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Kurzfassung

Die vorliegende Diplomarbeit beschäftigt sich mit dem Einfluss von Einkommensungleich-

heit auf CO2-Emissionen. Es wird untersucht, ob eine Senkung der Einkommensungleichheit

zu einer Erhöhung der Pro Kopf-CO2-Emissionen führen kann. Hierfür wird ein two-way

error component Modell mittels eines grouped fixed effects (GFE) Schätzers von Bonhom-

me und Manresa (2015) geschätzt. Für eine zuvor festgelegte Anzahl an GFE Gruppen

teilt der Schätzer jedes Land im Datensatz einer GFE Gruppe zu. Dadurch können grup-

pierte fixed effects geschätzt werden, welche zwischen den Gruppen variieren können. Dies

ermöglicht, unterschiedliche Fortschritte bei der Entwicklung von sauberer Technologie so-

wie der Verbesserung von emissionsverursachenden Prozessen von Ländern im Modell zu

berücksichtigen. Die Ergebnisse dieser Arbeit zeigen, dass eine Senkung der Einkommen-

sungleichheit zu einer Erhöhung der Pro Kopf-CO2-Emissionen führt, wenn das Pro Kopf-

Einkommen unter einem bestimmten Schwellenwert liegt. Für Einkommen über diesem

Schwellenwert ändert sich das Vorzeichen, jedoch ist dieser Schwellenwert so hoch, dass er

nur von den reichsten Ländern erreicht wird. Daher kann gefolgert werden, dass für fast

alle Länder außer jenen mit dem höchsten Pro Kopf-Einkommen eine Senkung der Ein-

kommensungleichheit zu einer Erhöhung der CO2-Emissionen führt. Länder, welche eine

Senkung von Einkommensungleichheit sowie von CO2-Emissionen erzielen wollen, sollten

zusätzliche Maßnahmen treffen, um den entstehenden Zielkonflikt entgegenzusteuern.



Abstract

This thesis deals with the impact of income inequality on CO2 emissions. It is investigated

whether a reduction of income inequality can lead to an increase in per capita CO2 emis-

sions. A grouped fixed effects (GFE) estimator by Bonhomme and Manresa (2015) is being

used to estimate this relationship in a two-way error component model. The estimator

assigns for a previously set number of GFE groups every country in the sample to one of

the GFE group. This allows the grouped fixed effects to vary between the GFE groups,

whereby different stages of clean technology development and of improvements in emission

creating processes between countries can be taken into account. The main findings are

that the impact of income inequality on CO2 emissions depends on the level of income.

Reducing income inequality leads to an increase in CO2 emissions below a certain thresh-

old of income, while for income levels above this threshold the effect is reversed. However,

this extremely high threshold value has been reached only by a few countries, implying

that for almost all countries except ones with the highest per capita income levels reducing

income inequality will lead to higher per capita CO2 emissions. If countries want to cut

down income inequality as well as per capita CO2 emissions, they should consider taking

additional measures to prevent a possible trade-off.
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Vorschlägen immer weitergeholfen, wenn ich im Entstehungsprozess dieser Arbeit einmal

nicht weiter wusste.



Eidesstattliche Erklärung
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1 Introduction

In the last years, the climate crisis was one of the most debated topics. It is now clear, that

the economic development of mankind has contributed to various kinds of environmental

degradation including global warming.1 There exist numerous studies about the impact

of income and economic growth on the environment. Especially the relationship between

economic growth and CO2 emissions, which has mostly contributed to global warming

(see IPCC (2014)), has been extensively investigated (e.g. Roberts and Grimes (1997),

Mart́ınez-Zarzoso and Bengochea (2004) and Zoboli et al. (2010)).

This thesis studies not only the nexus between income and CO2 emissions, but also

the effect of income distribution on CO2 emissions, as for most countries not only the

restoration of environmental damages, but also the reduction of inequality and poverty are

major challenges. Several studies have already examined the impact of income inequality

on environmental degradation. Theoretical studies like Scruggs (1998) and Boyce (2007)

show that income inequality might influence environmental pollution through different

transmission channels and various opposing effects, which will be further discussed in the

following chapter. A full review of the theoretical arguments explaining the mechanisms,

through which income inequality might impact environmental degradation, can be found

in Berthe and Elie (2015). The empirical studies - such as Ravallion et al. (2000), Heerink

et al. (2001), Magnani (2000), Borghesi (2006) and Grunewald et al. (2017) - have mixed

outcomes depending on the chosen methods and data sets. They are discussed in section

2.2 in more detail.

This thesis contributes to the literature about the relationship between income inequality

and CO2 emissions by using a grouped fixed effects (GFE) estimator by Bonhomme and

Manresa (2015), which can better handle time-varying unobserved heterogeneity in contrast

to the fixed effects (FE) and ordinary least squares (OLS) estimator commonly used in

the existing literature. The GFE estimator assigns for a previously set number of GFE

groups every country in the sample to one of the GFE group. Therefore, different stages of

1See IPCC (2014) for further information.
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1 Introduction

clean technology development and of improvements in emission creating processes between

countries can be taken into account as the grouped fixed effects can vary between the GFE

groups. Nonetheless, the FE and OLS estimators are used to compare the estimated results

from the grouped fixed effects estimator with them. Furthermore, the chosen panel data set

is more extensive than most of the data sets used in existing studies, as it is now possible

to include longer time series and improved measures for income inequality as well as CO2,

making the data better comparable among countries.

The thesis is most closely related to Grunewald et al. (2017), who introduced the GFE

estimator to analyse the relationship between income inequality and CO2 emissions in

a two-way error component model. We mostly follow their approach, but additionally

examine the composition of the estimated GFE groups in more detail to find a meaningful

explanation for the characterization of group membership. Furthermore, the sensitivity

analysis in this paper includes assessing the stability of the algorithm by Bonhomme and

Manresa (2015).

The main findings resulting from the estimates by the GFE estimator are, that the impact

of income inequality on CO2 emissions depends on the income level. Increasing inequality

has a negative effect on CO2 emissions below a certain threshold of income, while for income

levels above this threshold the effect is reversed. However, this extremely high threshold

value is almost out of sample, implying that for low-, middle- and high-income countries

reducing income inequality will lead to higher per capita CO2 emissions. Moreover, the

estimated results confirm the environmental Kuznet curve hypothesis.

The rest of this thesis is structured in the following way. Chapter 2 evaluates existing

theoretical and empirical studies about the impact of income inequality on environmen-

tal degradation. The panel data set is outlined in chapter 3. Chapter 4 describes the

model. The estimators are presented in chapter 5. Chapter 6 outlines the estimated re-

sults. Chapter 7 contains a sensitivity analysis. Lastly, chapter 8 completes this thesis with

the conclusion.

2



2 Literature Review

2.1 Theory

Over the last decades several economists and researchers from various areas have examined

how income inequality might affect environmental damage and developed theories to explain

that relationship. The literature on this relationship has meanwhile become quite vast,

therefore we will focus on the most important theories and hypotheses concerning this

relationship.

The relationship between income inequality and environmental pressure is inextricably

linked to the subject of economic development and economic welfare. One of the most

famous hypotheses concerning the influence of economic development on environmental

damage is the environmental Kuznet curve (EKC), which became known through the work

of Grossman and Krueger (1991, 1995) and Shafik and Bandyopadhyay (1992).

The EKC shows that the influence of economic development on environmental damage is

of a specific shape, namely an inverted-U:

00

Individual

environmental

damage

Individual income

Figure 2.1: Environmental Kuznet curve

The graphic can be explained as follows: in the initial state the levels of both income

and environmental damage are low. As income starts to rise, environmental damage grows

as well. When income reaches a certain threshold, the direction of the relationship changes

3
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and environmental damage starts sinking.

If we assume that the EKC holds for household income, then this would mean: a decline

of income inequality via a redistribution policy for example could have different outcomes

concerning environmental pressure, as this relationship depends on the level of economic

development.

Scruggs (1998) and Heerink et al. (2001) consider the EKC hypothesis to be the most

realistic shape of the relationship between economic income and environmental pressure.

Ravallion et al. (2000) receive similar results concerning this relationship. They find that

there exists a trade off between lowering income inequality and reducing greenhouse gas

emissions both across and within countries, which gets better for countries with a high

average income.

Scruggs (1998) substantiates this hypothesis by using Inglehart’s post-materialism the-

ory (Inglehart, 1990), which claims that humans first want to satisfy their material needs

and attain a certain level of prosperity before they change their preferences regarding the

environment and start to take actions to limit environmental damages.

Heerink et al. (2001) argue that households start substituting polluting goods with envi-

ronmental friendly goods after reaching a certain level of affluence. This would lead to a

decrease of individual environmental pressure through the change of the individual house-

hold’s behaviour and through producers making the manufacturing process of their goods

more environmentally friendly.

However, in reality there exists a gap between developing environmental values and taking

actions to limit environmental pressure. One possible explanation for this value-action gap

might be that on one side individuals develop environmental concerns as they are getting

more affluent, while on the other side they have more interest in reaching a higher stan-

dard of living, which would include more energy intensive transportation like flying and

generally more frequent travelling.

This change of individual behaviour would imply that a decrease of economic inequality

leads to a higher burden on the environment.

