Objects, FMCO, pages 186–207, Berlin,
Heidelberg, 2009. Springer-Verlag.

155



[KSH12] Kari Kähkönen, Olli Saarikivi, and Keijo Heljanko. Using unfoldings in au-
tomated testing of multithreaded programs. In Michael Goedicke, Tim Men-
zies, and Motoshi Saeki, editors, IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE’12, Essen, Germany, September 3-7, 2012,
pages 150–159. ACM, 2012.

[KSH13] Kari Kähkönen, Olli Saarikivi, and Keijo Heljanko. Lct: A parallel distributed
testing tool for multithreaded java programs. Electronic Notes in Theoretical
Computer Science, 296:253–259, 2013.

[KSH15] Kari Kähkönen, Olli Saarikivi, and Keijo Heljanko. Unfolding based auto-
mated testing of multithreaded programs. Autom. Softw. Eng., 22(4):475–515,
2015.

[KV13] Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire.
In Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification -
25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings, volume 8044 of Lecture Notes in Computer Science, pages
1–35. Springer, 2013.

[L%01] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25,
2001.

[LA04] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis and transformation. pages 75–88, San Jose, CA, USA, Mar
2004.

[LAO%15] Birgitta Lindström, Sten F. Andler, Jeff Offutt, Paul Pettersson, and Daniel
Sundmark. Mutating aspect-oriented models to test cross-cutting concerns. In
Eighth IEEE International Conference on Software Testing, Verification and
Validation, ICST 2015 Workshops, Graz, Austria, April 13-17, 2015, pages 1–
10. IEEE Computer Society, 2015.

[LaV98] Steven M LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. 1998.

[Lip75] Richard J Lipton. Reduction: A method of proving properties of parallel pro-
grams. Communications of the ACM, 18(12):717–721, 1975.

[LLGS17] Wenbin Li, Franck Le Gall, and Naum Spaseski. A survey on model-based
testing tools for test case generation. In International Conference on Tools and
Methods for Program Analysis, pages 77–89. Springer, 2017.

[LLNN17] Kim G. Larsen, Florian Lorber, Brian Nielsen, and Ulrik Nyman. Mutation-
based test-case generation with ecdar. In 2017 IEEE International Conference
on Software Testing, Verification and Validation Workshops, ICST Workshops
2017, Tokyo, Japan, March 13-17, 2017, pages 319–328. IEEE Computer So-
ciety, 2017.

156



[LM05a] Jian Bing Li and James Miller. Testing the semantics of W3C XML schema.
In 29th Annual International Computer Software and Applications Conference,
COMPSAC 2005, Edinburgh, Scotland, UK, July 25-28, 2005. Volume 1, pages
443–448. IEEE Computer Society, 2005.

[LM05b] Jian Bing Li and James Miller. Testing the semantics of w3c xml schema.
In 29th Annual International Computer Software and Applications Conference
(COMPSAC’05), volume 1, pages 443–448. IEEE, 2005.

[LM05c] Ling Liu and Huaikou Miao. Mutation operators for object-z specification. In
10th International Conference on Engineering of Complex Computer Systems
(ICECCS 2005), 16-20 June 2005, Shanghai, China, pages 498–506. IEEE
Computer Society, 2005.

[LO01] Suet Chun Lee and Jeff Offutt. Generating test cases for xml-based web compo-
nent interactions using mutation analysis. In 12th International Symposium on
Software Reliability Engineering (ISSRE 2001), 27-30 November 2001, Hong
Kong, China, pages 200–209. IEEE Computer Society, 2001.

[LR09] Akash Lal and Thomas Reps. Reducing concurrent analysis under a context
bound to sequential analysis. Formal Methods in System Design, 35(1):73–97,
2009.