The emulation theory is closely linked to the above-mentioned points regarding individual

economic behaviour. The theory was originally formulated by Veblen (1934), therefore also

sometimes referred to as a Veblen effect.

It claims that in a very unequal society differences between the lifestyle and consumption

behaviour of the affluent social groups compared to poorer social groups are bigger than in

a more equal society and hence more conspicuous.

4
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Members of a certain social group would try to emulate the consumption behaviour of

the slightly wealthier social groups. This means that they would adopt a certain lifestyle

and consume goods based on the social status they represent, rather than making their

economic behaviour more environmentally friendly. This implies that higher economic

inequality would lead to a more environmentally harmful lifestyle of all social groups.

Economic income inequality might influence environmental pressure not only through

consumption patterns of individuals, but also through finding joint solutions to minimize

environmental damages. As pointed out by Borghesi (2006), this might be more difficult

for a society with unequal income distribution. Political agents like the government, lob-

bies, trade unions etc. generally have more difficulties to cooperate regarding social and

environmental issues than in a more egalitarian society. Thus, a more unequal income

distribution can hinder countries to implement effective environmental regulations.

However, for pollutants having a global impact like Greenhouse Gases international agree-

ments and solutions are more relevant than national ones. Thus, this theory might be more

applicable to inequality across countries than inequality within countries.

Also Boyce (2007) examined how economic inequality might influence environmental

harm via the political channel. He makes two assumptions: firstly, economic income is

generally correlated with political power; secondly, the wealthy part of a society tends to

benefit the most from the economic activities generating environmental damages.

He explains the latter point by the argument that polluting companies are generally owned

by the rich and goods and services with a higher emission rate are as well consumed by

them. Damages to the environment arise in general locally. The wealthy and powerful do

not suffer as much as the poor from those damages, because they can avoid those damages.

They are able to move to more expensive neighborhoods with good environmental quality

and to buy private substitutes for missing public environmental quality.

Thus it is not necessary for them to have environmental regulations implemented, because

they will not benefit as much from those as from the benefits generated by their polluting

companies and from consuming goods with high emission rates. Therefore, they will use

their wealth and political power to hinder policymakers from formulating and implementing

those costly environmental regulations.

Boyce (2007) argues that if those two assumptions are fulfilled, higher income inequality

can be expected to lead to higher damages to the environment. This can be also applied

to greenhouse gas emissions and their resulting environmental damages. In this case the

damages are global, like rising sea levels, higher temperatures and more extreme weather

phenomena. If we make the same assumptions for income distribution across countries,

5
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then higher inequality across countries would cause higher greenhouse gas emissions and

therefore more environmental damages.

Apart from theories being clear about whether income inequality influences environmen-

tal damages positively or negatively, some researchers like Ravallion et al. (2000) examined

this relationship while staying vague about the sign of the direction. Nonetheless their

results are in line with the theories by Heerink et al. (2001) & Scruggs (1998) mentioned

above. Ravallion et al. (2000) assume that every individual causes emissions through their

consumption behaviour, either directly by using goods or indirectly via the production

process of goods. One can formulate for each individual an implicit demand function for

carbon emissions, the derivative of this function with respect to income is called marginal

propensity to emit (MPE).

Depending on the MPE lowering inequality could have different outcomes. If one assumes

that poor people generally have a lower MPE than the more affluent ones, reducing in-

equality via a redistribution policy would lead to a decrease in emissions. However, if

rich people have a lower MPE than the poor, such a redistribution policy would lead to

rising emissions. It is difficult to say which case corresponds to reality. The consumption

behaviour of affluent people include goods and activities with higher emission rates like

cars and flying, while poor people would spend more income on clothes and food, which

would correspond to the first case. On the contrary, the rich are able to use energy more

efficiently than the poor, which would imply the latter case.

Following Berthe and Elie (2015), we can summarize, that economic inequality can in-

fluence environmental pressure via two main channels. The first channel describes the

mechanism how income inequality affects environmental damage through consumption be-

haviour of households, while the second channel is characterized by social agreements and

the implementation of environmental policies.

We have described a number of opposing effects. It is theoretically impossible to determine,

which effect could dominate the others. Therefore, we will try to find the answer to this

question empirically.

2.2 Empirical Findings

There exist a number of empirical studies about the nexus between income distribution

and CO2 emissions. Results by Ravallion et al. (2000) and Heerink et al. (2001) show

that higher income inequality has a negative effect on CO2 emissions, which would imply a
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trade off between lowering income inequality and reducing CO2 emissions. Both studies use

pooled OLS estimators to show the results. More recent results by Hübler (2017) are in line

with this negative nexus. His empirical findings are achieved by using quantile regressions,

however his FE estimations give no significant results concerning this relationship. Borghesi

(2006) achieves similar results: his pooled OLS estimations give a negative coefficient

for income inequality, however the FE estimations result in a statistically non-significant

impact of income inequality on CO2 emissions.

On the opposite, there are already studies, like Boyce (2007) and Magnani (2000) for

example, providing possible explanations for a negative influence of income inequality on

environmental degradation, implying therefore a negative influence on CO2 emissions. Ar-

guments by Boyce (2007) have been already mentioned in section 2.1. Magnani (2000)

shows empirically that there exists a negative association between income inequality and

environmental protection by doing OLS regressions with OECD data on research & devel-

opment expenditure for pollution abatement.

Lastly, some studies come to the conclusion that the effect of income inequality on CO2

emissions can change depending on other factors, such as the level of GDP per capita. For

instance, Grunewald et al. (2017) empirically find evidence that for low- and middle-income

countries income inequality has a negative effect on CO2 emissions while for high-income

countries the opposite is the case. They use a grouped fixed effects estimator, which

is further presented in section 5.3, to estimate the effect of income inequality on CO2

emissions for 158 nations between 1980 and 2008.

To sum it up, empirical studies investigating the relationship between income inequality

and CO2 emissions unfortunately give mixed results about the sign of this relationship

depending on the chosen data set and the econometric methods applied.
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3 Data Description

Our data set is a panel data set. Observations are collected for 140 countries over a time

period of 25 years (1990 to 2014). The selected countries are:

Albania, Algeria, Argentina, Armenia, Australia, Austria, Azerbaijan, Bangladesh, Bar-

bados, Belarus, Belgium, Belize, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Bul-

garia, Burkina Faso, Burundi, Cabo Verde, Cambodia, Cameroon, Canada, Central African

Republic, Chile, China, Colombia, Costa Rica, Cote d’Ivoire, Croatia, Cyprus, Czech Re-

public, Denmark, Dominican Republic, Ecuador, Egypt, Arab Rep., El Salvador, Estonia,

Eswatini, Ethiopia, Fiji, Finland, France, Gambia, The, Georgia, Germany, Ghana, Greece,

Guatemala, Guinea, Guinea-Bissau, Guyana, Honduras, Hong Kong SAR, China, Hun-

gary, Iceland, India, Indonesia, Iran, Islamic Rep., Ireland, Israel, Italy, Jamaica, Japan,

Jordan, Kazakhstan, Kenya, Korea, Rep., Kyrgyz Republic, Lao PDR, Latvia, Lebanon,

Lesotho, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Mali, Malta, Maurita-

nia, Mauritius, Mexico, Micronesia, Fed. Sts., Moldova, Mongolia, Morocco, Mozambique,

Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Macedo-

nia, Norway, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland,

Portugal, Qatar, Romania, Russian Federation, Rwanda, Senegal, Sierra Leone, Singa-

pore, Slovak Republic, Slovenia, South Africa, Spain, Sri Lanka, St. Vincent and the

Grenadines, Sudan, Sweden, Switzerland, Tajikistan, Tanzania, Thailand, Tonga, Trinidad

and Tobago, Tunisia, Turkey, Turkmenistan, Uganda, Ukraine, United Kingdom, United

States, Uruguay, Venezuela, RB, Vietnam, West Bank and Gaza, Yemen, Rep., Zambia

and Zimbabwe.

The selection of these countries is based on the available number of observations concern-

ing GDP per capita, CO2 emissions per capita and the Gini index. We denote a complete

observation as one, where for a country i and year t the variables GDP per capita, CO2

emissions per capita & the Gini index are not missing.

Therefore, all countries with 25 complete observations are selected. The other countries

are selected in descending order of the number of complete observations. We select 140

countries and drop all countries with fewer complete observations than the selected ones.

8



3 Data Description

This leads to a slight difference between our selection of countries and the one in Grunewald

et al. (2017). Our data set contains the following countries, which are not included in the

selection by Grunewald et al. (2017): Barbados, Burundi, Lebanon, Lesotho, Micronesia,

Quatar, St.Vincent and the Grenadines, Sudan, Tonga, West Bank and Gaza & Zimbabwe.

As countries were selected in descending order based on the number of complete obser-

vations, the following countries from the selection by Grunewald et al. (2017) are not

included in our data set: Angola, Bangladesh, Benin, Chad, Comoros, Djibouti, Gabon,

Haiti, St.Lucia & Suriname.

3.1 Carbon Dioxide Emissions

We choose Carbon Dioxide (CO2) per capita emissions to measure environmental damage

for the following reasons:

1. Among all the anthropogenic (i.e. man-made) Greenhouse Gases, CO2 has con-

tributed most to global warming in the last years according to the latest IPCC Syn-

thesis report.1

2. Time series for CO2 emissions are longer and more complete in comparison to all the

other GHG (Greenhouse Gases).