[LY96] David Lee and Mihalis Yannakakis. Principles and methods of testing finite
state machines-a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[MAB%14] Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty H. C.
Cheng, Philippe Collet, Benoît Combemale, Robert B. France, Rogardt Heldal,
James H. Hill, Jörg Kienzle, Matthias Schöttle, Friedrich Steimann, Dave R.
Stikkolorum, and Jon Whittle. The relevance of model-driven engineering
thirty years from now. In Jürgen Dingel, Wolfram Schulte, Isidro Ramos, Silvia
Abrahão, and Emilio Insfrán, editors, Model-Driven Engineering Languages
and Systems - 17th International Conference, MODELS 2014, Valencia, Spain,
September 28 - October 3, 2014. Proceedings, volume 8767 of Lecture Notes
in Computer Science, pages 183–200. Springer, 2014.

[Mad03] P. Madhusudan. Model-checking trace event structures. In 18th IEEE Sympo-
sium on Logic in Computer Science (LICS 2003), 22-25 June 2003, Ottawa,
Canada, Proceedings, pages 371–380. IEEE Computer Society, 2003.

[Mar91] Brian Marick. The weak mutation hypothesis. In Proceedings of the sympo-
sium on Testing, analysis, and verification, pages 190–199, 1991.

[Maz86] Antoni W. Mazurkiewicz. Trace theory. In Petri Nets: Central Models and
Their Properties, Advances in Petri Nets, volume 255, pages 279–324, 1986.

157



[Maz95] Antoni Mazurkiewicz. Introduction to trace theory. The Book of Traces, pages
3–41, 1995.

[MAZ%15] Lei Ma, Cyrille Artho, Cheng Zhang, Hiroyuki Sato, Johannes Gmeiner, and
Rudolf Ramler. Grt: Program-analysis-guided random testing (t). In Auto-
mated Software Engineering (ASE), 2015 30th IEEE/ACM International Con-
ference on, pages 212–223. IEEE, 2015.

[MC13] Richard Mayr and Lorenzo Clemente. Advanced automata minimization. In
ACM SIGPLAN Notices, volume 48, pages 63–74. ACM, 2013.

[McL92] John McLean. Proving noninterference and functional correctness using traces.
Journal of Computer Security, 1(1):37–58, 1992.

[McM92a] Kenneth L McMillan. Using unfoldings to avoid the state explosion problem
in the verification of asynchronous circuits. In International Conference on
Computer Aided Verification, pages 164–177. Springer, 1992.

[McM92b] McMillan, Kenneth L. The SMV system. Technical Report CMU-CS-92-131,
Carnegie Mellon University, 1992.

[McM04] Phil McMinn. Search-based software test data generation: A survey. Software
Testing Verification and Reliability, 14(2):105–156, 2004.

[Mea55] George H Mealy. A method for synthesizing sequential circuits. The Bell
System Technical Journal, 34(5):1045–1079, 1955.

[MF11] Jan Malburg and Gordon Fraser. Combining search-based and constraint-based
testing. In Perry Alexander, Corina S. Pasareanu, and John G. Hosking, editors,
26th IEEE/ACM International Conference on Automated Software Engineering
(ASE 2011), Lawrence, KS, USA, November 6-10, 2011, ASE, pages 436–439.
IEEE Computer Society, 2011.

[MFV15] Rui Angelo Matnei Filho and Silvia Regina Vergilio. A mutation and multi-
objective test data generation approach for feature testing of software product
lines. In 2015 29th Brazilian Symposium on Software Engineering, pages 21–
30. IEEE, 2015.

[MFV16] Rui A Matnei Filho and Silvia R Vergilio. A multi-objective test data gen-
eration approach for mutation testing of feature models. Journal of Software
Engineering Research and Development, 4(1):4, 2016.

[MOSH09] Mohamed Mussa, Samir Ouchani, Waseem Al Sammane, and Abdelwahab
Hamou-Lhadj. A survey of model-driven testing techniques. In Byoungju
Choi, editor, Proceedings of the Ninth International Conference on Quality
Software, QSIC 2009, Jeju, Korea, August 24-25, 2009, pages 167–172. IEEE
Computer Society, 2009.

158



[MR01] Tafline Murnane and Karl Reed. On the effectiveness of mutation analysis
as a black box testing technique. In 13th Australian Software Engineering
Conference (ASWEC 2001), 26-28 August 2001, Canberra, Australia, pages
12–20. IEEE Computer Society, 2001.