The CO2 emissions time series come from the US Oak Ridge National Laboratory

(ORNL) at the Carbon Dioxide Information Analysis Center (CDIAC) by Boden et al.

(2017). CO2 per capita emissions are measured in metric CO2 tons per capita and include

emissions from burning of fossil fuels and cement production. Emissions for every year and

country are calculated by taking the amount of burned fossil fuels and multiplying it with

the average carbon content of each fuel type (oil, gas or coal). Emissions by cement produc-

tion are measured by the average amount of CO2, which is released during the procedure

of cement production.

One disadvantage of the ORNL data set is the fact, that CO2 emissions by deforestation,

agriculture, livestock and land use change are not included. According to the latest IPCC

Report (IPCC, 2014, page 45-46) those emissions have contributed since 1970 around one

quarter of global CO2 emissions. The available CO2 emission time series could underes-

timate the real amount of CO2 emissions, but probably only for countries with a strong

1See IPCC (2014) for further information.
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3 Data Description

agricultural sector for example. Nevertheless, the ORNL data set is the most complete

data set compared to others concerning number of countries and years.

3.2 GDP Per Capita

GDP per capita is one of the World Development Indicators (2019) from the World Bank.

GDP PPP denotes the gross domestic product converted to international dollars by using

purchasing power parity and is measured in international 2011 Dollars. An international

dollar has the same purchasing power over GDP as the U.S. dollar has in the United State,

that means one can buy with one international dollar the same amount of goods which can

be bought with one U.S. Dollar in the United States. The time series for GDP per capita

is available for the years 1990 - 2018.

3.3 Gini Index

We choose the Gini Index to measure income inequality. The Gini index was developed by

the Italian economist Gini and is one of the most common indicators to measure distribution

inequality. It is defined as follows:

Following Gastwirth (1972), we define for a set of n ascending, ordered numbers x1, ..., xn

(e.g. income) the empirical Lorenz curve generated by the points i/n, i = 0, ..., n by

L(0) := 0 and L(j/n) := sj/sn where sj :=
	j

i=1 xi.

The empirical Lorenz curve L(p) is defined for all fractiles p in the interval (0, 1) by linear

interpolation of the points L(p) and represents the fraction of the total variable measured

(e.g. income). The Gini index G is defined as the ratio of the area between the empirical

Lorenz curve and the 45◦ line to the area under the 45◦ line.2

Therefore, the Gini index can be a value between 1 and 0, where 0 stands for total

equality and 1 for total inequality. For example, if the Lorenz curve is identical to the 45◦

line, then total equality is the case.

2See Gastwirth (1972) for further information.

10



3 Data Description
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Figure 3.1: Empirical Lorenz curve

We use the Gini indices from the Standardized World Income Inequality (SWIID)

Database with time series available from 1960 to 2018 and for up to 196 countries or

territories. The SWIID routine, developed by Solt (2009), is based on the Luxembourg

Income Study (LIS) Database and estimates relationships between Gini indices from the

LIS and all the other Gini indices available for the same country-years. Gini indices for

country-years that are not available in the LIS but from other sources, are estimated by

using those estimated relationships.

The SWIID data set contains Gini indices for two different types of income, namely

before tax income and after tax income (e.g. disposable income). As most of the SWIID

sources use disposable income as welfare definition, the Gini indices based on disposable

income are better comparable among countries and years, therefore we will use those Gini

indices.
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3.4 Polity Index

The Polity Index is part of the Integrated Network for Societal Conflict Research (INSCR)

data set from the Center of Systemic Peace (Cole and Marshall, 2014).

The Polity Index measures the fragility of a state: The Index ranges between -10 and 10,

where -10 stands for fully institutionalized autocracy and 10 stands for fully institution-

alized democracy. Time series are available for the years 1800-2017 and for up to 167

countries.

We will use the Polity Index for our sensitivity analysis in chapter 7. Namely, the Polity

Index can be interpreted as a measure of the quality of institutions, as a proxy variable

for measuring environmental regulations e.g. the political channel through which income

inequality might influence CO2 emissions.

3.5 Summary Statistics

To conclude this chapter, the main variables used in the model are described in table 3.1,

while table 3.2 displays a summary statistic of all variables used.

Table 3.1 Definition of variables

Variable Definition Unit Number of observations

CO2 CO2 per capita metric tons 3447
GINI Gini Index percentage scale 3224
GDP GDP per capita international 2011 Dollar 3440

Table 3.2 Summary statistic

Variable Mean St. Dev. Min Max

CO2 4.48 6.42 0.04 70.92
GINI 38.18 8.39 17.30 62.60
GDP 14 252.96 16 225.05 354.28 129 349.90
Polity Index 4.41 6.03 −10.00 10.00
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4 Model

Let us consider a data set where N individuals are repeatedly observed over a time period

of length T . The set of the N individuals does not change over time. Such a data set is

called a panel data set. A panel data set is called a short panel, if the number of observed

subjects is relatively large compared to the length of the time period. If the contrary is

true, i.e. if a small cross section of individuals is observed over a long time period, then

the panel data set is referred to as a long panel. If the same time periods are available for

all individuals, then the data set is called balanced panel data set. If this is not the case,

i.e. when the number of time series observations is different across individuals, the panel

is called unbalanced.

For reasons of simplicity the methods are first presented for a balanced panel data model

as this makes the indexation and reading the equations considerably easier.

Consider the following model for individual i, i = 1, ..., N and time t, t = 1, ..., T :

yit = α+ β1x
1
i,t + ...+ βKxKi,t + vit (4.1)

vit = θit + uit (4.2)

The term yit denotes the dependent variable, α the intercept and x1i,t, ..., x
K
i,t denote the K

explanatory variables, also called covariates. The parameters of interest, which we want

to estimate, are β1, ..., βK . If we define the vectors

Xit :=

��
x1i,t
...

xKi,t

�� , β :=

��
β1
...

βK

�� (4.3)

then we can rewrite equation 4.1 in the following form:

yit = α+ β
�
Xit + vit (4.4)
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The error term vit = θit + uit is the sum of the unobservable effects θit and an id-

iosyncratic error uit. We assume uit ∼ IID(0, σ2
u), meaning that uit is independent and

identically distributed (IID) with mean 0 and variance σ2
u. Depending on the applied esti-

mator, necessary assumptions concerning the unobservable effects θit and the idiosyncratic

error uit are described in the following chapter.

The precise model being used in this thesis is presented as follows: for country i ∈
{1, ..., 140} and year t ∈ {1990, ..., 2014}:

eit = α+ β1yit + β2y
2
it + β3git + β4gityit + vit

vit = θit + uit

(4.5)

(4.6)

The term eit is the logarithm of CO2, yit the logarithm of GDP and git the logarithm of the

GINI index. The error term vit consists of the unobservable effects θit and the idiosyncratic

error uit.

The following methods, which will be presented and described in more detail in the

following chapter, are being used to estimate the slope coefficients β1, ..., β4:

• Firstly, the coefficients are estimated by (pooled) OLS. This estimator requires no

particular specification concerning the composition of the error term vit. Therefore

our precise model described by equations 4.5 and 4.6 stays the same.

• Secondly, we estimate the model by using the FE estimator. For the FE model we

assume α = 0 for the intercept α and the following structure for the error term:

vit = ηi + λt + uit, (4.7)

where vit is the sum of the unobservable individual effect ηi, the unobservable time

effect λt and an idiosyncratic error uit. The term ηi accounts for unobserved in-

dividual heterogeneity, also called individual effect or fixed effects.1

The time effect λt is individual-invariant and accounts for any time-specific effect not

included in the regression. Such an effect could be for example a strike year leading

to a disruption of production or an oil embargo resulting in higher oil prices and

reduced oil consumption (Baltagi (2008)). Due to the construction of the error term,

such a model is called a two-way error component model.

The new structure of the error term means for our precise model described by equa-

1See Wooldridge (2010) for further information.
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tions 4.5 and 4.6, that it can be now written as:

eit = β1yit + β2y
2
it + β3git + β4gityit + ηi + λt + uit (4.8)

The FE estimate can be received by first transforming equation 4.8 to eliminate the

individual & time effects and then estimating the transformed equation by OLS.

• Lastly the model is being estimated by the GFE estimator. The GFE estimate is

based on the assumption, that the unobserved (time) effects can vary between groups

of countries, but have the same development over time for all countries within each

group. If we define for a number of groups G, where each group is denoted by

g ∈ {1, ..., G}, the group membership variables gi ∈ {1, ..., G}, i = 1, ..., N , indicating

to which group the country i is being assigned, then the unobserved effects can be

modeled in the following way:

θit = λgit

This specific structure of the unobserved effects results in our model to be specified

to:

eit = β1yit + β2y
2
it + β3git + β4gityit + λgit + uit (4.9)

If we know the group membership for each country, then the GFE estimate can be

received by estimating 4.9 by OLS.

However, in reality the group membership assignments are not known and must be

estimated. It is outlined in section 5.3 of the following chapter how to estimate

the group membership assignments. The algorithm, which is used to estimate the

group membership assignments and the grouped fixed effects, is the algorithm 2

by Bonhomme and Manresa (2015).2 We set the number of groups to 5 to make

our results comparable to the ones by Grunewald et al. (2017). We use the resulting

estimated grouping of the 140 countries into 5 groups by the GFE estimator to include

an interaction term between group assignment of every country and year to estimate

the grouped fixed effects.

2Presented on page 2 of the supplementary appendix available at
https://www.dropbox.com/s/h2hk43owrl6rwh1/Bonhomme_Manresa_appendix.pdf?dl=0.

15

https://www.dropbox.com/s/h2hk43owrl6rwh1/Bonhomme_Manresa_appendix.pdf?dl=0


5 Methodology

Following Grunewald et al. (2017), we will focus on the grouped fixed effects estimator

presented in section 5.3, therefore we will describe this estimator in more detail than the

other two estimators. Nevertheless, the other two estimators will be briefly described, as

we will use the estimated results to compare with the results from the grouped fixed effects

estimator. This will be further explained in the following sections.

5.1 Ordinary Least Squares

The first method being described is OLS. For this estimator all observations are pooled

across i and t, thus we receive a long regression with N ∗ T observations. Then this

regression model is estimated by OLS.

The main assumption for consistency of the OLS estimator is the following:

Assumption 1 (Consistency). Let X be defined as on page 19, but here for a balanced

panel. For all t ∈ {1, ..., T} and i ∈ {1, ..., N}:

E[vit|X] = 0 (5.1)

The assumption 1 requires Xit and vit to be uncorrelated. Due to the construction of

the error term vit, this implies that Xit is uncorrelated with the unobservable effects θit as

well as with the idiosyncratic error uit.

However, if in reality some of the unobserved effects θ are correlated with the regressors

X, then regressing y on X will result in an omitted variable bias, as the error term v is

as well correlated with X. The estimates of the coefficient vector β will be biased and

inconsistent. Therefore, the OLS estimator is inconsistent if the true model is one, where

some of the unobserved effects are correlated with the explanatory variables.
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Since the panel, that we use, is a macro panel with a fixed sample, it is highly probable,

that the unobserved effects are correlated with the explanatory variables.

The standard errors computed by the classical OLS formulas in addition are based on

the following assumption:

E[vitvjs|X] = σ2
v for i = j, t = s and E[vitvjs|X] = 0 else (5.2)

This implies that the errors vit are conditionally homoscedastic and uncorrelated.

Nonetheless, OLS estimates of panel data regression models usually have largely biased

standard errors, because the error terms are most likely auto-correlated for each individual

and this auto-correlation is not being taken into account by the OLS estimator.

5.2 Fixed Effects

In contrast to the OLS estimator, the FE estimator allows the unobserved effects to be

correlated with the explanatory variables.

5.2.1 Consistency and Standard Errors

Consistency of the FE estimator is based on the following main assumption:

Assumption 2 (Consistency). Strict exogeneity:

E[uit|Xit, ηi, λt] = 0 ∀t ∈ {1, ..., T}, i ∈ {1, ..., N} (5.3)

If consistency of the FE estimator is guaranteed, we can consistently measure the effect

of Xit on yit by controlling for the individual as well as for the time effect. Unobserved

effects like the individual effects ηi are allowed to be correlated with the regressor Xit.

In addition, the computation of standard errors is based on the following assumption:

E[uitujs|X, η, λ] = σ2
v for i = j, t = s and E[uitujs|X, η, λ] = 0 else (5.4)
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5.2.2 Fixed Effects Estimator for Balanced Panel

The idea behind the FE estimator is to transform the equations to eliminate the unobserved

individual and time effect ηi, respectively λt. There are several transformations to do

this. The most common transformation for balanced panels is the within transformation,

originally formulated by Wallace and Hussain (1969).

This transformation can be obtained by the following procedure given by Baltagi (2008):

Let ȳi = T−1
	T

t=1 yit, X̄i = T−1
	T

t=1Xit, v̄i = T−1
	T

t=1 vit be the average values over

time for every individual i, i = 1, ..., N and ȳt = N−1
	N

i=1 yit, X̄t = N−1
	N

i=1Xit, v̄t =

N−1
	N

i=1 vit the average values over individuals for t, t = 1, ..., T .

Let further y := (TN)−1
	N

i

	T
t yit be defined as the average over time and individuals,

which is the same definition for X and v. We use the following transformation:

(yit − ȳi − ȳt + y) = β(Xit − X̄i − X̄t +X) + (vit − v̄i − v̄t + v) (5.5)

The individual and time effects are eliminated through this transformation. If we define

ÿ := (yit − ȳi − ȳt + y) and in the same way Ẍ and v̈, we can reformulate the last equation

as:

ÿ = βẌ + v̈ (5.6)

Now we can estimate β by using OLS on the last equation. However, it is important

to know, that we cannot use time invariant or individual invariant variables as the within

transformation wipes out those variables making it impossible to estimate their effect.

5.2.3 Fixed Effects Estimator for Unbalanced Panel

However, as our data set is unbalanced, we cannot use the within transformation exactly

as described above, as it was formulated for the case of a balanced panel. A within trans-

formation for unbalanced panels is provided by Croissant, Millo, et al. (2019):

Let Ti denote the number of observations for individual i and O :=
	N

i=1 Ti the total

number of observations. We define the vectors y and v containing the response and the

error, respectively. The vector β contains the coefficients. The matrix X contains the

covariates, where the observations are ordered by individual first and second by period,
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5 Methodology

which is the same way how the vectors v and y are ordered.

y :=

���������������

y1,1
...

y1,T1

y2,1
...

y2,T2

...

yN,TN

���������������
, v :=

���������������

v1,1
...

v1,T1

v2,1
...

v2,T2

...

vN,TN

���������������
, X :=

������������������������

x11,1 x21,1 . . . xK1,1
x11,2 x21,2 . . . xK1,2
...

x11,T1
x21,T1

. . . xK1,T1

x12,1 x22,1 . . . xK2,1
...

x12,T2
x22,T2

. . . xK2,T2

...

x1N,1 x2N,1 . . . xKN,1
...

x1N,TN
x2N,TN

. . . xKN,TN

������������������������

We consider again equation 4.1 in matrix form:

y = αj +Xβ +Dηη +Dλλ+ v (5.7)

where j is a vector of ones of length O and Dη & Dλ are matrices of individual and time

dummies, respectively. The vectors η and λ contain the individual effects and time effects.

The matricesDT
η Dη andDT

λDλ are diagonal matrices containing the number of observations

for each individual and time-series. If we pre-multiply a vector by Bη := (DT
η Dη)

−1DT
η or

by Bλ := (DT
λDλ)

−1DT
λ , we receive the individual and the time series means, respectively.

The matrix DT
λDη is a maxi∈{1,...,N} Ti × N -matrix containing ones and zeros, indicating

whether there is an observation for an individual in a certain year available.

The within transformation for an unbalanced panel can be received by applying twice

the Frisch-Waugh theorem1: y,X and Dλ are regressed in a first stage on the matrix of

individual dummies Dη, then the residual of y from this first regression is being regressed on

the residuals from X and Dλ. This means that in the second stage, Wηy is being regressed

on the sum of WηX and WηDλ. We receive those residuals by pre-multiplying the variables

with the projection matrix Wη := I −Dη(D
T
η Dη)

−1DT
η . The matrix Wη projects onto the

orthogonal complement of the column space of Dη, which is also the within transformation

1Also referred to as the Frisch-Waugh-Lovell theorem, named after Frisch and Waugh (1933) and Lovell
(1963).
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with respect to individuals.

The Frisch-Waugh theorem is applied a second time by regressing in a first stage Wηy and

WηX on WηDλ. The residuals from this regression in the first stage are calculated by

pre-multiplying the variables by the projection matrix W , where W is defined as

W := I − WηDλ(D
T
λWηDλ)

−DT
λWη, where M− stands for the generalized inverse of any

matrix M . Lastly, the residuals of Wηy are regressed on the residuals of WηX in the second

stage.

Therefore for an unbalanced panel the within transformation with respect to individuals

and time consists of pre-multiplying y and every column of X by the following matrix:

WWη = (I −WηDλ(D
T
λWηDλ)

−DT
λWη)Wη = Wη −WηDλ(D

T
λWηDλ)

−DT
λWη

To sum it up, the two-ways error component fixed effects estimator can be obtained by

the following procedure:

1. The individual within transformation is applied to X, y and Dλ,

2. WηX and Wηy are regressed on WηDλ,

3. We obtain the residuals of WηX and Wηy from those two regressions in step 2. The

residuals of Wηy are regressed on the residuals of WηX.

In contrast to the OLS estimator, the FE estimator can deliver consistent estimates, if the

individual effects as well as the time effects are correlated with the explanatory variables.

However, one disadvantage of the FE model is the assumption that the time effect λt must

be the same for all individuals. Therefore, the combined effect ηi + λt would show the

same development over time for every country. This implication could be problematic

for the following reason: the development and deployment of more sustainable and more

environmental friendly technology to reduce or mitigate environmental damages is not the

same for every nation. The implementation of clean technologies is carried out at different

rates for different parts of the world. As more environmental friendly technologies are

normally quite expensive, developing nations tend to adopt those technologies more slowly

than industrialized countries. Additionally, it seems more realistic, that certain shocks only

affect specific regions and not all countries in the sample.
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5.3 Grouped Fixed Effects

One alternative to the individual-invariant time effects estimated by the FE estimator is

the GFE estimator by Bonhomme and Manresa (2015). The GFE estimator allows the

time effects to vary between groups of individuals.