[MS72] Albert R Meyer and Larry J Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential space. In SWAT (FOCS), pages
125–129, 1972.

[MW47] Henry B Mann and Donald R Whitney. On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathematical
statistics, pages 50–60, 1947.

[MW94] Aditya P Mathur and W Eric Wong. An empirical comparison of data flow
and mutation-based test adequacy criteria. Software Testing, Verification and
Reliability, 4(1):9–31, 1994.

[Nel89] Greg Nelson. A generalization of Dijkstra’s calculus. ACM Trans. Program.
Lang. Syst., 11(4):517–561, 1989.

[NPW81] Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri nets, event struc-
tures and domains, part i. Theoretical Computer Science, 13(1):85–108, 1981.

[NRS%18] Huyen T. T. Nguyen, César Rodríguez, Marcelo Sousa, Camille Coti, and
Laure Petrucci. Quasi-optimal partial order reduction. In Hana Chockler
and Georg Weissenbacher, editors, Computer Aided Verification - 30th Interna-
tional Conference, CAV 2018, Held as Part of the Federated Logic Conference,
FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, volume 10982
of Lecture Notes in Computer Science, pages 354–371. Springer, 2018.

[OBY03] Vadim Okun, Paul E Black, and Yaacov Yesha. Testing with model checker:
Insuring fault visibility. In Proceedings of 2002 WSEAS international confer-
ence on system science, applied mathematics & computer science, and power
engineering systems, pages 1351–1356, 2003.

[Off89] A. Jefferson Offutt. The coupling effect: Fact or fiction. In Richard A. Kem-
merer, editor, Proceedings of the ACM SIGSOFT ’89 Third Symposium on Test-
ing, Analysis, and Verification, TAV 1989, Key West, Florida, USA, December
13-15, 1989, pages 131–140. ACM, 1989.

[Off92] A. Jefferson Offutt. Investigations of the software testing coupling effect. ACM
Trans. Softw. Eng. Methodol., 1(1):5–20, 1992.

[Off11] Jeff Offutt. A mutation carol: Past, present and future. Information and Soft-
ware Technology, 53(10):1098–1107, 2011.

159



[OL91] A Jefferson Offutt and Stephen D Lee. How strong is weak mutation? In Pro-
ceedings of the symposium on Testing, analysis, and verification, pages 200–
213, 1991.

[OL94] A Jefferson Offutt and Stephen D Lee. An empirical evaluation of weak muta-
tion. IEEE Transactions on Software Engineering, 20(5):337–344, 1994.

[OPTZ96] A Jefferson Offutt, Jie Pan, Kanupriya Tewary, and Tong Zhang. An experi-
mental evaluation of data flow and mutation testing. Software: Practice and
Experience, 26(2):165–176, 1996.

[OU01] A Jefferson Offutt and Roland H Untch. Mutation 2000: Uniting the orthogo-
nal. In Mutation testing for the new century, pages 34–44. Springer, 2001.

[PDMM94] S. C. Pinto Ferraz Fabbri, M. E. Delamaro, J. C. Maldonado, and P. C. Masiero.
Mutation analysis testing for finite state machines. In Proc. IEEE Int. Symp.
Software Reliability Engineering, pages 220–229, 1994.

[PE07] Carlos Pacheco and Michael D Ernst. Randoop: feedback-directed random
testing for java. In Companion to the 22nd ACM SIGPLAN conference on
Object-oriented programming systems and applications companion, OOPSLA
Companion 2007, pages 815–816. ACM, 2007.

[Pel13] Jan Peleska. Industrial-strength model-based testing - state of the art and cur-
rent challenges. In Alexander K. Petrenko and Holger Schlingloff, editors, Pro-
ceedings Eighth Workshop on Model-Based Testing, MBT 2013, Rome, Italy,
17th March 2013, volume 111 of EPTCS, pages 3–28, 2013.