Let yit be the response variable and Xit the vector of the covariates for all i = 1, .., N

and t = 1, ..., T like we assumed earlier. We assume β ∈ B to be the coefficient vector and

B the set of all possible coefficient vectors. Let λgt ∈ Λ for all t = 1, ..., T and g = 1, ..., G

be the group specific time effect and the group membership variables gi, which indicate

to which group the individual i belongs for all i = 1, ..., N . We define γ := (g1, ..., gN ) as

the set of all group membership variables gi. In other words, γ ∈ ΓG describes a specific

partition i.e. grouping of the N individuals into at most G groups, where ΓG denotes the

set of all partitions of {1, ..., N} into at most G groups.

The grouped fixed estimator (GFE) is defined as the solution of the following minimiza-

tion problem:

(β̂, λ̂, γ̂) = argmin
(β,λ,γ)∈B×ΛGT×ΓG

N�
i=1

T�
t=1

(yit − βXit − λgit)
2 (5.8)

where we minimize over all possible groupings γ = {g1, ..., gN} of the N units into G groups,

coefficient vectors β and group specific time effects λ.

5.3.1 Consistency

We assume from now on for this section and the following sections that we know the number

of groups, G = G0, where G0 denotes the number of groups in the population (i.e. the true

value for the number of groups). We consider the following equation:

yit = β0Xit + λ0
g0i t

+ uit (5.9)

where β0, g0i ∈ {1, ..., G} denote the true values of β and gi.

We assume that (β̃, λ̃) is the infeasible version of the GFE estimator, where the group

membership gi is not being estimated but fixed to its population counterpart g0i (i.e. the

true value). We receive (β̃, λ̃) by using pooled regression of yit on Xit with interaction
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terms of population group dummies and time dummies:

(β̃, λ̃) = argmin
(β,λ)∈B×ΛGT

N�
i=1

T�
t=1

(yit − βXit − λg0i t
)2 (5.10)

The following assumptions are needed to guarantee consistency of the grouped fixed

effects estimator:

Assumption 3 (GFE). There exists a constant M > 0 such that:

1. B and Λ are compact subsets of Rk and R, respectively.

2. E[�Xit�2] ≤ M

3. E[uit] = 0 and E[u4it] ≤ M

4. | 1
NT

	N
i=1

	T
t=1 E[uituisX

�
itXis]| ≤ M

5. 1
N

	N
i=1

	N
j=1 | 1T

	T
t=1 E[uitujt]| ≤ M

6. | 1
N2T

	N
i=1

	N
j=1

	T
t=1

	T
s=1Cov[uitujt, uisujs]| ≤ M

7. We define X̄g∧g̃,t :=
�N

i 1{g0i =g}1{gi=g̃}Xit�N
i 1{g0i =g}1{gi=g̃} as the mean of Xit in the intersection of

groups g0i = g, and gi = g̃. For all partitions γ = {g1, ..., gN} ∈ ΓG, we define ρ̂(γ)

as the minimum eigenvalue of the following matrix:

1

NT

N�
i=1

T�
t=1

(Xit − X̄g0i ∧g̃i,t)(Xit − X̄g0i ∧g̃i,t)
�
. (5.11)

Then we get: plimN,T→∞minγ∈ΓG
ρ̂(γ) = ρ > 0

The first assumption 3.1. restricts the sets of all possible coefficient vectors and group

specific time effects to be compact. Assumptions 3.2. and 3.3. restrict the covariates and

idiosyncratic errors to be stationary. Assumptions 3.4. - 3.6. describe weak dependence

conditions: 3.4. and 3.6. describe requirements on the time-series dependence of errors and

covariates, while cross-sectional dependence of the errors is restricted through 3.5., which

is automatically fulfilled if we assume the errors uit to be IID. The last assumption 3.7.

restricts the covariates Xit to have a sufficient variation across individuals and over time

within the groups, which is automatically fulfilled for discrete non-invariant covariates.
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The following results concerning consistency of the GFE estimator can be determined:

Theorem 1 (Consistency). Let Assumptions 3.1 - 3.7 hold. Let ĝi = ĝi(β̂, λ̂) denote the

GFE estimate for the group g0i to which individual i belongs. We receive for N,T → ∞:

β̂
p→ β0, (5.12)

1

NT

N�
i=1

T�
t=1

(λ̂ĝit − λ0
g0i t

)2
p→ 0. (5.13)

For the proof see Appendix A of Bonhomme and Manresa (2015).

5.3.2 Asymptotic Distribution

Let (Xk, k ∈ Z) denotes a (not necessarily stationary) sequence of random variables.

Following Bradley (2005), we define for −∞ ≤ J ≤ L ≤ ∞ the σ-algebra FL
J as the

σ-algebra generated by (Xk, J ≤ k ≤ L, k ∈ Z). We further define for n ≥ 1 the coefficient

α(n) := sup
j∈Z

sup
A∈Fj

−∞,B∈F∞
j+n

|P(AB)− P(A)P(B)|

If α(n) −→ 0 for n −→ ∞, then the random sequence is called strongly mixing with

mixing coefficient α (or α-mixing).2

We assume the following assumptions that will be used in this section to describe the

asymptotic properties of the GFE estimator:

Assumption 4. 1. For all g ∈ {1, ..., G} : plimN→∞ 1
N

	N
i=1 1{gi = g} =: πg > 0.

2. For all (g, g̃) ∈ {1, ..., G}2 with g �= g̃ : plimT→∞
1
T

	T
t=1(λ

0
gt − λ0

g̃t)
2 = cg,g̃ > 0.

3. There exist constants a, d1 > 0 and a sequence α[t] ≤ e−atd1 such that:

for all i ∈ {1, ..., N} and (g, g̃) ∈ {1, ..., G}2 with g �= g̃:

{uit}t, {λ0
gt − λ0

g̃t}t, and {(λ0
gt − λ0

g̃t)uit)}t are strongly mixing processes with mixing

coefficients α[t] and E[(λ0
gt − λ0

g̃t)uit] = 0

4. There exist constants b, d2 > 0 such that for all i ∈ {1, ..., N}, t ∈ {1, ..., T},m > 0:

2See Bradley (2005) for further information on mixing conditions.
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P[|uit| > m] ≤ e1−(m/b)d2

5. There exists a constant M∗ > 0 such that for N,T → ∞:

sup
i∈{1,...,N}

P
�
1
T

	T
t=1 ||Xit|| ≥ M∗) = o(T−δ) ∀δ > 0. (5.14)

Assumptions 4.1. and 4.2. require that for each of the G population groups there exist

enough observations and that the G population groups are well-separated, respectively.

Conditions for the dependence and tail properties of the error uit are imposed through

assumptions 4.3. and 4.4. The last assumption 4.5. describes a condition on the distribution

of the covariates Xit.

The following theorem states that under the assumptions 3 and 4 the infeasible least

squares estimator from equation 5.8 and the GFE estimator are asymptotically equivalent:

Theorem 2 (Asymptotic Distribution). Let Assumptions 3 and 4 hold.

For all δ > 0 and N,T → ∞:

P( sup
i∈{1,...,N}

|ĝi − g0i | > 0) = o(1) + o(NT−δ) (5.15)

β̂ = β̃ + op(T
−δ) (5.16)

λ̂gt = λ̃gt + op(T
−δ) ∀g, t (5.17)

For the proof see Appendix B of Bonhomme and Manresa (2015).

We need the following assumptions to be fulfilled to describe the asymptotic distribution

of the least squares estimator (β̃, α̃).

Assumption 5. Let X̄gt denote the mean of Xit in group g0i = g.

1. For all i, j ∈ {1, ..., N}, t ∈ {1, ..., T}: E(Xjtuit) = 0.
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2. There exist positive definite matrices Σ and Ω such that:

Σ := plim
N,T→∞

1

NT

N�
i=1

T�
t=1

(Xit − X̄g0i t
)(Xit − X̄g0i t

)
�

(5.18)

Ω := lim
N,T→∞

1

NT

N�
i=1

N�
j=1

T�
t=1

T�
s=1

E[uitujs(Xit − X̄g0i t
)(Xjs − X̄g0j s

)
�
]. (5.19)

3. For N,T → ∞:

1√
NT

N�
i=1

T�
t=1

((Xit − X̄g0i t
)uit

d→ N (0,Ω) (5.20)

4. For all (g, t) ∈ {1, ..., G} × {1, ..., T}:

lim
N→∞

1

N

N�
i=1

N�
j=1

E[1{g0i = g}1{g0j = g}uitujt] =: ωgt > 0 (5.21)

5. For all (g, t) ∈ {1, ..., G} × {1, ..., T} and N,T → ∞:

1√
N

N�
i=1

1{g0i = g}uit d→ N (0, ωgt) (5.22)

The prior assumptions can be summed up as follows: assumptions 5.1. - 5.3. restrict the

(infeasible) least squares estimator β̃ of the coefficient vector to have a standard asymptotic

distribution. The least squares estimator λ̃gt of the grouped time effects is required to have

a standard asymptotic distribution through assumptions 5.4. and 5.5.

Corollary 1 (Asymptotic Distribution). Let Assumptions 3, 4 and 5 hold, and let

N,T → ∞ such that, for some ν > 0, N/T ν → 0. Then we receive:

√
NT (β̂ − β0)

d→ N (0,Σ−1ΩΣ−1) (5.23)
√
N(λ̂gt − λ0

gt)
d→ N (0,

ωgt

π2
g

) ∀(g, t) (5.24)

where πg is defined in assumption 4.1. and Σ,Ω and ωgt are defined in assumption 5.2.
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For the proof see the supplementary appendix to Bonhomme and Manresa (2015).3

5.3.3 GFE Estimator for Unbalanced Panel

The GFE estimator can handle with unbalanced panel data sets. We define the indicator

variable dit := 1 for the case, when observations yit and Xit are both available and dit := 0

if one of the two observations is missing.

For a unbalanced panel with maximum time span T the GFE estimator is of the following

form:

(β̂, λ̂, γ̂) = argmin
(β,λ,γ)∈B×ΛGT×ΓG

N�
i=1

T�
t=1

dit(yit − βXit − λgit)
2 (5.25)

So the only difference to the GFE estimator for a balanced panel is the inclusion of the

indicator variable dit into the minimization problem.

3available at https://www.dropbox.com/s/h2hk43owrl6rwh1/Bonhomme_Manresa_appendix.pdf?dl=0
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5 Methodology

5.3.4 Algorithms

The algorithm 1 by Bonhomme and Manresa (2015) is an iterative algorithm, being used

within the algorithm 2. In step 2 of algorithm 1, every individual i is being assigned

to the group gi, at which the objective function is being minimized. In step 3, an OLS

regression, including an interaction term for the interaction between group membership and

time dummies, provides the parameters β and λ. However, algorithm 1 has two drawbacks:

firstly, it heavily depends on the choice of starting values and, secondly, it can happen that

the algorithm calculates a so-called degenerate solution, which is a solution with less than

G non-empty groups.4

Algorithm 1 Iterative

1: Let (β(0), λ(0)) ∈ B × ΛGT be some starting values. Set s = 0.
2: (Assignment) Calculate for all i ∈ {1, ..., N}:

g
(s+1)
i = argmin

g∈{1,...,G}

T�
t=1

(yit − β(s)Xit − λ
(s)
gt )

2

3: (Update) Calculate:

(β(s+1), λ(s+1)) = argmin
(β,λ)∈B×ΛGT

N�
i=1

T�
t=1

(yit − βXit − λ
g
(s+1)
i t

)2

4: Set s = s+ 1 and got to Step 2. Continue until numerical convergence is fulfilled.

4The algorithm can easily be adapted to avoid degenerate solutions, see Hansen and Mladenovic (2001)
for further information.
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The second algorithm is based on the variable neighborhood search (VNS) heuristic pro-

posed by Hansen and Mladenovic (2001). The algorithm is presented on page 2 in the

supplementary appendix to Bonhomme and Manresa (2015).5 Two search steps in algo-

rithm 2 make this algorithm more efficient than the iterative algorithm 1, which has only

one search step. The first search step is the algorithm 1 embedded into step 4 of this algo-

rithm. The second search step (step 5) reassigns every individual to each group, updating

the group membership of one individual, if the value of the objective function is being re-

duced by this reassignment. According to Hansen and Mladenovic (2001) the combination

of those two search steps performs better than both of the search steps alone.

Another improvement in comparison to algorithm 1 is step 3, which consists of neigh-

borhood jumps of increasing size, where the individuals are being reassigned to randomly

chosen groups. This step makes it easier for the algorithm to leave local optima behind

and reach a global optimum.

Before running the algorithm, the following parameters have to be set: the maximum

neighborhood size neighmax, the maximum number of iterations itermax and the number

of starting values Ns.

Algorithm 2 Variable Neighborhood Search

1: Let (β, λ) ∈ B × ΛGT be some starting values.
Perform one assignment step of Algorithm 1 and obtain an initial grouping γinit.
Set itermax and neighmax to some desired values.
Set j=0.
Set γ∗ = γinit.

2: Set n = 1.
3: (Neighborhood jump) Relocate n randomly selected units to n randomly chosen groups,

receiving a new grouping γ
�
.

Perform one update step of Algorithm 1 and obtain new parameter values (β
�
, λ

�
).

4: Set (β(0), λ(0)) = (β
�
, λ

�
) and apply Algorithm 1.

5: (Local Search) Starting from the grouping γ = {g1, ..., gN ) obtained in step 4, system-
atically check all reassignments of units i ∈ {1, ..., N} to groups g ∈ {1, ..., G} (for
g �= gi), updating gi when the objective function decreases;
stop when no further re-assignment improves the objective function.
Let the resulting grouping be γ

��
.

6: If the objective function using γ
��
improves relative to the one using γ∗, then set γ∗ = γ

��

and go to step 2; otherwise, set n = n+ 1 and go to step 7.
7: If n ≤ neighmax, then go to step 3; otherwise got to step 8.
8: Set j = j + 1. If j > itermax, then Stop; otherwise go to step 2.

5available at https://www.dropbox.com/s/h2hk43owrl6rwh1/Bonhomme_Manresa_appendix.pdf?dl=0

28

https://www.dropbox.com/s/h2hk43owrl6rwh1/Bonhomme_Manresa_appendix.pdf?dl=0


6 Results

6.1 Estimates

Table 6.1 shows the main empirical results. The first column contains the estimated coef-

ficients from the OLS estimator. The second and the third column contain the estimates

from the FE and GFE estimator, respectively. For all 3 estimators the coefficient of income

inequality is negative and statistically significant.

Table 6.1 Results
Dependent variable:

log(CO2)

OLS FE GFE

log(GDP) 2.747∗∗∗ 1.536∗∗∗ 2.066∗∗∗

(0.293) (0.268) (0.117)

log(GDP)2 −0.166∗∗∗ −0.140∗∗∗ −0.112∗∗∗

(0.008) (0.008) (0.003)

log(GINI) −4.304∗∗∗ −4.612∗∗∗ −3.359∗∗∗

(0.528) (0.525) (0.211)

log(GDP)*log(GINI) 0.378∗∗∗ 0.439∗∗∗ 0.293∗∗∗

(0.057) (0.059) (0.023)

Intercept −7.143∗∗∗

(2.229)

Observations 3,154 3,154 3,154
R2 0.871 0.305 0.981
Adjusted R2 0.871 0.266 0.980
F Statistic 5,321.131∗∗∗ (df = 4; 3149) 327.035∗∗∗ (df = 4; 2986) 1,215.800∗∗∗ (df = 129; 3025)

Note: Standard errors are given in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Our estimated results are slightly different to the ones in Grunewald et al. (2017), where

the coefficients for income inequality & for the interaction term from the FE estimator are

not statistically significant. Additionally, all coefficients for income inequality are lower
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than the ones estimated by Grunewald et al. (2017), which also applies for per capita GDP.

Obviously, this is no surprise, as we have not chosen the exact same country selection as

Grunewald et al. (2017).

Furthermore, the results show that the effect of income inequality on per capita CO2

emissions depends on per capita GDP. This can be seen by the significant coefficient of the

interaction term for all 3 estimators. For countries with a per capita GDP level below a

certain threshold an increase in income inequality leads (ceteris paribus) to a decrease of

per capita CO2 emissions. If per capita income reaches this certain threshold, the negative

effect of income inequality on CO2 emissions is reversed as the coefficient of the interaction

term counterbalances the coefficient of income inequality. This implies that for countries

with income above the threshold of per capita GDP lowering inequality will reduce per

capita CO2 emissions.

The threshold level from the OLS model is 88 101 international dollars, which corresponds

to high-income countries like Luxembourg (88 610 international dollars in 2005). The FE

estimator provides a lower threshold level of 36 523 international dollars corresponding to

the GDP per capita value of high-income countries like France (37 576 international dollars

in 2014), Japan (37 337 international dollars in 2014) or New Zealand (34 608 international

dollars in 2014). The threshold level from the GFE model are 95 241 international dollars.

This threshold has been reached only by Quatar (112 532 international dollars) and by

Luxembourg (97 864 international dollars in 2007).

While the threshold level from the FE estimator is reached by most high-income countries,

it can be argued that the threshold levels from the OLS and GFE estimators might seem

implausible as they both have been reached only by two countries from the sample. Those

extremely high threshold values would imply that for most countries apart the richest ones

reducing income inequality will result in higher CO2 emissions.

Our estimated results are - similarly to the ones in Grunewald et al. (2017) - consistent

with the hypothesis of the EKC. The estimated coefficient for the logarithm of GDP per

capita is positive and statistically significant for all 3 estimators. The square of logarithm

of GDP per capita has a negative coefficient, which is as well statistically significant for

all 3 estimators. The estimated coefficients imply that increasing income per capita at an

initial stage leads ceteris paribus to an increase of CO2 emissions per capita until income

reaches a certain threshold. Then further increasing income results in a decrease of CO2

emissions. This relationship is consistent with the inverted-U relationship from the EKC

hypothesis. The estimated turning point of the EKC depends for all 3 estimators on income

inequality, as the coefficient of the interaction term is always statistically significant.