[Pen97] Wojciech Penczek. Model-checking for a subclass of event structures. In
Ed Brinksma, editor, Tools and Algorithms for Construction and Analysis of
Systems, Third International Workshop, TACAS ’97, Enschede, The Nether-
lands, April 2-4, 1997, Proceedings, volume 1217 of Lecture Notes in Com-
puter Science, pages 145–164. Springer, 1997.

[Pet19] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Independently
Published, 2019.

[PH03] T Pyhala and Keijo Heljanko. Specification coverage aided test selection. In
Third International Conference on Application of Concurrency to System De-
sign, 2003. Proceedings., pages 187–195. IEEE, 2003.

[PKZ%19] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. Mutation testing advances: an analysis and survey. In Advances in
Computers, volume 112, pages 275–378. Elsevier, 2019.

160



[PLEB07] Carlos Pacheco, Shuvendu K Lahiri, Michael D Ernst, and Thomas Ball.
Feedback-directed random test generation. In Proceedings of the 29th inter-
national conference on Software Engineering, ICSE, pages 75–84. IEEE Com-
puter Society, 2007.

[PRWN16] Ingo Pill, Ivan Rubil, Franz Wotawa, and Mihai Nica. SIMULTATE: A toolset
for fault injection and mutation testing of simulink models. In Ninth IEEE In-
ternational Conference on Software Testing, Verification and Validation Work-
shops, ICST Workshops 2016, Chicago, IL, USA, April 11-15, 2016, pages
168–173. IEEE Computer Society, 2016.

[RBF11] Heinz Riener, Roderick Bloem, and Görschwin Fey. Test case generation from
mutants using model checking techniques. In Fourth IEEE International Con-
ference on Software Testing, Verification and Validation, ICST 2012, Berlin,
Germany, 21-25 March, 2011, Workshop Proceedings, pages 388–397. IEEE
Computer Society, 2011.

[RC09] Chanchal K Roy and James R Cordy. A mutation/injection-based automatic
framework for evaluating code clone detection tools. In 2009 International
Conference on Software Testing, Verification, and Validation Workshops, pages
157–166. IEEE, 2009.

[RFT16] Klaus Reichl, Tomas Fischer, and Peter Tummeltshammer. Using formal meth-
ods for verification and validation in railway. In Bernhard K. Aichernig and
Carlo A. Furia, editors, Tests and Proofs - 10th International Conference, TAP
2016, Held as Part of STAF 2016, Vienna, Austria, July 5-7, 2016, Proceed-
ings, volume 9762 of Lecture Notes in Computer Science, pages 3–13. Springer,
2016.

[RH01] Sanjai Rayadurgam and Mats Per Erik Heimdahl. Coverage based test-case
generation using model checkers. In Engineering of Computer Based Systems
(ECBS), pages 83–91, 2001.

[RSSK15] César Rodríguez, Marcelo Sousa, Subodh Sharma, and Daniel Kroening.
Unfolding-based Partial Order Reduction. In 26th International Conference
on Concurrency Theory (CONCUR 2015), pages 456–469, 2015.

[SA06] Koushik Sen and Gul Agha. A race-detection and flipping algorithm for auto-
mated testing of multi-threaded programs. In Eyal Bin, Avi Ziv, and Shmuel Ur,
editors, Hardware and Software, Verification and Testing, Second International
Haifa Verification Conference, HVC 2006, Haifa, Israel, October 23-26, 2006.
Revised Selected Papers, volume 4383 of Lecture Notes in Computer Science,
pages 166–182. Springer, 2006.

[SAC14] Matthew Stephan, Manar H. Alalfi, and James R. Cordy. Towards a taxonomy
for simulink model mutations. In Seventh IEEE International Conference on

161



Software Testing, Verification and Validation, ICST 2014 Workshops Proceed-
ings, March 31 - April 4, 2014, Cleveland, Ohio, USA, pages 206–215. IEEE
Computer Society, 2014.

[SASC13] Matthew Stephan, Manar H Alafi, Andrew Stevenson, and James R Cordy. Us-
ing mutation analysis for a model-clone detector comparison framework. In
2013 35th International Conference on Software Engineering (ICSE), pages
1261–1264. IEEE, 2013.