30



6 Results

Figure 6.1: Scatter plots for the relationship between CO2 emissions and the Gini Index as
well as GDP per capita for the DACH region
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Figure 6.1 shows scatter plots, where CO2 emissions are plotted against each GDP per

capita and the Gini Index for the countries Austria, Germany and Switzerland. The scatter

plots, where CO2 emissions are assigned to the y-axis and GDP per capita to the x-axis,

are depicted in the left column of Figure 6.1, whereas the same is being done for the Gini

Index in the right column. The EKC theory indicates a concave relationship, namely in

the form of an inverted-U, between GDP per capita and CO2 emissions. Interestingly this

relationship is not being observed for any of the three countries, Germany and Switzerland

rather show a linear downward trend for increasing per capita GDP values. The negative

coefficient of income inequality from the estimated results would imply a linear downward

trend of CO2 emissions for higher values of the Gini Index, however this relationship is

only being observed for Germany.
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6.2 GFE Groups

We are not only interested in the estimated coefficients by the GFE estimator, but also in

the estimated groups and the grouped fixed effects. Figure 6.2 shows the estimated grouped

fixed effects. The GFE groups are named in descending order by the values of the grouped

fixed effects. This means that the grouped fixed effects with the highest values belong to

the GFE group A and the ones with the lowest values to the GFE group E. The estimated

grouped fixed effects are all negative and appear to sink over time for each GFE group,

except for group E.

Figure 6.2: Estimated grouped fixed effects for the GFE groups
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Figure A.1 in the appendix shows the estimated time effects from the FE estimator.

Comparing the estimated grouped fixed effects with the time effects by the FE estimator,

we observe, that the time effects show a different behaviour over time than the grouped

fixed effects. Firstly, all time effects are positive. Secondly, there is no downwards trend

observable.

Additionally, it can be observed that the mean values of CO2 emissions are ordered in a

descending way from GFE group A to E, as can be seen in table 6.2. So the grouped fixed

effects calculated by the GFE estimator are higher for GFE groups with higher mean values

of CO2 emissions.

Table 6.2 Summary statistics of main variables

GFE group A B C D E

CO2

1Q 2.952 1.173 1.109 0.367 0.073
Mean 10.833 6.214 4.191 2.614 0.735
3Q 11.991 8.911 7.260 5.271 0.605
GDP
1Q 3 485 3 426.1 5 463.2 2 725.9 1 463.4
Mean 14 006 15 559.1 15 939.8 14 006.9 7 236.8
3Q 13 738 20 361.3 24 049.5 24 592 5 803
GINI
1Q 31.73 31.3 31.6 32.15 36.6
Mean 38.05 36.89 38.24 38.52 39.7
3Q 41.7 42.4 45.1 44.9 42.8

Table 6.3 and figure 6.3 show all 140 countries divided into the 5 GFE groups. The first

and the second group contain most of the countries, group C even holds up to 45 countries.

It is difficult to find a possible interpretation of the grouping of the 140 nations. Every

group contains both high-income and low-income countries, thus it cannot be argued that

countries are divided into those groups according to their per capita income levels. For

example, on one hand group E contains low income countries like Burundi, Madagascar,

Mali and Uganda, but on the other hand Switzerland, one of the countries with highest

per capita income values within the data set, is being assigned to this group.
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Table 6.3 Estimated GFE groups
A B C D E

1 Azerbaijan Armenia Algeria Albania Burundi
2 Bosnia and Herzegovina Australia Argentina Austria Cameroon
3 China Belarus Barbados Bangladesh Lao PDR
4 Estonia Bolivia Belgium Brazil Madagascar
5 Kazakhstan Bulgaria Belize Burkina Faso Mali
6 Kyrgyz Republic Canada Botswana Cambodia Nepal
7 Lesotho Czech Republic Cabo Verde Colombia Paraguay
8 Mongolia Guyana Central African Republic Costa Rica Sri Lanka
9 Qatar Honduras Chile Cote d’Ivoire Sudan
10 Russian Federation India Denmark Croatia Switzerland
11 South Africa Iran, Islamic Rep. Dominican Republic Cyprus Tanzania
12 Trinidad and Tobago Israel Ecuador El Salvador Uganda
13 Turkmenistan Jamaica Egypt, Arab Rep. Eswatini Uruguay
14 Ukraine Jordan Finland Ethiopia West Bank and Gaza
15 Zimbabwe Korea, Rep. Gambia, The Fiji
16 Luxembourg Georgia France
17 Malaysia Germany Ghana
18 Micronesia, Fed. Sts. Greece Guatemala
19 Moldova Guinea Guinea-Bissau
20 Mozambique Hungary Hong Kong SAR, China
21 North Macedonia Indonesia Iceland
22 Papua New Guinea Ireland Italy
23 Poland Japan Kenya
24 Tajikistan Lebanon Latvia
25 United States Lithuania Malta
26 Venezuela, RB Malawi Mauritania
27 Vietnam Mexico Mauritius
28 Morocco Niger
29 Namibia Nigeria
30 Netherlands Norway
31 New Zealand Pakistan
32 Nicaragua Panama
33 Romania Peru
34 Senegal Philippines
35 Sierra Leone Portugal
36 Singapore Rwanda
37 Slovak Republic Spain
38 Slovenia Sweden
39 St. Vincent and the Grenadines Zambia
40 Thailand
41 Tonga
42 Tunisia
43 Turkey
44 United Kingdom
45 Yemen, Rep.

35



6 Results

Looking at figure 6.3, the geographical proximity of countries does not seem to be relevant

for any group except maybe group A. This group contains (with some exceptions) several

countries in Central and East Asia like Azerbaijan, the Kyrgyz Republic, Kazakhstan,

Mongolia, Russia and Turkmenistan.

Figure 6.3: GFE groups

In comparison to the estimated grouped fixed effects and GFE groups in Grunewald et al.

(2017), the following can be stated:

• The GFE groups cannot be meaningfully compared to the ones estimated in

Grunewald et al. (2017), as the division of the countries into the GFE groups is quite

different to the grouping in Grunewald et al. (2017). Except for group A, which can

be most likely compared to the GFE group 3 in Grunewald et al. (2017). However our

GFE group A contains in addition the countries Bosnia and Herzogovina, Estonia,

Kyrgyz Republic, Lesotho, Quatar, Russia, South Africa, Trinidad and Tobago and

Zimbabwe and excludes Moldova and Uzbekistan.

• The estimated grouped fixed effects in Grunewald et al. (2017) are located mostly

near zero for all groups except group 3, where the grouped fixed effects sink over

time below the value −2. The grouped fixed effects tend to decline over time only

for the GFE groups 3 and 1. Our grouped fixed effects, depicted in Figure 6.2, are
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quite different, as they are all located in an interval between the values −4 and −7.

Additionally, the grouped fixed effects for all GFE groups besides group E decrease

over time, which is also different to the estimated GFE groups in Grunewald et al.

(2017). Interestingly the grouped fixed effects for the GFE group A in our results and

the GFE group 3 in Grunewald et al. (2017) have the same behavior, as the effects

for both groups decrease relatively sharply over time. Therefore the GFE group A

is the only one, which can be most likely meaningfully compared to a GFE group in

Grunewald et al. (2017) concerning grouping and the behavior of the grouped fixed

effects, namely the GFE group 3.

Another aspect concerning the characterization of GFE group membership, which we

want to analyse, is emission intensity. Generally, emission intensity is measured as the

level of GHG emissions per unit of GDP. 1 Therefore, emission intensity depends on energy

intensity and the fuel mix being used to generate energy.

CO2 emissions intensity denotes the level of CO2 emissions per unit of GDP. We use the

indicator ”CO2 emissions (kg per 2017 PPP $ of GDP)” from the World Bank Development

Indicators to further analyze differences in CO2 emissions intensity between countries in

each GFE group. The CO2 emissions intensity levels for each GFE group are depicted in

the figures A.2, A.3, A.4, A.5 and A.6.

Table 6.4 Summary statistics of CO2 emissions intensity

GFE group A B C D E

1Q 0.481 0.238 0.175 0.109 0.058
Mean 0.763 0.351 0.222 0.146 0.077
3Q 0.937 0.416 0.267 0.180 0.096

Firstly, we observe for the GFE group A that the CO2 emissions intensity levels are the

highest among all GFE groups. The average CO2 emissions intensity level for all countries

in the GFE group A is 0.763 and almost all CO2 emissions intensity levels are above 0.25, as

can be seen in figure A.2. Furthermore, a clear downward trend can be identified for most

of the countries within the group. Interestingly the group contains nations like Ukraine and

Turkmenistan, that were able to decrease extremely high CO2 emissions intensity levels in

the nineties.

The following results can be observed for nations assigned to the GFE group B: the average

is 0.351, most of the CO2 emissions intensity levels are below 0.9. and a sinking trend is

observable, as can be seen from figure A.3. This sinking trend is clearly evident for coun-

tries with quite high CO2 emissions intensity values in the nineties like Belarus, Bulgaria,

1See Baumert et al. (2005, page 26) for further information.
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Moldova and Poland.

The countries in the GFE group C have relatively low CO2 emissions intensity values

(average 0.222 and most of the CO2 emissions intensity levels are below 0.6) and a clear

downwards trend can be observed for nearly all countries within the group (see figure A.4),

especially for Georgia, Romania and the Slovak Republic.

CO2 emissions intensity values for the GFE group D are similar to the ones for GFE group

C: the average is 0.146 and all of the CO2 emissions intensity levels are below 0.4. How-

ever, there is only a slightly sinking trend observable for the GFE group D as the figure

A.5 shows.

Lastly, countries in the GFE group E have the lowest CO2 emissions intensity values (av-

erage 0.077 and below 0.15 for nearly all countries except West Bank and Gaza) and there

is no trend recognizable for all countries within the GFE group. In fact, for some countries

the is rather an upwards trend observable (see figure A.6).

The assignment of the countries to each GFE group can be characterized by differences

between their CO2 emissions intensity levels and their long time behaviour.

Additionally, we compare the endogenous variation for all countries within one GFE

group and with the group-specific fixed effects to further assess the fit of the GFE model.

We do this by first removing the exogenous variation explained by GDP per capita and

the Gini Index. The figures A.7, A.8, A.9, A.10 and A.11 show the remaining variation of

the countries within each GFE group. The black line in each figure represents the grouped

fixed effects for each GFE group. Apart from a few outliers the values vary within an

interval of approximately the same length for all GFE groups. The grouped fixed effects

seem to approximate the endogenous variation of the countries in every GFE group quite

well, as they are always in the middle of the interval.
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We employ several ways to test the robustness of our results. To begin with, we want to

perform a sensitivity analysis by including another transmission channel, through which

income inequality might influence CO2 emissions, into the GFE model.

As already mentioned in section 2.1, income inequality might affect environmental pres-

sure via two main transmission channels. The first channel is characterized by the way

how income inequality affects CO2 emissions via consumer behavior. The second channel

describes how income inequality might influence CO2 emissions through social agreements

and the implementation of environmental policies. However, as it is very difficult to mea-

sure the amount and quality of environmental regulations, we will use the Polity Index,

which has been presented in section 3.4, as a proxy variable.

Table 7.1 shows the result of including the Polity Index into the GFE model. More

specifically, the Polity Index is being included as an additional covariate into the regression,

but the number of GFE groups as well as the group membership assignments stay the same,

as they are not being recalculated by the algorithm by Bonhomme and Manresa (2015).

Although the coefficient for the Polity Index is statistically significant, it is very small.

The coefficients for the other regressors only change slightly without any change of sign or

significance. Therefore, our main findings stay robust regarding the inclusion of the Polity

Index into the GFE model.
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Table 7.1 Sensitivity analysis - Polity Index

Dependent variable:

log(CO2)

GFE GFE with Polity Index

log(GDP) 2.066∗∗∗ 1.879∗∗∗

(0.117) (0.123)

log(GDP)2 −0.112∗∗∗ −0.109∗∗∗

(0.003) (0.003)

log(GINI) −3.359∗∗∗ −3.647∗∗∗

(0.211) (0.220)

log(GDP)*log(GINI) 0.293∗∗∗ 0.324∗∗∗

(0.023) (0.024)

Polity Index 0.005∗∗∗

(0.001)

Observations 3,154 2,961
R2 0.981 0.982
Adjusted R2 0.980 0.981
F Statistic 1,215.800∗∗∗ (df = 129; 3025) 1,175.714∗∗∗ (df = 130; 2831)

Note: Standard errors are given in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Secondly we continue our sensitivity analysis by changing the number of GFE groups.

As mentioned in chapter 4, we have set the number of GFE groups to 5, so we can compare

our estimated results with the ones in Grunewald et al. (2017). We set the number of GFE

groups to 4 and to 6 and let the algorithm 2 by Bonhomme and Manresa (2015) recalculate

the group membership assignments as well as the grouped fixed effects.

Table 7.2 shows the resulting estimates. The first column shows the estimates from our

main model, while the second and the third column show the estimates from the model

with 4 GFE groups and the one with 6 GFE groups, respectively. Changing the number of

GFE groups has no impact on our main findings. All estimated coefficients stay significant

and no sign is reversed. Interestingly the coefficients from the model with 4 GFE groups

are only slightly different to the ones from our main model, whereas in the model with 6

GFE groups bigger changes in the coefficients can be observed, especially for the coefficients

belonging to the Gini Index and GDP per capita.

Table 7.2 Sensitivity analysis - number of GFE groups

Dependent variable:

log(CO2)

5 GFE groups 4 GFE groups 6 GFE groups

log(GDP) 2.066∗∗∗ 2.828∗∗∗ 1.001∗∗∗

(0.117) (0.130) (0.112)

log(GDP)2 −0.112∗∗∗ −0.147∗∗∗ −0.106∗∗∗

(0.003) (0.004) (0.003)

log(GINI) −3.359∗∗∗ −3.236∗∗∗ −5.310∗∗∗

(0.211) (0.234) (0.199)

log(GDP)*log(GINI) 0.293∗∗∗ 0.285∗∗∗ 0.539∗∗∗

(0.023) (0.025) (0.021)

Observations 3,154 3,154 3,154
R2 0.981 0.976 0.984
Adjusted R2 0.980 0.975 0.983
F Statistic 1,215.800∗∗∗ (df = 129; 3025) 1,185.666∗∗∗ (df = 104; 3050) 1,171.722∗∗∗ (df = 154; 3000)

Note: Standard errors are given in parentheses.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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We further continue our sensitivity analysis by assessing the impacts of changing the

parameters for the algorithm 2 by Bonhomme and Manresa (2015). The algorithm depends

on the maximum neighborhood size neighmax, the maximum number of iterations itermax

and the number of starting values Ns.
1 For the main model the 3 parameters of the

algorithm were all set to 10 as previously mentioned in chapter 4. Now we set each of the

three parameters to 20 and 50 to see whether an increase of this parameter leads to different

estimates. Increasing ceteris paribus each of the parameters has absolutely no impact on

the estimated coefficients. The algorithm always calculates the same composition of GFE

groups, assigning the same countries to each GFE group, therefore we receive in each case

the same resulting estimates. So our main findings stay robust with respect to changing

the parameters of the algorithm.

1See the supplementary appendix to Bonhomme and Manresa (2015) for further information. Available
at https://www.dropbox.com/s/h2hk43owrl6rwh1/Bonhomme_Manresa_appendix.pdf?dl=0.
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8 Conclusion

This thesis reports on the potential impact of income inequality on CO2 emissions. We

use the GFE estimator by Bonhomme and Manresa (2015) which allows us to control for

unobserved heterogeneity and for grouped fixed effects with different time patterns across

the GFE groups, which makes this estimator arguably better suited for our model than

other estimators, which are commonly used for panel data analysis. The main findings of

this thesis are the following:

The estimated results indicate that the effect of income inequality on per capita CO2

emissions depends on the income level. Increasing income inequality has a negative effect

on CO2 emissions below a certain threshold of income, while for income levels above this

threshold the effect is reversed: higher income inequality leads to higher CO2 emissions.

However, the threshold value for the GFE model is so high that is has been reached only

by two countries in the data set. This implies that for low-, middle- as well as for most

high-income countries lowering income inequality leads ceteris paribus to higher per capita

CO2 emissions.

Furthermore, the results substantiate the well-known EKC hypothesis as per capita income

has a positive effect on CO2 emissions while the squared per capita income term negatively

effects CO2 emissions.

The conducted sensitivity analysis, which comprises changing the number of GFE groups

and parameters of the GFE algorithm by Bonhomme and Manresa (2015) as well as includ-

ing another possible transmission channel into the GFE model, does not change our main

findings. They indicate that for countries aiming at reducing poverty, inequality and/or

CO2 emissions additional measures are needed to counterbalance the trade-off between

environmental damage and economic development. This can be pursued by replacing car-

bon intensive energy consumption with renewable energy technologies, to name but one

example.

However, existing theoretical and empirical studies analysing the impact of income in-

equality on environmental damage including those, that were discussed in the different
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sections of chapter 2, have contradictory outcomes depending on the chosen data set, es-

timators and assumptions. Therefore, our results should also be interpreted with caution.

Nonetheless they are useful for giving a better insight into the mechanism of how income

inequality and economic development in general influences environmental pollution. In

addition, further research is necessary to fully understand this mechanism.
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Figure A.1: Estimated time effects from the FE estimator
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Figure A.2: Emission intensity values for all countries within the GFE group A

Figure A.3: Emission intensity values for all countries within the GFE group B

46



8 Conclusion

Figure A.4: Emission intensity values for all countries within the GFE group C

Figure A.5: Emission intensity values for all countries within the GFE group D
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Figure A.6: Emission intensity values for all countries within the GFE group E

Figure A.7: Comparison of endogenous variation with the estimated grouped fixed effects
(black) for all countries within the GFE group A
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Figure A.8: Comparison of endogenous variation with the estimated grouped fixed effects
(black) for all countries within the GFE group B

Figure A.9: Comparison of endogenous variation with the estimated grouped fixed effects
(black) for all countries within the GFE group C
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Figure A.10: Comparison of endogenous variation with the estimated grouped fixed effects
(black) for all countries within the GFE group D

Figure A.11: Comparison of endogenous variation with the estimated grouped fixed effects
(black) for all countries within the GFE group E
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