[SBR%20] Daniel Schemmel, Julian Büning, César Rodríguez, David Laprell, and Klaus
Wehrle. Symbolic partial-order execution for testing multi-threaded programs.
In Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided Verification
- 32nd International Conference, CAV 2020, Los Angeles, CA, USA, July 21-
24, 2020, Proceedings, Part I, volume 12224 of Lecture Notes in Computer
Science, pages 376–400. Springer, 2020.

[SCSP03] Thitima Srivatanakul, John A Clark, Susan Stepney, and Fiona Polack. Chal-
lenging formal specifications by mutation: a csp security example. In Tenth
Asia-Pacific Software Engineering Conference, 2003., pages 340–350. IEEE,
2003.

[SdSFLdSM00] Simone do Rocio Senger de Souza, Sandra Camargo Pinto Ferraz Fabbri, Wan-
derley Lopes de Souza, and José Carlos Maldonado. Mutation testing applied
to estelle specifications. In Proceedings of the 33rd Hawaii International Con-
ference on System Sciences-Volume 8-Volume 8, page 8011, 2000.

[SFBD08] Andre Suelflow, Goerschwin Fey, Roderick Bloem, and Rolf Drechsler. Using
Unsatisfiable Cores to Debug Multiple Design Errors. In Proceedings of the
18th ACM Great Lakes Symposium on VLSI, GLSVLSI ’08, pages 77–82, New
York, NY, USA, 2008. ACM.

[SHI85] Richard Edwin Stearns and Harry B Hunt III. On the equivalence and contain-
ment problems for unambiguous regular expressions, regular grammars and
finite automata. SIAM Journal on Computing, 14(3):598–611, 1985.

[SKH12] Olli Saarikivi, Kari Kähkönen, and Keijo Heljanko. Improving dynamic partial
order reductions for concolic testing. In Jens Brandt and Keijo Heljanko, edi-
tors, 12th International Conference on Application of Concurrency to System
Design, ACSD 2012, Hamburg, Germany, June 27-29, 2012, pages 132–141.
IEEE Computer Society, 2012.

[SL88] Deepinder Sidhu and T-K Leung. Fault coverage of protocol test methods. In
IEEE INFOCOM’88, Seventh Annual Joint Conference of the IEEE Computer
and Communcations Societies. Networks: Evolution or Revolution?, pages 80–
81. IEEE Computer Society, 1988.

162



[SL10] Muhammad Shafique and Yvan Labiche. A systematic review of model based
testing tool support. Carleton University, Canada, Tech. Rep. Technical Report
SCE-10-04, pages 01–21, 2010.

[SL15] Muhammad Shafique and Yvan Labiche. A systematic review of state-based
test tools. Software Tools for Technology Transfer, 17(1):59–76, 2015.

[SMC%17] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao,
Geguang Pu, Yang Liu, and Zhendong Su. Guided, stochastic model-based
gui testing of android apps. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pages 245–256, 2017.

[SMW04] Tatiana Sugeta, José Carlos Maldonado, and W Eric Wong. Mutation testing
applied to validate sdl specifications. In IFIP International Conference on
Testing of Communicating Systems, pages 193–208. Springer, 2004.

[SWZK17] Allison Sullivan, Kaiyuan Wang, Razieh Nokhbeh Zaeem, and Sarfraz Khur-
shid. Automated test generation and mutation testing for alloy. In 2017
IEEE International Conference on Software Testing, Verification and Valida-
tion, ICST 2017, Tokyo, Japan, March 13-17, 2017, pages 264–275. IEEE
Computer Society, 2017.

[SYR08] Manoranjan Satpathy, Anand Yeolekar, and S Ramesh. Randomized directed
testing (redirect) for simulink/stateflow models. In Proceedings of the 8th ACM
international conference on Embedded software, pages 217–226. ACM, 2008.

[TCMM98] Nigel Tracey, John Clark, Keith Mander, and John McDermid. An automated
framework for structural test-data generation. In Automated Software Engineer-
ing, 1998. Proceedings. 13th IEEE International Conference on, ASE, pages
285–288. IEEE, 1998.

[TKL%12] Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel Legay, Darko
Marinov, and Gul Agha. Transdpor: A novel dynamic partial-order reduction
technique for testing actor programs. In Holger Giese and Grigore Rosu, edi-
tors, Formal Techniques for Distributed Systems - Joint 14th IFIP WG 6.1 In-
ternational Conference, FMOODS 2012 and 32nd IFIP WG 6.1 International
Conference, FORTE 2012, Stockholm, Sweden, June 13-16, 2012. Proceedings,
volume 7273 of Lecture Notes in Computer Science, pages 219–234. Springer,
2012.

[TM08] Donald Thomas and Philip Moorby. The Verilog® hardware description lan-
guage. Springer Science & Business Media, 2008.

[Tra10] Mark Trakhtenbrot. Implementation-oriented mutation testing of statechart
models. In 2010 Third International Conference on Software Testing, Verifi-
cation, and Validation Workshops, pages 120–125. IEEE, 2010.

163



[Tra17] Mark B. Trakhtenbrot. Mutation patterns for temporal requirements of reactive
systems. In 2017 IEEE International Conference on Software Testing, Verifi-
cation and Validation Workshops, ICST Workshops 2017, Tokyo, Japan, March
13-17, 2017, pages 116–121. IEEE Computer Society, 2017.

[Tre92] Gerrit Jan Tretmans. A formal approach to conformance testing. PhD thesis,
University of Twente, Enschede, Netherlands, 1992.

[Tre96] Jan Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software - Concepts and Tools, 17(3):103–120, 1996.

[UPL12] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of
model-based testing approaches. Software Testing, Verification and Reliabil-
ity, 22(5):297–312, 2012.

[vdMZ07] Ron van der Meyden and Chenyi Zhang. Algorithmic verification of noninter-
ference properties. Electr. Notes Theor. Comput. Sci., 168:61–75, 2007.

[vGG89] Rob van Glabbeek and Ursula Goltz. Refinement of actions in causality based
models. In Workshop/School/Symposium of the REX Project (Research and
Education in Concurrent Systems), pages 267–300. Springer, 1989.

[VGG01] Rob Van Glabbeek and Ursula Goltz. Refinement of actions and equivalence
notions for concurrent systems. Acta Informatica, 37(4-5):229–327, 2001.

[vGP09] Rob J van Glabbeek and Gordon D Plotkin. Configuration structures, event
structures and Petri nets. Theoretical Computer Science, 410(41):4111–4159,
2009.

[VMGF13] Mattia Vivanti, Andre Mis, Alessandra Gorla, and Gordon Fraser. Search-
based data-flow test generation. In 2013 IEEE 24th International Symposium
on Software Reliability Engineering (ISSRE), ISSRE, pages 370–379. IEEE,
2013.

[VPK04] Willem Visser, Corina S Psreanu, and Sarfraz Khurshid. Test input generation
with java pathfinder. ACM SIGSOFT Software Engineering Notes, 29(4):97–
107, 2004.

[VV81] Rüdiger Valk and Guy Vidal-Naquet. Petri nets and regular languages. J. Com-
put. Syst. Sci., 23(3):299–325, 1981.

[Wah95] K. S. How Tai Wah. Fault coupling in finite bijective functions. Softw. Test.
Verification Reliab., 5(1):3–47, 1995.

[Wah00] K. S. How Tai Wah. A theoretical study of fault coupling. Softw. Test. Verifica-
tion Reliab., 10(1):3–45, 2000.

164



[Wah03] K. S. How Tai Wah. An analysis of the coupling effect I: single test data. Sci.
Comput. Program., 48(2-3):119–161, 2003.

[WBP02] Joachim Wegener, Kerstin Buhr, and Hartmut Pohlheim. Automatic test data
generation for structural testing of embedded software systems by evolutionary
testing. In GECCO, volume 2 of GECCO, pages 1233–1240, 2002.

[Win88] Glynn Winskel. An introduction to event structures. In Workshop/School/Sym-
posium of the REX Project (Research and Education in Concurrent Systems),
pages 364–397. Springer, 1988.

[Win16] Glynn Winskel. Event structures, stable families and concurrent games, 2016.

[WN95] Glynn Winskel and Mogens Nielsen. Handbook of logic in computer science
(vol. 4). chapter Models for Concurrency, pages 1–148. Oxford University
Press, Inc., New York, NY, USA, 1995.

[Woo93] M. R. Woodward. Errors in algebraic specifications and an experimental muta-
tion testing tool. Softw. Eng. J., 8(4):211–224, 1993.

[Wra76] Celia Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical
Computer Science, 3(1):23–33, 1976.

[WSK18] Kaiyuan Wang, Allison Sullivan, and Sarfraz Khurshid. Mualloy: a mutation
testing framework for alloy. In International Conference on Software Engineer-
ing: Companion (ICSE-Companion), pages 29–32, 2018.

[XeAXW12] Dianxiang Xu, Omar el Ariss, Weifeng Xu, and Linzhang Wang. Testing
aspect-oriented programs with finite state machines. Softw. Test. Verification
Reliab., 22(4):267–293, 2012.

[XOL05] Wuzhi Xu, Jeff Offutt, and Juan Luo. Testing web services by XML pertur-
bation. In 16th International Symposium on Software Reliability Engineering
(ISSRE 2005), 8-11 November 2005, Chicago, IL, USA, pages 257–266. IEEE
Computer Society, 2005.

[YCJ98] Hoijin Yoon, Byoungju Choi, and Jin-Ok Jeon. Mutation-based inter-class
testing. In Proceedings 1998 Asia Pacific Software Engineering Conference
(Cat. No. 98EX240), pages 174–181. IEEE, 1998.

[ZC05] Yuan Zhan and John A Clark. Search-based mutation testing for simulink mod-
els. In Proceedings of the 7th annual conference on Genetic and evolutionary
computation, GECCO, pages 1061–1068. ACM, 2005.

[ZDK07] Songtao Zhang, Thomas Dean, and Scott Knight. Lightweight state based
mutation testing for security. In Testing: Academic and Industrial Confer-
ence Practice and Research Techniques-MUTATION (TAICPART-MUTATION
2007), pages 223–232. IEEE, 2007.

165



[Zie87] Wieslaw Zielonka. Notes on finite asynchronous automata. RAIRO-Theoretical
Informatics and Applications, 21(2):99–135, 1987.

[ZSL%14] Tingliang Zhou, Haiying Sun, Jing Liu, Xiaohong Chen, and Dehui Du. Im-
proving testing coverage for safety-critical system by mutated specification. In
2014 21st Asia-Pacific Software Engineering Conference, volume 1, pages 43–
46. IEEE, 2014.

[ZWT12] Zhao Zhang, Qiao-Yan Wen, and Wen Tang. An efficient mutation-based fuzz
testing approach for detecting flaws of network protocol. In 2012 International
Conference on Computer Science and Service System, pages 814–817. IEEE,
2012.

166


	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Contributions
	Research Questions
	Methodology
	Publications

	Related Research
	Model-based Testing
	Mutation Testing
	Model-based Mutation Testing

	Model-based Testing
	Modeling Reactive Systems
	Testing Semantics
	Symbolic Transition System
	Action Systems

	Mutation Testing
	Mutants
	Killing Mutants

	Mutation Testing with Hyperproperties
	Logics for Hyperproperties
	Killing with Hyperproperties
	Non-deterministic Models in Practice
	Mutation Testing with Hyperproperties Experiments
	Related Work

	Test Case Generation via Heuristic-guided Branching Search
	Branching Search Algorithm
	Branching Search Heuristics
	Models
	Branching Search Experiments
	Related Work

	Event Structure-Based Test Case Generation
	Event Structures and Configurations
	Unfolding Based Partial Order Reduction
	Event Structure Based Test Case Generation
	Language Inclusion Problem and Complexity Results
	Deciding Language Inclusion
	Experiments
	Related Work

	Conclusions and Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

